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Abstract

Smart devices have become a rich source of sensitive information including personal data
(contacts and account data) and context information like GPS data that is continuously
aggregated by onboard sensors. As a consequence, mobile platforms have become
a prime target for malicious and over-curious applications. The growing complexity
and the quickly rising number of mobile apps have further reinforced the demand for
comprehensive application security vetting.

This dissertation presents a line of work that advances security testing on Android via
static code analysis. In the first part of this dissertation, we build an analysis framework
that statically models the complex runtime behavior of apps and Android’s application
framework (on which apps are built upon) to extract privacy and security-relevant
data-flows. We provide the first classification of Android’s protected resources within
the framework and generate precise API-to-permission mappings that excel over prior
work. We then propose a third-party library detector for apps that is resilient against
common code obfuscations to measure the outdatedness of libraries in apps and to
attribute vulnerabilities to the correct software component. Based on these results, we
identify root causes of app developers not updating their dependencies and propose
actionable items to remedy the current status quo. Finally, we measure to which extent
libraries can be updated automatically without modifying the application code.






Zusammenfassung

Smart Devices haben sich zu Quellen personlicher Daten (z.B. Kontaktdaten) und
Kontextinformationen (z.B. GPS Daten), die kontinuierlich iber Sensoren gesammelt
werden, entwickelt. Aufgrund dessen sind mobile Platformen ein attraktives Ziel fiir
Schadsoftware geworden. Die stetig steigende App Komplexitdt und Anzahl verfiigbarer
Apps haben zusétzlich ein Bediirfnis fiir griindliche Sicherheitsiiberpriifungen von
Applikationen geschaffen.

Diese Dissertation préasentiert eine Reihe von Forschungsarbeiten, die Sicherheits-
bewertungen auf Android durch statische Code Analyse ermoglicht. Zunéchst wurde ein
Analyseframework gebaut, dass das komplexe Laufzeitverhalten von Apps und Android’s
Applikationsframework (dessen Funktionalitdt Apps nutzen) statisch modelliert, um
sicherheitsrelevante Datenfliisse zu extrahieren. Zudem ermoglicht diese Arbeit eine
Klassifizierung geschiitzter Framework Funktionalitdt und das Generieren préziser Map-
pings von APIs-auf-Berechtigungen. Eine Folgearbeit stellt eine obfuskierungs-resistente
Technik zur Erkennung von Softwarekomponenten innerhalb der App vor, um die
Aktualitdt der Komponenten und, im Falle von Sicherheitliicken, den Urheber zu iden-
tifizieren. Darauf aufbauend wurde Ursachenforschung betrieben, um herauszufinden
wieso App Entwickler Komponenten nicht aktualisieren und wie man diese Situation
verbessern kénnte. AbschlieBend wurde untersucht bis zu welchem Grad man veraltete
Komponenten innerhalb der App automatisch aktualisieren kann.
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This dissertation is based on the papers mentioned in the following. I contributed to all
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The advent of smart handheld devices has revolutionized our way of communicating with
people. Traditional information sharing via short message services has been superseded
by modern instant messengers and social platforms allow to disseminate news across
the globe in a matter of seconds. Smart devices offer a plethora of features such as
calendar and contacts management or video and photo collections that have been
exclusive to desktop computers for years. In addition, they are equipped with a variety
of sensors that extend the devices’ capabilities such as GPS modules, gyroscopes, and
even fingerprint sensors that greatly enhance user experience. Users can download
third-party applications (or apps for short) from centralized marketplaces to add new
functionality. In 2009, Apple coined the catchphrase “There’s an app for that” to
advertise that there is an application for (almost) any use case. This particularly holds
true for Google’s Play Store—the most prominent one for the Android ecosystem—that,
according to market research, exceeded the number of 3 million hosted apps in 2017.
The variety of apps includes banking apps, social media apps, games, finances, or utility
apps. The success of this new app paradigm has also motivated the deployment of
mobile software stacks to other platforms such as wearables, televisions, Internet of
Things (IoT) and even cars. It has also changed the way of developing applications.
Android apps are API-driven and programmed against software development kits (SDKs)
that abstract from the complexity of the underlying framework services and provide
simple means to interact with the system and other applications. Developers commonly
re-use existing code in form of third-party libraries to add new functionality. This eases
the development task but, at the same time, raises code complexity as library code is
statically linked during app generation.

In consequence of its quickly growing popularity, Android has become a prime target
for malware and overly curious applications. The rich source of private and sensitive
data has fueled information-stealing malware and ransomware that holds the system
captive by encrypting (user) data or locking the device and demanding a ransom. This
motivated a line of security research that warned for such security and privacy risks
and highlighted the imminent risk of libraries that inherit the set of permissions from
their host apps. Due to code complexity and the binary-only distribution of apps, early
code analysis approaches applied lightweight techniques to investigate apps’ usage of
permissions that are required to perform sensitive operations. More advanced static
analysis techniques soon proved to be effective to extract security features such as
sensitive data-flow information at scale, but coarse approximations of apps’ runtime
behavior led to imprecise results and to a high number of false alarms. Further, the scarce
Android API documentation in terms of permission requirements motivated researchers
to analyze the application framework to automatically generate comprehensive API-to-
permission mappings. However, insufficient knowledge about the framework internals
and lightweight analysis techniques to cope with the framework complexity resulted in
inaccurate mappings that negatively influenced any application analysis that built upon
these datasets. Despite their shortcomings, these approaches discovered new attack
vectors and raised the security awareness of app developers and end-users. In particular,
incidents of sensitive data leakage by commonly used advertisement and tracking libraries
emphasized the potential for misuse by (closed-source) third-party code. However, the
absence of a reliable library detector for application binaries impeded an accurate
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CHAPTER 1. INTRODUCTION

identification of re-used code and thereby a correct attribution of vulnerabilities. As a
consequence, existing analysis approaches tend to report over-approximating per-app
statements that don’t allow to effectively blame the original code author, i.e. the app
developer or library developer.

The goal of this dissertation is to provide a static analysis framework that can provide
insights into apps and the application framework and to extract security and privacy
relevant data-flows. To this end, we improve on prior work in multiple dimensions.
As a foundation for subsequent code analyses, we first generate static runtime models
that mimic Android’s complex event-driven lifecycle. Contrarily to prior work, we are
then going to post-process the results of our data-flow analysis. Applying a set of
static optimizations yields shorter and more expressive traces by re-assembling runtime
values that will also significantly reduce the number of false alarms. The overall idea is
that these results can be readily used for common analysis tasks such as privacy leak
detection or API usage analysis. We like to further address the important, but widely
disregarded, aspect of accountability by identifying commonly used third-party libraries
in applications. This allows security vulnerabilities to be properly attributed to the
correct principal, i.e. the app or library developer. A particular challenge constitutes
the common use of bytecode obfuscation and dead-code elimination that makes the
detection of exact library versions inherently difficult. Using our approach, we are going
to empirically determine the outdatedness of third-party libraries in Google Play apps
and analyze the time that it takes for app developers to adopt new library versions. We
will test to which extent it is possible to automatically update library versions based
on their API usage within apps. Finally, we seek to answer the question about root
causes of app developers’ abstinence of library updates and to give informed advice
for remediation that involves the different actors in the Android ecosystem. On the
middleware, the major challenge is to overcome the lack of a comprehensive knowledge
base on how to statically analyze the application framework. Once established, the
goal is to comprehensively investigate Android’s permission system and to derive a
high-level taxonomy of Android’s protected resources, i.e. sensitive operations protected
by permissions. Based on our gained knowledge, we will further provide novel API-to-
permission mappings that eliminate the shortcomings of prior work.

Thesis Statement

This dissertation confirms the thesis that

It is possible to create a framework that statically models the runtime behavior
of Android apps and the Android application framework to extract privacy and
security-relevant data-flows. In case of applications, these flows can be attributed
to the correct entity, i.e. app code or library code. It is further possible to
determine whether included libraries are outdated and, if so, to which extent they
can be upgraded to newer versions automatically.
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Figure 1.1: High-level overview of the analysis tools developed (shown in green), their
relationship, and the respective output per tool (shown in orange).

Summary of Contributions

In the following, we summarize the major contributions of this dissertation and describe
how the individual parts relate to each other. Figure 1.1 depicts a high-level overview
of the analysis tools developed, their relationship, and the output each tool produces.

R-Droid R-DROID constitutes a comprehensive, general-purpose, static analysis frame-
work for Android applications (cf. Chapter 3). It builds static runtime models that
faithfully mimic the application lifecycle behavior. Building on top of these models,
R-DroID employs a slicing-based analysis to extract data-dependent statements for
arbitrary points of interest in an application. Prior work typically performs security
assessments at this point, accepting that such traces may grow very large and contain
spurious dependencies that lead to false positives. Our approach significantly improves
on this problem by post-processing the results with a multi-stage optimization pipeline.
The application of these optimizations—inspired by compiler optimization techniques—
results in semantically equivalent, but significantly smaller slices with more expressive
statements. This facilitates the task of understanding analysis results and enables
automatic security assessments for a larger number of use-cases than prior work, e.g.
analysis of arguments passed to security and privacy-sensitive APIs. R-DROID excels
over related work in standard benchmarks in terms of precision and shows similar recall
as the best-performing tools. To show its real-world applicability, we instantiated two
common analysis tasks—data leakage detection and user input propagation analysis—as
modules and found a significantly larger amount of privacy leaks than related tools
when applied to apps from Google Play.

axplorer AXPLORER is an analysis framework to study the internals of the Android
application framework (cf. Chapter 4). It is the first work to establish a solid and
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comprehensive methodology on how to conduct a static analysis on the application
framework. This particularly comprises the enumeration of the framework’s public
API and how to statically model the runtime behaviour in presence of design pattern
that significantly differ from the application layer. Building on this knowledge base,
we study Android’s permission system, thereby answering what is actually protected
by permissions. To this end, we identify the framework’s protected resources, i.e. the
privacy and security-sensitive operations that are guarded by Android’s permissions,
and establish a high-level taxonomy to classify them. Further, we re-visit the important
use-case of mapping permissions to framework/SDK API methods. In particular, our
novel mappings significantly improve on prior results that were based on insufficient
knowledge about the framework’s internals. Finally, we show that, although framework
services follow the principle of separation of duty, the accompanying permission checks
to guard sensitive operations violate it.

Accurate permission mappings are not only relevant for app developers due to an
incomplete documentation, they also constitute a valuable source of sensitive APIs for
application analysis, e.g. R-DROID may be configured to check for permission-protected
APIs that retrieve sensitive information, such as location data or unique identifiers.

LibScout LiBScoUT is a third-party library detector for Android applications that is
resilient against common code obfuscation techniques (cf. Chapter 5). Our approach
is capable of pinpointing exact library versions used in apps and, in case dead code
elimination has been applied, to compute a similarity score to determine the fraction
of library code included. Libraries are detected with profiles extracted from original
library SDKs. This technique allows us to study library evolution in applications and
to reliably identify library versions with known security vulnerabilities. This work was
first to identify and quantify library outdatedness in apps of the Google Play store.

Being able to reliably distinguish app developer code from library code is highly relevant
for various app analysis tasks. Identified privacy leaks or API misuse, as implemented
in R-DROID, can then be properly attributed to the correct software component.

Library Updatability This work builds on top of LIBSCOUT and explores the problem
space of why app developers do not update third-party libraries (cf. Chapter 6). A
survey with app developers from Google Play provides first-hand information on library
usage and requirements for more effective library updates. A subsequent study of library
provider’s semantic versioning practices uncovers that providers are likely a contributing
factor to the app developers’ abstinence from library updates in order to avoid ostensible
re-integration efforts and version incompatibilities. In a large-scale library updatability
analysis with apps from Google Play, we show that the vast majority of libraries could
be upgraded by at least one version without modifying the app code. This also holds
for library versions with known security vulnerabilities that could automatically be
upgraded to the fixed version. Including the developer responses and the empirical
results of our code studies, we give informed advice on how to remedy the current
situation and propose actionable items for different actors in the Android ecosystem.
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Outline

The remainder of this dissertation is structured as follows. Chapter 2 provides necessary
background information on the Android software stack and on static analysis terminology.
We present R-DROID in Chapter 3, AXPLORER in Chapter 4, and LIBSCOUT in Chapter 5.
Chapter 6 presents an empirical study of third-party library updatability. We conclude
this dissertation in Chapter 7.
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2.1. THE ANDROID SOFTWARE STACK

This chapter introduces background information on the Android operating system and
basics of program analysis techniques and data models that are used throughout chapters
3 to 6.

2.1 The Android Software Stack

Android is an open-source software stack for embedded devices that was released by
Google in 2008. In the same year, Google founded the Open Handset Alliance—a
consortium of hardware, software, and telecommunication companies—to develop and
advance open standards for mobile devices. Since then, Android has gone through many
major releases up to the most current release 8.0 (code name Oreo) in August 2017. Over
the years, Android has become the most dominant smartphone operating system with a
market share of about 81% by the end of 2016 [58]. Its major source of applications,
or apps for short, is the Play Store operated by Google. In June 2017, the number of
available apps passed 3 million [127] and users downloaded more than 65 billion apps
within a twelve month period [138]. In contrast to Apple’s i0S, third-party stores such
as Amazon’s Appstore exist as alternative marketplaces. Beyond being a platform for
smartphones and tablets, Google has developed variations of Android for new use cases
such as Android Wear (wearables) [15], Android TV (televisions) [14], Android Auto
(cars) [13] and Android Things for the emerging market of IoT devices [46].

Linux Kernel The Android software stack comprises six layers (cf. Figure 2.1) with a
modified Linux kernel as the foundation of the platform. The kernel has been adapted
to the requirements of resource-constraint mobile devices with a specialized memory and
power management. Further, Google modified the Binder Inter-process Communication
(IPC) mechanism to allow seamless cross process boundary calls. In the second half
of 2017, the majority of devices still runs on Linux 3.18 with long-term support that
ended in January 2017. Starting with Android Oreo, Google enforces kernel version
4.4 to be used by device makers and introduces project Treble to facilitate platform
updates for manufactures. In a nutshell, it provides a vendor interface to separate the
vendor implementation—typically device-specific, low-level software—from the Android
middleware [44].

Native Libs and Runtime On top of the Linux Kernel the extensive Android Mid-
dleware is built comprising core system components, the Runtime, and the application
framework. System components such as the Hardware Abstraction Layer (HAL) or the
Runtime ART are built from native code written in C and C++ and require native
libraries such as WebKit or OpenGL. Prior to Android version 5.0, the Dalvik virtual
machine (DVM) was the default runtime where each app runs in its own process and its
own instance of the DVM. The Dalvik virtual machine is a register-based VM running
dex (Dalvik executable) bytecode optimized for a low-memory footprint. Starting from
Android 5.0 the DVM was superseded by the Android Runtime (ART) that comes with
an on-device compiler to translate dex bytecode into highly optimized platform-specific
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Figure 2.1: Android Software Stack with six different layers. Some IPC and local calls are
depicted to exemplify different communication pattern across layers.

native code. Initially, the compilation process was done ahead-of-time during app instal-
lation. With Android 7.0, a just-in-time compiler was added to minimize compilation
overhead.

Application Framework The application framework comprises core system services
written in Java and provides an API to access functionality such as retrieving location
data or modifying the audio settings. Every framework service is responsible for
providing access to one specific system resource, such as geolocation or radio interface.
Some services utilize the Java Native Interface (JNI) to interact with the underlying
platform through native components and libraries. For instance, the WifiService interacts
with the WiFi daemon. Other services, such as Clipboard, do not rely on any hardware
features.

Framework services are implemented as bound services [5] as part of the SystemServer.
Bound service is the fundamental pattern to realize Android services that are remotely
callable via a well-defined interface. Such interfaces are described in the Android Interface
Definition Language (AIDL) and an AIDL compiler allows automated generation of Stub
and Proxy classes that implement the interface-specific Binder-based RPC protocol to
call the service. Here, Stubs are abstract classes that implement the Binder interface and
need to be extended by the actual service implementation. Proxies are used by clients to
call the service.

A small number of framework services does not use AIDL to auto-generate their Stub~
/Proxy, but instead provides a custom class that implements the Binder interface. The
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most prominent exception is the ActivityManagerService (AMS), which provides essential
services such as application life-cycle management or Intent distribution. Since its
interface is also called from native code—for which the AIDL compiler does not auto-
generate native Proxies/Stubs and hence requires manual implementation of those—the
RPC protocol for the AMS is hardcoded to avoid misalignment between manually
written and auto-generated code.

Android SDK  On top of Stubs and Proxies, the Android SDK provides Managers as an
abstraction from the low-level RPC protocol. Manager classes encapsulate pre-compiled
Proxies and allow developers to work with Manager objects that translate local method
calls into remote-procedure calls to their associated service and hence enable app
developers to easily engage into RPC with the framework’s services. However, Proxies
and Managers are just abstractions for the sake of app developer’s convenience and
nothing prevents an app developer from bypassing the Managers or re-implementing the
default RPC protocol to directly communicate with the services.

System Apps System apps, such as Contacts, Dialer, or SMS complement the ap-
plication framework with commonly requested functionality. However, in contrast to
the application framework services that are fixed parts of any Android deployment,
system apps are exchangeable or omittable (as can be observed in the various vendor
customized firmwares) and, more importantly, are simply apps that are programmed
against the same application framework API as third-party applications.

2.1.1 Permissions

One cornerstone of the Android security design are permissions, which an app must
hold to successfully access the security and privacy critical methods of the application
framework. Every application on Android executes under a distinct Linux UID and per-
missions are simply Strings' that are associated with the application’s UID. There is no
centralized policy for checking permissions on calls to the framework API. Instead, frame-
work services that provide security or privacy critical methods to applications (must)
enforce the corresponding, hard-coded permission that is associated with the system
resources that the services expose. To enforce permissions, the services programmatically
query the system whether their currently calling app—identified by its UID—holds the
required permission and if not take appropriate actions (such as throwing an exception).
For instance, the LocationManagerService would query the system whether a calling
UID is associated with the String android.permission. ACCESS_FINE_ LOCATION,
which represents the permission to retrieve the GPS location data.

In this model, system apps differ from third-party apps in that they can successfully
request security and privacy critical system permissions from the framework, which

!Permissions that map to Linux GIDs do not involve the framework and are not further considered
here.
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are not available to non-system apps. Moreover, like framework services (and any
non-system application), they are responsible for enforcing permissions for resources
they manage and expose on their RPC interfaces (e.g., contacts information or initiating
phone calls). The difference to non-system applications is, that they usually enforce
well-known permissions defined in the Android SDK, although the Android design
does—in contrast to the framework services—not hardcode where those permissions are
enforced, thus allowing system apps to be exchanged.

2.1.2 Android Apps

Application layer apps are written in Java and/or Kotlin [45] and are subsequently
compiled to dex bytecode. On the device, this bytecode is either directly executed by
the DVM or compiled to native code to be executed with ART. In addition to bytecode,
app developers may also write code in C and C++ via the Native Development Kit
(NDK). Similar to other software development platforms, it is common practice to
integrate and re-use third-party components to facilitate app development. There are
third-party libraries for (almost) any use case available ranging from advertisement
libraries to monetize the application, over Android UI widgets, to utility libraries for
XML/JSON processing. Libraries can be provided both as bundled Java bytecode (.jar
file) or as an Android Archive Library (.aar), whereas the latter one provides resources
in addition to bytecode. There is no dedicated package manager or centralized library
store for Android. Libraries can be retrieved via various different release channels such
as Maven Central, JCenter, or GitHub.

Application Build During the application build process, all code resources are compiled
to one or more dex bytecode files. Multiple bytecode files are necessary when the number
of declared methods exceeds the limit of 64K (a restriction of the dex bytecode format,
typically referred to as 64K reference problem [43]). This implies that any third-party
code is statically linked, causing large bytecode files in case of many dependencies. To
remedy this problem, Android’s developer IDE has built-in support for code minification.
Internally, the widely used Java obfuscation tool ProGuard[68] is used to perform
identifier renaming and dead code elimination to shrink and optimize the bytecode.

e Dead code elimination In this shrinking step unused code is identified and
removed from the bytecode file. Typically a (conservative) reachability analysis is
conducted from a set of predefined entry points to determine the set of classes and
class members in use. Any other code is discarded. This is particularly effective
for third-party components as app developers typically use only a subset of the
library API.

o Identifier renaming is a technique to rename classes and class members that
are not entry points. Original names are transformed into short, non-meaningful
identifiers, i.e. a package name com.facebook might be renamed to a.b . Identifiers
are still unique within the app, but these shortened names make any reverse
engineering attempt more difficult. Further, this approach does also shrink the
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overall app size, as the new identifiers are typically (much) smaller than the
original ones.

These two shrinking/obfuscation techniques are side-effect free and have a low (one-time)
overhead during compilation. Section 5.4 introduces additional, more advanced, code
obfuscation techniques relevant for our library detection approach.

App Components Every application must define an app manifest called AndroidManifest~
xml which provides essential information about the application to the Android system.

It contains the package name that serves as a unique identifier and the set of requested
permissions. In addition, it declares the set of app components that compose the
application and defines the conditions in which they can be launched. In Android there
exist four basic types of components:

e Activities are foreground tasks that implement user interface screens. They
constitute the main entry points for users to interact with applications.

+ Services perform long-running operations in the foreground (e.g. playing an
audio track) or in the background (e.g. synchronizing data) and do not provide
a user interface. They continue to run even if the user switches to different
applications. Services may provide an IPC interface to which other services can
bind and interact with it (see bound services).

e Content Providers manage access to data sources and provide granular control
to access the stored data. Content Providers are the standard interface to connect
data across processes. They provide a level of abstraction for accessing both
structured data, e.g., an SQLite database, or unstructured data such as image
files. Content Providers can be configured to restrict access to (subsets of) the
data storage for different applications and can define permissions for reading and
writing data.

e Broadcast Receivers are components that can be used to register for system
and applications events. Once an event happens, all registered receivers for this
event are notified by the Android system. For example, all applications that
register for the event ACTION_BOOT_COMPLETED are notified once the system has
completed the boot process.

Android apps adhere to a complex event-driven application lifecycle. Components can
be asynchronously triggered by events or launched (and stopped) by user interaction.
Each of these components maintains its individual lifecycle with predefined callback
methods that are implicitly invoked by the runtime environment. Developers override
these callback methods such as onCreate or onPause to initialize data structures, to save
an app’s state before closing it or switching it into the background. Figure 2.2 shows
the complex Activity lifecycle with its predefined callbacks and state transitions.

Inter-Component Communication On Android, each app process is forked from a
system process called Zygote. Zygote is initialized at system boot time and preloads
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Figure 2.2: Activity lifecycle (adapted from (48)) with predefined callback methods.

common framework code and core system libraries. When an application is started, the
app’s code is loaded and run in new process forked from Zygote. All apps can access the
same set of shared core libraries which consequently reduces the load time and results
in faster application launch times. As a consequence, every app is executing in its own
process with a distinct system identity, i.e. the Linux user ID (UID) and group ID (GID).
Due to this privilege separation at operating system level, apps are, by default, isolated
from each other and can not directly access data from another application. Since Android
is based on Linux, processes can use traditional inter-process communication (IPC)
mechanisms to communicate with each other, including the filesystem, sockets, or signals.
The primary way to communicate with other apps, however, is the Android-specific IPC
mechanism Binder—a lightweight and high-performance RPC implementation derived
from OpenBinder[108]. Since Binder is used both for in-process and cross-process
communication between app components, this is often referred to as inter-component
communication (ICC).

To hide low-level implementation details of Binder-based ICC, Android provides multiple
layers of abstraction. The most commonly used abstraction are Intents. Intents are
simple message objects with two primary attributes—an action to be performed and the
data to be operated on, typically given as a URI. The example ACTION_VIEW content://~
contacts/people/ would display a list of people, which the user can browse through. The
receivers are determined depending on the two types of Intents, explicit and implicit
Intents. Explicit Intents address one specific receiver that needs to be defined via an
additional attribute component. For unspecific implicit Intents, receivers are resolved
by the Android system at runtime depending on the configured attributes.

2.2 Static Analysis Primer

This section introduces some common terminology and data models for static code
analysis used throughout the following chapters.
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Figure 2.3: Control-flow graph with original instructions and instructions in SSA form.

Intfermediate Representation Static code analysis approaches typically do not work
directly on source code or binary-/bytecode, but first, translate it into an intermediate
representation (IR) that abstracts from high-level syntactic sugar of programming
languages and from low-level processor-specific instructions. In general, IRs are the
language of an abstract machine used to represent code independent of a specific source
or target language, e.g. the analysis frameworks WALA[77] and Soot[126] are both
capable of transforming Java source code, Java bytecode, and dex bytecode into the
same intermediate representation. Due to their abstraction and special properties,
intermediate representations are especially suitable for code analysis and optimization
tasks. One useful property is the Static Single Assignment (SSA) form[2, 116]. An
intermediate representation is in SSA form, iff each variable is assigned exactly once and
every variable is defined before being used. This is achieved by splitting existing variables
into versions, i.e., the first definition of a variable z is renamed to x1. Figure 2.3 shows a
simple code snippet and its respective SSA form after variable renaming. Synthetic phi
functions are added at the beginning of control flow merge points to resolve ambiguity.
In Figure 2.3b the statement y3 < ¢(y1,y2) indicates that the new definition y3 can
either take values y; or y2 depending on the path taken. This versioning implies that
use-def chains in the SSA form are explicit, i.e., their length is one. This makes the
static single assignment form particularly appealing for code optimizations such as
constant propagation or dead code elimination.

Data Models  Control-Flow Graphs (CFG)[1] are an essential building block for many
static analyses and compiler optimizations. In a CFG each node in the graph represents
a basic block (BB), i.e. a straight-line set of instructions without jumps or jump targets.
Directed edges represent jumps in the control-flow. CFGs capture the intra-procedural
control-flow, i.e. the flow within one method. In Figure 2.3a the first BB ends with an
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if-conditional and the control flow is split into a then-branch and an else-branch. Both
branches subsequently merge again to a single execution path.

A Call Graph (CG) is an inter-procedural control-flow graph which represents caller-
to-callee relationships between methods in a program. Each node represents a method
and directed edges (f,g) indicate that a method f calls method g. Call graphs can
be generated with varying levels of precision. A lightweight approach to generate a
CG constitutes using a Class Hierarchy Analysis (CHA)[42], a type-based analysis
to determine class inheritance. For Java, the class hierarchy is always rooted at
the javalang.Object class and allows to easily check for subclasses of a particular
class, implementing classes for interfaces, or inherited methods. This is important for
programming languages that feature dynamic dispatch where the class hierarchy can
be consulted for potential receivers. If the set of possible receivers is larger than one,
the call-graph over-approximates the runtime behavior. More precision can be added
by conducting an alias/pointer analysis to (try to) statically determine the concrete
runtime type at each call site. The increased precision typically comes at the drawback
of longer generation times and larger storage requirements.

Besides control-flow, data and control dependencies between program statements are
of special interest for static analysis. These can be modeled intra-procedurally using a
Program Dependence Graph (PDG)[55]. A control dependence between statements s;
and so exists, if s; controls the execution of s or vice versa, e.g. through if-conditionals
or while-statements. Control dependencies are typically extracted from control-flow
graphs. A data dependence between two statements exists if a definition of a variable v
at one statement might reach the usage of v at another statement. System Dependence
Graphs (SDG) are used to combine PDGs to model data and control dependencies
inter-procedurally.

Analysis Techniques A reachability analysis is a code optimization approach to
identify unreachable/dead code or loops by traversing edges of the control-flow graph
or call graph. In code analysis, this technique is used to determine whether a code
location, e.g. a sensitive sink statement, is control-flow reachable from an API or another
statement, e.g. a sensitive source. A reachability analysis typically bootstraps a more
expensive analysis when execution paths exist between points of interest. Data and
control dependence analyses can similarly be conducted by traversing the respective
edge types in a PDG/SDG.

Program slicing[145] is a technique to compute a set of statements, the slice, that may
affect the values at some statement of interest, usually referred to as the slicing criterion.
Slicing can be based on iterative data-flow analysis or on PDG/SDG graph traversal.
A forward slice starts at a slicing criterion and computes all statements that may be
influenced by this statement, while a backwards slice computes all statements that may
influence the criterion. The generated slice represents a subset of the program that
should still produce the same output for a given input. In contrast, a taint analysis
traces the path of a labeled/tainted value through the application and observes all
objects/values that are affected by the original value. Taint propagation rules define
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how tainted values propagate through different types of instructions to enable tracking
of labeled data during execution.
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3.1. MOTIVATION

3.1 Motivation

Today’s feature-rich smartphone apps intensively rely on access to highly sensitive
(personal) data. This puts the user’s privacy at risk of being violated by overly curious
apps or libraries (like advertisements). Central app markets conceptually represent the
first line of defense against such invasions of the user’s privacy, but unfortunately, we
are still lacking full support for automatic analysis of apps’ internal data flows and
supporting analysts in statically assessing apps’ behavior.

In this work, we present a novel slice-optimization approach to leverage static analysis of
Android applications. Building on top of precise application lifecycle models, we employ
a slicing-based analysis to generate data-dependent statements for arbitrary points of
interest in an application. As a result of our optimization, the produced slices are, on
average, 49% smaller than standard slices, thus facilitating code understanding and
result validation by security analysts. Moreover, by re-targeting strings, our approach
enables automatic assessments for a larger number of use-cases than prior work. We
consolidate our improvements on statically analyzing Android apps into a tool called
R-DROID and conducted a large-scale data-leak analysis on a set of 22,700 Android apps
from Google Play. R-DROID managed to identify a significantly larger set of potential
privacy-violating information flows than previous work, including 2,157 sensitive flows
of password-flagged Ul widgets in 256 distinct apps.

3.2 Problem Description

Modern smartphone apps offer an abundance of features that request access to the users’
highly sensitive, personal data. The wide proliferation of these apps has made them
a prime target for malware developers, and the variety of reported privacy incidents
has fueled the legitimate privacy concerns of end users that their sensitive data is
stealthily collected, monetized, and disseminated [65, 38, 56, 96]. Centralized app
markets have responded by trying to identify malicious and overly curious applications
even before these apps are deployed on a user’s smartphone. To this end, they strive for
comprehensive application vetting to understand app internals and to thereby identify
abnormal app behaviors.

Static analysis of apps is widely accepted as a well-suited, automated concept for applica-
tion security vetting on a large scale. In the context of Android, prior work has already
successfully identified particular security and privacy problems like (user-intended)
privacy leak detection [73, 59, 152, 151, 144], component hijacking vulnerability detec-
tion [94], and misuse of (framework) features such as the crypto API [52] or dynamic
code loading [112], to name a few.

All these approaches share the common goal to precisely capture which data flows into
security- and privacy-sensitive method calls. Unfortunately, existing static analysis
approaches are (fully or partially) agnostic to the concrete data values that arise during
execution of an app (i.e., strings or primitive values). This can make a crucial difference
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in assessing an app as being harmless or dangerous to the users’ privacy. For instance,
the concrete value for a receiver number in a text message app tells apart a legitimate
app from one that sends premium SMS messages. Some approaches have considered
this problem of statically recovering concrete runtime values, but are currently limited
to coarse-grained approximations for runtime strings [105, 73, 32, 35]. In more evolved
cases, this typically results in conservative approximations such as ( “could be any string”
or “any combination of these strings”). As a consequence of this limitation, they face
many false positives (i.e. false alarms) or are even not suitable for assessing such cases
at all (see Section 3.4).

Another aspect that has received little attention so far is that any static analysis
requires a significant amount of manual investigation either to validate the results or
to understand how data is processed within the application code. However, manually
investigating the output of existing approaches even for simpler cases—typically a huge
list of data-dependent statements and an involved kind of formal security assessments—
constitutes an intricate task, since existing tools either work with the app’s bytecode [73,
112] or transform it into an intermediate representation [19, 144, 94, 59] that is usually
less amenable to manual review than the original source code. As a consequence, the
efforts for a human analyst in validating and assessing the results of current analysis
solutions are significant.

3.3 Contribution

To address the aforementioned challenges, we present a novel slice optimization approach
to facilitate privacy- and security assessments on Android applications. Our approach
builds on a standard slicing-based analysis to generate data-dependent statements for
arbitrary points of interest in an application. While existing app analysis approaches
already assess apps based on these early results, our analysis proceeds by further
optimizing the slice statically. Our optimization provides the following benefits: 1. A
general purpose value analysis to precisely reconstruct values/strings to ease (semi-
Jautomatic checks for more evolved security assessment tasks. 2. Our optimization
pipeline statically transforms slices into semantically-equivalent, concise slices. This
improves readability and reduces the number of false positives, a major benefit for an
efficient reviewing process. The optimized slices can subsequently be further assessed
by distinct security modules that create additional insights about sensitive data flows
within the application and that better facilitate manual app reviewing. Technically, we
make the following three contributions:

1. Novel Slice Optimization Approach. We start by leveraging a system dependency
graph (SDG) that distinguishes different objects of the same type (object sensitivity),
fields of the same object (field sensitivity), calling contexts of invoked methods (context
sensitivity), and definitions of the same local variable on different paths through a method
(flow sensitivity). We add a comprehensive application lifecycle model to faithfully take
Android’s peculiarities into account. On top of a slicing-based dependency analysis,
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we propose a novel slice optimization approach that, on a high level, constitutes a
use-def tracker to eliminate spurious dependencies that the data-dependency analysis
failed to resolve and a comprehensive value analysis to re-assemble strings and primitive
values that are passed as parameters to security-relevant functions. To this end, we
adopt optimization techniques from partial evaluation, domain knowledge, and copy
propagation to receive concise and semantically-equivalent slices with a low number of
statements. As a result, we receive optimized slices that are about 50% smaller than the
original slices, making any subsequent manual reviewing task more efficient. In addition,
more evolved security problems such as premium number assessment (see Section 3.4)
can be evaluated automatically due to our value analysis.

2. Complementary Analysis via Security Modules. Our approach supports the
integration of further security modules to extend and amplify the analysis of apps’
w.r.t. user’s security and privacy. Security modules define their own data flow sources/sinks
and receive the optimized slices to perform security assessments. In this work, we realize
three such security modules—data leakage detection, user input propagation, and slice
rendering for manual code review—that we used for our large-scale evaluation of Google
Play apps.

3. R-Droid and Large-scale Evaluation on Google Play.  We consolidate all afore-
mentioned features into a tool called R-DROID. The evaluation of R-DROID on the
widely accepted, open-source testsuite DroidBench excels over related work [19, 144, 63]
with nearly optimal precision (97%, one false alarm) and 80% recall (7 missed violations).
In a large-scale evaluation of 22,700 apps from Google Play, R-DROID managed to
identify a significantly larger set of potential privacy-violating information flows than
previous work, including 2,157 sensitive flows of password-flagged UI widgets in 256
distinct apps. Finally, we demonstrate the effectiveness of our approach to manual code
reviewing on the common use-case of understanding malware behavior.

3.4 Technical Problem Description and Approach

We start with the illustrative example of premium number classification—a major
monetization factor of malware—to demonstrate why current data leak detection and
reachability analyses are insufficient for a faithful security analysis of Android apps.
The example is depicted in Listing 3.1 as a code excerpt for sending premium SMS that
many Android SMS malware variants rely on [161]. In line 10, an SMS with activation
code 95pAHD is sent (without user interaction) once the MainActivity is displayed. The
premium receiver number is selected randomly and assembled via string concatenation,
which constitutes a simplistic form of obfuscation.

Existing approaches based on static analysis do not resolve the concrete values for the
receiver number of the text message (SMS), for different reasons. Forward analysis
approaches [80, 151, 19, 59, 144, 63] rely on sensitive sources to execute their analysis,
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Listing 3.1: Premium SMS example

1 public class MainActivity extends Activity {

2 protected void onCreate(Bundle savedInstanceState) {
3 String vall = "10";

4 int val2 = 66953930;

5 if (Math.random () > 0.5d) {

6 vall = "106618";

7 val2 = getValue();

8 }

9 SmsManager sm = SmsManager. getDefault ();

10 sm.sendTextMessage(vall+val2, null, "95pAHD", null, null);
11 }

12 private int getValue() { return 5829; }

13 }

none of which are present in this example. Backward analyses approaches do not resolve
the concrete numbers as well. Approaches tailored to data leak detection [19, 144]
do not flag this example as critical, due to the absence of sensitive information, basic
string analyses [73, 32, 105] are either limited to constants and/or lack path-sensitivity.
Heuristic approaches simply retrieve string values from the bytecode and combine them
in various ways to determine meaningful combinations. This will miss the implicit
conversion of wval2, an integer variable, to a string during concatenation (internally,
this constitutes a StringBuilder.append call). Moreover, intra-procedural approaches [73]
do not appropriately capture the number 5829, which is returned by the method call
getValue (it is a potential value as well since it is implicitly converted to a string).
Moreover, even if all values can be identified, existing analyses do not determine the
set of possible values per path. The common remedy is to enumerate all possible
combinations of the identified strings, introducing false positives. In a nutshell, a
path-sensitive value analysis is essential for determining the actual numbers 1066953950
and 1066185829, which can, in practice, be compared against lists of known premium
numbers.

3.4.1 Analysis Framework

The high-level architecture of our R-DROID is depicted in Figure 3.1. It comprises
a pre-processing phase in which it collects application meta-data and generates a
comprehensive application lifecycle model (cf. Section 3.4.1.2) that is subsequently used
to create a system-dependence graph (SDG). For the analysis, we leverage a standard
(backward) data-dependence slicer. It takes an arbitrary list of sinks (in terms of method
signatures) as input to capture data that may influence these statements. The output
is post-processed by our optimization pipeline to obtain semantically equivalent slices
with a low number of statements and a lower number of false positives. These optimized
slices can then be fed into customized security modules, e.g. for privacy leak or input
propagation analysis. The implementation of R-DROID (blue colored boxes) comprises
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Figure 3.1: High-level architecture of R-DROID

approximately 11.5 kKLOC, including code for the three security modules.

3.4.1.1 Pre-processing Phase

We start by extracting information included in the application package and analyze the
manifest file that, among others, declares the apps’ components and meta-data like the
requested permissions, as well as layout files containing Ul descriptions. To generate
app data models, R-DROID leverages the information flow control (IFC) framework
JOANA [69, 66]. Its frontend includes the analysis framework WALA [77], that offers an
intermediate-representation (IR) in a static-single assignment (SSA) form [2, 116]. Their
Dalvik frontend, adopted from SCanDroid [32], transforms Android bytecode directly
into WALA’s IR. We generate bytecode using dexlib [25] to model a static application
lifecycle model for each app that takes the Android peculiarities into account.! The
lifecycle-enhanced app bytecode is subsequently used by JOANA to generate an object-,
context- and field-sensitive SDG. The SDG contains intra- and inter-procedural data-
and control-dependencies (also for exceptions) as well as object-sensitive points-to
information to resolve dynamic dispatch. To keep the complexity of the overall data
structure tractable we do not include the full framework code. Instead, we use the
lightweight framework model of the DroidSafe [63] project to capture data-dependencies
within the framework.

3.4.1.2 Android Lifecycle Modeling

Android apps adhere to a complex event-driven application lifecycle that challenges
static analysis approaches. Applications consist of multiple components that are asyn-
chronously triggered by events, or launched (and stopped) by user interaction. Each of

"WALA’s immutable IR precludes direct altering
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Listing 3.2: Android lifecycle example

1 public class Dataleakage extends Activity {

2 private String deviceld;

3 protected void onCreate(Bundle savedInstanceState) {
4 new ATask() .execute();

5}

6 protected void onPause() {

7 deviceld = "fakeld";

8}

9 // Button.onClick callback handler defined in XML file
10 public void leakId(View view) throws IOException {

11 File dir = Environment.getExternalStorageDirectory () ;
12 FileWriter writer = new FileWriter (dir);

13 writer . write("Device ID: " + deviceld);

14 writer.close () ;

15 }

16 private class ATask extends AsyncTask<Void,Void, String >{
17 protected String dolnBackground(Void... params) {

18 TelephonyManager tm = (TelephonyManager)

19 getSystemService (Context . TELEPHONY_SERVICE) ;

20 return tm.getDeviceld () ;

21 }

22 protected void onPostExecute(String result) {

23 deviceld = result; }

24 }

25 }

these components maintains its individual lifecycle with predefined callback methods
that are implicitly invoked by the runtime environment. Developers override these call-
back methods such as onCreate or onPause (cf. Listing 3.2) to initialize data structures,
to save an app’s state before closing it or switching it into the background. Moreover,
event-listeners can be registered for services (e.g. location events are triggered whenever
the device’s location changes) or Ul-events (e.g. the button-click handler leakid.)

To build an accurate lifecycle model, R-DROID starts by adopting the entry point
discovery algorithm from [94]. Using the entry points discovered in the app’s manifest
file and the overridden component callbacks, R-DROID builds a callgraph and performs
a code reachability analysis in order to identify new entry points—registered event-
listeners and overridden framework methods. This process is repeated until convergence,
i.e., until the entry point set reaches a fixed point. To improve precision over permitting
lifecycle callbacks to be called in arbitrary order, R-DROID follows prior work [19, 144]
and models individual component lifecycle methods that exploit the partial callback
ordering. The resulting per-component models contain fewer invalid paths, which
amends the precision of our subsequent analysis.

Finally, we generate a synthetic main method to connect the individual lifecycle methods.
This method serves as single entry point for the analysis and mimics the initialization
routine of an app that is executed on a real device. Concretely, the static class
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Figure 3.2: Fragment lifecycle

initializers are invoked first, with ContentProviders being the first components created
during application launch [37]. After that, custom Application classes are invoked
following the order provided by the class hierarchy. Finally, all other components can
be executed in any order.

During our experiments, we found that the resulting model misses further lifecycle
models for frequently used components: Fragments and Android’s special threading class
AsyncTask including parameter passing. These integral features either have not been
considered by prior work or have been coarsely modeled, which results in false positives
during analysis, i.e., invalid paths.

Fragment Lifecycle Android 3.0 introduced fragments as a design pattern to support
more dynamic and flexible UI designs, which became imperative with the increasing
number of tablets. Fragments can be classified as reusable sub-components of activities
with a dedicated code base and an optional user interface. They maintain an individual
lifecycle, receive input events, and can dynamically be added to and removed from a
running activity via a FragmentManager object.

Fragments require a host Activity (FragmentActivity) for their execution. Similar to
callbacks, fragments can either be statically added to the UI of an activity (via layout
descriptions) or added /removed dynamically via FragmentTransactions. While parsing the
layout files for Fragment declarations is straightforward, determining the concrete types
in transactions requires points-to information. R-DROID generates this information
along with the callgraph for the basic lifecycle model. As output, we receive a one-to-
many mapping from Activity to Fragments. Event-handling for fragments is analogous to
activities except for one case: Callbacks registered in a layout resource do not necessarily
have to be declared in the fragment or in one of its inner classes, but can also be declared
in its host activity. Identified callbacks can be discharged in arbitrary order while the
fragment is running. For each identified Fragment R-DROID generates a lifecycle method
in accordance with the official documentation [12] (see Figure 3.2) and subsequently
adds it to the callback body of its host activity while active.
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Figure 3.3: AsyncTask lifecycle

Modeling Asynclask Android’s application model imposes very strict response times
on application components and forces developers to off-load potentially long-running
code into separate threads. Apart from Java’s default packages like java. util .concurrent,
the Android SDK provides a dedicated thread class (AsyncTask) for outsourcing such
code into background tasks (e.g., to download a file from the Internet) and feeding
results back to the originating thread (e.g., as a progress monitor). Similar to Fragments,
AsyncTasks are increasingly used by app developers (in our large-scale app evaluation we
found 62.7% of 22,700 apps to include at least one AsyncTask). Hence a correct model
of this feature is mandatory for static analyses to avoid false positives.

In contrast to Java’s Thread class that contains a single entry method (run), AsyncTask
features a series of callbacks that are discharged in a specific order once its execute
command is invoked. To precisely model this behavior (including data passing between
these callbacks) we propose the AsyncTask lifecycle depicted in Figure 3.3.

An AsyncTask is specified by three generic types, i.e. AsyncTask<Params,Progress,Result>
that are used as argument and return types of its callback methods. If a task is triggered,
the onPreExecute method is executed to set the task up. After that, the doinBackground
method executes in a background thread to realize the main functionality. This method
takes a varargs argument, basically corresponding to syntactic sugar for an array. Its
return value is passed to the callback methods onPostExecute or onCancel, depending on
whether or not the task was canceled. While the dolnBackground method is executed,
the method publishProgress can be invoked with a varargs argument that then triggers the
callback onProgressUpdate with the same argument. R-DROID automatically identifies
the concrete types for the generic parameter types (<Void,Void,String> in Listing 3.2) and
generates a tailored lifecycle method to reflect this behavior. During analysis, these
lifecycle methods are used instead of the framework’s execute method.

Array arguments in callbacks constitute another challenge for static analysis. Sec-
tion 3.4.2.3 explains in detail how R-DROID resolves them as part of the value analysis.
This is the first work to generate a comprehensive model of concurrency pattern in
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Android apps, including the complex and commonly used AsyncTask lifecycle with precise
parameter passing.

3.4.2 Slice Optimization

Many related approaches [32, 80, 59, 151, 19, 144, 63] are essentially tailored to variants
of privacy leak detection, i.e., detecting whether there is some flow/data-dependence
between sensitive sources and sinks. Others focus on specialized forms of API usage
[112, 106, 54, 52] which usually requires a precise reconstruction of values/strings
for (semi-)automatic assessment. All these app vetting approaches underlie manual
reviewing for result validation due to the absence of a ground truth. None of these tools
provides dedicated support to facilitate such a reviewing process.

Hence, we propose a new slice optimization with the following benefits: 1. We provide
a general purpose value analysis to precisely reconstruct values/strings to ease (semi-
Jautomatic security checks. 2. Our optimization pipeline statically transforms slices
into semantically-equivalent, concise slices. This improves readability and reduces the
number of false positives, a major requirement for an efficient reviewing process.

Our slice optimization pipeline is designed as multi-stage post-processing technique.
Given a standard data-dependence slice generated by JOANA, R-DROID first applies def-
use tracking to eliminate spurious dependencies. Then, the value analysis is applied until
convergence, i.e., no more optimizations can be applied. To allow for more aggressive
optimization and value retargeting, R-DROID tries to reassemble execution paths within
the slice to re-apply the optimizations on each path on success.

3.4.2.1 Instruction Filtering

To precisely reason about data-flows through the Android framework, it is imperative to
include (parts of) the Android SDK/framework code during analysis. This implies that
slices include instructions from within the Android API. Since our definition of sensitive
sources and sinks is based on Android API signatures, this internal code distracts a
human investigator and does unnecessarily bloat the resulting slices. Therefore, we
first filter any instruction that does not originate from application code. This can be
trivially achieved by loading application and framework code via different classloaders
and subsequently filter instructions by classloader. This follows the idea of slicing with
barriers [82] in which the slicer stops when pre-defined conditions are met, e.g., leaving
application code.

3.4.2.2 Use-def Tracking

Traditional SDG-based slicing approaches [74] result in flow-insensitive slices. However,
as illustrated in Listing 3.1, flow and path information is essential to recreate exact
values for automatic security assessments. Moreover, the resulting slices might contain
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spurious dependencies, i.e., statements that do not directly influence arguments of the
sink. This is because the slicer resolves data-dependencies for complete statements (such
as method calls) and not for subsets of arguments. This usually leads to large slices
and may additionally introduce false-positives.

We, therefore, conduct, as first optimization step, a use-def analysis on the resulting
slices. Starting from the sink statement we iteratively backtrack register and field
references and add defining and dependent statements to the result. To this end, we
leverage WALA’s SSA-based IR, in which use-def chains are explicit, i.e., for each use,
there is exactly one definition. We add flow-sensitivity by ordering the statements
in reverse control-flow order. While backtracking explicitly adds flow-sensitivity for
defining statements, statements such as multiple calls on the same object can be ordered
using flow information obtained by control-flow graphs (CFGs) of the enclosing methods
(cf., list operations in Output 3.3). The resulting slices are more concise and readable
since non-relevant statements have been eliminated.

Output 3.1: Reverse control-flow-ordered slice of DataLeakage example after use-
def tracking

1 java.io.FileWriter->write{v6}(v16)

2 java.io.FileWriter—<init >{v6}(v4)

3 v6 = new java.io.FileWriter

4 v4 = android.os.Environment—>getExternalStorageDirectory ()
5 v16 = java.lang.StringBuilder—toString{v132}()

6 v13 = java.lang.StringBuilder—append{v8}(vll)

7 java.lang.StringBuilder—<init >{v8}("Device ID: ")

8 v8 = mnew java.lang.StringBuilder

9 v1l = DataLeakage{this}.deviceld

10 DataLeakage{this}.deviceld = "fakeld"

[
.

DataLeakage{this }.deviceld = pl

Entry Dataleakage$ATask.onPostExecute(java.lang.String)V
Dataleakage$ATask. onPostExecute{this }(v3)

v3 = DatalLeakage$ATask.doInBackground{this }()

return v12

v12 = android.telephony.TelephonyManager—getDeviceld{v8}()
v8 = DatalLeakage—getSystemService{v2}("phone")

v2 = Dataleakage$ATask{this}.this$0

e T e
0 N O ok W N

Output 3.1 shows the slice of the DataLeakage example in Listing 3.2 after use-def
tracking. Beginning at the sink statement, i.e., the write method (line 1), data-dependent
statements are iteratively added in reverse-control flow order. An Entry meta statement
(line 12) is added since the second field assignment (line 11) depends on the first argument
p1 of the onPostExecute method. The string written to the SD card is assembled via a
series of invocations on a StringBuilder object (lines 5-8). Its value depends on the field
deviceld, that can have two values depending on the activity state: either the constant
string fakeld (line 10) or the actual device id (line 16) is accessed in the instance of the
AsyncTask class ATask.
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3.4.2.3 Value Analysis

Our value analysis (generalized string analysis) statically simplifies complex expres-
sions and re-assembles strings beyond constant values. It currently comprises four
optimization steps that leverage techniques from partial evaluation, domain knowledge,
and copy propagation. Execution path recovery is performed whenever possible to
allow more aggressive optimization. The optimization pipeline is iteratively applied
until convergence, i.e. until no more slice statements are modified. The outcome are
semantically equivalent slices that contain fewer but more expressive instructions (due
to retargeted strings and values). These optimized slices ease manual reviewing and
allow a larger range of security assessments to be performed (semi-)automatically.

Copy Propagation. We adopt WALA’s copy propagation to eliminate assignment
statements (that may occur as result of the other optimizations) and copy constants/reg-
isters directly to the statements in which they are used. This also applies to values
stored in and later retrieved from class fields. Moreover, R-DROID eliminates function
calls that return constant values/references, such as getter methods.

Evaluating Unary/Binary Operations. This step statically evaluates unary and binary
operations. Further optimizations like resolving indices for arrays and lists depend on
this optimization. R-DROID uses points-to information to determine the type of an
operation such as int or double. We then statically evaluate such operations iff the
operand values are constants or can be iteratively resolved, e.g., an integer addition
x =17+ 23 is evaluated to x = 40. Static evaluation fails if at least one operand is
non-constant, e.g., the result of a framework call to Math.round(. In this case, we cannot
simplify the slice without expert knowledge.

Array Access Resolution.  Related work on Android [73, 59, 151, 19, 144, 63] cannot
precisely resolve array indices and thus over-approximates array modifications. This does
not only reduce precision but also results in false alarms when sensitive data is written
at position x but is later leaked from position y. Albeit challenging, resolving array
access statically significantly improves the precision of the analysis. This particularly
applies to the Asynclask array parameter as described in Section 3.4.1.2. R-DROID
resolves array accesses as follows: Based on its control-flow ordered list of array update
instructions for every execution path, it statically reconstructs the content for each
access and resolves the respective index. Three outcomes are possible:

1. If the access index 7 is statically computable and the data can be unambiguously
determined at position 7, then R-DROID can precisely determine the accessed
content. It discards the array instructions and replaces them with the value at
position 1.

2. If the access index is statically computable for a position that can hold different
data at the time of the access, R-DROID returns a list of possible values.?

2For instance, if the array is both updated with statically computable and non-computable indexes.
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3. If the index is not statically computable, R-DROID returns a template defining
how the index is computed and a string representation of the reconstructed array.
In case that domain knowledge or a human expert cannot resolve this access
further, all possible values must conservatively be considered in a subsequent
security analysis.

Output 3.2 shows the relevant part of the slice for the testcase ArrayAccess?2 of the
benchmark suite DroidBench (see Section 3.6.4). This testcase evaluates if an analysis
over-approximates array operations. An array is filled with sensitive (device Id, line
3-4) and non-sensitive data ("no taint', line 2), of which the latter is finally leaked via
SMS. Conservative algorithms will spuriously report a sensitive data leak. In contrast,
R-DROID can statically resolve the array access. Given the array register v8 and the
instructions that update the array (line 2-3), the content is statically reconstructed as
follows:

Step Instruction Reconstructed Array
0 o []
1 v8['4"] = "no taint"  [x,x,x,X,"no taint"]
2 v8['5"] = v16 [x,%,%,%,"no taint",v16]

The index v25 in line 1 is computed by a series of operations in the calculatelndex
method (line 6-10). The expression evaluator starts with the return statement and
iteratively assembles and solves the expression (((1+1) *5)%10) +4 = 4. Thus, the
non-sensitive value "no taint” is assigned to v8["4'] in the reconstructed array. With
this semantic-preserving assessment, we correctly classify this test as non-leaking.

Output 3.2: Partial slice of the ArrayAccess2 DroidBench testcase

v27 = v8[v25]
V8["4"] = "no taint"
v8["5"] = v16

v16 = android.telephony.TelephonyManager—getDeviceld{v32}()
v25 = de.ecspride. ArrayAccess2—>calculatelndex{this}()
return v10

vli0 = v8 + "4 1"

v8 = v6 % "10 1"

ve = v4 *x "5 1"

vg = "1" 4+ "1 1"

© 0 N O Utk W N

=
(=}

Domain Knowledge. Retargeting values and strings in presence of Android API
methods requires an understanding of the API semantics. For example, the concrete
string value of the SMS receiver number ("1066953930" in Listing 3.1) is internally
constructed via calls to the StringBuilder constructor and the append method. To enable
automatic reasoning for such API methods we manually model their semantics as
domain knowledge, e.g., in this case, the final string is the concatenation of the provided
arguments. This knowledge is represented as rules specifying method signatures and
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semantic descriptions how method arguments are transformed. These rules are then
applied to (control-flow ordered) sequences of API calls on the same object (call chains).

Besides modeling StringBuilder and StringBuffer operations we further add domain knowl-
edge for commonly used Java collection classes including various kinds of List, Map,
and Set implementations. Internally, they behave like arrays and provide convenience
functions for the developer. We encode the getter/setter methods of these classes as
domain knowledge and handle them analogously to arrays. Output 3.3 shows an excerpt
of a slice that creates a list object, subsequently adds non-sensitive (abc) and sensitive
data (v20) and finally retrieves the first element. Without domain knowledge, the slice
would be incorrectly flagged as a sensitive data leak. Adding semantic rules for the add,
get and init methods, we can reconstruct the list content and output the correct string
"abc" from the first position. This reduces the number of false positives when sensitive
and non-sensitive data is stored in the same collection. If the argument of the getter
method is statically not computable, or if there is no semantic rule for a framework
method in the slice, we conservatively return the original instructions.

Output 3.3: Slice containing list operations

v34 = java.util.LinkedList—>get{v7}("0")

v27 = java.util.LinkedList—add{v7}("def")

v23 = java.util.LinkedList—add{v7}(v20)

v12 = java.util.LinkedList—add{v7}("abc")
java.util.LinkedList—><init >{v7}()

v7 = new java.util.LinkedList

v20 = android.telephony . TelephonyManager—getDeviceld{v16}()
vl = MyActivity—>getSystemService{this }("phone")

0w N O Ok Ww N

In total, we modelled 104 methods in 23 classes as domain knowledge. This allows
retargeting more complex values/strings from low-level API calls and thus increases the
number of security checks that can be performed automatically. Moreover, we further
simplify the slice and increase the precision of the result in the aforementioned cases.

3.4.2.4 Path Recovery

Being able to discriminate execution paths within the slice allows for a more aggressive
optimization since register value ambiguity (e.g. due to branching) might be resolved.
R-DRroIiD detects three branching indicators within the slice: phi-instructions, callee-
to-caller information and field value access/update relationships. WALA’s IR offers
flow-sensitivity for local variables due to the SSA form. Phi statements, an essential
building block of an SSA form, are located at intra-procedural control-flow merge points
and allow tracking of variable modifications across different paths. Field setter/getter
operations are not tracked by the intra-procedural phi instructions and have to be
handled separately. For the latter two branching indicators, multiple execution paths
exist if there is a one-to-many mapping, i.e. if there is one field retrieval and multiple
associated field update instructions or a non-API function is called from multiple
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Figure 3.4: Path tree for receiver number in Listing 3.1

locations. Depending on the complexity of the slice this step might introduce a large
number of execution paths or might not be feasible at all. To maintain a good cost-
to-benefit ratio, a threshold for the maximum number of paths and processing time is
configurable. If one of these values is exceeded the optimization is stopped, otherwise,
the aforementioned optimization steps are re-applied to each execution path slice.

If R-DROID detects path information, it transforms the slice into a tree presentation
(path tree). If this fails, e.g. due to recursive code within the slice, we terminate
this optimization step. Tree nodes constitute basic blocks (BB)—code fragments with
only one entry and one exit—from CFGs of the instructions’ enclosing methods. Slice
statements are subsequently mapped to their BB. Figure 3.4 shows the path tree
generated for the receiver number in Listing 3.1 (two execution paths) with four nodes.
Our tree model differs from CFGs in that instructions are connected rather than blocks,
since the smallest unit of resolution are instruction arguments. If consecutive instructions
of the slice reside in different basic blocks, we generate a waypoint. For phi-instructions
at control-flow merge points, the waypoint has outgoing edges for each successor, e.g.,
waypointl points to the assignment instructions of valA and vaiB.

During tree traversal, the path extraction algorithm traverses the same outgoing edges
on waypoints of the same node (either A or B). This prevents the generation of invalid
paths through impossible combinations, e.g., in our example only two out of four distinct
paths are feasible. Outgoing edges of waypoints are traversed before its immediate
successor within the same node (if any). Within a node, the algorithm stops if the
end of the instruction list or an instruction that is pointed to from a different node is
reached. Applying this algorithm to Listing 3.1 yields two paths (which in turn are
flow-sensitive slices) that contain the instructions to reconstruct the correct receivers.

3.5 Security Modules

R-DROID is a generic analysis framework tailored to the specifics of Android that
provides optimized data dependence traces for arbitrary sinks in an application. Custom
analysis modules leverage these traces to implement different security and privacy
analyses. We demonstrate its effectiveness and relevance by defining three such security
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modules—data leakage detection, user input propagation, and slice rendering. While
the first two check the slices for sensitive sources, i.e. APIs to access sensitive data, the
latter one eases the task of manual reviewing by transforming the statements into a
format that is easier to read.

Further uses-cases (not implemented in this work) include API usage analyses for
sensitive operations such as crypto and SSL APIs and checks for premium SMS numbers
(cf. Listing 3.1). Such modules leverage the re-assembled runtime values—Strings and
primitive values—generated by the value analysis to automatically check whether passed
arguments follow security and privacy best practices.

3.5.1 Data Leakage Detection

Declared app permissions only indicate what an app could potentially do, but do not
adequately capture the actual behavior of the app. In particular, correlations between
permissions are hidden, e.g., if address book data leaks to the Internet. Consequently,
users cannot appropriately assess the risk entailed by installing an app [113, 20, 64]. Our
data leakage detection module reports source-sink pairs identified between permission-

clad APIs.

We leverage the sources and sinks of SuSi [18], and extend it as follows: Sinks from
the Apache classes HTTPClient and their subclasses are added as they often constitute
substantial parts of the app’s network communication. We add sources that are (a)
argument-dependent or (b) constructed via a series of method calls. A prominent
example for (a) is the API to access the secure system settings, in which the sensitivity
of the returned data depends on the argument. The device ID is frequently accessed
(via argument "android_id") and serves as a unique identifier. Our module classifies the
sensitivity of the result according to the parameter resolved during value analysis. The
locale device settings are an example for (b), as gefLanguage() and getCountry() only
represent sensitive information when accessed via java. util.Locale->getDefault() (that
typically holds the user’s preferred locale). Finally, we include framework fields that
provide sensitive data into our list of sensitive sources. android.os.Build and its subclasses
provide numerous data about the installed Android build and version. To preclude false
positives, we disregard sinks for which the app lacks the required permission (libraries
frequently probe for permissions of the host app) using the permission maps generated
by azxplorer (see Chapter 4).

3.5.2 User Input Propagation Analysis

User input propagation is a specialization of the previous module that focuses on leaks
of user data provided via UI widgets. It is configured with the same sinks, however, we
identify sources from Ul input accessed via findViewByld of android.app.Activity, android~
view.View, and their subclasses. Input fields marked as passwords are of particular
interest, hence we check for the respective view attributes. Slices that include user input
may be forwarded to the slice-rendering module to improve readability and to facilitate
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manual assessment. Recent work [76, 100] presented an approach to cover a wider range
of sensitive user inputs (like credit card inputs) by inferring input widget sensitivity
via Ul layout descriptions including labels and hints. Integrating such approaches is an
interesting future extension.

3.5.3 Slice Rendering Module

Related work is usually limited to answering whether data may flow but has limited
support for answering how it flows since they do not account for individual execution
paths between a source and a sink. Our evaluation shows that this is insufficient as
traditional slices usually contain a significant fraction of the original program (we found
on average 33 statements/slice and examples with up to 4k statements), which impedes
manual inspection.

Our optimization pipeline efficiently reduces the number of instructions per slice. Still,
reading bytecode or instructions in some intermediate representation is not as convenient
as reading source code. To minimize this gap, this module renders the optimized slices
in a human-readable format. To this end, we transform statements into series of call
chains on the same object. Concretely, the algorithm starts at the sink and collects
all invocations on the target object, reorders them according to runtime execution
order and iteratively merges them. Class names are omitted when the class is constant
for consecutive invocations. To structure the output, we add assignment statements
to store call chains in variables, when they are subsequently used as arguments of
framework API calls. The result omits redundant information and improves readability
(see Section 3.6.4).

3.6 Evaluation

We evaluated R-DROID on the original DroidBench testsuite and received nearly optimal
results. To demonstrate the scalability and utility of our approach we conducted a large-
scale data/input leakage analysis on 22,700 apps from Google Play in which R-DROID
identified a large number of privacy-critical data flows originating from sensitive APIs
or from Ul widgets. Finally, we elaborate on our slice optimization and the effects of
our slice rendering module on manual reviewing efforts.

3.6.1 DroidBench Test Suite

DroidBench is an evolving open-source test suite [50] containing Android apps crafted
to evaluate static and dynamic analysis approaches. Many of these synthetic test
cases evaluate the recall of the performed analysis, hence there is a bias towards over-
approximating approaches. There is only a small number of cases that explicitly check
the precision, i.e., whether the analysis reports on the actual flows and does not generate
false positives. We test R-DROID on the widely used original DroidBench (v1.0) to

38



3.6. EVALUATION

demonstrate the effectiveness of our lifecycle modeling and the benefits our our slice
optimization on the few cases the pose such a challenge. We compare our results with
FlowDroid [19], AmanDroid [144], and DroidSafe [63]. For the sake of completeness, we
also report the results for the four implicit-flow testcases that are missing in the original
paper [19]. Table 3.1 shows the detailed results for all testcases.

FlowDroid achieves a high precision (87%, 4FPs) and reasonable recall (74%, 9 missed
flows). Amandroid, that adapts their lifecycle modeling, offers similar precision and
recall as FlowDroid without being explicit about the failing testcases. DroidSafe uses
a novel framework abstraction to capture data-dependencies within the API. As a
result, they achieve the highest accuracy among the analyses tools (83%, 6 missed
flows). However, their approach also erroneously reports four sensitive flows due to their
flow-insensitivity and missing lifecycle modeling. Instead, our approach yields a nearly
optimal precision of 97% (1FP due to a missing inter-procedural must-alias analysis)
and 80% recall. R-DROID particularly excels in the category ArraysAndLists that tests
over-approximation for container classes, where all other tools fail. Instead, our value
analysis can successfully track data written to and accessed from such containers. Hence,
R-DROID classifies them correctly as non-leaking.

3.6.2 Data Leakage Analysis

Even though benchmarks like DroidBench are a valuable tool to compare different
approaches, they are hand-crafted and their coverage of functionality is rather limited,
given the modest number of tests. Therefore, we conducted a large-scale data leakage
analysis on 22,700 apps from the Google Play Store. The apps were crawled between
August 20-23, 2014, starting from the top 100 of each category and iteratively crawling
recommended and similar apps. For this evaluation, we configured R-DROID’s path
recovery with a 3 min timeout and a maximum number of 32 paths. During analysis,
this affected 19% of all sinks. In these failing cases, the slices were assessed after the first
value analysis run, which might cause imprecision. The experiments were conducted on
a server with four Intel Xeon CPU E5-4650L @ 2.60GHz processors with 8 cores each
and 768GB RAM on which we ran 64 single-threaded analyses in parallel. Despite its
precision, R-DROID had a reasonable average processing time of 26 minutes of which
the graph builders consume about 90%.

Our experiments emphasize the relevance of fragments in current apps (33% contain at
least one). As an increasing fraction of code has been moved from activities to fragments,
modeling their lifecycles accurately becomes imperative for precise static analyses. Our
evaluation shows that apps, that were originally published prior to Android 3.0, often
still do not adhere to the recommended fragment-based layout design. For all other
apps, however, we detected 11 fragments on average, which corresponds to the average
number of activities per app. Similarly, AsyncTasks are becoming the standard for
network communication. 14,244 apps (62.7%) include at least one AsyncTask.

Table 3.2 summarizes our findings as flows from sensitives sources to sinks (grouped
by categories as provided by the SuSi project). We report the absolute number of
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® = correct warning, * = false warning, O = missed warning
multiple circles in one row: multiple leaks expected
all-empty row: no leaks expected, none reported

App Name Fortify FlowDroid AmanDroid DroidSafe R-Droid
Arrays and Lists
ArrayAccessl * * *
ArrayAccess2 * * * *
ListAccessl * * * *
Callbacks
AnonymousClassl ® ® ® ® ®
Buttonl ® ® ® ® ®
Button2 ® O O ®®® * ®®® ®® D DD+
LocationLeak1 00 ®® ®® ®® ®®
LocationLeak2 00 ®® ®® ®® ®®
MethodOverridel ® ® ® * ® ®
Field and Object Sensitivity
FieldSensitivity 1
FieldSensitivity2
FieldSensitivity3 ® ® ® ® ®
FieldSensitivity4
InheritedObjectsl ® ® ® ® ®
ObjectSensitivity1
ObjectSensitivity2 *
Inter-App Communication
IntentSink1 ® @) ® ® ®
IntentSink2 ® ® ® ® ®
ActivityComm1 ® ® @) ® ®
Lifecycle
BroadcastRecvLifecyclel & ® ® ® ®
ActivityLifecyclel ® ® ® ® ®
ActivityLifecycle2 ® ® ® ® ®
ActivityLifecycle3 @) ® ® ® ®
ActivityLifecycle4 ® ® ® ® ®
ServiceLifecyclel @) ® ® ® ®
General Java
Loopl @) ® ® ® ®
Loop2 @) ® ® ® ®
SourceCodeSpecificl ® ® ® ® ®
StaticInitializationl ® @) ® ® ®
UnreachableCodel *
Miscellaneous Android-Specific
PrivateDataleakl @) ® ® ® ®
PrivateDatal.eak2 ® ® ® ® ®
DirectLeakl ® ® ® ® ®
InactiveActivity *
LogNoLeak
Implicit Flows
ImplicitFlowl @) O @) ® (@)
ImplicitFlow2 00 00 (eXe} (e¥e) (eXe}
ImplicitFlow3 (0X @) [0)©) [0X©) [0X©) OO
ImplicitFlow4 00 (o¥e) 00 OO (eXe)
Sum, Precision, and Recall
® , higher is better 17 26 27 29 28
*  lower is better 4 4 4 4 1
O, lower is better 18 9 8 6 7
Precision p = ®/(® + *) 81% 87% 87% 88% 97%
Recall r = ®/(® + O) 49% 74% 7% 83% 80%
F-measure 2pr [/ (p+ 1) 0.61 0.80 0.82 0.85 0.88
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Sensitive sources by category
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>. Code Loading 12 477 27 153 - 383 17 328 184 471 1 1 91 376 205
8) File 2 16 2 23 — 36 - 7 9 37 2 2 10 19 3
% Log 146 3,563 285 1,516 2 3,648 83 2,501 1,676 4,401 31 29 1,031 3,148 1,570
O ICC 1 10 2 34 - 42 — 11 5 110 - 1 7 12 7
5 Network 49 1,017 121 505 - 1,099 22 803 493 1,255 6 12 302 897 478
g SMSMMS - - - - - - - - - - - - -
%) Unclassified 202 6,335 389 2,305 13 5,034 127 4,797 2,715 6,137 49 38 1,388 4,618 2,921

Table 3.2: Absolute numbers of apps with data flows from sensitive sources to sinks
grouped by category from our set of 22,700 apps.

apps with flows between source and sink category from our set of all analyzed apps.
Our findings confirm the common belief that highly sensitive data like user location
or unique IDs are frequently accessed and leaked via various channels. As an example,
unique IDs are frequently written to logs (13.8% of all apps) and to the network (3.9%).
There is a significant number of flows to unclassified sinks. Their classification depends
on the runtime type of the receiver and requires a dedicated analysis. For example,
the write methods of an OutputStream may write data to memory, to a file or to the
network depending on the concrete stream instance. Similarly, contact information can
be accessed in multiple ways using adapters or ContentResolvers that are queried with
a specific data URI. Resolving this URI in a pre-processing step is required to classify
calls to these classes correctly, e.g., as a sensitive source. Locale, version, and build
information have been widely ignored as a sensitive source. Besides common cases
in which such information is written to system logs for debugging purposes, manual
investigation revealed that a combination of this information is commonly used to
generate a unique user-agent ID to identify and track the user. This clearly indicates
that access to such low-sensitive data (that is not protected by permissions) may threaten
the user’s privacy when combined to create a unique identifier. This emphasizes that
systems that perform privacy leak detection solely based on API calls are likely to miss
such cases since version and build information are stored in static fields. R-DRoOID did
not find sensitive data flows to SMS-MMS sinks. Reasons are the small number of apps
that declare the required permissions (2.6% in our dataset) and that SMS is not suitable
to transmit large amounts of data. In fact, most of these apps can be classified as
phone finder /tracker that notify the owner via SMS about odd incidents. Although ICC
modeling is out of scope for this work, we quantified how often sensitive data reaches
API methods that initiate ICC, such as startActivity. The absolute numbers are relatively
small. The fraction of cases that actually leak the received data is presumably even
smaller, implying that complex ICC-related privacy leaks rarely appear in applications.
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Sources

Location Network Info Unique Identifier

» Log 16.1% 26.5% 42.1%
€ Network 4.8% 7.6% 12.5%
@ Unclassified 26.1% 0.8% 61.7%

Table 3.3: From all apps that hold the required permissions to call source and sink APls,
this fable shows the percentage of apps that have at least one data flow from source
to sink, i.e., from all apps that require the INTERNET and location permissions, 4.8% leak
the location data via the Internet.

Using publicly available API-to-permission information [20, 18], we compute the per-
centage of apps that have a sensitive data flow between sources and sinks that require
a permission with respect to all applications in the dataset holding these permissions.
Table 3.3 shows that more than one quarter of all apps requiring the android.permission.~
ACCESS_NETWORK_STATE permission, leak network information via the system logs. 12.5%
of apps holding both permissions android.permission.READ_PHONE_STATE and android.~
permission.INTERNET indeed leak a unique identifier to the Internet. The high number of
flows to Unclassified sinks again emphasizes the need for an improved classification
algorithm that is executed prior to the analysis to triage relevant sinks only.

3.6.3 Leakage of Sensitive User Input

Private data may not necessarily originate from API calls, but may also be inserted by
the user via user interface widgets like Textinputs. Detecting such data flows requires a
dedicated analysis as described in Section 3.5.2. Applied to the Google Play test set
R-DROID reported a total number of 2,157 flows of password-flagged Ul widgets in
256 distinct apps. We manually validated the flows in 150 apps. 9% of all flows were
erroneously flagged as leaking. Some of these false positives could be eliminated by
deriving more export knowledge. Although not confirmed by a user study, the effort
necessary to manually investigate these cases was notably lower due to the smaller and
more concise output. Similarly, sorting instructions by control-flow helps to read and
understand the output (see Section 3.6.4). We exemplify our findings in the following:

Case Study: Logging of Private User Data.  We identified that developers frequently
log data that is supposed to be written to files or the network. Although this facilitates
debugging during development, it may be considered a privacy breach by users if sensitive
input is included in the log. The app com.bitsontherun.android.dashboard uploads videos
to the Bits on the Run online video platform. Among others, the server response of a
sign-up attempt, including password and email address from an Ul widget in plain, is
written to the system logs.
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Case Study: Plain User Input Transmission via Insecure Channels.  User-provided
input is frequently sent to remote servers via HT'TP. As part of its service registration
com.CG.checkgmov2 sends a POST message including first and last name, email ad-
dress, and password in plaintext. This data originates from Ul widgets, where one is
marked as password. com.camilo.hkingorders manages/tracks purchases made on hobbyk-
ing.com. Within the login routine, R-DROID reconstructed the authentication request
as follows: http://www.hobbyking.com/hobbyking/store/uh_customerAuthenticateExec.asp~
?email=SEMAIL&password=$PW. Both placeholders denote unsanitized user-provided text
inputs accessed via Activity—findViewByld(Sresourceld). This clearly violates the user’s
privacy, since we manually verified that the webshop supports HTTPS. We also found
several cases in which user data is transmitted via the Facebook graph library. com.~
bokskya.books integrates this API to publish user feeds. The widget used to enter status
messages is marked with the password flag by the developer since such messages could
include private information. However, R-DROID reported that these messages are sent
to Facebook via HT'TP. Manual investigation of the API documentation revealed that
the library indeed does not support secure transmission via HTTPS (at that time).
Unfortunately, the app does not warn the user to not enter sensitive information.

3.6.4 Support for Manual Investigation

As shown in this section, additional manual investigation is often required to either
validate findings or to understand app behavior in detail. R-DROID’s optimization
pipeline supports such efforts in multiple ways. In our Google Play evaluation, the slice
optimization generated semantically-equivalent slices that are 49% smaller than standard
slices on average. The initial use-def tracking accounts for 34% fewer instructions per
slice on average. The multi-step value analysis further reduces the output size by
almost 25%. This is due to the fact that most optimizations like string assembly, binary
operation calculation, or array access resolution involve multiple instructions that are,
in the best case, optimized to a single value. In many cases, the final slice contains
less than 15 instructions. In addition, the control-flow ordering of instructions and the
generic string/value assembly facilitate code understanding.

In the following, we elaborate on our slice rendering module, which transforms the
optimized slices into readable and structured output to further ease manual investigation.
To deduce malware functionality it is commonly necessary to manually analyze and
understand its code. Our example (from the Malware Genome Project [161]) belongs
to the jSMSHider family. This SMS malware targets Android users with a custom ROM.
As these devices are already rooted the malware can install packages without the
user’s explicit consent. Output 3.4 shows the slice for a “command execution” sink
after use-def tracking. (for the sake of brevity we replaced the original package name
by hider). Although the partially-optimized slice is moderate in size, it shows that
with an increasing number of instructions manual analysis becomes tedious. The slice
contains a total of three execution paths. The argument p2 (line 1) of the sink statement
depends on the method argument of the execCommand1 (line 3) which has two caller
sites (line 4411). The invocation on line 11 depends on the method argument of
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runRootCommand1 in line 19 which again has two caller sites (line 20+21). The path
recovery module (see Section 3.4.2.4) uses this information to split the list of instructions
into slices per execution path as shown in Output 3.5.

Output 3.4: CF-ordered slice of package installation after use-def tfracking

1 v10 = java.lang.Runtime—exec{v7}(p2)

2 v7 = java.lang.Runtime—getRuntime ()

3 Entry hider.InstallService.execCommandl (android.content.Context,java~
.lang.String)Z

4 v27 = hider.InstallService—»execCommandl(pl, v24)

5 v24 = java.lang.StringBuilder—toString{v212}()

6 v21 = java.lang.StringBuilder—append{v17}(p2)

7 java.lang.StringBuilder—<init >{v17}("pm uninstall ")

8 v17 = new java.lang.StringBuilder

9 Entry hider.InstallService.uninstallapp (android.content.Context,java~
.lang.String)Z

10 v24 = hider.InstallService—uninstallapp (this, "hider")

11 v36 = hider.InstallService—»execCommandl(pl, v33)

12 v33 = java.lang.StringBuilder—>toString{v30}()

13 v30 = java.lang.StringBuilder—append{v26}(v21)

14 java.lang.StringBuilder—<init >{v26}("pm install -r ")

15 v26 = new java.lang.StringBuilder
16 java.io.File—<init >{v21}(v23, p2)
17 v21 = new java.io.File

18 v23 = hider.InstallService—getFilesDir{this}()

19 Entry hider.InstallService .runRootCommandl (android.content.Context, ~
java.lang.String)Z

20 v44 = hider.InstallService—»runRootCommandl{this}(this, "newapp.apk")

21 v33 = hider.InstallService»>runRootCommandl{this}(this, "testnew.apk"~

)

The rendering module receives these slices for each execution path and transforms
them into structured and simplified code (see Output 3.6). The result precisely shows
that the malware uses this code segment to both uninstall itself from the system (line
1) and to install its supplemental apk file, either named newapp.apk or testnew.apk.
Manual analysis of samples of this family revealed that each sample only contains one
of these supplemental apks (presumably to evade signature-based malware detection
mechanisms).

3.7 Discussion

Our value analysis performs a sequence of optimizations on slices to minimize the
number of instructions and to increase the expressiveness of the individual instructions
while preserving the semantics. One step comprises encoding domain knowledge of Java
APT methods, e.g., to simplify a series of StringBuilder operations. This optimization
currently only works if rules exist for all operations of a given call chain. Moreover, the
domain knowledge, only keeps minimal state to reason about the return value given a
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Output 3.5: Control-flow-ordered slices for each of the three execution paths from

Output 3.4

1 Execution Path P1:

2 v10 = java.lang.Runtime—exec{v7}(p2)

3 v7 = java.lang.Runtime—getRuntime ()

4 Entry hider.InstallService .execCommandl (android.content.Context,java~
.lang . String)Z

5 v27 = hider.InstallService—»execCommandl(pl, v24)

6 v24 = java.lang.StringBuilder—toString{v21}()

7 v21 = java.lang.StringBuilder—»append{v172}(p2)

8 java.lang.StringBuilder—<init >{v17}("pm uninstall ")

9 v17 = new java.lang.StringBuilder

10 Entry hider.InstallService.uninstallapp (android.content.Context,java~
.lang.String)Z

11 v24 = hider.InstallService—uninstallapp (this, "hider")

12

13 Execution Path P2:

14 v10 = java.lang.Runtime—sexec{v7}(p2)

15 v7 = java.lang.Runtime—getRuntime ()

16 Entry hider.InstallService.execCommandl (android.content.Context,java~
.lang.String)Z

17 v36 = hider.InstallService—»execCommandl(pl, v33)

18 v33 = java.lang.StringBuilder—toString{v302}()

19 v30 = java.lang.StringBuilder—append{v26}(v21)

20 java.lang.StringBuilder—<init >{v26}("pm install -r ")

21 v26 = new java.lang.StringBuilder
22 java.io.File—<init >{v21}(v23, p2)
23 v21 = new java.io.File

24 v23 = hider.InstallService—getFilesDir{this}()

25 Entry hider.InstallService .runRootCommandl (android.content.Context, ~
java.lang.String)Z

26 v44 = hider.InstallService—»runRootCommandl{this}(this, "newapp.apk")

27

28 Execution Path P3:

20 v10 = java.lang.Runtime—exec{v7}(p2)

30 v7 = java.lang.Runtime—getRuntime ()

31 Entry hider.InstallService.execCommandl (android.content.Context,java~
.lang . String)Z

32 v36 = hider.InstallService »execCommandl(pl, v33)

33 v33 = java.lang.StringBuilder—toString{v30}()

3¢ v30 = java.lang.StringBuilder—append{v26}(v21)

35 java.lang.StringBuilder—<init >{v26}("pm install -r ")

36 v26 = new java.lang.StringBuilder
37 java.io.File—<init >{v21}(v23, p2)
38 v21l = new java.io.File

39 v23 = hider.InstallService—getFilesDir{this}()

40 Entry hider.InstallService .runRootCommandl (android.content.Context, ~
java.lang.String)Z

41 v33 = hider.InstallService»runRootCommandl{this}(this, "testnew.apk"~

)
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Output 3.6: Rendered optimized code for Output 3.4

1 Pl: java.lang.Runtime—getRuntime () »exec("pm uninstall hider")
2

3 P2: x1 = java.io.File—<init >(hider.InstallService—»getFilesDir (), "~
newapp.apk")

4 java.lang.Runtime—»getRuntime () »exec("pm install -r "+ x1)

6 P3: x1 = java.io.File—<init >(hider.InstallService—getFilesDir (), "~
testnew .apk")

7 java.lang.Runtime—>getRuntime () »exec("pm install -r "+ x1)

number of input arguments. A more comprehensive domain-specific language is required
to also cover complex APIs which might require a model of the class internals, for
instance, as a state machine. Automatically deriving such expert knowledge from the
framework code is an interesting topic for future work.

Reassembling execution paths during optimization is a valuable step to increase precision
in specific scenarios (see Section 3.4) by enabling automatic checks on values rather
than API methods. However, this path retargeting comes with certain limitations.
As described in Section 3.6.2, in about 20% of the sinks analyzed the path recovery
either hit the 3-minute threshold or the maximum of 32 paths. Sinks with a large set
of instructions originating from different classes/methods and with a high number of
loops or branching constructs may quickly lead to a path explosion. This is amplified
by the fact that our path recovery solely works on complete slices, i.e. typically inter-
procedurally. Being able to selectively retarget simpler cases intra-procedurally may
lead to a better optimization rate. Due to the general undecidability of loop conditions,
we cannot statically infer the concrete number of iterations. Internally, loops constitute
an if-conditional with a jump instruction, i.e. two execution paths. We soundly capture
data-dependencies through both execution paths, but we do not strive for approximating
the exact loop iterations. In this cases, we still detect sensitive flows through loops, but
we cannot determine exact values. Similarly, we flatten recursive calls.

Although the slicer is capable of capturing control-dependencies, our use-def tracker
currently does not handle path conditions. This implies that R-DROID cannot detect
implicit flows via conditions. Implementing this feature is part of future work, as it also
improves code understanding for a human analyst, i.e. when for any execution path
there is a set of trigger conditions.

The code rendering module implements a simple means of restructuring slice instructions
to improve readability. However, in complex scenarios, grouping instructions by call
chains is not optimal and does not allow a fluent code reading. A different approach
to presenting slice instructions includes disassemblers. Given a mapping of WALA IR
instructions back to dex bytecode instructions and a mapping of bytecode instructions
and disassembled code, one could try to show only the disassembled JAVA code that
is represented in the slice. One particular challenge is to provide enough context to
understand the code. A solution to this could be executable slices [26], that even provide
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enough context to compile the set of instructions again to a runnable program.

A widely disregarded aspect in mobile privacy leak analysis is considering sanitizers to
reduce the number of false positives. In the presence of a data-dependency between a
sensitive source and a sink, a sanitizer method could have been applied to protect user
data or to infer a less-sensitive data token. Web application vulnerability scanners that
test for injection attacks like SQL injections typically define a set of user-input sanitizers
such as real_escape_string or htmispecialchars to classify problematic and non-problematic
data-flows. However, defining proper sanitization methods for different source categories
in Android is more challenging. A hashed unique identifier that is sent out, still serves
a unique identifier, although the real value has been blinded. Thus, for each source
category, one would have to define privacy-preserving transformation methods. Such a
set of sanitizers could then be used to distinguish leaking and privacy-preserving code.

3.8 Related Work

Improving Android’s security has received a lot of attention in the security community.
Over the last years, a larger number of analysis frameworks was published with a focus
on information-flow aspects such sensitive data/user input leakage. Table 3.4 shows
a high-level feature comparison of static analysis frameworks on Android sorted by
publication year in ascending order. For the sake of simplicity, we distinguish feature
support in three categories: v = comprehensive/sophisticated, @ = basic, and X = no
support.

Most related work [32, 80, 94, 144, 63| performs a data-dependency analysis on top of
an application (lifecycle) model. While this is sufficient for binary assessments, i.e. is
there a dependency between a source and a sink statement, more complex problems like
reconstructing values/strings passed to an API call require a detailed list of dependent
statements. Moreover, such data does not necessarily have to be derived from an
API call (see premium SMS example in Section 3.4). Similar use-cases such as API
(mis-)use [112, 106, 54, 52] in which the concrete (string) data needs to be assessed
cannot efficiently be processed by forward approaches since any string has to be marked
as a source. In contrast, our backward slicing approach fulfills the requirements to
conceptually handle all of these problems.

Table 3.4 shows an evolution in terms of supported features. The foundation of a
static analysis is a comprehensive data model that precisely approximates Android’s
runtime behavior. Chex [94] was the first tool to take the different types of application
entry points into account. FlowDroid [19] improved on this by introducing accurate
per-component lifecycle models that were also adopted by AmanDroid [144]. R-DROID
follows prior work and additionally adds models for frequently used classes to further
refine the static lifecycle model.To keep the analysis complexity tractable almost all
approaches manually modeled parts of the semantics of the framework API instead of
adding the full framework code base to the analysis scope. DroidSafe [63] proposed a
new technique to abstract from the framework complexity while still keeping all data-
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dependencies. R-DROID adopts this model to not rely on incomplete knowledge about
the framework API. A dedicated line of work focused on Android’s inter-component
communication (ICC) either as standalone approach [105, 104] or as part of an analysis
framework [32, 84, 144]. While tracking data-flows across components clearly increases
the precision of the overall analysis, our privacy leak evaluation (cf., Section 3.6.4)
showed that such sensitive flows rarely occur in real-world apps.

String Analysis. Most of the aforementioned work on API usage analysis as well
as first works on ICC resolution [105] resort to rather limited constant propagation
approaches tailored to the specific use-case. SCanDroid [32] resolves ICC receivers by
implementing a constraint system to track values across instructions. String values
are approximated by constructing a subgraph that includes StringBuilder operations.
Flow solver algorithms then compute feasible string prefixes that flow into ICC-related
calls. Christensen et al. [36] propose the Java String Analyzer (JSA) to statically check
the syntax of dynamically generated expressions like SQL queries. Dedicated flow-
graphs for string operations are translated into context-free grammars to infer possible
string values. DroidSafe uses JSA to resolve ICC. The IC3 project [104] is the closest
related approach to our value analysis. They employ context-sensitive, inter-procedural
composite constant propagation that can handle field correlations of complex objects.
To describe the semantics of the Android API (we refer to this as expert knowledge)
they devised a declarative language and use a constraint solver to output possible string
values. Similarly, our value analysis uses inferred expert knowledge, but, in contrast,
our approach is also object- and path-sensitive. Since our multi-stage value analysis is
not restricted to strings, even complex propagation problems such as adding values to
arrays/lists with subsequent retrieval via index calculations is possible.

Statically resolving string values is also highly relevant beyond Android. Automata-based
approaches for string analysis exist to verify SQL expressions [119] or for finding string-
related security vulnerabilities in PHP programs [153, 154]. Tateishi et al. [130] apply
path- and index-sensitive string analysis to verify Cross-Site-Scripting (XSS) sanitizers
for web applications based on monadic second-order logic (M2L). They verify that
generated strings satisfy a given constraint rather than assembling concrete values like
R-DROID does. String solvers have recently also been integrated into SMT solvers [137,
87, 157]. These solvers determine whether a certain string can be produced by a program
(e.g. whether a XSS attack is possible). In contrast, R-DROID determines which concrete
strings can be created in an app.

Support for Manual Security Audits Providing assistance to an human auditor to
assess the produced output of an analysis has received only little attention so far. While
refining analysis techniques to generate more accurate results is beneficial for manually
validating and assessing the output, this just constitutes an essential but insufficient step
towards an efficient reviewing process. One approach to tackle this problem is reducing
the slice output by filtering nodes that are irrelevant to the human auditor. Krinke
proposes slicing with barriers [82], in which the basic idea is to stop the slicer at code
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boundaries that are known to be safe or irrelevant for the analyst, e.g. utility code in a
library. Similarly, we filter instructions within the Android API, as our set of sensitive
sources and sinks is defined via Android API signatures. Thomé et al. use JOANA
to generate security slices in Java web applications to detect injection attacks [135].
They propose different pruning techniques to minimize slices, such as filtering code
from known libraries, or vulnerabilities that can be fixed automatically. Moreover,
they define sanitizer functions for user inputs, to remove false positives whenever such
sanitizers are applied to data that hasn’t reached a sensitive sink. Defining input
sanitizers for web applications is, however, simpler than source sanitizers in Android
(see Section 3.7). In contrast to such filtering-only approaches, R-DROID applies a
comprehensive value analysis to further produce semantically-equivalent, small-sized
slices. Our slice rendering module subsequently generates more readable, code-like
output to facilitate a manual investigation.

3.9 Conclusion

We presented a novel slice optimization approach as post-processing to standard slicing
techniques. As part of this approach, we devised a comprehensive value analysis to
retarget strings and values beyond constants. This allows a larger number of security
and privacy-related use-cases, such as various API (mis-) use analyses, to be assessed
in an automatic way. Moreover, the concise output of R-DROID supports experts in
understanding app functionality and in manually reviewing the results, a mandatory
task for any static analysis.

A yet unsolved, but important, problem is being able to distinguish app developer code
and code from third-party libraries that are statically included. In Chapter 5 we address
the problem of attributing security and privacy-related problems to the correct entity,
i.e. app developer or libraries, by proposing a method to detect third-party libraries in
app binaries even in presence of common code obfuscations. This approach has another
advantage that security analyses, such as privacy-leak detection, can be pre-computed
for libraries. Upon detection of libraries, the results can then be used directly, without
the need to include the library code in the actual analysis.
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4.1. MOTIVATION

4.1 Motivation

In contrast to the application layer, Android’s application framework’s internals and
their influence on the platform security and user privacy are still largely a black box
for us. In this work, we establish a static runtime model of the application framework
in order to study its internals and provide the first high-level classification of the
framework’s protected resources. We thereby uncover design patterns that differ highly
from the runtime model at the application layer. We demonstrate the benefits of our
insights for security-focused analysis of the framework by re-visiting the important
use-case of mapping Android permissions to framework/SDK API methods. We, in
particular, present a novel mapping based on our findings that significantly improves on
prior results in this area that were established based on insufficient knowledge about
the framework’s internals. Moreover, we introduce the concept of permission locality to
show that although framework services follow the principle of separation of duty, the
accompanying permission checks to guard sensitive operations violate it.

4.2 Problem Description

Android’s application framework—i.e., the middleware code that implements the bulk
of the Android SDK on top of which Android apps are developed—is responsible for the
enforcement of Android’s permission-based privilege model and as such is also a popular
subject of recent research on security extensions to the Android OS. These extensions
provide various security enhancements to Android’s security, ranging from improving
protection of the user’s privacy [103, 162], to establishing domain isolation [107, 30], to
enabling extensible access control [71, 21].

Android’s permission model and its security extensions are currently designed and
implemented as best-effort approaches. As such they have raised questions about the
efficacy, consistency, or completeness [4] of the policy enforcement. Past research has
shown that even the best-efforts of experienced researchers and developers working in
this environment introduce potentially exploitable errors [51, 155, 125, 120]. In light
of the framework size (i.e., millions of lines of code) and based on past experience [51,
155, 57, 120, 129], static analysis promises to be a suitable and effective approach to
(help to) answer those questions and hence to demystify the application framework from
a security perspective. Unfortunately, on Android, the technical peculiarities of the
framework impinging on the analysis of the same have not been investigated thoroughly.
As a consequence, past attempts on analyzing the framework had to resort to simple
static analysis techniques [20]—which we will show as being insufficient for precise
results—or resort to heuristics [120].

In order to improve on this situation and to raise efficiency of static analysis of the
Android application framework, one is confronted with open questions on how to enable
more precise static analysis of the framework’s codebase: where to start the analysis (i.e.,
what is the publicly exposed functionality)? Where to end the analysis (i.e., what are

53



CHAPTER 4. AXPLORER

the data and control flow sinks)? Are there particular design patterns of the framework
runtime model that impede or prevent a static analysis? For the Android application
layer, those questions have been addressed in a large body of literature. Thanks to those
works, the community has a solid understanding of the sinks and sources of security-
and privacy-critical flows within apps (e.g., well-known Android SDK methods) and a
dedicated line of work further addressed various challenges that the Android application
runtime model poses for precise analysis (e.g., inter-component communication [105,
144, 84, 104] or modelling the Android app life-cycle[94, 19]). Together those results
form a strong foundation on which effective security- and privacy-oriented analysis is
built upon. In contrast to the app layer, for the application framework we have an
intuitive understanding of what constitutes its entry points, but no in-depth technical
knowledge has been established on the runtime model, and almost no insights exist on
what forms the security and privacy relevant targets of those flows (i.e., what technically
forms the sinks or “protected resources”).

4.3 Contribution

This work contributes to the demystification of the application framework from a security
perspective by addressing technical questions of the underlying problem on how to
statically analyze the framework’s code base. Similar to the development of application
layer analyses, we envision that our results contribute some of the first results to a
growing knowledge base that helps future analyses to gain a deeper understanding of
the application framework and its security challenges.

How to Statically Analyze the Application Framework. We present a systematic
top-down approach, starting at the framework’s entry points, that establishes knowledge
and solutions about analyzing the control and data flows within the framework and
that makes a first technical classification of the security and privacy relevant targets
(or resources) of those flows. The task of establishing a precise static runtime model of
the framework was impeded by the absence of any prior knowledge about framework
internals beyond black-box observations at the framework’s documented APT and manual
analysis of code fragments. Hence we generate this model from scratch by leveraging
existing results on statically analyzing Android’s application layer at the framework
layer. The major conceptual problem was that the design patterns of the framework
strongly differ from the patterns that had been previously encountered and studied
at the application layer. Consequently, we devised a static analysis approach that
systematically encompasses all framework peculiarities while maintaining a reasonable
runtime. As result of this overall process, we have established a dedicated knowledge
base that subsequent analyses involving the application framework can be soundly based
upon.

AXPLORER Tool and Evaluation. Unifying the lessons learned above, we have built an
Android application framework analysis tool, called AXPLORER. We evaluate AXPLORER
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on four different Android versions—v4.1.1 (API level 16), v4.2.2 (17), v4.4.4 (19),
and v5.1 (22)—validate our new insights and demonstrate how specialized framework
analyses, such as message-based IPC analysis and framework component interconnection
analysis, can be used to speed up subsequent analysis runs (e.g. security analyses) by
75% without having to sacrifice precision. As an additional benefit, the resulting output
can be used by independent work as is to create a precise static runtime model of the
framework without the need to re-implement the complex IPC analysis.

Android Permission Analysis. Finally, to demonstrate the benefits of our insights
for security analysis of the framework, we conduct an Android permission analysis. In
particular, we re-visit the challenge of creating a permission map for the framework/SDK
API. In the past, this problem has been tackled [113, 20] without our new insights
in the peculiarities of the framework runtime model, and our re-evaluation of the
framework permission map reveals discrepancies that call the validity of prior results
into question. Using AXPLORER, we create a new permission map that improves upon
related work in terms of precision. Moreover, we introduce a new aspect of permission
analysis, permission locality, by investigating which framework components enforce a
particular permission. We found permissions that are checked in up to 10 distinct and
not necessarily closely related components. This indicates a violation of the separation
of duty principle and can impede a comprehensive understanding of the permission
enforcement. As a side-effect, we can leverage our set of permission-protected APIs to
refine commonly used source-sink lists for app analysis that are generated by approaches
built on coarse-grained approximations of the framework model.

4.4 Technical Problem Description and Approach

In contrast to the various related works on static analysis at the application level, there
is no existing prior work on in-depth analysis of the application framework. Moreover,
as the architecture of the framework fundamentally differs from the architecture of
applications, open questions have to be answered first to be able to conduct in-depth
static analysis of the framework. For instance, “what are the entry points to the
application framework?” or “how to establish a static runtime model of the framework’s
control flows?” In the following, we identify challenges that arise for static analyses
at framework level and present a systematic, top-down approach to cope with these
problems (an implementation of our approach is presented in Section 4.5). Solving the
discussed challenges lays the foundation on which a wide range of security analyses of
the application framework can be constructed, from which we (re-)visit the use-case of
permission analysis in Section 4.7.

4.4.1 Defining Framework Entry Points

The first question to be answered is how to identify and select the starting points for the
framework analysis? At application level this has already been studied in depth [94, 19,
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32, 59, 151]. From a high-level view, most approaches parse the declared components
from the application manifest and determine the components as well as dynamically
registered callbacks as entry points; or they build component/application life-cycle
models with a single main entry method.

Challenge: The framework model is conceptually different from the application layer
and existing approaches for application layer analysis do not apply in a framework
analysis. Instead one has to identify the framework API methods that are exposed to
app developers as analysis entry points.

To identify the entry point methods, we have to locate the relevant framework entry
point classes. Starting with the official API of the Android SDK (e.g., Managers in
Figure 2.1) is not reliable as there are no means to prevent an app developer from
bypassing the SDK by immediately communicating with the framework services or by
using reflection to access hidden API methods of the SDK. Consequently, we do not
consider the API calls within the SDK as entry points but instead the framework classes
that are entry points for accessing framework functionality (i.e., framework classes that
are being called by the SDK, see Figure 2.1). We exclude entry points that are not
accessible by app developers, such as Zygote, service manager, or the property service,
which are under special protection (e.g., SELinux [131]) and will not accept commands
by third-party apps that have tangible side-effects on the system or other apps. This
restriction is in accordance with the design of existing Android security extensions,
which exclusively focus on the exported functionality of the app framework (e.g., the
framework’s bound services).

Inter-component communication in Android is, by design, based on Binder IPC and, thus,
framework classes have to expose functionality via Binder interfaces to the application
layer. To this end, interfaces must be derived from lintferface, the base class for Binder
interfaces. Binder interfaces might automatically be generated by AIDL, in this case, the
entry point classes extend the auto-generated Stub class, or in case of Binder interfaces that
are not generated by AIDL, a custom Binder implementation like ActivityManagerNative!
has to be provided, which in turn is extended by the entry point classes. These class
relationships can be resolved via a class hierarchy analysis (CHA) to determine the set
of all entry classes. Besides bound services this also includes callback and event listener
classes that expose an implementable interface to app developers. Hence, we define
entry points (EP) as the public methods of framework classes that are exposed via a
Binder interface. In addition, permission-protected entry points (PPEP) are defined as
entry points from which a permission check is control-flow reachable.

4.4.2 Building a Statfic Runtime Model

Challenge: Generating a static model that approximates the runtime behavior of the
application framework again strongly differs from the problems that arise at application
level where the component life-cycles are mimicked to approximate runtime behavior.

1 . . .
By convention non-generated class names end with Native.
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The bound services—as entry points to the framework—might be queried simultaneously
from multiple clients (apps) via IPC and hence have to handle multi-threading to ensure
responsiveness of the framework. In contrast to the application layer at which utility
classes like AsyncTask are used for threading, we discovered that the framework services
make intensive use of more generic but also more complex threading mechanisms like
Handler, AsyncChannel, and StateMachines. Disregarding these concurrency patterns
results in imprecise data models that cause a high number of false positives during a
framework analysis.

In the following, we provide technical background for those asynchronicity patterns and
explain how to statically model them correctly.

442,17 Handler

The class android.os.Handler provides a mechanism for reacting to messages or submitting
Java Runnable objects for execution on a (potentially remote) thread. Handlers either
schedule the processing of a message or the execution of a Runnable at some point in
the future or process a message/Runnable in a separate thread.

To illustrate the Handler mechanism, consider the example shown in Listing 4.1. It in-
cludes the relevant parts of the framework class com.android.server.BluetoothManagerService ~
. When the service is constructed, it instantiates a HandlerThread object (line 6), a
traditional Thread object associated with a Looper. The purpose of the Looper class is
to sequentially process the messages in a message queue. At line 8, the class-specific
BluetoothHandler object is created and associated with the newly created Looper from
the HandlerThread. This allows messages sent to the BluetoothHandler to be pushed
to the message queue for this Looper. Methods enable and disable can be called by
applications via RPC on IBluetoothManager to turn the Bluetooth functionality on or
off. Method enable sends a message with code MESSAGE_ENABLE to the BluetoothHandler
(line 12). When the associated Looper instance processes the message, it calls method
handleMessage in the BluetoothHandler (line 20), which then processes the request.

Statically resolving message-based IPC, requires overcoming several challenges. First,
the runtime type of the Handler instance has to be inferred to determine the concrete
handleMessage method of the receiving class that processes the message. Second, to
add precision to the analysis, it is best to make it locally path-sensitive by inferring
the possible message codes of the arguments to sendMessage methods. For the example
presented in Listing 4.1, this enables the analysis to be limited to the feasible paths
for a given message in the switch statement at line 21. While it is possible to perform
the analysis without this information, doing so results in a significant loss of precision
and, thus, an increase in the number of false positives, which may distort the results of
security analyses built on top. In light of the prevalence of the Handler pattern, this loss
of precision is not an acceptable solution. Finally, since messages can also be associated
with runnable tasks instead of message codes, the concrete Runnable types, associated
with each message, have to be inferred to determine the executed code when such a
message is processed.
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Listing 4.1: Bluetooth Handler in the Bluetooth manager service. Code was simplified

for readabllilty.

1 class BluetoothManagerService {
private HandlerThread mThread;
private BluetoothHandler mHandler;

2
3
4
5 public BluetoothManagerService() {

6 mThread = new HandlerThread("BluetoothManager");

7 mThread. start () ;

8 mHandler = new BluetoothHandler (mThread. getLooper ());
9

}
10 public void enable() {
11 Message msg = mHandler. obtainMessage (MESSAGE_ENABLE) ;
12 mHandler . sendMessage (msg) ;
13 }
14 public void disable() {
15 Message msg = mHandler.obtainMessage (MESSAGE_DISABLE) ;
16 mHandler . sendMessage (msg) ;
o}
18
19 class BluetoothHandler extends Handler {
20 public void handleMessage(Message msg) {
21 switch (msg.what) {
22 case MESSAGE ENABLE:
23 // process enable message
24 break;
25 case MESSAGE_DISABLE:
26 // process disable message
27 break;
28 // Other cases.
29 }}}
30

4.42.2 AsyncChannel

Closely related to Handlers, com.android.internal.util. AsyncChannel implements a bi-directional
channel between two Handler objects. It provides its own sendMessage and replyToMessage ~
methods, both of which delegate to the sendMessage methods in its associated Handler.
In order to precisely model AsyncChannel objects, it is necessary to infer the types of
the sender /receiver Handler objects. Similarly to Handlers, path-sensitivity should be
added to the analysis by inferring the message codes that are sent through the channel.

4.42.3 StateMachine

Building on the Handler concept, the com.android.internal.util.StateMachine class models
complex subsystems such as the DHCP client or the WiFi connectivity manager. This
class allows processing of messages depending on the current state of the modeled
system. It effectively constitutes a hierarchical state machine in which messages cause
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state transitions. States are organized in a hierarchical manner, such that parent states
may process messages that are not handled by child states.

State objects may optionally implement an enter and exit method that are called when
the state is entered or exited, respectively. When performing a transition from a source
to a destination state, the state machine first determines the lowest common parent for
the source and destination states. It then proceeds to call exit methods of the states in
order from the source to the lowest common parent in the hierarchy. Finally, it calls
the enter methods of the destination’s ancestors starting at the lowest common parent
and ending at the destination state.

CMD_STOP _DHCP CMD_STOP_DHCP

StoppedState

CMD_STOP_DHCP CMD_START_DHCP

CMDSTARTDHCPC:( WaitBeforeStartState ]

CMD_PRE_DHCP_ACTION_COMPLETE

\

CMD_START_DHCP RunningState

CMD_PRE_DHCP_ACTION_COMPLETE CMD_RENEW_DHCP

(WaitBeforeRenewaIState

U

CMD_START_DHCP,
CMD_PRE_DHCP_ACTION_COMPLETE

Figure 4.1: Simplified DHCP state machine from class android.net.DhcpStateMachine ~
. Omitted commands do not cause state transitions. States provided by the default
implementation (halting and quitting) are not shown.

Figure 4.1 shows the state machine used for the DHCP system in the Android framework.

It comprises states StoppedState, WaitBeforeStartState, RunningState and WaitBeforeRenewalState ~
. The exact meaning of each state and transition is not relevant for this explanation.

This state machine is initially in state StoppedState. The state machine can then
receive messages such as CMD_START_DHCP through a call to one of its sendMessage
methods. This causes the message to be transmitted to an internal Handler object. The
handleMessage method of the Handler then dispatches the message to the current State
object, which processes it.
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In order to precisely model state machines, several challenges must be addressed. First,
the subtype of the state machine itself must be inferred, including all states and possible
transitions. Second, the hierarchy of the states must be inferred, in order to know which
enter and exit state methods are called upon state transitions. This information is also
required to determine the set of states that may handle a given message. Third, for
eliminating further false positives, one needs to infer the possible states for any given
program location at which interaction with the state machine occurs.

4.4.3 I|dentifying Protected Resources

While the previous sections describe how static analysis of the Android application
framework code base can be enabled, we now classify the resources inside the application
framework that actually have to be protected. Unfortunately, there is a lack of consensus
in the community on what constitutes a security-sensitive resource/operation [18, 57]
and no one-size-fits-all definition exists as the concrete definition depends on various
aspects like operating system, programming language, or even the domain. To avoid
ambiguities on what we denote as a protected resource in the following, we note that
protected resources for us are security sensitive operations that have a tangible side
effect on the system state or use of privacy.

Challenge: Defining the security-relevant resources is, in contrast to entry points,
more challenging. For privacy leak analysis at application-level, there is a well-defined
list of API methods that can be classified as sinks. Since the analysis now shifts into
the API methods of the framework, it is unclear what kind of resources are protected
by Android’s permissions and can, thus, be used as sinks for security analysis within
the framework.

To create a first high-level taxonomy of protected resources that can help to automatically
discover such resources, we first have to create a ground truth about what technically
forms a protected resource. To this end, we manually investigated control flows of
a number of identified PPEP in the framework’s source code. Here, we make the
assumption that every existing permission check within the application framework indeed
controls access to at least one security- or privacy-critical system resource. Checks
are usually located at the very beginning of PPEP so that any subsequent operation
is indeed authorized. Using expert knowledge in combination with descriptions of
expected side effects from the Android documentation, we identify and annotate relevant
statements that modify the service and/or system state. To avoid a potential bias in the
types of protected resources, we chose entry points from eight different entry classes. To
cover a variety of distinct cases, we based our selection on the available information such
as return value, number/type of EP input arguments, or number/type of permission
checks collected during the entry point discovery. After manually investigating flows
from 35 entry points, distinct repetitive patterns for protected resources appeared across
different control flows, which we summarized in a taxonomy of the high-level protected
resource types.
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4.4.3.1 Taxonomy of Protected Resources

Figure 4.2 presents our high-level taxonomy of the protected resource types. In contrast
to work at application-level that disregards field instructions [18], we found that field
update instructions are highly relevant in the context of the framework and in fact are
the most prevalent type of protected resources that we discovered. Relevant method
invocations can be further sub-classified into native method calls (e.g. for file system
access or modification of device audio settings) and broadcast sender. We consider
native method calls generally as protected resources since distinguishing (non-)security-
relevant native calls would require a dedicated analysis for the native code, which is
currently a general, open problem for the community and out of scope for this work.
Broadcast senders are protected resources as they can potentially cause side-effects in
receivers registered by the system or apps. However, this is statically unresolvable, as
the concrete side-effects strongly depend on the current system configuration, e.g. on
the installed apps and the set of active broadcast listeners. We consider non-void return
values of security-sensitive entry methods as protected resource. Returned objects of
such methods constitute sensitive data, e.g., a list of WiFi connections. Return values
of primitive types int or boolean may constitute sensitive values like for the method
isMultiCastEnabled of the WifiService or some status/error code in method enableNetwork
of the same service. We also found cases in which a throw RuntimeException (RTE)
has to be considered as a protected resource. For instance, in the crash method of the
PowerManagerService, that requires the caller to hold the reboot permission, an RTE
(intentionally) causes the runtime to crash and the device to reboot in consequence.

—[ Field updates ]

—[Method invocations
[ Protected Resource ]— Broadcast sender ]

—[ Return values ]
. . Throw
—[ Throw instructions ]—[ RuntimeException ]

Figure 4.2: High-level taxonomy of protected resource operation types.

Native method
invocations

Refining Field-update Resource Types The established taxonomy of high-level
resource types constitutes a simple, yet effective means of classifying instructions into
security-relevant or not. The set of aggregated instructions, however, is still insufficiently
precise and likely results in an over-approximation, i.e. superset, of the actual protected
resources. This is particularly true for field updates that have a share of about 75% of all
protected resources. Being a human expert, it is already challenging to decide whether
a given field update causes side-effects to the service or even system state. Trying to
fully automate this process is generally not possible, but we can devise heuristics to
approximate human expertise.
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A first simple heuristic to eliminate false positives targets updates of a this reference
within constructors. As there is no prior state for this object, such updates are irrelevant
in this context. By discarding them, we do not miss any information, because adding a
new object to some container or re-assigning it to some other field will result in another
protected instruction in the superset. Hence, field instructions in constructors are false
positives and can be filtered from the superset.

The present approach will also flag field updates identified within classes of the Java
package as protected resources. If for instance, a framework service contains a member
field of a Java container class and a new element is added, the control-flow slicer traverses
the add method of this container class and finally marks the field update instruction on
the container member array as protected resource. While this approach is technically
correct, it has a severe drawback. By collecting the field update within the Java method
the context will be eliminated, i.e., it is unclear which call originally triggered this
update. This may cause false negatives when there are distinct control-flows originating
from different code locations that converge into the same Java method.

To remedy this situation, we proceed as follows: Whenever a candidate field update
instruction is found in a Java class, we abstain from flagging this instruction as a
protected resource. Instead, we traverse the current stack trace backwards until we
reach the first method call within the Android namespace, i.e. android, com.android, or
dalvik. This method call is then marked as a protected resource of type field update, as
it triggers the respective field instruction. This abstraction reconstructs the context
and prevents false negatives in case different code locations converge into the same Java
method.

4.4.3.2 Coverage of the Taxonomy

An inherent limitation of our taxonomy based on small-scaling manual analysis is, that
there are no guarantees that corner cases are included in the current classification.
To cover all corner cases in our taxonomy, a comprehensive manual analysis of the
framework would be required, which would defeat the purpose of enabling a static
analysis in the first place. We define a high-level taxonomy of protected resource
(types) in the framework. Distilling a more refined set for security analyses is discussed
separately in Section 4.8.

4.5 Implementation

We combined all aforementioned steps from Section 4.4 for analysis of an arbitrary
framework version into a tool called AXPLORER. We leverage the static analysis
framework WALA [77], although our approach is equally applicable to other analysis
frameworks such as Soot [126]. Additional code for realizing our approach comprises
~15 kLOC of Java.
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4.5.1 Call-graph Generation

For each identified entry class, we generate an inter-procedural call-graph (CG), in-
cluding all reachable classes. As opposed to related approaches [20] that use class
hierarchy analysis to generate low-precision call-graphs due to the overall framework
complexity—Android version 4.2.2 already includes over 35,000 classes—we generate
high-precision call-graphs with object-sensitive pointer resolution. For each virtual
or interface invocation we infer the runtime type(s) and hence precisely connect the
invocation to its target(s). Although the costs for the points-to computation are com-
putationally expensive, the increased precision lowers the complexity of the overall
call-graph, since we do not introduce imprecision by considering all subclasses of a
virtual method call as potential receivers. Avoiding this imprecision in the call-graph
also lowers the number of false positives. The complexity is further reduced by the
design decision to not follow RPC calls to other entry classes. We complement the
call-graph with message-based IPC edges during the control-flow slicing (see below).

4.5.2 Slicing & On-demand Msg-based IPC Resolution

We conduct a forward control-flow slice for each identified entry point method. The
slicer stops at native methods, RPC invocations to classes other than the current one,
and when the entry point method returns. During slicing, we perform an on-demand
message/handler resolution to add message-based IPC edges to the call-graph, thus
avoiding a huge computational overhead of computing all edges in advance when only a
subset of them are required for analysis (e.g. if PPEP are analyzed only).

When the slicer reaches a sendMessage call, we infer the concrete handler type and add
a call edge from the sendMessage call to the handleMessage method of the receiving
handler. We augment this process with inter-procedural backwards slicing for two
reasons: First, since existing type inference algorithms (like the ones implemented in
WALA) work intra-procedurally, type inference fails if Handler objects are stored in
fields whose declared field type is the Handler base class and not the concrete subtype.
Using inter-procedural backwards slicing starting at the message-sending instruction, we
obtain a more precise set of possible handler types in AXPLORER. Second, Messages are
usually not constructed explicitly, but indirectly obtained via calls to Message.obtain
or Handler.obtainMessage. These methods receive an integer value that constitutes a
sender-defined message code that allows the recipient to identify the message type. To
statically identify the message code, we compute a backwards slice starting from the
message-sending instruction and check the resulting set of instructions for calls that
construct/obtain a message. We then repeat this approach starting from the message
obtain call to infer the concrete message code used to initialize the Message.

Handlers use switch statements to match the provided message code and to transfer
control-flow to a specific basic block of the method’s control-flow graph (cf. line 21 et
seqq. in Listing 4.1). To avoid infeasible paths, we have to recreate path-sensitivity
intra-procedurally and map the message code(s) to the individual execution path(s).

63



CHAPTER 4. AXPLORER

The control-flow slicer subsequently follows this specific execution path only to avoid
a huge number of false positives. Runnable types in Handler.post calls are resolved in
the same way and a call edge to the Runnable’s run method is added. The approach
slightly differs in case of StateMachines. Here, there is no single handleMessage function.
Instead, each State implements its own processMessage function. In this case, we recreate
path-sensitivity for each of these functions and delegate the control-flow to any matching
switch statement.

4.6 Framework Complexity Analysis

We apply our gained insights from Section 4.4 to collect complexity information about
the application framework. By doing this, we demonstrate how the analysis complexity
can be held manageable to allow such in-depth analysis within a reasonable amount
of time. Finally, we collect the framework’s protected resources as denoted in our
taxonomy and validate the results (a detailed discussion on how security analyses can
benefit from this is given in Section 4.8). Using AXPLORER we analyze four different
Android versions: 4.1.1 (API level 16), 4.2.2 (17), 4.4.4 (19), and 5.1 (22).

4.6.1 Handling Framework Complexity

Table 4.1 summarizes different complexity statistics generated for the four analyzed
versions. Unsurprisingly, the complexity in terms of code increases with each version,
whereas the gap to the most recent major version is significantly larger as between the
minor version changes due to new features like Android TV. The entry class discovery
algorithm identified between 242-383 entry classes of which ~25% include at least
one PPEP. The evaluation was conducted on a server with four Intel Xeon E5-4650L
2.60 GHz processors with 8 cores each and 768 GB RAM. Initial processing of the
frameworks finished in reasonable time, ranging from 14-126 hours. Note that this
computation has to be done only once per Android version and that there are no
real-time constraints as, e.g., in application vetting. The most time-consuming task
(about 90% of the overall time) was the generation of the high-precision call-graphs. In
the following, we describe the use of entry-class interconnection and IPC analysis to
speed up processing time without losing the precision of our data model.

4.6.1.1 Entry Class Interconnection

IPC-interfaces of framework entry classes are not only used by the application layer,
but also by other framework services. Analyzing the communication behavior of entry
classes does not only provide a deeper understanding of how the framework services are
inter-connected but also facilitates analyses that rely on permission checks as security
indicator (e.g., see Section 4.7). Exploiting the knowledge about which service EP
triggers which RPCs along its control-flow enables pre-computation of execution path
conditions and restricting the scope of a service analysis to only subsets of dependent
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Android version 4.1.1 (16) | 4.2.2(17) | 44.4(19) | 5.1 (22)
# of classes 27,749 29,804 31,023 46,192
- inner classes 14,784 15,936 17,525 28,933
# of entry point classes 242 256 284 383
- with >1 PPEP 64 (26.4%) 73 (28.5%) 75 (26.4%) 81 (21.2%)
# entry methods (EP) 2,583 2,734 2,861 3,225
- thereof PPEP 863  (33.4%) 1,018  (37.2%) 1,227 (42.9%) 1,250  (38.8%)
- incl. IPC 328 (38.0%) 532 (52.2%) 518  (42.2%) 597  (47.8%)

Table 4.1: Comparing complexity measures for different Android versions (percentages
relate to preceding line).

services rather than the entire framework (i.e, it allows to efficiently divide and conquer
the framework analysis). In a post-processing step, the analysis results for distinct
services can be stitched together at RPC boundaries.

A standard call graph provides information about the enclosing method/class of function
calls. This information, however, is insufficient to reason about the interconnection of
framework entry classes. Instead, the interesting information is the originating entry
class that leads to an RPC rather than the actual class that encloses the RPC. To
generate a map of RPC dependencies of entry classes, AXPLORER records RPCs to
other entry classes and maps them to the original entries during control-flow slicing.
Figure 4.3 shows a subgraph of the overall RPC interconnections between flows from
different entry classes on Android 5.1 that AXPLORER generated. Nodes correspond to
entry classes and are weighted by in-/out-degree, thus highlighting highly-dependent
classes such as ActivityManagerService. The source of a directed edge is the originating
entry class: the control-flow starts at an entry method of this class and at some point
along the flow, not necessarily in the same class, an RPC to the class of the edge target
node is invoked.

Across all four investigated Android versions there is a median number of three distinct
RPC receivers per entry class in our map. The ActivityManagerService is an exceptional
case where flows from its entry methods reach 36 different entry classes. These numbers
emphasize that large parts of the framework are strongly connected and that detailed
knowledge about the communication behavior greatly simplifies further framework
analyses as explained above.

4.6.1.2 Message-based IPC Analysis

A precise model of the message sender to handler relations is crucial for the generation
of a static runtime model of the framework with a low number of false connections. The
last row in Table 4.1 shows the prevalence of the message sending pattern. Between
38-52% of PPEP include at least one message sending call. Across API levels, we found
300 (API 16) to over 500 (API 22) distinct message sender calls used within PPEPs.
The evaluation of our IPC analysis showed that in 7% of all cases the message was sent
to a StateMachine, and in 27% of all cases to a Handler. In the remaining 66% a Runnable
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was posted. This ratio remains approximately the same across all versions. Overall,
our IPC analysis was able to fully resolve about 76% of all message sending instances,
yielding a very valuable dataset of the message sender to handler relationships. Reasons
for failed resolution are that either the runtime type of the Handler (81%) or Runnable
(5%) instance could not correctly be inferred while in the remaining 13% of cases the
message code could not be identified. The root cause of most of these failures is the
missing/incomplete support of AsyncChannels and the Message.sendToTarget() API call.
At the time of writing, this support is work-in-progress.

During our initial analysis run, AXPLORER records both an RPC-map per entry class
as well as a list of resolved sender-to-handler relationships. This data is then re-applied
as expert knowledge in subsequent analysis re-runs to significantly reduce the analysis
runtime, e.g., for API level 17, the processing time drops by ~75% to about 7 hours. By
publishing this data, we hope that independent analyses can equally benefit from this
by removing the burden to re-implement a comparable IPC resolution algorithm.

4.6.1.3 Reflection

We analyzed reflection usage within framework code by counting the number of calls
to methods within the java.lang.reflect package. The absolute numbers range from 89
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(API 16) to 118 (API 22). Across API levels less than 50% targeted the Method class
while the remaining calls were distributed among other reflection classes. In many cases
reflection is used in utility or debug classes and we found only one entry class that
makes use of reflection (ConnectivityService), but the respective method was removed
in API level 20. In SDK code, the total numbers are slightly higher across API levels
(115-288). However, the additional usage of reflection is mainly due to View/Widget
classes. Overall, reflection is only rarely used in framework code and not used at all by
main service components. Hence, not covering reflection during call graph construction
has no significant impact on subsequent analysis results.

4.6.2 Android’s Protected Resources

To validate our established taxonomy, we collect the protected resources for each Android
version and classify them with respect to the taxonomy. Across versions, the total
number ranges from 6,5k (API 16) to 10k (API 22). Although these numbers seem quite
high at first glance, they are reasonable in relation to the overall size and complexity of
the framework. AXPLORER recorded the context depth (in terms of method invocations)
at which the protected resources were found. While for simple methods that include
few (or even a single) resource, the call depth is lower than two, the median call depth
ranges from 8-11 across Android versions. This emphasizes that approaches that resort
to simple analysis techniques are not suitable to detect resources located deeper in the
control-flow.

The relative distribution of resources per type is stable across all versions. We validated
our statement of Section 4.4.3.1 that field update instructions are the most prevalent
resource type (with a share of about 75%). They are followed by native method calls
(about 21-23%), which are most frequently used as a gateway to the device hardware
(e.g. file system, audio, NFC). There is a surprisingly low number of PPEP that return
a protected value, the absolute number ranges from 51-69 entries. Another unexpected
result is that runtime exceptions (RTE) occur with a frequency that is about as high
as protected broadcast senders. Besides the already mentioned example within the
PowerManagerService, we found occurrences in Ul widget classes and even in the default
XML parsing library on Android. Table 4.2 provides absolute numbers of protected
resources by API version and the distribution of resource types.

Android version | 411(16) | 422017 | 4.4.4(19) | 5.1 (22)

# of protected resources | 6,490 6,969 7,488 10,044
- field updates 4,891 (75.36%) | 5,268 (75.59%) | 5,675 (75.79%) | 7,520 (74.87%)
- native method calls | 1,433 (22.08%) | 1,499 (21.51%) | 1,643 (21.94%) | 2,305 (22.95%)
- return value 51 (0.79%) 60  (0.86%) 54 (0.72%) 69  (0.69%)
- broadcast sender 65 (1.00%) 72 (1.03%) 53 (0.711%) 78  (0.78%)
- throw RTE 50  (0.77%) 70 (1.01%) 63 (0.84%) 72 (0.711%)

Median context depth 8 9 11 9

Table 4.2: Numbers on protected resources by type and Android version.
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4.6.2.1 Manual Investigation of RTE

Due to the surprisingly high number of runtime exceptions and the fact that uncaught
RTEs might potentially crash the system, we manually investigated the corresponding
code locations to better understand their security implications. The source code analysis
revealed that these instructions reside both in Android’s code base and in external
library code. Android, similar to other operating systems, relies on external libraries for
specific tasks, such as XMLPullParser, Bouncy Castle, and J-SIP. Integrating library
code into such a complex system usually raises the question of how to handle unchecked
exceptions that are thrown by library functions. Either the library code is patched,
which might be a tedious maintenance task, or exceptions are caught at caller site.
Although the latter case, that is adopted by Android, is considered bad practice in
case of runtime exceptions, using generic catch handlers around library call sites is the
easiest and most reliable approach in this situation.

Runtime exceptions in Android code are thrown to indicate precondition violations,
like crucial class fields being null, unrecoverable IO errors, or security violations. The
implications of a runtime exception differ with respect to the code location in which
they are thrown. Exceptions in the application layer, i.e. in system applications, cause
the respective app to crash. Similarly as for normal apps, they can be restarted by the
user. Sticky system app services are restarted automatically by the system. Exceptions
thrown in bound services of the SystemServer are handled in a special way: A system
watchdog thread com.android.server.Watchdog constantly monitors the core services
like PowerManagerService and ActivityManagerService. In case of a crash or deadlock, it
reboots the entire system. Uncaught runtime exceptions in unmonitored system services
cause the Android Runtime, including Zygote and the SystemServer to be restarted (hot
reboot) while the kernel keeps running—effects also described in recent research [75].

4.6.2.2 Scope of Protected Resources

To learn more about the scope of protected resources we analyzed how often a particular
resource is used by different entry methods of the same class. For all protected resources
of a concrete class, we aggregated the original entry points and compared this number to
the total number of entry points for this class. Figure 4.4 shows the results for Android
version 5.1 in which individual class numbers were summed up and grouped in 25% bins.
About one-third of the protected resources are highly individual, as they are used by at
most 25% of the entry methods of a class. However, at the same time, a large fraction
(over 53% of all resources) were used by more than half of the class’ entry methods.
This implies that there is a high degree of shared code within sensitive entry methods
and control-flows from different entry methods converge frequently.

The gained knowledge about protected resources is also an initial and crucial step
towards future work regarding automatic security hook placement in the framework or
verification of manually placed hooks in AOSP extensions such as ASM [71] or ASF [21].
These solutions do not only require a solid understanding of what is protected but also
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Figure 4.4: Usage of protected resources by ratio of entry methods per entry class for
Android 5.1

where to place hooks and how to seed a minimal set of hooks while still completely
mediating access to protected resources.

4.7 Permission Analysis

Building on top of our new insights we re-visit an important aspect of Android’s
permission specification, that is permission mapping between permission check and
SDK method, and further, introduce permission locality to study which framework
components perform which permission checks. To this end we extend AXPLORER as
follows:

1) A PPEP only indicates the presence of a permission check in the control-flow from
this entry-point, but there is no information yet about the number of checks or the
concrete permission strings. We extend our slicing-based approach to also resolve the
permission strings in common permission check API invocations (e.g., as defined in the
Context class). Non-constant strings are resolved in a similar way like message codes in
Section 4.5.2. From 520 distinct permission checks found in API level 16, we were able
to resolve 99% of the permission strings. Among the failing cases, one case was located
in the ActivityManagerService$PermissionController class where the permission string is an
argument of the entry point method, which is only called from native code and hence
was not statically resolved.

2) Entry class interconnection, i.e., RPC transitions to other PPEP (see Section 4.6.1.1),
usually accumulates all permissions required by the additionally called entry classes for
the UID that called the first entry class in the control-flow. However, those transitions
are irrelevant for permission analysis when the RPC is located between calls to Binder~
.clearCallingldentity and Binder.restoreCallingldentity. Clearing the calling UID in the
framework’s bound services resets it from the calling app’s UID to the privileged system
server UID. Thus, outgoing IPC edges after clearing and before restoring the UID should
be ignored in permission analysis, since the additional PPEP are called with a UID that
is different from the calling app’s UID.
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3) We add a lightweight SDK analysis to reason about required permissions of docu-
mented APIs. To this end, we conduct a reachability analysis from public SDK methods
to framework EPs (SDK to framework layer in Figure 2.1). Combining this mapping
with the mapping from framework EPs to permissions creates a permission map for the
documented API.

4.7.1 Re-Visiting Permission Mapping

The Stowaway project [113] was the first to generate a comprehensive permission map
for Android 2.2. Their dynamic analysis approach (feedback directed API fuzzing)
generates precise but incomplete results. Moreover, the involved manual effort makes it
difficult to re-use it for newer API versions. PScout [20] improved on this situation by
statically analyzing the framework code, thus increasing the code coverage. In direct
comparison, PScout’s results contain notably more permission mappings. To handle the
complexity induced by the framework size, PScout resorts to low-precision data models
based on class hierarchy information. In the following, we demonstrate that this has
negative implications for their resulting permission map. Using our insights we provide
permission mappings that call the validity of prior mappings into question.

We compare our results with PScout using their latest available complete results (for
Android 4.1.1). Since we exclude Infent and ContentProvider permissions, which both
require supplemental analysis effort such as manifest or URI object parsing, we restrict the
comparison to un-/documented APIs. For the evaluation we include the standard system
apps and make identical assumptions as PScout, i.e., we assume that any permission
found for a particular APT is indeed required (a more precise analysis would require
path-sensitivity). Moreover, like PScout, we did not conduct a native code analysis.

4.7.1.1 Documented APl Map

Figure 4.5 shows for our documented API map (SDK EP to permissions) how often a
certain permission is required. For some permissions, PScout reports higher numbers
while for others AXPLORER reports higher numbers. Since the results are fairly deviating,
we manually inspected various cases, including a full analysis of NFC and Bluetooth,
to verify the correctness of our generated numbers. PScout’s higher method count,
particularly for the two cases of NFC and Bluetooth, originates from adding package-
protected methods that are not exposed to app developers and from improper handling
of the @hide javadoc? attribute, resulting in an over-counting of the documented
API methods. Our higher numbers for BROADCAST_STICKY and SET_WALLPAPER mainly
refer to abstract methods from the Contfext class that are implemented in its subclass
ContextWrapper and then inherited by 18 non-abstract subclasses (for API 16). Instead,
PScout only lists those methods for the Context/-Wrapper class, thus missing to count
the non-abstract subclasses.

2EP methods annotated with the @hide attribute are not included in the SDK.
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Figure 4.5: Number of documented APIs per permission.

Figure 4.6 provides a different view of the mapping by showing the distribution of
required permissions per API. The main difference is the smaller number of outliers in
our dataset: four mappings with three or more required permissions, compared to 58
such outliers in the PScout dataset. While the different results in Figure 4.5 mainly
originate from technical shortcomings in the SDK analysis, Figure 4.6 hints at the
different quality of the undocumented API map as result of a more precise framework
analysis (see next Section 4.7.1.2). PScout’s more lightweight framework analysis results
in an over-approximation of permission usage of EPs. For their outliers with more
than five permissions in the ConnectivityManager class, they either over-approximate
the receivers of a sendMessage call and/or did not resolve the message code and the
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Figure 4.6: Number of permissions required by a documented API.

correct path in the handieMessage method. In such cases, the over-approximation in
the framework analysis negatively influences the quality of the SDK map when IPC
calls from the SDK to the application framework are connected. We manually validated
all outliers and found that no method actually requires more than three permissions,
thus contradicting the PScout results. Even the four outliers in our dataset check at
most two permissions, independent of the EP call arguments. Additional permission
checks might only be required for specific arguments/parameters. For instance, the
setNetworkPreference(int) function of the ConnectivityService will tear down a specific type
of network trackers depending on a preference integer argument. Some subtypes such
as the BluetoothTetheringDataTracker require both Bluetooth permissions to execute this
functionality while other subtypes require no additional permission. Adding parameter-
sensitivity to the analysis is required to resolve such cases automatically and to annotate
permission checks with conditions.

4.7.1.2 Undocumented API Map

A fair, direct comparison of permission maps for undocumented APIs is unfortunately
very difficult due to shortcomings in the original paper. Although PScout did not
explicitly define the term undocumented API, we assume, after manual inspection of
their results, that it refers to the publicly exposed framework interfaces and covers any
functionality that can be called from application level (independent of whether it is
provided by SDK or system apps). Hence we refer to undocumented API as the entire
set of framework entry points (cf. Section 4.4.1).

In contrast to PScout’s documented API map, we discovered different inconsistencies in
their undocumented mappings. Besides valid mappings from PPEP to permissions, they
also include mappings for unrelated methods. First, public methods of AIDL-based
entry classes (which we define as Entry Points) are counted up to five times: once in
the SDK manager class, in the framework service class, in the AIDL interface class, and
in the auto-generated Stub and Proxy classes. Second, their mapping contains methods
of StateMachine State classes. StateMachines are used framework-internally and their
functionality is not exposed to apps. Third, synthetic accessor methods, as well as
methods of anonymous inner classes, are reported. We assume that this problem is
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related to the lack of a concise entry point definition that induces difficulties with
the abort criteria during their backwards analysis starting from permission checks. In
contrast, our forward analysis seems more suitable in this context, as permission checks
are usually closely located to framework EPs.

Table 4.1 reports on the numbers of entry points per API level. For Android 4.1.1,
AXPLORER found 863 PPEP (33.4% of entry points) that require at least one permission.
These numbers include signature/-OrSystem permissions since this information, although
not interesting for app developers, is of interest for understanding the Android permission
model in its entirety. On average we found 1.17 permissions per PPEP, which leads
to a total of 1,012 permission mappings that cover 129 distinct permissions. This is a
magnitude less than the 32,304 permission mappings reported by PScout for normal
and dangerous permissions only. However, due to our more concise definition of what
constitutes public framework functionality and the inclusion of all permission levels, we
argue that our number is more substantiated.

4.7.2 Permission Locality

The application framework implements a separation of duty: every bound service
is responsible for managing a certain system resource and enforcing permissions on
access to them. For instance, the LocationService manages and protects location related
information or the PhonelnterfaceManager facilitates and guards access to the radio
interfaces. Permission strings already convey a meaning of the kind of system resource
they protect and app developers might have an intuition for which services these
permissions are required. To validate this aspect, we study whether permission checks
follow the principle of separation of duty and whether permissions are checked by
only one particular service. We call this aspect permission locality. A low permission
locality indicates that a certain permission is enforced at different (possibly unrelated)
services. This potentially contributes to the app developer’s permission incomprehension
that can lead to over-privileged apps [113]. Moreover, a strict separation of duty, i.e.,
high permission locality, significantly eases the task of implementing (and verifying)
authorization hooks for resources, for instance in the design of recent security APIs [71,
21]. Consequently, the permission that protects a set of sensitive operations is ideally
checked only in one associated entry class.

To study the permission locality, we analyze the checked permission strings and map
them to the enclosing class of the permission check call. In Android v4.1.1 (API
level 16) we found that out of 110 analyzed permissions 22 (20%) are checked in
more than one class. Among these permissions, 13 are checked in two classes, 5
in three classes and 4 in four classes. An example for seemingly unrelated classes
are LocationManagerService and PhonelnterfaceManager that both check the same dan-
gerous permission ACCESS_FINE_LOCATION. While the permission is intuitively related
to the first service, the connection to the latter one becomes obvious by looking at
the enclosing method that includes the check (e.g. getCellLlocation). Interestingly,
PhonelnterfaceManager is not a framework service but included in the telephony system
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app. Mixing framework services and system apps for enforcing identical permissions
complicates permission validation and policy enforcement since system apps might be
vendor-specific. Table 4.3 shows the number of permissions in API 16 that are checked
in more than one class, grouped by their protection level. These numbers imply that
there is no apparent correlation about the relative frequency and the protection level,
in particular between the permissions available to third-party apps (normal4dangerous,
12/54) and the ones reserved for the system (10/56). This implies that low permission
locality equally affects all protection levels. Applying this analysis to API 22 results in an

Protection level # permissions

normal 2/16  (12.5%)
dangerous 10/38  (26.3%)
signature 2/25 (8%)
signatureOrSystem  8/31  (25.8%)

Table 4.3: Number of permissions in APl 16 that are checked in more than one class
grouped by permission protection level.

even lower overall permission locality. Focusing on the four outliers in API 16, changes
in API 22 include three class renamings, two removals and nine additions (cf. Figure 4.7).
In case of READ_PHONE_STATE, those four classes even reside in four distinct packages of
which one is part of the telephony system app. The permission CONNECTIVITY_INTERNAL
more than doubled the number of classes (10) in which it is enforced. Besides renamed
classes (blue color), as result of a code refactoring process, the number of additions for
this small number of examples clearly indicates a disconcerting trend to lower permission
locality. As a consequence, permission checks violate the separation of duty. This clearly
emphasizes the need for centralized enforcement points.

A possible solution to increase permission locality includes associating each permission, in
the ideal case, with a single service (though this might be challenging for all permissions).
Once a designated owner service has been identified for each permission, a dedicated
permission check function could be publicly exposed via its Binder interface, e.g., a method
to check the ACESSS_FINE_LOCATION permission could be added to the ILocationManager
interface. The addition and removal of callers to such methods then no longer affects the
number of decision points and preserves the separation of duty for permission checks.

4.8 Discussion of Other Use-Cases

We briefly discuss further use-cases that can benefit from our work, particularly from our
taxonomy of protected resources and the insights from our permission locality analysis.
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Permission : ACCESS_ NETWORK_STATE
Level : normal
Checked in :
- com.android.server.ConnectivityService
- com.android.server.ethernet.EthernetServiceImpl
- com.android.server.ThrottleService
- com.android.server.net.NetworkPolicyManagerService
- com.android.server.net.NetworkStatsService

Permission : READ__PHONE_STATE
Level : dangerous
Checked in :
- com.android.internal.telephony.PhoneSubInfoProxy
- com.android.internal.telephony.SubscriptionController
- com.android.phone.PhonelnterfaceManager
- com.android.server.TelephonyRegistry
- com.android.server.net.NetworkPolicyManagerService

Permission : CONNECTIVITY_INTERNAL
Level : signatureOrSystem
Checked in :

- com.android.bluetooth.pan.PanService$BluetoothPanBinderl

- com.android.server.ConnectivityService

- com.android.server.NetworkManagementService

- com.android.server.NsdService
com.android.server.connectivity. Tetheringl
com.android.server.ethernet.EthernetServiceImpl
- com.android.server.net.NetworkPolicyManagerService
com.android.server.net.NetworkStatsService
com.android.server.wifi. WifiServiceImpll
com.android.server.wifi.p2p. WifiP2pServicelmpll

Permission : UPDATE_DEVICE_STATS
Level : signatureOrSystem
Checked in :
- com.android.server.LocationManagerService
- com.android.server.am.BatteryStatsService
- com.android.server.am.UsageStatsService
- com.android.server.power.PowerManagerService$BinderService
- com.android.server.wifi. WifiServiceImpl

Figure 4.7: Permissions checked in four distinct classes in API 16. Colors denote changes
in APl 22: renamed classes (blue), additions (green) and removals (red).

4.8.1 Permission Check Inconsistencies

Prior work Kratos has shown that the default permission checks are inconsistent and
can lead to attacks [120]. However, this approach explicitly did not make the attempt
to identify protected resources in Android’s application framework but instead relied
on arbitrary shared code as a heuristic to identify security relevant hotspots in the
framework’s code base. While this approach has successfully demonstrated the need for
such analysis, we argue that using our definition of protected resources as a refinement
of shared code can further improve the precision of their analysis, since, by definition,
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protected resources describe sensitive operations. False positives originating from
shared logging or library code are automatically eliminated. Distilling a more concise
definition of field-update and native method call resources from our high-level taxonomy
is a promising future work. General heuristics such as the presented removal of non-
relevant field updates of a this reference within constructors and the special treatment of
instructions in the Java namespace could be replaced with machine-learning techniques
to improve the highly individual classification task.

4.8.2 Authorization Hook Placement

Different Android framework extensions [103, 162, 107, 30, 71, 21] augment the appli-
cation framework with authorization hooks in a best effort approach. On commodity
systems, a comparable situation for the Linux and BSD kernels has been improved
through a long process that established a deeper understanding of the internal control
and data flows of those kernels and that allowed development of tools to verify or auto-
mate placement of authorization hooks. A similar evolution for Android’s application
framework has yet been precluded due to open technical challenges: first, one must
be able to analyze control and data flows in the framework across process and service
boundaries; second, one must be able to track the execution state of the framework
service along its internal control and data flows (e.g., tracking the availability of the
subject identity); third, one has to establish a clear and very specific understanding of
the protected resources of each service. This work at hand addresses the first of these
challenges and provides necessary permission locality information to implement compre-
hensive, coarse-grained enforcement models. Additionally, with our high-level taxonomy
of protected resources, we made a first step towards solving the third challenge.

4.9 Related Work

Static (App) Analysis. Different related works have analyzed Android apps for vul-
nerabilities and privacy violations. Enabling precise static app analysis required solving
essential questions like what are the entry points of the app, what are the security
relevant sinks and how can we achieve a static runtime model that takes the appli-
cation peculiarities into account? Among the static analysis approaches, CHEX [94]
was the first tool to accommodate for Android’s event-driven app lifecycle with an
arbitrary number of entry points. FlowDroid [19] further improved the runtime model
by automatically generating per-component lifecycle models that take into account the
partial entry point ordering. While FlowDroid still analyzed components in isolation, a
number of related works specifically addressed the problem of inter-component commu-
nication (ICC). The initial work Epicc [105] devised a new analysis technique to create
specifications for each ICC sink and source. Amandroid [144] combined a lifecycle-aware
program dependence graph with ICC analysis to generate an inter-component model
of the application to improve precision for various security applications. Similarly, Ic-
cTA [84] extended FlowDroid with a precise inter-component model. Finally, IC3 [104]
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uses composite constant propagation to improve retargeting of ICC-related parameters
enabling a more precise ICC resolution. Moving from best effort approaches, SuSi [18]
took a machine-learning approach for classifying and categorizing sources and sinks in
the framework code that are relevant for application analysis. All of those solutions
contribute to analyzing Android apps more efficiently. The focus of this work is on
establishing similar knowledge on Android’s application framework and on making a
first essential but non-trivial step towards enabling a holistic analysis of Android that
includes the framework code with its security architecture.

Application Framework Abstractions. The application framework is generally re-
garded as too complex to be considered in an app analysis (cf., CHEX [94]) and
very recent works dealt specifically with this problem of abstracting the application
framework [31, 63] or making it amenable for app analysis [27]. EdgeMiner [31] links
callback methods to their registration methods and generates API summaries that
describe implicit control flow transitions through the framework. DroidSafe [63] distills
a compact, data-dependency-aware model of the Android app API and runtime from
the original framework code. Droidel [27] differs in its approach by explicating the
reflective bridge between the application framework and applications, while trying
to model the framework as less as possible. It generates app-specific versions of the
application framework and replaces reflective calls with app-specific stubs. All of these
approaches try to pre-compute data-dependencies through the framework API that
can be used by app analyses in favor of using the complex and huge framework code
base. In contrast, our work makes a first step towards enabling in-depth analyses of
the application framework beyond just data dependencies in order to enable future
reasoning about framework security architectures or extensions (such as guiding and
verifying hook placement or separation of duties).

Permission Mapping and Inconsistencies. Both Stowaway [113] and PScout [20]
built permission maps for the framework API. Stowaway used unit testing and feedback
directed API fuzzing of the framework API to observe the required permission(s)
for each API call. PScout, in contrast, used static reachability analysis between
permission checks and API calls to create a permission mapping of different Android
framework versions that improves on the results of Stowaway. Permission maps have
since been a valuable input to different Android security research, such as permission
analysis [65] and compartmentalization of third-party code [111, 121], studying app
developer behavior [113, 139], detecting component hijacking [94], IRM [79, 23] and
app virtualization [22], or risk assessment [109, 64, 156, 149]. In this work, we re-visit
the challenge of creating a permission map for Android. In contrast to prior work, we
build on top of our new insights on how to statically analyze the application framework
(see Sections 4.4 and 4.5), which allow us to achieve a map that is more precise for
the application framework API and that calls the validity of some prior results [20]
into question. We discuss how recent work [120] that focused on inconsistent security
enforcement within the framework could benefit from a deeper understanding of the
framework’s peculiarities separately in Section 4.8.
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Android Security Frameworks. Various security extensions have been proposed, such
as [103, 162, 107, 30, 71, 21] to name a few, which integrate authorization hooks into
Android’s application framework to enforce a broad range of security policies. At the
moment, those extensions are designed and implemented as best-effort approaches that
raise questions about the completeness and consistency of the enforcement and indeed
past research has shown that even the best efforts of highly experienced researchers and
developers working in this environment introduce potentially exploitable errors [51, 155,
125, 120]. This unsatisfying situation has strong parallels to earlier work on integrating
authorization hooks into the Linux and BSD kernels [148, 143], where a dedicated line
of work [51, 155, 57] has established tools and techniques to reason about the security
properties of proposed extensions or to automate the hook placement. Prerequisite
for those solutions was a clear understanding of what constitutes a resource that is
(or should be) protected by an authorization hook. To allow development of similar
tools for the Android application framework, we hence have to also answer the question
about Android’s protected resources first. In this work, we make a first essential step in
this direction by enabling a deeper analysis of the framework and by providing a first
high-level taxonomy of protected resources in the application framework.

4.10 Conclusion

In this work, we studied the internals of the Android application framework, in particular
challenges and solutions for static analysis of the framework, and provided a first
high-level classification of its protected resources. We applied our gained insights to
improve on prior results of Android permission mappings, which are a valuable input
to different Android security research branches, and to introduce permission locality
as a new aspect of the permission specification. Our results showed that Android
permission checks violate the principle of separation of duty, which might motivate a
more consolidated design for permission checking in the future. To allow app developers
and independent research to benefit from our results, we published our data sets at
https://github.com/reddr/axplorer .
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5.1. MOTIVATION

5.1 Motivation

Third-party libraries on Android have been shown to be security and privacy hazards by
adding security vulnerabilities to their host apps or by misusing inherited access rights
to leak sensitive data. Correctly attributing improper app behavior such as privacy leaks
(cf. Chapter 3) either to app or library developer code or isolating library code from
their host apps would be highly desirable to mitigate these problems, but is impeded
by the absence of a third-party library detection that is effective and reliable in spite
of obfuscated code. This work proposes a library detection technique that is resilient
against common code obfuscations and that is capable of pinpointing the exact library
version used in apps. Libraries are detected with profiles from a comprehensive library
database that we generated from the original library SDKs. We apply our technique
to the top apps on Google Play and their complete histories to conduct a longitudinal
study of library usage and evolution in apps. Our results particularly show that app
developers only slowly adopt new library versions, exposing their end-users to large
windows of vulnerability. For instance, we discovered that two long-known security
vulnerabilities in popular libs are still present in the current top apps. Moreover, we
find that misuse of cryptographic APIs in advertising libs, which increases the host
apps’ attack surface, affects 296 top apps with a cumulative install base of 3.7bn devices
according to Play. This is the first work to quantify the security impact of third-party
libs on the Android ecosystem.

5.2 Problem Description

Third-party libraries have become a fixed part of mobile apps. Developers use them
to monetize their apps through advertisements, integrate their apps with online social
media, include single-sign-on services, or simply leverage utility and convenience libraries
for their apps’ functionality.

However, third-party libraries are a double-edged sword: While they can provide
convenience for the app developer and can greatly enhance their host apps’ features,
they also have been shown to be a hazard to the end-users’ privacy and security. A
number of prior studies [53, 65, 29, 118, 128] has demonstrated that such libraries exhibit
questionable privacy practices. For instance, they leak user-private information, exploit
their host app’s privileges, or track users. Two recent incidents of such questionable
practices were revealed in the popular SDKs of Taomike—China’s biggest mobile ad
provider—and Baidu, that were found to be secretly spying on users and uploading
their SMS to remote servers [134] and opening backdoors to the users’ devices [132],
respectively. In addition to such privacy violations, third-party libs increase the attack
surface of their host apps when they do not adhere to security best practices and, hence,
become a liability for the users’ security. In the recent past, even popular libraries
by reputable software companies, such as Facebook and Dropbox, were affected by
highly severe vulnerabilities. The found vulnerabilities could lead to the leakage of
sensitive data to publicly readable data-sinks [110], code injection attacks [112, 62],
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account hijacking [133], or linking a victim’s device to an attacker-controlled Dropbox
account [49].

Given the high prevalence of third-party libraries in apps and consequently their high
impact on the health of the entire smartphone ecosystem, it is of no surprise that
dedicated research has investigated new mechanisms to sandbox or remove libs, with a
strong focus on advertisement libs [121, 111, 150, 118]. Yet, these proposals make one
crucial assumption that currently limits them in their effectiveness: they assume that
libraries can be clearly identified, either through developer input [111] or inspection
of the app’s code [121, 150, 118]. Reliably identifying libraries, however, forms a
formidable and yet unsolved technical challenge. First, third-party libraries are tightly
integrated into their host app by statically linking them during the app’s build process
into the app’s bytecode, thus blurring the boundaries between app and library code.
Second, app developers commonly make use of bytecode obfuscation tools, such as
ProGuard [68]. One side-effect-free bytecode obfuscation technique is identifier renaming,.
It turns identifiers into short, non-meaningful strings, i.e. a package name com.google is
transformed into a.c. Naive library detection approaches based on identifier matching,
like in [128, 65, 121, 150] or applied by third-party ad detector apps, fail even to this
simple obfuscation technique.

Another problem, caused by the inability to reliably detect third-party libraries within
applications, is the lack of accountability for privacy and security violations. For instance,
a wide range of security-related analyses studied apps for privacy and security issues
and raised awareness for various problem areas, including privacy leaks [59, 19, 144, 63,
P1], permission usage [146], dynamic code loading [112], SSL/TLS (in-)security [106,
54], or (mis-)use of cryptographic APIs [52]. However, without being able to distinguish
app developer code from third-party library code, the reported results are on a per-app
basis and do not distinguish whether bad or improper behavior originates from app or
library developers.

To increase the efficiency of library sandboxing mechanisms and to be able to hold the
correct principal (app or lib developer) accountable for security and privacy violations,
a reliable and precise third-party library detection is required that is resilient against
common obfuscation techniques.

5.3 Contribution

In this work, we make two tangible contributions: First, we present an efficient and
reliable approach for detecting third-party libraries within Android apps (see Section 5.4).
By analyzing the original library SDKs, we extract profiles that are resilient to common
obfuscation techniques, such as identifier renaming and API hiding. To achieve these
properties our approach is based on class hierarchy information only and is independent
of the libraries’ code. Still, our profiles are fine-grained enough to not only detect
distinct libraries, but also the exact version used in an app. For the actual library
detection, we devised a profile matching algorithm that reports whether an exact copy
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of a given library version was matched. In the negative case, either because the correct
version is missing in our database or dead-code elimination was applied to app code, a
similarity score indicates the best matching profile for the library code in the app.

Second, we use our library detection technique in a longitudinal study of third-party
libraries included in the top apps on Google Play (see Section 5.6). In this study, we are
interested in finding answers to security- and privacy-related questions about libraries,
such as “How prevalent are third-party libraries in the top apps and how up-to-date
are the library versions?”, “Do app developers update the libs included in their apps
and how quickly do they update?”, or “How prevalent are vulnerabilities identified in
prior research [112, 52] in libraries and how many apps are affected?” To answer
these questions, we first built a comprehensive repository of third-party libraries and
applications (see Section 5.5). Our library set contains 164 libraries of different categories
(Advertising, Cloud,..) and a total of 2,065 versions. We then collected and tracked
the version histories for the top 50 apps of each category on Play between Sep 2015
and July 2016, accumulating to 96,995 packages from 3,590 apps. We complemented
this database with meta-information, such as app and library release dates, which we
collected from public sources or developer websites. Based on this dataset, we show
that app developers commonly neglect updates of third-party libraries. By analyzing
the time-to-fix of two recent security/privacy incidents of the Facebook and Dropbox
SDKs [133, 49], we show that this developer negligence in updating libraries exposes
end-users to large windows of opportunities for attacks (e.g., on average 190 days for
51 apps with a vulnerable Facebook SDK in our dataset). Lastly, we scan our library
set for the presence of API misuse vulnerabilities [112, 52] that would expose the libs’
host apps to cryptanalytic and code injection attacks and discover 18 vulnerable libs
(61 versions), which together affect 296 apps with a cumulative install base of 3.7bn.
Overall, our work constitutes the first longitudinal security study of third-party libraries
in the Android ecosystem. We provide the first valuable insights into the security-impact
of libraries and as such motivate future work on improving library updatability on
Android. In summary, we make the following contributions:

(1) We are the first to devise a lightweight and effective approach (LiBScouT!) to
detect third-party libraries in Android apps that is resilient to common obfuscation
techniques and capable of pinpointing exact library versions.

(2) We created a large third-party library database including 164 distinct libraries with
2,065 versions, which we profile. We collected the version history of 3,590 top apps
on Play for a total of 96,995 distinct packages. We complement those databases with
meta-data such as app/library release dates.

(3) We conduct a longitudinal study of third-party libs in our app set to investigate
their prevalence, the update frequency of apps and of libs, as well as the impact of app
popularity and library API stability on the lib update frequency.

(4) We study time-to-fix and vulnerability windows of apps that include vulnerable

'https://github.com/reddr/LibScout
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library versions (at the example of recently reported incidents of the popular Facebook
and Dropbox SDK). Our results show large windows of opportunity for attackers against
apps including those libraries.

(5) Lastly, we re-apply existing app analysis techniques to library code to investigate
the improper usage of dynamic code loading and crypto APIs. We identify 61 library
versions that affect 296 top apps on Play with a cumulative install-base of 3.7bn users
and expose these apps to cryptanalytic attacks.

5.4 Technical Problem Description and Approach

In the following, we first aggregate requirements for a reliable and precise third-party
library detection, before we describe our concrete approach in detail.

5.4.1 Requirements Analysis

Version Detection & Similarity Computation. Related work on library detection
largely strove for completeness by reducing this problem to code similarity between
apps. While this works well for detecting components within an app, such approaches
always suffer from uncertainty as they are not based on the ground truth in form of the
original library code. Moreover, this lack of ground truth precludes a more fine-grained
detection including inference of the concrete library version. This information, however,
is imperative to conduct longitudinal studies on the Android ecosystem to analyze
library updatability, compatibility, and identifying vulnerable versions.

Therefore, we base our approach on the original library code provided as SDK by the
library provider. Although relying on the original libraries comes with the drawback
of incompleteness, particularly for less prevalent libraries, it is a necessary trade-off
to infer concrete library versions, which would not be possible without ground truth.
In addition and in contrast to common belief, libraries are often not included as is
but in some modified form. In most of the cases, this refers to bytecode optimization
through dead-code elimination of unused library functionality. To reliably detect such
partially incomplete code fragments in apps, ground truth is required to compute a
similarity value between library code in the app and original lib versions. To this end, we
build a comprehensive library database (see Section 5.5) including the library binaries
and complementary information, such as library name, version, and release date (if
available).

Robustness Against Common Obfuscation Techniques. A widely-used third-
party library detection technique is naive package name matching. While package name
matching provides a rough estimation of the different components within an app, this
approach comes with several drawbacks. In the presence of code obfuscation, such
as the commonly used identifier renaming, detection fails since the original package
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Allatori dashO DexGuard DexProtector DIVILAR ProGuard Stringer

122 [114] 67] [88] [159] [68] [89]
API hiding (*) X X v v X X X
Class encryption X X v v X X b 4
CF randomization (*) v v X X X x X
Identifier renaming (*) v v v v X v v
String encryption (*) v v v v X X v
Virtualization X X b 4 b 4 v X b 4

Table 5.1: Feature comparison of Android app obfuscators. Our approach is robust
against features marked with ().

names no longer exist. Some libraries, such as the advertising lib airpush, even use
a similar technique to defeat such naive detection methods. To get an overview of
available obfuscation techniques for Android other than identifier renaming, we studied
popular obfuscation tools and their capabilities. A high-level feature comparison is
presented in Table 5.1 (features like application water-marking or resource file encryption
are not relevant for our analysis and therefore omitted). The summary shows that
code-based detection approaches additionally would have to cope with different kinds
of code-obfuscation techniques, such as reflection-based API hiding or control-flow
(CF) randomization. Ideally, a detection approach should be resilient to all presented
obfuscation techniques. However, depending on the analysis technique (static or dynamic)
inherent limitations apply.

Our approach is based on static analysis, hence dynamic code loading or class encryption
to dynamically create code at runtime are general limitations. Similarly, virtualization-
based protection, i.e., dex bytecode is replaced by a virtual instruction set that is
interpreted by a custom virtual machine [159], is out of scope. To still handle the most
common obfuscation techniques (marked with (*) in Table 5.1), our approach solely
relies on class hierarchy information and does not depend on the actual library code.
Since the integrity of library code (e.g., piggybacking malware) is not a concern of this
work, we do not face drawbacks from the design decision to rely on class hierarchy
information.

The next section gives detailed information on our lightweight detection approach that
fulfills these requirements, while Section 5.6 evaluate our prototype in terms of accuracy,
memory requirements, and performance.

5.4.2 Library Detection

The workflow of our approach consists of two separate steps. We first extract profiles
from any original library version in our repository. Given this set of profiles, we statically
detect libraries in apps by extracting app profiles and subsequently apply a matching
algorithm to check whether and how libraries match. Profiles are generated from class
hierarchy information only and do not rely on concrete library code. This is necessary to
be robust against code-based obfuscation techniques such as control-flow randomization
or API hiding. Our profile matching algorithm reports a similarity score between 0 and

85



CHAPTER 5. LIBSCOUT

Root T 1
de com
L— lotum facebook (102)
L— whatsinthefoto (2) widget (89)

— activity (27) internal (22)
— widget (12) android (16)
— entity (2) model (14)
— fragment (15) google
— manager (10) L— ads (65)
— cps (6) : util (33)
— billing (1) ’ searchads (2)
— util (2) doubleclick (3)
— animator (2) internal (29)

mediation (11)
|: admob (6)
customevent (11)

Figure 5.1: Generated partial (unobfuscated) package tree of the app de.lotfum.~
whatsinthefoto. Numbers denote the classes per package.

1, indicating whether a library version was matched exactly, partially or not at all for a
given application. The remainder of this section provides detailed information on the
underlying data structures for the profile generation and the actual profile matching
algorithm.

5.4.2.1 Package Tree

Java packages are a technique for organizing classes into namespaces. Packages are
defined using a hierarchical naming pattern with levels in the hierarchy separated by
dots. Packages that are lower in the hierarchy are usually referred to as subpackages.
By convention, package names are written in lower case and companies should use their
reversed Internet domain name as leading package, i.e. google.com uses a package name
com.google.x. App and library developers usually stick to this convention or at least
provide a namespace that is unlikely to appear in a different software component. This
simplifies library integration in which lib code is statically linked during the app’s build
process.

The structure of the package hierarchy (often depicted as a tree) therefore gives a
rough estimation on the included libraries in an application. Meta-information such
as package relationships (parent, sibling, child/subpackage) and number of classes per
package are not part of our profiles but will be used to improve the accuracy of our
matching algorithm. Figure 5.1 shows a partial, un-obfuscated package tree of the app
de.lotum.whatsinthefoto. It includes two third-party libraries in the com namespace—the
Facebook SDK and Google Admob—and the app code in the de namespace.

We generate the package tree by performing a standard class hierarchy analysis (CHA).
For each application class, we parse its package, i.e. for a class com.google.ads. AdView
we receive an array of package fragments (com, google, ads). Starting from the root
node, tree nodes are traversed in the order of the package fragment array. Non-existing
child nodes are generated on-demand. Once the array is processed the class counter of
the current tree node is incremented. This tree representation is used for debugging
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A Library/App Hash
N

g Package Hash | | Package Hash
o ﬂ\ g
i} °
E Class Hash | | Class Hash Class Hash g
o2
/ 2

Method Hash Method Hash . Method Hash v

Figure 5.2: Merkle tree with a fixed depth of three. Tree is built bottom-up starting with
method nodes. Matching is done top-down, depending on the preferred precision.

purposes and to perform structural checks during profile matching.

5.4.2.2 Profile Extraction

For the actual profiles we use a variant of Merkle trees [98]. In these hash trees, every
non-leaf node is labeled with the hash of its child nodes. Our tree has a fixed depth of
three where layers represent packages, classes, and methods (see Figure 5.2). In contrast
to the package tree, our Merkle tree is flattened at the package layer, i.e. each distinct
package is a child of the root node. This allows an efficient and precise package-based
comparison between original libraries and applications to be tested.

In general, Merkle trees are used to verify contents of large data structures. To this end,
the initial hashes in the leaf nodes are generated by hashing a piece of data, e.g. the
content of a file. However, relying on actual code makes our approach susceptible to
code-based obfuscation such as API hiding or control-flow randomization. Therefore, the
method hashes have to be computed from non-obfuscatable information. For that, we
use pruned method signatures. A signature is a string that uniquely identifies a method
within an app. Figure 5.3 shows an example signature of method open in class Session of
package com.fo. The method name is followed by the argument list in brackets and the
return type. In a first step, we remove anything but the argument list and return type
which is called descriptor, since any information before the argument list may be subject
to identifier renaming. In the final step, we replace any non-framework type (framework
types can be looked up in the Android SDK) by the same placeholder identifier X that
can not serve as a type. This fuzzy descriptor keeps any non-obfuscatable information,
but different application types are no longer distinguishable. The advantage is that we
do not have to record a global type mapping but this also implies that a single fuzzy
descriptor may match other methods as well. However, the introduced fuzziness for a
single method is compensated by including all methods of a particular class. The higher
the number of children (e.g. methods, classes) for a specific node, the smaller is the
probability that two different nodes with the same number of children match.

To provide a deterministic hash generation for non-leaf nodes, child hashes are sorted
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signature: com.fb.Session.open(Activity, bool, com.fb.Session$Callback)com.fb.Session
descriptor: (Activity, bool, com.fb.Session$Callback)com.fb.Session
fuzzy descriptor: (Activity, bool, X)X

Figure 5.3: Transforming a method signature into a fuzzy identifier that is robust against
identifier renaming. The fuzzy descriptor constitutes the list of argument and return types
in which any non-framework type is replaced by a placeholder X

and concatenated before being re-hashed. For the hashing, we found that the 128-bit
MD5 hash algorithm provides a good trade-off between efficiency and precision for our
use-case. As a default, we store the hash tree excluding the method layer to retrieve
space-efficient profiles. If maximum precision is required, method hashes can be stored
with their original signatures. In addition, we introduce a publicOnly mode in which
only public methods of public classes are considered during tree generation. While the
resulting profile is less unique, it is, at the same time, robust against changes of the
internal API. We use such profiles to check library API compatibility in Section 5.6.

Bytecode Normalization Before building the hash tree of a component (library or
app), we normalize its bytecode, in particular, we remove anything compiler-generated.
This refers to bridge and synthetic methods such as accessor methods in nested classes
with private attributes that are accessed by the enclosing class. This way we focus on
developer-written code only and abstract from concrete compilers (usually javac for
packaged libraries and dx for apps).

Some libraries have other library dependencies (e.g. OkHttp requires Okio for some
I/0 classes). In apps, those dependencies are resolved through static linking. If we
analyze OKkHttp in isolation, any type specified in Okio will not appear in the class
hierarchy. For generating a fuzzy descriptor this is not a problem as we can treat
such (non-existing) dependencies like normal library code. Hence, the application and
library profile will not differ in this regard. This is not true when non-existing types are
used as superclasses in library code. This may happen if the superclass is defined in a
different library, e.g. the Fragment class in the Android support v4 library. If a library
L is analyzed in isolation, the class hierarchy builder ignores classes with unresolvable
superclasses since the hierarchy can not be traced back to the root class java.lang.Object.
However, when an app includes the support v4 library in addition to L, the Fragment
class is available and all its subclasses are added to the hierarchy. This results in a
mismatch in the number of classes for the exact same library (version). To fix this
problem without having to resolve dependencies during library profile extraction, we
replace such non-existing superclasses with the root class. This allows the CHA to
include such classes without causing side-effects in the generated profiles.

5.4.2.3 Profile Matching

Our matching algorithm tests whether and how a given library profile matches an app
profile. To this end, for each library profile, a similarity score between zero and one
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is computed, one indicating an exact library match. In contrast to profile extraction,
matching is performed top-down in the Merkle tree. For testing whether a library
eractly matches parts of the application profile, it suffices to check whether all library
package hashes are included in the hash tree of the app. It becomes more complicated
if an application only partially matches the library code, e.g. if the app includes a
library version that is not in the library database or only parts of the original library
are included (as result of a dead-code elimination). This implies that only a subset of
package hashes matches and the similarity score drops below one. The higher the score
is, the better a given library version is matched. If exact matching fails, the similarity
score is computed at a deeper tree level, either on class or method level depending on
the desired precision. We define the similarity score on class level between a library
package lp and an app package ap as follows:

# classes in lp that match in ap

scorec(Ip,ap) = €[0,1]

# classes in Ip
This definition tolerates the addition of classes, i.e. the score does not change if the
application package has more classes than the library packages. However, if the app
package contains fewer classes the similarity score will be smaller than one. Given that
package hashes may no longer match, the question is which app packages should be
compared to which library packages. A naive approach would exhaustively compute the
similarity score for any library /app package combination and take the global maximum,
i.e. the set of best matching app packages. This might introduce false positives
when matched app packages do not have the same root package and/or the package
hierarchy is not preserved. For two library packages {com.google, com.google.ads} valid
(obfuscated) candidate packages include {a.b, a.b.d} but neither {a.b, a.c} nor {ab,
c.d}. While a.b might be a valid candidate for com.google, the combination with a.c is
invalid as the package hierarchy is no longer preserved. In the second invalid example,
candidates do not have the same root package (a/c). To overcome this problem we
apply the following four-step approach:

1) Candidate list. We first compute for each library package (Ip) a list of candidate
app packages (ap). An app package is a candidate if at least 50% of its class hashes
match (configurable). An example could look like this:

Ip1: ap1(0.95), ap2(0.84), ap3(0.75)
Ips: ape(0.91), ap4(0.60)
Ipa: ap7(0.85), apy(0.82)

Every candidate list is sorted by score. In addition, library packages are sorted by
similarity score of their highest candidate match.

2) Package linking. If a library package Ip; with package name com.foo has app
package candidates starting with the same package name, we can remove candidates
with different root packages. In case identifier renaming has been applied to the app
code, this direct linking no longer works. For filtering invalid combinations we therefore
have to identify potential root packages. If Ip; matches ap; with package name a.b.c
we deduce that a.b is one potential library root package within the app. By applying
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this to all pairs <Ip;,ap;> we receive a list of potential root packages.

3) Partitioning. Instead of exhaustively testing all combinations like in the naive
approach, it suffices to compute the maximum for each partition/root package and
then take the global maximum. For each root package, we pre-filter the candidate
list and remove any candidate that does not start with the current root package.
For the remaining list, the maximum is computed exhaustively via backtracking. To
eliminate combinations that do not structurally match the library package hierarchy;,
we define an abort criterion by testing structural equivalence between app packages and
library packages. More formally, backtracking is aborted if the following requirement is
violated:

va’pia apy, lpxa lpy)
ap; candidateOf lpy, ap; candidateOf Ip,,
relationship(ap;, ap;) = relationship(lpy, lpy)

relationship(p1,p2) tests whether p; is parent, sibling, or child of ps and in case of

a parent /child relationship it further determines the package distance (an immediate
subpackage has distance 1). If, for example, the backtracking algorithm traverses
ap1, ape the calculation is aborted if relationship(api,apg) # relationship(lp1,ips).

4) Global maximum. Finally, we select the maximum score over the partitions and
sum up the matched classes (denoted as sum-classes). The similarity score on class
level is consequently computed as

sum-classes
stmScore, = €[0,1
“" 4 of classes in library [0.1]

We classify a library as partially matched if the score exceeds a minimum threshold
such as 0.6. This value was determined experimentally to find a good trade-off between
false-positives and false-negatives since a low similarity score might either result from
dead-code removal (partial library inclusion) or from a library version detected that is
not in the database. To increase precision, the similarity score can also be computed on
method level if method hashes are included in the profiles.

5.5 Library and App Repository

In this section, we explain how we established a database of third-party libraries and
applications which we subsequently use to evaluate our tool LIBSCOUT (Section 5.6)
and on which we conducted a longitudinal study of third-party libraries used in the top
apps of Google Play (Section 5.7).

5.5.1 Library Database

The foundation of our approach is detecting known libraries in Android apps. This
requires setting up a library database that contains the ground truth in the form of
original code packages for each available library version.
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Identification and Retrieval of Popular Libs  The first task to build a library database
is to identify popular libraries, such as libs that are specifically developed for Android
(e.g., ad and analytics libs) or Java support/utility libraries. In particular, advertising
libraries are one of the most prevalent library types for Android. Google’s developer
documentation on AdMob mediation networks? gives a good but incomplete view on
available ad libraries that are compatible with its own AdMob library. Another major
source of library statistics is provided by the Android third-party market AppBrain®. It
provides an Ad Detector app to gather statistics about the market share of popular libs.
Libraries are identified by checking for well-known identifiers, such as package names,
and are categorized into the three groups (ad networks, social SDKs, and development
tools). In addition to such readily-available information, we manually analyzed the
package trees (cf. Figure 5.1) of 50 popular apps to identify additional libraries based
on package names.

Following this first bootstrapping step, we retrieve the identified library binaries and, if
possible, their complete history, since our approach relies on the ground truth in the
form of the original library code. We found that there are different ways how library
developers distribute their SDK. More and more libraries can be found on the Maven
Central repository or are hosted on public GitHub repositories. In these cases, it is
trivial to retrieve the entire history. Other libraries, such as the Facebook SDK, are
hosted directly at the library provider’s website and might have migrated to Maven (as
is the case for the Facebook SDK). Early versions of some libraries were distributed as
open-source only (without pre-compiled binaries), hence it took some effort to compile
each version with varying build environments. It gets more complicated if developer
accounts are required to download a specific library (this is common for advertising
libraries like Tapjoy or Flurry). Moreover, only the most current versions of some
libraries were available. To still retrieve older versions, tricks like URL modification,
searching for lib versions in known Android projects, or using the Web Archive* to
access older versions of the download pages were required.

For each library version, we store the binary code, name and auxiliary information like
version number and release date, which are usually available via change log or directly
from the host server. Moreover, we categorize each library by functionality: Advertising,
Analytics, Android, Cloud, Social-Media, and Utilities. The Android group contains
support and Play-service libraries as well as libraries with custom Ul widgets.

Library Statistics Our database contains 164 distinct libraries with 2,065 versions.
Table 5.2 shows the distribution of library/-versions across categories. The database
includes the most popular libraries for each category. For about 26% of all libraries,
we got less than four versions, however, at the same time the database contains more
than seven versions for 55% of the libraries. The mean number of versions per library
is 12.59+1.09. For the advertising library Heyzap we were able to collect 96 distinct

2developers.google.com/admob/android/mediation-networks
Shttp://www.appbrain.com/stats/libraries/
“https://web.archive.org/
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Category # Libraries # Library Versions

Android 51 560
Utilities 41 746
Advertising 40 337
Cloud 16 149
SocialMedia 9 149
Analytics 7 124
Total 164 2,065

Table 5.2: Number of distinct libs and versions per category

versions. For 2,026 (98.11%) of the library versions in our database, we were able to
collect their release dates. From those release dates, we derive that the developers of
the third-party libraries in our dataset release a new version on average every 117 + 60
days and just in the first half of 2016 on average every 77 + 20 days.

On a commodity laptop, the average time for profile extraction is 2.8 seconds per lib
version. The mean number of packages, classes, and methods in our library set is <13,
304, 1,701>. This even exceeds the code base of many smaller apps. Outliers include
the Google Play Service library with <85, 3,416, 18,794>. These results indicate that
many libraries are very complex and/or offer a lot of functionality.

5.5.2 Play Store Crawler and Repository

Next, we provide an overview on how we selected our sample applications from the
Google Play Store and built a longitudinal version history of these apps.

Upper Bound for Version Code We bootstrapped building our set of sample ap-
plications and their history by crawling the top 50 apps for each of the 20 categories
on the Google Play Store in 2-hour intervals between September 2015 and July 2016,
resulting in 4,666 distinct apps, which we continue to track even after they left the top
50 lists. We opted for this approach because prior studies [140, 158] have established
that the Google Play Store is a “superstar” market in which a small percentage of the
free applications (i.e., the top apps) account for almost all of the downloads. Thus, our
sample set represents the apps with the largest user bases on Play—together accounting
for almost 46 bn downloads by July 2016 according to Play.

To build the version history for every discovered application, the Google Play API
can be iteratively queried for lower version codes. For instance, when our initial
app set contained the application package org.wikipedia with version code 10, we can
iteratively request to download versions 9, 8, 7, etc. of this app package from the server.
Unfortunately, the versioning rules® for Android apps do not require app developers
to follow any specific scheme except that the version code must be monotonically

Sdeveloper.android.com/tools/publishing/versioning.html
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Figure 5.4: Distribution of maximum version codes in our initial app set and selected
threshold for our crawler.

increasing between updates. This implies that version codes can be distributed all over
the integer value range. As a consequence, we have to determine a reasonable upper
bound for the version code to achieve a good trade-off between coverage of package
version histories and the required time to build the history. Figure 5.4 illustrates the
relative cumulative frequency distribution of maximum version codes in our app set.
While most developers choose their version codes from the lower end of the possible
value range, some developers choose version codes from within the range of millions to
billions, accounting for the long tail of version codes (see the subplot in Figure 5.4).

For our study, we decided to create histories for apps at the lower end with a maximum
version code of 40,374, providing a coverage of 3,910 apps (83.79%) of all apps in our
set. Moreover, it is noticeable, that the long tail of version codes has a jump in the
CFD around version code 2 % 10°. This stems from the fact that the developers of 64
apps in our set chose version codes based on the release date (e.g., following the pattern
YYYYMMDDVV, where VV is the revision-per-day). We additionally included those
64 apps from the long tail of version codes, since their code immediately reveals the app
version’s release date and we built their history by iterating version codes in date-format
from the discovered version back to Jan 1, 2012. Those apps increase the coverage by
1.37%, for a total coverage of 85.16%.

Sampled Version Codes Figure 5.5 provides an overview of our application sample
set after downloading all available versions for the top apps in the initial set. Overall,
we have 96,995 packages for 3,590 distinct apps (excluding apps that have only one
version available in our set). This results in an average of about 27 versions per app
with a maximum of 754 available versions of the app com.imo.android.imoimbeta.

Release Dates and Update Frequency As a last step in building the sample set
for our longitudinal study of apps, we complemented our sample app database with
release dates for each app version. Since Google Play only provides the release date for
the most recent version of an app, we collected the release dates of older app versions
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Figure 5.5: Sampled version codes and version codes per app.

from market analysis services such as appannie.com, apk4fun.com, and appbrain.com.
In total, our database contains the release dates of 75,339 distinct packages (77.67% of
96,995 packages) for the 3,590 apps for which we retrieved older versions, where the
release dates range from 12/19/2009 to 07/29/2016.

Based on those release dates, we estimate that the developers of the apps in our sample
set release an app update, on average, every 62+2.94 days, where the average update
frequency per app has increased since 2010 (e.g., 38+1.53 days in 2015 and only 29+0.99
days in first half of 2016).

5.6 Evaluation of Library Detection

We implement our approach on top of the WALA framework[77]. Our tool LiBScouT
requires an additional 3.5 KLOC.

5.6.1 Library Profile Uniqueness

We start by answering the question on how effective our profiles are for distinguishing
different library versions and evaluate the memory requirements for storing our profiles.

Since our profiles are generated with class hierarchy information only, it is possible that
different library versions have the same profile when only the code has changed but no
method interfaces of the public or private APIs of the lib. In these cases we still detect
the library but report the set of possible versions. For 53/164 (32.3%) of libraries, all
versions have unique profiles. For the 2,065 library versions in our repository, we found
that 1,225/2,065 (59.3%) of profiles are unique, i.e., we can unambiguously pinpoint
the exact library version. About 40% of all profiles are ambiguous, i.e., there exist at
least two versions with the same profile. All ambiguous versions occurred in clusters
of consecutive versions. Such clusters are expected for version updates in which only
bugfixes and minor code changes are implemented. The average size of such clusters is
2.77 versions and only two exceptional cases (Amazon Analytics and braintree payments)
exist with a cluster size of 10 in each case. Although we cannot pinpoint the exact library
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#APKs Ratio Library Category
41,518 41.22%  Facebook Social media
30,310 30.10% Gson Utilities
18,026 17.90% Flurry Analytics Analytics
16,336  16.22% Bolts Utilities
14,229 14.13%  Crashlytics Android
14,146  14.05% OKkHttp Utilities

13,758 13.66% Nine Old Androids Android

12,201  12.11% Facebook Audience Advertising

11,066 10.99% Picasso Android
9,694  9.63% Retrofit Utilities

Table 5.3: Top 10 detected libraries in our app repository, excluding Google support
and play service libs.

version for ambiguous profiles, we significantly reduce the search space for post-analyses
(e.g., code inspection) to 2-3 candidate versions on average.

The size requirement for storing a single profile is linear to the number of packages,
classes, and methods of a library/app and additionally depends on the chosen hash
function (e.g. 128 bit MD5). During our experiments, the precision of our approach
did not change with larger hashes. The largest profile was generated for the Adrally
Ad SDK (v2.2.0) with a size of 220 KB (normal profile without methods). Including
methods and full debug info, such as the original method signatures, increases the size
to a total of 3.1 MB. However, the average normal profile size is only ~22 KB.

5.6.2 Library Prevalence

We apply LIBSCcOUT with partial matching on our app dataset to study the prevalence
of libraries. In addition, we automatically extract the root package for each library and
apply a naive package name detection for cases in which our profile matching does not
report a result. Moreover, we use the package matching to validate the detection rate of
the profile matching. Table 5.3 shows the top 10 detected libraries of our repository in
absolute and relative numbers. We excluded Google support and Play service libraries
as they represent eight of the top 10 libs, with the Android support v4 library leading
with about 80%. Moreover, six Play service libraries would have been listed in the top
10, since many developers typically include the complete set of these libraries although
not making use of it. The new list is led by the popular Facebook SDK that is included
by about 40% of all apps. Further, the list includes advertisement (Facebook Audience)
and tracking libraries as well as commonly used utility libraries such as Gson, Bolts,
and OkHittp.

On average, we detect 13.1 distinct libraries/app. The app com.science.wishboneapp
(various versions) contained the highest number of libraries (55). By reporting the
numbers for profile-only detection we receive an average of 9.7 libs/app while the naive
approach finds an additional 3.4 libs/app. There are two main reasons for our approach
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Figure 5.6: Up-to-dateness of included lib versions across the most recent versions of all
apps in our repository.

to not detect a library via profile matching. The first reason is an incomplete set of
library versions in our database. This particularly applies to advertising libraries that
are not publicly retrievable, i.e. it is generally difficult to build a complete library
history. The second reason is that code optimization has been applied during an app’s
build process to remove unused library code. If the app contains less than 60% of the
original lib code our partial matching algorithm no longer reports a match. Finally, we
checked whether the number of libraries per app evolves over time. To this end, we
determined the average number of libraries on the set of earliest app releases and most
current app releases. Between these two sets, LIBSCOUT reports a slight increase of 3.4
on the average library count, i.e. there is a trend to include more libraries.

5.7 Study of Third-Party Libraries

Lastly, we conduct a longitudinal study of third-party libraries in our app set to
investigate important security-relevant questions such as “How up-to-date are libraries
used in top apps?”, “How quickly do app developers react to discovered vulnerabilities
in their included libraries?”, and “How prevalent is the misuse of security APIs in
third-party libs?”.

5.7.1 Up-to-dateness of Libraries in Top Apps

For the most recent versions of all apps in our dataset, we checked whether included third-
party libs are up-to-date or outdated with respect to the app release date. Figure 5.6
summarizes our results. In almost three-quarter of the cases (23,245 lib inclusions or
70.40%) the app developer included an outdated lib version, where the delta to the most
recent library version is one in only 7.99% of all cases and in the most extreme case
81 versions. In terms of time difference between library version release and adaption
by apps, the apps in our dataset required 324 + 1 days on average to include a new
library version. This is a rather poor adaption of newly released lib versions, particularly
when considering that app developers release new versions, on average, almost twice as
frequent as lib developers (see Section 5.5). Thus, we were interested in what potential
factors could influence the adaption of a library. In particular, we investigated the
library distribution channel, app popularity, and the libraries’ public API compatibility.
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Figure 5.7: Distribution of Android support v4 SDK versions for the current top apps on
Play. Orange bars indicate the beginning of the labeled year.

Distribution Channel and App Popularity A first potential factor is the distribution
channel of the library (cf. Section 5.5). Two popular libraries, Android support v4
and Facebook (see Table 5.3), are employing opposing strategies: Android support v4
is shipped with Android IDEs (e.g., Android Studio and ADT) and is automatically
added to apps based on their supported Android API levels, while Facebook prior to
version 3.23.0 had to be manually downloaded from the developer pages and can since
version 3.23.0 be retrieved via the Maven central repository. For Android support v4,
we found that there is a clear bias towards newer library versions among the top apps
(see Figure 5.7), while the majority of the top apps contain a (highly) outdated version
of the Facebook SDK (see Figure 5.8). This indicates that app developers attend more
carefully to the up-to-dateness of their IDE and its shipped packages than to manually
retrieving external libraries (even from a central repository).

As a potential second factor, we considered the app popularity measured in the app’s
number of downloads. However, we could not discover any effect (Kendall’s 7 = 0.01
with p = 0.8-1077) of an app’s download rank (e.g., “1K”, “50K”, “10M”) and the time
required to adapt a new library version.

Public APl Compatibility Further, we were interested in whether the compatibility of
the libraries’ public APIs, through which app developers integrate libs, influences lib
adaption. For quick adaption of a new library version, a stable public library interface for
consecutive versions is helpful. Addition of new methods to the API is less problematic
in this regard, while deletion of methods or changes in the signature (parameter or
return types) might force app developers to adapt their code.

We analyzed all libraries in our database with at least ten consecutive versions for which
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Figure 5.8: Distribution of Facebook SDK versions for the current top apps on Play.
Orange bars indicate the beginning of the labeled year.

we also have the release dates. This comprises in total 70 distinct libraries. We define
the public API to be stable between consecutive versions if there are at most additions
of public methods but no deletions or modifications of existing signatures. The public
API compatibility ranges from 7% (Crittercism lib) to 87% (Amazon Analytics lib). For
this dataset, we could not detect any statistically significant correlation between the
adaption rate of new lib versions and a lib’s API compatibility (Kendall’s 7 = —0.29 with
p=0.2401) or the changes in the lib’s public API (Pearson’s r = 0.01 with p = 0.7637),
respectively. This warrants further investigation into the motivation for app developers
to adopt lib updates and potentially other factors, such as library documentation (e.g.,
both Facebook and Android’s support v only have slightly above 50% compatibility on
average between updates and they release detailed changelogs and even upgrade guides
to support developers, but have quite different rates of adaption of their updates among
the top apps).

~—

5.7.2 Detecting Vulnerable Library Versions

We use LIBSCOUT to investigate the presence of vulnerable third-party libraries within
our app repository. In particular, we use two highly severe vulnerabilities from the
recent past as case studies: an account hijacking vulnerability in the Facebook SDK
v3.15 [133] and CVE-2014-8889 of the Dropbox SDK versions 1.5.4-1.6.1 [49] that
allowed attackers to capture the user’s Dropbox files via vulnerable apps. For each

it
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Figure 5.9: Daily releases of packages with a vulnerable or patched Facebook library
between 04/2014 and 07/2016

incident, we investigated the number of affected packages/apps, their user-base, as well
as vulnerability window and time-to-fix for the affected apps.

Facebook Account Hijacking Facebook released their SDK v3.15 for Android,
which contained an account hijacking vulnerability, on 06/11/2014. In the histories
of our sample set apps, we discovered, in total, 394 affected packages from 51 distinct
apps, when only considering packages with exact matches of the vulnerable lib version.
For 18 of those apps, we knew the number of downloads from Play and are able to
estimate a lower bound of 69M downloads of vulnerable packages. For 356 affected
packages, our dataset contained the release dates and enabled us to investigate the
vulnerability windows and times-to-fix of those packages. Figure 5.9 illustrates the
releases of vulnerable and fixed packages in our dataset, where we also consider removal
of the Facebook lib from the app as a fix. Most noticeably, the majority of the vulnerable
packages (338, in the middle facet of the figure) were released after Facebook released
the fixed SDK v3.16, in some cases even still in July 2016, i.e., more than 1.5 years after
the patched SDK. Of the affected apps, 13 apps never released a fixed version and even
their latest version on Play is still vulnerable. For 33 of the remaining apps, we can
calculate the average vulnerability window and time-to-fix with absolute certainty (i.e.,
no gap in release dates and version history) and their average time-to-fix is 188 +55 days
and average vulnerability window is 190 + 55 days. Those are worrisomely high numbers
that expose the end-users to unnecessary long vulnerability periods when considering
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Figure 5.10: Daily releases of packages with a vulnerable or patched Dropbox library
between 04/2014 and 07/2016

that Facebook released a fixed version only 36 days after the vulnerable version (see
Figure 5.9).

Dropbox Data Stealing For the vulnerability of Dropbox SDK versions 1.5.4 and
1.6.1, we found in our sample set 360 affected packages from 23 distinct apps, when only
considering exact library matches. For 11 affected apps our dataset contains information
on their downloads, which accumulate to 11M. For 301 packages we have the release
dates available, which allow us to investigate their time-to-fix and vulnerability windows.
Figure 5.10 depicts the daily releases of patched/vulnerable apps with the Dropbox
SDK and from our dataset we derive an average time-to-fix of 59 + 110 days and an
average vulnerability window of 196 + 127 days due to three affected library versions
prior to the patched SDK v1.6.2 (Dropbox fixed that vulnerability within one day after
notification). Of the 23 affected apps in our dataset, 9 did not release a fixed version
and their vulnerable versions are still the most recent ones on Play.

5.7.3 Analysis of Security-related APIs

Prior studies [52, 112] have shown that misuse of cryptography APIs is widespread
among Android apps and that dynamic code loading by apps can be exploited to hijack
apps. However, the original studies reported their results on a per-app basis and did
not consider the extent to which third-party libraries contribute to this problem. Thus,

100



5.7. STUDY OF THIRD-PARTY LIBRARIES

Property #Libs/Ver Verified
R1: ECB mode for encryption 5/25 5/25
R2: constant IV for CBC 7/32 4/20
R3: constant symmetric keys 13/60 3/7
R4: static salts for PBE 2/2 2/2
R5: <1000 iterations for PBE 2/2 2/2
R6: static seed for SecureRandom 3/7 2/5

Table 5.4: Results for crypto API analysis of ad libs showing candidate and verified
libs/versions in our library set.

we were interested in how prevalent such misuse is among third-party libraries and
how helpful techniques like LIBSCOUT could be to augment such studies with better
accountability. We focus our analysis of security-related APIs on advertising libraries
since they are the most popular and widespread type of libraries. For both analyses, we
used WALA to create a set of candidate libraries by scanning the bytecode of the 315
ad samples of 39 distinct ad libs (see Table 5.2) for the relevant API calls. Since the
number of samples is suitable for manual review, we refrained from re-implementing
the original analysis methods and manually verified whether security properties were
violated or not in our candidate libraries.

For the crypto API usage, we performed the same six checks as in prior work (R1-R6
in Table 5.4). This includes checks for constant encryption keys (R3), salts/seeds
(R44R6), and initialization vectors (IV, R2), as well as checks for the discouraged usage
of ECB mode and a low number of iterations in password-based encryption (PBE).
Table 5.4 summarizes our findings. The middle column shows the number of candidate
libraries and versions based on the presence of the respective APIs. The last column
shows the verified violations after manually checking the bytecode of each candidate.
Out of all available ad libraries, 10 libs violate at least one of those properties. Several
libs violate multiple properties, e.g., Adrally (R1,R2,R4,R5,R6), Leadbolt (R2,R3,R6),
domob (R14+R2) and AppFlood (R4+R5). In 12 of the 18 verified libs (66%), all versions
of those libraries were affected and in 14 cases even the latest available version in our
dataset was still affected. All of the “fixed” libraries simply removed the affected code
segment, but not a single one actually implemented a proper fix for the previously
vulnerable code. The only library (Leadbolt SDK) that modified affected code, replaced
an empty initialization vector (R2) in versions 5.x with a constant IV in version 6.0.

We used LIBSCOUT to detect the affected application packages in our dataset. In total
2,667 app versions of 296 distinct apps with a cumulative install-base of 3.7bn were
affected by those ad libs with verified crypto misuse. In summary, improper usage of
cryptography APIs is very common among the widespread ad libs and thus future work
should investigate to which extent prior results [52] must be attributed to the library
developers instead of app developers.

Second, we study dynamic code loading behavior of ad libs. We follow the approach
described in [112] and test whether code loading is performed via package contexts,
Runtime.exec, or the DexClassLoader. Only 9 out of 39 ad libs use any form of dynamic
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code loading. In fact, only the HeyZap lib does code loading via the package context,
but it only exposes this functionality to app developers. Only six libraries (33 versions)
make use of Runtime.exec to execute logcat or some shell operations for modifying access
rights of files. Only one version of the ChartBoost SDK contains a suspicious call to
check for the presence of the superuser binary. The DexClassLoader technique is only
used by the last two Admob versions and one version of Tencent. Both libs load a
supplemental jar/dex file. In summary, dynamic code loading is not widespread in ad
libs in our dataset and is rather attributed to other principals (e.g., app developer or
other libraries).

5.8 Discussion

In Section 5.7 we studied security vulnerabilities in third-party libraries and, using
LiBScouT, we were the first to show to which extent these problems actually affect
the current set of top apps on Google Play. Parts of our analyses re-applied prior
approaches [52, 112] and our results show that third-party libraries are a contributing
factor to those original results, which reported only per-app results or could only exclude
a small set of libs from their results based on unobfuscated library package names. Thus,
we argue that a lightweight approach for third-party library detection, like LIBScoOUT,
which is resilient against common obfuscation techniques, can greatly enhance static
analysis approaches (e.g., [59, 151, 94, 19, 144, 63, 112, 106, 54]) by allowing them to
attribute their results to the correct principals (app or library developers).

Moreover, our results show that app developers adopt new library versions only very
slowly, even when the currently used version contains severe security or privacy vulner-
abilities. While this chapter built the foundation to reliably detect library (versions)
within binary application packages, Chapter 6 continues this work and seeks to answer
questions about the root causes of the current status quo including different princi-
pals of the Android ecosystem, such as the app developer, library developer, or the
marketplaces.

Current Limitations and Future Work The design choice to extract profiles from
the original libraries comes with the inherent limitation of completeness. Therefore,
complementary techniques such as WuKong [141] or Libradar [95] can be useful to
detect potential libraries that are not in LIBSCOUT’s database. Currently, our approach
does not detect code-only changes in libraries, however, we can limit the number of
candidate versions to a small set. To pinpoint the exact version whenever the profiles
are ambiguous (see Section 5.6.1), we are experimenting with secondary, code-based
profiles that are generated from dex bytecode operation types (e.g. invoke or move) after
compiling the library jars to dex bytecode. These secondary profiles are still resilient
to identifier renaming but could be influenced by code-based obfuscations such as API
hiding. Identifying changes in the set of code instructions can also be leveraged to
detect repackaged apps and piggy-backed apps, i.e. clones of popular applications that
have been instrumented with malicious code. In [S3] we generate application profiles to
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detect apps from the same application generator service that only differ in config files
and resources. Prior work discovered that the malicious payload in piggy-packed apps
is often triggered via static calls inserted into known libraries to automate hooking [86].
Code-reuse detection on instruction or basic block level can identify such additions—a
strong indicator for piggy-backed apps.

Although being robust against a larger number of obfuscation techniques than related
work, different kinds of code optimizations can negatively influence the similarity
score. Techniques such as removal of unused method parameters modify the API
signature, code inlining and vertical /horizontal class merging either remove methods
completely or move classes into different packages. This affects the original code layout
or removes existing APIs. Consequently, the similarity score drops, similar as for dead
code elimination. More extreme obfuscations such as virtualization, class encryption
(cf. Table 5.1), or package hierarchy flattening would still defeat our static approach
(and any related approach). In the latter case, the structure of the hierarchy is modified
and the boundaries between app and library code become blurred. Since such techniques
introduce severe side-effects, they are rarely used in practice.

Another open problem is the manual or automatic dead-code elimination of library code.
The complete library code is no longer statically included but only a (small) subset
thereof. Our partial matching algorithm covers this problem up to the point where only
so little library code is left in the app that the similarity score drops below a certainty
threshold. In general, this is a hard problem that can not be completely solved with
static analyses techniques. Instead, only solutions in which dependencies have to be
declared explicitly would remedy this problem.

A few libraries, e.g., the Baidu SDK that recently had a severe vulnerability [132], are
provided as a native library. Such libraries could be detected based on the hashes of
their shared object files included in the app packages. Providing a database for native
libraries would complement our approach.

Lastly, our repository contains only the top apps on Google Play. Thus, the results of
our study might shift when we also consider the “long tail” of apps. We deliberately
decided on this approach, since those top apps account for the bulk of all downloads and
the largest user-base on Play. Another technical reason is that building complete app
version histories is also a highly time-consuming task (in our experience, one Google
account can query one app version per 2-5 seconds).

5.9 Related Work

There is a large set of literature targeting code cloning detection techniques. Davies et
al. introduced the term Software Bertillonage [41, 60] to group different techniques to
identify the provenance of a software component, such as graph matching, control-flow
matching or signature-based identification. In their paper [41] they devise a technique
called anchored signature matching to determine class provenance of source code within
Java binaries. In contrast to our Merkle-tree based profiling, they do not account
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for bytecode obfuscation and do not exploit package information to match the code
structure. Ishio et al. [78] extend this signature matching by adding code-based features
to refine their approach to detect reuse of software components. In contrast to LIBSCOUT,
none of these approaches extracted their signatures from the ground truth in form of
the original source/libraries. On Android, code and app clone detection techniques
have been studied in many respects. Prior work identifies repackaged applications by
computing similarity between apps using code-based similarity techniques [33, 70, 160]
or by extracting semantic features from program dependency graphs [39, 40].

Other approaches are tailored to third-party libraries on Android, e.g., by employing
the concept of whitelisting package names to detect libraries within app code [65, 29,
33]. As such approaches fail to cope with even simple obfuscation techniques such
as identifier renaming, more robust approaches based on machine learning or code
clustering have been investigated. AdDetect [102] and PEDAL [93] use machine-learning
to detect advertising libraries. AdDetect uses hierarchical package clustering to detect
(non-)primary modules of apps whereas PEDAL extracts code-features from library
SDKs and uses package relationship information to train a classifier to detect libraries
even when identifiers are obfuscated. AnDarwin [40] and WuKong [141] detect app clones
with high accuracy by filtering library code that is detected by means of code clustering
techniques. Such approaches rely on the assumptions that libraries are pervasively used
by many apps, and app developers do not modify the library. However, this second
assumption is unrealistic, since automatic/manual dead-code elimination during app
building will necessarily modify the library code [6]. Moreover, these approaches only
provide binary classifications since they cannot name the concrete library versions used
within the apps. The recent LibRadar [95] extends WuKong’s clustering approach and
generates unique profiles for each detected cluster. Profiles are generated from the
frequency of API calls within distinct packages in a cluster and can subsequently be
used for fast library detection. With this approach, LibRadar was able to find 29K
potential libraries on a large corpus of Google Play apps. This number presumably
constitutes an over-approximation, since the original code clustering and the subsequent
feature extraction are not performed on the original libraries. This lack of ground
truth produces false positives when multiple libraries have the same root package
(e.g. com.google for the various Google Play Service libraries and Google libs like
Gson/Guice). To avoid such heuristics, we extract our profiles from the original library
binaries. This comes at the cost of completeness but has several advantages such as less
false positives and the possibility of inferring exact library versions. In addition, this
allows computation of more reliable similarity values for partial library inclusions (as a
result of code optimizations).

Besides library detection, research has also proposed techniques for privilege separation
between host apps and advertising libraries. To this end, AdSplit [121] puts library code
into separate processes, while PEDAL [93] uses an inline reference monitoring approach
to allow users to selectively enable/disable functionality in libs that require a permission.
AdDroid [111] uses a system-centric approach and proposes a new ad-API in Android’s
application framework for app developers to allow privilege separation by construction.
As a more rigorous approach, A PKLancet [150] removes malware and ad library code
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from an app package. The code to be removed is identified through semantic fingerprints
that have previously been extracted from malware/library samples.

A separate line of work studied questions related to security and privacy in third-party
libraries. Stevens et al. [128] investigate the permission (mis-)use of advertising libs.
Book et al. [29] conducted a longitudinal study of ad lib permissions and discovered
that the absolute number of required permissions increases over time. However, in
contrast to our longitudinal studies, they estimated the library release dates as the
terminus ad quem of the release date of an app that includes the library. Library
profiles are generated by hashing the library code detected via package name matching.
In this case, the detection only works if the original library code is included without
any modifications. Other approaches analyze private data exfiltration [65, 123] and
security vulnerabilities in authentication/authorization SDKs [142]. Linares-Vasquez
et al. [92] apply signature-based code matching to revisit prior studies in the context
of code obfuscation and library usage. Their results are in line with our security
analysis of crypto API misuse (see Section 5.7.3) in which we showed that libraries
are a contributing factor to security issues. However, their work tries to distinguish
library /obfuscated code from app developer code and does not seek to identify specific
libraries (or versions) as an origin.

5.10 Conclusion

There is a trend to include more and more libs into apps, while at the same time app
developers slowly adapt to new library versions (if at all). This puts millions of users
at risk if security vulnerabilities remain unfixed in current top apps. Similar to the
Android fragmentation problem, our results show strong indications for a library version
fragmentation problem. Even in top apps, severely outdated library versions were found,
implying that library providers can not act on the assumption that end-users may use
the latest features or have the latest bugfixes. We continue this line of work in Chapter 6
to answer questions about the root causes and to measure to which extent libraries in
current apps could be updated based on their library usage.

Ethical considerations. We reported our findings to Google’s App Security Improve-
ment (ASI) program [7].
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6.1. MOTIVATION

6.1 Motivation

Third-party libraries in Android apps have repeatedly been shown to be hazards to the
users’ privacy and an amplification of their host apps’ attack surface. A particularly
aggravating factor to this situation is that the libraries’ version included in apps are
very often outdated (cf. Section 5.7).

This work makes the first contribution towards solving the problem of library outdated-
ness on Android. First, we conduct a survey with 203 app developers from Google Play
to retrieve first-hand information about their usage of libraries and requirements for
more effective library updates. With a subsequent study of library providers’ semantic
versioning practices, we uncover that those providers are likely a contributing factor
to the app developers’ abstinence from library updates in order to avoid ostensible
re-integration efforts and version incompatibilities. Further, we conduct a large-scale
library updatability analysis of 1,264,118 apps to show that, based on the library API
usage, 85.6% of the libraries could be upgraded by at least one version without mod-
ifying the app code, 48.2% even to the latest version. Particularly alarming are our
findings that 97.8% out of 16,837 actively used library versions with a known security
vulnerability could be easily fixed through a drop-in replacement of the vulnerable
library with the fixed version. Based on these results, we conclude with a thorough
discussion of solutions and actionable items for different actors in the app ecosystem to
effectively remedy this situation.

6.2 Problem Description

Third-party libraries are an indispensable aspect of modern software development.
They ease the developer’s job, for instance, by providing commonly used functionality,
sharing programming know-how among developers, enabling monetization of software,
or integrating social media such as Facebook or Twitter. In contrast to the benefits that
developers reap from third-party code, end-users of software are reportedly exposed to
an increased risk to their privacy and security by those external software components.
Recent reports [124, 72] warn of the hidden costs of libraries in form of buggy code that
increases the app’s attack surface and introduces security vulnerabilities. Sonatype [124]
reports that older software components have a three times higher rate of vulnerabilities
and that almost 2 bn software component downloads per year include at least one
security vulnerability. These numbers are backed with findings from different software
ecosystems, e.g., for Windows applications [101] and Javascript libraries [83]. Moreover,
their results show that, although library updates with security fixes exist, they are not
adopted by developers.

Similarly, recent works [P3, 34] have reported such alarming findings for the Android
ecosystem. About 70% of all third-party libraries in apps are (severely) outdated and a
slow adoption rate of updates of about one year aggravates the library outdatedness
problem. As a consequence, fast response times by library developers remain noneffective
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and even known security vulnerabilities [132, 134, 133, 49, 62] remain a persistent threat
in the app ecosystem when app developers do not integrate the existing fixes into
their apps. Google recognized their central role as market operator early for amending
this problem and introduced their application security improvement program (ASI) [7]
in 2015. In this ongoing effort, Google notifies developers when security problems
were detected in their apps and/or included third-party components and enforces a
remediation period to fix the detected vulnerabilities. According to their statistics [9],
this approach already proved to be successful in improving the overall app market
security. However, the main drawback is that this approach only fights the symptoms
of the underlying problem of developers not keeping dependencies up-to-date.

6.3 Contribution

To improve on this situation more sustainably, for instance by realizing effective solutions
that are practical and accepted by all involved parties, it is important to first understand
the app developers’ motivation for not updating third-party dependencies and to
investigate the role of other actors—Ilike the library developers—in the current situation.
This work makes the first contribution towards such a solution by identifying the root
causes why app developers do not update third-party libraries on Android. We start
with conducting a survey with 203 app developers from Google Play to collect first-hand
information about library usage in apps. Among others, this survey covers questions
regarding library selection criteria, developer tools, reasons to (not) update, as well as
feedback and comments on what app developers think needs to be changed to enable
more effective library upgrades. These insights motivate a follow-up library release
analysis that uncovers that library developers are very likely a contributing factor to the
poor adaptation rate through an inconsistent and imprecise library version specification,
i.e., the actual changes in code and API do not match the expected changes conveyed by
the version numbers (semantic versioning). As a result, app developers cannot properly
assess the expected effort for upgrading the library and ultimately abstain from an
update to prevent ostensible effort and incompatibilities.

To investigate the actual effort of updating libraries, we conduct a large-scale library
updatability analysis of 1,264,118 apps from Google Play. We analyzed the apps’
bytecode to check whether included libraries are actually called by the app. Combining
this data with the results of an analysis of each library’s API robustness across its
different versions, we determine that 85.6% of all libraries can be updated by at least one
version, in 48.2% of all cases even to the most current lib version, simply by replacing
the library and without the need to change the host app’s code. Contributing factors
for this high updatability rate are a generally low library API usage, i.e., on average 18
library APIT calls, and the fact that the most frequently used APIs remain stable for
the majority of libraries. Focusing on security incidents, we find 16,837 actively used
libraries in apps that contain one publicly known security vulnerability. Based on our
analysis, 97.8% of these libraries could be patched by simply exchanging the vulnerable
library with the fixed version, again without the need to change the app’s code.
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Finally, the results of the developer survey and our follow-up analyses helped us to
identify problem areas and weak links in the ecosystem. In Section 6.7 we summarize our
findings and propose actionable items for different entities including library developers,
the marketplace, development tools, and the Android system to remedy the situation.
Based on our findings and the responses from our survey, we believe that these solutions
are both effective in amending the library outdatedness problem and accepted by the
majority of developers. In summary, this work makes the following contributions:

(1) We conduct a survey with 203 app developers from Google Play to collect first-hand
information on library usage and to identify root causes of developers not updating
their dependencies.

(2) We analyze library releases to uncover that library developers are likely a contributing
factor to a poor library adaptation. In 58% of all library updates, the expected changes
derived from semantic versioning do not match the actual library code changes.

(3) We conduct a large-scale analysis of 1,264,118 apps to identify libraries and their API
usage. In 85.6% of cases, the detected library can be updated by at least one version,
in 48.2% of cases even to the most current version. In addition, we find 16,837 apps
that include a library with a known security vulnerability, out of which 97.8% could be
patched without app code adaption.

(4) Finally, we thoroughly discuss short-/long-term actionable items for different entities
of the app ecosystem to remedy the problem of outdated libraries.

6.4 App Developer Survey

We conducted an online survey with Android application developers who already
published at least one application on Google Play. We investigated the developers’ main
motives and knowledge when it comes to managing third-party libraries for their apps.
Mainly, we were interested in the following three questions:

Q1: What is the common workflow to search for and to integrate third-party libraries
into applications?

Q2: How frequently do developers update their apps/libs and what is their main
motivation for updates?

Q3: What are possible reasons to not update dependencies and what solutions could
app developers think of?

6.4.1 Ethical Concerns

The questionnaire (see Appendix A) was approved by the ethical review board of our
university. We also took the strict German data and privacy protection laws into
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Table 6.1: Demographics of developer survey participants.

Gender Age (T =32.90+1.60 years)

Female 10 (04.93%) 15-19 6 (02.96%)

Male 186 (91.63%) 19-29 63 (31.03%)

No answer 7 (03.45%) 29-39 64 (31.53%)

3949 31 (15.27%)

Highest educational degree 49-59 15 (07.39%)

Graduate 117 (57.64%) 59-69 4 (01.97%)

College 41 (20.20%) No answer 20 (09.85%)
High school 30 (14.78%)
No degree 12 (05.91%)
No answer 3 (01.48%)

account for collecting, processing, and storing participant information. We collected
email addresses from Android application developers who had previously published at
least one application on Google Play and kindly asked them to participate in our online
questionnaire, whether they like to be blacklisted for future user studies, and whether
they want to learn more about our scientific work. Overall, we sent out 60,000 invite
emails. Before filling out the questionnaire, developers had to consent to the use and
publication of their answers.

6.4.2 Parficipants

In response to the invitation emails, 203 app developers finished the questionnaire
within five days (participation rate of 0.34%). Of all participants, 91.6% reported being
male, 4.9% female, and the remaining 3.4% declined to answer. Participants’ mean
age was 32.9 years (with a margin of error of 1.6 years with a = .05). The general
coding experience was relatively high with a mean of 12.11 + 1.35 years. The Android
experience was reported with 4.06 + 0.33 years on average. Of all participants, 34%
affirmed that developing apps is their primary job. Asked about the context of app
development, 35.5% reported to develop apps in a company, 38.4% are self-employed,
and 61.6% develop apps (also) as a hobby. The participants reported having worked
on 13.188 + 4.42 apps. A detailed overview of the participants’ demographics and
professional background can be found in Table 6.1 and Table 6.2.

6.4.3 Ql: Workflow and Integration

In the first part of the survey we seek to answer how app developers choose and integrate
libraries into their apps. Figure 6.1 shows the primary sources of the participants
to search for libraries. It is evident that the majority of app developers use search
engines, followed by the project hoster GitHub. The relatively small number of dedicated
Android community websites, such as Android Arsenal or Android Weekly, underlines
the lack of a central library marketplace/package manager such as Cocoapods for i0S
or npm for JavaScript. Being asked about library selection criteria (see Figure 6.2),
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Table 6.2: Professional background of parficipants in our online app developer survey.

Years of general coding experience Years of Android experience
< 1 year 4 (01.97%) < 1 year 2 (01.0%)
1-5 years 45 (22.17%) 1-2 years 19 (09.5%)
5-10 years 51 (25.12%) 2-3 years 28 (14.0%)
10+ years 103 (50.74%) 4-5 years 40 (20.0%)

T =12.11 + 1.35 years 5-10 years 37 (18.5%)

10+ years 4 (02.0%)

x =4.06 £ 0.33 years

How learned Android programming’ Developing apps primary job

Self-taught 182 (89.66%) Yes 69 (33.99%)

On the job 66 (32.51%) No 134 (66.01%)
Online coding course 38 (18.72%)

Class in university 25 (12.32%) Context of app development!

Class in school 8 (03.94%) Company 72 (35.47%)

Other 0 (00.00%) Self-employed 78 (38.42%)

Hobby 125 (61.58%)

Number of apps worked on Company size

1-5 apps 101 (50.00%) < 10 employees 27 (37.50%)

6-10 apps 50 (24.75%) 10-50 employees 16 (22.22%)

11-50 apps 44 (21.78%) 50-100 employees 7 (09.72%)

51-100 apps 5 (02.48%) 100+ employees 22 (30.56%)
100+ apps 2 (00.99%)

T =13.188 £ 4.42 apps
T Multiple choice, sum does not need to equal 100%

79.7% of all participants named functionality as main criteria. Open source (61.7%)
and good documentation (52.3%) are further criteria for library selection. In general,
recommendations and user ratings are less important. Security (26.6%) and particu-
larly the use of permissions (29.7%) are among the least important criteria, which is
particularly surprising after news reports and scientific research on permission misuse
of advertisement libraries [134, 65, 128, 29].

Besides information about how libraries are chosen, it is important to know the preferred
development platform and integration approach by developers. Figure 6.3 suggests
that Android Studio is the preferred IDE for app development (61%), followed by
(multi-platform) application generator frameworks such as Xamarin or Cordova (17.2%)
and Eclipse with the Android plugin (13.3%). A small fraction of app developers (8.4%)
prefers different environments such as NetBeans or even the command line. Similar
to development platforms, there are different possibilities to integrate a library (see
Figure 6.4). The Android Gradle plugin, introduced in 2014, is a powerful dependency
manager and the default in Android Studio. Although two-thirds of app developers use
Gradle, more than half of them also resort to manual inclusion or use a combination
of different approaches. Build systems such as Maven (14%) or Ant (3.9%) are not
widespread in Android app development. Users of Xamarin prefer to use its convenient
package manager NuGet.
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Where do you search for libraries?

Google-

Github-
Stackoverflow-
Other-
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Android Arsenal-
Package Manager-
Other apps-

Library developer website-
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Android Weekly -
Maven-

Gradle-
Friends/Colleagues-
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Figure 6.1: Primary sources for finding libraries among our survey parficipants

Chose libraries according to specific criteria?

Functionality -
Open Source-
Documentation-
Popularity -

Update Frequency-
Recommendations-
Use of Android Permissions-
Ratings-

Security -

Other-

Closed Source-
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Figure 6.2: Reported criteria for library selection among our survey participants

Android Studio-
Application Generator-
Eclipse-

Other-

How do you develop your apps?

I 124 (61.08%)
35 (17.24%)
27 (13.3%)
17 (8.37%)
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Figure 6.3: Primary development environment of our survey participants

How do you integrate libraries into your app?

AddJARfile [ ] 67 (52.34%)
Maven- [ ] 18(14.06%)
Other- 12 (9.38%)
Donotknow- [ | 6(4.69%)
At [ ]5@91%)
0 25 50 75 100

Figure 6.4: Used library integration techniques by our survey participants
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6.4.4 Q2. Application and Library Maintenance

In the second part of the survey, we asked the participants about app release frequency,
whether they update their dependencies, and about their main motivation to perform
app and library updates (cf. Figure 6.5). 78% of the app developers release new app
updates on a variable schedule, while only 22% rely on a fixed schedule, e.g., developers at
companies with a fixed release schedule. The majority of developers releases new updates
within a time period of one to three months. However, there is also a considerable
number of developers (39.9%) that provides updates at most twice a year.

Is your app updated on a fixed schedule?

78% 22%
0 25 50 75 100
Response ['No M Yes

Do you update the libraries in your app regularly?
30% 3% 46% 20%
0 25 50 75 100
Response No | don't know Yes, some of them [ Yes, all of them

Do you read changelogs/announcements for new library versions?

18% 2% 66% 14%
0 25 50 75 100
Response Never  |don'tknow = Sometimes [ Regularly

Figure 6.5: Questions and responses for Q2 regarding app/library release frequency.

At which interval do you release app updates?

Never- 17 (8.37%)

Yearly | 32 (15.76%)

Twice per year- 32 (15.76%)

Bi-weekly- D 8 (3.94%)
Weekly- E 6 (2.96%)
0

Figure 6.6: Interval at which our parficipants release their app updates

20 40 60

The main motivation to release new app versions is to provide new functionality and
fixing bugs (see Figure 6.7). Only one-third of the developers explicitly names library
updates as a reason to provide a new app version. This is contrary to the main
motivation to update the apps’ libraries where the dominant answer is bug fixing (only
three developers did not name this). Functionality is only the third most common
reason (56.5%), right behind security fixes (57.6%). Of all app developers, 66% update
at least some of their libs regularly, while 30% completely abstain from updating the
dependencies. Changelogs and release announcements are an effective means to reach
app developers since 70% of the developers read them at least sporadically.
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For which reason do you update your app?

Library updates- 67 (33%)

Other- [ |10 (4.93%)
0

50 100 150 200
Why do you update your apps' libraries?
Bug fixing- [ 52 (96.47%)

Security- 49 (57.65%)
New features- | 48 (56.47%)
Other- 2 (2.35%)
I'don't know- [ ]2 (2.35%)
0 25 50 75

Figure 6.7: Reasons why our survey participants update apps and their apps’ libraries

6.4.5 Q3: Reasons for Outdated Libs

The last part of the survey asked questions about problems that might be a reason
for not updating libraries. We also requested a self-reporting on reasons for outdated
libraries and asked the developers for their opinion on possible solutions.

Since Gradle is the default dependency management system in Android, we asked about
Gradle’s usability and drawbacks. While the majority of the participants likes Gradle
(64.3% in Figure 6.8) or only sees minor limitations (31%), only three participants are
unhappy with Gradle’s usability. The most frequently named drawbacks include a weak
build performance with more complex apps and a steep learning curve compared to the
simplicity of adding libraries manually. We then explicitly asked for reasons that their
apps contain outdated libraries (see Figure 6.9). For 57% of the participants, there
is no incentive to update the library as it works as intended. Half of the participants
are afraid of experiencing incompatibilities, for instance, through modified or renamed
library APIs, or they refrain from updating due to an expected high integration effort.
Another reason is that app developers are just unaware of library updates (33%).

Are you happy with Gradle's usability?

o st e
0 25 50 75 100
Response No  ldon'tknow ' Somewhat I Yes

Figure 6.8: Usability satisfaction of our participants with the Gradle build system

Figure 6.10 shows a selection of potential approaches to facilitate better library man-
agement. Of all participants, 65.6% wish to have better development tools, for instance,
an improved IDE integration. Among the app developers, 78.9% like the idea of having
a central library marketplace or package manager, similar as in other ecosystems, such
as i0S or JavaScript. Many library developers distribute their libraries via different
channels, such as Maven Central or Bintray. For those who host their library only
on their website, developers would welcome additional, potentially more convenient,
distribution channels.
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Library was still working-

Prevent incompatibilities -

Unaware of updates-

Too much effort-

Missing update documentation-
Bad/missing library documentation-
| don't care-

Other-

| don't know -

Reason why your app would include outdated libraries?

R - <75
e
42 (32.81%)
| 34 (26.56%)
17 (13.28%)
13 (10.16%)
[ Jo@.03%)
|8 ®25%)
[]3(234%)
0
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Figure 6.9: Self-reported reasons why the participants” apps would include an outdated

library

What would help making library updates easier

Better IDE integration-

for app developers?

[, 54 (65.62%)

Central library marketplace- [ ] 62 (48.44%)
System service or package manager- 39 (30.47%)
Different distribution channels- | 23 (17.97%)
Other- 12 (9.38%)
0 25 50 75 100

Figure 6.10: Preferred improvements for making library updates easier

Would you accept automatic library updates on user devices
in cases where they do not break functionality?

23% 12%  12% [82%
0 25 50 75 100
Response No = Idon'tknow ' |do notmind M Yes

Figure 6.11: Acceptance of automatic library updates on end-user devices among our
partficipants

Finally, we asked whether participants would accept an automated on-device library
patching via the Android OS, as long as it would not break app functionality (cf. Fig-
ure 6.11). Half of the responses fully agreed with such a solution, while about 12%
were not sure whether this is a good idea. About 23% clearly disagreed with such an
approach, while another 12% did not mind.

6.4.6 Limitations

As with any user study, our results should be interpreted in context. We chose an online
study because it is difficult to recruit Google Play developers for an in-person study
at a reasonable cost. Choosing to conduct an online study gave us less control over
the recruitment process; however, it allowed us to recruit a large and geographically
diverse sample. Because we targeted Google Play developers, we could not easily
take advantage of services like Amazon’s Mechanical Turk or survey sampling firms.
Managing online study payments outside such infrastructures is very challenging; as
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a result, we did not offer compensation and instead asked participants to generously
donate their time. As might be expected, the combination of unsolicited recruitment
emails and no compensation led to a strong self-selection effect, and we expect that
our results represent Android developers who are interested and motivated enough to
participate.

In any online study, some participants may not provide full effort, or may answer
haphazardly. In this case, the lack of compensation reduces the motivation to answer in
a constructive manner; those who are not motivated will typically not participate in the
first place. We attempt to remove any obviously low-quality data (e.g., responses that
are entirely invective) before analysis, but we cannot discriminate perfectly.

6.5 Library Release Analysis

The survey results indicate that 77% of app developers update at most a strict subset
of their included libraries (see Figure 6.5). One of the main reasons for this is that
there is no obvious need to update the library when it works as intended. The survey
suggests that bugfixes and security fixes would be a reason to update if new library
versions would provide dedicated patch-only changes and would not mix bugfixes with
new functionality. Another more alarming reason is that libraries are not updated due
to the fear of experiencing incompatibilities and an expected high integration effort.
This raises the question how library developers release new versions and whether their
current release strategy could be a contributing factor to poor library adoption. In the
following, we seek to answer this question by analyzing how often library versions change
existing APIs and provide versions with mixed types of changes, i.e., security fixes and
new functionality. A related but previously uncovered aspect is how library developers
communicate these changes, i.e., which changes might an app developer expect given a
library version number and do these expectations match the actual changes made in
code and APIL.

6.5.1 Semantic Versioning

The concept of classifying a version number into different categories to infer the ex-
pected effort of integration was proposed as Semantic Versioning (SemVer) by Preston-
Werner [115]. It comprises a set of simple rules that dictate how library developers assign
and increment new version numbers. The basic idea is that if library developers adhere
to these rules, the library consumer (typically the app developer) can assess, just by
looking at the version string, whether or not a library update can be performed without
additional implementation and code adaption effort. Semantic Versioning works as
follows: First, the lib developer declares the public API, e.g., by documenting it. Then,
any changes in the documented public API are communicated with the version number.
The version format consists of three numbers X.Y.Z (Major.Minor.Patch). Whenever a
new version includes bug fixes or code-only changes that do not affect the API, the
patch version number is incremented. Backwards compatible API additions/changes
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increment the minor version and backwards incompatible API changes (removed meth-
ods, incompatible argument types) increase the major number. Intuitively, a library
without further dependencies can be updated without additional effort if a new version
is a minor/patch version. A major version might require additional integration effort,
depending on the changes made to the APIs in use.

6.5.2 Android Library Versioning

To investigate the status quo in Android library versioning we conduct an empirical
study of expected changes versus actual changes to confirm or disprove that library
developers can be a contributing factor to the problem of a poor library adaptation in
the Android app ecosystem. To this end, we build on and extend our library database
(cf. Section 5.5.1). In total, we analyze 89 distinct libraries with 1,971 versions with a
minimum set of 10 versions per library. In our test set all libraries make use of the X.Y.Z
versioning scheme, except OrmLite which uses an X.Y scheme. In addition, Dropbox
(v2.0.5.1) and FasterXML-Jackson (v2.4.1.1) include a single library version with a
sub-patch level. However, due to the absence of a changelog for these versions, we can
not properly assess the necessity of such version numbers. In the following, we describe
in more detail how we determine the actual changes in code and the expected changes
conveyed by the version number.

Expected Changes We extend LIBScOUT and integrate a version parser that classi-
fies changes expressed by the version string into patch, minor, and major releases. By
comparing consecutive library versions we then retrieve a list of expected changes, e.g.,
a version 2.4.1 immediately following version 2.3.7 is classified as a minor release.

Actual Changes Semantic Versioning requires that the public library API has to be
properly defined at some point, either via an explicit documentation or via the code
itself. Since some libraries either lack a full documentation or do not provide a history
of their API reference, we programmatically extract the public API from the original
library SDKs. The public API set of the first version of each library in our dataset is
used as a baseline.

1. Filtering undocumented APIs: Undocumented public methods are not meant
to be used by an app developer and hence should not be considered part of the public
API. By extracting the public API programmatically, we have to filter such methods in
a best effort approach (see also discussion in Section 6.7). To this end, we exclude public
methods that reside in subpackages named internal. Moreover, we conservatively filter
classes (and their declared methods) that have been renamed and shortened through an
obfuscation tool like ProGuard [68]. Concretely, we consider classes named with one or
two lowercase, alpha characters as obfuscated (following ProGuard’s renaming rules).

2. Determining actual changes: To determine actual changes between consecutive
library versions, we implement an API diff algorithm that operates on two sets of public
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APIs apiyg and apiyew, where apiyg is the API set of the immediate predecessor version
of apinew. An API is described by its signature that includes package and class name as
well as the list of argument and return type, e.g. com.facebook.Session.getAccessToken ~
Ojava.lang.String . If apiygg = apinew we have a patch-level release, i.e., there are code
changes only. If apigg & apinew, new APIs were added but existing ones did not change.
This is classified as a backwards-compatible minor release. Whenever api,q includes
APIs that are not included in api,e, we conduct a type analysis to check for compatible
counterparts in apine,. Compatible changes include generalization of argument types,
e.g., an argument with type Arraylist is replaced by its super type List. Generalization on
return types is generally not compatible and depends on the actual app code that uses
the return value. Since we do not conduct a code analysis we treat non-matching return
types as incompatibility. To not suffer from false positives, we furthermore abstain
from searching for alternative candidates whenever the class and/or package name do
no longer match, since this may result in ambiguity.! Hence we report conservative
numbers when searching for API alternatives. If we are able to identify alternatives for
all APIs that do not match exactly, we may classify the release as patch or minor. All
other cases are classified as a major release.

6.5.3 Semantic Versioning Statistics

Applied to our library set, we found that in 58% of all version changes, the library
developer incorrectly specified the new version string, i.e., according to Semantic
Versioning rules the expected release level did not match the actual release level. Even
worse, there is no single library that achieved a 100% correctness in versioning. Only
3/89 libraries (3.4%) correctly classified the release level in more than 80% of all releases,
with the android-oauth-client library ranking first (93.8%). On the other hand, 10/89
(11.2%) of libraries specified the version string correctly in less than 20% of all cases. Two
libraries (universal-image-loader and log4j) have not specified a single version change
correctly. Further, we could not find a positive or negative, statistically significant,
correlation between library category (e.g., Advertising, Utilities) and the Semantic
Versioning classification score.

A mismatch between expected and actual changes is always disadvantageously for the
library consumer in that she can not properly assess whether a new library version
can be used as a drop-in-replacement or whether a considerable amount of work has to
be spent to integrate the update. The severity of the mismatch, however, depends on
the type of inconsistency. In particular, two types of inconsistencies are problematic:
if either patch or minor release is expected, but the actual changes indicate a major
release (highlighted cells in Table 6.3). These numbers show that library developers
under-specify changes in 39% of all cases, i.e., the version increment is too moderate and
suggests compatibility although API changes might break existing applications. In about
6.5% of cases, library developers over-specify changes. This does not affect compatibility
but might impede wide-spread adaptation due to an expected high integration effort.

1Updating imports is typically done automatically by an IDE like Android Studio and is therefore
not considered as incompatibility.

120



6.5. LIBRARY RELEASE ANALYSIS

Table 6.3: SemVer misclassification by type (expected vs. actual change). Highlighted
cells are critical as the actual semantic versioning suggests compatibility although the
opposite is the case, i.e., the developer underspecified changes.

Expected
patch minor major
patch — 5.7% 0.85%
Actual minor 11.93% —  0.48%

major [IBI02%024:02% —

Figure 6.12 summarizes the total number of expected and actual changes between
consecutive versions by release level for the 1,971 analyzed versions. The expected
changes denote how library developers specified new version strings. This distribution
depicts what is expected for a typical library lifecycle; a stable base API with occasional
additions and code-only changes such as bug and security fixes for the majority of
releases. However, the reality looks different: 44% of all versions in our analysis were
classified as major release due to non-compatible changes and/or removals of existing
APIs. This indicates a poor library design without carefully taking into account the
effort /incompatibilities that consumers might experience.

| 715 (36.28%)

Patch
ae | 1,098 (55.71%)

Semantic versioning change

Minor 382 (19.38%)
| 707 (35.87%)
Major | 874 (44.34%)
166 (8.42%)
Q [CJActual change []Expected change
0 500 1000

Number of changes between library versions

Figure 6.12: Total number of expected and actual changes between consecutive
liorary versions grouped by patch/minor/major.

6.5.4 Security Fixes

Finally, we have a dedicated look at security fixes in libraries. These are the most
important kind of updates and should typically be provided as a patch release. However,
even when released with a short bug-fixing time, such patches miss their intended effect
if they are slowly adapted by app developers or not at all. Ultimately, the end-user will
be at risk and suffer from vulnerabilities like identity theft or private data leakage. To
check if library developers adhere to this rule, we analyze the Facebook and Dropbox
vulnerabilities used in Section 5.7.2, vulnerabilities in Apache Commons Collections
(Apache CC) and OkHttp found via blog entries, as well as known library vulnerabilities
reported by Google’s ASI program [7]. In total, we were able to investigate eight distinct
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Table 6.4: Library versions with a fixed security vulnerability, the expected and actual
SemVer of the patch, whether and how the security fix is described and whether this
library vulnerability is listed in Google’s ASI program. Versions marked with (B) denote
backport patches.

Library Fix exp./act. SemVer Changelog CVE other in ASI
Airpush 8.1x minor / patch - - - v
Apache CC 4.1 minor / major security = blog+report =
3.2.2 (B) patch / patch security - blog+report -
Dropbox 1.6.2 patch / patch bugfix 2014-8889 blog -
Facebook 3.16 minor / major bugfix = = =
OkHttp 3.2.0 minor / major bugfix 2016-2402 blog —
2.7.5 (B) patch / patch bugfix 2016-2402 blog -
MoPub 4.4.0  minor / major bugfix = GitHub v
Supersonic 6.3.5 patch / major - - — v
Vungle 3.3.0 minor / major = = blog v

bugfix versions?. For the eight vulnerable libraries, we first determine whether the

bugfix version is a patch release or whether the library provider mixed bugfixes with
new content or even changed existing APIs. We subsequently compare these findings
with the official changelog to see whether the fix is mentioned and properly documented.
Table 6.4 shows the detailed results.

Six out of ten library patches (including two backports) are minor releases, i.e., the
developer did not intend to provide a dedicated bugfix version. Only Airpush and
Dropbox provide a patch-level fix, while Facebook, MoPub, Supersonic and Vungle
provide a major version, i.e., they include new functionality and/or break existing APIs.
Apache CC and OkHttp provide an additional backport of the security patch to allow an
effortless adaption by older versions. Surprisingly, both backport versions are patch-only
updates, while the fixes for the current releases were announced as minor versions and
even included major changes. Mixing critical security patches with API changes is
considered bad practice and does certainly contribute to a poor adaptation rate. Besides
the version number, the changelog is the primary way to convey and explain important
fixes and changes to the library consumer (see Figure 6.5). However, only Apache CC
explicitly mentions a security fix in its changelog, four libraries at least mention a bug
fix. Only the Dropbox and OkHttp vulnerabilities have a CVE entry. In order to provide
transparency and increase the chance that the patch is adapted by developers, some
libraries provide a blog/support entry in which they provide additional details about the
vulnerability. MoPub at least provides a short note in its GitHub repository, referencing
the respective ASI support document.

Although we cannot provide the same detailed analysis for the native libraries listed in
the ASI program (libjpeg-turbo, libpng, libupnp, OpenSSL, and Vitamio), we checked
their expected SemVer and changelogs for the fix versions. Only Vitamio provided the
security fix as part of a major release (5.0). All other libraries provide a patch-level

2We had to exclude further vulnerabilities reported by ASI since we were not able to retrieve the
original SDKs for either the fixed version and/or some older versions.
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version and, more interestingly, even provide detailed changelogs for every (security)
bugfix made. In our database of Java/Android libraries, only the Android support
libraries and OkHttp provide comparable changelogs regarding the level of detail.

6.6 Library Updatability

Keeping third-party dependencies up-to-date is a complex problem with many facets and
different actors involved. On the one hand, there are app developers who mainly wish
to update libraries for bugfixes and security fixes (see Section 6.4). On the other hand,
there are library developers that want app developers to adopt new library versions
within a reasonable time-frame, e.g., for fixes and/or new functionality. In Section 6.5
we showed that library developers contribute to the adaptation problem by not giving
app developers a simple means of assessing whether or not a new library version can be
integrated without compatibility issues.

To properly assess the current status quo in library updatability, we analyze which library
versions, and which parts thereof, are in use by applications. Given this information, we
can then determine whether an actual major library release indeed requires additional
integration effort or could still be updated as the set of used APIs remains compatible.
To this end, we scan 1,264,118 apps from Google Play and identify included library
versions. For each found library, we subsequently analyze the application bytecode to
determine how the library is used in terms of API calls. Based on that information
we infer the highest library version that is fully API compatible for that app/library

combination.?

6.6.1 Approach

We extend the implementation of LIBSCOUT and implement the following analyses to
conduct the updatability measurement study:

1. Library API robustness: We first analyze the robustness of the public library
APT across versions of a given library. For each library with more than 10 versions,
we determine, on a per-API level, the highest version that provides this exact API.
We are conservative in that we do not search for alternative candidates if the API in
question is no longer available, e.g., due to method removal or renaming. Similar to the
SemVer analysis, we filter methods that are obfuscated or reside in internal packages.
As a result, we receive a comprehensive data set with updatability information for
each library version/API pair. This analysis is much more fine-grained than the API
compatibility analysis conducted in Section 5.7.1, which checks whether or not the
entire API set of some version is present in the successor version. This data would be
insufficient to determine whether an actively used library can be updated.

3There might be cases in which a fully API-compatible library version still breaks the client application.
This is discussed in Section 6.7.3
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Figure 6.13: Library updatability of current apps on Google Play

2. Library usage: To identify the actively used parts of a library, we scan the
application bytecode for invocations of this library. To account for identifier renaming
obfuscation, we match the library API with the identified root package name, e.g., when
the original library root package com.gson was obfuscated /renamed to com.mygson or
com.ab, we rename the original library API accordingly. For ambiguous profile matches,
i.e., LIBSCOUT is not able to distinguish patch-level changes in libraries, we select one
of the matched libraries. Since patch-level changes are API-compatible this does not
affect the subsequent updatability check.

3. Library updatability: Finally, we combine these two data sets to determine
whether and to which extent libraries in apps can be updated. While libraries can, by
definition, be replaced by patch and minor releases, this large-scale analysis investigates
whether libraries can be replaced by subsequent major versions that account for 44% of
all library releases. Furthermore, this allows us to identify hotspot-APlIs, i.e., APIs of
the libraries that are most/least frequently used, and to determine their stability.

6.6.2 Updatability Statistics

We conduct a large-scale evaluation in which we analyzed 98 distinct libraries and
scanned 1,264,118 apps from Google Play. The results are summarized in Figure 6.13.
LiBScouT successfully identifies 2,028,260 libraries (exact matches only). In 239,019
cases (11.8%), we could not detect any library APIs that are actively used, i.e., those
libraries are dead code. For the remaining 1,789,241 libraries, we can determine the
set of used APIs and correlate it with the API robustness data. The results suggest
that in 85.6% of the cases the identified library can be upgraded by at least one version
(Upgradel+) without any code adaption, simply by replacing the old library. Even more
surprising, a subset of 861,852 libraries (48.2%) can be upgraded to the most current
library version (Upgrade2Mazx). Only in 14.4% of the cases, the library can not be
upgraded by a single version without additional effort (Non-Upgradable), i.e., the next
version changed or removed used APIs. One major reason for this high updatability rate
is that although the majority of libraries offer hundreds or even thousands of different
API functions, the typical app developer only uses a small subset thereof. Our results
indicate that the average number of APIs used across libs is 18.
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Table 6.5: Updatability to the most current version by sum of libraries and library matches
grouped into 20% bins. How to read: Between 80-99% of all identified versions of 10
distinct libraries can be upgraded to the latest version. These 10 libraries account for
579,294 library matches.

Percentage by # of libs by # of lib matches
100% 5 (13.5%) 11,346  (1%)

80-99% 10 (27%) 579,204 (51%)

60-79% 5 (13.5%) 139,189 (12.3%)

40-69% 5 (13.5%) 121,671 (10.7%)

20-39% 4 (10.8%) 228,393 (20.1%)
0-19% 8 (21.6%) 55,600 (4.9%)
Total 37 1,135,583

In the following, we analyzed the extent to which libraries in apps could be upgraded
to the latest version. In contrast to the SemVer analysis in the previous section, this
puts a higher focus on the robustness of more popular APIs. Libraries that are stable
in their most frequently used APIs, even across major versions, are assumed to have a
high-updatability rate. To verify this assumption, we grouped 37 libraries for which
we have more than 10 versions and more than 50 matches in our large-scale analysis
according to updatability to the newest version. Table 6.5 shows the fraction of library
matches that can be updated to the latest version, bucketed into 20% bins. The column
on the right aggregates the absolute numbers of matches for those libraries.

We could not find a correlation between the absolute number of used APIs and library
updatability. While the libraries in the top bucket on average use 11.9 APIs (with a
standard deviation of o = 7.8), the libraries in the last bucket only have a slightly higher
APT usage (mean = 14.7, o0 = 8.4). However, aggregating the top ten most frequently
used library functions and correlating them with their stability across library versions
revealed the root cause. Libraries with a high updatability to the most current version
are stable for the most popular APIs (even across major versions), while libraries with a
very low updatability showed a completely different picture. In these cases, either (parts
of) the most popular APIs have been completely replaced by a new APIs or existing ones
have been modified or renamed. In our data set, Google’s Gson library was a positive
example with a 99.91% updatability to the most current version in 315,079/315,371
library matches. On the other hand, Retrofit could have been upgraded to the latest
version only in 0.07% (20/30,568) cases due to major API changes in recent versions.

6.6.3 Security Vulnerability Fixing

Besides general library updatability, we are particularly interested in how easy vulnerable
library versions can be patched. To this end, we investigate the eight publicly known
vulnerabilities described in Section 6.5. We could not easily increase the set of libraries
since it is not trivial to find reports on SDK vulnerabilities (see Table 6.4). However,
the affected libraries are commonly used by many applications (14.4% of 1,264,118) and
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Table 6.6: Number of apps found with a vulnerable library version, number of apps
that actively use this library, number of apps that could be patched to the first non-
vulnerable version without code adaptation (update2Fix), to the most current version
available (update2Max), or not updated to a fixed version without code modification
(non-fixable). Unused libraries are not considered in the last three columns.

Library Versions Found inUse update2Fix update2Max non-fixable

Airpush 8.0 4,746 4,545 4,545 (100%) 4,545 (100%) 0

Apache CC 3.2.1/4.0.0 1,199 749 749  (100%) 502 (67%) 0

Dropbox 1.5.4-1.6.1 710 682 410 (60.1%) 6 (0.01%) 272 (39.9%)

Facebook 3.15 1,839 1,808 1,792 (99.1%) 4 (0.22%) 16 (0.88%)

OkHttp 2.1.0-2.7.4 7,319 7,179 7,169 (99.9%) 3,013 (42%) 10 (0.14%)
3.0.0-3.1.2 500 237 237 (100%) 236 (99.6%) 0

MoPub 3.104.3 — — — = —

Supersonic  5.14-6.3.4 1,198 905 905 (100%) 743 (82.1%) 0

Vungle 3.0.6-3.2.2 886 732 653 (89.2%) 594 (81.1%) 79 (10.8%)

Total 18,397 16,837 16,460 (97.8%) 9,643 (57.3%) 377  (2.2%)

thus any vulnerability in these libraries does affect thousands or even millions of users.

Table 6.6 shows the libraries with the range of vulnerable versions. After scanning
the app repository, we found 18,397 apps that include one of the vulnerable library
versions. This is particularly surprising for the vulnerabilities reported by ASI, since the
remediation deadline for those libraries has already expired?, i.e., many app developers
either have not reacted to Google’s reporting or did not receive a notification in the
first place. The subsequent API usage analysis revealed that 91.5% of these libraries
are actively used by applications, i.e., at least one API call to the library was found
in the non-library code. In the remaining 8.5% of cases the library is included in the
app but is not in use, i.e., it is considered dead code. This number is slightly lower
than the 11.8% reported for all libraries. For the advertising library MoPub we were not
able to find apps with one of the vulnerable library versions from the year 2015. Note
that using some of these libraries is already sufficient to be vulnerable. This includes
all advertisement libraries and Dropbox. There is no need to explicitly invoke specific
APIs since the library’s core functionality (Dropbox authentication or showing ads in a
WebView) is triggered upon initialization without further interaction. For the remaining
libraries, the vulnerable functionality has to be triggered by the application such as
login at Facebook or certificate pinning from OkHtip.

Out of the 16,837 actively used libraries, 97.8% could be patched through a simple
drop-in replacement of the vulnerable version with the fixed one. In 57.3% of the cases,
the library could even be replaced by the most current version available. The perfect
updatability result for Airpush is due to the fact, that the patched version is the most
current version to date and includes code changes only. Therefore, all versions of the
second-to-last version 8.0 could be upgraded to the latest version. Dropboz achieved

4 Apps are not deleted from Google Play after the remediation phase but further app updates are
rejected as long as the vulnerability remains unfixed.
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the lowest auto-fix rate since there were some changes to the most frequently used APIs
between 1.5.4 and the fix version 1.6.2. Note, that the actual numbers for Airpush and
Vungle could even be higher since we were only able to retrieve between 1-3 versions
prior to the fix version.

6.7 Discussion

In the Android app ecosystem, the majority of developers makes an increasing use of
third-party libraries to enhance usability and functionality of their apps. However, those
components are a double-edged sword. While alleviating development through code
reuse, they have been found to be a major source of bugs and security vulnerabilities [124,
72, 136, 147]. To provide end-users reliable software, it is therefore of utmost importance
to keep third-party libraries up-to-date. However, recent studies [P3, 34, 83, 101] have
demonstrated that in reality, we are far from having up-to-date third-party components
and as a consequence, this ultimately puts the end-user’s privacy and security at risk.

Our app developer survey (see Section 6.4) was a first step towards identifying the root
causes why developers do not update libraries. A valuable insight is that while about
60% of app developers regularly update their application (at least once per quarter),
mainly for new functionality, the motivation to update the included libraries is quite
low (only 33% considers updating libraries as part of the app update). Contrary to the
motivation to update apps for new functionality, the main incentive to update libraries
is primarily bugfixes and security fixes. However, this is impeded by the fact that 63% of
all library releases mix code fixes with new content and/or non-compatible API changes
(cf. Figure 6.12).

6.7.1 The Role of the Library Developer

Our survey suggests that many developers abstain from updating dependent libraries
due to an expected high integration effort and to prevent incompatibilities. Our library
API analysis in Section 6.5 supports this assumption. There is consistently a mismatch
between expected changes, i.e., conveyed through the version number, and the actual
changes based on code/API changes (the semantic version was correct only in 42% of all
cases). One problem is that some of the library developers are too conservative in that
they never increase the major number, e.g., Digits (29 versions), FasterXML-Jackson-
Core (61 versions), or vkontakte (29 versions), making the three number versioning
scheme an effective two number versioning scheme. Another problem is when different
libraries from the same developer, e.g. Android support libraries or Google Play Service
libraries, have the same release cycle and different libraries receive the same new version
number independent from the actual changes. The main reason for the mismatch between
expected and actual semantic version, however, is probably the wrong assessment of
changes by the lib developer. This means, that the specification of the patch, minor, or
major version is determined by the number of code changes and effort spent for this
update rather than whether the new release is API compatible to the current version.

127



CHAPTER 6. LIBRARY UPDATABILITY

Another aspect is that 44% of all library updates comprise major versions. This implies
that many library developers too frequently release versions that might potentially break
application code. This is also backed by survey responses highlighting library update
problems like “It often impacts the rest of the code. Backwards compatibility isn’t ensured
and that leads to a big effort in updating the libs.” or “Sometimes library updates break
existing features, due to methods changes”. A more careful API design and aggregating
unforced changes like API renaming to fewer major versions would remedy this situation.
As highlighted in Section 6.6, keeping the most frequently used APIs stable, even across
major versions, also has a considerable effect on the overall updatability. In particular,
library developers should spend more effort in providing dedicated releases for critical
bugfixes and security fixes. In six out of ten cases (cf. Table 6.4), security fixes were
even bundled as a major release, which severely impedes widespread adoption.

As there is no widely accepted library marketplace or package manager for Android,
changelogs are typically the main means to communicate changes to the application
developer. Since about 80% of app developers read changelogs at least from time to
time, this is a good way to provide detailed information on bugfixes and API changes.
However, in reality, the majority of changelog entries advertises new functionality
rather than reporting (detailed) bug fixes. The fact that we could only find a single
entry security fix illustrates the current status quo pretty well. It seems that library
developers put their main focus on functionality that, according to our survey results,
is only the third most important update criterion. A recent study [91] reports that API
changes/removals in the Android SDK typically trigger discussions on Stack Overflow.
A simple means of providing community support after major releases would involve
an active participation of library developers in such discussions to clarify changes and
provide guidelines on how to perform the upgrade.

There has also been some discussion about the usefulness of Semantic Versioning. While
it is certainly not supposed to be the gold standard, it is, in fact, a simple and useful
means for library developers to express compatibility and for consumers to quickly assess
the expected library integration effort. Almost all libraries in our dataset already use
the X.Y.Z scheme, however, it seems that API compatibility is not always the main factor
in the versioning process. An open question remains how many developers are aware of
concepts like SemVer and would be able to interpret version changes correctly. To raise
the awareness, library developers could pro-actively promote SemVer compliance, e.g.
by adding a Sem Ver compliant badge to their code repository. In the long term, this
concept will likely become more known, at least among iOS developers, since the new
Swift package manager enforces versioning according to SemVer rules.

6.7.2 How to Improve Library Updatability?

Based on the survey responses and the follow-up analyses there are different possibilities
on how to improve library updatability for different entities of the app ecosystem. Note,
that this section is giving educated advice and actionable items based on first-hand
information of app developers and results aggregated from follow-up analyses on libraries
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and apps from Google Play. Implementation, evaluation, and assessment of developer
adaption for the proposed technical solutions are subject to future work.

The Marketplace One possibility to improve adaption is a centralized marketplace,
like the Google Play Store. With the App Security Improvement program, Google
introduced a service that identifies security problems in apps. It notifies the respective
app developer and provides a support document on how to fix the problems. However,
this service also enforces that security fixes are deployed within a reasonable time.
While this helps to improve the overall application security on the market, it also
comes with inherent limitations. It only warns about known vulnerabilities and app
developers that are writing apps for markets other than the Play Store do not benefit.
The main limitation is, however, that it only fights the symptoms and does not tackle
the underlying problem of the poor library version adaption rate.

About 79% of the developers in the survey could think of a dedicated library store or
package manager for Android. There are already established package managers for other
ecosystems such as nuget (.net), npm (JavaScript), Cargo (Rust), or Cocoapods (i0S).
There is no equivalent in size and acceptance for Android to search for libraries to date.
This is also documented by our survey in which the majority of developers simply refers
to “Google” or “Internet” when being asked where to search for libraries. An accepted
central solution could also enforce certain library requirements or quality standards
more easily. For instance, the new Swift package manager [17] (for macOS and soon for
i0S) expects packages to be distributed as source and to be named according to SemVer
rules. Source distributions might foster contributions and creation of patches through
the community. This is also backed by the results of the survey in which open-source is
the main criteria for library selection for 61% of developers, next to functionality with
about 80%.

Development Tools In 2014 the Android Gradle plugin was introduced to give app
developers a powerful dependency manager to facilitate building complex applications
with a larger number of third-party components. But although this is the preferred way
to integrate libraries for about 30% of app developers, there is still a high number that
manually integrates libraries (20%) or uses a combination of different methods (33%).
Despite Gradle’s high acceptance (64% like its usability, 31% somewhat), the main
criticism constitutes its poor performance and the steep learning curve that might be
reasons to resort to different approaches. Google picked up this criticism and recently
announced a new Gradle version for Android Studio that particularly improves build
times for complex applications [11]. Another argument against mixed approaches is that
including libraries manually implies a higher update effort since new versions have to be
downloaded manually and there is no notification when new releases become available.
This reinforces the unawareness of library updates among app developers as shown in
Figure 6.9. In contrast, Android Studio 2.2 recently integrated an opt-in feature to
automatically notify app developers when updates of integrated third-party libraries
from remote repositories such as Maven Central and JCenter become available.
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Besides improving the dependency manager, integrating our detection of library version
compatibility into the IDE could be helpful to automatically classify a library update and
to inform about the expected code adaption effort based on the set of used library APIs.
We are currently in the process of evaluating how such a plugin could be implemented
for Android Studio, the preferred IDE for about 61% of app developers in our survey.

Automated Library Updates to the Rescue? A prominent example for auto-updates
is the former system component WebView that was moved to a standalone-app in Android
5.0 after a series of severe security vulnerabilities. Distributed as an app, Google can
automatically push security patches to this commonly used component to reach millions
of devices that do no longer receive Android OS updates. Similarly, the app update
mechanism of Google Play was adapted to install app updates automatically as long
as no new permissions are requested. However, patching libraries, that are part of
the application bytecode, is somewhat more challenging. Although Section 6.6 has
demonstrated that 85.6% of libraries could be automatically updated, in 48.2% of
the cases even to the latest version, there might be additional obstacles that prevent
auto-updates of minor and major releases in reality (cf. Section 6.7.3). However, limiting
auto-updates to patch versions that provide critical bugfixes and security fixes, would
already tremendously improve the current status quo.

One possible integration approach includes the developer specifying a subset of included
libraries eligible for automatic updates. A similar approach is deployed by Google
Chrome to automatically update extensions [61]. The difference, however, is that the
extension developer may specify this flag. There is also no formal requirement or quality
assurance required, since, in worst case, the extension could simply be disabled after an
unstable update. In Android, one could further introduce an option to limit updates to
patch level updates that do not introduce new functionality. According to the survey,
52% of app developers would welcome such an automated update mechanism, while only
one quarter disapproves such approaches. Note, that the questionnaire asked for updates
in general, not for bugfix/security fix updates in particular. Thus, the acceptance of
auto-fixing critical bugs only might actually be higher.

There are also different on-device deployment strategies to integrate new library versions.
One option that does not require larger modifications of the app installation routine
is to integrate new libraries during on-device compilation time. In Android 6, the
ahead-of-time compiler on the device compiles the entire applications’ bytecode to
native code. There, the compilation would have to be re-triggered for each library
update, similar as for new app updates. With Android 7, the ahead-of-time compilation
was replaced by a just-in-time compiler [8]. This way, library code could be updated
through a forced re-compilation whenever such code is used by the app. Given the
generally low library API usage, the expected compilation overhead should be negligible.

Decoupling library code from application code, i.e., moving to dynamic linking, would be
another option to facilitate library updates. Dynamic linking of third-party components
has been disallowed by Android and iOS for a long time due to security reasons. This
changed with iOS 8, released in September 2014, when Apple addressed these security
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concerns with a new kernel extension to check the integrity of app files [16], i.e., whether
dynamic libraries are signed, have a valid Team Identifier and that this identifier matches
the one of the containing application. Updating (compatible) libraries is then simplified
to replacing the library file.

6.7.3 Threats to Validity

Programmatically determining the public API of a software component is a non-trivial
task, specifically on Android where, among others, advertisement libraries are typically
obfuscated with identifier renaming. We distinguish obfuscated and non-obfuscated
names in a best effort approach, but for corner cases, this is generally undecidable. The
same is true for whitelisting package names that are supposed to be used internally. Only
the ground truth in form of a proper documentation for all library releases would provide
the complete public interface. However, this information is not always available. Given
that we are conservative in our filtering list, we report a lower bound on updatability,
e.g., when we erroneously include an obfuscated public API which is not present in the
successor version due to re-obfuscation.

We conduct our library updatability analysis based on API compatibility. This consti-
tutes the main factor to determine whether a library can be updated without any code
adaption. We do not include rare cases in which public, static class fields are renamed
in subsequent library releases. While such cases can cause incompatibility, we assume
that they do not occur frequently. Moreover, we do not assess whether the intended
functionality is preserved in the new release, i.e., that no new bugs are introduced and
no code semantics changed that cause unexpected side-effects. Changing semantics of
already existing APIs is considered bad practice and strongly discouraged as there are
no simple means of detecting such cases for the library consumer.

We also consider the case when libraries depend on additional libraries. Versions that
include other libraries can only be updated if all sub-dependencies can be updated as
well. We found that 55% of the libraries in our database include at least one version with
sub-dependencies. However, through manual investigation, we identified most of these
dependencies as optional. In the majority of cases, advertisement mediation frameworks
can be configured to use multiple ad libraries from different providers. There are two
utility libraries that are used by five other libraries, Gson and okio with an updatability
of 99.9% and 100%, respectively. Hence, it is safe to assume that these sub-dependencies
do not influence the updatability of libraries that include them.

Finally, we investigated changes of the minimal, required Android API level by libraries.
Although this does not affect the correctness of our library updatability results, the app
developer might have to increase the app’s minimum API level in order to update a
library. This implies that the updated application may no longer be compatible with
devices having an older Android version which consequently reduces the app’s potential
user base. To investigate the severity of such cases we aggregated a history of changes of
the minimal API for the eight libraries in Table 6.6 from publicly available changelogs.
Across versions, libraries have changed the minSDK version between 1-2 times. The
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most current version of five libraries requires a minimum API level between 11-16
(Android 3.0-4.1). Dropbox does not state this requirement explicitly, only indirectly
via an Android sample (API level 19, Android 4.4). According to the latest Google Play
Access Statistics [10], less than 2% of all users have a device with API level <16 (9%
with APT level < 19). These results suggest that library developers are very conservative
in their choice of the minimal SDK to support a wide range of devices and consequently
the expected loss of potential users is negligible for app developers.

6.8 Related Work

There have been several studies on different software ecosystems to assess the ripple
effect of API changes. Dig et al. [47] found that in 80% of cases API changes in libraries
break the client application upon update. Kim et al. [81] investigated the relationship
between library API changes and bugs. They found that the number of bugs particularly
increases after API refactoring. Bavota et al. [24] studied the evolution of dependencies
between Java projects of the Apache ecosystem to find that client projects are more
willing to upgrade a library when the new version includes a high number of bugfixes. At
the same time, API changes discouraged the user from upgrading since substantial code
adaption effort might be required to include the new release. While those findings are
in line with our results, i.e., mismatch of expected and actual changes and insights from
app developers about why libraries are not updated, this work goes one step further.
We identified root causes for this problem in the Android ecosystem. Based on our
results we thoroughly discussed various options to remedy this situation that would
have a high app developer acceptance (based on our survey results).

McDonnell et al. [97] studied the Android API stability and adoption and found that
app developers do not quickly adopt new APIs to avoid instability and integration
effort. Another study on the Android API [90] showed that including fast-changing and
error-prone APIs negatively affects the app ratings in the market. In contrast to our
work, these studies investigated the Android API, however, we can confirm their findings
for third-party libraries as well. Particularly, for over-privileged libraries, app developers
often receive negative feedback and ratings, e.g. “some users have complained about the
permissions the app requires due to libraries” or “Google Play services and especially
maps required for some time the storage permission which led to lots of questions and
negative ratings”.

Various studies [99, 117, 70] emphasized that code reuse is widespread in the Android
market and that third-party libraries account for most of it [92, 85]. At the same
time, the number of critical bugs and security vulnerabilities in third-party components
has steadily increased. Over the last years, they have become the weakest link and
the prime attack vector of applications [124]. Dedicated research [65, 128, 29, 134]
has particularly found advertisement libraries to be hazards for the end-users’ security
and privacy by secretly collecting private data or even opening backdoors. This has
motivated a line of research to automatically detect libraries in applications [102, 40,
141, 95]. However, these early approaches were insensitive to exact library versions.
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More recent studies [P3, 34] adopted Software Bertillonage techniques [41] to identify
concrete library versions and to uncover that about 70% of included libs in Google Play
apps are outdated by at least one version. Similar alarming results have recently been
reported for other ecosystems, such as Javascript [83] and Windows [101].

As a consequence, fast response times by library developers remain ineffective and even
known security vulnerabilities [132, 134, 133, 49, 62] remain a persistent threat in the
app ecosystem, when app developers take on average more than 300 days to integrate
the existing fixes (cf. Section 5.7.1). This follow-up work focused on finding the root
causes. Ultimately, our findings allowed us to propose actionable items that are both
effective in amending the library outdatedness problem and accepted by the majority of
app developers.

6.9 Conclusion

With the rapidly increasing number of used libraries, large parts of Android apps consist
of third-party code. Critical bugs and security vulnerabilities in such components reach
a high number of end-users and put their privacy and sensitive data at risk. At the same
time reality shows that important patches either reach the app consumer only after an
unacceptable long period or not at all. This work is the first to identify the root causes of
why Android app developers do not adopt new versions. Based on first-hand information
of app developers and results of two empirical studies, we propose actionable items for
different entities of the app ecosystem to remedy this alarming situation. We believe
that tackling the underlying problem is more effective than fighting the symptoms. This
approach is also preferred by Derek Weeks (vice president at Sonatype) when being
asked for a long-term solution: “It’s not a story about security professionals solving the
problem, it’s about how we empower development with the right information about the
(software) parts they are consuming.”
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Due to Android’s popularity and the continuing trend to store and process sensitive
information on mobile devices, there is an increasing demand to first understand
security risks that arise from the new app paradigm and second to assess and measure
the actual state of security of available applications. This dissertation presents a
line of peer-reviewed work that advances security testing of Android apps and its
application framework via static code analysis techniques. In particular, we created an
analysis framework that statically models the runtime behavior of apps and the Android
application framework to extract privacy and security-relevant data-flows. We further
propose a third-party code detection that is resilient against common code obfuscation
techniques to attribute vulnerabilities and security issues to the correct developer, i.e.
either the app developer or a developer of a third-party component. Applying this
technique to apps from Google Play, we measured the outdatedness of these components
and identified the root causes of app developers not updating third-party dependencies.
Based on the gained insights we proposed actionable items to remedy the current status
quo. Among others, we showed that the vast majority of third-party libraries could be
automatically updated to newer versions without modifying the application code.

A particular challenge constituted the static modeling of the complex application lifecycle
to approximate the runtime behavior—an imperative step towards effective and accurate
security analyses. On top of these application models, we employed a slicing-based
analysis to statically retarget runtime values and strings that are passed to security-
relevant API calls. To overcome limitations of prior work—Ilengthy output traces and a
high number of false positives—we added a post-processing step to statically optimize
the traces with a number of semantics-preserving transformations. As a result, our
approach generates smaller traces with more expressive statements that are amenable
for a higher number of automatic security checks including privacy-leak detection,
user-input propagation analysis, or checks on argument values for security APIs. During
a manual investigation of security issues, we found that a significant number of security
issues can be attributed to third-party components that are statically linked into the
application. To automate vulnerability attribution we had to devise a reliable third-
party library detection that works in spite of commonly used bytecode obfuscation
techniques and that is capable to pinpoint exact library versions. To overcome scalability
problems while keeping a high precision, we decide to ignore code instructions and to
devise a detection tool LIBSCOUT that exploits code structure that is preserved in the
application bytecode. LIBSCOUT enabled the automated analysis of three important
security use cases for the first time: 1. Measuring the status quo of library outdatedness
in applications, 2. Detecting library versions with known security vulnerabilities and 3.
Attributing new vulnerabilities and security issues to the correct application component.
As another benefit, we can significantly reduce the analysis time of more involved static
analysis approaches, including R-DRoOID, by excluding detected third-party code in a
pre-processing step, leaving, in the best case, the code by the application developer only.
Libraries can be analyzed once in an offline step and the results can then be readily
used upon detection. With LIBSCOUT we could measure that libraries in apps are, to a
large extent, significantly outdated. In our follow-up study, we identified reasons for
app developers not updating their code dependencies. These can be summarized as
a lack of awareness and motivation and the fear of experiencing incompatibilities by
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performing an update. We further identified the library developer, a lack of platform
support and development tools, that assist the application developer, as contributing
factors. Given the fact that such a situation can not be changed considerably within a
short time frame, we investigated to which extent outdated libraries can be upgraded
automatically without having to change the code of the host application. Surprisingly,
the vast majority of libraries and, in particular, almost all instances of vulnerable
libraries found in apps on the Google Play store are API-compatible to the patch
version and could be adopted without additional code refactoring effort. Finally, we
discussed short and long-term actionable items to remedy this situation. Comprehensive
application security analyzes can not solely be done at application layer as major parts
of Android’s functionality, including access to sensitive data and operations, is provided
by the application framework. Similar to the analysis of applications, reasoning about
security of the app framework requires a dedicated analysis backend. However, we
first had to overcome the lack of a comprehensive knowledge base that describes how
to statically analyze the framework components. Parts of our contributions include
how to enumerate framework functionality that is exposed to the application layer
and the generation of a static runtime model that faithfully models framework-specific
concurrency pattern. Building on top of this framework model, we created the first high-
level classification of Android’s protected resources, i.e. we identified which functionality
is actually protected by Android’s permission system. Leveraging our gained insights
about framework internals, we were able to generate new API-to-permission mappings
that excelled over prior work in terms of completeness and precision. Such permission
mappings are particularly useful for many application security tests (as conducted by
R-DROID) since permission-protected APIs typically either allow access to sensitive
data or perform sensitive operations.

Future Research Directions The author of this dissertation envisions several direc-
tions of follow-up and future work. With R-DROID, we built a generic analysis framework
for Android apps and instantiated three different security modules on top of it. Besides
adding more security checks for a more comprehensive security audit, reducing the
overall app processing time is a desirable goal. The increased analysis precision partially
originates from the accurate data models that R-DROID produces in a pre-processing
step and that consume the largest part of the overall processing time. By using LiB-
SCoUT to detect known libraries, we can significantly reduce the amount of code that
needs to be analyzed. Another factor is the Android framework code that needs to be
added to the analysis to track data-dependencies through the framework. Prior work
has either tried to manually generate a lightweight, but data-dependency-preserving
version of the framework to reduce code complexity or to (semi-)automatically produce
expert knowledge that can be used by analyzers instead of the original framework code.
However, none of these approaches achieved both an analysis framework-independent
and fully automated solution. Generating a minimal version of the framework code that
preserves the public interface and the data-dependencies between method input and
output would thus be highly desirable.

Another promising area for follow-up work is code re-use detection. LIBSCOUT has
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already been applied successfully to identify boilerplate code generated by online app
generators. This allows to trace back apps to their originating generator service to
measure their market share and the impact of security vulnerabilities in such boilerplate
code on the overall app ecosystem [S3]. An immediate follow-up work would include an
extension of LIBSCOUT to detect code-level changes. A possible approach would be to
extend the profile tree with a fourth layer that includes basic blocks of the method’s
control-flow graph. To still be resilient against a larger number of obfuscation approaches,
the basic block hash could be generated from the set of dex instruction types (e.g. call
or add instruction) rather than from the actual instruction values. Another interesting
direction constitutes using a locality sensitive hashing scheme like SimHash that allows
to compute a distance between hashes rather than having a binary-only decision. This
would further allow to determine the degree to which code has changed. Beyond more
precise pinpointing of exact library versions, this technique can also be applied to
detect piggy-backed apps, i.e. clones of popular apps that have been instrumented with
malicious code. Prior work has discovered that such code is often triggered by a single
call that has been added to known library code [86].

In Chapter 6, we assessed library updatability by analyzing API-compatibility. A yet
unanswered aspect includes how often library developers change the code semantics
without changing the respective API. This can potentially break application functionality
at runtime, for instance, if data formats have changed. A possible approach to determine
whether the result of some API changed, constitutes using a fuzzer like AFL [3] to test
all library versions that implement the same API with different code. By observing
and comparing the output for a set of seeds that achieves high code-coverage, one can
predict with a high-probability that the code changes introduce side-effects that the
library consumer has to consider during an update. To sustainably improve library
up-to-dateness, implementing and testing auto-updates would be useful, for instance,
through on-device compilation and an Android Studio extension to support developers
(see Section 6.7).

At application framework level, we established a generic analysis framework on which
many follow-up security checks can be instantiated, including an optimization of au-
thorization hook placement and a discovery of permission check inconsistencies (see
Section 4.8). Further, the author envisions a comprehensive security testing by fuzzing
the public API interface of the application framework. Here, a major challenge comprises
setting up the infrastructure including a reliable feedback and logging channel and a
system recovery upon failures. Moreover, coping with the highly concurrent nature of
the framework and the task to generate seeds for Android-specific data structures will
add another layers of difficulty. Once such a framework has been established, techniques
such as directed greybox fuzzing [28] could be leveraged to target interesting code
locations such as native calls, i.e. calls to native libraries via the Java Native Interface
that are only accessible via the application framework.
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Questionnaire: Developer Survey

We asked app developers from Google Play to complete the following questionnaire.
It comprises 28 questions, grouped into four blocks, i.e., professional background, app
development, third-party libraries, and demographics.

Professional Background Questions

B1: Is developing Android apps your primary job?
(i) yes, (ii) no
B2: Are you developing your apps as a hobby, are you self-employed

or do you work for a company? Please check all that apply.
(i) hobby, (ii) self-employed, (iii) company, (iv) other

B3: How large is your company?
(i) up to 10 employees, (ii) 10-50 employees, (iii) 50-100 employees, (iv) >100
employees

BJ: How many apps have you worked on?

App Development Questions
A1l: How do you develop your app/apps? (If more than one, please

choose the one you use primarily)
(i) Android Studio, (ii) Eclipse, (iii) Application Generator Framework (Cordova,
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Xamarin,...), (iv) other

A2: Is/Are your app/apps updated on a fixed schedule?
(i) yes, (ii) no

A3: Which intervals do you use to update your app/apps?
(i) weekly, (ii) bi-weekly, (iii) monthly, (iv) quarterly, (v) twice per year, (vi)
yearly, (vii) never

AY4: For which purpose do you update your app/apps? Please check
all that apply.
(i) new functionality, (ii) bugfixes, (iii) library updates, (iv) other

Third-Party Library Questions

T1: Where do you search for the libraries?

T2: Do you choose libraries according to specific criteria? Please check
all that apply.

(i) Popularity, (ii) Functionality, (iii) Open-Source, (iv) Closed-Source, (v) Re-
quired Permissions, (vi) Documentation, (vii) Recommendations, (viii) Ratings,
(ix) Security, (x) Update frequency, (xi) other

T3: How many different library functions do your apps typically use?

T/: How do you integrate third-party libraries into your app? Please
check all that apply.
(i) Add JAR file, (ii) Gradle, (iii) Ant, (iv) Maven, (v) I don’t know, (vi) other

T5: Are you happy with gradle’s usability?
(i) yes, (ii) somewhat, (iii) no, (iv) I don’t know

T6: Can you list a few problems that you’ve had with gradle?

T7: Do you update the libraries in your app regularly?
(i) yes, all of them, (ii) yes, some of them, (iii) no, (iv) I don’t know

T8: Why do you update your apps’ libraries?
(i) New features, (ii) Bugfixes, (iii) Security fixes, (iv) I don’t know, (v) other

T9: If your app were to contain outdated libraries, why would that be?
Please check all that apply.

(i) Library was still working, (ii) Too much effort, (iii) Missing update documen-
tation, (iv) Unaware of updates, (v) Prevent incompatibilities, (vi) Bad/missing
library documentation, (vii) I don’t care, (viii) I don’t know, (ix) other

T10: Do you have positive/negative examples for libraries regarding
updatability, documentation etc.? Please give details.
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Ti1: Would you welcome automatic library updates on user devices
via the Android OS in cases where they do not break functionality?
(i) yes, (ii) no, (iii) I don’t mind, (iv) I don’t know

T12: Which of the following do you think would help make library
updates easier? Please check all that apply.

(i) Different distribution channels, (ii) Central library marketplace, (iii) Better
IDE integration, (iv) System service or package manager, (v) other

T13: Have you ever encountered megative feedback/ratings solely be-
cause of included library functionality (e.g. libs that perform tracking
or aggregate user data)?

(i) yes, (ii) no, (iii) I don’t know

T14: What was the problem?

Demographics

D1: How old are you? Enter 0 if you don’t want to answer

D2: What is your gender?
(i) male, (ii) female, (iii) I don’t want to answer

D3: What is your highest educational degree?
(i) High school, (ii) College degree, (iii) Graduate degree, (iv) I don’t want to
answer, (v) No degree

D/4: How many years of general coding experience do you have?
D5: How many years of Android experience do you have?

D6: How did you learn to write Android code? Please check all that

apply.
(i) Self-taught, (ii) Class in school, (iii) Class in university, (iv) On the job, (v)
Online coding course, (vi) Other
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