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Abstract—Traditionally, network core devices are simple and
the complexity is in the end-hosts. With the rise of Software-
Defined Networking, this changes and complex functions are
moved into the network core. This paper presents Transparent
Transmission Segmentation (TTS), which is able to improve
performance by executing parts of network functions at the core.
An implementation for segmenting TCP connections in SDNs is
presented, including the network integration and traffic steering
process, as well as evidence on its positive effects on latency.

Index Terms—Traffic Engineering and QoS in SDN/NFV, 5G
Functional Decomposition and Infrastructure slicing

I. INTRODUCTION

While the interest in multimedia streaming applications
is increasing over the last years, and predicted to continue
growth [1], many of these are still designed following the
End-to-End (E2E) design as proposed in Saltzer et al. [2].
Transport protocols, such as TCP, are in use that consider the
network path as a single virtual connection, accumulating all
parameters of intermediate links in one black box.

Consider a typical scenario, as depicted in Fig. 1, in which a
smartphone that is associated with a home WLAN access point
is used to consume a video hosted at NetFlix. The access point
connects to the Internet via DSL and the video is streamed
via Dynamic Adaptive Streaming over HTTP (DASH) [3].
Consequently, the first link is resilient in terms of packet loss
but has high delay, in contrast to the second one which is
lossy but has low delay. As DASH uses HTTP, which by
now is mainly implemented on top of TCP, the error control
function uses Automated Repeat reQuest (ARQ). Given the
above link parameters, it is likely that packets from the server
arrive at the local access point, but get lost on the last segment.
Retransmissions from the source take significantly longer than
they would over the second link only. Furthermore, on their
route through the Internet, they again contend with other
packets for use of links, potentially causing congestion.

The contribution of this paper is threefold:
• We introduce Transparent Transmission Segmenta-

tion (TTS) as a general concept that can tackle challenges
caused by pure E2E operation.

• We describe the implementation and depyloment of Re-
lays, that are used to run TTS in SDNs.

• We quantify improvements caused by TTS on latency in
different network scenarios.
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Figure 1. Streaming Scenario with Suboptimal Characteristics for E2E

The rest of this paper is structured as follows: First, Sec. II
describes the concept of TTS, and identifies affected network
functions and domains. The implementation is described in
Sec. III with details on the segmentation software, deployment
and integration using SDN, and the segmentation process.
Empirical evidence for TTS being beneficial for transmission
is given in Sec. IV. Our approach is compared with existing
approaches in Sec. V and the paper is concluded in Sec. VI.

II. TRANSPARENT TRANSMISSION SEGMENTATION

Modern applications have increased throughput require-
ments and often demand real-time performance. TTS allows
to reduce latency and increase throughput, by separating the
network into domains.

A. Requirements

Before detailing how TTS can be implemented, it is im-
perative to properly state the requirements: First, the ap-
proach should be transparent to the end-hosts, so that they
cannot distinguish between segmented and not segmented
connections, except for changes in the observed transmission
quality. Neither applications nor operating systems have to
change, to achieve broad adoption with ISPs. Furthermore, the
implementation effort should be minimal, considering special
software to be installed on switches, additional protocols
to be run or more devices to be installed. A feasible TTS
solution keeps the network mostly untouched, and only adds
small software or hardware components. Finally, it should be
possible to segmentent transmissions independently, because
the performance gain varies depending on link parameters.

B. Domains

The single virtual segment mentioned before does not
consider the differences in link parameters and consequences
of heterogeneities. TTS divides the network into segments,
creating units that are more homogeneous regarding different
domains. Considering E2E latency, many factors influence the978-1-5090-6008-5/17/$31.00 c© 2017 IEEE
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results, including propagation and processing delays. Con-
tention, the major reason for congestion control, effectively
happens across the complete path, causing many parties to
contend for resources, even though they might share only one
common link. Network paths consist of many buffers, differing
in size, the layer on which they are implemented and fill-
states. Finally, capacities vary across the network, while the
bottleneck capacity is limiting a transmission’s performance.

C. Network Functions

The effects of segmenting domains have to be considered
with regard to the network functions. TTS is universally appli-
cable to protocols with advanced network functions, regardless
of the network layer at which they are implemented. In the
following we focus on the functions that are provided by TCP.

Error Control is done in TCP using ARQ. Smaller segments
lead to local retransmissions with lower added latency and
earlier ACKs, reducing the likelihood of unnecessary retrans-
missions due to timeouts, which has been proven by Karl et
al. [4] and is further evaluated in Sec. IV-C.

Congestion Control probes for available data rate over a
path, avoids congestion events and enables multiple parties to
agree on a fair data rate share. RTT-dependent TCP congestion
control algorithms (CCA), such as Tahoe or Reno [5], can
benefit from the RTT reduction due to local small segments.
Receiving ACKs in shorter intervals increases the throughput,
as more packets can be in flight. Loss events now only affect
the local segment’s throughput, localizing contention domains,
and reducing the likelihood of induced backpressure or buffer
underflows as the remaining segments send independently.

Flow Control can, e.g. in cases of embedded IoT end-points,
lead to underutilized links, as the throughput is limited by
the size of the receiving buffer. Segmenting adds additional
buffers at intermediate nodes, which are filled at higher rate
and maximize link utilization. Fill levels are communicated
quicker, leading to faster reaction of the sending side.

III. INTEGRATION INTO SOFTWARE-DEFINED NETWORKS

SDN, together with Network Function Virtualization (NFV),
provides a general architecture for implementing new net-
working approaches and paradigms. The TTS approach can
be considered as such a network function and hence can be
integrated using SDN.

A. Softswitches

Fig. 2 depicts the structure of the switches used, where a
single physical device running Linux is turned into a network
node with virtual end-hosts. As a general purpose operating
system, Linux allows to build lightweight solutions, only
containing software necessary for switching and implementing
the virtual network. We have used Ubuntu 16.041, which
ships with Open vSwitch2 (OVS), offering extended switching
capabilities and in particular OpenFlow support.

1http://releases.ubuntu.com/16.04/
2http://www.openvswitch.org/
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Figure 2. Softswitch (Physical and Logical View)

Docker3 containers are widely used in the area of data center
and cloud operations, as they are a lightweight alternative to
traditional virtual machines (VM). NFV with virtual machines
suffers from the overhead caused by booting and emulating
complete systems, which is against the requirements of net-
work functions to be deployed fast. Docker only virtualizes
resources required by the specific application, e.g. frameworks
or libraries, and reuses resources that are shared between the
applications, e.g. the kernel. Thereby it provides a lightweight
virtualization solution that keeps an NFV’s footprint small and
enables short startup times.

B. Relay Implementation (NFV)

TTS is implemented using the Relay, which is a pure soft-
ware solution. This makes it flexible in terms of deployment
on both dedicated hardware or inside virtual environments, e.g.
using a Docker container as mentioned before. The software
is written in plain C so it can be used on many systems even
without virtualization. The only dependencies are the glibc,
providing socket functionality, and pthreads for concurrency.

Fig. 3 depicts the internal structure of the relay including
its interfaces. Firstly, there are two sides labelled according to
the roles of TCP connections, where a client actively opens a
connection to the server. Even though this naming indicates a
unidirectional stream, the relay is also forwarding data back
from the target to the source. Consequently, the relay has a
client-side socket and a server-side socket to use for commu-
nication. Furthermore, a control socket allows communication
with the controller which programs new relayed connections.
The relay keeps track of opened ports and recycles those of
completed connections.

3https://www.docker.com/
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The control flow is separated across multiple threads. The
main thread is used to wait for incoming controller messages
and updates the list of active relayed connections. Every
relayed connection has two additional threads, one for each
direction of the original TCP connection, to serve both direc-
tions at the same time on separate cores.

There are six buffers per relayed connection, where one
application-layer buffer per direction serves as a means for the
relay to receive data from one socket, store it, and then send it
to the opposing socket. There are two transport-layer buffers
per connection, namely the TCP send and receive buffer.

C. Relaying Process (SDN)

Before establishing a connection, the controller must be
aware of a service (host:port) to which traffic should be
relayed and where the relays are. While the first information
is programmed into the relaying module upfront, using e.g.
REST-ful interfaces, the latter is propagated through LLDP
messages the relay is sending to announce itself. Relay infor-
mation includes IP and MAC addresses, control port, and to
which node it is attached.

End-to-End

Split Split

IPC,TPortC

IPS,TPortS

IPC,TPortC

IPS,TPortS

IPC,TPortC

IPR,TPortR

IPR,TPortR,
IPS,TPortS

Server

Host (S)

Client

Host (C)

Relay

Host (R)

Legend: Host Packet

Node

PhyPortR

PhyPortSPhyPortC

PhyPort

Figure 5. Packet Rewriting (opposite direction is analogue)

When a client is establishing a connection to one of these
services, the process depicted in Fig. 4 is executed. This
increases the time to setup a connection, but it is common in
SDN with reactive routing that the initial packets take longer to
reach the destination, while subsequent packets are delivered
at normal speeds. The first action is triggered when the client’s
SYN-packet reaches the first switch, which in turn forwards to
the controller (raising a PACKET_IN event) and asks how to
proceed further. The controller detects that the client wants to
consume a service to which communication should be relayed.
Consequently, the controller sets the first flows and starts
configuring the relay for this new relayed connection. This
involves setting ports and buffer sizes, but also telling the
relay to establish a connection to the server. While establishing
the route, the packets are already rewritten. As soon as the
relay connected to the server successfully, additional flows
are programmed and the initial SYN is forwarded to the
relay. The client can afterwards complete the handshake by
having the relay answer the messages. Finally, both parties
communicate as usual, unaware that the relay is involved in
the communication and forwards the data. Eventually, close
messages are relayed, freeing resources at the relay.

This solution can be considered as a man-in-the-middle,
hence it needs to be ensured that controller and nodes are
not compromised, which is already a necessity for proper
operation of the network. The only additional attack vectors
introduced by TTS are vulnerabilities in the relay implemen-
tation and the TCP stack it uses. As this is a relatively small
piece of software with limited capabilities, it is straightforward
to secure it.

For proper integration of the relay into connections, network
nodes must rewrite and reroute the packets. This guarantees
that the transmission is split, even though both parties believe
they communicate directly and packets in transit also look like
this. In contrast, the relay has direct TCP connections with
both end-hosts. Fig. 5 shows this for a single packet from
client to server. The node is redirecting the packet to the relay
and again redirecting the answer that is coming back. On this
short connection to the relay, the packets look as if they were
fulfilling these criteria.
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IV. EVALUATION

While Sec. II gives reasons why TTS is superior to E2E,
practical evidence is needed to validate this. By first describing
the way measurements are executed and how metrics are
generated, it is shown that TTS improves performance in
typical network scenarios.

A. Measurement Setup and Evaluation Methodology

All measurements are carried out on a desktop PC using
Mininet4 to create a virtual network environment as in Fig. 6.
The simulation system has 8 cores and 8GB RAM, of which
only fractions are used throughout the tests, so that it is
ensured that the simulation results are not due to resource
limitations. The link parameters have been set using netem
on the respective interfaces. Mininet’s virtual hosts run on
the network stack of the host, sharing its congestion control
algorithm, which was TCP CUBIC, the default in Linux. In
order to measure the performance, a simple TCP application,
written in Go5, has been used that measures how long it took
to send a payload of certain size.

In order to prove the superiority of TTS over E2E in certain
scenarios, the following metric is chosen: The transmission
tool mentioned above starts a measurement by taking a times-
tamp and sending a configurable size of TCP payload data
into a socket. The server component awaits this data and in
particular the byte indicating the end of data. When this is
received, the server answers with an application-layer ACK to
the sender. As soon as the sender receives this, it takes the sec-
ond timestamp and computes the difference. Consequently, the
result is one application layer RTT, including the transmission
time for the packets and including potential retransmits and
timeouts. In all scenarios, this time is given in milliseconds if
not noted differently.

The measurements per scenario are taken in an interspersed
way, hence after each E2E test, the TTS test is performed and
vice versa. This ensures that load changes on the simulation
system affect both sets of trials, in contrast to a procedure
where first E2E and afterwards TTS tests are executed.

4http://mininet.org/
5https://golang.org/

Table I
LOSSY LAST-MILE RESULTS (200 TRIALS PER APPROACH)

L1[%] L2[%] µE2E µTTS σE2E σTTS A12

10−6 1 6.534 5.923 0.782 0.073 0.884
10−6 10−2 5.864 5.672 0.261 0.071 0.755
10−6 10−6 5.924 5.722 0.295 0.078 0.748

B. Significance Testing

In [6], the comparison between E2E and TTS has been
made based on differences in statistical measures of Gaussian
distributions. While this is legitimate as a first means to
quantify the effects of TTS, it proved that the distribution
of delivery times is not strictly Gaussian. As a variety of
protocols interact over different operating systems and routing
nodes, the theoretical distribution cannot be specified with
sufficient confidence to gain reliable results. Consequently,
non-parametric statistics have been added to compare E2E and
TTS, as well as evaluate the significance of the results.

Comparisons between the two approaches have been carried
out using the A12 metric as defined by Vargha et al. [7].
Measurements series for E2E (Index 1) and TTS (Index 2)
are combined in the following way: Each element in the first
series is put together with each element of the second into a
tuple. Each tuple is afterwards transformed into either a zero,
if E2E is smaller than TTS, a one if TTS is smaller, and 0.5 if
they are the same. The mean of this list is then the resulting
metric. If the result is close to zero, E2E is better, while it
being close to one means that TTS is better. On these results,
the Mann-Whitney U-test [8] is used to give the likelihood
of the observations being due to pure luck. As it is also only
considering whether a certain variable is stochastically larger
than another, it is well suited to support the A12 measure by
providing a p value.

C. TTS Effects on Lossy Last-Mile

Regarding error control in a scenario as mentioned in Sec. I,
the expectation is that the higher the loss rate on the second
link is, the better TTS is compared to E2E. In order to provide
further evidence that error control is positively affected, the
following scenario is evaluated: Delays and Jitters are kept
small (D1 = J1 = D2 = J2 = 1ms), so that other effects
due to shortened RTT do not play a role, and the data rate is
R = 100MBps. The application layer buffer at the relay is
BA,Relay = 3000 , which is twice the MTU of 1500. Transport
layer buffers are BT,Relay = BT,Recv = 5MB which is also
the size of the payload to be sent so that flow control has
no impact. Regarding error probabilities, the one on the first
link is intentionally kept small L1 = 10−6%, while the one
on the second link is varied. The remaining parameters and
results are in Tab. I, where also the mean values µ, [µ] = sec
and standard deviation σ, [σ] = sec are given. The confidence
values are omitted from the table as they are p < 10−10 for
all cases.

From the results, it is evident that TTS can keep the
variation of delays low, because the packets over the first link
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Table II
HIGH JITTER RESULTS (200 TRIALS PER APPROACH)

J1 J2 µE2E µTTS σE2E σTTS

1.0 1.0 11.697 6.685 0.010 0.116
10.0 10.0 11.746 7.174 0.039 0.139
100.0 100.0 35.134 8.085 4.652 1.148

are only sent when they have been lost there. Intuitively, the
lower the error rate the lower the variations should get. The
last scenario does not follow this trend, most likely due to
imprecisions on the simulation system, especially because both
E2E and TTS faced higher delays.

D. TTS Effects with High Jitter

It is anticipated that TTS is likely to increase jitter compared
to E2E due to reordering. This scenario proves that for small
jitter values this is true, but as soon as the jitter increases
and timer expiries come into play, TTS is less affected than
E2E. Again, the links had R = 100MBps and low loss L1 =
L2 = 10−6%. The base delay was D1 = D2 = 100ms and
the jitter has been varied to be 1%, 10% and 100% of the
delay. Payload and buffer sizes are chosen as in the previous
evaluation, hence Payload = BT,Relay = BT,Recv = 5MB
and BA,Relay = 3000. Tab. II shows the different jitter values
and the results in terms of mean µ, [µ] = sec and standard
deviation σ, [σ] = sec for both cases.

As can be seen, the standard deviation is higher for TTS,
but grows slower with the link jitter in comparison with
E2E. Regarding the evaluation metric of TTS causing smaller
delivery times, it was A12 = 1.0 for all cases and p < 10−10.

V. RELATED WORK

Saltzer et al. [2] state that to reliably implement a network
function across hosts, it has to be done E2E, not relying on
intermediate systems to provide it. Nevertheless, performance
gains can be achieved when intermediate systems do so, which
is further addressed by Moors [9]. The approach presented
here is an incarnation of Performance Enhancing Proxies
(PEP), which have been first proposed in RFC 3135 [10].
Among the first implementations on the transport layer is Split-
TCP [11], tackling challenges with special network scenarios,
e.g. links with large bandwidth-delay product. This approach
does not provide transparency as our approach does, but
instead replaces original TCP. RTT-independent congestion
control algorithms such as TCP CUBIC, solve some issues,
but leave others open that can only be addressed with seg-
mentation. As SDN allows to implement certain functions
inside the network, our PEP is integrated using SDN and
deployed via NFV, in contrast to other solutions that change
the router implementation [12]. SDN and NFV are typically
employed inside and in between data centers (DC) to improve
performance and reduce costs, which is why Pathak et al. [13]
using Split-TCP for DC to DC communication to reduce
service time for end-users. The relay implementation is similar

to Siracusano et al. [14], but using Docker instead of a Xen
minikernel to virtualize the function. The authors use cloud
providers to install relays on the Internet, while our approach
works inside one autonomous system, for instance one SDN
operated by an ISP.

VI. CONCLUSION

Transparent Transmission Segmentation is a paradigm that
should be thoroughly studied, especially in the context of
fog-computing, where more of the systems’ intelligence and
complexity is moved close to the end-devices and in particular
inside the network core. Especially with lightweight virtualiza-
tion platforms, such as Docker, the deployment is simplified
which can lead to broader adoption.
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