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Abstract 

In the frame of this thesis, polymerase chain reaction (PCR) is analyzed from 

analogue to digital, from thermal cycling to a single temperature. An "analogue" 

measurement infers certain measurements based on the measured pattern, 

whereas a "digital" measurement method measures a variable quantitatively and 

discretely. 

First, an open system with a thermal gradient feature to optimize PCR is described. 

The gradient is measured through encapsulated aqueous beads of a temperature-

dependent dye with volumes in the low microlitre range within slightly larger oil 

droplets, forming virtual reaction chambers (VRCs). VRCs exploit the advantages of 

microfluidics and droplets in a simple way while circumventing many practical 

problems. As the gradient feature allows for testing a range of annealing 

temperatures simultaneously, the optimal annealing temperature can be 

determined easily in a single run.  

Second, a microfluidics platform using capillaries was built to generate nanoscale 

droplets. Those monodisperse, isolated compartments are used as nano-reactors 

for isothermal PCR – recombinase polymerase amplification (RPA). By precise 

definition of the starting time of RPA, the method detects nucleic acid at the single 

molecule level by counting the presence or absence of the amplification of 

individual molecules confined to isolated compartments.  

Third, a biomimetic chip with a nanowell structure was duplex-imprinted from a 

natural insect, Cicada, to run digital PCR. The glassy wings of Cicada, which are 

abundant in nature, exhibit a strikingly highly organized nanopillar structure over 

its membrane on both sides. A duplex nanoimprint technique was proposed to 

fabricate the chip out of the cleanroom, which combines the top-down and bottom-

up nanofabrication technique to speed up the fabrication process and achieve 

higher throughput. Further experiments for digital PCR using the Cicada chip are 
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still ongoing. Additionally the Cicada nanowell chips has a potential to be 

employed in other applications, such as nanoparticles self-assembly, Matrix 

assisted laser desorption ionization (MALDI) etc. 
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Zusammenfassung 

Im Rahmen dieser Arbeit wurde die Polymerase-Kettenreaktion (Polymerase chain 

reaction; PCR) untersucht, von Analog bis Digital als auch bei zyklisch 

wechselnden Temperaturen und festen Temperaturwerten. Eine 

„digitale“ Messung misst hierbei quantitativ und eigenständig eine bestimmte 

Variable, wohingegen „analoge“ Messungen bestimmte Messwerte extrapolieren, 

basierend auf einem gemessenen Muster. 

Zuerst wird ein offenes System mit einem Temperatur-Gradienten zur 

Optimierung der PCR beschrieben. Der Gradient wurde vermessen mittels 

verkapselter, wässriger Mikrobeads mit einem temperaturabhängigen Farbstoff 

mit Volumina im niedrigen Mikroliter-Bereich innerhalb leicht größerer Öltropfen, 

die hierbei eine Virtuelle Reaktionskammer (VRC) bilden. VRCs stellen einen 

simplen Weg zur Untersuchung der Vorteile der Mikrofluidik und 

Droplettechnologie dar, wobei viele praktische Probleme verhindert werden 

können. Durch die Eigenschaften des Gradienten war es möglich, eine große Breite 

von Temperaturen zu testen, um die optimale Annealing-Temperatur in einem 

einzelnen Experiment zu ermitteln.  

Zweitens wurde eine mikrofluidische Plattform hergestellt, um Tropfen in Nano-

Größe zu generieren. Diese monodispersen, isolierten Kompartimente wurden als 

Nanoreaktoren für isothermale PCR-Rekombinase Polymerase Ampifikation (RPA) 

verwendet. Durch genaue Definition der Startzeit der RPA konnte die Methode 

verwendet werden, um Einzelmoleküle von Nucleinsäuren nachzuweisen über 

Präsents oder Absenz einer Amplifikation des jeweiligen Moleküls in den isolierten 

Kompartimenten.  

Drittens wurde ein bio-mimetischer Chip mit Nanowell-Strukturen für PCR als 

Duplex-Abdruck eines Insektes, Cicada, geformt. Die Glasflügel von Cicada, welche 

in großer Fülle in der Natur vorliegen, besitzen eine hoch-organisierte Nanopillar-
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Struktur, verteilt über die Membranen auf beiden Seiten. Eine Duplex-

Nanoabdruck Technik wurde verwendet, um die Chips außerhalb eines Reinraums 

herstellen zu können, was sowohl die Top-Down- als auch die Bottom-Up-

Nanoherstellungstechniken kombiniert, um somit den Fabrikationsprozess 

beschleunigen und einen höheren Durchsatz generieren zu können. Weitere 

Experimente mit dem Digital-PCD Cicada Chip sind in Vorbereitung. Des Weiteren 

hat der Cicada Nanowell-Chip großes Potential in unterschiedlichen Anwendungen 

weiter genutzt zu werden, wie beispielsweise selbstorganisierende Nanopartikel, 

Matrix-assisted laser desorption ionization MALDI etc. 
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摘要 

本论文从模拟到数字，从热循环到单一温度对聚合酶链式反应(PCR)

进行了分析。“数字”测量方法定量且离散地测量某个变量，而“模

拟”测量则是基于测量的模式推断某些测量结果。 

首先，本文描述了一个开放的，用于优化 PCR 的温度梯度系统。温度

梯度通过温度依赖性荧光染料的胶囊化水珠测量。水珠的体积在低微

升范围内，外面被体积稍大的油滴包裹起来，形成虚拟反应室(VRC)。

由于梯度特征允许同时测试一系列退火温度，所以可以在单个实验中

很容易地确定最佳退火温度，从而达到优化 PCR 的目的。 

其次，本文介绍了一个基于毛细管的微流体平台，用来产生纳米级的

液滴用于运行数字液滴 PCR。这些单分散的液滴隔离室被用作等温

PCR – 重组酶聚合酶扩增 (RPA) 的纳米反应容器。通过精确定义 RPA

的起始时间，该方法计数被限制在隔离液滴中的单个分子的扩增结果

的存在与否达到检测单分子水平核酸的目的。 

最后，本文介绍了具有纳米孔结构的仿生芯片，用以运行数字 PCR。

该创意是从天然昆虫 - 蝉(Cicada)得到灵感。蝉在自然界储藏丰富，

它的透明翅膀在膜的正反面上呈现出惊人的高度有序的纳米柱状结构。

本文的第六章提出了一种双面纳米压印技术，无需无尘室制造芯片，

将自上而下和自下而上的纳米加工技术结合起来，以加快制造过程并

实现更高的生产量。由于检测仪器的限制，使用 Cicada 芯片的数字

PCR 实验仍在进行中。此外，蝉纳米芯片将用于其他应用，如纳米粒

子自组装，基质辅助激光解吸电离(MALDI)等。  
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Road map/preface 

In this section, the logic behind the organization of this thesis into 7 chapters is 

presented. 

The first chapter gives a brief introduction about DNA, aimed at engineers who 

have little knowledge about it, what DNA is and its structure, why it is important, 

the applications of DNA and how the understanding of copy mechanism of DNA 

helps in the medical field. 

The second chapter introduces the micro-nanofabrication methods while keeping 

in mind the scaling laws, and is aimed at biologists who know little about 

fabrication techniques. It explains how miniaturization helps to advance the 

technology and its applications. Principal fabrications, namely photolithography, 

soft lithography and nanoimprint technology, are discussed in detail. 

The third chapter is an introduction to the essence of this thesis. All techniques and 

concepts intimated in the thesis are included. It is the most informative chapter 

with regard to quick understanding the contribution of the thesis. 

The fourth chapter is the first publication, aiming to optimize PCR in a single 

experiment with a gradient of annealing temperatures. For detailed information, 

the reader should refer to the graphical abstract and subsequent main text. 

The fifth chapter is a manuscript in submission, adopting a single temperature PCR 

– RPA – in a capillary-based setup, to achieve nucleic acid amplification at the 

single molecule level.  

The sixth chapter is the second publication utilizing nature as a guide to fabricate 

nanowell array chips for digital PCR. This is a novel nanoimprint technique capable 

of duplex imprinting at ambient conditions within a short time. For detailed 

information, the reader should refer to highlights and subsequent main text. 
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The final chapter is the conclusion, summarizing what has been achieved in this 

PhD study. An insight into future work is also provided.  

The appendix gives abbreviations and their descriptions.  

The publications are attached at the end. 
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Chapter 1 

Deoxyribonucleic acid   

1.1 The discovery of deoxyribonucleic acid  

Deoxyribonucleic acid (DNA) was first shown to be capable of transforming the 

properties of cells in 1944 [1], many decades after its discovery and isolation in 

1869 by the young Swiss physician Friedrich Miescher [2]. The reason for DNA not 

being studied in depth at that time was that proteins were thought to hold the 

genetic blueprint to life, rather than DNA. 

DNA has a structure that is sufficiently complex and yet simple enough, with a 

double helix as the only structural component and four nitrogen-containing 

complementary nucleotides (cytosine [C], guanine [G], adenine [A] and thymine [T]) 

repeated throughout the whole structure. The right-twisted, double helix structure 

of DNA was proposed in 1953 based on X-ray crystallography structures [3,4]. The 

two polynucleotide strands are oriented in opposite directions, coiled around each 

other and linked by weak hydrogen bonds in a spiral configuration. The 

hydrophilic backbones, which are composed of the sugar groups (called 

deoxyribose) and phosphate groups that support the subunits of the polymer, are 

on the outside of the helix. The hydrophobic bases are on the inside, as shown in 

Figure 1.1. The sequence of bases forms a code to store and transmit genetic 

information. 

The pairing rule of the bases (A=T, G=C) allows each strand to be used to 

reconstruct the other; these strands carry genetic instructions and facilitate the 

passing on of hereditary information [3,4]. When the two chains separate, each 

https://en.wikipedia.org/wiki/Double-helix


Chapter 1 Deoxyribonucleic acid 

2 
 

serves as a template for a complementary new chain, suggesting a copy mechanism 

for DNA. 

The discovery of the double helix marked a major milestone; significant advances 

in science all have their origins in the inspired work of the double helix discovery. 

The double helix not only reshapes biology, but also becomes a cultural icon, 

represented in sculpture and visual arts. It has given rise to modern molecular 

biology, and yielded ground breaking insights into the genetic code and protein 

synthesis. Moreover, the unique material properties of DNA have attracted 

material scientists and engineers who are interested in micro-nanofabrication, 

using it as structural material rather than a genetic embody [5,6]. 

 

 

(a) (b) 

Figure 1.1 DNA right-twisted, double helix structure representations in sketch and recent 

form. The diameter of a DNA molecule is about 2 nm. (a) Pencil sketch of the DNA double 

helix in Crick's notebook, 1953. Credit: Wellcome Library, file PP/CRI/H/1/16. (b) A more 

recent representation showing how the nucleotides are arranged. Credit: U.S. National 

Library of Medicine. 
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There are two types of nucleic acids – DNA and ribonucleic acid (RNA). There is a 

transition process between DNA, RNA and proteins. Transcription creates RNA 

strands using DNA strands as a template, while translation process translates 

those RNA strands, from the genetic code, into a specific sequence of amino acids 

within a protein. The arrangement of nucleotides in DNA determines the amino 

acid sequence in proteins, which in turn helps determine the function of a protein 

[7]. A diagram showing the relationship between DNA and messenger RNA (mRNA) 

in protein analysis is shown in Figure 1.2.  

 

 

Figure 1.2 The relationship between DNA and mRNA in protein synthesis. Adapted from [8] 

with modification, p.65. Credit: U.S. National Library of Medicine. 
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1.2 Uses in technology 

Genetic engineering 

Genetic engineering, also referred to as genetic modification, first coined by Jack 

Williamson [9], directly manipulates DNA to alter the genetic makeup of an 

organism’s genome, thus changes its phenotype. The alterations generated by 

nuclear transplantation, gene targeting, viral insertion, or transfection of synthetic 

chromosomes, etc., are used to enhance or modify the characteristics of an 

individual organism.  

The artificial manipulation and modification of DNA can produce genetically 

modified organisms from a recombinant DNA or other nucleic molecules [10–12]. 

For instance, genetically modified crops with improved resilience, nutritional value, 

and growth rate have provided benefits in many countries. Figure 1.3 shows how 

to produce insulin, a protein that helps to regulate sugar levels in human body, in 

bacteria using genetic modification. 

https://en.wikipedia.org/wiki/Jack_Williamson
https://en.wikipedia.org/wiki/Jack_Williamson
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Figure 1.3 An illustration showing how genetic modification is used to produce insulin in 

bacteria. Credit: Genome Research Limited. 
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DNA profiling or genetic fingerprinting 

DNA profiling is an extremely reliable technique for identifying a matching DNA by 

comparing the lengths of variable section of short tandem repeats (STRs) or mini-

satellites [13]. The DNA samples include skin cells, hair, blood, semen, saliva, etc. 

Figure 1.4 shows DNA profiling examining sites on chromosomes.  

 

Figure 1.4 DNA profiling examines sites on several chromosomes. Copyright: ©  2007 ESR 

Limited. 

 

DNA profiling has found great importance in forensic analysis and paternity 

disputes. The procedures are: 1, DNA sample collection and amplification; 2, cut 

the satellite DNA with specific restriction enzymes into fragments, the length of 

fragments differ due to the variable length of STRs; 3, fragments separation and 

resulting profile comparison. 
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DNA enzymes  

Deoxyribozymes, first discovered in 1994, are mostly single stranded DNA (ssDNA) 

sequences isolated from a large pool of random DNA sequences [14].  

Deoxyribozymes catalyze variety of chemical reactions, and greatly enhance 

catalytic rate of chemical reactions up to 1011 fold over un-catalyzed reaction 

[15]. Those chemical reactions include RNA-DNA cleavage and ligation, carbon-

carbon bond formation, etc. The most extensively studied class of deoxyribozymes 

is RNA-cleaving types [14].   

Bioinformatics 

Bioinformatics use various techniques to store, search, and manipulate biological 

data and data mine. Information storage is a mechanism taking advantage of DNA's 

ability to code information and store digital data. DNA, as a witness or proof of life, 

accumulates mutations over time. That historical information, including mutations, 

is then passed to next generation.  

Bioinformatics shed light on the evolutionary history of particular organism, 

their phylogeny [16]. It has been used in studies ranging from ecological 

genetics to anthropology, permitting the examination of complex evolutionary 

events and search for specific sequences of nucleotides and mutations [17]. It can 

predict the presence of particular gene products and their possible functions [18], 

as well as study phylogenetic relationships and protein function [19]. 

DNA nanotechnology 

DNA nanotechnology self-assembles useful branched DNA complexes by virtue of 

the unique molecular recognition properties of DNA and other nucleic acids [20], 

using them as structural materials [21]. An example is shown in Figure 1.5. 
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Figure 1.5 The schematic DNA structure shown on the left will self-assemble into the two-

dimensional periodic lattices visualized by atomic force microscopy on the right.  Adapted 

from  [22]. Copyright: ©  2004 Michael Strong.  

 

1.3 Methods 

1.3.1 DNA biosensors 

In biosensors, the biochemical reaction of the assay and the measurement system 

are intimately combined onto a single chip to directly measure the target analyte 

without any additional reagents [23]. 

Biosensor = molecular recognition + signal transduction 

 

 

 

 

 

https://doi.org/10.1371%2Fjournal.pbio.0020073
https://en.wikipedia.org/wiki/File:DNA_nanostructures.png
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Figure 1.6 How a biosensor with a specific surface and transducer works. 

 

The bioreceptor which specifically recognizes the target analyte [24] is integrated 

with a physical transducer into a single sensor.  When a recognition event occurs, 

the physical transducer will translate the immediate bioreceptor changes into 

measurable signals. A simple sketch is shown in Figure 1.6. The main advantages of 

biosensors are their simplicity, cost-effectiveness and the fast speed of 

measurements.  Applications of biosensors are summarize in Table 1.1. 
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Table 1.1 applications for biosensors, reproduced from [23]. Copyright ©  2015 Imperial 

College Press 

Field Applications 

Health care 

Markers of diseases like myocardial infarction or cancer 

monitoring of administered drugs diagnosis of infectious 

diseases, analysis of glucose and hormone levels 

Environmental 
Water and soil analysis pesticides and other toxic substances, 

industrial effluent control 

Agriculture Pesticide, crop diseases 

Food control 

Food refreshness determination of fruit ripeness by glucose 

content quantification of cholesterol in butter pathogenic 

organisms like E.coli 

Process 

control 
Fermentation monitoring 

Microbiology Bacterial and viral analysis 

 

 

DNA biosensors are based on the recognition of complementary nucleic acid 

sequences (analyte or target). They can measure changes in mass, and optical, 

electronic, and electrochemical properties. Applications include the rapid 

diagnosis of genetic and infectious diseases [25,26], and the detection of DNA 

damage and interactions [27], with the advantage of readily synthesized and 

regenerated nucleic acid recognition layers for multiple uses [28]. 

A DNA microarray, also called a DNA chip or biochip, is a collection of DNA spots 

attached to a solid surface. Each chip has multiple probes for the same gene or 

fragment. The array fabrication is often performed using photolithographic 

technique, which will be discussed further in Chapter 2. Figure 1.7 shows how a 

DNA microarray works. 
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Figure 1.7 How DNA microarrays work [29]. Copyright ©  2007 WGBH Educational 

Foundation. 

 

1.3.2 DNA sequencing  

DNA sequencing is the most accurate method to determine the precise order of 

nucleotides within a DNA molecule and the exact nature of a mutation or variable 

position. There are many methods and technologies used to determine the order of 

the four bases in a strand of DNA. Sanger sequencing is the classical form of 

sequencing, prior to which either cloning procedures or PCR are required. It was 

proposed by Frederick Sanger, the pioneer of DNA and protein sequencing [30,31]. 

Figure 1.8 shows the main steps in Sanger DNA sequencing, which is also referred 

to as the dideoxy chain-termination method. Four dideoxynucleotides (ddNTPs) 

labelled with fluorophores are randomly inserted to terminate the synthesis of the 
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chain, because DNA polymerase cannot react with the missing hydroxyl, producing 

all possible lengths of chains. 

 

Figure 1.8 The key steps of Sanger (dideoxy chain-termination) DNA sequencing. (1) A 

primer is annealed to the target template DNA. (2) Reagent mixture is added. Note: each 

experiment with only one type of ddNTP is added. (3) Primer extension.  
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Applications 

Biological and medical research and discovery [32] has been greatly accelerated 

through rapid DNA sequencing methods. It can be used in metagenomics, 

molecular biology, evolutionary biology, medicine, forensics, or anthropology, to 

determine the sequences of  

 individual genes 

 larger genetic regions 

 full chromosomes 

 operons or entire genomes of any organism. 

 RNA or protein sequences 

 

1.3.3 PCR 

PCR is an in vitro molecular biology technique used for DNA amplification. As the 

amplification process is exponential, target molecules can be amplified from a few 

copies to millions within a short number of cycles. The exponential process allows 

for the rapid determination of information about the target DNA fragments, both 

qualitatively and quantitatively. Substantial improvements and modifications have 

been reported since its advent, including multiplex PCR [33], hot-start PCR [34], 

asymmetric PCR [35], nested PCR [36], touchdown PCR [37], etc. In Bridge PCR, 

fragments are amplified upon the attachment of primers to a solid surface [38–40] 

and form "DNA colonies" or "DNA clusters". This method is used by 

the Illumina Genome Analyzer sequencers. 

A simple drawing of PCR is shown in Figure 1.9. More information about PCR will 

be detailed in in Chapter 3, subsection 3.2 Polymerase chain reaction, in which 

the invention, quantification and optimization of PCR, etc., are discussed. 

 

https://en.wikipedia.org/wiki/Illumina_(company)
https://en.wikipedia.org/wiki/DNA_sequencing#subsection_Illumina_(Solexa)_sequencing
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Figure 1.9 Schematic drawing of PCR. Adapted from [41]. 
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Chapter 2  

Micro-Nano fabrication 

2.1 Miniaturization  

Miniaturization is one of the fastest changing megatrends to manufacture ever 

smaller products and devices for noteworthy applications in the medical, 

communication and automotive industries. Miniaturization is a powerful 

innovation tool for the ongoing technological revolution, as it has transformed 

microelectronics [1]. The science of Miniaturization comprises an intimate 

understanding of the specific application, in-depth knowledge of the available 

manufacturing options, familiarity with material selections, and an understanding 

of scaling laws [2], which describe the laws that express how structures scale when 

their dimensions are reduced. 

In electronics, transistors haven been shrunk with technologies so fast that every 

year twice as many can fit onto a single chip, known as Moore's Law [3,4]. 

Miniaturization exhibits a lot of potential to make systems more intelligent and 

autonomous. Achieving a higher degree of intelligence demands that the sensory 

data are drastically increased by many orders of magnitude. It is fascinating and 

amazing to think about how much can be accommodated in small areas, or can fit 

into the palm of the hand. As versatile as miniaturization is, it is critical to consider 

that neither the cost nor energy consumption should exceed acceptable limitations 

after evaluation. Miniaturization allows for the production of hand-held, portable, 

implantable, or even injectable devices. 

Miniaturization allows for high parallelization, which is of great importance when 

it comes to distributed systems, instead of confined to a few number of locations.
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Miniaturization and massive parallelism are very crucial for sensing and actuation 

for all living objects. Figure 2.1 shows the trend of miniaturization. This also 

influences the micro-nano fabrication (MNF) techniques. Miniaturization is a 

dominant force in product development today, and the process is more challenging 

than simply reducing the dimensions of a product. An easy assumption is that 

miniaturization merely involves scaling a component’s dimension down. However, 

this scalar shrinking can work up to a point, where the approach breaks down, due 

to the fabrication process and/or materials being incompatible with the 

miniaturized component.  

While the concept of reducing the size of individual components to make more 

intelligent and autonomous systems and devices is straightforward, their 

implementation is often more complex. In general, scaling different subsystems of 

a large system with a same factor might lead to different scaling performances. 

Every single component could have an extensive influence on the overall system; 

adapting the miniaturized component to incorporate the remaining components 

requires time and effort. Miniaturization of a product is only possible with the 

knowledge and intuition acquired through experiences in the macroscopic world 

while keeping in mind the scaling laws. 

The phenomena and principle of life science will play an important role in 

futuristic engineering. Some characteristics are achieved through micro-, nano- 

and molecular level material manipulation. When the scalar shrinking technique 

breaks down, the phenomenon of “self-assembly” is utilized to make such 

manufacturing technologically feasible and economically viable. For instance, a 

branch of engineering – “synthetic biology” – where devices are artificially created 

following the emerging micro-, nano- and molecular techniques, but function 

mimicking the phenomena and principles of life science.  
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Figure 2.1 Trend of miniaturization, adapted from [5], Copyright ©  2011 Springer 

Science+Business Media, LLC. 

 

Miniaturization has had a far-reaching influence on many different industries, as 

shown in Table 2.1.  A notable example of these microdevices with significant 

advantages is in medical care, which has reaped the benefits of miniaturization. 

Manufacturing portable, implantable or even injectable devices has been made 

possible through miniaturization. These devices save a lot of money and effort due 

to their minute size, less sample and lower reagent consumption. In addition, rapid 

analysis or operations is achieved by reducing lengthy diffusion times and 

increasing heat transfer. Improvements in portability have allowed for more 

treatments to be administered outside of traditional clinical settings. By reducing 
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the time to diagnosis, these microdevices help physicians to make better patient 

management decisions, improve treatment outcomes and reduce overall costs. 

Advancements in microelectronics and biosensor tools fabricated using MNF 

techniques have been instrumental in facilitating the development of these point-

of-care diagnostic devices. 

Table 2.1 Reasons to miniaturize systems, actuators, power sources, sensors, and components. 

Adapted from [2], p. 535. Copyright ©  CRC Press LLC 2002. 

Miniaturization 

attributes 
Reasons 

Low energy and little material 

consumed 
There are limited sources on planet earth 

Arrays of sensors 
Redundancy, wider dynamic range, and increased 

selectivity through pattern recognition 

Small Smaller is lower in cost, minimally invasive 

Favorable scaling laws (in some 

cases) 

Forces that scale with a low power become more 

prominent in the micro domain; if these are 

positive attributes, then miniaturization is 

favorable, e.g., surface tension becomes more 

important than gravity in a narrower capillary 

Batch and beyond batch techniques This lowers cost 

Disposable This helps avoid contamination 

Breakdown of macro laws in physics 

and chemistry 
New physics and chemistry might be developed 

Increased sensitivity (in some cases) 
Nonlinear effects can increase a sensor’s 

sensitivity, e.g., amperometric sensors 

Smaller building blocks 
The smaller the building blocks, the more 

sophisticated the system that can be built 
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2.2 Scaling laws 

As described in a previous section, scaling down the dimensions of an object might 

breakdown at a certain point. The counterintuitive features arise due to changes in 

the order of predominance of physical phenomena caused by scaling effects.  

Scaling laws are laws in mathematical language to express proportionality 

functions of physical principles. They are used to predict the value of a system 

variable as a function of other significant variables [6]. With scaling laws, it is 

possible to determine which effects get stronger and which become weaker; that is, 

which physical phenomena become predominant due to scaling effects from an 

engineering point of view. It provides quantitative numbers and some kind 

of intuitive feel of how the world down there behaves. 

Because of their importance scaling laws are presented at the beginning of the 

book Nanosystems [7]. Understanding the interplay between geometric 

characteristics and various physical phenomena provides clues to some 

fundamental aspects of a system. 

As Newtonian mechanics (the basis of first principles) fails when size diminishes to 

extremely small levels, quantum mechanics is used to study such physical systems. 

Since the breakdown of Newtonian mechanics can readily occur before reaching 

such small dimensions, structural and functional consequences of shrinks in size or 

scale have to be taken care of for the successful design and analysis of 

microsystems.  

Normal engineering intuition fails when dealing with microsystems, and is 

replaced by special microintuition. Table 2.2 shows the scaling of various physical 

phenomena. 

The section will present the rudiments of scaling laws and their importance. To 

begin with, scaling laws involving surface and volume are briefly introduced. 

http://apm.bplaced.net/w/index.php?title=Nanosystems
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As evident as it is, surface area is ∝ l2 with volume ∝ l3. When the surface area 

divides by 4 and volume by 8, the surface to volume ratio doubles. The inverse 

volume to surface ratio shrinks linearly with size, which gives rise to instant heat 

transfer.  

Table 2.2 Scaling of various physical phenomena, reproduced from [2]. Copyright ©  2002 

CRC Press LLC. 

Physical quantity Scaling exponent of 𝒍 Units 

Area 2 𝑚2 

Bending stiffness 1 𝑁𝑚−1 

Buoyant force 3  

Capacitance 1 𝐹 

Capacitor electric field -1 𝑉𝑚−1 

Deformation 1 𝑚 

Drag and lift forces 2+2𝑣∗  

Electrostatic energy 3 𝐽 

Electrostatic force 2 𝑁 

Frictional force   

Heat capacity 3 𝐽𝐾−1 

Inductance 1 𝐿 

Magnetic force 4 𝑁 

Mass (m) 3 𝑘𝑔 

Mass moment of inertia 5  

Ohmic current 2 𝐴 

Resistance -1 Ω 

Resistive power loss 1  

Shear stiffness 1 𝑁𝑚−1 

Strength 2 𝑁𝑚−1 

Strength-to-weight ratio -1  
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Surface tension force 1  

Thermal conductance 1 𝑊𝐾−1 

Thermal time constant 2 𝑠 

Viscous forces 1+𝑣∗  

Voltage 1 𝑉 

Volume (V) 3 𝐿 

*𝒗= fluid relative velocity 

 

2.3 Diffusion 

Diffusion is a physics process, driven by a gradient in chemical potential, as a result 

of the random walk of the diffusing species (molecules or atoms). A gradient is the 

change in the value of a quantity over a distance, e.g., concentration gradient. 

Figure 2.2 shows diffusion from microscopic to macroscopic scales. 

 

 

https://en.wikipedia.org/wiki/Gradient
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Figure 2.2 Diffusion at different concentrations of solutes. Initially, the solute molecules are 

on the left side. The barrier (black line) is then removed, and diffusion begins. (a) A single 

molecule moves around randomly. (b) At slightly higher concentrations, there is a statistical 

trend that the molecules will eventually become distributed randomly and uniformly. (c) At 

high concentrations, all randomness disappears. The molecules appear to move smoothly and 

are deterministically driven by concentration gradient. 

 

2.3.1 Scaling and diffusion 

Diffusional effects come into play yet a smaller scale than surface tension. The 

diffusion coefficient D for a spherical molecule is given by equation 2.1: 

𝐷 =
𝑘𝑇

6𝜋𝑟ŋ
(𝑚2/s) 

Where k = the Boltzmann constant (1.38×10𝑚−23𝐽𝐾−1) 

T = absolute temperature (K) 
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ŋ = abosulte viscosity (𝑘𝑔/𝑚 ∙ 𝑠) 

r = hydrodynamic radius 

According to the random walk equation, the time 𝜏 required for a molecule to 

diffuse over distance 𝑥 of a molecule in solution is given by equation 2.2 

𝑥 = √2𝐷𝜏                                                                         

From equation 2.2, a molecule diffuses a million times faster over a length of 10 µm 

than over 1 cm in the bulk of a liquid. Therefore, mixing is very fast at the micro 

level, although only mediated by diffusion [8]. Following this line, a large set of 

micro-chemical reactors arrays can be envisioned. Mixing small amounts of fluid in 

these parallel micro-reactors will lead to much greater mixing and reaction 

efficiency. 

 

2.3.2 Scaling in fluid mechanics / microfluidics 

Matters related to fluid flow are severely affected by scaling effects, with surface 

tension becoming predominant.  

The flow pattern in different fluid flow situations can be predicted using 

the Reynolds number (Re) [9,10]. This is a dimensionless quantity of great 

importance in fluid mechanics. At low Re, the flow is extremely laminar, where 

mixing fluids in micro-channels is very difficult due to the dominance of viscous 

forces. Turbulent flow occurs at high Re due to the dominance of inertial forces. 

The Reynolds number is defined as [11] 

Re ∝ vdρ/η 

where d is the diameter of the channel, v, ρ and η are the velocity, density and 

viscosity of the fluid, respectively. 
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2.4 Micro-Nano fabrication 

The fundamentals of MNF explore the science of miniaturization. Modern 

manufacturing has experienced a significant revolution in miniaturization and 

integration, evolving at a remarkable pace, as predicted by Moore’s law [12], which 

was pioneered by integrated circuits in the semiconductor industry [13,14], and 

are, consequently, extended to other applications.  

MNF techniques have the ability to control features to the nanometer scale for the 

highly reproducible mass-fabrication of systems with complex geometries and 

functionalities; the ability to miniaturize already-existing systems and the capacity 

to including electronics within structural devices. 

Different MNF techniques have emerged to meet ever increasing industrial 

demands [15]; functional devices with 3D micro/nano-structures exhibit excellent 

performance over their macroscale counterparts. 

The principal MNF techniques are described in this chapter. The applications of 

MNF techniques in the construction of devices for the study of electronical, 

chemical, biological, and physical processes are also briefly introduced. For 

example, the development of microelectromechanical systems (MEMS), ultra-large 

scale integrated circuits (ULSI), miniaturized total analysis system (m-TAS), and 

precision optics [13,16,17] etc.  

 

2.4.1 Microfabrication techniques 

The microfabrication process utilizes techniques adopted from the well-

established field of semiconductors, or techniques that are specifically designed for 

microfabrication to produce the desired pattern. Photolithography selectively 

exposes a light sensitive polymer to transfer a customized shape onto the surface 
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of a material. Soft lithography generates and utilizes the mold of a patterned 

structure out of an elastic polymer. Film deposition consists of the formation of a 

micron-thick layer of materials (plastics, silicon-containing compounds, metals, 

and biomolecules) [18] on the surface of a substrate, playing a structural or 

functional role. Etching creates topographical features through either chemical or 

physical processes to selectively removes undesirable materials from the surface 

of the substrate. Bonding utilizes reversible or irreversible bonding formed 

between microstructures, with or without the intermediary layers to generate 

tight seals or to obtain the desired microstructures. 

The following section will discuss photolithography and soft lithography in more 

detail. 

Photolithography 

Photolithography, also called optical lithography or ultraviolet (UV) lithography, is 

a simple, cost-effective and readily employed patterning method. It transfers a 

geometric pattern from a photomask to a light-sensitive photoresist on the 

substrate by exposing to UV light, which changes the solubility of the exposed 

resist. The photolithographic technique has been thoroughly reviewed previously 

[18,19]. Figure 2.3 summarizes the main steps in photolithography. 
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Figure 2.3 Process of photolithography. Adapted from [20], Copyright ©  2006 Dove Medical 

Press Limited. 

 

In the first step, a light-sensitive photoresist is spin-coated onto a substrate 

material (silicone or glass). A photomask with opaque regions in the desired 

pattern is placed on top of the substrate and photoresist. In the second step, the 

assembly is irradiated with UV light, selectively illuminating regions of the 

photoresist, generating the appropriate pattern. Depending on the purpose of 

lithography, two kinds of photoresists can be chosen: positive photoresists and 

negative photoresists. The fundamental difference between these two photoresists 

is the change in solubility when exposed to light. Upon exposure, a positive 

photoresist will become more soluble, such as SU-8 [21], while a negative 

photoresist will become crosslinked. 

Photolithography has reached wide acceptance because of the high resolution, 

stringent requirements regarding alignment and a variety of pattern attributes. 
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Nonetheless, this technique has the limitation of requiring an electronics-qualified 

cleanroom facility. Photolithography is not capable of fabricating complicate 3D 

micro- and nanostructures due to rectilinear light propagation. Little or no control 

over surface chemistry is provided, thus it is not applicable to curved or non-

planar substrates. The feature sizes are also limited by the wavelength of the light 

source, which ultimately restricts sub-100 nm scale patterning [22,23].  

Soft lithography 

Soft lithography [19] relies on photolithography to generate the reusable mold. 

Once the mold is ready, the subsequent fabrication tasks require no clean- room 

manipulation, only a printing, molding or embossing procedure with an 

elastomeric stamp is needed. 

It provides access to 3D curved and complicated structures, and generates well-

defined and controllable surface chemistries [24,25] at a low cost with wide 

choices of materials.  

A large number of patterning techniques, using organic and polymeric materials 

referred to as soft matter by physicists, form the basis of soft lithography. The 

elastomeric stamp will generate patterns as relief structures on its surface, the 

mechanical properties of which are critical to transfer a pattern with high fidelity. 

Most of work has focused on silicone-based rubber or cross-linked PDMS due to 

their high stability and easy availability. As examples, the commonly used 

techniques, microcontact printing (μCP), replica molding (REM) and solvent 

assisted micromolding (SAMIM) are described briefly and outlined in Figure 2.4.  

μCP, also known as microstamping, utilizes a PDMS mold to transfer molecules 

onto the surface of the stamp and are “printed” on a receiving surface upon 

stamping [18,26,27]. Both REM and SAMIM are based on molding or embossing 

with an elastomeric stamp. REM [28] transfers the PDMS pattern by solidifying a 

liquid polymer against the PDMS mold, embossing a structure in the polymer. 
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SAMIM [29,30] forms patterned structures using soft molds in a polymer under 

ambient conditions. 

 Photolithography versus soft lithography 

Compared to photolithography, soft lithography has more material choices, as well 

as experimental simplicity and flexibility. It provides access to 3D structures on 

nonplanar, curved and soft substrates, and generates well-defined and controllable 

surface chemistry at a low cost. Nevertheless, it still relies on the use of 

photolithography to generate the master. 
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Figure 2.4 Schematic illustration of the four major steps involved in three major soft 

lithography techniques [31]. Copyright ©  2010 Springer Nature.  
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2.4.2 Nanofabrication techniques 

Nanofabrication utilizes similar principles to those of microfabrication to achieve 

features at the nanoscale range. 

Lithography  

Different lithographic techniques have been proposed to accomplish this 

miniaturization and improved quality of the fabricated elements for different 

purposes. 

 Electron beam/ion lithography (EBL/EIL) 

EBL [32] utilizes an electron beam to pattern a resist while EIL [26] utilizes ions in 

place of electrons; both are called energy beams. Energy beam techniques 

introduce surface and sub-surface damage to the workpieces, which reduces their 

performance. As the electron/ion beam is exposed to a desired region of the resist, 

the solubility of the resist will be changed. By immersing the resulting film into a 

developer, selective removal of the resist is achieved. 

Specifically, the focused energy beam is used to directly draw custom shapes on an 

electron/ion-sensitive resist covered surface [32–35]. However, issues of extensive 

time consumption and high-cost arise. 

 Colloid monolayer lithography 

Colloid monolayer lithography is an economic alternative to energy beam 

lithographic methods. It utilizes self-organized one- or 2D colloidal layers to 

fabricate nanostructures [36]. The colloidal layer can be either removed or kept in 

place afterwards based on application. 

The spatial distribution array depends on the size and geometry of the colloidal 

particles, colloid concentration, and other parameters.  
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Colloidal silica spheres can also act as lenses, intensifying the laser beam effect on 

the substrate, used for high throughput patterning of nanoholes [37]. 

 X-ray lithography 

This technique employs soft X-rays to transfer a desired pattern from a mask to a 

substrate [26].  

 Ion projection lithography 

Ion projection lithography employs a mask to prevent exposure of the designed 

region from hydrogen or helium ions [26].  

 Nano imprint lithography  

Nanoimprint lithography (NIL) has attracted considerable attention as one of the 

most prominent lithographic techniques. NIL uses a mold to define the nanoscale 

deformation of a resist, cured either by heat (thermoplastic) or UV (photocuring 

resist). After removal of the mold, the patterned resist can be used as is or treated 

with subsequent techniques to generate either a final device or a new mold for 

further processing. 

The earliest form of NIL proposed by Chou et al. [39–41], based on thermoplastic 

polymers as resist materials, as a new nonconventional lithographic nanostructure 

manufacturing method,  which has been developed and investigated since.  

Principle  

Standard thermoplastic NIL has three basic steps, as shown in Figure 2.5. In the 

first step, a mold predefined with topological patterns is pressed against the 

thermoplastic resist spin-coated substrate with increased temperature and 

elevated pressure. Above the glass transition temperature, the resist becomes a 

viscous liquid and can therefore be readily deformed into the mold. The pattern on 

the mold is transferred onto the softened resist, and after being cooled down, the 

resist hardens.  
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Figure 2.5 Schematic process of nanoimprint lithography [40]. Copyright ©  1996 American 

Vacuum Society. 

 

The mechanical deformation creates a thick contrast pattern in the resist, which 

enables grayscale lithography with only a single patterning step. No other 

conventional lithography techniques are able to achieve this [43]. The patterned 

resist remains on the substrate after removing the mold. In the third step, the 

pattern is transferred using an anisotropic etching method. 

NIL does not utilize energetic beams; thus, it is more of a physical than chemical 

process, and is fundamentally different from stamping using a monolayer of self-

assembled molecules. Therefore, the resolution of NIL is not limited by issues such 

as wave diffraction, scattering and interference in a resist and backscattering from 

a substrate. 

Since the initial idea of NIL was proposed, numerous studies and improvements 

have been suggested; these studies have maximized its effectiveness in patterning 
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by minimizing its limitations. Specifically, photo-NIL has been proposed in order to 

substitute the high temperature required to soften the thermoplastic resist with 

UV-light to harden the resist for pattern transferring [44–50]. Based on these two 

hardening methods, three different types of nanoimprint lithography methods 

have been suggested in order to achieve high resolution, large-area, and low-cost 

patterns with different advantages and disadvantages: soft-mold NIL, hard-mold 

NIL, and hybrid-mold NIL, as shown in Table 2.3. A summary of various soft mold 

materials in detail is shown in Table 2.4.  Micro lens arrays with two focal lengths 

fabricated using NIL is shown in Figure 2.6.  

Table 2.3 Pros, cons, and research improvements for NIL based on hard mold, soft mold, and 

hybrid molds [38]. Copyright ©  2016 B. Kwon and Jong H. Kim. 

Lithography 
types 

Example Pros Cons Improvements 

Hard mold 
Silicon, 
Quartz 

High resolution 
(<100 nm), high 
chemical stability, 
high mechanical 
strength for high 
aspect -ratio 
features 

Low defect 
accommodation, 
high-cost, breakage 
of the mold during 
demolding, difficult 
fabrication process 
for the working 
molds 

Use of blade for 
demolding to minimize 
the breakage of the 
molds, use of 
hydrophobic silane 
layers to coat the 
molds to avoid 
accumulation of resist 

 

Soft mold 
ETFE, 
PDMS, 

PFPE, PET 

Generous defect 
accommodation, 
easiness of 
fabricating 
working molds, 
flexibility for 
nonflat surface, 
high chemical 
stability, cost-
effectiveness 

Low resolution 
(>150 nm), 
relatively low 
mechanical strength 
for high aspect -
ratio features 

Development of 
various types of 
functional polymers in 
order to enhance the 
mechanical strength 
and chemical stability 
for resolution 
improvement 

 

Hybrid mold 
MINS, 

Ormostamp, 
I-UVM-100 

Combination of 
advantages of hard 
and soft molds 

Relatively longer 
fabrication process 
compared to soft 
working molds 

Introduction of the 
hydrophobic silane 
chain to the molds in 
order to reduce coating 
time to avoid resist 
accumulation 
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Table 2.4 Summary of various soft mold materials adapted from [42], Copyright ©  2013 Lan; 

licensee InTech. 
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Figure 2.6 Micro lens arrays with two focal lengths fabricated using NIL. a) Schematic and b) 

SEM images of micro lens arrays of varying shapes patterned by NIL. c) Optical images of the 

lens type 1(left) and type 2 (right) in black & white. Scale bars are 100 µm. Reproduced from 

[51], Copyright ©  2015 Optical Society of America. 

 

Molecular self-assembly 

Molecular self-assembly is based on thermodynamically favored interactions of 

organic or inorganic molecules [52,53], namely DNA, proteins and peptides, to 

control pattern formation at the sub-nanometer scale. Molecules are brought 

together into energetically stable conformations. This spontaneous movement is 

favored by noncovalent forces, such as hydrophobic, electrostatic interactions, van 

der Waals, hydrogen bonding, etc.  
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Electrically induced nanopatterning 

Electrically induced nanopatterning consists of two electrodes separated by an air 

gap δ as indicated, in Figure 2.7. A thin dielectric material liquid film is applied to 

the bottom electrode. When exposed to an external magnetic field, an electric field 

gradient is generated. The technique utilizes electrostatic interactions between the 

film and the gradient to produce nanoscale lateral patterns and structures [54]. 

Porous template for nanowire array with high densities can be fabricated using the 

technique [55].  

 

 

Figure 2.7 Schematic of electrically-induced nanopatterning process. Based on a figure 

from [54], Copyright ©  2000 Springer Nature. 

 

Rapid prototyping 

The overall process – from the generation of complex geometrical patterns to the 

fabrication of functional multi-layered structures, structures with chemical 

functionality  [37,56] and scaffolds for tissue engineering [57] – is referred to as 

'rapid prototyping' [58].  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676643/figure/f4-ijn-1-483/


Chapter 2 Micro-Nano fabrication 

 

41 
 

2.4.3 Materials for Desktop MNF and applications 

Remarkable advances of material sciences and technologies have helped to 

transition MNF from a cleanroom environment to a desktop setup. In addition to 

the conventional silicone-based materials, a rapidly growing number of new 

functional materials, as listed in Table 2.5 [59], have been introduced to MNF 

society [60]. 

For instance, environmentally responsive materials can find their applications in 

biosensing and bio-manipulation platforms [61], identifying changes in pressure, 

temperature, or target molecules, controlling release systems to analyze their 

environment, controlling the release of therapeutic agents, modifying the targeting 

and release properties of biodegradable nanoparticles [62,63], and functionalizing 

biological micro-nanosystems [64] made out of flexible polymers. Also, nanoscale 

building elements form scaffolds for tissue engineering [65,66].  

Table 2.5 Different materials used in MNF, adapted from [59], Copyright ©  2010 Tingrui Pan, 

Wei Wang, open access at Springerlink.com. 

Material 
categories 

Represent
ative 
materials 

Typical 
micro-
nanofabric
ation 
methods 

Biocompatibi
lity and 
toxicity 

Biomedical applications 

Thermoset 
polymers 

PDMS Molding Biocompatible 

Used in almost all 
microfluidic and bio-
/nanopatterning 
applications 

Thermopl
astic 
polymers 

PMMA 
Hot 
embossing 

Biocompatible Construct for microfluidics 

COC 
Hot 
embossing 

Biocompatible 
Used in optofluidic 
applications primarily 

Polystyrene
/polyolefin 

Heat-
activated 

Biocompatible Device packaging; pattern 
transfer; cell culture 
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shrinkage platform 

Photopatte
rnable 
polymers 

SU8 

KMPR 
Lithography Toxic 

Master for microfluidics 
and bio/nanopatterning 

Dry film Lithography Biocompatible 
Master for microfluidics 
and bio/nanopatterning 

PEG Lithography Biocompatible 

Used in cellular and 
biomolecular 
investigations and 
implantations 

Thiolene Lithography Biocompatible 
Solvent-resistant for 
biocompatible applications 

Photopatte
rnable 
PDMS 

Lithography
, molding 

Usually toxic 
due to the 
additive 
chemicals 

Construct for microfluidics; 
device packaging 

Nanomate
rials 

Nanoparticl
es 

Self-
assembly 

Under study 
Nanofluidics, nanosensing, 
nanomanipulation 

Nanofiber 
Electrospin
ning 

Depended on 
the used 
polymer, 
usually 
biocompatible 

2D/3D cell culture scaffold 

Nanocomp
osites 

Molding 
Depended on 
the functional 
components 

Providing conductive, 
hydrophobic properties 

Biological 
materials 

Silk 
Electrospin
ning 

Biocompatible 
after surface 
treatment 

2D/3D cell culture scaffold, 
implantation 

DNA 
Self 
assembly 

Biocompatible 
Nanomachinary, 3D 
nanostructures 

Virus 
Self 
assembly 

Biocompatible 
Nanomachine, 
nanostructure synthesis 

Chitosan 
Electrodepo
sition 

Biocompatible Bioactive coating 
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Nanofabrication utilizes cutting edge technology and is prominent in the high end 

manufacture industry, for instance, high-tech microchips and microcontrollers 

using different materials. It has attracted scientists working in the military, 

aerospace and medical industries. It deals with the composition and properties of 

atoms in a material, managing to save space, time and money. 

Integrated circuits 

The introduction of nanofabrication has revolutionized integrated circuits (ICs), a 

crucial part of electronic devices industry for many decades. The programmable 

nanomachines allows for fabrication of circuits atom by atom, analogous to the 

construction of a building brick by brick. 

Biomedical research 

In addition, MNF opens up doors to the study and manipulate molecules, cells, and 

tissues. It allows for the investigation of pathological mechanisms and novel 

treatment options by constructing new synthetic systems. Physiological responses 

can also be altered through MNF. Figure 2.8 shows the MNF application in 

biomedical research, which is a 3D microfluidic on the paper-based substrate for 

point of care. Point-of-care diagnostics, integrated cell culture as well as micro-

nanoscopic bio-manipulation have advanced greatly thanks to MNF techniques. 
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Figure 2.8 Application of MNF in biomedical research. 3D microfluidic on the paper-based 

substrate adapted from [71]. Copyright ©  2008 National Academy of Sciences. U.S.A. 
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Drug delivery devices 

MNF produces drug delivery vehicles with capabilities surpassing the current drug 

delivery systems by accurate control their size, topography, architecture, and 

functionality. Those drug delivery vehicles functionalize in a highly predictable 

manner, both in vitro and in vivo. 

Drug delivery systems include injectable micro- and nanodevices, implantable, 

transdermal devices (stents for drug delivery), and microfabricated bio- and muco-

adhesive systems; microneedles for transdermal drug delivery devices [67–69] are 

also described [20]. Figure 2.9 shows an example of RIE fabricated solid silicon 

microneedles.   

 

Figure 2.9 RIE prepared silicon microneedles (25µm in height) for transdermal drug delivery. 

Reproduced from [70]. Copyright ©  2003 National Academy of Sciences, U.S.A. 
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Chapter 3 

Microfluidic systems and “lab-on-a-

chip” 

Microfluidic systems or “lab-on-a-chip” (LOC) is a subset of 

microelectromechanical system (MEMS) devices and are often referred to as 

"micro total analysis systems" (µTAS) or miniaturized analysis systems. Since its 

inception [1,2], it has revolutionized many aspects of quantitative biochemistry 

and analytical chemistry. The concept of µTAS was proposed by Manz et.al. [3], in 

which sample pre-treatment, separation and detection were incorporated into 

silicon chip analyzers.  

Both the growing number and improved quality of published scientific articles and 

patents reflect the importance of µTAS, spanning from basic research to 

commercial applications [4]. It is highly multidisciplinary and serves as a focal 

point to bring together multidisciplinary research fields, including electronics, 

physics, chemistry and biology, among others. It deals with the precise control and 

manipulation of the behavior of fluids that are constrained on a single integrated 

chip with size from mm to a few square cm. 

Typical advantages [5–7] are summarized in Table 3.1. 

Table 3.1 Typical advantages of microfluidics systems 

Compactness of the systems, allowing massive parallelization, leading to high throughput 

Low fluid volumes consumption and cost effectiveness 

Faster analysis and response times which leading to better process control and part 
quality verification [8] 

Cost-effective disposable chips, allowing fabrication in mass production [9] 
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The most prominent disadvantages [10] are summarized in Table 3.2. 

Table 3.2 Typical disadvantages of microfluidics systems 

The micro-manufacturing process can be complex and labor intensive [11] 

Most LOCs are novel proof of concepts, fully developed for widespread use needs time 
[12] 

Effects of micro domain [12], making lab processes  replication quite challenging and 
more complex  

 

Advances in microfluidics technology have revolutionized molecular biology 

procedures for DNA analysis, e.g. polymerase chain reaction (PCR) and DNA 

sequencing; LOC systems for synthesis and analysis; microchips for drug 

screening [13]  and cell culture. The basic idea of microfluidic biochips involves 

integrating the total sequence of lab processes, such as assay operations including 

sample preparation, pre-treatment and detection on a single chip [14]. In this 

thesis, the focus is put on PCR, where PCR is analyzed from analogue to digital and 

from the microscale to nanoscale. 

 

3.1 Microfluidic Sanger sequencing 

With the development of microfluidics, Sanger sequencing, described earlier, was 

performed on a microfluidic platform to reduce reagent usage as well as cost.  The 

entire amplification as well as the separation of DNA fragments is integrated on a 

single glass wafer [15]. Microchips were applied to increase the throughput of 

conventional sequencing [16]. 

 

https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Polymerase_chain_reaction
https://en.wikipedia.org/wiki/Assay
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3.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) is a reliable way to repeatedly replicate a 

particular DNA sequence across several orders of magnitude in a short time with 

sufficient reaction components, including double-stranded DNA (dsDNA), 𝑀𝑔𝐶𝑙2, 

Tris-Cl, and four deoxynucleoside triphosphates (A, T, C, G), as well as primers. The 

method was conceived in the spring of 1983 by Kary Mullis [17–20] and is 

applicable to a large number of fields in modern biology and related sciences [21], 

such as biomedical research, criminal forensics, and molecular archaeology [22]. A 

schematic diagram of PCR is shown in Figure 3.1, where Tm denotes melting 

temperature.  
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Figure 3.1 Color-coded diagram of PCR, 1. The DNA double helix is denatured at around 95°C 

and the strands separate. 2. The temperature is decreased to slightly below the melting 

temperature of the primers being used. Both primers hybridize to the complementary single-

strand of DNA. These primers are supplied in excess to ensure that the strands do not re-

anneal to one another. 3. Polymerization (extension) occurs via a DNA polymerase in the 5' 

to 3' direction on each strand. 4. The incorporated nucleotides give rise to new strands that 

extend past the sequence of interest. 5. The previously polymerized strands act as a template 

for the other primer (see the blue, thin dotted arrow). 6. Polymerization occurs via DNA 

polymerase in the 5' to 3' direction on each strand, this time stopping at the end of the 

sequence of interest. 7. The incorporated nucleotides give rise to new strands that encode the 

sequence of interest. 8. The synthesized strands encoding the sequence of interest anneal to 

one another to form the end product.  
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An important observation can be seen in Figure 3.1, where the original template 

will denature to a new single stranded DNA (ssDNA) of indefinite length [19] 

limited by the length of the template. The ssDNA of indefinite length in the 

subsequent cycles will produce ssDNA of length defined by the forward and 

reverse primers. As a result, the amount of indefinite length product increases 

linearly with cycle number while the amount of amplicon with a length defined by 

primers increases exponentially [23]. The product with an indefinite length can be 

negligible compared to the exponential growth of the desired fragment of DNA; 

subsequent detection methods using gel electrophoresis, an Agilent BioAnalyzer or 

melting curve analysis (MCA). 

 

3.2.1 Quantification of DNA 

Gel electrophoresis  

Gel electrophoresis is a method used to separate and analyze DNA, RNA, proteins 

and their fragments [24], or as a preparative technique prior to mass spectrometry 

(MS), DNA sequencing, or Southern blotting for further characterization.  

Gel electrophoresis is usually performed for analytical purposes. Before the 

invention of real-time PCR, DNA gel electrophoresis was often performed to 

analyze the amplification results of PCR, in terms of specificity, relative amounts 

and length.  This involves using an electric field to move the charged molecules 

through a matrix of agarose or other substances, based on their size and charge 

[25]. 

Since DNA is negatively charged, a mixed population of DNA fragments will be 

separated when pulled toward the positively charged end of the gel. It can be used 

to estimate the size of DNA and check the specificity of PCR result. Figure 3.2 

shows an example of gel analysis with each band denoting a specific size of DNA. 
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Figure 3.2 left: Separation principle of electrophoresis; right: gel electrophoresis picture 

taken by Bio-Rad imager.  

 

Agilent 2100 system 

The Agilent 2100 Bioanalyzer DNA assay allows the analysis of PCR products, with 

high resolution and sensitivity [26].  

When analyzing PCR products with DNA kits designed for a Bioanalyzer, these kits 

outperform traditional slab gels, providing extra information about each 

fragment’s precise size and concentration. In addition, a large linear dynamic range 

of analysis allows for the discrimination of minute differences in the amplified 
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products. Figure 3.3 shows the DNA 1000 kit ladder, used as a calibration standard 

for PCR products. 

 

Figure 3.3 Agilent BioAnalyzer DNA 1000 kit ladder 

 

 

3.2.2 Real-time PCR 

As described in previous sections, a gel or a commercial analyzer is used to access 

samples after PCR thermal cycling. To improve the efficiency of post-PCR analysis, 

experiments with fluorescent markers are employed. One of the first examples is 

[27], where the primers used for PCR were modified at the 5’-end with a 

fluorescent dye. This pre-fluorescent modification eliminated the requirement for 

post-analysis labelling. The advancement increased the specificity of the detection 

and provided the information about the amplification in real-time. Furthermore, 

the detection of single nucleotide polymorphism (SNPs) is enabled as long as these 

are spanned by the primers.  
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A couple of years later, a group of scientists led by Russel Higuchi experimented 

with the addition of ethidium bromide (EtBr) for real-time purposes [28]. EtBr is 

an intercalating dye that selectively binds to dsDNA in a reversible manner and 

only expresses fluorescence when bound to dsDNA, retained non-specifically 

between the two strands.  Therefore, information regarding the concentration of 

dsDNA in real-time during thermal cycling can be obtained simply through 

fluorescence measurements [29]. The method is called real-time PCR, also referred 

to as quantitative PCR (qPCR) [30], because fluorescence data are gathered while 

the synthesis process is taking place. 

Since EtBr is considered as carcinogen [31], other intercalating dyes, such as SYBR 

Green I and Eva green are often used as a replacement. SYBR Green I absorbs blue 

light (λmax = 497 nm) and emits green light (λmax = 520 nm), the assay chemistry 

is shown in Figure 3.4(a).  

Another method for the simultaneous detection and quantification of DNA involves 

fluorescently-labelled probes encoding a specific sequence, called the TaqMan 

assay; this is, shown in Figure 3.4(b).  
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(a) (b) 
 

Figure 3.4 (a) SYBR Green dye assay chemistry. In the first step, SYBR Green I binds to the 

dsDNA and fluoresces. During denaturation, it is released and the fluorescence is drastically 

reduced. The third step is polymerization, during which primers anneal and extension begins. 

When polymerization is complete, SYBR Green I binds to the dsDNA, resulting in a net 

increase in fluorescence. (b) TaqMan assay chemistry. At first the reporter (R) is quenched by 

the quencher (Q), with further extension R is cleaved from the Q, reveals the fluorescence. 
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Melting Curve Analysis 

With the development of real-time PCR using fluorescent markers, this allowed the 

observation of PCR amplification and analysis required for sequential operations. 

In [32], the fluorescence of SYBR Green I was continuously observed throughout 

thermal cycles. A rapid loss of fluorescence happened at the denaturation of the 

template during one thermal cycle. The temperature, at which the rapid loss 

occurred, or at which 50% of DNA is denatured, called melting temperature (Tm), 

is a characteristic of the template. It is influenced by the length, GC content and 

sequence of the DNA fragment. Melting curve analysis (MCA) is an assessment of 

the dissociation-characteristics of dsDNA in response to thermal heating. Ririe et al. 

[32] exploited the characteristics of PCR products by running a group of linear 

temperatures from extension to denaturation while continuously recording 

fluorescence signals. Afterwards, background fluorescence was removed. A plot 

with respect to temperature against the fluorescence signal recorded correspond 

to the temperature was drawn, called a melting curve.  The first negative derivative 

of the melting curve was plotted, from which melting peaks can be obtained. 

Melting peaks allow the differentiation of different DNA fragments or fragments of 

the same length but with different sequences or GC contents. In contrast, gel 

electrophoresis is unable to differentiate between fragments of the same length. 

Melting peaks can also be used to assess the specificity of the amplified products, 

contamination caused by manual manipulations or primer dimers. The method is 

able to differentiate between Tm values of less than 2°C.  The information from 

which the presence and identity of SNPs can be inferred gives vital clues to a 

molecule's mode of interaction. An exemplar MCA figure is shown in Chapter 4. 
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3.2.3 Optimization 

Several years later after the invention, PCR was improved with usage of a 

polymerase extracted from Thermus aquaticus (Taq) [33]. Unlike the polymerase 

from Escherichia coli used in original PCR method, Taq polymerase does not 

deactivate at high temperatures of around 95°C, which is a requirement of the 

denaturation step. Thus, there is no subsequent addition at every extension step, 

saving labor and removing an error-prone step.  

The temperature chosen for the annealing and extension step was also optimized 

to improve the specificity and throughput of the amplicon. In thermal cycled PCR, 

temperature plays a very important role in each step. In particular, the 

hybridization step is where highly-matched primer-template hybridizes together, 

while poorly matched primer-templates dissociate. Due to the short length of the 

fragments, the extension step is usually omitted in real-time PCR as the enzyme is 

able to perform extension during the transition between the alignment stage and 

the denaturing stage [34,35]. For more detailed information and an explanation 

please refer to the Chapter 4 of the thesis, where a temperature-dependent dye is 

employed as a temperature calibrator to optimize the multiple annealing 

temperatures in a single run, leading to great time and cost savings. Figure 3.5 

shows the commercial machines in house and used in this work. 
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(a) (b) 

Figure 3.5 Commercial LightCycler and gradient PCR machine 

 

PCR applications 

-Medical applications 

PCR is very popular in medical applications, as summarized in Table 3.3. 

Table 3.3 Medical applications of PCR 

The isolation and amplification of tumor suppressors [36] 

Detect translocation-specific malignant cells at a high sensitivity [37] 

Quantify and analyze single cells [30] 

prenatal testing [38] 

preimplantation genetic diagnosis [39] 

tissue typing, vital to organ transplantation [40] 

Study alterations to oncogenes , customize individual therapy regimens [41] 

Early diagnosis of malignant diseases [42] 

 

https://en.wikipedia.org/wiki/Oncogene
https://en.wikipedia.org/wiki/Malignant
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-Infectious disease applications 

PCR is very instrumental in facilitating the diagnosis and treatment of infectious 

diseases. Detailed applications can be seen in Table 3.4.  

Table 3.4 Infectious disease applications of PCR 

Rapid and highly specific diagnosis of infectious diseases [43], allowing immediate and 
effective therapy 

Permits identification of non-cultivatable or slow-growing microorganisms or viruses [44] 

Detection of infectious agents and the discrimination of non-pathogenic from pathogenic 
[43,45]. 

The human immunodeficiency virus (or HIV) [46] 

Tuberculosis [47] 

Detect viral DNA 

Detect antibiotic resistance effects of therapy [48] 

Monitor the spread of a disease organism [49] 

Detect the sequences that are within the pertussis toxin gene [50] 

 

-Forensic applications 

Since PCR can generate millions copies of desired DNA fragments in short time, it is 

very helpful for forensic analysis with small amounts of samples, as summarized in 

Table 3.5. 

Table 3.5 Forensic applications of PCR 

Forensic analysis with extremely small amounts of sample 

High discriminative power to identify genetic relationships between individuals [51] 

Determine evolutionary relationships among organisms [52] 

Real time sex determination, both ancient specimens and current suspects [53] 

https://en.wikipedia.org/wiki/Virus
https://en.wikipedia.org/wiki/HIV
https://en.wikipedia.org/wiki/Influenza
https://en.wikipedia.org/wiki/Forensic_analysis
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-Research applications 

PCR has a variety of research applications, as can be seen in Table 3.6. 

Table 3.6 Research applications of PCR 

Generating hybridization probes for Southern or northern blot hybridization and DNA  
cloning [54] 

Allows isolation of DNA fragments from genomic DNA 

Extract segments from a completely unknown genome, or can generate just a single strand 
of an area of interest [55] 

Facilitate DNA sequencing  

Expedite recombinant DNA technologies [56] 

Sequence-tagged sites [57] 

Analysis of ancient DNA [58] 

The phylogenic analysis of DNA from ancient sources [59] 

The study of patterns of gene expression [60] 

Enhanced the more traditional task of genetic mapping [61] 

 

3.3 Digital PCR 

In addition to closed-channel continuous systems, novel open structures are used 

as an alternative. In open structures, those discrete droplets are manipulated 

independently on a substrate, or encapsulated by another immiscible liquid to 

prevent evaporation or cross contamination. The approach is referred to as digital 

microfluidics following the analogy of digital microelectronics. In [23], four 

aqueous droplets were encapsulated by oil to form a virtual reaction chamber 

(VRC) for PCR, while in [62], VRC was employed for DNA pyrosequencing by 

controlling droplets movement using a magnet. Moving droplets using capillary 

sources on a digital track was pioneered in [63]. Other manipulation techniques 

https://en.wikipedia.org/wiki/Nucleic_acid_hybridization
https://en.wikipedia.org/wiki/Hybridization_probe
https://en.wikipedia.org/wiki/Southern_blot
https://en.wikipedia.org/wiki/Northern_blot
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Sequence-tagged_site
https://en.wikipedia.org/wiki/Ancient_DNA
https://en.wikipedia.org/wiki/Phylogeny
https://en.wikipedia.org/wiki/Ancient_DNA
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Genetic_linkage
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such as surface acoustic waves and mechanical actuation [64,65] have also been 

demonstrated. Because each droplet is controlled independently [23,62,63], giving 

the systems a dynamic reconfigurability, as well as high flexibility and fault-

tolerance capability. 

In conventional PCR, where the amplification is exponential, nucleic acids are 

quantified based on the number of amplification cycles and the final amount of PCR 

product for a reference sample. Nevertheless, this calculation creates uncertainties 

and inaccuracies due to a number of factors, including non-exponential initial 

amplification cycles, an uncertain number of cycles prior to reaching PCR plateaus, 

and detectable sensitivities. Last but not the least is the fact that the PCR efficiency 

between a sample of interest and that of reference sample could be different. The 

validity and precision of the results are greatly impacted due to the exponential 

nature of PCR. 

Digital PCR (dPCR) is a refinement of qPCR that is used to directly quantify nucleic 

acid strands, transferring the exponential profile of PCR into a linear, digital format. 

It does not rely on a calibration curve for target quantification; neither reference 

standards nor endogenous controls are needed. dPCR is carried out in such a way 

that the sample is divided into a large number of compartments prior to 

amplification. The partitions allow for a more reliable collection and sensitive 

measurements of nucleic acid amounts, although it is also more prone to error if 

operated by inexperienced users [66]. The reaction is then carried out in each 

individual compartment independently, resulting in a binary readout of either 1 or 

0. 

The method relies on the assumption that sample partitioning follows a Poisson 

distribution resulting in single or zero copy of target per partition. The presence or 

absence of fluorescence in each partition is counted after amplification. By 

performing a Poisson statistical analysis on the number of “yes” and “no” 

responses, the absolute concentration of target present in the initial sample is 

https://en.wikipedia.org/wiki/Surface_acoustic_wave
https://en.wikipedia.org/wiki/Fault-tolerance
https://en.wikipedia.org/wiki/Fault-tolerance
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determined. This provides a sensitive and reproducible way of measuring the 

amount of nucleic acid present in a sample. 

 

3.3.1 Droplet microfluidics 

Droplet microfluidics is a subcategory of microfluidics where discrete volumes 

(from μL to fL) of fluids in immiscible phases are manipulated. The fluids follow 

laminar flow regimes and have low Reynolds numbers if droplets are to be formed. 

This further expands microfluidics into research applications in a digital format, 

such as dPCR, sorting and sensing, single cell analysis, etc. It is well suited for high 

throughput experiments [67], generating a large number of isolated compartments 

in short time, and provides better mixing and encapsulation. A well understanding 

from droplet generation [64] to droplet sorting, merging and breakup [68–70] is 

required if more benefits are to be exploited. Two most common techniques used 

for droplet generation are T-junction [71] and flow focusing [71,72]. In Figure 3.6, 

the widths of the dispersed phase and continuous phase channels are indicated 

as Wd, and Wc .  Wo is the width of the orifice, and Lo the length of the orifice. 

Figure 3.7 shows the working flow of Bio rad QX100 for ddPCR, with Figure 3.8 

shows a model of ddPCR at different nucleic acids concentrations. 

 

(a) Droplet formation in a T-junction. Wd = 50 μm; Wc =100 μm. 

https://en.wikipedia.org/wiki/Droplet-based_microfluidics
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(b) Droplet formation in flow focusing device. Wd = Wc = 200 μm; Wo = 50 μm. Lo = 100 μm. 

Figure 3.6 Droplet formation using T-junction and flow focusing [71]. Copyright  ©  2011 by 

Hao Gu et al. licensee MDPI, Basel, Switzerland. 

 

 

Figure 3.7 Bio Rad QX100 working flow, adapted from [73], Credit: Christof Winter. 
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Figure 3.8 Adapted from [74], oil droplets containing fluorescent PCR target molecule.  

 

3.3.2 Recombinase Polymerase Amplification 

RPA is an isothermal alternative to PCR [75] developed and launched by TwistDx 

Ltd, a biotechnology company based in the UK. It aims to simplify the laboratory 

instrumentation required for PCR. Figure 3.9 shows an RPA cycle where all steps 

are operated at a low constant optimum temperature – 37°C. Figure 3.9 is the 

diagram created by TwistDx Ltd showing how RPA works. Starting with the 

formation of recombinase and oligonucleotide primer complexes, this technique 

targets homologous DNA. Then, strand exchange with a single-stranded DNA 

binding protein (SSB) forms a D-loop with SSB and binds the displaced strand of 

DNA, thereby preventing the dissociation of primers [76]. This is followed by 

polymerase synthesis. Parental strands separate and synthesis continues until two 

duplexes are formed. This is called a cycle. 

The guidelines for primer and probe design for RPA are less established compared 

to PCR; a certain degree of trial and error may be taken.  Recent results 

demonstrate that standard PCR primers can work just as well [77]. PCR probes 

should not be used for RPA, as most popular PCR probe systems are not suited for 

use with the TwistAmp® process. Most PCR probes employ the 5’ to 3’ nuclease 

activity of polymerases, the activity of which is fundamentally incompatible with 
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the RPA biochemistry. For example, RPA is not compatible with TaqMan probes 

(RPA polymerase is strand-displacing) or molecular beacons (RPA reactions 

contain single-stranded binding proteins that linearize them). 

Unlike PCR, which is initiated by a “hot-start”, RPA is initiated by a chemical 

initiator (magnesium acetate) instead. Upon the addition of magnesium acetate, 

RPA starts immediately, albeit more slowly, at room temperature. The best 

temperatures for RPA are 37–42°C, at which the reaction progresses rapidly with 

specific amplification results. Since RPA does not require thermal cycling or 

relative control units, and can rapidly amplify a few target copies to detectable 

levels, makes it a promising candidate for the rapid detection of viral genomic DNA 

or RNA [78–83], pathogenic bacterial genomic DNA [84,85], and short length 

aptamer DNA [86]. By adding a reverse transcriptase enzyme, RPA can detect 

RNA as well as DNA, no need for a separate step to produce cDNA [78–80]. In short, 

RPA is an excellent choice when it comes to develop low-cost, rapid, point-of-care 

tests. 

Figure 3.10 shows dRPA performed in a SlipChip, where the simultaneous 

initiation of all compartments with magnesium acetate occurs by a simple slipping 

step after pipette loading [87]. 
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Figure 3.9 DNA amplification by Recombinase Polymerase Amplification. Credit: TwistDx Ltd. 

http://www.twistdx.co.uk/our_technology/ 
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Figure 3.10 Schematic drawing of the two-step SlipChip for digital RPA. Adapted from [87]. 

Copyright ©  2011 American Chemical Society. 

 

3.4 Biomimetics 

Nature as a guide 

Ever since life is believed to have appeared on Earth, nature has gone through eons 

of evolution, natural selection and any other unguided natural progresses. For 

example, lotus leaves [88] show a self-cleaning effect, while rice leaves [89] exhibit 

anisotropic de-wetting behavior; a water strider’s leg [90] exerts super 
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hydrophobic forces, while geckos [91] have an interesting attachment mechanism. 

The understanding of the properties of biological materials and surfaces found in 

nature has guided scientists to imitate and produce those functions, using building 

blocks as small as possible to improve the variety and intelligence.  

The complex interplay between surface morphology and physical/chemical 

properties endorse unique micro-and nanostructures of surfaces [92–98]. 

In past decades, increasing efforts have been put into engineering and designing 

those bioinspired artificial, smart materials, and processes (e.g., software), paving 

the way for real-world applications [99–105], e.g., biomimetic fins [106], neural 

memory devices [107], smart micro-/nanocontainers for drug delivery [108] and 

therapeutic purposes [109,110], various biosensors with biorecognitive properties 

[102,111,112]. 

Biologically inspired design or adaption or derivation [113–118] from nature is 

referred to as “biomimetics”. The word biomimetics first appeared in Webster’s 

dictionary in 1974, with the definition: ‘the study of formation, structure or function 

of biologically produced substances and materials (as enzymes or silk) and biological 

mechanisms and processes (as protein synthesis or photosynthesis) especially for the 

purpose of synthesizing similar products by artificial mechanisms which mimic 

nature ones’ [119,120].  

The well-ordered multiscale structures [121] lend themselves to the creation of 

complex functionalities in bioinspired materials. Figure 3.11 shows plant leaves 

used as mold for microvascular network fabricated using PDMS. Figure 3.12 shows 

an overview of various objects from nature and their selected functions [119]. 

Resist-free antireflective nanostructured films fabricated using thermal NIL based 

on moth-eye shape were optimized in [122,123]. The highly enhanced AR 

properties demonstrate the potential for panel application. 
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Figure 3.11 Schematic steps of using natural leaves as a mold for microvascular networks [RSC] 

[124]. Copyright ©  2016 The Royal Society of Chemistry. 
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Figure 3.12 An overview of various objects from nature and their selected functions. 

Reproduced from [119]. Copyright  ©  2009 The Royal Society. 

 

The cicada, an insect which is abundant in nature, exhibits a highly organized 

hexagonal nanopillar structures over its transparent wings. Initially, the wing 

struck scientists as a perfect design for self-cleaning applications. Many 

publications have mimicked the design to obtain anti-fouling surfaces.  Figure 3.13 
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(a) shows SEM and AFM image of Cicada wing and (b) Bioinspired structure of 

Cicada wing.  

 

 

Figure 3.13 (a) Reproduced images and surface height maps for a cicada wing; left image 

reproduced from [125] (Copyright ©  2004 American Chemical Society) and right image 

reproduced from [126] (Copyright ©  2008 The Biophysical Society. Published by Elsevier Inc). 

(b) Bioinspired cicada wing surfaces; left image reproduced from [127] (Copyright ©  2008 

WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) and right image reproduced from [128] 

(Copyright ©  2009 Jilin University. Published by Elsevier Ltd.). 

 

As stated earlier in the thesis, dPCR can be performed in multiple formats, 

including wells, droplets, etc. Therefore, the fascinating nanopillar structure 

strikes me, instead, as a perfect mold for dPCR. By exploiting those highly 
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organized nanopillars, dPCR reactions run in those tiny nanowell arrays comes to 

mind. Therefore, the question is how to replicate these transparent wings as a 

stamp for imprinting? As can be seen, the wings are very thin and the structures 

are tiny.  

With a trial in cleanrooms and knowledge from related published scientific papers, 

a duplex imprint technique with solid replication results out of a cleanroom is 

proposed in Chapter 6 in this thesis. The well duplicated nanowell structures were 

first used to perform self-assembly experiments, in which 50 nm particles are 

easier to manipulate and visible. Further experiments on dPCR are still ongoing.  
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Chapter 4 

Thermal gradient for fluorometric 

optimization of droplet PCR in virtual 

reaction chambers 

This chapter is published in Microchimica Acta, 

doi:10.1007/s00604-017-2353-6. 

Graphical Abstract 

This paper aims to optimize polymerase chain reaction using a gradient feature in 

a single experiment, which will lead to great time savings and a reduction in 

reagent use. The exact temperature-time course of the sample is monitored 

through the use of Sulforhodamine B, which provides solution temperatures in real 

time throughout the thermal cycling required for the reaction. A proportional 

correlation between fluorescence intensity and product concentration was verified 

by commercial devices. There was no need for further post-analysis to determine 

the optimal temperature.  
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Abstract 

An open system with a thermal gradient is described for the optimization of 

polymerase chain reaction (PCR) optimization. Two thermal electric coolers were 

used as the heat source. The gradient is measured through encapsulated water-

based beads of a temperature-dependent dye inside mineral oil, thereby forming 

virtual reaction chambers. Nine droplets (with typical volume of 0.7 µL) were used. 

Using the intrinsic fluorescence of a temperature-sensitive inert dye 

(sulforhodamine B), the process involves measurement of  the fluorescence 

intensity at a known, uniform temperature together with the instrument-specific 

calibration constant to calculate an unknown, possibly non-uniform temperature. 

The results show that a nearly linear thermal gradient is obtained. This gradient 

function is a useful feature that can be used for optimization of a commonly used 

enzyme-activated reaction, viz. PCR. The emission spectra of fluorescent droplets 

during two-step PCR were monitored and the changes in fluorescence between 

50 °C and 100 °C quantified. As the gradient feature allows for testing a range of 

annealing temperatures simultaneously, the optimal annealing temperature can be 

easily determined in a single experiment. 

KEYWORDS 

Microfluidics; droplet PCR; thermal gradient; fluorometric sensing; temperature-

dependent dye; sulforhodamine B; virtual reaction chamber 

 

4.1 Introduction  

Microfluidic systems, or “labs-on-a-chip”, have revolutionized many aspects of 

quantitative biochemistry and analytical chemistry [1]. The potential advantages, 
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including portability, speed, high efficiency, and reduced reagent consumption [1-4] 

have been explored by the miniaturization and integration of the various chemical 

operations. As in digital microfluidics where droplets are manipulated on an open, 

hydrophobic surface, the virtual reaction chamber (VRC) offers a simple way of 

exploiting the advantages of microfluidics and droplets while circumventing many 

of the practical problems. It is formed by encapsulating single aqueous sample 

droplets with volumes in the low microliter range within slight larger oil droplets 

[5-7]. 

Temperature is the most fundamental element in biochemical reactions [8], either 

in micro or macro scale. Therefore, to obtain robust, unique and clean products, 

optimization needs to be performed. This optimal temperature is often reaction 

dependent, or relies on other factors such as the physical characteristics of the 

molecules in a particular solvent or equipment characteristics. On the other hand, 

temperature may affect the rate or efficiency of the reaction. Accurate control of 

sample temperatures in microfluidic systems is often very important, particularly 

during the reaction and separation. The importance of temperature control in lab-

on-a-chip devices has been demonstrated for enzyme-activated reactions [1,5,9-

11]. 

One of these enzyme-activated reactions, polymerase chain reaction (PCR) [12], 

conducted by a deoxyribonucleic acid (DNA) polymerase, is introduced to illustrate 

the point. PCR utilizes biological and chemical components to orchestrate 

enzymatic amplification. It gives access to a method of amplifying DNA molecules 

across several orders of magnitude, which has substantially accelerated the pace of 

research in many fields of biology.  

The sequence and length of PCR primers generally determine the annealing 

temperature of the thermal cycling reaction for a specific assay. Using too low an 

annealing temperature can produce non-specific priming of templated DNA or 
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form primer-dimers, whereas if the temperature is too high, little or no product 

may be produced. Therefore, PCR yield is reduced. These problems can often be 

avoided by an annealing temperature optimization step [13-15].  

Most groups have reported using a temperature sensor to measure the 

temperature of the substrate of a microfluidic system [6,7,9,16] or on the outside 

of capillaries [17,18]. This is perhaps the simplest and easiest way to measure 

temperature. However, it is not accurate considering the temperature discrepancy 

between the temperature on the outside of the system and the fluid inside the 

system. Besides, concerns caused by direct sensor contact within the solution, such 

as product contamination or inhibition, the added thermal mass of the sensor, and 

the obstruction of optical measurements become more acute as the sample volume 

decreases, forcing measurements external to the sample and compromising 

accuracy during rapid temperature transitions.  

A simple solution for non-contact temperature measurement is to use a passive 

reference dye whose fluorescence varies with temperature but does not inhibit the 

reaction. The technique takes advantage of the temperature dependence of the 

fluorescence intensity of a dilute fluorophore added to the fluid [2]. Since the 

fluorescence of many dyes is temperature-dependent [19,20], a suitable dye has to 

be chosen for each specific application. Considering the repeated heating and 

cooling during thermal cycling, sulforhodamine B has been used for measuring 

temperature because of its reliable fluorescence over time [19-21].  Moreover, 

sulforhodamine B exhibits excellent temperature sensitivity. 

4 parallel PCR reaction-stations were presented in [15] with a purpose of 

optimizing annealing temperature in the range of 50-68 °C. Our work, based on 

VRC, is capable of affording 9 thermal gradients, aiming to optimize PCR reaction 

in a single run and in more precise temperature scale. More thermal gradients can 

be obtained by smaller droplet size and tighter posited droplets. Commercially 
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available gradient thermocyclers, such as the 96 Universal Gradient, PeQSTAR 

Mastercycler epgradient (http://www.labx.com), and Chromo 4 usually require 

more than two temperature controlling modules to achieve the same temperature 

gradient. Most of them either have no real-time detection [22], or require large 

volumes of the PCR cocktail for the reaction [23]. Multi-zone temperature control 

may ensure accuracy. Nevertheless, more energy is consumed by multi-heater 

units. Meanwhile, the footprint is much bigger because of multi-heater units and 

corresponding control parts. A two-step thermal gradient for fluorometric 

optimization of droplet PCR in virtual reaction chambers is present here. 

Sulforhodamine B was used for real-time thermal gradient control and monitoring. 

The method incorporates a two-step protocol combining the annealing and 

elongation steps, which leads to significant time-savings and a reduction in reagent 

use during optimization and standard PCR experiments.  

 

4.2. Materials and methods 

4.2.1. Surface preparation 

As described earlier, the glass surface for the VRC has to be hydrophobic as well as 

oleo phobic. Chemical vapor deposition method is applied to silanize glass 

coverslips. A self-assembly monolayer of a fluorosilane with a reproducible contact 

angle (Drop shape analysis system DAS 10 MK 2, https://www.kruss.de) around 

109 ° was achieved. Coating stability was assessed by the INM institute 

(http://www.leibniz-inm.de). Detailed description on surface coating can be 

accessed in supplementary material.  
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4.2.2. Temperature calibration 

Theoretically, given a small piece of highly thermally conductive material, a 

uniform thermal distribution can be reached in seconds or milliseconds. By 

applying two different temperatures to this material, points along the temperature 

difference direction should have temperatures in between. 

To demonstrate the point, sulforhodamine B, a passive dye which exhibits 

excellent temperature sensitivity, was chosen for monitoring the temperature. For 

absolute intensity of the fluorescence to serve as a temperature monitor, the 

instrument and dye must be stable over time. Temperature calibration was 

performed at equilibrium temperatures, not while the temperature was changing.  

Temperature can be related to fluorescence through a calibration constant:  

𝐶 = 𝑙𝑛(𝐼 𝐼𝑟𝑒𝑓⁄ ) (1 𝑇⁄ − 1 𝑇𝑟𝑒𝑓⁄ )⁄                                                                                            (4.1) 

Fluorescence intensities I  were measured at temperatures T  (in Kelvin) and 

related to reference fluorescence intensity Iref at a reference temperature  Tref. 

Instrument-specific calibration constants are used to convert fluorescence to 

solution temperatures. Afterwards, the solution temperatures were converted into 

Celsius using the following formula: 

𝑡(°𝐶) = 𝑇(𝐾) − 273.15                                                                                                            (4.2) 

Where t and T represent temperature in Celsius and Kelvin, respectively. Detailed 

temperature calibration description can be found in supplementary material. 
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4.2.3. Reagents 

All buffers were made using deionized water from a Milli-Q ProgradT3 column 

(http://www.merckmillipore.com/DE/de). The fluorescence of sulforhodamine B 

(monosodium salt, http://www.sigmaaldrich.com/germany.html) was measured 

in a “mock” PCR solution (without polymerase) at a final concentration of 0.1 mM; 

see protocol below. The polymerase was replaced with deionized water. 

The performance of the system was verified by performing real-time PCR to detect 

a DNA segment of an avian virus. The PCR primers for the chosen avian virus 

segment (detailed sequence can be found in supporting material) were designed 

by Primer Express 3.0. The sequence of the forward primer: 

5-TGTACTCCCCAGTGTCATGATTG-3;  

Reverse primer:  

5-AAGGGAATAAGCGGCCATATC-3. 

The melting temperature for the primer (Eurofins, Germany) is 60.6 °C. 

The master mix was prepared by adding 3 µL of 25 mM MgCl2, 9 µL 50 pM of each 

forward and reverse primer, and 4 µL of the LightCycler FastStart DNA Master 

SYBR Green I (http://www.roche.de/). 2 µL DNA templates were added to the 

reaction mixture to the total volume of 27 µL immediately before the onset of the 

reaction. The template concentration was around 105 copies ·µL-1. 

 

4.2.4. On-chip PCR thermocycling 

The instrument setup is shown in Figure 4.1. Thermocycling of the microfluidic 

device was achieved using two thermoelectric coolers (1TML10-21x21-10, 
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http://www.thermion-company.com/) and a manufactured controller TEC-1122-

SV (http://www.meerstetter.ch/). Temperature feedback was accomplished by 

inserting two 1 mm-thick 22x22 mm copper plates on top of each TEC unit with an 

embedded pt100 (http://de.farnell.com/) temperature sensor. Temperature 

control was performed by proportional integrated derivative (PID) feedback 

control. Optimized PID constants were used to achieve a fast yet stable control 

system. Then, another piece of 1.2 mm thick 20x65 mm copper plate was placed 

between the microfluidic device and two small copper plates to facilitate efficient 

heat transfer to achieve a uniform heat distribution. A custom-fabricated copper 

block was placed beneath the TEC device to dissipate waste heat. Finally, a 3-mm 

silicon wafer was placed between the copper plate and the microfluidic device to 

help equalize heat distribution and provide a better optical surface for imaging. 

The VRC used in this work was formed by a 0.7 µL sample, covered with 3 µL of 

M5904 mineral oil (Sigma-Aldrich, http://www.sigmaaldrich.com/germany.html) 

and placed on a 170 µm thick hydrophobic/oleo phobic microscope coverslip. 

Two-step PCR thermocycling was initiated with a 10 minute “hot start” at 95 °C to 

activate the Taq polymerase followed by 40 cycles of ramping between 50 °C and 

95 °C using 10 seconds hold times and a thermal ramp rate of 5 °𝐶 · 𝑠−1 .The total 

PCR thermocycling reaction time required ~45 minutes. The ability to perform on-

chip thermal cycling of droplets is necessary to be able to perform real-time 

observation of the entire droplet reactor array during PCR amplification. 



Chapter 4 Thermal gradient for fluorometric optimization of droplet 

PCR in virtual reaction chambers 

 

95 
 

 

Figure 4.1 Instrument setup. The TEC control module sends out a signal to LED and camera 

at the same time at the end of the annealing step, making sure that the LED light is on while 

capturing the image. 

 

To find the optimal annealing temperature for the reaction, a recommended 

temperature range ±10 °C above and below the calculated melting temperature of 

the primers was used. Since the melting temperature for primer was 60.6 °C, the 

temperature gradient was set to 52 °C~72 °C for optimization. 
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4.2.5. Image acquisition and processing 

Fluorescence imaging of the sulforhodamine B dye was performed using a ProgRes 

MF Cool CCD camera (https://www.jenoptik.de/). The camera gain was set 

manually to 1 and kept constant throughout the whole experiment. An appropriate 

filter set (ET546/22x, ET605/70m, www.ahf.de) was applied in front of the C-

mount fixed focal lens HF 16HA-1B/1.4 (http://fujifilm.jp). Fluorescence imaging 

of the PCR reaction was the same as that for sulforhodamine B, except the filter set 

was different (MF469/35 https://www.thorlabs.de/, ET525/50 

https://www.chroma.com/).  

ImageJ software and custom Matlab code were used to systematically detect and 

quantify fluorescent droplets and analyze the size and the fluorescence intensity.  

 

4.2.6. Melting analysis 

Because SYBR Green I bind to all double-stranded DNA, it is necessary to check the 

specificity of the PCR assay by analyzing the amplified products. After each 

reaction, a melting curve analysis was run.  A BioAnalyzer 2100 

(http://www.agilent.com/) and gel electrophoresis were also used to check the 

specificity of the amplicon.  Additional information on amplicon concentration can 

be accessed through the analysis from the BioAnalyzer. An optimized SYBR Green I 

PCR reaction should have a single peak in the melt curve, corresponding to a single 

band on the gel image. By comparing the gel image with the melt curve, one can 

identify peaks in the melt curve that correspond to specific products, additional 

non-specific bands and primer dimers. 

 

http://www.agilent.com/


Chapter 4 Thermal gradient for fluorometric optimization of droplet 

PCR in virtual reaction chambers 

 

97 
 

4.2.7. Commercial instrument 

Another group of experiments were performed on a commercial gradient machine, 

i.e. 96 Universal Gradient, PeQSTAR in house. Unfortunately, the device does not 

have a real-time function. Because of its large reaction volume, gel electrophoresis 

was carried out after the reaction. 5 µL of each reaction product from the PeQSTAR 

commercial gradient machine was resolved on a 2% agarose gel for a period of 30 

min at 100 V. 6X DNA Gel loading buffer was added at a ratio of 5:1. Gel images 

were taken by Bio-Rad (www.bio-rad.com). Gel lanes were processed using ImageJ. 

 

4.3. Results  

4.3.1. Temperature gradient 

When two different temperatures were applied at the two ends of the chip, a group 

of nearly linear different temperatures was obtained, forming a thermal gradient. 

Figure 4.2 illustrates the different temperatures in color. Meanwhile, the thermal 

gradient is represented by color depth. From left to right, the droplets are 

numbered droplet 1 to 9. The fluorescence of sulforhodamine B decreased as the 

temperature increased. 
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Figure 4.2 Droplet array with thermal gradient. From left to right, the temperature increases 

and the droplets are numbered as droplet 1 to 9. 

 

After temperature calibration, a two-step thermal cycling was run with 

sulforhodamine B monitoring the temperature in real time. Figure 4.3 shows the 

instrument equilibration of sulforhodamine B assessed at 55 °C while 4.4 shows 

the temperature profile of each droplet during the PCR reaction, positioned exactly 

as shown in Figure 4.2. In order to demonstrate more clearly, the combined 

annealing and extension steps were set to 30 seconds. Each video frame denotes 2 

seconds. The thermal gradient is clearly observable.  
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Figure 4.3 Instrument equilibration of sulforhodamine B assessed at 55 °C. After 20 min, no 

evident change in fluorescence as well as evidence of photo bleaching was observed. 

 

Figure 4.4 Temperature profile for gradient PCR. Each line denotes one sample as illustrated 

in Figure 4.2. 
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4.3.2. Gradient PCR 

Nine droplets were prepared in each temperature zone. An additional droplet 

without template (NTC) was positioned in parallel with the fifth droplet, or can be 

placed anywhere on the chip except for spaces already taken up by the nine 

droplets. With a thermal gradient, PCR experiments can be optimized in a single 

run. The amplification curves of the reaction are shown in Figure 4.5.  The intensity 

plots reveal that droplet 4 has the highest fluorescence intensity. The best yield of 

the product was acquired at 61.04 °C.  

 

Figure 4.5 Amplification curves of gradient PCR. NTC denotes no template control. 
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Figure 4.6 Melt curve analysis of droplet 4 with the first derivative of the change in 

fluorescence intensity as a function of the temperature; meanwhile, only a single peak 

corresponding to the PCR product is observed. The amplicon is clean and specific. 

 

Melt curve analysis was run to testify the specificity of the product, as shown in 

Figure 4.6. Robust, unique, and clean products were obtained during the 

amplification, without any secondary products such as primer-dimers.  

Another group of experiments was performed on 96 Universal Gradient, PeQSTAR. 

Since it is not a real-time machine, gel image of the results was taken by a Bio-Rad 

imager. The gel lanes of the gel image processed using ImageJ as shown in Figure 

4.7 show that 61.6 °C was the optimal temperature. The result is in accordance 

with the result from our device.  
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Figure 4.7 Agarose gel result of PCR run on a commercial 96 Universal Gradient, PeQSTAR. 

The columns are gel lanes of the target amplicons. Lane 4 has the best result. 

 

Figure 4.8 shows the temperature calculated from the calibration constant (the 

blue curve). The red curve represents the temperature measured by direct contact 

of the temperature sensor of the chip without thermal loads. No temporal delay 

was taken into consideration. Both methods showed an almost linear thermal 

gradient. Since the droplet volume is small, and so is the temperature sensor size, 

the discrepancies between the two methods can be neglected. However, care must 

be taken when using a large volume (thermal loads) for the reaction (most 

commercial devices use large volumes).   

In order to determine the relationship between fluorescence intensity and the final 

concentration, the results were transferred to a BioAnalyzer 2100 for further 

analysis.  After running the analysis, a correlation analysis between the 

temperature gradient and the product concentration was performed in Figure 4.9. 

The y-axis is the BioAnalyzer analysis from the annealing temperature 

optimization experiment. The optimal temperature was 60.62°C. 



Chapter 4 Thermal gradient for fluorometric optimization of droplet 

PCR in virtual reaction chambers 

 

103 
 

 

Figure 4.8 Thermal gradient formed from droplet 1 to 9. 

 

Figure 4.9 Correlation between the thermal gradient and the BioAnalyzer analysis of 

amplicon concentrations. 
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4.4. Discussion 

Different dyes react differently to temperature changes. The fluorescence of most 

dyes decreases as the temperature is increased. The exact temperature-time 

course of the sample can be monitored through the use of a temperature-sensitive 

passive reference dye, which can provide solution temperatures in real time 

throughout the thermal cycling. Therefore potentially controls the solution 

temperature. Sulforhodamine B was chosen because of its high temperature 

sensitivity and stability over repeated heating and cooling cycles. In addition to 

evaporation and/or condensation, other potential artifacts include instrument drift, 

thermal degradation of the dye, and fluorescence quenching, all of which might 

affect fluorescence signal as well. To use fluorescence to monitor temperature, 

fluorescence variations must be attributable to temperature. After 20 min, no 

evident change in fluorescence was observed. In addition, no evidence of photo 

bleaching of sulforhodamine B was observed.  

The calibration constant is dependent on the physical characteristics of the 

fluorescent molecules in a particular solvent. It provides a quantitative way of 

judging the overall temperature sensitivity of the dye and optics. Different 

calibration constants range from 1314 ~ 1487 K for sulforhodamine B, with an 

accuracy of ±0.8 ~8%. Continuous acquisition throughout temperature cycling 

and melting was possible. A higher value of the calibration constant correlates to 

greater temperature sensitivity and system precision. Solution temperatures were 

determined using the calibration constant, 𝐼𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓 as shown in formula (4.1).  

The reaction chamber was made by encapsulation of a water-based sample in 

mineral oil. As no solid cover or micro channels were required, device fabrications 

consisted only of deposition and patterning the substrate using chemical vapor 

deposition. The use of disposable glass slides prevents cross-contamination. The 

small droplet shape minimized the temperature gradient throughout the droplet. 
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Furthermore, the disposable coverslip was not subject to any processing. The glass 

thermal conductivity coefficient is 1.1 𝑊𝑚−1𝐾−1, while the surrounding air has a 

thermal conductivity coefficient of only 0.025  𝑊𝑚−1𝐾−1 . Therefore, the 

temperature of the glass will be determined only by the temperature of the silicon 

wafer attached to the thermoelectric coolers. 

The outcome of optimizing the annealing temperature under a single gradient 

experiment with the primer set (melting temperature 60.6 °C) was successful 

under a gradient range of 52 °C to 72 °C. The primer set displayed a range of 

annealing temperatures that can successfully amplify the specific amplicon. The 

experiment demonstrates the possibility of optimizing a primer set using a single 

PCR protocol with a selected range of temperatures. This was also confirmed by 

running an experiment on a commercial gradient device in house. The gel 

electrophoresis of the products from the commercial device verified that our 

device works.  PCR was optimized in a single run thanks to the thermal gradient 

generated based on a temperature-dependent dye. Furthermore, the optimal 

temperature was related to the relative fluorescence intensity of the gradient PCR, 

since the fluorescence intensity was proportional to the concentration. Hence, no 

further post-analysis using a gel or BioAnalyzer is required, saving a lot of time and 

effort. Moreover, because only a very small volume of the reagent mixture is 

needed for optimization, reagent costs and sample consumption can be highly 

reduced. Finally, the device is easy to operate. However, this system is not perfect, 

such as the droplet preparation and alignment have to be done manually. 

 

4.5. Conclusion 

A small and simple device with a thermal gradient to optimize PCR was designed, 

with real-time monitoring of the gradient based on a temperature-dependent dye. 
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This was achieved with no direct contact of the temperature sensor, no time delay 

and no discrepancies between the device and the droplet inside the oil. The 

gradient feature greatly reduced the time devoted to determining the optimal 

annealing temperature. The device is cheap, easy to operate and time-saving. 

Moreover, more gradients can be obtained using smaller and more tightly 

arranged droplets. The gradient feature is not limited to the annealing step but 

also allows for the optimization of the denaturation or extension temperature in 

one experiment as well. We expect that this temperature gradient feature will be 

used to optimize many reactions in the future. 
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Electronic Supporting Information 

Surface preparation 

As described main text, the glass surface for the virtual reaction chamber has to be 

hydrophobic as well as oleo phobic. Chemical vapor deposition method was 

applied to silanize glass coverslips. First, the glass coverslips were cleaned in a 

boiling 𝐻2𝑆𝑂4/𝐻2𝑂2  (piranha solution) mixture for 20 min, then rinsed in 

deionized water, and dried under a flow of nitrogen. Second, the glass coverslips 

were placed into a room temperature vacuum oven with 50 μL of fluorosilane 

solution trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (FOTS) (Sigma-Aldrich, 

Germany). The oven was closed and evacuated by a conventional oil rotary pump 

to pressure below 0.1 Torr and flushed three times with nitrogen. The temperature 

inside the oven was then increased while the pump was still running. Once the 

temperature reached 150 °C, the system was kept steady for 20 min. Then, the 

oven was flushed again three times with nitrogen, the pump was switched off, and 

the oven was vented with nitrogen, before taking the glass out. A self-assembly 

monolayer of a fluorosilane with a reproducible contact angle (Drop shape analysis 

system DAS 10 MK 2, KRÜSS) around 109°C was achieved. Coating stability was 

assessed by the INM institute (Saarland University, Germany). 

 

Temperature calibration  

For absolute fluorescence to serve as a temperature monitor, the instrument and 

dye must be stable over time. Temperature calibration was performed at 

equilibrium temperatures, not while the temperature was changing.  

Temperature can be related to fluorescence through a calibration constant:  
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𝐶 = 𝑙𝑛(𝐼 𝐼𝑟𝑒𝑓⁄ ) (1 𝑇⁄ − 1 𝑇𝑟𝑒𝑓⁄ )⁄                                                                                               (1) 

Fluorescence intensities 𝐼  were measured at temperatures 𝑇  (in Kelvin) and 

related to reference fluorescence intensity 𝐼𝑟𝑒𝑓 at a reference temperature 𝑇𝑟𝑒𝑓.  

To determine the calibration constant, the two reference temperatures and their 

corresponding fluorescence intensity have to be chosen wisely. Room temperature 

(Tref) was chosen as the first reference temperature. The fluorescence at room 

temperature (Iref1) was kept record. The second reference temperature (Tm) was 

obtained on the Roche LightCycler Carousel-Based system (Roche Diagnostics, 

Germany). Increasing the temperature on the device slowly until reach this melting 

temperature, where fluorescence of intercalating SYBR I disappears. The 

fluorescence of Sulforhodamine B (Iref2) was recorded at this melting temperature 

point on the device. The two reference temperatures with a good span ensured the 

accuracy of the calibration constant, thus the accuracy of the calibrated 

temperature curve. Bad reference temperatures can introduce the possibility of 

large systematic uncertainties, particularly at temperatures far from these 

reference temperatures. The corresponding fluorescence intensities were 

calculated through calibration images. Each calibration image was the average of 

28 sequential video frames. For the calibration curve, the intensity at each 

temperature was determined by averaging the intensity value of all the pixels of 

the corresponding image. 

Instrument-specific calibration constants were used to convert fluorescence to 

solution temperatures. Solution temperatures were determined from fluorescence 

using calibration constant C, the reference temperature and the reference 

fluorescence: 

𝑇 = 1 (𝑙𝑛(𝐼 𝐼𝑟𝑒𝑓⁄ ) 𝐶⁄ + 1 𝑇𝑟𝑒𝑓⁄ )⁄                                                                                                (2) 
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Then, the solution temperatures were converted into Celsius using the following 

formula: 

𝑡(°𝐶) = 𝑇(𝐾) − 273.15                                                                                                               (3) 

where 𝑡 and 𝑇 represent temperature in Celsius and Kelvin, respectively. 

Temperate calibration raw data: 

Tref 26.7°C 299.85K (room temperature)  

Tm 80°C 353.15K  (melting temperature) 

 𝐼𝑟𝑒𝑓  at room temperature  

Iref1 = 115.36 128.47 137.37 157.80 143.64 145.87 132.93 129.12 123.47  

𝐼𝑟𝑒𝑓  at melting temperature  

Average of 28 sequential video frames 

Iref2 = 55.79 58.50 60.77 70.79 64.09 66.83 61.80 62.53 63.09    

Calculate Calibration Constant C using Tref, Tm, and their corresponding 

fluorescence intensity using the formula (2). 

After temperature calibration, record the fluorescence signals during reaction and 

convert them into temperature using the following formula: 

𝑡(°𝐶) = 1 (𝑙𝑛(𝐼 𝐼𝑟𝑒𝑓⁄ ) 𝐶⁄ + 1 𝑇𝑟𝑒𝑓⁄ )⁄ − 273.15                                                 (4) 

 

Template and primer information 

DNA amplicon (66 bp) of avian virus:  
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TGTACTCCCCAGTGTCATGATTGATGATAAGAACACAGTCTTTCTGATATGGCCGCTTA

TTCCCTT. 

The PCR primers for avian were designed by Primer Express 3.0. The sequence of 

the forward primer: 5-TGTACTCCCCAGTGTCATGATTG-3;  

Reverse primer: 5-AAGGGAATAAGCGGCCATATC-3. 

The melting temperature for the primer (Eurofins, Germany) is 60.6 °C. 
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Chapter 5  

Precise definition of starting time by 

capillary-based chemical initiation of 

digital isothermal DNA amplification 

Manuscript in submission 

Graphical abstract 

A precise definition of the starting time of recombinase polymerase amplification 

(RPA) is proposed to achieve digital quantification of nucleic acids. Since the RPA 

reaction proceeds immediately, albeit slowly, at room temperature upon the 

addition of a chemical initiator, this increases the number of false positives at the 

single molecule level. A straightforward solution is to mix reagents after 

compartmentalization. A capillary-based setup is described controlling the 

initiation of RPA reactions by encapsulating the chemical initiator to each reaction 

compartment using shear force when passing through a cross connector. The 

performance of digital droplet RPA (ddRPA) was validated. Potential applications 

in clinical and academic research under resource-limited settings can be envisaged.  
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Abstract 

Digital polymerase chain reaction is a sensitive and reproducible method to assess 

the presence or absence of the amplification of individual target molecules 

confined in isolated compartments; this is used for the quantification of nucleic 

acids. In this paper, the precise definition of the start time of recombinase 

polymerase amplification (RPA) is proposed to achieve the digital quantification of 

nucleic acids at the single molecule level. RPA is a sequence-specific isothermal 

amplification method. Since the reaction will start immediately albeit slowly at 

room temperature following the addition of the chemical initiator (magnesium 

acetate), the number of false positives in digital RPA is increased if all reagents are 

mixed prior to compartmentalization. A capillary-based setup is described here to 

control the initiation of digital droplet RPA (ddRPA) reactions by encapsulating the 

chemical initiator to each reaction partition using shear force when passed 

through a cross connector. Thousands of independent compartments are 

generated. The performance of ddRPA was validated by counting the positive 

application results of target molecules (Avian virus DNA) confined in the partitions. 

The ddPRA capillary-based setup provides a simple nucleic acid quantification 

method without thermal cycling. Potential applications in clinical and academic 

research under resource-limited settings can be envisaged. The ability to initiate 

chemical reaction compartments by the encapsulation of a chemical initiator using 

similar capillaries can be applied to a broader range of applications.  

Keywords: RPA, Capillary, Avian virus, ddPCR, chemical initiator 

 



Chapter 5 Precise definition of starting time by capillary-based 

chemical initiation of digital isothermal DNA amplification 

 

115 
 

5.1 Introduction 

The quantitative analysis of nucleic acids is of great importance for studying gene 

expression [1] and molecular diagnostics [2–5], such as in the analysis of genomic 

diseases and cancer [6,7] and prenatal diagnostics [8,9]. Digital PCR (dPCR) is a 

method that is widely used for the quantitative analysis of nucleic acids. This 

method transfers the exponential nature of PCR amplification into a linear, digital 

format. Since its inception [6,10], dPCR has shown advantages over real-time PCR 

(or quantitative PCR) in terms of repeatability, reproducibility and linearity, 

without being dependent on the cycle threshold or external references, especially 

in rare variant diagnosis, molecule screening, and genome sequencing [11,12].  

dPCR can be performed in various formats, namely well plates [9,13], 

microdroplets [14–16], pneumatic-controlled microchips [17], centrifugal force-

driven setups [18,19], and the SlipChip [20,21]. By partitioning the diluted target 

molecules into a large number of isolated minute-volume partitions, single copy of 

nucleic acid templates will be confined in independent partitions and amplified by 

PCR. The number of compartments is usually much higher than the expected 

number of target molecules in the sample and all compartments are assumed to be 

of the same size. A statistical Poisson distribution analysis on the number of binary 

“yes” and “no” readout is performed after reaction to determine the number of 

target molecules in the sample.  

A new version of dPCR [22,23] – digital droplet PCR (ddPCR), is enabled by droplet 

microfluidics. ddPCR consists of a huge number of aqueous droplets encapsulated 

in a carrier oil which are used to guarantee that one molecule or zero is present at 

the limit of dilution [24], resulting in the accurate quantification of target 

molecules. Aqueous micro-droplets have provided miniaturized reaction chambers 

for a large number of chemical, biochemical or pharmaceutical applications, etc. 

There are two most common techniques used for generating the monodisperse 
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homogenous droplets: T-junctions [16,25–27] and flow focusing [28,29]. T-

junction chips consist of two perpendicularly joined inlets. The dispersed phase is 

pinched off at the junction by the flow of a continuous phase. Flow-focusing chips 

have three inlets. The dispersed liquid is intercepted by two other channels 

delivering the carrier phase. The joined flow then passes through a constriction 

where droplets are formed.  

Although the process for generating a large number of monodisperse, small-

volume reaction compartments has been considerably simplified, thermal cycling 

and accurate temperature control [30] is still an essential step for ddPCR methods. 

For chip-based ddPCRs in labs, the droplets easily settle down and coalesce to 

large ones during thermocycling in plate wells [13,31] or in PCR tubes [32,33], 

further worsening the situation. As a result, missing targets and random noise 

arises among amplicons.  

In parallel to microfluidic chips, many sophisticated chip-free machines with high 

precision are used for biological analyses, such as HPLC [34]. The channels are 

basically capillaries assembled with their connectors, and usually work under high 

pressure. It has demonstrated that the capillary junctions (T and cross shape) can 

be used to generate droplets. The sizes of the droplets generated are close to those 

of conventional microfluidic chips or even smaller depending on the inner 

diameter of the capillaries and the fluids’ speed, laying the foundation for setting 

up ddRPA on the basis of capillaries. 

Recombinase polymerase amplification (RPA) is an isothermal DNA amplification 

technique, which works best at a low constant temperature of 37-42°C. RPA uses 

strand-displacing polymerases to copy the target sequence upon primer binding. It 

is tolerant to impure samples and uses lyophilized enzymes easy for storage and 

transport [35]. Digital isothermal amplification experiments have been shown 
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[19,21,34–36], where the mechanism of DNA amplification and fluorescence signal 

generation facilitated by RPA has been described.  

For ddPCR, the PCR mix is usually compartmentalized into a large number of 

droplets after which amplification is triggered by a “hot-start”. In comparison, 

isothermal methods such as RPA cannot be triggered by a hot-start but will start 

immediately even at room temperature when a chemical initiator is added. 

Inspired by this, in this paper, a capillary-based setup is described to perform 

ddRPA. In [36], a pico-array chip was fabricated using a photolithography mask 

and deep reactive-ion etching. The results are comparable; however, the 

fabrication involves a lot of work. A simple setup using droplet microfluidics with a 

precise definition of the starting time of RPA is proposed in this contribution. The 

droplet generation is done using an inter-connect cross. In contrast to a T-junction, 

it has 3 inlet channels; it differs from flow focusing by introducing different liquids 

through each inlet. The technical advance illustrated in this work is the capability 

to confine individual target molecules and the chemical initiator into separate 

reaction compartments at the same time for precise starting time definition. The 

droplets are then put into an incubator to perform ddRPA. The amplified target 

molucule is detected by measuring the fluorescence emitted by SYBR Green I, 

which is more convenient to have on hand and less expensive. The setup can also 

be utilized to perform high-throughput chemical and biological reactions or 

screenings as initiating processes such as the confinement of one reagent with 

addition of another in isolated compartments are required.  

 



Chapter 5 Precise definition of starting time by capillary-based 

chemical initiation of digital isothermal DNA amplification 

 

118 
 

5.2 Experimental 

An integrated ddPCR system based on capillary is demonstrated in this section, 

where capillaries are associated with pumps and the junction. In this integrated 

ddRPA system, a cross-shaped interconnect junction serves as a droplet generator 

by introducing three different liquids to each inlet, thus confining one reagent with 

another in isolated compartments. Droplets are collected at the outlet. A stock 

solution of avian virus DNA [30] was chosen as the target molecule. The target 

molecules were diluted at various concentrations ranging from NTC to 2.6x103 

copies/50µL.  

 

5.2.1 Materials 

The Labsmith µProcess Breadboard Model 3 R0 and SPS01 programmable syringe 

pump (Labsmith, Denmark) were bought from Labsmith. A syringe pump (World 

precision instruments (www.wpiinc.com)) was used to deliver the carrier oil 

phase. Microscope slides with a single cavity (VWR, Germany) for sample reading 

were purchased from VWR. All water used in the experiments was from a Milli-Q 

ProgradT3 column (http://www.merckmillipore.com/DE/de). Microscope Lens 

2.5 x/0.075 NA (Epiplan-NEOFLUAR) was used to capture wide-field fluorescence 

image. Capillaries with inner/outer diameter of 220 µm/363 µm and 170 µm/363 

µm VSD tubing (VWR, Germany) were purchased from VWR. Figure 5.1 shows 

some elements for building the setup.  

http://www.wpiinc.com)/
http://www.merckmillipore.com/DE/de
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Figure 5.1 Glass slide with a single cavity, one piece fitting, interconnect cross, 40 µL syringe, 

a strand of capillary and SPS01 programmable syringe pump. 
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Figure 5.2 Sketches of the droplet generation. Syringe pump 1 is from world precision 

instruments. Syringe pump 2 and 3 are SPS01 programmable pumps. Pumps 2 and 3 were 

assembled on the Labsmith µProcess Breadboard. 

 

5.2.2 PCR reagents  

The TwistAmp exo+Campylocacter kit “improved formulation” for RPA was 

purchased from TwistDx Limited (Cambridge, United Kingdom). Glass slides with a 

cavity were purchased from VWR (Germany). SYBR was bought from Sigma-

Aldrich (Germany). HFE-7500 3M Novec Engineered fluid was used as the 

continuous carrier oil phase.  
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Dilutions of DNA stock solution were performed in Eppendorf tubes using MilliQ 

water. Then, templates with various dilution factors were added to the pre-mixed 

PCR reagent.  

 

 

Figure 5.3 working flow of sample reading. 

 

The RPA master mix was prepared according to the manufacturer’s protocol, 

except for the addition of Mg2+. The mixture was divided into two parts, as 

described. Mixture 1 consists of rehydrating the lyophilized enzyme in 29.5 µL of 

rehydration buffer, and then adding 5 µL each of primer, forward and reverse [30] 
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(100 pm/ µL). The solution was pulse-vortexed several times and then centrifuged 

briefly.  

Mixture 2 consists of 5 µL of 280 mM of Mg(OAc)2 solution, 10 µL of Avian virus 

DNA and 2 µL of SYBR 100x. Reaction mixture 1 was introduced to a 40 µL syringe 

using a Labsmith Programmable syringe pump, while reaction mixture 2 was 

introduced to a 20 µL syringe, both at a speed of 20 µL /min. The oil phase was 

filled manually. The droplet generation setup is shown in Figure 5.2. 

The dispensing rate of the three inputs was set to 3.5 µL /min for reaction mixture 

1, 1.5 µL/min for reaction mixture 2 and 55 µL/min for the continuous oil phase. 

The droplets collected were then put into a 37°C incubator for 1 hour. After 

incubation, 15 µL of each droplet samples was pipetted, with about half of the 

volume of fluorinated oil used to keep droplets from coalescence. The droplets 

were then pipetted into the cavity part of the microscope glass slide. A monolayer 

of droplets was assembled, floating on the top layer because of the lighter intensity. 

This enabled the subsequent imaging to count positive droplets. The work flow of 

sample reading is shown in Figure 5.3. All fluorescence images were acquired 

using a fluorescence microscope with a 2.5 X/0.075 NA objective. Each image 

frame has around 176 droplets with a droplet size of 11.67 nL, as shown in Figure 

5.4. 

5.3 Results and discussion 

Unlike that which has been established in PCR, many isothermal amplification 

techniques are not triggered by a “hot-start”. Instead, the reaction is usually set off 

by a chemical initiator. For RPA, the mixture is prepared without the addition of a 

chemical initiator (e.g. 𝑀𝑔2+ ) to keep the reaction from starting. However, the 

reaction begins immediately upon the addition of  𝑀𝑔2+, albeit slowly at room 



Chapter 5 Precise definition of starting time by capillary-based 

chemical initiation of digital isothermal DNA amplification 

 

123 
 

temperature (25°C). When ddRPA is performed in a digital format, this 

phenomenon would cause potential issues, leading to inaccurate results. Therefore, 

to avoid such false-positive errors, the ddRPA proposed in this contribution 

compartmentalized the magnesium acetate with the remaining components of RPA 

at the same time. In other words, the noninitiating components (𝑀𝑔2+ - deprived 

solution 1) and initiating reaction mixture 2 ( 𝑀𝑔2+ ) were encapsulated 

simultaneously. 

  

 Figure 5.4 Droplet image taken using a 2.5x microscope lens. The droplet size is calculated 

to be 11.67 nL. 

 

The design mentioned above first includes the two reagents in such a way that the 

reaction cannot be started automatically upon mixing. Then, the two mixtures are 

loaded separately into two independent syringes. The method is very 

straightforward and useful for defining the precise timing of the reaction by 
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allowing compartmentalization and mixing the two reagents afterwards. The 

incubation of compartments is performed after confining the target molecules 

inside.  

While real-time PCR/RPA monitors the change in fluorescence signal over time, 

ddRPA relies on the end point binary fluorescence reading of either “0” or “1”. This 

end point readout is expected to be more accurate more tolerant to temperature 

fluctuations. Since the working temperature defines enzyme activity, real-time 

methods requiring accurate temperature control and quantitative analysis 

calibration are dramatically affected by temperature. Therefore, ddRPA is more 

applicable in point-of-care diagnostics, together with reliable and high resolution. 

It converts the exponential nature of the PCR to a linear signal profile; variations in 

the amplification efficiency are permitted, thus providing data with higher 

precision at measuring changes in samples. 

 

Figure 5.5 Original fluorescent image of ddRPA with an initial concentration 2.6x103 

copies/50 µL. 
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The performance of ddRPA was characterized by running a series of dilutions of 

the DNA stock solution from a previous work. Positive droplets exhibit increased 

fluorescence after incubation compared to negative ones, since at least one copy of 

the target DNA molecule was present, while there were 0 copies in negative 

droplets, as shown in Figure 5.5. False colored fluorescence images, with green 

indicating positive droplets and red indicating negative droplets, are shown in 

Figure 5.6. As the target DNA was diluted, the fraction of positive droplets of the 

sample reader decreased proportionally after incubation. The experiments were 

repeated four times at each diluted concentration to verify the robustness and 

reproducibility, as shown in figure 5.7. A regression fit of the linearized form of the 

Poisson equation (equation 5.1) [20][21], was utilized to statistically characterize 

the performance of the ddRPA experiments. In equation 5.1, p is the number of 

positive droplets, c is the initial concentration of target molecules prior to the 

dilution, x is the fractional dilution factor (in units of concentration-1, e.g. 10 fold 

dilution corresponds to x=0.1), and t is the total number of droplets.  The excellent 

regression fit obtained in Figure 5.8 indicates that the serially-diluted experiments 

produce self-consistent results that follow a Poisson distribution, supporting the 

appropriate use of the fit as a method of estimation. The initial stock concentration 

of Avian virus DNA is 2.6 x103 copies/ 50 µL. The expected results over the dilution 

range could then be calculated based on the fitting. 
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Figure 5.6 False colored fluorescence image, with green indicating positive droplets, and red 

indicating negative droplets. 

ln(𝑡 − 𝑝) = −𝑐 ∗ 𝑥 + ln (𝑡)                                                                                                      (5.1) 

No false positive droplets were observed in the experiments due to the isolation in 

compartments prior to mixing all reagents. The applicability for the quantitative 

analysis of viral loads can be expanded by the incorporation of a reverse-

transcription step. More broadly, this methodology can find numerous applications 

that need the precise definition of a start time of the reaction using a simple, chip-

free setup, with only capillaries, thus saving the complex fabrication process, 

which is very attractive in resource-limited areas. 
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Figure 5.7 digital quantification of RPA experiments with different dilutions. Experimental 

average of the ratio of the number of positive droplets/droplets was plotted as a function of 

the diluted sample. 

 

Figure 5.8 Regression fit of results of the three different concentrations according to 

equation 5.1. 
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5.4 Conclusion 

In summary, a ddRPA system using capillaries with the precise definition of the 

start time of the amplification is proposed. It has demonstrated that the chemical 

initiation of RPA in compartmentalized partitions lends itself to nucleic acid 

quantification in a digital format.  

Since the RPA reaction is initiated by magnesium acetate instead of the “hot-start” 

established in standard PCR, even at room temperature (25°C), this increases the 

number of false positives in ddRPA if all reagents are mixed prior to 

compartmentalization. Our ddRPA scheme addressed this issue by preparing the 

reaction mixture separately with one part containing no magnesium acetate. The 

two solutions, one containing Mg2+ and the Mg2+ – deprived solution, were then 

introduced through different syringes; the magnesium acetate was added to each 

single compartment by fluorinated oil using the sheer force when passing through 

an interconnect cross. Thanks to the isolated compartments, no false positive 

droplets of RPA were observed. In the meantime, the possibility of cross-

contamination was eliminated, leading to a robust and reproducible result. The 

statistical analysis of results demonstrated that the capillary-based ddRPA system 

is of high performance in terms of simplicity and reliability. In short, the system 

shows a high linearity at a series of different dilutions ranging from NTC to 2.6x103 

copies per 50 µL, and the self-consistent performance follows a Poisson 

distribution. More broadly, a wider range of applications which rely on or require 

an initiation process can utilize this methodology. 
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Chapter 6  

Duplex-imprinted Nano well arrays 

for promising nanoparticles assembly 

This chapter has been published in Nanotechnology, 

2018, 29 085302 

Research highlights: 

1. Nano-duplex-imprint technique with the Janus nanopillar structure of natural 

cicada wings as a stamp. 

2. The technique, with excellent performance, combines top-down and bottom-up 

nanofabrication techniques. 

3. No intricate devices or facilities are needed. No stringent surrounding 

environment is required.  

4. The technique transitions micro-nanofabrication from the cleanroom 

environment to the bench. 

5. The whole process is performed manually, and takes only a few minutes at room 

temperature and under atmospheric pressure. 
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Abstract 

A large area nano-duplex-imprint technique is presented in this contribution using 

natural cicada wings as stamp. The glassy wings of the cicada, which are abundant 

in nature, exhibit strikingly interesting nanopillar structures over their membrane. 

This technique, with excellent performance despite the nonplanar surface of the 

wings, combines the top-down and bottom-up nanofabrication techniques. It 

transits micro-nanofabrication from cleanroom environment to bench. Two 

different materials – dicing tape with acrylic layer and UV optical adhesive – are 

used to make replications at the same time, thus achieving duplex imprint. 

Promising commercial volume manufacture of nanostructure elements can be 

envisaged through this contribution to speeding up the fabrication process and 

achieving higher throughput. Contact angle of the replicated nanowell arrays 

before and after oxygen plasma was measured. Gold nanoparticles (50 nm) were 

used to test how nanoparticles behave on the untreated and plasma treated replica 

surface. Experiments show that promising nanoparticles self-assembly can be 

obtained. 

Keywords: duplex imprint; nanowell arrays; cicada; dicing tape; UV optical 

adhesive; nanoparticles 

 

6.1. Introduction 

Nanoscale fabrication technique with high resolution and large yield has been a 

remarkable research area due to its crucial role in patterning materials into 

nanostructures, especially into ordered array form for various applications, 

ranging from electronic memory to biomedical applications [1–8]. For these 
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applications, a bottom-up chemical method and a top-down lithographic method 

are two different primary fabrication categories. Conventionally, bottom-up 

chemical synthesis methods demonstrate decent size control, monodispersity and 

large-scale production of the resulting devices [8–17]. However, critical difficulties 

of controlling the shape, size, structure, and defects of resultant devices are 

presented. To solve such difficulties, physical top-down lithographic methods, with 

great potential in patterning nanoscale devices, have been proposed. 

For ultraviolet and visible light applications, where the structural dimension at an 

optical interface must be smaller than the wavelength of the incident light [18], a 

feature size below 200 nm is always necessary. In such a small size range, 

conventional top-down lithographic technologies, such as electron beam etching 

[19] and fast atom beam [20], require sophisticated equipment and a stringent 

ambient environment. They are time-consuming and expensive for large-area 

fabrication for practical applications [21].  

Given suitable fabrication techniques, the preparation of stamps of high resolution 

over a large area is a key procedure in nanostructure imprint fabrication. Various 

stamps, hard, soft or hybrid have been employed in many researches [8]. The 

processes are usually time consuming and complicated and, in some cases, 

expensive to carry out. In fact, periodic micro- and nanostructures existing in 

nature have provided enormous inspirations for scientists to mimic them for many 

important and specific applications. Many efforts have been made to replicate or 

directly utilize these bio-nanostructures, converting complicated natural 3D 

bioorganic structures into various otherwise unavailable material structures for 

optical, electronic, magnetic, thermal or catalytic applications [22–26]. With 

numerous species in nature to choose from, scientists could generate a wealth of 

intact, 3D shapes with sub micro- or nanometer resolution. Implicit in these efforts 

is the assumption that natural designs are good and useful, thanks to natural 
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selection or any other unguided natural process: for instance, elaborate structures, 

such as photonic crystals, wings, antennae, compound eyes etc [27,28]. 

In contrast to other natural phenomena, regularity is of top priority. Early studies 

revealed that regular pillar-like nanostructures are responsible for the low 

reflections. The ventral and dorsal nanopillar structure of the cicada’s glass wing 

could offer many intriguing possibilities [29], not only optically with its 

transparent surface, but also scientifically. The glass wings of cicada have been 

proven to possess super-hydrophobic surfaces, which are thought to limit bacterial 

contamination through a self-cleaning action. Cicada wings have been shown to be 

able to kill Pseudomonas aeruginosa cells and other Gram-negative bacteria with 

extreme efficiency by wing surface [30,31]. Besides electro-optical device 

applications, the nanopillared arrays show a great promise in bioscience, such as 

investigation of the absorption of biomolecules and epithelial cell migrations using 

mapping force [32,33]. Such nanotip arrays can effectively absorb proteins and 

increase the sensitivity of detection [34].  

With the aid of existing nanofabrication techniques up to now, different types of 

nanostructure fabrication methods using cicada have been developed. However, 

nearly all have been one-sided imprints [35–40]. These are difficult to put into 

practical application due to their costly and complicated procedures. Although the 

applications of biomimetic surfaces have been tried by several groups, the 

preparation cost is the limiting factor in putting them into practical applications. 

Therefore, developing simple, time- and cost- efficient techniques for an area large 

enough for practical applications is the key point in future work. With recent 

advances in the field of top-down and bottom-up nanofabrication techniques, a 

technique combining these methods will pave the way for achieving this objective. 

In this study, a duplex imprinting technique combining top-down and bottom-up 

techniques has been developed to replicate the Janus nanopillar structures of the 

glassy wing of the cicada. After imprint, contact angle measurement was 
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performed to both untreated and oxygen plasma treated nanowell array surfaces. 

A high contact angle is visible before oxygen plasma treatment. The nanowell 

arrays with gold nanoparticles inside show that further promising application of 

nanoparticle assembly. 

 

6.2. Experimental    

6.2.1 Materials  

The cicadas (Macrotristia chantranei) were bought from an online specimen store, 

spreading 10-13 cm. Dicing tapes G19, G46 (Adwill, Japan) were stored in-house 

for dicing machine. G64 and D210 were kindly provided by Lintec Europe (Munich, 

Germany). G19 has a tape thickness of 80 µm, consisting of a PVC base material, 

thickness 70 µm, and an acrylic adhesive layer, thickness 10 µm. The adhesion is 

46 mN/mm. UV optical adhesives NOA 81 and NOA 89 were from APM Technica 

(Germany). Gold nanoparticles (EM. GC 50/4, Plano GmbH) were kindly provided 

by INM institute.  

 

6.2.2 Duplex imprint  

Cicada wings were cleaned with acetone and Milli-Q water (Milli-Q ProgradT3 

column) before use as stamps to remove stains, which would affect the quality of 

imprinting patterns. The wings were first sonicated (VWR ultrasonic cleaner) in 

Milli-Q water for about 15 min to remove contaminants adsorbed physically on the 

surface, then sonicated in acetone for 20 min to remove organic compounds and 

stains that stick the nanopillars together, and then sonicated again in Milli-Q water 
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for 5 min to remove residual acetone. The wings were then taken out and dried in a 

stream of nitrogen. The details on the surface of the wings were unchanged, as 

shown by subsequent SEM characterization. Fortunately, the surface tension 

remained low even after the cleaning treatment, which is very important for the 

imprint process. The patterned polymer would be destroyed during stamp release 

due to conglutination if the surface tension were too high.  

Figure 6.1 gives a schematic diagram of how duplex imprint was realized. 

Experimental details can be accessed in the Electronic Supporting Information 

(ESI). 

These structure replications using the duplex imprint technique can be extended 

to many applications. The nanostructure chips were treated with oxygen plasma 

(Diener electronic) for 30 s to make the surface hydrophilic. Water contact angle 

measurement (Drop shape analysis system DAS 10 MK 2) was performed in 

examining surface hydrophobicity before and after oxygen plasma. Gold 

nanoparticles were used to test how they will behave on the surface of the 

replicate nanowell arrays. Gold nanoparticles solution was first aliquoted into 

small volumes. The aliquot was then vortexed for 5 s, followed by centrifugation 

for 30 s. 300 nL drop was pipetted and put on the top of the nanoscale well arrays. 

SEM images will be shown in the following part. The particles distribute more 

evenly after vortex or sonication. Vortex or sonication makes sure the particles are 

evenly distributed before the onset of the tests. Additional video clips about how 

droplets behave on the replica surface are available in the supporting material. 
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Figure 6.1 Schematic diagram showing duplex imprint with Janus nanopillared 

structures of cicada wing as stamps. 
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6.3. Results and discussion 

The structure of ventral and dorsal sides of both the fore and hind cicada wings are 

covered with a periodic topography consisting of highly ordered hexagonal close-

packed arrays of tapered nanoscale pillars of slightly different orientations. The 

height, spacing and diameter of the nanopillars vary between species. In this work, 

the spacing was sub-20 and sub-10 nm, or even touching, depending on the region. 

The height of pillars is about 400 nm and the diameters at the pillar top and 

bottom are about 40 and 130 nm, respectively. Those tapered pillars greatly 

minimize the reflectivity on their surfaces over broad angles or frequency ranges. 

In general, small pillars prove much more difficult to imprint than small holes, 

because the pillars can easily tear off during mold separation. SEM can easily melt 

a small polymer pillar or destroy the replicated patterned polymer structure of the 

pillar arrays. Furthermore, the cicada wing membrane is non-flat. The irregular 

surface makes imprinting more challenging. The cicada wings have been shown to 

have strong mechanical properties. They can withstand 190 °C and 40 bar pressure 

for at least 3 min repeatedly. The cicada wings have sufficient rigidity, chemical 

stability and low surface tension to carry out imprints while preserving the 

original profile. These properties originate from the special composition of cicada 

wings. An arrangement of highly crystalline chitin nanofibers, embedded in a 

protein matrix, interacts with the matrix via hydrogen bonding. The hydrogen 

bonding imparts rigidity and chemical stability to the structure. The notable low 

surface tension of the wings originates from a layer of wax on their surface. The 

wax layer contains esters, acids, alcohols and hydrocarbons. Fortunately, the 

surface tension remains low even after the cleaning treatment, which is very 

important for imprinting. There is no such problem when using cicada wings as 

imprinting stamps. The patterned polymer will be destroyed during stamp release 

due to conglutination if the surface tension is too high. Therefore, the cicada-wing 
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stamps do not need to be deposited with an additional antiadhesive layer before 

imprinting. The Young’s modulus of these cicada wings can be as high as 7–9 GPa. 

Although this number is still far lower than for traditional stamps used in NIL, such 

as silicon (up to 131 GPa), it is sufficient for imprinting while still maintaining the 

original profile. 

Unlike previous work, wings were cut into very small pieces before imprinting, and 

the whole process carried out in a clean room with complex equipment and strict 

conditions. The technique does not necessitate removal of all the veins, except the 

largest outer exoskeleton elements, or cutting the wing into small pieces. The 

entire process takes only several minutes. SEM images of duplex replica using 

different tapes and optical adhesives are shown in Figure 6.2.  

The experiments showed that the negative structures of the stamp had been 

successfully fabricated and nanowell arrays had formed. Furthermore, the nano-

well arrays can be transferred to UV-cured adhesive using the same technique, 

with tape as mold, to replicate the structure on and surrounding veins. The pitch 

between the wells was about 150 nm, the well diameter about 130 nm, and the 

depth about 400 nm. These parameters are consistent with the stamp, since the 

nanopillar arrays are tapered. The bottom diameter size is the same, and the used 

stamps still preserved the original structure. Even the defects in the wing 

structures were well replicated, as shown in Figure 6.3.  

Cicada-wing stamps can be used several times, although the quality of the 

imprinting results may decline due to the material of the cicada wings. They can be 

reused several times before being destroyed. This proves to be cost-effective 

because: i) the wings are abundant in nature and easy to obtain, and ii) the two 

materials used for replication are cheap. With these natural cicada wing stamps, 

nano-well arrays (negative structures of cicada wings) have been fabricated 

conveniently and successfully. The method can also be extended to other materials 
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useful in optical imaging, electrical engineering or surface-enhanced Ramen 

spectroscopy (SERS). The imprinted nanostructure can also be employed in 

abundant applications. 

 

 

  

Figure 6.2 SEM image of replication using different tapes and adhesives. 
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Figure 6.3 SEM image showing replicated defects in the wing structure. 

 

Other dicing tapes, such as G46, G64, and D210, can also be used for imprinting. 

Various factors influence the choice of material. Here are some advices for 

choosing the material: i) Dicing tape: face material should be soft, with low 

stiffness. The adhesion after UV treatment should be low for D types. For G types, 

the rough adhesion should be within the range 35-73 mN/mm. For example, the 

adhesion of G64 is too weak for imprinting, ii) UV optical adhesive should have low 

viscosity; however, not too low, as, for instance, NOA 89 (viscosity around 20 cps) 

is not as stable as NOA 81. A viscosity of around 20–300 cps is suggested, iii) 

Silicon adhesive is good substitute material. Adhesion and viscosity should be 
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taken into consideration when making the choice. Unfortunately, we do not have 

results of using silicon material. However, the techniques are the same.  

 

  

Figure 6.4 Contact angle measurements. 

 

Water contact angle measurement was performed in examining surface 

hydrophobicity. The water droplet of the imprinted sample, as shown in figure 

6.4(a), has a higher contact angle than the surface of the same material without 

nano patterns. After oxygen plasma treatment, the water contact angle became 

very low, as shown in Figure 6.4(b). After 1-2 s, the drop collapsed completely. 

Video clips in the ESI demonstrate more vividly. Figure 6.5 gives information of 

how gold nanoparticles behave on the surface of the replicate nanowell arrays. The 

particles distribute more evenly after vortex or sonication, which ensure the 

particles are evenly distributed before the test. The distributed Au particles follow 

Poisson distribution. While the Au nanoparticles were loaded manually with a 

pipette, an automatic platform and large particle size, for instance, is likely to help 
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controlling the number of nanoparticles in each well.  This distribution allows us to 

digitally count and quantify the original particle concentration. 

 

Figure 6.5 Gold nanoparticles in nanowell arrays. 

 

6.4. Conclusions  

In summary, we have demonstrated a novel and simple technique for large area 

nano-duplex imprinting using cicada wings as stamps. Nano-well arrays have been 

successfully fabricated by our method and the structures are well replicated, even 
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defects in the wing structure. Furthermore, with tape as mold, hexagonal pillar 

arrays can also be obtained using the same method. In short, the technique is easy, 

fast and cheap in room conditions. It may change the way we fabricate 

nanostructure chips. The technique, with excellent performance, combines the top-

down and bottom-up nanofabrication techniques, despite the non-planar surface 

of the glassy wings. No complex equipment or facilities are needed. No stringent 

surrounding environment is required. It transits micro-nanofabrication from the 

cleanroom environment to the bench. Promising commercial volume manufacture 

of nanostructure elements can be envisaged through this contribution. The contact 

angle measurements as well as gold nanoparticles test indicate the further 

application of promising nanoparticles self-assembly.  
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Supporting Information  

Experimental Methods 

The cicadas, as shown in Figure S1, were bought from an online specimen store. 

The transparent wings of a cicada look nothing but glassy under optical 

microscope.  

- Imprint   

The overall experimental procedure of duplex imprint is shown in Figure 6.1. 

Following description gives more details about each step.  

Step 1- A piece of glass slide was taken as reference, and then a piece of dicing tape 

with slightly bigger size was cut as imprint material. The release layer (layer 1) 

was peeled off for later use.  

Step 2- The cleaned wing was put on top of the inner clean side of layer 1, the stack 

layer of 2 and 3 was glued back with layer 1 with assistance of a paper roller. The 

paper roller ensured the smooth contact between the wing and the tape to avoid 

air bubbles being trapped. Rolled back and forth several times to make sure the 
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imprint on the tape was successful. Around the veins, pressed with a finger to 

facilitate the process, since the veins are much higher than the membrane. The 

area very close to the vein may be not well imprinted if not well  attached to the 

tape. 

Step 3- A drop of the adhesive was squeezed on top of a piece of clean glass slide. 

Layer 1 was peeled off from the stack layer of 2 and 3, and the stack layer side of 

the wing was put on top of the adhesive. No air bubbles were present. Another 

piece of glass slide was put on top of the stack layer to make an even print, also 

provided some mechanical pressure. A weight of 2 kg can be applied for 1–2 min to 

give more even pressure.  

Step 4- The weight and the second glass slide were removed and the self-

assembled part was exposed to UV light for 40 s. Then the dicing tape was gently 

peeled off, the glass slide with the wing and the dicing tape with the imprinted 

structure were obtained. The wing was attached to the glass slide through the 

cured UV adhesive. The glass with wing can be reused several times before the 

wing falls off. If the wing falls off, the replication of the other side of wing is on the 

adhesive, which is attached to the glass. In this sense, a duplex imprint is realized. 

The wing can also be manually removed. 

Figure S2 shows a cross-section SEM image of a natural breakage of a NOA 81 

replica, tilt 35°. Furthermore, the nano-well arrays can be transferred to UV-cured 

adhesive using the same technique, with tape as mold, to replicate the structure of 

veins, as shown in Figure S3.  
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Figure S1 (a) Clear wing cicada (Macrotristia chantranei) spread 10-13 cm from online store. 

(b)(c)(d) SEM images of the surface of the wing. The surface consists of an array of nanoscale 

pillars with approximately hexagonal spacing. (c)  SEM image of right small wing tilt 30°. (d) 

Scale bar is 500 nm.  
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Figure S2 SEM image of cross-section measurement of replication (natural breakage with 

certain angle) using UV optical adhesive NOA 81, tilt 35°. 

 

 

Figure S3 positive replication of the vein part using NOA 81. 
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Chapter 7  

Conclusion and outlook  

The aim of this thesis was to study PCR from an engineering point of view, from the 

micro- to nanoscale, from thermal cycling to isothermal, and from analogue to 

digital.  

Applications focused on the analysis of DNA; in the first step, a device aiming to 

optimize thermal cycled PCR was constructed from an analogue point of view. 

With the temperature-dependent dye as a calibrator, the real-time temperature 

across the annealing temperature range was given. In the meantime, a fluorescence 

detection system was embedded to the record real-time data.  

In a subsequent step, the experiments proceeded towards a digital format and 

omitted the thermal cycling step. The capillary-assembled setup saves time for the 

design and production of microfluidic chips and generates a monodisperse water-

in-oil emulsion. The idea originates from the nature of RPA, which is a single 

temperature nucleic acid amplification method initiated by a chemical initiator, 

instead of a “hot start”,  as described in the first paper, or thermal cycled PCR. 

The reaction takes place in droplet format and assumes that the partition of target 

molecules follows a Poisson distribution. Using a statistical analysis of the binary 

readout of “positive” and “negative” droplets, the absolute quantification of nucleic 

acids samples can be obtained. 

The last section of the thesis centers on performing dPCR using a biomimetic 

structure. Cicada, which is abundant in nature, has been studied by many 

researchers and groups for self-cleaning, anti-fouling purposes. However, it was 

employed as the perfect mold for dPCR, thanks to its fascinating highly packed 

nanopillars. Due to the limitation of current technology, such a mold with tiny and 
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compact nanopillars is very difficult to produce or manufactured. Thus making the 

stamp was appealing. A duplex nanoimprint technique is proposed for replicating 

the nanopillar structure; the copied chip was full of organized nanowell arrays, 

making it a perfect candidate for dPCR. 

In conclusion, PCR was studied from an engineering point of view, at different 

scales and formats, and with various working principles. Throughout this PhD 

work, the goal of optimizing thermal cycled PCR in a single run is achieved, as 

detailed in Chapter 4. The thermal gradient feature introduced fulfills the purpose. 

In Chapter 5, the goal of realizing absolute quantification of nucleic acids is 

achieved through digital droplet RPA by using an integrated capillary-based setup. 

However, the goal of implementing digital PCR (dPCR) in a biomimetic nanowell 

chip is yet to be reached. Although a duplex nanoimprint technique is proposed to 

fabricate nanowell structures nicely, as detailed in Chapter 6, the implementation 

of (dPCR) needs time due to lacking of proper detection system. Conventional 

optical microscope is not sufficient to capture images at such small scale, and SEM 

could not take fluorescent images. A microscopy capable of taking fluorescent 

images, in the meantime, with fine resolution, such as STED is being taken into 

consideration.  

 

Outlook 

As described in the conclusion part, the goal of running dPCR in a biomimetic 

nanowell chip is yet to be finished, with the aid of STED. However, with the 

intriguing structure of Cicada chips, not only dPCR, but also other applications can 

be considered promising. The following part gives three main projects that is going 

to be fulfilled in the future.  



Chapter 7 Conclusion and outlook  

 

157 
 

First, dPCR using STED microscopes with specific probes can be used as a 

detection method. In cooperation with the INM institute (Saarland University), 

work is ongoing. 

Second, nanoparticle self-assembly using the KAPA tool is ongoing, in cooperation 

with the INM institute (Saarland University). 

Third, matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) 

is ongoing, in cooperation with IBC group (Saarland University).
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Appendix 

List of abbreviations 

Abbreviation Description 

A Adenine 

C Cytosine 

ddNTPs Dideoxynucleotides 

ddPCR  Digital droplet polymerase chain reaction 

ddRPA Digital droplet recombinase polymerase amplification 

DNA  Deoxyribonucleic acid 

dPCR  Digital polymerase chain reaction 

dRPA Digital recombinase polymerase amplification 

dsDNA Double stranded DNA 

EBL Electron beam lithography 

EIL Electron ion lithography 

EtBr Ethidium bromide 

G Guanine 

HIV Human immunodeficiency virus 

IC Integrated circuit 

LOC Lab-on-a-chip  

MALDI Matrix assisted laser desorption ionization 

MCA Melting curve analysis 

MEMS Microelectromechanical systems 

MNF Micro-Nano fabrication 

mRNA Messenger RNA  

MS Mass spectrometry 

m-TAS Miniaturized total analysis system 
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NGS Next-generation sequencing 

NIL Nanoimprint lithography 

PCR Polymerase chain reaction 

PDMS Polydimethylsiloxane 

qPCR Quantitative PCR 

Re The Reynolds number 

REM  Replica molding 

RNA Ribonucleic acid 

RPA Recombinase polymerase amplification  

SAMIM Solvent assisted micromolding  

SEM Scanning electron microscope 

SNPs Single nucleotide polymorphism 

ssDNA Single stranded DNA 

STED Stimulated emission depletion 

STR Short tandem repeats  

T Thymine 

Taq Thermus aquaticus 

Tm Melting temperature 

ULSI Ultra-large scale integrated circuits 

UV Ultraviolet 

VRC Virtual reaction chamber 

μCP Microcontact printing 

μTAS Micro total analysis systems 
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Abstract An open system with a thermal gradient is de-
scribed for the optimization of polymerase chain reactions
(PCR). Two thermal electric coolers were used as the heat
source. The gradient is measured through encapsulated
water-based beads of a temperature-dependent dye inside
mineral oil, thereby forming virtual reaction chambers. Nine
droplets (with typical volume of 0.7 μL) were used. Using the
intrinsic fluorescence of a temperature-sensitive inert dye
(sulforhodamine B), the process involves measurement of
the fluorescence intensity at a known, uniform temperature
together with the instrument-specific calibration constant to
calculate an unknown, possibly non-uniform temperature.
The results show that a nearly linear thermal gradient is ob-
tained. This gradient function is a useful feature that can be
used for optimization of a commonly used enzyme-activated
reaction, viz. PCR. The emission spectra of fluorescent drop-
lets during two-step PCR were monitored and the changes in
fluorescence between 50 °C and 100 °C quantified. As the
gradient feature allows for testing a range of annealing tem-
peratures simultaneously, the optimal annealing temperature
can be easily determined in a single experiment.

Keywords Microfluidics . Droplet PCR . Thermal gradient .

Fluorometric sensing . Temperature-dependent dye .

Sulforhodamine B

Introduction

Microfluidic systems, or Blabs-on-a-chip^, have revolution-
ized many aspects of quantitative biochemistry and analytical
chemistry [1]. The potential advantages, including portability,
speed, high efficiency, and reduced reagent consumption
[1–4] have been explored by the miniaturization and integra-
tion of the various chemical operations. As in digital
microfluidics where droplets are manipulated on an open, hy-
drophobic surface, the virtual reaction chamber (VRC) offers
a simple way of exploiting the advantages of microfluidics
and droplets while circumventing many of the practical prob-
lems. It is formed by encapsulating single aqueous sample
droplets with volumes in the lowmicroliter range within slight
larger oil droplets [5–7].

Temperature is the most fundamental element in biochemi-
cal reactions [8], either in micro or macro scale. Therefore, to
obtain robust, unique and clean products, optimization needs to
be performed. This optimal temperature is often reaction de-
pendent, or relies on other factors such as the physical charac-
teristics of the molecules in a particular solvent or equipment
characteristics. On the other hand, temperature may affect the
rate or efficiency of the reaction. Accurate control of sample
temperatures in microfluidic systems is often very important,
particularly during the reaction and separation. The importance
of temperature control in lab-on-a-chip devices has been dem-
onstrated for enzyme-activated reactions [1, 5, 9–11].

One of these enzyme-activated reactions, polymerase chain
reaction (PCR) [12], conducted by a deoxyribonucleic acid
(DNA) polymerase, is introduced to illustrate the point. PCR
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utilizes biological and chemical components to orchestrate
enzymatic amplification. It gives access to a method of ampli-
fying DNA molecules across several orders of magnitude,
which has substantially accelerated the pace of research in
many fields of biology.

The sequence and length of PCR primers generally deter-
mine the annealing temperature of the thermal cycling reac-
tion for a specific assay. Using too low an annealing temper-
ature can produce non-specific priming of templated DNA or
form primer-dimers, whereas if the temperature is too high,
little or no product may be produced. Therefore, PCR yield is
reduced. These problems can often be avoided by an anneal-
ing temperature optimization step [13–15].

Most groups have reported using a temperature sensor to
measure the temperature of the substrate of a microfluidic
system [6, 7, 9, 16] or on the outside of capillaries [17, 18].
This is perhaps the simplest and easiest way to measure tem-
perature. However, it is not accurate considering the tempera-
ture discrepancy between the temperature on the outside of the
system and the fluid inside the system. Besides, concerns
caused by direct sensor contact within the solution, such as
product contamination or inhibition, the added thermal mass
of the sensor, and the obstruction of optical measurements
become more acute as the sample volume decreases, forcing
measurements external to the sample and compromising ac-
curacy during rapid temperature transitions.

A simple solution for non-contact temperature measure-
ment is to use a passive reference dye whose fluorescence
varies with temperature but does not inhibit the reaction.
The technique takes advantage of the temperature dependence
of the fluorescence intensity of a dilute fluorophore added to
the fluid [2]. Since the fluorescence of many dyes is
temperature-dependent [19, 20], a suitable dye has to be cho-
sen for each specific application. Considering the repeated
heating and cooling during thermal cycling, sulforhodamine
B has been used for measuring temperature because of its
reliable fluorescence over time [19–21]. Moreover,
sulforhodamine B exhibits excellent temperature sensitivity.

4 parallel PCR reaction-stations were presented in [15]
with a purpose of optimizing annealing temperature in the
range of 50–68 °C. Our work, based on VRC, is capable of
affording 9 thermal gradients, aiming to optimize PCR reac-
tion in a single run and in more precise temperature scale.
More thermal gradients can be obtained by smaller droplet
size and tighter posited droplets. Commercially available gra-
dient thermocyclers, such as the 96 Universal Gradient,
PeQSTAR (ht tp : / /www.isogen- l i fesc ience .com) ,
Mastercycler epgradient (http://www.labx.com), and Chromo
4 usually require more than two temperature controlling
modules to achieve the same temperature gradient. Most of
them either have no real-time detection [22], or require large
volumes of the PCR cocktail for the reaction [23]. Multi-zone
temperature control may ensure accuracy. Nevertheless, more

energy is consumed by multi-heater units. Meanwhile, the
footprint is much bigger because of multi-heater units and
corresponding control parts. A two-step thermal gradient for
fluorometric optimization of droplet PCR in virtual reaction
chambers is present here. Sulforhodamine Bwas used for real-
time thermal gradient control and monitoring. The method
incorporates a two-step protocol combining the annealing
and elongation steps, which leads to significant time-savings
and a reduction in reagent use during optimization and stan-
dard PCR experiments.

Materials and methods

Surface preparation

As described earlier, the glass surface for the VRC has to be
hydrophobic as well as oleo phobic. Chemical vapor deposi-
tion method is applied to silanize glass coverslips. A self-
assembly monolayer of a fluorosilane with a reproducible
contact angle (Drop shape analysis system DAS 10 MK 2,
https://www.kruss.de) around 109 ° was achieved. Coating
stability was assessed by the INM institute (http://www.
leibniz-inm.de). Detailed description on surface coating can
be accessed in supplementary material.

Temperature calibration

Theoretically, given a small piece of highly thermally conduc-
tive material, a uniform thermal distribution can be reached in
seconds or milliseconds. By applying two different tempera-
tures to this material, points along the temperature difference
direction should have temperatures in between.

To demonstrate the point, sulforhodamine B, a passive dye
which exhibits excellent temperature sensitivity, was chosen
for monitoring the temperature. For absolute intensity of the
fluorescence to serve as a temperature monitor, the instrument
and dye must be stable over time. Temperature calibration was
performed at equilibrium temperatures, not while the temper-
ature was changing.

Temperature can be related to fluorescence through a cali-
bration constant:

C ¼ ln I=I ref
� �

= 1=T−1=Tref
� � ð1Þ

Fluorescence intensities I were measured at temperatures T
(in Kelvin) and related to reference fluorescence intensity Iref
at a reference temperature Tref. Instrument-specific calibration
constants are used to convert fluorescence to solution temper-
atures. Afterwards, the solution temperatures were converted
into Celsius using the following formula:

t -Cð Þ ¼ T Kð Þ−273:15 ð2Þ
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Where t and T represent temperature in Celsius and Kelvin,
respectively. Detailed temperature calibration description can
be found in supplementary material.

Reagents

All buffers were made using deionized water from a Milli-Q
ProgradT3 column (http://www.merckmillipore.com/DE/de).
The fluorescence of sulforhodamine B (monosodium salt,
http://www.sigmaaldrich.com/germany.html) was measured
in a Bmock^ PCR solution (without polymerase) at a final
concentration of 0.1 mM; see protocol below. The
polymerase was replaced with deionized water.

The performance of the system was verified by performing
real-time PCR to detect a DNA segment of an avian virus. The
PCR primers for the chosen avian virus segment (detailed
sequence can be found in supporting material) were designed
by Primer Express 3.0. The sequence of the forward primer:

5-TGTACTCCCCAGTGTCATGATTG-3;
Reverse primer:
5-AAGGGAATAAGCGGCCATATC-3.
The melting temperature for the primer (Eurofins,

Germany) is 60.6 °C.
The master mix was prepared by adding 3 μL of

25 mM MgCl2, 9 μL 50 pM of each forward and reverse
primer, and 4 μL of the LightCycler FastStart DNA Master
SYBR Green I (http://www.roche.de/). 2 μL DNA templates
were added to the reaction mixture to the total volume of
27 μL immediately before the onset of the reaction. The
template concentration was around 105 copies ·μL−1.

On-chip PCR thermocycling

The instrument setup is shown in Fig. 1. Thermocycling of the
microfluidic device was achieved using two thermoelectric
coolers (1TML10-21 × 21–10, http://www.thermion-
company.com/) and a manufactured controller TEC-1122-
SV (http://www.meerstetter.ch/). Temperature feedback was
accomplished by inserting two 1 mm-thick 22 × 22 mm
copper plates on top of each TEC unit with an embedded
pt100 (http://de.farnell .com/) temperature sensor.
Temperature control was performed by proportional
integrated derivative (PID) feedback control. Optimized PID
constants were used to achieve a fast yet stable control system.
Then, another piece of 1.2 mm thick 20 × 65 mm copper plate
was placed between the microfluidic device and two small
copper plates to facilitate efficient heat transfer to achieve a
uniform heat distribution. A custom-fabricated copper block
was placed beneath the TEC device to dissipate waste heat.
Finally, a 3-mm silicon wafer was placed between the copper
plate and the microfluidic device to help equalize heat distri-
bution and provide a better optical surface for imaging. The

VRC used in this work was formed by a 0.7 μL sample,
covered with 3 μL of M5904 mineral oil (Sigma-Aldrich,
http://www.sigmaaldrich.com/germany.html) and placed on a
170 μm thick hydrophobic/oleo phobic microscope coverslip.
Two-step PCR thermocycling was initiated with a 10min Bhot
start^ at 95 °C to activate the Taq polymerase followed by
40 cycles of ramping between 50 °C and 95 °C using 10 s
hold times and a thermal ramp rate of 5 °C · s−1 .The total PCR
thermocycling reaction time required ~45 min. The ability to
perform on-chip thermal cycling of droplets is necessary to be
able to perform real-time observation of the entire droplet
reactor array during PCR amplification.

To find the optimal annealing temperature for the reaction, a
recommended temperature range ±10 °C above and below the
calculated melting temperature of the primers was used. Since
the melting temperature for primer was 60.6 °C, the tempera-
ture gradient was set to 52 °C ~ 72 °C for optimization.

Image acquisition and processing

Fluorescence imaging of the sulforhodamine B dye was per-
formed using a ProgRes MF Cool CCD camera (https://www.
jenoptik.de/). The camera gain was set manually to 1 and kept
constant throughout the whole experiment. An appropriate
filter set (ET546/22×, ET605/70 m, www.ahf.de) was
applied in front of the C-mount fixed focal lens HF 16HA-
1B/1.4 (http://fujifilm.jp). Fluorescence imaging of the PCR
reaction was the same as that for sulforhodamine B, except the
filter set was different (MF469/35 https://www.thorlabs.de/,
ET525/50 https://www.chroma.com/).

Fig. 1 Instrument setup. The TEC control module sends out a signal to
LED and camera at the same time at the end of the annealing step, making
sure that the LED light is on while capturing the image
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ImageJ software and custom Matlab code were used to
systematically detect and quantify fluorescent droplets and
analyze the size and the fluorescence intensity.

Melting analysis

Because SYBR Green I bind to all double-stranded DNA, it is
necessary to check the specificity of the PCR assay by ana-
lyzing the amplified products. After each reaction, a melting
curve analysis was run. A BioAnalyzer 2100 (http://www.
agilent.com/) and gel electrophoresis were also used to
check the specificity of the amplicon. Additional
information on amplicon concentration can be accessed
through the analysis from the BioAnalyzer. An optimized
SYBR Green I PCR reaction should have a single peak in
the melt curve, corresponding to a single band on the gel
image. By comparing the gel image with the melt curve, one
can identify peaks in the melt curve that correspond to specific
products, additional non-specific bands and primer dimers.

Commercial instrument

Another group of experiments were performed on a commer-
cial gradient machine, i.e. 96 Universal Gradient, PeQSTAR
in house. Unfortunately, the device does not have a real-time
function. Because of its large reaction volume, gel electropho-
resis was carried out after the reaction. 5 μL of each reaction
product from the PeQSTAR commercial gradient machine
was resolved on a 2% agarose gel for a period of 30 min at
100 V. 6XDNAGel loading buffer was added at a ratio of 5:1.
Gel images were taken by Bio-Rad (www.bio-rad.com). Gel
lanes were processed using ImageJ.

Results

Temperature gradient

When two different temperatures were applied at the two ends
of the chip, a group of nearly linear different temperatures was
obtained, forming a thermal gradient. Figure 2 illustrates the
different temperatures in color. Meanwhile, the thermal gradi-
ent is represented by color depth. From left to right, the drop-
lets are numbered droplet 1 to 9. The fluorescence of
sulforhodamine B decreased as the temperature increased.

After temperature calibration, a two-step thermal cy-
cling was run with sulforhodamine B monitoring the tem-
perature in real time. Figure 3(a) shows the instrument
equilibration of sulforhodamine B assessed at 55 °C
while 3(b) shows the temperature profile of each droplet
during the PCR reaction, positioned exactly as shown in
Fig. 2. In order to demonstrate more clearly, the com-
bined annealing and extension steps were set to 30 s.
Each video frame denotes 2 s. The thermal gradient is
clearly observable.

Gradient PCR

Nine droplets were prepared in each temperature zone. An
additional droplet without template (NTC) was positioned
in parallel with the fifth droplet, or can be placed any-
where on the chip except for spaces already taken up by
the nine droplets. With a thermal gradient, PCR experi-
ments can be optimized in a single run. The amplification
curves of the reaction are shown in Fig. 4(a). The inten-
sity plots reveal that droplet 4 has the highest fluores-
cence intensity. The best yield of the product was ac-
quired at 61.04 °C.

Melt curve analysis was run to testify the specificity of the
product, as shown in Fig. 4(b). Robust, unique, and clean
products were obtained during the amplification, without
any secondary products such as primer-dimers.

Fig. 2 Droplet array with thermal gradient. From left to right, the
temperature increases and the droplets are numbered as droplet 1 to 9
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Fig. 3 a Instrument equilibration
of sulforhodamine B assessed at
55 °C. After 20 min, no evident
change in fluorescence as well as
evidence of photo bleaching was
observed. b Temperature profile
for gradient PCR. Each line
denotes one sample as illustrated
in Fig. 2
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Another group of experiments was performed on 96
Universal Gradient, PeQSTAR. Since it is not a real-
time machine, gel image of the results was taken by a
Bio-Rad imager. The gel lanes of the gel image processed
using ImageJ as shown in Fig. 5 show that 61.6 °C was
the optimal temperature. The result is in accordance with
the result from our device.

Figure 6(a) shows the temperature calculated from the
calibration constant (the blue curve). The red curve rep-
resents the temperature measured by direct contact of the
temperature sensor of the chip without thermal loads. No
temporal delay was taken into consideration. Both
methods showed an almost linear thermal gradient. Since
the droplet volume is small, and so is the temperature
sensor size, the discrepancies between the two methods
can be neglected. However, care must be taken when
using a large volume (thermal loads) for the reaction
(most commercial devices use large volumes).

In order to determine the relationship between fluores-
cence intensity and the final concentration, the results

were transferred to a BioAnalyzer 2100 for further analy-
sis. After running the analysis, a correlation analysis be-
tween the temperature gradient and the product concen-
tration was performed in Fig. 6(b). The y-axis is the
BioAnalyzer analysis from the annealing temperature op-
timization experiment. The optimal temperature was
60.62 °C.

Discussion

Different dyes react differently to temperature changes.
The fluorescence of most dyes decreases as the tempera-
ture is increased. The exact temperature-time course of the
sample can be moni tored through the use of a
temperature-sensitive passive reference dye, which can
provide solution temperatures in real time throughout the
thermal cycling. Therefore potentially controls the solu-
tion temperature. Sulforhodamine B was chosen because
of its high temperature sensitivity and stability over re-
peated heating and cooling cycles. In addition to evapo-
ration and/or condensation, other potential artifacts in-
clude instrument drift, thermal degradation of the dye,
and fluorescence quenching, all of which might affect
fluorescence signal as well. To use fluorescence to mon-
itor temperature, fluorescence variations must be attribut-
able to temperature. After 20 min, no evident change in
fluorescence was observed. In addition, no evidence of
photo bleaching of sulforhodamine B was observed.

The calibration constant is dependent on the physical char-
acteristics of the fluorescent molecules in a particular solvent.
It provides a quantitative way of judging the overall tempera-
ture sensitivity of the dye and optics. Different calibration
constants range from 1314 ~ 1487 K for sulforhodamine B,

Fig. 4 a Amplification curves of gradient PCR. NTC denotes no
template control. b Melt curve analysis of droplet 4 with the first
derivative of the change in fluorescence intensity as a function of the

temperature; meanwhile, only a single peak corresponding to the PCR
product is observed. The amplicon is clean and specific

Fig. 5 Agarose gel result of PCR run on a commercial 96 Universal
Gradient, PeQSTAR. The columns are gel lanes of the target amplicons.
Lane 4 has the best result
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with an accuracy of ±0.8 ~ 8%. Continuous acquisition
throughout temperature cycling and melting was possible. A
higher value of the calibration constant correlates to greater
temperature sensitivity and system precision. Solution temper-
atures were determined using the calibration constant, Iref and
Tref as shown in formula (1).

The reaction chamber was made by encapsulation of a
water-based sample in mineral oil. As no solid cover or micro
channels were required, device fabrications consisted only of
deposition and patterning the substrate using chemical vapor
deposition. The use of disposable glass slides prevents cross-
contamination. The small droplet shape minimized the tem-
perature gradient throughout the droplet. Furthermore, the dis-
posable coverslip was not subject to any processing. The glass
thermal conductivity coefficient is 1.1 Wm−1K−1, while the
surrounding air has a thermal conductivity coefficient of only
0.025 Wm−1K−1. Therefore, the temperature of the glass will
be determined only by the temperature of the silicon wafer
attached to the thermoelectric coolers.

The outcome of optimizing the annealing temperature un-
der a single gradient experiment with the primer set (melting
temperature 60.6 °C) was successful under a gradient range of
52 °C to 72 °C. The primer set displayed a range of annealing
temperatures that can successfully amplify the specific
amplicon. The experiment demonstrates the possibility of op-
timizing a primer set using a single PCR protocol with a se-
lected range of temperatures. This was also confirmed by run-
ning an experiment on a commercial gradient device in house.
The gel electrophoresis of the products from the commercial
device verified that our device works. PCRwas optimized in a
single run thanks to the thermal gradient generated based on a
temperature-dependent dye. Furthermore, the optimal temper-
ature was related to the relative fluorescence intensity of the
gradient PCR, since the fluorescence intensity was proportion-
al to the concentration. Hence, no further post-analysis using a
gel or BioAnalyzer is required, saving a lot of time and effort.
Moreover, because only a very small volume of the reagent
mixture is needed for optimization, reagent costs and sample
consumption can be highly reduced. Finally, the device is easy

to operate. However, this system is not perfect, such as the
droplet preparation and alignment have to be done manually.

Conclusion

A small and simple device with a thermal gradient to optimize
PCR was designed, with real-time monitoring of the gradient
based on a temperature-dependent dye. This was achieved
with no direct contact of the temperature sensor, no time delay
and no discrepancies between the device and the droplet inside
the oil. The gradient feature greatly reduced the time devoted
to determining the optimal annealing temperature. The device
is cheap, easy to operate and time-saving. Moreover, more
gradients can be obtained using smaller and more tightly ar-
ranged droplets. The gradient feature is not limited to the
annealing step but also allows for the optimization of the de-
naturation or extension temperature in one experiment as well.
We expect that this temperature gradient feature will be used
to optimize many reactions in the future.
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Abstract
A large area nano-duplex-imprint technique is presented in this contribution using natural cicada
wings as stamps. The glassy wings of the cicada, which are abundant in nature, exhibit strikingly
interesting nanopillar structures over their membrane. This technique, with excellent performance
despite the nonplanar surface of the wings, combines both top-down and bottom-up nanofabrication
techniques. It transitions micro-nanofabrication from a cleanroom environment to the bench. Two
different materials, dicing tape with an acrylic layer and a UV optical adhesive, are used to make
replications at the same time, thus achieving duplex imprinting. The promise of a large volume of
commercial manufacturing of these nanostructure elements can be envisaged through this contribution
to speeding up the fabrication process and achieving a higher throughput. The contact angle of the
replicated nanowell arrays before and after oxygen plasma was measured. Gold nanoparticles (50 nm)
were used to test how the nanoparticles behaved on the untreated and plasma-treated replica surface.
The experiments show that promising nanoparticle self-assembly can be obtained.

Supplementary material for this article is available online

Keywords: duplex imprint, nanowell arrays, cicada, nanoparticles, dicing tape, UV optical
adhesive

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanoscale fabrication techniques with a high resolution and
large yield have been a remarkable research area due to their
crucial role in patterning, especially into an ordered array for
various applications, ranging from electronic memory to
biomedical applications [1–8]. For these applications, there
are two different fabrication categories: a bottom-up chemical
method and a top-down lithographic method. Conventionally,
the bottom-up chemical synthesis method demonstrates
decent size control, monodispersity and large-scale produc-
tion of the resulting devices [8–17]. However, critical diffi-
culties of controlling the shape, size, structure and defects of
resultant devices are present. To solve such difficulties,
physical top-down lithographic methods, with great potential
in patterning nanoscale devices, have been proposed.

For ultraviolet and visible light applications, where the
structural dimensions at the optical interface must be smaller

than the wavelength of the incident light [18], a feature size
below 200 nm is always necessary. Such small size ranges,
mean that conventional top-down lithographic technologies,
such as electron beam etching [19] and fast atom beams [20],
require sophisticated equipment and a stringent ambient
environment. They are time-consuming and expensive
methods for large-area fabrication practical applications [21].

Given suitable fabrication techniques, the preparation of
high resolution stamps over a large area is a key procedure in
nanostructure imprint fabrication. Various stamps, hard, soft
or hybrid have been employed numerous times in research
[8]. The processes are usually time consuming and compli-
cated and, in some cases, expensive to carry out. Periodic
micro- and nanostructures existing in nature have provided
enormous inspiration for scientists often attempting to mimic
these structures for many important and specific applications.
Many efforts have been made to replicate or directly utilize
these bio-nanostructures, converting complicated natural 3D
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bioorganic structures into various otherwise unavailable
material structures for optical, electronic, magnetic, thermal
or catalytic applications [22–26]. With numerous species in
nature to choose from, scientists could generate a wealth of
3D shapes with sub micro- or nanometer resolution. These
efforts are based on the assumption that natural designs are
good and useful, thanks to natural selection or any other
unguided natural process. For instance, photonic crystals,
wings, antennae, compound eyes etc are examples of natu-
rally occurring elaborated structures [27, 28].

In comparison to other natural phenomena, regularity is
one of the top priorities. Early studies revealed that regular
pillar-like nanostructures are responsible for low reflections.
The ventral and dorsal nanopillar structure of the cicada’s
glass wing could offer many intriguing possibilities [29], not
only optically with its transparent surface. The glass wings of
the cicada have been proven to possess super-hydrophobic
surfaces, which are thought to limit bacterial contamination
through a self-cleaning action. Cicada wings have been
shown to be able to kill Pseudomonas aeruginosa cells and
other gram-negative bacteria by their extremely efficient wing
surface [30, 31]. Besides electro-optical device applications,
the nanopillared arrays show great promise in bioscience, for
investigations involving the absorption of biomolecules and
epithelial cell migrations using mapping force [32, 33]. Such
nanotip arrays can effectively absorb proteins and increase the
sensitivity of detection [34].

With the aid of existing nanofabrication techniques up
until now, different types of nanostructure fabrication meth-
ods using cicadas have been developed. However, nearly all
have been one-sided imprints [35–40]. These are difficult to
put into practical applications due to their costly and com-
plicated procedures. Although the application of biomimetic
surfaces have been tried by several groups, the preparation
cost is the limiting factor regarding their practical application.
Therefore, developing simple, time and cost efficient techni-
ques for an area large enough for practical applications is the
key point in future work. In this study, a duplex imprinting
technique combining top-down and bottom-up techniques has
been developed to replicate the Janus nanopillar structures of
the glassy wing of the cicada. After imprinting, contact angle
measurement was performed using both untreated and oxygen
plasma-treated nanowell array surfaces. A high contact angle
was visible before oxygen plasma treatment. The nanowell
arrays with gold nanoparticles inside showed further pro-
mising applications of nanoparticle assembly.

2. Experimental

2.1. Materials

The cicadas (Macrotristia chantranei) were bought from an
online specimen store, wingspan measuring 10–13 cm. Dicing
tapes G19, G46 (Adwill, Japan) were stored in-house for the
dicing machine. G64 and D210 dicing tapes were kindly
provided by Lintec Europe (Munich, Germany). G19 had a

tape thickness of 80 μm, consisting of a PVC base material
with a thickness of 70 μm, and an acrylic adhesive layer with
a thickness of 10 μm. The adhesion was 46 mNmm−1. UV
optical adhesives NOA 81 and NOA 89 were from APM
Technica (Germany). Gold nanoparticles (EM. GC 50/4,
Plano GmbH) were kindly provided by the Institute for New
Materials (INM) Saarbrücken, Germany.

2.2. Duplex imprint

The cicada wings were cleaned with acetone and Milli-Q
water (Milli-Q ProgradT3 column), before being used as
stamps, to remove any stains which would affect the quality
of the imprinting patterns. The wings were first sonicated
(VWR ultrasonic cleaner) in Milli-Q water for about 15 min
to remove any contaminants that had been adsorbed physi-
cally on the surface. Sonication was repeated in acetone for
20 min to remove any organic compounds and stains that
stuck the nanopillars together, and then sonicated again in
Milli-Q water for 5 min to remove any residual acetone. The
wings were then dried in a stream of nitrogen. The details on
the surface of the wings were unchanged, as shown by sub-
sequent SEM characterization.

Figure 1 gives a schematic diagram of how the duplex
imprint was realized. Experimental details can be accessed in
the electronic supporting information (ESI), which is avail-
able online at stacks.iop.org/NANO/29/085302/mmedia.

The structure replications using the duplex imprint
technique can be extended to many applications. The
nanostructured chips were treated with oxygen plasma
(Diener electronic) for 30 s to make the surface hydrophilic.
The water contact angle measurement (drop shape analysis
system DAS 10 MK 2) was performed by examining the
surface hydrophobicity before and after oxygen plasma
treatment. Gold nanoparticles were used to test how they
would behave on the surface of the replicated nanowell
arrays. The gold nanoparticle solution was first aliquoted
into small volumes. The aliquot was then vortexed for 5 s,
followed by centrifugation for 30 s. A 300 nL drop was
pipetted over the nanoscale well arrays. SEM images will be
shown in the following section. The particles were distributed
more evenly by vortex or sonication before the onset of the
tests. Additional video clips about how droplets behave on the
replica surface are available in the supporting material, which
can be found online.

3. Results and discussion

The structure of the ventral and dorsal sides of both the fore
and hind cicada wings were covered with a periodic topo-
graphy consisting of highly ordered hexagonal close-packed
arrays of tapered nanoscale pillars of slightly different
orientations. The height, spacing and diameter of the nano-
pillars varies between species. In this work, the spacing was
sub-20 and sub-10 nm, or even touching, depending on the
region. The height of pillars was about 400 nm and the
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diameters at the top and bottom pillars were about 40 and
130 nm, respectively. The tapered pillars greatly minimized
the reflectivity of their surfaces over broad angle or frequency
ranges.

In general, the small pillars proved much more difficult to
imprint than small holes, because the pillars can easily tear off
during mold separation. SEM can easily melt a small polymer
pillar or destroy the replicated patterned polymer structure of
the pillar arrays. Furthermore, the cicada wing membrane is
not flat. The irregular surface makes imprinting more chal-
lenging. Cicada wings have been shown to have strong
mechanical properties. They can withstand 190 °C and 40 bar
pressure for at least 3 min repeatedly. The cicada wings have
sufficient rigidity, chemical stability and low surface tension
to carry out imprints while preserving the original profile.
These properties originate from the special composition of the
cicada wings. An arrangement of highly crystalline chitin
nanofibers, embedded in a protein matrix, interacts with the
matrix via hydrogen bonding. The hydrogen bonding imparts
rigidity and chemical stability to the structure. The notable
low surface tension of the wings originates from a layer of
wax on their surface. The wax layer contains esters, acids,
alcohols and hydrocarbons. Fortunately, the surface tension
remains low even after the cleaning treatment, which is very
important for imprinting. There is no such problem when
using cicada wings as imprinting stamps. The patterned
polymer is destroyed during stamp release due to con-
glutination if the surface tension is too high. Therefore, the
cicada wing stamps do not need to be deposited with an
additional anti-adhesive layer before imprinting. The Young’s
modulus of these cicada wings can be as high as 7–9 GPa.
Although this number is still far lower than for traditional
stamps used in nano imprint lithography, such as silicon (up
to 131 GPa), it is sufficient for imprinting while still main-
taining the original profile.

Unlike previous work, the wings were cut into very small
pieces before imprinting, and the whole process was carried
out in a clean room with complex equipment and under strict
conditions. The technique does not necessitate removal of all
the veins, except for the largest outer exoskeleton elements, or
cutting the wing into small pieces. The entire process takes
only several minutes. SEM images of the duplex replica using
different tapes and optical adhesives are shown in figure 2.

The experiments showed that the negative structures of
the stamp had been successfully fabricated and nanowell
arrays had formed. Furthermore, the nano-well arrays could
be transferred to the UV-cured adhesive using the same
technique, with tape as the mold, to replicate the structure on
surrounding veins. The pitch between the wells was about
150 nm, the well diameter was about 130 nm, and the depth
about 400 nm. These parameters were consistent with the
stamp, since the nanopillar arrays were tapered. The bottom
diameter size was the same, and the used stamps still pre-
served the original structure. Even the defects in the wing
structures were well replicated, as shown in figure 3.

The cicada wing stamps can be used several times,
although the quality of the imprinting results may decline due
to the material of the cicada wings. This proves to be cost-
effective because: (i) the wings are abundant in nature and
easy to obtain, and (ii) the two materials used for replication
are cheap. With these natural cicada wing stamps, nano-well
arrays (negative structures of cicada wings) have been fabri-
cated conveniently and successfully. The method could also
be extended to other materials useful in optical imaging,
electrical engineering or surface-enhanced Raman spectrosc-
opy (SERS). The imprinted nanostructure can also be
employed in abundant applications.

Other dicing tapes, such as G46, G64, and D210, could
potentially also be used for imprinting. Various factors
influence the choice of material. Here is some advice for
choosing the right material: (i) the dicing tape: face material

Figure 1. Schematic diagram showing duplex imprint with Janus nanopillared structures of cicada wing as stamps.
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should be soft, with low stiffness. The adhesion after UV
treatment should be low for D types. For G types, the rough
adhesion should be within the range 35–73 mNmm−1. For
example, the adhesion of G64 is too weak for imprinting.
(ii) The UV optical adhesive should have low viscosity;
however, not too low, as, for instance, NOA 89 (viscosity
around 20 cps) is not as stable as NOA 81. A viscosity of
around 20–300 cps is suggested. (iii) A silicon adhesive is a
good substitute material. Adhesion and viscosity should be
taken into consideration when making the choice.

A water contact angle measurement was performed when
examining the surface hydrophobicity. The water droplet of
the imprinted sample, as shown in figure 4(a), had a higher
contact angle than the surface of the same material without
nano patterns. After oxygen plasma treatment, the water
contact angle became very low, as shown in figure 4(b). After
1–2 s, the drop collapsed completely. Video clips in the ESI
demonstrate this behaviour more vividly. Figure 5 shows how
gold nanoparticles behave on the surface of the replicated
nanowell arrays. The particles distributed more evenly after
vortex or sonication, which ensured the particles were evenly
distributed before the test. The distributed gold nanoparticles
follow Poisson’s distribution. While the gold nanoparticles

Figure 2. SEM image of replication using different tapes and adhesives.

Figure 3. SEM image showing replicated defects in the wing
structure.
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were loaded manually with a pipette, an automatic platform
and large particle size is likely to help control the number
of nanoparticles in each well. This distribution allows us
to digitally count and quantify the original particle
concentration.

4. Conclusions

In summary, we have demonstrated a novel and simple
technique for large area nano-duplex imprinting using cicada
wings as stamps. Nano-well arrays have been successfully
fabricated by our method and the structures are well

replicated, including defects in the wing structure. Further-
more, with tape as the mold, hexagonal pillar arrays can also
be obtained using the same method. In short, the technique is
easy, fast and cheap. It may change the way we fabricate
nanostructure chips. The technique, with excellent perfor-
mance, combines top-down and bottom-up nanofabrication
techniques, despite the non-planar surface of the glassy
wings. No complex equipment or facilities are needed. No
stringent surrounding environment is required. It transitions
micro-nanofabrication from the cleanroom environment to the
bench. The promising commercial volume manufacture of
these nanostructure elements can be envisioned through this
contribution. The contact angle measurements as well as the
gold nanoparticle test indicate further applications in nano-
particle self-assembly.
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