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ABSTRACT

Machine learning is transforming the world. Its application areas span privacy
sensitive and security critical tasks such as human identification and self-driving
cars. These applications raise privacy and security related questions that are not
tully understood or answered yet: Can automatic person recognisers identify people
in photos even when their faces are blurred? How easy is it to find an adversarial
input for a self-driving car that makes it drive off the road?

This thesis contributes one of the first steps towards a better understanding of
such concerns. We observe that many privacy and security critical scenarios for
learned models involve input data manipulation: users obfuscate their identity by
blurring their faces and adversaries inject imperceptible perturbations to the input
signal. We introduce a data manipulator framework as a tool for collectively describing
and analysing privacy and security relevant scenarios involving learned models.
A data manipulator introduces a shift in data distribution for achieving privacy or
security related goals, and feeds the transformed input to the target model. This
framework provides a common perspective on the studies presented in the thesis.

We begin the studies from the user’s privacy point of view. We analyse the
efficacy of common obfuscation methods like face blurring, and show that they
are surprisingly ineffective against state of the art person recognition systems. We
then propose alternatives based on head inpainting and adversarial examples. By
studying the user privacy, we also study the dual problem: model security. In model
security perspective, a model ought to be robust and reliable against small amounts
of data manipulation. In both cases, data are manipulated with the goal of changing
the target model prediction. User privacy and model security problems can be
described with the same objective.

We then study the knowledge aspect of the data manipulation problem. The more
one knows about the target model, the more effective manipulations one can craft.
We propose a game theoretic manipulation framework to systematically represent
the knowledge level on the target model and derive privacy and security guarantees.
We then discuss ways to increase knowledge about a black-box model by only querying
it, deriving implications that are relevant to both privacy and security perspectives.
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ZUSAMMENFASSUNG

Maschinelles Lernen verdndert die Welt. Die Anwendungsbereiche umfassen daten-
schutzrelevante und sicherheitskritische Aufgaben wie die Personenidentifikation
und selbstfahrende Autos. Diese Anwendungen werfen Fragen zum Datenschutz
und zur Sicherheit auf, die noch nicht vollstindig verstanden oder beantwortet sind:
Konnen Personen auf Fotos durch automatische Personenidentifikation erkannt
werden, selbst wenn ihre Gesichter verschwommen sind? Wie leicht ist es, eine
feindliche Eingabe fiir ein selbstfahrendes Auto zu finden, die es von der Strafie
drangt?

Diese Arbeit tragt zu einem der ersten Schritte bei, um solche Probleme besser
zu verstehen. Wir beobachten, dafs viele datenschutz- und sicherheitskritische
Szenarien fiir gelernte Modelle die Manipulation von Eingabedaten beinhalten:
Benutzer verschleiern ihre Identitdt, indem sie ihre Gesichter unkenntlich machen,
und Widersacher fiigen dem Eingabesignal unmerkliche Storungen hinzu. Wir
stellen ein Datenmanipulator-System als Werkzeug zur gemeinsamen Beschreibung
und Analyse von datenschutz- und sicherheitsrelevanten Szenarien mit erlernten
Modellen vor. Ein Datenmanipulator fiihrt eine Verschiebung in der Datenverteilung
ein, um Ziele beziiglich des Datenschutzes oder der Sicherheit zu erreichen, und
leitet die transformierten Eingaben dem Zielmodell zu. Dieses System bietet eine
gemeinsame Perspektive auf die in der Arbeit vorgestellten Studien.

Wir beginnen mit den Studien aus Sicht des Datenschutzes fiir den Benutzer.
Wir analysieren die Wirksamkeit giangiger Verschleierungstechniken wie Gesicht-
sunschérfe und zeigen, daf’ sie iiberraschenderweise gegen moderne Personen-
erkennungssysteme unwirksam sind. Wir schlagen dann Alternativen vor, die auf
Einfarben des Kopfes und Beispielen fiir feindliche Eingaben basieren. Durch das
Studium des Benutzerdatenschutzes untersuchen wir auch das duale Problem: Mod-
ellsicherheit. Aus Sicht der Modellsicherheit sollte ein Modell robust und zuverldssig
gegeniiber kleinen Datenmanipulationen sein. In beiden Féllen werden Daten ma-
nipuliert mit dem Ziel, die Zielmodellvorhersage zu dndern. Probleme hinsichtlich
des Benutzerdatenschutzes und der Modellsicherheit konnen mit demselben Ziel
beschrieben werden.

Abschliefiend untersuchen wir den Wissens-Aspekt des Datenmanipulationsprob-
lems. Je mehr man iiber das Zielmodell weif, desto effektiver konnen Manipulatio-
nen durchgefiihrt werden. Wir schlagen ein spieltheoretisches Manipulationssystem
vor, um das Wissensniveau auf dem Zielmodell systematisch darzustellen und
Datenschutz- und Sicherheitsgarantien abzuleiten. Wir diskutieren dann Wege zur
Wissenserweiterung tiber ein Black-Box-Modell, indem wir Ergebnisse von Anfragen
dazu nutzen, Implikationen abzuleiten, die sowohl aus Sicht des Datenschutzes als
auch der Sicherheit relevant sind.
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INTRODUCTION

data, better computing power, and more effective learning algorithms,

machine learning now enables the automatic execution of a diverse array
of tasks, from ones with perceptual (e.g. object detection (Ren ef al., |2015)) and
artistic elements (e.g. style transfer (Johnson et al., |2016)) to ones that are privacy
sensitive (e.g. face recognition (Schroff et al., 2015)) or security critical (e.g. automatic
convenience store checkouf'|and self-driving cars (Bojarski et al,|2016)). In particular,
applications in privacy and security relevant tasks leave us wondering if we fully
understand their implications: Can we still opt out of face recognition through face
blurring? Are self-driving cars as reliable as humans in all conditions? Today, not
even machine learning researchers have satisfactory answers to those questions.

In many security- and privacy-relevant scenarios, input data manipulation comes
into play. Suppose that a user blurs her infant son’s face from a photo she is about
to post on a social network, hoping to protect his privacy. She is manipulating
the test data with the goal of protecting her son’s privacy against face recognition
systems. From the security perspective, consider a terrorist who puts a carefully
designed adversarial pattern on a signpost that will guide self-driving cars to crash
into pedestrians. In both cases, deployed models face an intelligent entity who
intentionally introduces a shift in the test data distribution to induce a desired
outcome. This thesis focuses on the security and privacy implications of such data
manipulations against learned models.

The primary focus of machine learning research has been under the iid (indepen-
dent, identically distributed) data assumption, where in particular the training and
test data arise from the same distribution. This assumption implies for example
that a self-driving car will always encounter the road and weather conditions that
it has been trained on. We have seen staggering advances in theory (e.g. Statistical
Learning Theory) and empirical techniques (e.g. deep neural networks) in the iid
setup during the last decade.

The privacy and security implications and guarantees under security- and privacy-
relevant scenarios lack sufficient research compared to their urgency. There exists
ongoing research on adversarial examples - small input perturbations that completely
fail learned models - and corresponding defence measures. However, still far more
investigation is needed to apply machine learning on security critical tasks with
absolute confidence. On the privacy side, there has been only scant prior research
on identity obfuscation (obscuring) techniques on visual data by the time we started
our investigation. See the related work chapter (Chapter |2) for a more in-depth
discussion.

MACHINE learning is transforming the world. With growing amounts of web

Thttps:/ /en.wikipedia.org/wiki/ Amazon_Go
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Figure 1.1: Overview of the privacy and security framework for learned models.

This thesis contributes to a more complete picture of the privacy and security
consequences of visual data manipulation by users. In we establish the data manip-
ulation framework as a common language for formalising and describing privacy
and security relevant scenarios. Under this framework, we start our investigation
on user privacy in personal photo collections with respect to the latest advances in
computer vision (Part[I). In Part [, we propose novel data manipulation schemes
(obfuscation) that provide both good identity protection and image naturalness. In
Part Il1I, we remark that the efficacy of data manipulation depends highly upon the
manipulator’s knowledge on the target model. We extend the data manipulation
framework into a game theoretic one, where the model is underspecified, and anal-
yse the utility guarantees for both the manipulator and the model. We also show
that the manipulator can drastically increase its knowledge on the target model
only through a sequence of queries. Note that discussion in Part [lIl| applies to both
security and privacy. A more detailed outline of contributions per chapter is in

Data manipulation is a double edged sword. Depending on the intent, the
outcome may be good or bad for the society - this thesis does not make an ethical
resolution on this point. We believe, however, that there is practically no way
to prevent users from manipulating data altogether, and there must be a better
understanding of both the threats and opportunities that it poses. This thesis
contributes a scientific investigation towards both directions.

1.1 DATA MANIPULATION FRAMEWORK

We introduce the data manipulation framework in this section. The framework provides
a common perspective to the chapters of the thesis. See Figure [1.1|for an overview.
In our framework, the data manipulator is an agent with goal, leverage, and certain
level of knowledge on the target model f. She transforms the test data distribution
D into T(D) according to her goal. We remark that D can be as small as a single
image and as large as her entire photo album. An input x is then sampled from
T(D) and then fed to the model f. The model, having been trained on a certain
training distribution DY, takes the input and outputs f(x).

Depending on the manipulator’s goal and knowledge of f, multiple privacy and
security relevant scenarios arise. In this section, we walk through specific instances
of this framework, linking to different chapters of the thesis.
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Figure 1.2: Adversarial examples from Chapter 1 . The perturbation is nearly

imperceptible, yet completely fools an image classifier.

1.1.1 Example: fooling machines

We consider the scenario where the manipulator manipulates the data to make the
model behave abnormally. Data transformed in such a way are called adversarial
examples. For example, if the target model is a classifier, the manipulator’s goal could
be to induce wrong label predictions by the classifier. Adversarial examples have
been one of the most researched topic in the recent years, due to the seriousness of
their implications on security critical applications (self-driving cars for example). We
examine how this scenario can be cast into our framework.

The manipulator’s goal is twofold: (1) wrong label prediction and (2) stealthy
manipulation. If the manipulation is too obvious (e.g. filling in the entire image
with black pixels), then the model may simply reject this input. Thus, in general,
there exists a trade-off between the two factors. As a summary measure of the two
goals, we define a utility function for the manipulator U = U(T) that depends on
the choice of the manipulation algorithm T. The stealthy manipulation goal is often
measured in terms of the L, distance from the original input vector, as a proxy to
“obviousness”. The manipulator then chooses her transformation function according
to the optimisation problem

max U(T 1.1
nax U(T) (1.0
where 7 is the leverage space for the manipulator. A specific instance of the
adversarial example generation on a single image x with label y against a classifier f
that returns a per-class probability vector is

i Y

min log f¥(x +6) + A[[4]]2 (1.2)
where 7T is the set of additive perturbations that ensures that the perturbed image
x + ¢ is a valid image (within the cube [0, 1]D ); A > 0 is a scalar for determining
the trade-off between the attack effectiveness (negative log likelihood in the first
term) and the “obviousness” of the attack (second term). Note that f¥(x + ¢) is the
probability for class y that is dependent on the probability of the other classes (e.g.

via softmax); decreasing fY(-) increases f¥ (-) for y' # v.
The needed amount of perturbation to mislead a neural network classifier is
surprisingly small - nearly imperceptible to human eyes (Figure[1.2). This observation
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Figure 1.3: Identity obfuscation methods.

has spurred a lot of research on adversarial examples afterwards. See for an
in-depth discussion of prior work.

1.1.2 Example: identity obfuscation

We present an example where data manipulation can help users protect their privacy
by letting them avoid automatic human identification. Previous researches have
focused on the negative implications of data manipulation; this thesis is one of the
first works in the field advocating an active use of the data manipulation for user
privacy protection. The goal of the manipulator is twofold: (1) Avoid recognition
and (2) maintain input naturalness. Under the social media photo sharing scenario,
the second constraint prevents the manipulator from removing the entire image
pixels and harming the image usefulness. The manipulation problem for privacy
protection is defined similarly as in Equation

There are two types of data manipulation schemes for identity protection: chang-
ing appearances themselves (e.g. hair colour, wearing sunglasses) or obfuscating
identity sensitive regions post hoc (e.g. blurring or blacking-out faces, see Figure
[1.3)? We quantify the efficacy of both schemes against our person recogniser in Part
We conclude that they do not work as well as one might expect.

As better alternatives, this thesis proposes two novel obfuscation schemes, one
based on head inpainting (Chapter [5) and the other one based on adversarial
examples (Chapter [7). Figure shows how they compare to face blurring and
blacking-out in terms of obfuscation performance and image naturalness. The novel
techniques clearly improve over existing ones.
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1.1.3 Knowledge on the model

So far we did not take the manipulator’s knowledge on the model into account.
In practice, the manipulator’s knowledge on f is often limited, and its utility
depends on the level of knowledge on f: U = U(T, f). For example, to generate
adversarial examples, one computes model gradients on the input V, f(x) for best
performance (Goodfellow et al., 2015); these gradients are not accessible for many
deployed models. The adversarial example based identity obfuscation scheme
(Chapter [7) achieves great image naturalness and obfuscation effectiveness, but
comes at the cost of requiring gradient knowledge on the target (we refer to this as
“non-target generic” in Figure [1.3)). Since the manipulation performance depends
highly on this knowledge, it is crucial to correctly reflect the knowledge level in
choosing the manipulation scheme T.

Representing uncertainty in one’s knowledge for control and decision problems
has been an important subject of study in many academic fields including economics,
robotics, operational research, optimization theory, and physics. In particular, to
deal with parameter uncertainty in optimisation problems, robust (or stochastic)
Optimisation (Ben-Tal et al., |2009; Prékopal 1995) has emerged. For Optimal Control
Theory (Seierstad and Sydsaeter, |1986)), robust control theory (Hansen and Sargent,
2001) has been studied as a robust surrogate. If one treats the uncertainty as a result
of other agents’ intelligent activities, game theory (Nash et al., 1950) comes into play.
In the following, we make connections between the treatment of model uncertainty
under our framework and various fields of study listed above.

There are largely two ways of representing the uncertainty on f. The first method
is to put a prior distribution over f ~ Dx. The manipulator’s problem in this case is
to optimise the marginalised utility:

max fi%f [U(T, f)] - (1.3)

There are problems with this scheme. First of all, it is often difficult to define and
make sense of the prior distribution. Even worse, in real life the model may as well
be a dynamic, intelligent entity with the ability to change f with the goal to thwart
the manipulator’s goal.

A second way of modelling the uncertainty is to derive the worst-case bound.
Instead of setting a prior distribution for f, we set a candidate space for f (f € F),
and assume that the model side always chooses the model that minimises the
manipulator’s utility:

i T, f). .
max 1}1&1}1 U(T, f) (1.4)

This optimisation problem gives a guarantee on the utility that is independent of the
choice of model f € F, and the corresponding T for achieving that estimate. This
framework successfully addresses the two problems of the marginalisation scheme
(Equation [1.3): (1) we do not need to know the prior distribution and (2) the model
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may be adversarially chosen. In this framework, we can also represent fine-grained
levels of knowledge, controlling the size of the candidate space F.

Equation [1.4]is an instance of robust optimisation (Ben-Tal et al., 2009). Equation
is a special case of stochastic optimisation (Prékopa, |1995) whose more general
formulation constrains the set of probability measures over the models:

max min F [U(T, f)]. (1.5)

where F is a set of probability measures D over the models. Note that setting
|F| = 1 gives Equation |1.3and setting [F as the set of all single-mass (dirac-delta)
measures over F gives Equation Thus, Equation [1.5]is a generalisation of both
formulations. However, Equation 1.5/ results in a lack of interpretability (what does it
mean to constrain a set of probability measures over models?) and in computationally
intractable optimisation in general (Ben-Tal et al., 2009).

We have adopted the robust optimisation form (Equation in Chapter 7} We
have considered both the manipulator and model as intelligent agents, so this is
furthermore an instance of game theory. We have obtained privacy guarantees for
the data manipulator as a social media user. However, the same framework can yield
the security guarantees for the model against a malicious data manipulator (dual
problem). There is an increasing body of work on applying this Game theoretic
view on defences against adversarial examples, attempting to compute security
guarantees of learned models against input perturbations (after publication of
materials in Chapter [7], (Oh ef al} 2017c)).

1.1.4 Gaining more knowledge

In general, narrowing down the candidate space F will increase the optimal utility
in Equation i.e. more knowledge helps. We show in Chapter [§ that it is
possible to dramatically increase one’s knowledge on various hyperparameters of
a black-box model through a sequence of queries (black box access). We verify
that hyperparameters like the type of non-linear activation, training algorithm,
and training dataset can be reliably reverse-engineered by interpreting the output
patterns with respect to a sequence of (perhaps carefully designed) query inputs
(kennen methods).

This implies that granting black box accesses to users may expose much more
internal information than previously believed. In Chapter|8| we show further that the
exposed internals elevate black-box models” susceptibility to adversarial examples.
This raises new concerns on the model security that have not been addressed before.

1.2 OUTLINE OF THE THESIS

We provide an outline of the chapters according to the three parts of the thesis.
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Part I: Privacy Analysis in Visual Data. We investigate identifiability of humans
in visual data with the recent advances in machine learning and computer vision
in mind. In Chapter |3, based on the conference paper “Person Recognition in
Personal Photo Collections” (Oh et al., 2015} 2017a), we build a state of the art person
recognition system based on deep neural networks (naeil) and present an in-depth
analysis of its stability against domain shifts. Specifically, we consider time shifts
(change of clothing, events, activities, and time of the day) and head viewpoint
changes (frontal versus back-view). We show that naeil is robust to those shifts,
and that humans are identifiable in those personal photos better than previously
believed (e.g. you can be recognised from the back-view). In Chapter 4, based on
the conference paper “Faceless Person Recognition; Privacy Implications in Social
Media” (Oh et al., 2016), we consider more active means of identity obfuscation
including face blurring or blacking out. We empirically argue that those common
techniques are not sufficiently effective against state of the art recognisers which can
easily make use of context information and are highly adaptive. These considerations
have not been studied extensively in the computer vision or privacy domains before.

Part II: Privacy Solution in Visual Data. = We present our technical contributions on
identity obfuscation methods. Existing obfuscation methods are not only ineffective
against state of the art recognition systems but also unnatural (Chapter [4). We
focus on both obfuscation success rate and naturalness. In Chapter |5, based on the
conference paper “Natural and Effective Obfuscation by Head Inpainting” (Sun et al.}
2018), we introduce a head inpainting method based on a generative adversarial
network (GAN) that seamlessly replaces faces with plausible faces of non-existent
identities. Chapter [7is included in Part[[II, but also proposes an adversarial example
based obfuscation technique. Unlike the inpainting method, adversarial examples
make unnoticeable changes to human eyes to completely disable recognition by
certain target models. However, they require specific knowledge on the target model
for good performance. We introduce a Game theoretic framework to obtain privacy
guarantees as a function of the knowledge on the target model (§1.1.3). Chapter
6] is an interlude chapter based on the conference paper “I-Pic: A Platform for
Privacy-Compliant Image Capture” (Aditya et al, 2016). We introduce the I-Pic
image capture system that protects bystanders’ privacy at capture stage.

Part III: Knowledge on Target Model. This part contributes to the formalisation
of the manipulator’s knowledge on the target model. Chapter [7} based on the
conference paper “Adversarial Image Perturbation for Privacy Protection — A Game
Theory Perspective” (Oh et al., 2017c), introduces a Game theoretic framework to
represent the lack of knowledge on the target, and corresponding utility guarantees
for the participating entities. In Chapter 8 based on the conference paper “Towards
reverse-engineering black-box neural networks” (Oh et al., 2018), we demonstrate a
black-box revealing technique that we call kennen which can reveal a variety of inner
details of a model - architecture, training algorithm, and training data - only from a
sequence of black-box accesses. We show further that this increased knowledge can
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aggravate the susceptibility of the exposed model to adversarial examples. Finally,
Chapter [g]is another interlude chapter based on the conference paper “Exploiting
Saliency for Object Segmentation from Image Level Labels” (Oh et al., |2017b). Using
techniques to extract knowledge on object locations from image classifiers, we train
an image segmentation network. This results in much cheaper supervision (only
image tags) than the full supervision (pixel wise labels) without a severe cost in
performance.

1.2.1 Summary of participation

Each main chapter of the thesis is based on a conference paper. Seong Joon Oh
has participated in each chapter (paper) with varying degrees of contribution. We
provide a summary here.

First-author participation. Seong Joon Oh has participated in Chapters 7
and [g] as the first author. Under the supervision of the advisors and in close
collaboration with colleagues, he has conducted experiments, written manuscripts,
and presented the materials in conferences and talks. With the exception of
in which the weakly supervised saliency network and related experiments are
contributed by Dr Anna Khoreva (co-author), all sections are primarily and materially
contributed by Seong Joon Oh.

Co-author participation. As a co-author, Seong Joon Oh has partially contributed
to Chapters |6 and [5} In Chapter 5, he has evaluated the proposed inpainting-based
identity obfuscation technique against his recognition system naeil (Chapter [3). He
has also substantially contributed to the writing of this chapter. In Chapter [6} he
has implemented the person recognition module for the privacy-preserving image
capture platform I-Pic.



RELATED WORK

in the interdisciplinary field of machine learning, computer vision, security,

and privacy, focusing on the data manipulation aspect. We start off with a
brief overview of previous studies in machine learning with non-iid data in general
(§2.1). Since our study on user privacy makes extensive use of our state of the
art person recogniser (naeil, Chapter [3), we discuss relation to other research on
human identification in We then move on to previous research on user privacy
over visual data (§2.3) and machine learning security against data manipulation
(§2.4). Prior work on the knowledge aspect of general manipulation problems is
then discussed in Finally in we present related work on the increasing
manipulator’s knowledge by extracting internal information from black-box models.

BEFORE presenting the main work, we recap the prior as well as ongoing work

2.1 MACHINE LEARNING WITH NON-IID DATA

Machine learning has thrived on the iid (independent, identically distributed) data
assumption. Even in the iid setup, models need to generalise from finite training data
samples to the population distribution. This can already be a challenging task. Many
theoretical and empirical research efforts have been put into understanding and
enhancing the performance in the iid setup. From the theory side, statistical learning
theory gives stochastic guarantees on the iid generalisability (Uniform Convergence
Theory, (Vapnik and Chervonenkis, |2015)). On the empirical side, deep learning
algorithms have been the most successful ones, attaining the top performances in
many vision benchmarks (Deng et al., 2009; Krizhevsky et al., 2012; Huang et al., 2007;
Everingham et al., 2015; He et al., |2016).

Non-iid setup is less explored than the iid setup, but there has been a lot of
effort on understanding and improving machine learning performances under this
setup. Darrell ef al.| (2015) provide an overview of the existing and future directions
of machine learning research under this setup. We focus in particular on the cases
where the training and testing data arise from different distributions (domain shift).
We further make a distinction whether the domain shift arises with an intention or
not. The thesis is primarily focused on the intelligent, purposeful manipulation of
the testing data.

2.1.1 Naturally arising domain shift

We first review prior research on machine learning under domain shift that arises
naturally, without an intelligent behaviour behind the scene. The domain shift

9
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could be a result of different modalities (e.g. image versus sound), different sensors
(e.g. DSLR versus egocentric cameras), different processing (e.g. raw versus jpeg
compressed images), or non-stationary data generation (e.g. hair colour changes in
personal photos).

Machine learning techniques for dealing with domain shift are often referred
to as domain adaptation or domain transfer methods. On the theory side, we have
the seminal work by Ben-David et al.| (2010) that has bounded the target domain
loss by the source domain loss plus some domain difference term. There is a much
richer body of work on empirical approaches. After the proposal of the milestone
benchmark for evaluating domain adaptation (Saenko et al., |2010) (across photos
from different domains — Amazon, DSLR, and webcam images), many empirical
approaches have appeared. Most recent deep learning based approaches advocate
the adversarial domain adaptation technique (Long et al., 2015b; (Ganin and Lempitsky,
2015; Ganin ef al.}, [2016) that guides the feature space to be indiscriminative with
respect to the domain through an adversarial loss.

In Chapter 3| after introducing naeil, our state of the art person recogniser,
we measure its performance under time and viewpoint domain shifts. We show
that naeil generalises well across these domain gaps thanks to the combination of
time-stable cues (e.g. face) and viewpoint stable cues (e.g. body and scene).

2.1.2 Intentional domain shift

While the domain shift can arise naturally, it can also be a result of deliberate
manipulation. This thesis focuses on this type of domain shift. We consider data
manipulation with an intent to protect privacy against person recognition models
as well as with a malicious intent to fail a deployed model or to expose its internal
hyperparameters. We will discuss relevant prior works in and

2.2 PERSON RECOGNITION

In the thesis, we build our own person recognition system (naeil, Chapter
that reliably recognises people in personal photos, where they pose naturally and
significant time and viewpoint shifts may take place. We refer to human identification
in such a setup as person recognition in personal photos. We review related research in
computer vision on human identification, and discuss how the settings differ and
how our method naeil is different from others developed under the same setting.

2.2.1 Data type and cues

Humans in visual media can be recognised from a variety of cues. The computer
vision and biometrics communities usually focus on face and body cues. On the other
hand, person recognition in personal photos should not solely rely on these cues but
combine evidence from face, body, and perhaps other contextual information for best
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performance. We discuss some relevant literature according to the cues considered.

Face. Face has been the traditional focus of human identification research. The
Labelled Faces in the Wild (LFW) dataset (Huang et al., |2007) has been a great
testbed for a host of work on face identification and verification outside the lab setting.
Attributing to the deep features trained on large scale face databases (laigman et al.}
2014; Sun et al., 2015} Schroff et al., 2015), the performance has nearly saturated in this
benchmark. However, LFW is not representative for personal photos taken in daily
lives: the data consists mainly of unoccluded frontal faces and has a bias towards
public figures. Indeed, more recent benchmarks have introduced more difficult types
of data. IARPA Janus Benchmark A (IJB-A, (Klare et al., |2015)) includes faces with
profile viewpoints, but is still limited to public figures.

Body. The body region has been another important cue for human identification.
Pedestrian re-identification (re-id) tackles the problem of matching pedestrians cap-
tured in different camera views. On standard benchmarks (VIPeR, Gray et al. (2007);
CAVIAR, Cheng et al.| (2011); CUHK, [Li et al.|(2012); Caltech Roadside Pedestrians,
Hall and Perona (2015)), convnet architectures have led to great advances (Li et al.}
2014a} Yi et al., 2014a; Hu et al.| 2014; Ahmed et al., 2015; Cheng et al., 2016; Xiao et al.|
2016; |Varior et al.,[2016; (Chen et al., 2017b). However, typically the re-id benchmarks
do not fully cover the human identification problem in person photos in three aspects:
(1) subjects mostly appear in a standing pose, (2) resolution is low, and (3) matching
is only evaluated across a short time span.

Person recognition in personal photos. Recognising people in natural poses with
great variations in time and viewpoint requires fusing multiple cues. An early work
towards this direction was done by |Anguelov et al.| (2007) who used both face and
clothing cues for recognising people. A small-scale dedicated dataset for person
recognition in personal photos was contributed by Gallagher and Chen| (2008) — the
“Gallagher collection person dataset”. MegaFace (Kemelmacher-Shlizerman et al.,
2016; Nech and Kemelmacher-Shlizerman, 2017) is perhaps the largest open source
face database over personal photos (Flickr). However, MegaFace does not contain
any subject seen from the back. In this thesis, we make extensive use of the PIPA
dataset (Zhang et al.| 2015b), a large scale (~40k images, ~2k identities) dataset of
Flickr personal photos, with diverse appearances and subjects with all viewpoints
and occlusion levels. Heads are annotated with bounding boxes and with an identity
tag. We describe PIPA in greater detail in Recognition methods developed over
this dataset are discussed in

2.2.2 Recognition tasks

There exist multiple tasks related to person recognition (Gong et al., 2014) dif-
fering mainly in the amount of training and testing data. Face and surveillance
re-identification is most commonly done via verification: given one reference image
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(gallery) and one test image (probe), do they show the same person? (Huang et al., 2007;
Bedagkar-Gala and Shah, |2014). In this thesis, we consider two classification tasks:

e Closed world recognition: Given a single test image (probe), who is this person
among the identities that are among the training identities (gallery)?

e Open world recognition: Given a single test image (probe), is this person among
the training identities (gallery set)? If so, who? (Kemelmacher-Shlizerman et al.,
2016))

Other related tasks are, face clustering (Cui et al., 2007; Schroff et al., |2015), finding
important people (Mathialagan et al) 2015), or associating names in text to faces in
images (Everingham et al.,|2006, 2009).

2.2.3 Person recognition in personal photos — methods

Prior to the introduction of the PIPA dataset (Zhang et al., 2015b), only a few
researchers have developed human identification systems that recognise people from
both face and non-face cues in unrestricted personal photos. Examples include
Gallagher and Chen| (2008) and |Anguelov et al.| (2007), but those methods did not
benefit from deep learning and massive training data that appeared afterwards and
were tested only on small-scale benchmarks.

The PIPA dataset (Zhang et al., 2015b) has enabled large-scale training and
evaluation; related research field has bloomed afterwards. The first recognition
method proposed was the so-called Pose Invariant Person Recognition method
(PIPER, (Zhang et al., |2015b)), obtaining promising results by combining a face
recognition module (Taigman et al., 2014)), poselets (Bourdev and Malik, 2009), and
convnet features trained on detected poselets (Krizhevsky et al., |2012; |Deng et al.,
2009).

Oh et al.| (2015), the conference paper of the material in Chapter 3, has greatly
simplified the recognition procedure (naeil), surpassing the performance of PIPER
that uses more than 100 cues by using only head and body cues. In particular, naeil
does not require the data-heavy DeepFace method or time-costly poselets. In Oh
et al| (2015), (Chapter [3), we have augmented naeil with a face recognition module
(DeepID2+, (Sun et al., 2015)) to achieve new state of the art result as of 2018.

There have been many follow-up papers after we published Oh et al.| (2015).
Kumar et al.| (2017) have improved the performance by normalising the body pose
using pose estimation. |Li et al.| (2017) considered exploiting people co-occurrence
statistics. [Liu et al.| (2017b) have proposed to train a person embedding in a metric
space instead of training a classifier on a fixed set of identities, thereby making
the model more adaptable to unseen identities. Some works have exploited the
photo-album metadata, allowing the model to reason over different photos (Oh et al.,
2016} |Li et al.| |2016a).
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2.3 USER PRIVACY OVER VISUAL DATA

Privacy is one of the greatest interests of modern human beings (Holvast, 2008).
With the technological advances, people have migrated substantial amount of private
information in digital formats, often stored using cloud services. Along with
technologies for securely storing such data, researchers have studied the level of
privacy leakage due to private information shared in public (especially on social
media) (Narayanan and Shmatikov, 2009, [2010; Zheleva and Getoor| 2009; Narayanan
and Shmatikov| 2010; Mislove et al., 2010). However, prior research has mostly
focused on non-visual data (e.g. textual). There are works which consider the
relationship between privacy and photo sharing activities such as|Ahern et al.| (2007)
and [Besmer and Richter Lipford| (2010), yet they do not perform quantitative studies.

This thesis is one of the first to quantify privacy leakage in visual data. In
particular, we measure the identifiability of people in personal photos in the context
of the recent developments in automatic person recognisers (Chapters [3|and [4)). In
this section, we introduce related work that appeared before and after our work on
user privacy in visual data.

2.3.1 Quantification of privacy leakage through visual media

Studies on quantifying privacy in visual data began only recently. Before us, |Wilber
et al. (2016) have quantified the decrease in face detection accuracy with respect to
different types of obfuscation - e.g. blur, blacking-out, swirl, and dark spots, arguing
that if face detection fails subsequent identification will inevitably fail. However,
this argument overlooks the fact that the considered obfuscation patterns may be
highly detectable themselves. We argue that it is important to directly analyse
obfuscation performance against the identification system. Chapter 4| (Oh et al., |2016)
considers the identification problem with a recognition model adapted to obfuscation
patterns. A few other works studied face recognition under blur (Gopalan et al.,
2012; Punnappurath et al., |2015), but to the best of our knowledge, we are the first
to consider person recognition under head obfuscation using an adaptive system
that leverages full-body cues. A concurrent work (McPherson et al., 2016) studies
a similar problem, but did not take the adaptability of models into account. After
the publication of our work, Orekondy et al.| (2017) have studied the visual privacy
problem from a broader perspective, covering not only person identity information
but also other private information like credit card number and fingerprint.

2.3.2 Obfuscation methods

To avoid recognition either from other humans or machine systems, humans have ma-
nipulated data in certain ways. Wearing masks is one such way. Some governments
have even decreed anti-mask laws in an attempt to preclude certain crimes?’ At the

*https:/ /www.nytimes.com/2017/04/26/us/protests-masks-laws.html
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digital age, it is more common to manipulate the captured image - e.g. face blurring.
While being used extensively (e.g. YouTube face blurringP), there is not so much
quantitative work on their effectiveness, especially in the context of recent advances
in machine learning that has enabled large-scale retrieval of private information.
This thesis is one of the first work on measuring the identifiability of humans in
visual data for a state of the art person recogniser, when various obfuscation patterns
are applied. In this section, we review existing and ongoing work on the analysis of
privacy in visual and non-visual media as well as protection techniques.

Some work from the vision community has developed obfuscation patterns for
protecting private visual content. Hassan et al.| (2017) have proposed to mask private
image content via cartooning. Brkic et al.| (2017) have generated full-person patches
to overlay on top of person masks. Similarly, we propose an obfuscation technique
based on head inpainting in Chapter [5| (Sun et al| |2018). The key advantage of
our approach is that unlike Brkic et al.| (2017) who have generated persons with
uniform poses independent of the context in fashion photographs, we inpaint
heads that blend naturally into varied background and body poses in unrestricted
personal photographs. Sharif et al.| (2016) have proposed adversarial example based
obfuscation techniques. Similarly, in Chapter [7] (Oh et al, [2017c) we introduce
novel obfuscation schemes based on adversarial examples. While Sharif et al. (2016)
assume a full knowledge on the target recognition system, we have proposed a game
theoretic framework to embrace certain amount of misspecification of the target
model (more details in §2.5).

2.4 MACHINE LEARNING SECURITY

In this section we take a different point of view: we pose the data manipulator
as a “bad guy” trying to undermine a model deployed for a security critical task.
We include this point of view in the thesis in Part Like privacy, security and
robustness of engineered systems have long been a topic of interest. The advent
of successful machine learning models have created an interdisciplinary field of
“machine learning security”, in which the reliability and stability issues of learned
models are studied. We review some work in this field that are relevant to the thesis —
i.e. adversarial examples and corresponding defence techniques. For a wider overview
of the field, see Papernot et al.| (2018).

2.4.1 Adversarial examples

Adversarial examples are test-time attacks on machine learning models — the adversary
introduces a “small” perturbation on the input to guide the model to behave in a
certain way (often to fail on certain inputs). Adversarial examples against learned
models were already being discussed as early as 2003. |Lanckriet ef al.| (2003) pro-
posed a generic minimax framework for improving robustness of a classifier against

3https:/ /youtube.googleblog.com /2012 /07/face-blurring-when-footage-requires.html
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both naive and adversarial feature perturbations. We have seen much research on
adversarial feature perturbations with the typical scenario from the spam filtering
domain (Wittel and Wu, 2004; Lowd and Meek, 2005 Barreno et al., |2006; Biggio
et al., 2008). See |Cormack] (2008) for an overview.

After the appearance of successful deep, end-to-end models (Krizhevsky et al.,
2012), it has been observed that the amount of perturbation needed to fool a trained
convnet is nearly imperceptible to human observers (Szegedy et al} 2014). This
implies two important consequences: (1) an adversary can easily sneak in an adver-
sarial input without being detected, and (2) the way machines perceive the world is
very different from that of humans even if on benign test data their performances
match humans’. For those two reasons, adversarial examples have attracted a great
deal of attention and follow-up research. As of today, adversarial examples against
neural networks are one of the most active area of research in machine learning and
security communities.

Generation algorithms. There have been several key advances in adversarial ex-
ample generation algorithms. The first work (Szegedy et al., 2014) relied on an
inefficient L-BFGS optimisation. Soon, efficient first-order algorithms have been
proposed (Goodtellow et al., 2015} |Rozsa et al., 2016; Moosavi-Dezfooli et al. [2016;
Kurakin et al, 2017a; Carlini and Wagner, 2017b), which use the image gradient
with respect to the adversarial goal to generate the perturbation. This thesis has
contributed to the community by proposing a robust variant of DeepFool (Moosavi+
Deztooli et al., 2016), GAMAN (Chapter @ (Oh et al., |2017c)). Recent trends involve
learning to generate perturbations (Baluja and Fischer, |2018; | Zhao ef al., 2018) and
finding non-additive perturbations that are not regulated by the L, metric (Xiao et al.,
2018} Zeng et al., |2017; Kanbak et al., 2018).

Other types of adversarial examples. Other papers have discussed the problem
of generating a single adversarial example that could work for multiple input images
(“Universal adversarial perturbations”, (Moosavi-Dezfooli et al., |2017)) or multiple
target networks (Liu et al., |2017a). Not only under the supervised learning setting
but also under the reinforcement learning (RL) setting (Huang et al., 2017b) were
adversarial examples developed.

Robust adversarial examples. Naively generated adversarial examples are known
to be fragile. Graese et al. (2016) argued that simple test time image processing, such
as translation, Gaussian noise, blurring, and re-sizing can neutralise the adversarial
effects; similarly, Lu et al.| (2017b)) have shown that the adversarial patterns do not
survive physical printing. There are several attempts to re-strengthen the adversarial
examples against those image-level defences. Sharif et al. (2016) have discovered
sturdier adversarial patterns by combining the image gradients against a set of
jittered versions of the input with a total variation regularisation. |Athalye et al.| (2018)
have even 3D printed adversarial “objects” that result in wrong model classifications
when captured with a camera in multiple viewpoints. In Chapter [7| (Oh ef al, |2017c),
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we also consider generating the perturbation against a set of jittered versions of the
input to improve robustness to specific types of input jittering.

2.4.2 Defence against adversarial examples

Defence measures against adversarial examples has equally attracted interests in the
research community. We identify five main approaches to defence.

Gradient masking. Motivated by the fact that most adversarial examples exploit
the model gradient, several papers have suggested reducing the size of the input
gradients of the deployed models (Papernot et al., 2016b). This approach has some
loopholes. First of all, one can generate adversarial examples without the gradient in-
formation (e.g. black-box attacks; see §2.6.2). Moreover, it has been found that slight
modifications of the gradient computation can easily re-enable the attack (Carlini
and Wagner, |2016).

Adversarial training. One can include adversarial examples during training to
match the training distribution to the adversarial testing distribution. (Goodtellow
et al.| (2015) have trained their model with relatively weak adversarial examples
(FGSM) and have shown mediocre protection at test time. Stronger adversaries
during training in general result in better robustness (Huang et al., 2015). Madry et al.
(2018) have added simple yet strong projected gradient descent (PGD) adversarial
examples during training to reach a state of the art level defence. Kurakin et al.
(2017b) discuss techniques for scaling up the adversarial training to ImageNet (Deng
et al., 2009) classifiers.

Detection & rejection. It is hypothesised that adversarial perturbations introduce
certain detectable patterns on the input. If those patterns can be detected, then
adversarial inputs may be filtered out before harming the model. Researchers have
proposed to perform statistical testing (Grosse et al., 2017) or feature projection
(squeezing) (Xu et al., 2017). Lu et al.| (2017a) and Metzen et al. (2017) have trained
dedicated detectors to filter out adversarial examples. However, |Carlini and Wagner
(2017a) have demonstrated counter-strategies against those detection based defences.

Defence by denoising. The denoising line of work aims to further modify the
image to remove the adversarial effect. Das et al. (2017) and Dziugaite et al.| (2016)
have proposed to use JPEG compression over potential adversarial examples to
remove adversarial patterns. However, it is in general easy to re-adapt adversarial
examples again to those differentiable image processing steps (Chapter 7). On the
other hand, Moosavi-Dezfooli et al. (2018) have proposed to divide the image into
regions and denoise each region, a non-differentiable procedure.

Security guarantees. Using a game theoretical (or a robust optimisation) minimax
formulation, multiple prior works have obtained robustness certificates for learned
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models, in the sense that certain data points within some L, balls around training
data points will not be able to fool the models. However, such a guarantee can
only be obtained for a very small certificate (Hein and Andriushchenko, 2017) or
after an NP-hard computation (Carlini et al., 2018). Sinha et al.| (2018) have proposed
a polynomial time algorithm to obtain a certificate, but the certificate is in a less
interpretable form.

2.4.3 Training time data manipulation

More commonly referred to as poisoning attack, training data manipulation and
the corresponding defence measure (Steinhardt et al., 2017) have been been inves-
tigated (Biggio et al., 2012; Koh and Liang) |2017). This thesis focuses on the case
where the manipulator only has access to the test inputs to the deployed models.

2.5 REPRESENTING TARGET UNCERTAINTY

In many application scenarios, deployed models hide internal details of the model,
such as the architecture and training data. Thus, for example, gradient with respect to
the input cannot readily be computed using an efficient backpropagation algorithm,
leading to inefficient data manipulation against the model. It is important to precisely
represent the level of knowledge for the manipulator about the model as it generally
substantially influences the manipulation efficacy.

We first discuss what it means to “specify” a model. Mathematically, a function
f : X — Y is fully specified if its domain X (and co-domain Y) is known and
for every input x € X the corresponding output f(x) € Y is known. A model is
essentially a function f : X — Y, but is also implemented algorithmically, so the
knowledge on the specific algorithmic implementation matters for computability
and efficiency. For example, if an image classifier is implemented as a lookup table,
it will be computationally prohibitive to compute the output as well as the gradi-
ents, while deep neural network implementations (i.e. composition of elementary
subdifferentiable functions) with suitable hardware (e.g. GPUs) make it efficient
to compute the model outputs and gradients. Therefore, even if one can black-box
access a model for an unlimited number of times (full lookup table access; mathemat-
ically fully specified), having no access to the algorithmic implementation can make
various computations prohibitive, rendering the model effectively unspecified under
a computational budget. In this thesis, to “specify” a model not only means the
mathematical specification but also algorithmic specification that may include the
access to architecture, parameters, optimisation hyperparameters, training procedure,
training data, and so on.

To represent the manipulator’s knowledge on the specific algorithmic details
of the target model, we review how the manipulation problem in an uncertain
environment has been treated in general context. It is an important topic not only
in our setup, but also in economics, business, physics, robotics, and many other
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quantitative disciplines where uncertainties arise naturally and should be embraced.
In this section, we build connections between this vast literature and the data
manipulation problem against learned models.

2.5.1 Representing uncertainty in other disciplines

The need for dealing with lack of knowledge arises in many disciplines — either due to
the stochastic nature of measurements or due to adversarial effects. For optimisation
theory, acknowledging the fact that certain optimisation parameters (e.g. cost vector
in linear programming) may be not accurately specifiable, robust and stochastic
optimisation (Ben-Tal et al., 2009; Prékopal, [1995) have been proposed. Specifically,
they treat parameters in optimisation as either a free parameter in a constrained
space (robust optimisation) or a random variable (stochastic optimisation). Optimal
control theory (Seierstad and Sydsaeter, 1986), which aims at obtaining an optimal
sequence of decisions, also has the uncertainty-acknowledging version, robust control
theory (Hansen and Sargent, 2001), which has gained popularity in econometrics.
In certain situations, e.g. business competition, the uncertainty arises due to an
“intelligent” activity of another agent. Game theory (Nash et al., 1950) has been
applied to these situations. Treatment of target uncertainty in Chapter [7| can be seen
as an instance of game theory as well as robust optimisation.

2.5.2 Representing uncertainty for data manipulation

In the machine learning domain, several works have employed tools from the
above theories to represent lack of knowledge on the data manipulator. |Lanckriet
et al.| (2003) have proposed a robust optimisation type of training to represent
uncertainty in the data generation process and have thus strengthened the model
against inputs with both benign and adversarial perturbations. Briickner et al.| (2012)
have explicitly used game theoretical tools to strengthen a learned model against
adversarial inputs. Nowadays, we see many machine learning security papers with
direct reference to robust optimisation (Madry et al., 2018; Kolter and Wong), 2017)
or game theory (Dhillon ef al., 2018; Raval et al., 2017). We believe game theory
and robust optimisation are natural tools for analysing many data manipulation
scenarios.

2.6 BLACK-BOX MODELS

One of the typical deployment scenarios for learned models is to limit the access to
certain number of black-box queries: given input, returns output. This restricts the
manipulator’s knowledge on the algorithmic details of the network, including the
architecture, parameters, optimisation procedure, and training data. As discussed
earlier, this makes the exact gradient computation computationally prohibitive,
making adversarial attacks less efficient.
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In this section, we discuss prior work and our contribution on reverse-engineering
the hidden algorithmic details from black-box neural networks. We then examine
multiple prior works on attacking black-box neural networks with adversarial ex-
amples that give different efficiency-effectiveness trade-off, and discuss how the
reverse-engineered hidden details can help generating more effective adversarial
examples against the target.

2.6.1 Gaining knowledge on black-box models

Prior work on gaining knowledge on black-box models can be classified into two
topics: model extraction and membership inference.

Model extraction. Model extraction methods either reconstruct the exact model
parameters or build an avatar model that maximises the likelihood of the query
input-output pairs from the target model (Iramer et al., 2016; Papernot et al., [2017).
Tramer et al.| (2016) have shown the efficacy of equation solving attacks and the
avatar method in retrieving internal parameters of non-neural network models.
Papernot et al.| (2017) have also used the avatar approach with the end goal of
generating adversarial examples. While the avatar approach first assumes model
hyperparameters like a model family (architecture) and training data, our method in
Chapter |8 (Oh et al., 2018) predicts those hyperparameters themselves; our approach
is complementary to the avatar approach.

Membership inference. Membership inference methods determine if a given data
sample has been included in the training data (Ateniese et al., |2015; Shokri et al.,
2017). Similarly to our work, |Ateniese ef al.| (2015) have trained a decision tree
metamodel over a set of classifiers trained on different datasets to determine the
training dataset for a black-box model. Shokri et al.| (2017) have developed notion of
“shadow models” that recognise distinctive output patterns with respect to training
versus non-training inputs. Chapter (8 considers not only inferring the training data
dataset, but also exposing model architectures and optimisation procedures.

2.6.2  Attacking black-box models

Without the availability of cheap gradients, prior researches have proposed largely
three paradigms for generating adversarial examples: numerical gradients, avatar
model, and transferability.

Numerical gradients. Narodytska and Kasiviswanathan| (2017) and [Chen et al.
(2017a) have proposed different modifications of numerical gradients to find ad-
versarial perturbation directions for an input image. The caveat is that thousands
and millions of queries are needed to compute a single adversarial example. The
methods also do not scale well with the input dimensions.
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Avatar model. These methods train a white box network that is supposedly similar
to the target and generate perturbations against it (Papernot et al., 2017, 2016a; Hayes
and Danezis, 2017). Our black-box exposure method in Chapter [§| can complement
this approach by e.g. determining the architecture for the avatar model.

Transferability. It has been shown that adversarial examples generated against
one network can also fool other networks (Moosavi-Dezfooli ef al., 2017 Liu et al.,
2017a)). |Liu et al| (2017a) in particular have shown that generating adversarial
examples against an ensemble of networks make it more transferable. We show in
Chapter 8| (Oh et al., 2018) that the adversarial examples transfer better within an
architecture family (e.g. ResNet or DenseNet) than across, and that such a property
can be exploited by our exposure technique to generate more powerful adversarial
examples.



Part1

PRIVACY ANALYSIS IN VISUAL DATA

Compared to the significance and urgency, there are not many quantita-
tive studies of user privacy in visual media. In this part, we focus on the
identifiability of humans in personal photos in the context of state of the
art recognition technologies.

In Chapter [3| (Oh et al} 2015} [2017a) we develop a state of the art person
recognition framework named naeil. naeil is able to reliably identify
humans in the challenging personal photo setup where subjects appear
in natural, uncooperative poses and appearance changes. Apart from
achieving state of the art recognition performance, we contribute to the
community by evaluating naeil under severe domain shifts (time and
viewpoint). We show that naeil is robust with respect to such shifts.
naeil will be used extensively throughout the thesis in privacy-relevant
chapters as a target model to protect one’s identity from.

In Chapter [4] (Oh et al, 2016), we delve into common identity obfuscation
techniques on photos: blurring or blacking-out faces, and removing
identity tags. We demonstrate that naeil, our state of the art recognition
system, is robust against such data manipulations and has the ability
to adapt to the distributional shifts. We raise the public awareness of
the consequences of sharing photos online and call for more effective
obfuscation techniques.




PERSON RECOGNITION IN PERSONAL PHOTO
COLLECTIONS

recognition system suitable for human identification in personal photos.

Person recognition in social media photos sets new challenges for computer
vision, including non-cooperative subjects (e.g. backward viewpoints, unusual poses)
and great changes in appearance. To better understand the identifiability, we build a
person recognition framework that leverages convnet features from multiple image
regions (head, body, etc.). We verify that our simple approach achieves the state
of the art result on the PIPA (Zhang et al., |2015b) benchmark, arguably the largest
social media based benchmark for person recognition to date with diverse poses,
viewpoints, social groups, and events. We propose multiple recognition scenarios
that enable the evaluation under the time and viewpoint based domain shifts. We
present an in-depth analysis of the importance of different features according to time
and viewpoint generalisability.

BEfore studying the visual privacy problem in depth, we first develop a person

The chapter is based on |Oh et al.|(2015) and |Oh et al. (2017a).  As the first author,
Seong Joon Oh has conducted all the experiments and was the main writer for the
conference paper (Oh et al., 2015) and the journal submission (Oh et al.| 2017a).

3.1 INTRODUCTION

With the advent of social media and the shift of image capturing mode from digital
cameras to smartphones and life-logging devices, users share massive amounts of
personal photos online these days. Automatic person identification in such photos is
of great interest for social media users and companies hosting such services. Person
recognition in personal photos is a relatively under-explored topic in computer
vision with many new and interesting challenges: people may be focused on their
activities with the face not visible, or can change clothing or hairstyle over time. See
Figure [3.1{ for the challenges of recognising a person in personal photo collections.

This chapter provides an in-depth study of human identifiability in challenging
social media type of photos, as well as the simple yet effective person recognition sys-
tems naeil and naeil2. We combine ingredients from face recognition work (Huang
et al.,|2007; Sun et al., |2015) as well as body and scene cues based on simple convnet
features.

The main contributions of the chapter are:

e Propose realistic and challenging person recognition scenarios on the PIPA

benchmark (§3.3).

22
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Figure 3.1: In social media photos, face alone may not be an effective cue for recognition due
to face occlusion and diverse poses. For example, the surfer (column 3) is only recognised
when attribute cues are further considered.

e Provide a detailed analysis of the informativeness of different body regions
and training data (§3.4).

e Verify that our final model naeil2 achieves state of the art performance on

PIPA (§5.5).

e Analyse the contribution of cues with respect to the time and viewpoint gap

(§3-6)-

e Discuss the performance of our methods under the open-world recognition

setup (§3.7)-

3.2 PIPA DATASET

Throughout the thesis, we will frequently refer to the PIPA dataset (“People In
Photo Albums”, (Zhang et al., 2015b))) as the main testbed for experiments in person
recognition. PIPA is, to the best of our knowledge, the largest dataset of social media
type of photos with identity annotations (even for back view heads), capturing
individuals in diverse social groups (e.g. friends, colleagues, family) and events (e.g.
conference, vacation, wedding). The individuals also appear in diverse poses, point
of view, activities, sceneries, and thus cover an interesting slice of the real world.
Compared to previous social media datasets, such as |Gallagher and Chen (2008)
(~ 600 images, 32 identities), PIPA presents a leap both in size and diversity.

See Table 3| for the overview of PIPA statistics. PIPA features 37 107 Flickr personal
photo album images (Creative Commons license), with 63 188 head bounding boxes
of 2356 identities. The heads are annotated with a bounding box and an identity
tag. The head bounding boxes are tight around the skull, including the face and
hair; occluded heads are hallucinated by the annotators. The dataset is partitioned
into train, val, test, and leftover sets, with a rough ratio of 45:15:20:20 percent of
the annotated heads. The leftover set is not used. Up to annotation errors, neither
identities nor photo albums by the same uploader are shared among these sets.
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all train ~ val test  leftover

Photos 37107 17000 5684 7868 6 555
Albums 1438 579 342 357 160
Instances 63188 29223 9642 12886 11437
Identities 2356 1409 366 581 -

Table 3.1: PIPA dataset statistics (Zhang et al., 2015¢).

val test

(@) A T D O A T D

instance 4820 4859 4818 1076 6443 6497 6441 2484
identity 366 366 366 65 581 581 581 199

instance 4820 4783 4824 1076 6443 6389 6445 2485
identity 366 366 366 65 581 581 581 199

spl.1| spl.o

Table 3.2: Split statistics for val and test sets. Total number of instances and identities for
each split is shown.

3.2.1 Splits

We introduce different ways of splitting the training (gallery, val/testy) and testing
(probe, val/test;) samples per identity. The split has direct impact on the difficulty of
the person recognition problem. For example, it is harder to recognise a person who
is wearing unusual clothing than to recognise someone in her “typical” clothing.
Aiming to evaluate different levels of the generalisation ability, we introduce three
new splits on top of the one provided in the PIPA dataset (see Original split below).
Refer to Table [3.2| for the split statistics and Figure [3.2|for visualisations.

Original split O. The Original split is proposed by |Zhang et al.|(2015b) and shares
many similar examples per identity across the split — e.g. photos taken in a row.
The Original split is thus easy - even nearest neighbour on raw RGB pixels works
quite well (§3.5.1). In order to evaluate the ability to generalise across long-term
appearance changes, we introduce three new splits below.

Album split A. The Album split divides training and test samples for each identity
according to the photo album metadata. Each split takes the albums while trying to
match the number of samples per identity as well as the total number of samples
across the splits. A few albums are shared between the splits in order to match the
number of samples. Since the Flickr albums are user-defined and do not always
strictly cluster events and occasions, the split may not be perfect.

Time split 7. The Time split divides the samples according to the time the photo
was taken. For each identity, the samples are sorted according to their “photo-taken-
date” metadata, and then divided according to the newest versus oldest basis. The
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Figure 3.2: Visualisation of Original, Album, Time and Day splits for three identities (rows
1-3). A greater appearance gap is observed from Original to Day splits.

instances without time metadata are distributed evenly. This split evaluates the
temporal generalisation of the recogniser. However, the “photo-taken-date” metadata
is very noisy with lots of missing data.

Day split D. The Day split divides the instances via visual inspection to ensure
the firm “appearance change” across the splits. We define two criteria for division:
(1) a firm evidence of date change such as {change of season, continent, event,
co-occurring people} and/or (2) visible changes in {hairstyle, make-up, head or body
wear}. We discard identities for whom such a division is not possible. After division,
for each identity we randomly discard samples from the larger split until the sizes
match. If the smaller split has <4 instances, we discard the identity altogether. The
Day split enables clean experiments for evaluating the generalisation performance
across strong appearance and event changes.

33 TASK AND EXPERIMENTAL SETUP

Task. At test time, the system is given a photo and ground truth head bounding
box corresponding to the test instance (probe). The task is to choose the identity
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of the test instance among a given set of identities (gallery set, 200~500 identities)
each with ~10 training samples. In we evaluate the methods when the test
instance may be a background person (e.g. bystanders — no training image given).
The system is then also required to determine if the given instance is among the seen
identities (gallery set).

Protocol. We follow the PIPA protocol (Zhang et al.| 2015b) for data utilisation
and model evaluation. The train set is used for convnet feature training. The test
set contains the examples for the test identities. For each identity, the samples are
divided into testy and test;. For evaluation, we perform a two-fold cross validation by
training on one of the splits and testing on the other. The val set is likewise split into
valp and valy, and is used for exploring different models and tuning hyperparameters.

Evaluation. We use the recognition rate (or accuracy), the rate of correct iden-
tity predictions among the test instances. For every experiment, we average two
recognition rates obtained from the (gallery, probe) pairs (valy, val;) and (valy, valg) -
analogously for test.

3.3.1 Face detection

Instances in PIPA are annotated by humans around their heads (tight around skull).
We additionally compute face detections over PIPA to later compare the amount
of identity information in head versus face (§3.4.6). On the other hand, we obtain
the head orientation information as an auxiliary output of our face detections - this
enables further analysis on the recognisability with respect to head orientations
(§3.6). We also use the face detections to study the scenario without ground truth
head box at test time (§3.7).

We use the open source DPM face detector (Mathias et al., 2014). This detector is
trained on ~ 15k faces from the AFLW database, and is composed of 6 components
which gives a rough indication of face orientation: +0° (frontal), £45° (diagonal
left and right), and £90° (side views). Figure 3.4/ shows example face detections on
the PIPA dataset. It shows detections, the estimated orientation, the regressed head
bounding box, the corresponding ground truth head box, and some failure modes.
Faces corresponding to +0° are considered frontal (FR), and all others (+£45°, £90°)
are considered non-frontal (NFR). No ground truth is available to evaluate the face
orientation estimation; except a few mistakes, the £0° components seems a rather
reliable estimator (while more confusion is observed between +45°/+90°).

Given a set of detected faces (above certain detection score threshold) and the
ground truth heads, the match is made according to the overlap (intersection over
union) (Lin ef al., |2014). For matched heads, the corresponding face detections tell us
which DPM component has fired, thereby allowing us to infer the head orientation
(FR or NFR). Ground truth heads without face detections are referred to as “no face
detected” or NFD. We denote detections without matching ground truth head as
Background. See Figure [3.3| for visualisation.
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Figure 3.3: Face detections and head annotations in PIPA. The matches are determined by
overlap (intersection over union). For matched faces (heads), the detector DPM component
gives the orientation information (frontal versus non-frontal).

(b) +90°

..

(d) +45°

matched ground truth head
detected face

head estimated from face
missed ground truth head

+452

(g) Legend (h) Detected heads, but wrong orienta-
tion estimate

Figure 3.4: Example results from the face detector (PIPA val set), and estimated head boxes.
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Figure 3.5: Regions considered for feature extraction: face f, head h, upper body u, full
body b, and scene s. More than one cue can be extracted per region (e.g. hy, hy ).

3.4 CUES FOR RECOGNITION

In this section, we investigate the cues for recognising people in social media photos.
We begin with an overview of our model. Then, we experimentally answer the
following questions: how informative are fixed body regions (no pose estimation)
(§3-4-4)? How much does scene context help (§3.4.5)? Is it head or face (head minus
hair and background) that is more informative (§3.4.6)? How much do we gain by
using extended data (§3.4.7 & §3.4.8)? How effective is a specialised face recogniser
(§3-4-10)? Studies in this section are based exclusively on the PIPA val set.

3.4.1 Model overview

At test time, given a ground truth head bounding box, we estimate five different
regions depicted in Figure Each region is fed into one or more convnets to obtain
a set of cues. The cues are concatenated to form a feature vector describing the
instance. Throughout the chapter we write + to denote vector concatenation. Linear
SVM classifiers are trained over this feature vector (one versus the rest). In our final
system, except for DeepID2+ (Sun et al., 2015), all features are computed using the
seventh layer (fcy) of AlexNet (Krizhevsky et al, 2012) pre-trained for ImageNet
classification. The cues only differ amongst each other on the image area and the
fine-tuning used (type of data or surrogate task) to alter the AlexNet, except for the
DeepID2+ feature.

3.4.2 Image regions used

We choose five different image regions based on the ground truth head annotation
(given at test time, see the protocol in §3.3). The head rectangle h corresponds to the
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Effect of fine-tunning on recognition accuracy

85
o — o — °
3
3 4 L 4 4 L
=}
Q
(8]
©
@
®» 75
c
9
©
°
o —@— Head
- —@— Body
UpperBody
65
Ok 100k 200k 300k 400k 500k

Number of mini-batch updates

Figure 3.6: PIPA val set performance of different cues versus the SGD iterations in fine-
tuning.

ground truth annotation. The full body rectangle b is defined as (3 xhead width,
6 xhead height), with the head at the top centre of the full body. The upper body
rectangle u is the upper-half of b. The scene region s is the whole image containing
the head.

The face region f is obtained using the DPM face detector discussed in
For head boxes with no matching detection (e.g. back views and occluded faces), we
regress the face area from the head using the face-head displacement statistics on
the PIPA train set. Five respective image regions are illustrated in Figure

Note that the regions overlap with each other, and that depending on the person’s
pose they might be completely off. For example, b for a lying person is likely to
contain more background than the actual body.

3.4.3 Fine-tuning and parameters

Unless specified otherwise AlexNet is fine-tuned using the PIPA train set (~ 30k
instances, ~ 1.5k identities), cropped at five different image regions, with 300k
mini-batch iterations (batch size 50). We refer to the base cue thus obtained as f,
h, u, b, or s, depending on the cropped region. On the val set we found the fine-
tuning to provide a systematic ~10 percent points (pp) gain over the non-fine-tuned
AlexNet (Figure [3.6). We use the seventh layer (fcy) of AlexNet for each cue (4096
dimensions).

We train for each identity a one-versus-all SVM classifier with the regularisation
parameter C = 1; it turned out to be an insensitive parameter in our preliminary
experiments. As an alternative, the naive nearest neighbour classifier has also been
considered. However, on the PIPA val set the SVMs consistently outperforms the
NNs by a ~10 pp margin.
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Cue Accuracy
Chance level 1.0
Scene (§3.4.5) S 27.1
Body b 80.8
Upper body u 84.8
Head h 83.9
Face (§3.4.6) f 74.5
Zoom out f 74.5
f+h 84.8
f+h+u 90.7
f+h+u+b 91.1
f+h+u+b+s 91.2
Zoom in ] 27.1
s+b 82.2
s+b+u 86.4
s+b+u+h 90.4
s+b+ut+h+f£f 91.2
Head+body h+b 89.4
Full person P=f+h+u+b 91.1
Full image Ps =P+s 91.2

Table 3.3: PIPA wval set accuracy of cues based on different image regions and their concate-
nations (“4+” means concatenation).

3.4.4 How informative is each image region?

Table [3.3| shows the PIPA val set results of each region individually and in combi-
nation. Head h and upper body u are the strongest individual cues. Upper body is
more reliable than the full body b because the lower body is commonly occluded
or cut out of the frame, and thus is usually a distractor. Scene s is, unsurprisingly,
the weakest individual cue, but it still useful information for person recognition (far
above chance level). Importantly, we see that all cues complement each other, despite
overlapping pixels. Overall, our features and combination strategy are effective.

3.4.5 Scene (s)

Other than a fine-tuned AlexNet we considered multiple feature types to encode
the scene information. sgis¢: using the Gist descriptor (Oliva and Torralba, 2001)
(512 dimensions). sppiaces: instead of using AlexNet pre-trained on ImageNet, we
consider an AlexNet (PlacesNet) pre-trained on 205 scene categories of the “Places
Database” (Zhou et al., 2014) (~2.5 million images). sp1aces205: Instead of the 4096
dimensions PlacesNet feature, we also consider using the score vector for each scene
category (205 dimensions). sg,s3: finally we consider using AlexNet in the same way
as for body or head (with zero or 300k iterations of fine-tuning on the PIPA person
recognition training set). S3piaces: Soplaces fine-tuned for person recognition.
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Method Accuracy

Gist Sgist 21.6
PlacesNet scores Splaces205 21.4
raw PlacesNet SOplaces 27.4
PlacesNet fine-tuned S3places 25.6
raw AlexNet So 26.5
AlexNet fine-tuned s =s3 27.1

Table 3.4: PIPA val set accuracy of different scene cues. See descriptions in =

Results. Table compares the different alternatives on the PIPA val set. The
Gist descriptor sgisty performs only slightly below the convnet options (we also
tried the 4608 dimensional version of Gist, obtaining worse results). Using the raw
(and longer) feature vector of sppiaces is better than the class scores of spiaces20s.
Interestingly, in this context pre-training for places classification is better than pre-
training for objects classification (sgp1aces Versus sp). After fine-tuning s3 reaches a
similar performance as sopiaces-

Experiments trying different combinations indicate that there is little comple-
mentarity between these features. Since there is not a large difference between
Soplaces and s3, for the sake of simplicity we use s3 as our scene cue s in all other
experiments.

Conclusion. Scene s by itself, albeit weak, can obtain results far above the chance
level. After fine-tuning, scene recognition as pre-training surrogate task (Zhou et al.,
2014) does not provide a clear gain over (ImageNet) object recognition.

3.4.6 Head (h) or face (£)?

A large portion of work on face recognition focuses on the face region specifically. In
the context of photo albums, we aim to quantify how much information is available
in the head versus the face region. As discussed in we obtain the face regions
f from a DPM face detector (Mathias et al., 2014).

Results. There is a large gap of ~10 percent points performance between f and
h in Table [3.3| highlighting the importance of including the hair and background
around the face.

Conclusion. Using h is more effective than f, but f result still shows a fair perfor-
mance. As with other body cues, there is a complementarity between h and £; we
suggest to use them together.
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Method Accuracy
More data (§3.4.7b h 83.9
h+ hcacd 849
h + hcasia 86.1
h+hcasia + heacq 863
Attributes (§3.4.8) hpipatin 74-6
hpipail 817
h + hpipat1 85.0
Upetab 77-5
U + Upetas 85.2
A= hpipall + Upetab 86.2
h+u 85.8
h+u+A 90.1
naeil (§3.4.9) naeil 91.7

Table 3.5: PIPA val set accuracy of different cues based on extended data.

3.4.7 Additional training data (hcacd, hcasia)

It is well known that deep learning architectures benefit from additional data.
DeepFace (lTaigman et al., [2014) used by PIPER (Zhang ef al., |2015b) is trained over
4.4 -10° faces of 4 - 10° persons (the private SFC dataset, (Taigman et al., 2014)). In
comparison our cues are trained over ImageNet and PIPA’s 29 - 10° faces over 1.4 - 10°
persons. To measure the effect of training on larger data we consider fine-tuning
using two open source face recognition datasets: CASIA-WebFace (CASIA, (Yi et al.|
2014b)) and the “Cross-Age Reference Coding Dataset” (CACD, (Chen et al., 2014)).

CASIA contains 0.5 - 10° images of 10.5 - 10> persons (mainly actors and public
figures). When fine-tuning AlexNet over these identities (using the head area h), we
obtain the h.,sia Ccue.

CACD contains 160 - 10° faces of 2 - 10° persons with varying ages. Although
smaller in total number of images than CASIA, CACD features greater number of
samples per identity (~2x). The heacq cue is built via the same procedure as hcasia-

Results. See the top part of Table for the results. h + h¢acqg and h + heasia
improve over h (1.0 and 2.2 pp, respectively). Extra convnet training data seems to
help. However, due to the mismatch in data distribution, hcacq and heasia On their
own are about ~5 pp worse than h.

Conclusion. Extra convnet training data helps, even if they are from different
types of photos.



3.4 CUES FOR RECOGNITION 33

3.4.8 Attributes (hpipat1, Upetas)

Albeit overall appearance might change day to day, one could expect that stable, long
term attributes provide means for recognition. We build attribute cues by fine-tuning
AlexNet features not for the person recognition task (like for all other cues), but
rather for the attribute prediction surrogate task. We consider two sets attributes,
one on the head region and the other on the upper body region.

We have annotated identities in the PIPA train and val sets (1409 + 366 in total)
with five long term attributes: age, gender, glasses, hair colour, and hair length (see
Table for details). We build hpipa11 by fine-tuning AlexNet features for the task of
head attribute prediction.

For fine-tuning the attribute cue hpipa11, we consider two approaches: training
a single network for all attributes as a multi-label classification problem with the
sigmoid cross entropy loss, or tuning one network per attribute separately and
concatenating the feature vectors. The results on the PIPA val set indicate the latter
(hpipat1) performs better than the former (hpipatin).

For the upper body attribute features, we use the “PETA pedestrian attribute
dataset” (Deng et al., 2014). The dataset originally has 105 attributes annotations for
19 - 10° full-body pedestrian images. We chose the five long-term attributes for our
study: gender, age (young adult, adult), black hair, and short hair (details in Table
3.6). We choose to use the upper-body u rather than the full body b for attribute
prediction — the crops are less noisy. We train the AlexNet feature on upper body of
PETA images with the attribute prediction task to obtain the cue upetas.

Results. See results in Table Both PIPA (hpipa11) and PETA (upetas) annotations
behave similarly (~ 1 pp gain over h and u), and show complementary (~5 pp
gain over h+u). Amongst the attributes considered, gender contributes the most to
improve recognition accuracy (for both attributes datasets).

Conclusion. Adding attribute information improves the performance.

3.4.9 Conference paper final model (naeil)

The final model in the conference paper (Oh et al., 2015) combines five vanilla
regional cues (Ps = P+s), two head cues trained with extra data (hcacq,hcasia), and
ten attribute cues (hpipat1, Upetas), resulting in 17 cues in total. We have named this
method naeilfl

Results. See Table [3.5/for the results. naeil, by combining all the cues considered
naively, achieves the best result 91.7% on the PIPA val set.

4"naeil”, Y2, means “tomorrow” and sounds like “nail”.
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Attribute Classes Criteria
Age Infant Not walking (due to young age)
Child Not fully grown body size

Young Adult Fully grown & Age < 45
Middle Age 45 < Age < 60

Senior Age> 60
Gender Female Female looking
Male Male looking
Glasses None No eyewear
Glasses Transparant glasses
Sunglasses Glasses with eye occlusion
Haircolour Black Black
White Any hint of whiteness
Others Neither of the above
Hairlength No hair Absolutely no hair on the scalp
Less hair Hairless for > 1 upper scalp
Short hair When straightened, < 10 cm
Med hair When straightened, <chin level
Long hair When straightened, >chin level

Table 3.6: PIPA attributes details.

Conclusion. Cues considered thus far are complementary, and the combined
model naeil is effective.

3.4.10 DeepID2+ face recognition module (hgeepia)

Face recognition performance has improved significantly in recent years with better
architectures and larger open source datasets. In this section, we study how much
face recognition helps in person recognition. While DeepFace (laigman et al., 2014)
used by the PIPER (Zhang et al., 2015b) would have enabled more direct comparison
against PIPER, it is not publicly available. We thus choose the DeepID2+ face
recogniser (Sun et al., [2015). Face recognition technology is still improving quickly,
and larger and larger face datasets are being released — the analysis in this section is
thus an underestimate of current and future face recognisers.

The DeepID2+ network is a siamese neural network that takes 25 different crops
of head as input, with the joint verification-identification loss. The training is based
on large databases consisting of CelebFaces+ (Sun et al.| 2014), WDRef (Chen et al.}
2012), and LFW (Huang et al., 2007) - totalling 2.9 - 10° faces of 1.2 - 10* persons. At
test time, it ensembles the predictions from the 25 crop regions obtained by facial
landmark detections. The resulting output is a 1024 dimensional head feature that
we denote as hgeepia-

Since the DeepID2+- pipeline begins with facial landmark detection, the DeepID2+
features are not available for instances for occluded or backward orientation heads.
As a result, only 52709 out of 63 188 instances (83.4%) have the DeepID2+ features
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Split
Method O A T D
h 83.9 779 704 407
hgeepid 68.5 66.9 64.2 60.5
h + hgeepia 85.9 805 733 479
h @ hgeepia 88.7 857 809 669
naeil 91.7 86.4 80.7 492
naeil + hgeepia 92.1 86.8 81.1 51.0
naeil?2 93.4 90.0 859 70.6

Table 3.7: PIPA val set accuracy of methods involving hgeepia- The optimal combina-
tion weights are A* = [0.60 1.05 1.00 1.50] for Original, Album, Time, and Day splits,
respectively. “@®” means L, normalisation, and then concatenation.

available, and we use vectors of zeros as features for the rest.

Results - Original split. See Table for the PIPA val set results for hyeepiq and
related combinations. hgeepia in itself is weak (68.5%) compared to the vanilla
head feature h, due to the missing features for the back-views. However, when
combined with h, the performance reaches 85.9% by exploiting information from
strong DeepID2+ face features and the viewpoint robust h features.

Since the feature dimensions are not homogeneous (4 096 versus 1024), we try L,
normalisation of h and hgeepia before concatenation (h @ hgeepia). This gives a further
3 pp boost (88.7%) — better than h + hcacq + heasia, the previous best model on the
head region (86.3%).

Results - Album, Time and Day splits. Table also shows results for the Album,
Time, and Day splits on the PIPA val set. While the general head cue h degrades
significantly on the Day split, hgeepia is a reliable cue with roughly the same level of
recognition in all four splits (60~ 70%). This is not surprising, since face is largely
invariant over time, compared to hair, clothing, and event.

On the other splits as well, the complementarity of h and hgeepia is guaran-
teed only when they are L, normalised before concatenation. The L, normalised
concatenation h @ hgeepia €nvelops the performance of individual cues on all splits.

Conclusion. DeepID2+, with face-specific architecture/loss and massive amount
of training data, contributes highly useful information for the person recognition
task. However, being only able to recognise face-visible instances, it needs to be
combined with orientation-robust h to ensure the best performance. Unsurprisingly,
having a specialised face recogniser helps more in the setup with larger appearance
gap between training and testing samples (Album, Time, and Day splits). Better face
recognisers will further improve the results in the future.
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Figure 3.7: PIPA val set accuracy of naeil @ hgeepia fOr varying values of A. Round dots
denote the maximal val accuracy.

3.4.11 Journal submission final model (naeil2)

We build the final model of the journal submission, naeil2, by combining naeil
and hgeepia. As seen in naive concatenation is likely to fail due to even
larger difference in dimensionality (4096 x 17 = 69 632 versus 1024). We consider L,
normalisation of naeil and hgeepida, and then performing a weighted concatenation.

. naeil Ngeepid
L ) Basenss A
naeil ®) hgeepia ||naeil|‘2 + ||hdeepid||2’

(3.1)
where, A > 0 is a parameter and + denotes a concatenation.

Optimisation of A on PIPA val set. A determines how much relative weight is to
be given to hgeepia. As we have seen in the amount of additional contribution
from hgeepiq is different for each split. In this section, we find A*, the optimal values
for A, for each split over the PIPA wval set. The resulting combination of naeil and
hgeepia is our final method, naeil2. A* is searched on the equi-distanced points
{0,0.05,0.1,- - - ,3}.

See Figure for the PIPA val set performance of naeil @) hgeepia With varying
values of A. The optimal weights are found at A* = [0.60 1.05 1.00 1.50] for Original,
Album, Time, and Day splits, respectively. The relative importance of hgeepiq is
greater on splits with larger appearance changes. For each split, we denote naeil2
as the combination naeil and hgeepia based on the optimal weights.

Note that the performance curve is rather stable for A > 1.5 in all splits. In
practice, when the expected amount of appearance changes of subjects are unknown,
our advice would be to choose A ~ 1.5. Finally, we remark that the weighted sum
can also be done for the 17 cues in naeil; finding the optimal cue weights is left as a
future work.
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Results. See Table for the results of combining naeil and hgeepia- Naively
concatenated, naeil + hgeepia performs worse than hgeepiqa on the Day split (51.0% vs
60.5%). However, the weighted combination naeil2 achieves the best performance
on all four splits.

Conclusion. When combining naeil and hgeepia, @ Weighted combination is de-
sirable, and the resulting final model naeil2 beats all the previously considered
models on all four splits.

35 PIPA TEST SET RESULTS AND COMPARISON

In this section, we measure the performance of our final model and key intermediate
results on the PIPA test set, and compare against the prior arts. See Table 3.8| for a
summary.

3.5.1 Baselines

We consider two baselines for measuring the inherent difficulty of the task. The first
baseline is the “chance level” classifier, which does not see the image content and
simply picks the most commonly occurring class. It provides a lower bound for any
recognition method, and gives a sense of how large the gallery set is.

Our second baseline is the raw RGB nearest neighbour classifier hygp,. It uses the
raw downsized (40x40 pixels) and blurred RGB head crop as feature. The identity
of the Euclidean distance nearest neighbour training image is predicted at test time.
By design, hygy, is only able to recognize near identical head crops across the testy,
splits.

Results.  See results for “chance level” and h.g, in Table While the “chance level”
performance is low (< 2% in all splits), we observe that h;g, performs unreasonably
well on the Original split (33.8%). This shows that the Original split shares many
nearly identical person instances across the split, and the task is very easy. On the
harder splits, we see that the h.g, performance diminishes, reaching only 6.78% on
the Day split. Recognition on the Day split is thus far less trivial — simply taking
advantage of pixel value similarity would not work.

Conclusion. Although the gallery set is large enough, the task can be made
arbitrarily easy by sharing many similar instances across the splits (Original split).
We have remedied the issue by introducing three more challenging splits (Album,
Time, and Day) on which the naive RGB baseline (hyg) no longer works (§3.2.1).
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Body Head

Image

Special modules General features Accuracy by split
Method Face rec.  Pose est. Data Arch. @] A T D
Chance level X X — — 078 0.89 078 197
hrgp X X - - 33.8 272 169 6.8
h X X I+P Alex 76.4 675 57.1 36.5
h+hcasiathcaca X X I+P+CC Alex 80.3 728 63.2 455
hgeepid DeepID2+4 X — — 68.1 655 607 61.5
h @ hgeepid DeepID2+ X I+P Alex 85.9 82.0 759 66.0
DeepFace DeepFace X - — 467  — — —
b X X I+P Alex 69.6 59.3 44.9 204
h+b X X I+P Alex 83.4 740 630 382
P=f+h+u+b X X I+P Alex 85.3 76.5 66.6 42.2
GlobalModel X X I+P Alex 676 — — —
PIPER DeepFace Poselets I+P Alex 831 — — —
Pose X Pose group I[+P+V  Alex 89.1 824 74.8 56.7
C0COo X Part det. I+P Goog,Res 928 835 777 617
Ps =P+s X X I+P Alex 85.7 76.7 66.6 42.3
naeil (ours) X X I+P+E  Alex 86.8 78.7 69.3 46.5
Contextual DeepID X I+P Alex 88.8 833 770 594
naeil2 (ours) DeepID2+ X I+P+E  Alex 90.4 86.3 80.7 170.6
Terminology Description
GlobalModel Zhang et al.| (2015b)
PIPER Zhang et al.|(2015b)
B Pose Pose-aware person recognition (Kumar et al.} [2017)
% C0co Congenerous cosine loss (Liu et al., [2017b)
P naeil Our conference paper method (Oh et al.} 2015)
Contextual Multi-level contextual model (Li et al., |2016a)
naeil2 Our journal submission method (Oh ef al., |2017a)
" DeepID2+ Sun et al.|(2015)
LS-’ DeepFace Taigman et al.| (2014)
2 Poselets Bourdev and Malik| (2009)
p= Part det. Faster R-CNN (Shaoqing Ren) |2015)
DeepID Sun et al.| (2014)
I ImageNet (Deng et al., 2009) train set
- P PIPA train set
g‘ CC CACD (Chen et al.| |2014) + CASIA (Yi et al.,|2014b)
E CC + PETA (Deng et al., |2014)
v VGGFace (Parkhi et al., |2015)
o Alex AlexNet (Krizhevsky et al., 2012)
g Goog GoogleNetv3 (Szegedy et al., 2016)
< Res ResNetso (He et al., |2016)

Table 3.8: (Top) PIPA test set accuracy (%) of the proposed method and prior arts on the
four splits. For each method, we indicate any face recognition or pose estimation module
included, and the data and convnet architecture for other features. “&” means concatenation
after L, normalisation. (Bottom) Various terminologies in the table above are explained with
references.
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3.5.2 Methods based on head

We consider our four intermediate models (h, h+hcagia+hcaca, Daeepid, b @ haeepia)
and the prior work DeepFace (Zhang et al., 2015bj Taigman et al., 2014).

We observe that, even without a specialised face module, h already performs
better than DeepFace (76.4% versus 46.7%, Original split). We believe this is for two
reasons: (1) DeepFace only takes face regions as input, leaving out valuable hair
and background information (§3.4.6), (2) DeepFace only makes predictions on 52%
of the instances where the face can be registered. Note that hgeepiq also does not
always make predictions due to failures to estimate the pose (17% failure on PIPA),
but performs better than DeepFace in the considered scenario (68.1% versus 46.7%,
Original split).

3.5.3 Methods based on body

We consider three of our intermediate models (b, h+b, P = f+h+u+b) and four prior
arts: GlobalModel (Zhang et al., 2015b), PIPER (Zhang et al| 2015b), Pose (Kumar
et al.,2017), COCO (Liu et al., 2017b))). Pose and COCO appeared after the publication of
the conference paper (Oh et al., |2015). See Table 3.8/ for the results.

Our body cue b and Zhang et al.’s GlobalModel are the same methods imple-
mented independently. Unsurprisingly, they perform similarly (69.6% versus 67.6%,
Original split).

Our h+b method is the minimal system matching Zhang et al.’s PIPER (83.4%
versus 83.1%, Original split). The feature vector of h+b is about 50 times smaller
than PIPER, and does not make use of a face recogniser or pose estimator.

In fact, PIPER captures the head region via one of its poselets. Thus, h+b extracts
cues from a subset of PIPER’s “GlobalModel + Poselets” (Zhang et al., 2015b), but
performs better (83.4% versus 78.8%, Original split).

Methods since naeil. Pose by Kumar ef al.|(2017) uses extra keypoint annotations
on the PIPA train set to generate pose clusters, and trains separate models for
each pose cluster (PSM, pose-specific models). By performing a form of pose
normalisation they have improved the results significantly: 2.3 pp and 10.2 pp over
naeil on the Original and Day splits, respectively.

C0CO (Liu et al., 2017b) proposes a novel metric learning loss for the person
recognition task. Metric learning gives an edge over classifier-based methods by
enabling recognition of unseen identities without re-training. They further use
Faster-RCNN detectors (Shaoqging Ren, 2015) to localise the face and body more
accurately. The final performance is arguably good in all four splits, compared to
Pose or naeil. However, one should note that the face, body, upper body, and full
body features in COCO are based on GoogleNetv3 (Szegedy et al.,|2016) and ResNets50
(He et al., 2016) — the numbers are not fully comparable to all the other methods that
are largely based on AlexNet.
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3.5.4 Methods based on full image

We consider our two intermediate models (Ps = P+s, naeil = Ps+E) and Contextual
(Li et al., 2016a), a method which appeared after the conference paper (Oh et al.,
2015).

Our naeil performs better than PIPER (Zhang et al., 2015b) (86.8% versus 83.1%,
Original split), while having a 6 times smaller feature vector and not relying on face
recogniser or pose estimator.

Methods since naeil. Contextual by |Li et al.| (2016a) makes use of person co-
occurrence statistics to improve the results. It performs 2.0 pp and 12.8 pp better
than naeil on the Original and Day splits, respectively. However, one should note
that Contextual employs the face recogniser DeepID (Sun et al., 2014). We have found
that a specialised face recogniser improves the recognition quality greatly on the

Day split (§3.4.10).
3.5.5 Our final model naeil2

naeil2 is a weighted combination of naeil and hgeepia (se€ for details).
Observe that, by attaching a face recogniser module on naeil, we achieve the best
performance on Album, Time, and Day splits. In particular, on the Day split, naeil2
makes a 8.9 pp boost over the second best method C0CO (Liu et al.| |2017b) (Table .
On the Original split, COCO performs better (2.4 pp gap), but note that COCO uses
more advanced feature representations (GoogleNet and ResNet).

Since naeil2 and COCO focus on orthogonal techniques, they can be combined to
yield even better performances.

3.5.6 Computational cost

We report computational times for some pipelines in our method. The feature
training takes 2-3 days on a single GPU machine. The SVM training takes 42 seconds
for h (4096 dim) and 1118 seconds for naeil on the Original split (581 classes, 6443
samples). Note that this corresponds to a realistic user scenario in a photo sharing
service where ~ 500 identities are known to the user and the average number of
photos per identity is ~10.

3.6 ANALYSIS

In this section, we provide a deeper analysis of individual cues towards the final
performance. We measure how contributions from individual cues (e.g. face and
scene) change when the system has to generalise across either time or head viewpoint.
We study the performance as a function of the number of training samples per
identity, and examine the distribution of identities according to their recognisability.
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Figure 3.8: PIPA test set relative accuracy of various methods in the four splits, against the
final system naeil2.

3.6.1 Contribution of individual cues under different time gaps

We measure the contribution of individual cues towards the final system naeil2
(§3-4.11) by dividing the accuracy for each intermediate method by the performance
of naeil2. We report results in the four splits in order to determine which cues
contribute more when there are larger time gap between training and testing samples
and vice versa.

Results. See Figure [3.8| for the relative performances in four splits. The cues based
more on context (e.g. b and s) see a greater drop from the Original to the Day split,
whereas cues focused on face f and head h regions tend to drop less. Intuitively, this
is due to the greater changes in clothing and events in the Day split.

On the other hand, hgeepiq increases its relative contribution from Original to
Day split, nearly explaining 90% of naeil2 in the Day split. hgeepia provides a
valuable invariant face feature especially when the time gap is great. However, on
the Original split hyeepia ONly reaches about 75% of naeil2. Head orientation robust
naeil should be added to attain the best performance.

Conclusion. Cues involving context are stronger in the Original split; cues around
face, especially the hgeepig, are robust in the Day split. Combining both types of cues
yields the best performance over all considered time/appearance changes.

3.6.2  Performance by viewpoint

We study the impact of test instance viewpoint on the proposed systems. Cues
relying on face are less likely to be robust to occluded faces, while body or context
cues will be robust against viewpoint changes. We measure the performance of
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Figure 3.9: PIPA test set accuracy of methods on the frontal (FR), non-frontal (NFR), and no
face detected (NFD) subsets.

models on the head orientation partitions defined by a DPM head detector (see
§3.3.1): frontal FR, non-frontal NFR, and no face detected NFD. NFD subset is a proxy
for back-view and occluded-face instances.

Results. Figure shows the accuracy of methods on the three head orientation
subsets for the Original and Day splits. All the considered methods show worse
performance from frontal FR to non-frontal NFR and no face detected NFD subsets.
However, in the Original split, naeil2 still robustly predicts the identities even for
the NFD subset (~80% accuracy). On the Day split, naeil2 also struggles on the NFD
subset (~20% accuracy). Recognition of NFD instances under the Day split constitutes
the main remaining challenge of person recognition.

In order to measure contributions from individual cues in different head orien-
tation subsets, we report the relative performance against the final model naeil2
in Figure The results are reported on the Original and Day splits. Generally,
cues based on more context (e.g. b and .s) are more robust when the face is not
visible than the face specific cues (e.g. £ and h). Note that the hgeepid performance
drops significantly in NDET, while naeil generally improves its relative performance
in harder viewpoints. naeil2 envelops the performance of the individual cues in all
orientation subsets.

Conclusion. naeil is more viewpoint robust than hgeepia, an opposite observation
made for time-robustness analysis in The combined model naeil2 takes the
best of both worlds. The remaining challenge for person recognition lies on the
no face detected NFD instances under the Day split. Perhaps image or social media
metadata could be utilised (e.g. camera statistics, time and GPS location, social
media friendship graph).
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Figure 3.10: PIPA test set performance when the identity classifier (SVM) is only trained
on either frontal or no face detected subset. Related scenario: a robot has only seen frontal
views of people; who is this person shown from the back view?

3.6.3 Generalisation across viewpoints

Here, we investigate the viewpoint generalisability of our models. For example, we
challenge the system to identify a person from the back, having only shown frontal
face samples.

Results. Figure shows the accuracies of the methods, when they are trained
either only on the frontal subset FR (left plot) or only on the no face detected subset
NFD (right plot). When trained on FR, naeil2 has difficulties generalising to the NFD
subset (FR versus NFD performance is ~95% to ~40% in Original; ~85% to ~35% in
Day). However, the absolute performance is still far above the random chance (see
§3.5.1), indicating that the learned identity representations are to a certain degree
generalisable. The naeil features are more robust in this case than hgeepia, With a
less dramatic drop from FR to NFD.

When no face is given during training (training on NFD subset), identities are
much harder to learn in general. The recognition performance is low even for
no-generalisation case: ~60% and ~30% for Original and Day, respectively, when
trained and tested on NFD.

Conclusion. naeil2 does generalise marginally across viewpoints, largely attribut-
ing to the naeil features. It seems quite hard to learn identity specific features
(either generalisable or not) from back-views or occluded faces (NFD).

3.6.4 Input resolution

This section provides analysis on the impact of input resolution. We aim to identify
methods that are robust in different range of resolutions.
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Figure 3.11: PIPA test set accuracy of systems at different levels of input resolution.
Resolution is measured in terms of the head height (pixels).

Results. Figure shows the performance with respect to the input resolution
(head height in pixels). The final model naeil2 is robust against low input resolu-
tions, reaching 80% even for instances with < 50 pixel heads on Original split. On
the day split, naeil2 is less robust on low resolution examples (55%).

Component-wise, note that naeil performance is nearly invariant to the resolu-
tion level. naeil tends to be more robust for low resolution input than the hgeepiq as
it is based on body and context features and does not need high resolution faces.

Conclusion. For low resolution input naeil should be exploited, while for high
resolution input hgeepia should be exploited. If unsure, naeil2 is a good choice — it
envelops the performance of both in all resolution levels.

3.6.5 Number of training samples

We are interested in two questions: (1) if we had more samples per identity, would
person recognition be solved with the current method? (2) how many examples per
identity are enough to gather substantial amount of information about a person?
To investigate the questions, we measure the performance of methods at different
number of training samples per identity. We perform 10 independent sampling of
the training samples at each level.

Results. Figure shows the trend of recognition performances of methods with
respect to different levels of training sample size. naeil2 saturates after 10 ~ 15
training examples per person in Original and Day splits, reaching 92% and 83%,
respectively, at 25 examples per identity. At the lower end, we observe that 1 example
per identity is already enough to recognise a person far above the chance level (67%
and 35% on Original and Day, respectively).

Conclusion. Adding a few times more examples per person will not push the
performance to 100%. Methodological advances are required to fully solve the
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problem. On the other hand, the methods already collect a substantial amount of
identity information only from a single sample per person (far above chance level).

3.6.6 Distribution of per-identity accuracy

Finally, we study which proportion of the identities are easy to recognise and
how many are difficult. We study this by computing the distribution of identities
according to their per-identity recognition accuracies.

Results. Figure shows the per identity accuracy for each identity in a descend-
ing order for each considered method. On the Original split, naeil2 gives 100%
accuracy for 185 out of the 581 test identities, whereas there was only one identity
where the method totally fails. On the other hand, on the Day split there are 11 out
of the 199 test identities for whom naeil2 achieves 100% accuracy and 12 identities
with zero accuracy. In particular, naeil2 greatly improves the per-identity accuracy
distribution over naeil, which gives zero prediction for 40 identities.

Conclusion. In the Original split, naeil2 is doing well on many of the identities
already. In the Day split, the hgeepia feature has greatly improved the per-identity
performances, but naeil?2 still misses some identities. It is left as future work to
focus on the hard identities.
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37 OPEN-WORLD RECOGNITION

In the previous sections, we have assumed an oracle head bounding box at test time.
We replace the head bounding box annotations with face detections in this section.
In this scenario, probe images may contain identities that have not been seen in the
gallery set - e.g. background people or even face-like objects. In this section, we
introduce a simple thresholding trick on our person recognition system to enable it
in this open-world scenario.

3.7.1  Method

At test time, body part crops are inferred from the detected face region (f). First, h is
regressed from £, using the PIPA train set statistics on the scaling and displacement
transformation from f to h. All the other regions (u, b, s) are computed based on h
in the same way as in

To measure if the inferred head region h is sound and compatible with the models
trained on h (as well as u and b), we train the head model h on head annotations
and test on the heads inferred from face detections. The recognition performance is
87.7%, while when trained and tested on the head annotations, the performance is
89.9%. We see a small drop, but not significant — the inferred regions to be largely
compatible.

The gallery-background identity detection is done by thresholding the final SVM
score output. Given a recognition system and test instance x, let Sy (x) be the SVM
score for identity k. Then, we apply a thresholding parameter T > 0 to predict
background if max Sk (x) < 7, and predict the argmax gallery identity otherwise.

3.7.2 Evaluation metric

The evaluation metric should measure two aspects simultaneously: (1) ability to
tell apart background identities and (2) ability to classify gallery identities. We
first introduce a few terms to help defining the metrics. Refer to Figure for
a visualisation. We say a detected test instance x is a “foreground prediction” if
max Sk (x) > t. A foreground prediction is either a true positive (TP) or a false

positive (FP), depending on whether x is a gallery identity or not. If x is a TP, it
is either a sound true positive TP; or an unsound true positive TP,, depending on
the classification result arg max S (x). A false negative (FN) is incurred if a gallery

k
identity is predicted as background.
We first measure the system’s ability to screen background identities while at the
same time classifying the gallery identities. The recognition recall (RR) at threshold
T is defined as follows

TP, TP,
RR(T) _ ’ 5‘ _ ’ 5‘

~ |face det. Nhead anno.|  |TPUFN]|’ (3-2)
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Figure 3.14: Diagram of various subsets generated by a person recognition system in an
open world setting (cf. Figure . TPs: sound true positive, TP,: unsound true positive, FP:
false positive, FN: false negative. See text for the definitions.

To factor out the performance of face detection, we constrain our evaluation to
the intersection between face detections and head annotations (the denominator
TP UFN). Note that the metric is a decreasing function of T, and when T — —co the
corresponding system is operating under the closed world assumption.

The system enjoys high RR when 7 is decreased, but the system then predicts
many background cases as foreground (FP). To quantify the trade-off we introduce
a second metric: false positive per image (FPPI). Given a threshold T > 0, FPPI is
defined as

FPPI(7) = 0L
limages|”

(33)
measuring how many wrong foreground predictions the system makes per image. It
is also a decreasing function of 7. When T — oo, the FPPI attains zero.

3.7.3 Results

Figure shows the recognition rate (RR) versus false positive per image (FPPI)
curves parametrised by 7. As T — oo, RR(T) approaches the close world performance
on the face detected subset (FR UNFR): 87.7% (Original) and 46.7% (Day) for naeil. In
the open-world case, for example when the system makes one FPPI, the recognition
recall for naeil is 76.3% (Original) and 25.3% (Day). Transitioning from the open
world to close world, we see quite some drop, but one should note that the set of
background face detections is more than 7x greater than the foreground faces.

Note that the DeepID2+ (Sun et al., 2015) is not a public method, and so we
cannot compute hgeepia features ourselves; we have not included the hgeepia OF
naeil?2 results in this section.
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Figure 3.15: Recognition recall (RR) versus false positive per image (FPPI) in open world.

3.7.4 Conclusion

A simple SVM score thresholding scheme can make our systems work in the open
world recognition scenario with reasonable performances.

3.8 CONCLUSION

We have analysed the problem of person recognition in personal photo collections
where people may appear with occluded faces, in diverse poses, and in various
social events. We have investigated the efficacy of various cues, including the
face recogniser DeepID2+ (Sun et al., 2015), and their time and head viewpoint
generalisability. For better analysis, we have contributed additional splits on PIPA
(Zhang et al., 2015b) that simulate different amounts of time gap between training
and testing samples.

We make four major conclusions in this chapter. (1) Cues based on face and head
are robust across time (§3.6.1). (2) Cues based on context are robust across head
viewpoints (§3.6.2). (3) The final model naeil2, a combination of face and context
cues, is robust across both time and viewpoint and achieves a ~9 pp improvement
over a recent state of the art approach on the challenging Day split (§3.5.5). (4)
Better convnet architectures and face recognisers will improve the performance of
the naeil and naeil2 frameworks in the future §3.5.5).

From the user privacy perspective, results in this chapter are alarming — current
machine learning technology enables recognition of people from back-views, for
example. In the next chapters, we will analyse the human identifiability further and
propose novel obfuscation techniques.
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Figure 3.16: Various success and failure cases of intermediate and final systems (Original
split). Given single probe images, we show gallery images of the predicted identities for
corresponding recognition systems. Tick for correct, cross for wrong predictions.

naeil2 | : E

Figure 3.17: Failure cases of naeil2 and PIPER (Original split).






FACELESS PERSON RECOGNITION; PRIVACY
IMPLICATIONS IN SOCIAL MEDIA

that it is robust against natural domain shifts, such and time and viewpoint

changes, common in personal photo collections. In this section, we analyse the
performance of naeil against intentional shifts in the distribution introduced by the
users — e.g. face blurring or blacking out. In addition, we examine the effect of
reducing the number of identity tags for each identity (another common obfuscation
measure). We show that naeil, a state of the art system, is also robust against such
commonplace image obfuscation and can moreover adapt to such distributional
changes by re-training or by incorporating more contextual cues (e.g. from other
photos). Results in this chapter further raise alertness in public as well as of the
research community that more should be understood about the privacy implications
of photo-sharing activities in the machine learning age.

IN the previous chapter, we have developed a person recogniser naeil and showed

The chapter is based on Oh et al. (2016).  As the first author, Seong Joon Oh has
conducted all the experiments and was the main writer of the manuscript.

4.1 INTRODUCTION

With the growth of the internet, more and more people share and disseminate
large amounts of personal data be it on webpages, in social networks, or through
personal communication. The steadily growing computation power, advances in
machine learning, and the growth of the internet economy, have created strong
revenue streams and a thriving industry built on monetising user data. It is clear
that visual data contains private information, yet the privacy implications of this
data dissemination are unclear, even for computer vision experts. We are aiming
for a transparent and quantifiable understanding of the loss in privacy incurred by
sharing personal data online, both for the uploader and other users who appear in
the data.

In this work, we investigate the privacy implications of disseminating photos
of people through social media. Although social media data allows to identify
a person via different data types (timeline, geolocation, language, user profile,
etc.) (Narayanan and Shmatikov), |2010), we focus on the pixel content of an image.
We want to know how well a vision system can recognise a person in social photos
(using the image content only), and how well users can control their privacy when
limiting the number of tagged images or when adding varying degrees of obfuscation
(see Figure to their heads.

51
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Person A training samples. Is this person A ?

Figure 4.1: An illustration of one of the scenarios considered: can a vision system recognise
that the person in the right image is the same as the tagged person in the left images, even
when the head is obfuscated?

An important component to extract maximal information out of visual data in
social networks is to fuse different data and provide a joint analysis. We propose
our new Faceless Person Recogniser (described in §4.3), which not only reasons
about individual images, but uses graph inference to deduce identities in a group of
non-tagged images. We study the performance of our system on multiple privacy
sensitive user scenarios (described in §4.2), and analyse the main results in
Since we focus on the image content itself, our results are a lower-bound on the
privacy loss resulting from sharing such images. Our contributions are:

e We discuss dimensions that affect the privacy of users in online photos, and
define a set of scenarios to study the question of privacy loss when social media
images are aggregated and processed by a vision system.

e We propose our new Faceless Person Recogniser that improves and builds on
naeil (Chapter [3) to perform a joint inference across multiple photos.

e We measure the effectiveness of several common obfuscation scenarios against
the Faceless Person Recogniser.

4.2 PRIVACY SCENARIOS AND SETUP

We consider a hypothetical social photo sharing service user. The user has a set of
photos of herself and others in her account. Some of these photos have identity tags
and others do not have such identity tags. We assume that all heads on the test
photos have been detected, either by an automatic detection system, or because a
user is querying the identity of a specific head. Note that we do not assume that
the faces are visible nor that persons are in a frontal-upstanding pose. A “tag” is an
association between a given head and a unique identifier linked to a specific identity
(social media user profile).

Goal. The task of our recognition system is to identify a person of interest (marked
via its head bounding box), by leveraging all the photos available (both with and
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Fully visible Gaussian blur Black fill-in White fill-in

Figure 4.2: Obfuscation types considered.

without identity tags). In this work, we want to explore how effective different
strategies are to protect the user identity.

4.2.1 Dimensions of recognisability
We consider four dimensions that affect how hard or easy it is to recognise a subject:

Number of tagged heads. We vary the number of tagged images available per
identity. The more tagged images are available, the easier it should be to recognise
someone in new photos. In our experiments, we assume that 1~ 10 tagged images
are available per person.

Obfuscation type. Users concerned with their privacy might take protective mea-
sures by blurring or masking their heads. Other than the fully visible case (non-
obfuscated), we consider three other obfuscations types, shown in Figure We
consider both black and white, since Wilber et al.| (2016) showed that commercial
systems might react differently to these. The blurring parameters are chosen to re-
semble the YouTube face blur feature (Gaussian bandwidth ¢ = head height/20 + 10
pixels).

Amount of obfuscation. Depending on the user’s activities (and her friends post-
ing photos of her), not all photos might be obfuscated. We consider a variable
fraction of these.

Domain shift. For the recognition task, there is a difference if all photos belong
to the same event, where the appearance of people change little, or if the set of
photos without tags correspond to a different event than the ones with identity tags.
Recognising a person when the clothing, context, and illumination have changed
(“across events”) is more challenging than when they have not (“within events”).
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Abbre- Brief description Amount of Amount of
viation p tagged heads = obfuscated heads
So Privacy indifferent 100% 0%
S? Some of my images are tagged T instances 0%
S» One non-tagged head is obfuscated 10 instances 0%/1 instance
S3 All my heads are obfuscated 10 instances 100%
Sé All tagged heads are obfuscated 10 instances 100%/ 0%
Sy All non-tagged heads are obfuscated 10 instances 0%/100%

Table 4.1: Privacy scenarios considered. Each row in the table can be applied for the “across
events” and “within events” case, and over different obfuscation types. See text The
obfuscation fraction indicates tagged/non-tagged heads. Bold abbreviations are reused in
follow-up figures. In scenario ST, T € {1.25, 2.5, 5, 10}.

4.2.2 Scenarios

Based on these four dimensions, we discuss a set of scenarios, summarised in
Table Clearly, these only cover a subset of all possible combinations along the
mentioned four dimensions. However, we argue that this subset covers important
and relevant aspects for our exploration on privacy implications.

Scenario Sg. Here all heads are fully visible and tagged. Since all heads are tagged,
the user is fully identifiable. This is the classic case without any privacy protection
measure.

Scenario S;. There is no obfuscation but not all images are tagged. This is the
scenario commonly considered for person recognition, e.g. (Gallagher and Chen,
2008; Zhang et al., |2015bj Oh et al., |2015). Unless otherwise specified we use S;°,
where an average of 10 instances of the person are tagged (average across all
identities). This is a common scenario for social media users, where some pictures
are tagged, but many are not.

Scenario S;. Here the user has all of her heads visible, except for the one non-
tagged head being queried. This would model the case where the user wants to
conceal her identity in one particular published photo.

Scenario S3. The user aims at protecting her identity by obfuscating all her heads
(using any obfuscation type, see Figure [4.2). Both tagged and non-tagged heads are
obfuscated. This scenario models a privacy concerned user. Note that the body is
still visible and thus usable to recognise the user.

Scenarios S;&S5. These consider the case of a user that inconsistently uses the
obfuscation tactic to protect her identity. Albeit on the surface these seem like
different scenarios, if the visual information of the heads cannot be propagated
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from/to the tagged /non-tagged heads, then these are functionally equivalent to Sj.

Each of these scenarios can be applied for the “across/within events” dimension.
In the following sections we will build a system able to recognise persons across
these different scenarios, and quantify the effect of each dimension on the recognition
capabilities (and thus their implication on privacy). For our system, the tagged heads
become training data, while the non-tagged heads are used as test data.

4.2.3 Experimental setup

We investigate the scenarios proposed above through a set of controlled experiments
on the PIPA dataset (§3.2} (Zhang et al), |2015b)), which is by far the largest dataset
of social media photos containing diverse social groups, events, and activities. We
believe PIPA is the most realistic available testbed for privacy studies in social media
photos. In this section, we project the discussed scenarios onto specific aspects of the
PIPA dataset, describing how much realism can be achieved and what are possible
limitations.

Data usage protocol. The PIPA dataset contains train, val, and test partitions, each
containing disjoint sets of identities (§3.2). We use the train partition for convnet
training and val for component-wise evaluation and hyperparameter search. The test
partition is used for drawing final conclusions.

For each identity in the val and test partitions, we have further a partition of
samples into splits val/testy and val/test;. As done in Chapter [3, we regard one of
the splits as the training samples (gallery) and the other as the test samples (probe).
There are about 10 training and test samples for each identity on average. See
for further details on the splits.

In the context of the scenarios above, we consider val/test; as the set of tagged
instances and val/test; as untagged ones.

Domain shift. introduces the domain shift between tagged samples (gallery)
and test samples (probe) as a factor for recognisability. To simulate the “within events”
and “across events” scenarios, we use the Original (O) and (D) splits, respectively,
as proxies. See for more information on those splits.

Albums. Each photo in PIPA is associated with a Flickr album identifier. We use
this photo album information during our graph inference (§4.3.3).

43 FACELESS RECOGNITION SYSTEM

In this section, we introduce the Faceless Recognition System (FRS) to study the
effectiveness of privacy protective measures in The system is built on top of the
state of the art system naeil (Chapter [3). Unlike naeil, we enable reasoning across
multiple photos. Human users do this naturally in a social media setup — when it is
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hard to recognise a person from a single photo due to e.g. face occlusion, users look
for the person with a visible face in the other photos from the same album that are
identified via e.g. cloth matching. Our system first builds a graph where each node
represents an instance and the edges connect instances from the same albums. Then,
FRS performs conditional random field (CRF) inference to jointly identify all the
instances in the graph. Many previous works in computer vision have also used CRF
inference for solving various joint prediction tasks (Gallagher and Chen, 2007; [Stone
et al., 2008} Vu et al., [2015; |Hayder et al., 2015). Our CRF inference is formulated as
an optimisation problem:

g MO T %) 4

with observations X;, identities Y; and unary potentials $o(Y;|X;) defined on each
node i € V (detailed in §4.3.1) as well as pairwise potentials 5(X;, X;) defined on
each edge (i, j) € E (detailed in §4.3.2). 1) is the indicator function, and & > 0
controls the unary-pairwise balance.

We examine the unary ¢y and pairwise 15 terms in greater detail in the following
subsections.

4.3.1  Unary ¢y: Single person recognition

We build our unary ¢ upon a state of the art, publicly available person recognition
system, naeil (Chapter [3). The system was shown to be robust to decreasing
numbers of tagged examples. Furthermore, as we will see, naeil achieves some
robustness to face obfuscation techniques, as it not only uses the face but also context
(e.g. body and scene) as cues.

For person instance X and identity Y, we define ¢4(Y|X) as the SVM score of X
for identity Y. It comprises the unary term in Equation When no pairwise term
is present, Equationﬁ boils down to arg max ¢y (Y|X), the same person recognition

Y

scheme in Chapter

We consider fine-tuning naeil with respect to obfuscation patterns (blacking or
blurring heads), guiding naeil to focus more on e.g. body regions when the head
cue is not reliable. For each obfuscation pattern, we train new naeil recognisers
over obfuscated images (referred to as “adapted” in Figure — both the feature
extractor and identity prediction models are adapted. We assume that at test time
these obfuscation patterns can easily be detected, and the corresponding model can
be used.

Evaluation. We evaluate the performance of our single person recogniser under
different obfuscation scenarios (head obfuscation patterns, domain gap, or varying
number of training tags). See Figures |4.3and |4.4| for the summary of our results.
Figure shows the effect of obfuscation (blur, black, or white) and the recog-
niser’s adaptation to those patterns (“adapted” versus “non-adapted”). We observe
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Figure 4.3: Single person recogniser at different obfuscation types (“Adapted”: models are
fine-tuned for the corresponding obfuscation type).
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Figure 4.4: Single person recogniser at different tag rates.

that under “within events” case, the single person recogniser performance degrades
only slightly by introducing obfuscation (from 91.5% to 84.3% for blur and 80.1% for
black). The drop is greater for “across events” case: from 47.4% to 23.5% for blur
and 14.0% for black. This is due to the fact that when events change, faces become
the most reliable cue.

On the other hand, even after applying obfuscations, the recognition rate is still
far above the chance level classifier. For “within events” performances on blur and
black instances (84.3% and 80.1%, respectively) are still 8o times better than the
chance-level accuracy of 1.0%. For the “across events” case, the recognition rate after
black obfuscation is 14.0%, but this is still 3 times more accurate than the chance
level of 4.7%.

We observe that adapting the recogniser to obfuscation patterns do improve
its performance on the corresponding obfuscation patterns. The improvement is
marginal for black or white obfuscation, but is substantial for blur, especially in the
“across events” case (from 23.5% to 28.8%).

‘Wilber et al.| (2016) have suggested that white obfuscation confuses a face detection
system more than does the black. In our recognition setting, black and white fill-in
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(a) Correct pair (b) Incorrect pair

Figure 4.5: Person matching in social media photos is challenging.

have similar effects: 80.9% and 79.6% respectively (“within events”, “adapted”). We
omit the experiments for white fill-in obfuscation in the following sections.

We examine the effect of increasing or decreasing the number of identity tags on
the single person recogniser performance in Figure The system is surprisingly
robust to the decreased number of tagged examples (gallery set) per identity. For
example, in the “within events”, non-obfuscated case, decreasing the number of
tagged instances per identity from 10 to 1.25 only decreases the accuracy from 91.5%
to 69.9%.

Conclusion. Blacking or blurring heads do not completely prevent recognition by a
state of the art person recogniser, especially in the “within events” scenario. Moreover,
by adapting the recogniser to obfuscation patterns, some of the performances can be
re-gained. Black and white obfuscation types have similar effects against a person
recogniser. Finally, the system is robust to greatly reducing the number of tags.

4.3.2 Pairwise ipz: Person pair matching

In this subsection, we describe and evaluate the pairwise term ¢ in the joint inference
formulation in Equation g encodes the probability that the instances X; and
X; contain the same identity. If 5(X;, X;) is high, then the CRF inference promotes
joint outputs Y that predict the same identity for instances X; and X;. We expect that
this formulation can strengthen weak unary predictions due to head obfuscation by
propagating stronger predictions from the other photos with visible faces.

Person matcher. Given two instances X; and X, we compute the probability that
they contain the same identity. Note that the task of identity matching in social
media photos is challenging due to heavy clothing changes and varying poses (see
Figure [4.5).

The person matcher y5(X;, X;) is realised via a Siamese neural network on top
of the feature vectors from X; and X;. In our case, we use only the head and body
features, resulting in a 2 x 4096 dimensional feature for each instance. A Siamese
network takes the inputs and processes each of them through three fully connected
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layers with ReLU activations with 2-dimensional output layer at the end. The outputs
are then passed through a softmax function, leading to “match” and “non-match”
probabilities. We indicate the “match” probability via {5(X;, X;).

We train the person matcher on the PIPA train set, and then fine-tune it over the
gallery instances of the test identities split,. In order to simulate multiple scenarios,
we train three types of person matchers: one for the visible pairs, one for the
obfuscated pairs, and one for the mixed pairs. As for the unary term, we assume
that the obfuscation patterns can be detected at test time and the corresponding
pairwise model can be used.

Baseline unary based matcher. Instead of training a separate pairwise person
matcher, one could use the unary scores to predict matches: if single person predic-
tions for X; and Xj coincide, predict “match”, and vice versa. In order to produce an
ROC curve, we introduce a continuous extension of the above procedure for match
probability prediction.

We first compute the unary scores for the pair: ¢(-|X;) and ¢g(+|X;). We then
compute the mean unary entropy

H (X;, X;) == = (H(¢o(-1X;)) + H(¢o(-1X}))) (4.2)

N[~

where the unary entropy H(¢y(-|X)) is defined as Y [—¢g(Y|X)log (¢e(Y|X))].
Y

H (Xj, Xj) encodes the confidence of the joint unary predictions. Then, the match
probability is computed via

1—1H (X; X;) if unary predictions match
X;, Xi) =472 v .
punary (Xi, ;) {%H (Xi,X;)  otherwise 43)

In our preliminary evaluation, H (Xl-, X]-) is typically less than 0.5. Thus, if the unary
predictions match, then Punary (X,-, Xj) is within [0.5, 1], with a lower value when
the mean unary entropy (uncertainty) is higher. If the unary predictions do not
match, then Punary (Xi, Xj) takes a value in [0, 0.5] with a higher value for higher
mean entropy (uncertainty). This provides a continuously relaxed version of the
binary match based on unary argmax predictions.

Evaluation. We separately evaluate the matching performance of our person
matcher ¥z over the PIPA validation set probe image pairs (pairs in split;). The
performance is evaluated in the equal error rate (EER), the matching accuracy at the
match score threshold where the false positive rate and the false negative rate meet.

See Figure |4.6|for the ROC curves for “within/across events” under three different
obfuscation pair types (visible/mixed /black pairs). First of all, we notice that the
matching performance for “within events” is far better than the “across events”
case (92.7% versus 81.4% EER for visible pairs), and that the match accuracies drop
as heads are obfuscated (albeit adapted against obfuscation patterns): from 92.7%
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Figure 4.6: Person pair matching on the set of pairs in photo albums. The numbers in
parentheses are the equal error rates (EER). The “visible unary base” refers to the baseline
where the single person predictions are used to determine the match.

(visible) to 87.5% (mixed) and 84.8% (black) for “within events”. However, even for
the most severe scenario (“across events”, mixed pair), the EER is 69.5%, far above
the chance level of 50%. The person matcher performance seems reasonable.

We note that fine-tuning the matcher over the test identities split, is crucial. For
the visible pairs, EER improves from 79.1% to 92.7% in the “within events”, and
from 74.5% to 81.4% in “across events”.

Finally, the unary baseline performs marginally better than the visible pair model
under the “within events”: 93.7% versus 92.7%. Under the “across events”, on the
other hand, the visible pair model beats the baseline by a large margin: 81.4% versus
67.4% (Figure [4.6). In practice, the system has no information whether the query
image is from within or across events. We thus use the Siamese person matcher,
which beats the unary baseline on average.

Conclusion. Our person matcher achieves a reasonable performance in matching
identities in a challenging social media photos, and beats the unary-based baseline.
Fine-tuning the matcher over some examples from the test identities (split,) is crucial.

4.3.3 Graph inference

Given the unary term from and pairwise term from we perform
the CRF inference in Equation to predict identities for a set of probe images.
This subsection provides a detailed description of the inference procedure and
intermediate empirical analyses.

Graph building. We describe how the node test instances (probe images or split,)
are interconnected in our inference graph. For both efficiency and performance, we
do not build a complete graph over all the test instances; we only connect within
albums, information given in the form of Flickr metadata for PIPA images (Zhang
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Setting Test/Val #classes #nodes #edges #albums

Within events Test 581 6443 252431 351
Val 366 4820 228116 300
Across events Test 199 2485 51633 192
Val 65 1076 17095 137

Table 4.2: Problem size for the CRF inference.

Setting (scenario=Sq) Inference Time  Accuracy
Unary only - 91.5

Within events Tree approximation 714 secC 91.8
Max-product 15 hrs 91.4
Unary only - 47.4

Across events Tree approximation 5 sec 55.0
Max-product 87 sec 52.2

Table 4.3: Computational time and accuracy for inference algorithms.

et al.,[2015b). We remark that many social media platforms employ analogues of the
“album” in Flickr, user-specified groups of photos with similar locations, events, and
contexts. We present a detailed report on the graph size of our particular experiment

in Table

Edge pruning. We consider a heuristic for pruning edges of the graph based on
the pairwise scores. Since the person matcher is not perfect (Figure [4.6), it could
benefit to prune edges with low confidence predictions. Through our preliminary
evaluation, we have found that pruning negatively matched pairs from the inference
results in a better performance. We will compare the performance with and without
the negative edge pruning later.

Inference. The CRF inference involves one hyperparameter a determining the
relative weights for the unary and pairwise terms. A preliminary experiment on
the impact of « on the validation set person recognition performance shows that for
both “within” and “across events”, the validation performance plateaus for a > 100.
We use a = 100 for all the experiments.

For efficiency, we consider performing an approximate inference. Given a node to
infer identity, we consider propagations only on the neighbouring edges for the node.
Since the resulting graph is a tree, this significantly reduces the computation time,
while achieving similar or even better accuracy than the full max-product inference.
See Table 4.3| for a preliminary results on the computational time and performance
with and without this approximate inference. For “within events”, the reduction in
inference time for the whole validation set is from 15 hours to only 714 seconds. The
graph inference is implemented via PyStruct (Miiller and Behnke)| 2014).
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Figure 4.7: Validation performance of the CRF joint inference in three scenarios, S1, Sz, and
S; (see , under black fill-in obfuscation.

Oracle pairwise. To factor out the errors stemming from the wrong pairwise pre-

dictions, we build an oracle case that assumes perfect pairwise potentials (y5(X; X;) =

1[Y17Y‘], where 1[,] is the indicator function and Y are the ground truth identities).
=

We do not perform negative edge pruning here.

Evaluation. The results of the joint inference (for the black obfuscation case) are
presented in Figure [4.71 Shown results include unary-only case, final system without
the negative edge pruning, final system (“unary+pairwise”), and the final system
with oracle pairwise terms. Performances are measured under “within/across events”
and with respect to multiple obfuscation setups S1, Sz, and S3 (see §4.2).

After graph inference, all scenarios in the “within event” case reach recognition
rates above 80%. For “across events”, both S; and S, are above 35%. Compared
to the unary-only case (“unary”), “unary+pairwise” performs better in general,
with quite strong boost for “across events”, S, case (one obfuscated test instance):
accuracy from 15% to 39%. In this case, since only one test head is obfuscated, good
recognition results from other instances get propagated to the obfuscated instance
through the graph inference.

We observe that the negative edge pruning turns out to be quite important.
Without pruning, the pairwise reasoning can even harm the recognition accuracy.
For “within events” S1, the accuracy drops from 91.5% to 67.3% by adding both
positive and negative edges. This is due to the erroneous match predictions. This
is confirmed again by the oracle pairwise experiments, in which case we do not
prune any edge from the graph. When pairwise terms are perfect, the joint inference
results in the best performance in all setups considered, enveloping the unary-only
and the negative edge pruned joint inference performances. The need for negative
edge pruning is really due to the imperfect match predictions, and as more effective
person matchers are developed, the overall performance will improve even without
the pruning.
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Conclusion. Joint inference performance supersedes single-instance based perfor-
mances, if negative edges are properly pruned to take care of erroneous pairwise
predictions. Oracle pairwise term experiments indicate that there is more potential
for performance gain once the person matchers are improved.

4.4 TEST SET RESULTS & ANALYSIS

Following the experimental protocol in we now evaluate our Faceless Recog-
nition System on the PIPA test set. The main results are summarised in Figures
and [4.9] Figure shows some qualitative results over the test set.

Amount of tagged heads. Figure[4.8|shows that even with only 1.25 tagged photos
per person on average, the system can recognise users far better than chance level
(naive baseline; best guess before looking at the image). Even with such little amount
of training data, the system predicts 56.8% of the instances correctly within events
and 31.9% across events; which is 73 x and 16 x higher than chance level, respectively.
We see that even few tags provide a threat for privacy and thus users concerned
with their privacy should avoid having (any of) their photos tagged.

Obfuscation type. For both scenario S; and S3, Figure (and the results from
indicates the same privacy protection ranking for the different obfuscation
types. From higher protection to lower protection, we have Black ~ White >
Blur > Visible. Albeit blurring does provide some protection, the machine learning
algorithm still extracts useful information from that region. When our full Faceless
Recognition System is in use, one can see that (Figure obfuscation helps, but
only to a limited degree: e.g. 86.4% (S1) to 71.3% (S3) under within events and 51.1%
(S1) to 23.9% (S3) under across events.

100 f 100
I unary
Q01 g0 | Mlunary + pairwise
g 6ol g 6ol
S 6of S 6of
o I o
g g
8 40} 8 40
(] L o] L
20| 20| I
0 1.25 2.5 5 10 0 1.25 2.5 5 10
Sy St Sy S St St S S
(a) Within events (b) Across events

Figure 4.8: Impact of number of tagged examples: $12%, §25, S% and S10.
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Figure 4.9: Co-recognition results for scenarios S%O, S,, and S; with black fill-in and
Gaussian blur obfuscations (white fill-in match black results).

Amount of obfuscation. We cover three scenarios: every head fully visible (Sq),
only the test head obfuscated (Sz), and every head fully obfuscated (S3). Figure
shows that within events obfuscating either one (Sz) or all (S3) heads is not very
effective, compared to the across events case, where one can see larger drops for
S1 — Sz and S, — S3. Notice that unary performances are identical for S, and S3
in all settings, but using the full system raises the recognition accuracy for S, (since
seeing the other heads allow to rule-out identities for the obfuscated head). We
conclude that within events head obfuscation has only limited effectiveness, across
events only blacking out all heads seems truly effective (S black).

Domain shift. In all scenarios, the recognition accuracy is significantly worse in
the across events case than within events (about ~50% drop in accuracy across all
other dimensions). For a user, it is a better privacy policy to make sure no tagged
heads exist for the same event, than blacking out all his heads in the event.

Qualitative result. In Figure we show qualitative examples of recognition
problems which have only been successfully solved by using a joint inference over
non-tagged images. For example, second row in the “across events” block shows
a face-obfuscated girl in bright pink clothing. Since the girl had always worn
purple clothing in the tagged samples, the recognition system struggles linking
this probe image to any of the tagged samples. However, when non-tagged yet
face-visible instances are provided, the bright pink clothing links the probe and
the non-tagged instances, and faces link the non-tagged and the tagged instances,
eventually breaking the effect of face obfuscation in the probe image.
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Non—tagged (h1ghest match to query)

Tagged samples

Within events

Across events

Figure 4.10: Examples of probe instances that are only successfully identified through a
joint inference over multiple non-tagged samples. We order both tagged and non-tagged
samples according to their predicted match against the probe.
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4.5 DISCUSSION & CONCLUSION

Within the limitation of any study based on public data, we believe the results
presented here are a fresh view on the capabilities of machine learning to enable
person recognition in social media under adversarial condition. From a privacy
perspective, the results presented here should raise concern. We show that, when
using state of the art techniques, blurring a head has limited effect. We also show
that only a handful of tagged heads are enough to enable recognition, even across
different events (different day, clothes, poses, point of view). In the most aggressive
scenario considered (all user heads blacked-out, tagged images from a different
event), the recognition accuracy of our system is 12x higher than chance level. It is
very probable that undisclosed systems similar to the ones described here already
operate online. We believe it is the responsibility of the computer vision community
to quantify, and disseminate the privacy implications of the images users share
online. We conclude by discussing some future challenges and directions on privacy
implications of social visual media.

Lower bound on privacy threat.. The current results focused singularly on the
photo content itself and therefore a lower bound of the privacy implication of posting
such photos. It remains as future work to explore an integrated system that will
also exploit the images” meta-data (timestamp, geolocation, camera identifier, related
user comments, etc.). In the context of the era of “selfie” photos, meta-data can
be as effective as head tags. Younger users also tend to cross-post across multiple
social media, and make a larger use of video (e.g. Vine). Using these data-form will
require developing new techniques.

Training and test data bounds.. The performance of recent techniques of feature
learning and inference are strongly coupled with the amount of available training
data. May person recognition systems (laigman ef al., 2014; Sun et al., 2015; Schroft
et al., |2015) rely on undisclosed training data in the order of millions of training
samples. Similarly, the evaluation of privacy issues in social networks requires access
to sensitive data, which is often not available to the public research community (for
good reasons (Narayanan and Shmatikov, 2010)). The used PIPA dataset (Zhang et al.}
2015b) serves as good proxy, but has its limitations. It is an emerging challenge to
keep representative data in the public domain in order to model privacy implications
of social media and keep up with the rapidly evolving technology that is enabled by
such sources.



Part 11

PRIVACY SOLUTION IN VISUAL DATA

The previous part was about analysis; this part is about aiming to provide
solutions. Simple manipulation schemes such as face blurring are not ef-
fective solutions for privacy issues with state of the art person recognisers.
What would be a better alternative? We propose two novel obfuscation
techniques that are suprior in two aspects: obfuscation performance and
image naturalness.

In Chapter [5] (Sun ef al} [2018), an inpainting-based identity obfuscation
scheme is suggested. It leverages recent developments in generative
models (GANSs, |Goodfellow et al| (2014)) to produce both natural and
effective identity obfuscations.

Chapter [f] (Aditya et al, [2016) is an interlude chapter. We present I-Pic
technology, an image capturing framework that allows bystanders to
obfuscate themselves in photos they appear. It is build on computer
vision and cryptographic tools.

Included in the next part, Chapter [7] (Oh ef al, [2017c) proposes another
obfuscation technique based on adversarial perturbations. This method
results in a much more effective and nearly imperceptible changes on
the input image compared to the obfuscation by inpainting. However, it
requires a good knowledge of the target recogniser. We will discuss this
work in the next part.




NATURAL AND EFFECTIVE OBFUSCATION BY HEAD
INPAINTING

fective against state of the art person recognisers. Nor do they result in

natural-looking images. In this chapter, we propose a novel head inpainting
obfuscation technique. Generating a realistic head inpainting in social media photos
is challenging because subjects appear in diverse activities and head orientations.
We thus split the task into two sub-tasks: (1) facial landmark generation from image
context (e.g. body pose) for seamless hypothesis of sensible head pose, and (2)
facial landmark conditioned head inpainting. We verify that our inpainting method
generates realistic person images, while achieving superior obfuscation performance
against automatic person recognisers.

ﬁ s we have seen in Chapter |4} blacking out or blurring head regions is inef-

The chapter is based on Sun et al|(2018). Dr Qianru Sun and Ligian Ma are the
first authors of the paper (equal contribution). They have designed and trained
the head inpainter module (§5.2). As a co-author, Seong Joon Oh has evaluated
the obfuscation performance of the inpainted heads against our state of the art
recogniser naeil (§5.3.6). Seong Joon Oh has also substantially contributed to the
writing.

5.1 INTRODUCTION

Social media have brought about large-scale sharing of personal photos. While
providing great user convenience, such a dissemination can pose privacy threats on
users. It is essential to grant users an option to obfuscate themselves out of these
photos. A good obfuscation method for social media photos should satisfy two
criteria: naturalness and effectiveness. For example, putting a large black box over a
person may be an effective obfuscation method, but would not be pleasant enough
to share with friends.

Previous work on visual content obfuscation can be grouped into two categories:
(1) target-specific and (2) target-generic. Some papers have proposed target-specific
obfuscations, ones that are specialized against specific target machine systems,
typically relying on adversarial examples (Oh et al., 2017c; Sharif ef al., 2016). They
yield nearly perfect identity protection with imperceptible changes on the input, but
such a performance is guaranteed only against the targeted ones.

On the other hand, target-generic obfuscations change the actual appearance
of the person such that generic classifier or even humans misjudge the identity.
In its most crude form, commonly used obfuscation methods like black eye bar,

68
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Original Blurred ~ Ours (inpainted)

Identity o  Identity o  Identity x

Figure 5.1: Our obfuscation method based on head inpainting generates much more natural
patterns than common techniques like blurring, but still results in a more effective identity
obfuscation against a recogniser.

face blurring, and blacking out head are examples of this type. These common
patterns, unfortunately, are neither visually pleasant nor effective against machine
systems (Oh et al., |2016). This work proposes a head inpainting based approach to the
target-generic identity obfuscation problem.

Generating realistic and seamless head inpainting on social media photos is hard.
Subjects appear in diverse events and activities, resulting in varied backgrounds and
head poses. Meanwhile, current generative face models are limited to frontal
or strictly aligned faces (Lu ef al., 20170).

We tackle the problem by factoring it into two stages. First, depending on
the input, we detect or generate facial landmarks. In particular, when we have
access to the original image, we detect facial landmarks. However, to keep our
approach versatile, we also address the more challenging problem of generating
facial landmarks from images that have been already obfuscated e.g. by blacking
or blurring out the head region (called blackhead and blurhead in the remainder of
the chapter, respectively). Then, conditioned on the face landmarks, we inpaint a
realistic head that blends naturally into the context. We show that the resulting
head-inpainted images mislead machine recognisers. Note that our method supports
cases where the original face image is not available; existing head-obfuscated images
on the web can be “upgraded” to our privacy enhanced head inpainting. Key
contributions of the chapter are:

e Novel natural, effective obfuscation methods based on head inpainting.

e Novel landmark guided image generation approach for both head visible and
blackhead cases in challenging social media photos.

e Novel facial landmark generator that effectively hypothesise realistic facial
structures and poses given context in the scenario of blackhead.
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5.1.1 Prior work on image inpainting

Image inpainting. In our work, we propose generative adversarial network (GAN)
based method to complete head regions based on the context. [Yeh et al.| (2016)
and Pathak et al.| (2016) have also used GANs to generate missing visual contents,
conditioning on the context. However, both approaches assume appearance and
texture similarity between the missing part and the context. Our approach can
generate head inpainting solely from body and scene context, without resorting to
any information from the head region. In particular, unlike method in Yeh et al.
(2016) which has been applied to aligned face images, our approach can be applied
to challenging social media setup in which people appear with diverse poses and
backgrounds by taking a two-stage approach.

Structure guided image generation. For generating realistic head inpainting that
naturally blends into the given body pose and scene context, we have conditioned
the inpainting on face landmarks. Some prior work has been devoted to the structure
guided image generation; such a guidance has proved very helpful for generating
images with complex inner structures (e.g. persons, (Ma et al., |2017; Di et al.| |2017;
Walker et al., 2017; X and A, 2016} |[Ehsani et al., 2018} [Zhang et al.| [2017)). Ma et al.
(2017) embed an arbitrary pose into a reference person image, and then refine the
output by decoding more appearance details in the second stage. Di et al.|(2017) use
a similar structure embedding method to generate face image with detected facial
landmarks on well-aligned face dataset. Walker et al.| (2017) modelled the possible
future movements of humans in the pose space, and then used the future poses
generated as conditional information to a GAN to predict the future frames of the
video. X and Al (2016) propose to first generate a 3D surface normal map from a
Gaussian signal and then synthesise images by painting style information on the
map. Ehsani et al.| (2018) solve the problem of object occlusion by first predicting
the contour of invisible part then generate the appearance inside this contour. The
second stage replies on the close visibility same as Context Encoder (Pathak et al.,
2016). |Cole et al.| (2017) recently introduce an approach face warping manipulation
using landmark control on frontal face images. Unlike the above landmark work,
our approach can not only generate new landmarks from body context, but also
handle the large pose variances in Flickr images.

5.2 HEAD INPAINTING FRAMEWORK

We propose a context-driven head inpainting approach. We focus on social media
photos which are challenging due to complex poses and scenarios. To learn an
effective head generator from the data, we need strong guidance for which we use
facial landmarks. Therefore, we factor the head inpainting task into two stages:
landmark detection & generation and head inpainting conditioned on body context
and landmarks.
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Figure 5.2: Our two-stage head inpainting framework. The input of stage-I is either the
original or the blackhead image. The output is the inpainted image.

Figure |5.2| describes the global view of our two-stage approach. It takes either
original (unobfuscated), blackhead, or blurhead image. We use blackhead image as
the default example for obfuscated inputs. Given an original input, stage-I detects
landmarks. However, when given an obfuscated input, stage-I generates landmarks.
Stage-II takes an obfuscated image and the stage-I landmarks as input, and outputs
the head inpainting.

5.2.1 Stage-I: landmark

The overview of stage-I is shown in Figure For detecting landmarks on the
original image, we use the detector in the python dlib toolbox (Kazemi and Sullivan,
2014)). The output are 68 facial keypoints. For generating the landmarks on obfus-
cated images, we use a landmark generator network (G ) trained adversarially with
a discriminator (Dy).

Landmark generator (Gr). Gr has an autoencoder structure, and it contains two
main parts: encoder and decoder. The encoder compresses the body/scene context
of the blackhead image to a latent variable in the bottleneck layer which is then
decoded to landmark coordinates by the decoder.

Encoder of G;. The inputs to the encoder are the obfuscated image I and the
head mask M corresponding to the head bounding box. As an output encoder
yields a 32-dimensional latent vector z;. Encoder has an architecture consisting of 6
convolutional residual blocks.

Decoder of G;. Taking z; as input, the decoder generates 2 x 68-dimensional
landmark coordinates L. The decoder contains 6 fully connected residual blocks.
Training the encoder and decoder from scratch is challenging due to diverse body
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Figure 5.3: Stage-I: Landmark detection and generation. The detector takes the original
image I as input, and the generator takes the obfuscated image I and the head mask M as
inputs.

pose and background clutter in social media photos. Therefore, we consider first
training a strong decoder and training the encoder from scratch with respect to the
trained (and fixed) decoder. Such a procedure is inspired by the previous work on
knowledge transfer between deep models trained on different tasks (Gupta et al.|
2016; Russakovsky et al., 2015).

We consider training the decoder in three possible ways: (1) from scratch, (2)
autoencoder, and (3) using the Point Distribution Model (PDM, (Cootes et al., |1995)).

AE decoder (AEDec). The autoencoder reconstructs face landmarks using an
encoder and a decoder through a bottleneck layer. Both are fully connected layers
with ReLU activations. L, loss is used as the loss function.

PDM decoder (PDMDec). We consider using the Point Distribution Model (PDM)
to better represent the 3D pose variations (Cootes et al., |1995; |Zadeh et al., 2017). We
train the PDM over the detected landmarks on PIPA train set images (Chapter [3). Our
landmark points are parametrised using p = [s, R, t,q] denoting scale, orientation,
translation and non-rigid transformations, respectively. The PDM decoder has the
following formulation:

L =5sR(Lsp +Pq) +t (5.1)

where L3p denotes the mean value of the 3D landmarks mapped from our 2D data,
and @ the 3 x n principal component matrix. The output L has n + 6 parameters. In
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the experiments we use n = 34 principal components.

Loss functions of G, and D;. We use the L, loss as well as an adversarial loss for
optimisation. Landmarks trained only with the L, loss show noisy alignments; we
found the adversarial loss to be useful at remedying this. We adopt the DCGAN
discriminator (Radford et all 2015). The landmark coordinates are converted to
channels to input to the convolutional layers, where the conversion process is
differentiable. We have also tried a fully-connected discriminator, instead of the
DCGAN discriminator, but the difference was marginal.

For training D;, any landmark generated by G|, are labelled fake, while we use
the detected landmarks as the real examples. Exact losses are formulated as follows:

[logDL }—l—

’C ]EXNPdt (X)

Expya(x) [ 108 (1 = DL(GL(X)))], (5.2)
Lc, =E X pyora(X) [log D; GL(X)))H—

ALIIGL(X) — Lal|2, (53)

where X is the concatenation of the obfuscated image I (3 channels) and the head
mask M (1 channel). L; is the detected landmark coordinates. A; > 0 is a scalar
weight.

5.2.2 Stage-II: inpainting

Stage-II generates the head inpainting based on the landmarks from Stage-I and the
blackhead or blurhead image. Figure [5.4/shows an overview; the head generator Gy
is trained adversarially with a head discriminator Dp.

Input. The 68-channel landmark heatmaps L; from Stage-I are concatenated with
the blackhead (or blurhead) image I as an input to the generator Gy. The landmark
heatmaps provide the missing skeleton information in the obfuscated image.

We treat the blackhead image as fake and the original image as real the head
discriminator Dy. Note that we use the whole body image instead of just head
regions to provide sufficient information about the body and background to generate
a realistic inpainting.

Head generator (Gy) and discriminator (Dy). The head generator Gy has a con-
volutional autoencoder with skip connections between encoder and decoder, inspired
by the U-Net (Ronneberger et al., 2015). The skip connections propagate image infor-
mation directly from input to output, improving the fine-grained details in the output.
The architecture of the head discriminator Dy is the DCGAN discriminator (Radford
et al., 2015).
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Figure 5.4: Stage-II: Head generation. The input are blackhead image I and landmark chan-
nels L;. The generator has an autoencoder structure which encodes the input to a bottleneck
then decodes to a fake image. The discriminator is the same as in DCGAN (Radford et al.,
2015).

Loss function. We use the L1 and the adversarial losses to optimise Gy and Dy:

Ly =By~ pyu(v) [10g Dr(Y)]+

By piasa (¥) [log (1 — Du(Gu(Y)))], (5-4)
L6y =Eymp(v) [log (Dy(Gu(Y)))]+

AulGu(Y) — L1, (5.5)

where Y is the concatenation of the obfuscated image I and the landmark heatmaps
Ly. I. is the original image. Ay > 0 is a scalar weight.

53 EXPERIMENTS

We evaluate the presented two-stage head inpainting pipeline on a social media
dataset in terms of inpainting appearance and pose plausibility, as well as the
identity obfuscation performance against machine recognisers. We analyse the
impact of different input types (original, blackhead, and blurhead), different choices
of landmark decoders, and the losses for the landmark generators (§5.2.1).

5.3.1 Dataset

We use the PIPA dataset (§3.2) (Zhang ef al), [2015b)), the largest social media dataset
to date with people in diverse events, activities, and poses. It is a suitable for
evaluating our methods under the social media obfuscation scenario.

In order to maximise the amount of training data, we have introduced a new
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partitioning of the images in PIPA. We partition the 2356 identities into train+ set
(2099 identities, 46 576 instances) and test+ set (257 identities, 5175 instances). We
have further pruned both partitions with heavy profile or back-view heads, resulting
in 34 383 instances in train+ and 1909 in test+. The train+ set is used for training
landmark and head generators; the test+ set is the evaluation set.

Our landmark and inpainting generators take a fixed-size image (256 x 256 x 3)
as input. For every training and testing sample, we prepare the input by first
obtaining the body crop, following the procedure in

5.3.2 Scenarios and inputs

Our approach introduced in is versatile and supports scenarios where the user
(who wants to obfuscate an image) has access to the original image or only has
access to already head-obfuscated images (e.g. blacked out). The necessity for this
versatility is that social network service providers may aim to upgrade the privacy
level by obfuscating images through blurring or blacking-out heads, even though it
has been shown to be quite ineffective (Chapter [4).

In order to simulate multiple scenarios, we consider three types of inputs to
our obfuscator: original, blackhead, or blurhead, where the latter two are common
obfuscation techniques these days. We prepare blackhead and blurhead inputs
following the procedure in Chapter |4l PIPA head box annotations indicate the head
region to be obfuscated, which is either filled in with black pixels or smoothed with
a Gaussian blur kernel specified in Chapter

5.3.3 Quality of landmarks

Landmark detection or generation is the first stage of our inpainting pipeline. The
landmarks should provide a plausible guess of the head pose and facial structure to
guide a natural head inpainting in the next stage. In this section, we treat the detected
landmarks as a good proxy to ground truth, and evaluate the landmark generation
quality in terms of the deviation from the detected landmark. We measure the
deviation via the mean of the L, distances between detected and generated landmark
locations. The L, distances are normalised by the inter-ocular distances (Kazemi and
Sullivan, 2014).

Note that the end goal of the landmark generator is not to replicate the detector,
but only to provide a rough guidance for generating natural heads. In particular,
small errors produced by the generator can even benefit us by inducing identity shift
caused by a different facial structure. Hence, we only consider if the L, distance of
the landmarks is within an acceptable range.

We investigate three axes of factors for our landmark generator. (1) Input type:
original, blackhead, or blurhead. (2) Loss function: L, or L, + D; (adversarial loss).
(3) Decoder type: trained from scratch (Scratch), autoencoder pretrained (AEDec),
or Point Distribution Model pretrained (PDMDec). A summary of the quantitative



4

=

T

O

=

o

m Obfuscation method Evaluation

x Landmark Landmark Inpainting GoogleNet Acc. (%) AlexNet Acc. (%)
AVn Input Loss Decoder L, Norm. L, SSIM  mask-SSIM h h+b hatt h h+b hatt
m Original No head inpainting / / 1.000 1.000 85.6 88.3 72.2 81.6 853 66.0
o Original NN head copy-paste / / 0.872 0.195 1.2 7.1 67.5 1.4 6.1 46.2
2 Blur No head inpainting / / 0.931 0.396 52.2  71.6 3.2 52.0 67.0 20.6
pNu Blur Detected landmarks 0.00 0.000 0.962 0.679 43.7 517 708 49.0 489 37.2
= Blur L, Scratch 6.32 0.230 0.954 0.578 36.2 484  66.8 44.6 44.6 3677
Z Blur Ly+D;  Scratch 4.85 0.182 0.955 0.586 38.0 484  66.6 44.9 451 389
M Blur L,+D; AEDec 4.77 0.180 0.951 0.585 37.5 48.0 66.1 43.9 45.0 37.5
Z Blur L,+D; PDMDec 4.50 0.168 0.953 0.593 37.9 49.1 66.7 45.1 45.6 38.0
ADn Black No head inpainting / / 0.000 0.000 2.1 67.0 14.0 21 632 17

K= Black Detected landmarks 0.00 0.000 0.902 0.405 10.1  21.4  70.8 11.4 205 46.3
H. Black NN landmarks 2.48 0.088 0.896 0.332 7.9 20.4 713 10.1 19.0 46.0
ok Black Ly Scratch 13.6 0.501 0.884 0.186 58 174  73.6 75 16.3  49.0
m Black Ly+D;  Scratch 13.0 0.477 0.882 0.191 58 172 71.4 7.5 16.4  47.4
3 Black L,+Dr  AEDec 11.7 0.431 0.885 0.199 56 17.4 725 7.5 17.0 48.7
m Black L,+D; PDMDec 12.3 0.453 0.885 0.196 56 17.4 710 7.4 16.6  51.2
S,

Table 5.1: Evaluation of proposed obfuscation methods. We quantify the quality of the proposed obfuscation method against landmark
quality, inpainting quality, as well as obfuscation effectiveness (person recognition rates). The head inpainter is always the Gy + Dpg.
We consider both GoogleNet-based and AlexNet-based recognisers. h and b indicate head- and body-cues for recognition. “h att.”
refers to the attention on the head region for h +b.

76
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results is given in Table [5.1] (“Landmark” column).

Input type. We compare the L, distance between generated and detected land-
marks for three types of inputs: original, blackhead, or blurhead. For original
images, we use detected landmarks, which gives by definition a zero L, distance.
For reference, we measure the performance of our best landmark generator (will be
discussed later) on the original images: 2.41 L, distance. This gives a lower bound
(best case) on the L, distance for the generated landmark on obfuscated inputs.

We observe from Table 5.1/ that blurhead inputs result in a better replication of the
detected landmarks: 6.32 versus 13.6 for “Scratch” decoder with the L, loss. Blurhead
images indeed contain structural information about the face keypoints. However,
as we will see in the qualitative results (Figure [5.5), both result in pose-consistent
landmark structures and natural heads.

Loss function. We compare two choices of the loss function: L, and L, 4 Dr.
Given a blackhead input with the “Scratch” decoder, using only L, loss yields 13.6
distance from the detected landmarks. Adding the adversarial loss D, improves
the distance to 13.0. However, for blurhead input, the improvement due to the
adversarial loss is much greater (from 6.32 to 4.85). It is thus advisable to use the
adversarial loss for a better replication of the original landmarks.

Decoder. We consider three choices of the decoder in the generator Gr: learning
from scratch (Scratch), pre-trained with autoencoder (AEDec), and pre-trained with
PDM (PDMDec). For both blurhead or blackhead cases, conditioning the decoder
with either AEDec or PDMDec helps generating landmarks closer to the detected
ones: for blackhead input, L, distance metric improved from 13.0 to 11.7 and 12.3,
respectively for AEDec and PDMDec.

5.3.4 Head inpainting quality

We evaluate the quality of generated heads. As a proxy to the naturalness of
the output, we use a perceptual metric (SSIM, (Wang et al., 2004)) to measure the
perceptual distance to the original images. For measuring the head region quality
only, we use the mask-SSIM (Ma et al., 2017).

As a baseline, we consider the nearest neighbour method: search for the nearest
neighbour head in the training data based on the L, distance of the detected land-
marks, and replace the head patch. This ignores the blending with surroundings,
resulting in unpleasant output and a low SSIM score 0.872.

We note that the blackhead based head inpainting results in significantly lower
SSIM measures than the blurhead based versions: 0.902 versus 0.962 SSIM and 0.679
versus 0.405 mask-SSIM for the detected landmarks case.
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5.3.5 Qualitative examples

While quantitative measures are useful for summarising the trend, they can be
misleading especially when measuring quantities that are hard to measure - e.g.
naturalness. We present qualitative examples of the generated landmarks and head
inpainting to show that our pipeline generates high-quality head images that blend
naturally into the background and body pose. See Figure for the qualitative
examples.

Detected versus generated landmarks. We compare the quality of detected and
generated landmarks and the corresponding inpainted heads in Figure The
detected landmarks closely follow the original landmarks, while the generated
landmarks, especially for blackhead cases, result in landmarks (and thus inpainting)
with different head poses, explaining the greater L, distances shown by blackhead
landmarks. However, it is important to note that the generated landmarks are still
plausible with respect to the body pose and activity. Comparing the head inpainting,
we observe again better naturalness in the blurhead-based inpainting than in the
blackhead-based ones. However, the final output in all the cases are not implausible.

Blackhead versus blurhead. Columns 2,4 and columns 3,5 in Figure show
respective examples for blurhead- and blackhead-based landmarks and the corre-
sponding inpainted heads. Involving blurred head images during landmark and
head generation results in inpainting that resembles the original head, especially the
head pose and hair colour/style (e.g. ID 690). On the other hand, not providing any
information in the head region results in a significantly different, yet plausible, head
images. In particular, when landmarks are generated, the resulting head images are
drastically different from the original one.

5.3.6  Evaluation of obfuscation performance

While on the one hand, a good obfuscation scheme should produce plausible head
replacement, it is also crucial for the output to disable the target recognition system
from correct predictions. In this section, we quantify the obfuscation success rate
against the person recogniser models (naeil) from Chapter 3} Unlike typical face
recognisers, naeil uses body cues for recognition as well, resulting in ineffectiveness
of blurring or blacking out heads (Chapter [4). In this work, we show that head
replacement is a more effective obfuscation scheme than simple head blurring or
blacking out. In our work, we use both AlexNet- and GoogleNet-based naeil with
features from either head (h) or head and body together (h +b).

Head inpainting provides good protection. Table 5.1/ shows the obfuscation per-
formance (columns h and h +b). Under no obfuscation, GoogleNet h +b recognition
performance is 88.3%. Black/blurring baselines give 67.0%, and 71.6%, respectively —
confirming the observation in Chapter [4] that these are ineffective. On the other hand,
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Figure 5.5: Visualization results. We show the head inpainting results using detected and
generated landmarks (from the PDMDec model). Top rows present key quantitative numbers
for reference. Landmark generation error (distance to the detected one) is also given for each

single instance.
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our head inpainting methods result in < 50% (blurhead input, generated landmarks)
and < 18% (blackhead input, generated landmarks) recognition rates for GoogleNet
h +b. They are more effective protection techniques than blacking or blurring head
regions.

Cues used. We compare the recognition rates between h and h +b. When the
recogniser relies solely on head cues, while the head has been inpainted, then the
recognition rates are lower than the h +b counterparts. For example, the last row
method against h recogniser gives 5.6% versus 17.4% for h +b (GoogleNet), nearly
reaching the chance level recognition rate (2.1%).

Input type. While having access to blurhead images help generating more plausi-
ble landmarks as well as visually natural head inpainting, they may leak identity
information. We compare the recognition rates when blurhead or blackhead inputs
are used. Our head inpainting based on the blackhead result in 17% ~ 18% accuracy
(GoogleNet), while blurhead based results are in the range 48% ~ 50% accuracy
(GoogleNet). This confirms that indeed there exists a trade-off between plausibility
of generated heads and the obfuscation performance.

Detected vs generated landmarks. While identity information may leak through
blurred heads, it may also leak through the landmark detections (face shape). On the
other hand, generated landmarks enjoy the possibility to come up with an equally
plausible landmark hypothesis but with different face shapes. For the blackhead
input, the detected landmarks indeed result in higher recognition rate (21.4%) than
generated ones (e.g. 17.4%, last row), with similar trend for the blurhead cases
(GoogleNet).

Rationale for good obfuscation — recogniser attention. We have verified that our
head obfuscation scheme exhibits better performance than commonly used ones like
blacking and blurring. We give a rationale for this phenomenon by means of the
recogniser attention. Given an input, recogniser attention refers to the regions in the
image where the recogniser extracts cues from. We hypothesise that while blacked
or blurred heads induce recogniser attention on non-head regions, our inpainted
heads attract attention on the heads due to the realism of the inpainted heads.

For the recogniser attention we have used the gradient-based mechanism from
Simonyan et al.|(2014). We first compute the gradient of the neural network prediction
with respect to the input image; take maximal absolute values along the RGB channel;
and then smooth with Gaussian blurring. To quantify the chance of attending on the
head region, we have computed the “head contribution” score by estimating

head contrib. = IP[max attention is inside head region]

over the test samples.
See the “h con.” columns of Table |5.1| for the results. We observe that while the
original image has 72.2% chance of inducing attention on the head region, blacked
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or blurred heads are much less likely to attract the recognisers” attention (14.0%
and 3.2%, respectively). This explains why h +Db is still performing well: it simply
ignores the confusing head cue. On the other hand, our inpainted heads still attract
the recognisers” attention as much as non-obfuscated head images do (71.0% versus
72.2%). This indicates that the realism of inpainted heads encourages the recogniser
to rely its decision on the inpainted head, effectively leading to its misjudgement.

On the ethical issue of predicting other identities. Ethical problems might entail
if the obfuscation mislead the recogniser into confidently predicting other identities
in the gallery set. We have measured the SVM prediction confidence (1-vs-all SVM)
on the original as well as obfuscated images to ensure that the obfuscation results in
a uniformly low prediction scores.

On the original images, the argmax identity is predicted with SVM score 0.63 on
average. On the other hand, our inpainting obfuscation conditioned on blurhead
results in -0.29 average SVM score for the argmax prediction, while conditioning on
blackhead results in much lower maximal SVM score of -0.52. This confirms that the
inpainting based obfuscation does not shift the identity prediction to another person
with high confidence. If one filters out predictions with low confidence scores, a
common practice in application, then the head-inpainted images will most likely be
filtered out as “no confident prediction”.

Sensitivity to recognition systems. We show the impact of the recognition system
on the obfuscation performance. Our obfuscation approach is target-generic: it is not
generated with respect to a particular recognition system and is expected to work
against a generic recogniser. To show this, we present a comparison of obfuscation
performance against GoogleNet and AlexNet based recognisers. Note that they
result in very different recognition systems in terms of the depth and the number of
parameters in the architecture.

In Table|5.1, we reach the same conclusion regarding the efficacy of our inpainting-
based obfuscation. Our inpainting method “L, 4+ D; - PDMDec” decreases the
recognition rate of AlexNet-based h +b from 67.0% to 45.6% (blurheads) and from
63.2% to 16.6% (blackheads). We again observe that the contribution from head
region increases as our method inpaints realistic head images. Through results on
two very different recognisers, we confirm that our method is indeed target-generic.

5.4 CONCLUSION

To address the problem of obfuscating identities in social media photos, we have
presented a two-stage head inpainting method. Although the social media setup is
more challenging than previous face-generation setups (diverse head, body poses,
and backgrounds), our method has proved to generate natural obfuscation patterns
that effectively confuses an automatic person recogniser. In particular, our method
is target-generic: the obfuscation is designed to work against any recogniser, be it
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human or machine. Also, the method does not require access to the original image,
enabling an “upgrade” scheme for existing weak obfuscation patterns (e.g. head
blurring or blacking out).



I-PIC: A PLATFORM FOR PRIVACY-COMPLIANT
IMAGE CAPTURE

His chapter is an interlude chapter that introduces an orthogonal technology
where obfuscation methods could be plugged in to enhance user experience.
We present I-Pic, a trusted photo-capturing software platform that allows
bystanders in photographs to obfuscate themselves according to their privacy prefer-
ences. In I-Pic, users choose a level of privacy (e.g., image capture allowed or not)
based upon social context (e.g., out in public vs. with friends vs. at workplace). Pri-
vacy choices of nearby users are advertised via short-range radio, and I-Pic-compliant
capture platforms generate edited media to conform to privacy choices of image
subjects.

I-Pic uses secure multiparty computation to ensure that users’ visual features
and privacy choices are not revealed publicly, regardless of whether they are the
subjects of an image capture. Just as importantly, I-Pic preserves the ease-of-use and
spontaneous nature of capture and sharing between trusted users. Our evaluation
of I-Pic shows that a practical, energy-efficient system that conforms to the privacy
choices of many users within a scene can be built and deployed using current
hardware.

The chapter is based on Aditya et al. (2016). Dr Paarijaat Aditya was the first
author of the paper. He has developed the overall I-Pic architecture and written the
major part of the manuscript. As a co-author, Seong Joon Oh has participated in the
computation of image features required in the I-Pic pipeline (§6.4.1).

6.1 INTRODUCTION

The spontaneity afforded by mobile devices with cameras have led to new creative
outlets that continue to have broad and lasting social impact. As every facet of event
reporting, ranging from personal journals to war correspondence, is transformed,
however, there is a growing unease about the dilution of privacy that inevitably
accompanies digital capture in public, and in some cases, private fora. This work
describes I-Pic, a platform for policy-compliant image capture, whereby captured
images are automatically edited according to the privacy choices of individuals
photographed. I-Pic’s design was motivated by a user-study, described in Section
which found that:

Capture policies should be individualised. Privacy concerns vary between indi-
viduals. Even in the same situation, different subjects have different preferences. This

83
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finding motivated I-Pic to preclude options that impose blanket or venue specific
policies (Roesner et al| 2014; Raval et al., 2016)|E}

Policies should be situational. Study subjects stated consent to be photographed
at certain times, places, events, or by certain photographers, but would make different
choices in other circumstances. This motivated I-Pic to not impose a static policy per
individual (Bo et al., |2014), and to avoid solutions that require prior arrangements
between specific subjects and photographers (whitelisting or blacklisting).

Compliance by courtesy is sufficient. ~An overwhelming majority of our subjects
stated that they would choose to comply with the privacy preferences of friends
and strangers, especially if doing so didn’t interfere with the spontaneity of image
capture. I-Pic provides such a platform but is not meant to stop determined users
from taking pictures against the wishes of others; indeed, these users could simply
use a non-I-Pic compliant device.

Consider a strawman system where mobile devices broadcast their owner’s
privacy preferences via Bluetooth. Without additional information, a camera would
have to edit the image according to the most restrictive policy received, even if the
corresponding person does not appear in the image at all. To be practical, polices
must be accompanied by a visual signature so that a camera can associate a person
captured in an image with a policy.

However, Bluetooth transmissions can cross walls, which would create a serious
privacy problem if visual signatures were broadcast in the clear: Next-door neigh-
bours could identify persons whom they have never seen or photographed. To avoid
this problem, I-Pic relies on secure multiparty computation (MPC) to ensure that a
capture device learns only a person’s privacy choice, and only if that person was
captured; otherwise, neither side learns anything.

User studies and privacy requirements inform the architectural components
of I-Pic: Users advertise their presence over BLE (Bluetooth Low Energy): these
broadcasts are received by I-Pic-compliant capture platforms. When an image is
taken, the platform determines if any of the captured people match the visual
signatures of nearby users using MPC. If there is a match, the platform learns the
policy and edits the image accordingly, e.g., by occluding the person’s face. To
maintain the responsiveness of image capture, unedited images are shown to the
photographer immediately, but cannot be shared until the image is processed in the
background.

After presenting the results of our online survey in we describe the main

technical design of I-Pic in along with prior work in face recognition and
cryptography we build on. Next, we presents results of an experimental evaluation

in We conclude in

5Lost Lake Cafe, Seattle restaurant, kicks out patron for wearing Google Glass, https://www.
huffingtonpost.com/2013/11/27/lost-lake-cafe-google-glass_n_4350039.html
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6.1.1 Related work

Privacy in the presence of recording devices. Hoyle et al.|(2014) seek to under-
stand users’ concerns about continuous recording using wearable cameras, by study-
ing a large user population of avid life-loggers. Denning et al. (2014) conduct a large
scale user survey to understand bystanders” privacy concerns in public places like
coffee shops and possible ways to mitigate them. Our online survey additionally
shows that privacy concerns are very personal and dependent on the situation.

Roesner et al.| (2014) present a system that shares a venue’s privacy preferences
with wearable devices in an unobtrusive way. The idea is to convey privacy expecta-
tions associated with places like gyms and washrooms with broadcast messages or
visual signs. The wearable devices in the venue pick up these messages or visual
cues and obey the specified privacy protocol. Unlike I-Pic, this system has no way to
associate a privacy policy with an object or person that appears in an audiovisual
recording.

Visual markers to convey privacy policies to nearby wearable recording devices
are also used in [Raval et al.|(2016). Jung and Philipose| (2014) explore the expression
of bystanders’ privacy intent using gestures. Unlike I-Pic, these approaches require
either physical tagging of objects and locations, or explicit user actions (i.e., gestures)
to convey privacy choices. Moreover, I-Pic enables user-defined, personalised,
context-dependent privacy choices.

In the work by Bo et al.| (2014), individuals wear clothes with a printed barcode,
which encodes the wearer’s public key. When an image of an individual showing
face and barcode is uploaded to an image server, the server garbles the face pixels,
using the public key encoded in the barcode. Only the individual who owns the
associated private key can later extract the actual face image. I-Pic, on the other hand,
does not require its users to wear any visual markers, it does not require users to
trust an image server with their private images, and can support context-dependent
privacy policies.

In D’Antoni et al.| (2013); Jana et al. (2013bja), the authors address privacy concerns
in untrusted perceptual and augmented reality applications, by partially processing
media stream within the trusted platform, thus denying apps access to the raw
media streams. An augmented reality app, for instance, might be provided only
with the position of relevant objects within a video stream sufficient for the app to
overlay its own information, but not the full video. I-Pic also relies on the trusted
platform, but focuses on enforcing individual’s privacy policies regarding image
capture by nearby devices.

Zero-Effort Payments (Smowton et al., 2014), similar to I-Pic, uses face recognition
and proximate device detection using BLE to identify a user in an image, but their
goal instead is to create a mobile payment system. Unlike I-Pic, which is tuned to
identify even small faces in diverse range of photographic contexts, their system
is meant to visually identify a user, with human assistance, when she is in close
proximity to the cashier. Furthermore, they acknowledge concerns of user privacy in
such a monitored environment and propose the use of signage indicating that a face
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recognition system is deployed in the area. Such a privacy solution is only viable in
select scenarios, and lacks the flexibility provided by I-Pic.

Visual fingerprints. Performance on human identification and re-identification
tasks has greatly improved over the last decade. Most notably, face recognition on
large databases in realistic settings is even approaching human performance (Taig+
man et al., 2014). Besides the identity, a person can also be described and identified
by a set of attributes (Bourdev ef al., [2011; | Zhang et al., 2014). I-Pic uses a state of the
art face recognition algorithm based on neural networks, but can benefit from using
semantic attributes describing a face, including features from other body parts in
addition to the face.

Cryptographic primitives. There is complementary work to protect the privacy
of biometric data (Lingli and Jianghuang), 2010; [Wang and Plataniotis, 2010) by
projecting or encrypting representations. It is possible that these approaches could
be used in I-Pic to further reduce trust in the Cloud service by obscuring users’
visual signatures.

InnerCircle (Hallgren et al 2015) describes a secure multi-party protocol for
location privacy, which computes in a single round whether the distance between
two encrypted coordinates is within some radius r. This computation is similar to
I-Pic’s secure dot product and thresholding computation. However, the protocol’s
efficiency degrades exponentially with the number of bits of precision of the distance.
Since our threshold comparison involves dot products of large feature vectors, we
use garbled circuits for the threshold comparison instead.

6.2 ONLINE SURVEY

I-Pic’s design was informed by an online survey designed to provide a broader
perspective on personal expectations and desires for privacy. The survey, and
experiments with I-Pic, were conducted with user consent under an IRB approval
from the University of Maryland. The survey included an optional section on user
demographic, including gender, age, and ethnicity.

We publicised the survey on mailing lists and online social networks on November
10th, 2015. The survey is available online at http://goo.gl/forms/6tGGoYmFFG, and
the results here present a snapshot of all responses collected on December 4th, 2015.
As of this date, there were 227 responses, with 208 responders also answering the
demographic questions. Respondents represented 32 countries. The age distribution
is shown in Table

Questions in the survey envisioned different venues and activities and presented
participants with different privacy options: (a) agree to be captured in any pho-
tograph, (b) agree, but would like a copy of the image, (c) please obscure my
appearance in any image, (d) can decide my preference only after viewing the photo,
or (e) do not wish to be captured in any photograph. Participants were asked
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Figure 6.1: Variety in privacy preferences under similar physical, social and image
usage scenarios

to choose the privacy action they considered most appropriate for each scenario
(Figure 6.1(a)). To help visualise a common scenario and to provide perspective for
others, participants were shown an image of people on a platform waiting to board
a train, some with faces clearly visible. The survey also gauged individual’s level of
comfort depending on their relationship to the photographer or the other subjects in
the photograph (Figure 6.1{b)). Finally, we asked how potential uses of an image
influence responders’ level of comfort with being captured (Figure [6.1{c)).

In Figure [6.1(a), the x-axis is sorted by the percentage of responders who chose
the most private action of "do not wish to be captured", increasing from left to right.
Results show a mix of privacy concerns for different scenarios. In Figures [6.1{(b)
and [6.1{c), the x-axis is sorted by the percentage of responders who were less
comfortable with photography, increasing from left to right. Again, for these social
situations or image usage scenarios, the privacy concerns of responders is not
uniform. These results demonstrate the necessity of diversity in privacy policy, and argue
against venue based policies (Roesner et al., 2014; Raval et al.,|2014).




88 CHAPTER 6. I-PIC IMAGE CAPTURE FRAMEWORK

Age group Fraction of participants
less than 20 years 9.2%
20 - 30 years 56.6%
30 - 40 years 25.1%
40 - 50 4.8%
more than 50 years 3.9%
Unspecified 0.4%

Table 6.1: Age groups of survey participants

Number of privacy preferences Fraction of participants
1 12.7%
2 27.8%
3 32.2%
4 19.4%
5 7.9%

Table 6.2: Variety in privacy preferences for same person

Unsurprisingly, privacy preferences are not unanimous for any scenario; there
are, however, trends. Responders tend to be more restrictive in venues such as
beaches, gyms and hospitals (in Figure [6.1(a)); with strangers in a social situation (in
Figure [6.1(b)); and when images can potentially be shared online (in Figure [6.1]c)).
These trends can be useful as they suggest default policies appropriate for different
situations.

Table shows the percentage of responders versus the number of different
privacy choices for each responder. The table shows that individuals prefer different
privacy choices depending on the given situation. This finding illustrates the utility
of context-specific policies, and demonstrates the shortcomings of individualised hard-coded
policies, e.g., bar-codes on clothing (Bo et al., 2014).

The survey asked whether responders cared about by-stander privacy when re-
spondents themselves capture images. An overwhelming majority (96.47%) answered
in the affirmative, motivating a system such as I-Pic. About a quarter (28%) agreed if
the overhead of the solution was low; another quarter (26%) agreed if the aesthetics
of images remain good.

Respondent Selection Bias. The survey was voluntary and anonymous. The URL
for the survey was advertised on mailing lists and social networks used by the
authors and their friends, leading to a bias in how respondents learned about the
survey. However, we believe that the results presented here still have merit as they
represent views across different age groups and ethnicities. The results overwhelm-
ingly support the thesis that users often desire privacy from digital capture in social
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situations, and further that “one-size-fits-all” solutions to image privacy are not
effective. Moreover, as photographers, the responders overwhelmingly consider by-
stander privacy to be important. These observations inform I-Pic’s design, described
next.

6.3 I1-PIC ARCHITECTURE

Figure shows I-Pic’s major components and their interaction. The two types
of principals in the system are bystanders or users who may be photographed, and
photographers who capture images. Both are assumed to operate an I-Pic-compliant
platform. Associated with each principal is a cloud-based agent to which the principals
offload compute-intensive tasks. The photographer is associated with a Capture Agent;
each bystander is associated with a Bystander Agent. We note that agents are logical
constructs; functions provided by the agent can be implemented within mobile
devices should I-Pic be used without wide-area connectivity.

[-Pic requires a one-time Association protocol between users and their agent. Users
periodically broadcast their presence using BLE. Once an image is captured, the Face
Detection, Feature Extraction, and Secure Matching protocols are executed. If a user is
identified, the capture platform uses the Policy Enforcement protocol to modify the
photograph as requested. We describe these sub-protocols next.

Association. Users select an agent as a proxy and provide it with photographs,
which are used to train an SVM classifier for face recognition. A user trusts her
agent not to leak her visual signature. The association protocol also exchanges a
master key between agent and user’s device, which is used to generate session keys
in the future. Next, users initialise their privacy profile, which is locally stored
on their device, by choosing relevant contexts based on location (e.g. office, home,
gym, bar/restaurant, public spaces) and time (work hours, off-work hours), and
by choosing an appropriate action for each context (agree to appear with face, blur
face).

Periodic broadcast. Users periodically broadcast a encrypted policy that specifies
how to treat the user’s picture if she appears in a photograph. This broadcast also
includes sufficient information to identify the user’s agent. The policy is encrypted
with a session key generated using the current time (divided into 15-minutes epochs)
and the master key exchanged with the user’s agent. Capture platforms receive
and cache policies. Once a photograph is captured, if a user is identified, then the
associated policy can be decrypted.

Secure matching. Upon image capture, the platform detects and tries to recognise
faces. These components leverage our prior work in face detection (Mathias et al.,
2014) and facial feature extraction (Chapter [3)), as detailed in The capture
platform encrypts the extracted features and uploads them to its agent, along with
the network identifiers of all bystander agents that it has received as broadcast
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Figure 6.2: I-Pic major components

recently. The Capture Agent and the Bystander Agent compare extracted features
and a bystander’s classifier weight vector by implementing a secure dot-product
protocol (Goethals et al., 2004) followed by a secure threshold comparison protocol
based on garbled circuits (Yao| 1986). If the threshold passes, then the session key
used to encrypt user’s policy is revealed to the capture platform.

Policy enforcement. When granted a session key for a user, the capture platform
decrypts the corresponding user’s privacy policy and performs the action requested.
Our current implementation only supports face obfuscation, which we implement
using the OpenCV library. More sophisticated techniques exist. For instance, it is
possible to replace the face with another hypothetical, non-existent one (Chapter
or introduce unnoticeable perturbations on the image to defend against specific
recognition systems (Chapter [7). While such advanced image processing techniques
are not the subject of this chapter, I-Pic can take advantage of them. If a captured
face cannot be matched against any bystander, but all advertised policies have been
evaluated, I-Pic defaults to blurring the face. This protects the privacy of bystanders
who either do not own a smart device or are not I-Pic users. Similarly, all unmatched
faces are blurred if the identification protocol does not complete for some policies,
likely due to lack of network connectivity. The platform maintains an encrypted
copy of the original image, which can be used to release an unblurred face in the
original image as the protocol completes in the future.
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6.3.1 Threat model

I-Pic’s cryptographic protocols ensure that a non-compliant capture device cannot
learn the feature vectors of a bystander who does not appear in a captured image.
For privacy policies of bystanders to be correctly applied, the capture platform on
users’ devices is assumed to implement the I-Pic protocol correctly. Third-party
applications installed on users” devices are untrusted.

Users of capture devices may be able to bypass I-Pic by “rooting” their device; a
different implementation could integrate I-Pic into the device firmware or implement
the protocol on a trusted hardware platform, thus raising the bar for bypassing
I-Pic’s privacy protection. We dismissed this approach, because uncooperative
photographers could in any case use a non-I-Pic compliant camera. Our goal instead
is to enable cooperative photographers to respect bystander’s privacy wishes in
an unobtrusive manner, without introducing new attack vectors. We believe that
most users welcome the ability to automatically comply with bystander’s wishes,
as it enables them to take pictures freely, without worrying whether they might
offend others. This was also observed in our online survey (, where 96% of the
participants indicated that they cared about bystanders’ privacy.

The Bystander Agent must be trusted by the bystander not to leak her visual
signature. The Capture Agent, on the other hand, does not have access to either the
users’ visual signature stored on the Bystander Agent or the features vectors extracted
by the capture device. However, Bystander Agent and Capture Agent are assumed not
to collude, else they could jointly extract the feature vectors of people captured in an
image. Capture Agent is additionally expected to construct the garbled circuit used
for secure threshold comparison (described in accurately.

Cloud agents learn when an I-Pic compliant device captures an image, and the
Capture Agent learns the IP address of that camera device (Technically, both could be
spoofed since the request may use an identifier without capturing an image, and the
source IP address in a request could be that of a forwarding relay). I-Pic protocols
are designed to ensure that the cloud agents do not learn if a user appears in an
image, or the user’s current context or policy. The following describes the I-Pic
protocols in detail.

6.4 1-PIC DESIGN

We describe the design of I-Pic in more detail. Figure |6.3| shows the I-Pic workflow
in normal operation.

I-Pic compliant devices broadcast their encrypted (userid, policy) pairs periodi-
cally. They additionally discover other Bluetooth devices periodically and add any
received pairs to a local cache of nearby users. The entries are flushed from the cache
when a device’s broadcast has not been received for 10 minutes.

When an image is captured, I-Pic intercepts the raw image data. The captured
image is available for viewing immediately but cannot be shared until the image
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Figure 6.3: I-Pic workflow

is processed. A background task runs the vision pipeline described below in
to detect faces and extract feature vectors for each. Next, for each feature
vector extracted from the image, the background task performs the secure matching
protocol described below in Bystander Agent to determine if it matches with
the registered classifiers of any of the bystanders in the cache, and decrypts the
policies of any matching bystanders.

Finally, the I-Pic background task edits the image according to the policies of the
users captured in the image. By default, any face detected in the image that did not
match the signature of a bystander is occluded. This conservative choice errs on the
side of privacy in case of a bystanders who does not carry a mobile device or does
not use I-Pic, whose BLE broadcast was not received, or whose visual signature did
not match due to a false negative of the face recognition.
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6.4.1 Image processing

The goal of I-Pic’s image processing is to identify people captured in the image,
extract visual signatures for each person, and match these signatures with those
advertised by nearby bystanders.

Face detection. I-Pic must detect faces with high recall, ensuring that bystanders’
faces are detected with high probability regardless of size, focus, pose, angle, lighting,
or partial occlusion. Unlike the primary subjects of an image, bystanders are not
posing for the camera, may be in the background, poorly lit, or out of focus, which
makes their detection challenging. We use the open source HeadHunter (Mathias
et al.,|2014) prototype developed as part of our prior work on face detection. Head-
Hunter achieves face detection recall of ~95% on standard image datasets like the
Annotated Faces in the Wild (AFW, (Zhu and Ramanan, 2012)). For I-Pic, we ported
HeadHunter to a mobile tablet with a GPU, as described in HeadHunter is
superior to other face detectors available for mobile platforms.

Feature extraction. We use the state of the art person recognition method naeil
from Chapter |3l Unlike typical face recognition systems that can recognise only
the frontal faces, our person recognition system has been trained to generalise
across head pose by utilizing hairstyle and context information. Since I-Pic aims at
identifying bystanders, this person recognition system is highly relevant.

Given a face, the original naeil extracts a 4096-dimensional feature vector. To en-
sure the efficiency of the secure matching algorithm, which is inversely proportional
to the number of dimensions, we reduce this feature vector to 128 dimensions by
inserting a 128-dimensional fully connected layer before the last layer in the AlexNet,
and tune it using the Stochastic Gradient Descent for the person recognition task at
hand.

Face recognition. When a user registers, I-Pic extracts naeil features from the
set of portraits he or she provides. Per-user SVM classifiers are then trained on
the features, where positive examples consist of the portraits provided by the
corresponding user, and negative examples from the other users and ~12K celebrity
faces in the Labelled Faces in the Wild dataset (LFW, (Huang et al., 2007)). On average,
there are ~15 positive examples per user, captured with different viewpoints and
facial expressions. Users may subsequently provide additional images for training,
for instance, if they start to wear glasses or grow a beard.

6.4.2 Cryptographic protocols

I-Pic composes two standard protocols to achieve secure matching: secure dot
product and garbled circuits.
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Secure dot product. The secure dot product protocol allows two parties, each
with a private vector, to compute the vector dot product without divulging the
vectors. We use the protocol described in (Goethals et al. (2004), which is based on the
Paillier homomorphic encryption scheme (Paillier, 1999). We use the notation [a] , to
represent the encryption of a number a using a public key pk. The Paillier encryption
scheme is additively homomorphic, i.e., given [a], and [b], it is possible to
compute [a + b ,x = [a] pi[b] sk It follows that given [a] ,x and an integer ¢, one can
compute [ca],x = ([a] k). These two primitives can be combined to compute the
dot product securely. More detail can be found in Goethals et al.|(2004) and the I-Pic
technical reportﬁ

A straightforward application of this protocol in I-Pic, however, faces two prob-
lems: First, the capture device learns the dot products, which would enable a ‘rogue’
capture device to learn the classifier weight vector of each bystander. By computing
dot products using a series of standard basis vectors (vectors that have a value of
one in one dimension and zero in all others), the dot product values reveal the
dimensions of a bystander’s weight vector. To prevent this attack, we use garbled
circuits (Yao| 1986), described below, to compute whether the dot product exceeds a
threshold £ without revealing the dot product itself.

Second, a capture device typically needs to compare several feature vectors,
corresponding to multiple faces that appear in a photo, to the classifier weight vector
of a bystander. For n feature vectors with m dimensions, the secure dot product
computations require nm encryptions (and n decryptions). We can optimise this
computation as follows.

Optimised n x 1 secure dot product. I-Pic reduces the number of encryptions
from nm to m using ideas from Huang et al. (2011). Consider a matrix V of n vectors
with m dimensions each, corresponding to n faces in a photograph, where V; ; is the
jth element in the ith vector. Let ¢; = [V j, V), ..., V. j] be the jth column of V. The
photographer computes an encryption of ¢; as [¢;[x = [(V1,j) | (Vo) || - (| (Vi )] ks
where || denotes concatenation. This involves only one encryption to produce the
ciphertext for n values. The photographer sends [c1], - [€m]pr, the encrypted
user ids (uid) of the discovered bystanders, and pk to the Bystander Agent. For each
bystander, the Bystander Agent computes ﬂvb].cj]]pk = ([[c]-]] pk)vhf for1 <j <m,
where v, is the classifier weight vector of a bystander. Multiplying these en-
crypted values, the Bystander Agent obtains a packed encryption of the dot products,
[Pl oo ] Pk = [Vi-op | Varop || oo | Vi 06l e = Tob, exllpr[on, e2lp---[00,, €m] pk
and sends it back to the photographer, who decrypts (using sk) and unpacks the
values to recover the individual dot products.

Garbled circuits for secure threshold computation. Garbled circuits allow two
parties holding inputs x and y, respectively, to evaluate an arbitrary function f(x,y)
without disclosing their inputs. The basic idea is that one party (the garbled circuit
generator—the Capture Agent in our setting), prepares an “encrypted” version of a

bhttps:/ /people.mpi-sws.org/~paditya/papers/ipic-tr.pdf
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Figure 6.4: I-Pic secure matching protocol for one image with n faces (each facial feature
vector has m dimensions). The photographer receives an advertisement from one of b
bystanders (blue). The secure dot product computation requires one round trip (red). The
garbled circuit (GC) requires a DH key exchange and two rounds of oblivious transfers (OT)
(green).

boolean circuit computing f; the second party (the circuit evaluator—the Bystander
Agent in our case) then obliviously computes the output of the circuit. The com-
bination of secure dot product and garbled circuits can provide the property that the
bystander’s session key is revealed to the capture device if, and only if, there is
a match between an extracted feature vector and the classifier weight vector of a
bystander. The capture device can then decrypt the bystander’s policy.

6.4.3 Secure matching protocol

An example message exchange of the secure matching protocol for one image with
n detected faces and b bystanders is shown in Figure The photographer’s device
computes the m encrypted column vectors according to the “optimised n x 1” secure
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dot product protocol, which requires m encryptions. The device sends these vectors
to the Bystander Agent (via the Capture Agent) along with the encrypted user ids of
the b bystanders (Message 2 and 3 in Figure [6.4).

The I-Pic Bystander Agent’| now looks up the classifier weight vectors of the b
bystanders. For each bystander, it computes the encrypted packed dot products,

[Pig | P2 || - || Piullpk, 1 < i < b, of the bystander feature vector and the n image
feature vectors.
The Bystander Agent computes obscured encrypted packed dot products, [P/, || P/, || ... || P/, ],1 <

i < b, by adding a different random value Ri,]- to each dot product Pi,]-, forl1 <i<
b,1 < j < n. This is performed by multiplying each of the b packed encrypted values
containing 7 dot products each, [Pi1 || Pia || - || Pip]pr, with [Ri1 || Rig || - || Ripnllpx
for 1 < i < b. These obscured encrypted packed dot products are sent to the photog-
rapher’s device via the Capture Agent (Message 6 and 7).

The photographer’s device decrypts the b packed encrypted values containing
n obscured dot products each, which requires b decryption operations. The device
forwards these obscured dot products to the Capture Agent (Message 8), which
then constructs a garbled circuit that takes as input 1 obscured dot products P; i =
P;; + R;j, n random values R; , a session key K;, and the threshold £ (all provided
by the Bystander Agent), for 1 <i < b,1 < j < n. The circuit computes

K; if Pi/,j > &+ Ri,]'

/ L. ) —
f(Pij, € R, Ki) { 0 Otherwise

that is, the circuit reveals a bystander’s session key if and only if the dot product
of the bystander’s classifier weight vector and an image feature vector exceed the
threshold.

Delivering the Bystander Agent’s inputs to the garbled circuit requires a Diffie-
Hellman key exchange (DH) and two rounds of oblivious transfers (NPOT, (Naor
and Pinkas, 2005) and OTEXT, (Ishai et al., 2003)), which are partly piggy-backed
on the secure dot product protocol messages, and shown in Figure 6.4 (Messages
4, 5, 6 and 9). The Capture Agent now sends the circuit to the Bystander Agent,
along with the garbled values of the obfuscated inputs P; j» and the garbled values
of Bystander Agent’s inputs as part of the OTEXT oblivious transfer (Message 9).
The Bystander Agent executes the circuit b times with the appropriate inputs, and
returns the garbled results to the Capture Agent (Message 10). After ungarbling the
results, the Capture Agent returns the session keys for the matched bystanders to the
photographer’s device (Message 11).

As composed, the matching protocol has the desired property that a photographer
learns a bystander’s current session key if and only if a feature vector in the image
matches that bystander’s classifier weight vector. Garbled circuits also ensure that
the Bystander Agent does not learn whether there was a match between the encrypted

7To simplify exposition, the description here assumes a single Bystander Agent service. The
capture device would have to execute the protocol for each Bystander Agent in case more than one is
discovered.
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facial feature vectors and a bystander. Additionally, no principal learns the vectors
held by the other principals nor the magnitude of the dot products.

Note that the Capture Agent is trusted to construct the garbled circuit correctly.
This requirement could be relaxed if one is willing to run additional checks (Lindell,
2013) at some additional computational and runtime overhead.

6.5 EVALUATION

We have prototyped I-Pic on Android version 4.4.2. In our deployment, we used
a Google Project Tango Tabletﬁ as the photographer’s capture device and Galaxy
Nexug?| phones as bystander devices. The Nexus phones advertised their presence
once every 64oms over BLE.

We ported HeadHunter (Mathias et al., 2014) to Android for face detection.
HeadHunter is optimised for execution on CUDA-enabled GPUS™ the Tango Tablet
allows us to access CUDA cores. The camera output on the tablet (available as
a JPEG file) is first histogram equalised (Lisani et al., 2012) and then resized to
640x360 before being input to HeadHunter. HeadHunter outputs bounding boxes
corresponding to detected faces.

To extract feature vectors from facial images, we used an Android port of the
Caffe framework™ and ran it with our FNet neural network. The extracted vectors
were normalised such that each feature value was in the range [0,1]. We ported
existing Java secure dot product and garbled circuit implementationg™| to C++ on
Android to optimise for runtime and energy consumption. The various agents were
implemented as HTTP servers.

We begin with a description of I-Pic deployments in various settings; these
deployments were also approved by the University of Maryland IRB. While we
gained intuition about our vision pipeline using standard face recognition datasets
(and the pipeline’s performance compares well with the state-of-the-art on them), all
results presented here evaluate I-Pic on images captured “in the wild”, reflecting
spontaneous image capture in different social situations with a range of lighting
conditions, camera angles, distances, and poses.

6.5.1 Deployments

To evaluate I-Pic, we registered fifteen volunteers from our institutions using the
registration procedure detailed in Each volunteer received a Galaxy Nexus
device for BLE advertisement, which they carried on their person. Registered users

8https:/ /store.google.com /?srp=/product/project_tango_tablet_development_kit

9Galaxy Nexus has Bluetooth hardware capable of BLE advertising, but the functionality is not
available via standard API calls. We patched the kernel to enable BLE advertising.

Thttps:/ /developer.nvidia.com/cuda-zone

Thttps:/ /github.com/shiro/ caffe-android-lib

"Zhttp:/ /mightbeevil.org/
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Number of Number of
Date  Capture device photographs ground-truth faces

Nov 20  Tango tablet 81 277
Nov 27 Tango tablet 176 553
Dec 02 DSLR 130 843

All 387 1673

Table 6.3: Experimental dataset

could choose to either show or blur their face when photographed; this setting could
be changed at their discretion.

The photographs in our results were captured over three days (see Table[6.3), and
were taken using the Tango tablet and a DSLR camera. We used the DSLR setup
(Sony Ay, 35mm f/2.8 lens, 1/80 fixed exposure time with Sony HVL-F32M flash) to
simulate better tablet cameras with higher resolution and faster apertures expected
in future tablets. The photographs captured by the DSLR were manually fed into
the I-Pic processing pipeline.

We annotated all photographs manually with ground truth face rectangles using
the open source annotation tool Sloth3] For each face, we manually added other
information, such as the identity of registered users, pose, and lighting condition.

6.5.2 I-Pic decision tree

In I-Pic, faces in photographs end up being edited (e.g., blurred) or remain un-
changed, correctly or incorrectly, depending on decisions made by different sub-
systems. Figure shows the possible paths through I-Pic, culminating in leaf
nodes coloured green if I-Pic preserves user privacy and red if it does not. Note
that it is possible for I-Pic to make a mistake, e.g., not recognise a face, and for the
corresponding path to still lead to a green leaf node, e.g., because the user policy
stated not to obscure their face. Finally, some leaf nodes are grey, corresponding
to privacy irrelevant mistakes where non-faces were detected as faces and possibly
blurred.

Understanding this decision tree, and in particular, analysing where privacy-
relevant errors can accrue, will enable us to parametrise and evaluate our vision
pipeline in the context of I-Pic’s overall goal.

The decision tree has three stages: (1) face detection, (2) face recognition and
(3) policy application. Stages 1 and 2 are computational and depend solely on the
accuracy of vision pipeline. The diagram separates Stage 3, which is contingent on
user choices. For instance, if users choose more permissive policies, then errors from
previous stages will less likely result in privacy violations, and vice-versa.

Bhttps:/ /cvhci.anthropomatik.kit.edu/~baeuml/projects /a-universal-labeling-tool-for-
computer-vision-sloth/
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https://cvhci.anthropomatik.kit.edu/~baeuml/projects/a-universal-labeling-tool-for-computer-vision-sloth/
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Face detection. Stage 1 may result in three outcomes: True Positive (TP), where
I-Pic detects a face marked in ground truth; False Positive (FP), where I-Pic detects a
non-face object as a face; or False Negative (FN), where I-Pic does not detect a face
marked by ground truth. All TP and FP detections are passed to the face recognition
engine in the next stage.

The FN faces bypass the I-Pic pipeline and remain unchanged, and can potentially
lead to a privacy violation (red leaf node). To minimise these cases, we bias the face
detection engine towards higher recall (lower FN) at the expense of lower precision
(higher FP). This means that a non-face object occasionally gets blurred in an image,
in exchange for increased privacy.

Face recognition. For a TP face detection output, there are six possible choices
for recognition in the I-Pic pipeline: (1) True Positive (TP), where the detected face
is matched only with the individual identified in ground truth; (2) True Positive
along with False Positives (TP*), where the face is matched with the ground truth
individual, but also with other (3) False Negative (FN), where the face is not
matched with the ground truth person; (4) False Negative along with False Positives
(EN*): I-Pic does not match with the ground truth, but instead matches with one
or more other registered individuals; (5) True Negative (TN), where I-Pic correctly
does not match the face to any registered individual; and (6) False Positive(s) (FP*),
where I-Pic incorrectly matches the face to one or more registered users.

Two leaf nodes have privacy violations for face recognition. FP is responsible for
both paths, while one of them also requires a FN. Thus lower FP or high precision
has higher priority for recognition, and adequate balance with low FN or high recall
is also necessary. These requirements guide the parametrisation of the I-Pic face
recognition engine.

Misdetected faces (FP in detection) are also fed into the recognition protocol, and
may lead to (1) True Negatives (TN) whereby I-Pic does not recognise the “face” as a
registered user, or (2) False Positives (FP*) where I-Pic mistakenly matches the “face”
to one or more registered users.

Policy. Each detected face leads to an action, as shown by the leaves of the tree. If
the recognition engine outputs a single user, then the action corresponding to that
users’ policy is undertaken. However, in cases of multiple matches, e.g., due to TP*,
FN* or FP*, the most restrictive policy chosen by any “recognised” user is applied.
For all unrecognised users, I-Pic blurs faces by default.

We will detail an experiment with 687 faces in 120 images to examine I-Pic’s
privacy violations in The percentages below the leaves in Figure |6.5/show the
fraction of faces that mapped to each path in the decision tree, in this experiment.
As can be seen from the percentage values, the privacy preferences of 14% of 687
captured faces were violated, primarily due to errors early in the vision pipeline
(face detection). In the next sections, we will present detailed evaluations of the

'4We allow multiple matches; any registered face that exceeds a similarity threshold is considered
a match.
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Name Role in photograph #Occurrences (%)

PP  primary subject posing 185 (26.9%)
PN  primary subject natural 115 (16.7%)
BP  prominent bystander 56 (8.2%)

BO  other bystanders 331 (48.2%)

Table 6.4: Roles of faces captured in images

vision pipeline, whose accuracy primarily determines I-Pic’s performance.

6.5.3 I-Pic overall performance

We begin with an evaluation of I-Pic’s overall performance in terms of its primary
goals, which are to (i) respect bystanders” privacy, and to (ii) preserve the photogra-
pher’s intent to the extent allowed by subjects” privacy choices.

Toward this end, we took a sample of 120 images with 687 faces marked in the
ground-truth. We additionally marked each face according to its role in the image,
as shown in Table along with the frequency of faces with a given role.

Many of the captured faces correspond to unregistered individuals. Since we
don’t know the privacy preferences of these individuals, we assigned them policies
manually, so that we can process each image as if each captured person were
registered with a policy. We assigned the show-face policy to the 185 PP faces, since it
would be inconsistent for a person who poses for a photograph to refuse to have
their face shown. For the remaining 502 faces, we randomly choose one of show-face
or blur-face policies.

The percentage values given at the leaves in Figure show what fraction of
these 687 faces had what outcome when run through the I-Pic system. As we can see,
privacy was violated in 14% of the cases, while the remaining 86% had no privacy
violation.

We also assign a privacy loss score in each case of violation. These scores provide
a subjective measure of the severity of the privacy violation depending on the role
of the face in the image, with higher scores indicating a more severe violation. The
privacy loss scores are given in Table with the last column indicating how many
of each type of violation occurred in the 68y faces.

About 2% of cases had the most severe privacy violation, which is to show a
primary subject not posing for the camera against their wishes. Also about 2%
of cases had a clearly visible bystander shown against their wishes, and around
10% were less severe cases, where a not prominently depicted bystander was not
blurred. We conclude that, overall, I-Pic observes subjects” policies in most cases
(86%). Moreover, violations that did occur were mostly in the moderate or mild
category.

The second aspect of I-Pic’s overall performance is its ability to preserve the
photographer’s intent, to the extent allowed by the subject’s policies. Similar to
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Privacy loss score penalization scenario #Occurrences

3 PN privacy violated 15 (2.2%)
2 BP privacy violated 12 (1.8%)
1 BO privacy violated 70 (10.2%)
0 no privacy violated 590 (85.9%)

Table 6.5: Privacy loss scores

the privacy loss score, we can define a subjective intent loss score, which penalises
blurring a posing primary subject (score 3), blurring a non-posing primary subject
with a show-face policy (score 2), and bystanders with show-face policies (score 1) in
decreasing order of severity. The ordering is based on a subjective judgement of
intent loss severity when a face is unnecessarily blurred, based on the face’s role in
the image. We note that our assignment of an intent penalty for the bystander case
is conservative, as it is unclear whether a photographer should have expectations
about capturing bystanders.

Figure shows the intent loss scores for the 120 images, normalised by the
maximum intent loss that could occur in a given image. The images are sorted by
increasing number of faces from left to right. The bars represent the image composi-
tion in terms of roles of the faces depicted in it. I-Pic preserves the photographer’s
intent, as measured by our score, perfectly in 55 (45.8%) of the images, with the
intent loss increasing for pictures with more faces. The vast majority of intent loss
cases are caused by a failure to recognise the face of a bystander with a permissive
policy, combined with I-Pic’s default policy to blur.

Being focused on privacy, I-Pic biases its choices towards privacy, including the
default policy and the rule to apply the most restrictive policy in case of multiple
matches. As a result, losses in the vision pipeline come at the expense of intent
rather than privacy. In the following subsections, we investigate circumstances that
lead to imperfections in the vision pipeline, which are causal for the losses in privacy
and intent reported here.

6.5.4 Runtime and Energy Consumption

Figure plots the overall time taken for I-Pic to process different photographs,
along with times spent in different vision and secure matching tasks. In each case,
the capture platform received and processed between 3 and 10 BLE advertisements,
with varying number of faces in the photograph as plotted along the x-axis. The
times for secure matching includes network communication and all cryptographic
functions. Face detection dominates, often requiring 25 seconds per photograph.
Recall that the processing takes place asynchronously in the background, and does
not interfere with the users’” experience while capturing and reviewing images.
While the face detection cost in particular is high in our prototype (70-80% of
total processing time), we believe it is encouraging that best-of-breed face detection is
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Figure 6.7: Analysis of performance in terms of computational resources.

feasible on mobile devices available today. Advances in mobile hardware capabilities,
driven in part by emerging virtual reality applications, will benefit HeadHunter
and other stages of the I-Pic pipeline in the near future. Moreover, face detection
is already being offered as a standard feature on mobile platforms, and future
implementations (possibly hardware supported) with better accuracy could directly
benefit I-Pic.

We measured the energy consumption of the various subcomponents of I-Pic
using the Monsoon Power Monitor5] We attached the power monitor to a Nvidia
Shield Tablet K and processed an image with 30 faces in it. Figure shows
the energy consumption for different resolutions of the input image. The face detector
uses the GPU, whereas the feature extraction is CPU bound. Energy consumption of
face detection is independent of the number of faces in an image, whereas it is linear
in the number of faces for feature extraction. The secure matching algorithm was run
with the 30 faces extracted from the image along with 40 simulated bystanderﬂ

Using these measurements, Table shows I-Pic’s projected capacity on the

Shttps:/ /www.msoon.com/online-store

16https: / /www.nvidia.com/en-us/shield /tablet/

7We used the Shield tablet for the power measurements because the Monsoon power monitor is
unable to power the Tango tablet. The latter requires a 7.5 volts power supply whereas the Monsoon
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Image resolution =~ Number of images processed
(pixels) (containing 30 faces each)
320x180 408
480x270 347
640x360 288
800x450 239

Table 6.6: I-Pic’s projected capacity on a 5100 mAh battery

Nvidia Shield tablet, which has a 5100 mAh battery. More than 288 images and 8640
faces can be processed on a single charge. Figure compares the face detection
accuracy versus the resolution of input images, and serves to highlight the trade-off
between accuracy and energy consumption of the prototype. Reducing the resolution
to 480x270 pixels enables the prototype to process 20% more images, but comes at a
high (12%) drop in face detection recall. On the other hand increasing the resolution
to 80ox450 only gives diminishing returns for face detection recall when compared
to the increased energy consumption that accompanies it.

6.6 CONCLUSION

I-Pic allows users to respect each others” individual and situational privacy prefer-
ences, without giving up the spontaneity, ubiquity, and flexibility of digital capture.
The I-Pic design and prototype demonstrate that the technical impediments for
privacy-compliant imaging can be reasonably overcome using current hardware plat-
forms. I-Pic leverages cutting-edge face detection and recognition technology, which
is often perceived as a threat to privacy, to instead increase user’s privacy regarding
digital capture. Future advances in mobile platform hardware and computer vision
will directly benefit I-Pic and further improve the efficiency and accuracy of its I-Pic
privacy enforcement.

power monitor can only supply a maximum of 4.5 volts.
BBLE scanning for 5 seconds consumes 0.12 mAh of energy, which is accounted for in Figure
but not shown separately.






Part III

KNOWLEDGE ON TARGET MODEL

For data manipulation to be effective, manipulator’s knowledge on the
target model is often crucial. This knowledge lets the manipulator focus
limited resources (e.g. perturbation size for adversarial examples) on
particular aspects of the target. This part discusses ways to represent and
increase the manipulator’s knowledge on the target model. Discussion
and results are relevant to both user privacy and model security.

In Chapter [7] (Oh et al, |2017c), we introduce a Game theoretic framework
between two players with opposite goals: the user (manipulator) wants
to avoid human identification in her image, while the recogniser wants
to re-enable identification. Game theory allows to set a precise level
of knowledge on the opponents for each player, and derives the utility
guarantees for each player as a function of the knowledge level.

In Chapter [ (Oh et al., 2018), we seek ways to increase the manipulator’s
knowledge when the model is a black box (i.e. only query access allowed).
We develop a metamodel-based technique, kennen, that reverse-engineers
certain model hyperparameters only from a set of queries. This in turn
narrows down the candidate space for the target, and makes it more
vulnerable to e.g. adversarial examples. In user privacy setup, this
implies that the manipulator may obfuscate her images more successfully
against black-box models, while in security setup, this raises alertness
that black-box models are less secure than previously believed.

Chapter [g] (Oh et al} [2017b) is an interlude chapter. Using the fact that
activations in an image classifier give reliable cues for the object locations,
we train a semantic object segmentation network using only image-level
labels. Since the classifier itself cannot give the notion of object shapes,
we exploit saliency as the source of the shape prior. In the relevant
benchmark, we report the state of the art result among the methods with
the same level of supervision.




ADVERSARIAL IMAGE PERTURBATION FOR PRIVACY
PROTECTION - A GAME THEORY PERSPECTIVE

sarial examples, or adversarial image perturbations (AIPs). Recent studies on
AlPs suggest that it is possible to confuse recognition systems effectively with-
out unpleasant artifacts. However, AIPs are highly target specific — specific knowledge
on the target model is required (e.g. gradients) to produce effective perturbations.
In practice, the manipulator lacks the knowledge on the target model in general, but
even worse, the target model may employ counter measures dynamically against the
manipulator (adversarial agent). Game theory provides tools for studying the inter-
action between agents with uncertainties in the strategies. We introduce a general
game theoretical framework for the user-recogniser dynamics, and present a case
study that involves current state of the art AIP and person recognition techniques.
We derive the optimal strategy for the user that assures an upper bound on the
recognition rate independent of the recogniser’s counter measure.
We take the user privacy point of view throughout this chapter, but the same
analysis also yields the model security guarantees; they are dual problems.

THis chapter presents our final identity obfuscation technique based on adver-

The chapter is based on the paper |Oh et al. (2017¢). As the first author, Seong
Joon Oh has conducted all the experiments and has written the conference version
manuscript.

7.1 INTRODUCTION

People nowadays share massive amounts of personal photos through social media.
Personal photos contain rich private information, e.g. about family members, travel
destinations, and political activities. Together with recent developments in computer
vision techniques (Deng et al. 2009; Krizhevsky et al., 2012; He et al., |2016; Oh et al.,
2015 Sun et al., 2017), this results in increasing concerns that malicious entities
employing computer vision technologies could extract private information from
visual data.

Classical obfuscation techniques, such as face blurring and pixellisation, is not
only unpleasant but also ineffective against convnet-based recognisers (Chapter [4]
and Wilber et al.| (2016); McPherson et al. (2016)).

There have been recent studies on adversarial image perturbations (AIP): carefully
crafted additive perturbations on the image that confuses a convnet while being
nearly invisible to human eyes (Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi+
Dezfooli et al., 2016, 2017). AIPs are indeed promising as obfuscation techniques.
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User Recogniser
M) TR
ID: “A” PRED: ‘B

Figure 7.1: A game between a social media user and a recogniser over a photo. The user
perturbs the image using orange strategy, trying to confuse the recogniser. The recogniser
chooses blue strategy as a counter measure. They do not know which strategy is picked by
the other.

However, it remains a question whether AIPs are still effective when counter
measures are taken. For example, Graese et al. (2016) proposed simple image
processing tactics to counter the AIP effects (e.g. blurring by small amount). If
furthermore the particular choice of counter measure is unknown, the best strategy
is not obvious for the user.

Game theory provides useful tools for analysis when there exist uncertainties in
the strategies for each player. We present a game theoretical framework to describe a
system in which the user and recogniser strive for antagonistic goals: dis-/enabling
recognition. This framework makes it possible to derive guarantees on the user’s
level of privacy, independent of the recogniser’s counter measure, from an explicitly
formulated set of assumptions. We include a case study of a person identification
game, deriving the user’s privacy guarantee with respect to the current state of the
art AIP and person recognition methods.

This chapter showcases the utility of game theory in understanding the user-
recogniser dynamics. The framework can be extended beyond the particular settings
considered. We believe this framework will further aid user-recogniser analyses in
more diverse tasks and setups.

The main contributions of the chapter are:

e A game theoretic framework for studying the user-recogniser dynamics.

e Application of adversarial image perturbation (AIP) as an effective and aesthetic
technique for person obfuscation.

¢ Novel robust and recogniser-selective AIPs.

e An empirical case study of the game theoretic framework, leading to the
privacy guarantees for the user.

7.2 USER-RECOGNISER GAME

This section provides a general framework for studying user-recogniser games.
The framework provides a tool for systematising the path from a set of explicit
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User U Recogniser R

_
Original Processed n;j(r;(x))

GT:“Anne” —»|
1€ 0% —»l
Perturbation

» Pred: “Tom”

Figure 7.2: User-recogniser game on a single photo. Each player does not know the
opponent’s strategy. Orange (blue) arrows indicate actions taken by the user (recogniser).
Information in the orange (blue) box is only available to the user (recogniser).

assumptions on the players to game theoretical conclusions.

Our user-recogniser game framework is visualised in Figure The user U
perturbs the original image x according to a strategy i € ©%, aiming to thwart
recognition. The recogniser R processes the perturbed image r;(x) according to a
strategy j € @', aiming to neutralise the effect of image perturbation. The resulting
image 7;(r;(x)) is passed to the model f to make a prediction. The game arises from
the fact that each player does not know the opponent’s strategy, although they do
know each other’s strategy space.

We introduce relevant game theoretical concepts and key theoretical results in
7.2.1|to help formalise the framework in We discuss possible extensions in

§7.2.

w L

7.2.1 Two-person constant-sum games

We describe our system as a two-person game (Neumann) 1928) consisting of two
players, the user U and the recogniser R with designated strategy spaces, ®" and ©@’.
As a result of each player committing to strategies i € ®" and j € @" respectively, R
receives a payoff of p;;, the recognition rate; U then receives a payoff of 1 — p;;, the
mis-recognition rate. Game theory suggests that it is sometimes better to randomise
the strategies. U can adopt a mixed (random) strategy 6 = (6}');co:, defined as a
distribution over the strategy space ©", and similarly for R. With abuse of notation
we write

p(6", ") : Zouefp,]- (7.1)

for the expected payoff for R when the mixed strategies 0% and 6" are taken. The
payoff for U is derived and defined as

29”9’ —pij) =1—p(6",07) = p'(6",0"). (7.2)
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We say that a two-person game is a constant-sum game if the players’ payoffs
sum to a constant B independent of the strategies. In our case, the recognition and
mis-recognition rates always sum to one (8 = 1). A game is finite if the strategy
spaces are finite. We have the following optimality theorem.

Theorem 1 (Neumann| (1928)). For a finite constant-sum game, there exist optimal or
minimax mixed strategies 0"* and 60" such that

p(gu*’ 97’) S p(gu*, 97’*) S p(eu, 97*) \v/ 01/{’ 61" (7.3)
where v := p(60"*,0™) is the value of the game.

Equation [7.3|implies that when R plays 6", R is guaranteed to have a payoff of at
least v, regardless of U’s strategy; if U plays 6"*, U is guaranteed to have a payoff
of 1 —v. In our scenario, this means that U’s optimal strategy guarantees a certain
mis-recognition rate, regardless of R’s strategy.

U’s optimal strategies can be obtained efficiently via linear programming that
solves the following (R’s optimal strategy can be found by swapping min and max):

arg min max ) 6y
r

; O;pi]- s.t. 6%, 0" are distributions. (7.4)

gu ij
If U has knowledge on R’s strategy 6", then U can take advantage of this know-
ledge. U can optimise her strategy given 6" to attain a payoff of max p'(6",0r) >

p'(6"%,07) > p'(0¥*,0™) = 1 — v, a potentially better payoff than the no-knowledge
scenario 1 — v. However, if R’s strategy is optimal 0" = 6"*, then the knowledge does
not bring improvement for U: max p'(6%,6™) =1—no.

In reality, not all players play optimally either due to the lack of knowledge (e.g.
on the opponent’s strategy space), or due to pure irrationality. We refer to such a
player as an irrational player. Our discussion above implies:

Corollary 1. If U knows R’s strategy 0, and if it is suboptimal, then U can enjoy a better
payoff than 1 — v.

7.2.2  Components of the user-recogniser game

We specify the payoffs, strategy spaces, and information allowed for the user U and
the recogniser R.

Test data. We assume that the test data are distributed according to (£,7) ~ D.
This dataset is the source of private information that the two players compete for.

Fixed model. We assume that U and R use a fixed model f (e.g. a publicly
available model). This is a reasonable assumption, as U and R often would not have
resources to train modern convnets.
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Known model. Each player is aware that the opponent uses f. This may be
unrealistic, but provides a good starting point. Relaxation of this assumption is

discussed in

payoff. When the players commit to strategies i € ®" and j € ©", R’s payoff is the
recognition rate on the test set:

= P Y (. (v (2))) — ) .
pi= b | max £ 1 (9) = g 75)

where f¥ denotes the model prediction score for class y. U receives the payoff 1 — p;;,
the mis-recognition rate.

User’s strategy space ®“. We consider additive perturbations such that for an
input x,

ri(x) =x+tx),  |[Hx)]2<e (7.6)

for some constant € > 0. When ¢ is small enough, the perturbation is nearly invisible
to human eyes (see Figure [7.3). These perturbations are frequently referred to as
adversarial image perturbations (AIPs). We discuss existing AIPs and our novel variants

in §73

Recogniser’s strategy space ®". R aims to neutralise the adversarial effect of
AlIPs. Although some works have suggested re-training the model with AIPs,
demonstrating certain degree of robustification (Goodfellow et al., 2015; Huang et al.,
2015), Graese et al.| (2016) have argued that simple image processing can already
neutralise the AIP effects cheaply and effectively. They have demonstrated that on
MNIST, translation (T), Gaussian additive noise (N), blurring (B), and cropping &
re-sizing (C) have improved the recognition rate from 0% (post-AIP) to 68%, 58%,
65%, and 76%, respectively. In our case study, we will include these transformations
in @ In we will discuss about expanding strategy spaces.

Known strategy spaces. The strategy spaces for each player (% and ©O") are
known to each other, while the chosen strategies are not known.

Multiple recognisers. U may encounter a set of recognisers not all of which are
malicious. For example, U uploads her personal photos to a cloud service with a
recognition system Rj; she wants an AIP that enables a successful recognition by
R; but disables recognition by a malicious system R;. We propose an approach
for generating selective AIPs in and confirm their existence in From a
theoretical standpoint, the existence of selective AIPs attest to the diversity of possible
AIP patterns, in line with the existence of universal perturbations (Moosavi-Deztfooli
et al| [2017).
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7.2.3 Extensions

In the previous section, we have introduced the user-recogniser game framework
with particular assumptions explored in this chapter. In this section, we show that
the framework can be extended beyond this setup.

Unknown models. Many AIP techniques assume a full knowledge on the model
f, but the computation of black-box AIPs is another active research field (Papernot
et al, |2016a, 2017; |[Narodytska and Kasiviswanathan, 2017; Liu et al., 2017a); U can
potentially adopt these methods.

Non-constant sum. If U and R assign different weights to different test samples,
then the payoffs may not sum to 1. For such non-constant sum games, there exist
Nash equilibrium strategies for each player (Nash et al., 1950). The optimal strategy
and payoff analyses are still possible.

Non-additive AIPs. The framework allows r; to be any function that induces
invisible changes on the image. Current restriction to Equation [7.6 rules out e.g.
one-pixel translation of the whole image. Most, if not all, prior work on AIP is done
in the additive setup. Crafting non-additive AIP would be interesting future work.

Non-fixed models. R with enough computational resources may re-train the model
f with AIPs. One option to expand our framework to such a setup would be to
incorporate the model parameters in . Briickner et al.| (2012) have studied this setup,
but have assumed convex loss functions. Understanding games with continuous
strategy spaces and non-convex payoffs (e.g. convnet losses) is an open question
both for computer vision and game theory research.

Unknown strategy spaces. The exact possible set of strategies may not be known
to the opponent. With improving technologies, the respective strategy spaces may
even grow over time. The framework cannot do much about the unknown strategies,
but can adaptively expand the strategy spaces according to technological develop-
ments.

73 ADVERSARIAL IMAGE PERTURBATION STRATEGIES

This section reviews existing adversarial image perturbation (AIP) algorithms that
use first-order optimisation schemes, and proposes our novel variants.

We compute AIPs as additive transformations with L, norm constraints (Equation
[7-6). Computation of AIP can be formulated as a loss maximisation problem

mtaxﬁ(f(x+t),y) s.t. ||t <e (7.7)

where x is the input image and y is the ground truth label; the loss function £ is to
be specified.
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Stopping

Variants Loss L condition Step size
FGS —log fY 1 iteration Fixed
FGV —log f¥ 1 iteration Fixed
BI —log f¥ K iterations Fixed
GA —log f¥ K iterations Fixed
DF f¥ — f¥ KitV fooled Adaptive
GAMAN f¥" — f¥ Kiterations  Fixed

Table 7.1: Conceptual differences among AIP methods. f¥ is the model score for class 1/,
and f denotes the softmax output of f. y is the ground truth label, and y* is the most likely
label among wrong ones. y¢ is the label with the closest linearised decision boundary.

7.3.1  Existing AIP methods

Depending on the loss function £ and the optimisation algorithm, we recover many
of the existing AIP methods such as Fast Gradient Vector (Rozsa et al.| |2016), Fast
Gradient Sign (Goodfellow et al., 2015)), Basic Iterative (Kurakin ef al., 2017a), and
DeepFool (Moosavi-Dezfooli et al., 2016). The universal perturbations introduced by
Moosavi-Dezfooli et al. (2017) can also be seen as a special case of Equation where
the loss is computed over the entire test set and the perturbation t is shared across
images. See Table [7.1] for the summary.

Fast Gradient Vector (FGV) (Rozsa et al., 2016). FGV adopts the softmax-log loss
L = —log f¥ in Equation solving it via one-step gradient ascent: t* = —yV L(x)
for some constant ¢ > 0.

Fast Gradient Sign (FGS) (Goodfellow et al., 2015). FGS is identical to FGV, except
that VL (x) is replaced with sign (VL(x)).

Gradient Ascent (GA). This is a multi-step variant of FGV. Perturbation is initialised
at t0) = 0. Gradient ascent is performed on the loss function iteratively: +("+1)
tm) — 4V L(x + t0M) for m = 0,--- K for some fixed step size v > 0 and maximal
number of iterations K > 1.

Basic Iterative (BI) (Kurakin et al., 2017a). BI is identical to GA, except that V L(x)
is replaced with sign (VL(x)).

DeepFool (DF) (Moosavi-Dezfooli et al., 2016). DF algorithm solves the objective:
mtin [|t|]]2 s.t. argmax f¥ (x+1t) #y (7.8)

Y
which finds the minimal perturbation such that the prediction is wrong. Although
the objective is different, we show that the DF algorithm can also be seen as a
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tirst-order method solving Equation 7.7 for some loss function.

DF first finds the class with the nearest decision hyperplane, denoted by c. To
simplify the search, c is found on the linear approximation of f around x (tangent
function). The normal vector to the decision hyperplane is given by V f© — V f¥. At
each iteration, the algorithm computes the minimal step size along this direction to
reach the decision hyperplane. Since f is not linear, the algorithm may need more
than one iterations to cross the decision hyperplane.

We observe that if we set the loss function as £ = f° — f¥ the gradient ascent
direction matches the DF step directions V f© — V f¥. We thus regard DF as a gradient
ascent algorithm with each step size minimised to just induce a wrong prediction.

Projection and clipping. The norm constraint || - ||z < € as well as RGB value
constraint to [0,255] must be enforced on the solution. |Liu ef al.| (2017a); Kurakin
et al.|(2017a) suggest applying projections after each iteration. We follow this practice.
For BW images, we average the gradients for each RGB channel.

7.3.2  Our AIP methods

As we will demonstrate in the above approaches are fragile to simple im-
age processing techniques. We propose novel AIP approaches here, focusing on
robustness.

Gradient Ascent — Maximal Among Non-GT (GAMAN). Even if the prediction label
is changed by the AIP, this would not be robust if the perturbed input is still close
to the decision boundary. DeepFool (DF) is not expected to be robust, as it stops
iterations as soon as the decision boundary is reached. On the other hand, DF guides
the solution to the closest decision boundary; if we let DF iterate beyond the decision
boundary with a fixed step size with fixed number of iterations, the solution is likely
to proceed more deeply into the territory of the wrong label, improving robustness.

This motivates our GAMAN™| variant. Instead of the costly computation of c at each
iteration, we approximate

c~R Yy = arg minf»‘/ (7.9)
y'#y

the most likely prediction among wrong labels. We set the loss function as £ =
f¥" — f¥, and perform gradient ascent with a fixed step size 7 for K iterations.
This approach is similar but different from the impersonation AIPs previously
considered (Sharif ef al., 2016} |Liu et al., 2017a), which drive the solution to a fixed
impersonation target i. In contrast, y* may change during the iterations.

Vaccination against image processing. The above methods maximise classification
loss functions with respect to a fixed recogniser. For countering an AIP-neutralising

19Gaman is a Zen Buddhist term for endurance.
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image processing technique 7;, we consider including the image processing step in
the loss function: L£(n;(x +t)). Any first-order method considered above can be
used, as long as n; is differentiable. If the processing function is random, we average
the gradients from multiple samples. We refer to this technique as vaccination. Note
that this technique is complimentary to the above mentioned methods.

Selective AIPs. We present another complimentary technique for generating AIPs
targeted to a selected subset of recognisers. To avoid recognition from M while
authorising B to recognise, we propose to maximise a mixed loss
Z /\k['k — Z Ak’ﬁk’ (7.10)
ke M k'eB
with /\k, /\k/ > 0.

74 EMPIRICAL STUDIES

We have set up a game theoretical framework to study the dynamics between the
user U and the recogniser R. In particular, previous adversarial image perturbation
(AIP) techniques are studied, and new variants are proposed.

In this section, we present a case study of the framework on person recognition.
Before presenting the game theoretical analysis, we evaluate the performance of
existing and newly proposed AIP techniques (§7.4.2), and the effectiveness of R’s
image processing strategies ®" (§7.4.3). The full game is introduced (§7.4.4) after
specifying U’s strategy space; we study this system in depth. Finally, we show
results on the recogniser-selective AIPs (§7.4.5).

7.4.1 Dataset and Experimental Setup

Dataset. We build our analysis upon the PIPA dataset (Chapter [3|and Zhang et al.
(2015b)). A large-scale dataset of Flickr personal photos, PIPA provides a realistic
testbed for identity obfuscation in the social media setup. We use the valy/; Original
split (see Chapter [3)), consisting of 4820 instances of 366 identities as the training and
test sets. We assume that the user uploads cropped head images to social media; we
use the head bounding box annotations in PIPA.

Person recogniser. The person recognition model f is built on the person recog-
niser naeil (Chapter . Unlike the original version that is built on AlexNet (Krizhevsky
et al.,|2012), we also consider VGG (Simonyan and Zisserman, 2015), GoogleNet (Szegedy
et al| |2015), and ResNet152 (He et al., 2016) as feature extractors. They show better
recognition rates (Table [7.2).

Evaluation. We evaluate payoffs for R in terms of the ratio of correctly identified
instances in the test set. The payoff for U is 1 minus R’s payoff. In all the tables, R is
the column player and U is the row player. For each column (row), U’s (R’s) optimal
strategy is marked orange (blue).
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Perturbation AlexNet VGG Google ResNet

None 83.8 861 87.8 91.1
o . Noise >83 >85 >87 >90
X § Blur >82 >85 >86 >90
E & EyeBar >81  >8; >8; >87
5o FGS 23.6 16.0 5.9 20.2
ﬁ < FGV 13.3 11.5 4.6 20.0

BI 1.2 0.5 0.0 0.0
B p GA 0.2 0.0 0.0 0.0
< < DF 00 00 00 0.0

GAMAN 0.0 0.0 0.0 0.0

Table 7.2: Recognition rates after image perturbation. In all methods, the perturbation is
restricted to || - ||2 < 1000. For the baseline image processing perturbations, we only report
lower bounds (denoted > - ).

7.4.2 Comparison of perturbation methods

AIP parameters. We set € = 1000 in all our experiments, unless stated otherwise.
For GoogleNet input 224 x 224, this corresponds to 2% of pixels perturbed by 1/256.
For Gradient Ascent (GA) and Basic Iterative (BI) the step size v is set to 10%; for
GAMAN, 5 x 103. We set the maximal number of iterations K = 100, determined such
that the norm reaches € = 1000 in K iterations for most test samples.

Baseline perturbation methods. We consider three commonly used obfuscation
types: noise, blur, and eye bar. Noise adds iid Gaussian noise of variance ¢”;
blur performs convolution with a Gaussian kernel of size ¢”; eye bar puts a gray
horizontal bar of thickness ¢ on the upper % location. They incur large L, distances
(>1000) from the original image even with small ¢”, %, and ¢¢. In Table we
report the lower bounds on the recognition rates at || - ||, = 1000 by computing the
rates at some || - ||, > 1000.

AIP performance. We first evaluate all the considered AIP methods against all
network variants. Table shows the results. We observe that noise, blur, and eye
bar have nearly no impact on the recognition performance for small L, perturbations.
AIP variants show better obfuscation performances. Vanilla gradient overall gives
better obfuscation than signed versions; on AlexNet Fast Gradient Vector (FGV)
reduces the recognition rate to 13.3, compared to 23.6 for Fast Gradient Sign (FGS);
the multi-iteration analogues show similar behaviours with Gradient Ascent (GA)
achieving 0.2 compared to 1.2 by Basic Iterative (BI). Finally, we observe that the
DeepFool (DF) and GAMAN (§7.3.2) are very effective, pushing the recognition rates
down to zero.
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Perturbation @ Proc T N B C TNBC

None 87.8 878 87.6 64.0 81.2 854 87.3
BI 00 83 158 168 28.6 274 17.6
GA 00 86 132 14.1 284 237 164
DF 0.0 518 75.6 56.5 72.5 76.9 75.5
GAMAN 0.0 4.0 6.6 150 222 167 9.9

Table 7.3: Robustness analysis of AIPs on GoogleNet. AIPs are restricted to to || - || < 1000.
Proc indicates the re-sizing and quantisation needed to convert AIP outputs to image files.
(T,N, B, C) = (Translate, Noise, Blur, Crop).

Network performance. Comparing architectures, we observe that AlexNet is sur-
prisingly robust to AIPs compared to more recent architectures. GoogleNet, for
example, performs better than Alexnet without AIPs (83.8 vs 87.8); when FGS is used,
AlexNet performs 23.6 while GoogleNet performs 5.9. When multi-iteration AIPs
are used, the architectural choice does not have a significant impact. We opt for
GoogleNet in the next experiments; it is reasonably performant, while being much
faster than ResNet.

7.4.3 Robustness of AIPs

Basic processing Proc. Even before R’s image processing strategies take place, the
perturbed image needs to be (1) re-sized to the original image (from the network
input sizes) and (2) quantised to integer values (e.g. 24-bit true colour). We denote
the above two basic processing steps as Proc.

Image processing strategies @". We fully specify R’s strategy space for our case
study. Following Graese et al.| (2016), we consider @ = {Proc, T, N, B, C, TNBC}.
Proc is the basic processing described above, and all the other strategies are applied
over Proc. T is translation by a random offset within 10% of the image side lengths.
N adds iid Gaussian noise with variance 0> = 10%. B blurs with Gaussian kernel
of width chosen from {1,3,5,7,9} uniformly at random. C crops with a random
offset within 10% of the image side lengths and re-sizes back to the original. For
each strategy, the recogniser ensembles the scores from five random samples. We
also consider the combination of all four (TNBC). It runs the model four times on
each processed image and once on the original; the scores are then averaged.

Robustness of AIPs. Table|y.3/shows the recognition rates for the GoogleNet when
R’s processing strategies are present. While the multi-iteration AIPs induce zero
recognition rates without any processing, Proc already exhibits powerful neutralisa-
tion effects: recognition rates for Gradient Ascent (GA) and DeepFool (DF) jump from
zero to 8.6 and 51.8, respectively. The instability of DF is due to early stopping (§7.3.1).
The processing strategies by R further increase recognition rates. Blurring B and
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Original Blur GA DF GAMAN GAMAN
L, =0 Lo = 4107 L, = 1000 L, =119 L, = 1000 L, = 2000

Ly = 5666 L, = 1000 L, =173 L, = 1000 L, = 2000

: .

Figure 7.3: Perturbed images after Proc and the corresponding predictions (green for correct,
red for wrong). GA and GAMAN reliably confuse the classifier at almost no cost on the aesthetics.
At L, = 2000, GAMAN does show small artifacts.

cropping C strategies prove to be more harmful to AIPs than translation T and noise
N in general. Comparing AIP-wise, we show that our novel variant GAMAN (§7.3.2)
dominates other methods against all processing strategies but N; GA performs better
in that case, but only by a small amount (14.1 versus 15.0). Subsequent analyses are
built on GAMAN.

Qualitative. Qualitative examples of the methods are shown in Figure The
images and the prediction results are after Proc. GA and GAMAN reliably induces
misidentification without sacrificing aesthetics compared to blurring.

AIP Performance at Different L, Norms. We examine the behaviour of fooling
effects with respect to the L, norm size €. See Figure [7.4| for the plot. The perfor-
mances are post-Proc (. We fix the step size to y = 10* (5 x 10° for GAMAN), and
the maximal number of iterations to K = 100; we choose the norm constraint € from
{100, 200,500, 1000,2000}. The norm of the resulting AIP is upper bounded by ¢,
but may not necessarily be exactly €. The average norm across the test set is plotted.

We observe that the AIP variants are much more effective than Noise, Blur, or
Eye Bar, achieving the same degree of obfuscation at 1 ~ 2 orders of magnitude
smaller perturbations. At the same norm level, the multi-iteration variants (BI,GA)
are more effective than the single-iteration analogues (FGS,FGV). Taking gradient
signs decreases the obfuscation performance at small L, norms (< 1000), but they
converge to a similar performance at € = 2000. DeepFool (DF) outputs have small
norms < 100 due to early stopping. Our variant GAMAN performs best across all norm
levels, achieving nearly zero recognition at € = 2000.
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Figure 7.4: GoogleNet accuracy after various perturbations methods at different L, norms.
All results are after Proc.

7.4.4 User-recogniser games

Vaccination strategies ®“. In response to the processing strategies by the recog-
niser R, the user U may vaccinate the AIP against expected processing types (§7.3.2).
We consider six variants ®@* = {GAMAN, /T, /N, /B, /C, /TNBC}. We use slash / to
indicate vaccination on GAMAN. For /T, /N, /B, /C, gradients from 5 random function
samples are averaged at each iteration. The combination strategy /TNBC averages 4
gradients from individual methods and 1 original gradient, resulting in the same
number of gradient computations for all vaccination variants.

Is vaccination helpful?. Table [7.4| shows the recognition rates of GoogleNet for
combinations of discussed processing and vaccination strategies. We observe indeed
that each vaccination type makes the vanilla AIP GAMAN more robust against the
respective processing type: for B the rate drops from 22.2 to 5.8. /B is the most
effective strategy for U against all processing strategies except for N. For N, the
corresponding vaccination /N yields the best payoff for U. We conjecture this is
because the noise N results in high frequency patterns while the others smooth the
output. We observe, finally, that the combined vaccination /TNBC cannot prepare
AIP against all processing types most effectively; given a budget on the number of
gradient computations, it is hard to be good at everything.

Optimal deterministic strategy. We can regard Table as the payoff table p;;
for R for strategies i € @ and j € ©". Let’s first assume that the players only
choose fixed strategies. Then, solving Equation [7.4| with determinism constraints
0;',0; € {0,1} yields U’s optimal strategy as /B with a privacy guarantee of at most
8.6 recognition rate.
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Recogniser @"
User ©* Proc T N B C TNBC

GAMAN 4.0 6.6 150 222 16.7 99
/T 25 23 11.6 185 7.2 49
/N 58 7.6 4.6 236 166 9.1
/B 04 08 86 58 3.1 1.4
/C 26 22 11.8 181 34 43

/TNBC 07 09 52 95 32 20

Table 7.4: Recogniser’s payoff table p;;, i € @ and j € @". The user’s payoff is given by
100 — pl]

Optimal random strategy. Game theory suggests that it is sometimes better to
randomise strategies. Solving Equation [7.4| without the integral constraints yield
the optimal solutions for U and R as 6** = (/B:61%, /TNBC:39%) and 6™ =
(N :52%, B : 48%), respectively. Playing 6"* guarantees U to allow at most 7.3
recognition rate, an improved privacy guarantee than the deterministic case, 8.6.

Knowledge on R’s strategy. As discussed in having knowledge on R’s
strategy can improve the payoff bound for U, if R does not play the optimal strategy.
Let us consider two possible non-optimal strategies played by R. (1) If R commits to
B, U’s optimal strategy is the minimal row in the column B: /B, with recognition
rate 5.8. (2) If R randomises uniformly over @", U’s optimal strategy is the minimal
row over the column average: /B with recognition rate 3.4. In both cases, U enjoys
lower recognition rates.

Limited knowledge on ®". Assume that U is not aware of all possible technologies
that R has at hand. For example, the strategy N is not known to U. Then, U’s
apparent optimal solution is (/B : 100%), which she thinks will guarantee her at
most 5.8 recognition rate. R can then attack U with N, incurring 8.6 recognition rate.
Limited knowledge on the opponent’s strategy space does hurt.

7.4.5 Selective AIPs

We assume that U wants to avoid identification by a set of malicious recognisers M,
while authorising identification by benign ones B. We set up the experiments in
Table We include the GAMAN performance on GoogleNet as a baseline (first row).
We solve Equation with Ay =1 for all k € M U B to generate selective AIPs.

When M = {GoogleNet} and B = {AlexNet}, the generated AIP incurs mere
8.7 identification for M (after Proc), while allowing B to identify 97.9 percent. We
thus confirm the selectivity. However, this comes at the cost of increased recognition
rate for M (8.7), compared to when AIP only had to confuse M (4.0).

We also consider the multi-M, multi-B case given by M = {AlexNet, ResNet}
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Setup M averaged B averaged
M B Ly w/oAIP w/ AIP w/o AIP w/ AIP

{G} @ 1000 87.8 4.0 - -

{G} {A} 1000 87.8 8.7 83.8 97.9
{AR} {VG} 1000 87.4 17.7 87.0 97.7
{AR} {V,G} 2000 87.4 3.8 87.0 97.8

Table 7.5: Selective AIPs. AIPs are crafted to confuse M leaving B intact. [A,V,GR] =
[AlexNet, VGG, GoogleNet, ResNet152]. GAMAN has been used in all experiments. Reported
performances are after Proc.

and B = {VGG, GoogleNet}. The average performance is 17.7 for M, and 97.7 for
B, post Proc. Selectivity thus works for multiple models, but again the recognition
rates for M are quite high (17.7). We remark that by increasing the budget on
perturbation size from 1000 to 2000, we can still attain a lower rate: 3.8.

The existence of selective AIPs is not only of practical but also of theoretical
interest. They show that the space of AIPs is diverse enough to accommodate
patterns that simultaneously hamper and assist recognition.

7.5 DISCUSSION & CONCLUSION

Game theoretical approach. Game theory is a tool for wading through uncertain-
ties in players’ choices, providing payoff guarantees independent of the opponent’s
strategies. Game theory also suggests that if there is no single technology which best
copes with all possible adversarial technologies, it is better to randomise existing
techniques.

As discussed in the game theoretical framework introduced in this work
can be extended to other setups, where less resource constraints are placed on each
player. This work serves as a first step towards the promising research direction of
analysing the user-recogniser dynamics.

Conclusion. In this chapter, we have constructed a game theoretical framework
to represent the manipulator’s uncertainty on the target model. Game theoretical
analysis yields privacy bounds for the user privacy. We note that the model security
problem is a dual problem of the user privacy problem and that we obtain the model
security bound on the way as well.

7.6 ADDITIONAL RESULTS

In we have focused on the GoogleNet results for the AIP robustness analysis
and the game theoretic studies (Tables [7.3]and [7.4). We show extended results on
AlexNet, VGG, and ResNet152. We also show more qualitative examples, extending
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Bound on
1 Uux
Network  Optimal Strategy 0 Rec. Rate
AlexNet (/B :100%) <6.4

VGG  (/B:86%,/TNBC: 14%) <4.9
GoogleNet (/B:61%, /TNBC:39%) <7.3
ResNet (/B:31%, /TNBC: 69%) <8.5

Table 7.6: Optimal strategies and the corresponding guaranteed upper bounds on the
recognition rate for different networks. We write < - to denote the upper bound.

Figure
7.6.1 Robustness analysis

See Table for the robustness analyses for the three other networks. We confirm
here again that GAMAN shows overall best robustness, across image processing tech-
niques (Proc, T, N, B, C, and TNBC), across architectures. For AlexNet and ResNet,
cropping (C) is the most powerful neutralisation, while for VGG and GoogleNet
blurring (B) is. We observe that the effects are particularly strong for ResNet; C
boosts the performance from 0.0 to 31.8 against GAMAN.

7.6.2  Game analysis for various networks

See Table for the payoff tables for the three other networks. We summarise the
optimal user strategy 6** and the corresponding guarantee on the recognition rate
in Table Note that against all but AlexNet architecture, the optimal strategy 6"*
is given as a mixture of /B and /TNBC.

7.6.3  More qualitative results

We include more qualitative results (extension of Figure[7.3). See Figures and
GA and GAMAN reliably confuse the classifier at almost no cost on the aesthetics.
As the L, norm increases, artifacts become more visible.
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AlexNet VGG ResNet
Perturb @ Proc T N B C TNBC Perturb @ Proc T N B C TNBC Perturb @ Proc T N B C TNBC
None 83.8 83.8 83.777.8 78.780.1 83.9 None 86.1 86.1 84.8 77.281.584.1 85.8 None 91.1 91.1 90.6 72.0 87.2 89.3 90.8
BI 1.2 10.0 29.7 20.8 26.6 34.3 23.3 BI 0.5 6.8 11.118.123.216.8 14.4 BI 0.0 10.9 36.8 24.8 32.8 45.3 26.3
GA 0.2 4.8 13.611.6 17.717.8 12.2 GA 0.0 4.2 55 112172102 82  GA 0.0 15.2 37.3 24.4 36.9 43.7 28.9
DF 0.0 62.1 76.5 68.5 69.4 75.0 74.7 DF 0.0 53.3 66.3 65.969.4 69.2 71.4 DF 0.0 52.9 83.1 65.0 76.8 84.2 80.9
GAMAN 0.0 14 6.4 92 13.5123 56 GAMAN 0.0 16 21 85 11.8 56 3.5 GAMAN 0.0 7.3 23.423.328.231.8 184

(a) Robustness analysis for AIPs.

AlexNet VGG ResNet
Recogniser @" Recogniser @" Recogniser @"

User ®* Proc T N B C TNBC User®* Proc T N B C TNBC User®* Proc T N B C TNBC

GAMAN 1.4 6.49.213.512.3 5.6 GAMAN 1.6 2.18511.856 3.5 GAMAN 7.3 23.4 23.328.231.8 184

/T 0.9 0.8 6.210.5 2.7 2.2 /T 1.5 1.2 8.1 12.33.2 28 /T 2.9 2.8 16.619.0 54 5.8

/N 1.2 4248117 9.5 3.9 /N 2.0 2.53.912.6 6.7 3.9 /N 5.3 12.9 4.2 23.520.1 10.2

/B 08 356.3 6.4 6.0 26 /B 0.3 0.75.0 4.5 2.2 1.2 /B 06 3.1 13.0 6.8 53 24

/C 2.4 2.59.213.1 1.3 3.4 /C 2.0 1.6 9.5 14.0 1.9 3.1 /C 3.5 3.1 17.0188 3.2 54

/TNBC 0.6 1.24.5 7.8 29 1.9 /TNBC 0.6 0.74.3 7.3 2.3 1.4 /TNBC 0.7 1.2 6.5 9.3 29 23
(b) Payoff tables.

Table 7.7: Extended version of Table ﬂmsm Emoﬂ. the other network architectures.
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Figure 7.5: Extension of Figure . Randomly chosen perturbed images after Proc and the
corresponding GoogleNet predictions (green for correct, red for wrong). Perturbations are
visualised with gray background. Perturbations may be too small to be visible when printed;
zoom in in electronic version for better visibility.
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Original Blur GA DF GAMAN GAMAN GAMAN
L,=0 L, =7957 L, =1000 L, =52 L, =1000 L, =2000 L, = 3000

L,=0 L,=5123 L, =1000 L, =144 L, =1000 L, = 2000 L, = 3000

Figure 7.6: More examples. See Figure
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Figure 7.7: More examples. See Figure .







TOWARDS REVERSE-ENGINEERING BLACK-BOX
NEURAL NETWORKS

Limited access limits manipulator’s knowledge on the model - e.g. archi-

tecture, optimisation procedure, or training data. This chapter shows that
such attributes of neural networks can be exposed from a sequence of queries. This
has multiple implications. On the one hand, our work exposes the vulnerability of
black-box neural networks to different types of attacks — we show that the revealed
internal information helps generate more effective adversarial examples against the
black box model. On the other hand, this technique can be used for better protection
of private content from automatic recognition models using adversarial examples. It
is actually hard to draw a line between white box and black box models.

MAny deployed learned models are black boxes: given input, returns output.

The chapter is based on the paper Oh et al.|(2018). As the first author, Seong
Joon Oh has conducted all the experiments and has written the conference version
manuscript.

8.1 INTRODUCTION

Black-box models take a sequence of query inputs, and return corresponding outputs,
while keeping internal states such as model architecture hidden. They are deployed
as black boxes usually on purpose — for protecting intellectual properties or privacy-
sensitive training data. Our work aims at inferring information about the internals
of black box models — ultimately turning them into white box models. Such a
reverse-engineering of a black box model has many implications. On the one hand,
it has legal implications to intellectual properties (IP) involving neural networks
— internal information about the model can be proprietary and a key IP, and the
training data may be privacy sensitive. Disclosing hidden details may also render
the model more susceptible to attacks from adversaries. On the other hand, gaining
information about a black-box model can be useful in other scenarios. E.g. there
has been work on utilising adversarial examples for protecting private regions (e.g.
faces) in photographs from automatic recognisers (Chapter [7). In such scenarios,
gaining more knowledge on the recognisers will increase the chance of protecting
one’s privacy. Either way, it is a crucial research topic to investigate the type and
amount of information that can be gained from a black-box access to a model. We
make a first step towards understanding the connection between white box and
black box approaches — which were previously thought of as distinct classes.

We introduce the term “model attributes” to refer to various types of informa-

129
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tion about a trained neural network model. We group them into three types: (1)
architecture (e.g. type of non-linear activation), (2) optimisation process (e.g. SGD
or ADAM?), and (3) training data (e.g. which dataset?). We approach the problem
as a standard supervised learning task applied over models. First, collect a diverse
set of white-box models (“meta-training set”) that are expected to be similar to the
target black box at least to a certain extent. Then, over the collected meta-training
set, train another model (“metamodel”) that takes a model as input and returns the
corresponding model attributes as output. Importantly, since we want to predict at-
tributes at test time for black-box models, the only information available for attribute
prediction is the query input-output pairs. As we will see in the experiments, such
input-output pairs allow to predict model attributes surprisingly well. In summary,
we contribute:

e Investigation of the type and amount of internal information about the black-
box model that can be extracted from querying;

e Novel metamodel methods that not only reason over outputs from static
query inputs, but also actively optimise query inputs that can extract more
information;

e Study of factors like size of the meta-training set, quantity and quality of
queries, and the dissimilarity between the meta-training models and the test
black box (generalisability);

e Empirical verification that revealed information leads to greater susceptibility
of a black-box model to an adversarial example based attack.

8.2 METAMODELS

We want to find out the type and amount of internal information about a black-box
model that can be revealed from a sequence of queries. We approach this by first
building metamodels for predicting model attributes, and then evaluating their
performance on black-box models. Our main approach, metamodel, is described in
Figure In a nutshell, the metamodel is a classifier of classifiers. Specifically, The
metamodel submits n query inputs [x'] ?:1 to a black box model f; the metamodel

takes corresponding model outputs [f(x')] ?:1 as an input, and returns predicted
model attributes as output. As we will describe in detail, the metamodel not only
learns to infer model attributes from query outputs from a static set of inputs,
but also searches for query inputs that are designed to extract greater amount of
information from the target models.

In this section, our main methods are introduced in the context of MNIST digit
classifiers. While MNIST classifiers are not fully representative of generic learned
models, they have a computational edge: it takes only five minutes to train each
of them with reasonable performance. We could thus prepare a diverse set of 11k
MNIST classifiers within 40 GPU days for the meta-training and evaluation of our
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Figure 8.1: Overview of our approach.

metamodels. We stress, however, that the proposed approach is generic with respect
to the task, data, and the type of models. We also focus on 12 model attributes (Table
that cover hyperparameters for common neural network MNIST classifiers, but
again the range of predictable attributes are not confined to this list.

8.2.1 Collecting a dataset of classifiers

We need a dataset of classifiers to train and evaluate metamodels. We explain
how MNIST-NETS has been constructed, a dataset of 11k MNIST digit classifiers; the
procedure is task and data generic.

Base network skeleton. Every model in MNIST-NETS shares the same convnet
skeleton architecture:

N conv blocks — M fc blocks — 1 linear classifier. (8.1)
Each conv block has the following structure:
ks x ks convolution — optional 2 x 2 max-pooling — non-linear activation, (8.2)

where ks (kernel size) and the activation type are to be chosen. Each fc block has the
structure:

linear mapping — non-linear activation — optional dropout. (8.3)

This convnet structure already covers many LeNet (LeCun et al., [1998) variants, one
of the best performing architectures on MNISTP

Increasing diversity. In order to learn generalisable features, the metamodel needs
to be trained over a diverse set of models. The base architecture described above
already has several free parameters like the number of layers (N and M), the existence
of dropout or max-pooling layers, or the type of non-linear activation.

Apart from the architectural hyperparameters, we increase diversity along two
more axes — optimisation process and the training data. Along the optimisation axis,

2%http:/ /yann.lecun.com/exdb/mnist/
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Code Attribute Values
act Activation RelLU, PRelLU, ELU, Tanh
@ drop Dropout Yes, No
g pool  Max pooling  Yes, No
L ks Conv ker. size 3,5
é #conv  #Conv layers 2,3, 4
< #fc #FC layers 2,3, 4
#par  #Parameters 214 ... 22
__ens Ensemble Yes, No
®, alg  Algorithm SGD, ADAM, RMSprop
O bs Batch size 64, 128, 256
% split  Data split Ally, Halfy /1, Quartery /1 /2,3
i size Data size All, Half, Quarter

Table 8.1: MNIST classifier attributes. Italicised attributes are derived from other attributes.

we vary optimisation algorithm (SGD, ADAM, or RMSprop) and the training batch
size (64, 128, 256). We also consider training MNIST classifiers on either on the entire
MNIST training set (Allp, 60k), one of the two disjoint halves (Halfy /1, 30k), or one
of the four disjoint quarters (Quartery/q /5 /3, 15k).

See Table(8.1/for the comprehensive list of 12 model attributes altered in MNIST-NETS.
The number of trainable parameters (#par) and the training data size (size) are not di-
rectly controlled but derived from the other attributes. We also augment MNIST-NETS
with ensembles of classifiers (ens), whose procedure will be described later.

Sampling and training. The number of all possible combinations of controllable
options in Table is 18,144. We also select random seeds that control the ini-
tialisation and training data shuffling from {0,---,999}, resulting in 18,144,000
unique models. Training such a large number of models is intractable; we have
sampled (without replacement) and trained 10,000 of them. All the models have
been trained with learning rate 0.1 and momentum 0.5 for 100 epochs. It takes
around 5 minutes to train each model on a GPU machine (GeForce GTX TITAN);
training of 10k classifiers has taken 40 GPU days.

Pruning and augmenting. In order to make sure that MNIST-NETS realistically
represents commonly used MNIST classifiers, we have pruned low-performance
classifiers (validation accuracy< 98%), resulting in 8,582 classifiers. Ensembles of
trained classifiers have been constructed by grouping the identical classifiers (modulo
random seed). Given t identical ones, we have augmented MNIST-NETS with 2, - - -, ¢
combinations. The ensemble augmentation has resulted in 11,282 final models. See
Table (8.2 for statistics of attributes — due to large sample size all the attributes are
evenly covered. The corresponding classification accuracies also do not correlate
much with the attributes. We thus make sure that the classification accuracy alone
cannot be a strong cue for predicting attributes.
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arch/act arch/drop  arch/pool  arch/ks arch/#conv arch/#fc
Tanh PReLU ReLU ELU  Yes No Yes No 5 3 2 3 4 2 3 4
Ratio 248 249 253 251 498 503 499 502 503 49.7 340 334 327  33.1 335 334
max 994 994 995 994 995 994 99-4 995 99-5 9944 994 994 995 994 994 99-5
median 98.6 987 987 987 98.7 98.6 98.7 98.5 98.7 98.6  98.6 98.7 98.7  98.7 98.6 98.6
mean 986 987 987 987 987 98.6 98.7 98.6 98.7 98.6  98.6 98.7 98.7  98.7 98.6 98.6
min 980 98.0 980 980 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0
opt/alg opt/bs data/size
RMSprop ADAM SGD 64 128 256 all half quarter

Ratio 33.8 32.5 33.7 32.9 33.6 33.7 14.8 28,5 56.8

max 99-2 994 995 993 994 995 995 993 991

median 98.6 98.7  98.7 98.6 98.7 98.7 99.0 98.8 0985

mean 98.6 98.7 98.7 98.6 98.7 98.6  98.9 98.8 985

min 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0

Table 8.2: Distribution of attributes in MNIST-NETS, and attribute-wise classification perfor-
mance (on MNIST validation set).

Train-eval splits. Attribute prediction can get arbitrarily easy by including the
black-box model (or similar ones) in the meta-training set. We introduce multiple
splits of MNIST-NETS with varying requirements on generalization. Unless stated
otherwise, every split has 5,000 training (meta-training), 1, 000 testing (black box),
and 5, 282 leftover models.

The Random (R) split randomly (uniform weights) assigns training and test
splits, respectively. Under the R split, the training and test models come from the
same distribution. We introduce harder Extrapolation (E) splits. We separate a few
attributes between the training and test splits. They are designed to simulate more
difficult domain gaps when the meta-training models are significantly different from
the black box. Specific examples of E splits will be shown in

8.2.2 Training metamodels

The metamodel predicts the attribute of a black-box model g in the test split by
submitting n query inputs and observing the outputs. It is trained over meta-
training models f in the training split (f ~ F). We propose three approaches for the
metamodels — we collectively name them kennenf"| See Figure [8.2]for an overview.

kennen-o: reason over output. kennen-o first selects a fixed set of queries [x];_1...,
from a dataset. Both during training and testing, always these queries are submitted.
kennen-o learns a classifier mg to map from the order-sensitively concatenated n
query outputs, [f(x)]i=1..., (n x 10 dim for MNIST), to the simultaneous prediction

*Tkennen means “to know” in German, and “to dig out” in Korean.
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Figure 8.2: Training procedure for metamodels kennen-o (top) and kennen-i (bottom).

of 12 attributes in f. The training objective is:

12

Y. L (mg ([f(xi) i:1> rf)] (8.4)

a=1

min [E
0 foF

where F is the distribution of meta-training models, y” is the ground truth label
of attribute a, and L is the cross-entropy loss. With the learned parameter 0,
mg ([g(x")]™,) gives the prediction of attribute a for the black box g.

In our experiments, we model the classifier my via multilayer perceptron (MLP)
with two hidden layers with 1000 hidden units. The last layer consists of 12 parallel
linear layers for a simultaneous prediction of the attributes. In our preliminary
experiments, MLP has performed better than the linear classifiers. The optimisation
problem in Equation 8.4)is solved via SGD by approximating the expectation over
f ~ FF by an empirical sum over the training split classifiers for 200 epochs.

For query inputs, we have used a random subset of # images from the validation
set (both for MNIST and ImageNet experiments). The performance is not sensitive
to the choice of queries. Next methods (kennen-i/io) describe how to actively craft
query inputs, potentially outside the natural image distribution.

Note that kennen-o can be applied to any type of model (e.g. non-neural networks)
with any output structure, as long as the output can be embedded in an Euclidean
space. We will show that this method can effectively extract information from f even

if the output is a top-k ranking.
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Figure 8.3: kennen-i crafted inputs and their performances. E.g. with 94.8% chance a black

“_r “_

box will predict the middle image as “1” if it has max-pooling layers; “0” otherwise.

kennen-i: craft input. kennen-i crafts a single query input & over the meta-training
models that is trained to re-purpose a digit classifier f into a model attribute
classifier for a single attribute a. The crafted input drives the classifier to leak internal
information via digit prediction. The learned input is submitted to the test black-box
model g, and the attribute is predicted by reading off its digit prediction g(&). For
example, kennen-i for max-pooling layer prediction crafts an input x that is predicted
as “1” for generic MNIST digit classifiers with max-pooling layers and “0” for ones
without. See Figure 8.3| for visual examples.

We describe in detail how kennen-i learns this input. The training objective is:

min E_[£(f(x),y") (8.5

x:image f~F

where f(x) is the 10-dimensional output of the digit classifier f. The condition
x : image ensures the input stays a valid image x € [0,1]P with image dimension
D. The loss L, together with the attribute label y* of f, guides the digit prediction
f(x) to reveal the attribute a instead. Note that the optimisation problem is identical
to the training of digit classifiers except that the ground truth is the attribute label
rather than the digit label, that the loss is averaged over the models instead of the
images, and that the input x instead of the model f is optimised. With the learned
query input ¥, the attribute for the black box g is predicted by g(%). In particular,
we do not use gradient information from g.

We initialise x with a random sample from the MNIST validation set (random
noise or uniform gray initialisation gives similar performances), and run SGD for
200 epochs. For each iteration x is truncated back to [0,1]P to enforce the constraint.

While being simple and effective, kennen-i can only predict a single attribute at
a time, and cannot predict attributes with more than 10 classes (for digit classifiers).
kennen-io introduced below overcomes these limitations. kennen-i may also be
unrealistic when the exploration needs to be stealthy: it submits unnatural images
to the system. Also unlike kennen-o, kennen-i requires end-to-end differentiability
of the training models f ~ F, although it still requires only black-box access to test
models g.

kennen-io: combined approach. We overcome the drawbacks of kennen-i that it
can only predict one attribute at a time and that the number of predictable classes by
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attaching an additional interpretation module on top of the output. Our final method

kennen-io combines kennen-i and kennen-o approaches: both input generator and

output interpreters are used. Being able to reason over multiple query outputs via

MLP layers, kennen-io supports the optimisation of multiple query inputs as well.
Specifically, the kennen-io training objective is given by:

Y- £ (m (1PN ,yﬂ)] . 5.6)

a=1

min min [E

[x]?_,:images 0 f~F

Note that the formulation is identical to that for kennen-o (Equation [8.4), except
that the second minimisation problem regarding the query inputs is added. With
learned parameters 6 and [#]"_,, the attribute a for the black box g is predicted
by m ([g(%)]!_,). Again, we require end-to-end differentiability of meta-training
models f, but only the black-box access for the test model g.

To improve stability against covariate shift, we initialise mg with kennen-o for 200
epochs. Afterwards, gradient updates of [xi]?zl and 6 alternate every 50 epochs, for

200 additional epochs.
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We have introduced a procedure for constructing a dataset of classifiers (MNIST-NETS)
as well as novel metamodels (kennen variants) that learn to extract information from
black-box classifiers. In this section, we evaluate the ability of kennen to extract
information from black-box MNIST digit classifiers. We measure the class-balanced
attribute prediction accuracy for each attribute a in the list of 12 attributes in Table
8.1l

Attribute prediction. See Table|8.3|for the main results of our metamodels, kennen-o/i/1io,
on the Random split. Unless stated otherwise, metamodels are trained with 5,000
training split classifiers.

Given n = 100 queries with probability output, kennen-o already performs far
above the random chance in predicting 12 diverse attributes (73.4% versus 34.9% on
average); neural network output indeed contains rich information about the black
box. In particular, the presence of dropout (94.6%) or max-pooling (94.9%) has been
predicted with high precision. As we will see in outputs of networks trained
with dropout layers form clusters, explaining the good prediction performance.

It is surprising that optimisation details like algorithm (71.8%) and batch size
(50.4%) can also be predicted well above the random chance (33.3% for both). We
observe that the training data attributes are also predicted with high accuracy (71.8%
and 90.0% for size and split).

Comparing methods kennen-o/1i/io. Tableshows the comparison of kennen-o/i/io.
kennen-i has a relatively low performance (average 52.7%), but kennen-i relies on
a cheap resource: 1 query with single-label output. kennen-i is also performant at
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architecture optim data

Method  Output act drop pool ks #conv #fc #par ens alg bs  size split avg

Chance - 25.0 50.0 50.0 50.0 33.3 33.3 12.5 50.0 33.3 33.3 33.3 14.3  34.9

kennen-o  prob 80.6 94.6 94.9 84.6 67.1 773 41.7 540 71.8 504 73.8 90.0 73.4
kennen-o ranking  63.7 93.8 90.8 80.0 63.0 73.7 44.1 624 653 47.0 66.2 86.6 69.7
kennen-o bottom-1  48.6 80.0 73.6 64.0 48.9 63.1 28.7 52.8 53.6 41.9 45.9 51.4 54.4

kennen-o  top-1 31.2 56.9 58.8 49.9 38.9 33.7 19.6 50.0 36.1 35.3 33.3 30.7 39.5

kennen-i  top-1 43.5 77.0 94.8 885 54.5 41.0 32.3 46.5 45.7 37.0 42.6 20.3 527

kennen-io  score 88.4 95.8 99.5 97.7 80.3 80.2 45.2 60.2 79.3 54.3 84.8 95.6 8o.1

Table 8.3: Comparison of metamodel methods. See Table 8.1/ for the full names of attributes.
100 queries are used for every method below, except for kennen-i which uses a single query.
The “Output” column shows the output representation: “prob” (vector of probabilities for
each digit class), “ranking” (a sorted list of digits according to their likelihood), “top-1”
(most likely digit), or “bottom-1" (least likely digit).

predicting the kernel size (88.5%) and pooling (94.8%), attributes that are closely
linked to spatial structure of the input. We conjecture kennen-i is relatively effective
for such attributes. kennen-io is superior to kennen-o/1i for all the attributes with
average accuracy 80.1%.

Factor analysis. We examine potential factors that contribute to the successful
prediction of black box internal attributes. We measure the prediction accuracy of
our metamodels as we vary (1) the number of meta-training models, (2) the number
of queries, and (3) the quality of query output.

Number of training models. We have trained kennen-o with different number of
the meta-training classifiers, ranging from 100 to 5,000. See Figure (left) for
the trend. We observe a diminishing return, but also that the performance has not
saturated — collecting larger meta-training set will improve the performance.

number of queries. See Figure 8.4/ (middle) for the kennen-o performance against
the number of queries with probability output. The average performance saturates
after ~ 500 queries. On the other hand, with only ~ 100 queries, we already retrieve
ample information about the neural network.

Quality of output. Many black-box models return top-k ranking (e.g. Facebook
face recogniser), or single-label output. We represent top-k ranking outputs by
assigning exponentially decaying probabilities up to k digits and a small probability
€ to the remaining.

See Table |8.3| for the kennen-o performance comparison among 100 probability,
top-10 ranking, bottom-1, and top-1 outputs, with average accuracies 73.4%, 69.7%,
54.4%, and 39.5%, respectively. While performance drops with coarser outputs, when
compared to random chance (34.9%), 100 single-label bottom-1 outputs already leak
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Figure 8.4: kennen-o performance against the size of meta-training set (left), number
of queries (middle), and quality of queries (right). Unless stated otherwise, we use 100
probability outputs and 5k models to train kennen-o. Each curve is linearly scaled such that
random chance (o training data, o query, or top-o) performs 0%, and the perfect predictor
performs 100%. Legends for curves are given in Figure
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Figure 8.5: Performance of kennen-io with different number of queries (Left) and size of
training set (Right). The curves are linearly scaled per attribute such that random chance
performs 0%, and perfect predictor performs 100%.

a great amount of information about the black box (54.4%). It is also notable that
bottom-1 outputs contain much more information than do the top-1 outputs; note
that for high-performance classifiers top-1 predictions are rather uniform across
models and thus have much less freedom to leak auxiliary information. Figure
(right) shows the interpolation from top-1 to top-10 (i.e. top-9) ranking. We observe
from the jump at k = 2 that the second likely predictions (top-2) contain far more
information than the most likely ones (top-1). For k > 3, each additional output
label exhibits a diminishing return.

More kennen-io results. We present additional kennen-io results. See Figure
Similarly for kennen-o, kennen-io shows a diminishing return as the number
of training models and the number of queries increase. While the performance
saturates with 1,000 queries, it does not fully saturate with 5,000 training samples.
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kennen-

Split Train Test 0 io

R - - 100 100
E-#conv 2,3 4 87.5 92.0
E-#conv-#fc 2,3 4 77.1 80.7
E-alg SGD,ADAM RMSprop 83.0 88.5
E-alg-bs 64,128 256 64.2 70.0
E-Split Quartery/q Quarter; /3 83 .5 89.3
E-size Quarter Half,All 81. 7 86.8
Chance - - 0.0 0.0

Table 8.4: Normalised accuracies (see text) of kennen-o and kennen-io on R and E splits. We
denote E-split with splitting attributes attr1 and attrz as “E-attr1-attr2”. Splitting criteria are
also shown. When there are two splitting attributes, the first attribute inherits the previous
row criteria.

8.3.1  What if the black-box is quite different from meta-training models?

So far we have seen results on the Random (R) split. In realistic scenarios, the meta-
training model distribution may not be fully covering possible black box models. We
show how damaging such a scenario is through Extrapolation (E) split experiments.

Evaluation. E-splits split the training and testing models based on one or more
attributes (§8.2.1). For example, we may assign shallower models (#layers < 10) to
the training split and deeper ones (#layers >10) to the testing split. In this example,
we refer to #layers as the splitting attribute. Since for an E-split, some classes of the
splitting attributes have zero training examples, we only evaluate the prediction
accuracies over the non-splitting attributes. When the set of splitting attributes is
A, a subset of the entire attribute set A, we define E-split accuracy or E.Acc(A) to
be the mean prediction accuracy over the non-splitting attributes A \ A. For easier
comparison, we report the normalised accuracy (N.Acc) that shows the how much
percentage of the R-split accuracy is achieved in the E-split setup on the non-splitting
attributes A \ A. Specifically:

N.Acc(4) = LrAce(A) = Chance(d) 00 (8.7)
R.Acc(A) — Chance(A)

where R.Acc(A) and Chance(A) are the means of the R-split and Chance-level
accuracies over A \ A. Note that N.Acc is 100% if the E-split performance is at the
level of R-split and 0% if it is at chance level.

Results. The normalised accuracies for R-split and multiple E-splits are presented
in Table We consider three axes of choices of splitting attributes for the E-split:
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architecture (#conv and #fc), optimisation (alg and bs), and data (size). For example,
“E-#conv-#{c” row presents results when metamodel is trained on shallower nets (2
or 3 conv/fc layers each) compared to the test black box model (4 conv and fc layers
each).

Not surprisingly, E-split performances are lower than R-split ones (N.Acc <
100%); it is advisable to cover all the expected black-box attributes during meta-
training. Nonetheless, E-split performances of kennen-io are still far above the chance
level (N.Acc > 70% > 0%); failing to cover a few attributes during meta-training is
not too damaging.

Comparing kennen-o and kennen-io for their generalisability, we observe that
kennen-io consistently outperforms kennen-o under severe extrapolation (around 5
pp better N.Acc). It is left as a future work to investigate the intriguing fact that
utilising out-of-domain query inputs improves the generalisation of metamodel.

8.3.2 Why and how does metamodel work?

It is surprising that metamodels can extract inner details with great precision and
generalisability. This section provides a glimpse of why and how this is possible via
metamodel input and output analyses. Full answers to those questions is beyond
the scope of this work.

Metamodel input (t-SNE). We analyse the inputs to our metamodels (i.e. query
outputs from black-box models) to convince ourselves that the inputs do contain
discriminative features for model attributes. As the input is high dimensional (1000
when the number of queries is n = 100), we use the t-SNE (van der Maaten and
Hinton, 2008)) visualisation method. First, 1000 test-split (Random split) black-box
models are collected. For each model, 100 query images are passed (sampled
at random from MNIST validation set), resulting in 100 x 10 dimensional input
data points. t-SNE embeds high dimensional data points onto the 2-dimensional
plane such that the pairwise distances are best respected. We then colour-code the
embedded data points according to the model attributes. Clusters of same-coloured
points indicate highly discriminative features.

The visualisation of input data points are shown in Figures and for
kennen-o and kennen-io, respectively. In the case of kennen-o, we observe that some
attributes form clear clusters in the input space — e.g. Tanh in act, binary dropout
attribute, and RMSprop in alg. For the other attributes, however, it seems that
the clusters are too complicated to be represented in a 2-dimensional space. For
kennen-io (Figure [8.7), we observe improved clusters for pool and ks. By submitting
crafted query inputs, kennen-io induces query outputs to be better clustered, in-
creasing the chance of successful prediction. Since t-SNE is sensitive to initialisation,
we have run the embedding ten times with different random initialisations; the
qualitative observations are largely identical.
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Figure 8.6: Probability query output embedded into 2-D plane via t-SNE. The same
embedding is shown with different colour-coding for each attribute. These are the
inputs to the kennen-o metamodel.
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Figure 8.7: Probability query output embedded into 2-D plane via t-SNE. The same
embedding is shown with different colour-coding for each attribute. These are the inputs to
the kennen-io metamodel.
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Figure 8.8: Confusion matrices for kennen-o.
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Figure 8.9: Confusion matrices for kennen-io.
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Metamodel output (confusion matrix). We show confusion matrices of kennen-
o/io to analyse the failure modes. See Figures and For kennen-o and
kennen-io alike, we observe that the confusion occurs more frequently with similar
classes. For attributes #conv and #fc, more confusion occurs between (2,3) or (3,4)
than between (2,4). A similar trend is observed for #par and bs. This is a strong
indication that (1) there exists semantic attribute information in the neural network
outputs (e.g. number of layers, parameters, or size of training batch) and (2) the
metamodels learn semantic information that can generalise, as opposed to merely
relying on artifacts. This observation agrees with a conclusion of the extrapolation
experiments in the metamodels generalise.

Compared to those of kennen-o, kennen-io confusion matrices exhibit greater
concentration of masses both on the correct class (diagonals) and among similar
attribute classes (1-off diagonals for #conv, #fc, #par, bs, and size). The former
re-confirms the greater accuracy, while the latter indicates the improved ability to
extract more semantic and generalisable features from the query outputs. This, again,
agrees with §8.3.1f kennen-io generalises better than kennen-o.

8.3.3 Discussion

We have verified through our novel kennen metamodels that black-box access to
a neural network exposes much internal information. We have shown that only
100 single-label outputs already reveal a great deal about the black boxes. When
the black-box classifier is quite different from the meta-training classifiers, the
performance of our best metamodel — kennen-io— decreases; however, the prediction
accuracy for black box internal information is still surprisingly high.

84 REVERSE-ENGINEERING AND ATTACKING IMAGENET CLASSIFIERS

While MNIST experiments are computationally cheap and a massive number of
controlled experiments is possible, we provide additional ImageNet experiments for
practical implications on realistic image classifiers. In this section, we use kennen-o
introduced in to predict a single attribute of black-box ImageNet classifiers —
the architecture family (e.g. ResNet or VGG?). In this section, we go a step further
to use the extracted information to attack black boxes with adversarial examples.

8.4.1 Dataset of ImageNet classifiers

It is computationally prohibitive to train O(10k) ImageNet classifiers from scratch as
in the previous section. We have resorted to 19 PyTorchf| pretrained ImageNet classi-
tiers. The 19 classifiers come from five families: Squeezenet, VGG, VGG-BatchNorm,
ResNet, and DenseNet, each with 2, 4, 4, 5, and 4 variants, respectively (Iandola

*?https:/ / github.com/pytorch
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S (2016) V (2014) B (2015) R (2015) D (2016)
L Lightweight ~ Conv layers followed VGG with batch Very deep convnet ResNet with dense
Description e . . . . .
convnet by fc layers normalisation with residual connections  residual connections
Members V1.0 VI.1 11 13 16 19 11 13 16 19 18 34 50 101 152 121 161 169 201
Top-5 error 19.6 194 11.4 108 9.6 9.1 102 9.6 85 82 109 86 71 64 59 78 6.2 7.0 64
log;, #params 6.1 6.1 81 81 81 82 81 8.1 81 8.2 71 73 74 76 78 69 73 75 7.2

Table 8.5: Details of ImageNet classifiers. We describe each family Squeezenet, VGG,
VGG-BatchNorm, ResNet, and DenseNet verbally, and show key model statistics for each
member in the family.

et al., |2016; Simonyan and Zisserman, 2015} loffe and Szegedy, |2015; He et al., |2016;
Huang et al., |2017a)). See Table for the the summary of the 19 classifiers. We
observe intra-family diversity (e.g. R) and inter-family similarity (e.g. between V
and B) in terms of the top-5 validation error and the number of trainable parameters.
The family prediction task is not as trivial as e.g. simply inferring the performance.

8.4.2 Classifier family prediction

We predict the classifier family (S, V, B, R, D) from the black-box query output,
using the method kennen-o, with the same MLP architecture (§8.2). kennen-i and
kennen-io have not been used for computational reasons, but can also be used in
principle. We conduct 10 cross validations (random sampling of single test network
from each family) for evaluation. We also perform 10 random sampling of the
queries from ImageNet validation set. In total 100 random tries are averaged.
Results: compared to the random chance (20.0%), 100 queries result in high

kennen-o performance (90.4%). With 1,000 queries, the prediction performance is
even 94.8%.

8.4.3 Attacking ImageNet classifiers

In this section we attack ImageNet classifiers with adversarial image perturbations
(AIPs). We show that the knowledge about the black box architecture family makes
the attack more effective.

Adversarial image perturbation (AIP). AIPs are carefully crafted additive pertur-
bations on the input image for the purpose of misleading the target model to predict
wrong labels (Goodfellow et al.}, 2015). Among variants of AIPs, we use efficient and
robust GAMAN (Chapter[7). See Figure for examples of AIPs; the perturbation
is nearly invisible.

Transferability of AIPs. Typical AIP algorithms require gradients from the target
network, which is not available for a black box. Mainly three approaches for
generating AIPs against black boxes have been proposed: (1) numerical gradient, (2)
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Figure 8.10: AIP for an ImageNet classifier. The perturbations are generated at L, =
1x107%

Target family
Gen S V B R D
Clean 38 32 28 30 29
5 64 49 45 39 35
\Y% 62 96 96 57 52
B 50 85 95 47 44
R 64 72 78 87 77
D 58 63 70 76 90
Ens 70 93 93 75 8o

Table 8.6: Transferability of AIPs within and across families. We report the misclassification
rates.

avatar network, or (3) transferability. We show that our metamodel strengthens the
transferability based attack.

We hypothesize and empirically show that AIPs transfer better within the archi-
tecture family than across. Using this property, we first predict the family of the
black box (e.g. ResNet), and then generate AIPs against a few instances in the family
(e.g. ResNet101, ResNet152). The generation of AIPs against multiple targets has
been proposed by |Liu et al.| (2017a), but we are the first to systemically show that
AlPs generalise better within a family when they are generated against multiple
instances from the same family.

We first verify our hypothesis that AIPs transfer better within a family. Within-
family: we do a leave-one-out cross validation — generate AIPs using all but one
instances of the family and test on the holdout. Not using the exact test black box,
this gives a lower bound on the within-family performance. Across-family: still leave
out one random instance from the generating family to match the generating set size
with the within-family cases. We also include the use-all case (Ens): generate AIPs
with one network from each family.

See Table for the results. We report the misclassification rate, defined as
100—top-1 accuracy, on 100 random ImageNet validation images. We observe that
the within-family performances dominate the across-family ones (diagonal entries
versus the others in each row); if the target black box family is identified, one can
generate more effective AIPs. Finally, trying to target all network (“Ens”) is not as
effective as focusing resources (diagonal entries).
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Scenario Generating nets MC(%)
White box Single white box 100.0
Family black box GT family 86.2
Black box whitened Predicted family 85.7
Black box Multiple families 82.2

Table 8.7: Black-box ImageNet classifier misclassification rates (MC) for different approaches.

Metamodel enables more effective attacks. We empirically show that the reverse-
engineering enables more effective attacks. We consider multiple scenarios. “White
box” means the target model is fully known, and the AIP is generated specifically
for this model. “Black box” means the exact target is unknown, but we make a
distinction when the family is known (“Family black box”).

See Table [8.7] for the misclassification rates (MC) in different scenarios. When the
target is fully specified (white box), MC is 100%. When neither the exact target nor
the family is known, AIPs are generated against multiple families (82.2%). When
the reverse-engineering takes place, and AIPs are generated over the predicted
family, attacks become more effective (85.7%). We almost reach the family-oracle
case (86.2%).

8.4.4 Discussion

Our metamodel can predict architecture families for ImageNet classifiers with high
accuracy. We additionally show that this reverse-engineering enables more focused
attack on black-boxes.

8.5 CONCLUSION

We have presented first results on the inference of diverse neural network attributes
from a sequence of input-output queries. Our novel metamodel methods, kennen,
can successfully predict attributes related not only to the architecture but also to
training hyperparameters (optimisation algorithm and dataset) even in difficult
scenarios (e.g. single-label output, or a distribution gap between the meta-training
models and the target black box).

Using kennen, we can increase the manipulator’s knowledge only through a
sequence of queries. This shows that manipulator’s ability may have been under-
estimated against black boxes. From security point of view, this chapter exposes
new vulnerabilities of black-box neural networks to stealing attacks and adversarial
perturbation attacks. From privacy point of view, this will enable more successful
identity obfuscation against black-box person recognition models.



EXPLOITING SALIENCY FOR OBJECT SEGMENTATION
FROM IMAGE LEVEL LABELS

of how to extract knowledge from a model. Using techniques to extract

high-confidence object location information from an image classifier, we train
a semantic segmentation network that bypasses the need for collecting expensive
pixel-level annotations. Since obtaining the full extent of the objects is not possible
with only a classifier, we propose using saliency as prior knowledge on the object
extent. We show how to combine both information sources in order to recover 80%
of the fully supervised performance, the new state of the art in weakly supervised
training for pixel-wise semantic labelling.

THis chapter is an interlude chapter, but is connected to the general question

The chapter is based on the paper Oh et al. (2017b). As the first author, Seong
Joon Oh has conducted most of the experiments and has written the conference
version of the manuscript. The weakly supervised saliency network in and
related experiments are contributed by Dr Anna Khoreva (co-author).

9.1 INTRODUCTION

Semantic image labelling provides a rich information about scenes, but comes at
the cost of requiring pixel-wise labelling to generate training data. The accuracy of
convnet-based models the correlates strongly with the amount of available training
data. Collecting and annotating data has become a bottleneck for progress. This
problem has raised interest in exploring partially supervised data or different means
of supervision, which represents different trade-offs between annotation efforts and
yield in terms of supervision signal for the learning task. For tasks such as semantic
segmentation there is a need to investigate what is the minimal supervision needed
to reach quality comparable to the fully supervised case.

A reasonable starting point considers that all training images have image-level
labels to indicate the presence or absence of the classes of interest. The weakly
supervised learning problem can be seen as a specific instance of learning from
constraints (Shcherbatyi and Andres| 2016 Xu et al} 2015). Instead of explicitly
supervising the output, the available labels provide a constraint on the desired
output. If an image label is absent, no pixel in the image should take that label;
if an image label is present at least in one pixel the image must take that label.
However, the objects of interest are rarely single pixel. Thus to enforce larger output
regions size, shape, or appearance priors are commonly employed (either explicitly
or implicitly).

149
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Figure 9.1: We train a semantic labelling network with (a) image-level labels and (b) saliency
masks, to generate (c) a pixel-wise labelling of object classes at test time.

Another reason for exploiting priors, is the fact that the task is fundamentally
ambiguous. Strongly co-occurring categories (such as train and rails, sculls and oars,
snow-bikes and snow) cannot be separated without additional information. Because
additional information is needed to solve the task, previous work has explored
different avenues, including class-specific size priors (Pathak et al., |2015a), crawling
additional images (Pinheiro and Collobert, 2015; Wei et al., 2015), or requesting
corrections from a human judge (Kolesnikov and Lampert, |2016a} Saleh et al., |2016).

Despite these efforts, the quality of the current best results on the task seems
to level out at ~75% of the fully supervised case. Therefore, we argue that addi-
tional information sources have to be explored to complement the image level label
supervision — in particular addressing the inherent ambiguities of the task. In this
work, we propose to exploit class-agnostic saliency as a new ingredient to train for
class-specific pixel labelling; and show new state-of-the-art results on Pascal VOC
2012 semantic labelling with image label supervision.

We decompose the problem of object segmentation from image labels into two
separate ones: finding the object location (any point on the object), and finding the
object’s extent. Finding the object extent can be equivalently seen as finding the
background area in an image.

For object location we exploit the fact that image classifiers are sensitive to the
discriminative areas of an image. Thus training using the image labels enables to
find high confidence points over the objects classes of interest (we call these “object
seeds”), as well as high confidence regions for background. A classifier, however,
will struggle to delineate the fine details of an object instance, since these might not
be particularly discriminative.

For finding the object extent, we exploit the fact that a large portion of photos
aim at capturing a subject. Using class-agnostic object saliency we can find the
segment corresponding to some of the detected object seeds. Albeit saliency is noisy,
it provides information delineating the object extent beyond what seeds can indicate.
Our experiment show that this is an effective source of additional information. Our
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saliency model is itself trained from bounding box annotations only. At no point of
our pipeline accurate pixel-wise annotations are used.

In this chapter we provide an analysis of the factors that influence the seed
generation, explore the utility of saliency for the task, and report best known results
both when using image labels only and image labels with additional data. In
summary, our contributions are:

e We propose an effective method for combining seeds and saliency for the task
of weakly supervised semantic segmentation. Our method achieves the best
performance among the known works that utilise image level supervision with
or without additional external data.

e We compare recent seed methods side by side, and analyse the importance of
saliency towards the final quality.

9.1.1 Related work on weakly supervised semantic segmentation

The last years have seen a renewed interest on weakly supervised training. For
semantic labelling, different forms of supervision have been explored: image la-
bels (Pathak et al., |2015b,a} Papandreou et al., 2015; Pinheiro and Collobert, 2015}
Wei et al., 2015} Kolesnikov and Lampert, |2016b), points (Bearman et al., |2016)), scrib-
bles (Xu et al., |2015; |Lin et al., 2016), and bounding boxes (Dai et al., 2015} Papandreou
et al., 2015; Khoreva et al., 2017). In this work we focus on image labels as the main
form of supervision.

Object seeds. Multiple works have considered using a trained classifier (from
image level labels) to find areas of the image that belong to a given class, without
necessarily enforcing to cover the full object extent (high precision, low recall).
Starting from simple strategies such as “probing classifier with different image areas
occluded” (Zeiler and Fergus| |2014)), or back-propagating the class score gradient
on the image (Simonyan et al., 2014); significantly more involved strategies have
been proposed, mainly by modifying the back-propagation strategy (Springenberg
et al., 2015; | Zhang et al.,|2016; Shimoda and Yanai, 2016), or by solving a per-image
optimization problem (Cao et al.}, 2015). All these strategies provide some degree of
empirical success but lack a clear theoretical justification, and tend to have rather
noisy outputs.

Another approach considers modifying the classifier training procedure so as to
have it generate object masks as by-product of a forward-pass. This can be achieved
by adding a global a max-pooling (Pinheiro and Collobert, |2015) or mean-pooling
layer (Zhou et al.,2016) in the last stages of the classifier.

In this work we provide an empirical comparison of existing seeders, and explore
variants of the mean-pooling approach (Zhou et al), 2016) (§9.3).

Pixel labelling from image level supervision. Initial work approached this prob-
lem by adapting multiple-instance learning (Pathak ef al., 2015b) and expectation-
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maximization techniques (Papandreou et al., |2015), to the semantic labelling case.
Without additional priors only poor results are obtained. Using superpixels to
inform about the object shape helps (Pinheiro and Collobert, 2015} Xu ef al., 2015)
and so does using priors on the object size (Pathak et al., 2015a). |Kolesnikov and
Lampert (2016b) carefully uses CRFs to propagate the seeds across the image during
training, while Qi ef al. (2016)) exploits segment proposals for this.

Most methods compared propose each a new procedure to train a semantic
labelling convnet. One exception is Shimoda and Yanai| (2016) which fuses at test
time guided back-propagation (Springenberg et al.| 2015) at multiple convnet layers to
generate class-wise heatmaps. They do this over a convnet trained for classification.
Being based on classifier, their output masks only partially capture the object extents,
as reflected in the comparatively low performance (Table [9.3).

Recognizing the ill-posed nature of the problem, Kolesnikov and Lampert| (2016a))
and Saleh et al.| (2016) propose to collect user-feedback as additional information to
guide the training of a segmentation convnet. The closest work to our approach is
Wei et al.| (2015), which also uses saliency as a cue to improve weakly supervised
semantic segmentation. There are however a number of differences. First, they
use a curriculum learning to expose the segmentation convnet first with simple
images, and later with more complex ones. We do not need such curriculum, yet
reach better results. Second, they use a manually crafted class-agnostic saliency
method, while we use a deep learning based one (which provides better cues). Third,
their training procedure uses ~ 40k additional images of the classes of interest
crawled from the web; we do not use such class-specific external data. Fourth, we
report significantly better results, showing in better light the potential of saliency as
additional information to guide weakly supervised semantic object labelling.

The seminal work |Vezhnevets et al.| (2011) proposed to use “objectness” map from
bounding boxes to guide the semantic segmentation. By using bounding boxes,
these maps end up being diffuse; in contrast, our saliency map has sharp object
boundaries, thus giving more precise guidance to the semantic labeller.

Detection boxes from image level supervision. Detecting object boxes from im-
age labels has similar challenges as pixel labelling. The object location and extent
need to be found. State of the art techniques for this task (Bilen and Vedaldi, 2016;
Teh et al., 2016; Kantorov ef al., 2016) learn to re-score detection proposals using two
stream architectures that once trained separate “objectness” scores from class scores.
These architecture echo with our approach, where the seeds provide information
about the class scores at each pixel (albeit with low recall for foreground classes),
and the saliency output provides a per-pixel (class agnostic) “objectness” score.

Saliency. Image saliency has multiple connotations, it can refer to a spatial prob-
ability map of where a person might look first (Yamada et al., |2010), a probability
map of which object a person might look first (Li ef al., 2014b), or a binary mask
segmenting the one object a person is most likely to look first (Boriji et al., [2015; Shi
et al., 2016). We employ the last definition in this paper. Note that this notion is
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class-agnostic, and refers more to the composition of the image, than the specific
object category.

Like most computer vision areas, hand-crafted methods (Jiang et al., |2013; Mar+
golin et al., |2013; Cheng et al., 2015) have now been surpassed by convnet based
approaches (Zhao et al., 2015; Li et al., 2016b; |Li and Yu, 2016) for object saliency. In
this paper we use saliency as an ingredient: improved saliency models would lead
to improved results for our method. We describe in our saliency model design,
trained itself in a weakly supervised fashion from bounding boxes.

Semantic labelling. Even when pixel-level annotations are provided (fully su-
pervised case), the task of semantic labelling is far from being solved. Multiple
convnet architectures have been proposed, including recurrent networks (Pinheiro
and Collobert, |2014)), encoder-decoders (Noh et al., 2015; Badrinarayanan et al., |2017),
up-sampling layers (Long et al., 2015a), using skip layers (Bansal et al., 2016), or
dilated convolutions (Chen et al., 2016, Yu and Koltun, 2016)), to name a few. Most
of them build upon classification architectures such as VGG (Simonyan and Zisser+
man, 2015) or ResNet (He ef al., 2016). For comparison with previous work, our
experiments are based on the popular DeepLab (Chen ef al., 2016)) architecture.

9.2 GUIDED SEGMENTATION ARCHITECTURE

While previous work has emphasised using sophisticated training losses, or more
involved architectures, we focus on saliency as an effective prior, and thus keep our
architecture simple.

We approach the image-level supervised semantic segmentation problem via
a system with two modules (see Figure [9.2), we name this architecture “Guided
Segmentation”. Given an image and image-level labels, the “guide labeller” module
combines cues from a seeder (§9.3) and saliency (§9.4) sub-modules, producing a
rough segmentation mask (the “guide”). Then a segmenter convnet is trained using
the produced guide mask as supervision. In this architecture the segmentation
convnet is trained in a fully-supervised procedure, using the traditional per pixel
softmax cross-entropy loss.

In and we explain how we build our guide labeller, by first generating
seeds (discriminative areas of objects of interest), and then extending them to better
cover the full object extents.
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Figure 9.2: High level Guided Segmentation architecture.

93 FINDING GOOD SEEDS

There has been recent burst of approaches to localise objects from a classifier. Some
approaches rely on image gradients from a trained classifier (Simonyan et al., 2014;
Springenberg et al., 2015; Zhang et al., 2016), while others propose to train a global
average pooling (GAP) based architectures as a classifier (Zhou et al., 2016). All the
classifier based localisation variants have a fundamental limitation in that there exists
a mismatch between the training objective (image classification) and the desired
output: the object locations. Nonetheless, they have proved to be effective.

In this section, we review the localisation approaches side by side and compare
their empirical performances. We report experimental results of different GAP
architectures (Zhou et al., 2016} Kolesnikov and Lampert, 2016bj Chen ef al.} [2016),
where we show that good architectural components for a classifier or segmenter may
not lead to a good GAP architecture.

9.3.1 Global average pooling (GAP)

GAP, or global average pooling layer, can be inserted in the last or penultimate
layer of a fully convolutional architecture to turn it into a classifier. The resulting
architecture is then trained with a classification loss, and at test time the activation
maps before the global average pooling layer have been shown to contain localisation
information (Zhou ef al., 2016).

In our analysis, we consider four different fully convolutional architectures with
a GAP layer: GAP-LowRes, GAP-HighRes, GAP-DeepLab, and GAP-ROI. A high-level
overview of architectural differences is introduced in Table GAP-LowRes (Zhou
et al., |2016) is essentially a fully convolutional version of VGG-16 (Simonyan and
Zisserman, [2015). GAP-HighRes is inspired by Kolesnikov and Lampert (2016b) and
has 2 times higher output resolution than GAP-LowRes. GAP-DeepLab is a semantic
segmenter DeepLab with a GAP layer over the dense score output. The main differ-
ence between GAP-HighRes and GAP-DeepLab is the presence of dilated convolutions,
used to significantly enlarge the field of view in DeepLab. Finally, we consider
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Figure 9.3: Comparing seeds techniques. Precision-recall curves.

GAP
-LowRes -HighRes -ROI -DeepLab
high res. X 4 v v
dil. conv. X X X v
ROI pool X X v X
mP 76.5 80.7 80.8 57.7
mAP 88.0 87.0 87.2 92.7

Table 9.1: Architectural comparisons with respect to output resolution, use of dilated
convolutions, and region of interest pooling. Mean precision (mP, see text for definition) and
classification mean Average Precision (mAP) results are reported.

GAP-ROI as a variant of GAP-HighRes where we use region of interest pooling to
replace sliding window convolutions in the last layers of VGG-16. GAP-ROI is meant
to be functionally equivalent to GAP-HighRes, but with a slight structural variation.
As we will see in the next section, this affects GAP’s behaviour.

9.3.2 Empirical study

Evaluation. We evaluate each method on the val set of the Pascal VOC 2012
(Everingham et al., 2012) segmentation benchmark. We measure the foreground and
background precision-recall curves for each variant. In the foreground case, we
compute the mean precision and recall over the 20 Pascal categories.

We define mean precision (mP) as a summary metric for the localisation metrics,
which averages the foreground precision at 20% recall and the background precision

P 0, +P 0 . .
at 80% recall: mP = reCFg@ZO/”JZF Be@0% Intuitively, for the FG region we only need
a small discriminative region, as saliency will fill in the extent. We thus care about
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Figure 9.4: Qualitative examples of GAP output for GAP-LowRes, GAP-HighRes, GAP-DeepLab,
and GAP-ROI.
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precision at ~20% recall. On the other hand, BG is more diverse and usually takes
a larger region; we thus care about precision at ~80% recall. Since we care about
both, we simply take the average (as is the case for the mAP metric). This metric has
shown a good correlation with the final performance in our preliminary experiments.

We also measure the classification performance in the standard mean average
precision (mAP) metric. Note that seeders are provided with the input image and its
ground truth image-level labels.

We compare the GAP architectures against the back-propagation family: Vanilla,
Guided, and Excitation back-propagation (Simonyan et al., 2014; Springenberg et al.|
2015} [Zhang et all [2016), as well as the centre mean shape baseline, which is a
no-image content baseline which predicts an average mask of the all ground truth
class instances.

Implementation details. We train all four GAP network variants for multi-label
image classification over the trainaug set of Pascal VOC 2012 (Hariharan et al., 2011).
At test time, we take the output per-class heatmaps before the GAP layer and
normalise them through dividing by the maximal per-class scores.

For the back-propagation based methods, we use a VGG-16 (Simonyan and
Zisserman, 2015) classifier network that has also been trained on the trainaug set of
Pascal VOC 2012 (10582 images in total). We take the maximal absolute gradient
value among the RGB channels on each pixel as the localisation signal (following
Simonyan et al. (2014)) and apply Gaussian smoothing. As final post-processing
we apply dense CRF (Krahenbiihl and Koltun, 2011)) to further smooth the seeder
output while respecting object boundaries.

In both GAP and backprop variants, we mark as background the pixels where all
per-class score values are bellow a given threshold 7, and remaining pixels take the
argmax class label.

Results. Refer to Figure|g.3|for the precision-recall curves. GAP variants in general
are better localisers than the backprop variants. We note that the Guided backprop
gives highest precision at a very low recall regime (~5%), but we find the recall to
be too low to be useful. Among the GAP methods, GAP-HighRes and GAP-ROI give
high precision over most of the recall range. Note that the GAP results depends
heavily on the architecture used. For example, GAP-DeepLab shows a significantly
lower quality than any other GAP variants despite being the best classifier.

The network matters for GAP. Table 9.1shows a more detailed view of the GAP
results. Despite all architectures being based on VGG-16 the mP results have high
fluctuations (GAP-HighRes: 80.7 mP, GAP-DeepLab: 57.7 mP), while there is no such
dramatic effect in the performance as classifiers (mAP). It is striking that GAP-DeepLab
is the best classifier, while giving the lowest performance in localisation when trained
with GAP. Thus better classifiers (even based on a semantic labelling network) do
not automatically make better seeders.

Along the architectural component dimensions, we observe that a higher reso-
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lution network performs better as a seeder than their lower resolution counterpart
(GAP-HighRes versus GAP-LowRes), while using a larger field of view through dilated
convolutions hurts the GAP performance (GAP-HighRes versus GAP-DeepLab). We
observe on-par performances between GAP-HighRes and GAP-ROL.

Figure shows example outputs of GAP variants chosen at random. All of
them, except for GAP-DeepLab, are qualitatively similar. For GAP-DeepLab, we observe
repeating patterns of stride that matches the overall stride of the DeepLab network
- we conjecture that the pattern and the bad performance is due to the dilation-
sparsified filters.

In the rest of the chapter, we use GAP-HighRes as the seeder module. In Kolesnikov
and Lampert (2016b), foreground and background seeds are handled via two differ-
ent mechanisms, in our experiments we simply treat all the non-foreground region
as background.

94 FINDING THE OBJECT EXTENT

Having generated a set of seeds indicating discriminative object areas, the guide
labeller needs to find the extent of the object instances (§9.2).

Without any prior knowledge, it is very hard, if not impossible, to learn the
extent of objects only from images and image-level labels only. Image-level labels
only convey information about commonly occurring patterns that are present in
images with positive tags and absent in images with negative tags. The system is
thus susceptible to strong inter-class co-occurrences (e.g. train with rail), as well as
systematic part occlusions (e.g. feet).

CRF and CRFLoss. A traditional approach to make labels match object boundaries
is to solve a CRF inference problem (Lafferty ef al., 2001; Krahenbiihl and Koltun,
2011) over the image grid, where pair-wise terms relate to the object boundaries. A
CRF can be applied at three stages: (1) on the seeds (crf-seed), (2) as a loss function
during segmenter convnet training (crf-loss) (Kolesnikov and Lampert, 2016b), and
(3) as a post-processing at test time (crf-postproc).

We have experimented with multiple combinations of those. Albeit some gains
are observed, these are inconsistent. For example GAP-HighRes and GAP-ROI provide
near identical classification and seeding performance (see Table in previous
section), yet using the same CRF setup provides 413 mloU percent points in one,
but only 47 pp on the other. In comparison our saliency approach (see below) will
provide +17 pp and +18 pp for these two networks respectively.

9.4.1 Saliency

Image saliency has multiple connotations: it can refer to a spatial probability map of
where a person might look first (Yamada ef al., |2010), a probability map of which
object a person might look at first (Li ef al.,|2014b), or a binary mask segmenting the
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(c) Low quality

Figure 9.5: Example of saliency maps on Pascal images.

one object a person is most likely to look first (Borji et al., 2015} Shi et al., 2016). We
employ the latter definition in this work. Note that this notion is class-agnostic, and
refers more to the composition of the image, than the specific object category.

In this chapter we propose to use object saliency to extract information about the
object extent. We work under the assumption that a large portion of the dataset is
intentional photographies, which is the case for most datasets crawled from the web
such as Pascal (Everingham et al., 2012) and COCO (Lin et al., 2014). If the image
contains a single label “dog”, chances are that the image is about a dog, and that
the salient object of the image is a dog. We use a convnet based saliency estimator
(detailed in which adds the benefit of translation invariance. If two locally
salient dogs appear in the image, both will be labelled as foreground.

When using saliency to guide semantic labelling at least two difficulties need
to be handled. For one, saliency per-se does not segment object instances. In the
example Figure the person-bike is well segmented, but person and bike are not
separated. Yet the ideal Guide labeller (Figure should give different labels to
these two objects. The second difficulty, clearly visible in the examples of Figure
is that the salient object might not belong to a category of interest (shirt instead of
person in Figure or that the method fails to identify any salient region at all
(Figure[9.5c). More random examples of our saliency model are in Figure

We measure the saliency quality when compared to the ground truth foreground
on the Pascal VOC 2012 validation set. Albeit our convnet saliency model is better
than hand-crafted methods (Jiang et al., |2013; Zhang et al., 2015a), in the end only
about 20% of images have reasonably good (IoU > 0.6) foreground saliency quality.
Yet, as we will see in this bit of information is already helpful for the weakly
supervised learning task.

Crucially, our saliency system is trained on images containing diverse objects
(hundreds of categories), the object categories are treated as “unknown”, and to
ensure clean experiments we handicap the system by removing any instance of
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Box annotations

Saliency result

Figure 9.6: Example of saliency results on its training data. We use MSRA box annotations
to train a weakly supervised saliency model. Note that the MSRA subset employed does not
contain Pascal categories.

Pascal categories in the object saliency training set. Our saliency model captures a
general notion of plausible foreground objects and background areas (more details

in §9.5.1).

On every Pascal training image, we obtain a class-agnostic foreground /background
binary mask from our saliency model, and high precision/low recall class-specific
image labels from the seeds model (§9.3). We want to combine them in such a way
that seed signals are well propagated throughout the foreground saliency mask. We
consider two baselines strategies to generate guide labels using saliency but no seeds
(Go and Gj), and then discuss how we combine saliency with seeds (G2).

Go Random class assignment. Given a saliency mask, we assign all foreground
pixels to a class randomly picked from the ground truth image labels. If a single
“dog” label is present, then all foreground pixels are “dog”. Two labels are present
(“dog, cat”), then all pixels are either dog or cat.

U1 Per-connected component classification. Given a saliency mask, we split it in
components, and assign a separate label for each component. The per-component
labels are given using a full-image classifier trained using the image labels (classifier

details in §9.5.1). Given a connected component mask R{ § (with pixel values 1:
foreground, 0: background), we compute the classifier scores when feeding the

original image (I), and when feeding an image with background zeroed (I ® R{ 8.

Region R{ ¢ will be labelled with the ground truth class with the greatest positive
score difference before and after zeroing.
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Figure 9.7: Extension of Figure Example of saliency results on Pascal images. We note
that the saliency often fails when the central, salient objects are non-Pascal or when the scene
is cluttered. Examples are chosen at random.
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Salient objects Saliency Salient objects Saliency
with boxes result with boxes result

Figure 9.8: Extension of Figure Examples of saliency results on its training data. We
use MSRA box annotations to train a weakly supervised saliency model. Note that the
MSRA subset employed is not biased towards the Pascal categories. Examples are chosen at
random.
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Figure 9.9: Guide labelling strategies example results. The image, its labels (“bicycle, chair”),
seeds, and saliency map are their input. White overlay indicates “ignore” pixel label.

G, Propagating seeds. Here, instead of assigning the label per connected compo-
nent R{ § using a classifier, we instead use the seed labels. We also treat the seeds
as a set of connected components (seed R}). Depending on how the seeds and the
foreground regions intersect, we decide the label for each pixel in the guide labeller
output.

Our fusion strategy uses five simple ideas. 1) We treat the seeds as reliable small
size point predictors of each object instance, but that might leak outside of the object.

2) We assume the saliency might trigger on objects that are not part of the classes of

interest. 3) A foreground connected component R{ ¢ should take the label of the seed
touching it, 4) If two (or more) seeds touch the same foreground component, then
we want to propagate all the seed labels inside it. 5) When in doubt, mark as ignore.

Figure 9.9| provides example results of the different guide strategies. For addi-
tional qualitative examples of seeds, saliency foreground, and generated labels, see
Figure With our guide strategies Gy, §1, and G, at hand, we now proceed to
empirically evaluate them in

0.5 EXPERIMENTS

We empirically evaluate our proposed method in this section. provides the
implementation details and the evaluation metric. compares our different
guide strategies amongst each other, and compares with previous work on
weakly supervised semantic labelling from image-level labels.
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9.5.1 Implementation details and evaluation

Seeder. The final results in Tables [9.2|and |9.3| are obtained using GAP-HighRes (see
, trained for image classification on the Pascal trainaug set (10582 images), an
extension of the original train set (1464 images) (Everingham et al., 2012} Hariharan
et al 2011)). This is the same procedure used by previous work on fully supervised
(Chen et al., 2016) and weakly supervised (Kolesnikov and Lampert, [2016b) semantic
segmentation. The test time foreground threshold 7 is set to 0.2, following the
previous literature (Zhou et al., 2016; Kolesnikov and Lampert, |2016b).

Saliency. Following Zhao et al.| (2015); Li et al.| (2016b); [Li and Yu| (2016)) we re-
purpose a semantic labelling network for the task of class-agnostic saliency. We train
a DeepLab-v2 ResNet network (Chen et al., 2016) over a subset of MSRA (Liu et al.,
2011), a saliency dataset with class agnostic bounding box annotations. We constrain
the training only to data samples of non-Pascal categories. Thus, the saliency model
does not leverage class specific features when Pascal images are fed. Out of 25k
MSRA images, 11 041 are selected after filtering.

MSRA provides bounding boxes (from multiple annotators) of the main salient
element of each image. To train the saliency model to output pixel-wise masks, we
follow the approach proposed in (Khoreva et al., 2017). We generate segments from
the MSRA boxes by applying grabcut over the average box annotation, and use these
as supervision for the DeepLab model. The model is trained as a binary semantic
labeller for foreground and background regions. The trained model generates masks
like the ones shown in Figure Although having been trained with images
with single salient objects, due to its convolutional nature the network can predict
multiple salient regions in the Pascal images.

At test time, the saliency model generates a heatmap of foreground probabilities.
We take pixels with > 50% of the maximal foreground probability as our saliency
foreground mask.

Segmenter. For comparison with previous work we use the DeepLabvi-LargeFOV
(Chen et al., 2016) architecture as our segmenter convnet. The network is trained on
the Pascal trainaug set with 10 582 images, using the output of the guide labeller (§9.2),
which uses only the image and presence-absence tags of the 20 Pascal categories as
supervision. The network is trained for 8k iterations.

Following the standard DeepLab procedure, at test time we up-sample the output
to the original image resolution and apply the dense CRF inference (Krahenbiihl
and Koltun, |2011). Unless stated otherwise, we use the CRF parameters used for
DeepLabvi-LargeFOV (Chen et al., |2016).

Gy Classifier. The guide labeller strategy G; uses an image classifier trained on
Pascal trainaug set. We use the VGG-16 architecture (Simonyan and Zisserman, 2015)
with a multi-label loss.
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Supervision val set

Method  Seeds Saliency FgP/R BgP/R mloU

Seeds only v X 69 37 81 05 38.7
Go X v 65 52 65 52 45.8

G1 X v 75 51 75 51 46.2

G v v 73 59 87 95 51.2
Saliency oracle v/ v 89 91 100 99 56.9

Table 9.2: Comparison of different guide labeller variants. Pascal VOC 2012 val set results,
without CRF post-processing. Fg/Bg P/R: are foreground /background precision and recall
of the guide labels. Discussion in

Evaluation. We evaluate our image-level supervised semantic segmentation system
on the Pascal VOC 2012 segmentation benchmark (Everingham et al., 2012). We
report all the intermediate results on the val set (1449 images) and only report the
final system result on the fest set (1456 images). Evaluation metric is the standard
mean intersection-over-union (mloU) measure.

9.5.2 Ingredients study

Table compares different guide strategies Gy, G1, U2, and oracle versions of G,.
The first row shows the result of training our segmenter using the seeds directly
as guide labels. This leads to poor quality (38.7 mloU). The “Supervision” column
shows recall and precision for foreground and background of the guide labels
themselves (training data for the segmenter). We can see that the seeds alone have
low recall for the foreground (37%). In comparison, using saliency only, Gg reaches
significantly better results, due to the guide labels having higher foreground recall
(52%, while keeping a comparable precision).

Adding a classifier on top of the saliency (Go — §1) provides only a negligible
improvement (45.8 — 46.2). This can be attributed to the fact that many Pascal
images contain only a single foreground class, and that the classifier might have
difficulties recognizing the masked objects. Interestingly, when using a similar
classifier to generate seeds instead of scoring the image (G; — G») we gain 5 pp
(percent points, 46.2 — 51.2). This shows that the details of how a classifier is used
can make a large difference.

Table |9.2| also reports a saliency oracle case on top of G,. If we use the ground
truth annotation to generate an ideal saliency mask we see a significant improvement
over G, (51.2 — 56.9). This shows that the quality of the saliency is an important
ingredient, and that there is room for further gains.

Figure contains examples of the guide labelling strategies Gy, G1, and Gy.
Go and G; give qualitatively similar results, while G, produces much more precise
labelling by exploiting rich localisation information from the seeds.
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Seeds Saliency

Figure 9.10: Extension of Figure Example results for three different guide labelling
strategies, Gy, G1, and G,. The image, its image labels, seeds, and saliency map are their
input. White labels indicate “ignore” regions. Examples are chosen at random.
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val set  test set

Method Citation Data mloU mloU FS%
o MIL-FCN  [Pathak et al.| (2015b) I+P 25.0 25.6 36.5
= CCNN Pathak et al.|(2015a) I+P 35.3 35.6 50.6
3 WSSL Papandreou et al.| (2015) I+P 38.2 39.6 56.3
< MIL+Seg Pinheiro and Collobert| (2015)  I+Ezg0x 42.0 40.6 57.8
< DCSM Shimoda and Yanai (2016) I+P 44.1 45.1 64.2
"o CheckMask [Saleh ef al| (2016) I+P 46.6 - -
2P SEC Kolesnikov and Lampert| (2016b) I+P 50.7 51.7 73.5
é AF-ss Qi et al.| (2016) I+P 51.6 - -
Seeds only Ours I+P 39.8 - -
§ CCNN Pathak et al. (2015a) [+P+Z - 451 64.2
£ STC Wei et al.| (2015) [+P+S+E4; 49.8 51.2 72.8
& CheckMask [Saleh et al.| (2016) I+P+u 51.5 - -
:§ MicroAnno Kolesnikov and Lampert| (2016a) I+P+u 51.9 53.2 75.7
g G Ours +P+S 488 - -
?5" Gy Ours I+P+S 55.7 56.7 80.6
= DeepLabv1 |Chen et al.| (2016) I+P gy 67.6 70.3 100

Table 9.3: Comparison of state-of-the-art methods, on Pascal VOC 2012 val and fest sets.
FS%: fully supervised percent. Ingredients: I: ImageNet classification pre-training, P: Pascal
image level tags, Pr,);: fully supervised case (pixel wise labels), E,: n extra images with
image level tags, S: saliency, Z: per-class size prior, y: human-in-the-loop micro-annotations.

9.5.3 Test set results and comparison

Table compares our results with previous related work. We group results by
methods that only use ImageNet pre-training and image-level labels (I, P, E; see
legend Table , and methods that use additional data or user-inputs. Here our Gy
and G, results include a CRF post-processing (crf-postproc). We also experimented
with crf-loss but did not find a parameter set that provided improved results.

We see that the guide strategies Gy, which uses saliency and random ground-
truth label, reaches competitive performance compared to methods using I+P only.
This shows that saliency by itself is already a strong cue. Our guide strategy G,
(which uses seeds and saliency) obtains the best reported results on this task?} We
even improve over other methods using saliency (STC) or using additional human
annotations (MicroAnno, CheckMask). Compared to a fully supervised DeepLabv1
model, our results reach 80% of the fully supervised quality.

Some qualitative results are presented in Figure We observe that the seeds
have high precision and low recall; combined with saliency foreground mask using
G, guide labeller, object extents are recovered. The generated guide labelling can
still be noisy; however, the segmenter convnet can average out the noise to produce
more precise predictions. CRF post-processing further refines the predictions.

23Qi et al| (2016) also report 54.3 val set results; however, we do not consider these results
comparable since they use the MCG scores (Pont-Tuset ef al., [2017), which are trained on the ground
truth Pascal segments.
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Result+CRF

Figure 9.11: Qualitative examples of the different stages of the Guided Segmentation system
on the training images. White labels are “ignore” regions.
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9.6 CONCLUSION

We have addressed the problem of training a semantic segmentation convnet from
image labels. Image labels alone can provide high quality seeds, or discriminative
object regions, but learning the full object extents is a hard problem. We have shown
that saliency is a viable option for obtaining the object extent information.

The proposed Guided Segmentation architecture (§9.2), where the “guide labeller”
combines cues from the seeds and saliency, can successfully train a segmentation
convnet to achieve state-of-the-art performance. Our weakly supervised results reach
80% of the fully supervised case.

We expect that a deeper understanding of the seeder methods and improvements
on the saliency model can lead to further improvements.






CONCLUSION AND FUTURE PERSPECTIVES

against learned models, focusing on its implications on privacy and

security relevant applications using visual data. This chapter summarises
key insights and techniques developed in the previous chapters. We close the thesis
with future perspectives and research directions.

WE have studied the significant and timely problem of data manipulation

10.1 KEY INSIGHTS AND CONCLUSIONS

In this section, we walk through each chapter, with a brief summary of key insights
and methodologies developed with regards to the privacy and security relevant
scenarios.

Data Manipulation Framework. In we have introduced the data manipula-
tion framework. The manipulator, characterised by the (1) goal, (2) leverage, and (3)
knowledge, transforms the input for a learned model to derive a desired outcome,
resulting in multiple privacy and security relevant scenarios. This framework has
provided a common perspective on the following chapters.

Part I: Privacy Analysis in Visual Data. We have studied the privacy implications
of data manipulation first. We have developed a state of the art person recognition
system based on deep neural networks (naeil) and studied the identifiability of
humans in personal photos, under natural domain shifts (e.g. cloth changes, Chapter
and intentional data degradation (e.g. face blurring, Chapter [4). Our experiments
show that naeil is robust against such image manipulations when contexts are avail-
able (e.g. body and scene regions or photo-album metadata). We have contributed
to raising alertness in publid®¥| and starting academic discussions in this crucial
interdisciplinary area (Chapter [2).

Part II: Privacy Solution in Visual Data. To address the privacy issues thus ex-
posed, we have presented identity obfuscation techniques to protect subjects ap-
pearing in photos. In Chapter |5, we have introduced a head inpainting technique
that generates plausible faces of non-existent identities. Our method has resulted in
more natural and effective identity obfuscation than face blurring or blacking-out. In
Chapter [7, we have proposed an image perturbation technique that nearly perfectly
obfuscates identities while modifying the data within a human-perception boundary.

24http:/ /www.dailymail.co.uk/sciencetech/article-3730045/Researchers-develop-Faceless-
Recognition-identify-hidden-faces-photos.html
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For this performance, indeed, we have required a strong assumption on the manipu-
lator’s knowledge on the target system, namely that the full gradient computation
should be accessible. Chapter [ discusses ways to relax this assumption through
game theory, whose main conclusions we discuss in the next paragraph.

Part III: Knowledge on Target Model. Knowledge matters for effective data ma-
nipulation. In Chapter [7}, we have observed that while the full specification of the
target model will enable effective data perturbations, an incomplete knowledge on
the target (e.g. candidate space) can still guarantee certain level of effectiveness. We
have employed a game theoretical analysis to obtain privacy guarantees for a user
employing the adversarial example based obfuscation techniques. In Chapter (8, we
discuss how one can increase knowledge about the target model only through a series
of queries (black-box access). We have developed model exposing techniques kennen
that learn the correlation between model internals (e.g. function class, optimisation
algorithm, and training data) and the input-output patterns. We have shown that the
knowledge thus obtained can craft more targeted adversarial examples. In Chapter
o) we have extracted knowledge on object locations from image classifiers to train a
dense labelling network. This model has achieved 80% of the pixel-wise supervised
performance with only image tag supervision.

10.2 FUTURE PERSPECTIVES

The realm of privacy and security problems in machine learning is vast. This thesis
has broaden the boundary of our understanding of the problem, but there remain
many unanswered questions and interesting opportunities. In this section, we
point to a few potential follow-up research topics as well as more long-term future
directions of the field.

10.2.1  Follow-up research topics
We introduce a few short-term research topics based on the thesis.

Gaining knowledge over time. In the data manipulation framework (§1.1), we
have not considered time: the utility function, leverage (strategy), and knowledge
level are assumed to be constant across time. In reality, knowledge is accumulated in
time: through iterations of actions and observations, an agent (manipulator) learns
about the environment (target model), e.g. by using kennen in Chapter [§). The
model may also accumulate knowledge on the manipulation, if the manipulation
patterns are regular. The study of equilibrium strategies for the involved agents is an
interesting future research direction. In this case, the optimal solution of the agent
will be an appropriate mixture of exploration (increasing knowledge), exploitation
(increasing utility), and randomisation (decrease knowledge for the opponent).
Optimal Control theory (Seierstad and Sydsaeter, 1986), Game theory (Nash et al.}
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1950), and Multi-agent reinforcement learning (lan, |1993) are relevant academic
fields.

Private information other than face. While we have focused on the face and
identity as crucial private information in the thesis, other they are not the only
private information: political viewpoints, demographic groups, and credit card
numbers can also be private. For companies, computer monitors and whiteboard
notes are often considered proprietary. Users will benefit from technologies that
protect various instances of private information in visual data. Orekondy et al.| (2017)
and Orekondy et al.|(2018) have made good steps towards this direction.

More manipulation spaces. The thesis and the field in general have mostly fo-
cused on additive data manipulations. For user privacy and model security applica-
tions, “small” perturbations are preferred (§1.1). This has been enforced by some
small L, norm, as a proxy to perceptual distance for humans. However, this pertur-
bation space excludes e.g. small translations and rotations of the image that result in
big L, distances but imperceptible changes. Such new types of manipulations are
new avenues for privacy protection (Part [lI) and new loopholes for model security
perspective (Part[[Il). We start to see researches in this direction (Xiao ef al., [2018;
Zeng et al., 2017; Kanbak et al., |2018)).

Components that will improve over time. Some of our techniques will auto-
matically improve in the future due to advances in underlying technologies and
computing power. For example, ongoing advances in image generation and image
inpainting (Karras et al.,|2018; Bora et al., 2018) are likely to improve the naturalness
of inpainting-based obfuscation (Chapter [5). Improvements in the performance and
efficiency of general neural network architectures (He et al., |2016; [Huang et al., |2017a)
will trickle down to applications like person recogniser (Chapter [3) and semantic
segmentation networks (Chapter [g).

10.2.2 Long-term perspectives

We provide long-term perspectives and discussions on machine learning, privacy,
and security.

Duality of user privacy and model security. The user privacy and model security
can be described as dual problems: both select a model-breaking data manipulation.
This zero-sum game between the two sides leads to the question: which side will win
as technology progresses? Can a learned model be free of any loophole? Or is there
a “robustness ceiling” for a model bounded to finite computational resources? We
do not have a good answer to those questions yet, although we see recent increase in
robust machine learning papers that attempt to address those questions.
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Semantics changing manipulation for user privacy. While the user privacy and
model security can be posed as dual, in many applications they do not necessarily
need to be. For model security, the attacks are required to not change the semantic
meaning of the input. On the other hand, from the user privacy perspective, the
obfuscation patterns are only required to be “pleasant” to users so that the data
are still usable for personal photo albums or social networks. These requirements
are neither equal nor strictly containing each other. In particular, even if a person
recogniser has achieved robustness within the semantic class (person identity), the
users still have room for natural yet semantics changing manipulations, such as
caricaturisation (Hassan et al., [2017) or head replacement (Chapter . Advances in
model security does not necessarily imply decrease in user privacy.

Robust models. There is an active ongoing research on the robustness of learned
models. Traditionally, learning theory has provided stochastic lower bounds on
performance on iid (Vapnik and Chervonenkis, [2015) or domain-shifted (Ben-David
et al., 2010) test data. With the discovery of adversarial examples, robust machine
learning is gaining more popularity. Instead of stochastic bounds, deterministic
guarantees on the performance are obtained around training data points (Hein and
Andriushchenko, 2017} Carlini et al., 2018; Sinha et al., |2018). While providing hard
lower bounds, their results do not generalise even to iid test samples yet. Given the
high dimensionality of data and parameter spaces, obtaining theoretical guarantees
and devising robust training procedures are highly challenging. A breakthrough in
this area, however, will be rewarding: numerous security-critical applications will
benefit from the scalability of machine learning.



LIST OF FIGURES

1.1 Privacy and security frameworkl. . . . .. ... 00000000 2
1.2 Adversarial examples|. . . .. ... oo o oo oo 3
[1.3 Obfuscationexamples| . ... ........................ 4
[3.1 Person recognition problem| . . . .. ... ... ... ... L. 23
3.2 PIPA split visualisation| . . . . ... ..................... 25
[3.3 PIPA detection versus annotation statistics| . . . .. ... ... ... .. 27
3.4 PIPA detectionexamples| . . . . .................. ... .. 27
3.5 Image regions for feature extraction] . . ... ......... ... ... 28
6 Effectof fine-tuning]. . . . . ... ... ... 29
3.7 Determining A|. . . .. ... ... .. ... ... .. 36
3.8 Relative accuracy across the time gap| . . . ... ............. 41
[3.9 Viewpoint-wise results| . . . . ... ... ... L 42
[3.10 Accuracy across viewpoints| . . . .. ..o 43
[3.11 Accuracy with respect to input resolution] . . . ... ... ... ... .. 44
[3-12 Accuracy with respect to training samples per identity] . . . . ... .. 45
[3.13 Per-identity accuracy statistics|. . . . . . ... ........ .. ... .. 45
.14 Openworldsetup| . . . . ... ... ... ... ... ... ... ... ... 47
.15 Open-worldresults| . . . ... ....... ... ... ... ... ........ 48
[3.16 Qualitativeexamples| . . . ... ... ... ... L 49
[3.17 Qualitative examples of failure cases| . . . . .. ........ ... ... 49
4.1 Example of privacy scenario| . . . . .. ... ..o 52
4.2 Obfuscationtypes| . . . .. ... ... ... ... ... . .. ... 53
4.3 Impact of head obfuscation on person recognition| . . . . . ... .. .. 57
4.4 Impact of the amount of tags on person recognition| . . . . . . ... .. 57
4.5 Example of person matching in social media| . . . . ... ... ... .. 58
4.6 Person matching performance|. . . . . . ... ... .. ... ... ... 60
[4.7 TJoint person recognition performance| . . .. ... ... ... ... ... 62
4.8 Final performance with respect to the number of tags| . . . . . . .. .. 63
4.9 Final performance with respect to various obfuscation scenarios|. . . . 64
i4.10 More qualitative examples| . . . . . ... ... ... o oL 65
[5.1  Example of head obfuscation via inpainting]. . . . . ... ... ... .. 69
[5.2 Overview of the two-stage head inpainting framework| . . . . ... .. 71
[5.3 Landmark detection and generation (Stage-I)| . . . .. ... ... .. .. 72
[5.4 Conditional head image generation (Stage-Il)[ . . . . . .. ... ..... 74
5.5 Qualitative examples of head obfuscation| . . . . . ... ... ... ... 79
[b.1 Variety in privacy preferences under similar physical, social and image |
USAZE SCENATIOS| . . & v v v v v v vt e e e 87

(6.2 I-Pic major components|. . . . . ... ... o Lo 90
[6.3 I-Picworkflow|. . . . . . . . . . e 92




176 LIST OF FIGURES

6.4 I-Pic secure matching protocol] . . . ... ..... ... ... ... .. 95
6.5 I-Picdecisiontree . . . . . . . . . . . ... 99
6.6 I-Pic Intentscoreofimages| . . . . . . ... ... ... ... L. 100
6.7 Computational resource analysis| . . . . ... ............... 104
7.1 Game between user and recogniser|. . . . . .. ... ... .. ...... 109
7.2 Detailed game between user and recogniser|. . . . . ... ... ... .. 110
7.3 Qualitative examplesof AIPs| . . . .. ... ..... ... ..... ... 119
7.4 Fooling rate versus perturbationsize|. . . . . .. ... ... ... . ... 120
7.5 More qualitative examples-1| . . . . ... ... ... .. ... ... .. 125
7.6 More qualitative examples-II|. . . . ... ... ... ... ...... 126
7.7 More qualitative examples - 11 . . . . ... ........ .. ... ... 127
8.1 Overview of ametamodel| . . . . . ... ... ... L0 0oL, 131
8.2 Training scheme for metamodels| . . ... ............ ... .. 134
[B.3 kennen-i examples| . . .. .. .. ... ... ... 135
8.4 kennen-o performance with respect to diverse factors| . . . . . ... .. 138
8.5 kennen-io performance with respect to diverse factors . ... ... .. 138
8.6 t-SNE embedding of query outputs for kennen-of . . . . . .. ... ... 141
8.7 t-SNE embedding of query outputs for kennen-io| . . . . . ... .. .. 142
8.8 Confusion matrices for kennen-o| . . . . . .. ... ............ 143
B.9  Confusion matrices for kennen-io|. . . . . . . ... ... ... ...... 144
8.10 Examplesof AIPs| . . . . ... ... ... ... ... .. ... ... 147
9.1 Teaserof ourmethod| . . ... ... ... ... .. . ... . ..., 150
[9-2 High level Guided Segmentation architecture. | . . . . . ... ... ... .. 154
lo.3 Comparison of seed techniques - precision recall plof . . . . ... ... 155
lo.4 Qualitative examplesof seeds| . . . . . ... ... ... ... L. 156
[9-5 Example of saliency maps on Pascal images,|. . . . . .. ... ... ..... 159
[0.6 Qualitative examples of saliency on its training datal. . . . . ... ... 160
lo.7 Example of saliency maps on Pascal images]. . . . . ... ........ 161
[0.8  More qualitative examples of saliency on its training data] . . . .. .. 162
0.9 Qualitative examples of the guide Iabelling strategies| . . . . . ... .. 163
l9.10 Extension of Figurefg.ol|. . . . ... ... ... ... ... .. .. 166

lo.11 Qualitative examples of our guide labeller] . . . . ... ... .. ..., 168




LIST OF TABLES

[Tab. 3.1 PIPA statistics| . . . . . . . ... . 24
[Tab. 3.2 PIPA split statistics| . . . .. ... ... ....... ... .... 24
[Tab. 3.3 Impact of image regions on performance| . . ... ... .. .. .. 30
[Tab. 3.4 Analysisof scenecues| . . ... ... ... oo L 31
Tab. 3.5 Analysis of the impact of extra training data| . . . ... ... ... 32
ab. 3.6 List of attributes considered| . . . . . . ... ... .. L. 34
[Tab. 3.7 Analysis of the impact of DeepID2+ . . . ... .. ... ... ... 35
[Tab. 3.8 Main person recognition results|. . . . .. ... ... 0000 38
[Tab. 4.1 Privacy scenarios| . . . . . . ... ... .. ... oL 54
[Tab. 4.2 CRF inference problem size| . . . . ... ... ... .. ... .... 61
ab. 4.3 Computational time and accuracy for CRF inference| . . . .. .. 61
ab. 5.1 Final evaluation of obfuscated heads|. . . . . . .. ... ... ... 76
[Tab. 6.1 Age groups of survey participants| . . . . ... ... L. 88
[Tab. 6.2 Variety in privacy preferences for same person| . . . . . ... ... .. 88
[Tab. 6.3 Experimental dataset| . . . . . . . . ... ... ... ... ... ... 98
[Tab. 6.4 Roles of faces captured inimages| . . . .. ... ... ... ...... 102
[Tab. 6.5 Privacy loss scores| . . . . . . . ... 103
[Tab. 6.6 I-Pic’s projected capacity| . . . . .. ... ... ... L. 105
[Tab. 7.1 Conceptual comparison of AIP methods|. . . . ... ... ... .. 114
[Tab. 7.2 Comparison of AIP performances . . ................ 117
Tab. 7.3 Comparison of robustness of AIPs| . . .. ... ........... 118
ab. 7.4 Game payotf table[. . . . . ... ... ... o o000 121
ab. 7.5 Selective AlPresults| . . ... ... ... ... ... . ... .. .. 122
[Tab. 7.6 Optimal strategies against different recognisers| . ... ... ... 123
[Tab. 7.7 Extended tables| . . . . .. ... ... ... o oo 124
[Tab. 8.1 MNIST classifier attributes|. . . . . . . ... ... ... ... ..., 132
[Tab. 8.2 Distribution of attributes in MNIST-NETS| . . . . . .. ... ... .. 133
[Tab. 8.3 Comparison of metamodel methods| . . . ... ... ... ... .. 137
[Tab. 8.4 Extrapolation performances of metamodels| . . . . . ... ... .. 139
[Tab. 8.5 Details of ImageNet classifiers] . . .. ... ............. 146
[Tab. 8.6 Transferability of adversarial examples) . . .. ... .. ... ... 147
ab. 8.7 Attack performance on black-box ImageNet classifiers| . . . . .. 148
ab. 9.1 Comparisons of seed techniques - architecture and performance| 155
[Tab. 9.2 Comparison of guide labeller variants) . . . . ... ... ... ... 165
Tab. 9.3 Comparison of weakly supervised object segmentation methods |
onPascal . . ... ... .. 167

177






BIBLIOGRAPHY

P. Aditya, R. Sen, S. J. Oh, R. Benenson, B. Bhattacharjee, P. Druschel, T. Wu, M. Fritz, and B. Schiele
(2016). I-Pic: A Platform for Privacy-Compliant Image Capture. [ 67}

S. Ahern, D. Eckles, N. S. Good, S. King, M. Naaman, and R. Nair (2007). Over-exposed?: privacy
patterns and considerations in online and mobile photo sharing, Proceedings of the ACM SIGCHI
conference on Human factors in computing systems (SIGCHI).

E. Ahmed, M. Jones, and T. K. Marks (2015). An Improved Deep Learning Architecture for Person
Re-Identification, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
o1

D. Anguelov, K.-c. Lee, S. B. Gokturk, and B. Sumengen (2007). Contextual identity recognition in
personal photo albums, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi, A. Villani, and D. Vitali (2015). Hacking smart
machines with smarter ones: How to extract meaningful data from machine learning classifiers,
International Journal of Security and Networks (IJ[SN), vol. 10(3), pp. 137-150.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok (2018). Synthesizing Robust Adversarial Examples,
arXiv.

V. Badrinarayanan, A. Kendall, and R. Cipolla (2017). SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), vol. 39(12), pp. 2481-2495.

S. Baluja and 1. Fischer (2018). Learning to Attack: Adversarial Transformation Networks.

A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan (2016). PixelNet: Towards a general
pixel-level architecture, arXiv. [153]

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar (2006). Can Machine Learning Be
Secure?, Proceedings of the ACM Symposium on Information, computer and communications security
(ASIACCS).

A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei (2016). What’s the point: Semantic segmentation
with point supervision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

A. Bedagkar-Gala and S. K. Shah (2014). A survey of approaches and trends in person re-identification,
Image and Vision Computing (IVC).

S. Ben-David, ]J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan (2010). A theory of
learning from different domains, Machine learning.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski (2009). Robust Optimization, Princeton University Press.

B 628

A. Besmer and H. Richter Lipford (2010). Moving beyond untagging: photo privacy in a tagged world,
Proceedings of the ACM SIGCHI conference on Human factors in computing systems (SIGCHI).

179



180 BIBLIOGRAPHY

B. Biggio, G. Fumera, and F. Roli (2008). Adversarial Pattern Classification Using Multiple Classifiers
and Randomisation, Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR).

B. Biggio, B. Nelson, and P. Laskov (2012). Poisoning Attacks Against Support Vector Machines,
Proceedings of the International Conference on Machine Learning (ICML).

H. Bilen and A. Vedaldi (2016). Weakly Supervised Deep Detection Networks, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

C. Bo, G. Shen, J. Liu, X.-Y. Li, Y. Zhang, and F. Zhao (2014). Privacy.Tag: Privacy Concern Expressed
and Respected, ACM Conference on Embedded Network Sensor Systems.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al. (2016). End to end learning for self-driving cars, arXiv.

A. Bora, E. Price, and A. G. Dimakis (2018). AmbientGAN: Generative models from lossy measure-
ments, International Conference on Learning Representations (ICLR).

A. Borji, M.-M. Cheng, H. Jiang, and ]. Li (2015). Salient Object Detection: A Benchmark, IEEE
Transactions on Image Processing (TIP), vol. 24(12), pp. 5706-5722.

L. Bourdeyv, S. Maji, and J. Malik (2011). Describing People: Poselet-Based Attribute Classification,
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

L. Bourdev and J. Malik (2009). Poselets: Body part detectors trained using 3d human pose annotations,
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

K. Brkic, I. Sikiric, T. Hrkac, and Z. Kalafatic (2017). I Know That Person: Generative Full Body and
Face De-identification of People in Images, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW).

M. Briickner, C. Kanzow, and T. Scheffer (2012). Static Prediction Games for Adversarial Learning
Problems, Journal of Machine Learning Research (JMLR), vol. 13(Sep), pp. 2617—2654.

C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang, C. Huang, W. Xu, D. Ramanan,
and T. Huang (2015). Look and Think Twice: Capturing Top-Down Visual Attention with Feedback
Convolutional Neural Networks, Proceedings of the IEEE International Conference on Computer Vision

(ICCV).

N. Carlini, G. Katz, C. Barrett, and D. L. Dill (2018). Ground-Truth Adversarial Examples, arXiv.

N. Carlini and D. Wagner (2016). Defensive distillation is not robust to adversarial examples, arXiv.

N. Carlini and D. Wagner (2017a). Adversarial Examples Are Not Easily Detected: Bypassing Ten
Detection Methods, Proceedings of the ACM Workshop on Artificial Intelligence and Security (AISEC).
16

N. Carlini and D. Wagner (2017b). Towards Evaluating the Robustness of Neural Networks, IEEE
Symposium on Security and Privacy (SP).

B.-C. Chen, C.-S. Chen, and W. H. Hsu (2014). Cross-Age Reference Coding for Age-Invariant Face
Recognition and Retrieval, Proceedings of the European Conference on Computer Vision (ECCV).

D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun (2012). Bayesian Face Revisited: A Joint Formulation,
Proceedings of the European Conference on Computer Vision (ECCV).



BIBLIOGRAPHY 181

L.-C. Chen, G. Papandreou, 1. Kokkinos, K. Murphy, and A. L. Yuille (2016). DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected

CRFs, arXiv.

P-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-]. Hsieh (2017a). ZOO: Zeroth Order Optimization
Based Black-box Attacks to Deep Neural Networks Without Training Substitute Models, Proceedings
of the ACM Workshop on Artificial Intelligence and Security (AISEC).

W. Chen, X. Chen, J. Zhang, and K. Huang (2017b). Beyond triplet loss: a deep quadruplet network
for person re-identification, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng (2016). Person Re-Identification by Multi-Channel
Parts-Based CNN With Improved Triplet Loss Function, Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino (2011). Custom Pictorial Structures
for Re-identification, Proceedings of the British Machine Vision Conference (BMVC).

M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu (2015). Global Contrast based Salient
Region Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 37(3),

pp- 569-582.

F. Cole, D. Belanger, D. Krishnan, A. Sarna, I. Mosseri, and W. T. Freeman (2017). Synthesizing
Normalized Faces from Facial Identity Features, Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

T. E. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham (1995). Active shape models-their training and
application, Computer Vision and Image Understanding (CVIU), vol. 61(1), pp. 38-59.

G. V. Cormack (2008). Email Spam Filtering: A Systematic Review, Foundations and Trends in Information

Retrieval.

J. Cui, F Wen, R. Xiao, Y. Tian, and X. Tang (2007). EasyAlbum: an interactive photo annotation
system based on face clustering and re-ranking, Proceedings of the ACM SIGCHI conference on Human
factors in computing systems (SIGCHI).

J. Dai, K. He, and ]. Sun (2015). Boxsup: Exploiting bounding boxes to supervise convolutional
networks for semantic segmentation, Proceedings of the IEEE International Conference on Computer

Vision (ICCV).

L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Molnar, A. Moshchuk, E. Ofek, F. Roesner,
S. Saponas, M. Veanes, and H. J. Wang (2013). Operating System Support for Augmented Reality
Applications, HotOS Workshop.

T. Darrell, M. Kloft, M. Pontil, G. Rdtsch, and E. Rodner (2015). Machine Learning with Interdependent
and Non-identically Distributed Data (Dagstuhl Seminar 15152), Dagstuhl Reports. [9]

N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E. Kounavis, and D. H. Chau (2017).
Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression, arXiv.
[16]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A large-scale hierarchical
image database, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [g}

2} [16) 38} [108]



182 BIBLIOGRAPHY

Y. Deng, P. Luo, C. C. Loy, and X. Tang (2014). Pedestrian attribute recognition at far distance,
Proceedings of the ACM international conference on Multimedia (ACMMM).

T. Denning, Z. Dehlawi, and T. Kohno (2014). In Situ with Bystanders of Augmented Reality Glasses:
Perspectives on Recording and Privacy-Mediating Technologies, Proceedings of the ACM SIGCHI
conference on Human factors in computing systems (SIGCHI).

G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna, Z. C. Lipton, and A. Anand-
kumar (2018). Stochastic activation pruning for robust adversarial defense, International Conference
on Learning Representations (ICLR).

X. Di, V. A. Sindagi, and V. M. Patel (2017). GP-GAN: Gender Preserving GAN for Synthesizing Faces
from Landmarks, arXiv. [70]

G. K. Dziugaite, Z. Ghahramani, and D. M. Roy (2016). A study of the effect of jpg compression on
adversarial images, arXiv.

K. Ehsani, R. Mottaghi, and A. Farhadi (2018). SeGAN: Segmenting and Generating the Invisible,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman (2015). The
pascal visual object classes challenge: A retrospective, International Journal on Computer Vision
(IICV), vol. 111(1), pp. 98-136. [9]

M. Everingham, J. Sivic, and A. Zisserman (2006). Hello! My name is... Buffy—automatic naming of
characters in TV video, Proceedings of the British Machine Vision Conference (BMVC).

M. Everingham, J. Sivic, and A. Zisserman (2009). Taking the bite out of automated naming of
characters in TV video, Image and Vision Computing (IVC).

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2012). The PASCAL Visual
Object Classes Challenge 2012 (VOC2012) Results.

A. Gallagher and T. Chen (2008). Clothing Cosegmentation for Recognizing People, Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

A. C. Gallagher and T. Chen (2007). Using group prior to identify people in consumer images,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Y. Ganin and V. Lempitsky (2015). Unsupervised Domain Adaptation by Backpropagation, Proceedings
of the International Conference on Machine Learning (ICML).

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky (2016). Domain-adversarial training of neural networks, Journal of Machine Learning
Research (JMLR), vol. 17(1), pp. 2096—2030.

B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen (2004). On private scalar product computation
for privacy-preserving data mining, International Conference on Information Security and Cryptology

(ICISC). [pol o4

S. Gong, M. Cristani, S. Yan, and C. C. Loy (2014). Person re-identification, Springer.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and
Y. Bengio (2014). Generative Adversarial Nets, Advances in Neural Information Processing Systems

(NIPS). [6]



BIBLIOGRAPHY 183

I. J. Goodfellow, J. Shlens, and C. Szegedy (2015). Explaining and harnessing adversarial examples,

International Conference on Learning Representations (ICLR).

R. Gopalan, S. Taheri, P. Turaga, and R. Chellappa (2012). A blur-robust descriptor with applications
to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 34(6),

pp. 1220-1226.

A. Graese, A. Rozsa, and T. E. Boult (2016). Assessing Threat of Adversarial Examples on Deep Neural
Networks, IEEE International Conference on Machine Learning and Applications (ICMLA).
[118]

D. Gray, S. Brennan, and H. Tao (2007). Evaluating appearance models for recognition, reacquisition,
and tracking, IEEE International Workshop on Performance Evaluation for Tracking and Surveillance

(PETS).

K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. D. McDaniel (2017). On the (Statistical)
Detection of Adversarial Examples, arXiv.

S. Gupta, J. Hoffman, and J. Malik (2016). Cross Modal Distillation for Supervision Transfer, Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

D. Hall and P. Perona (2015). Fine-Grained Classification of Pedestrians in Video: Benchmark and
State of the Art, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

P. Hallgren, M. Ochoa, and A. Sabelfeld (2015). InnerCircle: A Parallelizable Decentralized Privacy-
Preserving Location Proximity Protocol, IEEE Annual Conference on Privacy, Security and Trust (PST).
86

L. Hansen and T. J. Sargent (2001). Robust control and model uncertainty, American Economic Review.

B (8

B. Hariharan, P. Arbeldez, L. Bourdev, S. Maji, and J. Malik (2011). Semantic Contours from Inverse
Detectors, Proceedings of the IEEE International Conference on Computer Vision (ICCV).

E. T. Hassan, R. Hasan, P. Shaffer, D. J. Crandall, and A. Kapadia (2017). Cartooning for Enhanced
Privacy in Lifelogging and Streaming Videos, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).

Z. Hayder, X. He, and M. Salzmann (2015). Structural kernel learning for large scale multiclass object
co-detection, Proceedings of the IEEE International Conference on Computer Vision (ICCV).

J. Hayes and G. Danezis (2017). Machine Learning as an Adversarial Service: Learning Black-Box
Adversarial Examples, arXiv.

K. He, X. Zhang, S. Ren, and J. Sun (2016). Deep Residual Learning for Image Recognition, Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). |9} 38} [39)}
173

M. Hein and M. Andriushchenko (2017). Formal Guarantees on the Robustness of a Classifier against
Adversarial Manipulation, Advances in Neural Information Processing Systems (NIPS).

J. Holvast (2008). History of privacy, IFIP Summer School on the Future of Identity in the Information

Society.

R. Hoyle, R. Templeman, S. Armes, D. Anthony, D. Crandall, and A. Kapadia (2014). Privacy Behaviors
of Lifeloggers using Wearable Cameras, Proceedings of the ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp).



184 BIBLIOGRAPHY

Y. Hu, D. Yi, S. Liao, Z. Lei, and S. Li (2014). Cross Dataset Person Re-identification, Proceedings of the
Asian Conference on Computer Vision (ACCV).

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger (2017a). Densely connected convolutional
networks, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller (2007). Labeled Faces in the Wild: A Database
for Studying Face Recognition in Unconstrained Environments, Technical report, UMass. 9}

22 54 @31

R. Huang, B. Xu, D. Schuurmans, and C. Szepesvdri (2015). Learning with a Strong Adversary, arXiv.

S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel (2017b). Adversarial attacks on neural
network policies, arXiv.

Y. Huang, L. Malka, D. Evans, and J. Katz (2011). Efficient Privacy-Preserving Biometric Identification,
NDSS. [o4]

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. ]J. Dally, and K. Keutzer (2016). SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <o0.5MB model size, arXiv. 145

S. Ioffe and C. Szegedy (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, Proceedings of the International Conference on Machine Learning (ICML).

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank (2003). Extending Oblivious Transfers Efficiently, Annual
International Cryptology Conference (AICC).

S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J. Wang, and E. Ofek (2013a). Enabling
Fine-Grained Permissions for Augmented Reality Applications With Recognizers, Usenix Security.

S.Jana, A. Narayanan, and V. Shmatikov (2013b). A Scanner Darkly: Protecting User Privacy from
Perceptual Applications, SP.

H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li (2013). Salient object detection: A discriminative
regional feature integration approach, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

J. Johnson, A. Alahi, and L. Fei-Fei (2016). Perceptual losses for real-time style transfer and super-
resolution, Proceedings of the European Conference on Computer Vision (ECCV).

J. Jung and M. Philipose (2014). Courteous Glass, UPSIDE, Ubicomp Workshop.

C. Kanbak, 5.-M. Moosavi-Dezfooli, and P. Frossard (2018). Geometric robustness of deep networks:
analysis and improvement, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

V. Kantorov, M. Oquab, M. Cho, and I. Laptev (2016). ContextLocNet: Context-Aware Deep Network
Models for Weakly Supervised Localization, Proceedings of the European Conference on Computer

Vision (ECCV).

T. Karras, T. Aila, S. Laine, and J. Lehtinen (2018). Progressive growing of gans for improved quality,
stability, and variation, International Conference on Learning Representations (ICLR).

V. Kazemi and ]. Sullivan (2014). One Millisecond Face Alignment with an Ensemble of Regression
Trees, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).



BIBLIOGRAPHY 185

I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard (2016). The megaface benchmark:
1 million faces for recognition at scale, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele (2017). Weakly Supervised Semantic
Labelling and Instance Segmentation, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

B. F. Klare, E. Taborsky, A. Blanton, ]J. Cheney, K. Allen, P. Grother, A. Mah, M. Burge, and A. K.
Jain (2015). Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus
Benchmark A, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

P. W. Koh and P. Liang (2017). Understanding Black-box Predictions via Influence Functions, Proceed-
ings of the International Conference on Machine Learning (ICML).

A. Kolesnikov and C. Lampert (2016a). Improving Weakly-Supervised Object Localization by Micro-
Annotation, Proceedings of the British Machine Vision Conference (BMVC).

A. Kolesnikov and C. H. Lampert (2016b). Seed, Expand and Constrain: Three Principles for Weakly-
Supervised Image Segmentation, Proceedings of the European Conference on Computer Vision (ECCV).

J. Z. Kolter and E. Wong (2017). Provable defenses against adversarial examples via the convex outer
adversarial polytope, arXiv.

P. Krdhenbiihl and V. Koltun (2011). Efficient Inference in Fully Connected CRFs with Gaussian Edge
Potentials.

A. Krizhevsky, I. Sutskever, and G. E. Hinton (2012). ImageNet Classification with Deep Convolutional

Neural Networks, Advances in Neural Information Processing Systems (NIPS). [g}

V. Kumar, A. Namboodiri, M. Paluri, and C. Jawahar (2017). Pose-Aware Person Recognition, Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

A. Kurakin, I. Goodfellow, and S. Bengio (2017a). Adversarial examples in the physical world,
International Conference on Learning Representations Workshop (ICLRW).

A. Kurakin, I. J. Goodfellow, and S. Bengio (2017b). Adversarial Machine Learning at Scale, Interna-
tional Conference on Learning Representations (ICLR).

J. D. Lafferty, A. McCallum, and F. C. N. Pereira (2001). Conditional random fields: probabilistic

models for segmenting and labeling sequence data, Proceedings of the International Conference on
Machine Learning (ICML).

G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan (2003). A Robust Minimax Approach
to Classification.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied to document
recognition. [131]

G. Li and Y. Yu (2016). Deep Contrast Learning for Salient Object Detection, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

H. Li, J. Brandt, Z. Lin, X. Shen, and G. Hua (2016a). A Multi-Level Contextual Model For Per-
son Recognition in Photo Albums, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).



186 BIBLIOGRAPHY

W. Li, R. Zhao, and X. Wang (2012). Human reidentification with transferred metric learning,
Proceedings of the Asian Conference on Computer Vision (ACCV).

W. Li, R. Zhao, T. Xiao, and X. Wang (2014a). DeepRelD: Deep filter pairing neural network for person
re-identification, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
o1

X. Li, L. Zhao, L. Wei, M. H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang (2016b). DeepSaliency:
Multi-Task Deep Neural Network Model for Salient Object Detection, IEEE Transactions on Image

Processing (TIP), vol. 25(8), pp. 3919—3930.

Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille (2014b). The secrets of salient object segmentation,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Y. Li, G. Lin, B. Zhuang, L. Liu, C. Shen, and A. v. d. Hengel (2017). Sequential Person Recognition in
Photo Albums with a Recurrent Network, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

D. Lin, J. Dai, J. Jia, K. He, and ]J. Sun (2016). ScribbleSup: Scribble-Supervised Convolutional
Networks for Semantic Segmentation, Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr, and C. L. Zitnick (2014).
Microsoft COCO: Common Objects in Context, Proceedings of the European Conference on Computer

Vision (ECCV).

Y. Lindell (2013). Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries, Journal
of Cryptology. [97]

Z. Lingli and L. Jianghuang (2010). Security Algorithm of Face Recognition Based on Local Binary
Pattern and Random Projection, IEEE International Conference on Cognitive Informatics (ICCI).

J.-L. Lisani, A.-B. Petro, and C. Sbert (2012). Color and Contrast Enhancement by Controlled Piecewise
Affine Histogram Equalization, SIAM journal on imaging sciences. [97]

T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum (2011). Learning to detect a salient
object, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 33(2), pp- 353-367.

Y. Liu, X. Chen, C. Liu, and D. X. Song (2017a). Delving into Transferable Adversarial Examples and
Black-box Attacks, International Conference on Learning Representations (ICLR).

Y. Liu, H. Li, and X. Wang (2017b). Rethinking Feature Discrimination and Polymerization for

Large-scale Recognition, arXiv. 40|

J. Long, E. Shelhamer, and T. Darrell (2015a). Fully Convolutional Networks for Semantic Segmenta-
tion, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

M. Long, Y. Cao, J. Wang, and M. L. Jordan (2015b). Learning Transferable Features with Deep
Adaptation Networks, Proceedings of the International Conference on Machine Learning (ICML).

D. Lowd and C. Meek (2005). Adversarial Learning, The International Conferenice on Mobile Systems,
Applications, and Services (MobiSys).

J. Lu, T. Issaranon, and D. Forsyth (2017a). Safetynet: Detecting and rejecting adversarial examples
robustly, Proceedings of the IEEE International Conference on Computer Vision (ICCV).



BIBLIOGRAPHY 187

J. Lu, H. Sibai, E. Fabry, and D. A. Forsyth (2017b). NO Need to Worry about Adversarial Examples
in Object Detection in Autonomous Vehicles, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).

Z.Lu, Z.1j, ]. Cao, R. He, and Z. Sun (2017c). Recent Progress of Face Image Synthesis, arXiv.

L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool (2017). Pose guided person image
generation, Advances in Neural Information Processing Systems (NIPS).

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2018). Towards Deep Learning Models
Resistant to Adversarial Attacks, International Conference on Learning Representations (ICLR).

R. Margolin, A. Tal, and L. Zelnik-Manor (2013). What makes a patch distinct?, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

C. S. Mathialagan, A. C. Gallagher, and D. Batra (2015). VIP: Finding Important People in Images,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool (2014). Face detection without bells and
whistles, Proceedings of the European Conference on Computer Vision (ECCV). o7

R. McPherson, R. Shokri, and V. Shmatikov (2016). Defeating Image Obfuscation with Deep Learning,
arXiv.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff (2017). On Detecting Adversarial Perturbations,
International Conference on Learning Representations (ICLR).

A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel (2010). You are who you know: inferring
user profiles in online social networks, Proceedings of the ACM international conference on Web search
and data mining (WSDM).

S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard (2017). Universal Adversarial Perturba-
tions, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

(I3 [014)

S5.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard (2016). Deepfool: a simple and accurate method to
fool deep neural networks, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

S.-M. Moosavi-Dezfooli, A. Shrivastava, and O. Tuzel (2018). Divide, Denoise, and Defend against
Adversarial Attacks, arXiv.

A. C. Miiller and S. Behnke (2014). pystruct - Learning Structured Prediction in Python, Journal of
Machine Learning Research (JMLR), vol. 15(1), pp. 2055—2060.

M. Naor and B. Pinkas (2005). Computationally Secure Oblivious Transfer, Journal of Cryptology.

A. Narayanan and V. Shmatikov (2009). De-anonymizing social networks, IEEE Symposium on Security
and Privacy (SP).

A. Narayanan and V. Shmatikov (2010). Myths and fallacies of personally identifiable information,

Communications of the ACM (CACM).

N. Narodytska and S. P. Kasiviswanathan (2017). Simple Black-Box Adversarial Perturbations for Deep
Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW).



188 BIBLIOGRAPHY

J. E Nash et al. (1950). Equilibrium points in n-person games, Proceedings of the national academy of

sciences. [5)

A. Nech and I. Kemelmacher-Shlizerman (2017). Level Playing Field For Million Scale Face Recogni-
tion, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

J. v. Neumann (1928). Zur Theorie der Gesellschaftsspiele, Mathematische Annalen.

H. Noh, S. Hong, and B. Han (2015). Learning deconvolution network for semantic segmentation,
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

S.J. Oh, M. Augustin, B. Schiele, and M. Fritz (2018). Towards Reverse-Engineering Black-Box Neural
Networks, International Conference on Learning Representations (ICLR). [3} [}

S.]. Oh, R. Benenson, M. Fritz, and B. Schiele (2015). Person Recognition in Personal Photo Collections,

Proceedings of the IEEE International Conference on Computer Vision (ICCV). 40}
B4l

S.J. Oh, R. Benenson, M. Fritz, and B. Schiele (2016). Faceless Person Recognition; Privacy Implications
in Social Media, Proceedings of the European Conference on Computer Vision (ECCV). [z

]

S.J. Oh, R. Benenson, M. Fritz, and B. Schiele (2017a). Person Recognition in Social Media Photos,

arXiv. [7} 38

S.J. Oh, R. Benenson, A. Khoreva, Z. Akata, M. Fritz, and B. Schiele (2017b). Exploiting Saliency for
Object Segmentation from Image Level Labels, Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

S.J. Oh, M. Fritz, and B. Schiele (2017c). Adversarial Image Perturbation for Privacy Protection — A
Game Theory Perspective, Proceedings of the IEEE International Conference on Computer Vision (ICCV).

[6 i [14} [15} [ez3 [68} [107 [x08)

A. Oliva and A. Torralba (2001). Modeling the shape of the scene: A holistic representation of the
spatial envelope, International Journal on Computer Vision (IJCV), vol. 42(3), pp. 145-175.

T. Orekondy, M. Fritz, and B. Schiele (2018). Connecting Pixels to Privacy and Utility: Automatic
Redaction of Private Information in Images, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

T. Orekondy, B. Schiele, and M. Fritz (2017). Towards a visual privacy advisor: Understanding and
predicting privacy risks in images, Proceedings of the IEEE International Conference on Computer Vision

(ICCV).

P. Paillier (1999). Public-Key Cryptosystems Based on Composite Degree Residuosity Classes, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques (TACT).

G. Papandreou, L. Chen, K. Murphy, , and A. L. Yuille (2015). Weakly- and Semi-Supervised Learning
of a DCNN for Semantic Image Segmentation, Proceedings of the IEEE International Conference on

Computer Vision (ICCV).

N. Papernot, P. McDaniel, and 1. Goodfellow (2016a). Transferability in Machine Learning: from
Phenomena to Black-Box Attacks using Adversarial Samples, arXiv.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami (2017). Practical Black-Box
Attacks against Deep Learning Systems using Adversarial Examples, Proceedings of the ACM on
Conference on Computer and Communications Security (CCS).



BIBLIOGRAPHY 189

N. Papernot, P. McDaniel, A. Sinha, and M. Wellman (2018). Towards the science of security and
privacy in machine learning, IEEE Symposium on Security and Privacy (SP).

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami (2016b). Distillation as a Defense to Adversarial
Perturbations Against Deep Neural Networks, IEEE Symposium on Security and Privacy (SP).

O. M. Parkhi, A. Vedaldi, and A. Zisserman (2015). Deep Face Recognition, Proceedings of the British
Machine Vision Conference (BMVC).

D. Pathak, P. Kraehenbuehl, and T. Darrell (2015a). Constrained Convolutional Neural Networks for
Weakly Supervised Segmentation, Proceedings of the IEEE International Conference on Computer Vision

(ICCV).

D. Pathak, P. Krdhenbiihl, J. Donahue, T. Darrell, and A. A. Efros (2016). Context Encoders: Feature
Learning by Inpainting, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [70]

D. Pathak, E. Shelhamer, J. Long, and T. Darrell (2015b). Fully Convolutional Multi-Class Multiple
Instance Learning, International Conference on Learning Representations Workshop (ICLRW).

P. Pinheiro and R. Collobert (2015). From Image-level to Pixel-level Labeling with Convolutional
Network, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

P. O. Pinheiro and R. Collobert (2014). Recurrent Convolutional Neural Networks for Scene Labeling,
Proceedings of the International Conference on Machine Learning (ICML).

J. Pont-Tuset, P. Arbeldez, ]J. Barron, F. Marques, and ]. Malik (2017). Multiscale Combinatorial
Grouping for Image Segmentation and Object Proposal Generation, IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 39(1), pp. 128-140. [167]

A. Prékopa (1995), Kluwer Academic Publishers Group, Dordrecht. [5} [6}

A. Punnappurath, A. N. Rajagopalan, S. Taheri, R. Chellappa, and G. Seetharaman (2015). Face
recognition across non-uniform motion blur, illumination, and pose, IEEE Transactions on Image
Processing (TIP), vol. 24(7), pp. 2067—2082.

X. Qi, Z. Liu, J. Shi, H. Zhao, and ]. Jia (2016). Augmented Feedback in Semantic Segmentation Under
Image Level Supervision, Proceedings of the European Conference on Computer Vision (ECCV).

A. Radford, L. Metz, and S. Chintala (2015). Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, arXiv. [Z} [ﬁ]

N. Raval, A. Machanavajjhala, and L. P. Cox (2017). Protecting Visual Secrets Using Adversarial Nets,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

N. Raval, A. Srivastava, K. Lebeck, L. P. Cox, and A. Machanavajjhala (2014). MarkIt: Privacy Markers
for Protecting Visual Secrets, UPSIDE, Ubicomp Workshop.

N. Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala, and L. P. Cox (2016). What You
Mark is What Apps See.

S. Ren, K. He, R. Girshick, and J. Sun (2015). Faster R-CNN: Towards real-time object detection with
region proposal networks, Advances in Neural Information Processing Systems (NIPS).



190 BIBLIOGRAPHY

F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang (2014). World-Driven Access Control
for Continuous Sensing, Proceedings of the ACM on Conference on Computer and Communications

Security (CCS).

O. Ronneberger, P. Fischer, and T. Brox (2015). U-Net: Convolutional Networks for Biomedical Image
Segmentation, International Conference on Medical image computing and computer-assisted intervention
(MICCAI. 73|

A. Rozsa, E. M. Rudd, and T. E. Boult (2016). Adversarial Diversity and Hard Positive Generation,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

14

O. Russakovsky, J. Deng, H. Su, ]J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. S. Bernstein, A. C. Berg, and E. Li (2015). ImageNet Large Scale Visual Recognition Challenge,
International Journal on Computer Vision (IJCV), vol. 115(3), pp. 211-252.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell (2010). Adapting Visual Category Models to New
Domains, Proceedings of the European Conference on Computer Vision (ECCV).

F. Saleh, M. S. A. Akbarian, M. Salzmann, L. Petersson, S. Gould, and J. M. Alvarez (2016). Built-in
Foreground /Background Prior for Weakly-Supervised Semantic Segmentation, Proceedings of the

European Conference on Computer Vision (ECCV).

F. Schroff, D. Kalenichenko, and J. Philbin (2015). Facenet: A unified embedding for face recognition
and clustering, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

1) [2) [66l

A. Seierstad and K. Sydsaeter (1986). Optimal control theory with economic applications, Elsevier North-

Holland, Inc. [5}

R. G.]J. S. Shaoqing Ren, Kaiming He (2015). Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks, Advances in Neural Information Processing Systems (NIPS).

M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter (2016). Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition, Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security (SIGSAC).

I. Shcherbatyi and B. Andres (2016). Convexification of Learning from Constraints, Proceedings of the
German Conference on Pattern Recognition (GCPR).

J. Shi, Q. Yan, L. Xu, and J. Jia (2016). Hierarchical image saliency detection on extended cssd, IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 38(4), pp. 717-729.

W. Shimoda and K. Yanai (2016). Distinct class-specific saliency maps for weakly supervised semantic
segmentation, Proceedings of the European Conference on Computer Vision (ECCV).

R. Shokri, M. Stronati, C. Song, and V. Shmatikov (2017). Membership Inference Attacks Against
Machine Learning Models, IEEE Symposium on Security and Privacy (SP).

K. Simonyan, A. Vedaldi, and A. Zisserman (2014). Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps, International Conference on Learning Representations

Workshop (ICLRW).

K. Simonyan and A. Zisserman (2015). Very Deep Convolutional Networks for Large-Scale Image

Recognition, International Conference on Learning Representations (ICLR).



BIBLIOGRAPHY 191

A. Sinha, H. Namkoong, and ]. Duchi (2018). Certifiable Distributional Robustness with Principled
Adversarial Training, International Conference on Learning Representations (ICLR).

C. Smowton, J. R. Lorch, D. Molnar, S. Saroiu, and A. Wolman (2014). Zero-Effort Payments: Design,
Deployment, and Lessons, Proceedings of the ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp).

J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller (2015). Striving for Simplicity: The All
Convolutional Net, International Conference on Learning Representations Workshop (ICLRW).

(154} 157

J. Steinhardt, P. W. W. Koh, and P. S. Liang (2017). Certified Defenses for Data Poisoning Attacks,
Advances in Neural Information Processing Systems (NIPS).

Z. Stone, T. Zickler, and T. Darrell (2008). Autotagging facebook: Social network context improves
photo annotation, CVPRW.

Q. Sun, M. Fritz, and B. Schiele (2017). A Domain Based Approach to Social Relation Recognition,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Q. Sun, L. Ma, S. J. Oh, L. van Gool, B. Schiele, and M. Fritz (2018). Natural and Effective Obfuscation
by Head Inpainting, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). [}, [14}[67 63

Y. Sun, X. Wang, and X. Tang (2014). Deep learning face representation from predicting 10,000 classes,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). l40]

Y. Sun, X. Wang, and X. Tang (2015). Deeply learned face representations are sparse, selective, and
robust, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

28} 34! 38} 471 48} 6]

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich (2015). Going deeper with convolutions, Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016). Rethinking the inception architecture
for computer vision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

B8} 39

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus (2014).
Intriguing properties of neural networks, International Conference on Learning Representations (ICLR).

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf (2014). Deepface: Closing the gap to human-level
performance in face verification, Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

M. Tan (1993). Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents, Proceedings
of the International Conference on Machine Learning (ICML).

E. Teh, M. Rochan, and Y. Wang (2016). Attention Networks for Weakly Supervised Object Localization,
Proceedings of the British Machine Vision Conference (BMVC).

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart (2016). Stealing Machine Learning Models
via Prediction APIs, USENIX Security Symposium.



192 BIBLIOGRAPHY

L. van der Maaten and G. Hinton (2008). Visualizing High-Dimensional Data Using t-SNE, Journal of
Machine Learning Research.

V. N. Vapnik and A. Y. Chervonenkis (2015). On the uniform convergence of relative frequencies of
events to their probabilities, Measures of complexity, pp. 11-30. [g

R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang (2016). A Siamese Long Short-Term Memory
Architecture for Human Re-identification, Proceedings of the European Conference on Computer Vision

(ECCV).

A. Vezhnevets, V. Ferrari, and J. Buhmann (2011). Weakly Supervised Semantic Segmentation with a
Multi-image Model, Proceedings of the IEEE International Conference on Computer Vision (ICCV).

T. Vu, A. Osokin, and I. Laptev (2015). Context-aware CNNs for person head detection, International
Conference on Computer Vision (ICCV).

J. Walker, K. Marino, A. Gupta, and M. Hebert (2017). The Pose Knows: Video Forecasting by
Generating Pose Futures, Proceedings of the IEEE International Conference on Computer Vision (ICCV).
79

Y. Wang and K. N. Plataniotis (2010). An Analysis of Random Projection for Changeable and Privacy-

Preserving Biometric Verification, IEEE Transactions on Systems, Man, and, Cybernetics: part B:
CYBERNETICS.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). Image quality assessment: from error
visibility to structural similarity, IEEE Transactions on Image Processing (TIP), vol. 13(4), pp- 600—612.

72

Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, Y. Zhao, and S. Yan (2015). STC: A Simple to
Complex Framework for Weakly-supervised Semantic Segmentation, arXiv.

M. J. Wilber, V. Shmatikov, and S. Belongie (2016). Can We Still Avoid Automatic Face Detection?,
IEEE Winter Conference on Applications of Computer Vision (WACV).

G. L. Wittel and S. F. Wu (2004). On Attacking Statistical Spam Filters, Proceedings of the Conference on
Email and Anti-Spam (CEAS).

W. X and G. A (2016). Generative Image Modeling Using Style and Structure Adversarial Networks,
Proceedings of the European Conference on Computer Vision (ECCV).

C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song (2018). Spatially Transformed Adversarial
Examples, International Conference on Learning Representations (ICLR).

T. Xiao, H. Li, W. Ouyang, and X. Wang (2016). Learning Deep Feature Representations With Domain
Guided Dropout for Person Re-Identification, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

J. Xu, A. Schwing, and R. Urtasun (2015). Learning To Segment under Various Forms of Weak
Supervision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5T 152

W. Xu, D. Evans, and Y. Qi (2017). Feature Squeezing: Detecting Adversarial Examples in Deep
Neural Networks, arXiv.

K. Yamada, Y. Sugano, T. Okabe, Y. Sato, A. Sugimoto, and K. Hiraki (2010). Can saliency map models
predict human egocentric visual attention?, Proceedings of the Asian Conference on Computer Vision

(ACCV).



BIBLIOGRAPHY 193

A. C.-C. Yao (1986). How to Generate and Exchange Secrets, IEEE Annual Symposium on Foundations of
Computer Science (FOCS).

R. Yeh, C. Chen, T. Lim, M. Hasegawa-Johnson, and M. N. Do (2016). Semantic Image Inpainting
with Perceptual and Contextual Losses, arXiv.

D. Yi, Z. Lei, and S. Z. Li (2014a). Deep Metric Learning for Practical Person Re-Identification,
International Conference on Pattern Recognition (ICPR).

D.Yi, Z. Lei, S. Liao, and S. Z. Li (2014b). Learning Face Representation from Scratch, arXiv.

F. Yu and V. Koltun (2016). Multi-Scale Context Aggregation by Dilated Convolutions, International
Conference on Learning Representations (ICLR).

A. Zadeh, T. Baltrusaitis, and L. Morency (2017). Convolutional Experts Constrained Local Model
for Facial Landmark Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW).

M. D. Zeiler and R. Fergus (2014). Visualizing and Understanding Convolutional Networks, Proceedings
of the European Conference on Computer Vision (ECCV).

X. Zeng, C. Liu, W. Qiu, L. Xie, Y.-W. Tai, C. K. Tang, and A. L. Yuille (2017). Adversarial Attacks
Beyond the Image Space, arXiv.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. N. Metaxas (2017). StackGAN: Text to
Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

J. Zhang, Z. Lin, ]J. Brandt, X. Shen, and S. Sclaroff (2016). Top-Down Neural Attention by Excitation
Backprop, Proceedings of the European Conference on Computer Vision (ECCV).

J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Méch (2015a). Minimum Barrier Salient Object
Detection at 8o FPS, Proceedings of the IEEE International Conference on Computer Vision (ICCV).

N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. D. Bourdev (2014). PANDA: Pose Aligned
Networks for Deep Attribute Modeling, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

N. Zhang, M. Paluri, Y. Taigman, R. Fergus, and L. Bourdev (2015b). Beyond Frontal Faces: Improving
Person Recognition Using Multiple Cues, Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). [11] !EEE......@......-

S. Zhang, R. Benenson, and B. Schiele (2015c). Filtered channel features for pedestrian detection,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

R. Zhao, W. Ouyang, H. Li, and X. Wang (2015). Saliency detection by multi-context deep learning,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Z. Zhao, D. Dua, and S. Singh (2018). Generating Natural Adversarial Examples, International
Conference on Learning Representations (ICLR).

E. Zheleva and L. Getoor (2009). To join or not to join: the illusion of privacy in social networks with
mixed public and private user profiles, Proceedings of the ACM international conference on World wide
web (WWW).



194 BIBLIOGRAPHY

B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba (2016). Learning Deep Features for Discriminative
Localization., Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva (2014). Learning Deep Features for Scene
Recognition using Places Database., Advances in Neural Information Processing Systems (NIPS).

X. Zhu and D. Ramanan (2012). Face detection, pose estimation and landmark localization in the
wild, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).



	Title Page
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Data manipulation framework
	1.2 Outline of the thesis

	2 Related work
	2.1 Machine learning with non-iid data
	2.2 Person recognition
	2.3 User privacy over visual data
	2.4 Machine learning security
	2.5 Representing target uncertainty
	2.6 Black-box models

	I Privacy Analysis in Visual Data
	3 Person Recognition in Personal Photo Collections
	3.1 Introduction
	3.2 PIPA Dataset
	3.3 Task and Experimental Setup
	3.4 Cues for recognition
	3.5 PIPA test set results and comparison
	3.6 Analysis
	3.7 Open-world recognition
	3.8 Conclusion

	4 Faceless Person Recognition in Social Media Photos
	4.1 Introduction
	4.2 Privacy scenarios and setup
	4.3 Faceless Recognition System
	4.4 Test set results & analysis
	4.5 Discussion & Conclusion


	II Privacy Solution in Visual Data
	5 Head Inpainting for Privacy Protection
	5.1 Introduction
	5.2 Head inpainting framework
	5.3 Experiments
	5.4 Conclusion

	6 I-Pic Image Capture Framework
	6.1 Introduction
	6.2 Online Survey
	6.3 I-Pic Architecture
	6.4 I-Pic Design
	6.5 Evaluation
	6.6 Conclusion


	III Knowledge on Target Model
	7 Adversarial Perturbation for Privacy Protection
	7.1 Introduction
	7.2 User-Recogniser Game
	7.3 Adversarial Image Perturbation Strategies
	7.4 Empirical Studies
	7.5 Discussion & Conclusion
	7.6 Additional Results

	8 Reverse-Engineering Black-Box Neural Networks
	8.1 Introduction
	8.2 Metamodels
	8.3 Reverse-Engineering Black-Box MNIST Digit Classifiers
	8.4 Reverse-Engineering and Attacking ImageNet Classifiers
	8.5 Conclusion

	9 Image Label Supervised Semantic Segmentation
	9.1 Introduction
	9.2 Guided Segmentation architecture
	9.3 Finding good seeds
	9.4 Finding the object extent
	9.5 Experiments
	9.6 Conclusion

	10 Conclusion and future perspectives
	10.1 Key insights and conclusions
	10.2 Future perspectives

	 List of Figures
	 List of Tables
	 Bibliography


