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1 Abstract  

For the ascending class of hydrophilic, macromolecular drugs, gelatin based nanocarriers 

are a very promising approach for the application as drug delivery systems. Due to the 

chemical characteristics and instability of drugs in biological fluids, their embedment into 

carriers is crucial for most biologicals. For the successful application of nanoparticles (NPs) 

physicochemical parameters, such as size, shape, surface chemistry and mechanical 

properties, are vitally important. In the present thesis the elasticity of crosslinked gelatin 

NPs is determined in Young´s moduli by the nanoindentation method in scanning probe 

microscopy. The influence of storage and different crosslinking time are investigated in 

regard to the particles’ stiffness. Here the biological relevance of the mechanical 

characteristics is tested in vitro. 

In order to avoid an inactivation, caused by the covalent coupling of the drug to the 

gelatin by a crosslinker, an innovative stabilization approach was taken by coating or 

embedment of freshly prepared, uncrosslinked gelatin NPs. Therefore, a formulation for a 

new platform delivery system, based on biodegradable and biocompatible materials, was 

developed. This was evaluated as a non-viral vector for gene delivery by the entrapment 

of locked nucleic acid and in transfection studies using a plasmid coding for green 

fluorescent protein. The exact polymer distribution was investigated in cryo transmission 

electron microscopy and energy filtered transmission electron microscopy. 

2 Kurzzusammenfassung 

Für den Transport von hydrophilen makromolekularen Wirkstoffen stellen 

Gelatinenanopartikel (GNP), aufgrund der Eigenschaften von Gelatine und deren 

Biokompatibilität, eine vielversprechende Möglichkeit dar. Eigenschaften wie 

Partikelgröße und -form, Oberflächenbeschaffenheit und mechanische Aspekte spielen 

eine Rolle in Bezug auf die zelluläre Aufnahme sowie Verteilung und Verweildauer der 

Partikel im Körper. In der vorliegenden Arbeit wurde die Elastizität von quervernetzten 

GNP als Young´s Moduli durch Nanoindentation im Rasterkraftmikroskop ermittelt. 

Darüber hinaus wurde der Einfluss der Quervernetzungszeit und der Lagerung auf die 

Partikelhärte getestet. Die biologische Bedeutung der Elastizität wurde durch die zelluläre 

Aufnahme in A549 Zellen untersucht. In einem weiteren Schritt wurde an einer 

innovativen Stabilisierung für GNP gearbeitet, bei der auf das bisher unausweichliche 
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Quervernetzen verzichtet wurde. Dadurch soll eine mögliche Wirkstoffinaktivierung durch 

eine kovalente Bindung an Gelatine mittels Quervernetzer umgangen werden. Für die 

Formulierung wurden ausschließlich biokompatible und bioabbaubare Polymere 

verwendet. Die Eignung hinsichtlich der Nutzung als non-viraler Vektor wurde mittels 

Beladung von locked nucleic acid und der Transfektion von, mit grün fluoreszierendem 

Protein codierendem Plasmid, beladenen Partikeln evaluiert. Außerdem wurde eine 

Strukturanalyse mittels kryo-Transmissionselektronenmikroskopie (TEM) und 

energiegefiltertem-TEM durchgeführt. 
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3 Introduction 

The progress in research and technology opened up the discovery of biochemical 

processes, gene defects, and receptor specifications associated with diseases. The 

possibility to solve protein structures by crystallography helped identifying new potential 

drug binding sites and enabled a structure based drug discovery.1 This development, 

coupled with rapid progress in biotechnological methods, promoted the investigation in 

hydrophilic macromolecular drugs as a new class of therapeutics. Biologicals are 

characterized by very specific binding properties and a high potency, which opens the 

possibility to treat and cure new diseases with reduced undesired pharmacological 

effects. From the approval of the first recombinant insulin in 1982, drugs developed 

further from pure proteins to monoclonal antibodies, interferons and nucleic acid 

therapeutics.2 Despite all these progresses and advantages in therapy, biotherapeutics 

are often very unstable in biological fluids and due to their hydrophilic characteristics and 

the high molecular weight they lack the ability to be easily absorbed after administration.3 

This results in a low bioavailability which has previosly caused the termination of clinical 

and preclinical studies of once promising treatment candidates.4 Overcoming these 

drawbacks presents a challenging task in research.  

Nanostructured delivery systems, composed of biocompatible and biodegradable 

materials, are a very promising approach, which already led to market releases such as a 

depot formulation for the luteinizing hormone-releasing hormone leuprolide (Lupron 

Depot®).5 Favorable materials for the delivery of biotherapeutics are hydrophilic 

polymers, such as gelatin, which show superior loading rates compared with more 

lipophilic materials, like poly lactic-co-glycolic acid or polycaprolactone.6 Due to the 

excellent characteristics including the classification as safe material from the U.S. food 

and drug administration (FDA)7, the biodegradability to nontoxic metabolites, the 

biocompatibility or the easy availability of the raw material, gelatin is an ideal material for 

the encapsulation of hydrophilic drugs and use as a drug delivery system.8 Therefore, in 

the present thesis gelatin nanoparticles (GNPs) for the delivery of hydrophilic 

macromolecules are investigated. In order to alter the interaction with cells, the 

distribution in organs and the half-life time nanoparticles´ shape, size and surface 

characteristics are well known parameters, which can be addressed. In more recent years, 

the mechanical properties of nanoparticles (NPs) and their influence on in vitro and in 
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vivo application gained in interest.9 The development of a measurement protocol for first 

investigations of elastic moduli of GNPs is part of this thesis. In the wake of this, the 

effects of crosslinker incubation times and storage have been addressed. The resulting 

influence in elastic moduli was studied in regard to the influence on particle-cell 

interactions. Therefore, the cellular uptake of crosslinked GNPs (cGNPs) into the 

adenocarcinomic human alveolar basal epithelial cell line A549 was investigated. All 

current formulation methods for GNPs have in common an inevitable chemical 

crosslinking step directly after production.8 This unspecific reaction can covalently bind 

the biotherapeutic and thus, hinder the interaction with the target. To evade the 

inactivation through the crosslinkage, an innovative formulation strategy by the 

embedment of freshly produced GNPs in a core forming polymer could already be 

achieved with Eudragit® E 100.10 The material conversion to an exclusive use of 

biodegradable and biocompatible polymers is addressed in the second part of the thesis. 

The formulation development is amongst others, accomplished with investigations of the 

system as a non-viral transfection vector and a structure analysis was performed using 

innovative imaging methods, such as cryo- transmission electron microscopy and energy 

filtered transmission electron microscopy, a method for element specific imaging in the 

nanometer range. 

3.1 Nanoscale Carrier Systems for Drug Delivery 

 Need of Drug Delivery Systems 

Hydrophilic macromolecules as active pharmaceutical ingredients (APIs), such as 

peptides, recombinant therapeutic proteins, enzymes, monoclonal antibodies and 

antibody-drug conjugates gained immense in importance.5 The market share for 

biologicals was already more than one third of the top 100 medicines available only on 

prescription in 2015 and is projected to increase to around the half of the marked share 

by 2022.11 Their specificity and potency is, in the most cases, superior compared to small 

chemical molecules.5 However, most biologics suffer from low bioavailability.12 In 

principle their application can be carried out through numerous routes to enter the body 

for systemic or local therapy. The most popular one is still the oral drug administration by 

tablets, suspensions, capsules, or granules. Other application examples would be 

pulmonary, parenteral, transdermal or rectal. Figure 3-1 summarizes the most commonly 
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used application routes in therapy. No matter which route is chosen, the barriers, 

exhibited by the human body, to protect itself from harmful environmental influences, 

needs to be overcome by the drug, so it can be delivered to the desired place of action. 

Up to now biologicals are mostly applied parenteral. This requires the usage of syringes 

and needles which is often associated with a low patient’s compliance. In addition, many 

biologicals require repeated administrations as they show very low half-life values of 

minutes or hours due to a fast clearance.3 This results in the need of alternative 

application routes and formulations with a sustained release to improve the patient’s 

compliance and the therapeutic efficacy. 

 

Figure 3-1: Prominent application routes in drug delivery. Adopted from: “Toxicology and clinical potential of 
nanoparticles”13, Copyright © 2011 Elsevier Ltd. 

This paragraph highlights the properties of three alternative applications and different 

hurdles, which need to be overcome for a successful und efficient therapy. Starting with 

the most common route, the oral delivery, the gastrointestinal tract (GIT) needs to be 

overcome. Even though, for orally administered drugs the patient compliance is still by far 

the best, it is accompanied with a number of challenges especially for the growing field of 

hydrophilic macromolecules.14 The large epithelial surface in the gut is covered by a 

mucosal layer and in addition, the epithelial cells are connected by tight junctions. This 

exhibits an effective barrier, limiting the resorption of large and hydrophilic molecules, 
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and building a physical barrier, not only for drug application. Different drug absorption 

possibilities are illustrated in Figure 3-2. Due to the hydrophilic properties and size, 

passive diffusion is very limited. Intestinal protein carriers provide an active transport 

mechanism for the transcellular pathway. However, those drugs are often substrates for 

the efflux pump p-glycoprotein.15, 16 The paracellular pathway, which is possible to pass 

by less lipophilic molecules, is only surmountable for molecules smaller then 100 to 

200 Da.17 In addition to the physical barrier, the conditions in the GIT form a chemical 

barrier. In the stomach, a relatively acidic pH leads to denaturation and degradation of 

biological molecules. Furthermore, enzymatic digestion by pepsin and other degradative 

enzymes strengthen the chemical barrier.18 Different strategies are used to deliver 

peptides and proteins if they are able to be absorbed in the gut. Enteric coating, for 

example, can prevent biomolecule degradation in the stomach. With a careful selection of 

coating materials, colon targeting can be achieved where proteolytic activity is very low. 

 

Figure 3-2: Drug absorption processes in the gut for small molecules and macromolecular drugs. Reprinted with 
permission from: ”Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies 
and industrial perspectives“,17 Copyright © 2014 Elsevier B.V. 

Another approach to bypass the physical barrier properties, would be to co-administer 

protease inhibitors and adsorption enhancers. A promising approach, not only for oral 

delivery, is the protection in particle systems such as nanoparticles, microparticles, 

liposomes and exosomes. With the appropriate choice of excipients, mucoadhesive 

formulations can be achieved. A non-formulation-based concept is chemical modifying 

drugs with the aim to enhance membrane permeability and chemical stability. These 

strategies can be used either alone or in combination but up to now, no matter which 

approach is chosen, the bioavailability of hydrophilic macromolecules after oral 

administration remains very poor.18, 19 
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Looking at the skin, with around 15 % of the total body weight20 and a surface area of 

approximately 2 m² in adults,21 it is one of the largest organs in our body. Its purpose is 

the protection of the human body and therefore, the skin is endowed with a complex 

structure and a number of functionalities. This enables the skin to preserve the body from 

chemicals, UV radiation, microorganisms and water and electrolyte loss. Additionally, it 

plays a role in immunology, regulates the body temperature, has sensory abilities and 

exhibits excretory activity.22 Beyond the barrier properties the skin, as a regulating organ, 

shows a certain permeability, which can be exploited for local and systemic delivery of 

drugs.23 Three layers can be distinguished including epidermis, dermis and subepidermal 

tissue. The outermost layer, the epidermis, constitutes the main barrier and consists of 

several layers by itself. These layers are predominantly composed of keratinocytes. In 

approximately two weeks keratocytes move through the layers and alter to annucleated, 

cornified and flat cells, the corneocytes.21 The stratum corneum is described by the so-

called “brick and mortar” model.24 The hydrophilic corneocytes (brick) are surrounded by 

a lamellar lipid matrix (mortar) and connected by corneodesmosoms, which confer 

excellent stability to the stratum corneum.25 Penetrations routes through the skin are 

summarized in Figure 3-3. 

 

Figure 3-3: Structure of the skin with their three layers (Epidermis, dermis and subdermal tissue). Three possible drug 
penetration routes are drawn in the figure (1: appendageal, 2: transcellular, 3: intercellular). Reprinted from: 
“Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting”26 (CC BY 
4.0) 
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Drugs for transdermal delivery have to fulfill certain physicochemical requirements which 

are particularly limited by the molecule size, limited to approximately 500 Da and a high 

lipophilicity, with a partition coefficient logP between -1.0 and 4.0. Furthermore, 

solubility, polarity, melting point (below 150°C) and the daily dose, which should not 

exceed a few milligrams, have to be considered.27 Due to this, hydrophilic 

macromolecules are rather unattractive molecules for transdermal delivery. However, 

because of the circumvention of the first-pass effect, the painless application and the 

possibility of a continuous administration over several hours or days with the result of a 

constant blood level, this route remains of interest and approaches to conquer the skin 

barrier have been established. Besides the chemical modification of molecules, a co-

administration of penetration enhancers can raise the therapeutic efficiency. Here usually 

solvents, which extract the stratum corneum lipids, and surfactants, breaking the lipid 

bilayer, are employed. However, with this method the transport is only optimized for 

relative small and lipophilic molecules in a satisfying manner.23 Different physical 

approaches, with the aim of an enhanced permeation have been developed. They include 

electroporation, which could be utilized for insulin,28 ultrasound, already used to apply 

heparin29 or tetanus toxoid,30 and iontophoresis, with which the delivery of leuprolide 

could be achieved in vitro.31 All physical methods in common is the need of a special 

device, which limits the application to specialized centers and therefore, are not suitable 

for daily use. Another physical strategy is the creation of micropores, which are 

considered to not damage the skin in a clinically relevant level and can be used for the 

delivery of APIs. These pores can be achieved by a laser, used in the delivery of human 

growth hormone,32 or by microneedles. Microneedle patches can be designed in different 

manners and are based on a range of materials. They can be loaded with the therapeutic 

compounds, or just be used to produce pores for drug transport of NP-formulations.33 

Polymeric NPs are known to accumulate in hair follicles.34 Several studies showed 

enhanced blood levels compared to the application of the pure drug.35 An example would 

be a transdermal delivery by the use of starch-NPs.36 The design of very soft and 

deformable carriers with sizes of approximately 150 nm is discussed to enable the 

penetration through the stratum corneum. Transferosomes® are one of the very few 

carrier systems, which succeeded to the market as a commercially available delivery 
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system through the stratum corneum.37 Nevertheless, an efficient transdermal delivery 

still remains challenging. 

Inhalative drug application is an attractive route, as it presents a needle free 

administration, evading the first-pass effect. This results in a large number of preclinical 

and clinical trials for local and systemic acting medicines.23 The lung function, which is 

primarily the gas exchange and as a result the oxygen supply, is ensured by a large surface 

area of 75 to 140 m².38 The gas exchange takes place in the respiratory zone, including 

respiratory bronchioles, alveolar ducts and alveolar sacs. For systemic treatment, the drug 

has to enter this area too. Therefore, it has to pass the conductive zone branching out 

from the pharynx and larynx over the trachea, primary bronchi, and bronchioles to the 

terminal bronchioles.38 Characteristic for the alveolar region is the thin epithelium of 0.5 

to 1.0 µm.35 To the alveolar side around 90 % of the surface is covered by AT1 cells. A very 

flat cell type, which is responsible for the gas exchange. Around 7 % are covered by AT2 

cells producing the surfactant, which reduces the surface tension. Inhaled albumin, with a 

relative large molecular weight of 68 kDa, can penetrate through the thin epithelium and 

was shown to have a maximum plasma concentration (Tmax) after 20 h.39 This makes the 

pulmonary application a very attractive route, not only for local therapy.  

 

Figure 3-4: Fate of aerosols after pulmonary application. 1) Contact with lung fluid and drug release. 2) API absorption 
through the epithelium. 3) Undissolved particles can be cleared by macrophages or mucociliary clearance. Modified with 
permission of: “Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic 
possibilities and technological challenges”40 Copyright © 2013 Elsevier Ltd. 

A critical parameter, highly influencing the deposition site, is the aerodynamic diameter. 

With deposition maxima for mass median aerodynamic diameter of around 10 nm and 
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5 µm.41 The fate of an aerosol after pulmonary deposition, and the different penetration 

possibilities through the epithelium are shown in Figure 3-4. For dry powder formulations, 

only the maximum in the micrometer range is used for drug delivery. In order to protect 

the macromolecule after absorption to the blood stream a popular formulation strategy is 

the construction of nano-structured microparticles.42 After disintegration in the lung, NPs 

can penetrate and protect the loaded drug from degradation. An approach to deliver a 

greater mass of drug is the application of rod shaped particles, composed of 

biodegradable and biocompatible materials using the asbestos frays as a model.43 Even 

though in the last years plenty of formulations for systemic acting macromolecules made 

it to the pipeline, there are still challenges to overcome. In particular the mucociliary 

clearance, the mucus barrier, the limits in dosing and the reduced permeability in 

diseased and smoking patients have to be named here.23 After conquering the application 

barrier, the stability of biologicals is in general relatively low. Enzymatic degradation by 

peptidases, proteases or nucleases, especially in blood, liver, and kidney is a factor with 

respect to fast degradation and deactivation of hydrophilic macromolecules.44 Efflux 

pumps, like the multi drug resistant protein p-glycoprotein,45 and fast elimination through 

the kidney44 play, together with the enzymatic degradation, an important role to fight 

against exogenous invasion. Here as well nanoencapsulation is a strategy to protect 

vulnerable macromolecular drugs. Chemical modification, like the methylene bridge in 

locked nucleic acid (LNA), can be a possibility to evade degradation, but LNA still lacks 

from overcoming the lipophilic cell membrane in order to be delivered to the side of 

action.46 Nanoparticles can be utilized to overcome this barrier.47 The interaction of 

nanoparticles with cell membranes and thus factors how NPs can improve intracellular 

delivery, will be discussed in detail in chapter 3.2. 

An important barrier, protecting the central nervous system, is the blood brain barrier. 

This barrier is, like the previously discussed ones, an epithelial barrier, which hinders the 

delivery of APIs to the central nervous system. Nanoparticulate approaches have been 

developed to surmount this obstacle.48 Summarizing the challenges in delivery of 

biologicals, nanoparticulate delivery systems display a promising tool in order to obtain 

effective treatments: overcoming the main barriers while using the high potency and 

selectivity of biological drugs.6  
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 Delivery Systems for hydrophilic Drugs 

As discussed above nanoscale delivery systems can enhance the therapeutic efficacy. 

Different strategies can be exploited for the design of carrier systems in this size range. To 

the common colloidal carrier systems belong liposomes,49 solid lipid nanocapsules,50 

polymer particles, or nanocapsules. Materials for the formation of drug delivery systems 

(DDSs) should be preferably biodegradable and bioerodible. In addition, a good 

biocompatibility and low antigenicity is required. It has to be considered that degradation 

products can exhibit a different toxic potential than the polymer itself. It is important that 

all arising molecules are nontoxic.51 The drug encapsulation is highly dependent on the 

interaction between API and carrier material. The often used poly(lactic-co-glycolic acid) 

(PLGA), a hydrophobic polymer, which meets the requirements for a good polymer in 

drug delivery, has the drawback of low loading rates for hydrophilic drugs.52 

Nanostructured hydrogel composites seem to exhibit superior properties for the 

encapsulation of biologicals. Characteristic for hydrogel NPs is the chemically or physically 

crosslinked polymer network, hydrated with up to 90 % water, the relative soft 

mechanical properties and a low interfacial tension to water or biological fluids.53 

Hydrogel NPs can be produced from natural or artificial polymers, both having advantages 

and drawbacks. Examples for artificial polymers are different methacrylate derivatives, 

vinyl acetate, different PEG-polymers or betaines.51 To the frequently used natural 

derived polymers belong alginate,54 chitosan,55 starch derivatives36 or proteins.56 Whereas 

the exact chemical composition and molecular weight can be well-defined and tuned 

relatively easy for artificial polymers, their monomers do often exhibit a toxic potential. 

For naturally derived polymers, this is the other way around. They often have relative 

wide ranges of molecular weights and can show batch-to-batch variations. This can result 

in less defined particle characteristics, which can be seen for some GNP preparation 

methods, as there is a relative broad size distribution.57 The advantage of natural 

materials is the low toxic potential of degradation products53 and the renewable 

resources.56  

To the large group of protein-based NPs belong animal proteins, like gelatin, collagen, 

albumin, milk proteins, silk proteins or elastin and plant proteins such as zein, gliadin, soy 

proteins and lectins.56 Due to their chemical nature, a hydrophilic backbone with 

numerous functional groups at the amino acid side chains, they offer a great number of 
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different loading mechanisms, such as electrostatic attraction, hydrophobic interaction, 

or covalent binding. In addition, this offers the possibility of various surface modifications, 

which can be used for a targeted drug delivery. Protein NPs are postulated to show a 

prolonged half-life time and sustained release. Furthermore, an enhanced stability after 

application and an increased solubility could be found due to the chemical nature. This 

can be used for an optimized bioavailability of sensitive and poorly soluble APIs.56 As the 

present thesis is primarily interested in investigations on relevant subjects for optimized 

gelatin-based nanocarriers, the material properties, strategies in the formulation of GNPs 

and the current application possibilities will be discussed in detail in the following 

chapters. 

 Gelatin as Matrix Polymer 

Gelatin, a naturally derived polymer, is a hydrophilic macromolecular polypeptide with a 

relatively wide molecular weight range of 15,000 to 250,000 Da. It belongs to the family 

of protein polymers and is derived from collagen by alkaline or acidic hydrolysis. The 

collagen can be extracted from bones, skin, tendons or pork rind. A schematic description 

of the partial hydrolysis is displayed in Figure 3-5. The sorted triple helices are disbanded 

during heating and, while cooling, become partially ordered again. 

 

Figure 3-5: Partial hydrolysis of collagen, here by heat; the macromolecular changes are in good consistency to the 
chemical hydrolysis by acids and bases. Reprinted from: “Gelatin - A versatile biopolymer“58 Copyright © 1999 - 2018 
John Wiley & Sons, Inc. 

The numerous possible collagen sources already indicate the broad variety in the collagen 

structure. All collagen types have the triple helical structure in common but length and 

position of non-helical areas are dependent on the type. The primary gelatin structure is 

given by the amino acid sequence, which is slightly different depending on the type of 

hydrolysis. An overview of the percentage composition is given in Figure 3-6. The 
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essential amino acid tryptophan is missing. Therefore, two unusual amino acids,  

4-hydroxyproline and ε-hydroxylysine can be found in the primary structure. Both are 

built by posttranslational modifications.58  

 

Figure 3-6: Percentage amino acid composition of gelatin One third is made up by glycine, the second third is made up 
by proline and 4-hydroxyproline. The other amino acids account the remaining ~33 %.58 

Due to the characteristics of the amino acids, gelatin has cationic and anionic groups 

alongside with hydrophobic areas in approximately equal ratios. Positively charged areas 

(~13 %) are built from lysine and arginine, the negative charged sector (~12 %) is 

composed by glutamic and aspartic acid and the hydrophobic part (~11 %) by leucine, 

isoleucine, methionine and valine. Glycine, contributing to the structure with one third, 

forms, in equal amounts with proline and 4-hydroxyproline the rest of the primary 

structure.8 An outstanding property is the ability of the thermoreversible gel-sol 

transition. By cooling a 0.5 % gelatin solution below 35 to 40°C the viscosity is greatly 

increasing and with further cooling the gel formation can be observed. In the beginning, a 

helix arrangement takes place driven by an accumulation of individual dissolved α-chains. 

This is stabilized by hydrophobic amino acids. In a following step, crystal formation can be 

noted by the accumulation of two and more ɑ-helices. These crystalline areas are in a 

final step stabilized by the formation of hydrogen bonds inside and in between single 

helices. Water molecules build additional hydrogen bonds between hydrophilic side 

chains containing hydroxyl-groups. The temperature of the gel-sol transition is known as 

the melting or solidification point, which usually is between 30 and 40°C.58 The gelation 

strength is a material property, which is indicated with the bloom strength. The European 

pharmacopoeia knows gelatin type A (partial acid hydrolysis, isoelectric point between pH 

6.0 to 9.5) and type B (partial basic hydrolysis, isoelectric point between pH 4.7 and 5.6) 

and includes, except of the well-known bovine and porcine resources, gelatin obtained 
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from fishes and poultry. When bones are used for the production, the European 

Pharmacopeia stipulates that skull and spinal cord have to be removed ahead of the 

manufacturing process for safety issues. The origin of the raw material should be from a 

country stated as class I and II in regard to minimize the risk of bovine spongiform 

encephalopathy. After the extraction, gelatin has to be sterilized before the use as 

pharmaceutical excipient is allowed.59 The biocompatibility is underlined by the 

classification as GRAS material by the FDA.7 The peptide bonds can be enzymatically 

cleaved into the amino acids, which are then metabolized into carbon dioxide, water and 

urea.60 Gelatin is used in pharmaceutical formulations for oral application as wall forming 

excipient in capsules, agglutinant in granules or for the encapsulation of oleic products. 

The application goes beyond the oral administration route. Gelatin can be also found in 

emergency surgery as plasma expander61, in a hydrolyzed non gelling form as additive in 

vaccines62, as gel foam in surgery for wound absorbable dressings (Gelfoam®)63 and in 

micro capsulate formulations with sustained release for example in Lupron Depot®.64 Due 

to its hydrophilic properties, the biocompatible and biodegradable characteristic, and the 

easy and cheap availability gelatin is a well-researched polymer for micro- and 

nanoparticle formation.  

 Gelatin Nanoparticles as Carrier System for Hydrophilic Macromolecules 

This versatile polymer brings ideal characteristics for the preparation of NPs for the use as 

drug delivery system. First attempts have been reported in 1978 for gelatin 

nanoparticles57 and 1985 for nanocapsules formed by gelatin.65 Up to now numerous 

works were performed to obtain improved particle characteristics and to develop various 

methods for the formation of gelatin nanoparticles. Desolvation by the addition of agents 

like acetone or isopropanol, which dehydrates the gelatin and forces the formation of 

coils, was the first approach. Due to the relative broad distribution of molecular weights 

in gelatin this method results in inhomogeneous particle sizes.57 An improvement of this 

technology is the two-step desolvation by Coester et al. where gelatin strains with a high 

molecular weight are precipitated in a first step in order to remove low molecular weight 

gelatin. After separation the gelatin is redissolved and in a second desolvation step NPs 

with a narrow size distribution were achieved.66 This relative complex and time 

consuming procedure was further improved by Ofokansi et al. By adjusting the pH and 

the temperature the initial desolvation step could be skipped.67 Other important 
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preparation techniques are the emulsification-solvent evaporation,68 the coacervation-

phase separation,69 reverse phase microelmulsion,70 self-assembly after chemical 

modification with molecules like polyethylenglycole (PEG)71 or hexanoyl anhydrides.72 

Another method, which was used in the present thesis too , is the nanoprecipitation, or 

solvent displacement method.73 This straight forward and fast method was originally 

developed for hydrophobic polymers,74 but got adopted for the production of hydrophilic 

nanoparticles made by polyvinylalcohol (PVA)75 or gelatin.73 A closer look to the principle 

of nanoprecipitation follows, as this was the technique of choice for the production of 

cGNPs in the present thesis. The method is based on two miscible solvents. In one the 

polymer is dissolved and in a second solvent, in which the polymer has to be insoluble, 

called the nonsolvent, a stabilizer is dissolved. The nonsolvent has to be present in excess. 

In this way, the polymer remains insoluble in the mixture too. The polymer solution is 

now added to the nonsolvent. Due to the miscibility of the solvents small polymer 

containing droplets arise. This spontaneous reaction is also named the “Ouzo-effect” a 

liquid-liquid droplet nucleation caused by a supersaturation, which is describing the 

turbidity of the Greek beverage “Ouzo”.76 Driven by diffusion the solvents start to mix and 

the polymer in the droplet becomes insoluble as the saturation concentration is reached. 

The values of supersaturation, the interfacial tension, the diffusion coefficients during 

nucleation, growth and the Ostwald ripening influence the final particle size, the 

concentration and the polydispersity of the particle formulation.77 An additional influence 

has the polymer concentration in the solvent and the solvent to nonsolvent ratio.78 

Furthermore, the type of solvent plays an important role on the mean particle size. Here 

the viscosity and diffusion coefficient of the solvent in the nonsolvent seem to be 

important parameters. The mixing time, easily tunable in microfluidic systems, has an 

impact on the particle size too. Shorter mixing times result in smaller NPs diameters.79 

The use of stabilizers in the nonsolvent solution prevent the freshly formed particles from 

coalescense.77 All different production approaches for GNPs in common is the need of 

crosslinking to obtain stable nanoparticles.8 A crosslinked gelatin matrix, as well as a 

closer look on a crosslinker bond by glutaraldehyde, is outlined in Figure 3-7. Different 

chemical compounds are customarily used for this purpose. Carbodiimides in combination 

with N-hydroxysuccinimide were successfully used for the stabilization of GNPs.80 Another 

possible substance is genipin.81 This compound, derived by extraction from the gardenia 
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fruit covalently connects two primary amino functions provided from the amino acid 

lysine.82 

 

Figure 3-7: Sketch of a gelatin matrix particle after crosslinking in A and in B a zoom to a glutaraldehyde crosslinking 

Enzymatic crosslinking was achieved with microbial transglutaminases connecting a 

primary amine with an amide of glutamine.83 The most popular group of crosslinkers are 

aldehydes. Dialdehydes connect two primary amino groups of lysine and hydroxylysine. 

Glutaraldehyde, which is used in the present thesis too, is a non-zero length crosslinker. 

For acid reaction conditions, a crosslinking mechanism involving the hydroxyl groups of 

proline and hydroxyproline is discussed. However, in the present study a neutral pH was 

used for this reaction, which should involve two primary amino functions and therefore, 

form a Schiff base during the crosslinking process.84 The chemical reaction is shown in 

Figure 3-8. 

 

Figure 3-8: Crosslinking mechanism of glutaraldehyde und the formation of a Schiff base, which causes autofluorescence 
of GNPs. 

The creation of the Schiff base causes an autofluorescence of cGNPs, which can be used 

to monitor the fate of GNPs in cells.85 A less toxic representative of the aldehyde group is 
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glycerylaldehyde. Crosslinkers commonly have unspecific chemical reaction. In this way 

intra- and interchain connections are built to stabilize the freshly prepared nanoparticles. 

In case of the encapsulation of drugs, providing the same functional groups, they can be 

bound covalently to the matrix and subsequently are trapped in there. To prevent the 

inactivation of the loaded API more recently an alternative stabilization method for GNPs 

was investigated. Kahn et al. embedded freshly prepared GNPs in a Eudragit® E matrix.10 

Eudragit® E, a methacrylic-acid derivate, limits the application, of the nanoparticle 

formulation, as the polymer is soluble at pH <5.0 and it is not biodegradable.86 Adjusting 

the materials to exclusively use biodegradable and biocompatible materials is part of the 

present thesis. 

Gelatin expresses sequences like Arg-Gly-Asp (RGD),87 which binds specifically to αvβ3 

integrin, a transmembrane receptor of the integrin family. The receptor is overexpressed 

in tumor tissue and is, amongst others, responsible for cell adhesion. GNPs can be used 

for a targeted drug delivery to tumor tissues using RGD.88 Gelatin nanoparticles are 

utilized for the delivery of a broad range of APIs such as anticancer drugs,89 anti-viral APIs 

like stavudine, a drug used in HIV therapy,90 antibiotics,91 proteins such as insulin for oral 

delivery92 or tetanus toxoid in vaccines.93 The versatility of application possibilities 

demonstrate the high potential of gelatin nanocarriers in disease treatment.  
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3.2 Nanoparticle Properties Influencing the Fate after Administration in Drug 

Delivery 

A multitude of particle properties is influencing the interaction of NPs with cells in vitro 

and, for a drug delivery system far more important, the fate after in vivo application.  

 

Figure 3-9: Possible strategies in carrier design for a targeted delivery in therapy and diagnostics. Reprinted from: 
“Strategies for the intracellular delivery of nanoparticles”,94 Copyright © 2010 Royal Society of Chemistry 

Hence, the biodistribution and bioavailability is highly influenced by particle attributes, 

different strategies have been developed in order to create successful drug delivery 

systems. Figure 3-9 represents an illustration of influencing factors for the interaction of 

carriers and cells. In the following section, several of these parameters will be highlighted. 

 Size of Nanoparticles 

The size of nanoparticulate formulations ranges from few nanometers to several 

hundreds of nanometers. Looking at in vitro processes the internalization into cells is, 

besides others, a size dependent process. In Figure 3-10 different routes of cellular uptake 

are summarized. Particles in the micrometer scale are taken up by phagocytosis or 

micropinocytosis. Clathrin-mediated endocytosis is the most reported internalization 

route for receptor mediated uptake of positively charged NPs with a diameter of around 

~100 nm.95 Its primary function is the nutrient uptake in eukaryotic cells and in addition, it 

is used for internalization by several viruses.96 
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Figure 3-10: Possible cellular uptake mechanisms depending on the particle size. Reprinted from: “Targeting receptor-
mediated endocytic pathways with nanoparticles: Rationale and advances”, Copyright © 2012 Elsevier B.V. 

Caveolin dependent endocytosis is the pathway for particles ranging in the size of around 

60 to 80 nm. In this signal regulated mechanism the particle becomes coated by 

caveolins, a hairpin-like structure. Caveolae are small flask-like shaped invaginations in 

the cell membrane. They can be found in endothelial cells, adipocytes, fibroblasts and 

smooth muscles.97 Furthermore, caveolae are associated with transendothelial transport 

and release of NPs in the subendothelial tissue.98 Larger particles are taken up either by 

micropinocytosis or phagocytosis. Micropinocytosis, a process driven by actin, includes 

the uptake of external fluid. The vesicles are formed by an extension of the membrane 

and have a size of 0.2 to 5 µm.99 It is mediated by growth factor receptors as well as 

particles like viruses, bacteria, apoptotic and necrotic cells.100 Through the pathway of 

phagocytosis, usually responsible for the cellular uptake of pathogens and dead cells, 

material up to 10 µm can be internalized. The emerged phagosome adopts the shape of 
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the enclosed substrate.96 Phagocytosis is mediated by receptors and can take place at 

several cell types such as epithelial cells,101, 102 fibroblasts103 and various immune cells.104 

NPs with sizes between 10 and 60 nm seem to be taken up to a greater amount.105 

Besides the effects on the cellular level a number of factors, influencing the NPs fate after 

administration, are size dependent. Particles smaller than 6 nm undergo renal clearance 

from the blood by glomerular filtration and tubular excretion.106 Particles with larger 

diameters are accumulated in spleen and liver to a greater amount. J.M. Caster et al. 

demonstrated a size dependent accumulation for particles between 50 and 150 nm.107 In 

general particles with a diameter lager than 200 nm are known to be trapped in liver and 

spleen and subsequently processed by cells of the mononuclear phagocyte system 

(MPS).108 Due to fenestrations in the endothelial blood vessel cells, nanoparticles of a size 

between 30 and 200 nm can penetrate to tumor tissue and accumulate there. This 

passive drug targeting is known as enhanced permeation and retention (EPR) effect and is 

used for contrast agents and anticancer treatment. After extravasation, small particles of 

around 20 nm diffuse deep in the tumor tissue, but are cleared from the tumor after 24 h, 

whereas bigger particles cannot pass through the extracellular matrix and remain close to 

the blood vessel.109 As blood vessels in healthy tissue form openings in the size of 10 nm 

this size should be exceeded if NPs size is used for passive drug targeting.110 Highlighting 

the delivery to the brain it seems that NPs of a size <50 nm can pass the blood-brain 

barrier.105 Regarding the sizes and in vivo distribution the formation of a protein corona, 

which can change the particle size after administration, should always be considered.108 A 

closer look to this phenomenon can be found in chapter 3.2.3 All these size depended 

events lead, together with other factors, to a broad variance in blood retention half 

times.111 

 Carrier Shape 

The vast majority of nano- and microscale carriers are formed in a spherical shape. Under 

the first investigations of in vitro macrophage interaction with differently shaped carriers 

is a study from Champion and Mitragotri.112 As can be seen in Figure 3-11 is the successful 

phagocytosis and the internalization speed dependent on the radius of the particle´s 

curvature at the first contact between macrophage and carrier.112 In follow-up studies the 

efficacy of cell adherence could be ranked according to the shape in the order  
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elongate > oblate > sphere. However the internalization showed a divergent pattern 

following oblate >> sphere > elongate.113  

 

Figure 3-11: Colored SEM images of macrophages in brown and microparticles in purple. a) Elliptical disks which got in 
contact with the high curvature side. (Scale bar = 10 µm.) b) A macrophage attached to the flat side and is not able to 
phagocyte the disk. (Scale bar = 5 µm) and c) is showing a spherical microparticle after half phagocytosis. (Scale bar = 
5 µm) Reprinted from: “Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers”112 
Copyright © 2007 Elsevier B.V. 

For extreme aspect ratios, resulting in worm-like or needle-like structure, a failure in 

phagocytosis was demonstrated. This can be used to circumvent macrophage 

clearance.114 Smaller particles seem to exhibit a less consistent behavior. Kinnear et al. 

explained this with the variety of materials, sizes, surface chemistry and the differences in 

cell types. However, for particles of a size range from 100 to 800 nm the trend shows a 

preferable uptake for disks in comparison to spheres.114 Following the interaction route, 

objects in the size range of around 20 nm, were found to have a stronger association with 

HeLa cells in disc shape. Despite this, spherical particles have been internalized to an 

greater amount.115 Particles obtained by the PRINT®-technique have been used to study 

different aspect ratios and cubes. The particles with the highest aspect ratio showed the 

fastest uptake. This is explained by the higher surface area leading to more interaction 

with the target cell.116 Decuzzi et al. studied the in vivo distribution of cylindrical, 

discoidal, hemispherical and spherical SiO2 nano-objects and found a reduced amount of 

discoidal carriers in the liver. The high amount of this shape in organs like the lung or 
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heart is explained by the evasion of clearance by Kupffer cells after retention in the 

liver.117 So-called filomicelles with a cross-section between 26 - 60 nm and a length from 2 

to 18 µm have been proven to persist significantly longer in blood circulation of mice and 

confirm previous findings about an altered biodistribution profile.118 Beyond this, shape 

and size of gold NPs have been found to be related with the antibody formation when 

used as adjuvant in vaccines. The efficacy could be inversely related to the specific surface 

after comparing spheres and rods with diameters of 20 and 40 nm respectively.119 In our 

lab the shape effect of microrods is used for pulmonary delivery. Kohler et al. developed a 

template assisted method to produce nanostructured microrods of a well-defined size 

and aspect ratio,120 which have subsequently been developed and recently showed to be 

able to target pulmonary macrophages in order to manipulate them in the context of 

immunodesease.121 These studies show the ability of improving the efficacy of carrier 

systems by a careful selection of the shape, alongside with the other physicochemical 

parameters, in the accordance to the target side.  

 Surface Chemistry 

The in vitro uptake rate of nanoparticles was shown to be faster for positively charged 

NPs in comparison to particles with a neutral or even negative surface charge.122 

Electrostatic interactions between the negatively charged cell membrane and the carrier 

system are postulated to be responsible for this diversity. In addition, positively charged 

chitosan NPs have been proofed to be able to be released from the lysosome, after 

phagocytosis, whereas particles with a neutral and negative surface charge remained in 

there.123 In a recent study it could be shown that a change of surface decorating 

molecules alters the deposition and the cellular internalization after convection-enhanced 

delivery to rat brains. This can be used for a targeted delivery to tumors.124 Surface 

decoration by coupling of various molecules such as antibodies, carbohydrates or tumor 

markers is a popular method to biofunctionalize NPs. In Figure 3-12 the most common 

strategies are summarized. Peptides can be used to enhance the delivery into the 

cytoplasm and cell nucleus, but as well for an aimed accumulation in specific tissues. 

Magnetic NPs, presenting antibodies or antibody fragments on their surface, can be used 

as in vivo diagnostic tools.125 
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Figure 3-12: Common surface functionalization methods to enhance the efficacy of nanoparticles in drug delivery and 
diagnostics by a targeted NP delivery and prolonged blood circulation. Reprinted from: “Revisiting 30 years of 
biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine”125 Copyright © 2014 Conde, 
Dias, Grazú, Moros, Baptista and de la Fuente; 

After invading in an in vivo system NPs come in contact with liquids of complex 

composition no matter which administration route was chosen. Proteins and 

apolipoproteins are known to interact with nanomaterials and form a protein corona, 

which affects the particle size but also the surface composition and the recognition by the 

immune system.126, 127 Different approaches are used to avoid, or at least minimize, the 

interaction with proteins and clearance strategies after administration. The most popular 

strategy for sure is the formation of so-called stealth-particles. Composites with a PEG 

decorated surface showed a prolonged circulation time when a dense PEG-chain pattern 

could be achieved.128 Yang et al. showed a reduced macrophage phagocytosis and 

unspecific interaction with red blood cells (RBCs). The in vivo distribution was highly 

dependent on the molecular weight of the PEG chains and needs to be relatively high for 

a successful circulation prolongation.129 Other studies, examining the difference in the 

protein corona composition, showed a higher content of complement and coagulation 

proteins for PEGylated poly(glycidyl methacrylate) NPs, whereas the apolipoprotein 
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content was significantly decreased.130 An innovative strategy to produce long circulating 

NPs is the formation of zwitterionic surfaces. This could be shown to protect NPs from cell 

uptake and reduce the plasma protein interaction with the formulation.131 In order to 

obtain increased delivery efficiency, the surface properties have been further improved, 

to achieve a trigger-related change in the surface charge. During their blood circulation, 

the zwitterionic properties are of high advantage. The lower pH in tumor tissues, caused 

the formation of cationic particle interface, results in an improved cell uptake.132 All these 

studies show the importance of a carefully designed particle surface, according to the 

targeting side, to obtain an effective delivery system. 

 Mechanical Properties 

The impact of the mechanical carrier properties just gained attention in the last decade. 

Although it is a particle characteristic, about which the knowledge is up to now relatively 

low, its influence is as important as other particle properties. Looking in detail to the in 

vitro interactions, an enhanced and faster uptake for particles with a higher elastic 

modulus, possibly calculated as Young´s modulus, can be seen.133 In more detail, Banquy 

et al. studied the effect of mechanical properties in macrophage cell uptake with NPs 

made by N,N-diethyl acrylamide and 2-hydroxyethyl methacrylate with hydrodynamic 

diameters of 150 to 170 nm and Young´s moduli from 18.08 to 221.39 kPa. By the use of 

specific inhibitors for different uptake mechanisms, a correlation between the mechanical 

properties and the uptake route could be achieved. While hard particles have been 

predominantly taken up by a clathrin-mediated process, soft particles have been 

preferentially absorbed by micropinocytosis and particles of intermediate Young´s moduli 

showed multiple uptake routes resulting in an overall higher uptake.134 Other studies, 

investigating in the role of NP uptake by macrophages, demonstrated a higher uptake of 

stiffer particles.9, 135 The same tendency can be found in endothelial cells where a higher 

uptake into human lung microvascular endothelial cells (HMVEC)136 and human umbilical 

vein endothelial cells (HUVEC)137 was reported. Even though other studies showed more 

diverse results the majority of investigations confirm the higher and more rapid uptake of 

harder NPs into endothelial cells.133 A pronounced heterogeneity in the results can be 

found for cancer cells, typical target cells for nanoparticulate drug delivery. 
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Figure 3-13: Model of the uptake of rigid NPs in a) and soft NPs in b) showing the particle deformation during cell 
wrapping for soft particles. Rigid particles are completely internalized whereas soft counterparts are trapped at the cell 
surface. From “Tunable Rigidity of (Polymeric Core)–(Lipid Shell) Nanoparticles for Regulated Cellular Uptake”137 
Copyright © 1999 - 2017 John Wiley & Sons, Inc. 

Here the variation in cancer cell types and in the absolute Young´s moduli of the 

investigated NPs can explain the broad distribution in findings.133 Taking into account 

shape and mechanical properties Alexander et al. compared the uptake of hard and soft, 

cubic and spherical nanosized carriers with the result of an enhanced uptake for cubic 

particles in comparison to spheres. In both cases the uptake was higher for the more rigid 

formulation.136 Simulations of NPs uptake, investigating in the wrapping process, 

postulate a full and faster cell membrane wrapping for stiff particles, whereas softer 

particles might even only be wrapped partially due to particle deformation during the 

uptake process. This is explained by a lower adhesion energy needed for the uptake of 

stiffer particles.138 The postulated carrier deformation during membrane wrapping is 

illustrated in Figure 3-13.137 Anselmo et al. showed a prolonged in vivo circulation time for 

softer hydrogel NPs composed of poly(ethylene glycol) diacrylate (PEGDA) with different 

polymer volume fractions. They produced NPs with a size of around 200 nm and bulk 

moduli ranging from 10 kPa to 3 MPa. The distribution half-life (ɑ-1) was 1.48 h for soft 

and 0.11 h for hard particles in mice. Same tendency was seen in the elimination half-life 

(β-1) with 61.4 h and 9.7 h respectively. This is resulting in a longer circulation time in the 

blood for softer particles. After 12 h the differences in the organ distribution were nearly 

adjusted.9 In another study Merkel et al. studied the effect of elastic properties of 6 µm-
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sized microparticles mimicking the shape of red blood cells produced by the PRINT® 

technology. Particles with a Young´s modulus of 7.8 kPa showed a 30 times longer blood 

circulation time in mice then their stiff counterparts with a Young´s modulus of 63.6 kPa. 

The biodistribution into tissue, here measured after 2 h was found to be highly 

dependent on the elastic modulus too. Softer particles penetrated less into the lung and 

in addition, harder particles triggered pulmonary embolism, which couldn´t be found in 

animals treated with the softer particles.139 A third study, which has to be mentioned 

here, is about a soft NP formulation, which shows a low accumulation in the spleen. 

Zhang et al. designed soft zwitterionic NPs composed of poly(carboxybetaine) and 

poly(sulfobetaine) with a particle size of around 250 nm. The bulk moduli are ranging 

from 0.18 to 1.35 MPa. The circulation half time, calculated by a one-compartment 

model, was between 9.1 and 19.5 h with a longer circulation for the softer NPs. A lower 

splenic filtration is postulated underlined by an in vitro model mimicking the filtration 

process. The biodistribution after 48 h showed the lowest accumulation in the spleen for 

the softest particles, whereas these NPs have been found in the highest concentration in 

the blood. All other organs seemed to uptake equivalent particle amounts.140 The trend of 

an prolonged blood circulation time, which is seen by other studies too,133 can be used in 

drug delivery for a longer drug release in blood vessels and an enhanced delivery to the 

target side and therefore, a more effective drug delivery. Beyond the prolonged 

circulation time could a reduced accumulation in different tissues minimize side effects 

and could, through a lower accumulation in the liver, avoid the elimination by MPS 

associated cells can.141 
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4 Aim and Scope of the Thesis  

The aim of the present thesis is divided in four work packages. In Figure 4-1 the 

milestones are summarized briefly. 

 

Figure 4-1: Overview over the four milestones addressed in the present thesis. 

The first work package, dealing with the investigation in Young´s moduli of cGNPs, is 

presented in its own chapter (Chapter 5 Elasticity Determination of Gelatin 

Nanoparticles). The need of these investigations is based on the influences of elasticity in 

regard to cell internalization in vitro and biodistribution in vivo.9 Although cGNPs are of 

high interest in pharmaceutical research and have, due to their characteristics, a high 

potential to be used in therapy as a drug delivery system, nothing is known about their 

mechanical properties and how they can be influenced. Here studies are performed to 

obtain first insights into the subject.  

Gelatin as drug delivery system has several outstanding advantages, beside the very good 

loading rates, which can be up to 80%, it shows excellent characteristics as a particle 

forming polymer. Nevertheless, commonly used systems are stabilized by a crucial 

crosslinking, thus the cargo can be coupled with the particle, which can destroy their 

efficacy. This substantiates the need of a new formulation stabilizing GNPs in an 

innovative way. Therefore, a formulation process with a coating or embedment of the 
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freshly produced GNPs in Eudragit ® E100 has been developed. In the selection of the 

used materials, an exclusive use of biodegradable and biocompatible materials was 

intended for a possible application in drug delivery. Thus PLGA was chosen as a coating 

polymer well-suited with respect to its degradation profile. 

The third work package demonstrates the in vitro testing to evaluate the GNP based 

system in terms of toxicity, drug load and the use as non-viral transfection vector in gene 

delivery. Here the drug delivery system was tested in regard of LNA encapsulation as well 

as transfection with plasmid DNA. 

The final work package investigates the determination of the exact inner structure of the 

final formulation. To know about the inner structure and the polymer distribution within 

a particle is an important part of the development of new formulations and helps to 

understand and eventually even foresee the particle characteristics. The results give 

feedback to the development. Thus, the evaluation of new analytical methods, such as 

energy filtered transmission electron microscopy, for the determination of the particles´ 

structure, could be used for an eventual further improvement of the platform technology. 
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5 Elasticity Determination of Gelatin Nanoparticles 

5.1 Introduction  

The importance of mechanical properties on the in vitro and in vivo fate of carrier systems 

is discussed in chapter 3.2.4.133 Although, as discussed in chapter 3.1.4, GNPs exhibit 

excellent characteristics as carrier systems for the already popular and still aspiring group 

of hydrophilic macromolecular APIs,8 nothing is known about the mechanical 

characteristics and the possibility to influence them. This is even more surprising as 

varying the crosslinking density is a common approach for the production of NPs with 

different elastic characteristics.133 This was already proven to be a possible parameter to 

adjust the elastic properties of crosslinked gelatin gels.142 In order to promote the 

development of targeted drug delivery based on cGNPs, the aim of the following study 

was to obtain first insight into the characteristics of GNPs and moreover to test the 

influence of different crosslinker incubation times on the elasticity measured as Young’s 

modulus. To complete the study the influence of storage at 4°C was evaluated. The 

determined change in the Young´s modulus was used in a follow up investigation to 

evaluate the relevance in biological systems. 

5.2 Experimental 

 Materials 

A detailed list of the used chemicals and devices is attached at the end of this thesis in 

chapter 9. Gelatin, as protein based, hydrophilic particle forming biopolymer, is already 

described in 3.1.3.  

 Fabrication of Crosslinked Gelatin Nanoparticles 

Crosslinked gelatin nanoparticles (cGNPs) were produced with the nanoprecipitation 

method which, whose principle was described in chapter 3.1.4. Gelatin was dissolved in 

deionized water at 50°C under continuous stirring. To form NPs 1 ml solution, containing 

20 mg gelatin, was dropped slowly and under continuous stirring at 750 rpm into the 

antisolvent, which consists of 15 ml acetone containing 1 ml deionized water and 2.81 % 

(w/V) poloxamer 188 as stabilizer. To obtain stable NPs the freshly formed particles were 

crosslinked with 500 µl of a 1.85 % (w/V) glutaraldehyde in acetone solution containing 

5.55 % water. The cross linker needs to be added very slowly to prevent the irreversible 
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formation of gelatin aggregates. Glutaraldehyde was incubated for 3, 6, 15 or 18 h and 

the so gained cGNPs were purified three times by centrifugation at 10,000 g for 10 min at 

15°C. 

 Size and Zeta Potential of Gelatin Nanoparticles 

Determining hydrodynamic diameters, size distribution and surface potentials are 

relatively fast measurements for initial particle characterization and therefore an efficient 

method to control and monitor production processes. Furthermore, as described in 

chapter 3.2, particles´ size and ζ-potential have a high impact on the drug delivery 

characteristics of NP-formulations. The hydrodynamic diameters and size distribution are 

determined by dynamic light scattering (DLS) which can also be referred to photon 

correlation spectroscopy too. The method makes use of the Brownian motion of particles 

below 5 µm suspended in a liquid. This suspension is illuminated by a monochromatic 

laser beam. The light is scattered by the particle motion which is related to the particle 

size. When the light hits a moving particles a slight shift in the wavelength occurs which 

causes a small Doppler shift,143 a slight change in the frequency of the scattered light. 

Smaller particles move faster, thus cause a quicker light fluctuation. By an 

autocorrelation, of the measured intensity and the time, the translational diffusion 

coefficient (D) can be calculated and converted to the hydrodynamic diameter (DH) by the 

Stokes-Einstein equation: 

𝐷H =
kBT

3πηD
           (1) 

The further variables are the temperature (T), the Boltzmann constant (kB) and the 

viscosity of the dispersant (ƞ).144 Based on a cumulants analysis defined in ISO 

22412:2017, the Z-average diameter (ZD), the intensity correlated mean diameter, and 

the polydispersity Index (PdI), a dimensionless number characterizing the particle size 

distribution width, are derived. A PdI of 0.08 is defined as relatively monodisperse, if the 

PdI becomes larger than 0.7 a very broad particle size distribution can be assumed.145 The 

surface charge of particles in liquid is approximated by the measurement of the zeta 

potential. Particles are surrounded by ions dissolved in the dispersant. This ions form two 

layers. An inner “Stern layer” with strongly bound ions and an outer region where the 

ions are less strong attached. When a particle moves a shear plane occurs, within the 
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plane the interaction between particles and ions is strong enough, so they follow the 

particle movement. 

 

Figure 5-1: Construction of a DLS measurement device with its characteristic components. Reprinted from: “DLS and zeta 
potential – What they are and what they are not?”146 Copyright: © 2016 Elsevier B.V  

The potential existing at the slipping plane is the ζ-potential. Particles and emulsion 

droplets with a zeta potential greater than (+) 30 mV or lower than (-) 30 mV are 

considered to form a stable formulation as they repel each other when they come too 

close.147 Zeta potentials are strongly influenced by the pH of the dispersant. For proteins 

the potential is positive at pH values below the isoelectric point (IEP) and negative if the 

pH is higher. For the measurement an external electric field is applied. This results in an 

electrophoretic mobility which can be used for the determination of the zeta potential. 

Viscous effects of the medium work in the opposite direction. In the state of equilibrium 

the particle moves with a constant velocity which is influenced by the electric field 

strength, the dielectric constant of the medium, the viscosity and the zeta potential. The 

zeta potential can be measured by the laser Doppler velocimetry (LDV) which measures 

the fluctuation of scattered light in an electrophoresis experiment in the angle of 17 

degree and compare this with a reference beam. The fluctuation is proportional to the 

particle speed. Another method is the M3-PALS. A combination of phase analysis light 

scattering (PALS) with mixed mode measurement (M3). This is the combination of a slow 

field reversal and fast field reversal of the electric field to compensate a possible shift of 

the determined zeta potential through electro osmosis, a movement of the surrounding 
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phase in the applied electric field. The use of PALS improves the results especially for 

samples with low particle mobility as the phase shift is more sensitive than the frequency 

shift used in LDV.  

To determine the hydrodynamic diameter, the particle size distribution and the zeta 

potential a NanoZS zetasizer was used. The device operates in the non-invasive back-

scatter technology (NIBS) for the size measurements and M3-PALS to determine zeta 

potentials.148 Samples have been prepared by dilution with purified water in a ratio of 

1:20 to obtain a suitable particle concentration. A disposable folded capillary cell (type 

DTS 1070) was used for the measurement. All samples have been evaluated immediately 

after purification and after four weeks of storage at 4°C. 

 Electron Microscopy 

5.2.4.1 Visualization of the NP Morphology by Scanning Electron Microscopy 

With the development of the scanning electron microscope a resolution down to the 

nanometer scale got accessible. The investigated area is scanned by a small electron 

beam produced by a cathode and accelerated with an anode at a defined voltage. 

Cathodes are either made of lanthanum hexaboride (LaB6) or tungsten. The electron 

beam is focused by electric or magnetic condenser lenses. A scan coil, located above the 

objective lens, controls the position of the beam and thus allows the beam to scan the 

sample in X and Y directions. The set-up is displayed in Figure 5-2. To avoid interactions 

with atoms, before reaching the sample surface, the whole set up is placed in a vacuum 

chamber. When the electron beam reaches the specimen, different interactions between 

the electron beam and the sample are occurring.  

 

Figure 5-2: Typical construction of a scanning electron microscopy machine, Copyright © 2009 How stuff works 
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For imaging typically either secondary electrons, which are scattered inelastically from 

the interaction with electrons close to the surface (<2 nm) or back scattered electrons 

(BE), which arise from elastic interaction with the nuclei, are used. As BE electrons have a 

higher energy, they can be detected from deeper levels of the sample. Using secondary 

electrons the scanning electron microscopy (SEM) represents a very good method for 

surface morphology examinations.149 More electron beam-specimen interaction will be 

described later in chapter 6.2.5.3. Samples have been prepared on a silica wafer which is 

attached to a pin stub with a carbon disk. Approximately 50 µl of NP suspension was 

dropped on the wafer. 

The drop was incubated for one minute, in order to let the NPs adsorb to the surface, 

before the supernatant was removed with a lint-free tissue. To gain an electro conductive 

surface, which is required for imaging, a 10 nm gold layer was sputtered in a Quorum 

Q150R ES sputter coater to prepare GNP samples for imaging in an EVO HD15 SEM using 

an acceleration voltage of 5.0 kV and the secondary electron image (SEI) detector. 

5.2.4.2 Transmission Electron Microscopy 

The principle of transmission electron microscopy (TEM) will be explained in chapter 

6.2.5.2. For sample preparation 50 µl of a particle suspension was dropped on a holey-

carbon film (Plano S147-4). The dispersant was evaporated completely before imaging in 

a JOEL JEM 2100 TEM. For electron generation a LaB6-cathode was used and for imaging 

a Gatan Orius SC100 camera. 

 Scanning Probe Microscopy 

5.2.5.1 Principle of Scanning Probe Microscopy 

The scanning probe microscope (SPM), also called atomic force microscope (AFM), is a 

microscope which scans the surface of a specimen with a probe, mounted on a cantilever. 

The technique was invented in 1986 by Binnig and colleagues150. The resolution in x, y and 

z direction is outstanding with the possibility to resolve from micrometers down to the 

angstrom scale. To detect the cantilevers deflection a laser beam is used. The back side of 

the cantilever reflects the beam which is then brought over a mirror to a position-

sensitive photodiode (PSPD). This principle is called the optical lever arm, as a small 

cantilever displacement is magnified in a relative large beam motion on the detector.151 
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An illustration of a SPM machine is shown in Figure 5-3. Every cantilever displacement will 

cause a change in the position where the laser beam hits the PSPD. 

 

Figure 5-3: Schematic of a scanning probe microscope. 

Two imaging methods are commonly used. In the contact mode the probe is always in 

touch with the sample. While scanning the specimen line by line, either the cantilever 

deflection can be measured or, in order to keep the force on the sample gentler, the 

feedback signal needed to keep the deflection constant, is measured. For measurements 

in ambient air, the capillary forces, produced by a thin water film on the sample, are very 

strong. This can be eliminated by measurements in liquid. The second mode, the tapping 

or intermittent contact mode, makes use of a cantilever oscillating with a frequency, close 

to its resonance frequency. At the minimum of the oscillation amplitude, the tip is in very 

brief contact with the specimen surface. If the cantilever is very close to the surface, 

different forces (van der Waals forces, dipole-dipole interactions, electrostatic forces) are 

impinging on the cantilever and therefore influence the amplitude. In order to keep the 

cantilever amplitude constant these forces go into the feedback loop, controlling the 

cantilever height. As the surface is only touched very shortly, the damage to the specimen 

is reduced in comparison to contact mode measurements. The repulsive and adhesive 

forces have an influence on the frequency and result in a phase shift, which is influenced 
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by the surface characteristics. In this way differences in surface composition, which 

cannot be seen in the height profile, are accessible.152 Even gentler, as the tip does not 

come in contact with the specimen, is the third possibility, the noncontact mode. This 

mode makes use especially of van der Waals forces. Oscillation amplitudes of less than 

10 nm are used. Van der Waals forces are usually the strongest from 1 nm to 10 nm 

distance to the surfaces. In this mode the distance between tip and cantilever are kept 

constant. The options to run SPM measurements under various conditions (ambient air, 

vacuum, different gases and liquid) and from low to high temperatures open a broad 

range of possibilities. In liquid even the imaging of living cells is possible.153 In addition, 

the water capillary forces which are present in ambient air condition at the tip-sample 

interface are removed.154 For the purpose of characterization of hydrogel particles with 

the application in drug delivery, a more realistic investigation can be performed in liquid 

conditions too. The analytical capabilities of a SPM go far behind simple imaging of 

surfaces. The usage of SPM for the quantitative measurement of elastic material 

characteristics is described in chapter 5.2.5.2. Through the combination with other 

techniques such as SEM or fluorescence microscopy, the spectrum of possibilities is even 

broader. In this way the interaction between single viruses and cells could be studied.155 

5.2.5.2 Sample Preparation for SPM in Water and Air 

To perform AFM experiments under liquid conditions, the NPs needed to be fixed to the 

substrate. This could be achieved with electrostatic interactions between a positively 

coated silicon wafer and the negatively charged GNPs. Therefore silica wafers have been 

cleaned with absolute ethanol in an ultrasound bath (Elmasonic P) for 5 min at a 

frequency of 37 kHz. Afterwards, the surface was activated in UV/ozone for 15 min 

(UV/Ozone ProCleanerTM). Subsequently, the wafer was incubated with a 1 % (w/V) 

polyethylenimine (PEI; average Mw of 25 kDa) solution in deionized water. Coated wafers 

have been rinsed with filtered deionized water in which they have been kept wet and 

stored at 4°C until final sample preparation. The substrate was coated for a maximum of 

24 h before usage. Immediately before the experiment, samples have been diluted 1:3 

with deionized water and 50 µl of the dilution was transferred to the coated substrate. 

After one minute of incubation the excess was rinsed from the wafer with filtered 

deionized water in which they have been kept wet afterwards until the end of the 

measurement. For SPM topography images, taken under ambient conditions, 10 to 20 µl 
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of the sample have been applied to freshly cleaved mica. After an incubation time of 

approximately one minute the rest of the sample was removed with a lint free tissue and 

measured in intermittent contact mode after complete drying. 

5.2.5.3 Elasticity Measurements 

Scanning probe microscopes cannot only be used for topography measurements. Due to 

the possibility to measure small forces (even in the pN range) the interaction between 

materials can be investigated. Furthermore, mechanical properties of various materials 

can be determined. First nanoindentation experiments have been performed in the 

1970s. 156 Since then the technique was developed and in the 1990s adopted to the use 

by SPM. This raised the possibility to determine the elastic moduli on nanoparticles.157 A 

sketch of the simplified principle of an indentation experiment is depicted in Figure 5-4. A 

SPM probe is used to indent the NP by a piezo displacement. The displacement can be 

plotted against the force, exposing the cantilever during the indentation, resulting in a 

force-distance curve. Since the cantilever acts like a spring, the indentation depth can be 

calculated if the spring constant is determined prior to the experiment. 

 

Figure 5-4: Simplified principle of the nanoindentation performed by a SPM measurement. 

A typical example of such a curve is illustrated in Figure 5-5. Four characteristic segments 

are highlighted in this graph. The experiment starts with an approach of the SPM probe to 

the NP surface, which runs free of force. When the tip approaches close enough to the 

surface, attractive forces between probe and surface can cause a jump into contact. This 

results in a negative force. While further lowering the piezo the zero-force baseline is 

crossed again, this is the so-called contact point, which is set to the origin of the 

coordinate system. From this point on the probe indents the nanoparticle until a defined 
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setpoint force is reached. This is displayed in the third measurement segment. The 

calculation of the Young´s modulus is based on the fit of the resulting slope in this sector. 

The retract part, displayed in green, represents the lifting of the cantilever. Due to 

adhesion forces between tip and sample surface a negative force can be obtained. The 

adhesion force is a combination of the electrostatic force, van der Waals force, the 

capillary force and forces brought to the system through chemical bonds or acid-base 

interactions.157 It can be calculated by the area between the retract curve and the 

baseline. A cantilever movement without force, until the original cantilever position is 

reached, finishes the indentation loop. 

 

Figure 5-5: Typical force-distance curve of a nanoindentation experiment on cGNPs with characteristic segments. I) Force 
free approach, II) jump into contact, III) indentation of the tip into the sample, IV) retract with segment with the 
possibility to determine adhesion forces. 

All nanoindentation experiments were performed with a JPK NanoWizard I SPM. To get a 

more realistic insight in the elastic characteristics of cGNPs all experiments were operated 

under liquid conditions. A quadratic pyramidal tip of the MLCT type was used as an 

indenter. The probe is made by non–conductive silicon nitride with a gold coated back 

side. The C cantilever with a nominal spring constant of 0.03 N/m was used throughout 

the entire force-distance measurements. Directly before the measurement of a new 

sample, the thermal noise method according to Hutter et al.158 was used to determine the 

cantilever’s actual spring constant on a cleaned silica wafer. To roughly localize the 

distribution of cGNPs on the substrate an overview scan was done initially. Subsequently 
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one particle was chosen randomly and depicted closely do determine the exact position 

and be able to perform 10 force-distance measurements in the middle of the NP. After 

the fifth and tenth indentation the particle is relocalized to ensure all data are actually 

acquired in the middle of the particle. Measurement settings have been defined to an 

approach and retract rate of 3.33µm/s and an applied force of 2 nN. Ten force distance 

curves per particle on ten particles per sample, resulted in 100 data points obtained per 

sample. The obtained curves are fitted and processed by the Hertzian model. Therefore, a 

linear relation of stress to strain is obligatory. This was checked prior to the 

determination of the Young’s moduli. Therefore, forces between 0.5 and 2.5 nN have 

been applied. To extract the necessary parameters for the calculation of stress and strain 

the original jpk-data files have been converted into text files and then read out with the 

AFMToolkit in R Studio.159 Subsequently, the stress, defined as σ = F/A with F being the 

applied force and A the contact area between indenter and nanoparticle, is calculated 

according to the following equations. For a quadratic pyramidal tip A is composed by the 

parameters 

𝐴 = 4ℎc²
𝑡𝑎𝑛 𝛼

𝑐𝑜𝑠 𝛼
           (2) 

The tip half angle ɑ was taken from the official product description whereas the contact 

depth hc has to be calculated by:  

ℎc =
2

𝜋∗𝛥𝑙
           (3) 

Here Δl is the indentation depth which was calculated by the following equation  

∆𝑙 = 𝑧 − 𝛿c           (4) 

Where z is the piezo displacement and δc the cantilever deformation.160 As the cantilever 

can be compared with a spring, the deformation can be obtained by Hook’s law F = k* δc. 

F is the applied force and k the spring constant, which is determined in advance of each 

experiment. The strain is expressed by ε = Δl/l0. Being Δl the indentation depth defined 

in equation (4) and l0 the initial NP height. The calculated values are then plotted against 

each other and fitted with a regression line. The chosen application force of 2 nN is in the 

tested linear range and allows measurements with an indentation of less than 10 % of the 

absolute particle height. This is fundamental as infinite sample thickness is one of the 

assumptions made by the Hertz model.161  
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5.2.5.4 Evaluation of Force-Distance Curves 

To obtain the Young’s moduli from the measurement data, the curves are handled in the 

JPK-SPM Data Progressing Program (DP). Young´s moduli can be extracted by fitting the 

recorded curves, after editing1, with the Hertz model. As this is based on a parabolic tip 

an adjustment for the quadratic pyramidal tips is required. The modified Hertz model  

𝐹 = 0.7453 ∗
𝐸

1−𝜈2 ∗ 𝛿2 ∗ tan (𝛼)        (5) 

is used by the DP. Where F is the applied force, E is the Young´s modulus, ν is the 

Poisson´s ratio, which is assumed to be 0.5, δ is the indentation depth and ɑ stands for 

the half angle of the tip used. To start the data processing the cantilever deflection needs 

to be calibrated by the cantilever´s spring constant and sensitivity which was determined 

prior to the measurement. The next step is the baseline subtraction to correct the vertical 

offset and subsequently the contact point can be detected. The now depicted curve still 

represents the piezo displacement, which is greater than the actual indentation into the 

particle. The difference is caused by a deflection coming from the force the cantilever is 

exposed to. This needs to be corrected by the tip-sample separation. The obtained force-

distance curve is steeper and can be fitted by the modified Hertz model to finally obtain 

the Young´s modulus. 

 Cellular Interaction in Dependency of Particle Stiffness  

As a consequence of the data the following experiments were realized during a diploma 

thesis at the institute by Thorben Fischer.  

The biological relevance of the change in the particle stiffness of GNPs was investigated 

with the alveolar cancer cell line A549 with 18 h crosslinked FITC-Dextran70 loaded GNPs. 

The aim of these experiments was, to investigate in the importance of the mechanical 

properties with respect to the interaction between cells and NPs. Therefore, 20 mg of 

gelatin were dissolved in 800 µl deionized water and mixed with 1 mg FITC-Dextran70 

dissolved in in 200 µl deionized water and coprecipitated in acetone containing 2.81 % 

(w/V) poloxamer 188 as stabilizer with an agitation speed of 750 rpm. Crosslinking was 

done with 500 µl of a 7.4 % (w/V) glutaraldehyde solution. After 18 h particles have been 

purified three times by centrifugation with 10,000 g for 10 min at 15°C. A549 cells have 

                                                      
1 Editing includes the baseline-correction to bring the baseline to zero-force, the correction of the contact 
point to zero-length and a tip-sample-separation. 
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been grown in RPMI-1640 medium with the addition of 2 mM glutamine and 10 % (V/V) 

fetal calf serum (FCS) in µ-Slide 8 well ibiTreat® microscopy chambers for three days. 

GNPs have been investigated one day after production and after four weeks storage at 

4°C in water. After an incubation time of 4 h and 8 h respectively with 1.05 mg particles 

per well, cells have been washed twice with Hanks Balanced Salt Solution (HBSS) buffer. 

For the visualization in the confocal scanning microscope (CLSM) cell cores have been 

stained with 200 µl of a 10 µg/ml 4′,6-Diamidine-2′-phenylindole dihydrochloride solution 

(DAPI). N-Hydroxysuccinimid Alexa Flour® 633 was used in a concentration of 5 µg/ml to 

stain the cell membranes. Both dyes have been incubated for 15 min. To remove excess 

material, A549 cells have been washed three times with HBSS buffer after each step. The 

labeled NPs have been excited with an argon laser at 488 nm, Alexa Fluor 633 was 

detected with an argon laser too but at a wavelength of λ = 633 nm and for DAPI a laser 

diode 405-30 with a wavelength of λ = 405 nm was used. Images have been taken with M 

27 objective with a numeric aperture of 1.2 and a 40 x magnification. As CLSM is also used 

later in chapter 6.2.5.1 to colocalize different polymers a brief introduction to the 

technique is given here. 

CLSM is a light microscopy technique based on fluorescence emission, caused by 

excitation with a laser of an appropriate wavelength which scans the specimen. The 

emitted light is sectioned by a pinhole. Only light from the in-focus plane can pass 

through this partial filter unit to the photodetector. By this limitation to the focus plane 

the sample can be dissected into thin optical slices. This allows a 3D reconstruction of the 

sample from the slices acquired from different positions. Therefore, compared to normal 

light microscopy, sharper images are obtained. This method has a lateral resolution of 

around 0.23 µm and approximately 1.1 µm in the vertical direction (Calculated for Alexa 

Fluor 633 and the used settings). To image cells or tissue the specimen has to be labelled 

fluorescently with dyes or with antibodies bound to a relevant dye. By scanning the 

sample with different lasers and the corresponding appropriate dyes, diverse information 

about the region of interest can be assembled in one image.162 As the focus can be varied 

through the specimen, pictures from different planes can be obtained. Moving the focus 

plane stepwise through the sample allows assembling a so-called z-stack. From this, a 3D 

image can be digitally reconstructed. 
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5.3 Results and Discussion 

 Sizes and Zeta Potential of Gelatin Nanoparticles 

For all crosslinking times the hydrodynamic diameters, particle size distributions and ζ-

potentials have been determined with a zetasizer Nano-ZS. The results are combined in 

Figure 5-6. The sizes and PdIs stayed constant over the range of glutaraldehyde 

incubation times and the storage period. All formulations show a mean for the 

hydrodynamic diameter between approximately 300 to 350 nm. For the PdIs of around 

0.2 the particle size distribution can be assumed to be narrow but not monodisperse.145 

The constancy in regard of size and PdI supports a stable nanoparticulate formulation. 

 

Figure 5-6: Sizes and PdIs of cGNPs after 3, 6, and 18 h of crosslinking. One day after production (fresh) and after four 
weeks of storage at 4°C (aged) in a). In b) the ζ-potential for the same formulations is displayed. 

In Figure 5-6 b) the zeta-potentials are shown. Here a decrease of around 5 mV from 

approximately -20 mV to -15 mV can be measured. With p < 0.05 this change was stated 

to be significant. A possible explanation for this can be the triple helix formation over 

time. These helices are stabilized by hydrogen bonds either formed between a carboxylic 

and an amide group or, with a water molecule as linker, between two carboxyl groups. As 

negatively charged CO-functions are involved in the helix stabilization, they cannot 

contribute to a negative surface charge anymore.163, 164, 165 

 Visualization of Crosslinked Gelatin Nanoparticles 

To check the morphology and shape, cGNPs have been visualized in SEM, SPM and TEM. 

For all images in Figure 5-7, cGNPs have been captured in dried conditions. SEM in a) and 

TEM in b) under high vacuum. The SPM image in c) is taken in tapping mode at 

atmospheric conditions. The round particle shape is clearly visibly. In the TEM image the 
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homogeneous material distribution throughout the entire particle is apparent. The 

height, determined after SPM measurements of 28 nm, shows the hydrogel particles 

collapse while drying. Comparing the SPM cross-sections in Figure 5-8 of cGNPs imaged in 

air and in deionized water demonstrates the superiority of SPM images taken under liquid 

conditions which is the only method to get realistic values about the 3D occurrence of 

hydrogel nanoparticulate formulations. 

 

Figure 5-7: Visualization of cGNPs a) in SEM, b) in TEM, c) in SPM. SEM and TEM under high vacuum and SPM in air at 
atmospheric pressure. Particles are roundly shaped and have a smooth surface. 

In SPM-cross-sections the 3D shape is easily accessible. Two of them are displayed in 

Figure 5-8. In a) from a NP captured in air and in b) from a SPM measurement performed 

in liquid conditions. Comparing the y-axes the advantages of the liquid surrounding is well 

visible. In air a height of approximately 28 nm remains whereas the height in liquid meets 

with 140 nm nearly the same value than the diameter (175 nm). A possible indication of 

the slightly smaller height in comparison to the diameter is a compression caused by the 

SPM probe during the measurement. 

 

Figure 5-8: SPM visualization and analytics of cGNPs captured in liquid (b) to e)). a) shows a representative cross-section 
through a crosslinked gelatin NP imaged in the dry state in air. The attention has to be at the y-axes showing the particle 
collapse during drying in a) whereas the particle in b) keeps the spherical form. 
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The SPM images in Figure 5-8 are showing 2D and 3D views of particles imaged in 

deionized water in c) and d) respectively. The height of particles measured in liquid meet 

the expectations gained from particle size determinations. Figure 5-8 e) shows a close 

zoom to a single cGNP captured in water. The black bar indicates the line of the cross-

section in b). 

 Elasticity Determination – Force-Distance Measurements 

To get first insights in the mechanical properties of cGNPs nanoindentation experiments 

have been performed. The first step in the elasticity determination of a new system is to 

check for linearity. As described above forces of 0.5 to 2.5 nN have been tested and 

evaluated for their stress to strain correlation. The results are summarized in Figure 5-9 

for 3 h incubated cGNPs in a) and 18 h in b). Both formulations show a linear dependency 

what is supported by correlation coefficients of 0.928 and 0.964 respectively. This proofs 

that the calculation of Young’s moduli can be done with the help of a Hertzian fitting. A 

force of 2 nN was chosen for the further investigations because it is in the examined 

linear range and allows a stable measurement without being susceptible to external 

influences and meets the requirement of an indentation of less than 10 % of the original 

height.161 

 

Figure 5-9: Linear dependency of stress and strain of particles crosslinked for 3 h in a) and 18 h in b). The correlation 
coefficients are 0.928 for A and 0.964 for B and therefore proofing the linear dependency of stress and strain. 

Subsequently to the proof of linearity cGNPs have been investigated in regard of their 

Young’s moduli. As can be seen in Figure 5-10 cGNPs crosslinked for 3, 6 and 18 h are 

examined one day after production and after four weeks of storage at 4°C in water. For all 

fresh formulations a Young’s modulus of 30 to 35 MPa could be calculated. Whereas 

there was no detectable difference in stiffness between the fresh particles a clear 
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influence of storage could be verified. This alteration is more pronounced the longer the 

crosslinking time was; ranging from 36 % for 3 h crosslinked particles and over 62 % to 

129 % for 6 h and 18 h-crosslinked particles respectively. Overall, the change in the mean 

mechanical properties was found to be significant by two-sided student’s t-tests with p < 

0.0055 (Bonferroni adjustment). 

 

Figure 5-10: Young’s moduli of cGNPs crosslinked for 3, 6 and 18 hours one day after production and after 4 weeks of 
storage.  

It was expected to see a difference in the mechanical properties of fresh cGNPs as a 

correlation between crosslinking extend and the elastic behavior of gelatin gels could 

already be demonstrated.142, 166 Possible explanations why no change could be observed 

are, that either the particles are fully crosslinked after three hours, or the slight increase 

is too small to be detected. Shorter crosslinking times have to be addressed to check for 

the possibility of the formation of softer cGNPs. However, particles crosslinked for less 

than three hours could not be purified by centrifugation and because of that haven´t 

been considered in this study in order to keep the conditions constant. Methods like 

dialysis, size exclusion or cross-flow filtration would need to be established for cGNPs to 

study the influence of shorter crosslinking times or lower cross linker concentrations. As 

the production procedures should be kept as constant as possible, in order to exclude 

possible changes in the resulting particles, this was not done in the present study. 
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Looking in detail to the hardening over the storage time, it can be said that this was 

already studied for solid gelatin films167 but up to now never was taken in account for 

gelatin nanoparticles. A possible effect leading to the enhanced stiffness is the formation 

of triple helices. Triple helices are thermodynamically preferred. Therefore, gelatin has 

the tendency to form these crystalline areas until the equilibrium between the breakage 

and the formation of new stabilizing hydrogen bonds is reached.163, 164, 165 

 Cellular Interaction in Dependency of Particle Stiffness 

The biological relevance of the change in the elastic modulus while storing the 

formulation was tested in qualitative and quantitative interaction studies of 18 h 

crosslinked cGNPs with A549 cells. The qualitative interaction study was evaluated by 

CLSM. The quantitative data was obtained according to the protocol described in Shi et al. 

2015.168 

 

Figure 5-11: CLSM image of stained A549 cells after 8 h incubation with FITC-dextran70 loaded cGNPs. In a) cGNPs have 
been used one day after production and in b) cells are incubated with four week old cGNPs. cGNPs are displayed in 
green, cell cores in blue and cell membranes red. 

The CLSM images in Figure 5-11 display the cellular interaction with FITC-dextran loaded 

cGNPs is investigated after 8 h of NP incubation. In terms of cellular internalization a clear 

advantage of the aged particles displayed in b) was visible. Particles were counted in 

relation of cell numbers in at least five pictures of fresh and aged cGNPs. In comparison to 

the fresh formulation the amount of interacting NPs increased 4.8 fold. These results 

have been further investigated for quantitative cell uptake; here the measured increase 

after 8 h was 4.2 fold. Both methods result in a similar outcome. However, after 24 h the 

cellular interaction of fresh and aged particles was nearly aligned. The results show the 
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need of further investigations of both changes in the elastic moduli of cGNPs and the 

effect to biological systems. Therefore, more time points should be evaluated so uptake 

kinetics can be calculated. In addition, other cell lines, such as macrophages and human 

noncancerous cells, have to be studied to be able to strengthen the biological relevance 

of particle stiffness. This, paired with investigations of internalization routes, could help to 

gain a better understanding of the exact role of elastic moduli for hydrogel 

nanoparticulate systems.  

5.4 Conclusion 

The value of nanosized hydrogels in drug delivery was discussed in chapter 3.1.2. In the 

present thesis the influence and the importance of the measurement conditions for 

hydrogel NPs analytic could be shown. It was possible to visualize cGNPs in liquid by 

fixation by electrostatic interactions between substrate and NPs and map cGNPs in an 

environment closer to condition after application. By the switch of visualization in SPM to 

liquid conditions it was possible to image the spherical shape in a 3D view. This is an 

impressive difference to the data obtained by measurements in air. Furthermore, for the 

first time, an insight in the elastic characteristics of cGNPs could be achieved. The use of 

the nanoindentation method in SPM and fitting the obtained force-distance curves with 

the Hertz model is a suitable method to define Young´s moduli quantitatively. The 

investigated crosslinking times had no impact on the determined Young´s moduli for NPs 

analyzed one day after production. By comparing these results with the Young´s moduli 

obtained after four weeks of storage at 4°C in water a significant increase was detectable. 

In biological studies, performed with A549 cells, the effect of NPs elastic characteristics 

on the interaction with cells was demonstrated. As the other determined physical 

chemical parameters stayed constant, the increased interaction of cGNPs over the 

observed storage time correlates with the elasticity. This underlines the outstanding 

importance of the knowledge of elastic moduli and NPs age besides size, shape and 

surface properties. By a possible tuning of the particle stiffness, the in vitro fate, and most 

likely as well the destiny in vivo, of cGNPs could be altered in order to achieve a targeted 

drug delivery and prolonged blood circulation times. Further studies are necessary to 

determine possibilities of a modified production in order to design GNPs with editable 

Young´s moduli.
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6 Stabilizing Gelatin Nanoparticles without Crosslinking 

6.1 Introduction 

The importance, which biological therapeutics gained over the last years is indisputable. 

Their outstanding specificity and potency made them to an already important and still 

growing share on the market.11 Due to their low stability in vivo and the hydrophilic 

properties,3 the development of a delivery system can prolong the circulation time and 

smuggle the drug over the multitude of lipophilic barriers resulting in an enhanced 

bioavailability. A lot of work is invested in the encapsulation into PLGA NPs. However, due 

to the hydrophobic characteristics, the loading rates are rather low.52 Due to the excellent 

characteristics of nanoparticulate carrier systems formed by gelatin, which are discussed 

in detail in chapter 3.1.4, GNPs seem to be a promising system for this purpose. To 

overcome the drawback of the still inevitable crosslinking is addressed in the following 

chapter. The described investigations are based on the possibility of an alternative 

crosslinking-free stabilization of GNPs by the embedment in Eudragit® E 100 spheres.10 

The application limitation of the non-biodegradable Eudragit® should be removed by the 

exclusive use of biodegradable and biocompatible materials to achieve the development 

of a nontoxic, biodegradable platform technology for the use as drug delivery system for 

hydrophilic macromolecular drugs. 

6.2 Experimental 

 Materials 

For the formulation of the hydrophilic delivery platform, only biocompatible and 

biodegradable materials are chosen. The main compounds are gelatin B for the 

hydrophilic part, which is already described in detail in chapter 3.1.3 and PLGA for 

stabilization of the freshly prepared GNPs.  

6.2.1.1 Poly lactic-co-glycolic acid 

PLGA is a copolymer composed of lactic and glycolic acid in various ratios. The high 

interest in pharmaceutical research is based on its biodegradable and biocompatible 

characteristics. The chemical structure of the artificial polymer is shown in Figure 6-1. 

With a variation of the ratio of lactic and glycolic acid or the polymers’ molecular weight, 
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the glass transition temperature, degradation rate and hydrophobicity are adjustable. As 

a result, the drug release changes due to the chemical composition.169, 170  

 

Figure 6-1: Chemical structure of poly lactic-co-glycolic acid. The ratio between glycolic acid (marked with the y) and 
lactic acid, (signed with the x) can vary. 

PLGA is degraded in its monomers, lactic and glycolic acid, by hydrolysis. They are then 

eliminated through the Krebs cycle as carbodioxid or along the renal pathway. The 

degradation process is highly dependent on temperature, pH and, under controversial 

discussion, enzymes.171, 172 First sustained drug delivery systems based on PLGA have 

been introduced in the 1970s for naltrexone, an opioid antagonist173 and for 

microcapsules loaded with norethisterone, a contraceptive agent.174 Nanoparticles 

composed of PLGA gained an increasing importance since the 1990s.175 Several 

pharmaceutical products based on PLGA have been introduced to the market such as 

implants (Zoladex®) or micro particles (Enantone Depot®). The PLGA type used in the 

present thesis is the Resomer® RG 503 H. It is acid terminated, has a lactide:glycolide ratio 

of 50:50 and a molecular weight of 24,000 – 38,000. The degradation time is given to be 

three months and the glass transition temperature is stated to be between 44 and 46°C 

from the supplier. 

 Formulation Development of GNPs in PLGA 

6.2.2.1 Size and Zeta Potential of Gelatin Nanoparticles 

The hydrodynamic diameter, PdI and the zeta potential of GNPs in PLGA have been 

determined by a Zetasizer NanoZS. For size measurements, DLS with a backscatter 

detector in an angle of 173° was used. In contrast, the zeta-potential was determined 

with forward scattering at an angle of 12.8° by M3-PALS. After the last purification step 

samples were dispersed in 5 ml deionized water. Before the measurement the samples 

have been diluted 1:20 and have then been measured in disposable folded capillary cells 

of the type DTS 1070.  
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6.2.2.2 Visualization of the NP Morphology by Scanning Electron Microscopy 

The principle of the SEM has been described in chapter 5.2.4. Here the focus is on the 

working conditions used for the visualization of GNPs in PLGA. Therefore, a drop of the 

NP-suspension was distributed on a cleaned silica wafer. After approximately one minute 

of incubation, the remaining liquid was removed by a lint-free cloth. The sample was 

dried at room temperature and subsequently sputter coated to avoid charging effects. 

For sputter coating and SEM two different devices have been used. Which of the both set-

ups was used is indicated for each picture shown in this work. For the first set-up, the 

samples have been sputter coated with platinum (Edwards S150) and imaged with 5.0 kV 

by the lower secondary electron image (LEI) detector in a JEOL JSM-7500F scanning 

electron microscope. These experiments have been performed at the Structure & 

Technology Research Laboratory (Marburg, Germany). A second device was used for this 

work which is placed at the Helmholtz Institute for Pharmaceutical Research Saarland 

(HIPS, Saarbrücken, Germany). A 10 nm gold layer was sputtered in a Quorum Q150R ES 

sputter coater to prepare samples for imaging in an EVO HD15 SEM using an acceleration 

voltage of 5.0 kV and the secondary electron image (SEI) detector.  

6.2.2.3 Atomic Force Microscopy for Visualization 

For the visualization of GNPs in PLGA a JPK NanoWizard® I was used. Samples have been 

prepared on freshly cleaved mica surfaces. Therefore, 50 to 100 µl of the sample have 

been dropped on the surface to enable NPs to adhere. The remaining sample was 

removed with a lint-free tissue after 1 min of incubation time. Samples have been imaged 

in the intermittent contact mode in air using OMCL-AC160TS cantilevers (reflex side 

aluminum coated) with a resonance frequency of 300 kHz and a nominal spring constant 

of 26 N/m having tetrahedral tips with a final tip radius of 7 nm. Images have been 

processed with the JPK-SPM Data Processing Program. 

6.2.2.4 Gelatin Load and Release from GNPs in PLGA 

GNPs in PLGA have been tested for gelatin in regard of entrapment efficiency, load and 

release via bicinchoninic acid assay (BCA assay). The use of the QuantiProTM BCA Assay Kit 

allowed protein detection in a linear fashion from 0.5 to 30 µg/ml. The working principle 

is the formation of Cu2+-protein complexes at alkaline conditions, which leads to a 

reduction of Cu2+ to Cu1+ in a proportional amount to the protein concentration. BCA then 
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forms a purple-blue complex with Cu1+ in basic conditions, which can be read out by 

absorption at a wavelength of 562 nm.176 The structural formula of the formed complex is 

illustrated in Figure 6-2 

 

Figure 6-2: Reduction of copper II to copper I by proteins and formation of a complex with bicinchoninic acid under 
alkaline conditions 

To determine the efficiency of the GNP embedment 10 mg freeze-dried NPs have been 

dispersed in 1 ml NaOH (0.5 M) to dissolve PLGA at 37°C for 90 min. After this time, a 

clear solution was obtained and the pH was adjusted to pH 7. The volume was filled up to 

10 ml and 150 µl samples have been pipetted to a 96 well plate in triplicate and mixed 

with an equal amount of BCA reagent. The plates have been incubated for 2 h at 37°C and 

measured at 562 nm with the Infinite®M200 plate reader. Calibration curves have been 

prepared with different gelatin concentrations; as blank PLGA NPs have been used. Both 

gelatin and PLGA NPs underwent the same treatment as GNPs in PLGA samples. The 

entrapment efficiency was calculated by the following formula:  

Entrapment Efficiency (%) =
Mass Gelatin in NPs(g) / Mass NPs (g) 

Mass Gelatin used (g) / Mass Polymer used (g)
∗ 100  (6) 

For the calculation of the relative amount of gelatin in the formulation the equation 

below was used:  

𝐿𝑜𝑎𝑑(%) =
Mass Gelatin (g)

Mass Nanoparticles (g)
∗ 100       (7) 

To evaluate the stabilization efficacy the gelatin release was tested. Therefore, GNPs in 

PLGA have been freeze dried with dissolved sorbitol to ensure complete redispersibility 

afterwards. 10 mg NPs have been dispersed in 10 ml PBS-Buffer (pH 7.4) and divided in 

1 ml aliquots. Samples have been incubated at 37°C for different durations until 

examination of released gelatin mass. Afterwards, samples were centrifuged at 20,000 g 

for 15 min at 15°C. 900 µl supernatant was collected and investigated in triplicates of 

150 µl mixed with 150 µl of BCA reagent as described above. 
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6.2.2.5 Influence of Solvent, Nonsolvent and Stabilizer 

To obtain a suitable carrier system gelatin should be encapsulated in the highest possible 

amount. At the same time a sufficient stabilization of gelatin by the PLGA-coating is 

needed, resulting in sustained release of gelatin from the particles. Briefly, the production 

scheme was as described hereafter: Gelatin was dissolved and precipitated in an 

antisolvent. Subsequently, the so obtained GNPs were mixed with a PLGA solution. This 

nanodispersion was then emulsified in an aqueous PVA solution. To obtain GNPs coated 

and stabilized in PLGA the organic solvents were removed by solvent evaporation. 

Different antisolvents, solvents and stabilizers have been tested on their influence to the 

obtained NPs characteristics. The range of solvents tested was limited through the 

requirements they underlie. The demands are illustrated in Figure 6-3.  

 

Figure 6-3: Demands on the solvents to their behavior towards gelatin, stabilizers, PLGA and to each other 

The solvent of the gelatin (solvent 1) has to be miscible with the antisolvent (solvent 2). 

Therefore DMSO and water, inclusively their mixtures in different ratios have been 

chosen to dissolve gelatin at 50°C. For the nanoprecipitation, acetone and DMF have been 

the antisolvents of choice. The further requirements for the antisolvent are on one hand 

the possibility to dissolve a stabilizer for the freshly prepared GNPs and on the other hand 

the miscibility with the solvent of the PLGA phase (solvent 3), which has to be an 

antisolvent for gelatin itself, and thus was chosen to be ethyl acetate. The last step is the 

formation of an emulsion, which brings the last requirement for the solvent used to 
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dissolve PLGA as it must not be miscible with the outer phase (solvent 4) which is a 2 % 

(w/V) PVA solution in water. As stabilizer two substances have been tested. The first was 

dodecylamine (DDA) which was chosen because of the relative small size. The other 

tested compound was poloxamer 188. The block-co-polymer was chosen as it was shown 

to have, in comparison to other additives, the best results in regard to the encapsulation 

and release of proteins into PLGA.177 The experiments have been evaluated in terms of 

hydrodynamic diameter, zeta-potential, encapsulations efficacy, load and release of 

gelatin by BCA assay and visualized with SEM and SPM. 

6.2.2.6 Standard Formulation 

After testing the influence of solvent, nonsolvent and stabilizer a standard formulation 

was set. 40 mg gelatin B derived from bovine animals was melted in 40 µl deionized water 

at 50°C and subsequently dissolved in 1 ml DMSO under continuous stirring at 50°C. 

260 µl gelatin solution was precipitated dropwise in 1.5 ml of a 1:1 mixture of acetone 

and DMF, containing 6.67 % [w/V] poloxamer 188 as stabilizer at 750 rpm.  

 

Figure 6-4: Production scheme of GNPs in PLGA. Gelatin is dissolved and subsequently precipitated in a stabilizer 

containing antisolvent. The obtained NPs are mixed with a PLGA solution. This mixture is then emulsified in a 2 % 

aqueous PVA solution. If drugs are incorporated, they have been co-precipitated  

The freshly prepared NP dispersion is transferred to 5 ml of an ethyl acetate solution with 

50 mg dissolved PLGA. This dispersion is slowly dropped in a 2 % aqueous solution to form 

an emulsion with the inner phase consisting of gelatin nanoparticles surrounded by PLGA. 

The emulsion was homogenized by an UltraTurrax® T25 using the S 25 N – 8 G disperser 

tool at 12,000 rpm for 5 min. The production is illustrated in Figure 6-4. Vials are filled up 
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with water and stirred over night with open lid for solvent evaporation and finally GNPs in 

PLGA have been purified by centrifugation three times at 10,000 g for 15 min at 15°C. 

6.2.2.7 Varying the Gelatin to PLGA Ratio 

To enhance the hydrophilic fraction, and thus provide a higher proportion for the 

encapsulation of hydrophilic drugs, it is of high interest to vary the ratio of gelatin to PLGA 

during the NP production. In the standard procedure 10 mg gelatin were used with 50 mg 

PLGA. This means a ratio of 1:5. Compositions are varied to 1:1.25 and 1:0.625. The rest 

of the protocol was kept constant to the standard procedure described in 6.2.2.6. To 

examine the particle formation, the morphology was tested by SEM and SPM. 

Furthermore, hydrodynamic diameter, PdI and zeta potential have been determined. To 

test the efficiency of GNP entrapment and stabilization the load and release of gelatin 

was determined by BCA assay as described in chapter 6.2.2.4. 

6.2.2.8 Gelatin A Nanoparticles in PLGA 

The chemical characteristics of gelatin A and B are slightly different. Here, the attention is 

on the different IEPs of the two types of gelatin. For gelatin type B, used for the standard 

formulation, it is between pH 4.7 to 5.9 and for gelatin A between 6.0 and 9.5.58 This 

results in different zeta potentials at the same pH. NPs made from gelatin A show a 

positive zeta potential at neutral pH. This should modify the interaction between the 

freshly produced GNPs with the PLGA. To address this, GNPs in PLGA have been produced 

according to the standard procedure described in chapter 6.2.2.6 with the following 

differences. Gelatin B was replaced by gelatin A (Bloom 175, Mw 40,000 – 50,000Da). In 

addition, the used amount of gelatin was varied to 10 mg, 20 mg and 30 mg respectively. 

All formulations have been investigated with and without poloxamer 188 in the 

nonsolvent phase as triplicates. Particle morphology was examined in SEM. Zeta potential 

and hydrodynamic diameters have been measured by DLS and gelatin load was analyzed 

by BCA assay. 

 Cell Viability Assay 

The toxic potential of new formulations is usually firstly examined in vitro with cell 

viability tests to gain insights in the biocompatibility. As only materials are included in the 

formulation whose biocompatibility is already proven and which are already in use for 

parenteral applications a very low toxic potential was expected. The cell work in this 



Stabilizing Gelatin Nanoparticles without Crosslinking   

54 

section was performed in collaboration with Thorben Fischer within his Diploma thesis. 

Cell viability was investigated with a MTT assay on adenocarcinoma human alveolar basal 

epithelium cells A549. The MTT assay displays a rapid and precise method to quantify 

viable cells. The principle is a reductive ring opening, in mitochondria of living cells, from 

the yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to the 

dark blue formazan and measured at a wavelength of 550 nm.178 The reaction is 

illustrated in Figure 6-5. 

 

Figure 6-5: Reaction of the tetrazolium salt MTT to formazan during the cell viability test 

A549 cells have been chosen in regard of a possible further use of the NPs to develop a 

nano-structured microparticulate drug delivery system for pulmonary application. A549 

cells are widely used to mimic drug metabolism and interactions with drug delivery 

systems of type II pulmonary epithelial cells in vitro.179 A549 have been cultivated in 

RPMI-1640 with 2 mM glutamine and 10 % FCS in sterile 96-well plates until a cell number 

of approximately 10,000 cells per well. Cells have been washed with HBSS buffer two 

times and incubated with different concentrations of GNPs in PLGA for 4 h. For the 

evaluation, a positive and a negative control have to be included in the experiment. For a 

positive control the cells are treated with 2 % Triton X-100 which causes cell lysis due to 

the surface activity. HBSS was taken as positive control, to keep the cells in not harmful 

condition, so no induced cell death will occur during the incubation time. Before the cells 

have been incubated with 200 µl of MTT reagent for 4 h at 37°C they have been washed 

with HBSS buffer again. After the incubation time allowing for uptake of the tetrazolium 

salt and reduction to formazan the supernatant was removed. The formed formazan in 
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the metabolic active cells was then dissolved in DMSO for a quantitative read out at a 

wavelength of 550 nm with an Infinite®M200 plate reader. Positive and negative controls 

have been used to calculate the cell viability 

Cell viability (%) =
absorption sample−absorption positive control 

absorption negative control−absorption positive control
∗ 100  (8) 

All samples have been tested from three separately produced batches in triplicate. 

 Loading of Drugs 

This NP formulation was developed as a delivery platform for the use of different 

hydrophilic macromolecular drugs. Therefore, we investigated the load of compounds 

with different sizes and chemical characteristics. In the present thesis the loading 

processes and read outs for three of the examined compounds are described. The 

entrapment efficiency was calculated with the following equation: 

Entrapment Efficiency (%) =
Mass Drug in NPs(g) / Mass NPs (g) 

Mass Drug used (g) / Mass Polymer used (g)
∗ 100  (9) 

If the load in percent was examined it was calculated as follows 

𝐿𝑜𝑎𝑑(%) =
Mass Drug (g)

Mass Nanoparticles (g)
∗ 100      

 (10) 

6.2.4.1 Loading of Locked Nucleic Acid 

Locked nucleic acids are nucleic acid analogs with a 2´-O,4´-C-methylene bridge stabilizing 

the furanose in the C3´-endo conformation which is illustrated in Figure 6-6. LNA 

monomers can be coupled with other DNA or RNA monomers or phosphodiester linkers. 

The modification leads to an extraordinary binding affinity to the complementary strain. 

This holds true for fully modified strains as well as for mixmers (a combined oligomer of 

alternating short segments of LNA and DNA or RNA). The increased stability of LNA*DNA 

or LNA*RNA in comparison to the natural duplexes results in a raised thermal stability of 

4.0 to 9.3°C per induced LNA monomer. The modification results in a resistance to 

nucleases, which is an important aspect with respect to the use of LNA as therapeutic in 

vivo or diagnostic tool in vitro as nucleases are ubiquitous and so challenge nucleic acid 

therapeutics for example in serum samples or the target cells.180 The combination of 

these LNA characteristics lead to a prolonged half-life time in vivo which is reported to be 

up to 1 week in mice and 2 to 3 weeks in monkeys in comparison to free plasmid DNA 

which shows half-times of a few minutes.181 In vivo studies demonstrated a good 
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tolerance with less immuno-stimulation and acute toxicity, like complement activation or 

prolonged bleeding time, than nucleic analogs of earlier generations. After i.v. 

administration LNA accumulates in kidney, liver, bone marrow, spleens and lymph nodes, 

but does not reach brain, spinal cord, testis and lenses. LNA antisense strains are 

developed for example for the treatment in cancer, metabolic disorders or infectious 

diseases with ongoing clinical trials in different phases.182 The ability of LNA to cross 

cellular membranes is very low. This justifies the need of a biocompatible delivery system 

for LNA. Therefore, there are studies with complexes of LNA with polyethylenimine (PEI) 

which is a common positively charged complexing agent for transfection studies of 

nucleic acids.183 PEI is showing good transfection efficiencies but is related to toxic effects 

too.184 Therefore in this study the ability to load LNA into GNPs in PLGA as a potential 

non-viral vector is investigated.  

 

Figure 6-6: Structure of LNA in the β-D-ribo configuration 

GNPs in PLGAs have been produced according to the standard procedure described in 

6.2.2.6. For quantification LNA was labeled radioactive with phosphorus-32 (32P) which 

decays into sulfur-32 by β--decay (Figure 6-7).  

 

Figure 6-7: Decay of 32P into 32S by β—decay 

LNA was kindly provided by the Gruenweller lab at the department of Pharmaceutical 

Chemistry at the Philipps University of Marburg. Labelling was done by Dr. Kerstin 

Gruenweller-Lange from the same working group. For particle preparation 10 mg of 

dissolved gelatin was mixed with the necessary amount of labelled LNA to obtain 20,000, 

100,000 and 250,000 counts per minute (cpm) respectively. Gelatin was then precipitated 

together with LNA to obtain loaded GNPs in PLGA. After purification on the next day all 

samples have been divided and freeze dried and the gravimetric yield determined in 
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triplicate. Therefore, Eppendorf tubes have been weighted empty and after freeze drying 

with an analytical balance. In addition, the cpm of these samples were measured. This 

was used to calculate the entrapment efficiency of LNA with equation (9). For protection, 

all work was carried out behind an acrylic glass shield. NPs loaded with unlabeled LNA 

were used to measure hydrodynamic diameters and particle size distribution in the 

Zetasizer and morphology in SPM and SEM. 

6.2.4.2 Loading and Transfection with eGFP PEI,  

The cell work described in the following chapter was performed by Dr. Nadine Wilhelm at 

the Fraunhofer Institute for Biomedical Engineering (IBMT, Sulzbach/Saar, Germany and 

at the external side in Oxford, United Kingdom). 

The read out for this particle formulation was the expression of enhanced green 

fluorescent protein (eGFP) after the transfection of human embryonic kidney cells 

(HEK293T). This is a cell line which was derived in the late 1970s by the transfection of 

human embryonic kidney cells with DNA fragments of the adenovirus type 5.185 The 

plasmid for the expression of eGFP was isolated from Max Jacobs and Nadine Wilhem at 

the Fraunhofer IBMT (Sulzbach/Saar, Germany). The extraction followed the protocol of 

the used EndoFree Plasmid Mega Kit (no.: 12381). For the transfection studies sterile 

particles have been produced. Therefore, all vessels and devices, which were in contact 

with the formulation, have been autoclaved in a FVS/2 autoclave before use. Gelatin was 

autoclaved in a concentration of 40 mg/ml too. The production was performed in a 

laminar airflow workbench (Technoflow 2F120-II GS). Immediately before particle 

production 200 µl of a 1.5 mg/ml plasmid solution was mixed with 250 µl of gelatin 

solution. After NP assembly and purification according the normal protocol described in 

chapter 6.2.2.6. 2.5 ml of the NP suspension were dispersed in 10 ml of a 2 % (w/V) PEI in 

water solution and incubated for 15 min. PEI coated samples have been purified twice in 

the centrifuge at 6,000 g for 10 min. To be able to redisperse the particles after freeze 

drying, NPs have been collected in a freshly sterile filtered D-sorbitol solution after 

centrifugation and subsequently lyophilized in an Alpha 2-4 LSC freeze dryer. Preliminary 

transfection experiments with uncoated and positively PEI coated NPs, showed the 

predominance of the positively charged particles. Therefore, in the experiment with the 

sterile particles only this formulation was used. After freeze drying a part of the 

formulation was tested for sterility. For this test NPs have been incubated on agar plates 
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for 5 days at 37°C as well as autoclaved gelatin solution and a negative and a positive 

control. Afterwards the agar plates have been investigated for bacterial growth. Sterile 

particles have been redispersed in Dulbecco´s Modified Eagle Medium (DMEM). The 

transfection was started 24 h after cells are seeded and medium was refreshed to DMEM 

24 h after transfection. Images for evaluation have been taken 48 h after medium change 

at a wavelength of 543 nm. As control, cells have been grown without treatment and 

have been transfected with pure plasmid. 

6.2.4.3 Fluorescein-labelled Dextran 

Both already described tested substances are relatively small. As the objective of this 

thesis was to develop a platform system, which can be loaded with various drugs of an as 

large as possible size range, there is a need to investigate larger substances too. 

Therefore, fluoresceinisothiocyanat-labelled dextrans (FITC-dextran) with different 

molecular weights (20 kDa, 70 kDa, 150 kDa) have been encapsulated. Loading dose was 

1 mg per batch, which was added from stock solutions to the gelatin before precipitation. 

The following procedure was as described in 6.2.2.6. The read out was the loading and 

the encapsulation efficiency based on the fluorescence signals. Both were determined 

after particle hydrolysis in 0.5 ml NaOH (0.5 M) to dissolve PLGA at 37°C for 90 min and 

neutralization to pH 7 with 0.5 M HCl. Samples have been filled up with deionized water 

to 1 ml and measured in triplicate at a wavelength λ = 520 nm in 96-well plates with an 

Infinite®M200 plate reader. 
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 Further Analytics for Structure Analysis 

For smaller molecules good encapsulation efficiencies could be achieved, nevertheless 

the load was always relatively small and did not exceed 0.11 µg FITC-dextran70/mg NPs. 

This, together with a general interest in the exact particle structure, was the driving force 

to investigate in the exact particle structure. Three possible inner structures of polymer 

distribution are postulated which are illustrated in Figure 6-8. The optimal distribution of 

gelatin and PLGA would be one gelatin NP stabilized by a surrounding PLGA layer (a)). In 

b) the possibility of small GNPs embedded in a PLGA matrix is shown whereas c) 

represents the possibility of a hybrid particle where gelatin and PLGA are meshing over 

the entire particle. 

 

Figure 6-8: The three possible structures postulated for the standard formulation. The white part with blue lines 

indicates gelatin, the solid blue area represents PLGA. 

6.2.5.1 Confocal Laser Scanning Microscopy for Structure Analysis 

The first analysis regarding the structure was performed to investigate in the 

colocalization of gelatin and PLGA. Therefore, both polymers have been colored and 

examined in the confocal microscope. The working principle of CLSM is already explained 

in 5.2.6 for the interaction between cGNPs and A549 cells. In contrast to these 

experiments the following work was performed at a Zeiss Axiovert 100M. For the NP 

production the standard procedure described in 6.2.2.6 was adopted to have fluorescent 

dyes which can be detected separately from each other in both polymers. Therefore 

250 µl of the dissolved gelatin was mixed with 20 µl of a 50 mg/ml tetramethyl-

rhodamine isothiocyanate dextran 70 kDa (TRITC-dextran70) and precipitated in the 

acetone/DMF solution. TRITC-dextran loaded GNPs have been dispersed in fluorescein 

amine labelled PLGA (FA-PLGA), produced by Dr. René Rietscher according to literature186. 

As a reference pure FA-PLGA NPs and TRITC-dextran loaded GNPs in unlabeled PLGA have 

been used. For CLSM analysis particles have been diluted 1:10 and 920 µl NP dispersion 
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was incorporated in 80 µg of an agarose gel. For visualization an argon laser with a 

wavelength of 488 nm and a helium-neon laser with a wavelength of 543 nm respectively 

have been used.  

6.2.5.2 Transmission Electron Microscopy 

Transmission electron microscopy makes use of electrons penetrating through the 

specimen. Electron sources are usually LaB6 rods or tungsten filaments. The acceleration 

voltage ranges from 60 keV to 3 MeV. The electron beam generation is the same as 

described for SEM in chapter 5.2.4. For imaging very thin samples are necessary. The 

electron beam is bundled before hitting the sample so electrons are imping in parallel to 

each other. On the way through the specimen the electron beam interacts with the 

sample. When the beam encounters an atom it is scattered, if no atoms are encountered 

it goes straight through the sample. The scattering is dependent on the atom´s electron 

density and the specimen thickness. An aperture filters electrons which are scattered to a 

greater value. As scattered electrons are removed from the beam, areas of higher 

electron scattering occur dark, whereas bright areas are regions without or with only low 

scattering. This imaging mode is called bright field (BF).  

 

Figure 6-9: Scattering possibilities of electrons after interacting with the specimen 

If the aperture is moved to the side, unscattered electrons are removed and scattered 

electrons are detected we talk about dark field imaging. For amorphous substances no 

additional information can be received. Just the bright and dark areas are inverted. 
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Electron scattering is not only influenced by the atom density. Depending on where the 

beam encounters the atom the scattering has different characteristics. Figure 6-9 

illustrates the possibilities how electron scattering can occur. Elastically scattered 

electrons do not undergo any energy loss whereas inelastically scattered electrons lose 

energy. This loss is specific for the element the electron beam is in interaction with and 

the region of the atom where the electron beam is hitting the atom. Secondary electrons 

and back scattered electrons interact relatively close to the surface and are used in SEM. 

Electrons going through the specimen are scattered either elastically, without any energy 

loss, and used for imaging in TEM in the BF mode or inelastically, with an element specific 

energy loss, used in electron energy loss spectroscopy (EELS) and energy filtered TEM 

(EFTEM).187 

6.2.5.3 Cryo-TEM for Structure Analysis 

In cryo-TEM NPs can be imaged in their frozen-hydrated state and so can be depicted in 

the way they are present in suspension. Frozen samples are very beam sensitive. To 

prevent sample damage a low electron dose is required. For polymers which are not 

packed in a dense manner, the contrast can be relatively low. Nevertheless, it is possible 

to see differences in the electron density.188 These differences are supposed to 

distinguish between gelatin and PLGA. As reference systems, pure PLGA and pure gelatin 

NPs have been used as well as a mixture of the two formulations. For imaging 3 µl 

nanosuspension were dropped on a holey-carbon film on a copper grid and stamped for 

2 sec to the grid (Plano S147-4). Excessive water is removed during plotting. The specimen 

was immersed into -165°C cold liquid ethane, with a Gatan CP3 cryoplunger, to freeze it 

within a time as short as possible to obtain an amorphous state. Samples have been kept 

at liquid nitrogen and transferred to a Gatan 914 cryo-TEM holder. A JOEL JEM 2100 TEM 

with a LaB6-cathode and a Gatan Orius SC100 camera was used to image samples at a 

temperature of -170°C with an acceleration voltage of 200 kV in the bright field mode. 

The electron dose was set to 32 pA/cm². Images have been taken in a time series to 

capture the transformation process of the materials during the exposure to the electron 

beam. Particle diameter and shell thickness are measured with ImageJ. 
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6.2.5.4 Energy filtered TEM 

As described in 6.2.5.2 electrons scattered inelastically by the specimen undergo an 

energy loss. The scattered beam can be split in an electric prism according to the energy 

of the electrons. In this way, electrons with the same energy occur at the same area at so-

called energy selective levels. In EELS these levels are captured by a charge couple device 

(CCD) camera and the brightness can be read out. This is then displayed in an EEL 

spectrum. The “zero-loss-peak” is representing elastically scattered electrons and its 

maximum is set to “0” at the abscissa. The “zero-loss” area is followed by the low loss 

area which ranges from 0 eV to 100 eV. All energy losses above 100 eV occur when inner 

shell electrons are ionized. In this area the intensity is very low, therefore the aperture 

has to be enlarged and the measurement time needs to be prolonged. To avoid damage 

to the camera the zero-loss-peak and the low-loss-area are usually cut off. In the core-loss 

area the energy is, in contrast to the low loss area, not only specific for the element they 

are also specific for the orbital the ionized electron was located in before ionization. The 

EEL-spectra shown in this thesis are representing the core-loss area. An example for the 

core-loss region of an EEL spectrum for crosslinked GNPs is shown in Figure 6-10.  

 

Figure 6-10: Core-loss area of an electron energy loss spectrum of crosslinked gelatin nanoparticles showing the carbon 

and nitrogen edges. 

Images generated in the energy filtered TEM mode make use of the energy loss of 

inelastically scattered electrons. After passing the specimen, scattered electrons need to 

be focused to bring them in the same angle in the electronic prism, where the electrons 
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are separated according to their energy. In front of the detector a filtering slit is placed 

that allows only electrons of certain energy to pass and subsequently be imaged element 

specific. To eliminate the background signal at least two pictures are taken, one directly 

before the edge of the element of interest and the other one at, or immediately after, the 

edge. The resulting image shows exactly if the corresponding element is present at a 

certain place or not. By comparing different images, the material composition and in this 

experiment the polymer, whether it contains nitrogen, which indicates gelatin or carbon 

or oxygen, which are present in both polymers. For EFTEM analysis 3 µl of the 

nanosuspension was dropped on a holey-carbon film and, after complete drying at room 

temperature, transferred to a JOEL JEM 2100 TEM. At an acceleration voltage of 200 kV 

energy filtered images of the elements carbon, nitrogen and oxygen have been taken with 

a Gatan image filter (GIF 2002) and a 2048x2048 pixel slow-scan camera (Gatan model 

850). As reference system pure gelatin particles have been investigated. 
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6.3 Results and Discussion 

 Formulation Development of GNPs in PLGA 

The aim of the experiments described in this chapter was a core-shell formulation of 

GNPs stabilized by PLGA without crosslinking to be used as formulation platform for the 

delivery of hydrophilic macromolecular APIs. Therefore, the hydrophilic gelatin part 

should show a constant and sustained release so the embedded drug will be available 

over a prolonged time range. In addition, the gelatin proportion should be as high as 

possible. 

6.3.1.1 Development of a Suitable Formulation  

The starting point of the formulation development was the study with GE100-NiNOS, 

which are GNPs stabilized with Eudragit® E100.189 The first system proving the possibility 

to conserve the shape of GNPs without crosslinking. As Eudragit® E100 is not suitable for 

many applications the system needs to be developed further. Therefore, different 

combinations of solvents and stabilizers have been tested all meeting the requirements 

described in chapter 6.2.2.5. 

 

Figure 6-11: Hydrodynamic diameters and PdIs of GNPs in PLGA with DDA as stabilizer in dependency of the 

homogenization time a) one minute, b) three minutes and c) 5 minutes and the number of centrifugation steps for 

purification. 

The formulation of which the hydrodynamic diameters and PdIs are presented in Figure 

6-11 have been produced with DMSO to dissolve gelatin which was then precipitated in 

acetone:DMF 1:1 with DDA as stabilizer. PLGA was dissolved in ethyl acetate. The 

particles obtained show hydrodynamic diameters around 250 nm and a PdI between 0.15 

and 0.2 with a tendency to smaller sizes with a narrower particle size distribution. These 

parameters are well suitable for the formulation. Looking at the sizes and PdIs after 

already the first centrifugation step NPs size and PdI are rising even with a relative low 

centrifugation speed of 7,000 g indicating agglomeration. A homogenization time of 5 min 
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was chosen as NPs showed the smallest hydrodynamic diameter with a good PdI. Longer 

homogenization did not lead to smaller particles or PdIs. NPs showed a round shape and a 

smooth surface but have not been stable in SEM for imaging. The gelatin content was 

around 9.04 % with a high gelatin burst release of 28.02 %. In the following formulation 

development the improvement of these parameters was addressed. In a first step the 

influence of the nonsolvent was investigated. Acetone and DMF with DDA as stabilizer 

have the function of the nonsolvent solution. As can be seen in Table 6-1, the sizes were 

increased to hydrodynamic diameters of 309 nm and 418 nm with a good particle size 

distribution for acetone. The encapsulation efficiency and load of gelatin was decreasing 

for pure nonsolvents. This means a smaller hydrophilic compartment in the formulation. 

At the same time, the gelatin burst release increased. As the hydrophilic proportion 

should be increased for a potentially higher drug loading, the first formulation with 

acetone:DMF in an equal ratio was used as nonsolvent again. Now the stabilizer was 

changed to Pluronic®F68 as described in chapter 6.2.2.5. The sizes and PdIs have been still 

in the range aimed for and the ζ-potential was approximately -20 mV, which is a strong 

enough surface charge for a stable particle formulation. Looking at the gelatin 

entrapment the new formulation shows clear advantages over the former ones. Here an 

entrapment efficiency of 64.4 % could be achieved. The load of 12.02 % is still expandable 

but is improved in comparison to the former formulations. Looking at the release 

characteristics a burst release of less than 30 % can be detected. The further release 

characteristics are addressed later in this paragraph. To complete the study, Pluronic® 

F68 was as well tested with pure acetone as antisolvent. This formulation row shows the 

same tendency as when DDA was used for stabilization. Therefore, the combination of 

acetone and DMF together with poloxamer 188 was set as standard for further 

investigations.  

 

Table 6-1: Formulation development with different nonsolvents and stabilizers. Acetone and DMF in an equal mixture 

together with poloxamer 188 showed the best results in all tests and therefore was set as standard formulation. 
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This standard formulation shows perfectly spherical NPs in SEM and SPM investigations. 

The results of the visualization experiments are presented in Figure 6-12. Particle size 

determined in SEM, with a diameter of 135.75 ± 23.07 nm, is smaller than measured with 

DLS. This is according to the expectations and can be explained because in DLS the 

hydrodynamic diameter is determined which includes the surrounding solvation shell. As 

a second reason, particle shrinkage during drying has to be considered. 

 

Figure 6-12: Images of GNPs in PLGA standard formulation in SEM a) and displayed in a closer view in SPM height 2D 

image in b) with the belonging 3D height image in c) and a cross-section in d). The cut through the NPs for the cross 

section is marked in b). It shows the spherical particle shape with a diameter of around 175 nm and a height of 115 nm. 

The SPM height images and the cross-section presented in Figure 6-12 b)-d) have been 

taken in dry conditions and underline the particle shape and the smooth surface. Particles 

do not show any dents or holes. The selected particle shows a diameter of approximately 

175 nm with a height of 115 nm in the cross-section. Compared with cGNPs captured in 

air the new formulation shows a very slight collapse only. Release profiles and 

encapsulation efficiency was investigated by BCA assay. The gelatin release profiles of the 

three formulations with the most promising encapsulation efficacy and load of gelatin 

have been determined over 6 days. The result is presented in Figure 6-13. Both DDA-
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stabilized formulations showed a high burst release of 100 % and 60 % respectively. With 

acetone:DMF as nonsolvent (60 % burst release) after 6 days 10 % more are released in 

comparison to the start of the experiment. Acetone and DMF in equal proportions with 

poloxamer 188 for stabilization showed only a burst release of less than 30 %. Gelatin is 

released continuously over 6 days. After this period 60 % is released from the system, so 

40 % are still remaining and building the matrix for a sustained drug release. In 

combination with the determined physicochemical parameters this properties are well 

suited for a drug delivery platform system for the delivery of hydrophilic APIs and set as 

the standard formulation described in chapter 6.2.2.6. 

 

Figure 6-13: Gelatin release of GNPs in PLGA with different nonsolvents and stabilizer over 6 days. Gelatin content is 

determined by BCA assay. 

Based on the standard formulation, investigations, aiming for a simplified process, have 

been performed. The gelatin load and release should be at least the same compared to 

the standard formulation. Therefore, the preheating of gelatin in water was skipped and 

DMSO as solvent was mixed with water or completely replaced. In a second step gelatin 

was dissolved in water with adjusted pH values of pH 6, 4 and 3. The aim was to enhance 

the electrostatic interaction between negatively charged PLGA and positively charged 

gelatin at pH values lower than the IEP. All further investigations have been tested against 

the standard formulation. Size and particle size distribution of the resulting NP 

formulation are shown in Figure 6-14. Except of the equal mixture of DMSO and deionized 

water all hydrodynamic diameters range around 250 nm. 
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Figure 6-14; Sizes and PdI of GNPs in PLGA prepared with different gelatin solvents. Most formulations showed a 

hydrodynamic diameters around 250 nm and a narrow particle size distribution with a PdI below 0.2.  

Regarding the proportion of the gelatin compartment no benefit could be achieved. In the 

opposite, the gelatin load decreased. The highest loading was 2.7 % when gelatin was 

dissolved with deionized water and an adjusted pH of 4. This was slightly better than pH 6 

(gelatin load of 2.05 %) what supports the hypothesis that the oppositely charged gelatin 

shows more interaction with PLGA. Nevertheless, the best results could be achieved 

when gelatin was dissolved in DMSO. As no benefits where obtained, the solvent 

combination was kept as in the standard formulation. 

6.3.1.2 Varying the Gelatin to PLGA Ratio 

An enhanced hydrophilic reservoir for the encapsulation of a high amount of drug was, as 

mentioned, the aim of this study. Therefore, the ratio of the raw materials was changed 

to a higher amount of gelatin than in the standard formulation. The evaluation included 

hydrodynamic diameter, PdI, ζ-potential, gelatin load, entrapment and release. Results 

are summarized in Table 6-2. Hydrodynamic diameters, PdI and ζ-potential stay nearly the 

same for all variations. The same holds true for the entrapment efficiency, which ranges 

from 63 to 71 %. In contrast, the gelatin load increased with the increasing proportion of 

gelatin used and reaches a share of nearly 45 % in the formulation with the highest used 

gelatin amount. Gelatin showed a relative high burst release of 45 % and 57 % 

respectively after half an hour. After one hour 54 % of the gelatin from the formulation 
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made by a ratio of 1:1.25 is released and 65 % of the ratio 1:0.625. As the delivery system 

is based on gelatin this means after one hour only 46 % or 35 % respectively of the 

hydrophilic compartment is left. For the standard formulation was still around 70 % 

gelatin left after the same time. 

 

Table 6-2: Different gelatin to PLGA ratios and the respective NP characteristics  

 

Figure 6-15: SEM image of particles made by a gelatin to PLGA ratio of 1:1.25 in a) and 1:0.625 in b). 

 

Figure 6-15 it can be seen, that particles keep their morphology with the raising gelatin 

fraction. NPs are still roundly shaped with a smooth surface and show a homogeneous 

particle size distribution in both formulations. This supports the values in Table 6-2. It can 

be summarized that the gelatin proportion can be enhanced with changing the ratio of 

raw materials while keeping the evaluated physicochemical parameters consistent. The 

release profile does not provide a sustained release, but could be enough for further 

processing like PEI coating for gen delivery like the delivery of plasmids where 
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transfection studies are performed with PEI coated GNPs in PLGA particles (see chapter 

6.2.4.2). 

6.3.1.3 Comparison between Gelatin A and Gelatin B 

Gelatin A NPs exhibit a positive surface charge at neutral pH, which can be explained by 

the IEP at a pH between 8.0 and 9.0. This means an opposite charge of gelatin and PLGA. 

Based on the results from chapter 6.3.1.1 the electrostatic interaction should be 

enhanced and thus the encapsulation of a higher gelatin amount with the same ratio of 

raw material should be possible. Particle sizes are presented in Figure 6-16 a). They are 

larger than particles prepared by gelatin B whereas the particle size distribution is 

approximately the same as for PLGA NPs. This can be due to different reasons such as 

differences in the molecular weight, in solubility or viscosity. Opposite to the other 

formulations gelatin A NPs in PLGA exhibit positive ζ-potentials. Due to the IEP of gelatin 

this might be feasible. However, as gelatin should be packed in PLGA or both polymers 

building a hybrid NP it was certainly not expected to obtain a positive surface charge as 

the positively charged gelatin groups have to be at the outside of the particle to achieve a 

positive ζ-potential.  

 

Figure 6-16: Gelatin A NPs in PLGA a) Hydrodynamic diameter and PdI and b) ζ-potential. Both parameters are compared 

to gelatin B NPs (Gelatin B) in PLGA and pure PLGA NPs. 

The hydrophilic proportion is slightly enlarged with a gelatin compartment of 

approximately 15 %. Release studies have not been performed as the positive ζ-potentials 

indicated differences to the standard system. Nevertheless, gelatin A has to be 
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considered for a further formulation development especially in regard of intra cellular 

delivery such as for nonviral gene transfer. Here a positive surface charge is advantageous 

and furthermore, positively charged nanosystems show higher transfection rates than 

their negatively charged counterparts. Therefore particles are often coated with PEI, 

which brings a, not only charge dependent, cytotoxicity into the formulation.190 The good 

in vitro safety profile of gelatin A NPs could be already shown in literature.191 

Furthermore, a larger in vitro uptake could be demonstrated for cationic gelatin A NPs in 

comparison to negatively charged GNPs produced by gelatin B.192 This could be a 

potential application for the GNP in PLGA prepared with gelatin A and an advantage of 

gelatin as biopolymer coming with different characteristics, which can expand the spectra 

of the formulation platform. 
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 Cell Viability Assay 

The toxicity of NP formulations is a very important parameter to investigate during 

formulation development. Here for first insights in vitro cell viability was tested with a 

MTT assay. As a control system, with known good cell viability, PLGA NPs were used. The 

test results showed a very good tolerance of both NP formulations tested with A549 cells 

after 4 h. Concentrations from 70 µg/ml to 0.9 mg/ml have been investigated. Values 

above 80 % cell viability are considered as nontoxic. This is indicated in Figure 6-17 with a 

green background. Even in high concentrations both formulations are very well tolerated. 

Whereas the percentage cell viability stays constant for PLGA NPs, cell viability was 

increasing with decreased GNPs in PLGA concentration. This indicates an advantage of the 

composite particles over pure PLGA at concentrations lower the 280 µg/ml.  

 

Figure 6-17: Cell viability after 4 h incubation on A549 cells tested by MTT assay. All tested concentrations are in the as 

nontoxic considered range.  
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 Loading of Drugs 

6.3.3.1 Loading of Locked Nucleic Acid 

GNPs in PLGA have been loaded with radioactive labeled LNA in three concentrations 

20 kcpm, 100 kcpm and 200 kcpm. LNA loaded particles have been investigated for 

morphology in SEM and SPM. The smooth surface of the round shape of 20 kcpm loaded 

NPs are visualized in Figure 6-18.  

 

Figure 6-18: Morphology of LNA loaded GNPs in PLGA in SEM (a) and in an SPM height image (b). 

Due to safety reasons, radioactive labelled samples could not be measured in the 

zetasizer. Two non-radioactive formulations with LNA amounts equivalent to the samples 

with 20 kcpm and 100 kcpm have been used to evaluate hydrodynamic diameters. The 

size of loaded NPs was around 225 nm and therefore, approximately 50 nm smaller than 

pure GNPs in PLGA. In comparison to control NPs, PdIs are slightly decreased too. With 

0.139 and 0.118 particles show a narrow size distribution. Hydrodynamic diameters and 

PdIs are summarized in Figure 6-19 b).  

 

Figure 6-19: a) Encapsulation efficiency of radioactive labelled LNA in GNPs in PLGA in different LNA concentrations and 

b) hydrodynamic diameters and PdI´s of LNA loaded NP formulations.  
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The encapsulation efficiency, which is shown in Figure 6-19 a), was evaluated according to 

equation (9). The encapsulation efficiency of all tested concentrations was over 100 % 

and showed no significant difference (significance tested with Student’s t-test, p > 0.05). 

Values above 100 % are possible due to the equation, which includes the ratio from drug 

to polymer used for the production. If, compared to the polymer, a higher percentage of 

drug goes to the end formulation the encapsulation efficiency increases. In this case the 

highly hydrophilic LNA goes to a very high percentage to the gelatin particles in the NP 

formulation. The smooth particle morphology with particle sizes of 225 nm and the very 

good encapsulation efficiency show the high potential of the formulation for intracellular 

delivery in gene therapy.  

6.3.3.2 Loading and Transfection with eGFP 

In cooperation with the IBMT the transfection of plasmid-loaded GNPs in PLGA was 

tested. The particle system not only protects the plasmid from degradation. In addition, it 

functions as a nonviral vector system for the delivery into the cell. For a successful 

transfection study the absence of microbes needs to be ensured. Microbes would 

contaminate cells and therefore could change their behavior and thus falsify the 

transfection study. As preliminary tests showed contamination in the particle 

formulation, the production was changed to aseptic conditions (6.2.4.2).  

 

Figure 6-20: Sterility test on agar plates after 120 h of incubation at 37°C a) GNPs in PLGA before freeze drying, b) GNPs 

in PLGA after freeze drying with sorbitol as cryoprotector and c) a positive control with a contaminated solution. 

To prove the absence of bacteria after all production steps, including freeze drying, the 

formulation was incubated on agar plates and compared with a contaminated positive 

control and a negative control which was a blank agar plate. Agar plates incubated with 

plasmid-loaded GNPs in PLGA before and after freeze drying are shown in Figure 6-20 a) 
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and b) as well as the positive control in Figure 6-20 c). After the successful aseptic particle 

formation the plasmid-loaded particles have been used for transfection of HEK293T cells 

with the plasmid coding for eGFP. Green fluorescent protein is a popular readout for 

transfection studies.  

 

Figure 6-21: Transfection of HEK293T cells with eGFP as well as two controls each consisting of a light microscope and a 

fluorescent image. Cells without treatment in a) and cells incubated with plasmid without a vector in b). The successful 

transfection displayed in c) was performed with plasmid-loaded GNPs in PLGA. Scale bars represent 200 µm 

As control untreated cells and cells which are only transfected with the blank plasmid 

were used. Both did not show any green fluorescence. As can be seen in Figure 6-21 cells 

transfected with the plasmid-loaded PEI layered GNPs in PLGA displayed in c, exhibited 

green fluorescence. This proves the encapsulation of the plasmid in the particle system as 

well as the potential of the new formulation platform for the use in intracellular drug 

delivery. Transfection was studied in two separately produced batches, with the 

restriction that the batch of the first test introduced contamination to the cells. The 

transfection rate is lower in the aseptic produced batch shown here and could be 

enhanced with a further improved formulation. Possible modifications could be an 

increased plasmid load to ensure all NPs can act as carrier system and thus transfect the 

cell after internalization. Another important parameter for the successful delivery of the 

drug is the release after internalization. As liberation was not studied here it can be that 

either some particles already released the loaded plasmid before they reach the 

cytoplasm or the release and exhibition of eGFP in the cell is not completed in the time 
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used in this study. Therefore, the release could be evaluated in different media mimicking 

the conditions in different cell compartments. Nevertheless, for a first insight in the use of 

the new platform in intracellular transfection the results are promising and should be 

further investigated in upcoming studies. 

6.3.3.3 Fluorescein-labelled Dextran 

A model compound to mimic the drug load was planned to encapsulate. Requirements, 

which had to be met, have been an easy analytical set up to detect and quantify the 

loading and the simple possibility to change the molecular weight. Therefore, the 

compound of choice was FITC-dextran. After the production procedure and freeze drying 

the particles they have been analyzed for load and entrapment efficiency. An entrapment 

efficiency of only 0.659 % for FITC-dextran70 could be calculated. With an efficiency of 

0.59 % for FITC-dextran70 in PLGA no real difference could be detected. This is in contrast 

with the expectations as gelatin should encapsulate the hydrophilic FITC-dextran70 to a 

significant higher extent than PLGA. The same result is achieved regarding to the load 

which was around 0.11µg per mg NP formulation no matter if FITC-dextran70 was 

encapsulated in GNPs in PLGA or pure PLGA NPs. The low loading can have different 

reasons at one hand the drug could already be diffused out during the solvent 

evaporation step or while cleaning the NPs and on the other hand it could be because of 

the relative low hydrophilic compartment which only covers 12.5 % of the whole system. 

After the promising results of the encapsulation of LNA and the transfection studies 

described above this low loading was not expected. In addition, a delivery system, 

capable to load a high amount of hydrophilic macromolecules, was aimed for. Therefore, 

these results were not satisfying. As the gelatin content of the current formulation is only 

around 12 %, the inner structure of the system should be exactly known, before more 

time and resources are invested for an enhanced loading. Therefore, the FITC-dextran 

experiments were stopped at this point and the further research concentrated on the 

investigation of the exact structure. 
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 Further Analytics for Structure Analysis 

The knowledge about the exact polymer distribution in the NP belongs to a complete 

characterization. The next chapter is about different methods for the investigation of the 

inner structure of the platform formulation for the delivery of hydrophilic 

macromolecules. The methods range from colocalization of polymers to show both, 

gelatin and PLGA, are actually forming the NPs to an element specific imaging in energy 

filtered TEM using nitrogen as differentiation between gelatin and the other materials. 

6.3.4.1 Confocal Structure Analysis  

The first method was about the colocalization of gelatin and PLGA. The polymers are 

colored with different fluorescent dyes and excited with lasers at the appropriate 

wavelengths. The hydrophilic gelatin was loaded with TRITC-dextran70 and PLGA was 

covalently coupled to fluoresceinamine. To enable the investigation in colocalization, 

particles are immobilized in an agarose gel. In Figure 6-22 the two channels are displayed 

separately in the top row and overlaid in the bottom row. The red channel shown in a) 

display the distribution of TRITC-dextran70 and the green channel in b) is representing FA-

PLGA. It is obvious that in areas with a green signal the TRITC-dextran70 can be detected 

too. In c) both channels are overlaid and show the colocalization of gelatin and PLGA by a 

slight change in color. With these experiments, it was possible to proof that the new 

formulation consists of both used polymers and they are perfectly colocalized. The exact 

distribution is not accessible by CLSM as the resolution is limited to approximately 

200 nm. Therefore, TEM analysis followed to gain more insights due to the higher 

resolution. 
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Figure 6-22: CLSM images of TRITC-dextran70 GNPs in FA-PLGA. A) TRITC-dextran70 in red, b) FA-PLGA in green and both 

channels overlaying in c). The images show a good colocalization between the two dyes. 
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6.3.4.2 Cryo-TEM for Structure Analysis 

To increase the resolution, NPs have been examined in cryo-TEM. Particles are imaged in 

a thin layer of polymorph ice. The formulation was examined in time intervals to 

investigate the alteration caused by the energy brought to the system during the 

measurement. NPs reaction to the energy was compared to pure PLGA particles and to 

crosslinked gelatin NPs as well as a mixture of both materials and to identify the behavior 

of the materials in the electron beam. 

 

Figure 6-23: a) to c) represent a mixture of cGNPs and PLGA NPs in a time series in cryo-TEM. Particles show different 

sensitivity to the electron beam and the degradation patterns vary between the populations. 

In Figure 6-23 a mix of PLGA NPs and cGNPs is imaged and observed over time of a few 

minutes in the electron beam. In a), which is the first image taken, all particles look 

similar with the difference that some of the particles have a higher contrast to the 

background than others and thus appear darker. In b) a fraction of the imaged particles is 

already degraded by the high energy whereas the other population is still intact. In c) all 

particles underwent a modification.  

 

Figure 6-24: Crosslinked gelatin NPs to the right immediately after focusing (a)) and after degradation (b)) and to the 

right (c) and d)) PLGA NPs showing fast degradation with the formation of large bubbles. Scale bars are representing 

0.5 µm. 

However, the disintegration pattern is rather different. The darker NPs from the first 

image show less resistance to the electron beam in addition the degradation pattern is 
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rougher and less ordered then for the other particle fraction. If the NPs are compared in 

single analysis as shown in Figure 6-24 the degradation pattern observed in the mixture, 

can be assigned to the different particles. cGNPs, shown in image a) and b), degrade in a 

fine structure and resists the electron beam relatively long. PLGA NPs in contrast form 

larger bubbles and start to degrade within seconds. This can be seen in c) and d). 

Polymers react differently to the energy brought into the system by an electron beam. 

Polymers with conjugated systems, such as aromatics, are more resistant than aliphatic 

structures.193 This can be explained because the excitation energy can be distributed by 

delocalized electrons. Furthermore, especially C-O-C bonds are broken easily. Both 

polymers investigated do not have a large delocalized electron system, nevertheless, with 

a small fraction of aromatic amino acids, like phenylalanine, the degradation of gelatin 

could be hindered slightly. The obtained small fragments diffuse out due to the high 

vacuum. In terms of thin samples, depressions arise. In thicker specimens bubbles are 

formed due to the polymer scission.193 Under electron beam radiation the polymer 

backbone is broken and free radicals occur because of the interaction between the 

polymers and the electron beam. These radicals can either interact with each other or 

initiate further reactions and thus enhance the breakages. Semi-crystalline polymers, like 

gelatin, exhibit two regions an amorphous one and a crystalline part. In crystalline phases 

polymer chains are packed closer and are more oriented. Therefore, they are less 

accessible to free radicals. In addition, radicals can even be trapped there. This so-called 

cage effect reduces the number of radical scissions and rises the stability against electron 

beam radiation.194 An additional effect stabilizing cGNPs in comparison to PLGA might be 

the covalent crosslinking. Even after backbone scission, the polymer fragment cannot 

diffuse out of the particle as it is still bound covalently through the sight chain. 

 

Figure 6-25: Cryo-TEM images of GNPs in PLGA showing core-shell-structure for particles of a size greater than 350 nm. 
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The composite particles made by GNPs and PLGA are imaged under the same conditions. 

As can be seen in Figure 6-25 NPs greater than 350 nm formed a clear shell with a 

thickness of 30 to 40 nm. The core-shell-structure stayed intact even after degradation in 

the electron beam. For smaller particles the shell is either too small to detect or it is not 

formed. From the degradation pattern it is not possible to assign which of the materials 

forms the shell and which one is positioned in the core. This might be because gelatin is 

not crosslinked here and therefore for sure reacts differently in the electron beam then 

the crosslinked reference particles. On the other hand the shell layer is relatively thin, so 

the exact degradation pattern is not accessible. At this point, it can be summarized that 

the polymer distribution striven for, the core-shell-model, is achieved for particles greater 

than 350 nm. 

6.3.4.3 Energy filtered TEM 

To assign which of the used polymers is forming the shell and which one is placed in the 

NP core, particles have been investigated in EFTEM. Because of the ice the contrast in 

cryo-TEM was too low to obtain a high enough contrast. Hence EFTEM was performed 

with dried samples at room temperature. Crosslinked GNPs have been used as reference 

system. 

 

Figure 6-26: EFTEM images of cGNPs a) in the bright field mode, b) the carbon map and c) the nitrogen map showing the 

distribution of the two elements. Scale bars are representing 0.5 µm. 

Figure 6-26 a) shows cGNPs in a BF-TEM image. Particles exhibit a low contrast to the 

background, as no enhancing staining was used and they melted in the electron beam. 

Nevertheless, the round shape was still visible. Except the one larger particle in the 

middle NPs show good particles size distribution. In b) and c) the carbon map and the 

nitrogen respectively are displayed. Both elements were distributed homogenously 

throughout the whole particle. In elementary analysis of gelatin the chemical composition 



Stabilizing Gelatin Nanoparticles without Crosslinking   

82 

is determined to be carbon 50.5 %, oxygen 25.2 % whereas nitrogen only contributed 

with 17.0 % and hydrogen 6.8 %. This results in a brighter representation of carbon 195 in 

the EFTEM image. Switching from pure gelatin NPs to the composite particles we already 

know from cryo-TEM investigations we can expect a core-shell system at least for NPs 

with a diameter larger than 350 nm. Comparing the BF-image in Figure 6-27 a) and f) with 

the one from cGNP NPs in Figure 6-26, the formulation consisting of gelatin and PLGA 

occurs darker with a higher contrast to the background. This corresponds to results from 

cryo-TEM investigations where PLGA NPs showed the higher electron density. Looking at 

the BF images of GNPs in PLGA a difference in the electron density is visible. Going further 

to the carbon maps b) and g) particles occur very bright due to the high carbon 

percentage especially in PLGA. Carbon is distributed equally in all particles the same holds 

true for oxygen c) and h) with the deviation that oxygen is less present in both polymers. 

The nitrogen maps (Figure 6-27 d) and e)) attracts the highest interest as this is the 

element distinguishing the used substances, as it is only present in gelatin. As we know, 

gelatin makes up approximately 12 % in the used formulation and from this only a 

fraction of 17 % is nitrogen. Thus it is not surprising that nitrogen maps were relatively 

dark. Unfortunately, the images lost sharpness too. However, it was still clearly visible 

that for the particles showing the high electron density in the BF mode nitrogen showed 

circles and a very dark core. This means the outer layer is built by gelatin surrounding a 

PLGA NPs. The others, mostly smaller particles did not show this obvious core shell model 

but still consisted partly of gelatin. Either the resolution was too low to define the core 

shell structure or the smaller particles actually exhibit a mixture throughout the whole 

particle. As Figure 6-27 e) shows a big particle, which seems to have a homogenous 

gelatin distribution this seems to be more likely for the small particles too. 
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Figure 6-27: EFTEM Images of GNPs in PLGA of two representative areas on the sample grid. Showing the brightfield 

image in a) and f). b) and g) represent the carbon distribution. Oxygen map images are c) and h) and nitrogen, the 

element distinguishing the polymers is shown in d) and e).  

The knowledge about the formulation gained in EFTEM studies have been reviewed with 

a pH titration curve measuring the ζ-potential. Hence gelatin as polypeptide exhibits a 

type dependent isoelectric point, the polarity of NPs with a gelatin shell should inverse in 

dependency to the pH. Values ranging from 8 to 3 have been tested. In Figure 6-28 they 

are plotted to the corresponding ζ-potential. 
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Figure 6-28: pH dependent ζ-potential of GNPs in PLGA particles showing the inversion from negative to positive signs 

with an IEP between pH 5 to 6. The blue line represents PLGA NPs changing the ζ-potential but not turning the sign. 

The ζ-potential increased from – 20 mV to + 25 mV with a decreasing pH. From the graph 

an IEP (at neutral surface charge) around pH 5.5 was determined. PLGA NPs and cGNPs 

were used as reference. PLGA in blue changed the surface charge too but did not get 

neutral or positive. cGNPs changed the charge in the same way as GNPs in PLGA. These 

results support the findings from the EFTEM investigations. During the production process 

gelatin seems to be dissolved again and rearranged surrounding the PLGA NPs. The most 

probable step for this phase inversion is the solvent evaporation time. Gelatin can be 

dissolved by the aqueous PVA solution and thus diffuses out of the NPs formulation 

before the PLGA droplet hardens due to the solvent evaporation. In this way, most of the 

particles form solid PLGA NPs with a gelatin shell. This could explain as well the high burst 

release of approximately 30 % and the low loading capacity for FITC-dextrans too. 
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6.4 Conclusion 

It was possible to design a crosslinking free carrier system based on gelatin and PLGA, 

which is exclusively composed by biodegradable, biocompatible and non-toxic materials. 

This is important for the delivery of the growing amount of biotherapeutics. The obtained 

NPs have a narrow size distribution with a mean hydrodynamic diameter of 250 nm and a 

negative surface charge of approximately -20 mV at neutral pH. The new hydrophilic 

platform technology could be proven to be nontoxic in cell viability studies. Furthermore, 

by the variation of the used gelatin amount, the hydrophilic part can be tuned. For LNA 

very good encapsulation efficiencies could be achieved. In further studies, with plasmid 

coding for eGFP loaded NPs, the suitability of the system as non-viral transfection vector 

could be demonstrated. Here is a great potential for the delivery system even though, it 

was in the end proven to be composed by a PLGA core surrounded by a gelatin shell. The 

encapsulation of larger molecules, like FITC-dextran70, was unfortunately not sufficient. 

For the purpose of a non-viral transfection vector the achieved loading was high enough, 

what can be seen from the results described in chapter 6.3.3.2. In confocal laser 

microscopy studies with fluorescently labelled materials a colocalization could be shown. 

However, the resolution of CLSM is not high enough for a detailed material separation. 

The use of the innovative EFTEM technique enabled the exact structure determination. To 

our knowledge EFTEM was used for the first time to exactly investigate the distribution of 

two organic polymers in the nanometer scale. In this way, the phase inversion during the 

preparation process was detected and underlined by the investigation of a pH dependent 

ζ-potential measurement. By the establishment of the unique analytical method 

combination a further development of the platform and the investigation in possibilities 

to force the gelatin to stay inside the PLGA NPs can be envisaged. Even though the 

polymer distribution is exactly opposite to what was intended, it could be shown as 

effective carrier for transfection studies. 
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7 Outlook 

7.1 Elasticity of Crosslinked Gelatin Nanoparticles 

The change in the elastic moduli over the storage time should be further investigated. For 

the development of an applicable GNP formulation the hardening has to be monitored 

over a longer time. The question which should be addressed in this regard is, if after a 

certain time Young’s moduli stay constant and a plateau is reached, or not. This should 

have an impact on the in vivo fate after usual storage times between preparation and 

application. A second parameter, which can be considered to be examined, is the 

influence of the storage conditions. It could be shown, that hardening of gelatin gels takes 

place at a faster rate at lower temperatures.196 Storage at room temperature might slow 

down the increase of Young´s moduli and therefore, slow down the hardening process. In 

order to investigate the influence of shorter crosslinking times alternative purification 

methods need to be established. The agglomeration after centrifugation of cGNPs, 

prepared with crosslinking of less than three hours, could be prevented by the use of 

cross flow filtration or dialysis. The irreversible formation of aggregates might come from 

the softness of these particles, which could be very interesting in terms of the design of 

long circulating cGNPs. A comparison with GNPs crosslinked only in the area of an outer 

shell, like it could be achieved in our laboratory with N,N'-diisopropylcarbodiimide would 

be of interest. By the limitation of the crosslinking to the outside of the particles, it is 

assumable to form softer particles, than by crosslinking the whole particle matrix. In 

regard to the interaction of cells with cGNPs shorter and longer incubation times should 

be examined as well as a collection of more data per time point. When enough time 

points are measured in a quantitative way, the calculation of in vitro kinetics and a 

correlation to the measured Young´s moduli could be very interesting. Macrophage 

uptake would be an important information to obtain, as many particle systems are 

cleaned from the blood circulation by cells of the MPS.108 After these experiments, by 

which the knowledge of the mechanical properties and their influences to in vitro systems 

can be increased, the evaluation of the in vivo fate of soft and hard NPs would be a very 

interesting aspect. 
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7.2 Gelatin Nanoparticles in PLGA 

The resulting NPs system, having PLGA NPs coated by gelatin can be further investigated, 

like for example for the co- delivery of hydrophobic and hydrophilic drugs. This is an 

increasing trend, especially used in cancer treatment.197 Another possible benefit of the 

gelatin core is the formation of a softer particle system. This could be investigated by the 

nanoindentation method with SPM, which is described in detail in chapter 5.2.5.3. Softer 

particles in general prolong the half-life time and alter the NP distribution into organs.9 In 

addition, gelatin could provide the possibility of a chemical modification by the functional 

groups, and in this way could be used for an active drug targeting. Another possibility is a 

further formulation development with the aim to actually achieve GNPs coated by PLGA 

and monitored by the established analytical methods. By the use of co-solvents PLGA 

could be forced to form a solid shell around the GNPs before the formation of the 

emulsion. Pentane, an antisolvent for PLGA, could be used for this approach. First 

preliminary experiments showed the potential of this attempt. ζ-potential still turned 

positive at lower pH values, but much less than for NPs prepared by the standard 

protocol. A challenging part in this approach is to maintain the size range constant. 

Samples prepared in this way had a very broad size distribution and were interspersed 

with microparticles of several tenths of micrometers. A second possibility would be the 

exchange of the emulsifying step by a second precipitation. In this way first gelatin would 

be precipitated and, after mixing the freshly prepared GNPs with dissolved PLGA, they 

would be co precipitated. When the second solvent is chosen in a way that gelatin is 

insoluble too, GNPs should be stable and the phase inversion could be hindered. 

Changing the temperature and transferring the process into an ice bath could prevent the 

liberation of gelatin. By gelling the freshly prepared particles they could be solidified until 

a stable PLGA layer is formed, which is stabilizing them in a sufficient way. To evaluate the 

interaction between gelatin and PLGA it would be a possibility to go one step back and 

investigate in the coating of cGNPs. This could be interesting as well in regard to an 

altered release compared with blank cGNPs. A hydrophobic shell should prolong the 

release of hydrophilic drugs in a significant way. This results in larger application intervals 

what is beneficial in terms of patient’s compliance. 
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G.; Dawson, K. The Evolution of the Protein Corona around Nanoparticles: A Test Study. 

ACS Nano 2011, 5 (9), 7503-7509. 

127. Prow, T. W.; Ruge, C. A.; Schaefer, U. F.; Herrmann, J.; Kirch, J.; Cañadas, O.; 

Echaide, M.; Pérez-Gil, J.; Casals, C.; Müller, R.; Lehr, C.-M. The Interplay of Lung 

Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles. 

PLoS ONE 2012, 7 (7), e40775. 

128. Yang, Q.; Jones, S. W.; Parker, C. L.; Zamboni, W. C.; Bear, J. E.; Lai, S. K. Evading 

Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Substantially 

Exceeding the Minimum for Brush Conformation. Molecular Pharmaceutics 2014, 11 (4), 

1250-1258. 

129. Yang, C.; Gao, S.; Dagnæs-Hansen, F.; Jakobsen, M.; Kjems, J. Impact of PEG Chain 

Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA 

Nanoparticles in Vitro and in Vivo. ACS Applied Materials & Interfaces 2017, 9 (14), 12203-

12216. 

130. Naidu, P. S. R.; Norret, M.; Smith, N. M.; Dunlop, S. A.; Taylor, N. L.; Fitzgerald, M.; 

Iyer, K. S. The Protein Corona of PEGylated PGMA-Based Nanoparticles is Preferentially 

Enriched with Specific Serum Proteins of Varied Biological Function. Langmuir 2017, 33 

(45), 12926-12933. 

131. Liu, X.; Jin, Q.; Ji, Y.; Ji, J. Minimizing nonspecific phagocytic uptake of 

biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. J. 

Mater. Chem. 2012, 22 (5), 1916-1927. 

132. Ou, H.; Cheng, T.; Zhang, Y.; Liu, J.; Ding, Y.; Zhen, J.; Shen, W.; Xu, Y.; Yang, W.; 

Niu, P.; Liu, J.; An, Y.; Liu, Y.; Shi, L. Surface-adaptive zwitterionic nanoparticles for 

prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta 

Biomaterialia 2017. 



                              Literature 

XVII 

133. Anselmo, A. C.; Mitragotri, S. Impact of particle elasticity on particle-based drug 

delivery systems. Advanced Drug Delivery Reviews 2017, 108, 51-67. 

134. Banquy, X.; Suarez, F.; Argaw, A.; Rabanel, J.-M.; Grutter, P.; Bouchard, J.-F.; 

Hildgen, P.; Giasson, S. Effect of mechanical properties of hydrogel nanoparticles on 

macrophage cell uptake. Soft Matter 2009, 5 (20), 3984. 

135. Beningo, K. A.; Wang, Y.-l. Fc-receptor-mediated phagocytosis is regulated by 

mechanical properties of the target. Journal of Cell Science 2002, 115 (4), 849. 

136. Alexander, J. F.; Kozlovskaya, V.; Chen, J.; Kuncewicz, T.; Kharlampieva, E.; Godin, 

B. Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with 

Breast Cancer Cells. Advanced Healthcare Materials 2015, 4 (17), 2657-2666. 

137. Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; 

Jiang, X. Tunable Rigidity of (Polymeric Core)-(Lipid Shell) Nanoparticles for Regulated 

Cellular Uptake. Advanced Materials 2015, 27 (8), 1402-1407. 

138. Yi, X.; Shi, X.; Gao, H. Cellular Uptake of Elastic Nanoparticles. Physical Review 

Letters 2011, 107 (9). 

139. Merkel, T. J.; Jones, S. W.; Herlihy, K. P.; Kersey, F. R.; Shields, A. R.; Napier, M.; 

Luft, J. C.; Wu, H.; Zamboni, W. C.; Wang, A. Z.; Bear, J. E.; DeSimone, J. M. Using 

mechanobiological mimicry of red blood cells to extend circulation times of hydrogel 

microparticles. Proceedings of the National Academy of Sciences 2011, 108 (2), 586-591. 

140. Zhang, L.; Cao, Z.; Li, Y.; Ella-Menye, J.-R.; Bai, T.; Jiang, S. Softer Zwitterionic 

Nanogels for Longer Circulation and Lower Splenic Accumulation. ACS Nano 2012, 6 (8), 

6681-6686. 

141. Tsoi, K. M.; MacParland, S. A.; Ma, X.-Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; 

Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M.; Conneely, J. B.; Alman, B. A.; 

Selzner, M.; Ostrowski, M. A.; Adeyi, O. A.; Zilman, A.; McGilvray, I. D.; Chan, W. C. W. 

Mechanism of hard-nanomaterial clearance by the liver. Nature Materials 2016, 15 (11), 

1212-1221. 

142. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and thermal 

properties of gelatin films at different degrees of glutaraldehyde crosslinking. 

Biomaterials 2001, 22 (8), 763-8. 



Literature   

XVIII 

143. Uskoković, V. Dynamic Light Scattering Based Microelectrophoresis: Main 

Prospects and Limitations. Journal of Dispersion Science and Technology 2012, 33 (12), 

1762-1786. 

144. El Hadji Mamour Sakho, E. A., Oluwatobi S. Olwafemi, Sabu Thomas, Nandakumar 

Kalarikkal. Thermal and Rheological Measurement Techniques for Nanomaterials 

Characterization; 1 ed.; Elsevier 2017; Vol. 3. p 292. 

145.  ISO/TC 24/SC 4, Particle characterization, ISO 22412:2017, Particle size analysis -- 

Dynamic light scattering (DLS). In 22412:2017, 2 ed.; ISO, Ed., 2017, p 34. 

146. Bhattacharjee, S. DLS and zeta potential – What they are and what they are not? 

Journal of Controlled Release 2016, 235, 337-351. 

147. Müller, R. H. Zetapotential und Partikelladung in der Laborpraxis: 

Wissenschaftliche Verlagsgesellschaft mbH, 1996. p 254. 

148. Malvern Instruments Ltd.; Malvern Zetasizer ZS DLS user manual; Malvern 

Instruments Ltd. 2013; Vol. MANO485 1.1. 

149. Egerton, R. F. Physical Principles of Electron Microscopy; Springer Nature: Springer 

International Publishing Switzerland 2016; Vol. 2. p 196. 

150. Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Microscope. Physical Review 

Letters 1986, 56 (9), 930-933. 

151. Meyer, G.; Amer, N. M. Novel optical approach to atomic force microscopy. 

Applied Physics Letters 1988, 53 (12), 1045-1047. 
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Chemical Name Comment Supplier 

4´,6-Diamidino-2-phylindol  DAPI Sigma, Aldrich GmbH, Selze, Germany 

A459 cells  ATCC, LGC Standards GmbH, Wesel 

Acetone Analytical reagent grade Fischer Chemical Ltd., Loughborough, U.K. 

Caso-Agar   
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Dimethylformamide  Sigma Aldrich GmbH, Steinheim, Germany 

Dimethylsulfoxid  
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Dodecylamine  Sigma Aldrich GmbH, Steinheim, Germany 

D-sorbitol  Sigma Aldrich GmbH, Steinheim, Germany 

Dulbecco´s Modified Eagle 
Medium  

DMEM Gibco - Thermo Fisher, Carlsbad, US 

EndoFree Plasmid Mega Kit No.: 12381 Qiagen, Venlo, Netherlands 

Ethanol > 99.8% Sigma Aldrich GmbH, Steinheim, Germany 

Ethyl acetate  Sigma Aldrich GmbH, Steinheim, Germany 

Fetal calf serum  Lonza, Basel, Switzerland 

FITC-Dextran
70

   TdB Cons., Uppsala, Sweden)  

Gelatin A Bloom 175 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Gelatin B  Bloom 75 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Glutamine  Gibco - Thermo Fisher, Carlsbad, US 

Glutaraldehyde  Sigma-Aldrich GmbH, Steinheim, Germany 

HBSS Buffer  
Sigma Aldrich Life Science GmbH, Seelze, 
Germany 

HCl 37% Bernd Kraft, Duisburg, Germany 

HEK293T cells  ATCC, LGC Standards GmbH, Wesel 

MTT reagent  
Sigma Aldrich Life Science GmbH, Seelze, 
Germany 

N-Hydroxysuccinimid Alexa 
Flour® 633 

 
Thermo Fisher Scientific Inc., Waltham, MA, 
USA 
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Poloxamer 188  AppliChem, Darmstadt, Germany 

Polyethylenimide ~ 25 kDa Sigma Aldrich GmbH, Steinheim, Germany 

Polylactic-co-glycolicacid Resomer RG 503 H 
Evonik Nutrition & Care, Darmstadt, 
Germany 

Polyvinylalcohol  
Kururay Europe GmbH, Hattersheim am 
main, Germany 

QuantiPro
TM

 BCA Assay Kit  Sigma Aldrich, Munich, Germany 

RPMI-1640 medium   
Sigma Aldrich Life Science GmbH, Seelze, 
Germany 

Sodiumhydroxid > 99% p.a. 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Tetramethyl-rhodamine 
isothiocyanate dextran 

TRITC-dextran TdB Cons., Uppsala, Sweden)  

Triton X-100  
Sigma Aldrich Life Science GmbH, Seelze, 
Germany 
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Device Type Company 

Particle Production   

Autoclave FVS/2 
Fedegari, Integra Biosciences, now ibs 
Tecnomara, Fernwald, Germany 

Centrifuge  
Thermo Fisher Scientific, Osterode am harz, 
Germany 

Freeze dryer Alpha 2-4 LSC 
Martin Christ Gefriertrocknungsanlagen 
GmbH, Osterode am Harz, Germany 

Laminar airflow work bench Technoflow 2F120-II GS 
Integra Biosciences AG, now ibs tecnomara 
GmbH, Fernwald, Germany 

Petri dishes  
Greiner bio-one GmbH, Frickenhausen, 
Germany 

Plate reader Infinite®M200 Tecan group Ltd., Männedorf, Switzerland 

Ultrasound bath Elmasonic P Elma Schmidbauer GmbH, Singen, Germany 

UltraTurrax UltraTurrax T25 
IKA®-Werke GmbH & CO. KG, Staufen, 
Germany 

UltraTurrax Disperser S 25 N – 8 G 
IKA®-Werke GmbH & CO. KG, Staufen, 
Germany 

96-well plates  
Greiner bio-one GmbH, Frickenhausen, 
Germany 

Size & ζ-Potential   

Zetasizer Nano ZS Malvern Instruments Ltd, Malvern, UK 

Capillary Cell DTS 1070 Malvern Instruments Ltd., Malvern, UK 

Scanning Electron 
Microscopy 

  

Scanning Electron 
Microscope (HIPS) 

EVO HD15 
Carl Zeiss Microscopy GmbH, Jena, 
Germany 

Sputter Coater (HIPS) Quorum Q150R ES 
Quorum Technologies Ltd., East Grinstead, 
UK 

Scanning Electron 
Microscope (WZMW) 

JEOL JSM-7500F  JEOL, Tokyo, Japan 

Sputter Coater (WZMW) Edwards S150 Edwards, West Sussex, United Kingdom 

Carbon Disk  Plano, Wetzlar, Germany 

Pin tube  Plano, Wetzlar, Germany 

Silica wafer  Plano, Wetzlar, Germany 
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Transmission Electron 
Microscopy 

  

Transmission Electron 
Microscope 

Joel JEM 2100 JEOL, Tokyo, Japan 

TEM Camera Gatan Orius SC100  Gatan Inc., Pleasanton, CA, United States 

Cryoplunger Gatan CP3 Gatan Inc., Pleasanton, CA, United States 

Cryo-TEM holder Gatan 914 Gatan Inc., Pleasanton, CA, United States 

Gatan image filter GIF 2002 Gatan Inc., Pleasanton, CA, United States 

Slow-scan camera Gatan model 850 Gatan Inc., Pleasanton, CA, United States 

Holey Carbon Film S147-4 Plano, Wetzlar, Germany 

Scanning Probe Microscopy   

Scanning Probe Microscope JPK NanoWizard I JPK Instruments, Berlin, Germany 

SPM Tip Force 
measurements 

MLCT, Cantilever C Bruker Nano Inc., Camarillo, United States 

SPM Tip (in air) OMCL-AC160TS Olympus Org, Tokyo, Japan 

JPK-SPM Data Progressing 
Program 

 JPK Instruments, Berlin, Germany 

UV/Ozone cleaner UV/Ozone ProCleaner
TM

 
BioForce Nanosciences Inc., Ames, Iowa, 
United States 

Cellculture & CLSM   

Scanning Confocal Microscope (Particle Interaction) Carl Zeiss AG, Jena, Germany 

Scanning Confocal 
Microscope (Colocalization) 

Axiovert 100M  Carl Zeiss AG, Jena, Germany 

Laser Axiovert 100M  Lasos Lasertechnik GmbH, Jena, Germany 

Cellculture Microscopy 
Chambers 

ibiTreat® Ibidi GmbH, Martinsried, Germany 
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A Contact area 
ɑ  Tip half angle 
ɑ

-1
 Distribution half-life 

AFM Atomic force microscope 
API Active pharmaceutical ingredient 
Arg / R Arginine 
Asp / D Aspartic acid 
BCA assay Bicinchoninic acid assay 
BE Back scattered electrons 
BF Brightfield 
CCD Charge couple device 
cGNPs Crosslinked gelatin nanoparticles 
CLSM Confocal scanning microscope 
cpm Counts per minute 
D Diffusion coefficient 
DAPI 4′,6-Diamidine-2′-phenylindole dihydrochloride 
DDA Dodecylamine 
DDS Drug delivery system 
D

H Hydrodynamic diameter 
DLS Dynamic light scattering 
DMEM Dulbecco´s Modified Eagle Medi 
DMF Dimethylformamide 
DMSO Dimethyl sulfoxide 
DP Data Progressing Program 
E Young´s modulus 
EELS Electron energy loss spectroscopy 
EFTEM Energy filtered TEM 
eGFP Enhanced green fluorescent protein 
EPR Enhanced permeation and retention 
F Applied force 
FA-PLGA Fluorescein amine labelled PLGA 
FCS Fetal calf serum 
FDA U.S. food and drug administration 
FITC Fluoresceinisothiocyanat 
GIT Gastro intestinal tract 
Gly / G Glycine 
GNPs Gelatin nanoparticles 
h

c Contact depth 
HIPS Helmholtz Institute for Pharmaceutical Research Saarland 
HMVEC Human lung microvascular endothelial cells 
HUVEC Human umbilical vein endothelial cells 
IEP Isoelectric point 
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k Spring constant 
k

B Boltzmann constant 
l
0 Initial NP height 

LaB
6 Lanthanum hexaboride 

LDV Laser Doppler velocimetry 
LEI Lower secondary electron image 
LNA Locked nucleic acid 
M3 Mixed mode measurement 
MPS Mononuclear phagocyte system 
MTT 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
ƞ Viscosity 
NIBS Non-invasive back-scatter technology 
NPs Nanoparticles 
PALS Phase analysis light scattering 
PdI Polydispersity Index 
PEG Polyethylenglycole 
PEGDA Poly(ethylene glycol) diacrylate 
PEI Polyethylenimine 
PLGA Poly(lactic-co-glycolic acid) 
PRINT Particle replication in nonwetting templates 
PSPD Position-sensitive photodiode 
PVA Polyvinylalcohol 
RBCs Red blood cells 
RPMI Roswell Park Memorial Institute 
SEI Secondary electron image 
SEM Scanning electron microscopy 
SPM Scanning probe microscope 
T Temperatur 
TEM Transmission electron microscopy 
T

max Maximum plasma concentration 
TRITC Tetramethyl-rhodamine isothiocyanate 
z Piezo displacement 
ZD Z-average diameter 
β

-1
 Elimination half-life 

δ
c Cantilever deformation 

Δl Indentation depth 
ν Possion´s ratio 
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