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Zusammenfassung

Die Digitalisierung ist eine der größten Herausforderungen für Industrie und Gesellschaft.
Neben vielen Geschäftsbereichen betrifft diese auch, insbesondere sensible, Nutzerdaten.
Daher sollten persönliche Informationen so gut wie möglich gesichert werden. Zugleich
brauchen Cloud-basierte Software-Anwendungen, die der Nutzer verwenden möchte, Zugang
zu diesen Daten.

Diese Dissertation fokussiert sich auf das sichere Auslagern und Teilen von Daten
unter Wahrung der Privatsphäre, auf das Abfragen von geschützten, ausgelagerten Daten
und auf die Nutzung persönlicher Informationen als Zugangsberechtigung für erpressungsre-
sistente Bewertungsplattformen. Zu diesen drei Themen präsentieren wir kryptographische
Techniken und Protokolle, die den Stand der Technik voran treiben. Der erste Teil stellt
Multi-Client Oblivious RAM (ORAM) vor, das ORAM durch die Möglichkeit, Daten
unter Wahrung von Vertraulichkeit und Integrität mit anderen Nutzern zu teilen, erweitert.
Der zweite Teil befasst sich mit Freuquency-hiding Order-preserving Encryption. Wir
zeigen, dass dem Stand der Technik eine formale Betrachtung fehlt, was zu Angriffen führt.
Um Abhilfe zu schaffen, verbessern wir die Sicherheitsdefinition und beweisen, dass das
existierende Verschlüsselungsschema diese durch minimale Änderung erfüllt. Abschließend
entwickeln wir ein erpressungsresistentes Bewertungsportal. Erpressungsresistenz wurde
bisher hauptsächlich im Kontext von elektronischen Wahlen betrachtet.
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Abstract

Digitization is one of the key challenges for today’s industries and society. It affects more
and more business areas and also user data and, in particular, sensitive information. Due
to its sensitivity, it is important to treat personal information as secure and private as
possible yet enabling cloud-based software to use that information when requested by the
user.

In this thesis, we focus on the privacy-preserving outsourcing and sharing of data,
the querying of outsourced protected data, and the usage of personal information as an
access control mechanism for rating platforms, which should be protected from coercion
attacks. In those three categories, we present cryptographic techniques and protocols
that push the state of the art. In particular, we first present multi-client oblivious RAM
(ORAM), which augments standard ORAM with selective data sharing through access
control, confidentiality, and integrity. Second, we investigate on recent work in frequency-
hiding order-preserving encryption and show that the state of the art misses rigorous
treatment, allowing for simple attacks against the security of the existing scheme. As a
remedy, we show how to fix the security definition and that the existing scheme, slightly
adapted, fulfills it. Finally, we design and develop a coercion-resistant rating platform.
Coercion-resistance has been dealt with mainly in the context of electronic voting yet also
affects other areas of digital life such as rating platforms.
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1. Introduction

1.1. Digitization of User Records
Digitization keeps finding its way into almost every area of life. Not only is digitization
tremendously changing the way companies and businesses manufacture products and offer
services, it also affects end users and customers alike. One prominent example for this
change is the medical sector. While healthcare personnel previously kept paper-based
records for every patient, for a couple of years now, sometimes even decades, they have
been moving to electronic records. In hospitals, we often find hybrid approaches [130]
consisting of a general electronic health record, which is maintained centrally by the
hospital’s administration, and paper-based notes and lab results, which are used in the
daily treatment of a patient.

The goal of a digitization of patient records is to facilitate the sharing of health
information among doctors, hospitals, insurances, and other healthcare personnel. This
goal is clearly motivated by an improved and holistic treatment of the patient that takes all
available information into account. Different countries try to reach the goal using different
approaches, ranging from centralized systems that store medication data in a nationwide
database (e.g., in Austria1) to hybrid or distributed systems (e.g., the electronic health
card in Germany). It is easy to see that especially central databases ease the treatment of
patients. Additionally, it makes the study of medical diseases more efficient since more
information is available for querying.

Regardless of the way in which a record is stored, the patient is equipped with several
rights concerning the record. For instance, in the US, the Health Insurance Portability and
Accountability Act (HIPAA) [101] allows patients to access their record, get a copy of it,
get information about how and with whom information is shared, and to perform further
actions. Likewise, the Social Act (Sozialgesetzbuch) [180] in Germany regulates the usage
of the electronic health card (elektronische Gesundheitskarte, eGK [75]): the patient first
has to opt in and can later on decide who may access which information on the card. She
can also access certain information herself at home. Similar regulations that tend into the
same direction also exist for other countries, for instance, Austria [86] and Canada [151].

Besides the question of how and where medical data is stored and processed, the
e-health domain is target of other services that aim at improving the quality of service.
For instance, rating platforms such as RateMDs2 or Jameda3 allow patients to rate their

1https://elga.gv.at
2https://www.ratemds.com
3https://www.jameda.de
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1. Introduction

doctors and read the reviews of other patients so as to decide to which doctor or specialist
to go for a certain medical problem.

1.2. Security and Privacy Problems of Digitization
Digitizing all records and making them available to qualified personnel for processing
and retrieval as well as letting their owners use them raises several security and privacy
problems. We discuss those problems in the following section using the e-health example.

Outsourced storage of personal records. Giving a patient the control over her health
record eases the enforcement of existing law, which says that the patient should be able
to select with whom to share information and that she should have access to her medical
data. In order to make the data accessible to healthcare personnel, however, there are
two options: the first is to hand out cards to users, as done in Germany, and store the
record on that card. Besides having several advantages, there are two central disadvantages:
first, if the card is lost or the patient does not carry it along with her, then the necessary
information is not available in case of an emergency. Second, most of those cards can only
store a very limited amount of data, say 64 kilobytes, which is far from fitting an X-ray
image, for example. Hence, storing information only on the card does not seem to be a
good idea, which is why it must be combined with a storage system for redundancy and
availability of the necessary information.

The second option is thus to only use the redundant storage or a personal health
record (health record controlled by the patient). We focus on an architecture that places
the health information in the cloud. Clearly, letting the record reside in the cloud and
giving different individuals access to certain information implies several problems. The
first problem is related to selective access control, for instance, only the doctor should be
able to write a medical bill for a health insurance while only a pharmacy should be able
to read a prescription so as to serve the patient with the respective medicine. We refer
to those two concepts in the rest of the thesis often with the terms integrity and secrecy.
The second problem targets the storage provider. One option is to trust the cloud/storage
provider; but this trust is hard to motivate given the sensitivity of the stored data and
the value of such data for businesses. Consequently, the data must be concealed from
the cloud provider. Moreover, it has been shown that, knowing the structure of data,
encrypting the data does not suffice to keep it secret [107]. Using the access pattern of
users, one can sometimes learn the exact content of the data, even if it is encrypted. This
holds true in particular for medical data such as DNA-sequences. The structure of such
a sequence is known and an attacker can infer a symptom or disease given the areas of
the sequence that are accessed by an analyst. A property to protect against such abuse is
called obliviousness, which we consider a central and desirable feature of the outsourced
storage of high-sensitivity data such as medical data.

Secure querying of outsourced records. In the realm of a central database that contains
medical data of all patients and might be accessed by researchers or medical analysts, we
are confronted with similar problems. The company that hosts the data should not learn

2



1.3. Our Contribution

the exact data but at the same time it should be able to answer search queries efficiently.
Efficiency and obliviousness are often in conflict with each other. Since medical data resides
in the realm of what we nowadays call “big data”, the central administration is more likely
focusing on efficiency rather than perfect obliviousness. Consequently, the goal here is to
protect the data as much as possible yet allowing for search queries at a speed that is not
debilitatingly slow.

Using personal records for authentication in rating platforms. Rating platforms, inde-
pendent of the domain, are very often consulted by users to improve their confidence in
upcoming decisions [150]. In order to be useful, rating platforms must be trustworthy.
Only if a user can trust the correctness and faithfulness of a rating, she will be able to base
decisions on that. Conversely, the question arises whether the rating platform host should
be fully trusted. The answer to that question is no since platform managers might have
economic interests to show specific ratings that highlight the good aspects of a doctor rather
than showing the bad reviews on the top of a page. Today, due to the importance of ratings
for decision making, entire businesses exists solely for the purpose of rating management
and getting the best out of user generated content (e.g., reevoo4 and bazaarvoice5). On
the other side of the market there exist single individuals and organizations that sell fake
reviews, advertised on websites such as fiverr.6

So in order to keep the rating process as independent as possible from the interests
of the person or object being rated, we cannot put full trust in the platform host. The
minimum amount of security that we want to achieve for rating platforms is access control,
which allows only qualified users to post a rating, and verifiability, which allows a reader
of a rating to verify whether it originates from a qualified user or not. Qualified here
means that only a patient who visited a doctor is eligible to write a review for that
doctor. This minimalistic requirement is, however, not sufficient to express the desired
property: in order to allow raters to be entirely honest, they must be anonymous such
that disadvantageous consequences in case of a negative review are ruled out. Moreover,
being able to authenticate somewhere in an anonymous fashion paves the way for coercion
attacks, which have been common, especially for doctor ratings in the past [164] in form of
fake reviews and review suppression. Our security and privacy goals for rating platforms
include thus authorization, anonymity, coercion-resistance, and verifiability.

1.3. Our Contribution
This thesis contributes to each of the three areas and problems described above, the secure
and privacy-preserving access to outsourced storage, the secure querying of outsourced
encrypted databases, as well as the rating of objects, persons, or institutions in a secure
and privacy-preserving fashion. In order to target the problems described above, we present
cryptographic protocols along with formal models and efficient realizations.

4https://www.reevoo.com
5http://www.bazaarvoice.com
6https://www.fiverr.com
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1. Introduction

1.3.1. Privacy and Access Control for Outsourced Storage
Outsourcing storage securely is a well-studied problem that has attracted lots of research
in the past. Typically, security in that scenario is falsely connoted with encryption of the
data. Unfortunately, as described above, depending on the kind of data that is encrypted,
it is sometimes not enough to just encrypt since the access patterns to the encrypted data
reveal their underlying plaintexts.

The state-of-the-art technology to counter this attack is called oblivious RAM
(ORAM) [88]. It achieves access pattern hiding on top of encrypting the data and is sup-
ported by an active line of research [3,8,29,41,65,66,91,106,136,138,159,170,178,183–185].
ORAM has originally been proposed to protect the cells in a random-access-memory, which
are accessed by the CPU during computation, from a curious observer. Consequently,
ORAM considers only a single client (originally the CPU) and a single server (originally the
RAM). This restricted setting, however, diminishes the usability of ORAM in a multi-client
setting, which is required in order to allow a data owner to selectively share data with
other clients. Clearly, ORAM only supports a trivial form of sharing: all-or-nothing, i.e.,
either one gives a client access to the entire database, by handing out the secret ORAM
key, or one does not give it access to any data.

Since single-client ORAM is not satisfactory for sharing outsourced information, in
the first part of this thesis, we present a multi-client ORAM framework that overcomes
the data-sharing and access control problems existing with single-client ORAM solutions.
The framework is called Group ORAM. We formally define all relevant security and
privacy properties in a unified attacker model. The most important notions are secrecy,
meaning that only authorized clients may read certain data, integrity, meaning that only
authorized clients may write certain data, tamper-resistance, meaning that in case the
server is malicious, an honest client cannot be convinced of the correctness of a maliciously
modified data entry, and obliviousness, meaning that different, but equally long access
patterns to the database are indistinguishable from each other.

Obliviousness comes in two flavors, which require fundamentally different technical
approaches: if the server is not allowed to collude with malicious clients, then we can
use the classical techniques used to achieve obliviousness in the single-client setting. If,
however, the server may collude with malicious clients, then single-client ORAM solutions
are no longer sufficient. In that case, stronger primitives are necessary to achieve the
required security level. Based on the framework, we present five different multi-client
ORAM constructions, which vary in the properties they achieve and in how efficient they
are. In order to demonstrate those differences with respect to efficiency, we present a
performance evaluation that demonstrates the feasibility of the strongest constructions as
well as the practicality of the most efficient construction.

1.3.2. Secure Querying of Outsourced Databases
Querying encrypted data can be accomplished in two ways. The first one is to use
techniques such as private information retrieval [53], which are expensive in terms of
computational effort both on client and server side and in terms of communication. The
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second approach is to use specific encryption schemes which allow server-aided querying
such as order-preserving encryption [179]. Unfortunately, numerous attacks exist that show
that the used encryption schemes do not provide security in practice when confronted with
auxiliary information that is easily available, such as census data or information contained
in telephone books.

One of the central problems in order-preserving encryption is the frequency leakage of
underlying plaintexts: if the same plaintext is encrypted multiple times, this is reflected in
the ciphertexts. A possible solution to this problem is frequency-hiding order-preserving
encryption, which attempts to prevent exactly that kind of leakage. However, the only
existing scheme to date [115] has shown to be vulnerable against attacks based on auxiliary
information [96] and the theoretical treatment of the new notion is still in the fledgling
stage.

In the second part of this thesis, we further investigate the theoretical aspects of
frequency-hiding order-preserving encryption and achieve interesting but somewhat surpris-
ing results: we first show that the definition presented by Kerschbaum [115] is imprecise
and its natural interpretation leads to severe attacks that break the security of the scheme.
Going one step further, we can even show that the definition itself is not achievable at all
by any order-preserving encryption scheme. Second, we identify the imprecision in the
definition and pinpoint to the problem in the security proof. In fact, the security proof
contains the answer to the problem of devising an achievable definition: it makes additional
assumptions that are not reflected in the definition. Hence, we devise a more rigorous
definition that is achievable. Finally, we show that a slight adaption of Kerschbaum’s
scheme provably achieves the more precise definition.

1.3.3. Coercion-Resistant Rating Platforms
Product ratings are a key asset for marketing strategies and opinion-forming, since a
majority of online users trusts them as far as decision making is concerned. Ratings help
users to decide which product to buy next or which doctor to visit for a special kind of
symptom [150]. The popularity and power of ratings open, at the same time, the door for
fake or bought reviews or ratings, which are hard to detect and even harder to protect
against. Furthermore, rating mechanisms often fall prey to forced abstention, for instance,
a doctor might let her patient sign a form in which she relinquishes to ever review that
doctor on any platform [164].

Existing and deployed rating platforms do not protect against coercion attacks due to
a very simple reason: knowing the username and password suffices to gain access to the
user’s reviews and provide the attacker with the possibility to post reviews himself. Hence,
in order to protect users against coercion attacks, we have to think fundamentally different
with respect to authorization, which must be both anonymous and serve as eligibility proof
for the platform provider, telling that the user is authorized to rate a certain product.
Additional to that, the platform and users together need a way to signalize coercion so
that the platform can successfully drop coerced ratings in a way that does not tell the
coercer that it has happened. Finally, the result of the rating process must be verifiable so
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as to enhance the trustworthiness of the entire system.
In the third part of this thesis, we present a coercion-resistant rating platform. For

authorization policies that target the eligibility of the rating and the anonymity of the
rater, the platform leverages attribute-based credentials. For instance, if a user is only
allowed to rate a product if she has bought it (cf. Amazon verified purchase [5]), then
the vendor might hand out a credential to the user indicating that she has bought that
product on a certain date at a certain store. The user can then use that credential, hide
all unnecessary information (e.g., the store where the product has been purchased), and
authenticate at the rating platform provider so as to provide evidence for the eligibility
of her review. In order to prevent coercion attacks, the platform establishes a novel
primitive called coercion-resistant identification token between itself and the user. The
token authenticates the user to the platform in an anonymous fashion and can be faked in
case of coercion so that the coercer is equipped with an invalid token, which he cannot
detect. The platform, receiving a rating accompanied by an invalid token then discards
that rating. Finally, a tallying protocol inspired by the electronic voting literature serves
the purpose of making the process publicly verifiable. The key challenge lies in designing
such a tallying protocol without violating any of the aforementioned properties and still
guaranteeing the correctness of the rating process.

1.4. Outline
The main part of this thesis consists of three parts. In the first part we present our results
on privacy and access control for outsourced data in a data sharing scenario (Chapter 2).
The second part contains our investigations on the security of outsourced data encrypted
with frequency-hiding order-preserving encryption (Chapter 3). In the third part, we
present our coercion-resistant rating platform (Chapter 4). Finally, we conclude this thesis
(Chapter 5).

In both the first and the third part we formally define the considered model or scenario.
We then move to our cryptographic constructions and prove them secure according to
the defined model. We finish with performance evaluations and concluding remarks. The
second part also defines the considered model and presents attacks in that model on the
state of the art. We then present an impossibility result for the given definitions and fix
them, so that they can be achieved.
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Part I
Privacy and Access Control for

Outsourced Storage

We are very good at hiding from ourselves what we do not want to know.

Terry Pratchett, Unseen Academicals
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2. Group ORAM for Privacy and
Access Control in Outsourced
Personal Records

Cloud storage has rapidly become a cornerstone of many IT infrastructures, constituting
a seamless solution for the backup, synchronization, and sharing of large amounts of
data. Putting user data in the direct control of cloud service providers, however, raises
security and privacy concerns related to the integrity of outsourced data, the accidental
or intentional leakage of sensitive information, the profiling of user activities and so on.
Furthermore, even if the cloud provider is trusted, users having access to outsourced files
might be malicious and misbehave. These concerns are particularly serious in sensitive
applications like personal health records and credit score systems.

We tackle this problem in this chapter. We present ΠGORAM, a definitional framework
for Group Oblivious RAM, in which we formalize several security and privacy properties
such as secrecy, integrity, anonymity, and obliviousness. ΠGORAM allows per entry access
control, as selected by the data owner. ΠGORAM is the first framework to define such a wide
range of security and privacy properties for outsourced storage. Regarding obliviousness,
we tackle two different attacker models: our first definition protects against an honest-but-
curious server while our second definition protects against such a server colluding with
malicious clients.

In the latter model, we prove a server-side computational lower bound of Ω(n), i.e.,
every operation requires to process a constant fraction of the database. Furthermore, we
present two constructions: a pure cryptographic instantiation, which achieves an O(

√
N)

amortized communication and computation complexity and a construction based on a
trusted proxy with logarithmic communication and server-side computational complexity.
The second construction bypasses the previously established lower bound. Both schemes
achieve secrecy, integrity, and obliviousness with respect to a server colluding with malicious
clients, but not anonymity due to the deployed access control mechanism.

In the former model, we present a cryptographic system that achieves secrecy, integrity,
obliviousness, and anonymity. In the process of designing an efficient construction, we
developed three new, generally applicable cryptographic schemes, namely, batched zero-
knowledge proof of shuffle correctness, the hash-and-proof paradigm, which even improves
upon the former, and an accountability technique based on chameleon signatures, which
we consider of independent interest.

We implemented our constructions in Amazon Elastic Compute Cloud (EC2) and ran
a performance evaluation demonstrating the scalability and efficiency of our construction.
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2.1. Introduction

Cloud storage has rapidly gained a central role in the digital society, serving as a building
block of consumer-oriented applications (e.g, Dropbox, Microsoft SkyDrive, and Google
Drive) as well as particularly sensitive IT infrastructures, such as personal record manage-
ment systems. For instance, credit score systems rely on credit bureaus (e.g., Experian,
Equifax, and TransUnion in US) collecting and storing information about the financial
status of users, which is then made available upon request. As a further example, personal
health records (PHRs) are more and more managed and accessed through web services (e.g.,
private products like Microsoft HealthVault and PatientsLikeMe in US and national services
like ELGA in Austria), since this makes PHRs readily accessible in case of emergency even
without the physical presence of the e-health card and eases their synchronization across
different hospitals.

Despite its convenience and popularity, cloud storage poses a number of security and
privacy issues. The first problem is related to the secrecy of user data, which are often
sensitive (e.g., PHRs give a complete picture of the health status of citizens) and, thus,
should be concealed from the server. A crucial point to stress is that preventing the server
from reading user data (e.g., through encryption) is necessary but not sufficient to protect
the privacy of user data. Indeed, as shown in the literature [107, 159], the capability to
link consecutive accesses to the same file can be exploited by the server to learn sensitive
information: for instance, it has been shown that the access patterns to a DNA sequence
allow for determining the patient’s disease. Hence the obliviousness of data accesses is
another fundamental property for sensitive IT infrastructures: the server should not be able
to tell whether two consecutive accesses concern the same data or not, nor to determine
the nature of such accesses (read or write). Furthermore, the server has in principle the
possibility to modify client’s data, which can be harmful for several reasons: for instance,
it could drop data to save storage space or modify data to influence the statistics about
the dataset (e.g., in order to justify higher insurance fees or taxes). Therefore another
property that should be guaranteed is the integrity of user data.

Finally, it is often necessary to share outsourced documents with other clients, yet in a
controlled manner, i.e., selectively granting them read and write permissions: for instance,
PHRs are selectively shared with the doctor before a medical treatment and a prescription
is shared with the pharmacy in order to buy a medicine. Data sharing complicates the
enforcement of secrecy and integrity properties, which have to be guaranteed not only
against a malicious server but also against malicious clients. Notice that the simultaneous
enforcement of these properties is particularly challenging, since some of them are in
seeming contradiction. For instance, access control seems to be incompatible with the
obliviousness property: if the server is not supposed to learn which file the client is accessing,
how can he check that the client has the rights to do so?
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2.1.1. Our Contributions
In this chapter, we present ΠGORAM, a novel framework for privacy-preserving cloud-storage.
Users can share outsourced data with other clients, selectively granting them read and write
permissions, and verify the integrity of such data. These are hidden from the server and
access patterns are oblivious. ΠGORAM is the first system to achieve such a wide range of
security and privacy properties for storage outsourcing. More specifically, the contributions
of this chapter are the following:

• We formalize the problem statement by introducing the notion of Group Oblivious
RAM (Group ORAM) in Section 2.2. Group ORAM extends the concept of Oblivious
RAM [88] (ORAM) 1 by considering multiple, possibly malicious clients, with read
and/or write access to outsourced data, as opposed to a single client. We propose
a formal security model that covers a variety of security and privacy properties,
such as data integrity, data secrecy, obliviousness of access patterns, and anonymity.
For obliviousness, we consider two variants: first, we define obliviousness against
malicious clients. Intuitively, none should be able to determine which entry is read
by which client. However, write operations are oblivious only with respect to the
server and to those clients who cannot read the modified entry, since clients with
read access can obviously notice that the entry has changed. Second, we define
obliviousness only against a malicious server that does not collude with clients. We
find this slightly weaker obliviousness definition interesting, in particular, because it
allows for significantly more efficient cryptographic constructions.

• In the obliviousness against malicious clients setting, we establish an insightful
computational lower bound (Section 2.3): if clients have direct access to the database,
the number of operations on the server side has to be linear in the database size.
Intuitively, the reason is that if a client does not want to access all entries in a read
operation, then it must know where the required entry is located in the database.
Since malicious clients can share this information with the server, the server can
determine for each read operation performed by an honest client, which among the
entries the adversary has access to might be the subject of the read, and which
certainly not.

• We present PIR-GORAM, the first cryptographic construction that ensures the oblivi-
ousness of data accesses against malicious clients as well as access control (Section 2.4).
Our construction relies on Private Information Retrieval (PIR) [53] to achieve oblivi-
ousness, uses a new accumulation technique based on an oblivious gossiping protocol
to reduce the communication in an amortized fashion, and combines public-key
cryptography and zero-knowledge proofs for access control.

• To bypass the aforementioned lower bound, we consider the recently proposed proxy-
based setting [29, 136,170,184,193], which assumes the presence of a trusted party

1ORAM is a technique originally devised to protect the access pattern of software on the local memory
and then used to hide the data and the user’s access pattern in storage outsourcing services.
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mediating the accesses between clients and server. We show, in particular, that
TAO-GORAM, a simple variant of TaoStore [170], guarantees obliviousness in the
malicious setting as well as access control (Section 2.5).

• We then move to the setting in which obliviousness holds only against a malicious
server who does not collude with clients. We first introduce GORAM, a cryptographic
instantiation based on a novel combination of ORAM [187], predicate encryption [113],
and zero-knowledge (ZK) proofs (of shuffle correctness) [22,94] (Section 2.6). This
construction is secure, but building on off-the-shelf cryptographic primitives is not
practical. In particular, clients prove to the server that the operations performed on
the database are correct through ZK proofs of shuffle correctness, which are expensive
when the entries to be shuffled are tuples of data, as opposed to single entries.

• As a first step towards a practical instantiation, we maintain the general design of
GORAM, but we replace the expensive ZK proofs of shuffle correctness with a new
proof technique called batched ZK proofs of shuffle correctness (Section 2.6.5.1). A
batched ZK proof of shuffle correctness significantly reduces the number of ZK proofs
by “batching” several instances and verifying them together. Since this technique
is generically applicable in any setting where one is interested to perform a zero-
knowledge proof of shuffle correctness over a list of entries, each of them consisting
of a tuple of encrypted blocks, we believe that it is of independent interest. This
second realization greatly outperforms the first solution and is suitable for databases
with relatively small entries, accessed by a few users, but it does not scale to large
entries and many users.

• In a second step to improve upon the previous variant of GORAM, we present a novel
technique based on universal pair-wise hash functions [44] that speeds up batched
shuffle proofs even further (Section 2.6.5.2). As opposed to batched shuffle proofs,
which are secure when repeated λ many times where λ is the security parameter, this
construction computes a constant number of proofs. It is generally applicable and
we show that it outperforms batched shuffle proofs by one order of magnitude.

• To obtain a scalable solution, we explore some trade-offs between security and effi-
ciency. First, we present A-GORAM, which relies on a new accountability technique
based on chameleon signatures (Section 2.7). The idea is to let clients perform
arbitrary operations on the database, letting them verify each other’s operation
a-posteriori and giving them the possibility to blame misbehaving parties. Secondly,
in S-GORAM, we replace the relatively expensive predicate encryption, which en-
ables sophisticated role-based and attribute-based access control policies, with the
more efficient broadcast encryption, which suffices to enforce per-user read/write
permissions, as required in the personal record management systems we consider
(Section 2.8). This approach leads to a very efficient solution that scales to large files
and thousands of users, with a combined communication-computation overhead of
only 7% (resp. 8%) with respect to state-of-the-art, single-client ORAM constructions
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for reading (resp. writing) on a 1GB storage with 1MB block size (for larger datasets
or block sizes, the overhead is even lower).

We have implemented our constructions and conducted a performance evaluation
demonstrating the scalability and efficiency of our constructions (Section 2.10). Although
Group ORAM is generically applicable, the large spectrum of security and privacy properties,
as well as the efficiency and scalability of the system, make it particularly suitable for the
management of large amounts of sensitive data, such as personal records. We exemplify
that in a case study presented in Section 2.11.

2.2. Definitional Framework
We detail the problem statement by formalizing the concept of Group ORAM (Section 2.2.1),
introducing the attacker model (Section 2.2.2), and presenting the security and privacy
properties (Section 2.2.3).

2.2.1. Group ORAM
We consider a data owner O outsourcing her database DB = d1, . . . , dm to the server
S. A set of clients C1, . . . , Cn can access parts of the database, as specified by the access
control policy set by O. This is formalized as an n-by-m matrix AC (where |AC|r = n and
|AC|c = m denote the number of rows and columns, respectively), defining the permissions
of the clients on the files in the database: AC(i, j) (i.e., the j-th entry of the i-th row)
denotes the access mode for client i on data dj . An entry in AC can take one of the values
⊥ (no access), R (read access), or RW (read-write access).

At registration time, each client Ci receives a capability capi, which gives Ci access to
DB as specified in the corresponding row of AC. Furthermore, we assume the existence of
a capability capO, which grants permissions for all of the operations that can be executed
by the data owner only.

In the following we formally characterize the notion of Group ORAM. Intuitively, a
Group ORAM is a collection of two algorithms and four interactive protocols, used to setup
the database, add clients, add an entry to the database, change the access permissions
to an entry, read an entry, and overwrite an entry. In the sequel, we let 〈A,B〉 denote
a protocol between the ppt machines A and B, |a| the length of the vector a of access
modes, and a(i) the element at position i in a. In all our protocols |DB| = |AC|c and we
write AC ||r a and AC ||c a to denote row and column concatenation, respectively.

Definition 2.1 (Group ORAM). A Group ORAM scheme is a tuple of (interactive) ppt
algorithms ΠGORAM = (gen, addCl, addE, chMode, read,write), such that:
(capO,DB)← gen(1λ, n) : on input a security parameter λ and an integer n indicating the

maximum number of clients, this algorithm outputs (capO,DB) where DB := [ ] is
the database and capO is the data owner’s capability. Additionally, the algorithm
initializes the access control matrix AC := [ ], which is treated as a global variable
hereafter.
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{capi, deny} ← addCl(capO,a) : on input the data owner’s capability capO and an access
permission vector a, this algorithm checks whether |a| = |AC|c. In that case,
AC = AC ||r a and the algorithm outputs a client capability capi that grants access
permissions to Ci according to a. Otherwise, it outputs deny.

{DB’, deny} ← 〈CaddE(capO,a, d),SaddE(DB)〉 : on input the data owner’s capability capO,
an access permission vector a, and a data d, this protocol checks whether |a| = |AC|r.
In that case, AC = AC ||c a and the algorithm outputs a database DB′, which is equal
to DB augmented by d, granting clients access permissions according to a. Otherwise,
it outputs deny.

〈CchMode(capO,a, j),SchMode(DB)〉 : on input the data owner’s capability capO, an access
permission vector a, and an index j, this protocol changes the access permissions for
the j-th entry as specified by a. If j ≤ |DB| and |a| = |AC|r, then the j-th column
of AC is replaced by a.

{d, deny} ← 〈Cread(capi, j),Sread(DB)〉 : on input a capability capi and an index j, this
protocol either outputs d := DB(j) or deny if |DB| < j or AC(i, j) = ⊥.

{DB′, deny} ← 〈Cwrite(capi, j, d),Swrite(DB)〉 : on input a capability capi, an index j, and a
data d, this protocol overwrites the j-th entry of DB with d. It succeeds and outputs
DB′ if and only if AC(i, j) = RW, otherwise it outputs deny.

2.2.2. The Attacker Model
We consider an adversarial model in which the data owner O is honest, the clients C1, . . . , Cn
may be malicious, and the server S is assumed to be honest-but-curious (HbC)2 (and not
to collude with clients). These assumptions are common in the literature (see, e.g., [4, 51])
and are well justified in a cloud setting, since it is of paramount importance for service
providers to keep a good reputation, which discourages them from visibly misbehaving,
while they may have an incentive in passively gathering sensitive information given the
commercial interest of personal data.

Although we could limit ourselves to reason about all security and privacy properties
in this attacker model, we find it interesting to state and prove some of them even in
a stronger attacker model, where the server can arbitrarily misbehave and collude with
malicious clients. This allows us to characterize which properties unconditionally hold true
in our different systems, i.e., even if the server is compromised (cf. the discussion in the
end of this section).

2.2.3. Security and Privacy Properties
2.2.3.1. Adversary interfaces

We define all security and privacy properties as game-based definitions and, thus, need
to provide an interface to the adversary that allows him to talk to the game challenger.

2I.e., the server is regarded as a passive adversary, following the protocol but seeking to gather additional
information
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Setup(1λ, x)
(capO,DB)← gen(1λ)
AC = [ ]
CAP = ∅
Cor = ∅
if ¬x then

return (capO,DB,AC,CAP,Cor)
DB′ = [ ]
return (capO,DB,AC,CAP,Cor ,DB′)

OcorCl(i)
if ∃y ∈ CAP, z. y = (i, z) then

Cor = Cor ∪ i
return z

OxchMode(a, j)
if x then
〈CchMode(capO,a, j),SchMode(DB)〉
d← DB(j)
DB′ = DB′[j 7→ d]

else
〈CchMode(capO,a, j),A(DB)〉

Oquery(b, i0, j0, d0, i1, j1, d1)
if j0 ≤ |DB| ∧ j1 ≤ |DB|∧
∃y0 ∈ CAP, y1 ∈ CAP, z0, z1.
y0 = (i0, z0) ∧ y1 = (i1, z1) then

if (d0 = ⊥ =⇒ AC(i0, j0) 6= ⊥)
∧ (d0 6= ⊥ =⇒ AC(i0, j0) = RW
∧ ∀i ∈ Cor . AC(i, j0) = ⊥)
∧ (d1 = ⊥ =⇒ AC(i1, j1) 6= ⊥)
∧ (d1 6= ⊥ =⇒ AC(i1, j1) = RW
∧ ∀i ∈ Cor . AC(i, j1) = ⊥) then

if db = ⊥ then
d← 〈Cread(zb, jb),A(DB)〉

else
〈Cwrite(zb, jb, db),A(DB)〉

OxaddE(a, d)
if x then
y ← 〈CaddE(capO,a, d),SaddE(DB)〉
if y 6= deny then
DB = y

DB′ = DB′‖d
else
〈CaddE(capO,a, d),A(DB)〉
if ∃DB′ then
DB′ = DB′‖d

OaddCl(a)
capi ← addCl(capO,a)
CAP← CAP ∪ {(i, capi)}

Oxread(i, j)
if ∃y,∈ CAP, z. y = (i, z) then

if x then
if i ∈ Cor then
〈A(z, j),Sread(DB)〉

else
d← 〈Cread(z, j),Sread(DB)〉

else
d← 〈Cread(z, j),A(DB)〉

Oxwrite(i, j, d)
if ∃y ∈ CAP, z. y = (i, z) then

if x then
if i ∈ Cor then
〈A(z, j, d),Swrite(DB)〉

else
r ← 〈Cwrite(z, j),Swrite(DB)〉
if r 6= deny
DB = r

DB′ = DB′[j 7→ d]
else
〈Cwrite(z, j, d),A(DB)〉
if ∃DB′ then
DB′ = DB′[j 7→ d]

Figure 2.1.: Oracles accessible to the adversary in the game-based definitions.
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We do that by defining a set of oracles, to a selection of which the adversary has access in
every game. That selection is specified in each game separately. The oracles implement
the respective functionality with which they are indexed. The flag x, which is present in
the oracles OxaddE(·), OxchMode(·), Oxread(·), and Oxwrite(·) determines where the database DB
is stored. If the flag is set, DB is controlled by the challenger and the adversary only has
access to it via oracles. If it is not set, the adversary controls the database. We use the
sets CAP and Cor to keep track of issued capabilities and corrupted clients, respectively.
Furthermore, in some cases we need an auxiliary database DB′, which is supposed to
maintain the correct state of the database, independent of the actions of the adversary.
For instance, as we will later see in the definition of integrity, the adversary is supposed to
inject a payload into the database DB, which is not reflected in DB′, which means that it
is able to manipulate DB without holding access permissions. Finally, the oracle Oquery is
required for the obliviousness definitions and contains a quite complex condition, which
restricts the possible client and data indices that may be queried. This is necessary so as
to rule out trivial attacks based on different access permissions for the challenge indices.
The oracles are reported in Figure 2.1.

2.2.3.2. Secrecy
Intuitively, a Group ORAM preserves the secrecy of outsourced data if no party is able to
deduce any information about the content of any entry she does not have access to. We
formalize this intuition through a cryptographic game in the following definition, which is
also illustrated below.
Definition 2.2 (Secrecy). A Group ORAM ΠGORAM preserves secrecy, if
Pr
[
ExpΠGORAM

A,secrecy(λ, b) = 1
]
is negligibly (in λ) close to 1/2 for every ppt adversary A,

where ExpΠGORAM
A,secrecy(λ, b) is the following game:
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b: {0,1},

write(DB, db, j)

b’
WIN iff b = b’ 

capO

CHALLENGER ADVERSARY

((d0, d1), j)

read, write, 

chMode, addEntry, 

addClient

DB

corruptClient

Figure 1. Game for Secrecy.

2.3. Security and Privacy Properties

2.3.1. Secrecy
Intuitively, a Group ORAM preserves the secrecy of outsourced data if no party is able to deduce

any information about the content of any entry she does not have access to. We formalize this intuition
through a cryptographic game in the following definition, which is illustrated in Figure 1.

Definition 2 (Secrecy). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write) preserves
secrecy, if for every PPT adversary A the following probability is negligible in the security parameter �:

��Pr
⇥
ExpSecA

GORAM(�, 1) = 1
⇤
� Pr

⇥
ExpSecA

GORAM(�, 0) = 1
⇤��

where ExpSecA
GORAM(�, b) is the following game:

Setup: The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box simulation of
A to which it hands over DB.
Queries: The challenger provides A with interactive interfaces addCl, addE, chMode, read, write, and
corCl that A may query adaptively and in any order. Each round A can query exactly one interface. These
interfaces are described below:

(1) On input addCl(a) by A, the challenger executes addCl(capO,a) locally and stores the capability
capi returned by the algorithm.

(2) On input addE(a, d) by A, the challenger executes hCaddE(capO,a, d), SaddE(DB)i in interaction
with A, where the former plays the role of the client while the latter plays the role of the server.

(3) On input chMode(a, j) by A, the challenger executes hCchMode(capO,a, j), SchMode(DB)i in inter-
action with A.

(4) On input corCl(i) by A, the challenger hands over the capability capi related to the i-th client in the
access control matrix AC.

(5) On input read(i, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interaction with A.
(6) On input write(i, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in interaction

with A.

Challenge: Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry on which
A wants to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. The challenger accepts
the request only if AC(i, j) = ?, for every i corrupted by A in the query phase. Afterwards it invokes
hCwrite(capO, j, db), Swrite(DB)i in interaction with A.
Output: In the output phase A still has access to the interfaces except for addCl on input a such that
a(j) 6= ?; corCl on input i such that AC(i, j) 6= ?; and chMode on input a, i with a(i) 6= ? for some

b 2 {0, 1}
capO

capi

capj
corCl(i)

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

DB

((d0, d1), j)

write(capO, j, db)

Interfaces
Challenge

b0Wins if b = b0

Challenger

secrecy

ExpΠGORAM
A,secrecy(λ, b)

(capO,DB,AC,CAP,Cor)← Setup(1λ, 0)

O = {OaddCl(·),O0
addE(·, ·),O0

chMode(·, ·),OcorCl(·),

O0
read(·, ·),O0

write(·, ·, ·)}

(j, (d0, d1))← AO(DB)
if |d0| = |d1| ∧ ∀i ∈ Cor . AC(i, j) = ⊥ then
〈Cwrite(capO, j, db),A(DB)〉
// O′ is defined as O with the difference that
// OaddCl(a) aborts if a(j) 6= ⊥,
// OcorCl(i) aborts if AC(i, j) 6= ⊥, and

// O0
chMode(a, j) aborts if ∃i ∈ Cor . a(i) 6= ⊥

b′ ← AO′ ()
if b = b′ then

return 1
return 0

16



2.2. Definitional Framework

2.2.3.3. Integrity

A Group ORAM preserves the integrity of its entries if none of the clients can modify an
entry to which she does not have write permissions. The respective cryptographic game is
depicted next to the game formalization.

Definition 2.3 (Integrity). A Group ORAM ΠGORAM preserves integrity, if
Pr
[
ExpΠGORAM

A,integrity(λ) = 1
]
is negligible in λ for every ppt adversary A, where ExpΠGORAM

A,integrity(λ)
is the following game:
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WIN!iff read(DB,%j*)%≠ read(DB’,%j*)% 

CHALLENGER 

ADVERSARY 

j* 

corruptClient!

update!DB’ 

read,!write,!chMode,!
addEntry,!addClient!

DB 

capO 

Figure 2. Game for Integrity.

Figure 3. Game for Tamper-resistance.

previously corrupted client i. Eventually, A stops, outputting a bit b0. The challenger outputs 1 if and
only if b = b0.

2.3.2. Integrity
A Group ORAM preserves the integrity of its entries if none of the clients can modify an entry to

which she does not have write permissions. The respective cryptographic game is depicted in Figure 2
and we formalize it below.

Definition 3 (Integrity). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write) pre-
serves integrity, if for every PPT adversary A the following probability is negligible in the security pa-
rameter:

Pr
⇥
ExpIntAGORAM(�) = 1

⇤

where ExpIntAGORAM(�) is the following game:
Setup: The challenger runs (capO, DB) gen(1�), sets AC := [], and runs a black-box simulation of
A. Furthermore, the challenger initializes a second database DB0 := [] which is managed locally.
Queries: The challenger provides A with the same interfaces as in Definition 2, which A may query
adaptively and in any order. Since DB is maintained on the challenger’s side, the queries to addE,
chMode, read and write are locally executed by the challenger. Furthermore, the challenger updates DB0
locally for all affecting interface calls.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If there
exists a capability capi provided to A with AC(i, j⇤) = RW, the challenger aborts. Otherwise it runs
d⇤  hCread(capO, j⇤), Sread(DB)i locally.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤).

capi

capj

Challenger

capO

Wins if
hCread(capO, j⇤), Sread(DB)i 6=
hCread(capO, j⇤), Sread(DB0)i

integrity

DB
DB0

update

Interfaces
Challenge

corCl(i)

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

j⇤

ExpΠGORAM
A,integrity(λ)

(capO,DB,AC,CAP,Cor ,DB′)← Setup(1λ, 1)

O = {OaddCl(·),O1
addE(·, ·),O1

chMode(·, ·),OcorCl(·),

O1
read(·, ·),O1

write(·, ·, ·)}

j∗ ← AO()
if ∀i ∈ Cor . AC(i, j∗) 6= RW then
d∗ ← 〈Cread(capO, j∗),Sread(DB)〉
if d∗ 6= DB′(j∗) then

return 1
return 0

2.2.3.4. Tamper-resistance

Intuitively, a Group ORAM is tamper-resistant if the server, even colluding with a subset
of malicious clients, is not able to convince an honest client about the integrity of some
maliciously modified data. Notice that this property refers to a strong adversarial model,
where the adversary may arbitrarily misbehave and collude with clients. Naturally, tamper-
resistance holds true only for entries which none of the corrupted clients had ever access
to. The respective cryptographic game is depicted below next to its formalization.

Definition 2.4 (Tamper resistance). A Group ORAM ΠGORAM is tamper-resistant, if for
all ppt adversaries A, Pr

[
ExpΠGORAM

A,tam-res(λ) = 1
]
is negligible in λ where ExpΠGORAM

A,tam-res(λ) is
the following game:
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WIN!iff read(DB,%j*)%≠ read(DB’,%j*)% 

capO 

CHALLENGER 
ADVERSARY 

j* 

read,!write,!chMode,!
addEntry,!addClient!

DB 

update!DB’ 

corruptClient!

Figure 3. Game for Tamper-resistance.

Figure 4. Game for Obliviousness.

parameter:

Pr
⇥
ExpTamResAGORAM(�) = 1

⇤

where ExpTamResAGORAM(�) is the following game:
Setup: The challenger runs the Setup phase as in Definition 2. Furthermore, it forwards DB to A and
initializes a second database DB0 which is managed locally.
Queries: The challenger provides A with the same interfaces as in Definition 2, which A may query
adaptively and in any order. Furthermore, the challenger updates DB0 locally for all affecting interface
calls.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If there exists
a capability capi that has ever been provided to A such that AC(i, j⇤) = RW, then the challenger aborts.
The challenger runs d⇤  hCread(capO, j⇤), Sread(DB)i in interaction with A.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤).
2.3.4. Obliviousness

Intuitively, a Group ORAM is oblivious if the server cannot distinguish between two arbitrary query
sequences which contain read and write operations. The cryptographic game is defined below and illus-
trated in in Figure 4.

Definition 5 (Obliviousness). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write) is
oblivious, if for every PPT adversary A the following probability is negligible in the security parameter:

��Pr
⇥
ExpObvA

GORAM(�, 1) = 1
⇤
� Pr

⇥
ExpObvA

GORAM(�, 0) = 1
⇤��

where ExpObvA
GORAM(�, b) is the following game:

Wins if
hCread(capO, j⇤), A)i 6=
hCread(capO, j⇤), Sread(DB0)i

tamper-resistance

capi

capj

Challenger

capO

DB0

update

corCl(i)

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

j⇤

DB

Interfaces
Challenge

ExpΠGORAM
A,tam-res(λ)

(capO,DB,AC,CAP,Cor ,DB′)← Setup(1λ, 1)

O = {OaddCl(·),O0
addE(·, ·),O0

chMode(·, ·),OcorCl(·),

O0
read(·, ·),O0

write(·, ·, ·)}
// Assume that AC(i, j) stores a list of permissions
// accounting for the history of permissions
// for client i on index j

j∗ ← AO(DB)
if ∀i, p. i ∈ Cor ∧ p ∈ AC(i, j∗) =⇒ p = ⊥ then
d∗ ← 〈Cread(capO, j∗),A(DB)〉
if d∗ 6= DB′(j∗) then

return 1
return 0

2.2.3.5. Obliviousness
Intuitively, a Group ORAM is oblivious if the server cannot distinguish between two
arbitrary query sequences which contain read and write operations. The cryptographic
game is defined below and illustrated right next to the game formalization. We notice that
the universally quantified restrictions in the definition of Oquery in Figure 2.1 concerning
the corrupted clients have no effect on the if clause. The reason is that the set Cor is
always empty due to the missing OcorCl oracle. Hence, any universal quantification over
Cor is true.

Definition 2.5 (Obliviousness). A Group ORAM ΠGORAM is oblivious, if
Pr
[
ExpΠGORAM

A,obliv (λ, b) = 1
]
is negligibly (in λ) close to 1/2 for every ppt adversary A, where

ExpΠGORAM
A,obliv (λ, b) is the following game:

8 M. Maffei et al. / Multi-Client ORAM for Privacy and Access Control in Outsourced Personal Records

Figure 3. Game for Tamper-resistance.

CHALLENGER 

ADVERSARY b: {0,1}, 
capO 

b’ 
WIN!iff b = b’  

chMode,!addEntry,!addClient!

read,!write!
query!

DB 

Figure 4. Game for Obliviousness.

parameter:

Pr
⇥
ExpTamResAGORAM(�) = 1

⇤

where ExpTamResAGORAM(�) is the following game:
Setup: The challenger runs the Setup phase as in Definition 2. Furthermore, it forwards DB to A and
initializes a second database DB0 which is managed locally.
Queries: The challenger provides A with the same interfaces as in Definition 2, which A may query
adaptively and in any order. Furthermore, the challenger updates DB0 locally for all affecting interface
calls.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If there exists
a capability capi that has ever been provided to A such that AC(i, j⇤) = RW, then the challenger aborts.
The challenger runs d⇤  hCread(capO, j⇤), Sread(DB)i in interaction with A.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤).
2.3.4. Obliviousness

Intuitively, a Group ORAM is oblivious if the server cannot distinguish between two arbitrary query
sequences which contain read and write operations. The cryptographic game is defined below and illus-
trated in in Figure 4.

Definition 5 (Obliviousness). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write) is
oblivious, if for every PPT adversary A the following probability is negligible in the security parameter:

��Pr
⇥
ExpObvA

GORAM(�, 1) = 1
⇤
� Pr

⇥
ExpObvA

GORAM(�, 0) = 1
⇤��

where ExpObvA
GORAM(�, b) is the following game:

Interfaces
Challenge

b0Wins if b = b0

(i0, j0, d0/?), (i1, j1, d1/?)

hCread(capib
, jb), Ai if db = ? or

hCwrite(capib
, jb, db), Ai

Challenger

obliviousness

b 2 {0, 1}
capO

capj

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

DB

ExpΠGORAM
A,obliv (λ, b)

(capO,DB,AC,CAP,Cor)← Setup(1λ, 0)

O = {OaddCl(·),O0
addE(·, ·),O0

chMode(·, ·),

Oquery(b, ·, ·, ·, ·, ·, ·),O0
read(·, ·),O0

write(·, ·, ·)}

b′ ← AO(DB)
if b = b′ then

return 1
return 0
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2.2.3.6. Obliviousness against malicious clients

Intuitively, a Group ORAM is oblivious against malicious clients if the server and an
arbitrary subset of clients cannot get any information about the access patterns of honest
clients, other than what is trivially leaked by the entries that the corrupted clients have
read access to. The following definition, graphically supported by the picture next to
the formal game description below, is an extension of the previous one which allows the
adversary to corrupt arbitrary clients. However, in order to avoid trivial attacks, we restrict
the queries of the adversary to the write oracle to indices that the set of corrupted clients
cannot read. The query oracle already accounts for the further restriction since it aborts
whenever it is called to write on indices to which any corrupted client has access to.

Definition 2.6 (Obliviousness against Malicious Clients). A Group ORAM ΠGORAM is
oblivious against malicious clients, if Pr

[
ExpΠGORAM

A,m-obliv(λ, b) = 1
]
is negligibly (in λ) close to

1/2 for all ppt adversaries A, where ExpΠGORAM
A,m-obliv(λ, b) is the following game:

Interfaces
Challenge

obliviousness against malicious clients

b 2 {0, 1}
capO

capi

capj

Challenger

Interfaces
Challenge

b0Wins if b = b0

(i0, j0, d0/?), (i1, j1, d1/?)

hCread(capib
, jb), Ai if db = ? or

hCwrite(capib
, jb, db), Ai

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

DB

corCl(i) ExpΠGORAM
A,m-obliv(λ, b)

(capO,DB,AC,CAP,Cor)← Setup(1λ, 0)

O = {OaddCl(·),O0
addE(·, ·),O0

chMode(·, ·),OcorCl(·),

Oquery(b, ·, ·, ·, ·, ·, ·),O0
read(·, ·),O0

write(·, ·, ·)}
// If Oquery is called on da 6= ⊥ for a ∈ {0, 1}
// OchMode(i, ja) aborts if i ∈ Cor and
// OcorCl(i) aborts if AC(i, ja) 6= ⊥ from now on

b′ ← AO(DB)
if b = b′ then

return 1
return 0

2.2.3.7. Anonymity

A Group ORAM preserves anonymity if the data owner cannot efficiently link a given
operation to a client, among the set of clients having access to the queried index. We
formalize anonymity as a cryptographic game in the following definition, accompanied by
a graphical illustration.

Definition 2.7 (Anonymity). A Group ORAM ΠGORAM preserves anonymity, if
Pr
[
ExpΠGORAM

A,anonymity(λ, b) = 1
]
is negligibly (in λ) close to 1/2 for every ppt adversary A,

where ExpΠGORAM
A,anonymity(λ, b) is the following game:

19



2. Group ORAM

M. Maffei et al. / Multi-Client ORAM for Privacy and Access Control in Outsourced Personal Records 9

b: {0,1}

read(DB, j; capb) or 

write(DB, d, j; capb) b’

CHALLENGER ADVERSARY

read, write, 

chMode, addEntry

((cap0, cap1), j) or 
((cap0, cap1), j, d) 

capO

WIN iff b = b’ 

DB

Figure 5. Game for Anonymity.

Setup: The challenger runs (capO, DB) gen(1�) as in Definition 2 and it forwards DB to A.
Queries: The challenger provides A with the same interfaces as in Definition 2 except corCl, which
A may query adaptively and in any order. Furthermore, A is provided with the following additional
interface:

(1) On input query({(i0, j0), (i0, j0, d0)}, {(i1, j1), (i1, j1, d1)}) by A, the challenger checks whether
j0  |DB|, j1  |DB|, and i0, i1 are valid clients. Furthermore, it checks that the operations re-
quested by A are allowed by AC. If not it aborts. Otherwise it executes hCread(capib

, jb), Sread(DB)i
or hCwrite(capib

, jb, db), Swrite(DB)i depending on the input, in interaction with A. Here the chal-
lenger plays the role of the client and A plays the role of the server.

Output: Finally, A outputs a bit b0. The challenger outputs 1 if and only if b = b0.

2.3.5. Anonymity
A Group ORAM is anonymity-preserving if the data owner cannot efficiently link a given operation

to a client, among the set of clients having access to the queried index. We formalize anonymity as a
cryptographic game in the following definition, which is depicted in Figure 5.

Definition 6 (Anonymity). A Group ORAM GORAM = (gen, addCl, addE, chMode, read, write) is
anonymity-preserving, if for every PPT adversary A the following probability is negligible in the security
parameter:

��Pr
⇥
ExpAnonA

GORAM(�, 1) = 1
⇤
� Pr

⇥
ExpAnonA

GORAM(�, 0) = 1
⇤��

where ExpAnonA
GORAM(�, b) is the following game:

Setup: The challenger runs (capO, DB) gen(1�) and it forwards capO and DB to A.
Queries: The challenger provides A with read and a write interactive interfaces that A may query adap-
tively and in any order. Each round A can query exactly one interface. The interfaces are described
below:

(3) On input read(capi, j) by A, the challenger executes hCread(capi, j), Sread(DB)i in interaction
with A, where the former plays the role of the server and the latter plays the role of the client.

(4) On input write(capi, j, d) by A, the challenger executes hCwrite(capi, j, d), Swrite(DB)i in inter-
action with A, where the former plays the role of the server and the latter plays the role of the
client.

b0Wins if b = b0

Challenger

b 2 {0, 1}

capO

anonymity

Interfaces
Challenge

DB

(capi, j) /
(capi, j, d)

(capi0 , capi1 , j) /
(capi0 , capi1 , j, d)

⌧
(Cread(capib

, j) /
Cwrite(capib

, j, d)
, A

�

⌧
(Cread(capi, j) /
Cwrite(capi, j, d)

, A
�

ExpΠGORAM
A,anonymity(λ, b)

(capO,DB,AC,CAP,Cor)← Setup(1λ, 0)

Oread(capi, j)

〈Cread(capi, j),A(DB)〉

Owrite(capi, j, d)

〈Cwrite(capi, j, d),A(DB)〉
O = {Oread(·, ·),Owrite(·, ·, ·)}

((capi0 , capi1 ), j, d)← AO(capO,DB)

if AC(i0, j) = AC(i1, j) then
if d = ⊥ then
〈Cread(capib , j),A(DB)〉

else
〈Cwrite(capib , j, d),A(DB)〉

b′ ← A
if b = b′ then

return 1
return 0

2.2.3.8. Accountable integrity
Intuitively, a Group ORAM preserves accountable integrity, if every client who modifies an
entry without holding write permissions on that entry will be detected by an honest client.
Clients detected of misbehavior are blamed and there is evidence in form of audit logs that
can be used to hold them accountable. The blaming of clients must be correct in a natural
way: (1) honest parties are never blamed and (2) in case of misbehavior by some party, at
least one dishonest party is blamed. The literature defines this notion of accountability as
fairness (cf. 1) and completeness (cf. 2) [123]. We define the accountable integrity property
through a cryptographic game, illustrated next to its formalization below.
Definition 2.8 (Accountable integrity). A Group ORAM ΠGORAM achieves accountable
integrity, if Pr

[
ExpΠGORAM

A,acc-int(λ) = 1
]
is negligible in λ for every ppt adversary A the following

probability where ExpΠGORAM
A,acc-int(λ) is the following game:
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WIN iff read(DB, j*) ≠ read(DB’, j*) AND 
(∃ i ∈ L: i ∉ corruptClient OR L = []) 

CHALLENGER

ADVERSARY

j*

corruptClient

updateDB’

read, write, 

chMode, addEntry, 

addClient

DB

capO

Figure 6. Game for Accountable Integrity.

Challenge: A outputs ((capi0 , capi1), {j, (j, d)}), where (capi0 , capi1) is a pair of capabilities, j is
an index denoting the database entry on which A wishes to be challenged, and d is some data.
The challenger checks whether AC(i0, j) = AC(i1, j): if not, then it aborts, otherwise it executes
hCread(capib

, j), Sread(DB)i or hCwrite(capib
, j, d), Swrite(DB)i in interaction with A.

Output: Finally, A outputs a bit b0. The challenger outputs 1 if and only if b = b0.

2.3.6. Accountable Integrity
Intuitively, a Group ORAM preserves accountable integrity, if every client who modifies an entry

without holding write permissions on that entry will be detected by an honest client. Clients detected
of misbehavior are blamed and there is evidence in form of audit logs that can be used to hold them
accountable. The blaming of clients must be correct in a natural way: (1) honest parties are never blamed
and (2) in case of misbehavior by some party, at least one dishonest party is blamed. The literature defines
this notion of accountability as fairness (cf. 1) and completeness (cf. 2) [63]. We define the accountable
integrity property through a cryptographic game, illustrated in Figure 6.

Definition 7 (Accountable integrity). A Group ORAM GORAM = (gen, addCl, addE, chMode, read,
write, blame) achieves accountable integrity, if for every PPT adversary A the following probability is
negligible in the security parameter:

Pr
⇥
ExpAccA

GORAM(�) = 1
⇤

where ExpAccA
GORAM(�) is the following game:

Setup: The challenger runs the Setup phase as in Definition 3.
Queries: The challenger runs the Query phase as in Definition 3.
Challenge: Finally, the adversary outputs an index j⇤ which he wants to be challenged on. If there exists
a capability capi provided to A such that AC(i, j⇤) = RW, then the challenger aborts. The challenger
runs d⇤  hCread(capO, j⇤), Sread(DB)i and L blame(capO, Log, j⇤) locally.
Output: It outputs 1 if and only if d⇤ 6= DB0(j⇤) and 9 i 2 L that has not been queried by A to the
interface corCl(·) or L = [].

2.3.7. Discussion
Table 1 summarizes the security and privacy properties presented in this section, along with the cor-

responding assumptions. The HbC assumption is in fact only needed for integrity, since the correctness
of client operations is checked by the server, thus avoiding costly operations on the client side. We will
see in Section 7 that the HbC assumption is still needed for the accountable integrity property, since the

accountable integrity

capi

capj

Challenger

capO

DB
DB0

update

corCl(i)

addCl(a)

addE(a, d)
chMode(a, j)

read(i, j)
write(i, j, d)

j⇤

Interfaces
Challenge

Wins if
hCread(capO, j⇤), Sread(DB)i 6=
hCread(capO, j⇤), Sread(DB0)i

^ (9i 2 L . i not corrupted _ L = [ ])

ExpΠGORAM
A,acc-int(λ)

(capO,DB,AC,CAP,Cor ,DB′)← Setup(1λ, 1)

O = {OaddCl(·),O1
addE(·, ·),O1

chMode(·, ·),OcorCl(·),

O1
read(·, ·),O1

write(·, ·, ·)}

j∗ ← AO()
if ∀i ∈ Cor . AC(i, j∗) 6= RW then
d∗ ← 〈Cread(capO, j∗),Sread(DB)〉
L← blame(capO, Log, j∗)
if d∗ 6= DB′(j∗) ∧ ((∃i ∈ L. i /∈ Cor) ∨ L = ∅) then

return 1
return 0
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2.3. Computational Lower Bound

Property Server Collusion
Secrecy malicious 3

Integrity HbC 7

Accountable Integrity HbC 7

Tamper-resistance malicious 3

Obliviousness malicious 7

Obliviousness malicious 3

Anonymity malicious 3

Table 2.1.: Security and privacy properties together with their minimal assumptions.

2.2.3.9. Discussion

Table 2.1 summarizes the security and privacy properties presented in this section, along
with the corresponding assumptions. The HbC assumption is in fact only needed for
integrity, since the correctness of client operations is checked by the server, thus avoiding
costly operations on the client side. We will see in Section 2.7 that the HbC assumption
is still needed for the accountable integrity property, since the server maintains a log of
accesses, which allows for blaming misbehaving parties. Secrecy, tamper-resistance, and
anonymity hold true even if the server is malicious and colludes with clients. Furthermore,
we treat two variants of obliviousness, which differ in the non-collusion assumption: in the
first variant, it holds only against a malicious server that does not collude with clients
while the second variant allows for collusion. The rest of this chapter is organized with
respect to these two variants: we first investigate on the collusion-enabled variant in
Section 2.3, Section 2.4, and Section 2.5. Then we focus on the non-collusion variant in
Section 2.6, Section 2.7, and Section 2.8. The reason for this organization is motivated by
the improvement in efficiency that we gain with each further construction.

2.3. Computational Lower Bound

In this section, we study how much computational effort is necessary to realize a Group
ORAM where obliviousness should hold against a server colluding with malicious clients.
Our result shows that any construction, regardless of the underlying computational assump-
tions, must access the entire memory (up to a constant factor) in every operation. Our
lower bound can be seen as a generalization of the result on history independence of Roche
et al. [168], in the sense that they consider a “catastrophic attack” where the complete
state of the client is leaked to the adversary, whereas we allow only the corruption of a
certain subset of clients. Note that, while the bound in [168] concerns the communication
complexity, our result only bounds the computation complexity on the server side.
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2.3.1. Formal Result
In the following we state a formal lower bound on the computational complexity of any
ORAM secure against malicious clients. We prove the theorem in Section B.2. We denote
by physical addresses of a database the memory addresses associated with each storage
cell of the memory. Intuitively, the lower bound says that the server has to access each
entry of the dataset for any read and write operation.

Theorem 2.1. Let n be the number of entries in the database and ΠGORAM be a Group
ORAM scheme. If ΠGORAM accesses on average o(n) physical addresses for each read
and write operation (over the random coins of the read or write operation, respectively),
ΠGORAM is not oblivious against malicious clients (see Definition 2.6).

2.3.2. Discussion
Given the lower bound established in the previous section, we know that any Group
ORAM scheme that is oblivious against malicious clients must read and write a fixed
constant fraction of the database on every access. However, the bound does not impose
any restriction on the required communication bandwidth. In fact, it does not exclude
constructions with sublinear communication complexity, where the server performs a
significant amount of computation. In particular, the aforementioned lower bound calls
for the deployment of private information retrieval (PIR) [53] technologies, which allow a
client to read an entry from a database without the server learning which entry it was.

The problem of private database modification is harder. A naïve approach would be
to let the client change each entry in the database DB upon every access, which is however
too expensive. Homomorphic encryption might be a natural candidate to outsource the
computation to the server and to reduce the required bandwidth: unfortunately, Ostrovsky
and Skeith III [152] showed that no private database modification (or PIR writing) scheme
with sublinear communication (in the worst case) can be implemented using algebraic
cryptographic constructions, such as linearly homomorphic encryption schemes. This result
does not apply to schemes based on fully-homomorphic encryption, which is however hardly
usable in practice due to the high computation cost of the currently known schemes.

The following sections describe our approach to bypass these two lower bounds. First
we show how to integrate non-algebraic techniques, specifically out-of-band communication
among clients, so as to achieve sublinear amortized communication complexity (Section 2.4).
Second, we show how to leverage a trusted proxy performing the access to the server on
behalf of clients in order to reach a logarithmic overhead in communication and server-side
computation, with constant client-slide computation (Section 2.5).

2.4. PIR-GORAM
In this section, we present PIR-GORAM, a Group ORAM scheme based on PIR. Our
construction is inspired by Franz et al. [81], who proposed to augment the database with a
stack of modified entries, which is periodically flushed into the database by the data owner.
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In our construction, we let each client Ci maintain its own temporary stack of entries Si
that is stored on the server side in addition to the regular database DB. These stacks
contain recent changes to entries in DB and to entries in other clients’ stacks, which are not
yet propagated to DB. In contrast to the approach by Franz et al. [81], clients themselves
are responsible to flush their stack once it is filled (i.e., after |Si| many operations), without
requiring any intervention of the data owner. An oblivious gossiping protocol, which can be
realized using standard techniques [69,118], allows clients to find the most up-to-date entry
in the database, thereby obtaining a sublinear communication bandwith even for write
operations and thus bypassing the impossibility result by Ostrovsky and Skeith III [152].

More precisely, when operating on index j, the client performs a PIR read on DB
and on all stacks Si, which can easily be realized since all stacks are stored on the server.
Thanks to the oblivious gossiping protocol, the client knows which index is the most current
one. At this point, the client appends either a dummy entry (read) or a real entry (write)
to its personal stack. If the stack is full, the client flushes it. Flushing means to apply all
changes in the personal stack to the database. To be oblivious, the client has to ensure
that all entries in DB change. Moreover, for guaranteeing correctness, the client has to
ensure that it does not overwrite entries which are more recent than those in its stack.

After explaining how to achieve obliviousness, we also need to discuss how to realize
access control and how to protect the clients against the server. Data secrecy (i.e., read
access control) is obtained via public-key encryption. Tamper-resistance (i.e., a-posteriori
detection of illegal changes) is achieved by letting each client sign the modified entry so
that others can check that this entry was produced by a client with write access. Data
integrity (i.e., write access control) is achieved by further letting each client prove to the
server that it is eligible to write the entry. As previously mentioned, data integrity is
stronger than tamper-resistance, but assumes an honest-but-curious server: a malicious
server may collude with malicious clients and thus store arbitrary information without
checking integrity proofs.

2.4.1. Cryptographic Preliminaries
PIR-GORAM relies on the standard cryptographic primitives public-key encryption, digital
signatures, private information retrieval (PIR), and non-interactive zero-knowledge proofs
of knowledge (NIZK). We summarize the notation in Table 2.2 while we postpone a detailed
description to Appendix A. We require two different public-key cryptosystems: one that
is IND-CPA secure [89], which also supports randomization and additively homomorphic
operations, and one that is IND-CCA secure [25]. We index encryption and decryption
keys with the respective acronym to make explicit which notion we use.

2.4.2. System Assumptions

Data structures. DB stores up to N entries of size B each, hence the maximum capacity
of DB is BN . The number of clients with access to DB is at most M . We assume that the
server S has a storage capacity of O(BN +

∑k
i=1B |Si|) for the database and the client
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Primitive Notation
Public-key encryption ΠPKE

Key generation (ekx, dkx)← GenPKE(1λ) where x ∈ {CPA,CCA}
Encryption c← E(ek,m)
Decryption m← D(dk, c)
Randomization c′ ← Rnd(ek, c, r)
Additive homomorphism D(dk,E(ek,m)⊗ E(ek, n)) = m+ n,

D(dk, α · E(ek,m)) = αm

Digital signatures ΠDS
Key generation (vk, sk)← GenDS(1λ)
Signing σ ← sign(sk,m)
Verification {>,⊥} ← vfy(vk, σ,m)

Private information retrieval ΠPIR
Query generation q ← prepRead(DB, i)
Query execution r ← execRead(DB, q)
Response decoding d← decodeResp(r)

NIZK P = PK {(~x) : F (~x, ~y)},
~x hidden by P , ~y revealed by P

Table 2.2.: Notation for cryptographic primitives.

stacks; each Ci has a storage capacity of O(|Si|B + N) to store the personal stack and
a partial position map posmap, which is used to find the most current version of each
entry; finally, O has a storage capacity of O(N +B) to store the full position map and the
access control matrix. While the position map is in general O(N), this is usually much
less than the storage size of O(NB) [29] and can also be decreased to O(1) by storing it
in recursive ORAMs [187]. The database DB is accompanied by a private access control
matrix AC that lets O manage the per-client permissions for each entry in DB. The
possible access rights are R (read-only), RW (read-write), and ⊥ (no access). Finally,
we assume authenticated broadcast channels among clients so as to gossip position map
updates using standard techniques3 [69, 118].

Database layout. We represent the logical database DB as a list of entries DB = E1, . . . , EN
and a list of stacks S1, . . . , SM , one stack for every client. Both the database and the stacks
are stored on the server. A stack is an entry list Si = Ej+1, . . . , Ej+|Si| where j =

∑i−1
k=1 |Sk|.

We denote by Si(`) the `-th entry of Si. We write S1|| . . . ||SM to express the list of entries
in all stacks. Similarly, we count from 1 to

∑M
i=1 |Si| to index an entry in S1|| . . . ||SM .

Client capabilities. We assume that every client Ci holds a key pair (ekCPA
i , dkCPA

i ) for
a CPA-secure encryption scheme as well as a key pair (ekCCA

i , dkCCA
i ) for a CCA-secure

encryption scheme where (ekCPA
i , ekCCA

i ) are publicly known and (dkCPA
i , dkCCA

i ) are Ci’s
private keys. Moreover, each client stores a position map posmap and version numbers
(vrs, vrsO) for every entry it holds permissions on. These version numbers are necessary

3Gossiping is necessary since we do not trust the server for consistency.

24



2.4. PIR-GORAM

E

cBrCast cAuthcData σO

E(ekCPA
i , {(d||vrs||σ), 0})

E(ekCPA
i , {1, 0})

E(ekCCA
i , {sk, 0})

sign(skO, j||vrsO||vk||cBrCast)

Figure 2.2.: The entry structure of an entry in the main database. If an entry resides on the stack,
it contains only the part cData.

to prevent roll-back attacks (intuitively, the former on data, the latter on the access
control matrix) and they are broadcast together with new indices for an entry upon write
operations or whenever the policy is changed. Finally, every client stores a mapping which
maps stack positions to entry indices: we keep this mapping implicit.

Entry Structure. An entry in the database DB has the form E = (cData, cBrCast, cAuth, σO)
where cData, cBrCast, and cAuth are vectors of ciphertexts of length M and σO is a signature
of the data owner O. We describe each component and its functionality in the following
(see also Figure 2.2).

cData. The ciphertext cData regulates read accesses. Specifically, it encrypts the data d of
E for every client4 with at least R permissions or a zero string for the others:

ciData =
{

E(ekCPA
i , d||vrs||σ) if AC(i, j) 6= ⊥

E(ekCPA
i , 0|d|+|vrs|+|σ|) otherwise

(2.3)

where in addition to d, the ciphertext also contains the data version number vrs as well
as a signature σ such that > = vfy(vk, d||vrs). By vk we denote a verification key of a
signature scheme which is different for every entry. An entry is valid if the verification of σ
with vk outputs > and vk is the key authenticated by the data owner O in σO, and invalid
otherwise.

cBrCast. The ciphertext cBrCast is needed in the Broadcast protocol (described below), which
is used to obliviously propagate a new entry index and new version numbers to other
clients with read access. Specifically, it encrypts either 1 for every client with at least R
permissions or zero for the others:

ciBrCast =
{

E(ekCPA
i , 1) if AC(i, j) 6= ⊥

E(ekCPA
i , 0) otherwise

(2.4)

cAuth. This ciphertext contains the signing key corresponding to vk for those clients with
4This notation simplifies the presentation, but in the implementation we use of course hybrid encryption
(cf. Section 2.10)
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RW permissions or the zero string for the others. The exact form is

ciAuth =
{

E(ekCCA
i , sk) if AC(i, j) = RW

E(ekCCA
i , 0|sk|) otherwise

(2.5)

σO. The signature σO is created by O on the entry index j, a version number vrsO, the
verification key vk, and cBrCast.

Note that one cannot store the signing key sk in the entry cData. The reason is that
whenever an entry is updated, the client needs to update all entries in the vector. However,
for all entries except for its own, it does not know the private decryption key dki and
thus, neither the corresponding private signing key nor the access rights for that entry. To
update these entries, we exploit the homomorphic properties of the underlying encryption
scheme, as explained below.

Update. Entries residing on a client’s stack consist only of cData in modified form where the
old payload D = d||vrs||σ has been replaced with D′ = d′||vrs′||sign(sk, d′||vrs′). Indeed,
leveraging the homomorphic property and the structure of cBrCast (note that cBrCast is like
cData, where D is replaced with 1) it is possible to generate c′Data as follows: choose ri
uniformly at random and compute

ci
′

Data = Rnd(ekCPA
i , ciBrCast ·D′, ri). (2.6)

Multiple data owners in one ORAM. The entry structure and database layout of PIR-
GORAM can be easily extended in order to support multiple data owners storing their files
in the same ORAM instance (think, e.g., of multiple patients storing their health record in
the same ORAM), which is important to enhance user privacy (as the server does not even
learn the owner of the accessed data). First, the signature σO is obviously constructed by
the data owner to which the entry belongs. Most importantly, every entry might have a
different set of potential readers and writers (e.g., not every patient visits the same doctors
or pharmacies). As a consequence, an important invariant to maintain is that cData, cBrCast,
and cAuth are of equal length for every entry (i.e., the number of encryption keys used to
construct them are the same), which can be easily achieved by padding. Otherwise, trivial
entry-size based attacks against obliviousness are possible.

Obliviously broadcasting new indices. We propagate the updates of the entries to the
clients with read access via broadcast. That is, if E = (cData, cBrCast, cAuth, σO) with an old
index j in the database DB and the new index ` on a stack or in DB, then we broadcast a
message to all clients that can only be decrypted by clients having access to that entry. To
this end, we leverage the same idea as in Equation (2.6), that is, we add the new index
information to it. Clients compute c′BrCast with ci

′
BrCast = Rnd(ekCPA

i , ciBrCast · (j||`||vrs′), ri)
for some random values ri and a new version number vrs′, and broadcast c′BrCast to all
clients. We call this operation Broadcast((j||`||vrs′), cBrCast).

Clients having read access update their position map as follows. Upon receiving such
a message c, the client Ci tries to decrypt the component corresponding to her identity
with her private key dkCPA

i . If the result is (j||`||vrs′) and not 0 (which means that it has
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R access at least), then Ci updates its partial position map with the result. Otherwise it
ignores the message. This protocol is oblivious since it is deterministically executed upon
each operation and only clients with R access (which, as previously discussed, are excluded
by the definition of obliviousness) can extract knowledge from the received ciphertext
thanks to the CPA-security of the underlying encryption scheme.

Since malicious clients could potentially send wrong gossip messages about entries,
e.g., claiming that an entry is residing in a different place than it actually is, we require
that clients upload their broadcast messages also onto an append-only log, e.g., residing
on the cloud, which is accessible by everyone. If a client does not find an entry using the
latest index information, due to the malicious behavior of another client, then it just looks
up the previous index and tries it there, and so on. Such append-only logs can be realized
securely both in centralized [99] and decentralized [62] fashion. Utilizing such logs also
enables accountability since the client who announced a wrong index is identifiable and,
hence, blamable.

2.4.3. Algorithmic Description

Setup. The input to the setup algorithm is a list of data d1, . . . , dN and a list of clients
C1, . . . , CM with an access control matrix AC which has an entry for every entry-client
pair. The data owner first generates her own signing key pair (vkO, skO)← GenDS(1λ) and
generates two encryption key pairs (ekCPA

j , dkCPA
j ) ← GenCPA

PKE(1λ) and (ekCCA
j , dkCCA

j ) ←
GenCCA

PKE(1λ) for every client Cj . Second, the data owner prepares every entry separately as
follows: she generates a fresh signing key pair (vk, sk)← GenDS(1λ) and sets up cData as in
Equation (2.3) using dj and a version number 0, attaching a signature σ = sign(sk, dj ||0).
cBrCast is generated as in Equation (2.4). Next, cAuth is generated as in Equation (2.5)
using the just generated sk. Finally, using a data owner version number 0, O attaches σO =
sign(skO, j||0||vk||cBrCast). O uploads all entries to S and broadcasts the client capabilities
capi = (posmapi, ~ek, vkO, iS, lenS, dkCPA

i , dkCCA
i ) where posmapi is the full position map

posmap restricted to those entries on which Ci holds at least R permissions, ~ek is a list of all
clients’ encryption keys, iS = 0 is Ci’s current stack pointer, and lenS is the corresponding
stack length. Notice that initially, posmap is the identity mapping on the domain {1, . . . , N}
since all entries reside in the main database and the stacks are empty.

Reading and writing. To read or write to the database, clients have to perform two
steps: extracting the data (Algorithm 1) and appending an entry to the personal stack
(Algorithm 2 for writing and Algorithm 3 for reading).

To extract the payload, the client performs two PIR queries: one on DB for the desired
index j and one on the concatenation of all stacks for either a more current version of j
or an arbitrary one (lines 1.1–1.8): this is crucial to hide from the server the information
on whether or not the client is retrieving a previously modified entry. It then checks the
entry’s authenticity as provided by σO and retrieves the verification key used for further
verification (line 1.9). The client extracts henceforth the overall payload (line 1.11) from
the most current entry (either in DB or on a stack (line 1.10)) and verifies its validity
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Algorithm 1 {d, deny} ← 〈CextData(capi, j),SextData(DB)〉
Input: the client capability capi and the desired index j to extract the data from
Output: the data d stored at j or deny in case of failure
1: (posmap, ~ek, vkO, iS, lenS, dkCPA

i , dkCCA
i )← capi

2: j′ ← posmap(j)−N if posmap(j) > N , otherwise choose j′ uniformly at random from
{1, . . . ,

∑M
i=1 |Si|}

3: q ← prepRead(DB, j)
4: q′ ← prepRead(S1|| . . . ||Sm, j′)
5: Send q, q′ to S
6: Receive r, r′ from S
7: E ← decodeResp(r), E′ ← decodeResp(r′)
8: Parse E as (cData, cBrCast, cAuth, σO) and E′ as (c′Data)
9: Abort if ⊥ = vfy(vkO, σO, (j||vrsO||vk||cBrCast)) or vrsO is not current
10: cData ← cData if posmap(j) ≤ N and c′Data otherwise
11: (d||vrs||σ)← D(dkCPA

i , cData
i)

12: Abort if ⊥ = vfy(vk, σ, d||vrs) or vrs is not current
13: if iS > lenS then
14: flush(capi), iS = 1
15: end if
16: Increment iS
17: return d if d 6= ⊥ and deny otherwise

Algorithm 2 〈Crepl(capi, j, vrs, d′, cBrCast, cAuth),Srepl(DB)〉
Input: the client capability capi, the desired index j to operate on, the old version

number vrs of the j-th entry, the new data d′, the broadcast ciphertext cBrCast, and
the authorization ciphertext cAuth of the j-th entry

1: (posmap, ~ek, vkO, iS, lenS, dkCPA
i , dkCCA

i )← capi
2: sk ← D(dkCCA

i , ciAuth)
3: Increment vrs, σ ← sign(sk, d′||vrs)
4: Select ~r uniformly at random
5: ci

′
Data←Rnd(ekCPA

i , ciBrCast ·(d′||vrs||σ), ri) for i∈{1, . . . ,M}
6: Send (i, iS, c′Data) to S
7: Broadcast((j||(N +

∑i−1
k=0 |Sk|+ iS)||vrs), cBrCast)

(line 1.12). Before returning the extracted data (line 1.17), the client flushes the personal
stack if it is full (lines 1.13–1.16). We explain this algorithm in the next paragraph. We
stress that data extraction is performed independently of whether the client reads or writes.
Note that up to this point, since the server only sees PIR queries, it cannot distinguish
read and write.

The next step (i.e., adding an entry to the stack), however, requires more care in
order to retain obliviousness. In particular, when writing, the client appends an entry
to its personal stack that replaces the actual entry in DB (see Algorithm 2). In order to
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Algorithm 3 〈CaddDummy(capi, cBrCast),SaddDummy(DB)〉
Input: the client capability capi and the broadcast ciphertext cBrCast
1: (posmap, ~ek, vkO, iS, lenS, dkCPA

i , dkCCA
i )← capi

2: Uniformly sample a vector c′Data of encryptions of 0
3: Send (i, iS, c′Data) to S
4: Broadcast(0, cBrCast)

make read and write indistinguishable, when reading, the client appends an entry to its
stack which is indistinguishable from a real entry since it is an entry on which no-one
holds any permissions (see Algorithm 3). Finally, the client broadcasts the modified index
information in write or a zero string in read.

Flushing the stack (Algorithm 4). The flush algorithm pushes the elements in the stack
that are up-to-date to DB5. In particular, the client first builds an index structure that
contains all elements that are up-to-date (φ, lines 4.2–4.9) based on the mapping of stack
indices to real indices that the client stores implicitly. The client then downloads the stack
(line 4.10) and changes every entry of DB (PIR writing). To this end, it downloads and
uploads every entry Ej ∈ DB (lines 4.12, 4.21, and 4.27).

If the currently downloaded entry is outdated, the client takes the locally stored
data from Si and rerandomizes it (lines 4.14–4.18). Then it computes an integrity proof
(technically, a NIZK) P that shows the following OR statement: either it is eligible to
write the entry by proving that it knows the signing key (line 4.19) corresponding to the
verification key (line 4.13) which is authenticated by the data owner, or it only rerandomized
the data part (line 4.20). In that notation, the underscore _ refers to hidden variables in
the proof that the client does not know.

In case there is no entry in the stack that is more recent, it rerandomizes the current
entry in DB (line 4.25) and creates an integrity proof with the same statement as in the
previous case, just that now the second part of the disjunction is true (line 4.26). In any
case, the client broadcasts the new indices of all updated entries to all clients (line 4.22 for
a real update and line 4.28 for a dummy update). We stress that the two proofs created in
lines 4.20 and 4.26 are indistinguishable by the zero-knowledge property and hence do not
reveal to the server whether the entry is updated or left unchanged, which is crucial for
achieving the obliviousness of data accesses.

Adding new clients. To grant a new client Ci access to entries in DB, O prepares a client
capability capi as described above in the setup phase. In general, if not all capabilities are
created initially, every entry has to be adapted when adding a new client as well as every
client’s capability. More precisely, for each entry, O adds a ciphertext to cData, cBrCast and
cAuth and every client needs to learn ekCPA

i and ekCCA
i .

Adding new entries. To add a new entry to the database, O prepares it according to the
entry structure and sends it to S. Finally, O obliviously broadcasts the corresponding
index information to all clients.

5Some elements may be outdated, since a different user may have the most recent version in its stack.
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Algorithm 4 〈Cflush(capi),Sflush(DB)〉
Input: the client capability capi
1: (posmap, ~ek, vkO, iS, lenS, dkCPA

i , dkCCA
i )← capi

2: Initialize φ = [ ]
3: off ← |DB|+

∑i−1
l=1 |Sl|

4: for ` = lenS down to 1 do
5: j ← index of Si(`) in DB
6: if φ(j) = ⊥ and posmap(j) = `+ off then
7: φ← φ[j 7→ `], posmap← posmap[j 7→ j]
8: end if
9: end for
10: Download Si from S
11: for j = 1 to |DB| do
12: Download Ej = (cData, cBrCast, cAuth, σO) from S
13: Extract vk from σO
14: l← φ(j)
15: if l 6= ⊥ then
16: Parse Si(l) as c′Data
17: Select ~r uniformly at random
18: ci

∗
Data ← Rnd(ekCPA

i , ci
′

Data, ri) for 1 ≤ i ≤M
19: sk ← D(dkCCA

i , ciAuth)

20: P ← PK


(sk,_) :

(vk, sk) valid key pair ∨
∀i. ci∗Data = Rnd(ekCPA

i , ciData,_)


21: Send P,E′j = (c∗Data, cBrCast, cAuth, σO) to S
22: Broadcast((j||j||vrs),cBrCast)
23: else
24: Select ~r uniformly at random
25: ci

∗
Data ← Rnd(ekCPA

i , ciData, ri) for 1 ≤ i ≤M

26: P ← PK


(_, ~r) :

(vk,_) valid key pair ∨
∀i. ci∗Data = Rnd(ekCPA

i , ci
′

Data, ri)


27: Send P,E′j = (c∗Data, cBrCast, cAuth, σO) to S
28: Broadcast(0, cBrCast) for random r
29: end if
30: end for

Changing access permissions. To change access permissions of a certain entry, O modifies
cData, cBrCast and/or cAuth as well as σO (with a new version number vrsO) accordingly.
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2.4.4. Complexity Analysis
We elaborate on the communication complexity of our solution. We assume that |DB| = N ,
that there M clients, and we set the stack length lenS =

√
N for every client. The worst

case for an operation, hence, happens every
√
N -th operation for a client Ci, meaning that

besides extracting the data from the database and adding an entry to the personal stack,
Ci has also to flush the stack. We analyze the four algorithms independently: extracting
data requires two PIR reads, one on DB and the other on the concatenation of all stacks.
Thus, the overall cost is CPIR(N) + CPIR(M

√
N) where CPIR is a function mapping input

sizes to communication complexity; CPIR is to be replaced with concrete numbers when
instantiating ΠPIR. Adding an entry to the personal stack always requires to upload one
entry, independently of whether this replacement is real or dummy.

Our flushing algorithm assumes that Ci holds
√
N entries and then down-and-uploads

every entry of DB. Thus, the overall complexity is 2N +
√
N . A similar analysis shows that

if the client holds only O(1) many entries, then Ci down-and-uploads DB but additionally
performs a PIR step for every downloaded entry in its own stack to retrieve a potential
replacement, resulting in a complexity of 2N +N · CPIR(

√
N).

To conclude, the construction achieves a worst-case complexity of O(CPIR(N) +
CPIR(M

√
N) + N) and O(CPIR(N) + CPIR(M

√
N) + NCPIR(

√
N)) for O(

√
N) and O(1)

client-side memory, respectively. By amortizing the flush step over
√
N many oper-

ations, we achieve an amortized complexity of O(CPIR(N) + CPIR(M
√
N) +

√
N) or

O(CPIR(N) + CPIR(M
√
N) +

√
NCPIR(

√
N)), respectively. Since our construction is para-

metric over the specific PIR protocol, we can leverage the progress in this field: at
present, the best CPIR(N) is O(log log(N)) [72] and, hence, the amortized cost becomes
O(log log(M

√
N) +

√
N) or O(log log(M

√
N) +

√
N log log(N)), respectively. Since, in

most scenarios, M
√
N < 22N/2 , we get O(

√
N) and O(

√
N log log(N)).

2.4.5. Variations
We discuss some variations of our constructions that achieve different assumptions and
properties.

Malicious server. The construction, as we presented it, achieves integrity against an
honest-but-curious server. If the server is malicious though, we cannot rely on it to
verify the integrity proofs: a way to overcome this problem could be to force the server
into honest behavior by letting him prove the correctness of his actions (e.g., using
SMPC [47, 87, 133, 195]). This is, unfortunately, prohibitively expensive. Furthermore,
since the whole database is solely stored on the server, it is clearly impossible to guarantee
that the read operation is always performed correctly (e.g., the server could just go offline
and therefore effectively erasing all the entries in the database) and thus to achieve any
meaningful notion of integrity. However, we can still allow clients to detect a-posteriori
illegal data changes, a security property that we address as tamper resistance. For achieving
this property, integrity proofs are useless and can be dropped.

Relaxed AC privacy for better amortization. The analysis above shows that we achieve
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a
√
N amortization factor, which is partially due to the fact that clients have to replace

every entry of DB even if they do not change it or do not even have the rights to change
it for keeping the access structure secret from the server. Assume that Ci has RW access
to Ki many entries. If we were fine with giving up the privacy of AC and restricting
obliviousness to those entries which may actually be changed by Ci, then it would be
sufficient in the flush algorithm to only exchange those Ki entries instead of DB in its
entirety. Adapting the analysis and only considering the case where clients have

√
N

storage space, we get a worst case communication complexity of O(CPIR(N) + Ki) and
an amortized communication complexity of O(CPIR(N) +

√
N/Ki). This means that the

amortization factor is constant whenever Ki = O(
√
N).

2.4.6. Discussion
The construction presented in this section leverages PIR for reading entries and an accumu-
lated PIR writing technique to replace old entries with newer ones. Due to the nature of
PIR, one advantage of the construction is its possibility to allow multiple clients to concur-
rently read from the database and to append single entries to their stacks. This is no longer
possible when a client flushes her personal stack since the database is entirely updated,
which might lead to inconsistent results when reading from the database. To overcome this
drawback, we present a fully concurrent, maliciously secure Group ORAM in Section 2.5.
Another drawback of the flush algorithm is the cost of the integrity (zero-knowledge) proofs.
Since we have to use public-key encryption as the top-layer encryption scheme for every
entry to allow for proving properties about the underlying plaintexts, the number of proofs
to be computed, naïvely implemented, is proportional to the block size. Varying block
sizes require us to split an entry into chunks and encrypt every chunk separately since the
message space of public-key encryption is a constant amount of bits. The zero-knowledge
proof has then to be computed on every of these encrypted chunks. Our later construction
for obliviousness only against the server, called GORAM, suffers a very similar problem.
Hence, to overcome this linear dependency, we present two new proof paradigms. We
present them in the context of GORAM, where the impact of integrity proofs is more severe
than in PIR-GORAM. The first paradigm decreases the linear amount of zero-knowledge
proofs to an amount that only depends on the security parameter (Section 2.6.5.1) while
the second paradigm decreases this still linear amount (though in a different, much smaller
parameter) to one proof (Section 2.6.5.2).

2.5. TAO-GORAM
Driven by the goal of building an efficient and scaleable Group ORAM that achieves
obliviousness against malicious users, we explore the usage of a trusted proxy mediating
accesses between clients and the server, an approach advocated in recent parallel ORAM
constructions [29, 170,184]. In contrast to previous works, we are not only interested in
parallel accesses, but also in handling access control and providing obliviousness against
multiple, possibly malicious, clients.
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TaoStore [170]. In a nutshell, trusted proxy-based ORAM constructions implement a
single-client ORAM which is run by the trusted entity on behalf of clients, which connect
to it with read and write requests in a parallel fashion. We leverage the state of the art,
TaoStore [170], which implements a variant of a Path-ORAM [187] client on the proxy
and allows for retrieving multiple paths from the server concurrently. More specifically,
the proxy consists of the processor and the sequencer. The processor performs read and
write requests to the untrusted server: this is the most complex part of TaoStore and we
leave it untouched. The sequencer is triggered by client requests and forwards them to the
processor which executes them in a concurrent fashion.

Our modifications. Since the proxy is trusted, it can enforce access control. In particular,
we can change the sequencer so as to let it know the access control matrix and check
for every client’s read and write requests whether they are eligible or not. As already
envisioned by Sahin et al. [170], the underlying ORAM construction can be further refined
in order to make it secure against a malicious server, either by following the approach based
on Merkle-trees proposed by Stefanov et al. [187] or by using authenticated encryption as
suggested by Sahin et al. [170]. In the rest of the chapter, we call the system TAO-GORAM.

2.6. GORAM
In this section, we first show how to realize a Group ORAM using a novel combination of
ORAM, predicate encryption, and zero-knowledge proofs (Section 2.6.2 and Section 2.6.3).
Since even the usage of the most efficient zero-knowledge proof system still yields an
inefficient construction, we introduce two new proof techniques for boosting proofs of
shuffle correctness (Section 2.6.5.1) and instantiate our general framework with those
primitives.

2.6.1. Cryptographic preliminaries
Our construction relies on predicate encryption, public-key encryption, and NIZKs. We
summarize the missing notation for predicate encryption in Table 2.3. Notice that m←
DPE(pskf , c) only returns a valid message m if c ← EPE(ppk, x,m) such that f(x) = 1.
Further details are postponed to Appendix A.

2.6.2. System Assumptions

Data structures and database layout. The layout of the database DB follows the one
proposed by Stefanov et al. [187]. To store N data entries, we use a binary tree T of
depth D = O(logN), where each node stores a bucket of entries, say b entries per bucket.
We denote a node at depth d and row index i by Td,i. The depth at the root ρ is 0 and
increases from top to bottom; the row index increases from left to right, starting at 0. We
often refer to the root of the tree as ρ instead of T0,0. Moreover, Path-ORAM [187] uses a
so-called stash as local storage to save entries that would overflow the root bucket. We
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Primitive Notation
Predicate encryption ΠPE

Setup (pmsk, ppk)← GenPE(1λ, n)
Key generation pskf ← KPE(pmsk, f)
Encryption c← EPE(ppk, x,m)
Decryption m← DPE(pskf , c)
Randomization c′ ← RPE(ppk, c, r)
Multiplicative homomorphism mn← DPE(pskf ,EPE(ppk, x,m)⊗ EPE(ppk, x, n))

αm← DPE(pskf , α · EPE(ppk, x,m))

Table 2.3.: Additional notation for cryptographic primitives.

assume the stash to be stored and shared on the server like every other node, but we leave
it out for the algorithmic description. The stash can also be incorporated in the root node,
which does not carry b but b+ s entries where s is the size of the stash. The extension of
the algorithms is straightforward (only the number of downloaded entries changes) and
does not affect their computational complexity. In addition to the database, there is an
index structure posmap that maps entry indices i to leaf indices li. If an entry index i is
mapped in posmap to li then the entry with index i can be found in some node on the
path from the leaf li to the root ρ of the tree. Finally, to initialize the database we fill it
with dummy elements.

We assume that each client has a local storage of O(logN). Notice that the leaf
index mapping has size O(N), but the local client storage can be decreased to O(logN) by
applying a standard ORAM construction recursively to it, as proposed by Shi et al. [178].
Additionally, the data owner stores a second database ADB that contains the attributes
xw and xr associated to every entry in DB as well as predicates fi associated to the
client identities Ci. Intuitively, ADB implements the access control matrix AC used in
Definition 2.1. Since also ADB has size O(N), we use the same technique as the one
employed for the index structure. We further assume that clients establish authenticated
channels with the server. These channels may be anonymous (e.g., by using anonymity
networks [71] and anonymous credentials for the login [17–19,143]), but not necessarily.

Client capabilities. Every client Ci holds a capability capi containing three different
cryptographic keys: a decryption key dk for a public-key encryption scheme that serves as
the top layer encryption of an entry in the tree and two predicate encryption secret keys
pskAuth

fi and pskData
fi for predicate fi that regulates the client’s access permissions.

Structure of an entry and access control modes. Abstractly, database entries are tuples
of the form E = (c1, c2, c3) where c1, . . . , c3 are ciphertexts obtained using a public-key
encryption scheme (see Figure 2.7). In particular, c1 is the encryption of an index j
identifying the j-th entry of the database; c2 is the encryption of a predicate encryption
ciphertext cjAuth, which regulates the write access to the payload stored at j using the
attribute xw; c3 is the encryption of a ciphertext cjData, which is in turn the predicate
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E

c2c1 c3

E(ek, j) E(ek, cjAuth)cjAuth

EPE(ppkAuth, xw, 1)

E(ek, cjData)cjData

EPE(ppkData, xr, d)

Figure 2.7.: The entry structure of an entry in the database.

Algorithm 5 (capO,DB)← gen(1λ, n).
Input: security parameter 1λ, number of clients n
Output: the capability of the data owner capO
1: (ek, dk)← GenPKE(1λ)
2: (ppkAuth, pmskAuth)← GenPE(1λ, n)
3: (ppkData, pmskData)← GenPE(1λ, n)
4: give ek to the server S
5: initialize DB on S, ADB := {}, cntC := 0, cntE := 0
6: return capO := (cntC , cntE , sk, pmskAuth, pmskData)

encryption of the data d stored at position j.6 We use the convention that an index
j > |DB| indicates a dummy entry and we maintain the invariant that such entries are
writable by each client.

Intuitively, using a client Ci’s capability capi in order to implement the access control
modes ⊥, R, and RW on a data index j, we have to assign the attributes for an entry
such that the following conditions hold: if Ci’s mode for j is ⊥, then fi(xr) = fi(xw) = 0,
hence, Ci can neither decrypt cjAuth nor cjData; if Ci’s mode for j is R, then fi(xw) = 0 while
fi(xr) = 1; finally, if Ci’s mode for j is RW, then fi(xw) = fi(xr) = 1. Intuitively, in order
to replace an entry, a client has to successfully prove that she can decrypt the ciphertext
cjAuth and the result of that decryption is 1.

2.6.3. Algorithmic Description

Implementation of (capO,DB) ← gen(1λ, n) (Algorithm 5). Intuitively, the data owner
initializes the cryptographic schemes (lines 5.1–5.3) as well as the rest of the infrastructure
(lines 5.4–5.5), and finally outputs O’s capability (line 5.6).7 Notice that this algorithm
takes as input the maximum number n of clients in the system, since this determines the
size of the predicates ruling access control, which the predicate encryption schemes are

6Since encrypting a long payload using predicate encryption is expensive, the concrete instantiation that
we evaluate in Section 2.10 uses hybrid encryption instead.

7For simplifying the notation, we assume for each encryption scheme that the public key is part of the
secret key.
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Algorithm 6 {capi, deny} ← addCl(capO,a).
Input: the capability of O capO and an access control list a for the client to be added
Output: a capability capi for client Ci in case of success, deny otherwise
1: (cntC , cntE , dk, pmskAuth, pmskData)← capO
2: if |a| 6= cntE then
3: return deny
4: end if
5: cntC := cntC + 1
6: compute fi s.t. the following holds for 1 ≤ j ≤ |a| and all (xw,j , xr,j) := ADB(j)

if a(j) = ⊥ then fi(xw,j) = fi(xr,j) = 0
if a(j) = R then fi(xw,j) = 0 and fi(xr,j) = 1
if a(j) = RW then fi(xw,j) = fi(xr,j) = 1

7: ADB := ADB[Ci 7→ fi]
8: pskAuth

fi ← KPE(pmskAuth, fi)
9: pskData

fi ← KPE(pmskData, fi)
10: return capi := (dk, pskAuth

fi , pskData
fi )

parameterized by.

Implementation of {capi, deny} ← addCl(capO,a) (Algorithm 6). This algorithm allows
O to register a new client in the system. Specifically, O creates a new capability for the new
client Ci according to the given access permission list a (lines 6.6–6.10). If O wants to add
more clients than n, the maximum number she initially decided, she can do so at the price
of re-initializing the database. In particular, she has to setup new predicate encryption
schemes, since these depend on n. Secondly, she has to distribute new capabilities to all
clients. Finally, for each entry in the database, she has to re-encrypt the ciphertexts cAuth
and cData with the new keys.

Implementation of {DB′, deny} ← 〈CaddE(capO,a, d),SaddE(DB)〉 (Algorithm 7). In this
algorithm, O adds a new entry that contains the payload d to the database. Furthermore,
the new entry is protected according to the given access permission list a. Intuitively,
O assigns the new entry to a random leaf and downloads the corresponding path in the
database (lines 7.5–7.6). It then creates the new entry and substitutes it for a dummy
entry (lines 7.7–7.10). Finally, O rerandomizes the entries so as to hide from S which entry
changes, and finally uploads the modified path to S (lines 7.11–7.15).

Eviction. In all ORAM constructions, the client has to rearrange the entries in the database
in order to make subsequent accesses unlinkable to each other. In the tree construction we
use [187], this is achieved by first assigning a new, randomly picked, leaf index to the read
or written entry. After that, the entry might no longer reside on the path from the root
to its designated leaf index and, thus, has to be moved. This procedure is called eviction
(Algorithm 8).

This algorithm assigns the entry to be evicted to a new leaf index (line 8.1). It
then locally shuffles and rerandomizes the given path according to a permutation π (lines
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Algorithm 7 {DB′, deny} ← 〈CaddE(capO,a, d),SaddE(DB)〉.
Input: the capability of O capO, an access control list a and the data d for the entry to

be added
Output: a changed database DB′ on S in case of success, deny otherwise
1: (cntC , cntE , dk, pmskAuth, pmskData)← capO
2: if |a| 6= cntC then
3: return deny
4: end if
5: cntE := cntE + 1, j := cntE , lj ← {0, 1}D, posmap := posmap[j 7→ lj ]
6: let E1, . . . , Eb(D+1) be the path from ρ to TD,lj downloaded from S (Ei = (c1,i, c2,i, c3,i))
7: let k be such that D(dk, c1,k) > |DB|
8: compute (xw,j , xr,j) s.t. the following holds for 1 ≤ i ≤ |a| and all fi := ADB(Ci)

if a(i) = ⊥ then fi(xw,j) = fi(xr,j) = 0
if a(i) = R then fi(xw,j) = 0, fi(xr,j) = 1
if a(i) = RW then fi(xw,j) = fi(xr,j) = 1

9: ADB := ADB[j 7→ (xw,j , xr,j)]
10: Ek := (c1,k, c2,k, c3,k) where

cjAuth ← EPE(ppkAuth, xw,j , 1)
cjData ← EPE(ppkData, xr,j , d)
c1,k ← E(ek, j)
c2,k ← E(ek, cjAuth)
c3,k ← E(ek, cjData)

11: for all 1 ≤ ` ≤ b(D + 1), ` 6= k do
12: select r` uniformly at random
13: E′` ← Rnd(pk, E`, r`)
14: end for
15: upload E′1, . . . , E′k−1, Ek, E

′
k+1, . . . , E

′
b(D+1) to S

8.2–8.4). After replacing the old path with a new one, the evicted entry is supposed to be
stored in a node along the path from the root to the assigned leaf, which always exists
since the root is part of the permuted nodes. A peculiarity of our setting is that clients are
not trusted and, in particular, they might store a sequence of ciphertexts in the database
that is not a permutation of the original path (e.g., they could store a path of dummy
entries, thereby cancelling the original data).

Integrity proofs. To tackle this problem, a first technical novelty in our construction is, in
the read and write protocols, to let the client output the modified path along with a proof
of shuffle correctness [22,49], which has to be verified by the server (s = 1, lines 8.6–8.7).
As the data owner is assumed to be honest, she does not have to send a proof in the
chMode protocol (s = 0, line 8.9).

Implementation of 〈CchMode(capO,a, j),SchMode(DB)〉 (Algorithm 9). In this protocol, O
changes the access mode of the j-th entry in DB according to the new access permission list
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Algorithm 8 (E′′1 , . . . , E′′b(D+1), π, [P ])← Evict(E1, . . . , Eb(D+1), s, j, k).
Input: a list of entries E1, . . . , Eb(D+1), a bit s, an index j, and a position k in the list
Output: a permuted and rerandomized list of entries E′′1 , . . . , E′′b(D+1), a permutation π,

and a proof of shuffle correctness (if s = 1)
1: lj ← {0, 1}D, posmap := posmap[j 7→ lj ]
2: compute a permutation π s.t. π(k) = 1 and for all other ` 6= k, π pushes ` down on the

path from ρ (= E1, . . . , Eb) to the current leaf node (= EbD+1, . . . , Eb(D+1)) as long as
the index of the `-th entry still lies on the path from ρ to its designated leaf node.

3: E′1, . . . , E
′
b(D+1) := Eπ−1(1), . . . , Eπ−1(b(D+1))

4: let E′′1 , . . . , E′′b(D+1) be the rerandomization of E′1, . . . , E′b(D+1) as described in 7.11–7.14
(including k)

5: if s = 1 then

6: P := PK
{

(π, r1, . . . , rb(D+1)) :
∀`. E` = Rnd(ek, Eπ−1(`), r`)

}
7: return E′′1 , . . . , E

′′
b(D+1), π, P

8: else
9: return E′′1 , . . . , E

′′
b(D+1), π

10: end if

a. Intuitively, she does so by downloading the path where the entry resides on (lines 9.5–
9.6), changing the entry accordingly (lines 9.7–9.12), and uploading a modified and evicted
path to the server (lines 9.13–9.14).

Implementation of {d, deny} ← 〈Cread(capi, j),Sread(DB)〉 (Algorithm 10). Intuitively, the
client downloads the path which index j is assigned to and searches for the corresponding
entry (lines 10.5–10.9). She then evicts the downloaded path, subject to the restriction
that some dummy entry afterwards resides in the top position of the root node (lines 10.10–
10.11). C uploads the evicted path together with a proof of shuffle correctness to S who
verifies the proof and replaces the old with the new path in case of successful verification
(line 10.12).

Obliviousness in presence of integrity proofs. C could in principle stop here since she
has read the desired entry. However, in order to fulfill the notion of obliviousness (Defini-
tion 2.5), the read and write operations must be indistinguishable. In single-client ORAM
constructions, C can make write indistinguishable from read by simply modifying the content
of the desired entry before uploading the shuffled path to the server. This approach does
not work in our setting, due to the presence of integrity proofs. Intuitively, in read, it
would suffice to produce a proof of shuffle correctness, but this proof would not be the same
as the one used in write, where one element in the path changes. Hence another technical
novelty in our construction is the last part of the read protocol (lines 10.13–10.17), which
“simulates” the write protocol despite the presence of integrity proofs. This is explained
below, in the context of the write protocol.

Implementation of {DB′, deny} ← 〈Cwrite(capi, j, d),Swrite(DB)〉 (Algorithm 11). Firstly,
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Algorithm 9 〈CchMode(capO,a, j),SchMode(DB)〉.
Input: the capability of O capO, an access control list a, and an index j
Output: deny if the algorithm fails
1: (cntC , cntE , dk, pmskAuth, pmskData)← capO
2: if |a| 6= cntC or j > cntE then
3: return deny
4: end if
5: lj := posmap(j)
6: let E1, . . . , Eb(D+1) be the path from ρ to TD,lj downloaded from S (Ei = (c1,i, c2,i, c3,i))
7: let k be s.t. D(dk, c1,k) = j
8: (x′w,j , x′r,j) := ADB(j)
9: let f be s.t. f(x′r,j) = 1

10: pskf ← KPE(pmskData, f)
cjData ← D(dk, c3,k)
d← DPE(pskf , c

j
Data)

11: compute (xw,j , xr,j) according to 7.8 and subject to all fi in ADB, also add them to
ADB (7.9)

12: compute E′k as in 7.10
13: (E′′1 , . . . , E′′b(D+1), π) := Evict(E1, . . . , Ek−1, E

′
k, Ek+1, . . . , Eb(D+1), 0, j, k)

14: upload E′′1 , . . . , E′′b(D+1) to S

C reads the element that she wishes to change (line 11.1). Secondly, C evicts the path with
the difference that here the first entry in the root node is the element that C wants to
change, as opposed to a dummy entry like in read (line 11.10). It is important to observe
that the shuffle proof sent to the server (line 8.6) is indistinguishable in read and write
since it hides both the permutation and the randomness used to rerandomize the entries.
So far, we have shown how C can upload a shuffled and rerandomized path to the server
without modifying the content of any entry.

In write, C can now replace the first entry in the root node with the entry containing
the new payload (lines 11.12–11.13). In read, this step is simulated by rerandomizing the
first entry of the root node, which is a dummy entry (line 10.15).

The integrity proofs PAuth and PInd produced in read and write are indistinguishable
(lines 10.14 and 10.16 for both): in both cases, they prove that C has the permission to
write on the first entry of the root node and that the index has not changed. Notice that
this proof can be produced also in read, since all clients have write access to dummy entries.

Permanent Entries. Some application scenarios of GORAM might require determined
entries of the database not to be modifiable nor deletable, not even by the data owner
herself (for instance, in the case of PHRs, the user should not be able to cancel diagnostic
results in order to pay lower insurance fees). Even though we did not explicitly describe
the construction, we mention that such a property can be achieved by assigning a binary
attribute (modifiable or permanent) to each entry and storing a commitment to this in the
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Algorithm 10 {d, deny} ← 〈Cread(capi, j),Sread(DB)〉.
Input: the capability of the client executing the protocol capi and the index j to be read
Output: the data payload d in case of success, deny otherwise
1: (dk, pskAuth

f , pskData
f )← capi

2: if j > |DB| then
3: return deny
4: end if
5: lj := posmap(j)
6: let E1, . . . , Eb(D+1) and k be as in lines 9.6–9.7
7: Parse Ek as (c1,k, c2,k, c3,k)
8: ckData ← D(dk, c3,k)
9: d← DPE(pskData

f , ckData)
10: let ` be s.t. D(dk, c1,`) > |DB|
11: (E′1, . . . , E′b(D+1), π, P ):=Evict(E1, . . . , Eb(D+1), 1, j, `)
12: upload E′1, . . . , E′b(D+1) and P to S
13: cjAuth ← D(sk, c′2,1)
14: PAuth := PK

{(
pskAuth

f

)
: DPE(pskAuth

f , cjAuth) = 1
}

15: E′′1 := (c′′1,1, c′′2,1, c′′3,1) where
r1, r2, r3 are selected uniformly at random
c′′l,1 ← Rnd(ek, c′l,1, rl) for l ∈ {1, 3}
c′′2,1 ← E(ek,RPE(ppkAuth, c

j
Auth, r2))

16: PInd := PK
{

(r1) : c′′1,1 = Rnd(ek, c′1,1, r1)
}

17: upload E′′1 , PAuth, PInd, and the necessary information to access cjAuth to S

database. Every party that tries to modify a given entry, including the data owner, has to
provide a proof that the respective attribute is set to modifiable. This can be efficiently
instantiated using ElGamal encryption and Σ-protocols.

2.6.4. Complexity Analysis

The computational and communication complexity of our construction, for both the server
and the client, is O((B +G) logN) where N is the number of the entries in the database,
B is the block size of the entries in the database, and G is the number of clients that have
access to the database. O(B logN) originates from the ORAM construction and we add
O(G logN) for the access structure. Hence, our solution only adds a small overhead to the
standard ORAM complexity. The client-side storage is O(B logN), while the server has to
store O(BN) many data.
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Algorithm 11 {DB′, deny} ← 〈Cwrite(capi, j, d),Swrite(DB)〉.
Input: the capability of the client executing the protocol capi, the index j to be written,

and the data d
Output: deny if the algorithm fails
1: execute 10.1–10.9, call the old payload d′

10: (E′1, . . . , E′b(D+1), π, P ):=Evict(E1, . . . , Eb(D+1), 1, j, k)
11: execute 10.12–10.14
12: E′′1 := (c′′1,1, c′′2,1, c′′3,1) where

r1, r2, r3 are selected uniformly at random
c′′1,1 ← Rnd(ek, c′1,1, r1)
c′′2,1 ← E(ek,RPE(ppkAuth, c

j
Auth, r2))

c′′3,1 ← E(ek,RPE(ppkData, c
j
Data · d′

−1 · d, r3))
13: execute 10.16–10.17

2.6.5. Integrity Proofs Revisited
A zero-knowledge proof of shuffle correctness of a set of ciphertexts proves in zero-knowledge
that a new set of ciphertexts contains the same plaintexts in permuted order. In our
system the encryption of an entry, for reasonable block sizes, yields in practice hundreds
of ciphertexts, which means that we have to perform hundreds of shuffle proofs. These
are computable in polynomial-time but, even using the most efficient known solutions
(e.g., [22,108]), not fast enough for practical purposes. This problem has been addressed in
the literature but the known solutions typically reveal part of the permutation (e.g., [110]),
which would break obliviousness and, thus, are not applicable in our setting.

General problem description. Let ΠPKE = (GenPKE,E,D,Rnd) be a randomizable, addi-
tively homomorphic public-key encryption scheme with message spaceM = Fp for some
field Fp, e.g., ElGamal [76] or Paillier [153]. Let furthermore (P,V) be a zero-knowledge
proof system (ZKP) that takes as input two n-length ciphertext vectors ~a ∈ E(ek, ~m) and
~b ∈ E(ek, π(~m)) where π is a permutation applied to some message vector ~m, outputs a
proof for the statement

∃~r, π. ∀1 ≤ i ≤ n. bi = Rnd(ek, aπ−1(i), ri).

The goal is to construct a proof system (P∗,V∗) that takes as input two n×m-dimensional
ciphertext matrices A ∈ E(ek,M) and B ∈ E(ek, N) where N is M , column-wise permuted
with a permutation π, and outputs a proof of the statement

∃R, π. ∀1 ≤ i ≤ n. ∀1 ≤ j ≤ m. Bi,j = Rnd(ek, Aπ−1(i),j , Ri,j).

We propose two solutions to this problem that we discuss in the sequel. The underlying
idea of both solutions is to compress the data on which the shuffle proof is computed so as
to lower the amount of proofs that have to be computed.
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Algorithm 12 Batched zero-knowledge proofs of shuffle correctness.
Input of P∗: A, B, ek, π, R
Input of V∗: A, B, ek
1: V∗ randomly selects ~c← {0, 1}m and sends it to P∗.
2: P∗ computes for all 1 ≤ i ≤ n the partial ciphertext products

ai =
⊗m
j=1 cjAi,j and bi =

⊗m
j=1 cjBi,j

and the corresponding partial randomness sum
ri =

∑m
j=1 cjRi,j

where cj is the j-th bit of ~c. V∗ also computes ~a and ~b.
3: V∗ and P∗ run V and P, respectively, on ~a,~b, ek and ~a,~b, ek, π, ~r, respectively.

2.6.5.1. Batched Zero-Knowledge Proofs of Shuffle Correctness

The first solution is a new proof technique that we call batched zero-knowledge proofs of
shuffle correctness, based on the idea of “batching” several instances and verifying them
together. Our interactive protocol takes advantage of the homomorphic property of the
public-key encryption scheme in order to batch the instances.

Intuitively, the batching algorithm randomly selects a subset of columns (i.e., block
indices) and computes the row-wise homomorphic sum of the corresponding blocks for
each row. It then computes the proof of shuffle correctness on the resulting single-block
ciphertexts. The property we would like to achieve is that modifying even a single block in
a row should lead to a different sum and, thus, be detected. Notice that naïvely multiplying
all blocks together does not achieve the intended property, as illustrated by the following
counterexample: (

E(pk, 3) E(pk, 4)
E(pk, 5) E(pk, 2)

) (
E(pk, 2) E(pk, 5)
E(pk, 5) E(pk, 2)

)

In the above matrices, the rows have not been permuted but rather changed. Still, the
row-wise sum is preserved, i.e., 7 in the first and 7 in the second. Hence, we cannot compute
the sum over all columns. Instead, as proved in Appendix B.3, the intended property can
be achieved with probability at least 1

2 if each column is included in the homomorphic sum
with probability 1

2 . Although a probability of 1
2 is not sufficient in practice, repeating the

protocol k times increases the probability to (1− 1
2k ).

The detailed construction is depicted in Algorithm 12. In line 12.1, V∗ picks a challenge,
which indicates which column to include in the homomorphic product. Upon receiving the
challenge, in line 12.2, P∗ and V∗ compute the row-wise homomorphic sum of the columns
indicated by the challenge. Finally, V∗ and P∗ run an off-the-shelf shuffle proof protocol
between V and P on the resulting ciphertext lists (line 12.3). Finally, the protocol can be
made non-interactive by using the Fiat-Shamir heuristic [78].

Formal guarantees. We establish the following result for our new protocol and prove it in
Appendix B.3.
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Algorithm 13 Shuffle proofs based on the hash-and-proof paradigm.
Input of P∗: A, B, ek, π, R
Input of V∗: A, B, ek
1: V∗ randomly selects ~z ∈ Fm+2

p and sends it to P∗.
2: P∗ computes for all 1 ≤ i ≤ n the partial ciphertext products

ai = E(ek, z0; z1)
⊗m

j=1 zj+1Ai,j and bi = E(ek, z0; z1)
⊗m

j=1 zj+1Bi,j
and the corresponding randomness sum
ri =

∑m
j=1Ri,j .

V∗ also computes ~a and ~b.
3: V∗ and P∗ run V and P, respectively, on ~a,~b, ek and ~a,~b, ek, π, ~r, respectively.

Theorem 2.2 (Batched zero-knowledge proofs of shuffle correctness). Let ΠPKE be an
additively homomorphic CPA-secure public-key encryption scheme and let (P,V) be a ZKP
of shuffle correctness over ΠPKE. Then (P∗,V∗) as defined in Algorithm 12 is a ZKP of
shuffle correctness over ΠPKE, which is sound with probability at least 1/2.

2.6.5.2. The Hash-and-Proof Paradigm

The second solution improves the integrity proofs even further. The high-level idea is to
design a compression technique that is collision-resistant with overwhelming probability,
which is in contrast to the previous compression technique, which can lead to collisions
with probability 1/2. In a nutshell, a technique based on pairwise independent hash
functions [44] applied on each row of the ciphertext matrix allows for reducing the number
of computed proofs of shuffle correctness to one.

The detailed construction is reported in Algorithm 13, where we leverage the fact
that the message spaceM = Fp for some field Fp. Moreover, we let E(ek, z0; z1) denote
the encryption of z0 with key ek and randomness z1. In line 13.1, V∗ picks a challenge,
which can be seen as the coefficients of the pairwise independent hash function. Upon
receiving the challenge, in line 13.2, P∗ and V∗ compute the row-wise homomorphic sum
of the columns as dictated by the challenge, additionally adding the encryption of z0 using
the randomness z1 for both ~a and ~b. Finally, V∗ and P∗ run an off-the-shelf shuffle proof
protocol between V and P on the resulting ciphertext lists (line 13.3). As before, the
protocol can be made non-interactive by applying the Fiat-Shamir heuristic [78].

Formal guarantees. We establish the following result for our new protocol and prove it in
Appendix B.3.

Theorem 2.3 (Hash-and-Proof). Let ΠPKE be an additively homomorphic CPA-secure
public-key encryption scheme and let (P,V) be a ZKP of shuffle correctness over ΠPKE.
Then (P∗,V∗) is a ZKP of shuffle correctness over ΠPKE.
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2.6.5.3. Discussion

The improvements presented in this section cannot only be applied to GORAM, they can
also be used to speed-up PIR-GORAM. The reason is that in the flush algorithm, clients
have to prove that they either randomized an entry or that they know a signing key
allowing them to change the data. The first half of this proof is clearly subject to the
same problems as the ones we face in GORAM: entries with bigger block sizes require more
than one public-key ciphertext and, consequently, the number of proofs to be computed
is linear in the block size. Inspecting the new proof techniques, we observe that if π
is the identity function and the number of rows in the matrices is one, then we have
reproduced exactly the setting of PIR-GORAM for a single such proof. Hence, batched
proofs of shuffle correctness and the hash-and-proof paradigm can also be applied to general
plaintext-equivalence-proofs (PEPs).

2.7. GORAM with Accountable Integrity
(A-GORAM)

In this section we relax the integrity property by introducing the concept of accountability.
In particular, instead of letting the server check the correctness of client operations, we
develop a technique that allows clients to detect a posteriori non-authorized changes on
the database and blame the misbehaving party. Intuitively, each entry is accompanied
by a tag (technically, a chameleon hash along with the randomness corresponding to
that entry), which can only be produced by clients having write access. All clients can
verify the validity of such tags and, eventually, determine which client inserted an entry
with an invalid tag. This makes the construction more efficient and scalable, significantly
reducing the computational complexity both on the client and on the server side, since
zero-knowledge proofs are no longer necessary and, consequently, the outermost encryption
can be implemented using symmetric, as opposed to asymmetric, cryptography. Such a
mechanism is supposed to be paired with a data versioning protocol in order to avoid data
losses: as soon as one of the clients detects an invalid entry, the misbehaving party is
punished and the database is reverted to the last safe state (i.e., a state where all entries
are associated with a valid tag).

2.7.1. Cryptographic preliminaries

Our construction relies on predicate encryption, private-key encryption, digital signatures,
and chameleon hashes. We summarize the missing notation for private-key encryption
and chameleon hashes in Table 2.4. A chameleon hash allows for computing an explicit
collision for the hash value if one knows a secret trapdoor. Further details are postponed
to Appendix A.
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Primitive Notation
Private-key encryption ΠSE

Key generation k ← GenSE(1λ)
Encryption c← E(k,m)
Decryption m← D(k, c)

Chameleon hash ΠCH
Key generation (cpk, csk)← GenCHF(1λ)
Hashing t← CH(cpk,m, r)
Collision r′ ← Col(csk,m, r,m′) such that

CH(cpk,m, r) = CH(cpk,m′, r′)

Table 2.4.: Notation for cryptographic primitives.

E E(K, j‖cAuth‖cData‖cpk‖r‖t‖σ)

cpkcDatacAuth

EPE(ppkAuth, xw, csk) EPE(ppkData, xr, d)

r t

CH(cpk, cData, r)‖H(j‖cAuth‖cpk)

σ

sign(skO, t)

Figure 2.8.: The entry structure of an entry in the database.

2.7.2. System Assumptions

Data structures and database layout. We assume the same layout and data structures
as for GORAM. Additionally, we use a log file Log so as to detect who has to be held
accountable in case of misbehavior. Log is append-only and consists of the list of paths
uploaded to the server, each of them signed by the respective client. Such an append-only
log file can be realized both in a centralized [99] or decentralized way [62].
Client capabilities. As in GORAM, every client Ci holds a capability capi containing a
collection of keys: predicate encryption keys pskAuth

fi and pskData
fi and a key K for the top

level encryption, which is now, however, replaced by a private-key version.
Structure of an entry and access control modes. The structure of an entry in the
database is depicted in Figure 2.8. An entry E is protected by a top-level private-key
encryption scheme with a key K that is shared by the data owner O and all clients C1, . . . , Cn.
Under the encryption, E contains several elements, which we explain below:

• j is the index of the entry;

• cAuth is a predicate encryption ciphertext that encrypts the private key csk of a
chameleon hash function under an attribute xw, which regulates the write access;

• cData is unchanged;

• cpk is the public key of a chameleon hash function, i.e., the counterpart of csk
encrypted in cAuth;
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• r is some randomness used in the computation of t;

• t is a concatenation of hash tags: a chameleon hash tag produced by hashing cData
under randomness r, and a normal hash tag produced by hashing j, cAuth, and
the public key of the chameleon hash function cpk; only cData is hashed with the
chameleon hash function so as to not allow clients to change every other part but
cData;

• σ is a signature on the tag t, signed by the data owner O.

Intuitively, only clients with write access are able to decrypt cAuth, and thus to retrieve
the key csk required to compute a collision for the new entry d′ (i.e., to find a randomness
r′ such that the chameleon hash t for the old entry d and randomness r is the same as the
one for d′ and r′). The fundamental observation is that the modification of an entry is
performed without changing the respective tag. Consequently, the signature σ is the same
for the old and for the new entry. Computing a collision is the only way to make the tag
t, originally signed by the data owner, a valid tag also for the new entry d′. Therefore
verifying the signature and the chameleon hash suffices to make sure that the entry has
been only modified by authorized clients.

2.7.3. Construction

Basic Algorithms. The basic algorithms follow the ones defined in Section 2.6.3, except
for natural adaptions to the new entry structure. Furthermore, the zero-knowledge proofs
are no longer computed and the rerandomization steps are substituted by re-encryptions.
Finally, clients upload on the server signed paths, which are stored in the Log. We detail
the differences to the algorithms of GORAM in Section B.5.
Entry Verification. We introduce an auxiliary verification function that clients run in
order to verify the integrity of an entry. During the execution of any protocol we maintain
the invariant that, whenever a client i (or the data owner himself) parses an entry j that
she downloaded from the server, she executes Algorithm 14. If the result is ⊥, then the
client runs blame(capi, Log, j). The client also runs blame(capi, Log, j) if she does not find
j on the downloaded path even if the index mapping says so.

Algorithm 14 The pseudo-code for the verification of an entry in the database which is
already decrypted.
Input: An entry (j, cAuth, cData, r, cpk, t, σ) and the verification key vkO of O.
Output: > if verification succeeds, ⊥ otherwise.
1: if t = CH(cpk, cData, r)‖H(j‖cAuth‖cpk) and > = vfy(σ, vkO, t) then return >
2: else return ⊥
3: end if

Blame. In order to execute the function blame(capi, Log, j), the client must first retrieve
Log from the server. Afterwards, she parses backwards the history of modifications by
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decrypting the paths present in the Log. The client stops only when she finds the desired
entry indexed by j in a consistent state, i.e., the data hashes to the associated tag t and
the signature is valid. At this point the client moves forwards on the Log until she finds an
uploaded path where the entry j is supposed to lay on (the entry might be associated with
an invalid tag or missing). The signature on the path uniquely identifies the client, whose
identity is added to a list L of misbehaving clients. Finally, all of the other clients that
acknowledged the changes of the inconsistent entry are also added to L, since they did not
correctly verify its chameleon signature. If the entry is missing, we only add the client who
removed it to L. No other client can be deemed malicious since a missing entry is only
detected when a client tries to actively read or write it.

2.7.4. Discussion
As explained above, the accountability mechanism allows for the identification of misbe-
having clients with a minimal computational overhead in the regular clients’ operation.
However, it requires the server to store a log that is linear in the number of modifications
to the database and logarithmic in the number of entries. This is required to revert the
database to a safe state in case of misbehaviour. Consequently, the blame algorithm results
expensive in terms of computation and communication with the server, in particular for
the entries that are not regularly accessed. Nonetheless, blame is supposed to be only
occasionally executed, therefore we believe this design is acceptable in terms of service
usability. Furthermore, we can require all the parties accessing the database to synchronize
on a regular basis so as to verify the content of the whole database and to reset the Log, in
order to reduce the storage on the server side and, thus, the amount of data to transfer in
the blame algorithm. Such an approach could be complemented by an efficient versioning
algorithm on encrypted data, which is however beyond the scope of this work and left as a
future work. Finally, we also point out that the accountable-integrity property targeted
by A-GORAM sacrifices anonymity, since users have to sign the paths they upload to the
server. This issue can be easily overcome by using any anonymous credential system that
supports revocation [38].

2.8. Scalable Solution (S-GORAM)
Even though the personal record management systems we consider rely on simple client-
based read and write permissions, the predicate encryption scheme used in GORAM and
A-GORAM support in principle a much richer class of access control policies, such as
role-based access control (RBAC) or attribute-based access control (ABAC) [113]. If we
stick to client-based read and write permissions, however, we can achieve a more efficient
construction that scales to thousands of clients. To this end, we replace the predicate
encryption scheme with a broadcast encryption scheme [85], which guarantees that a
specific subset of clients is able to decrypt a given ciphertext. This choice affects the entry
structure as follows (cf. Figure 2.8):
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Property PIR-GORAM TAO-GORAM GORAM A-GORAM S-GORAM
Secrecy 3 3 3 3 3
Integrity 3 3 3 Accountable Accountable
Tamper-resistance 3 3 3 7 7
Obliviousness (C + S) 3 3 7 7 7
Obliviousness (S only) 3 3 3 3 3
Anonymity 7 7 3 7 7
Access control R/W R/W ABAC ABAC R/W

Table 2.5.: Security and privacy properties achieved by each construction.

• cData is the broadcast encryption of d;

• cAuth is the broadcast encryption of csk.

The subset of clients that can decrypt cData (resp. cAuth) is then set to be the same subset
that holds R (resp. RW) permissions on the given entry. By applying the aforementioned
modifications on top of A-GORAM, we obtain a much more efficient and scalable instantia-
tion, called S-GORAM, that achieves a smaller constant in the computational complexity
(linear in the number of clients). For more details on the performance evaluation and a
comparison with A-GORAM, we refer to Section 2.10.

2.9. Security and Privacy Results
In this section, we show that the Group ORAM instantiations presented in Section 2.4, in
Section 2.5, in Section 2.6, in Section 2.7, and in Section 2.8 achieve the security and privacy
properties stated in Section 2.2.3. The proofs are reported in Appendix B.4. A brief overview
of the properties guaranteed by each construction is shown in Table 2.5. As previously
discussed, relaxing the obliviousness property so as to consider only security against the
server or assuming a trusted component in the system is required to enable constructions
that are more efficient from a communication point of view. Hence, TAO-GORAM and
GORAM are optimal with respect to communication. As opposed to TAO-GORAM, which is
oblivious with respect to malicious clients, GORAM does not assume any trusted component
in the system. Furthermore, dropping the computationally expensive integrity checks in
favor of an accountability mechanism is crucial to achieve computational efficiency. It follows
that A-GORAM and S-GORAM provide accountable integrity as opposed to integrity and
tamper resistance. Having an accountable system trivially implies the loss of anonymity, as
defined in Definition 2.7, although it is still possible to achieve pseudonym-based anonymity
by employing anonymous credentials. The other privacy properties of our system, namely
secrecy and obliviousness, are fulfilled by all of our instantiations. Moreover, by replacing
predicate encryption with broadcast encryption (S-GORAM), we sacrifice the possibility to
enforce ABAC policies, although we can still handle client-based read/write permissions.

The following theorems characterize the security and privacy properties achieved
by each cryptographic instantiation presented in this chapter. Interestingly enough, the
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properties of TAO-GORAM are only conditioned by the trusted-component-based parallel
ORAM construction that we base it on since our additions are not of cryptographic nature
but simply modify the software component that synchronizes client accesses.

Theorem 2.4 (PIR-GORAM). 2.4.1. Let ΠPKE be a CPA-secure encryption scheme, then
PIR-GORAM achieves secrecy.

2.4.2. Let ΠDS be an existentially unforgeable digital signature scheme, ZKP be a zero-
knowledge proof of knowledge protocol, and ΠPKE be a CCA-secure encryption scheme,
then PIR-GORAM achieves integrity.

2.4.3. Let ΠDS be an existentially unforgeable digital signature scheme and let ΠPKE be a
CCA-secure encryption scheme, then PIR-GORAM achieves tamper resistance.

2.4.4. Let ΠPIR be a private information retrieval scheme, let ΠPKE be a CPA-secure
encryption scheme, let ΠDS be an existentially unforgeable digital signature scheme,
and let ZKP be a zero-knowledge proof of knowledge protocol, then PIR-GORAM is
oblivious against malicious clients.

Theorem 2.5 (TAO-GORAM). Assume that TaoStore is a secure realization of a parallel
ORAM. Then TAO-GORAM achieves secrecy, integrity, tamper resistance, and obliviousness
against malicious clients.

Theorem 2.6 (GORAM). 2.6.1. Let ΠPE be an attribute-hiding predicate encryption
scheme. Then GORAM achieves secrecy.

2.6.2. Let ZKP be a zero-knowledge proof system. Then GORAM achieves integrity.

2.6.3. Let ZKP be a zero-knowledge proof system and ΠPE be an attribute-hiding predicate
encryption scheme. Then GORAM achieves tamper-resistance.

2.6.4. Let ZKP be a zero-knowledge proof system and ΠPKE be a CPA-secure public-key
encryption scheme. Then GORAM achieves obliviousness.

2.6.5. Let ZKP be a zero-knowledge proof system. Then GORAM achieves anonymity.

Theorem 2.7 (A-GORAM). 2.7.1. Let ΠPE be an attribute-hiding predicate encryption
scheme. Then A-GORAM achieves secrecy.

2.7.2. Let ΠCH be a collision-resistant, key-exposure free chameleon hash function, ΠDS be
an existentially unforgeable digital signature scheme, and ΠPE be an attribute-hiding
predicate encryption scheme. Then A-GORAM achieves accountable integrity.

2.7.3. Let ΠSE be a CPA-secure private-key encryption scheme. Then A-GORAM achieves
obliviousness.

Theorem 2.8 (S-GORAM). 2.8.1. Let ΠBE be an adaptively secure broadcast encryption
scheme and ΠSE be a CPA-secure private-key encryption scheme. Then S-GORAM
achieves secrecy.
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Scheme Instantiation
ΠSE AES [63]
ΠPKE ElGamal [76], Cramer-Shoup [60]
ΠPE, ΠPOE Katz et al. [113]
ΠBE Gentry and Waters [85]
ΠPIR XPIR [2]
ZKP OR-proof [58], plaintext-equivalence-proof [108], DLog [173],

Groth-Sahai [94], proofs of shuffle correctness [22]
ΠCH Nyberg and Rueppel [13]
ΠDS RSA [165]

Table 2.6.: Cryptographic scheme instantiations.

2.8.2. Let ΠCH be a collision-resistant, key-exposure free chameleon hash function , ΠDS be
an existentially unforgeable digital signature scheme, ΠBE be an adaptively secure
broadcast encryption scheme, and ΠSE be a CPA-secure private-key encryption
scheme. Then A-GORAM achieves accountable integrity.

2.8.3. Let ΠSE be a CPA-secure private-key encryption scheme. Then A-GORAM achieves
obliviousness.

2.10. Implementation and Experiments
In this section, we present the concrete instantiations of the cryptographic primitives that
we previously described (Section 2.10.1) and we describe our implementation and discuss
the experimental evaluation (Section 2.10.2).

2.10.1. Cryptographic Instantiations
We summarize the concrete instantiations in Table 2.6 and postpone detailed considerations
to Appendix B.1.

2.10.2. Experiments
We implemented the six different versions of GORAM in Java (PIR-GORAM, GORAM
with off-the-shelf shuffle proofs, batched shuffle proofs, and shuffle proofs based on the
hash-and-proof paradigm, A-GORAM, and S-GORAM). Furthermore, we also implemented
A-GORAM and S-GORAM on Amazon EC2. For the zero-knowledge proofs computed on
predicate encryption, we build on a library [15] that implements Groth-Sahai proofs [94],
which internally relies on jPBC/PBC [42,137].

Cryptographic setup. We use MNT curves [147] based on prime-order groups for primes of
length 224 bits. This results in 112 bits of security according to different organizations [32].
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Figure 2.9.: The end-to-end running time of an operation in PIR-GORAM.
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Figure 2.10.: The average execution time for the read and write protocol on client and server for
varying B where BN = 1GB and G = 4.

We deploy AES with 128 bit keys and we instantiate the ElGamal and Cramer-Shoup
encryption scheme, the RSA signature scheme, and the chameleon hash function with a
security parameter of 2048 bits. According to NIST [32], this setup is secure until 2030.

Micro-benchmarks. We evaluated the six different implementations. As a first experiment,
we measured the computation times on client and server for the read and write operation
for the constructions without accountable integrity. We performed these experiments on
an Intel Xeon with 8 cores and 2.60GHz in order to show the efficiency gained by using
batched shuffle proofs instead of off-the-shelf zero-knowledge proofs of shuffle correctness.
We vary different parameters: the database size from 128MB to 2GB (PIR-GORAM) and
from 1GB to 1TB (GORAM, A-GORAM, and S-GORAM), the block size from 4KB to 1MB,
the number of clients from 1 to 10, the number of cores from 1 to 8, and for batched
shuffle proofs also the number of iterations k from 1 to 128. For GORAM, A-GORAM, and
S-GORAM we fix a bucket size of 4 since Stefanov et al. [187] showed that this value is

51



2. Group ORAM

1 8 128 1K
0

50
100
150
200

Storage size in GB

T
im

e
in

s

Client read/write
Server

(a) GORAM with B =
4KB.

1 8 128 1K
2

4

6

8

Storage size in GB

T
im

e
in

s

Client read/write
Server

(b) GORAM with
batched shuffle
proofs, B = 4KB,
and k = 4.

1 8 128 1K

0

1

2

Storage size in GB

T
im

e
in

s

Client read
Client write

Server

(c) A-GORAM with B =
128KB.

1 8 128 1K

0

1

2

Storage size in GB

T
im

e
in

s

Client read
Client write

Server

(d) S-GORAM with B =
128KB.

Figure 2.11.: The average execution time for the read and write protocol on client and server for
varying BN where G = 4.

sufficient to prevent buckets from overflowing.
The second experiment focuses on the solution with accountability. Here we measure

also the overhead introduced by our realization with respect to a state-of-the-art ORAM
construction, i.e., the price we pay to achieve a wide range of security and privacy properties
in a multi-client setting. Another difference from the first experiment is the hardware
setup. We run the server side of the protocol in Amazon EC2 and the client side on a
MacBook Pro with an Intel i7 and 2.90GHz. We vary the parameters as in the previous
experiment, except for the number of clients which we vary from 1 to 100 for A-GORAM
and from 1 to 10000 for S-GORAM, and the number of cores which are limited to 4. In
the experiments where the number of cores is not explicitly varied, we use the maximum
number of cores available.

2.10.3. Discussion
Figure 2.9 and Figure 2.14 report the results for PIR-GORAM. Figure 2.9a shows the
end-to-end and partial running times of an access to the ORAM when the flush algorithm
is not executed, whereas Figure 2.9b depicts the worst case running time (i.e., with flush
operation). We assume a mobile LTE connection for the network, i.e., 100Mbit/s downlink
and 50Mbit/s uplink in peak. For the example of the medical record which usually fits
into 128MB (resp. 256MB for additional files such as X-ray images), the amortized times
per access range from 11 (resp. 15) seconds for 4KB up to 131 (resp. 198) seconds for 1MB
sized entries (see Figure 2.9c).

Figure 2.14 shows the improvement as we compare the combined proof computation
and proof verification time in the flush algorithm of PIR-GORAM, first as described in
Section 2.4 and then with the integrity proof based on the hash-and-proof paradigm (see
Section 2.6.5.2). We observe that our expectations are fulfilled: the larger the block size,
the more effect has the hash computation since the number of proofs to compute decreases.
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Figure 2.12.: The average execution time for the read and write protocol on client and server for
varying G where BN = 1GB.

Concretely, with 1MB block size we gain a speed-up of about 4% for flush operations with
respect to the construction without homomorphic hash. 4% does not sound much and the
reason for this little improvement is quite straightforward: the computations performed
for computing the hash function and those performed for computing the single PEPs are
the same. The only difference lies in the verification of the proof, which incurs one more
modular exponentiation than the recomputation of the hash on the server side. Hence,
there is an improvement, but this improvement shows only for big block sizes, say, more
than 1MB. We will see further below, it has much more effect on GORAM.

Our solution TAO-GORAM only adds access control to the actual computation of
TaoStore’s trusted proxy [170]. Interestingly enough, TaoStore’s bottleneck is not computa-
tion, but communication. Hence, our modifications do not cause any noticeable slowdown
on the throughput of TaoStore. Consequently, we end up with a throughput of about
40 operations per second when considering an actual deployment of TAO-GORAM in a
cloud-based setting [170].

The results of the experiments for GORAM, A-GORAM, and S-GORAM are reported
in Figure 2.10–2.17. As shown in Figure 2.10a, varying the block size has a linear effect in
the construction without batched shuffle proofs. As expected, the batched shuffle proofs
improve the computation time significantly (Figure 2.10b). The new scheme even seems to
be independent of the block size, at least for block sizes less than 64KB. This effect is caused
by the parallelization. Still, the homomorphic multiplication of the public-key ciphertexts
before the batched shuffle proof computation depends on the block size (line 12.2). We
do not depict individual results for GORAM with proofs based on the hash-and-proof
paradigm: the computation necessary is almost equivalent to that for batched shuffle proofs
with k = 1; the only difference being the homomorphic pre-computation which is slightly
more expensive. Hence, whenever we state something about batched shuffle proofs, the
same holds for the hash-and-proof paradigm. Figure 2.10c and Figure 2.10d show the
results for A-GORAM and S-GORAM. Since the computation time is in practice almost
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Figure 2.13.: The average execution time for the read and write protocol on client and server for a
varying number of cores where BN = 1GB.
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Figure 2.14.: The improvement in percent when comparing the combined proof computation time
on the client and proof verification time on the server for varying storage and block
sizes, once without and once with the universal homomorphic hash.

independent of the block size, we can choose larger block sizes in the case of databases with
large files, thereby allowing the client to read (resp. write) a file in one shot, as opposed
to running multiple read (resp. write) operations. We identify a minimum computation
time for 128KB as this is the optimal trade-off between the index map size and the path
size. The server computation time is low and varies between 15ms and 345ms, while client
operations take less than 2 seconds for A-GORAM and less than 1.3 seconds for S-GORAM.
As we obtained the best results for 4KB in the experiments for GORAM and 128KB for
the others, we use these block sizes in the sequel.

The results obtained by varying the storage size (Figure 2.11) and the number of
clients (Figure 2.12) prove what the computational complexity suggests. Nevertheless, it is
interesting to see the tremendous improvement in computation time between GORAM with
and without batched shuffle proofs. The results obtained by varying the iteration time of
the batched shuffle proof protocol are depicted in Figure 2.15 and we verify the expected
linear dependency. Smaller values of k are more efficient but higher values give a better
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with batched shuffle proofs and varying k where BN = 1GB, B = 8KB, and G = 4.
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Figure 2.16.: The up-/download amount of data compared between Path-ORAM [187] and S-
GORAM for varying B while BN = 1GB and G = 4.

soundness probability. Even more impressive, the technique based on the hash-and-proof
paradigm speeds up GORAM even further. As shown in Figure 2.17a, we gain one order of
magnitude (14x on the client and 10.8x on the server for k = 128) since it is sufficient to
compute a single proof rather than k. Notice that we do not gain an improvement of 128
since the shuffle proofs are just one component of the read and write operations.

If we compare A-GORAM and S-GORAM in Figure 2.12c and Figure 2.12d we can
see that S-GORAM scales well to a large amount of users as opposed to A-GORAM. The
good scaling behavior is due to the used broadcast encryption scheme: it only computes
a constant number of pairings independent of the number of users for decryption while
the opposite holds for predicate encryption. Nevertheless, we identify a linear growth in
the times for S-GORAM, which arises from the linear number of exponentiations that are
computed. For instance, in order to write 128KB in a 1GB storage that is used by 100
users, A-GORAM needs about 20 seconds while S-GORAM only needs about 1 second. Even
when increasing the number of users to 10000, S-GORAM requires only about 4 seconds, a
time that A-GORAM needs for slightly more than 10 users.

Figure 2.13 shows the results obtained by varying the number of cores. In GORAM
most of the computation, especially the zero-knowledge proof computation, can be easily
parallelized. We observe this fact in both results (Figure 2.13a and Figure 2.13b). In
the efficient construction we can parallelize the top-level encryption and decryption, the
verification of the entries, and the predicate ciphertext decryption. Also in this case
parallelization significantly improves the performance (Figure 2.13c and Figure 2.13d).
Notice that we run the experiments in this case for 20 clients, as opposed to 4 as done for
the other constructions, because the predicate ciphertext decryption takes the majority
of the computation time and, hence, longer ciphertexts take longer to decrypt and the
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Construction Client time Server time
GORAM with k = 128 91.315 s 39.213 s
GORAM with HaP 5.980 s 3.384 s
Improvement 14x 10.8x

(a) Comparison of GORAM with batched shuffle proofs and GORAM
with shuffle proofs based on hash-and-proof (HaP) for 10 users,
1GB storage, and 8KB block size.

Scheme Client Read Client Write Server
S-GORAM 0.981s 1.075s 0.068s
Path-ORAM 0.042s 0.042s 0.002s

(b) Comparison of the computation times between Path-ORAM [187]
(single-client!) and S-GORAM on 1GB storage size, 128KB block size
and 100 clients.

Figure 2.17.: Comparison of the two integrity proof improvements and the overhead with respect
to state-of-the-art ORAM.

parallelization effect can be better visualized.
Finally, Figure 2.17b compares S-GORAM with the underlying Path-ORAM protocol.

Naturally, since Path-ORAM only uses symmetric encryption, no broadcast encryption,
and no verification with chameleon signatures, the computation time is much lower.
However, the bottleneck of both constructions is actually the amount of data that has to
be downloaded and uploaded by the client (Figure 2.16). The time required to upload
and download data may take much more time than the computation time, given today’s
bandwidths. Here the overhead is only between 1.02% and 1.05%. For instance, assuming
a mobile client using LTE (100Mbit/s downlink and 50Mbit/s uplink in peak) transferring
2 and 50 MB takes 480ms and 12s, respectively. Under these assumptions, considering a
block size of 1MB, we get a combined computation and communication overhead of 8% for
write and 7% for read, which we consider a relatively low price to pay to get a wide range
of security and privacy properties in a multi-client setting.

2.11. Case Study: Personal Health Records
We briefly discuss a potential application of GORAM, namely, a privacy-preserving personal
health record (PHR) management system. As the patient should have the control of her
own record, the patient is the data owner. The server is some cloud storage provider,
which may be chosen by the patient or directly by the state for all citizens (e.g., ELGA in
Austria). The healthcare personnel (doctors, nurses, pharmacies, and so on) constitutes
the clients.

We discuss now possible real-world attacks on PHRs and how the usage of GORAM
prevents them. One typical threat is the cloud provider trying to learn customer information
(e.g., to sell it or to use it for targeted advertising). For instance, as previously discussed,
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monitoring the accesses to DNA sequences would allow the service provider to learn the
patient’s disease: these kinds of attacks are not possible because of obliviousness and data
secrecy. PIR-GORAM and TAO-GORAM can even protect against such an attack if the
cloud storage provider colludes with one of the healthcare personnel. Another possible
attack could be a pharmacy that tries to increase its profit by changing a prescription for
a cheap medicine into one that prescribes an expensive medicine. However, pharmacies
would not have write access to prescriptions, and hence, these cannot be changed or, in
A-GORAM and S-GORAM, the misbehaving pharmacy can be blamed by the data owner.
A common procedure in order to sign a contract with a health insurance is the health check.
The patient might want to hide health information from the insurance in order to get a
lower fee. To this end, the patient could simply try to drop this information. Dropping of
entries in the database is, however, either prevented by making such documents permanent
or, in A-GORAM and S-GORAM, by letting the insurance, who sees that some documents
are missing, blame the patient. Using the backup strategy, the missing documents can be
restored.

Finally, while PIR-GORAM and TAO-GORAM offer strong privacy guarantees at a
certain price and under specific trust assumptions, respectively, we think that GORAM
with batched shuffle proofs or shuffle proofs based on the hash-and-proof paradigm (even
more so A-GORAM and S-GORAM) is a practical solution for the management of today’s
PHRs, since they are of rather small size. For instance, the data today stored in e-health
cards is at most 128KB. The current trend is to store the remaining medical information
(e.g., DNA information) on an external server, which can be accessed by using the card.
This is exactly our setting, except that we allow for accessing PHRs even without the
card, which is crucial in emergency situations. DNA information takes approximately
125MB8 [166] and all our constructions offer an adequate performance for databases of a
few gigabytes, with A-GORAM and S-GORAM performing better for the retrieval of large
amounts of data, thanks to the possibility of using larger block sizes.

2.12. Related Work

Oblivious RAM. Oblivious RAM (ORAM) [88] is a technique originally devised to protect
the access pattern of software on the local memory and thus to prevent the reverse
engineering of that software. The observation is that encryption by itself prevents an
attacker from learning the content of any memory cell but monitoring how memory is
accessed and modified may still leak a great amount of sensitive information. While the
first constructions were highly inefficient [88], recent groundbreaking research paved the
way for a tremendous efficiency boost, exploiting ingenious tree based constructions [3,
8, 41, 65, 66, 91, 138, 159, 178, 183, 185], server side computations [103, 146], and trusted
hardware [29,106,136,170,184].

8The actual DNA sequence takes about 200GB but one usually shares only the mutations, i.e., the
differences of the considered genome to the average human genome. These mutations are only 0.1% of
the overall sequence.
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Work MC MD PI CS Pr AC P S comp. C comp. Comm.
Franz et al. [81] 3 7 3 7 7 3 7 O(

√
n) O(

√
n) O(

√
n)

(A-/S-)GORAM 7 7 7 3 7 3 7 O(log(n)) O(log(n)) O(log(n))
(§ 2.6/2.7/2.8)
PIR-GORAM 3 3 7 3 7 3 7 O(n) O(

√
n) O(

√
n)

(§ 2.4)
BCP [37] 7 7 3 3 7 7 3 Ω(log3(n)) Ω(log3(n)) Ω(log3(n))
CLT [50] 7 7 3 3 7 7 3 O(log2(n)) O(log2(n)) O(log2(n))
PrivateFS [193] 7 7 7 3 7 7 3 O(log2(n)) O(1) O(log2(n))
Shroud [136] 7 7 7 7 3 7 3 O(log2(n)) O(1) O(log2(n))
TaoStore [170] 7 7 7 7 3 7 3 O(log(n)) O(1) O(log(n))
TAO-GORAM 3 3 7 7 3 3 3 O(log(n)) O(1) O(log(n))
(§ 2.5)

Table 2.7.: Comparison of the related work supporting multiple clients to our constructions. The
abbreviations mean: MC: oblivious against malicious clients, MD: supports multiple
data owners sharing their data in one ORAM, PI: requires the periodic interaction with
the data owner, CS: requires synchronization among clients, AC: access control, Pr:
trusted proxy, P: parallel accesses, S comp.: server computation complexity, C comp.:
client communication complexity, Comm.: communication complexity.

While a few ORAM constructions guarantee the integrity of user data [185,192], none
of them is suitable to share data with potentially distrustful clients. Goodrich et al. [92]
studied the problem of multi-client ORAM, but their attacker model does not include
malicious, and potentially colluding, clients. Furthermore, their construction does not
provide fine-grained access control mechanisms, i.e., either all members of a group have
access to a certain data, or none has. Finally, this scheme does not allow the clients to
verify the data integrity.

The fundamental problem in existing ORAM constructions is that all clients must
have access to the ORAM key, which allows them to read and potentially disrupt the entire
database. Hence, dedicated solutions tailored to the multi-client setting are required.

Multi-client ORAM. A few recent constructions gave positive answers to the question
of whether multi-client ORAM can be built, devising ORAM constructions in the multi-
client setting, which specifically allow the data owner to share data with other clients
while imposing fine-grained access control policies. Although, at a first glance, these
constructions share the same high-level goal, they actually differ in a number of important
aspects. Therefore we find it interesting to draw a systematic comparison among these
approaches (cf. Table 2.7). First of all, obliviousness is normally defined against the server,
but in a multi-client setting it is important to consider it against the clients too (MC),
since they might be curious or, even worse, collude with the server. This latter aspect is
important, since depending on the application, the cloud administrator might create fake
clients or just have common interests with one of the legitimate clients. Some constructions
allow multiple data owners to operate on the same ORAM (MD), while others require
them to use disjoint ORAMs: the latter are much less efficient, since if the client does
not want to reveal the owner of the accessed entry (e.g., to protect her anonymity, think
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for instance of the doctor accessing the patient’s record), then the client has to perform
a fake access to each other ORAM, thereby introducing a multiplicative factor of O(m),
where m is the number of data owners. Some constructions require the data owner to
periodically access the dataset in order to validate previous accesses (PI), some others
rely on server-side client synchronization, which can be achieved for instance by a shared
log on the server, a gossiping protocol among clients, etc. (CS), while others assume a
trusted proxy (Pr). Among these, gossiping is the mildest assumption since it can be
realized directly on the server side as described by [118]. Another aspect to consider is
the possibility for the data owner to specify fine-grained access control mechanisms (AC).
Finally, some constructions enable concurrent accesses to the ORAM (P). The final three
columns compare the asymptotic complexity of server-side and client-side computations as
well as communication.

Franz et al. pioneered the line of work on multi-client ORAM, introducing the concept
of delegated ORAM [81]. The idea of this construction, based on simple symmetric
cryptography, is to let clients commit their changes to the server and to let the data owner
periodically validate them according to the access control policy, finally transferring the
valid entries into the actual database. Assuming periodic accesses from the data owner,
however, constrains the applicability of this technique. Furthermore, this construction
does not support multiple data owners. Finally, it guarantees the obliviousness of access
patterns with respect to the server as well as malicious clients, excluding however the
accesses on data readable by the adversary. While excluding write operations is necessary
(an adversary can clearly notice that the data has changed), excluding read operations is
in principle not necessary and limits the applicability of the obliviousness definition: for
instance, we would like to hide the fact that an oncologist accessed the PHR of a certain
patient even from parties with read access to the PHR (e.g., the pharmacy, which can read
the prescription but not the diagnosis).

Another line of work, summarized in the lower part of Table 2.7, focuses on the
parallelization of client accesses, which is crucial to scale to a large number of clients, while
retaining obliviousness guarantees. Most of them [29, 136, 170, 184] assume a trusted proxy
performing accesses on behalf of users, with TaoStore [170] being the most efficient and
secure among them. These constructions do not formally consider obliviousness against
malicious clients nor access control, although a contribution of this work is to prove that
a simple variant of TaoStore [170] guarantees both. Finally, instead of a trusted proxy,
BCP-OPRAM [37] and CLT-OPRAM [50] rely on a gossiping protocol while PrivateFS [193]
assumes a client-maintained log on the server-side, but they do not achieve obliviousness
against malicious clients nor access control. Moreover, PrivateFS guarantees concurrent
client accesses only if the underlying ORAM already does so.

Other Multi-Client Approaches. Huang and Goldberg have recently presented a protocol
for outsourced private information retrieval [103], which is obtained by layering a private
information retrieval (PIR) scheme on top of an ORAM data layout. This solution is
efficient and conceals client accesses from the data owner, but it does not give clients the
possibility to update data. Moreover, it assumes ` non-colluding servers, which is due to
the usage of information theoretic multi-server PIR.
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De Capitani di Vimercati et al. [67] proposed a storage service that uses selective
encryption as a means for providing fine-grained access control. The focus of their work
is to study how indexing data in the storage can leak information to clients that are not
allowed to access these data, although they are allowed to know the indices. The authors do,
however, neither consider verifiability nor obliviousness, which distinguishes their storage
service from ours.

Verifiable outsourced storage. Verifying the integrity of data outsourced to an untrusted
server is a research problem that has recently received increasing attention in the literature.
Schröder and Schröder introduced the concept of verifiable data streaming (VDS) and an
efficient cryptographic realization thereof [174,175]. In a verifiable data streaming protocol,
a computationally limited client streams a long string to the server, who stores the string
in its database in a publicly verifiable manner. The client has also the ability to retrieve
and update any element in the database. Papamathou et al. [154] proposed a technique,
called streaming authenticated data structures, that allows the client to delegate certain
computations over streamed data to an untrusted server and to verify their correctness.
Other related approaches are proofs-of-retrievability [177]– [186], which allow the server to
prove to the client that it is actually storing all of the client’s data, verifiable databases [27],
which differ from the previous ones in that the size of the database is fixed during the
setup phase, and dynamic provable data possession [77]. All the above do not consider the
privacy of outsourced data. While some of the latest work has focused on guaranteeing the
confidentiality of the data [189], to the best of our knowledge no existing paper in this line
of research takes into account obliviousness.

Personal Health Records. Security and privacy concerns seem to be one of the major
obstacles towards the adoption of cloud-based PHRs [43,64,194]. Different cloud architec-
tures have been proposed [135], as well as database constructions [121, 132], in order to
overcome such concerns. However, none of these works takes into account the threat of a
curious storage provider and, in particular, none of them enforces the obliviousness of data
accesses.
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LORD, WHAT CAN THE HARVEST HOPE FOR, IF NOT FOR THE CARE
OF THE REAPER MAN?

Terry Pratchett, Reaper Man
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3. On the Security of
Frequency-Hiding
Order-Preserving Encryption

Order-preserving encryption (OPE) is an encryption scheme with the property that the
ordering of the plaintexts carry over to the ciphertexts. This primitive is particularly
useful in the setting of encrypted databases because it enables efficient range queries over
encrypted data. Given its practicality and usefulness in the design of databases on encrypted
data, OPE’s popularity is growing. Unfortunately, nearly all computationally efficient
OPE constructions are vulnerable against ciphertext frequency-leakage, which allows for
inferring the underlying plaintext frequency. To overcome this weakness, Kerschbaum
recently proposed a security model, designed a frequency-hiding OPE scheme, and analyzed
its security in the programmable random oracle model (CCS 2015).

In this work, we demonstrate that Kerschbaum’s definition is imprecise and using its
natural interpretation, we describe an attack against his scheme. We generalize our attack
and show that his definition is, in fact, not satisfiable. The basic idea of our impossibility
result is to show that any scheme satisfying his security notion is also IND-CPA-secure,
which contradicts the very nature of OPE. As a consequence, no such scheme can exist.
To complete the picture, we rule out the imprecision in the security definition and show
that a slight adaption of Kerschbaum’s tree-based scheme fulfills it.

3.1. Introduction
Outsourcing databases is common practice in today’s businesses. The reasons for that are
manifold, varying from the sharing of data among different offices of the same company
to saving on know-how and costs that would be necessary to maintain such systems
locally. Outsourcing information, however, raises privacy concerns with respect to the
service provider hosting the data. A first step towards a privacy-preserving solution is
to outsource encrypted data and to let the database application operate on ciphertexts.
However, simply encrypting all entries does in general not work because several standard
queries on the database do no longer work. To maintain as much functionality of the
database as possible while adding confidentiality properties, researchers weakened the
security properties of encryption schemes to find a useful middle ground. Examples include
encryption schemes that support plaintext equality checks, or order-preserving encryption.
In this work, we re-visit the recent work on frequency-hiding order preserving encryption
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by Kerschbaum [115].

Background and related work. Order-preserving encryption (OPE) [34,179] is arguably
the most popular building block for databases on encrypted data, since it allows for inferring
the order of plaintexts by just looking at the respective ciphertexts. More precisely, for
any two plaintexts p1 and p2, whenever p1 < p2, we have that E(p1) < E(p2). Hence,
OPE allows for efficient range queries and keyword search on the encrypted data. The
popularity of this scheme is vouched for by plenty of industrial products (e.g., Ciphercloud1,
Perspecsys2, and Skyhigh Networks3) and research that investigates OPE usage in different
scenarios [9,26,98,129,162,163]. Despite the growing popularity and usage in practice, OPE
security is debatable. The ideal security notion for OPE is called indistinguishability against
ordered chosen plaintext attacks (IND-OCPA), which intuitively says that two equally
ordered plaintext sequences should be indistinguishable under encryption. Boldyreva et
al. [34] show that stateless OPE cannot achieve IND-OCPA, unless the ciphertext size is
exponential in the plaintext size. Consequently, either one has to relax the security notion
or to keep a state.

The former approach has been explored in the context of classical OPE [34,35,188] as
well as a slightly different notion called order-revealing encryption (ORE) [36, 52, 131,167].
ORE is more general than OPE in the sense that comparison on the ciphertexts can happen
by computing a comparison function different from “<”. Either way, those schemes do
not achieve IND-OCPA but target different, weaker security notions, which allow them to
quantify the leakage incurred by a scheme or to restrict the attacker’s capabilities. For
instance, the scheme by Boldyreva et al. [34] is known to leak about the first half of the
plaintexts and the scheme by Chenette et al. [52] leaks the first bit where two encrypted
target plaintexts differ. To date, there exist several works that exploit this extra leakage
in order to break OPE applied to different data sets such as medical data and census
data [73, 95, 96, 149]. For instance, using a technique based on bipartite graphs, Grubbs et
al. [96] have recently shown how to break the schemes of Boldyreva et al. [34,35], thereby
achieving recovery rates of up to 98%. As opposed to earlier work, this technique works
even for large plaintext domains such as first names, last names, and even zip codes.

With regards to the latter approach based on stateful OPE schemes, Popa et al. [161]
introduced a client-server architecture, where the client encrypts plaintexts using a deter-
ministic encryption scheme and maintains a search tree on the server into which it inserts
the ciphertexts. The server exploits the search tree when computing queries on encrypted
data. This approach requires a significant amount of communication between the client
and the server both for encryption and queries. Similarly, but rather reversed, Kerschbaum
and Schroepfer [116] present an OPE scheme where the client stores a search tree that
maps plaintexts to ciphertexts. The ciphertexts are chosen such that ordering is preserved
and then inserted along with the plaintexts in the search tree. The server only learns the
ciphertexts. This approach has less communication between client and server but requires
the client to keep a state that is linear in the number of encrypted plaintexts. Both of

1http://www.ciphercloud.com/
2http://perspecsys.com/
3https://www.skyhighnetworks.com/
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these schemes are provably IND-OCPA-secure.
Even though these schemes achieve the ideal IND-OCPA security notion, Ker-

schbaum [115] raises general doubts about the security definition of OPE. Aside the
leakage that is introduced by many schemes on top of the order information (e.g., leaking
half of the plaintext [34] or the first bit where two plaintexts differ [52]), one central problem
of OPE is the leakage of the plaintext frequency. It is easy to distinguish the encryption
of data collections in which elements occur with different frequencies. For instance, the
encryption of the sequences 1, 2, 3, 4 and 1, 1, 2, 2 are not necessarily indistinguishable
according to the IND-OCPA security definition.

In order to solve the frequency-leakage problem, Kerschbaum has recently strengthened
the IND-OCPA definition of OPE so as to further hide the frequency of plaintexts under the
encryption, thus making the encryptions of the above two sequences indistinguishable [115]
(CCS 2015). To this end, Kerschbaum introduces the notion of randomized order, which
is a permutation of the sequence 1, . . . , n where n is the length of the challenge plaintext
sequence. Such a permutation is called randomized order if, when applied to a plaintext
sequence, the resulting plaintext sequence is ordered with respect to “≤”. The original IND-
OCPA security definition requires that the two challenge plaintext sequences agree on all
such common randomized orders, which implies that every pair of corresponding plaintexts
in the two sequences occurs with the same frequency. For instance, this does not hold for
the above two sequences 1, 2, 3, 4 and 1, 1, 2, 2, since the former can only be ordered using
the permutation (1, 2, 3, 4) while the latter can be ordered by any of (1, 2, 3, 4), (1, 2, 4, 3),
(2, 1, 3, 4), or (2, 1, 4, 3). Kerschbaum’s insight to make the definition frequency-hiding is
that the existence of one common randomized order should be sufficient in order not to be
able to distinguish them. For instance, the above sequences both share the randomized
order (1, 2, 3, 4) and should thus be indistinguishable when encrypted. This intuition is
captured by the security notion of indistinguishability against frequency-analyzing ordered
chosen plaintext attacks (IND-FA-OCPA). Besides devising a novel definition, Kerschbaum
also presents a cryptographic instantiation of an OPE scheme and analyzes its security
with respect to the new definition in the programmable random oracle model.

Despite the seeming improvement added by Kerschbaum’s scheme, Grubbs et al. [96]
show that using auxiliary information, such as the plaintext distribution that is likely to
underlie a certain ciphertext collection, this scheme can be broken with significant recovery
rates. In contrast to the practical attacks in [96], our work targets the purely theoretic side
of frequency-hiding OPE and we do not consider having auxiliary information at disposal.

3.1.1. Our contributions
In this work, we present both negative and positive results for frequency-hiding order-
preserving encryption. On the negative side, we observe that the original definition of
IND-FA-OCPA is imprecise [115], which leaves room for interpretation. In particular, the
security proof for the scheme presented in [115] seems to suggest that the game challenger
chooses a randomized order according to which one of the challenge sequences is encrypted.
This fact, however, is not reflected in the definition. Hence, according to a natural
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interpretation of the definition, we show that it is, in fact, not achievable. We develop
this impossibility result for the natural interpretation of IND-FA-OCPA step by step.
Investigating on Kerschbaum’s frequency-hiding scheme [115], we show that it can actually
be attacked–without using auxiliary information as done by Grubbs et al. [96]–allowing
an adversary to win the IND-FA-OCPA game with very high probability. We further
observe that this concrete attack can be generalized into a result that allows us to precisely
quantify an attacker’s advantage in winning the security game for two arbitrary plaintext
sequences that adhere to the security game restrictions. Since Kerschbaum provides formal
security claims for his construction [115], we identify where the security proof is incorrect.
All these considerations on the concrete scheme finally lead to our main negative result:
IND-FA-OCPA security is impossible to achieve or, more precisely, any IND-FA-OCPA
secure OPE scheme is also secure with respect to IND-CPA, which clearly contradicts the
very functionality of OPE. Hence, such an OPE scheme cannot exist.

As mentioned above, the impossibility of IND-FA-OCPA is bound to an imprecision in
the definition in [115], which is only presented informally and lacks necessary information
to make it achievable. We hence clarify those imprecisions. The underlying problem of the
original definition lies in the capability of the game challenger, which, when reading the
definition naturally, is very restricted. The challenger has, for instance, no means to ensure
that the encryption algorithm chooses a common randomized order of the two challenge
plaintext sequences. To remedy those shortcomings, we devise a more formal definition
that removes the consisting imprecisions and makes it possible to devise a frequency-hiding
OPE scheme. In particular, we first augment the OPE model, allowing for specifying a
concrete ordering when encrypting plaintexts, e.g., to concretely say that the sequence
1, 1, 2, 2 should be encrypted sticking to the randomized order (1, 2, 4, 3). Secondly, we show
that an extension of Kerschbaum’s scheme [115], adapted to the new model, is provably
secure with respect to the correct definition.

To summarize, our contributions are as follows.

• We show that the original definition of IND-FA-OCPA is imprecise. We then
demonstrate that the frequency-hiding OPE scheme of [115] is insecure under a
natural interpretation of IND-FA-OCPA. We further generalize the attack, which
allows us to rigorously quantify the success probability of an attacker for two arbitrary
plaintext sequences. To conclude on the concrete scheme, we identify and explain
the problem in the security proof.

• Going one step beyond the concrete scheme, we prove a general impossibility result
showing that IND-FA-OCPA cannot be achieved by any OPE scheme.

• We clarify the imprecise points in the original security definition and provide a
corrected version called IND-FA-OCPA∗.

• To define IND-FA-OCPA∗ in the first place, we have to augment the OPE model,
adding a concrete random order as input to the encryption function.

• Finally, we prove that an extension of [115] fulfills our new definition.
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Overall, we believe this work yields a solid foundation for order-preserving encryption,
showing that a state-of-the-art security definition is impossible to realize along with an
attack on a previously published scheme, and presenting an achievable definition and a
concrete realization.

Outline. The rest of the paper is structured as follows. We recall the OPE model and
its security definitions in Section 3.2. In Section 3.3 we describe the relevant parts of
Kerschbaum’s scheme [115]. We present our attack, its generalization, and the problem in
the security proof in Section 3.4. Section 3.5 proves the impossibility result. In Section 3.6
we present the augmented OPE model and the definition of IND-FA-OCPA∗. Finally, we
show that an adaption of [115] to the new model achieves IND-FA-OCPA∗ in Section 3.7.

3.2. Order-Preserving Encryption
In this section, we briefly review the formal definitions of order-preserving encryption,
originally proposed in [179], following the definition adopted in [115].

Definition 3.1 ((Order-Preserving) Encryption). An (order-preserving) encryption scheme
OPE = (K, E ,D) is a tuple of ppt algorithms where

S ← K(λ): The key generation algorithm takes as input a security parameter λ and outputs
a secret key (or state) S.

(S′, y)← E(S, x): The encryption algorithm takes as input a secret key S and a message
x. It outputs a new key S′ and a ciphertext y;

x← D(S, y): The decryption algorithm takes as input a secret key S and a ciphertext y
and outputs a message x.

An OPE scheme is complete if for all S, S′, x, and y we have that if (S′, y)← E(S, x),
then x← D(S′, y).

The next definition formalizes the property of order preservation for an encryption
scheme. Roughly speaking, this property says that the ordering on the plaintext space
carries over to the ciphertext space.

Definition 3.2 (Order-Preserving). An encryption scheme OPE = (K, E ,D) is order-
preserving if for any two ciphertexts y1 and y2 with corresponding messages x1 and x2 we
have that whenever y1 < y2 then also x1 < x2.

This general definition allows for modeling both stateful as well as stateless versions
of OPE. We focus on the stateful variant in this paper, hence, the key S defined above is
actually the state. The definition, moreover, does not specify where the state has to reside,
allowing us to model client-server architectures.
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3.2.1. Security Definitions

Indistinguishability against ordered chosen plaintext attacks. The standard security
definition for order-preserving encryption is indistinguishability against ordered chosen
plaintext attacks (IND-OCPA) [34]. Intuitively, an OPE scheme is secure with respect to
this definition if for any two equally ordered plaintext sequences, no adversary can tell
apart their corresponding ciphertext sequences. IND-OCPA is fulfilled by several schemes
(e.g., [116,161]). We recall the selective version of the definition in the following.

Definition 3.3 (IND-OCPA). An order-preserving encryption scheme OPE = (K, E ,D)
has indistinguishable ciphertexts under ordered chosen plaintext attacks (IND-OCPA)
if Pr

[
ExpAOCPA(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for any ppt adversary A where

ExpAOCPA(λ, b) is the following experiment:

ExpAOCPA(λ, b)

(X0, X1)← A
if |X0| 6= |X1| ∨ ∃1 ≤ i, j ≤ n. x0,i < x0,j ⊕ x1,i < x1,j then

return 0
S0 ← K(λ)
for 1 ≤ i ≤ |X0| do

(Si, yb,i)← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
if b = b′ then

return 1
return 0

Definition 3.3 requires that the challenge plaintext sequences are ordered exactly the
same, which in particular implies that the plaintext frequency must be the same.

Indistinguishability under frequency-analyzing ordered chosen plaintext attacks. A
drawback of the previous definition is that it can be achieved by schemes that leak the
plaintext frequency, although any two sequences in which plaintexts occur with different
frequencies, e.g., 1, 2, 3, 4 and 1, 1, 1, 1, are trivially distinguishable by the attacker. In order
to target even such sequences, Kerschbaum [115] proposes a different security definition:
instead of requiring the sequences to have exactly the same order, it is sufficient for them
to have a common randomized order. For a plaintext list X of length n, a randomized
order is a permutation of the plaintext indices 1, . . . , n which are ordered according to
a sorted version of X. This is best explained by an example: consider the plaintext
sequence X = 1, 5, 3, 8, 3, 8. A randomized order thereof can be any of Γ1 = (1, 4, 2, 5, 3, 6),
Γ2 = (1, 4, 3, 5, 2, 6), Γ3 = (1, 4, 2, 6, 3, 5), or Γ4 = (1, 4, 3, 6, 2, 5), because the order of 3
and 3 as well as the order of 8 and 8 does not matter in a sorted version of X. Formally, a
randomized order is defined as follows.
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Definition 3.4 (Randomized order). Let n be the number of not necessarily distinct
plaintexts in sequence X = x1, x2, . . . , xn where xi ∈ N for all i. For a randomized order
Γ = γ1, γ2, . . . , γn, where 1 ≤ γi ≤ n and i 6= j =⇒ γi 6= γj for all i, j, of sequence X it
holds that

∀i, j. (xi > xj =⇒ γi > γj) ∧ (γi > γj =⇒ xi ≥ xj)

Using this definition, Kerschbaum [115] defines security of OPE against frequency-
analyzing ordered chosen plaintext attacks. Since the definition is informal in [115], we
report the natural way to read the definition.

Definition 3.5 (IND-FA-OCPA). An order-preserving encryption scheme OPE = (K, E ,D)
has indistinguishable ciphertexts under frequency-analyzing ordered chosen plaintext attacks
(IND-FA-OCPA) if Pr

[
ExpAFA−OCPA(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for any ppt

adversary A where ExpAFA−OCPA(λ, b) is the following experiment:

ExpAFA−OCPA(λ, b)

(X0, X1)← A
if |X0| 6= |X1| ∨X0, X1 do not have a common randomized order then

return 0
S0 ← K(λ)
for 1 ≤ i ≤ |X0| do

(Si, yb,i)← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
if b = b′ then

return 1
return 0

It is clear that while the standard IND-OCPA definition could be achieved, in principle,
by a deterministic encryption scheme, the frequency-hiding variant can only be achieved
by using randomized ciphertexts since otherwise frequencies are trivially leaked.
Discussion. Comparing the two definitions, we observe that IND-FA-OCPA is a general-
ization of IND-OCPA since the constraint on the sequences X0 and X1 allows for a greater
class of instances. In order to see that, we have to consider the constraint, which is

∀1 ≤ i, j ≤ n. x0,i < x0,j ⇐⇒ x1,i < x1,j .

This constraint is an alternative way of saying that X0 and X1 should agree on all
randomized orders. Hence, duplicate plaintexts may occur in any of the sequences, but
they should occur symmetrically in the other sequence as well.

3.3. Kerschbaum’s Construction
We review the OPE scheme of [115]. At a high level, encryption works by inserting
plaintexts into a binary search tree that stores duplicates as often as they occur. When an
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element arrives at its designated node, a ciphertext is selected according to this position.
More formally, let T be a binary tree. We denote by ρ the root of T . For a node t ∈ T

we write t.m to denote the message stored at t and t.c to denote the respective ciphertext.
We further use t.left and t.right to denote the left and right child of t, respectively. There
are several other parameters: N is the number of distinct plaintexts, n is the number of
plaintexts in the sequence that is to be encrypted, k = log(N) is the required number of
bits necessary to represent a plaintext in a node, ` = kλ is this number expanded by a
factor of λ and refers to the size of the ciphertexts. Finally, the construction requires a
source of randomness, which is called in terms of a function RandomCoin() (hereafter called
RC() for brevity). According to Kerschbaum, this function can be implemented as a PRF
that samples uniformly random bits.

We refer in the following to the client as the one storing the binary tree. This is well
motivated in the cloud setting where the client outsources encrypted data to the cloud
server who may not have access to the actual message-ciphertext mapping. One may
wonder why a client that anyway has to store a mapping of plaintexts to ciphertexts cannot
simply store the data itself: Kerschbaum also presents an efficient compression technique
for the tree which in some cases can lead to compression ratios of 15.

Implementation of S ← K(λ). The client sets up an empty tree T . The state S consists of
the tree T as well as all parameters k, `, n, and N . Furthermore, S contains the minimum
ciphertext min = −1 and the maximum ciphertext max = 2λ log(n). These minimum and
maximum numbers are only necessary to write the encryption procedure in a recursive
way. Usually, n is not known upfront, so it has to be estimated. If the estimation is too far
from reality, the tree has to be freshly setup with new parameters.

Algorithm 15 E(S, x) where S = t,min,max

1: if t = ⊥ then
2: t.m = x
3: t.c = min + bmax−min

2 c
4: if t.c = 0 then
5: rebalance the tree
6: end if
7: return t.c
8: end if
9: b← −1

10: if x = t.m then
11: b← RC()
12: end if
13: if b = 1 ∨ x > t.m then
14: E(t.right, t.c+ 1,max, x)
15: else
16: if b = 0 ∨ x < t.m then
17: E(t.left,min, t.c− 1, x)
18: end if
19: end if

Implementation of (S′, y) ← E(S, x). To encrypt a plaintext x, the client proceeds as
follows. Whenever the current position in the tree is empty (especially in the beginning
when the tree is empty), the client creates a new tree node and inserts x as the plaintext
(lines 15.1–15.8). The ciphertext is computed as the mean value of the interval from min
to max (line 15.3). In particular, the first ciphertext will be 2λ log(n)−1. Whenever there
is no ciphertext available (line 15.4), the estimation of n has shown to be wrong and the
tree has to be rebalanced. We do not detail this step here since it is not important for our
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attack; instead we refer the interested reader to [115] for a detailed explanation. If instead,
the current position in the tree is already occupied and the message is different from x,
then we either recurse left (line 15.17) or right (line 15.14) depending on the relation
between the occupying plaintext and the one to be inserted. The same happens in case
x is equal to the stored message, but then we use the RC procedure to decide where to
recurse (lines 15.9–15.12).

Implementation of x← D(S, y). To decrypt a given ciphertext y, we treat the tree as a
binary search tree where the key is t.c and search for y. We return t.m as soon as we reach
a node t where t.c = y.
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Figure 3.1.: An example for different binary search trees after inserting the sequence X =
1, 5, 3, 8, 3, 8, depending on the output of RC.

Example 3.1. To simplify the access to the construction, we review a detailed example.
Figure 3.1 shows the four possible resulting binary search trees after inserting X =
1, 5, 3, 8, 3, 8, depending on the output of RC. We use a ciphertext space of {1, . . . , 256}.
Each different output of RC corresponds to one of the four possible randomized orders Γi
for 1 ≤ i ≤ 4.

Security. The scheme is proven secure against frequency-analyzing ordered chosen plaintext
attack. To this end, [115] constructs a simulator which, given the two challenge plaintext
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sequences, produces identical views independent of which of two sequences is chosen. We
investigate on the proof in the next section.

3.4. An Attack on Kerschbaum’s FH-OPE Scheme
In this section, we investigate on the security achieved by Kerschbaum’s construction [115].
In order to start, we observe that Kerschbaum proves his construction secure. However,
as we show later in this section, the security proof makes an extra assumption on the
game challenger’s capabilities, namely that the challenger can dictate the randomized
order used by the encryption algorithm to encrypt either challenge plaintext sequence.
Using the natural interpretation of IND-FA-OCPA (see Definition 3.5), this additional
assumption is not justified and, hence, Kerschbaum’s scheme is no longer secure. We thus
present a concrete attack, which is related to the distribution based on which randomized
sequences are chosen for encryption (Section 3.4.1). We then explain more in detail why
Kerschbaum’s security result is incorrect with respect to Definition 3.5 (Section 3.4.2).
Finally, we show that even if randomized orders are chosen uniformly at random, the
scheme is still vulnerable (Section 3.4.3).

3.4.1. A Simple Attack

1
2λ log(n)−1

⊥
2

2λ log(n)−1 + 2λ log(n)−2

⊥ . . .

⊥
n∑n

i=1 2λ log(n)−i

Figure 3.2.: The resulting binary search tree when encrypting sequence X0.

Our attack consists of two plaintext sequences that are given to the challenger of
the FA-OCPA game, who encrypts step-by-step randomly one of the two sequences. By
observing the sequence of resulting ciphertexts, we will be able to determine which sequence
the challenger chose with very high probability.

Consider the two plaintext sequences X0 = 1, 2, 3, . . . , n and X1 = 1, . . . , 1 such that
|X0| = |X1| = n. Clearly, both X0 and X1 have a common randomized order, namely
Γ = 1, 2, 3, . . . , n, i.e., the identity function applied to X0. Moreover, consider the binary
search tree produced by the scheme when encryptingX0 in Figure 3.2. This tree is generated
fully deterministically since the elements in X0 are pairwise distinct, or equivalently, X0
has only a single randomized order. Now let us investigate how X1 would be encrypted by
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Algorithm 15. In every step, the RC procedure has to be called in order to decide where
to insert the incoming element. If coins are drawn uniformly at random then only with
a probability of 1/2n(n−1)/2 RC will produce the bit sequence 1 . . . 1 of length n(n− 1)/2,
which is required in order to produce the exact same tree as in Figure 3.2. Notice that
the RC sequence must be of length n(n − 1)/2 since for every plaintext that is inserted
on the right, the function has to be called once more. Hence, the Gaussian sum

∑n−1
i=1 i

describes the number of required bits. Consequently, an adversary challenging the FH-
OCPA challenger with X0 and X1 will win the game with probability (1/2)(1−1/2n(n−1)/2)
where the factor 1/2 accounts for the probability that the challenger chooses X1. Hence, if
X1 is chosen, our attacker wins with overwhelming probability, otherwise he has to guess.
Notice that the combined probability is nevertheless non-negligible.

In conclusion, the central observation is that the number of calls to RC strongly
depends on how many equal elements are met on the way to the final destination when
encrypting an element. Therefore, not all ciphertext trees are equally likely.

3.4.2. Understanding the Problem
In this section, we analyze the core of the problem.

Artifacts of the Construction. The analysis in the previous section shows that randomized
orders are not drawn uniformly random. Otherwise, the adversary’s success probability
would be (1/2)(1 − 1/n!) since X1 has n! many randomized orders and the probability
that a specific one is chosen uniformly is 1/n!. Instead, we analyzed the probability that
the encryption algorithm chooses that specific randomized order, which depends on the
number of calls to RC and its results, which should all be 1.

In order to exemplify this artifact, we consider the sequence 1, 1, 1. We depict the
different trees when encrypting the sequence in Figure 3.3. As we can see, different trees
require a different number of calls to RC, and have thus a different probability of being the
encryption tree. On the one hand, the trees in Figure 3.3a and Figure 3.3c–3.3e all have a
probability of 1/8 to be the result of the encryption since each of them requires RC to be
called three times. On the other hand, the two trees in Figure 3.3b have a probability of
1/4 of being chosen each since RC has to be called only twice.

To formally capture the probability range of different randomized orders, we want to
understand which randomized orders are most probable and which ones are least probable.
Before we start the analysis, we observe that it does not matter whether we consider the
probability or the number of calls to RC, since every call to RC adds a factor of 1/2 to the
probability that a certain randomized order is chosen. So as we have seen in the concrete
counter-example in the previous section and the example above, a tree with linear depth
represents the least likely randomized order since it requires the most calls to RC, which
increases by one every time a new element is encrypted. Conversely, randomized orders
represented by a perfectly balanced binary tree are more likely since they require the
minimum number of calls to RC. Let H be the histogram of plaintext occurrences in a
sequence. Then, as before, the number of calls to RC can be computed as the sum over

73



3. On the Security of Frequency-Hiding Order-Preserving Encryption

⊥
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(a) Γ1 = (1, 2, 3),
RC() = 111.

(b) Γ2 =
(2, 1, 3),
RC() = 01,
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(2, 3, 1),
RC() = 10.
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(e) Γ6 = (3, 1, 2),
RC() = 001.

Figure 3.3.: The trees displaying different randomized orders for the sequence 1, 1, 1.

every node’s depth in the subtree in which all duplicate elements reside, which is at least
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where we make use of the fact that
(
n
2
)n

2 ≤ n! ≤ nn in the first inequality. All other
randomized orders lie probability-wise somewhere in between.

Proof Technique. Despite our counter-example, the scheme is proven secure in the
programmable random oracle model [115]; this obviously constitutes a contradiction. To
understand the problem in depth, we have to have a closer look at the security proof. The
idea behind the proof is as follows: the challenger selects uniformly at random a common
randomized order with respect to the two challenge sequences. This common randomized
order is then given as source of randomness to the random oracle which answers questions
accordingly. More precisely, let Γ = (γ1, . . . , γn) be the selected order. Whenever the
algorithm cannot decide where to place a plaintext xj in the search tree, i.e., xi = xj for
i < j, meaning that xi is an entry that is already encrypted in the tree, then the challenger
asks the random oracle for a decision on i and j. The oracle answers with 1 if γi < γj
and with 0 if γi > γj (notice that γi 6= γj by Definition 3.4). In this way, the challenger
produces a search tree and corresponding ciphertexts that are valid for both challenge
sequences and which are in fact independent of the bit. Hence, the adversary has no chance
of determining which sequence has been chosen other than guessing.

The Simulation is Incorrect. The proof strategy clearly excludes the attack described in
the previous section. The reason is that the RC function is supposed to output uniformly
random coins. As we have seen, even if RC outputs truly random coins then not every
possible randomized order of the chosen sequence is equally likely. Hence, the choice of the
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random sequence is in two aspects unfaithful: first, the challenger restricts the number of
randomized orders to those that both sequences have in common while RC does not know
the two sequences and can, hence, not choose according to this requirement. Second, the
fact that the choice is uniform does not reflect the reality. As we have seen, one artifact of
the construction is that not every randomized order is equally likely. Consequently, forcing
RC to generate output based on a common randomized order changes the distribution
from which coins are drawn and, hence, neither all randomized orders are possible nor are
their probabilities of being chosen correctly distributed. In the extreme case described in
Section 3.4.1, it even would disallow all but one randomized order to be the result of the
encryption routine. As a consequence, the proof technique changes the behavior of RC to
an extent that makes the simulation incorrect.

3.4.3. Generalizing the Attack in an Ideal Setting
Since the scheme is vulnerable to an attack and it chooses the randomized order under
which a sequence is encrypted in a non-uniform way, we find it interesting to also investigate
whether the scheme is still vulnerable in an ideal setting where the choice of the randomized
order happens uniformly.

The answer to this question is unfortunately positive, as the following result shows.
Concretely, only if two sequences agree on essentially all randomized orders, the adversary
has a negligible advantage of distinguishing them.

Theorem 3.1. Let X0 and X1 be two plaintext sequences of length n. Further assume
that X0 has m0 and X1 has m1 randomized orders, respectively, and that they have m
randomized orders in common. Then, for the idealized construction of [115] which encrypts
plaintexts under a uniformly chosen randomized order, there exists an adversary whose
success probability in winning the IND-FA-OCPA game is at least 1−mm0+m1

2m0m1
.

Proof. We construct an adversary, which submits both X0 and X1 to the FA-OCPA
challenger. Since X0 has m0 randomized orders, the probability that one of those in
common with X1 is chosen by the encryption procedure is m

m0
due to the uniformly random

behavior. Likewise, for X1, the probability that a common randomized order is chosen by
the encryption procedure is m

m1
. Hence, depending on the challenger’s bit b, the adversary

sees a non-common randomized order with probability 1− m
mb

, which also reflects its success
probability for winning the game when the challenger picks b. Consequently,

Pr [A wins] =
∣∣∣Pr

[
ExpAFA−OCPA(λ, 1) = 1

]
− Pr

[
ExpAFA−OCPA(λ, 0) = 1

]∣∣∣
= 1

2

(
1− m

m0

)
+ 1

2

(
1− m

m1

)
= 1−mm0 +m1

2m0m1

In the example from the previous section, we have parameters m0 = 1, m1 = n!, and
m = 1. Substituting those into Theorem 3.1, we get the aforementioned non-negligible
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success probability of

1−mm0 +m1
2m0m1

= 1− 1 + n!
2n! = 1

2

(
1− 1

n!

)
.

3.5. Impossibility of IND-FA-OCPA
The previously presented results raise the question if IND-FA-OCPA, as presented in [115]
can be achieved at all. It turns out that this is not the case: in this section, we prove
an impossibility result for frequency-hiding order-preserving encryption as defined in
Definition 3.5. Formally we prove the following theorem.

Theorem 3.2. Let X0 and X1 be two arbitrary plaintext sequences of the same length
that do not share any randomized order. Let furthermore OPE be an order-preserving
encryption scheme secure against IND-FA-OCPA. Then, the probability of distinguishing
whether X0 is encrypted or whether X1 is encrypted with OPE is negligibly close to 1/2.

Before we prove the theorem using Definition 3.5, we argue why it implies the impos-
sibility of frequency-hiding OPE. According to the theorem, no adversary can distinguish
the encryptions of two arbitrary sequences of his choice that are ordered in a completely
different manner. This constitutes a formulation of the IND-CPA property for multiple
messages, restricted to sequences that do not share a randomized order. The restriction,
however, is not necessary since sequences that share a randomized order are trivially indis-
tinguishable by IND-FA-OCPA. To exemplify, let the two sequences be X0 = 1, 2, . . . , n and
X1 = n, n− 1, . . . , 1, so X1 is the reverse of X0. According to Theorem 3.2, no adversary
can distinguish which one of the two is encrypted. However, due to the correctness of OPE
it must be the case that the encryption Y ∗ fulfills for all i and j and b ∈ {0, 1}

y∗i ≥ y∗j =⇒ xbi ≥ xbj .

Consequently, if X0 is encrypted we have y∗i < y∗j for i < j and vice versa for X1. Hence,
an adversary could trivially distinguish which of the two sequences is encrypted. Hence, by
contraposition of Theorem 3.2, an IND-FA-OCPA-secure OPE scheme cannot exist.

Proof of Theorem 3.2. In the security game G(b), on input X0 and X1 by A, the challenger
encrypts sequence Xb, gives the ciphertexts Y ∗ to A, who replies with a guess b′. A wins
if b = b′.

We define three games. G1 = G(0). For G2, we select a sequence X∗ which has a
randomized order in common with both X0 and X1. Notice that such a sequence always
exists, e.g., take the series a, a, . . . , a (n times) for arbitrary a in an appropriate domain.
Instead of encrypting X0 as in G1, we now encrypt X∗. Finally, G3 = G(1).

In order to show that G1 ≈ G2, assume that there exists a distinguisher A that can
distinguish between G1 and G2 with non-negligible probability. Then we construct a
reduction B that breaks IND-FA-OCPA. On A’s input, B forwards X0 and a sequence X∗
to the IND-FA-OCPA challenger. The challenger answers with Y ∗, which B again forwards
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to A. A outputs a bit b′, which B again forwards to the challenger. The simulation is
obviously efficient. If the internal bit of the IND-FA-OCPA challenger is 0, we perfectly
simulate G1, while we simulate G2 when the bit is 1. Hence, the success probability of A
carries over to B since B only forwards messages. Since we assumed that A can successfully
distinguish G1 and G2 with non-negligible probability, it must be the case that B wins the
IND-FA-OCPA game with non-negligible probability. This is a contradiction.

The proof of G2 ≈ G3 is symmetric to the one above. In conclusion, we have that
G1 ≈ G2 ≈ G3, and hence, G(0) ≈ G(1), meaning that every adversary can distinguish
between encryptions of X0 and X1 that do not share a randomized order only with negligible
probability.

3.6. A New Definition for FH-OPE
Since the notion of indistinguishable ciphertexts under frequency-analyzing ordered chosen
plaintext attacks is not achievable, it is desirable to understand the problem of the original
definition and try to come up with a suitable one that still captures the idea of frequency-
hiding but is achievable.

Interestingly enough, the solution to our problem can be found by investigating again
Kerschbaum’s security proof. The proof builds a random oracle that overcomes the issues
of the definition. Even though this construction of the oracle is incorrect, as we have
shown previously, it helps us identify the problem with the definition. In the definition,
the challenger has no means to tell the encryption algorithm which randomized order to
choose when encrypting the chosen challenge sequence. Hence, it could be the case that
the algorithm chooses an order that is not common to both challenge sequences. Had the
challenger a way to decide which order to encrypt with, the problem were gone.

Consequently, we tackle the problem from two angles: (1) we augment the OPE
model by one more input to the encryption function, namely, the randomized order that is
supposed to be used and (2) we strengthen the challenger’s capabilities during the security
game: it may now, additionally to selecting which sequence to encrypt, also choose a
common randomized order as input to the encryption algorithm. This new definition
still captures the notion of frequency-hiding in the same way, it just excludes the attacks
presented in this work and makes the definition, thus, achievable.

3.6.1. Augmented OPE Model
We present the augmented model in the following definition. Notice that the only difference
to Definition 3.1 is the additional input Γ to the encryption function. This additional
input serves the purpose of deciding from outside of the function, which randomized order
should be used to encrypt the plaintexts. In contrast, standard OPE decides about the
ordering randomly inside of the function. We stress that augmented OPE is more general
than OPE since the input Γ can be replaced by the result of a call to a random function.
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Definition 3.6 (Augmented OPE). An augmented order-preserving encryption scheme
OPE∗ = (K, E ,D) is a tuple of ppt algorithms where

S ← K(λ): The key generation algorithm takes as input a security parameter λ and outputs
a secret key (or state) S;

(S′, y)← E(S, x,Γ): The encryption algorithm takes as input a secret key S, a message x,
and an order Γ and outputs a new key S′ and a ciphertext y;

x← D(S, y): The decryption algorithm x← D(S, y) takes as input a secret key S and a
ciphertext y and outputs a message x.

3.6.2. The New Definition IND-FA-OCPA∗

The new security game is close in spirit to Definition 3.5. The difference is that (1) it
is defined over an augmented OPE scheme which makes the randomized order used for
encryption explicit and (2) the challenger chooses that order uniformly at random from
the orders that both challenge sequences have in common. Since we define the notion
adaptively, we introduce some new notation with respect to randomized orders.

In the following definition, we let Γ = γ1, . . . , γn and we use the notation Γ↓i to denote
the order of the sequence γ1, . . . , γi. Notice that this order is unique since Γ is already an
order. For instance, take the randomized sequence Γ = 1, 6, 4, 3, 2, 5. Then, Γ↓3= 1, 3, 2,
which is the order of 1, 6, 4.

Definition 3.7 (IND-FA-OCPA∗). An augmented order-preserving encryption scheme
OPE∗ = (K, E ,D) has indistinguishable ciphertexts under frequency-analyzing ordered
chosen plaintext attacks if Pr

[
ExpAFA−OCPA∗(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for

any ppt adversary A where ExpAFA−OCPA∗(λ, b) is the following experiment:

ExpAFA−OCPA∗(λ, b)

(X0, X1)← A
if |X0| 6= |X1| ∨X0, X1 do not share a common randomized order then

return 0
Select Γ uniformly at random from the common randomized orders of X0, X1

S0 ← K(λ)
for 1 ≤ i ≤ |X0| do

(Si, yb,i)← E(Si−1, xb,i,Γ↓i)
b′ ← A(yb,1, . . . , yb,n)
if b = b′ then

return 1
return 0
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3.7. Constructing Augmented OPE

We show how to construct an augmented OPE scheme. Interestingly enough, the key
observation to OPE∗ is that the scheme of [115], which we presented in Section 3.3 can be
modified so as to fit the new model.

As we introduce a third input to the encryption function, namely an order that is as
long as the currently encrypted sequence plus one, we have to show how to cope with this
new input in the construction. The key idea is quite simple: usually, the encryption scheme
draws randomness from a PRF when the plaintext to be encrypted is already encrypted,
in order to decide whether to move left or right further in the tree. The additional input
solves this decision problem upfront, so there is no need for using randomness during the
encryption.

While the setup and re-balancing algorithms are as described in [115], we describe the
new encryption algorithm in Algorithm 16. Furthermore, we require that every node in
the tree stores its index in the plaintext sequence, i.e., we add an attribute index to each
node t. We further assume that the index of the message that is currently to be encrypted
is the length of the order Γ. As we can see, the only difference between Algorithm 15 and
Algorithm 16 is the behavior when the message to be inserted is equal to the message
currently stored at t. Then, the order Γ is considered so as to decide whether to traverse
the tree further to the left or right.

Algorithm 16 E(S, x,Γ) where S = t,min,max and Γ = γ1, . . . , γk
1: if t = ⊥ then
2: t.m = x
3: t.index = k
4: t.c = min + bmax−min

2 c
5: if t.c = 0 then
6: rebalance the tree
7: end if
8: return t.c
9: end if

10: b← −1

11: if x = t.m then
12: b← γk > γt.index
13: end if
14: if b = 1 ∨ x > t.m then
15: E(t.right, t.c+ 1,max, x,Γ)
16: else
17: if b = 0 ∨ x < t.m then
18: E(t.left,min, t.c− 1, x,Γ)
19: end if
20: end if

The encryption algorithm also nicely demonstrates that it does not matter from which
domain the ordering draws its elements. The only important property of such an ordering
is the relation of the single elements to each other, i.e., that (1) all elements of the order
are distinct and (2) whether γi < γj or the other way around. We do, hence, not require
the shrinking function Γ↓i for this construction: when encrypting an overall sequence of
plaintexts with a predetermined randomized order Γ, it is sufficient to just cut the Γ to
size i when encrypting the i-th element. The reason is that the relative ordering of the
first i elements is not changed after shrinking, which suffices to let the algorithm decide
about where to branch.
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3.7.1. Formal Guarantees
We argue in this section that the tree-based scheme presented in the previous section is
IND-FA-OCPA∗ secure. The reason for that is as follows: first, the challenger can select
a randomized order that is in common to both sequences and give that chosen order to
the encryption algorithm. Second, no matter which of the two sequences is encrypted
according to the order, the resulting ciphertexts are equivalent in both cases. Hence, the
adversary cannot do better than guessing the bit, since the ciphertexts are independent of
the underlying plaintexts.

Theorem 3.3. The OPE∗ scheme presented in Section 3.7 is IND-FA-OCPA∗ secure.

Proof. Let A be an arbitrary adversary for the game in Definition 3.7. Let furthermore X0
and X1 be the two plaintext sequences chosen by A. By definition, those sequences share
at least one common randomized order. Let Γ be one of those common orders, selected
uniformly at random from the universe of common randomized orders. When encrypting
either X0 or X1, Algorithm 16 uses Γ to decide where to branch. Hence, Algorithm 16’s
decisions are independent of the input plaintext sequence, and thus independent of the
chosen bit b. Consequently, all information that A receives from the challenger are
independent of b and he can thus, only guess what b is. This concludes the proof.
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Part III
Coercion-Resistant Rating Platforms

You can’t go around building a better world for people. Only people can build
a better world for people. Otherwise it’s just a cage.

Terry Pratchett, Witches Abroad
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4. CRRP: Coercion-Resistant Rating
Platforms

User ratings are a central asset for a variety of online services and an essential feature is
their trustworthiness, which can be reduced to four fundamental properties: authentication
of users in order to avoid double-rating, public verifiability of the rating procedure in order
to prevent compromised service providers from biasing the results, privacy of users and their
ratings, which is necessary in sensitive scenarios, and coercion-resistance, which is crucial
to avoid rate buying or forced rating. While the first three properties can be achieved by
state-of-the-art privacy-enhancing technologies such as attribute-based credentials (ABCs),
realizing a rating platform that achieves the four of them is an open problem. While
coercion-resistance has been studied in remote e-voting protocols, achieving this property
in the presence of ABCs calls for profound technical innovations, since existing e-voting
solutions for coercion-resistance are incompatible with ABCs.

In this chapter, we present CR2P, the first ABC-based coercion-resistant rating plat-
form. Our cryptographic construction relies on a novel ABC construction called signatures
on randomizable commitments, which hides any sensitive user attribute, even from the
user herself in order to protect her privacy in case of coercion, and a coercion-resistant
user identification token, which determines the owner of an ABC. We formally defined
and proved the security properties offered by CR2P, and we conducted an experimental
evaluation demonstrating the feasibility of our approach. Finally, we show that CR2P can
be also used for remote e-voting, featuring a stronger attacker model than state-of-the-art
coercion-resistant remote e-voting protocols.

4.1. Introduction

Building trust in rating platforms. Rating platforms play a crucial role in a number of
online services, such as e-healthcare, travel agencies, and e-commerce. A fundamental
requirement for a functioning rating platform is its trustworthiness, which can be charac-
terized by four fundamental properties, namely, authentication, privacy, verifiability, and
coercion-resistance, as discussed below.

Authentication of users is necessary to avoid double-rating or rating from unauthorized
users. This is typically enforced by letting users login into the system via their username
and password. This habit, however, clearly gives rise to a privacy problem, since users
might want to hide their identity in sensitive scenarios (e.g., e-healthcare) or fear to be
punished in case their vote is leaked by the service provider (e.g., a student negatively rating
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a lecture on the university’s rating course evaluation platform). Another crucial property
is the verifiability of the rating procedure, which is crucial in case users do not necessarily
trust the service provider (e.g., a university might have an interest in demonstrating a large
appreciation of its courses, or an e-health rating platform might be financed by doctors
themselves). These three properties, despite their seemingly contradictory nature, can be
achieved by so called attribute-based credentials [14, 18, 23, 24, 39, 74, 84, 105, 143]: the idea
is to let the service provider give users a digital signature on their attributes (e.g., student
id, registered courses, etc.) and to let them authenticate through zero-knowledge proofs
revealing the properties of the attributes required for authentication and nothing else (e.g.,
for a course evaluation, the fact that the student is registered in the current edition of that
course, or for an e-health platform, the identity of the doctor performing the diagnosis).
Attribute-based credentials further support so called service-specific pseudonyms [143], a
pseudonym mechanism which allows one to track user actions within a certain service (e.g.,
to check that each patient rates the same doctor at most once) while making user actions
unlinkable across different services (e.g., the ratings of different doctors in order to prevent
one from recovering the identity of the patient by correlating the doctors she has been
treated by).

A final, crucial property of rating platforms is the resistance to coercion, which can
take the form of rate buying [7, 61, 79, 156] and forced rating [20, 164]. Intuitively one
would like to prevent a coercer forcing the user to give away her secret material to rate:
attribute-based credentials, unfortunately, fall short of providing coercion-resistance [120],
since the mere possession of the credential suffices to rate. Furthermore, the credential
itself reveals all the user attributes, thereby giving up any form of attribute confidentiality
in case of coercion.

Coercion-resistance in e-voting. Coercion-resistance is well studied in the e-voting litera-
ture [112], where it is known to be hard to achieve and indeed provided only by a handful
of protocols. A common technique [112] to achieve coercion-resistance is to let the registrar
(the credential issuer) equip the voter with a credential that allows her to form a ballot,
which can be verified by the talliers (the service provider). In case of coercion, the credential
and all transcripts related to it can be faked by the voter, leaving the coercer oblivious to
whether the credential is real or not. A sophisticated tallying protocol, typically based
on mixing, allows for dropping invalid votes without revealing to the coercer whether his
vote has been counted or not, which is crucial to preserve coercion-resistance. Interestingly
enough, the underlying attacker model considers both a distributed registrar and tallier,
where at least one party per role must be honest. This attacker model is not compatible
with the setup of rating platforms as it is unclear how to distribute the credential issuer,
for instance, the doctor in an e-health scenario or the university in a course evaluation
system. Furthermore, the tallying procedure used in e-voting protocols typically relies
on information provided by the registrar to the service provider, while it is unrealistic,
and arguably undesirable given the supposedly independent nature of rating platforms,
to assume in the latter a direct communication between credential issuers and service
providers.
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4.1.1. Our contributions
In this chapter, we present CR2P, the first privacy-preserving rating platform that supports
attribute-based authorization with attribute-hiding, anonymous ratings, coercion-resistance,
and verifiability. We provide rigorous cryptographic definitions for all these properties
in a strong attacker model, where the credential issuer,1 the other users, and all service
providers but one can arbitrarily misbehave and collude.2 Following the literature, we
assume a distributed service provider handling the rating procedure: in the case of rating
platforms, we believe service providers have an incentive in joining efforts and building a
trustworthy environment for users to post their ratings, given the importance of ratings in
marketing strategies. In particular, the contributions of this chapter can be summarized as
follows:

• a definitional framework for rating platforms, capturing attribute-hiding, anonymity,
coercion-resistance, and verifiability in terms of game-based definitions;

• the first cryptographic construction provably achieving the aforementioned properties.
This is based on two novel cryptographic primitives, namely, signatures on randomiz-
able commitments (SRC) and coercion-resistant identification tokens. The former, in
particular, is a primitive of independent interest, which consists of a signature on
randomizable commitments, which does not leak the committed values and allows
for a two stage verification. In particular, a user owning a SRC can randomize it and
start the verification against a subset of the committed values, thereby creating an
intermediate signature, which is unlinkable to the original one and whose verification
can be finalized against the remaining committed values (if the opening information
is known). In our protocol, this functionality is leveraged as follows: for each of her
attributes, the user is provided with a SRC by the credential issuer that combines
the attribute with information linkable to the user, e.g., the user’s verification key.
In order to form a rating, the user randomizes the signature and its commitment
for unlinkability reasons and starts the verification against her verification key. She
sends the so-created intermediate signature to the rating system along with a proof
of knowledge of the matching signing key. The rating system can then finalize the
verification against the attributes necessary for authorizing the rating, which are
provided in encrypted form and are only revealed in the tallying phase.

• a proof of security against an attacker model that is stronger than the one adopted in
e-voting protocols (see, e.g., [55]): in particular, the latter assume both the registrar
and the tallier (i.e., the credential issuer and the service provider) to be distributed
and at least one party for each role to be honest, while CR2P considers a single
malicious issuer.

1An exception is the attribute-hiding property, which is meaningful only against honest credential issuers,
since they know the user’s attributes anyway.

2In fact, we require that at least one service provider is honest only for coercion-resistance and attribute-
hiding. Anonymity and verifiability hold true even if all service providers are malicious.
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• a concrete cryptographic instantiation, which we implemented and experimentally
evaluated in order to demonstrate the feasibility of our approach.

Outline. The rest of this chapter is organized as follows. We present our definitional
framework in Section 4.2. In Section 4.3 we introduce our novel primitive, signatures on
randomizable commitments. We describe and explain our main construction of CR2P
in Section 4.4. The formal guarantees are summarized in Section 4.5. We describe the
implementation and experimental results in Section 4.6. Finally, Section 4.7 discusses the
related work.

4.2. Definitional Framework
We start with notational conventions (Section 4.2.1), formally define the concept of a
rating system (Section 4.2.2), intuitively describe the security and privacy properties
(Section 4.2.3), and discuss the attacker model (Section 4.2.4).

4.2.1. Notation
We denote by (SP1 , . . . , SPk)← C〈P1(inP1), . . . , Pk(inPk)〉 the protocol C, which is inter-
actively executed by the parties P1, . . . , Pk where inx is the input and Sx is the state of
x ∈ {P1, . . . , Pk}. The input always implicitly contains a party’s state. If SPi is not affected
by the protocol or if inPi does not exist, we omit it. We use S‖x to denote the concatenation
of a state S with x and we assume a set-like structure on states, i.e., an unordered collection
of elements. We let τ refer to the protocol-dependent coercion-resistance strategy, which
is technically defined as a function taking as input the user’s state S and outputting a
fake state S′. Intuitively, S and S′ should be indistinguishable by the coercer. Moreover,
we let ~at denote the list of attributes (at1, . . . , atk) and ~at|I the projection of ~at to the
indices in I. We write σ(~at) to refer to the credential on ~at, which does not reveal any of
the attributes ~at. We denote by X[n] the sequence X1, . . . , Xn. Finally, we write x←$D if
x is sampled uniformly at random from D.

4.2.2. Definition of CR2P
We define CR2P as a set of (interactive) protocols executed by a credential issuer CI,
users U, and a service provider SP. We follow standard assumptions in the e-voting
literature [55, 112] and postulate a distributed SP, i.e., mutually distrustful SP’s (e.g.,
different companies or organizations) that collaborate to offer the rating service. For the
remainder of the paper, when we say “the SP’s” we refer to the distributed parties behind
SP. Furthermore, we assume a trusted bulletin board BB [55], which can be realized in
centralized [99] or distributed fashion [62].

The Setup protocol bootstraps the system; the CIReg protocol between CI and U
generates an ABC, which is stored by the user; the SPReg protocol between SP1, . . . ,SPm
and U generates an identification token, which is stored by the user; the Coerce protocol
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Figure 4.1.: The model for CR2P with entities and functions.

produces a fake state for the coercer; Rate generates a ballot for U formed of the identification
token, the credential, and a rating. U uses Post to send the ballot to BB. Finally, the
Tally protocol, which is executed by all SP’s jointly, publishes valid ratings along with a
correctness proof on BB, so that everyone can verify the outcome’s correctness. Figure 4.1
illustrates the following definition.

Definition 4.1 (CR2P). A CR2P consists of the following (interactive) ppt protocols,
executed between CI, U[n], and SP[m]:

{SCI, SU[n] , SSP[m]} ← Setup(1λ, svc, I): the setup protocol takes as input the security pa-
rameter λ, a service description svc, and a set I of attributes that need to be revealed
for eligibility purposes. It outputs the states for all parties.

(SUi‖σ(~ati))← CIReg〈CI(~ati),Ui〉: CI generates the credential σ(~ati) from the list of at-
tributes ~ati. Ui stores the credential.

SUi‖(tkni, tsx i)← SPReg〈Ui, SP[m]〉: The SP’s and Ui establish an identification token tkni,
which Ui stores along with the communication transcript tsx i. tkni is later used to
rate.

S′Ui ← Coerce(SUi): the coercion-resistance protocol allows the user to produce a fake state
S′Ui = τ(SUi).

SUi‖B ← Rate(σ(~ati), ~ati|I , v, tkni): this algorithm generates a ballot B from the credential
σ(~ati), the attributes ~ati|I , the identification token tkni, and a rating v. B is added
to Ui’s state.
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BB′ ← Post(BB, B): the ballot posting algorithm appends a ballot B to the bulletin board
BB, generating an augmented bulletin board BB′.

BB‖(V, π)← Tally〈SP[m],BB〉: the tallying protocol is executed by all SP’s on BB and
publishes the results V of the rating system on BB along with a correctness proof π.
Usually, V contains the collection of ratings contained in valid ballots.

In the e-health example, the patient (U) visits the doctor (CI), thereby executing the
CIReg protocol. To rate her doctor, the patient contacts the rating service RateMyDoc (SP)
via SPReg. To compute and submit a rating, the patient uses Rate and Post. Finally, to
compute a final, verifiable rating, the distributed computation parties behind RateMyDoc
run the Tally protocol.

4.2.3. Security and Privacy Properties
4.2.3.1. Adversary Interfaces

In the security and privacy definitions, the adversary has access to a subset of the oracles
reported in Figure 4.2. The design of the oracles is driven by the interface offered by CR2P
to users, credential issuers, and service providers. Moreover, they use four different sets
Coe, Cor , Rated, RCI, and RSP to keep track of the coerced users, the corrupted service
providers, the users that already created a ballot, the users registered with CI, and those
registered with SP. We treat these variables as global, accessible by any oracle in a game.

4.2.3.2. Attribute-Hiding

Users have to reveal some attributes to let the rating platform decide about eligibility. For
example, to rate the doctor, RateMyDoc needs to know the date of the medical treatment
to judge the currency of a rating. Consequently, all other attributes (which might be
necessary for other services or rating platforms) should stay hidden to that platform. The
list of required attributes is fixed in the setup protocol for every service provider. Moreover,
a coercer who only sees the bulletin board before the Tally protocol is executed, should
never learn any attribute, not even if he also corrupted the credential issuer after generation
of a credential. Intuitively, we say that a CR2P is attribute-hiding if the adversary cannot
extract any attributes from credentials before the Tally protocol is executed and after that
point, they only learn those publicly announced in the setup protocol. We allow for user
coercion, forcing them to leak their internal state. Incidentally, the service providers could
request all attributes of a credential without violating attribute-hiding if the full set of
attributes is announced during setup. In order to protect the user, in practice, attribute-
hiding has to be combined with accountability. If, for instance, the service provider violates
any regulation with his declared attribute set, then this public evidence can be used to
hold him accountable for that (e.g., a job employer is not allowed to request the pregnancy
status of a female applicant). This is formalized by the following cryptographic game.
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Setup(I, n,m)
{SCI, SU[n] , SSP[m]} ← Setup(1λ, I)

RCI, RSP,Cor ,Coe,Rated ← ∅
BB← [ ], fTally ← 1
return {SCI, SU[n] , SSP[m] , RCI,

RSP,Cor ,Coe,Rated}

ObCIReg(i, ~ati)
if (∀x. (i, x) /∈ RCI) ∧ i /∈ Coe then

if b then

(SUi
‖(σ(~ati))← CIReg〈A(~ati),Ui〉

else

(SUi
‖(σ(~ati))← CIReg〈CI(~ati),Ui〉

RCI ← RCI ∪ {(i, ~ati)}

OSPReg(i)
if i /∈ RSP ∧ i /∈ Coe then

foreach i ∈ Cor do
SPi ← A

SUi
‖(tkni, tsxi)← SPReg〈Ui, SP[m]〉

RSP ← RSP ∪ {i}

ORate(i, v)
if (∃x. (i, x) ∈ RCI) ∧ i ∈ RSP ∧ i /∈ Coe then

SUi
‖B ← Rate(σ(~ati), ~ati|I , v, tkni)

Rated = Rated ∪ {i}

OkCorrupt(i)
if |Cor | < k then

Cor ← Cor ∪ {i}
return SSPi

OPost(i)
if i /∈ Coe ∧ ∃B ∈ SUi

then
B ← SUi

BB← Post(BB, B)

OCoerce(i)
if (∃x. (i, x) ∈ RCI) ∧ i ∈ RSP then

Coe ← Coe ∪ {i}
return SUi

OPostBallot(X)
form B from X

BB← Post(BB, B)

OTally(I, I∗)
if fTally ∧ I ⊆ I∗ then

foreach i ∈ Cor do
SPi ← A

BB‖(V, π)← Tally〈SP1, . . . ,SPm〉
fTally = 0

Figure 4.2.: The oracles, to a subset of which the adversary has access in the security games.

Definition 4.2 (Attribute-hiding). An instance of CR2P is attribute-hiding if
Pr
[
ExpAAH(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for every ppt adversary A where

ExpAAH(λ, b) denotes the experiment in Figure 4.3.

4.2.3.3. Anonymity

Anonymity means that an attacker has no idea who is the individual behind a rating.
Putting it differently, he cannot link ratings to identities. We formalize this intuition as a
cryptographic game in which the adversary has to correctly guess who of two challenged
users leaves a rating. The adversary may corrupt both the issuer and all but one service
provider as well as users of its choice. We report the definition below.

Definition 4.3 (Anonymity). An instance of CR2P preserves the anonymity of its users
if Pr

[
ExpAAnon(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for every ppt adversary A where

ExpAAnon(λ, b) denotes the experiment in Figure 4.4.
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ExpAAH(λ, b)

(I, n,m)← A(1λ)
{SCI, SU[n] , SSP[m] , RCI, RSP,Cor ,Coe,Rated} ← Setup(I, n,m)
// O = {O0

CIReg(·, ·),OSPReg(·),Om−1
Corrupt(·),OCoerce(·),ORate(·, ·),OPost(·),OPostBallot(·)}

(i∗, ~at0, ~at1)← AO()
I∗ = {i | at0,i = at1,i}
if i∗ /∈ Coe ∧ i∗ /∈ RCI then

(SUi∗‖σ(~atb))← CIReg〈CI(~atb),Ui∗〉
b′ ← AO∪{OTally(I,I∗)}(SCI)
if b = b′ then

return 1
return 0

Figure 4.3.: The attribute-hiding game ExpAAH(λ, b).

4.2.3.4. Coercion-resistance

Intuitively, CR2P is coercion-resistant if the adversary, which in particular controls the
credential issuer, cannot force the user to give away her secrets, e.g., to upload a high
rating in the rating system on her behalf or to prevent her from rating at all. The idea is
that the user can provide the coercer with fake secrets, without the coercer being able to
realize that.

More formally, we model coercion resistance as a game between a challenger and an
adversary A, following the definition of coercion-resistance for remote electronic voting
protocols [16]3. Intuitively, the adversary has to distinguish the scenario in which he
receives the genuine user access token from the one in which he receives a fake token.

CR-Scenario

? V = (v, v0)abstains (achieved by invalid token)

Ui⇤

Ui⇤ Ui⇤

Uj Uk

Uk

fake tknk

fake tkni⇤

tkni⇤

tkni⇤

tknj

tknk

v

v v v0

v0 v00

A � CI

If all other users rate the same
in both scenarios (see on the right),
however, the coercer trivially wins
the game, since the faked creden-
tial does not allow him to rate and
the tallied results look different.
Hence, the definition of coercion-
resistance includes two additional
users, which balance the tallied re-
sults. In particular, in the first
scenario, the user gives away the real token and the coercer’s rating is v, the second user
rates v′ that the coerced user would wish to rate, and a third user leaves a rating with an
invalid token. In the second scenario, the coercer receives a fake token and the coerced

3This definition is shown to imply receipt-freeness, resistance to forced-abstention attacks, and vote
privacy.
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ExpAAnon(λ, b)

(I, n,m)← A(1λ)
{SCI, SU[n] , SSP[m] , RCI, RSP,Cor ,Coe,Rated} ← Setup(I, n,m)
// O = {O1

CIReg(·, ·),OSPReg(·),OmCorrupt(·),OCoerce(·),ORate(·, ·),OPost(·),OPostBallot(·)}

(i0, i1, v)← AO(SCI)
if i0 /∈ Coe ∧ i1 /∈ Coe ∧ i0 /∈ Rated ∧ i1 /∈ Rated then

if ∃x0, x1. (i0, x0) ∈ RCI ∧ (i1, x1) ∈ RCI =⇒ x0|I = x1|I then
if i0 ∈ RSP ∧ i1 ∈ RSP then

(SUib
‖B)← Rate(σ(~atib), ~atib |I , v, tknib)

BB← Post(BB, B)
// O′ defined as O, just that ORate and OCoerce are aborted on input i0 or i1

b′ ← AO′∪{OTally(I,I)}()
if b = b′ then

return 1
return 0

Figure 4.4.: The anonymity game ExpAAnon(λ, b).

user rates v′, the second user’s rating is v, and the third one abstains. In both scenarios,
the tallied votes and the number of votes cast with invalid tokens are the same.

One might wonder if it makes sense to assume the existence of a user rating with an
invalid access token: this is reasonable in e-voting systems, since there are always users
willing to nullify their ballot, but it might look artificial in personal record management
systems or, for instance, in rating platforms. Hence, we have to assume that users willingly
post ballots with fake credentials on the bulletin board, which look indistinguishable from
the ones possibly sent by the coercer based on the faked token (see also the discussion
below).

In our definition, the challenger internally runs the users and at least one service
provider, while the adversary plays the role of the credential issuer and of the coercer. If
A can correctly determine which scenario the challenger simulates, he wins the game. The
definition is reported below.

Definition 4.4 (Coercion-resistance). An instance of CR2P is coercion-resistant if
Pr
[
ExpACR(λ, b) = 1

]
is negligibly (in λ) close to 1/2 for every ppt adversary A where

ExpACR(λ, b) denotes the experiment in Figure 4.5.

Discussion: rating with fake tokens. As previously mentioned, the coercion-resistance
property assumes the existence of a user who rates with a fake token. We support these
ratings by real users easily: users can use their real credential but a faked token to submit
such a rating. It is then eliminated from the final tally in the fourth step, so it is not
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ExpACR(λ, b)

(I, n,m)← A(1λ)
{SCI, SU[n] , SSP[m] , RCI, RSP,Cor ,

Coe,Rated} ← Setup(I, n,m)
// O = {O1

CIReg(·, ·),OSPReg(·),Om−1
Corrupt(·),

// OCoerce(·),ORate(·, ·),OPost(·),OPostBallot(·)}

i∗ ← AO(SCI)
if i∗ /∈ Coe ∧ i∗ /∈ Rated ∧ i∗ ∈ RSP

∧ (∃x. (i∗, x) ∈ RCI) then
st← SUi∗

if b then
st← τ(SUi∗ )

// O′ = O ∪ {O()}

b′ ← AO′(st)
if b = b′ then

return 1
return 0

v ← Extract(BB, i)

// assume BB = (B1, . . . , Bk) for some k

for k ≥ j ≥ 1 do
if Bj is a ballot for Ui then

return v, the rating in Bj

O()

v ← Extract(BB, i∗)
v′, v′′←$C

j, k←$ {[n] | {j, k} ⊆ RSP

∧ {j, k} ∩ Rated = ∅
∧ {j, k} ∩ Coe = ∅ ∧
(∃xj , xk. {(j, xj), (k, xk)} ⊆ RCI

=⇒ xj |I = xk|I = ~ati∗ |I)
}

if b ∧ ∃j, k then // st = τ(SUi∗ )

(SUk
‖B′)← Rate(σ(~atk), ~atk|I , v, tknk)

(SUi∗‖B
′′)← Rate(σ(~ati∗), ~ati∗ |I , v′, tkni∗)

else if ¬b ∧ ∃j, k then // st = SUi∗

(SUj
‖B′)← Rate(σ(~atj), ~atj |I , v′, tknj)

// let tkn′k be a fake token

(SUk
‖B′′)← Rate(σ(~atk), ~atk|I , v′′, tkn′k)

if ∃j, k then
BB← Post(BB, B′)
BB← Post(BB, B′′)
foreach i ∈ Cor do

SPi ← A
BB‖(V, π)← Tally〈SP1, . . . ,SPm〉

Figure 4.5.: The game ExpACR(λ, b).

even considered a duplicate vote. Consequently, the assumptions of the coercion-resistance
definition can be fulfilled.

One might think that it is too much of a burden for users to rate with fake tokens
additionally to their real ratings. Depending on a real deployment, we can envision different
solutions. For instance, given that the user trusts the web page or the rating client, that
client could inject such fake ratings automatically without the user needing to care of that
action. Likewise, a click on an embedded button could allow for the same action, however,
explicitly triggered by the respective user.

Discussion: a different way of defining coercion-resistance. We would like to mention
another approach of defining coercion-resistance. A key ingredient of all such definitions
is the uncertainty of the adversary with respect to some of the ratings. We capture that
by requiring a one-to-one correspondence of three different voters such that the overall
tallying result is the same no matter how the bit is chosen. Originally, as proposed by
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Juels et al. [112], this uncertainty can also be achieved by letting the adversary only trigger
the ratings of coerced users. As opposed to this approach, we let the adversary trigger also
the ratings of honest users, so that we have to generate the uncertainty in a different way.
In any case, the meaning of coercion-resistance is captured by both kinds of definitions.

4.2.3.5. Strong End-to-End Verifiability

Strong end-to-end verifiability [28, 56] is a property that consists of three conditions:
(1) individual verifiability with respect to both cast-as-intended and recorded-as-cast
verifiability, (2) universal verifiability, and (3) resilience against clash-attacks. We define
each of these properties in the following.

Individual Verifiability. Individual verifiability intuitively says that every user can check
that, if she intended to leave a certain rating and a certain ballot is posted for her on
the bulletin board, this ballot is first really containing the intended rating and second
is considered in the tallying process. This is not necessarily a property that needs to be
enforced cryptographically, but rather as a safety property. Since this property can be
enforced typically by probing the rating client on the generated ballot [1] (cast-as-intended)
and by equality checks on the ballots posted on the bulletin board (recorded-as-cast), we
stick to the logically formulated definition of [56], arguing later on why our construction
trivially achieves recorded-as-cast verifiability and can be extended to also achieve cast-as-
intended verifiability.

Universal Verifiability. Universal verifiability [56] guarantees that everyone can check the
validity of the final output generated by the Tally protocol. Stated differently, all ratings
announced in the final tally belong to valid ballots on the initial bulletin board where
duplicates have been removed. We define the predicate ValidRV

BB(B, v, i) which holds if B is
a valid ballot on BB, contains the rating v, belongs to user Ui, and is a non-duplicate with
respect to some re-voting policy RV. What valid means, has to be defined for a concrete
instantiation of CR2P individually.

Definition 4.5. An instance of CR2P is universally verifiable for a re-voting policy RV if
and only if, for every ppt adversary A, the probability that ExpAVER(λ) = 1 is negligible in
λ where ExpAVER(λ) is the experiment in Figure 4.6.

Note that universal verifiability and coercion-resistance are not contradictory, as the
coercer learns that his vote is counted if and only if it comes with a valid credential and
token, which he does not know upfront.

Resilience against Clash-Attacks. A clash attack is an attack in which two voters are
convinced that the same ballot B belongs to each of them which allows a dishonest party
to add additional votes of its choice. Much as individual verifiability, we stick to [56] for
a formal treatment of clash-attacks and argue why our construction does not suffer this
attack later on. The reason is again quite simple: users know what they submit and it is
highly unlikely that two users submit the same ballot, hence, equality checks suffice. No
two users will believe that one and the same ballot belong to either of them.
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ExpAVER(λ)

(I, n,m)← A(1λ)
{SCI, SU[n] , SSP[m] , RCI, RSP,Cor ,Coe,Rated} ← Setup(I, n,m)
// O = {O1

CIReg(·, ·),OSPReg(·),OmCorrupt(·),OCoerce(·)ORate(·, ·),OPost(·),OPostBallot(·),OTally(I, I)}

x← AO(SCI)
(B1, . . . , Bk, (V, π))← BB // BB after Tally is run

if π verifies on V and (B1, . . . , Bk) then
V ′ ← [ ]
for 1 ≤ i ≤ k do

if ∃v′, j. ValidRV
BB(Bi, v′, j) then

V ′ = V ′‖(v′, j)
V ′′ = RV(V ′) // apply RV to V ′ and strip off user identifiers

if V ′′ 6= V then
return 1

return 0

Figure 4.6.: The game ExpAVER(λ).

Entity Attribute-hiding Anonymity Coercion-resistance Verifiability
CI C M M M
SP m− 1 m m− 1 m
U M M M M

Table 4.1.: The attacker model. We use M for malicious (resp. H for honest and C for compromised).
For SP, we indicate how many out of m may be malicious. Finally, if any two parties
are malicious, then they may also collude.

4.2.4. Attacker Model
The attacker model is summarized in Table 4.1. As described above, for attribute-hiding
we assume CI to be honest since it knows the attributes anyway and could simply share
them at will with other parties. However, CI may be corrupted after credential issuing;
in that case, the attributes that have so far been certified should stay hidden, even if the
adversary additionally has CI’s secret material. Since some attributes have to be shown for
authorization purposes (e.g., the age in an election), we need to assume that at least one
service provider is honest since otherwise these attributes could be leaked even before the
Tally protocol is executed. Finally, users may be arbitrarily malicious, which captures that
they might be corrupted and leak their internal state. Anonymity has to hold for honest
users even in the presence of all other parties being malicious. Verifiability has to hold
even if all parties are malicious. For coercion-resistance we assume the credential issuer
to be malicious but that at least one of the service providers is honest. Malicious parties
may coerce users and try to rate on their behalf. Notice that if all service providers were
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~m

σ(σ, oi, aux)

{>,⊥}σ̂

sign(sk, ·)signC(sk, ·, r)

comm(sk, ·, r)

randS(·, vk, r)

vfy(·, vk, ~m)

randS(·, vk, r), randC(·, vk, s)

vfyC(·, vk, ~m, ·)

vfystart(·, vk, ~m|R)

vfyfin(·, vk, ~m|R̄, oi)

Figure 4.7.: The functionality diagram of SRC.

malicious, since at some point they have to decide about eligibility and identify ballots
originating from coercers, they could simply check whether a coerced user misbehaved with
respect to how they told him to act.

This attacker model is strictly stronger than the one typically used in e-voting, where
the registrar (i.e., the issuer) is also distributed and at least one has to be honest. As
previously argued, this model is unrealistic for more general settings than e-voting since,
for instance, it is not clear how to distribute the doctor in the e-health scenario. Moreover,
while in e-voting anonymity also assumes that one registrar and tallier are honest, we allow
all parties to be malicious.

As in e-voting systems, we assume that user coercion takes place after the user
completed both registration protocols: however, when coerced, she has to show the
registration transcripts. In general, we believe that without this assumption, it is not
possible to get meaningful coercion-resistance guarantees. The intuitive reason is that if the
adversary can coerce during registration then he has the power to register himself, which
would in turn prevent any kind of countermeasures to detect a coercer. As we will see later,
our concrete construction in the setting of multiple CI’s and multiple SP’s allows the user
to give up its identity after coercion, i.e., the identity is publicly revoked so that service
providers can check revoked users before issuing tokens. Clearly, this countermeasure is
only realistic if coercion is not happening in a strong form such as threatening a person to
death in case she is detected. Instead, giving up the identity can make sense in cases of
rate buying or forced attribute disclosure by a potential employer. Finally, if there is only
one CI and one distributed SP, which is typically the case in e-voting, then even stronger
coercion can be tolerated since the honest registration assumption can be easily justified.

4.3. Signatures on Randomizable Commitments
Achieving attribute-hiding and anonymity in the presence of coercion is one of the core
challenges of our problem statement. In the ABC realm, users usually prove knowledge of
all attributes that are not necessary to be shown to the receiver. Hence, when coerced, the
ability to produce a verifying proof of knowledge ultimately breaks attribute-hiding.
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We are thus interested in a primitive that allows a user to do something similar but
without revealing anything the coercer does not know already, and, at the same time,
without necessarily knowing all attributes. A possible solution to this problem could be
signatures on randomizable ciphertexts [30], as deployed in BeleniosRF [45]. In our case, the
attribute would be encrypted for the SP’s and then the user would randomize the ciphertext
before sending it to the SP. This has the disadvantage that every signature signs only one
message, but we have several attributes that we would like to include in one non-malleable
credential. It is unclear how that could be realized with this kind of signatures. Furthermore,
the ciphertext targets a specific receiver, which hinders open-ended applications.

Our ideal primitive has the following features: (1) the signature hides the messages,
(2) the messages can be opened with a trapdoor that is independent from the identity
of the receiver, (3) the trapdoor can be changed, thereby automatically randomizing the
signature, and (4) the scheme supports message vectors. To achieve this goal, we introduce
the concept of signatures on randomizable commitments (SRC), defining their security and
privacy properties and presenting a concrete instantiation (see Section 4.6.1).

Definition. We refer to Figure 4.7 for easing the presentation. In the definition, σ denotes
a signature, oi the trapdoor (opening information), aux some auxiliary information, and
r, s random values. The rest of the notation is standard.

Definition 4.6 (Signature on randomizable commtiments). A signature scheme on ran-
domizable commitments ΠSRC consists of the following ppt algorithms:

(vk, sk)← setupSRC(1λ, n): the setup algorithm on input the security parameter λ and an
integer n outputs a key pair (vk, sk);

σ ← sign(sk, ~m): the signing algorithm on input the signing key sk and a message vector
~m outputs a signature σ;

(σ, oi, aux)← signC(sk, ~m, r): the commitment-signing algorithm takes as input the signing
key sk, a message vector ~m, and a random value r and outputs a signature σ, the
opening information for the commitment oi, and auxiliary information aux;

(σ′, oi, aux)← comm(sk, σ, r): the commitment algorithm takes as input the signing key sk,
a signature σ, and a random value r and it outputs an adapted signature on a com-
mitment σ′, opening information for the commitment oi, and auxiliary information
aux;

{>,⊥} ← vfy(σ, vk, ~m): the verification algorithm on input a signature σ, the verification
key vk, and a message vector ~m outputs either > in case of success or ⊥ in case of
failure;

{>,⊥} ← vfyC(σ, vk, ~m, oi): the commitment-verification algorithm takes as input a signa-
ture σ, the verification key vk, a message vector ~m, and opening information oi and
it outputs either > in case of success or ⊥ in case of failure;
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σ̂ ← vfystart(σ, vk, ~m|R): the verification-starting algorithm takes as input a signature σ,
the verification key vk, and a partial message vector ~m|R and it outputs a reduced
signature σ̂, the verification of which is started;

{>,⊥} ← vfyfin(σ̂, vk, ~m|R̄, oi): the verification-finish algorithm takes as input a reduced
signature σ̂, the verification key vk, a partial message vector ~m|R̄, and opening
information oi and it outputs either > in case of success or ⊥ in case of failure;

(σ′, [aux ′])← randS(σ, [aux], vk, r): the signature-randomization algorithm takes as input
a signature σ, optionally auxiliary information aux, the verification key vk, and a
random value r and it outputs a randomized signature σ′ and optionally adapted
auxiliary information aux ′ (in case aux was given originally as input);

(σ′, oi ′)← randC(σ, aux, vk, s): the commitment-randomization algorithm takes as input a
signature σ, auxiliary information aux, the verification key vk, and a random value s
and it outputs a randomized signature σ′ and opening information oi ′, which can be
used to adapt the opening information of the commitment inside the signature.

Assume that Valid(σ, aux) holds whenever σ and aux belong together, i.e., they have
been output together either by comm, signC, or randS. Furthermore, if Valid(σ, aux) holds
then for any call to randC, which outputs a new σ′, we have Valid(σ′, aux). With this
assumption in mind, a signature scheme on randomizable commitments is complete if for
all λ, n, (vk, sk)← setupSRC(1λ, n), and all ~m, r, s, oi, oi ′, aux, aux ′, σ, σ′, σ̂, and R the
following holds:

σ ← sign(sk, ~m) =⇒ >← vfy(σ, vk, ~m) (4.8)
> ← vfy(σ, vk, ~m) ∧ σ′ ← randS(σ, vk, r) =⇒ >← vfy(σ, vk, ~m) (4.9)

> ← vfy(σ, vk, ~m) ∧
(σ′, aux, oi)← comm(sk, σ, r) =⇒ >← vfyC(σ′, vk, ~m, oi) (4.10)
(σ, oi, aux)← signC(sk, ~m, r) =⇒ >← vfyC(σ, vk, ~m, oi) (4.11)

> ← vfyC(σ, vk, ~m, oi) ∧ Valid(σ, aux) ∧
(σ′, aux ′)← randS(σ, aux, vk, r) =⇒ >← vfyC(σ′, vk, ~m, oi) (4.12)

> ← vfyC(σ, vk, ~m, oi) ∧ Valid(σ, aux) ∧
(σ′, oi ′)← randC(σ, aux, vk, s) =⇒ >← vfyC(σ′, vk, ~m, oi + oi ′) (4.13)

> ← vfyC(σ, vk, ~m, oi) ∧
σ̂ ← vfystart(σ, vk, ~m|R) =⇒ >← vfyfin(σ̂, vk, ~m|R̄, oi) (4.14)

Key Idea of Using SRC. SRCs allow users to prove their eligibility to rate according to
the authorization policy in place on the rating platform. Intuitively, the ABC is formed of
a collection of SRCs, each signing the user’s blinded identity bidU and an attribute ati,
committed to using randomness si. The ABC is completed by the auxiliary information
aux i as well as the opening information oii in encrypted form for SP.
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ExpAEUF−CMA(λ, n)

(vk, sk)← setupSRC(1λ, n)
(σ∗, [oi∗], ~m∗)← AO(vk)
// [oi∗] means oi∗ is optional

if > = vfy(σ∗, vk, ~m∗)
∨ > = vfyC(σ∗, vk, ~m∗, oi∗)
if ~m∗ not queried to O

return 1
return 0

ExpAHID(λ, b, n)

(vk, sk)← setupSRC(1λ, n)
(~m0, ~m1, S)← AO(vk)
choose r uniformly at random
(σ∗, oi∗, aux∗)← signC(sk, ~mb, r)
b′ ← AO(S, σ∗, aux∗, sk)
if |~m0| = |~m1| = n ∧ b = b′

return 1
return 0

Figure 4.15.: Games for unforgeability (left) and message-hiding (right) where O =
(sign(sk, ·), signC(sk, ·, ·), comm(sk, ·, ·)).

In order to rate, the user randomizes the SRCs corresponding to the required attributes,
changes the opening information, and starts their verification against her identity by means
of vfystart. It sends then the half-verified SRCs along with the encrypted, changed, and
randomized opening information and the encrypted attributes to BB. The SP’s can then
finish the verification of the SRCs (vfyfin) using the decrypted attributes and opening
information.
Security. The security notion of SRC is equivalent to existential unforgeability against
chosen message attacks (EUF-CMA) with the difference that in addition to a sign oracle,
the adversary gets also access to a commit and sign-commit oracle. His goal is to produce
a signature or signed commitment on a message that has not been queried to any of
these oracles. This notion unifies signature unforgeability and the binding property of
commitment schemes.

Definition 4.7 (EUF-CMA). A SRC is existentially unforgeable against adaptive chosen
message attacks (EUF-CMA) if any ppt adversary A has a negligible probability of winning
the experiment ExpAEUF−CMA(λ, n) in Figure 4.15 (left).

Privacy. Privacy of SRC is similar to commitment hiding. In the game below, the adversary
has to decide which of two message vectors is signed in committed form. Of course, he
does not learn the opening information, preventing him from opening the commitment.

Definition 4.8 (Message-hiding). A SRC is message-hiding if any ppt adversary A has a
probability negligibly close to 1/2 of winning the experiment ExpAHID(λ, b, n) in Figure 4.15
(right).

4.4. Our Construction
In this section we introduce the cryptographic building blocks (Section 4.4.1) and system
assumptions (Section 4.4.2), and then we present our cryptographic realization of CR2P
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Scheme Notation
SRC ΠSRC, see Section 4.3
Public-key encryption ΠPKE, ΠPKE

+

Key-generation (ek, dk)← GenPKE(1λ)
Enc./Dec. c← E(ek,m), m← D(dk, c)
Randomization c′ ← Rnd(ek, c, r)
Distributed key-gen ek ← GenEK(ek1, . . . , ek`)
Partial decryption Di ← PartD(dki, c)
Distributed decryption m← DistD(D1, . . . , D`, c)
PET ({>,⊥}, π)← PET(dk1, . . . , dk`, c1, c2)
Mult. homomorphic c← E(ek,m), d← E(ek, n),

mn← D(dk, c⊗ d),mn ← D(dk, cn)
Add. homomorphic c← E+(ek,m), d← E+(ek, n),

m+ n← D+(dk, c⊕ d),
mn← D+(dk, c · n)

User identity id ← genID(1λ)
Blinding bid ← blind(id)
Blind signing > ← vfy(sign(sk, bid), vk, id)
SSP psd ← SSPG(id, svc)
NIZK P = PK {(~x) : F (~x, ~y)}
DVP for user ID id P = DVPbid {(~x) : F (~x, ~y)}
Faked DVP for id P = DVP id

bid {F (~x, ~y)}
~x hidden by P , ~y revealed by P

Mixing (~c2, π)← Mix(~c1)

Table 4.2.: Notation for cryptographic primitives.

(Section 4.4.3). We end by discussing some challenges when generalizing our scheme
(Section 4.4.4).

4.4.1. Cryptographic Primitives

We deploy several standard cryptographic primitives such as multiplicatively (resp. addi-
tively) homomorphic public-key encryption with distributed key-generation, distributed
decryption and plaintext-equivalence-test (PET) [70, 76, 109, 153, 155], service-specific
pseudonyms (SSP) [143], non-interactive zero-knowledge proofs of knowledge (NIZK),
designated verifier proofs (DVP) [111], and verifiable mix networks [110,117,122,127] (or
proofs of shuffle correctness [22]), as well as SRC. We summarize the notation for all these
primitives in Table 4.2 and present required definitions and instantiations in Section C.2.
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4. CRRP: Coercion-Resistant Rating Platforms

Setup(1λ, I)

// User setup // SP setup

foreach Ui do for 1 ≤ i ≤ m do
idi ← genID(1λ) (eki, dki)← GenPKE(1λ)
bidi ← blind(idi) bi←$Z∗q
send bidi to PKI Bi = gbi

receive σidi
s.t. return SSPi

= (eki, dki, bi)
> ← vfy(σidi

, vkPKI, idi) ekSP ← GenEK(ek1, . . . , ekm)
return SUi

= (idi, σidi
) BB← BB||(ekSP, I, B[m], ek [m])

// CI setup

(skCI, vkCI)← setupSRC(1λ, 4)
return SCI = (skCI, vkCI)

Figure 4.16.: The Setup protocol.

4.4.2. System Assumptions
We assume the existence of a root of trust, concretely a public-key infrastructure PKI. We
also assume that all participants are aware of the parameters (q,G, g) for a finite cyclic
group generated by GSetup(1λ), where G is a multiplicative group of order q, generated by
g. Finally, we assume the existence of an append-only bulletin board BB and a set of fixed
rating choices C (ratings in prose cannot be made coercion-resistant).

4.4.3. Realization of CR2P
We present our cryptographic construction of CR2P.

Setup. The setup procedures are reported in Figure 4.16. Users generate identities and
register them blindly with the PKI. CI sets up a signature on randomizable commitments
with at most four messages. The SP’s generate a joint encryption key with distributed
decryption keys and a secret value that is used to generate identification tokens and which
is posted in public form (Bi) on BB.

Registration with CI. CI generates a credential for user Ui. The credential is a collection
of SRCs on the user’s attributes. Additionally, the user receives all opening information in
encrypted form for SP, restricted to those announced in the set I. Clearly, if there is more
than one SP overall (neglecting distributed computation parties behind SP), then the user
has to retrieve several different sets of encrypted opening information, one for each SP and
restricted to that SP’s set I.

Concretely, Ui first sends her blinded identity bidi ← blind(idi) to CI along with
a proof Pid ← PK {(α) : bidi = blind(α) ∧ > = vfy(σidi , vkPKI, α)}. CI then executes the
algorithm in Figure 4.17, where r is a random value, which is part of each sub-credential so
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CIReg〈CI(~ati),Ui〉 : CI(skCI, vkCI)’s part

1 : verify Pid for bidi
2 : r, r1, . . . , r`←$Z∗q
3 : σ0

i ← sign(skCI, (bidi, r))
4 : for 1 ≤ j ≤ ` do
5 : (σji , auxji , oiji )← signC(skCI, (bidi, r, atji ), rj)

6 : ōiSP
i = {E+(ekSP, oiji )}j∈I

7 : π ← DVPbidi


(α, β1, . . . , β`, γ1, . . . , γ`) :
σ0
i ← sign(α, (bidi, r)) ∧
∀1 ≤ j ≤ `. (σji , auxji , βj)← signC(α, (bidi, r, atji ), γj) ∧

(j ∈ I =⇒ (ōiSP
i )j = E+(ekSP, βj))


8 : σ = ({σji }0≤j≤`, {auxji}1≤j≤`, r, ōiSP

i , π)

Figure 4.17.: The CIReg protocol.

as to prevent mixing attacks.4 Furthermore, the proof π is necessary to enforce an honest
behavior on CI, otherwise it could send malformed credentials without the user noticing.
Notice also that π reveals the attributes, which is okay, since π is a designated verifier
proof and the user can fake it, replacing the shown attributes with different (and maybe
wrong) ones of her choice. This is sufficient to guarantee attribute-hiding. CI then sends
σ to Ui, who extracts and verifies π on the other components of σ, and finally appends
{σji }0≤j≤`, {auxji}1≤j≤`, r, and ōiSP

i to SUi .

Registration with SP. In this protocol, the user Ui obtains an identification token which
is used later on in the rating procedure at SP for service svc (describing the rating target,
e.g., the specific doctor). In a nutshell, such a token is the encryption of a user’s SSP
for svc, blinded by all SPj ’s random values bj . This real token allows the user to leave a
rating without revealing her identity but showing that she is eligible. The token is a key
ingredient to achieve coercion-resistance as a coercer receives only a faked version thereof,
which he cannot distinguish from the real one. Figure 4.18 details the protocol, which is
executed by each SPj individually.

Coercion. In this algorithm, the user produces a state which can be handed out to
the coercer, however, thereby allowing the coercer neither to rate nor to recognize this
inability. To this end, remember that at least one service provider has to be honest and
furthermore, this algorithm is executed only after the above registration protocols have
been run. Concretely, the algorithm (Figure 4.19) includes the real information for the
user except the identification token and the proof of correct credential generation, which
are both faked.

4This feature is only relevant if there are more than one registration allowed for a single user. Without
this protection, the user could compose a faked “credential” formed of attributes of her choice, extracted
from different valid “credentials”.
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SPReg〈Ui,SP[m]〉

for 1 ≤ j ≤ m do
sj ←$Z∗q
bidi ← blind(idi)
tknj ← E(ekSP, SSPG(idi, svc))sj

P 1
j ← PK

{
(α) : bidi ← blind(α) ∧ > = vfy(σidi

, vkPKI, α)
}

(bidi, tknj , P 1
j ) SPj

check P 1
j

tkn′ = tknbj

j

P 2
j = DVPbidi

{
(γ) : Bj = gγ ∧ tkn′ = tknγ

}
return (tkn′, P 2

j )

check P 2
j

tknji = tkn′s
−1
j

SUi ← SUi ||(tknji , tknj , sj , P 2
j )

endfor

tkni =
m⊗
j=1

tknji

SUi
← SUi

||tkni

Figure 4.18.: The SPReg protocol.
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Coerce(i)

1 : S′Ui
= idi||{σji }0≤j≤`||{auxji}1≤j≤`||r||ōiSP

i

2 : {atjF }1≤j≤` // fake attributes

3 : πF← DVP idi

bidi


(α, β1, . . . , β`, γ1, . . . , γ`) :
σ0
i ← sign(α, (bidi, r)) ∧
∀1 ≤ j ≤ `. (σji , auxji , βj)← signC(α, (bidi, r, atjF ), γj) ∧

(j ∈ I =⇒ (ōiSP
i )j = E+(ekSP, βj))


4 : S′Ui

= S′Ui
||πF

5 : // let j be the index of a trusted SP

6 : (tknji , tknj , sj)← SUi

7 : c←$Z∗q // the fake blinding factor (aka. bj)

8 : tknF = tknsjc
j

9 : P 2
F = DVP idi

bidi

{
tknF = tknsjγ

j ∧Bj = gγ
}

10 : tknFi = tkni ⊗ (tknji )
−1 ⊗ tknF

11 : S′Ui
= S′Ui

||(tkn1
i , tkn1, s1, P

2
1 )|| · · · ||(tknF , tknj , sj , P 2

F )|| · · · ||(tknmi , tknm, sm, P 2
m)

12 : S′Ui
= S′Ui

||tknF

Figure 4.19.: The Coerce algorithm.

Rating. In this protocol (Figure 4.20), the user creates a ballot B which allows her to rate
the subject svc. B is formed of (1) versions of the credentials from CI which are randomized
inside (the commitment) so as to achieve anonymity even against a collusion of CI and
all SPj ; (2) the identification token, which prevents coercion and duplicate ratings, (3)
an encrypted pseudonym (which can be seen as a freshly started token), which is used to
check the validity of the token, (4) the encryption of the actual rating, and finally (5) a
proof of B’s correct generation.

We employ a general technique proposed by Adida [1] to get cast-as-intended verifiabil-
ity. Whenever a ballot is generated, the user can either use it or it can probe the software
so as to reveal all random values used for generating ciphertexts and zero-knowledge proofs
so as to check whether the ballot has been computed from the information given by the
user. This step can be repeated arbitrarily often.

Post. To post a ballot B on the public bulletin board BB, the user sends it via an
anonymous channel to BB.

Tally. This protocol computes the tally in a way that makes it publicly verifiable. The
idea is to take the ballots from BB and to filter out all invalid ones, finally ending up with
votes corresponding to valid ballots. Before describing the process step-by-step, we shall
define what valid means. To this end, we define the predicate ValidRV

BB(B, v, j) below.

Definition 4.9 (Valid ballot). Let the i-th ballot on BB be Bi = ({σ̂ji , ôiji , âtji}j∈I , p̂i, v̂i,
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Rate(σ(~ati), ~ati|I , v, tkni)

foreach j ∈ I do
sj ←$Z∗q
(σ̃ji , õiji )← randC(σji , auxji , vkCI, sj)
// assume õiji can be added homomorphically

ôiji = ōiji ⊕ E+(ekSP, õiji )

âtji ← E(ekSP, atji )
σ̂ji ← vfystart( ˜certji , vkCI, {idi, r})

p̂i ← E(ekSP, SSPG(idi, svc))
ˆtkni ← E(ekSP, tkni)
v̂i ← E(ekSP, v)

Pi ← PK


(σ0
i , {σ̃

j
i }j∈I , id, r, tkni, v, σid) :

> = vfy(σid , vkPKI, id) ∧ > = vfy(σ0
i , vkCI, (id, r)) ∧

∀j ∈ I. σ̂ji = vfystart(σ̃ji , vkCI, {id, r})
∧ p̂i ← E(ekSP, SSPG(id, svc)) ∧ ˆtkni = E(ekSP, tkni) ∧
v̂i ← E(ekSP, v) ∧ v ∈ C


B = ({σ̂ji , ôiji , âtji}j∈I , p̂i, v̂i, ˆtkni, Pi)
SUi = SUi ||B

Figure 4.20.: The Rate protocol.

ˆtkni, Pi). Then ValidRV
BB(Bi, v, j) states that, according to a re-voting policy RV and with

respect to BB, Bi is valid for user Uj and rating v. Formally,

1. Pi verifies with respect to Bi,
2. the finishing signature verification succeeds on σ̂ji and the plaintexts of ôiji and âtji ,

respectively,
3. v is the rating encrypted in v̂i,
4. and finally, ˆtkni is the encryption of Uj’s token.

The validity of a ballot is a local property, i.e., two duplicate ballots can both be valid
in the first place. Only after applying RV, one of them is deemed valid, e.g., the last vote
submitted considering the chronological order.

To generate the final tally, i.e., the list of votes which belong to valid ballots in the
global sense (without duplicates), SP1, . . . ,SPm jointly carry out the protocol in Figure 4.21.
We introduce a shortcut for provable distributed decryption as follows: let c be a ciphertext
that is encrypted with ekSP. To provably decrypt, the SPj jointly carry out the following
protocol.
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Tally(SP1, . . . ,SPm)

1. Ballot verification

for 1 ≤ i ≤ N1 do
foreach SPj do
verify Pi w.r.t. Bi

(oi`i , π`1i)← DProto(SP[m], ôi`i)

(at`i , π`2i)← DProto(SP[m], ât`i)
foreach SPj do
x`i = vfyfin(σ̂`i , vkCI, at`i , oi`i)

if at`i not eligible ∨ x`i = ⊥ then
remove Bi from BB

(tkni, π3i)← DProto(SP[m], ˆtkni)
reduce all ballots to Bi = (p̂i, v̂i, tkni)

2. Duplicate elimination

for 1 ≤ i ≤ N2 do
(yi, π4i)← DProto(SP[m], tkni)

Apply RV on the list (y1, . . . , yN2)

3. Mixing
~B0 = (B1, . . . , BN3) // Bi = (p̂i, v̂i, tkni)

foreach SPj do
( ~Bj , π5j)← Mix( ~Bj−1)

4. Invalid elimination

for 1 ≤ i ≤ N3 do
foreach SPj do

qji = p̂
bj

i

πj6i = PK
{

(α) : qji = p̂αi ∧Bj = gα
}

(zi, π7i)← PET(dk [m],

m⊗
j=1

qji , tkni)

5. Decrypt ratings

for 1 ≤ i ≤ N4 do
(vi, π8i)← DProto(SP[m], v̂i)

Figure 4.21.: The Tally protocol where N1 is the number of ballots on BB before Tally starts, N2
are remaining that are accompanied with valid proofs, N3 are non-duplicates, and N4
have valid tokens.

(p, π)← DProto(SP[m], c)

foreach SPj do
Dj = PartD(dkj , c)
πj = PK

{
(α) : (ekj , α)← GenPKE(1λ) ∧Dj = PartD(α, c)

}
p = DistD(D1, . . . , Dm, c)
return (p, (π1, . . . , πm))

1. Ballot verification: The SP’s check conditions one and two of Definition 4.9, i.e., (1)
the validity of every Bi’s proof Pi and (2) the validity of partially verified signatures
with respect to the encrypted attributes and opening information. The SP’s then check
the validity of partially verified credentials as well as the eligibility of the corresponding
attributes. Ballots that do not fulfill any of those requirements are discarded.

With this step we achieve recorded-as-cast individual verifiability [28, 56], since the
user has to check whether her ballot is present on the initial bulletin board and whether it
is considered in the next step, and we achieve resilience against clash attacks [126], since
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an attacker cannot use components of Bi to cast a fresh, valid, and (mistakenly) duplicate
ballot since that would require the knowledge of a valid token that must be encrypted
by the ballot sender. We also rule out the classical Italian attack [57], in which a coercer
forces the user to submit a specific invalid vote, since the proof Pi shows the compliance of
the encrypted vote with the available vote choices in C.
2. Removing duplicates: We remove duplicates while preserving anonymity. We only reveal
which ballots on the board belong to the same user. That allows us to apply RV.

Our technique to achieve O(N2) complexity is similar to the solution by Weber et
al. [191], who blindly decrypt the credential (cf. the identification token in our work).
Instead, in CR2P, the SP’s just jointly decrypt the token, revealing the user’s SSP, which is
not known to anyone and is thus uncritical for anonymity on the one hand. The linkability
of SSPs to each other, on the other hand, helps to apply RV.
3. Mixing: Before the SP’s can check the validity of identification tokens, they have to
ensure that no coercer learns whether his token is valid or not (remember that a coercer
knows where his ballot is residing on BB). Hence, the SP’s jointly apply a verifiable mix to
the ballots, which only consist of three public-key ciphertexts each, thus enabling efficient
verifiable mixes. For brevity, we abuse notation in Figure 4.21 for lifting the verifiable mix
to ballots.
4. Checking token validity: The initial ballot list is now disconnected from the remaining
ballots such that we can proceed by excluding ballots submitted with fake tokens, i.e., those
posted by coercers, enforcing condition four in Definition 4.9. Thanks to our ballot design,
this check is a local property, checkable on every ballot individually without the need of
auxiliary information, as required by classical approaches with quadratic complexity [55].
Concretely, the SP’s recompute the token from the encrypted pseudonym p̂i and check
their equality under encryption via PET.
5. Decrypting the votes: Finally, enforcing condition three of Definition 4.9, the SP’s decrypt
the ratings.

The final result of Tally is the collection V of ratings vi along with all the proofs and
intermediate results obtained in this protocol, summarized in the variable π.

4.4.4. Discussion
The goal of this work is to design a privacy-preserving, publicly verifiable, coercion-resistant
rating platform, with a single, albeit distributed, service provider. Although we leave a
formal treatment of the generalization to multiple, coexisting rating services, and even
further to fully-fledged coercion-resistant ABCs, as future work, we find it interesting to
discuss the challenges involved in such a generalization along with possible solutions.

Attribute-hiding. Had we only a single SP, attribute-hiding would unconditionally hold
for those attributes not required by SP (those specified in I). Instead, if we are confronted
with several different SP’s, each of those might come with a, possibly different, set I of
required attributes. This extension opens a new attack angle: a bogus SP could request
sensitive attributes and coerce the user so as to use that service. We thus envision a
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certified auditing procedure for SP’s, which allows them to require only those attributes
that are indeed necessary for their functionality.

Coercion-resistance. In e-voting, it is reasonable to require that the registration for both
CI and SP have to be finished before the user can be coerced. This is instead problematic
if the system is open and multiple rating services coexist. The solution that we have in
mind lowers the level of coercion that is tolerated by the system. In CR2P, as soon as
a user is coerced, she can be successfully impersonated in all rating services that she is
not registered with (due to the registration assumption). In this case, since we target rate
buying and forced attribute disclosure, we let users announce to the PKI that their identity
is lost. The PKI in turn puts the blinded identity on a black list of revoked identities. This
list is then checked by SP’s whenever a user wants to register. If that user is on the list,
registration is aborted, at least by honest SP’s, one of which always exists. Clearly, such
a solution no longer protects against coercion by means of physical threat since the user
publicly announces it.

Services without public output. While rating platforms and e-voting both have a public,
verifiable output, this is not the case in general for arbitrary services. Achieving coercion-
resistance in such a setting, for instance in a social network, is much more challenging,
since it requires the design of fake, but yet plausible, web content.

4.5. Formal Results
We report the formal results of our cryptographic construction and prove them in Ap-
pendix C.3.

Theorem 4.1 (Attribute-hiding). Let ΠPKE
+ be IND-CPA secure and allow for distributed

key-generation and decryption, ΠSRC be message-hiding, and ZKP be a zero-knowledge proof
system. Then CR2P is attribute-hiding.

Theorem 4.2 (Anonymity). Let ZKP be a zero-knowledge proof system and SSP be
anonymous. Then, in the random oracle model, CR2P achieves anonymity.

Theorem 4.3 (Coercion-resistance). Let ΠPKE be IND-CPA secure and allow for distributed
key-generation and decryption, ZKP be a zero-knowledge proof system, and assume the
hardness of DDH. Then, in the random oracle model, CR2P achieves coercion-resistance.

Theorem 4.4 (End-to-end verifiability). Let ΠSRC be EUF-CMA, SSP’s be unique, and
ZKP be a zero-knowledge proof system. Then CR2P is end-to-end verifiable.

4.6. Implementation & Experiments
We present the cryptographic realization of SRC (Section 4.6.1) and then summarize our
experimental evaluation (Section 4.6.2). We list the cryptographic primitives that we build
on in Table 4.3, while we postpone details and security proofs to Appendix C.2.
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Scheme Instantiation
BGSetup MNT curves [147]
ΠPKE/ΠPKE

+ ElGamal [76] / Paillier [153]
ΠSRC Section 4.6.1
Verifiable Mix nets Shuffle proofs [22], RPC [110]
NIZKs via Fiat- DLog [173], EqDLog [40,59], PET [109],OR proof [58],
Shamir heuristic [78] Proof of plaintext knowledge [55,93], DVP [111]

Table 4.3.: Cryptographic scheme instantiations.

(sk, vk)← setupPS(1λ, `)

(x, y1, . . . , y`)←$Z∗q
`+1

X = hx

for 1 ≤ i ≤ ` do
Yi = hyi

sk = (x, y1, . . . , y`)
vk = (h,X, Y1, . . . , Y`)
return (sk, vk)

σ ← signPS(sk, ~m)

a←$G1

return σ = (a, ax+
∑`

i=1
yimi)

{>,⊥} ← vfyPS(vk, σ, ~m)

if σ1 6= 1G1 then // σ = (σ1, σ2)

if e(σ1, X ·
∏`
i=1 Y

mi
i ) = e(σ2, h) then

return >
return ⊥

Figure 4.22.: The PS signature scheme [160].

4.6.1. Instantiation of SRC
Our instantiation of SRC is an extension of the Pointcheval-Sanders (PS) signature
scheme [160] (Figure 4.22), which works in the elliptic curve setting with a bilinear map.
Let (q,G1,G2,GT , e, g, h)← BGSetup(1λ) where G1, G2, GT are groups over a prime-order
finite field Fq, 〈g〉 = G1, 〈h〉 = G2, and e : G1 × G2 → GT is a bilinear map, i.e., (1)
e is bilinear, i.e., for all x, y ∈ Fq we have e(gx, hy) = e(g, hy)x = e(gx, h)y, (2) e is
non-degenerate, i.e., 〈e(g, h)〉 = GT , and (3) e is efficiently computable. Moreover, we
assume that BGSetup generates parameters for a type-III setup, i.e., there is no efficiently
computable homomorphism from G2 to G1.
SRC. Our construction is an extension of the PS signature scheme, detailed in Figure 4.23.
Therein, we also show a way to sign blinded identities that can be verified using the
unblinded identity.
Security Results. We report the security guarantees of our construction in the following.
The security proofs can be found in Appendix C.1.

Theorem 4.5 (EUF-CMA). If the Pointcheval-Sanders signature scheme is EUF-CMA,
so is SRC.

Theorem 4.6 (Hiding). SRC is message-hiding.
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(sk, vk)← setupSRC(1λ, n)

return setupPS(1λ, n+ 1)

σ ← sign(sk, ~m)

return signPS((sk){1,...,n}, ~m)

(σ, oi, aux)← signC(sk, ~m, r)

a←$G1

σ = (a, ax+(
∑n

i=1
yimi)+ryn+1)

return (σ, r, ayn+1)

(σ′, oi, aux)← comm(sk, σ, r)

(σ1, σ2)← σ

σ′ = (σ1, σ2σ
ryn+1
1 )

return (σ′, r, σyn+1
1 )

σ′ ← randS(σ, vk, r)

(σ1, σ2)← σ

return (σr1, σr2)

(σ′, aux ′)← randS(σ, aux, vk, r)

(σ1, σ2)← σ

return ((σr1, σr2), auxr)

σ′ ← randC(σ, aux, vk, s)

(σ1, σ2)← σ

return (σ1, σ2 · auxs)

{>,⊥} ← vfy(vk, σ, ~m)

return vfyPS((vk){1,...,n}, ~m)

{>,⊥} ← vfyC(vk, σ, ~m, oi)

if σ1 6= 1G1 // σ = (σ1, σ2)

t = X · (
∏n
i=1 Y

mi
i · Y oi

n+1)
if e(σ1, t) = e(σ2, h)

return >
return ⊥

σ̂ ← vfystart(σ, vk, ~m|R)

(σ1, σ2)← σ

t = X−1 ·
∏
i∈R Y

−mi
i

σ′ = e(σ2, h) · e(σ1, t)
return σ̂ = (σ′, σ1)

{>,⊥} ← vfyfin(σ̂, vk, ~m|R̄, oi)

(σ̂1, σ̂2) = σ̂

t1 = e(σ̂2, Yn+1)oi

t2 = e(σ̂2,
∏
i∈R̄ Y

mi
i )

if σ̂1 = t1 · t2
return >

return ⊥

Blind signing of id ∈ Zq
bid ← gid

α←$Z∗q ; a← gα

return σ = (a, axbidy1α)

σ = (a, ax+y1id)

Figure 4.23.: Our instantiation of SRC.
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Figure 4.24.: Computation times for CIReg, SPReg, and Rate.

4.6.2. Experimental Results
We implemented the algorithms described in Table 4.3 and Section 4.4 in Java. We
instantiate all previously described schemes for 112 bits of security, which is considered
to be secure until 2030 [32]. We ran a single rating process on an Intel Xeon (32 cores
with hyper-threading, 2.6GHz each). We vary the number of attributes ` from 1 to 10,
the number of service providers m from 2 to 13, the number of possible rating choices |C|
from 2 to 20, and the number of users n from 10 to 1M (in exponential steps). N1 refers
to the initial number of ballots on BB. The results are summarized in Figure 4.24 and
Figure 4.25.

Computation. The CIReg protocol is practical, as depicted in Figure 4.24a; it ranges on
average from 460 ms for one attribute up to 3.2 s for ten attributes. The SPReg protocol
depends on the number of service providers: it lies in the range of around 700 ms up to 2.9
s (see Figure 4.24b). The time for Rate depends on the number of attributes necessary
to access the service and the number of rating choices; varying the former, it ranges from
2.3 s to 9.2 s (see Figure 4.24c) while varying the latter, it ranges from 2.5 s to 5.1 s (see
Figure 4.24d).

The most time consuming protocol is Tally, both generation and verification, which
happen at once since service providers do not trust each other. We provide detailed
measurements for each partial step in Figure 4.25a–4.25b. We show numbers only for
randomized partial checking (RPC) since our implementation of proofs of shuffle correctness
(PSC) [22] is at least two to three orders of magnitude slower than the RPC solution. It is
not surprising that we do not achieve the computation times achieved by [22], since they
implement several optimizations that go beyond the scope of this performance evaluation.
But even with the optimizations in place, the RPC solution is still better in terms of
computation, albeit not with respect to robustness since it requires an honest majority of
service providers. Notice that robustness only affects coercion-resistance, for verifiability,
all service providers may be malicious. Tally scales linearly in the number of service
providers and users, with the first step, i.e., the ballot verification, being the by far most
expensive step. This is not surprising given the complexity of the underlying protocol.
When increasing the number of users, we get tally computation and verification times of
roughly 6 hours for 100,000 users, which is more than enough for e-health rating systems
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Figure 4.25.: Computation times for Tally and sizes for BB.

and would even be sufficient for small-size city elections, or when distributing elections to
smaller regions, which is what usually happens in state-wide elections.

BB size. Finally, the size of the initial BB is determined by the number of ballots, the size
of which is 8.5 KB plus roughly 1 KB per attribute and plus about 0.8 KB per additional
rating choice. To assess the size of the overall BB including proofs of SP’s, we depict in
Figure 4.25d the size of BB for varying SP, 1000 initial ballots, five rating choices, and
two attributes. This curve indicates the amount of data an external verifier would have to
download so as to verify the rating process.

Communication. The CIReg protocol requires to exchange 3.5 + 14` KB for the credentials
and the proof of correctness. In SPReg, the user communicates with the service providers
around 3.7 KB per service provider. In Rate, the user has to send the ballot to BB, the
size of which we explained in the previous paragraph. The communication cost is thus
moderate, despite the protocol complexity.

4.7. Related Work

Privacy-preserving reputation systems. There is a long line of research on privacy-
preserving reputation systems [6, 31, 97, 114, 119, 128, 148, 157, 158, 171, 190]. Most of
these schemes do not guarantee coercion-resistance, either because they deploy standard
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ABCs [6, 31,148,158] or because the system design allows an adversary to corrupt parties
completely and to act on their behalf [97, 119,128, 171]. Some achieve privacy by assuming
the existence of a trusted third party [157,190], an assumption which might be helpful to
achieve coercion-resistance, but the mentioned works do not address that.

Finally, Kerschbaum [114] presents a reputation scheme that aims at coercion-resistance.
The idea is to use two mutually distrustful servers to let one party rate the other. Besides
the setup, a difference between this scheme and the others, including ours, is that it hides
the individual user rating rather than the link between the user and its rating. A more
precise and formal comparison with that work is difficult, since coercion-resistance is neither
formalized nor proved.
Attribute-based credentials. ABCs have been widely studied in the literature and still
constitute an active subject of research [14,18,23,24,39,74,84,105,143]. Nevertheless, as
we illustrate in this chapter, previous ABCs fall short of providing adequate security and
privacy guarantees in case of coercion. The fundamental problem with standard ABCs is
that they reveal the attributes and knowing the credential suffices to impersonate the user.
Our design of SRC, in contrast, hides the signed attributes and does not allow for proving
their knowledge unless one knows the opening information of the commitment, which
allows us to achieve coercion-resistance. In CR2P, the opening information is encrypted
for the service provider by the credential issuer and the user never learns it. Moreover,
using designated verifier proofs, one can prove the correctness of the attributes signed in a
SRC to a dedicated person, which is crucial for the correctness of CR2P, without leaking
any information to any third-party, including the coercer.
Electronic voting. A formal treatment of coercion-resistance has been developed in the
context of e-voting, both for paper-based schemes [33, 46, 48, 124, 169] and for remote
e-voting systems like the one of Juels et al. [112] (JCJ), Civitas [55], and a few more
(see [10–12,54,83,172,181,182] and [21,102] for a weaker notion called receipt-freeness).
Additionally, the community has proposed frameworks, models, and formal (symbolic or
cryptographic) definitions for coercion resistance so as to formally analyze existing e-voting
protocols [16,68,100,125]. CR2P differs from this line of work in three fundamental aspects.
First, coercion-resistance is achieved in a stronger attacker model, with a single malicious
credential issuer as opposed to distributed ones out of which one is assumed to be honest.
Secondly, CR2P does not rely on any communication between the issuer and the service
provider, while in remote e-voting the registrars typically pass information to the talliers
through a shared bulletin board. Finally, the tallying procedure is linear in the size of
ratings, while in several remote e-voting schemes it is quadratic [55,112].

Some other works aim at downsizing the quadratic tallying complexity of Civitas and
JCJ to linear complexity. A first approach [54,172,181,182] relies a technique introduced
by Weber et al. [191] for duplicate elimination based on blinded credential decryption.
The complexity of the credential validity check is still quadratic, but the efficiency can
be customized by means of anonymity sets of size β, which reduce the complexity to
O(βN) [54, 172] and O(βn+N) [181, 182], respectively, where N is the number of ballots
and n is the number of registered voters. Our protocol does not need to apply blinding
before decryption, since we rely on pseudonyms that are unlinkable to the user. A different
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approach is proposed by Araújo et al. [10–12], and it is based on equality checks of
values that are linkable to the voter and which can be faked in case of coercion. This,
along with ours, is the only approach for checking the validity of credentials that is truly
linear. To check that a credential is valid, the registrars recompute, for every ballot,
the signature [11, 12] (resp. MAC [10]) under encryption. If the recomputed version is
equivalent to the one submitted in the ballot, it is considered valid. The key difference
from our approach is that we do not require the registrar (credential issuer) in the tallying
phase, which is crucial for rating systems, since the tallying process must be independent
of the credential issuer.

113



114



5. Conclusion and Outlook
Digitization is often considered a revolution since it changes many areas of individual
life. It affects businesses and people alike. One major challenge of the digitization is the
privacy of personal and, in particular, sensitive user data. At the same time, that data
shall be usable for authorized personnel for necessary actions. For instance, a necessary
action could be the storage of the results of a medical treatment or the usage of medical
information for the purpose of research while keeping individuals anonymous. Furthermore,
digitization does not only have to protect the user from others but also the user from
himself so as to not to reveal too much about herself in certain cases. Such a case could be
the expression of a negative opinion about a person in a rating platform, which should not
deanonymize the user.

In this thesis, we presented cryptographic techniques for three different domains of
the digitization that we conclude in the sequel.

Privacy and access control for outsourced storage. In the first part of this thesis, we
introduced the concept of Group ORAM, which captures an unprecedented range of security
and privacy properties in the cloud storage setting. Based on our definitional framework
ΠGORAM, we establish a lower bound on the server-side computational complexity, showing
that any Group ORAM that is oblivious against malicious clients has to involve at least
Ω(n) computation steps. We further present a novel cryptographic instantiation, which
achieves an amortized communication overhead of O(

√
n) by combining private information

retrieval technologies, a new accumulation technique, and an oblivious gossiping protocol.
Access control is enforced by integrity proofs. Finally, we showed how to bypass our lower
bound by leveraging a trusted proxy [170], thereby achieving logarithmic communication
and server side computational complexity. We then move to Group ORAM that is oblivious
only against the server: the fundamental idea underlying our instantiation is to extend a
state-of-the-art ORAM scheme [187] with access control mechanisms and integrity proofs
while preserving obliviousness. To tackle the challenge of devising an efficient and scalable
construction, we devised two novel zero-knowledge proof techniques for shuffle correctness
as well as a new accountability technique based on chameleon signatures, both of which
are generically applicable and of independent interest. We showed how ΠGORAM is an ideal
solution for personal record management systems.

Secure querying of outsourced databases. In the second part of this thesis, we contribute
to the field of order-preserving encryption (OPE), which is an enabling technology to
implement database applications on encrypted data: the idea is that the ordering of
ciphertexts matches the one of plaintexts so that inequalities on encrypted data are
efficiently computable. Recent works, however, showed that various attacks can be mounted
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by exploiting the inherent leakage of plaintext frequency. Frequency-hiding OPE [115] is a
stronger primitive that aims at solving this problem by hiding the frequency of plaintexts.
Unfortunately, as we show, the definition of frequency-hiding OPE is imprecise and a
natural interpretation of it leads to concrete attacks against the construction presented
in [115]. We find and identify the problem, which is related to the imprecision in the
definition and which corresponds to that attack, in the security proof. We then formulate
a more general impossibility result, proving that the security definition introduced in [115]
cannot be achieved by any OPE scheme. In order to complete the picture and assess which
theoretical security is achievable at all, we make the definition in [115] more precise by
giving the challenger more capabilities and augmenting the OPE model so as to receive
randomized orders as inputs which are used to break ties. We finally show that the more
precise version of the definition can be achieved by a variant of the construction introduced
in [115].
Coercion-resistant rating platforms. Finally, in the third part of this thesis, we presented
CR2P, a coercion-resistant rating platform. Rating platforms are a central asset in
marketing strategies and are one of the main consultations for individual decision making.
As a matter of fact, they do not provide sufficient security and privacy guarantees to protect
against fraud in terms of fake ratings and suppressed ratings, for short, coercive attacks. To
counteract those attacks, CR2P achieves coercion-resistance, while retaining strong access
control guarantees through attribute-based credentials, anonymity and attribute-hiding.
We have formalized the salient privacy properties in this context, presented a provably
secure cryptographic realization, and demonstrated its feasibility for even large-size rating
situations. The most significant technical novelties of our construction are signatures
on randomized commitments and identification tokens. The former are a novel kind of
attribute-based credentials, which allow the user to prove the knowledge of a subset of
attributes while leaving the rest of the verification and the opening of the remaining
attributes to the verifier, in our case the rating platform. The latter are our key ingredient
to achieve coercion-resistance: they can be faked in case of coercion without the coercer
being able to notice that. Furthermore, they are bound to the user’s identity and facilitate
the verification of the rating process, which enables a linear tallying procedure.
Outlook. This thesis opens up a number of interesting research directions.

In the area of multi-client ORAM, it would be interesting to complete the picture by
a lower bound on the communication complexity. Furthermore, we would like to relax the
obliviousness property in order to bypass the computational lower bound, coming up with
more efficient constructions and quantifying the associated privacy loss. A further research
goal is the design of cryptographic solutions allowing for applications on outsourced storage,
for instance, an tool that allows clients to learn only limited information (e.g., statistics)
about the dataset.

Concerning our investigations and findings in the area of OPE, it must be said that
despite this seemingly positive results, in the presence of the plethora of empirical attacks
against (FH-)OPE and its variants (e.g., ORE), we suggest to not use any of those schemes
for actual deployment since the security guarantees achieved do not reflect practical
requirements. We recommend to move away from OPE in general, more towards other
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alternatives, even if there are none that solve the problem so conveniently; at the price of
low to no security.

In the area of privacy-preserving rating platforms, it would be interesting to investigate
how far the topic of coercion can be pushed to other areas and scenarios. We believe
that coercion might also be problematic in other situations even though this has not been
considered yet and required solutions are, hence, missing. Moreover, we would like to boost
the efficiency of our construction so as to make it amenable to large-scale systems with
millions of ratings that are to be processed in short periods of time. Finally, it would
be interesting to investigate whether we can lift coercion-resistance to attribute-based
credential systems in general.
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A. Cryptographic Building Blocks
and Definitions

A.1. Private-Key Encryption
We recall the basic definition of private-key encryption and the respective IND-CPA security
definition [89].

Definition A.1 (Private-Key Encryption). A private key encryption scheme is a tuple
of ppt algorithms ΠSE = (GenSE, E ,D), where the generation algorithm GenSE(1λ) outputs
a private key k; the encryption algorithm E(k,m) takes as input a key k and a message
m ∈M and outputs a ciphertext c; the decryption algorithm D(k, c) takes as input a key k
and a ciphertext c and outputs a message m.

A private key encryption scheme is correct if and only if, for all k ← GenSE(1λ) and
all messages m ∈M we have D(k, E(k,m)) = m.

Next, we define IND-CPA security for private key encryption schemes, where Ok(·) is
an encryption oracle that returns E(k,m) when queried on a message m.

Definition A.2 (IND-CPA Security). Let ΠSE = (GenSE, E ,D) be a private key encryption
scheme. ΠSE has indistinguishable ciphertexts against chosen-plaintext attacks if for all
ppt adversaries A the following probability is negligible (as function in λ):∣∣∣Pr

[
ExpΠSE

A,cpa(λ, 1) = 1
]
− Pr

[
ExpΠSE

A,cpa(λ, 0) = 1
]∣∣∣

where ExpΠSE
A,cpa(λ, b) is the following experiment:

ExpΠSE
A,cpa(λ, b)

k ← GenSE(1λ)
(m0,m1)← AOk(·)

cb ← E(k,mb)
b′ ← A(cb)
if |m0| = |m1| ∧ b′ = b then

return 1
return 0

Finally, we introduce the notion of elusive-range scheme, we denote the range of a key
k by Rangeλ(k) := {E(k,m)}m∈{0,1}λ .
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Definition A.3 (Elusive Range [134]). Let ΠSE = (GenSE, E ,D) be a private key encryption
scheme. ΠSE has elusive-range if Prk←GenSE(1λ)[A(1λ) ∈ Rangeλ(k)] is negligible in λ for
all ppt adversaries A.

A.2. Public-Key Encryption
We recall the basic definition of public-key encryption [70] and the corresponding IND-
CPA [89] and IND-CCA [60] security definitions.

Definition A.4 (Public Key Encryption). A public key encryption scheme is a tuple of
ppt algorithms ΠPKE = (GenPKE,E,D), where the generation algorithm GenPKE(1λ) outputs
an encryption key ek and a decryption key dk; the encryption algorithm E(ek,m) takes
as input the encryption key ek and a message m ∈ M and outputs a ciphertext c; the
decryption algorithm D(dk, c) takes as input the decryption key dk and a ciphertext c and
outputs a message m or ⊥.

A public key encryption scheme is correct if and only if, for all (ek, dk)← GenPKE(1λ)
and all messages m ∈M we have D(dk,E(ek,m)) = m.

Next, we define IND-CPA security for public-key encryption schemes.

Definition A.5 (CPA Security). Let ΠPKE = (GenPKE,E,D) be a public key encryption
scheme. ΠPKE has indistinguishable ciphertexts against chosen-plaintext attacks (CPA) if
for all ppt adversaries A the following probability is negligible (in the security parameter
λ): ∣∣∣Pr

[
ExpΠPKE

A,cpa(λ, 1) = 1
]
− Pr

[
ExpΠPKE

A,cpa(λ, 0) = 1
]∣∣∣

where ExpΠPKE
A,cpa(λ, b) is the following experiment:

ExpΠPKE
A,cpa(λ, b)

(ek, dk)← GenPKE(1λ)
(m0,m1)← A(ek)
cb ← E(ek,mb)
b′ ← A(cb)
if |m0| = |m1| ∧ b′ = b then

return 1
return 0

For our purposes, we need an IND-CPA-secure public-key encryption scheme that is
rerandomizable. Hence, we assume that there exists a function Rnd(ek, c, r) that takes as
input an encryption key ek, a ciphertext c, and randomness r and returns a rerandomized
ciphertext c′ encrypting the same content where c 6= c′ and both c and c′ have the same
distribution in the ciphertext space. Security is given if no adversary can distinguish
whether c′ is the re-randomization of c or an encryption of a different message.
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Finally, we report the definition of IND-CCA security. Let Odk(·) be an oracle that,
on input a ciphertext c outputs D(dk, c).

Definition A.6 (CCA Security). Let ΠPKE = (GenPKE,E,D) be a public key encryption
scheme. ΠPKE has indistinguishable ciphertexts against chosen-ciphertext attacks (CCA)
if for all ppt adversaries A the following probability is negligible (in the security parameter
λ): ∣∣∣Pr

[
ExpΠPKE

A,cca(λ, 1) = 1
]
− Pr

[
ExpΠPKE

A,cca(λ, 0) = 1
]∣∣∣

where ExpΠPKE
A,cca(λ, b) is the following experiment:

ExpΠPKE
A,cca(λ, b)

(ek, dk)← GenPKE(1λ)
(m0,m1)← AOdk(·)(ek)
cb ← E(ek,mb)
b′ ← AO

′
dk(·)(cb) // O′dk(·) aborts on input cb

if |m0| = |m1| ∧ b′ = b then
return 1

return 0

A.3. Predicate Encryption
We recall the notion of predicate encryption [113]. In a predicate encryption scheme one can
encrypt a message m under a certain attribute I ∈ Σ using a master public key ppk where
Σ is the universe of all possible attributes. Furthermore, one can decrypt the resulting
ciphertext using a secret key pskf associated with a predicate f ∈ F if and only if I fulfills
f , i.e., f(I) = 1, where F is the universe of all predicates.

Definition A.7 (Predicate Encryption). A predicate encryption scheme for the universe
of predicates and attributes F and Σ, respectively, is a tuple of ppt algorithms ΠPE =
(GenPE,KPE,EPE,DPE), where the generation algorithm GenPE takes as input a security
parameter 1λ and returns a master public and a master secret key pair (ppk, pmsk); the
key generation algorithm KPE takes as input the master secret key pmsk and a predicate
description f ∈ F and returns a secret key pskf associated with f ; the encryption algorithm
EPE takes as input the master public key ppk, an attribute I ∈ Σ, and a message m and it
returns a ciphertext c; and the decryption algorithm DPE takes as input a secret key pskf
associated with a predicate f and a ciphertext c and outputs either a message m or ⊥.

A predicate encryption scheme ΠPE is correct if and only if, for all λ, all key pairs
(ppk, pmsk)← GenPE(1λ), all predicates f ∈ F , all secret keys pskf ← KPE(pmsk, f), and
all attributes I ∈ Σ we have that (i) if f(I) = 1 then DPE(pskf ,EPE(ppk, I,m)) = m and
(ii) if f(I) = 0 then DPE(pskf ,EPE(ppk, I,m)) = ⊥ except with negligible probability in λ.
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Next, we recall the security notion attribute-hiding that we require the predicate
encryption scheme to hold. To give an intuition, suppose that there are professors,
students, and employees at a university with corresponding attributes Prof , Emp, and
Stud. Naturally, every member of a group will be equipped with a secret key pskf such
that f is either the predicate mayAccProf, mayAccEmp, or mayAccStud. We use the toy
policy that professors may read everything and employees and students may read only
encryptions created using Emp and Stud, respectively. Now, attribute-hiding means the
following: let file be a file encrypted using the attribute Prof . On the one hand, a student
equipped with pskmayAccStud can neither decrypt the file nor tell with which attribute it
is encrypted except for that it was not Stud. On the other hand, even a professor does
not learn under which attribute file was encrypted, she only learns the content of the file
and nothing more. The following definition formalizes the intuition given above where
Opmsk(·) on input a predicate f ∈ F outputs pskf if and only if f(I0) = f(I1) and Ib are
the challenge attributes of the adversary A and where I is the collection of attributes
queried to Opmsk(·), which is filled upon every successful oracle call.

Definition A.8 (Attribute Hiding). Let ΠPE be a predicate encryption scheme with respect
to F and Σ. ΠPE is attribute hiding if for all ppt adversaries A the following probability
is negligible: ∣∣∣Pr

[
ExpΠPE

A,ah(λ, 1) = 1
]
− Pr

[
ExpΠPE

A,ah(λ, 0) = 1
]∣∣∣

where ExpΠPE
A,ah(λ, b) is the following experiment:

ExpΠPE
A,ah(λ, b)

Σ2 3 (I0, I1)← A(1λ)
(ppk, pmsk)← GenPE(1λ)
(m0,m1)← AOpmsk(·)(ppk)
b′ ← AOpmsk(·)(EPE(ppk, Ib,mb))
if b = b′ ∧ |m0| = |m1| ∧ ((∃f ∈ I. f(I0) = f(I1) = 1) =⇒ m0 = m1) then

return 1
return 0

As for public-key encryption, we require a rerandomization operation RPE(ppk, c, r).
We briefly describe below how to encode the access control matrix through predicates

and attributes. We use Σ = F = Zn+1
q where n is the maximum number of clients that

are registered with the database owner. Let f, I ∈ Zn+1
q such that f(I) = 1 if and only

if 〈f, I〉 = 0, i.e., the two vectors f and I are orthogonal. Let (f1, . . . , fn) ∈ Z(n+1)×n
q be

the matrix formed of all column-vectors representing the n clients. Let us furthermore
assume that all the n columns are pairwise linearly independent. Now, in order to find
an attribute that implements the read or write access modes of a data entry at index i
for all clients, one computes a vector I ∈ Zn+1

q that is orthogonal to the k ≤ n vectors
corresponding to the clients that have access to i and that is not orthogonal to the other
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n − k. Since there are at most n vectors to which I has to be orthogonal, there always
exists a solution to this system of equations.

A.4. Broadcast Encryption
We recall the definition of broadcast encryption and an adaptive security notion [85].

Definition A.9 (Broadcast encryption). A broadcast encryption scheme is a tuple of ppt
algorithms ΠBE = (GenBE,KBE,EBE,DBE):

• the generation algorithm GenBE(1λ, n) takes as input a security parameter λ and a
maximum number of users n and outputs a key pair (bsk, bpk);

• the key generation algorithm KBE(i, bsk) takes as input an index i ∈ {1, . . . , n} and
the secret key bsk and outputs a private key di;

• the encryption function EBE(S, bpk) takes as input a set S ⊆ {1, . . . , n} and the public
key bpk and outputs a pair 〈Hdr ,K〉 where Hdr is called the header and K is called
the message encryption key. Let ΠSE be a symmetric encryption scheme and let
c ← E(K,M) be the encryption of message M that is supposed to be broadcast to
users in S. Then the broadcast message consists of (S,Hdr , c);

• finally, the decryption function DBE(S, i, di,Hdr , bpk) takes as input the set of users
S, an index i with corresponding private key di, the header Hdr, and the public key
bpk. If i ∈ S and di belongs to i, then it outputs a message encryption key K that
can be used to decrypt the symmetric-key ciphertext c produced during encryption.

For the adaptive security definition below, we let Obsk(·) denote an oracle that on input
an integer 1 ≤ i ≤ n outputs the corresponding secret key di ← KBE(i, bsk). The queried
i’s are collected by the oracle in a set I. Furthermore, in the following formalization, we
denote by K the key space of ΠBE.

Definition A.10 (Adaptive security). Let ΠBE be a broadcast encryption scheme. ΠBE is
adaptively secure if for all ppt adversaries A the following probability is negligible:

∣∣∣Pr
[
ExpΠBE

A (λ, 1) = 1
]
− Pr

[
ExpΠBE

A (λ, 0) = 1
]∣∣∣

where ExpΠBE
A (λ, b) is the following experiment:
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ExpΠBE
A (λ, b)

(bsk, bpk)← GenBE(1λ, n)
S∗ ← AObsk(·)(bpk)
〈Hdr∗,K0〉 ← EBE(S∗, bpk)
K1←$K
b′ ← A(Hdr∗,Kb)
if b′ = b ∧ S∗ ∩ I = ∅ then

return 1
return 0

A.5. Chameleon Hash Functions
We recall the definition of chameleon hash functions as well as the notion of key-exposure
freeness [13].

Definition A.11 (Chameleon hash function). A chameleon hash function is a tuple of ppt
algorithms ΠCH = (GenCHF,CH,Col), where the generation algorithm GenCHF(1λ) outputs a
key pair (cpk, csk); the chameleon hash function CH(cpk,m, r) takes as input the public
key cpk, a message m, and randomness r and it outputs a tag t; the collision function
Col(csk,m, r,m′) takes as input the private key csk, a message m, randomness r, and
a new message m′ and it outputs a new randomness r′ such that CH(cpk,m, r) = t =
CH(cpk,m′, r′).

We define next the key-exposure freeness property for chameleon hash functions [13]
where Ocsk(·) is an oracle that on input a message m′ outputs r′ ← Col(csk,m, r,m′) where
(m, r) is initially chosen by the adversary. The oracle collects the collisions (m′, r′) in a set
I.

Definition A.12 (Key-exposure freeness). Let ΠCH = (GenCHF,CH,Col) be a chameleon
hash function. ΠCH is key-exposure free if Pr

[
ExpΠCH

A,kef(λ) = 1
]
is negligible in λ for all

ppt adversaries A, where ExpΠCH
A,kef(λ) is the following experiment:

ExpΠCH
A,kef(λ)

(cpk, csk)← GenCHF(λ)
(m, r)← A(cpk)
(m∗, r∗)← AOcsk(·)(cpk)
if CH(cpk,m, r) = CH(cpk,m∗, r∗) ∧ ∀(m′, r′) ∈ I. (m∗, r∗) 6= (m′, r′) then

return 1
return 0
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A.6. Digital Signatures
We recall the definition of digital signatures as well as the one of existential unforgeabil-
ity [90].

Definition A.13 (Digital signature). A digital signature scheme is a tuple of ppt al-
gorithms ΠDS = (GenDS, sign, vfy) where the generation algorithm GenDS(1λ) outputs a
key pair (vk, sk); the signing function sign(sk,m) takes as input the signing key sk and a
message m and it outputs a signature σ; the verification function vfy(vk, σ,m) takes as
input the verification key vk, a signature σ, and a message m, and it outputs either > if σ
is a valid signature for m or > otherwise.

We next define existential unforgeability [90] where Osk(·) is an oracle that on input a
message m outputs σ ← sign(sk,m). The so constructed pairs (m,σ) are collected in a set
I by the oracle.

Definition A.14 (Existential unforgeability). Let ΠDS = (GenDS, sign, vfy) be a digital
signature scheme. ΠDS is existentially unforgeable against chosen message attacks if
Pr
[
ExpΠDS

A,euf(λ) = 1
]
is negligible in λ for all ppt adversaries A, where ExpΠDS

A,euf(λ) is the
following experiment:

ExpΠDS
A,euf(λ)

(vk, sk)← GenDS(λ)
(σ∗,m∗)← AOsk(·)(vk)
if vfy(vk, σ∗,m∗) = > ∧ ∀(m,σ) ∈ I. m∗ 6= m then

return 1
return 0

A.7. Service-Specific Pseudonyms
SSPs [143] enjoy two fundamental properties that we require for our instantiation of CR2P,
uniqueness and anonymity, which we recall below.

Definition A.15 (Uniqueness). A service-specific pseudonym is unique [143] whenever
the following statements hold with overwhelming probability where h is a hash function
mapping bit strings to an SSP compatible group:

1. for any two honestly generated identities id1, id2 and any service S we have
SSP(id1,S) 6= SSP(id2,S);

2. for any identity id and any service S, SSP(id,S) is a unique value;

3. finally, for any identity id and any two service descriptions S1 and S2 we have
SSP(id, h(S1)) 6= SSP(id, h(S2)).
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Definition A.16 (Anonymity). A set of k pseudonyms {psd1, . . . , psdk} for k services
for the same identity id provides anonymity if and only if, given a set {bid1, . . . , bidm}
or m blinded identities, any ppt adversary can associate which bidi corresponds to the
pseudonyms with probability at most 1/m+ negl(λ).

A.8. Zero-Knowledge Proofs
A zero-knowledge proof system ZKP is a proof system executed between a prover P and a
verifier V for some statement ∃~x. F (~x, ~y) in which we call ~x the witnesses of the statement
and ~y the public components. Being a proof system, ZKP enjoys two fundamental properties:
correctness, i.e., an honest prover and an honest verifier always succeed in proving a correct
statement, and soundness, i.e., a malicious prover cannot convince an honest verifier
of a false statement except with negligible probability. A zero-knowledge proof system
additionally has the zero-knowledge property, i.e., the proof transcript generated between
P and V does not reveal more than the validity of F (~x, ~y). More formally, zero-knowledge
is formalized by requiring the existence of a simulator S that on input F and ~y, generates
a verifying transcript that no malicious V can distinguish from an honestly produced
transcript.

A zero-knowledge proof of knowledge additionally requires that the prover knows the
witnesses ~x. This is formalized by requiring the existence of an extractor E that, on input
a proof transcript, extracts a correct witness with overwhelming probability.

Finally, a non-interactive zero-knowledge proof of knowledge, which we abbreviate
throughout the paper with NIZK, is a proof that consists of a single message sent from
the prover to the verifier. We use the notation PK {(~x) : F (~x, ~y)} to denote an NIZK for
statement F , which reveals ~y but not ~x.

A.9. Proofs of Shuffle Correctness
Zero-knowledge proofs of shuffle correctness (also sometimes known as mix proofs) were first
introduced by Chaum [49] in the context of mix networks. More formally, let C1, . . . , Cn
be a sequence of ciphertexts and C ′1, . . . , C ′n be a permuted and rerandomized version of
thereof. Let furthermore π be the used permutation and r1, . . . , rn be the randomnesses
used in the rerandomization. A zero-knowledge proof of shuffle correctness can be expressed
via NIZKs as follows:

PK
{

(π, r1, . . . , rn) : ∀1 ≤ i ≤ n. C ′i = Rnd(pk, Cπ−1(i), ri)
}
.

Notice that this proof reveals the old and the new ciphertext but it hides π and r1, . . . , rn.

A.10. Private Information Retrieval
A private information retrieval (PIR) protocol [53] is defined as follows.
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Definition A.17 (Private information retrieval). A private information retrieval protocol
consists of the following ppt algorithms ΠPIR = (prepRead, execRead, decodeResp) where
the query preparation algorithm (q, td) ← prepRead(DB, i) on input a database DB (the
length of DB usually suffices) and an index i outputs a query q and a trapdoor td; the query
execution algorithm r ← execRead(DB, q) on input the actual database DB and a query q
outputs an encoded response r; and the response decoding algorithm d← decodeResp(td, r)
on input the trapdoor td and an encoded response r outputs a decoded response d.

A PIR is correct if for all indices i, databases DB, (q, td) ← prepRead(DB, i), r ←
execRead(DB, q), and d← decodeResp(td, r) we have that d = DB(i).

Usually it is clear from the context that the query generator and response decoder is
the same party, in which case we omit td for brevity.

Security of PIR is defined by requiring that any two queries are indistinguishable to
the one executing them.

Definition A.18 (Privacy). Let ΠPIR = (prepRead, execRead, decodeResp) be a PIR
scheme. ΠPIR achieves privacy if for any ppt adversary A the following probability
is negligible in λ ∣∣∣Pr

[
ExpΠPIR

A,priv(λ, 0) = 1
]
− Pr

[
ExpΠPIR

A,priv(λ, 1) = 1
]∣∣∣

where ExpΠPIR
A,priv(λ, b) is the following experiment:

ExpΠPIR
A,priv(λ, b)

(DB, i0, i1)← A
(q∗, td∗)← prepRead(DB, ib)
b′ ← A(q∗)
if |DB| = n ∧ 1 ≤ i0 ≤ n ∧ 1 ≤ i1 ≤ n ∧ b = b′ then

return 1
return 0

129



130



B. Further Details of Group ORAM

B.1. Cryptographic Instantiations
B.1.1. Instantiations

Encryption schemes. We use AES [63] as private-key encryption scheme with an appro-
priate message padding in order to achieve the elusive-range property [134].1 Furthermore,
we employ the ElGamal encryption scheme [76] for public-key encryption. We use it for
PIR-GORAM to construct an entry in the database (cf. cData in (2.3) and cBrCast in (2.4)).
It also fulfills all properties that we require for GORAM, i.e., it is rerandomizable and
supports zero-knowledge proofs. A complete review of the scheme is reported in Figure C.1
on page 181. Interestingly enough, it is also possible to produce information with which one
can decrypt a ciphertext c = (c1, c2) without knowing the secret key by sending c−x1 where
x is the decryption key. This is necessary to give the server access to cAuth in GORAM. In
PIR-GORAM, we encrypt the signing keys of the Schnorr signature scheme [173] (cf. cAuth
in (2.5)) using the Cramer-Shoup encryption scheme [60].

For GORAM and A-GORAM, we utilize the predicate encryption scheme introduced
by Katz et al. [113]. Its ciphertexts are rerandomizable and we also show them to be
compatible with the Groth-Sahai proof system [94]. For the details, we refer to Appendix B.1.
Concerning the implementation, the predicate encryption scheme by Katz et al. [113] is not
efficient enough since it relies on elliptic curves on composite-order groups. In order to reach
a high security parameter, the composite-order setting requires us to use much larger group
sizes than in the prime-order setting, rendering the advantages of elliptic curves practically
useless. Therefore, we use a scheme transformation proposed by David Freeman [82], which
works in prime-order groups and is more efficient. For implementing S-GORAM we use an
adaptively secure broadcast encryption scheme by Gentry and Waters [85].

Private information retrieval. We use XPIR [2], the state of the art in computational
PIR.

Zero-knowledge proofs. We deploy several non-interactive zero-knowledge proofs. For PIR-
GORAM, in order to implement the integrity proofs in (cf. lines 4.20 and 4.26 in Section 2.4),
we use an OR-proof [58] over a conjunction of plaintext-equivalence proofs [108] (PEP) on
the ElGamal ciphertexts forming one entry and a standard discrete logarithm proof [173]
showing that the client knows the signing key corresponding to the authenticated verification

1This property is formally necessary when proving the hybrid version of our constructions tamper-resistant.
We refer to [140, Proof of Lemma 3] for the full proof in the hybrid version.
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key. When improving the proof computation using our new technique based on the hash-and-
proof paradigm,2 the conjunction of PEPs reduces to the computation of the homomorphic
hash plus one PEP. As a matter of fact, since the public components necessary to verify a
proof (the new and old ciphertexts and the verification key) and the secret components
necessary to compute the proof (the randomness used for rerandomization or the signing
key) are independent of the number of clients, all deployed proofs solely depend on the
block size.

In GORAM, for proving that a predicate ciphertext validly decrypts to 1 without
revealing the key, we use Groth-Sahai non-interactive zero-knowledge proofs3 [94]. More
precisely, we apply them in the proofs created in line 10.14 (read and write, see Algorithm 10
and Algorithm 11). We employ plaintext-equivalence proofs (PEPs) [108, 173] for the
proofs in line 10.16. Furthermore, we use a proof of shuffle correctness [22], batched shuffle
proofs, and the hash-and-proof paradigm in lines 10.11 and 11.10.

Chameleon signatures. We use a chameleon hash function by Nyberg and Rueppel [13],
which has the key-exposure freeness property. We complete the chameleon hash tags with
SHA-256 for the ordinary hash function and combine both with RSA signatures [165].

Implementing permanent entries in GORAM. We briefly outline how permanent entries
can be implemented using ElGamal encryption and equality of discrete logarithm proofs [59].
Let cp = E(pk, permanent) = (G,H) = (gr, gpermanent · hr) be the ciphertext associated to
the entry that is subject to change and pk = (g, h) be the public key of the ElGamal scheme.
If permanent 6= 1 then the entry may not be removed from the database completely. Hence,
if O attempts to remove an entry from the tree, she has to prove to S that permanent = 1.
The following zero-knowledge proof serves this purpose, given that permanent is encoded
in the exponent of the message:

PK
{

(α) : H · g−1 = Gα ∧ h = gα
}
.

Naturally, the re-randomization step as well as the shuffle proof step also apply to this
ciphertext.

B.1.2. Details on the KSW Predicate Encryption Scheme
In this section, we present the predicate encryption scheme of Katz et al. [113]. Moreover,
we show how one can rerandomize ciphertexts as a public operation. This might be of
independent interest. We show the rerandomization for the original scheme, however, it is
straightforward to adapt the transformation to prime order groups [82] – the one we use in
our implementation for efficiency reasons.

Importantly, in our descriptions throughout the paper, we use a zero-knowledge proof
of knowledge of a secret key for the predicate encryption scheme, showing that the result of

2A careful analysis of the computation shows that the technique from batched shuffle proofs mapped to
standard PEPs as we deploy them in PIR-GORAM, would end up in a worse solution.

3Groth-Sahai proofs are generally not zero-knowledge. However, in our case the witnesses fulfill a special
equation for which they are zero-knowledge.
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decryption is the neutral element. Unfortunately, straightforwardly combining the Groth-
Sahai proof system [94], which we deploy in the concrete instantiation, with the standard
predicate encryption scheme of Katz et al. [113] only yields witness-indistinguishability
proofs since the right hand side of the underlying pairing product equation is not the
neutral element. Only if it was the neutral element, the proof would be zero-knowledge.
Fortunately, Katz et al. also present a version of the predicate encryption scheme that does
not encrypt messages but just the attribute, which can be seen as the encryption of the
neutral element. This scheme combined with Groth-Sahai proofs yields zero-knowledge
proofs of knowledge. We thus present both schemes in the sequel.

B.1.2.1. The Scheme Instantiation
The scheme is based on composite order groups with a bilinear map. More precisely, let
N = pqr be a composite number where p, q, and r are large prime numbers. Let G be
an order-N cyclic group and e : G×G→ GT be a bilinear map. Recall that e is bilinear,
i.e., e(ga, gb) = e(g, g)ab, and non-degenerate, i.e., if 〈g〉 = G then e(g, g) 6= 1. Then, by
the chinese remainder theorem, G = Gp × Gq × Gr where Gs with s ∈ {p, q, r} are the
s-order subgroups of G. Moreover, given a generator g for G, 〈gpq〉 = Gr, 〈gpr〉 = Gq,
and 〈gqr〉 = Gp. Another insight is the following, given for instance a ∈ Gp and b ∈ Gq,
we have e(a, b) = e((gqr)c, (gpr)d) = e(grc, gd)pqr = 1, i.e., a pairing of elements from
different subgroups cancels out. Finally, let G be an algorithm that takes as input a security
parameter 1λ and outputs a description (p, q, r,G,GT , e). We describe the algorithms
GenPE, KPE, EPE, and DPE in the sequel.

Algorithm GenPOE(1λ, n) and GenPE(1λ, n). First, the algorithm runs G(1λ) to obtain
(p, q, r,G,GT , e) with G = Gp ×Gq ×Gr. Then, it computes gp, gq, and gr as generators
of Gp, Gq, and Gr, respectively. The algorithm selects R0 ∈ Gr, R1.i, R2,i ∈ Gr and
h1,i, h2,i ∈ Gp uniformly at random for 1 ≤ i ≤ n. (N = pqr,G,GT , e) constitutes the
public parameters. The public key for the predicate-only encryption scheme is

opk = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1)

and the master secret key is

omsk = (p, q, r, gq, {h1,i, h2,i}ni=1).

For the predicate encryption with messages, the algorithm additionally chooses γ ∈ ZN
and h ∈ Gp at random. The public key is

ppk = (gp, gr, Q = gq ·R0, P = e(gp, h)γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1)

and the master secret key is

pmsk = (p, q, r, gq, h−γ , {h1,i, h2,i}ni=1).

Algorithm KPOE(omsk, ~v) and KPE(pmsk, ~v). Parse ~v as (v1, . . . , vn) where vi ∈ ZN . The
algorithm picks random r1,i, r2,i ∈ Zp for 1 ≤ i ≤ n, random R5 ∈ Gr, random f1, f2 ∈ Zq,
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and random Q6 ∈ Gq. For the predicate-only encryption scheme it outputs a secret key

osk~v =
(
K0 = R5 ·Q6 ·

n∏
i=1

h
−r1,i
1,i · h−r2,i2,i , {K1,i = g

r1,i
p · gf1·vi

q ,K2,i = g
r2,i
p · gf2·vi

q }ni=1

)
.

For the predicate encryption scheme with messages, the secret key psk~v is the same as osk~v
except for

K0 = R5 ·Q6 · h−γ ·
n∏
i=1

h
−r1,i
1,i · h−r2,i2,i .

Algorithm EPOE(opk, ~x) and EPE(ppk, ~x,m). Parse ~x as (x1, . . . , xn) where xi ∈ ZN . The
algorithm picks random s, α, β ∈ ZN and random R3,i, R4,i ∈ Gr for 1 ≤ i ≤ n. For the
predicate-only encryption scheme it outputs the ciphertext

C =
(
C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i}ni=0

)
.

For the predicate encryption scheme with messages notice that m ∈ GT . The ciphertext is

C =
(
C ′ = m · P s, C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i}ni=0

)
.

Algorithm DPOE(osk~v, C) and DPE(psk~v, C). The predicate-only encryption outputs
whether the following equation is equal to 1

e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

The predicate encryption scheme with messages outputs the result of the following equation

C ′ · e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

Correctness. We show correctness for both schemes in one calculation, indicating additional
elements that are present in predicate encryption with messages using boxes. We have
secret key components (K0, {K1,i,K2,i}ni=0) where K0 = R5 ·Q6 · h−γ ·

∏n
i=1 h

−r1,i
1,i · h−r2,i2,i

and ciphertext components ( C ′ , C0, {C1,i, C2,i}ni=0). Then

C ′ · e(C0,K0) ·
n∏
i=0

e(C1,i,K1,i) · e(C2,i,K2,i)

= m · P s · e(gsp, R5 ·Q6 · h−γ ·
n∏
i=1

h
−r1,i
1,i · h−r2,i2,i ) ·

n∏
i=1

e(Hs
1,i ·Qα·xi ·R3,i, g

r1,i
p · gf1·vi

q )

· e(Hs
2,i ·Qβ·xi ·R4,i, g

r2,i
p · gf2·vi

q )

= m · e(gp, h)s·γ · e(gp, h)−s·γ ·
n∏
i=1

e(gp, h1,i)−s·r1,i · e(gp, h2,i)−s·r2,i
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·
n∏
i=1

e(h1,i, gp)s·r1,i · e(gq, gq)α·xi·f1·vi · e(h2,i, gp)s·r2,i · e(gq, gq)β·xi·f2·vi

= m ·
n∏
i=1

e(gq, gq)(αf1+βf2)·xi·vi

= m · e(gq, gq)(αf1+βf2)·〈~x,~v〉

The second factor in the last line cancels out only if 〈~x,~v〉 = 0, as expected.

B.1.2.2. Rerandomizing KSW Ciphertexts

The correctness validation in the previous section already suggests that rerandomization of
ΠPOE and ΠPE ciphertexts is possible since all terms that involve randomness s cancel out
in the end. As terms including s only occur in the ciphertext we can easily have public
rerandomization functions RPOE and RPE as follows.

Algorithms RPOE(C) and RPE(C). The algorithm picks fresh randomness s′ ∈ ZN and
computes CR in the predicate-only encryption scheme as

CR = (C0 · gs
′
p , {C1,i ·Hs′

1,i, C2,i ·Hs′
2,i}ni=1).

In the predicate encryption scheme with messages it returns

CR = (C ′ · P s′ , C0 · gs
′
p , {C1,i ·Hs′

1,i, C2,i ·Hs′
2,i}ni=1).

This transformation constitutes an additive randomization in the sense that in every
exponent where s occurs, it now contains exponent s+ s′. Therefore, also the correctness
is preserved.

B.1.2.3. Proving Knowledge of Predicate-Only Secret Keys in Groth-Sahai

In our construction, the client has to prove to the server that she is eligible to write an
entry whenever she wants to replace an entry in the database. The proof (see line 10.14)
has the general form

PK
{(

pskf
)

: DPE(pskf , cAuth) = 1
}
.

In our instantiation we have to use KSW predicate-only encryption for the reasons mentioned
in the beginning, hence the statement changes to

PK
{(

oskf
)

: DPOE(oskf , cAuth) = >
}
.

Concretely, cAuth is of the form (C0, {C1,i}1≤i≤n, {C2,i}1≤i≤n) while secret keys are of the
form (K0, {K1,i}1≤i≤n, {K2,i}1≤i≤n). This means that the concrete proof is of the form

PK
{

(K0, {K1,i}1≤i≤n, {K2,i}1≤i≤n) : e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i)e(C2,i,K2,i) = 1
}
.
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The Groth-Sahai proof system [94] allows for proving relations of the above form.
More precisely, given vectors of witnesses ~X ∈ Gm

1 , ~Y ∈ Gn
2 , we can prove the following

equality while disclosing neither ~X nor ~Y :
n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
n∏
i=1

m∏
j=1

e(Xi, Yj)γij = tT

where ~A ∈ Gn
1 , ~B ∈ Gm

2 , Γ ∈ Zn×mq , and tT ∈ GT are the public components of the proof.
In our special case, it is sufficient to consider the following special form of this equation
since we only want to keep the secret key hidden, which is in G2:

n∏
i=1

e(Ai, Yi) = tT .

Furthermore, tT = 1 where 1 stands for the neutral element of the group operation. We
construct the vectors ~A and ~Y as

~A = (C0, C1,i, . . . , C1,n, C2,1, . . . , C2,n)> ~Y = (K0,K1,i, . . . ,K1,n,K2,1, . . . ,K2,n)>

We do not review the proof construction here but refer the interested reader to [94] for a
concise explanation. We observe that since tT = 1, the proofs for our scenario are indeed
zero-knowledge.

B.2. Proof of the Computational Lower Bound
Notation. Without loss of generality we assume a binary database DB that consists of n
entries and each entry consists of exactly one bit d. We denote by I the set of identifiers
j of each entry and by dj the value of j. Note that a single entry can be simultaneously
stored on multiple physical addresses in the memory of the database (e.g., the database
may maintain multiple copies of the same entry or secret-share some entries across several
locations), for this reason we define a predicate that maps identifiers to physical addresses
of the memory of the database. Let L denote the set of possible physical memory locations.
The predicate loc : I → P(L) takes as input an identifier j and returns a set of physical
memory addresses {`1, . . . , `t}, for some t ≥ 1. Note that such a predicate may depend
on the database architecture and on the ORAM scheme and it may change whenever
some write operation is performed on the database. We say that an algorithm accesses
some physical address if its content is either modified or read during the execution of the
algorithm. Throughout the following presentation, we denote by L a given set of physical
addresses and by m the amount of physical addresses of the database, i.e., m = |L|. We
observe that, by definition, we have that m ≥ n. Finally, for a positive integer n, we let [n]
denote the set {1, . . . , n}. We also extend this notation to sets of indexed variables; we
write, e.g., [capk] to denote the set {cap1, . . . , capk}.
Read Correctness. We recall the correctness definition for the read operation in a Group
ORAM, while for the other operations we refer to Appendix B.4.1.
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Definition B.1 (Read Correctness). The read of a Group ORAM scheme ΠGORAM is
correct, if for all λ and n, for all j ∈ [n] and capi ∈ [capk] such that AC(i, j) 6= ⊥, there
exists a negligible function µ(·) such that:

Pr [dj ← 〈Cread(capi, j),Sread(DB)〉] ≥ (1− µ(λ)).

We now introduce some helpful facts which simplify the proof of the main theorem.
Note that in the following analysis we only consider the operation read, since read and
write must be indistinguishable it is easy to see that the same result extends to write. The
first lemma formalizes that in any Group ORAM scheme, a client who wants to read a
certain index necessarily has to access at least one of the physical addresses associated to
that index.

Lemma B.1. Let ΠGORAM be a Group ORAM scheme. Then for all j ∈ [n] and capi ∈
[capk] with AC(i, j) 6= ⊥ there exists a negligible function µ(·) such that:

Pr [dj ← 〈Cread(capi, j),Sread(DB)〉 accesses L ∧ L ∩ loc(j) 6= ∅] ≥ (1− µ(λ))

where the probability is taken over the random coins of 〈Cread(capi, j),Sread(DB)〉.

Proof. The proof follows from the correctness of ΠGORAM. Assume towards contradiction
that 〈Cread(capi, j),Sread(DB)〉 does not access any of the physical addresses in loc(j) with
non-negligible probability ε(λ). In that case, the algorithm 〈Cread(capi, j),Sread(DB)〉 can
only guess the bit of j, and hence returns the correct bit with probability at most 1/2,
which means that 〈Cread(capi, j),Sread(DB)〉 returns dj with probability at most (1−ε(λ)/2).
Since ε(λ)/2 is non-negligible, we derived a contradiction to ΠGORAM’s read correctness.

The following lemma captures the fact that in a Group ORAM the probability of a
random physical address to be accessed during a certain read is proportional to the amount
of entries accessed (on average) upon each read.

Lemma B.2. Let ΠGORAM be a Group ORAM scheme whose read operation accesses on
average ` many addresses (for some ` ∈ [m]), over the random coins of the read operation.
Then for a physical memory address x ∈ [m] sampled uniformly at random and for all read
access sequences ~y of length p, for all q ∈ [p] it holds that:

Pr [~yq accesses x] ≤ `

m

where ~yq denotes the q-th read operation of ~y and the probability is taken over the random
choice of x and the random coins of ~y.

Proof. The proof follows from the fact that x is sampled independently and uniformly at
random. Since on average 〈Cread(capi, j),Sread(DB)〉 accesses ` many memory locations,
the probability that x belongs to that set is exactly `/m.

The following lemma formalizes the intuition that in a Group ORAM scheme that is
oblivious (against malicious clients) the probability of accessing a certain memory address
upon each read must be independent from the index queried by the client.
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Lemma B.3. Let ΠGORAM be a Group ORAM scheme, then for all pairs of read access
sequences (~y, ~z) of length p, for all q ∈ [p], and for all memory locations x ∈ [m] there
exists a negligible function µ(·) such that:

|Pr [~yq accesses x]− Pr [~zq accesses x]| ≤ µ(λ)

where the probability is taken over the random coins of 〈Cread(·, ·),S(DB)〉.

Proof. Assume towards contradiction that there exists a pair of access sequences (~y, ~z) and
a physical memory address x such that at step q:

|Pr [~yq accesses x]− Pr [~zq accesses x]| ≥ ε(λ)

for some non-negligible function ε(·). This implies that we can construct an adversary A
that non-deterministically samples (~y, ~z, x, q), does not corrupt any client, queries the pair
(~y, ~z) to the query interface of the challenger and returns 1 if x was accessed at step q and
0 otherwise. To analyze the success probability of A we shall note that:

Pr [1← A | b = 0] = Pr [~yq accesses x]
Pr [1← A | b = 1] = Pr [~zq accesses x] .

By our initial assumption it follows that:

|Pr [1← A | b = 0]− Pr [1← A | b = 1]| ≥ ε(λ),

which is a contradiction to the obliviousness against malicious clients of ΠGORAM.

We are now ready to formally prove Theorem 2.1. Note that, even though the definition
of obliviousness against malicious clients for Group ORAM (see Definition 2.6) allows for
active corruption, the result still holds in case of passive corruption (i.e., the adversary
does not impersonate the corrupted instances but receives transcripts of honestly executed
operations).

Proof. Assume towards contradiction that there exists a Group ORAM scheme ΠGORAM
that accesses on average o(n) physical memory addresses and is secure. Then we can
construct an adversary A as follows.
A receives a local copy of the database DB. A then generates several clients via the

addCl interface and samples a pair of entries (j, j ′)← [n]2 uniformly at random. It then
selects a random client with identifier i and assigns i with read permissions on j via the
interface chMode. Furthermore, A samples a memory location x uniformly at random, an
integer q ∈ {1, . . . ,poly(λ)}, and a sequence ~w of read operations uniformly at random
of length q − 1. A then initializes ~y := ~w||(i′, j,⊥) and ~z := ~w||(i′, j ′,⊥) for some client
identifier i′ 6= i such that AC(i′, j) = AC(i′, j ′) = R. If such an i′ does not exists, then
A generates a new non-corrupted client i′ with the appropriate read permissions via the
interfaces addCl and chMode. A queries (~y, ~z) to the query interface. After the (q − 1)-th
step, the adversary corrupts client i and locally simulates read(j, capi): if x is not accessed,
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then A interrupts the simulation and outputs a random guess. Otherwise A observes the
blocks accessed during the execution of the q-th operation: if x is accessed A returns 1,
otherwise he returns 0.

For the analysis, it is easy to see that A is efficient. To analyze the success probability
of A we define GUESS to be the event when the sampled block x belongs to the physical
locations of the entry j and it is accessed in both the simulated read and ~y. More formally,
GUESS is the event where x ∈ loc(j) and x ∈ L and x ∈ L′, where L and L′ are the set
of physical addresses accessed by read(capi, j) and read(capi′ , j) respectively. Then we can
express the probability that A outputs 1 given that the challenger is executing ~y as:

Pr [1← A | b = 0] = Pr [~y accesses x | GUESS] Pr [GUESS]

+Pr
[
~y accesses x | GUESS

]
Pr
[
GUESS

]
.

By definition of GUESS we have

Pr [1← A | b = 0] = 1 · Pr [GUESS] + Pr
[
~y accesses x | GUESS

]
Pr
[
GUESS

]
. (B.1)

Now we express the probability of the adversary to output 1 given that the challenger is
executing ~z:

Pr [1← A | b = 1] = Pr [~z accesses x | GUESS] Pr [GUESS]

+Pr
[
~z accesses x | GUESS

]
Pr
[
GUESS

]
.

We shall note that the memory block x is uniformly distributed over the memory of
the database, in particular it holds that x and j ′ are independently and uniformly sampled.
Thus by Lemma B.2 we can rewrite:

Pr [1← A | b = 1] ≤ `

m
· Pr [GUESS] + Pr

[
~z accesses x | GUESS

]
Pr
[
GUESS

]
.

Since we assumed ΠGORAM to be oblivious by Lemma B.3 we have

Pr [1← A | b = 1] . `

m
· Pr [GUESS] + Pr

[
~y accesses x | GUESS

]
Pr
[
GUESS

]
(B.2)

where . is like ≤ but neglects additive negligible terms. If we consider the difference of the
two probabilities, Equations (B.1) and (B.2) cancel each other out and we are left with:

|Pr [1← A | b = 0]− Pr [1← A | b = 1]| &
∣∣∣∣Pr [GUESS]− `

m
Pr [GUESS]

∣∣∣∣ .
Since by definition the two terms are both non-negative we have:

|Pr [1← A | b = 0]− Pr [1← A | b = 1]| & Pr [GUESS]
(

1− `

m

)
. (B.3)

We now observe that

Pr [GUESS] = Pr [x ∈ L ∧ x ∈ L′ | x ∈ loc(j)] Pr [x ∈ loc(j)]
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Since the local simulation of A and the simulation of the challenger have independent
random coins, we can rewrite

Pr [GUESS] =
(
Pr [x ∈ L | x ∈ loc(j)] · Pr

[
x ∈ L′ | x ∈ loc(j)

])
· Pr [x ∈ loc(j)]2

For all logical indices j, we have that the probability that x ∈ loc(j) is |loc(j)|
m , thus

Pr [GUESS] =
(
Pr [x ∈ L | x ∈ loc(j)] · Pr

[
x ∈ L′ | x ∈ loc(j)

])
·
( |loc(j)|

m

)2

By Lemma B.1 we have that Pr [x ∈ L | x ∈ loc(j)] ≥ (1−µ(λ))
|loc(j)| over the random choice of x

(the same holds for Pr [x ∈ L′ | x ∈ loc(j)]). Therefore

Pr [GUESS] ≥
((1− µ(λ))
|loc(j)|

)2 ( |loc(j)|
m

)2
= (1− µ(λ))2

m2

We can now substitute to equation (B.3)

|Pr [1← A | b = 0]− Pr [1← A | b = 1]| & (1−µ(λ))2

m2 ·
(
1− `

m

)
& 1

m2 ·
(
1− `

m

)
.

By assumption ` = o(n), since m ≥ n then `
m is non-negligibly smaller than 1, since

1
m2 is also a non-negligible positive value it follows that the difference of probabilities is
non-negligible. This is a contradiction with respect to the obliviousness against malicious
clients of ΠGORAM and it concludes our proof.

B.3. Security Proofs for Batched Shuffle Proofs and
the Hash-and-Proof Paradigm

Proof of Theorem 2.2. Correctness. For our BZKPS, it is easy to see that whenever the
two input matrices of ciphers A and B are honestly computed and the two parties do not
deviate from the protocol specifications, the probability that the verifier is convinced of the
statement does not vary with respect to the underlying ZKP. This follows directly from the
fact that, as long as A differs from B only in the order of the rows, the resulting vectors ~a
and ~b will contain the same entries, in the same permuted order. Thus correctness holds
true.
Zero-Knowledge and proof of knowledge. The zero-knowledge and the proof of knowledge
properties can be also derived by the ZKP since the only procedure performed in BZKPS,
outside of the original protocol, is a public operation, namely, the multiplication of
ciphertexts which causes homomorphically a summation of plaintexts.
Soundness. In order to show that our approach preserves the soundness of the ZKP, we
have to prove that any malicious prover trying to fool the protocol succeeds with probability
at most 1/2. It is clear that this fact suffices by itself since with k protocol runs the success
probability of the adversary drops to 1/2k, which is exponentially low in k. The intuition
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behind the proof is that the adversary cannot modify a single block in a row of B without
the verifier noticing at least half of the times, thus he needs to modify at least one more
spot so as to cancel out the added values in the total sum. But, again, this block will be
selected by the verifier to contribute to the sum just half of the times in expectation, so
the success probability does not increase. This holds true no matter how many blocks in
the same row the adversary modifies.

In the soundness scenario a malicious prover P∗A wants to convince the verifier V∗ that
the matrices of ciphertexts A and B contain the same plaintexts up to the order of the
rows, i.e., they are permuted with respect to π, and the ciphertexts are rerandomized with
respect to R. Let |A| = |B| = n×m. Note that B is generated by P∗A and then sent to
V∗ in an early stage of the protocol. Since the underlying ZKP is assumed to be sound,
it follows that, any time an element ai in the resulting vector ~a differs with respect to
the correspondent permuted element bπ(i) in the vector ~b, the verifier will notice it with
overwhelming probability. Thus, in order for P∗A to succeed, it must be the case that for
all i, JaiK = Jbπ(i)K where JcK denotes the plaintext encrypted in c.

Let ∆i be the difference between ai and bπ(i) and δi = J∆iK. It follows from the
argument above and from the homomorphic property of the encryption scheme that, in
order for the protocol to successfully terminate, for all i, δi must be equal to 0. Since P∗A
has no control over the input A, and therefore over ~a, the value of δi is directly derived
from the modifications that P∗A introduced in the i-th row of the matrix B. We next prove
the following: if P∗A performed at least one modification on a given row i of B (i.e., he
added some value different from zero to the plaintext of Bi,j for some 1 ≤ j ≤ m), then δi
has any possible fixed value with probability at most 1/2. Intuitively, this statement is
true since with probability 1/2, the verifier does not pick a column that contributes to the
difference of the plaintext sum. Since any δi must be zero for P∗A to succeed, this directly
proves our theorem.

The proof is conducted by induction on `, the number of modified blocks in the given
row:

` = 1: Assume without loss of generality that P∗A introduces an arbitrary modification
z 6= 0 on a given block (i.e., on the cipher identified by some column index j), then
such a block is selected to contribute to the product bi with probability exactly 1/2.
Thus it holds that:

Pr
[
δ1
i = 0

]
= 1

2 Pr
[
δ1
i = z

]
= 1

2

`→ `+ 1: Assume without loss of generality that P∗A introduces some arbitrary modifica-
tions different than zero on ` blocks of the given row and that he added the value z
to the (` + 1)-th spot. We denote by CHOOSE(`) the event that the `-th block is
picked to contribute to the sum bi. Then, for all values y it holds that

Pr
[
δ`+1
i = y

]
= Pr

[
δ`i = y − z | CHOOSE(`+ 1)

]
· Pr [CHOOSE(`+ 1)] +

Pr
[
δ`i = y | ¬ CHOOSE(`+ 1)

]
· Pr [¬ CHOOSE(`+ 1)] .
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Since z 6= 0 it follows that y 6= y − z, additionally the (` + 1)-th spot is chosen to
contribute to the sum bi with probability 1/2, so we have

Pr
[
δ`+1
i = y

]
= 1

2 ·Pr
[
δ`i = y − z | CHOOSE(`+ 1)

]
+1

2 ·Pr
[
δ`i = y | ¬ CHOOSE(`+ 1)

]
.

Furthermore the two events are independent, thus we can rewrite

Pr
[
δ`+1
i = y

]
= 1

2 · Pr
[
δ`i = y − z

]
+ 1

2 · Pr
[
δ`i = y

]
.

By induction hypothesis it holds that for all i, δi has any fixed value with probability
at most 1

2 , then

Pr
[
δ`+1
i = y

]
= 1

2 ·
1
2 + 1

2 ·
1
2 = 1

2 .

The induction above proves that for all i, δi = 0 with probability at most 1/2, therefore
the verifier notifies the cheating prover with probability at least 1/2. This concludes our
proof.

Proof of Theorem 2.3. Correctness. The correctness of ΠPKE and of the ZKP (P,V) imply
the correctness of the protocol described above.
Zero-knowledge and proof of knowledge. The zero-knowledge of the protocol follows from
the zero-knowledge of (P,V).
Soundness. Arguing about the soundness requires a more accurate analysis: we define as
CHEAT(P∗A,V∗) the event where a malicious P∗A fools V∗ into accepting a proof over a false
statement. This event happens for all 1 ≤ i ≤ n with probability

Pr
[
CHEAT(P∗A,V∗)

]
= Pr

[
CHEAT(PA,V) | bi = Rnd(ek, aπ−1(i), ri)

]
· Pr

[
bi = Rnd(ek, aπ−1(i), ri)

]
+ Pr

[
CHEAT(PA,V) | bi 6= Rnd(ek, aπ−1(i), ri)

]
· Pr

[
bi 6= Rnd(ek, aπ−1(i), ri)

]
where the probabilities are taken over the random coins of P∗A and V∗. By the soundness
of (P,V) we get

Pr
[
CHEAT(P∗A,V∗)

]
≤ 1 · Pr

[
bi = Rnd(ek, aπ−1(i), ri)

]
+ µ · Pr

[
bi 6= Rnd(ek, aπ−1(i), ri)

]
≤ µ+ Pr

[
bi = Rnd(ek, aπ−1(i), ri)

]
where µ is a negligible function in the security parameter. Therefore, to prove soundness, it is
sufficient to show that when CHEAT(P∗A,V∗) happens Pr

[
bi = Rnd(ek, aπ−1(i), ri)

]
is a negligi-

ble function in the security parameter. We shall note that, due to the homomorphic proper-
ties of ΠPKE, the resulting plaintext of bi and aπ−1(i) are z0+

∑m
j=1 zj+1D(dk, Bi,j) ∈ Fp, and

z0 +
∑m
j=1 zj+1D(dk, Aπ−1(i),j) ∈ Fp, respectively. It is easy to see that this corresponds to

the computation of the universal pairwise hash function h(~z) as described by Carter and Weg-
man in [44] (Proposition 8). It follows that for all rows Bi 6= Aπ−1(i) the resulting plaintexts
of bi and aπ−1(i) are uniformly distributed over Fp, thus Pr

[
bi = Rnd(ek, aπ−1(i), ri)

]
= p−2,

which is a negligible function in the security parameter. Since there are only polynomially
many rows, this concludes our proof.
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B.4. Security Proofs
In this section we formally define and sketch the proof for the correctness of our scheme
(Section B.4.1) and we prove the theorems presented in Section 2.9 (Section B.4.2).

B.4.1. Correctness
In the following we state the conditions that determine the correctness of a multi-client
ORAM. Intuitively, the primitive is correct if, given a successful execution of any algorithm,
its outcome satisfies some specific constraints which guarantee the reliability of the whole
scheme. We formalize the notion of correctness up to each operation defined within the
multi-client ORAM.

Definition B.2 (Correctness). A Group ORAM (gen, addCl, addE, chMode, read,write) is
correct, if the following statements are true except with negligible probability in the security
parameter: let D be the payload domain and cntC be the number of registered users.
addCl.
∀d ∈ D,∀a ∈ {⊥,R,RW}|DB|,∀j ∈ [1, |DB|] :

capi ← addCl(capO,a) =⇒

(d← 〈Cread(capi, j),Sread(DB)〉 ⇐⇒ d = DB(j) ∧ a(j) 6= ⊥)

∧ (DB′ ← 〈Cwrite(capi, j, d),Swrite(DB)〉 ⇐⇒ DB′ = DB[j 7→ d] ∧ a(j) = RW)

addE.
∀d ∈ D,∀a ∈ {⊥,R,RW}|cntC |, ∀i ∈ [1, cntC ], ∃j :
DB′ ← 〈CaddE(capO,a, d),SaddE(DB)〉 =⇒

(|DB′| = j) ∧ (|DB| = j − 1) ∧ (DB′ = DB[j 7→ d])

∧ (d← 〈Cread(capi, j),Sread(DB′)〉 ⇐⇒ d = DB′(j) ∧ a(i) 6= ⊥)

∧ ∀d′. (DB′′ ← 〈Cwrite(capi, j, d′),Swrite(DB′)〉 ⇐⇒ DB′′ = DB′[j 7→ d′] ∧ a(i) = RW)

chMode.
∀d ∈ D,∀a ∈ {⊥,R,RW}cntC ,∀j ∈ [1, |DB|], ∀i ∈ [1, cntC ] :
〈CchMode(capO,a, j),SchMode(DB)〉 =⇒

(d← 〈Cread(capi, j),Sread(DB)〉 ⇐⇒ d = DB(j) ∧ a(i) 6= ⊥)

∧ (DB′ ← 〈Cwrite(capi, j, d),Swrite(DB)〉 ⇐⇒ DB′ = DB[j 7→ d] ∧ a(i) = RW)

read.
∀d ∈ D,∀j ∈ [1, |DB|], ∀i ∈ [1, cntC ] :
d← 〈Cread(capi, j),Sread(DB)〉 =⇒ d = DB(j) ∧ AC(i, j) 6= ⊥

write.
∀d ∈ D,∀j ∈ [1, |DB|], ∀i ∈ [1, cntC ] :
DB′ ← 〈Cwrite(capi, j, d),Swrite(DB)〉 =⇒ DB′ = DB[j 7→ d] ∧ AC(i, j) = RW
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Theorem B.1 (Correctness). Let ΠPE and ΠPOE be a predicate (resp. predicate-only)
encryption scheme, ΠPKE and ΠSE be a public-key (resp. private-key) encryption scheme,
and ZKP be a zero-knowledge proof system such that they all fulfill completeness. Then
GORAM constructed in Section 2.6.3 satisfies the definition of correctness (Definition B.2).

Proof sketch. The proof is conducted by protocol inspection on the implementation of
each algorithm. Under the assumption that all of the encryption schemes, as well as the
zero-knowledge proof system, are complete except with negligible probability, it directly
follows from the analysis of the protocols that all of our instantiations fulfill the definition
of correctness.

B.4.2. Security Proofs
B.4.2.1. Proof of Theorem 2.4
Note that in our proofs we consider the adaptive version of each definition where the
attacker is allowed to spawn and corrupt clients without restrictions. As a consequence
our instantiation requires us to fix in advance the number of clients M supported by
the construction. Alternatively, one could consider the selective versions of the security
definitions where the attacker is required to commit in advance to the client subset that he
wants to corrupt.

Proof of Theorem 2.4.1. Assume towards contradiction that there exists an adversary A
that wins the secrecy game with probability non-negligibly greater than 1/2 for some
non-negligible function ε(λ), then we can construct the following reduction B against
the CPA-security of ΠPKE. Note that the CPA-security notion that we consider allows
the adversary to query one message pair (m0,m1) and to receive the encryption of mb,
depending on the random coin of the challenger, under polynomially-many independent
public keys. Such an experiment can be proven to be equivalent to the textbook CPA-
security notion by a standard hybrid argument. The reduction is elaborated below.
Simulation. B receives q-many public keys (ek∗1, . . . , ek∗q) and samples a string ~m ∈ {0, 1}M

uniformly at random. For each client i ∈ {1, . . . ,M}, B fixes ekCPA
i = ek∗i if mi = 1,

otherwise it samples a key pair (ekCPA
i , dkCPA

i ) ← GenCPA
PKE(1λ) and associates the client

capability with ekCPA
i . Afterwards the reduction simulates faithfully the operations queried

by the adversary on the clients i such that mi = 0. For the clients i where mi = 1, the
reduction performs the same steps as dictated by the protocol except that it skips the
decryption procedure in CextData. At some point of the execution the adversary outputs
(d0, d1, j) and B forwards the pair (d0, d1) to the challenger, who replies with (c∗1, . . . , c∗q).
The reduction writes cData of entry j as follows:

ciData =
{
c∗i if mi = 1
E(ekCPA

i , 0|d||vrs||σ|) otherwise

At some point of the execution the adversary returns a bit b′ that the reduction forwards
to the challenger.
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Analysis. The reduction is obviously efficient. Assume that the string ~m denotes whether
the client i is corrupted depending on the bit mi. Then, whenever the reduction correctly
guesses (event that we denote by GUESS) the subset of corrupted clients, the simulation
perfectly reproduces the inputs that the adversary is expecting since the algorithm CextData
does not produce any output visible to the server. Note that this event happens with
probability at least 2−M . Therefore, whenever the challenger coin is b = 0 then the
reduction resembles the secrecy game for b = 0 and the same holds for b = 1. In particular,

Pr [1← B | b = 0] Pr [GUESS] = Pr [1← A | b = 0] Pr [GUESS]

and
Pr [1← B | b = 1] Pr [GUESS] = Pr [1← A | b = 1] Pr [GUESS] .

Whenever the string ~m is not correctly sampled (i.e., ¬GUESS), then we can bind the
success probability of the reduction to 1/2. Therefore we have that

|Pr [1← B | b = 0]− Pr [1← B | b = 1]| =
|Pr [1← A | b = 0]− Pr [1← A | b = 1]| · Pr [GUESS] ≥

ε(λ) · 2−M .

Since M is a fixed constant, this represents a contradiction to the CPA-security of ΠPKE
and it concludes our proof.

Proof of Theorem 2.4.2. The proof works by gradually modifying the experiment via game
hops, in the following we provide the reader with an outline of our formal argument.

• ExpA0 (λ): Resembles exactly the integrity game.

• ExpA1 (λ): For each entry on which only non-corrupted clients have write permissions,
we modify cAuth to encrypt 0|sk|.

• ExpA2 (λ): We substitute all the verification algorithms on signatures from the data
owner with a default rejection if the data was not previously signed by the challenger
itself. The challenger keeps track of the signed data via book-keeping.

• ExpA3 (λ): The honestly generated common reference string for the zero-knowledge
proof system is substituted with the trapdoor common reference string.

The proof for each step is elaborated below. Note that we consider only the integrity
of the main database and not of the personal stack of each client.

Claim: ExpA0 (λ) ≈ ExpA1 (λ). Assume towards contradiction that there exists an adversary
A such that ∣∣∣Pr

[
1← A | ExpA0 (λ)

]
− Pr

[
1← A | ExpA1 (λ)

]∣∣∣ ≥ ε(λ)

for some non-negligible function ε(λ). Then we can construct the a reduction B against
the CCA-security of ΠPKE. Note that we allow the reduction to query polynomially-many
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message pairs under polynomially-many independent public keys, such a game is equivalent
to the textbook notion of CCA-security by standard hybrid argument.
Simulation. B receives q-many public keys (ek∗1, . . . , ek∗q) and samples a string ~m ∈ {0, 1}M

uniformly at random. For each client i ∈ {1, . . . ,M} the reduction fixes ekCCA
i = ek∗i if

mi = 1, otherwise it samples a key pair (ekCCA
i , dkCCA

i )← GenCCA
PKE(1λ) and associates the

client capability with ekCCA
i . The reduction simulates then all of the operations as specified

in the protocol except that the calls of the decryption algorithm for ciphertext encrypted
for keys of non-corrupted clients are substituted with queries to the decryption oracle
provided by the challenger. Additionally, if an entry can be written only from clients such
that for all i we have mi = 1, then the reduction sends as many (sk, 0|sk|) to the challenger,
who replies with c∗i . The entry cAuth is then constructed as follows:

ciAuth =
{
c∗i if mi = 1
E(ekCCA

i , 0|sk|) otherwise

At some point of the execution the adversary returns a bit b′ that the reduction forwards
to the challenger.
Analysis. The reduction is clearly efficient. Also whenever B guesses correctly the subset of
corrupted clients (which we denote by GUESS), it is easy to see that it correctly resembles
the inputs of ExpA0 when the coin of the challenger is b = 0 and ExpA1 otherwise. It follows
that

Pr [1← B | b = 0] Pr [GUESS] = Pr
[
1← A | ExpA0 (λ)

]
Pr [GUESS]

and
Pr [1← B | b = 1] Pr [GUESS] = Pr

[
1← A | ExpA1 (λ)

]
Pr [GUESS] .

Whenever the string ~m is not correctly sampled (i.e., ¬GUESS), then we can bind the
success probability of the reduction to 1/2. Therefore we can rewrite

|Pr [1← B | b = 0]− Pr [1← B | b = 1]| =∣∣∣Pr
[
1← A | ExpA0 (λ)

]
Pr [GUESS]− Pr

[
1← A | ExpA1 (λ)

]
Pr [GUESS]

∣∣∣ ≥ ε(λ) · 2−M .

Since M is a fixed constant, this represents a contradiction to the CCA-security of ΠPKE.

Claim: ExpA1 (λ) ≈ ExpA2 (λ). Assume towards contradiction that there exists an adversary
such that ∣∣∣Pr

[
1← A | ExpA1 (λ)

]
− Pr

[
1← A | ExpA2 (λ)

]∣∣∣ ≥ ε(λ)

for some non-negligible function ε(λ). Then we can construct a reduction B against the
existential unforgeability of ΠDS.
Simulation. B takes as input the verification key vk and sets the verification key of the data
owner to be vkO = vk. Then it guesses an index i ∈ {1, . . . , q}, where q is an upper-bound
on the number of queries of the adversary to any interface, and starts the simulation of the
game. The oracles are executed as specified in ExpA1 (λ) except that whenever the algorithm
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sign is run on the secret key of the data owner on some message mi, the reduction queries
the oracle provided by the challenger instead. At the q-th query of the adversary the
reduction parses the content of the query and checks whether it contains some valid pair
(m, sign(skO,m)) such that m was not queried to the signing oracle, if this is the case
than it returns (m, sign(skO,m)) to the challenger. The simulation of the adversary is
interrupted after the q-th query.
Analysis. It is easy to see that the reduction is efficient and that it perfectly simulates the
input that the adversary is expecting in ExpA1 (λ). We shall note that the only difference
between ExpA1 (λ) and ExpA2 (λ) is when the adversary is able to output a message-signature
pair that is valid under the verification key of the data owner such that the message was
not signed by the challenger. We denote this event by FORGE. By assumption we have
that

Pr [FORGE] =
∣∣∣Pr

[
1← A | ExpA1 (λ)

]
− Pr

[
1← A | ExpA2 (λ)

]∣∣∣ ≥ ε(λ).

Since the reduction guesses the query where FORGE happens with probability 1
q and the

adversary cannot re-use any previously signed messages (due to the corresponding version
number), B returns a valid forgery with probability 1

q · ε(λ), which is still non-negligible.
Thus, we have derived a contradiction to the existential unforgeability of ΠDS.

Claim: ExpA2 (λ) ≈ ExpA3 (λ). Assume towards contradiction that there exists an adversary
such that ∣∣∣Pr

[
1← A | ExpA2 (λ)

]
− Pr

[
1← A | ExpA3 (λ)

]∣∣∣ ≥ ε(λ)

for some non-negligible function ε(λ). Then we can construct a reduction B against the
extractability of ZKP.
Simulation. B receives either the honestly generated common reference string or the
trapdoor one and plugs it in the public parameters of the scheme, the rest of the simulation
proceeds as in ExpA2 (λ).
Analysis. It is easy to see that in the former case B perfectly simulates ExpA2 (λ) while in
the latter it reproduces the inputs in ExpA3 (λ). Therefore the advantage of A carries over
to B, in particular

Pr [1← B(crs) | crs← {0, 1}∗] = Pr
[
1← A | ExpA2 (λ)

]
and

Pr
[
1← B(crs) | (crs, td)← E(1λ)

]
= Pr

[
1← A | ExpA3 (λ)

]
.

Thus we have that∣∣∣Pr [1← R(crs) | crs← {0, 1}∗]− Pr
[
1← R(crs) | (crs, td)← E(1λ)

]∣∣∣ ≥ ε(λ).

Which is a contradiction to the extractability of ZKP.

Claim: Pr
[
ExpA3 (λ) = 1

]
≤ µ(λ). In the previous steps we showed that for all adversaries

ExpA0 (λ) ≈ ExpA3 (λ), therefore it is enough to show that the success probability in ExpA3 (λ)
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is negligible for any ppt machine A. We note that the adversary can only modify the
content of the main database through the Cflush algorithm, therefore it is enough to argue
about the integrity of this operation to bind the success probability of the adversary.
Loosely speaking, for changing the content of an entry the adversary must prove the
possession of a signing key, which means that any malicious attempt to circumvent the
write access control would necessarily result in the disclosure of a hidden signing key. More
formally, assume towards contradiction that there exists an adversary A such that

Pr
[
ExpA3 (λ) = 1

]
≥ ε(λ)

for some non-negligible function ε(λ), then we can build a reduction B against the existential
unforgeability of ΠDS.
Simulation. B takes as input a verification key vk, then it guesses an index i ∈ {1, . . . , q},
where q is an upper-bound on the number of queries of the adversary to the interface for
adding entries and changing access permission, and an entry index j ∈ {1, . . . , N}. When
the q-th query happens, the reduction sets vk as the verification key associated to the
target entry and continues the simulation. Anytime that a signature is required on some
message m under the verification key vk, the reduction queries the signing oracle provided
by the challenger instead. Afterwards, when the reduction executes Cflush in interaction
with the adversary, it runs the extractor E to obtain the witness w of the proof of knowledge
produced by the adversary on the entry j. The reduction samples a message m not queried
to the signing oracle yet and computes σ ← sign(w,m). The reduction returns (m,σ) to
the challenger and interrupts the execution.
Analysis. B runs only polynomially bound algorithms, therefore it is efficient. Assume for
the moment that the reduction correctly guesses the entry j that the adversary outputs
in the challenge phase and the query q that last modifies the entry j in the query phase.
Then we note that the simulation does not need to know the secret key associated to vk
since it is never encrypted in cAuth when only non-corrupted clients have access to it (see
hop 1). Also, it must be the case that the subsequent proofs of knowledge for entry j are
computed against vk (if not they are automatically rejected, see hop 2). Therefore, due to
the correctness of the extractor (that the reduction can execute from hop 3), we have that
B extracts the valid key (and thus returns a valid forgery) with the same probability as
the adversary returns a valid proof for a modified entry that no corrupted party has write
access to. By assumption this happens with probability 1

q ·
1
N · ε(λ), which is non-negligible

in the security parameter. This is a contradiction to the existential unforgeability of ΠDS,
so we can bind

Pr
[
ExpA3 (λ) = 1

]
≤ µ(λ).

This concludes our proof.

Proof of Theorem 2.4.3. The proof is developed by applying the same modifications to
the experiment as outlined in the proof for Theorem 2.4.2 up to ExpA2 (λ). The indistin-
guishability arguments follow along the same lines. In the following we prove that the
success probability of any adversary in the modified version of the tamper resistance game
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(which we denote by ExpAt (λ)) is negligible in the security parameter. Since this game is
indistinguishable from the original, the theorem holds true. Assume towards contradiction
that there exists an adversary A such that

Pr
[
ExpAt (λ) = 1

]
≥ ε(λ)

for some non-negligible function ε(λ), then we can build a reduction B against the existential
unforgeability of ΠDS.
Simulation. B takes as input a verification key vk, then it guesses an index i ∈ {1, . . . , q},
where q is an upper-bound on the number of queries of the adversary to the interface
for adding entries and changing access permission. When the q-th query happens, the
reduction sets vk as the verification key associated to the target entry and continues the
simulation. Anytime that a signature is required on some message m under the verification
key vk, the reduction queries the signing oracle provided by the challenger instead. The
rest of the simulation proceeds as specified in ExpAt (λ). When the adversary queries the
challenge interface on the entry j, the reduction forwards the corresponding (d||vrs, σ) to
the challenger and interrupts the simulation.
Analysis. The reduction runs only polynomially bound algorithms, therefore it is efficient.
We note that the simulation does not need to know the secret key associated with vk since
it is never encrypted in cAuth when only non-corrupted clients have access to it (see hop 1).
Also it must be the case that the validity of the entry j is checked against vk until another
query to the interface for changing access permissions (if not the data is automatically
rejected, see hop 2). Thus we have that whenever B successfully guesses the number of the
last query that modifies the entry j that is later on sent from the adversary as a challenge,
B returns a valid forgery with the same probability as the adversary returns a valid entry
different from the one in the database maintained by the reduction. By assumption this
happens with probability 1

q · ε(λ), which is non-negligible in the security parameter. This
is a contradiction to the existential unforgeability of ΠDS, so we can bind

Pr
[
ExpAt (λ) = 1

]
≤ µ(λ).

This concludes our proof.

Proof of Theorem 2.4.4. The proof of obliviousness for the read protocol follows directly
from the privacy of the ΠPIR scheme: it is easy to see that CextData is essentially a ΠPIR
query, while CaddDummy is completely independent from the index read. Arguing about
the obliviousness of the write protocol requires a more careful analysis. In the following
we gradually modify the experiment of obliviousness against malicious clients to obtain a
simulation where the write algorithm is indistinguishable from the read (for the entries
that the attacker is not allowed to access). The validity of the theorem follows. We hereby
outline the modifications that we apply on the simulation:

• ExpA0 (λ): Resembles exactly the experiment of obliviousness against malicious client.
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• ExpA1 (λ): We modify the public parameters to include a trapdoor common reference
string, that is used later on by the challenger to simulate all of the zero-knowledge
proofs during the execution of Cflush.

• ExpA2 (λ): We record all of the data signed with the key of the data owner in a list
maintained by the challenger. We then substitute all the verification algorithms on
signatures from the data owner with a default rejection if the data does not belong
to the list.

• ExpA3 (λ): For all entries that no corrupted client can read, we change the Crepl
algorithm to compute c′Data and cBrCast as vectors of encryptions of 0.

Claim: ExpA0 (λ) ≈ ExpA1 (λ). Recall that the zero-knowledge of ZKP guarantees the
existence of a simulator S that generates a common reference string crs and a trapdoor
td such that crs is indistinguishable from an honestly generated reference string. The
knowledge of td allows for simulating a proof for any statement without knowing the witness.
Under these premises we can formally prove our claim. Assume towards contradiction that
there exists an adversary A such that∣∣∣Pr

[
1← A | ExpA0 (λ)

]
− Pr

[
1← A | ExpA1 (λ)

]∣∣∣ ≥ ε(λ)

for some non-negligible function ε(λ). Then we can construct a reduction B against the
zero-knowledge of ZKP.
Simulation. B plugs the common reference string crs in the public parameters of the scheme
and starts the simulation as specified by the original protocols. Whenever the reduction
has to compute a proof over a statement stmti and a witness wi, it sends (stmti, wi) to the
challenger who replies with a non-interactive proof πi. The reduction forwards πi to the
adversary and proceeds with the simulation. At some point of the execution the adversary
returns a bit b′ that the reduction forwards to the challenger.
Analysis. B is obviously efficient. Furthermore it is easy to see that whenever crs and the
proofs πi are honestly generated, the reduction perfectly simulates ExpA0 (λ), while when
they are generated by the simulator S, then the inputs are identically distributed as in
ExpA1 (λ). It follows that

Pr [1← B(crs) | crs← {0, 1}∗] = Pr
[
1← A | ExpA0 (λ)

]
and

Pr
[
1← B(crs) | (crs, td)← S(1λ)

]
= Pr

[
1← A | ExpA1 (λ)

]
.

By the initial assumption we have that∣∣∣Pr [1← B(crs) | crs← {0, 1}∗]− Pr
[
1← B(crs) | (crs, td)← S(1λ)

]∣∣∣ ≥ ε(λ).

This is a contradiction to the zero-knowledge of ZKP.
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Claim: ExpA1 (λ) ≈ ExpA2 (λ). The proof for the indistinguishability of the two experiments
follows along the same lines of the second step in the proof of Theorem 2.4.2.

Claim: ExpA2 (λ) ≈ ExpA3 (λ). Assume towards contradiction that there exists an adversary
A such that ∣∣∣Pr

[
1← A | ExpA2 (λ)

]
− Pr

[
1← A | ExpA3 (λ)

]∣∣∣ ≥ ε(λ)

for some non-negligible function ε(λ). Then we can construct a reduction B against the
CPA-security of ΠPKE. We stress that we allow the reduction to query polynomially-
many message pairs under polynomially-many independent public keys; a standard hybrid
argument is enough to show that this experiment is equivalent to the textbook notion of
CPA-security.
Simulation. B receives q-many public keys (ek∗1, . . . , ek∗q) and samples a string ~m ∈ {0, 1}M

uniformly at random. For each client i ∈ {1, . . . ,M} the reduction fixes ekCPA
i = ek∗i if

mi = 1, otherwise it samples a key pair (ekCPA
i , dkCPA

i )← GenCPA
PKE(1λ) and associates the

client capability with ekCPA
i . B simulates then the protocols as specified by the construction,

ignoring the decryption procedure in the CextData algorithm (note that no output is displayed
to the server anyway). Additionally, the Crepl algorithm is modified as follows: for all entries
that can only be read by clients i such that for all i we have mi = 1, then the reduction
sends to the challenger the tuples (d′||vrs||σ, 0) and (j||`||vrs, 0), where (j, d′, vrs, σ, `) are
the index, the data, the version number, the signature, and the new index associated with
the target entry. The challenger answers with (c∗i,0, c∗i,1) and the reduction construct the
vectors c′Data and cBrCast as follows:

ci,
′

Data =
{
c∗i,0 if mi = 1
E(ekCPA

i , 0) otherwise

and

ciBrCast =
{
c∗i,1 if mi = 1
E(ekCPA

i , 0) otherwise

At some point of the execution the adversary returns a bit b′ that the reduction forwards
to the challenger.
Analysis. As it runs only a polynomially bounded algorithm, B is clearly efficient. Assume
for the moment that the reduction correctly guesses the subset of clients that the adversary is
going to corrupt throughout the execution of the experiment. Then we argue that whenever
the challenger samples b = 0 the reduction resembles the inputs that the adversary is
expecting in ExpA2 (λ), while when b = 1 the reduction perfectly reproduces ExpA3 (λ). In
order to see that we point out that the reduction does not need to know the randomness
of c′Data to compute the proof as it is computed using the simulator and the trapdoor (see
hop 1). Also, we observe that in ExpA2 (λ) any valid pair of vectors c′Data and cBrCast is
always composed by encryptions under the initial set of public keys (otherwise they are
automatically rejected, due to hop 2), therefore we can assess that the inputs that the
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reduction provides to the adversary are correctly distributed. It follows that whenever ~m
is correctly sampled (GUESS) we have that

Pr [1← B | b = 0] Pr [GUESS] = Pr
[
1← A | ExpA2 (λ)

]
Pr [GUESS]

and
Pr [1← B | b = 1] Pr [GUESS] = Pr

[
1← A | ExpA3 (λ)

]
Pr [GUESS] .

Whenever the string ~m is not correctly sampled (i.e., ¬GUESS), then we can bind the
success probability of the reduction to 1/2. Therefore we can rewrite

|Pr [1← B | b = 0]− Pr [1← B | b = 1]| =∣∣∣Pr [GUESS]
(

Pr
[
1← A | ExpA2 (λ)

]
− Pr

[
1← A | ExpA3 (λ)

])∣∣∣ ≥ ε(λ) · 2−M .

Since M is a fixed constant, this represents a contradiction to the CPA-security of ΠPKE.

Claim: ExpA3 (λ) ≈ negl(λ). The argument above shows that for all ppt adversaries A the
original experiment for obliviousness against malicious clients is indistinguishable from
ExpA3 (λ). It follows that the success probabilities in the two experiments must be the
same (up to a negligible factor in the security parameter). Therefore in order to prove
our theorem it is enough to observe that in ExpA3 (λ), for entries that no corrupted client
can read, the algorithm Crepl is identical to CaddDummy and that the execution of Cflush is
completely independent of the content of the entries in the client’s personal stack. This
implies that in this context the read and write operations are indistinguishable, which we
initially proved to be oblivious. Since obliviousness must hold only for entries that are not
readable by corrupted clients (see Definition 2.6), the obliviousness of the construction
follows as the advantage of any adversary is bound to a negligible function in the security
parameter. This concludes our analysis.

B.4.2.2. Proof of Theorem 2.5
It is easy to see that our modification only target the sequencer component shipped with
TaoStore [170]. Then, obliviousness is inherited from the underlying ORAM scheme.
Furthermore, secrecy and integrity rely on the sequencer modifications and are, thus,
immediate.

B.4.2.3. Proof of Theorem 2.6
Proof of Theorem 2.6.1. We assume toward contradiction that there exists a ppt adversary
A that is able to break the secrecy game with non-negligible probability, namely:∣∣∣Pr

[
ExpGORAM

A,secrecy(λ, 1) = 1
]
− Pr

[
ExpGORAM

A,secrecy(λ, 0) = 1
]∣∣∣ ≥ ε(λ)

for some non-negligible ε(λ). Then we show that we can use such an adversary to build
the following reduction B against the attribute-hiding property of the predicate-encryption
scheme ΠPE defined in Definition A.8. The simulation is elaborated below.
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Setup. B receives as input the security parameter 1λ from the challenger and it forwards
it to A. B initializes uniformly at random an attribute I and it sends to the challenger
the tuple (I, I), who replies with the public key of the predicate-encryption scheme ppk∗.
Finally B runs (capO,DB) ← gen(1λ) as described in Section 2.6 without GenPE(1λ) for
the data part of the entries, setting ppkData = ppk∗ instead. Subsequently B gives ek and
DB to A.
Queries. B simulates the oracles for A as specified in the definition and as described in
Section 2.6, except for the following two oracles:

OaddCl(a): B initializes a predicate f such that f(I) = ⊥ and ∀j ∈ DB it holds that
f(Ij) = 0 whenever a(j) = ⊥ and f(Ij) = 1 otherwise.

OcorCl(i): B queries the oracle provided by the challenger on fi so to retrieve the corre-
sponding key pskData

fi . B constructs capi using such a key, which is handed over to
A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|.
B accepts the tuple only if AC(i, j) = ⊥, for every i corrupted by A in the query phase.
B parses then the j-th entry as Ej = (c1,j , c2,j , c3,j), it fetches cData ← D(dk, c3,j), and
it finally gets d ← DPE(pskData

f , cData), for some suitable pskData
f . Afterwards, B sends

the tuple (m0,m1) = (d0, d1) to the attribute-hiding challenger. The challenger answers
back with the challenge ciphertext c∗ ← EPE(ppk, I,mb) where b is the internal bit of the
attribute-hiding challenger. B uses c∗ to execute 〈Cwrite(capO, j, db),Swrite(DB)〉, computing
the new entry in the following manner:

E′j =

 c′1,j ← Rnd(ek, c1,j , r1)
c′2,j ← E(ek,RPE(ppkAuth, cAuth, r2))
c′3,j ← E(ek, c∗)

 .
Output. In the output phase A still has access to the oracles except for OaddCl on input
a such that a(j) 6= ⊥; OcorCl on input i such that AC(i, j) 6= ⊥; and O0

chMode on input
a, j with a(i) 6= ⊥ for some previously corrupted client i. Note that in case there exists
some non-corrupted i such that a(i) 6= ⊥, B just simulates the 〈CchMode(capO,a, j),A(DB)〉
protocol by rerandomizing the challenge ciphertext rather than re-encrypting it. Eventually,
A stops, outputting a bit b′. B forwards b′ to the attribute-hiding challenger.
Analysis. The simulation is clearly efficient, also it is easy to see that whenever the
challenger samples b = 0, the simulation perfectly reproduces the inputs that A is expecting
in ExpGORAM

A,secrecy(λ, 0) and likewise for b = 1. The only difference is that in the output phase,
the oracle O0

chMode on j is simulated with a rerandomization, rather than a re-encryption on
cData. By definition of rerandomization, however, these two operations are indistinguishable
to A. Thus, we can state the following:

Pr [B 7→ 1|b = 1] ≈ Pr
[
ExpGORAM

A,secrecy(λ, 1) = 1
]
.
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and
Pr [B 7→ 1|b = 0] ≈ Pr

[
ExpGORAM

A,secrecy(λ, 0) = 1
]
.

However, it follows from the initial assumption that

|Pr [B 7→ 1|b = 1]− Pr [B 7→ 1|b = 0]| ≥ ε(λ),

which is clearly a contradiction with respect to the attribute-hiding property of the predicate
encryption scheme ΠPE, and it proves the theorem.

Proof of Theorem 2.6.2. The proof is conducted by contradiction. Assume that there exists
a ppt A that wins the experiment defined in Definition 2.3 with non-negligible probability.
Then we construct an adversary B that breaks the soundness of the zero-knowledge proof
system ZKP. The simulation works exactly as specified in Definition 2.3. Since the database
is held on the side of B, the adversary can only modify data by triggering oracles and all
of the resulting operations are executed locally by B as described in Section 2.6.3 except
for the read and write protocols. Whenever an operation affects the database DB, B
reflects these changes on DB′, especially in the protocols executed due to the oracles O1

addE,
O1

chMode, and O1
write. This implies that the opportunity for the adversary to inject some

data such that B does not update the local database DB′ accordingly, is restricted to O1
read

and O1
write for corrupted clients (since otherwise B executes those protocols locally without

involving A). We will briefly recall how the operations are performed from Section 2.6.3.
Read and write. When A triggers the read or write on a certain index j, B releases the
path for the leaf lj associated to such an entry E = (E1, . . . , Eb(D+1)), from ρ down to
TD,lj . The database DB is kept blocked by B until A frees it again by submitting an
updated path for lj along with a valid shuffle proof. The proof looks as follows:

P = PK
{

(π, r1, . . . , rb(D+1)) :
∀`. E` = Rnd(ek, Eπ−1(`), r`)

}
. (B.4)

It is easy to see that, by construction, the proof guarantees that the new path is just a
shuffling and a re-randomization with respect to the old one. B verifies the proof against
the new and the old path, i.e., it checks whether the proof of shuffle correctness verifies
cryptographically, whether the inputs correspond to the components of the Ej , and whether
the outputs correspond to the components of the E′j . If all these checks succeed, B replaces
the old with the new path. Subsequently A sends an updated top entry E′ = (c′1, c′2, c′3)
for an old top entry E = (c1, c2, c3) along with a proof of the decryption for the top entry
of the updated path:

PAuth = PK
{(

pskAuth
f

)
: DPE(pskAuth

f , cAuth) = 1
}

(B.5)

together with information to access cAuth (see Section 2.10.1 for how this information looks
like in our concrete instantiation), and a proof that he did not change the index

P = PK
{
Jc′1K = Jc1K

}
. (B.6)
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B checks then PAuth against the content of c2 of E and P against c1 and c′1. If all of the
checks verify, B replaces the old by the new entry in the first position of the tree.
Analysis. We assume toward contradiction that there exists an adversary A such that the
experiment ExpGORAM

A,integrity(λ) outputs 1 with non-negligible probability, namely

Pr
[
ExpGORAM

A,integrity(λ) = 1
]
≥ ε(λ).

As we argued before, by construction of the experiment we know that A can only inject
entries by cheating in the O1

read and O1
write oracles. Thus we can restrict the success

probability of A to the interaction within the O1
read and O1

write oracles. Furthermore we
split the success probability over his ability of breaking the zero-knowledge proof system
ZKP. We define BREAK to be the event in which A computes one zero-knowledge proof
that verifies but without knowing the witness, i.e., he convinces the verifier of a false
statement. In particular it follows from the initial assumption that

Pr
[
ExpGORAM

A,integrity(λ) = 1
]

= Pr [A wins | BREAK] · Pr [BREAK]

+ Pr [A wins | ¬ BREAK] · Pr [¬ BREAK]
≥ ε(λ).

It is easy to see that, given that A can compute a false statement that convinces the verifier
in the zero-knowledge proof system ZKP, he can win the game with probability 1, e.g.,
writing on an entry which he does not have writing access to. Therefore

Pr [A wins | BREAK] = 1.

On the other hand, given that A does not break the soundness of the zero-knowledge proof
system ZKP, the probability that A modifies an entry without B noticing is negligible in
both read and write algorithms. This follows directly from the notion of correctness of the
primitive Definition B.2. Thus we can rewrite

Pr [A wins | ¬ BREAK] ≤ negl(λ).

It follows that we can bind the success probability of A as

Pr
[
ExpGORAM

A,integrity(λ) = 1
]
≈ 1 · Pr [BREAK] + negl(λ) · Pr [¬ BREAK]

≈ Pr [BREAK] ≥ ε(λ).

Since A can query the interfaces only a polynomial number of times, say q, B can simply
store all of the transcripts of the queries to the O1

read and O1
write oracles and output one

zero-knowledge proof chosen uniformly at random. There are at most 3 · q zero-knowledge
proof transcripts by construction of the protocol, therefore the probability that B outputs
a zero-knowledge proof which verifies a false statement is lower bounded by ε(λ) · 1

3·q which
is still a non-negligible value. This is clearly a contradiction with respect to the soundness
property of the zero-knowledge proof system and it concludes our proof.
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Proof of Theorem 2.6.3. The proof is elaborated by contradiction, assuming we have a
ppt adversary A such that he is able to break the security of the game with non-negligible
probability, we build a distinguisher B such that it runs the aforementioned A as a black-box
to break the attribute-hiding property of the underlying predicate encryption scheme ΠPE.

In particular, we assume toward contradiction that the following inequality holds:

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]
≥ ε(λ).

Note that, by construction of the experiment, the challenge entry outputted by A is
accepted by the challenger only if A never had read or write access to it. This also allows
us to not track data modifications after a call to O0

chMode since whenever a corrupted client
is able to modify the corresponding entry (the target of the permission change) then this
entry and this client are excluded as the adversary’s challenge. Hence, it is sufficient to
only track changes in DB′ that are originating from O0

addE and O0
write. We now define a

new event GUESS as the event in which A guesses the attribute encrypted in the cData
cipher. It is easy to see that, with such a knowledge, A can always win the game by
simply re-encrypting another payload d into cData of the j∗-th entry. It follows that when
the challenger attempts to read the challenged index j∗, she will always succeed and she
outputs 1 with overwhelming probability. Therefore we split the success probability of A
over the probability that GUESS occurs:

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]

= Pr
[
ExpGORAM

A,tam-res(λ) = 1| GUESS
]
· Pr [GUESS]

+ Pr
[
ExpGORAM

A,tam-res(λ) = 1| ¬ GUESS
]
· Pr [¬ GUESS] .

As reasoned above, the success probability of A given his knowledge of the attribute
encrypted within cData is overwhelming, thus we can rewrite:

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]

= Pr [GUESS]

+ Pr
[
ExpGORAM

A,tam-res(λ) = 1| ¬ GUESS
]
· Pr [¬ GUESS] .

We now consider the success probability of A given that he does not know the attribute of
the ΠPE cipher relative to the challenge entry. It follows from the proof of Theorem 2.6.2
that A cannot modify the cipher via the oracles provided by the challenger without being
detected. However, since A stores DB locally, he can still perform local modifications.
Nevertheless, in order to win the experiment, it must be the case that the challenger
succeeds in reading j∗, that implies the challenge entry to be encrypted such that the
capability held by the challenger allows her to access that entry. In practice, this means
that the attribute I of the cipher cData in the challenge entry is orthogonal with respect
to the predicate f held by the challenger, as defined in Definition A.7. By assumption A
knows neither the attribute I in cData nor the predicate f , therefore the probability that
he computes an attribute I ′ such that it is orthogonal to f is negligible by construction.
Hence, it follows that the probability that A wins the experiment, given that he does not
guess the attribute, is upper bounded by a negligible value. Then we have:

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]

= Pr [GUESS] + negl(λ) · Pr [¬ GUESS] ,
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which by assumption is lower bounded by:

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]
≈ Pr [GUESS] ≥ ε(λ).

New Experiment. We now define the experiment ExpGORAM
A,tam-res

′(λ) analogously to the game
ExpGORAM

A,tam-res(λ), except that in the challenge phase the adversary outputs the attribute I
that is encrypted in the cData cipher of an entry, along with its challenge index j∗. By the
argument above it follows that A has the same success probability in both games. The
experiment is defined as follows, where we highlight changes with respect to ExpΠGORAM

A,tam-res(λ)
by solid boxes:

ExpΠGORAM
A,tam-res

′(λ)

(capO,DB,AC,CAP,Cor ,DB′)← Setup(1λ, 1)

O = {OaddCl(·),O0
addE(·, ·),O0

chMode(·, ·),OcorCl(·),

O0
read(·, ·),O0

write(·, ·, ·)}
// Assume that AC(i, j) stores a list of permissions
// accounting for the history of permissions
// for client i on index j

(j∗, I∗ )← AO(DB)

if ∀i, p. i ∈ Cor ∧ p ∈ AC(i, j∗) =⇒ p 6= RW then
d∗ ← 〈Cread(capO, j∗),A(DB)〉

if d∗ 6= DB′(j∗) ∧I∗ is the attribute associated to j∗ then

return 1
return 0

Reduction. Note that the experiment ExpGORAM
A,tam-res

′(λ) reproduces the experiment
ExpGORAM

A,tam-res(λ) except that A must hold the knowledge of the attribute I associated
to the challenge entry in order to win the former. However, since we argued that the
success probability of A in the latter game implies such a knowledge, we can conclude that

Pr
[
ExpGORAM

A,tam-res(λ) = 1
]
≈ Pr [GUESS]

≈ Pr
[
ExpGORAM

A,tam-res
′(λ) = 1

]
≥ ε(λ).

Under this assumption, we can build the following reduction B against the attribute-hiding
for multiple messages property of the predicate encryption scheme ΠPE. Note that, even
though we did not explicitly state that property so far, it is implied by the attribute-hiding
notion and we will subsequently show why this is the case. We define the experiment
ExpΠPE

A,pe-multi(λ, b) as follows:
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ExpΠPE
A,pe-multi(λ, b)

Σ2 3 (I0, I1)← A(1λ)
(ppk, pmsk)← GenPE(1λ)
// O on input fi ∈ F by A outputs pmskfi

← KPE(pmsk, fi) if fi(I0) = fi(I1)

((m0,0,m1,0), ..., (m0,t,m1,t))← AO(ppk)
if ∀1 ≤ i ≤ t. |m0,j | = |m1,j |∧

(∃1 ≤ i ≤ t. fi(I0) = fi(I1) = 1 =⇒ ∀1 ≤ j ≤ t. m0,j = m1,j) then
(c1, . . . , ct)← (EPE(ppk, Ib,mb,0), . . . ,EPE(ppk, Ib,mb,1))
// O′ is defined as O with the additional restriction that

// fi(I0) = fi(I1) = 1 =⇒ ∀1 ≤ j ≤ t. m0,j = m1,j

b′ ← AO′(c1, . . . , ct)
if b′ = b then

return 1
return 0

The simulation works as follows:
Setup. B receives as input the security parameter 1λ from the challenger and it forwards
it to A. B initializes uniformly at random an attribute pair (I0, I1) and it sends it to
the challenger, who replies with the public key of the predicate-encryption scheme ppk∗.
Finally B runs (capO,DB)← gen(1λ) as described in Section 2.6, but where GenPE(1λ) is
used only to generate (ppkAuth, pmskAuth), setting ppkData = ppk∗ instead. Subsequently B
gives ek to A, and it initializes a second database DB′ which is managed locally.
Queries. B then simulates the oracles provided to A as defined in the framework and as
described in the protocol description, except the following oracles, which are implemented
differently:

OaddCl(a): B initializes a predicate f such that ∀j ∈ DB it holds that f(Ij) = a(j). Note
that some entry j may be encrypted under either the I0 or I1 attribute, in this case f
is chosen such that f(I0) = f(I1) = a(j). Then it queries the oracle provided by the
challenger on f so to retrieve the corresponding key pskData

f . B constructs capi using
that key, which is stored locally.

O0
addE(a, d): B checks whether there exists some corrupted i such that AC(i, j) 6= ⊥, if
this is the case it executes 〈CaddE(capO,a, d),A(DB)〉 in interaction with A who holds
DB. Otherwise, B sends the tuple (m0,m1) = (d, d) to the challenger, who answers
back with the challenge ciphertext c∗ ← EPE(ppk, Ib,mb) that B uses to perform an
execution of 〈CaddE(capO,a, d),A(DB)〉 in interaction with A, setting cData ← c∗. In
both cases, B updates DB′ with d at position j.

O0
chMode(a, j): B executes 〈CchMode(capO,a, j),A(DB)〉 in interaction with A, who holds
DB. Note that, if it is still the case that no corrupted i has access to the entry j,
the cData of the respective entry is rerandomized during the execution of the protocol,
rather than re-encrypted.
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OcorCl(i): B recomputes the predicate related to the i-th client in the access control matrix
AC such that it fulfills the access control policy described by AC. Note that some entry
j may be encrypted under either the I0 or I1 attribute, in this case f is chosen such
that f(I0) = f(I1) = AC(i, j). B then queries the oracle provided by the challenger
on f and it receives back a secret key pskData

f which it sends to A together with the
rest of the keys that form the capability capi.

Challenge. Finally, A outputs (j∗, I∗). B then checks whether I∗ = I1, if this is the case it
outputs 1, otherwise it outputs 0.

It is easy to see that the reduction B is efficient and it perfectly simulates the inputs
that A is expecting in the experiment ExpGORAM

A,tam-res
′(λ), therefore we can bind the success

probability of B over the random choice of b in ExpΠPE
B,pe-multi, to the success probability of

A. It follows from the initial assumption that

Pr
[
ExpΠPE

B,pe-multi(λ, b) = 1
]
≈ Pr

[
ExpGORAM

A,tam-res
′(λ) = 1

]
≥ ε(λ)

which is clearly a contradiction with respect the attribute-hiding for multiple messages
property of the predicate encryption scheme ΠPE.

Attribute-hiding for multiple messages. What is left to show, is that the security notion of
attribute-hiding of a predicate encryption scheme implies the attribute-hiding for multiple
messages. The demonstration consists of a standard hybrid argument over the vector of
ciphertexts. We define a hybrid distribution Hi where the first i ciphertexts contain the
encryption of the message m1,j for 1 ≤ j ≤ i and the remaining n− i are the encryption
of m0,j for n − i ≤ j ≤ n. Observe that H0 = C0 and Hn = C1. Assuming toward
contradiction that there exists a distinguisher A such that:

|Pr [A(H0) = 1]− Pr [A(H1) = 1]| ≥ ε(λ),

then it must be the case that there exists some i such that

|Pr [A(Hi) = 1]− Pr [A(Hi+1) = 1]| ≥ ε(λ).

Notice that the only difference between Hi and Hi+1 is that the (i+ 1)-th cipher is the
encryption of m0,i+1 in Hi, while it is the encryption of m1,i+1 in Hi+1. Now, given a
cipher cb, it is easy to construct a distribution H = (c1,1, ..., c1,i, cb, c0,i+2, ..., c0,n) which is
equal to Hi if and only if cb is the encryption of m0,i+1 and it is equal to Hi+1 otherwise.
It follows that it is possible to distinguish the encryption of either ~m0 or ~m1 with the same
probability with which A distinguishes Hi and Hi+1. This, however, contradicts our initial
assumption and it proves the implication.

Versioning. Note that by the previous argument we only ruled out the cases where the
server maliciously modifies an entry of the database without the client noticing it. However
it is still possible for an adversary to win the game just by querying the write interface
for an allowed modification on a given entry and then provide an old version of DB in the
challenge phase. Note that this is a class of attacks that is inherent to the cloud storage
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design and can be prevented via standard techniques (e.g., by using gossip protocols [69]
among the clients). For the sake of simplicity we do not consider such attacks in our proof
and we implicitly assume that the adversary always runs the read algorithm on top of the
most recent version of DB in the challenge phase of the cryptographic game.

Proof of Theorem 2.6.4. The proof consists of the analysis of the distribution of the read
and write operations over the access pattern of the paths in the binary tree. Combining
the uniform distribution over the retrieved path with the indistinguishability among
the read and write algorithms, it directly follows that any two sequences of queries are
indistinguishable, i.e., it cannot exist any adversary who wins the experiment ExpGORAM

A,obliv (λ, b)
with non-negligible probability.

It follows from the design of the primitive that each bucket independently represents
a trivial ORAM and therefore preserves oblivious access. Indeed, every bucket is always
retrieved as a whole and it is re-randomized upon every access. By the CPA-security of
the top layer public key encryption scheme ΠPKE, we can state that the rerandomization
operation completely hides any modification of the data. Thus, we can restrict the
information leaked by each operation to the path of the binary tree that gets retrieved
and, in order to prove obliviousness, it is sufficient to demonstrate that each client’s access
leads to the same distribution over the choice of such a path.

Read. In the read algorithm the path associated with the target entry is initially retrieved
by the client, note that the association leaf-entry was sampled uniformly at random. On
the client-side, a new leaf-entry association is uniformly generated for the target entry and
the path is arranged such that each entry is pushed as far as possible toward its designated
leaf in the tree. In this process the client must make sure that a dummy entry is placed
on top of the path, however the server does not gather any additional information from
this procedure because of the CPA-security of ΠPKE. The path is then rerandomized and
uploaded on the hosting server. It is easy to see that any further access of any entry
(including the most recently accessed one) will always determine a path only depending
on the association between leaf and entry, which is uniformly distributed. It follows that,
for all accesses, the distribution over the choice of the path is uniform and independent
with respect to the accessed entry. After the shuffling the client overwrites the dummy
entry placed on top of the root node, however this does not affect the obliviousness of the
algorithm since the memory location accessed is fixed.

Write. The write algorithm works analogously to the read, so the argument above still
applies. The only difference in this scenario is that a target entry is selected to be placed on
top of the root, instead of a dummy one. This, however, does not introduce any difference
in the server’s view since the choice of the entry to set on top of the path is again hidden by
the CPA-security of ΠPKE. Thus, we achieve uniform distribution of the memory accesses
in the write operation and consequently indistinguishability among the read and write
protocols.

Zero-Knowledge. In both read and write cases, the client attaches along with the data
sent to the server three non-interactive zero-knowledge proves that the server must verify
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in order to protect the integrity of the data. Specifically this set of proofs is composed
of a proof of a shuffle correctness (line 10.11 and line 11.10), a proof of writing eligibility
(line 10.14), and a proof of plaintext-equivalence for the index (line 10.16). However, due to
the zero-knowledge property of ZKP the proved statements do not reveal any information
so as to give A additional information that would allow him to break obliviousness.

Proof of Theorem 2.6.5. The proof proceeds by contradiction. We show that, given an
adversary who is able to win the experiment ExpGORAM

A,anonymity(λ, b) with non-negligible proba-
bility, we can construct an efficient algorithm that breaks the zero-knowledge property of
ZKP.

By construction of the game, the only information available to the adversary in order
to distinguish between the two capabilities is the execution of the read or write protocol,
depending on the input he provides to the challenger. In both cases, it follows from the
inspection of the protocol (see Section 2.6) that the only step which is not independent
from the capability held by the client is the formulation of the authorization proof. We
recall that the statement proves the knowledge of a key pskAuth

f which can be used to
successfully decrypt the ciphertext cAuth. The proof looks as follows:

PAuth = PK
{(

pskAuth
f

)
: DPE(pskAuth

f , cAuth) = 1
}
,

note, indeed, that in the instantiation of our protocol, the capability of the client is
implemented as the client’s secret key pskAuth

f . Thus, all of the read or write transcripts,
except for the zero-knowledge proof, are trivially indistinguishable over the choice of the
capability in case the two capabilities have the same access permissions on the challenge
entry. Since the challenger does not generate the capabilities itself, we have to show that it
can check the access permissions during the execution of the read or write protocol after
the challenge so as to escape a trivial attack. The only thing necessary to check is that in
case d 6= ⊥, the challenger can decrypt PAuth for the challenge entry using both capabilities.
If that is not possible, it aborts the game and outputs 0. In case of read, it has to check
whether there exists a dummy entry on the downloaded path such that it can decrypt
PAuth using both capabilities. If that is not the case, it also aborts the game and outputs
0. Hence, the challenger can always check the access control matrix equivalence for both
capabilities, even though it does not know the full matrix. It follows that any information
that the adversary gathers, can only be derived from the transcript of the authentication
proof. Assuming toward contradiction that

Pr
[
ExpGORAM

A,anonymity(λ, b) = 1
]
≥ 1

2 + ε(λ),

then it must be the case that A is able to correctly guess the capability chosen by the
challenger to formulate the proof PAuth with advantage at least ε(λ) over the random choice
of b. We define EXTRACT as the event in which A extracts some additional information
from PAuth about the capability used to construct the proof. It follows from the initial
assumption that

Pr
[
ExpGORAM

A,anonymity(λ, b) = 1
]

= Pr [A wins | EXTRACT] · Pr [EXTRACT]

161



B. Further Details of Group ORAM

+ Pr [A wins | ¬ EXTRACT] · Pr [¬ EXTRACT]

≥ 1
2 + ε(λ).

It is easy to see that, given that A can deduce some information about the capability from
PAuth, i.e., that EXTRACT happens, he can win the game with probability 1. Therefore

Pr [A wins | EXTRACT] = 1.

On the other hand, given that A does not break the zero-knowledge of PAuth, the probability
that A correctly guesses the capability sampled by the challenge is negligibly bigger than
1/2 in both read and write algorithms, as argued above. Thus we can rewrite

Pr [A wins | ¬ EXTRACT] ≈ 1
2 .

It follows that we can bind the success probability of A as

Pr
[
ExpGORAM

A,anonymity(λ, b) = 1
]
≈

1 · Pr [EXTRACT] + 1
2 · Pr [¬ EXTRACT] ≥ 1

2 + ε(λ),

then we have

Pr [EXTRACT] + 1
2 · (1− Pr [EXTRACT]) ≥ 1

2 + ε(λ)
1
2 · Pr [EXTRACT] ≥ ε(λ)

Pr [EXTRACT] ≥ 2 · ε(λ),

which is still a non-negligible value. This implies that A must be able to extract additional
information from the proof without knowing the witnesses, which is clearly a contradiction
with respect to the zero-knowledge property of ZKP and it concludes our proof.

B.4.2.4. Proof of Theorem 2.7
Proof of Theorem 2.7.1. The proof works analogously to Theorem 2.6.1.

Proof of Theorem 2.7.2. The proof is conducted by splitting the success probability of the
adversary and showing that such probability is upper bounded by a sum of negligible values.
We first define the event COLL as the event in which the adversary is able to find a collision
on the tag t of the challenge entry of the experiment. We can express the probability that
the adversary wins the experiment defined in Definition 2.8 as follows:

Pr
[
ExpA−GORAM

A,acc-int (λ) = 1
]

= Pr [A wins | COLL]·Pr [COLL]+Pr [A wins | ¬ COLL]·Pr [¬ COLL] .

It is easy to see that whenever the event COLL happens the adversary can easily win the
game by arbitrarily modifying the entry and finding a collision for the hash tag. In the
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history of changes all of the versions of that entry will correctly verify and the challenger
will not be able to blame any client in particular, thus making the adversary succeed with
probability 1. By the above reasoning we can rewrite:

Pr
[
ExpA−GORAM

A,acc-int (λ) = 1
]

= Pr [COLL] + Pr [A wins | ¬ COLL] · Pr [¬ COLL] .

We will now show that the probability that COLL happens is upper bounded by a negligible
function. We again split the probability by defining the event COLLH, which occurs when
the adversary is able to find a collision in the standard hash function H, which is computed
on j‖cAuth‖cpk. We obtain

Pr [COLL] = Pr [COLL | COLLH] · Pr [COLLH] + Pr [COLL | ¬COLLH] · Pr [¬COLLH] .

Clearly, if COLLH happens, then COLL occurs as well. Hence, we can rewrite

Pr [COLL] = Pr [COLLH] + Pr [COLL | ¬COLLH] · Pr [¬COLLH] .

It is apparent that COLLH can only occur with negligible probability due to the collision
resistance of H. Hence, the event ¬COLLH must occur with overwhelming probability and
we can again rewrite

Pr [COLL] ≈ Pr [COLL | ¬COLLH] .

In order to prove that Pr [COLL | ¬COLLH] is negligible, we first define an intermediate
game ExpA−GORAM

A,acc-int
′(λ), we then show that such a game is indistinguishable from the original

and finally we prove that in this latter experiment the probability of COLL, under the
condition that COLLH does not happen, is negligible. It directly follows that the probability
of COLL is also negligible in the original experiment ExpA−GORAM

A,acc-int (λ) since the two games
are indistinguishable to the view of the adversary.

New Experiment. We define the intermediate game ExpA−GORAM
A,acc-int

′(λ) as follows:
Setup. The challenger runs the Setup phase as in Definition 2.8. Additionally it sets a
polynomial upper bound p on the number of queries to the interfaces O1

addE and O1
chMode

and it picks a q ∈ {1...p} uniformly at random.
Queries. The challenger runs the Query phase as in Definition 2.8, except for the following
oracles, which are defined differently:

O1
addE(a, d): the challenger executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the
q-th query, then the new entry is computed with cAuth ← EPE(ppkAuth, xw, s) where s
is a random string such that |s| = |csk|.

O1
chMode(a, j): the challenger executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds
that for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query
is the q-th query, then the new entry is computed with cAuth ← EPE(ppkAuth, xw, s)
where s is a random string such that |s| = |csk|. On the other hand, if there exists a
corrupted i such that AC(i, j) = RW, cAuth is reverted to be consistent with the entry
structure.
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Challenge and output. The challenger runs the challenge and output phases as in Defini-
tion 2.8.

Claim: ExpA−GORAM
A,acc-int (λ) ≈ ExpA−GORAM

A,acc-int
′(λ). We prove the claim with a reduction against

the attribute-hiding property of the predicate-encryption scheme ΠPE. That is, given an
adversary A that can efficiently distinguish the two games, we create a simulation B that
breaks the attribute-hiding property with the same probability, thus such an adversary
cannot exist. The reduction is depicted below.
Setup. B receives as input the security parameter 1λ from the challenger and it forwards
it to A. B initializes uniformly at random an attribute I and it sends to the challenger
the tuple (I, I), who replies with the public key of the predicate-encryption scheme ppk∗.
B then runs (capO,DB)← gen(1λ), using GenPE(1λ) only to generate (ppkData, pmskData),
setting ppkAuth = ppk∗ instead. Subsequently B gives ek to A. Finally, it sets a polynomial
upper bound p on the number of queries to the interfaces O1

addE and O1
chMode and it picks

a q ∈ {1...p} uniformly at random.
Queries. B simulates the oracles as described, except for the following ones, which are
simulated as described below:

OaddCl(a): B initializes a predicate f such that f(I) = ⊥ and ∀j ∈ DB it holds that
f(Ij) = 0 whenever a(j) = ⊥ and f(Ij) = 1 otherwise.

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that for all cor-

rupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th query,
then B sends to the challenger the pair (csk, s) = (m0,m1) where csk is the chameleon
secret key relative to that entry and s is a random string such that |s| = |csk|. The
challenger replies with c∗ ← EPE(ppkAuth, I,mb) and B sets cAuth = c∗ for the target
entry.

O1
chMode(a, j): B executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds that for all
corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th
query, then B sends to the challenger the pair (csk, s) = (m0,m1) where csk is the
chameleon secret key relative to that entry and s is a random string such that |s| = |csk|.
The challenger replies with c∗ ← EPE(ppkAuth, I,mb) and B sets cAuth = c∗ for the
target entry. On the other hand, if there exists a corrupted i such that AC(i, j) = RW,
cAuth is reverted to be consistent with the entry structure.

OcorCl(i): B queries the oracle provided by the challenger on the relative predicate fi so to
retrieve the corresponding key pskAuth

fi . B constructs capi using that key, which is then
handed over to A.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j∗) = RW, then B aborts. B runs
d∗ ← 〈Cread(capO, j∗),Sread(DB)〉 and L← 〈blame(capO, Log, j∗) locally.
Output. B sends to A 1 if and only if d∗ 6= DB′(j∗) and ∃ i ∈ L that has not been queried
by A to the interface corCl(·) or L = []. At any point of the execution A can output 0 or 1
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depending on his guess about which game he is facing, B simply forwards the bit to the
challenger and it stops the simulation.
Analysis. The simulation above it is clearly efficient, also it is easy to see that whenever
the challenger samples its internal coin b = 0, the simulation of B perfectly reproduces
ExpA−GORAM

A,acc-int (λ), thus:

Pr [B 7→ 1|b = 0] ≈ Pr [A 7→ 1|b = 0] .

Instead, whenever b = 1 the protocol executed by B perfectly simulates ExpA−GORAM
A,acc-int

′(λ),

Pr [B 7→ 1|b = 1] ≈ Pr [A 7→ 1|b = 1] .

By our initial assumption A was able to distinguish between the two games with non-
negligible probability, therefore the probability carries over

|Pr [B 7→ 1|b = 0]− Pr [B 7→ 1|b = 1]| ≥ ε(λ),

which is clearly a contradiction to the attribute-hiding property of ΠPE and it proves our
claim.

Claim: Pr [COLL | ¬COLLH] in ExpA−GORAM
A,acc-int

′(λ) ≤ negl(λ). We demonstrate the claim
via a reduction against the property of collision-resistance with key-exposure freeness of the
chameleon hash function. Assume towards contradiction that there exists an adversary A
such that the event COLL happens in ExpA−GORAM

A,acc-int
′(λ) with non-negligible probability, we

build the following algorithm B to efficiently break the collision-resistance with key-exposure
freeness property:
Setup. B sets a polynomial upper bound p on the number of queries to the oracles O1

addE and
O1

chMode and it picks a q ∈ {1...p} uniformly at random. Then it runs (capO,DB)← gen(1λ)
and it hands over ek to A.
Queries. B simulates the oracles provided to A as described in the definition and the
construction, except the following ones:

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that for all cor-

rupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th query,
then the new entry is computed with cAuth ← EPE(ppkAuth, xw, s) where s is a random
string such that |s| = |csk|.

O1
chMode(a, j): B executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds that for all
corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th
query, then the new entry is computed with cAuth ← EPE(ppkAuth, xw, s) where s is a
random string such that |s| = |csk|. On the other hand, if there exists a corrupted i
such that AC(i, j) = RW, cAuth is reverted to be consistent with the entry structure.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j∗) = RW, then the B aborts. It
then runs d∗ ← 〈Cread(capO, j∗),Sread(DB)〉 and L← 〈blame(capO, Log, j∗) locally.
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Output. B outputs 1 if and only if d∗ 6= DB′(j∗) and ∃ i ∈ L that has not been queried by
A to the interface corCl(·) or L = [].
Analysis. The simulation is efficient and it perfectly reproduces the game that A is
expecting. Note that by assumption we have that COLL happens with probability ε(λ),
thus it must be the case that the adversary was able to compute a collision of the chameleon
hash function in the challenge entry with non-negligible probability. Note that B selects the
challenge entry for storing s in cAuth with probability at least 1

p . Thus, with probability at
least 1

p ·ε(λ) A was able to compute a collision without having any information on the secret
key csk. The probability is still non-negligible, therefore this constitutes a contradiction to
the collision resistance with key-exposure freeness of ΠCH. This proves our claim.

We have demonstrated that the event COLL does not occur with more than negligible
probability, therefore we can rewrite the total success probability of the adversary as
follows:

Pr
[
ExpA−GORAM

A,acc-int (λ) = 1
]

= negl(λ) + Pr [A wins | ¬ COLL] · (1− negl(λ))

≈ Pr [A wins | ¬ COLL] .

Thus, what is left to show is that the success probability of the adversary given that he
is not able to compute a collision for ΠCH, is at most a negligible value in the security
parameter. We do so by a reduction against the existential unforgeability of the digital
signature scheme ΠDS. Assuming towards contradiction that there exists an adversary A
such that Pr [A wins | ¬ COLL] ≥ ε(λ) we can build a reduction B against the existential
unforgeability ExpΠDS

A,euf of ΠDS as follows:

Setup. B receives as input the security parameter 1λ and the verification key vk∗. It runs
(capO,DB)← gen(1λ) setting vkO = vk∗ and it hands over ek to A.
Queries. B simulates all oracles as specified in the definition and the construction except
the following one, which is simulated differently:

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. In order to compute the
correct signature on the respective chameleon hash tag t, B queries the signing oracle
provided by the challenger and retrieves the signature tag σ.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. B parses
the Log to search one version of that entry that contains a pair (t′, σ′) that has not been
queried to the signing oracle and such that vfy(vkO, t′, σ′) = 1.
Output. B outputs such a pair (t′, σ′) and it interrupts the simulation.
Analysis. The simulation is clearly efficient. It is easy to see that, in order to win the
game, A must be able to change an entry without writing permission and by leaving it in
a consistent state. This can be done by either computing a collision in the chameleon hash
function or by forging a valid signature on the tag t. By assumption we ruled out the first
hypothesis, thus the winning condition of the adversary implies the forgery of a verifying
message-signature pair. Note that A could also just roll back to some previous version of
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the entry but this can be easily prevented by including some timestamp in the computation
of the chameleon hash. The winning probability of the reduction then carries over:

Pr [B wins] ≈ Pr [A wins | ¬ COLL] ≥ ε(λ).

In this way we built an efficient adversary B that breaks the existential unforgeability of
ΠDS with non-negligible probability, which is clearly a contradiction. Therefore it must
hold that Pr [A wins | ¬ COLL] is a negligible function in the security parameter. Finally
we have that:

Pr
[
ExpA−GORAM

A,acc-int (λ) = 1
]
≈ Pr [A wins | ¬ COLL] ≤ negl(λ),

which concludes our proof.

Proof of Theorem 2.7.3. The proof works analogously to Theorem 2.6.4.

B.4.2.5. Proof of Theorem 2.8
Proof of Theorem 2.8.1. The proof is constructed by fixing the choice of the challenger
over the sampling of the random coin and define intermediate hybrid games as follows

• ExpA1 (λ, b) = ExpS−GORAM
A,secrecy (λ, b)

• ExpA2 (λ, b) is defined as ExpA1 (λ, b) with the difference that the key under which cData
is encrypted is replaced by a random value rather than the key produced by broadcast
encryption.

Then we show that the difference among any two neighboring games is bounded by a
negligible value in the security parameter, therefore the advantage of the adversary in
ExpS−GORAM

A,secrecy (λ, b) turns to be a sum of negligible values, which is still negligible. In
particular we demonstrate the following:

ExpA1 (λ, 0) ≈ ExpA2 (λ, 0) ≈ ExpA2 (λ, 1) ≈ ExpA1 (λ, 1)

Different entry structure. As opposed to the previous constructions, we have to slightly
change the entry structure so as to compensate for the structural differences incurred
by broadcast encryption. In particular, cAuth has now the form HdrAuth‖E(KAuth, csk)
where 〈HdrAuth,KAuth〉 ← EBE(SAuth, bpkAuth) and SAuth is the set of clients with RW
permissions. Likewise, cData has the form HdrData‖E(KData, d) where 〈HdrData,KData〉 ←
EBE(SData, bpkAuth) and SData is the set of clients with R permissions on the entry. Clients
are equipped with private keys di that allow for decrypting as follows. If i ∈ Sx, then
Kx ← DBE(Sx, i, di,Hdrx, bpkx), allowing to decrypt cAuth if x = Auth and cData in case
x = Data.

New Experiment. We define ExpA2 (λ, b) for clarity:
Setup, query, and output phase. As defined in Definition 2.2.

167



B. Further Details of Group ORAM

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|.
The challenger accepts the request only if AC(i, j) = ⊥, for every i corrupted by A
in the query phase. Afterwards, the challenger invokes 〈Cwrite(capO, j, db),Swrite(DB)〉 in
interaction with A, as explained in Section 2.8, with the difference that the new entry is
computed as follows:

E′j =

 c′1,j ← E(K, j)
c′2,j ← E(K,HdrAuth‖E(KAuth, csk))
c′3,j ← E(K,HdrData‖E(K∗, d))


where 〈HdrAuth,KAuth〉 ← EBE(SAuth, bpk), 〈HdrData,KData〉 ← EBE(SData, bpk), SAuth
(resp. SData) are the subset of users having RW (resp. R) access on the entry j, and
K∗ is a random string such that |K∗| = |KData| and in particular it is not necessarily the
same key used to encrypt d.
Claim: ExpA1 (λ, b) ≈ ExpA2 (λ, b). We assume toward contradiction that there exists a ppt
adversary A that is able to distinguish among ExpA1 (λ, b) and ExpA2 (λ, b) with non-negligible
probability, namely:∣∣∣Pr

[
ExpA1 (λ, b) = 1

]
− Pr

[
ExpA2 (λ, b) = 1

]∣∣∣ ≥ ε(λ)

for some non-negligible ε(λ). Then we show that we can use such an adversary to build the
following reduction B against the adaptive-security property of the broadcast encryption
scheme ΠBE defined in Definition A.10. The simulation is elaborated below.
Setup. B receives as input the security parameter 1λ and the public key bpk∗ from the
challenger and it forwards 1λ to A. B runs (capO,DB)← gen(1λ) as described in Section 2.8
using GenBE(1λ) only to setup (bskAuth, bpkAuth), setting bpkData = bpk∗ instead. Finally B
gives ek and DB to A.
Queries. B simulates the oracles provided to A as defined and constructed, except for the
following ones, which we describe below:

OaddCl(a): B adds one client to the set S of clients.

OcorCl(i): B queries the oracle provided by the challenger on i so to retrieve the correspond-
ing key di. B constructs capi using such a key, which is handed over to A.

Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database entry
on which A wishes to be challenged and (d0, d1) is a pair of entries such that |d0| = |d1|. B
accepts the tuple only if AC(i, j) = ⊥, for every i corrupted by A in the query phase. B sets
S∗ to be the set of clients Ci for which AC(i, j) 6= ⊥ and it sends it to the challenger, who
replies with the tuple (Hdr∗,K∗). B then executes 〈Cwrite(capO, j, db),A(DB)〉, computing
the new entry in the following manner:

E′j =

 c′1,j ← E(K, j)
c′2,j ← E(K,HdrAuth‖E(KAuth, csk))
c′3,j ← E(K,Hdr∗‖E(K∗, db))


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where c′1,j and c′2,j are essentially re-encrypted from the retrieved entry, only c′3,j is freshly
computed from the material sent by the challenger.
Output. In the output phase A still has access to the oracles except for OaddCl on input
a such that a(j) 6= ⊥; OcorCl on input i such that AC(i, j) 6= ⊥; and O0

chMode on input
a, j with a(i) 6= ⊥ for some previously corrupted client i. Note that in case there exists
some non-corrupted i such that a(i) 6= ⊥, B just simulates the 〈CchMode(capO,a, j),A(DB)〉
protocol by rerandomizing the challenge ciphertext rather than re-encrypting it. Eventually,
A stops, outputting a bit b′, which B simply forwards to the challenger.
Analysis. The simulation is clearly efficient, also it is easy to see that whenever the
challenger samples b∗ = 0, i.e., the key K∗ is the one generated together with Hdr∗,
the simulation perfectly reproduces the inputs that A is expecting in ExpA1 (λ, b). The
only difference is indeed that in the challenge phase when preparing the challenge entry,
c′Data = Hdr∗, E(K∗, d) is generated by re-encryption in the simulation, while in the real
experiment the header is constructed as a randomization of the old one; conversely, in the
output phase, the oracle O0

chMode on j is simulated by a rerandomization on Hdr∗, rather
than a re-encryption of d under a fresh header and key. By definition of rerandomization,
however, these two operations are indistinguishable to A. Note that we assume for simplicity
the broadcast encryption scheme to be rerandomizable, however this feature is not strictly
necessary since we could simulate the rerandomization by asking the challenger another
challenge cipher. This does not affect the security of the scheme by standard hybrid
argument. Thus, we can state the following:

Pr [B 7→ 0|b∗ = 0] ≈ Pr
[
ExpA1 (λ, b) = 1

]
.

On the other hand, in case the challenger initializes b∗ = 1, then B perfectly simulates the
environment that A is expecting in ExpA2 (λ, b) since the key K∗ under which d is encrypted
is just a random key from the key space. Therefore we can assert that:

Pr [B 7→ 1|b∗ = 1] ≈ Pr
[
ExpA2 (λ, b) = 1

]
.

However, it follows from the initial assumption that

|Pr [B 7→ 1|b∗ = 1]− Pr [B 7→ 0|b∗ = 0]| ≥ ε(λ),

which is clearly a contradiction with respect to the adaptive-security property of the
broadcast encryption scheme ΠBE, and it proves the initial claim.

Claim: ExpA2 (λ, 0) ≈ ExpA2 (λ, 1). We assume toward contradiction that there exists a ppt
adversary A that is able to distinguish among ExpA2 (λ, 0) and ExpA2 (λ, 1) with non-negligible
probability, namely:∣∣∣Pr

[
ExpA2 (λ, 0) = 1

]
− Pr

[
ExpA2 (λ, 1) = 1

]∣∣∣ ≥ ε(λ)

For some non-negligible ε(λ). Then we show that we can we can use such an adversary
to build the following reduction B against the CPA-security property of the private-key
encryption scheme ΠSE. The simulation is elaborated below.
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Setup. B receives as input the security parameter 1λ from the challenger and it forwards
it to A. B then runs (capO,DB)← gen(1λ) as described in Section 2.8 and it gives ek and
DB to A.
Queries. B simulates the oracles provided to A as described in the definition and according
to the construction.
Challenge. Finally, A outputs (j, (d0, d1)), where j is an index denoting the database
entry on which A wishes to be challenged and (d0, d1) is a pair of entries such that
|d0| = |d1|. B accepts the tuple only if AC(i, j) = ⊥, for every i corrupted by A in the
query phase. B sends the tuple (m0,m1) = (d0, d1) to the challenger, who answers back
with the challenge ciphertext c∗ ← E(k, db) that B uses to perform a local execution of
〈Cwrite(capO, j, db),A(DB)〉, computing the new entry in the following manner:

E′j =

 c′1,j ← E(K, j)
c′2,j ← E(K,HdrAuth‖E(KAuth, csk))
c′3,j ← E(K,HdrData‖c∗)

 .
Output. In the output phase A still has access to the interfaces except for OaddCl on input
a such that a(j) 6= ⊥; OcorCl on input i such that AC(i, j) 6= ⊥; and O0

chMode on input a, j
with a(i) 6= ⊥ for some previously corrupted client i. Eventually, A stops, outputting a bit
b′, which B forwards to the challenger.
Analysis. The simulation is obviously efficient, also it is easy to see that whenever the
challenger samples b = 0, the simulation perfectly reproduces the inputs that A is expecting
in ExpA2 (λ, 0). Thus, we can state the following:

Pr [B 7→ 0|b = 0] ≈ Pr
[
ExpA2 (λ, 0) = 1

]
.

On the other hand, in case the challenger initializes b = 1, then B perfectly simulates the
environment that A is expecting in ExpA2 (λ, 1). Therefore we can assert that:

Pr [B 7→ 1|b = 1] ≈ Pr
[
ExpA2 (λ, 1) = 1

]
.

However, it follows from the initial assumption that:

|Pr [B 7→ 1|b = 1]− Pr [B 7→ 0|b = 0]| ≥ ε(λ),∣∣∣Pr
[
ExpΠSE

A,cpa(λ, 1) = 1
]
− Pr

[
ExpΠSE

A,cpa(λ, 0) = 1
]∣∣∣ ≥ ε(λ),

which implies a non-negligible difference in the success probability of B with respect to the
random choice of b and it clearly represents a contradiction with respect to the CPA-security
property of the private-key encryption scheme ΠSE. This proves the initial claim.

ExpA1 (λ, 0) ≈ ExpA1 (λ, 1). By the previous claims it directly follows that the difference
among each couple of neighboring games is bounded by a negligible value, thus the difference
between ExpA1 (λ, 0) and ExpA1 (λ, 1) is a sum of negligible terms, which is, again, negligible.
In particular

ExpA1 (λ, 0) ≈ ExpA1 (λ, 1)
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directly implies that:

ExpS−GORAM
A,secrecy (λ, 0) ≈ ExpS−GORAM

A,secrecy (λ, 1)

thus, for all ppt adversary the two experiments look indistinguishable. This concludes our
proof.

Proof of Theorem 2.8.2. The proof is conducted by splitting the success probability of the
adversary and showing that such probability is upper bounded by a sum of negligible
values. We first define the event COLL as the event in which the adversary is able to find
a collision on the chameleon hash function ΠCH without knowing the secret key, for the
challenge entry of the experiment. We can express the probability that the adversary wins
the experiment defined in Definition 2.8 as follows:

Pr
[
ExpS−GORAM

A,acc-int (λ) = 1
]

= Pr [A wins | COLL] · Pr [COLL]

+ Pr [A wins | ¬ COLL] · Pr [¬ COLL] .

It is easy to see that whenever the event COLL happens the adversary can easily win the
game by arbitrarily modifying the entry and computing a collision for the chameleon hash
function. In the history of changes all of the versions of that entry will correctly verify and
the challenger will not be able to blame any client in particular, thus making the adversary
succeed with probability 1. By the above reasoning we can rewrite:

Pr
[
ExpS−GORAM

A,acc-int (λ) = 1
]

= Pr [COLL] + Pr [A wins | ¬ COLL] · Pr [¬ COLL] .

We will now show that the probability that COLL happens is upper bounded by a negligible
function. We again split the probability by defining the event COLLH, which occurs when
the adversary is able to find a collision in the standard hash function H, which is computed
on j‖cAuth‖cpk. We obtain

Pr [COLL] = Pr [COLL | COLLH] · Pr [COLLH] + Pr [COLL | ¬COLLH] · Pr [¬COLLH] .

Clearly, if COLLH happens, then COLL occurs as well. Hence, we can rewrite

Pr [COLL] = Pr [COLLH] + Pr [COLL | ¬COLLH] · Pr [¬COLLH] .

It is apparent that COLLH can only occur with negligible probability due to the collision
resistance of H. Hence, the event ¬COLLH must occur with overwhelming probability and
we can again rewrite

Pr [COLL] ≈ Pr [COLL | ¬COLLH] .

In order to prove that Pr [COLL | ¬COLLH] is negligible, we first define two intermediate
games ExpA1 (λ) and ExpA2 (λ), we then show that these games are indistinguishable from
the original and finally we prove that in this latter experiment the probability of COLL,
under the condition that COLLH does not happen, is negligible. It directly follows that the
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probability of COLL is also negligible in the original experiment ExpS−GORAM
A,acc-int (λ) since the

two games are indistinguishable to the view of the adversary.

New Experiment ExpA1 (λ). Intuitively, this new experiment is as the original one with
the difference that the challenger at some point encrypts the chameleon hash secret key
in some fixed predetermined query under a random key rather than the one output by
the encryption procedure of the broadcast encryption scheme. We define the exact game
ExpA1 (λ) as follows:
Setup:. The challenger runs the setup phase as in Definition 2.8. Additionally it sets a
polynomial upper bound p on the number of queries to the interfaces O1

addE and O1
chMode

and it picks a q ∈ {1...p} uniformly at random.
Queries:. The challenger runs the query phase as in Definition 2.8, except for the following
oracles:

O1
addE(a, d): the challenger executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the
q-th query, then the new entry is computed with cAuth = HdrAuth‖E(K∗, cskj) where
K∗ is a random key such that |K∗| = |KAuth|.

O1
chMode(a, j): the challenger executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds
that for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query
is the q-th query, then the new entry is computed with cAuth = HdrAuth‖E(K∗, cskj)
where K∗ is a random key such that |K∗| = |KAuth|. On the other hand, if there exists
a corrupted i such that AC(i, j) = RW, cAuth is reverted to be consistent with the
entry structure.

Challenge and output. The challenger runs the challenge and output phases as in Defini-
tion 2.8.

New Experiment ExpA2 (λ). Intuitively, this new experiment is as the previous one with
the difference that the challenger at some point does not encrypt the chameleon hash secret
key, but rather some random key under a random key in some fixed predetermined query.
We define the exact game ExpA2 (λ) as follows:
Setup:. The challenger runs the setup phase as in Definition 2.8. Additionally it sets a
polynomial upper bound p on the number of queries to the interfaces O1

addE and O1
chMode

and it picks a q ∈ {1...p} uniformly at random.
Queries:. The challenger runs the query phase as in Definition 2.8, except for the following
interfaces:

O1
addE(a, d): the challenger executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that
for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the
q-th query, then the new entry is computed with cAuth = HdrAuth‖E(K∗, s) where K∗
is a random key with |K∗| = |KAuth and s is a random string such that |s| = |cskj |.

O1
chMode(a, j): the challenger executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds

that for all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is
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the q-th query, then the new entry is computed with cAuth = HdrAuth‖E(K∗, s) where
K∗ is a random key with |K∗| = |KAuth| and s is a random string such that |s| = |cskj |.
On the other hand, if there exists a corrupted i such that AC(i, j) = RW, cAuth is
reverted to be consistent with the entry structure.

Challenge and output. The challenger runs the challenge and output phases as in Defini-
tion 2.8.
Claim: ExpS−GORAM

A,acc-int (λ) ≈ ExpA1 (λ). We prove the claim with a reduction against the
adaptive-security property of the broadcast encryption scheme ΠBE. That is, given an
adversary A that can efficiently distinguish the two games, we create a simulation B that
breaks the adaptive-security property with the same probability, thus such an adversary
cannot exist. The reduction is depicted below.
Setup. B receives as input the security parameter 1λ and the public key bpk∗ from the
challenger and it forwards 1λ toA. B then runs (capO,DB)← gen(1λ), using GenBE(1λ) only
to generate (bskData, bpkData), setting bpkAuth = bpk∗ instead. Subsequently B initializes
an empty set S of clients and it gives ek to A. Finally, it sets a polynomial upper bound p
on the number of queries to the interfaces O1

addE and O1
chMode and it picks a q ∈ {1...p}

uniformly at random.
Queries. B simulates the oracles provided to A as described, except the following ones:

OaddCl(a): B adds one client to the set S of clients.

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that for all cor-

rupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th query,
then B sends to the challenger the set S∗ of clients having write access to the j-th entry.
The challenger replies with the tuple (Hdr∗,K∗) and B sets cAuth ← Hdr∗‖E(K∗, cskj)
for the target j-th entry.

O1
chMode(a, j): B executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds that for
all corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is
the q-th query, then B sends to the challenger the set S∗ of clients having write
access to the j-th entry. The challenger replies with the tuple (Hdr∗,K∗) and B sets
cAuth ← Hdr∗‖E(K∗, cskj) for the target j-th entry. On the other hand, if there exists
a corrupted i such that AC(i, j) = RW, cAuth is reverted to be consistent with the
entry structure.

OcorCl(i): B queries the oracle provided by the challenger on i so to retrieve the corre-
sponding key bski. B constructs capi using such a key, which is then handed over to
A.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j∗) = RW, then B aborts. B runs
d∗ ← 〈Cread(capO, j∗),Sread(DB)〉 and L← 〈blame(capO, Log, j∗) locally.
Output. B sends to A 1 if and only if d∗ 6= DB′(j∗) and ∃ i ∈ L that has not been queried
by A to the oracle OcorCl(·) or L = []. At any point of the execution A can output 0 or 1
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depending on his guess about which game he is facing, B simply forwards such a bit to the
challenger and it stops the simulation.
Analysis. The simulation above it is clearly efficient, also it is easy to see that whenever
the challenger samples its internal coin b = 0, the simulation of B perfectly reproduces
ExpS−GORAM

A,acc-int (λ), thus:

Pr [B 7→ 0|b = 0] ≈ Pr [A 7→ 0|b = 0] .

Instead, whenever b = 1 the protocol executed by B perfectly simulates ExpA1 (λ),

Pr [B 7→ 1|b = 1] ≈ Pr [A 7→ 1|b = 1] .

By our initial assumption A was able to distinguish between the two games with non-
negligible probability, therefore the probability carries over

|Pr [B 7→ 0|b = 0]− Pr [B 7→ 1|b = 1]| ≥ ε(λ),

which is clearly a contradiction to the adaptive-security property of ΠBE and it proves our
claim.

Claim: ExpA1 (λ) ≈ ExpA2 (λ). We prove the claim with a reduction against the CPA-security
of the private-key encryption scheme ΠSE. That is, given an adversary A that can efficiently
distinguish the two games, we create a simulation B that breaks the CPA game of ΠSE
with the same probability, thus such an adversary cannot exist. The reduction is depicted
below.
Setup. B receives as input the security parameter 1λ from the challenger and it forwards
1λ to A. B then runs (capO,DB)← gen(1λ). Subsequently B initializes an empty set S of
clients and it gives ek to A. Finally, it sets a polynomial upper bound p on the number of
queries to the interfaces O1

addE and O1
chMode and it picks a q ∈ {1...p} uniformly at random.

Queries. B simulates the oracles provided to A as described, except the following ones:

OaddCl(a): B adds one client to the set S of clients.

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that for all cor-
rupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th
query, then B sends to the challenger the message pair (cskj , s) for some random value
s fulfilling |s| = |cskj |. The challenger answers with c∗, which B uses to construct
cAuth ← HdrAuth‖c∗ for the target j-th entry.

O1
chMode(a, j): B executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds that for all
corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th
query, then B sends to the challenger the message pair (cskj , s) for some random value
s fulfilling |s| = |cskj |. The challenger answers with c∗, which B uses to construct
cAuth ← HdrAuth‖c∗ for the target j-th entry. On the other hand, if there exists a
corrupted i such that AC(i, j) = RW, cAuth is reverted to be consistent with the entry
structure.
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OcorCl(i): B queries the oracle provided by the challenger on i so to retrieve the corre-
sponding key bski. B constructs capi using such a key, which is then handed over to
A.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j∗) = RW, then B aborts. B runs
d∗ ← 〈Cread(capO, j∗),Sread(DB)〉 and L← 〈blame(capO, Log, j∗) locally.
Output. B sends to A 1 if and only if d∗ 6= DB′(j∗) and ∃ i ∈ L that has not been queried
by A to the interface OcorCl(·) or L = []. At any point of the execution A can output 0 or
1 depending on his guess about which game he is facing, B simply forwards such a bit to
the challenger and it stops the simulation.
Analysis. The simulation above it is clearly efficient, also it is easy to see that whenever
the challenger samples its internal coin b = 0, the simulation of B perfectly reproduces
ExpA1 (λ), thus:

Pr [B 7→ 0|b = 0] ≈ Pr [A 7→ 0|b = 0] .
Instead, whenever b = 1 the protocol executed by B perfectly simulates ExpA2 (λ),

Pr [B 7→ 1|b = 1] ≈ Pr [A 7→ 1|b = 1] .

By our initial assumption A was able to distinguish between the two games with non-
negligible probability, therefore the probability carries over

|Pr [B 7→ 0|b = 0]− Pr [B 7→ 1|b = 1]| ≥ ε(λ),

which is clearly a contradiction to the CPA-security of ΠSE and it proves our claim.
Claim: Pr [COLL] in ExpA2 (λ) ≤ negl(λ). We demonstrate the claim via a reduction
against the property of collision-resistance with key-exposure freeness of the chameleon
hash function. Assume towards contradiction that there exists an adversary A such that
the event COLL happens in ExpA2 (λ) with non-negligible probability, we build the following
algorithm B to efficiently break the collision-resistance with key-exposure freeness property:
Setup. B sets a polynomial upper bound p on the number of queries to the interfaces addE
and chMode and it picks a q ∈ {1...p} uniformly at random. Then it runs (capO,DB)←
gen(1λ) and it hands over ek to A.
Queries. B simulates the oracles as described, except the following ones:
O1

addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. If it holds that for all cor-
rupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th query,
then the new entry is computed with cAuth ← HdrAuth, E(K∗, s) where K∗ and s are
random strings such that |K∗| = |KAuth| and |s| = |cskj |.

O1
chMode(a, j): B executes 〈CchMode(capO,a, j),SchMode(DB)〉 locally. If it holds that for all
corrupted i and for the new entry index j, AC(i, j) 6= RW and the query is the q-th
query, then the new entry is computed with cAuth ← HdrAuth, E(K∗, s) where K∗ and
s are random strings such that |K∗| = |KAuth| and |s| = |cskj |. On the other hand, if
there exists a corrupted i such that AC(i, j) = RW, cAuth is reverted to be consistent
with the entry structure.
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Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. If there
exists a capability capi provided to A such that AC(i, j∗) = RW, then the B aborts. It
then runs d∗ ← 〈Cread(capO, j∗),Sread(DB)〉 and L← 〈blame(capO, Log, j∗) locally.
Output. B outputs 1 if and only if d∗ 6= DB′(j∗) and ∃ i ∈ L that has not been queried by
A to the interface corCl(·) or L = [].

The simulation is efficient and it perfectly reproduces the game that A is expecting.
Note that by assumption we have that COLL happens with probability ε(λ), thus it must
be the case that the adversary was able to compute a collision of the chameleon hash
function in the challenge entry with non-negligible probability. Note that B selects the
challenge entry for storing s encrypted under K∗ in cAuth with probability at least 1

p . Thus,
with probability at least 1

p · ε(λ) A was able to compute a collision without having any
information on the secret key csk. The probability is still non-negligible, therefore this
constitutes a contradiction to the collision resistance with key-exposure freeness of ΠCH.
This proves our lemma.

We have demonstrated that the event COLL does not occur with more than negligible
probability, therefore we can rewrite the total success probability of the adversary as
follows:

Pr
[
ExpS−GORAM

A,acc-int (λ) = 1
]

= negl(λ) + Pr [A wins | ¬ COLL] · (1− negl(λ))

≈ Pr [A wins | ¬ COLL] .

Thus, what is left to show is that the success probability of the adversary given that he
is not able to compute a collision for ΠCH, is at most a negligible value in the security
parameter. This is demonstrated through a reduction against the existential unforgeability
of the digital signature scheme ΠDS. Assuming towards contradiction that there exists an
adversary A such that Pr [A wins | ¬ COLL] ≥ ε(λ) we can build a reduction B against the
existential unforgeability ExpΠDS

A,euf of ΠDS as follows:
Setup. B receives as input the security parameter 1λ and the verification key vk∗. It runs
(capO,DB)← gen(1λ) setting vkO = vk∗ and it hands over ek to A.
Queries. B simulates the oracles as described, except the following one:

O1
addE(a, d): B executes 〈CaddE(capO,a, d),SaddE(DB)〉 locally. In order to compute the
correct signature on the respective chameleon hash tag t, B queries the signing oracle
provided by the challenger and retrieves the signature tag σ.

Challenge. Finally, A outputs an index j∗ which he wants to be challenged on. B parses
the Log to search one version of that entry that contains a pair (t′, σ′) that has not been
queried to the signing oracle and such that vfy(vkO, t′, σ′) = 1.
Output. B outputs such a pair (t′, σ′) and it interrupts the simulation.
Analysis. The simulation is clearly efficient. It is easy to see that, in order to win the
game, A must be able to change an entry without writing permission and by leaving it
in a consistent state. This can be done by either computing a collision in the chameleon
hash function or by forging a valid signature on the tag t. By assumption we ruled out
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the first hypothesis, thus the winning condition of the adversary implies the forgery of a
verifying message-signature pair. Note that the A could also just roll back to some previous
version of the entry but this can be easily prevented by including some timestamp in the
computation of the chameleon hash. The winning probability of the reduction then carries
over:

Pr [B wins] ≈ Pr [A wins | ¬ COLL] ≥ ε(λ).

In this way we built an efficient adversary B that breaks the existential unforgeability of
ΠDS with non negligible probability, which is clearly a contradiction. Therefore it must
hold that Pr [A wins | ¬ COLL] is a negligible function in the security parameter. Finally
we have that:

Pr
[
ExpS−GORAM

A,acc-int (λ) = 1
]
≈ Pr [A wins | ¬ COLL] ≤ negl(λ),

which concludes our proof.

Proof of Theorem 2.8.3. The proof works analogously to Theorem 2.6.4.

B.5. Algorithms for A-GORAM

Implementation of (capO,DB) ← gen(1λ, n). Additionally to Algorithm 5 we include
in the capability of the data owner capO the key pair (vkO, skO) ← GenDS(1λ), used for
signing the tag t.

Implementation of {capi, deny} ← addCl(capO,a). No difference from Algorithm 6.

Implementation of {DB′, deny} ← 〈CaddE(capO,a, d),SaddE(DB)〉. The difference
from Algorithm 7 is line 7.10, where the new entry is instead composed of Ek =
E(K, j‖cjAuth‖c

j
Data‖cpkj‖rj‖tj‖σj) where

(cpkj , cskj)← GenCHF(1λ) cjAuth ← EPE(ppkAuth, xw,j , cskj)

rj ← {0, 1}λ cjData ← EPE(ppkData, xr,j , d)

tj ← CH(cpkj , cjData, r
j)‖H(j‖cjAuth‖cpkj) σj ← sign(skO, tj).

(B.7)

Furthermore, the rerandomization in 7.13 is substituted by the re-encryption under the
same symmetric key.

Eviction. The eviction algorithm is implemented as in Algorithm 8 with the difference
that the proof P is never computed. Additionally, the rerandomization step (line 8.4) is
substituted with a re-encryption of the top-level encryption layer.

Implementation of 〈CchMode(capO,a, j),SchMode(DB)〉. The algorithm is defined as in Al-
gorithm 9, except for line 9.12 where the new entry is initialized as defined in Equation (B.7)
(see addE above).
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Implementation of {d, deny} ← 〈Cread(capi, j),Sread(DB)〉. The read algorithm follows
Algorithm 10 until line 10.12 and stops there. Furthermore, the proof P is no longer
computed.

Implementation of {DB′, deny} ← 〈Cwrite(capi, j, d),Swrite(DB)〉. The write algorithm is
equivalent to the aforementioned read algorithm up to the point where we upload the entry
Ek stored at the index j, which is modified as follows:

cskj := DPE(pskAuth, c
j
Auth) d′ := DPE(pskData, c

j
Data)

ĉjData ← cjData · d′
−1 · d r̂j ← Col(cskj , cjData, r

j , ĉjData)

Ek := E(K, j‖cjAuth‖c
j
Key‖ĉ

j
Data‖r̂j‖cpkj‖tj‖σj)
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C.1. Security Proofs for SRC
Proof of Theorem 4.5. Assume that there exists an adversary A that wins the EUF-CMA
game for SRC with non-negligible probability for some integer n–the message vector length.
Then we construct an adversary B against the EUF-CMA of the Pointcheval-Sanders
signature scheme.
B sends n to the challenger, and receives as input from the challenger a verification

key vk = (X,Y1, . . . , Yn) ∈ Gn+1
2 . B in turn chooses yn+1 ∈ Zq, computes Yn+1 = hyn+1 ,

and forwards vk ′ = (X,Y1, . . . , Yn+1) to A.
The query phase is simulated as follows:

σ ← sign(sk, (m1, . . . ,mn)): B forwards A’s message vector (m1, . . . ,mn) to the challenger
who answers with a signature σ, which B forwards to A.

(σ, oi, aux)← signC(sk, (m1, . . . ,mn), r): B forwards (m1, . . . ,mn) as a query to the chal-
lenger who answers with σ′ = (σ1, σ2). B then computes aux = σ

yn+1
1 , σ =

(σ1, σ2 · σyn+1r
1 ), and oi = r.

(σ′, oi, aux)← comm(sk, σ, r): B parses σ as (σ1, σ2) and outputs σ′ = (σ1, σ2 · σyn+1r
1 ),

aux = σ
yn+1
1 , and oi = r.

Since A wins with non-negligible probability, it must be the case that it outputs
(σ∗, (m∗1, . . . ,m∗n)) with > = vfy(σ∗, vk ′, (m∗1, . . . ,m∗n)) or (σ∗, oi∗, (m∗1, . . . ,m∗n)) with > =
vfyC(σ∗, vk ′, (m∗1, . . . ,m∗n), oi∗). In both cases, the tuple (m∗1, . . . ,m∗n) has not been queried
to any oracle, otherwise A would not win. In the first case, since the signature is not
on a commitment, it must be the case that we also have > = vfy(σ∗, vk, (m∗1, . . . ,m∗n))
and hence, the tuple (σ∗, (m∗1, . . . ,m∗n)) is also a valid forgery to the Pointcheval-Sanders
signature. B forwards (σ∗, (m∗1, . . . ,m∗n)) to the challenger. In the latter case, we have that

e(σ∗1, X ·
n∏
i=1

Y
m∗i
i · Y oi∗

n+1) = e(σ∗2, h).

Rearranging terms, we get

e(σ∗1, X ·
n∏
i=1

Y
m∗i
i ) · e(σ∗1, Y oi∗

n+1) = e(σ∗2 · ((σ∗1
yn+1︸ ︷︷ ︸

:=aux∗

)oi∗)−1, h) · e(σ∗1, Y oi∗
n+1).
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Hence,

e(σ∗1, X ·
n∏
i=1

Y
m∗i
i ) = e(σ∗2 · (aux∗oi∗)−1, h).

This implies that σ = (σ∗1, σ∗2 · (aux∗oi∗)−1) is a valid forgery for the Pointcheval-Sanders
scheme and B forwards (σ, (m∗1, . . . ,m∗n)) as a forgery.

To analyze, since A wins with non-negligible probability and since we have shown
that B can turn any valid forgery of A into a valid forgery of the Pointcheval-Sanders
scheme, we conclude that B’s advantage is equivalent to A’s advantage. Hence, B wins
with non-negligible probability. This is a contradiction to our assumption.

Proof of Theorem 4.6. We prove the claim directly via an information-theoretic argument.
Since the oracle queries are answered independently of the challenge, i.e., using independent
randomness for the opening information, we can ignore them and only consider the
challenge.

Consider the challenger’s response to the message challenge. Then we have

σ∗ = (a∗, a∗x+
∑n

i=1 yim
b
i+yn+1r∗)

and aux∗ = a∗r
∗ where a∗ ∈ G1 and r∗ ∈ Zq are chosen uniformly at random.

Leveraging an information-theoretic argument, the adversary learns, via σ∗, aux∗,
and sk (even vk would be sufficient in the information-theoretic argument) the following
quantities: x, y1, . . . , yn+1, x+

∑n
i=1 yim

b
i + yn+1r

∗. Since the adversary does not know b,
he can extract two different values for r∗, one for the b = 0 message vector and one for
the b = 1 message vector. The adversary has, however, no way of validating which guess
of r∗ is the correct one. Each possibility is equally likely and hence, the adversary can
only guess, which means that he has a zero advantage of determining b just based on the
challenge response.

C.2. Cryptographic Instantiations
For all cryptographic schemes, we stick to the notation introduced in Table 4.2. We recall
in this section both concrete constructions that we deploy in our instantiation as well as
the security definitions that we require.

Bilinear map setup. We instantiate the function BGSetup with the type-III pairings
described by Miyaji et al. [147]. These curves allow for a secure setup of 112 bit security
using secret key sizes of 224 bit.

Public-key encryption. We rely on two public-key encryption schemes with different
properties, one being multiplicatively, the other being additively homomorphic. Any of
the two schemes needs to fulfill the basic security notion IND-CPA.The randomization
function Rnd is called secure if it does not affect the adversary’s success probability in
the above game more than negligible. Similarly, the components needed for distributed
decryption, i.e., the functions GenEK, PartD, and DistD do not affect the game in the same
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(ek, dk)← GenPKE(1λ)

x←$Z∗q
return (gx, x)

ek ← GenEK(ek1, . . . , ekm)

return
∏m
i=1 eki

c← E(ek,m)

r←$Z∗q
return (gr,m · ekr)

m← D(dk, c)

(c1, c2)← c

return c2 · c−dk
1

c′ ← Rnd(ek, c, r)

(c1, c2)← c

(G,H)← ek
r←$Z∗q
return (c1 ·Gr, c2 ·Hr)

Di ← PartD(dki, c)

(c1, c2)← c

return cdki
1

m← DistD(D1, . . . , Dm, c)

(c1, c2)← c

return c2 ·
∏m
i=1D

−1
i

({>,⊥}, π)← PET(dk1, . . . , dkm, c, d)

for 1 ≤ i ≤ m do
si←$Z∗q
ei = (c1d−1

1 )si

fi = (c2d−1
2 )si

πi = PK
{

(α) : ei = (c1d−1
1 )α ∧ fi = (c2d−1

2 )α
}

endfor
e =

∏m
i=1 ei

f =
∏m
i=1 fi

for 1 ≤ i ≤ m do
Di ← PartD(dki, (e, d))
π2i ← PK {(α) : Di ← PartD(dki, (e, d))}

endfor
y ← DistD(D1, . . . , Dm, (e, d))
if y = 1G then

return (>, π1, . . . , π2m)
else

return (⊥, π1, . . . , π2m)
endif

Figure C.1.: The ElGamal encryption scheme with all necessary functionalities.

way. Furthermore, depending on the threshold t necessary to decrypt a ciphertext, any
collection of less than t parties executing first PartD followed by DistD are not able to
decrypt the message.

Concretely, we deploy the ElGamal encryption scheme [76] as it fulfills all properties
that we require. Additionally to instantiating it for the elliptic curve setting in G1, we also
instantiate it for ordinary groups G generated by (p,G, g)← GSetup(1λ).

Independent of the setup, we briefly describe the algorithms that we use throughout
the paper in Figure C.1 where G is a prime order group over Zq with generator g.

Let us examine the correctness of the algorithms. We shall have that m ←
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D(dk,E(ek,m)):

D(dk, E(ek,m)︸ ︷︷ ︸
=(c1,c2)=(gr,m·ekr)

) = c−dk
1 c2 = g−rxmgrx = m.

Moreover, it should hold that m ← DistD(D1, . . . , Dm, c) where Di ← PartD(dki, c),
c← E(ek,m), and ek ← GenEK(ek1, . . . , ekm):

DistD(D1, . . . , Dm, c) = c2 ·
m∏
i=1

D−1
i

= c2 ·
m∏
i=1

c−dki
1

= m · ekr · g−r·
∑m

i=1 dki

= m · (
m∏
i=1

eki)r · g−r·
∑m

i=1 dki

= m · gr·
∑m

i=1 dki · g−r·
∑m

i=1 dki

= m

Concerning the algebraic properties, ElGamal ciphertexts are multiplicatively homo-
morphic, which is easy to see: given c1 = (gr,m1h

r) and c2 = (gs,m2eks), the component-
wise multiplication results in (gr+s,m1m2ekr+s). Given a ciphertext c = (gr,m · ekr) and a
scalar s ∈ Zq, we have cs = (grs,msekrs), i.e., an s-times multiplication of c with itself. We
exploit both of these properties when computing, verifying, and decrypting identification
tokens.

We also need an additively homomorphic encryption scheme that allows for distributed
decryption. To this end, we deploy Paillier encryption [153], to which the techniques
to distribute secret keys is similar to the one used in ElGamal. Paillier ciphertexts are
additively homomorphic and allow for scalar multiplication.

We should also note that we sometimes have to use nested encryption, namely, when
preparing the ballot. Here, the ciphertext ˆtkni encrypts a ciphertext (the encrypted, blinded
SSP of a user) for the service providers and the user proves knowledge of the underlying
message. Since the used scheme is ElGamal, the user simply encrypts both parts of the
ciphertext separately.

Service-specific pseudonyms. SSPs [143] enjoy two fundamental properties that we
require for our instantiation of CR2P, uniqueness and anonymity, which are defined in
Definition A.15 and Definition A.16.

SSPs are compatible with ElGamal encryption, i.e., they lie in the message space
of ElGamal and can, thus, be encrypted. In order to compute an SSP from an identity
x ∈ Z∗q and a service description S ∈ G1, we compute psd = Sx where S := h(S). The hash
function maps arbitrary strings to G1 (e.g., using Icart’s technique [104]), i.e., the discrete
logarithm of S to base g is unknown. In our protocols, we have to bind the pseudonym to
the respective identity, which is originally blindly signed in the signature of the credential
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issuer. We do that in the proof Pi of a ballot Bi by showing that the discrete logarithms
(the secret key part x of a user) of the first message in every credential part and the
encrypted pseudonym are equivalent.

Zero-knowledge proofs. In the course of developing our instantiation, we have to generate
several zero-knowledge proofs of knowledge, all of which we explicitly present in this section.

1. The designated verifier proof in CIReg:

π = DVPbidi


(α, β1, . . . , β`, γ1, . . . , γ`) :
σ0
i ← sign(α, (bidi, r)) ∧
∀1 ≤ j ≤ `. (σji , auxji , βj)← signC(α, (bidi, r, atji ), γj) ∧

(j ∈ I =⇒ (ōiSP
i )j = E+(ekSP, βj))

 .

Concretely, using identities in Z∗q and blinded identities in G defined as bid ← gid

for a group generator g, our instantiation of SRCs over the same group G, and
Paillier encryption [153] for the additively homomorphic encryption of the opening
information where we use the public key (G,N) (G a generator and N an RSA
modulus), the proof, in standard PK notation using the designated verifier technique
based on Jakobsson et al. [111] becomes

π = PK



(β1, . . . , β`, {ηj}j∈I ,_) :
∀1 ≤ j ≤ `. σ̂ji = e(σji,1, Y4)βj ∧
∀j ∈ I. (ōiSP

i )j = Gβj · ηNj mod N2

∨
bidi = gξ


where the wild-card stands for the unknown identity ξ and σji,1 = gα

j
i and σ̂ji =

e(σji,2, h) · e(bidα
j
i
i , Y1)−1 · e(σji,1, Y2)−r · e(σji,1, Y3)−atji = e(σji,1, Y4)rj . If the user is to

fake this proof, she will leave out all witnesses except ξ to generate the proof, so the
right disjunct (the last row) is true while the rest is faked.
We implement the different statements as follows: the proof for correct signature
generation is nothing but a proof of knowledge of representations of discrete logarithms
paired with equality of discrete logarithm proofs [40, 59]. The proof of plaintext
knowledge is also a combination of discrete logarithm equality and a zero-knowledge
argument of knowledge of plaintext knowledge due to Groth [93]. Here we have to be
careful when implementing the scheme since the proofs are setup in different groups,
so we have to make sure that the message space of the Paillier cryptosystem can fit
any possible opening information. Furthermore, later on we homomorphically add
a randomization to the opening information, which must be compensated by the
setup since otherwise it can no longer be decrypted after the homomorphic operation.
Hence, it must be the case that N > 2q, so as to fit the full sum of two opening
information, each in Z∗q . Finally, the proof of knowing the private identity is a
standard Schnorr proof [173]. Everything is combined using an OR-proof [58].
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2. The proof P 1
j and P 2

j in SPReg of the forms

P 1
j = PK {(α) : bidi ← blind(α) ∧ > = vfy(σidi , vkPKI, α)}

and
P 2
j = DVPbidi

{
(γ) : Bj = gγ ∧ tkn′ = tknγ

}
.

To express P 1
j in concrete form, we usean SSP with S describing the service. The

SRC need not be hidden, thus the proof in concrete form becomes

P 1
j = PK {(α) : bidi = gα ∧ e(σPKI,1, XPKI) · e(σPKI,1, YPKI)α = e(σPKI,2, h)} .

That proof can be instantiated using the techniques mentioned before.
For P 2

j , we have

P 2
j = PK



(γ,_) :
Bj = gγ ∧
tkn′ = (tkn′1, tkn′2) = (tknγ1 , tknγ2) = tknγ
∨

bidi = gξ


which also does not require new proof techniques.

3. The proof Pi in Rate

Pi = PK



(σ0
i , {σ̃

j
i }j∈I , id, r, tkni, v, σid) :

> = vfy(σid , vkPKI, id) ∧ > = vfy(σ0
i , vkCI, (id, r)) ∧

∀j ∈ I. σ̂ji = vfystart(σ̃ji , vkCI, {id, r}) ∧
p̂i ← E(ekSP,SSPG(id, svc)) ∧ ˆtkni ← E(ekSP, tkni) ∧
v̂i ← E(ekSP, v) ∧ v ∈ C


is realized as follows. The first two conjuncts have already been explained for P 1

j

above. The third conjunct is new: let σji be the signature for attribute atj . Then
we first randomize σji as σ̃ji = ((σji,1)t, (σji,2(σji,1)s)t) and start its verification by
computing

σ̂ji = e(σ̃ji,2, h) · e(σ̃ji,1, X)−1 · e(σ̃ji,1, Y1)−id · e(σ̃ji,1, Y2)−r · e(σ̃ji,1, h)s. (C.2)

We shall observe that σ̂ji = e(σ̃ji,1, Y3)atji · e(σ̃ji,1, Y4)rj where rj is encrypted in (ōii)j .
This latter part is, however, independent of the proof and is verified in a later
stage of the Tally protocol. The proof just contains as a statement that the reduced
signature is correctly computed from the known identity and the known values r
and s (see (C.2)). The proof for the fourth conjunct of Pi has also been explained
above. The proof for the fifth conjunct ˆtkni ← E(ekSP, tkni) is slightly tricky: we use
a technique explained in [55], which does not really prove knowledge of tkni but only
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that the one who created the proof also created the encryption. This is sufficient
for our purposes as well. We need the conjunct only to ensure that a malicious user
cannot use a token from a different ballot as its own one. This can be effectively
prevented by being required to show that the encryption is self-created. The proof
shows that, given an ElGamal ciphertext (gr, Zr ·m), one knows the randomness
r in the first component with respect to g. The second component is not affected
and targeted by the proof. Consequently, we do not make any statement about the
second component. It is important that tokens, which are incorrectly encrypted,
e.g., by using different random values in both components, are detected in later
consecutive verification phases. This is what we guarantee through our Tally protocol
in the second to last step: only a validly encrypted token will pass the token validity
check, in which the token is compared via PET to the recomputed token based on p̂i.
Finally, the encryption of the rating and checking that the rating is in a certain set C
is done using exponential ElGamal encryption and an OR-proof [58]. The complete
proof reads as follows where (β1, β2) is the blinded randomization of σid .

Pi = PK



(α, s, ρ, µ[`], ζ[4], ν) :
e(β1, XPKI) · e(β1, YPKI)α · (β1, h)s = e(β2, h) ∧
e(σ̃0

i,1, XCI) · e(σ̃0
i,1, Y1,CI)α · e(σ̃0

i,1, Y2,CI)ρ · (σ̃0
i,1, h)µ0 = e(β2, h) ∧

∀1 ≤ j ≤ `.
σ̂ji = e(σ̃ji,2, h) · e(σ̃ji,1, XCI)−1 · e(σ̃ji,1, Y1,CI)−α·
e(σ̃ji,1, Y2,CI)−ρ · e(σ̃ji,1, h)µj ∧

p̂i = (gζ1 , Zζ1 · Sα) ∧
ˆtkni = ( ˆtkni,1, ˆtkni,2) = ((gζ2 , ˆtkni,1,2), (gζ3 , ˆtkni,2,2)) ∧
v̂i = (gζ4 , Zζ4 · gν) ∧
∃x ∈ C. x = gν


4. Finally, in the Tally protocol we require proofs of correct decryption for implementing

the function DProto, plaintext-equivalence-tests, both of which are explained in detail
in [55], and we need verifiable mixing networks (e.g., [110]) or even proofs of shuffle
correctness [22] (depending on the required robustness, i.e., the number of malicious
parties).

All these proofs can be made non-interactive by applying the Fiat-Shamir heuristic [78].

C.3. Proofs of Security and Privacy
Proof of Theorem 4.1. We define the following sequence of games, for which we will show
that switching from one game to the next cannot be distinguished except with negligible
probability. Since there are only polynomially many such game hops, the theorem follows.

• ExpA0 (λ) = ExpAAH(λ, b)
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• ExpA1,j(λ) is a series of N+1 games where N = N1(2m`+m)+N2m+m+3N3m+N4m,
ExpA1,0(λ) = ExpA0 (λ), and ExpA1,i(λ) is defined as ExpA1,i−1(λ) with the difference that
the i-th zero-knowledge proof in the Tally protocol is simulated whenever it is
computed by an honest service provider.

• ExpA2,i(λ) is a series of games where ExpA2,0(λ) = ExpA1,N (λ) and ExpA2,i(λ) is defined as
ExpA2,i−1(λ) with the following difference: if i /∈ I∗, i.e., i is the index of an attribute
that is different in both challenge sets of attributes, CI acts as follows in the challenge
phase. CI does not encrypt the real opening information oii for SP but rather a
different random value ri.

• ExpA3,i(λ) is a series of games where ExpA3,0(λ) = ExpA2,`(λ) and ExpA3,i(λ) is defined as
ExpA3,i−1(λ) with the following difference: if i /∈ I∗, CI uses a random value si for atbi
when forming σii∗ .

• Obverse that ExpA3,`(λ) is independent of b since all attributes that differ in both
challenge vectors have been replaced by random values.

Claim: ExpA0 (λ) = ExpA1,0(λ), ExpA1,N (λ) = ExpA2,0(λ), ExpA2,`(λ) = ExpA3,0(λ). Hold by
definition.
Claim: ∀1 ≤ i ≤ N. ExpA1,i(λ) ≈ ExpA1,i−1(λ). Assume first of all that all proofs in the
Tally oracle are expanded, e.g., all proofs which are a result of the DProto function are
actually m sub-proofs, one for each service provider. Moreover, except for the verifiable
mix network, which we consider as a proof as well, all remaining proofs are proofs for the
same logical statement (of course with different public values and witnesses), namely:

PK
{

(α) : (ek, α)← GenPKE(1λ) ∧D = PartD(α, c)
}

(C.3)

for some ek, D, and c. The mixing proof can be formulated as

PK

(π,~r1, ~r2, ~r3) : ∀i. B′i =

 p̂′i
tkn′i
v̂′i

 =

 Rnd(ekSP, p̂π−1(i), (~r1)π−1(i))
Rnd(ekSP, tknπ−1(i), (~r2)π−1(i))

Rnd(ekSP, v̂π−1(i)(~r3)π−1(i))


 (C.4)

Hence, we distinguish cases in the following:

Case i ≤ N1(2m`+m) +N2m or i > N1(2m`+m) +N2m+m: In that case, we are
confronted with replacing a proof of the form like in Equation (C.3). Let j be
the index of the service provider, who is to be creating that proof. If j ∈ Cor , we
simply do nothing and the claim follows since the game does not change. If, however,
j /∈ Cor , assume that there exists an adversary A that can distinguish ExpA1,i(λ) and
ExpA1,i−1(λ) with non-negligible probability. Then we construct a reduction B against
the zero-knowledge of ZKP.

Simulation: B bootstraps the system and simulates the interfaces as defined in the
definition and the construction. When A calls the oracle OTally, B uses the simulator
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to generate proofs for the first i− 1 proofs whenever the responsible service provider
is not corrupted. For all proofs other proofs except the i-th one, it computes real
proofs. Consider the i-th proof: let ek, D, c be the public values of the target proof
and dkj be the witness of SPj . B selects a bit b and if b = 0 it computes a real proof
π∗ while if b = 1 it uses the simulator to construct π∗. It posts π∗ on BB as the i-th
proof. At some point, when A outputs a bit b′, B outputs 1 if and only if b = b′.

Analysis: the above reduction is poly-time and perfectly simulates the games that
A expects to see; in particular, if b = 0, i.e., B creates a real proof, B perfectly
simulates ExpA1,i−1(λ), otherwise, i.e., B uses the simulator to create the i-th proof,
B simulates ExpA1,i(λ). Additionally, B does not deviate in any protocol from its
description. Hence, the changes performed by B are solely presented by the replaced
zero-knowledge proof. Hence, A’s advantage, which was assumed to be non-negligible,
carries over one-to-one to that of B, which means that B breaks zero-knowledge with
non-negligible probability, a contradiction.

Case i = N1(2m`+m) +N2m+ j for 1 ≤ j ≤ m: The proof is similar to the one above,
just that the values used to create the proof consist of the public components ~Bj ,
~Bj−1 and witnesses πj , ~r1,j , ~r2,j , and ~r3,j . B then either creates a real proof or a
simulated proof for the proof in Equation (C.4). The rest of the simulation and the
analysis is equivalent to the previous proof.

Claim: ∀1 ≤ i ≤ `. ExpA2,i(λ) ≈ ExpA2,i−1(λ). By definition, we have that ExpA2,i(λ) =
ExpA2,i−1(λ) whenever i ∈ I∗. Hence, the following reduction only regards the case where
i /∈ I∗. Assume towards contradiction that there exists an algorithm A that can distinguish
ExpA2,i(λ) from ExpA2,i−1(λ) with non-negligible probability. We construct a reduction B
against the CPA security of ΠPKE

+.

Simulation: B gets a key tuple (ek, dk1, . . . , dkm−1) from the ΠPKE
+ challenger. It then

runs the Setup protocol using those keys. The oracles in O are simulated as described in
the construction and in the definition. No special care has to be taken for them.

Upon receiving the challenge (i∗, ~at0, ~at1), B behaves as follows: it aborts if CIReg
has already been called on i∗ or if i∗ is coerced. Otherwise, it generates the signatures
(~σb, ~auxb, ~oib) for the attributes ~atb, as defined in the construction and prepares two
challenges for the IND-CPA challenger: B sets m0 = (~oib)i and m1 = ri where ri are chosen
uniformly at random. B sends (m0,m1) to the IND-CPA challenger, who answers with
c. Along with (σ1

b , aux1
b), . . . , (σ`b, aux`b), B sends (c1, . . . , c`)|I to Ui∗ where cj = E+(ek, rj)

for j < i and j /∈ I∗, and cj = E+(ek, (~oib)j) for j > i. If there were more services, B would
have to replace the encrypted opening information for each service provider one-by-one via
hybrid argument by playing against different instances of the IND-CPA challenger.

We simulate the oracle OTally as follows: since it aborts whenever I 6⊆ I∗ and we only
replace those opening information for values i /∈ I∗, we have that all values i ∈ I∗ and
hence all values i ∈ I have still their correct opening information in place for verifying a
signature. Consequently, since B stores this opening information during the simulation of
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OCIReg and ORate (in which the opening information is adapted), it can successfully simulate
its decryption. Observe that the proofs of correct decryption are already simulated. For
the ballots posted from information X using OPostBallot, B simulates the decryption in the
same way since X has to necessarily contain the encrypted opening information, which is
either already known to B, and some adapting opening information. Or it has to contain
the randomness used to encrypt the given opening information, in case it differs from that
generated in the beginning. Importantly, B has to reject all information X that does not
allow him to access the opening information.

At some point, A outputs b∗, and B forwards that to the IND-CPA challenger.
Analysis: The above simulation is obviously poly-time and perfectly simulates ExpA2,i−1(λ)
whenever the IND-CPA challenger’s bit is 0, and ExpA2,i(λ) otherwise. Hence, since A can
distinguish the two games with non-negligible advantage, so can B break the IND-CPA
game with the same advantage. This is a contradiction to the IND-CPA security of ΠPKE

+.
The claim follows.
Claim: ∀1 ≤ i ≤ `. ExpA3,i(λ) ≈ ExpA3,i−1(λ). By definition, we have that ExpA3,i(λ) =
ExpA3,i−1(λ) whenever i ∈ I∗. Hence, the following reduction only regards the case where
i /∈ I∗. Assume towards contradiction that there exists an adversary A that can distinguish
between ExpA3,i(λ) and ExpA3,i−1(λ) with non-negligible probability. Then we construct B
against the hiding property of ΠSRC.
Simulation: B receives vk from the hiding challenger and runs the Setup protocol using vk,
which it also forwards to A. The oracles in O are simulated as described in the construction
and the definition except for O0

CIReg(j, ~atj): B forwards a corresponding query for generating
the SRC to the hiding challenger’s signing oracle and uses henceforth whatever the oracle
answers.

Upon receiving the challenge (i∗, ~at0, ~at1), B checks whether CIReg has already
been called on i∗ or if i∗ is coerced. If so, it aborts. Otherwise, it selects r for Ui∗
and ti uniformly at random. Then, it sends ((idi∗ , r, (~atb)i), (idi∗ , r, ti)) to the hiding
challenger, who answers with (σj , auxj). Furthermore, for all j < i and j /∈ I∗ it
asks the oracle to sign-commit (idi∗ , r, tj) for random values tj while for all j > i or
j < i and j ∈ I∗ it asks the oracle to sign-commit (idi∗ , r, (~atb)j). Let the answers be
(σ1, aux1, oi1), . . . , (σi−1, aux i−1, oii−1), (σi+1, aux i+1, oii+1), . . . , (σ`, aux`, oi`). Finally, B
prepares the answer for A as follows: for all i 6= j ∈ I∗, it encrypts oij for SP. For all
j /∈ I∗ (including i) it chooses random values rj and encrypts those. The resulting vector
(σ1, aux1, ōi1), . . . , (σ`, aux`, ōi`) is then sent to A. The oracles that require signing are
answered by using the corresponding oracles of the hiding challenger that are still provided
after the challenge.

We notice that the oracle OTally can be simulated trivially since all information related
to indices in I is not changed. That is sufficient since only SRCs related to attributes in
I as well as corresponding opening information is part of the ballots posted on BB and
processed in Tally. So Tally is not affected by this reduction.

At some point, A outputs a bit b′, which B forwards to the hiding challenger.
Analysis: We notice that the simulation is poly-time and correct. If the hiding challenger’s
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bit is 0, we simulate ExpA3,i−1(λ) and ExpA3,i(λ) otherwise. Since A distinguishes ExpA3,i−1(λ)
and ExpA3,i(λ) with non-negligible probability and B solely passes messages back and forth
from the challenger to A, B wins the hiding game with the same probability. This concludes
the proof.

Conclusion. We have shown that ExpAAH(λ, b) = ExpA0 (λ) ≈ ExpA3,`(λ) and that ExpA3,`(λ)
is independent of b. Hence, any adversary cannot do better than guessing when being
confronted with ExpAe,`(λ), which concludes the proof.

Proof of Theorem 4.2. We prove the theorem by game hopping. In particular, we start
with ExpAAnon(λ, 0) and gradually modify that game into ExpAAnon(λ, 1), while showing that
each intermediate change can be distinguished by A only with negligible probability. The
intermediate games are defined as follows:

• ExpA0 (λ, b) = ExpAAnon(λ, b).

• ExpA1,i(λ, b) is a series of N + 1 games where N = N1(2m` + m) + N2m + m +
3N3m + N4m, ExpA1,0(λ, b) = ExpA0 (λ, b) and ExpA1,i(λ, b) is defined as ExpA1,i−1(λ, b)
with the difference that the i-th zero-knowledge proof output in the Tally oracle,
when generated by an honest service provider, is now simulated.

• ExpA2 (λ, b) is defined as ExpA1,N (λ, b) with the difference that the proof Pib submitted
by the challenge user Uib in the ballot is simulated now.

• ExpA3,i(λ, b) is a series of n+ 1 games where ExpA3,0(λ, b) = ExpA2 (λ, b) and ExpA3,i(λ, b)
is defined as ExpA3,i−1(λ, b) with the difference that when OSPReg is called on i, then
the proofs P 1

j are simulated. This requires another hybrid argument since there are
m such proofs.

• ExpA4,j(λ, b) is a series of m+1 games where ExpA4,0(λ, b) = ExpA3,n(λ, b) and ExpA4,j(λ, b)
is defined as ExpA4,j−1(λ, b) with the difference that the j-th designated verifier proof
P 2
j in the oracle OSPReg, called on any i, when generated by an honest service provider,

is now simulated. Since there are n such proofs to be replaced in each game hop, we
need another hybrid argument to replace all n (at most) proofs one after another.

• The only difference between ExpA4,m(λ, 0) and ExpA4,m(λ, 1) is that instead of the
encrypted pseudonym and token for user Ui0 , the ballot that is posted in the challenge
phase on BB now contains those information for Ui1 .

Before we start proving that distinguishing all of these games is hard, we argue why
we can ignore the oracle PostBallot in all following reductions. Using that oracle, the
adversary can post arbitrary messages on BB, in particular self-crafted ballots (everything
secret information necessary to generate a ballot such as the randomness used for the proof
or for the encryption has to pass through the challenger). We notice that the adversary
may not coerce the users Ui0 and Ui1 , hence, he may not get any secret information of
these parties. Consequently, even though one of those two users posts a ballot on BB,
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the adversary does have nothing at disposal with which it could craft a ballot that he
might link to the challenged ballot. More concretely, investigating the form of a ballot
B = (({σ̂j , ôij , âtj}j∈I , p̂, v̂, ˆtkn, P ), we notice that the only information, which is unique
for each user, is the opening information encrypted in ôij , the user’s encrypted pseudonym
p̂, and the user’s token, which is encrypted in ˆtkn. The encrypted opening information
is a random value, independent of any knowledge of A since an honest user chooses it
uniformly random before preparing a ballot, hence no adversary can try to link two ballots
based on that information. Since the other two parts, the pseudonym and token appear
both as random values to A for uncoerced users, it can also not use them to form new
ballots since the proof P would not verify, due to the lack of knowing the private identity
of that respective user.

Claim: ExpA0 (λ, b) ≈ ExpA1,0(λ, b), ExpA2 (λ, b) ≈ ExpA3,0(λ, b), and ExpA3,n(λ, b) ≈ ExpA4,0(λ, b).
Hold by definition.

Claim: ∀1 ≤ i ≤ N. ExpA1,i(λ, b) ≈ ExpA1,i−1(λ, b). The proof is identical to the proof of the
respective claim in the proof of Theorem 4.1.

Claim: ExpA1,N (λ, b) ≈ ExpA2 (λ, b), ∀1 ≤ i ≤ n. ExpA3,i(λ, b) ≈ ExpA3,i−1(λ, b), and ∀1 ≤ j ≤
m. ExpA4,j(λ, b) ≈ ExpA4,j−1(λ, b). It is easy to see that the claims follow from the zero-
knowledge of ZKP. The proofs are similar to the previous ones using the corresponding
statements as well as public components and witnesses. The construction of the reduction
as well as the analysis of their success probability is the same.

Claim: ExpA4,m(λ, 0) ≈ ExpA4,m(λ, 1). Assume that there exists an adversary A which is able
to distinguish ExpA4,m(λ, 0) and ExpA4,m(λ, 1) with non-negligible advantage. We observe that
all proofs generated by honest and not corrupted parties are simulated at this point in time.
Moreover, the only information depending on the bit b available to A is the ballot submitted
by the challenge user. This ballot has the form ({σ̂jib , ôijib , âtjib}j∈I , p̂ib , v̂ib , ˆtknib , Pib). The
first set consists of the reduced credentials and the encrypted opening information and
attributes. The reduced credentials only contain the same attributes, independent of b
(that was a requirement for the challenge user indices). Hence, also the attributes are
the same independent of b. Finally, even though A generated the credentials and hence
knew the original opening information, B, who crafted the ballot, adapted the opening
information in the course of preparing the ballot, using uniformly distributed randomness.
Hence, also the opening information is independent of b. The last component of the ballot,
the proof Pib is independent of b since it is simulated. The encrypted rating in v̂ib is
independent of b since it is chosen the same, no matter for which value of b. Hence, we
are left with p̂ib and ˆtknib , which are dependent on b. Since A can distinguish both games
with non-negligible probability, it must be the case that it outputs the correct bit b with
non-negligible probability. Since p̂ib and ˆtknib are the only information on which it can
base that decision (remember that all proofs that might have contained information are
simulated), we investigate on these values further.

Let us analyze which additional information A has about the two challenge users
Ui0 and Ui1 , which might never be coerced during the course of the game. It gathers

190



C.3. Proofs of Security and Privacy

information in OCIReg, namely, the blinded identity bidi0 and bidi1 of either user. Moreover,
in OSPReg it gathers the same information for all corrupted service providers. Furthermore,
for j ∈ Cor , it receives E(ekSP, SSPG(idi0 , svc)sj,0 and E(ekSP,SSPG(idi1 , svc)sj,1 for two
unknown random values sj,0, sj,1. So even if A corrupts all service providers and can
hence decrypt the ciphertexts, obtaining SSPG(idi0 , svc)sj,0 and SSPG(idi1 , svc)sj,1 , the
decrypted value is a uniformly distributed value in G, unlinkable to any of bidi0 or bidi1 .
Consequently, the only information gathered by A during the registration oracles is the
blinded identity bidi0 and bidi1 of either challenge user.

From the two values p̂ib and ˆtknib , A (if it corrupted all service providers) can hence
extract psd = SSPG(idib , svc) and bpsd = SSPG(idib , svc)

∑m

j=1 bj . For bpsd, A can even
remove the sum of the bj since those are known to the service providers, too.

To summarize, A has gathered bidi0 , bidi1 , and psd (since bpsd does not give any
additional information with respect to psd). These three values are exactly an instance
of the definition of anonymity for service-specific pseudonyms, in which the adversary
is supposed to tell to which blinded identity a given pseudonym belongs. The formal
reduction works as follows.

Simulation: B receives two blinded identities bid0 and bid1, which it assigns to two
guessed users Ui∗0 and Ui∗1 , respectively. Additionally, it receives a pseudonym psd∗. It uses
psd∗ for both users when OSPReg is called on any of them. Recall that all proofs generated
by users are simulated, so the real identity is never needed to simulate any oracle except
when preparing the ballot for the challenge user so as to generate the reduced signature.
Hence, B will generate the same identification token for both Ui∗1 and Ui∗0 .

When challenged, B aborts whenever {i0, i1} 6= {i∗0, i∗1}. Otherwise assume without loss
of generality that (i0, i1) = (i∗0, i∗1). B generates a reduced signature for any of the challenge
users, no matter which one. The proof P in the ballot is simulated so the identity behind
the proof does not matter, the only thing that matters is that the signature is correctly
reduced and can be validated using the encrypted opening information and attributes
and the presence of correct and validating values of p̂ and ˆtkn. In order to generate that
reduced signature, B needs to know either idi∗0 or idi∗1 , or the discrete logarithms of σji∗0,1
or σji∗1,1 for j ∈ I ∪ {0}. Since the former is impossible, we can only rely on the latter
possibility. These discrete logarithms can be extracted by using the knowledge extractor of
the zero-knowledge proof of knowledge π sent by A in the OCIReg protocol. We call the
extracted values α0

0, α
0
1, . . . , α

0
` and α1

0, α
1
1, . . . , α

1
` , respectively. We exemplify the reduction

of a single signature, the rest is analogous. Let σji0 = (σji0,1, σ
j
i0,2) be the j-th SRC of user

Ui0 . Then we compute

σ̂ji0 = e(σji0,2, h) · e(σji0,1, X
−1
CI · Y

−r
2,CI) · e(bid0, Y

−αj0
1,CI )︸ ︷︷ ︸

=e(σji0,1,Y
id0
1,CI)

,

obtaining a correctly reduced SRC. The rest of the simulation of the ORate oracle works
as before, just that p̂ = E(ekSP, psd∗) and ˆtkn is the encryption of the token of any of the
two users (remember that they are the same). The remaining oracle is OTally, which is also
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simulated as before for honest service providers without any change, there is no difference to
the previous game. Finally, A outputs a bit, which B forwards to the anonymity challenger
of SSP.

Analysis: The simulation is correct and efficient, as we have demonstrated. Moreover,
whenever the challenger’s bit is 0, B effectively simulates ExpA4,m(λ, 0) while it simulates
ExpA4,m(λ, 1) otherwise. Since A wins with non-negligible probability, and B forwards the
bit given by A to the anonymity challenger, A’s success probability carries over to B, only
lowered by a factor of 2/(n2 − n) due to the guessing of the correct challenge users.

Conclusion. In total, we have shown that ExpAAnon(λ, 0) = ExpA0 (λ, 0) ≈ ExpA0 (λ, 1) =
ExpAAnon(λ, 1), which concludes the proof for the theorem.

Proof of Theorem 4.3. We prove the theorem by game hopping. In particular, we start
with ExpACR(λ, 0) and gradually modify that game into ExpACR(λ, 1), while showing that
each intermediate change can be distinguished by A only with negligible probability. The
intermediate games are defined as follows:

• ExpA0 (λ, b) = ExpACR(λ, b).

• ExpA1,i(λ, b) is a series of N + 1 games where N = N1(2m` + m) + N2m + m +
3N3m + N4m, ExpA1,0(λ, b) = ExpA0 (λ, b) and ExpA1,i(λ, b) is defined as ExpA1,i−1(λ, b)
with the difference that the i-th zero-knowledge proof output in the Tally oracle,
when generated by an honest service provider, is now simulated.

• ExpA2 (λ, b) is defined as ExpA1,N (λ, b) with the difference that the proofs Pj and Pk
submitted by the balancing users Uj and Uk in their respective ballots are simulated
now.

• ExpA3,i(λ, b) is a series of n+ 1 games where ExpA3,0(λ, b) = ExpA2 (λ, b) and ExpA3,i(λ, b)
is defined as ExpA3,i−1(λ, b) with the difference that when OSPReg is called on i, then
the proofs P 1

j are simulated. This requires another hybrid argument since there are
m such proofs.

• ExpA4,j(λ, b) is a series of m+1 games where ExpA4,0(λ, b) = ExpA3,n(λ, b) and ExpA4,j(λ, b)
is defined as ExpA4,j−1(λ, b) with the difference that the j-th designated verifier proof
P 2
j in the oracle OSPReg, called on any i, when generated by an honest service provider,

is now simulated. Since there are n such proofs to be replaced in each game hop, we
need another hybrid argument to replace all n (at most) proofs one after another.

• ExpA5 (λ, b) is defined as ExpA4,m(λ, b) with the difference that the decrypted blinded
pseudonyms of all users in step 2 (duplicate elimination) of the Tally protocol are
replaced with uniformly random values.

• The only difference between ExpA5 (λ, 0) and ExpA5 (λ, 1) is that the pseudonyms and
tokens are replaced for users Ui∗ , Uj , and Uk, according to the definition.
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Claim: ExpA0 (λ, b) ≈ ExpA4,m(λ, b). The proofs for those game hops are analogous to the
proofs of the same claims in the proof of Theorem 4.2. The only difference is that there is
always at least one not corrupted service provider for which proofs have to simulated.

Claim: ExpA5 (λ, b) ≈ ExpA4,m(λ, b). Assume that there exists an adversary A who is able to
distinguish ExpA5 (λ, b) and ExpA4,m(λ, b) with non-negligible probability. We construct an
adversary B against the hardness of DDH.

Simulation: The DDH challenger outputs a DDH tuple (h, hx, hy, hz) and A outputs
(I, n,m). B chooses an index j uniformly at random in {1, . . . ,m} as a guess for a service
provider that will not be corrupted during the game. When bootstrapping the system, B
chooses s ∈ Z∗q and announces svc = hs. It sets g = hx, Bi = gbi for random bi ∈ Z∗q for all
i 6= j and Bj = hz. The simulation of the oracles starts here and happens as described.
When A calls Corrupt(j), B aborts the simulation. We have to take special care of the
oracles OSPReg and OTally since they require knowledge of the, to SPj , unknown bj which is
exactly zx−1.

We start with OSPReg. Recall that the entire interaction of OSPReg between the
user and SPj happens locally on B’s side since SPj cannot be corrupted. Hence, when
A calls OSPReg(i), B selects for each k 6= j sk at random and computes tknk ←
E(ekSP,SSP(idi, svc)) = E(ekSP, svcidi)sk , which it sends to each service provider. When it
is about to interact with SPj , B computes the following: it does not know the randomness
to blind tknj but it knows the service descriptions exponent. Notice that the blinding step
using exponentiation to sj can be left out since SPj cannot be corrupted. Hence, it now
computes tknji ← E(ekSP, (hy)idi·s).

The very same computation is carried out when B plays SPj in the OTally in step 4,
where the encrypted pseudonyms are blinded by all SP ’s before comparing them to the
tokens. We need to treat one subtle difficulty in more detail though. In step 4 of the Tally
protocol, the knowledge of which pseudonym is contained in which ballot is gone. Hence,
B has to decrypt p̂i for every ballot and check by recomputation of the SSP which signing
key was used to generate the contained pseudonym. This is possible due to the honest
setup of the service providers, hence B knows all decryption keys. If no fitting signing
key is known, it means that A must have injected a ballot with an incorrect identity via
PostBallot. Then, B has to use the knowledge extractor of the zero-knowledge proof of
knowledge system on the original ballot list to extract all identities from the ballots’ proof
P . Let the fitting identity be id ′. Starting from here on, the computation is the same as
described above. Notice that we do not have to consider any correctness proofs since they
are simulated. The rest of the simulation is as described in the definition and according to
the protocol. Finally, B forwards the bit output by A.

Analysis: The simulation is efficient since the number of users in the system and hence, the
number of identities as well as the number of service providers is polynomially bounded.
We have to show that the simulation is correct. Let z = xy, i.e., the DDH tuple is valid.
Let us consider the blinded pseudonyms rti for 1 ≤ i ≤ ` that are decrypted in step 4 of
the Tally protocol:

rti = svcid·(b1+···+bj−1+y+bj+1+···+bm)
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while Bj = hy, i.e., rti is related to Bj and the relation is known. One can decompose
rti into the separate parts svcid·bk and svcid·y respectively, which are all related to their
counterparts Bk and Bj via the equality of the discrete logarithm. Moreover, these are
exactly the conditions to be met for B perfectly simulating ExpA4,m(λ, b). Now let z be a
uniformly random value. Then Bj is a uniformly random value with respect to rti, i.e.,
the relation as in the previous case does no longer hold. Hence, rti is also a uniformly
random value with respect to Bj , which means that B perfectly simulates ExpA5 (λ, b). As we
assumed that A can distinguish ExpA4,m(λ, b) and ExpA5 (λ, b) with non-negligible advantage,
B has almost the same advantage, only lowered by the correct guess of j, which lowers the
advantage by a factor of 1/m. This is still non-negligible since m ∈ poly(λ) and hence, a
contradiction to the hardness of DDH. The claim follows.
Claim: ExpA5 (λ, 0) ≈ ExpA5 (λ, 1). Assume that there exists an adversary A which is able to
distinguish ExpA5 (λ, 0) and ExpA5 (λ, 1) with non-negligible probability. Then we construct
an adversary B against the CPA-security of ΠPKE. We are using the hybrid version of CPA
security, i.e., the challenger encrypts multiple messages to challenge ciphertexts.
Simulation: On input (I, n,m) by A, B forwards m to the CPA challenger and receives
in return (ek, dk1, . . . , dkm−1), i.e., one partial decryption key is unknown. The boot-
strapping phase proceeds as defined. Additionally, B guesses i∗, j, k, the users that A
later on challenges on, and the two balancing users. When A calls OCorrupt(i), the chal-
lenger hands out one of the decryption keys and a random factor bi where Bi = gbi .
If A calls the interface more than m − 1 times on different indices, B aborts the sim-
ulation. When A attempts to coerce any of i∗, j, or k, B aborts. The same hap-
pens when any of those are not registered with the same attribute sets (restricted to
attributes in I). Before starting the simulation of OSPReg, B prepares two challenge
vectors for the CPA challenger, namely, ((SSP(ski∗ , svc),SSP(skj , svc), r,SSP(skj , svc),
SSP(skk, svc)), (s, SSP(skk, svc), SSP(ski∗ , svc), SSP(skk, svc),SSP(ski∗ , svc))) for random
s and r, which stand for the faked tokens that we require for balancing the outcome in Tally.
B sends those two vectors to the CPA challenger and receives (c∗1, c∗2, c∗3, c∗4, c∗5) in return.
Whenever OSPReg is called on either i∗, j, or k, B uses either c∗1, c∗2, or c∗3 rather than
encrypting the pseudonyms freshly. The values c∗4 and c∗5 are required later in the simulation
of the challenge phase. The other oracles are simulated as defined in the definition and in
the construction.

When A challenges B on i∗, B performs all checks outlined in the definition. If these
checks are all passed and j and k are fitting choices for the balancing users, B starts
preparing the ballots for Uj and Uk (Uk and Ui∗ , respectively, which will be determined by
the internal choice of the CPA challenger). It prepares the ballot for the first balancing
user (which is either Uj or Uk) using p̂1 = c∗4 and the encrypted token stored for user
Uj . It prepares the ballot for the second balancing user (which is either Uk or Ui∗) using
p̂2 = c∗5 and the encrypted token stored for user Uk. It does not matter which SRC is used
to create the ballot and which rating is encrypted since the proofs P in the ballots are
simulated. Moreover, we will take care of creating the right result in the Tally protocol by
taking the fixed constant result (not the proof, which is simulated) of the PET, which has
been established in the course of simulating the correctness proof. The so created ballots
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are appended to BB, where A already placed its ballot for Ui∗ .
In the simulation of the finalizing OTally, we have to make sure that any decryption is

simulated correctly since B can, in fact, not decrypt due to the missing final decryption
key. We show step-by-step how to simulate the decryptions. As a general remark, we
notice that in order to simulate decryption correctly, it is sufficient to know the underlying
plaintext since the required correctness proof for knowing the final (missing) decryption
key is simulated, thus any plaintext could be used to simulate a correct decryption. The
only crucial point to ensure is that the correct plaintext is used. Otherwise the Tally
protocol might fail at some point or A might see that the simulation is not correct, given
the information that A has at disposal.

• The first one is for a different encryption scheme, namely, ΠPKE
+, and is thus not

affected by the reduction. B can decrypt it without problem.

• The second decryption is for the attributes. Those are known to B due to the
correctness proofs of A sent in OCIReg.

• The third decryption is for the encrypted tokens, all of which B has generated. For
ballots posted via OPostBallot, B needs to use the extractor of the zero-knowledge
proof system to extract the corresponding token from the proof P . This allows even
to retrieve tokens that might have been randomized by A even though they had been
generated by B in the first place or those that are malformed.

• The fourth decryption decrypts the token itself. The result of that decryption has
been replaced in the previous game hop by random values. Hence, B chooses random
values that are consistent with the identities behind the ballots so as to preserve
linkability. We observe here that B also knows the plaintexts of all values contained
in ballots created from X, which is submitted by A via OPostBallot. So our simulation
is not affected by malformed ballots or made up ballots submitted via OPostBallot,
since A always has to send all information necessary to open a ballot, independent of
the decryption keys, in particular.

• The fifth decryption is for the PET. Here, B first tracks the permutations applied in
the mixing networks (by using the zero-knowledge extractor). It then assigns the
correct results to the PET. It can do that since it knows those results for every token
on the board, including those submitted via OPostBallot (remember that A has to send
either information that B already knows, such as a token generated during an honest
call to OSPReg, or it has to send all the information to access all plaintexts contained
in a ballot, such as the randomness used for encrypting a message). Furthermore, it
knows where the ballots moved during the execution of the mixing network due to the
extracted permutations. The only ballots that are treated differently are those three
submitted for i∗ by A and for the two balancing users by B. Here, two arbitrary ones
are deemed to fulfill the PET while the remaining one is marked as invalid. Since
the single permutation applied by the honest service provider does not allow A to
link the results to the original ballots, this simulation is fine.
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• The sixth decryption is for the ratings, which are extracted from the original proofs
P accompanying every ballot using the extractor. Clearly, B has to track where each
ballot went through the mixing network (it can just use those extracted values from
the simulation of the PET). For the three ballots submitted by A for i∗ and the
balancing users by B, one of which is now invalid, B simply chooses values v (which
it has extracted on the initial bulletin board from the last ballot submitted for i∗)
and an arbitrary rating v′, those A expects to see.

Analysis: The simulation is efficient. We observe that in case the internal bit of the CPA
challenger is 0, B perfectly simulates ExpA5 (λ, 0) since the tokens used in the Rate protocol
are those of Ui∗ , given to A, and those of Uj and a fake one. Furthermore, the ballots
submitted for j and k contain encrypted pseudonyms for Uj , and Uk. Likewise, if that bit is
1, B perfectly simulates ExpA5 (λ, 1) since the tokens used in Rate are a fake one, given to A,
and those of Uk and Ui∗ (who cheated on A by giving a fake token). Similarly, the encrypted
pseudonyms used for the balancing ballots are those of Uk and Ui∗ , coinciding with the
valid tokens generated before. Since we assumed that A wins with non-negligible advantage
and B does only use the information received by the CPA challenger in an unmodified
manner, the advantage carries over to B, only lowered by a factor of 3/(n(n− 1)(n− 2))
for guessing the three user indices correctly. This is a contradiction to the CPA security of
ΠPKE. The claim follows.

Conclusion. In total, we have shown that ExpACR(λ, 0) = ExpA0 (λ, 0) ≈ ExpA0 (λ, 1) =
ExpACR(λ, 1), which concludes the proof for the theorem.

Proof of Theorem 4.4. The proof for recorded-as-cast individual verifiability is simple. The
bulletin board is public and every user can see whether her ballot is contained in it. If
that ballot is considered further in the duplicate elimination step in which RV is applied to
the bulletin board, then that user can be sure that it will be considered in the final tally,
unless it was a duplicate. A user can be assured that at least one of her submitted ballots
ends up in the final tally because she knows whether her token is valid or not, and the
validity has been proven by the service providers during the protocol SPReg. Of course, a
coercer only knows that his ballot is considered in the tallying process but does not know
whether his vote is considered in the final tally due to the fact that he cannot distinguish
between a real and a fake token, albeit the existence of the proof transcripts from the
SPReg protocol.

Albeit not achieving cast-as-intended individual verifiability by construction, CR2P
can be extended to that as follows using a technique by Adida [1]: assume that the user
submits its rating via some rating software running on its device. The user does not
necessarily trust that device (otherwise cast-as-intended individual verifiability would hold
by trust). Hence, whenever the software outputs a ballot, the user has two choices: it can
either use the ballot and submit it to the bulletin board or it can probe the software and
ask for all random values used in the generation of the ballot so as to recompute the ballot
and check whether all information that the user wanted to be included is included correctly
in fact. This probing can be done an arbitrary number of times. It is straightforward
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to extend CR2P with that technique by just showing all random values used in the Rate
protocol.

Concerning clash-attacks, the argument is even simpler than the one for recorded-as-
cast individual verifiability. Since every user submits her ballot on their own, they know
the exact form of the ballot and can simply check the existence thereof on BB. Due to
the randomized process of ballot creation and the randomness space (exponential in the
security parameter), the probability that two ballots of two different users are equivalent,
is negligible. Hence, clash-attacks do not exist in our protocol.

For the proof of universal verifiability, assume that there exists an adversary A
which wins the universal verifiability game with non-negligible advantage, i.e., A is able
to compute a tally V and a correctness proof π such that π verifies as being a proof
of correctness for V given the initial bulletin board BB = (B1, . . . , Bn). Moreover, we
define V ′ as in the definition as the list of all ratings and user indices (v, j) for which
there exists a ballot Bi with ValidRV

BB(Bi, v, j). We recall the definition of ValidRV
BB(B, v, j):

B = ({σ̂j , ôij , âtj}j∈I , p̂, v̂, ˆtkn, P ) satisfies ValidRV
BB(B, v, j) if

• P is valid with respect to B,

• the finishing signature verification succeeds on σ̂j and the plaintexts of ôij and âtj ,
respectively,

• v is the rating encrypted in v̂,

• and finally, ˆtkn is the encryption of Uj ’s token.

Towards contradiction, we assume that there exists an adversary A which wins the
verifiability game with non-negligible probability. Hence, it must be the case that V 6= V ′′

where V ′′ contains only the ratings extracted from the pairs in V ′ after duplicate elimination
and the proof π verifies on BB. Consequently, there must either exist a ballot Bi in BB
which is judged valid even though it is not or the proof π verifies even though it should
not. We split A’s success probability with respect to these two exhaustive events:

Pr [A wins] =Pr [A wins | InvBal] · Pr [InvBal] + Pr [A wins | TamPi] · Pr [TamPi]
+ Pr [A wins | ¬InvBal ∧ ¬TamPi] · Pr [¬InvBal ∧ ¬TamPi]

Clearly, if none of the above two events occurs, then A cannot have won, hence,
Pr [A wins | ¬InvBal ∧ ¬TamPi] = 0 and we ignore this term in the sequel. In contrast,
if any of the two events occurs, A definitely wins. Hence, we can compress A’s success
probability to

Pr [A wins] = Pr [InvBal] + Pr [TamPi] .

Claim: Pr [InvBal] ≤ negl(λ): We start with the invalid ballot case, assuming that the proof
π is accepted. Since π is accepted, all ballots accepted are deemed valid. This can however
not be the case since V 6= V ′′. So at least one ballot B must be invalid even though
it appears valid. Since there are only polynomially many potentially invalid ballots, we
scan the above list, arguing why in the just described case, at least one of the underlying
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cryptographic primitives has been broken by A. The success probability of the adversary
B that can be constructed in those cases is the same as the success probability of A, just
lowered by the probability of guessing the correct potentially invalid ballot B.

• P is valid with respect to B even though it should not. This can have two
reasons. Either P itself is a proof of a wrong statement, i.e., the public components
are somehow wrong, or P is correct but the public components are incorrect. In the
first case, B can use P to break the soundness of the zero-knowledge proof scheme
with non-negligible probability, which contradicts the assumption that ZKP is sound.
In the latter case, we have to look closer at the statement: P proves the statement

∃{σ̃j}j∈I∪{0}, id, r, tkn, v, σid .
> = vfy(σid , vkPKI, id) ∧
> = vfy(σ̃0, vkCI, (id, r)) ∧
∀j ∈ I. σ̂j = vfystart(σ̃j , vkCI, (id, r)) ∧
p̂← E(ekSP, SSPG(id, svc)) ∧ ˆtkn = E(ekSP, tkn)
∧ v̂ ← E(ekSP, v) ∧ v ∈ C

and is correct with respect to the public components. Nonetheless, the ballot is
invalid. Hence, there must be an incorrect public component which is related to the
PKI, the only honest party in the verifiability game instantiation for CR2P. We can
then use that component to break some property.
– σid is a signature on an identity that has never been created by the PKI. In that

case, we can use the knowledge extractor to extract σid along with id to break
the unforgeability of the digital signature scheme. Also, in that case the entire
ballot would be invalid since the identity behind it does not exist. This case
can clearly not occur since it would mean a contradiction to the unforgeability
of the signature scheme.

– p̂ is the encryption of another user’s pseudonym, not the one of user Uj for
which the ballot is deemed valid. In that case, we can construct an adversary B
which breaks the uniqueness of service-specific pseudonyms. Since P is valid,
p̂ must be the encryption of SSPG(sk, svc) where sk = skj . Likewise, since p̂
is the encryption of another user’s pseudonym, we have that SSPG(skj , svc) =
SSPG(skk, svc) for some k 6= j, which is a contradiction the uniqueness of SSPs.
Hence, also this case cannot occur.

To conclude, none of the public components can be tampered with by A and P is
valid. This part of the validity condition can, thus, not be violated with more than a
negligible probability.

• The partially verified signatures σ̂j can be verified to the end by using
the plaintexts of ôij and âtj, respectively, even though they should not.
This property is verified in the tallying process and the necessary proof of decryption
for ôij and âtj is contained in π. Since we assume π to be correct, it must be the
case that the σ̂j are also formed correct, otherwise the proof π would not succeed or
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P would be wrong. Both are not the case, hence, this part of the validity condition
cannot be violated by A without being detected.

• v is encrypted in v̂ even though it should not. Notice that P shows the
knowledge of some v′ and that this v′ is encrypted in v̂, and additionally that it
belongs to a set of valid rating choices C. Since P is correct, in order to validate
this point, it can only be the case that v′ 6= v. The decryption of the v̂’s is done
later in the tallying phase, accompanied by a proof of decryption, which is contained
in π. We assume that π is correct. Evidently, it is true that v̂ is decrypted to v
in the tallying phase, otherwise v would not be in the final tally. Hence, due to
the correctness of π and P , it must be the case that v = v′ and hence, A cannot
invalidate the ballot by means of this validity criterion.

• ˆtkn is the encryption of Uj’s token even though it should not. Also this
property is verified later in the tallying process and the correctness proof of that
verification is contained in π. Since π is correct in the present case, it must be the
case that A encrypted a token for user Uk which collides with the one of user Uj . Let
us analyze how tkn is formed. We have

tkn = E(ekSP,SSPG(skj , svc)
∑m

`=1 b`)

and at the same time

tkn = E(ekSP,SSPG(skk, svc)
∑m

`=1 b`),

which again forms a contradiction to the uniqueness of SSPs and can hence, only
occur with negligible probability.

To conclude, we have shown that an invalid ballot can only be deemed valid with
negligible probability and hence, Pr [InvBal] ≤ negl(λ).
Claim: Pr [TamPi] ≤ negl(λ): In this second case, we assume that π is erroneously accepted
by the verifiability challenger, V 6= V ′′, but there is no invalid ballot, the rating of which
ends up in V even though it should not. In order to show that this setup cannot happen
with more than a negligible probability, we have to prove that π is partially formed of
zero-knowledge proofs that can be used to break the soundness of the underlying proof
scheme, thereby deriving a contradiction. We do that by scanning through the tallying
procedure step by step, analyzing in how far A can manipulate the final tally and from
that information extracting a proof that can be used to break the soundness.

Ballot verification: even though we stated above that no vote of an invalid ballot ends
up in V , we have still to argue that the public components ôij and âtj cannot have
been tampered with unless A is able to create proofs for wrong statements. Suppose
that there exists a ballot B, the vote of which ends up in V , and which is invalid
due to incorrect public components ôij and âtj , i.e., if oij and atj are the plaintexts
contained in those components, then we have ⊥ = vfyfin(σ̂j , vkCI, atj , oij) and still
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the ballot proceeds in the tallying process. Since the proof P in B is correct by
assumption, it must be the case that A manipulates the decryption of âtj or ôij

such that > = vfyfin(σ̂j , vkCI, atj , oij). For instance, assume that âtj encrypted an
attribute atj which would not allow the respective user to access the service. However,
the partially verified signature σ̂j verifies on a different attribute at ′j that would
allow the user to participate. Usually, the finishing verification would fail unless A
manages to manipulate the proof of correct decryption. The same could also be done
based on the opening information in an analogous way.

Otherwise the public components would be correct and A had no advantage in
breaking the game. Since each decryptor generated byA for the distributed decryption
is accompanied by a proof of correctness, it must be the case that one of those proofs
is a proof of a wrong statement and B can use it to break the soundness of the
underlying proof system. Since A wins with non-negligible probability, so does B
(only lowered by a factor inverse proportional to the number of proofs created by
A), which is still non-negligible. That is a contradiction to the soundness of the
zero-knowledge proof system. Hence, the public components ôij and âtj are correct
except with negligible probability.

Removing duplicates: duplicates are removed based on the tokens tkn, which are de-
crypted in the previous step. With the same argument as above (on the decryptors
and their correctness proofs on the ciphertext rather than in the PET), we can
show that all tokens tkn1, . . . , tknn on BB (after decryption) must be the plaintexts
encrypted in ˆtkn1, . . . , ˆtknn, otherwise a decryptor validity proof can be used to break
the soundness of the proof system. In the duplicate elimination step, the service
providers jointly decrypt the tokens, sort them, and remove ballots as dictated by
RV. The decryption step happens equivalently to the previous step, hence, the same
argument applies: B can use one decryptor validity proof to break the soundness of
the proof system.

As a side remark, we could imagine an attack in which A creates an invalid ballot by
copying a valid token from another valid ballot. If that were possible then that valid
ballot would be excluded in the duplicate elimination step, leaving the invalid ballot
with the same token. This is however prevented by the protocol due to the proof of
correct encryption of the encrypted token ˆtkn, which is included in P and cannot be
successfully recreated without knowing the underlying plaintext (the token tkn).

Mixing: A can potentially change V in this step by including (resp. removing) not yet
existing (resp. existing) ballots in (resp. from) BB. This is possible when it is A’s turn
to mix the bulletin board, i.e., to apply a random permutation and a new randomness
to every ciphertext. Since A wins the game with non-negligible advantage, it must be
the case that it either exchanges a ballot on the board for something else and hence
that ballot disappears, or that it duplicates a ballot on the board (for which another
ballot disappears). In any case, if the disappeared ballot was valid or the duplicated
or added ballot was valid, then V changes. Hence, B guesses a mixing proof of a
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corrupted service provider and submits this proof to the soundness challenger. Since
A wins with non-negligible probability and B only forwards outputs of A, so wins
B with non-negligible probability, only lowered by the probability of guessing the
correct service provider. This is a contradiction to the assumption that the mixing
proof is sound.

Removing votes with invalid tokens: In this step, A can potentially invalidate
(resp. validate) at least one valid (resp. invalid) ballot by modifying the outcome of
the PET or applying an incorrect blinding factor. Since A wins with non-negligible
probability, one of the two described cases must occur. Since each such computation
is accompanied by a correctness proof, B can use one of the correctness proofs to
break the soundness of the underlying proof system. The success probability carries
over from A to B except that B also has to guess the right proof, which lowers the
probability by a polynomial factor. This is still a contradiction to the assumption
that the proof system is sound.
Notice that this step also captures attacks based on originally maliciously generated
tokens: since all parties can be controlled by A, no one knows whether the created
tokens are valid or not. Note also that even though all users are registered successfully,
no-one prevents A from re-registering the users’ tokens after coercion since it controls
all service providers. Wrong tokens, however, are detected in the present step since A
has to relate its blinding of encrypted pseudonyms (which are proven to be correctly
incorporated in a ballot B in the accompanying proof P , hence, they cannot have
been tampered with; see also the previous claim) to the values Bi published initially
on the bulletin board. Hence, at least the recomputed token is correctly computed,
otherwise the correctness proof could be used to break soundness again. To conclude
this point, no invalid token can survive this step without being detected.

Decrypting the votes: A can only change V from the correct one V ′′ by decrypting the
ratings v̂i incorrectly. Since A wins the game with non-negligible probability, it must
be the case that there exists an encrypted rating v̂ for which the plaintext has been
changed during the decryption procedure. Since every decryptor is accompanied by
a correctness proof, B can use that proof to break the soundness of the underlying
proof system with also non-negligible probability, which is a contradiction to the
assumption.

To conclude this point, we have shown that in any step of the Tally protocol, if A
wants to manipulate V such that V 6= V ′′, then we can construct an adversary B against
the soundness of the zero-knowledge proof system. That is a contradiction and concludes
the proof for this step. Hence, Pr [TamPi] ≤ negl(λ).

To conclude overall, we have shown that

Pr [InvBal] ≤ negl(λ)

and
Pr [TamPi] ≤ negl(λ).
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Consequently,
Pr [A wins] ≤ negl(λ) + negl(λ) = negl(λ)

and that concludes our proof.
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