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Imagination is more important than knowledge,  

because knowledge is limited. 

 

Albert Einstein 
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ABSTRACT 

Key parts of an electrochemical energy storage device are the active material, the electrolyte, the binder, 

and the conductive additives. This dissertation investigates the role of such individual components on 

the device’s overall performance and how they interact with each other to influence the device’s ability 

to store energy and longevity. 

Three aspects of the performance of electric double-layer capacitors are investigated: (1) The role of the 

conductive additives on performance and longevity, where 5 wt% admixture shows the best capability. 

(2) The role of the active material and the electrolyte with an increased capacitance when the pore width 

matches the ion size. (3) The volumetric expansion of carbon electrodes during charging is depending 

on the size ratio of the ions and the pore width. 

Further, an asymmetry in charging mechanism is found for two-dimensional metal carbides, MXenes, in 

ionic liquids. The charging mechanism is based on cation (de-)intercalation. The role of binder properties 

on the performance of battery electrodes was investigated with intercalation-induced volumetric 

changes of the active material. Moreover, the multi-length scale approach using different in situ 

measurement techniques reveals a promising way to understand mechanisms in electrochemical energy 

storage devices. The combination of dilatometry with quartz-crystal microbalance, X-ray diffraction or 

small-angle X-ray scattering shed light on potential-induced structural changes in the systems. 
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ZUSAMMENFASSUNG 

Vier wichtige Bestandteile einer elektrochemischen Energiespeicherzelle sind aktives Material, Elektrolyt, 

Binder und Leitruß. In dieser Dissertation wird der Einfluss dieser Bestandteile untereinander und auf die 

elektrochemischen Eigenschaften untersucht. 

Drei Themenkomplexe werden in Bezug auf elektrische Doppelschichtkondensatoren untersucht: (1) Die 

Rolle von leitfähigen Additiven auf Leistung und Langlebigkeit, wobei eine 5 %-ige Beimischung die 

beste Leistung zeigt. (2) Die Rolle des aktiven Materials und des Elektrolyten mit einer erhöhten 

Kapazität, wenn die Porenbreite mit der Ionengröße übereinstimmt. (3) Die volumetrische Ausdehnung 

von Kohlenstoffelektroden während des Ladens hängt von dem Größenverhältnis der Ionen und der 

Porenweite ab. 

Es wurde eine Asymmetrie im Lademechanismus bei zweidimensionalen Metallkarbiden, MXenen, in 

ionischen Flüssigkeiten gemessen. Der Lademechanismus basiert auf Kationeninterkalation. Für ein 

Batteriesystem mit interkalationsbedingter Volumenänderung des aktiven Materials wurde der Einfluss 

vom Binder auf die Leistung untersucht. Darüber hinaus zeigt der Multi-Längenskalen-Ansatz mit 

verschiedenen in-situ-Messmethoden eine vielversprechende Möglichkeit um Mechanismen in 

elektrochemischen Energiespeichern zu verstehen. Die Kombination von Dilatometrie mit entweder 

Quarzkristall-Mikrowaage, Röntgenbeugung oder Kleinwinkel-Röntgenstreuung konnte ladungs-

induzierte Strukturänderungen im System zeigen. 

 

  



ix 

 

ABBREVIATIONS 

Wh watt-hour EDLC electric double-layer capacitor 

mAh milliamp-hour SC supercapacitor 

q charge LIB lithium-ion battery 

C capacity/capacitance AC activated carbon 

U potential/voltage IHP inner Helmholtz plane 

i electrical current OHP outer Helmholtz plane 

R resistance (RT)IL (room temperature) ionic liquid 

A surface area EMIM 1-ethyl-3-methylimmidazolium 

E energy density TFSI bis(trifluoromethylsulfonyl)imide 

η efficiency TEA tetraethylammonium 

Ch chemical potential BF4 tetrafluoroborate 

 surface charge ACN acetonitrile 

σm cross-section area PC propylene carbonate 

 density CV cyclic voltammograms 

 kinetic viscosity GCPL galvanostatic cycling with potential limitation 

n penetration depth LFP lithium iron phosphate 

λ wavelength LMO lithium manganese oxide 

k wave vector LTO lithium titanate 

Q scattering vector HOMO highest occupied molecular orbital 

I intensity LUMO lowest unoccupied molecular orbital 

f frequency SSA specific surface area 

df shift in frequency PSD pore size distribution 

W dissipation DFT density functional theory 

dW change in dissipation WE working electrode 

p/p0 relative pressure CE counter electrode 

n number (Q)RE (quasi-) reference electrode 

nm adsorption capacity of a monolayer eD electrochemical dilatometer 

Ψ coverage value PVdF polyvinylidene fluoride 

CBET specific heat of condensation PTFE polytetrafluoroethylene 

L Avogadro constant NaCMC sodium carboxymethyl cellulose 

Eg thermodynamic stability window EQCM electrical quartz-crystal microbalance 

d distance of the atomic planes EQCM-D electrical quartz-crystal microbalance 

    with dissipation monitoring 
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1. MOTIVATION 

The urban society of the 21st century is used to a constant power supply in their homes and offices. In 

today’s factories and manufacturing facilities, the highly intertwined production processes are only 

possible with a stable and interruption-free electrical grid. The economic deficit due to the interruption 

of an assembly line, for example in car manufacturing companies, is remarkable. To fulfill the continuous 

demand for energy, an extremely stable electrical grid and a controlled power system must be achieved. 

[1] Nowadays, the main sources to generate electrical power (secondary source) are fossil fuels such as 

oil, gas, or coal (primary sources; Fig. 1A). The burning of these materials is responsible for a constant 

generation of electrical energy. Yet, the exhaust of carbon-dioxide causes harm to the environment in 

the form of the global climate change and contributes to the ‘greenhouse effect’ and is the main 

contributor to the global warming. [2, 3] With the development of the global economy and the 

consequences of climate change, sustainable growth is only possible by a transition to renewable energy 

production with green technologies like wind power and solar energy (Fig. 1B). [4] 

 

 

Figure 1. (A) Growth of global economy results in larger amount of energy consumption. (B) The share 

of renewables in global capacity addition reached over 50 % in 2015 (based on data from Ref. [4]). 

 

Part of the energy transition to renewable resources includes the production of electrical energy with 

sustainable methods including wind, water and photovoltaic power generation. These resources cannot 

provide constant energy production because the sun rises and sets every day and the wind pattern and 

intensities vary. The differences in demand and supply of power from sustainable sources necessitate 

energy storage if there is an excess amount of energy to fill the gaps when the demand is higher than 

the production. Therefore, energy storage research is at the focal point of current research activities. [5, 

6] 
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In general, energy can be stored, among others, by physical, chemical, thermal or mechanical methods 

(Fig. 2A). [7, 8] Regarding feasibility and availability, electrochemical energy storage has advantages, 

such as high efficiency with high volumetric and gravimetric storage density. [9, 10] Many governments, 

international entities, and companies across the globe have initiated research programs to investigate 

new and better energy storage. [4] The use of a specific type of storage device is mostly determined by 

the demand for energy density and maximum volume. The required capacity for certain applications 

differs from a smart device like a mobile phone, which needs only several watt-hours (Wh), to a (hybrid) 

electrical vehicle (HEV) with up to 5000 Wh to ensure a customer-requested range (Fig. 2B). [11] 

However, the high energy density can lead to exothermal reactions and generate enough heat for a fire 

in case of misusage, fatigue, damage or faulty workmanship. [12]  

 

Figure 2. (A) Comparison of different types of energy storage systems and their most promising use 

(based on data from Ref. [8]). (B) Use of energy storage systems with different required capacity (based 

on data from Ref. [11]). 

 

For example, a practical implementation of supercapacitors has already been performed by the Rhein-

Neckar-Verkehrsverband (RNV, Germany). The RNV created trams powered by supercapacitor arrays 

located on the tram roof. [13] In the motor racing cars of Formula One, the use of a kinetical energy 

recovery system (KERS) is allowed. Those systems usually contain a supercapacitor-based energy 

storage, because they can offer up to 10 kW/kg specific power and the systems must last at least five 

races. [14] 
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2. INTRODUCTION 

Electrochemical energy storage devices are part of our daily lives. Those devices qualify as a direct way 

to store and deliver electric energy via faradaic or non-faradaic charge mechanisms. [15] Among those, 

rechargeable systems like batteries are preferred. Nowadays, most investigations focus on Li-ion 

batteries (LIBs). [10] Commonly, LIBs are composed of a transition metal intercalation compound as the 

cathode and a graphitic anode. The chemical nature of the cathodic and anodic reactions, which can use 

the full bulk volume of the material, result in an excellent energy density of LIBs. [16] However, their 

performance deteriorates over time with usually only 1000 charge and discharge cycles, due to the 

chemical energy storage mechanisms which are nor fully reversible. [17] Supercapacitors (SCs), in 

contrast to LIBs, are physical energy storage devices with a large cycle life of more than 105 cycles but 

lack about a factor of 10 in specific energy (Fig. 3). Usually, SCs are built with two porous carbons and 

use only physical adsorption of ions on the carbon surface as the energy storage mechanism.  

 

Figure 3. Ragone plot to compare power performance and specific energy of several different energy 

storage systems (based on data from Ref. [15, 18, 19 , 20]). 

 

The performance of an energy storage system is conveniently plotted in a Ragone plot to compare 

different storage systems. [21, 22] Usually, the energy is plotted versus the power (Fig. 3). A rechargeable 

battery provides a high energy density but a slow charging and discharging rate and is therefore plotted 

on the lower right-hand side of the plot. An electric double-layer capacitor (EDLC, or supercapacitor) has 

a better power output with a much lower energy density and can be found on the upper right-hand side 

of the Ragone plot. However, such a plot lacks in information about longevity and efficiency. Yet, in 

general, supercapacitors are very efficient with almost 100% efficiency in laboratory conditions. [23] 

This thesis aims to monitor and understand the charging processes and mechanisms of LIBs and SCs 

and the interactions of all components in these devices. Additionally, the influence of ion size on the 
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capacitance of SCs is investigated. Finally, the last part of this thesis focuses on a multi-length and multi-

apparatus characterization of LIBs and SCs. 

 

 

 

2.1 Supercapacitor 

The commonly used name supercapacitor, based on the patent of D. L. Boos from Standard Oil Company 

[24] and licensed to Nippon Electric Company [25], or ultracapacitor, named by the Pinnacle Research 

Institute, describes an electrochemical double-layer capacitor (EDLC). [26] The terms ‘super’ or ‘ultra’ are 

related to the high capacitance of EDLCs as compared to conventional capacitors (Fig. 3). By definition 

of B. E. Conway [27], a supercapacitor is an electrochemical device where ions of an electrolyte adsorb 

on the surface of an electrode. If there is no electron transfer between the ions and the electrode, the 

device is called an EDLC. In the case of a Faradaic reaction, which is an exchange of electrons between 

the liquid phase (electrolyte) and the solid phase (electrode), it is called a pseudocapacitor according to 

the definition of D. C. Grahame. [28] The term pseudo is used due to the rectangular shape of the cyclic 

voltammogram (CV), as seen for an EDLC, but with the presence of electrolyte-electrode charge transfer. 

The use of the term supercapacitor to describe the physical storage system in an EDLC and the mixed 

physical-chemical energy storage system in a pseudocapacitor can be confusing. Therefore, the 

introduction is split into a general description of EDLCs (Ch. 2.1.1) and a description of the possible 

charging mechanisms of pseudocapacitors (Ch. 2.1.2).  

 

 

2.1.1 Electric double-layer capacitors 

Electric double-layer capacitors (EDLCs) are physical energy storage devices where the ions reversibly 

adsorb on a charged surface. Energy is stored via ion electrosorption in the electric double-layer (EDL), 

where the charge (Q) is stored according to the capacity (C) of the electrode and the applied potential 

(U) (Eq. 1) 

 𝑄 = 𝐶 ∙ 𝑈 (1) 

The electrically charged interface must provide a high surface area (A) in contact with an electrolyte to 

ensure a high surface charge (σ), which is balanced by the electrosorbed ions in the EDL (Eq. 2) 

 𝑄 = ∫ 𝜎 𝑑𝐴 (2) 

The nature of the EDL was first described by Helmholtz in the 19th century. [29] His simple model failed 

to account for ion distribution in the bulk, ion-ion interactions, and heat of solvation. These factors are 

considered by D. C. Grahame in his model from 1947 (Fig. 4). [30] The model describes two characteristic 
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layers: the Stern layer containing the inner Helmholtz plane (IHP), the outer Helmholtz plane (OHP), and 

the diffuse layer. The Stern layer contains only ions with the opposite charge, defined as counter-ions, 

electrosorbed on the electrode surface. The solvation shell hinders a direct attachment to the surface 

and the potential in the IHP is equal to the electrode potential. The second part of the Stern layer, which 

is the OHP, contains the charged ions and most of the potential is counterbalanced in this plane. The 

remaining charge is balanced in the diffuse layer, which contains weakly bound counter-ions and co-

ions (ions with the same charge as the electrode).  

 

Figure 4. Schematic drawing of the electrosorption of ions in a polar solvent on a planar, negatively 

charged electrode for an EDLC.  

 

The two main active parts of the EDLC cell are the electrolyte and the electrode material. The active 

material is commonly activated carbon due to high abundance, low cost, and controllable porosity. [31] 

These carbons must have a well-developed porosity and pore size distribution, because the 

electrochemical performance of EDLCs is highly dependent on the electrode material and the pore 

structure. [23, 32, 33]  

The electrolyte, which connects the two electrodes, can be aqueous, organic, or a room temperature 

ionic liquid (RTIL, or here shortly called IL). [34] RTILs are defined as ILs which are liquid at temperatures 

above 60 °C and from now on all used ionic liquids in this thesis are RTILs. [35] According to the different 

electrochemical stability window the maximum operational cell voltage (V) and energy (E) are 

determined via Eq. 3 and simplified to Eq. 4 

 
𝐸 = ∫ 𝑉𝑑𝑄

𝑄𝑡𝑜𝑡

0

 
(3) 

 𝐸 =
1

2
𝐶 ∙ 𝑉2 

(4) 

RTILs are a special case due to the abundance of solvation with an organic or aqueous liquid. The bare 

ionic content results in strong ion-ion interactions. [36, 37] These molten salts (RTILs) are liquid at room 
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temperature and ambient pressure because it is the thermodynamically favorable state. [38] In contrast, 

aqueous electrolytes contain a dissolved salt, where each different type of ion has a distinct solvation 

shell, and the final size of the ion does not directly depend on the bare ion radius. [39] For example, the 

fully solvated Li+ ion has a diameter of 0.482 nm (bare Li+ 0.138 nm), solvated Na+ has a diameter of 

0.436 nm (bare Na+ 0.204 nm), and solvated Cs+ is 0.438 nm (bare Cs+ 0.170 nm). [39] In organic 

electrolytes the bare ion size and fully solvated ion size are also different [40], but the solvation energy 

is usually lower compared to water. [41, 42] A lower solvation energy means it is easier to strip-off solvent 

molecules. Consequently, matching of pore width to the bare ion size is more important than the 

solvated ion size. [33] The third group of electrolytes, ionic liquids, are of interest because some of them 

have a large electrochemical potential window, which can be advantageous since the energy is 

determined by the potential squared (Eq. 4). [43] However, due to the much lower ion mobility in ILs the 

higher energy is correlated with a lower rate capability, especially for electrodes with small pores in the 

range of the ion size or slightly smaller. [34] 

The highest capacitance for a symmetrical EDLC is published with 180 F/g or 80 F/cm3 for an activated 

carbon (approx. 2000 m2/g SSA) in 1-ethyl-3-methylimmidazolium bis(trifluoromethylsulfonyl)imide 

(EMIM-TFSI). [44] A direct comparison between tetraethylammonium tetrafluoroborate (TEA-BF4) in 

acetonitrile with EMIM-BF4 (both electrolytes containing the same anion) and AC shows a higher 

capacitance for the IL, even at the same applied potential of ±1 V vs. carbon. [33] In general, an optimized 

performance requires careful matching of the electrode properties to the ions in the electrolyte. A more 

detailed discussion about the correlation between pore width and ions in the electrolyte can be found 

in Ch. 4.2 and 4.3.  

When moving from single electrode measurements to the device level, some things must be considered 

because the electrochemical measurements of a single electrode and the measurement of an electrical 

device (full cell) are different. In a device there are two electrodes: a cathode (positively charged) with 

the capacitance (CC) and an anode (negatively charged) with CA, interconnected via a serial connection. 

The total capacitance (Ctot) can, therefore, be calculated as Eq. 5 

 1

𝐶𝑡𝑜𝑡
=

1

𝐶𝐶
+

1

𝐶𝐴
 

(5) 

When measuring in a symmetrical full cell mode, the calculated capacitance must be multiplied by a 

factor of 4 to get the single electrode capacitance, since two electrodes with the same mass are 

measured and the total capacitance is C/2 according to Eq. 5 for CC is equal to CA. This assumes a 

symmetrical charge on both electrodes. 

2.1.2 Pseudocapacitors 

Pseudocapacitors gain capacity from electrosorption of ions on the electrode surface and surface redox 

reactions or ion intercalation. Therefore, the energy storage mechanism is based on mixed physical and 

chemical processes. Regarding the D. C. Grahame model for pseudocapacitive systems (Fig. 5) the IHP 
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also contains charged ions now. [30] This contrasts with EDLCs possible because the chemical charge, 

which is a specific adsorption of ions directly on the electrode surface, leads to higher surface charges. 

The energy storage capability exceeds the values of bare EDLCs ‘since the excess capacity which arises 

from the reversible electro-reduction of an ion is not a characteristic of the electrical double layer, it will 

be termed a “pseudo-capacity” to distinguish it from the other kinds of capacity.’ [28] Regard that the 

chemical energy storage via electron transfer is added to the physical EDL mechanism. 

 

Figure 5. Schematic drawing of the reactions in the Stern layer in the case of pseudocapacitive energy 

storage. 

 

According to the chemical nomenclature, ions can be oxidized or reduced on the electrode surface by 

the Faradaic electron transfer. A reduced ion (R-) gets close to the electrode surface (Fig. 5A) and gives 

an electron (e-) to the electrode (Fig. 5B). The ion after oxidation (R0) leaves the electrode surface 

(Fig. 5C) to allow another R- to adsorb on the surface to proceed the process again. 

Typical pseudocapacitive materials with surface redox charge mechanism include conducting polymers 

[45], for example, polyaniline (PANI) [46], poly(3,4-ethylenedioxythiophene) (PEDOT) [47], polystyrene 

sulfonate (PSS). [48] The pseudocapacitance can also arise from ion intercalation into metal oxides, for 

example, manganese dioxide [49] and ruthenium dioxide. [50] Intercalation is explained in detail in 

Ch. 2.2 but in the special case of a nanoscopic layered metal oxide electrode the pseudocapacitive 

behavior of a battery material is possible. [51, 52]  

Pseudocapacitance arises when the surface charge (σ) required for electrosorption is a continuous 

function of the potential (U) and the reduction of an oxidized species occurs on the solid phase (ions) 

within the electrochemical stability window of the electrolyte. The Faradaic charge transfer leads to an 

increased total charge (Qtot) and, according to Eq. 3, to a higher total energy. The derivative (dQ/dU) 

describes a capacitance with a Faradaic charge transfer contribution, which leads to the rectangular 

shaped CV. [53] This behavior differs from a battery where the potential does not depend on the state 

of charge. As described in the Nernst equation, the electrode potential is constant and independent of 
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the extent of the reaction. [54] The difficulties of quantification between EDL capacitance and 

intercalation pseudocapacitance are explained in Ch. 2.3.4. 

Some of the most important parameters for pseudocapacitive devices are rate handling and reversibility. 

Yet, the physical energy storage in the electric double-layer is combined with a chemical amount of 

Faradaic charge transfer-based energy storage. The EDLCs with fully reversible adsorption and 

desorption usually have a high reversibility of almost 100 %. By contrast, the reversibility of chemical 

reactions is distinctly reduced (typical batteries have about 60-80 % reversibility, more details in Ch. 2.2 

and Ch. 2.3.4). [55, 56] 

 

 

2.2 Lithium-ion Batteries 

A Li-ion battery (LIB) is a chemical energy storage device. The intercalation of ions into a bulk material 

based on the work of Armand et al. was the start of a highly successful technique, which is now used in 

almost every portable device for its energy storage system. [57] This so-called rocking chair battery was 

further improved by Goodenough et al. [58], Lazzari and Scrosati [59] and finally patented by Yoshino et 

al. [60] for the currently used LIB systems. The intercalation and removal of Li+-ions into the cathode 

material, usually a transition metal oxide (i.e., lithium cobalt oxide LiCoO2, lithium iron phosphate LiFeO4, 

or lithium manganese oxide LiMn2O4) occurs at a specific potential in a reversible reaction. These 

materials can be clustered into the three possible structure classes: layered materials (i.e., LiCoO2, LiTiS2), 

spinel structured materials (i.e., LiMn2O4), or olivine structured materials (i.e., LiFePO4, LiMnPO4). [61, 62] 

For anodes hard carbon (i.e., artificial graphite or mesophase carbon microbeads (MCMB)) are 

predominantly used. [62, 63] The advantage of LIBs is the high energy density with more than 

100 Wh/kg, which is over ten times higher than EDLCs with typical less than 10 Wh/kg. [15] The drawback 

for LIBs is a much lower power performance (Fig. 3). [9, 15] The difference in energy and power is related 

to the physically stored ions on the surface of EDLCs, in contrast to chemically intercalated ions into the 

bulk of the electrodes for LIBs.  

In general, the physical transfer of ions from the liquid phase of the electrolyte into the solid phase of 

the electrode material corresponds to the efficiency of charge transfer and intercalation. The reactions 

on the anode at the charging step (Eq. 6) and the discharging step (Eq. 7) are 

Charging 𝑀𝐴 + 𝑥𝐿𝑖+ + 𝑥𝑒− ↔ 𝐿𝑖𝑥𝑀𝐴 (6) 

Discharging 𝑥𝐿𝑖 ↔ 𝑥𝐿𝑖+ + 𝑥𝑒− (7) 

with the anode material (MA), the lithium ions (Li+), the electrons (e-), the lithium (Li), and number of 

involved species (x). The Li+ can reversibly intercalate into MA. On the cathode, the following reactions 

occur on the charging (Eq. 8) and discharging (Eq. 9) step: 
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Charging 𝐿𝑖𝑀𝐶 ↔ 𝐿𝑖1−𝑥𝑀𝐶 + 𝑥𝐿𝑖+ + 𝑥𝑒− (8) 

Discharging 𝐿𝑖1−𝑥𝑀𝐶 + 𝑥𝐿𝑖+ + 𝑥𝑒− ↔ 𝐿𝑖𝑀𝐶 (9) 

with the cathode material (MC), which is a lithium deficit oxide. The redox-potential (µ) of the electrode 

material for Li-ion intercalation in anode materials and Li-ion deintercalation from cathode materials 

determines the total cell voltage. However, this potential must be within the electrochemical stability 

window of the used electrolyte. 

 

Figure 6 (A) Energy diagram of a battery. µC and µA are the chemical potentials for the cathode (MC) and 

anode (MA), respectively. (B) Redox potentials of several typical LIB electrode materials in relation to the 

electrochemical stability window (Eg) of 1 M LiPF6 in EC/DMC (1:1) (red) and water (H2O, blue). (based on 

data from Ref. [64]) 

 

The most commonly used electrolyte is one molar lithium fluorophosphate (1 M LiPF6) in a one-to-one 

mixture of ethylene carbonate and dimethyl carbonate (EC/DMC). This electrolyte has a stability window 

of 1.0-4.8 V vs. Li+/Li (Fig. 6A). A unique property of this electrolyte is the ability to form a solid 

electrolyte interface (SEI). This layer contains a complex and highly discussed decomposition product of 

the solvents but can let Li-ions diffuse through the layer. [65, 66] The SEI formation is possible if the 

chemical potential of the cathode is lower than the highest occupied molecular orbital of the electrolyte 

(µC < HOMO) or if the chemical potential of the anode is higher than the lowest unoccupied molecular 

orbital of the electrolyte (µA > LUMO). [64] The SEI is a protection layer to prevent the total 

decomposition of the electrolyte and, at the same time, it makes it possible to reach potentials for the 

onset of lithium intercalation, for example, into graphite (Fig. 6A). A detailed discussion of SEI is out of 

scope for this thesis because it is a very complex and a highly discussed topic in the LIB research 

community. [66-68] 

For example, a cell containing Lithium iron phosphate (LiFePO4, LFP) as cathode and Lithium titanate 

(Li4Ti5O12, LTO) as an anode will have a potential of 1.8 V since the intercalation in LTO takes place at 

1.6 V vs. Li+/Li (Eq. 10) and the deintercalation from LFP occurs at 3.4 V vs. Li+/Li (Eq. 11, Fig. 7). 
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Figure 7. Scheme of the current and ion fluxes, during charging and discharging, in a LIB. (based on data 

from Ref. [69]) 

 

The chemical reactions which occur during charging and discharging are 

 𝐿𝑖4𝑇𝑖5𝑂12  + 3𝐿𝑖+ + 3𝑒− ↔ 𝐿𝑖7𝑇𝑖5𝑂12 (10) 

 𝐿𝑖𝐹𝑒𝑃𝑂4  ↔ 𝐹𝑒𝑃𝑂4 + 𝐿𝑖+ + 𝑒− (11) 

The maximum battery potential window is in general determined by the electrolyte, and the redox-

potentials of the active materials must be within this potential window. In aqueous electrolytes, the 

thermodynamic stability window (Eg) is 1.23 V, which translates to a potential of approximately 2.4-3.7 V 

vs. Li+/Li (Fig. 6B).  

Several performance parameters characterize the intercalation of electrode materials and the most 

important are: Charge storage ability, intercalation potential, rate handling, and Coulombic efficiency. In 

general, the charge storage capability is measured in milliamp hours (mAh), which is equal to the ability 

of lithium uptake in a reversible way. Classical intercalation materials have theoretical storage capacities 

of several hundred mAh per gram, for example, graphite: 372 mAh/g, LFP: 170 mAh/g, LTO: 175 mAh/g 

(Fig. 6B). [61, 70, 71] The values for materials which form alloys or with conversion reactions are usually 

much higher, e.g., lithium silicon alloys: 4200 mAh/g for Si21Li5, or lithium sulfur alloys: 1672 mAh/g for 

Li2S [72, 73] However, conversion reactions suffer from a variety of chemical side reactions and a large 

volumetric change, which are difficult to control. This can create stress inside the bulk, which may result 

in crack formation and the loss of electrical contact. This will lead to a poor cycling stability. [61, 74, 75] 

 

2.3 Measurement techniques 

In the following chapter, the measurement techniques, which are of importance for this thesis, will be 

introduced. A general introduction to each technique is given in each experimental part of the paper, so 
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here the focus will be on a more fundamental description of the techniques and related models. 

Furthermore, the use of custom-made in situ cells for a deeper understanding of charging mechanisms 

and related properties is outlined. 

 

 

2.3.1 Gas sorption analysis 

The specific surface area (SSA) and pore size distribution (PSD) of porous and non-porous materials can 

be measured using gas sorption analysis. It is a useful and well-established tool for the characterization 

of hard solids, porous solids, foams, and powders. [76] An isotherm over a certain pressure range is 

measured according to the adsorbent (the sample) and adsorbate (the used gas) of interest. Typical 

conditions for highly porous materials are nitrogen (N2) sorption at 77 K (temperature of liquid nitrogen) 

in the pressure range of 10-7-1 relative pressure (p/p0), carbon dioxide (CO2) adsorption at 273 K in the 

relative pressure range 10-4-10-2 p/p0, and argon (Ar) sorption at 87 K in the relative pressure range of 

10-5-1 p/p0. [77] Argon is advantageous over CO2 and N2 due to the absence of a quadrupole moment. 

CO2 sorption measurements can be used to gain fast and precise information about pores in the range 

of 0.4-1 nm since the measurements are at 273 K where a fast diffusion of gas molecules drastically 

decreases the time to reach equilibration. [76, 78 ] The calculation of the specific surface area based on 

the covered cross-section area (σm) of a measured amount of adsorbate can lead to inaccurate values if 

molecules adsorb in different orientation according to the energetic minimum between the quadrupole 

moment of the adsorbate and the surface atoms of the adsorbent. Further, from a practical point of 

view, argon has the advantage of faster measurements because no high vacuum is needed, and the 

diffusion is faster due to the higher measurement temperature. This is especially relevant in comparison 

to nitrogen sorption measurements, which have very long equilibration times, especially at the lowest 

pressures. [79] A too short equilibrium time can lead to an incorrect quantification of adsorption uptakes 

at a certain pressure, which will ultimately lead to incorrect SSA and PSD values. [80] Further, Ar 

measurements can also be done at the temperature of liquid nitrogen (77 K) but this temperature is 

below the triple point and the specific adsorption of Ar molecules is highly depending on the surface 

chemistry. [76] 
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Figure 8. Classification of (A) isotherms and (B) types of hysteresis according to the IUPAC declaration 

(based on data from Ref. [76]). Deconvoluted data with different kernels from (C) an activated carbon as 

microporous material and (D) onion-like carbon as mesoporous material with little amount of 

micropores 

 

The recorded isotherm can be firstly categorized into six major groups with two sub-groups, according 

to the volume of pores in a certain size range and the interaction between the gas and solid. The IUPAC 

committee lists three categories of pores: micropores (pore width <2 nm), mesopores (pore width 2-

50 nm), and macropores (pore width >50 nm). [76] From this we can describe with the shape of an 

isotherm and the major pore sizes as follows (Fig. 8A): Type I isotherms result from an exclusively 

microporous material with either pores >1 nm in type I(a) or pores smaller than 2.5 nm in type I(b). 

Mesoporous materials with a major of pores smaller than 4 nm exhibit a type IV(a) isotherm. If the pores 

are more cylindrical and the diameter is larger than 4 nm the resulting isotherm will be type IV(b) or type 

V, where the latter has a weaker gas-solid interaction. Non-porous or macroporous materials can have 

a type II or type III isotherm. Type III has a weaker interaction between the adsorbent and adsorbate, 

and no full monolayer evolves. Therefore, the point B describing a fully evolved monolayer adsorption, 

which occurs in Type II isotherms, is not visible in the isotherm. The last type of isotherm (type VI) shows 

a layer-by-layer adsorption on the surface and at each step in the curve, a full monolayer of adsorbate 

is evolved.  
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Further information about the pore size and shape can be gained by examination of the hysteresis 

between the adsorption and desorption branch. The appearance of a hysteresis at higher pressure 

ranges is related to capillary condensation in narrow pores in the micro- and mesopore range. The 

metastability of the adsorbed multilayer of gas atoms in cylindrical pores leads to a delayed 

condensation. In more complex geometries the effect of bottle-neck pores, which have a small diameter 

at the pore entrance (i.e., 5-6 nm for nitrogen sorption isotherms) and a much larger pore diameter in 

the middle of the pore, will lead to cavitation (a spontaneous growth of a gas bubble in the condensed 

fluid inside the larger pore volume). [76] The International Union of Pure and Applied Chemistry (IUPAC) 

further identifies five major shapes of hysteresis, described in the following (Fig. 8B): Type H1 is typical 

for mesoporous materials with a narrow pore size distribution and uniform pore geometry. The narrow 

loop results from delayed condensation on adsorption. Type H2 have a distinct and steep desorption 

branch, which can result from either pore blocking in a certain range of pore necks (more likely type 

H2(b)) or cavitation-induced evaporation (more likely type H2(a)). Type H3 evolves for type II isotherms 

or if the macropores are not completely filled during adsorption. In this thesis, many samples show type 

H4 hysteresis which is typical for micro-mesoporous carbons, where the flat line in the relative pressure 

range of 0.5-0.7 is associated with the filling of micropores. The shape of hysteresis type H5 is exotic. It 

is associated with both open and partially blocked mesopores. It is obvious, that for H3, H4, and H5 the 

sharp decrease in adsorbed gas results from the breakdown of the metastable capillary effects. In all 

cases, the desorption branch must overlap with the adsorption branch in the pressure range below 0.4 

p/p0 to ensure a correct measurement. 

The primary mathematical approach utilized in calculating the specific surface area (SSA) from an 

isotherm is the BET-SSA, according to the theory of Brunauer, Emmett, and Teller. [81] This theory 

describes the relation of a general number of adsorbed molecules (n) divided by the adsorption capacity 

of a monolayer (nm) (Langmuir isotherm [82]) as Eq. 12 

 𝛹 =
𝑛

𝑛𝑚
=

𝐶𝐵𝐸𝑇

(1 −
𝑝
𝑝0

)(1 + (𝐶 − 1)
𝑝
𝑝0

)
 (12) 

with the coverage value (Ψ) and the specific heat of condensation of the adsorbate on the adsorbent 

(CBET). The linear form of Eq. 12 can be written as Eq. 13 

 𝑝
𝑝0

𝑛(1 −
𝑝
𝑝0

 )
=

1

𝐶𝐵𝐸𝑇 ∙  𝑛𝑚

+
𝐶𝐵𝐸𝑇 − 1

𝐶𝐵𝐸𝑇 ∙ 𝑛𝑚

∙
𝑝

𝑝0

 (13) 

The linear relation between left and right side of the equation is drawn in the BET plot for p/p0 values 

about 0.05-0.3. According to the BET theory, the parameter CBET is exponentially related to the monolayer 

adsorption energy and should be in the range of approximately 2-150. [76]  
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The BET specific surface area (ABET) can be calculated according to Eq. 14 

 𝐴𝐵𝐸𝑇 =
𝑛𝑚 ∙ 𝐿 ∙ 𝜎𝑚

𝑚
 (14) 

with the Avogadro constant (L) and the mass of the adsorbent (m). 

Applicability of the BET theory fails if the material is mainly microporous since independent monolayer 

growth is not possible if the pores are too narrow. In such cases, the calculated BET-SSA will be higher 

than the actual SSA. Therefore, other data treatment must be performed and density functional theory 

(DFT) is one such promising method. [83] The first approach using a one-dimensional non-local DFT 

(1D-NLDFT) [84] with the assumption of flat, slit-like graphene walls contained some mathematical 

artifacts. The zero pore volume at a pore size of 1 nm is the most prominent one. [77] Further addition 

of parameters into the DFT kernel lead to the most popular and accurate programs, either, quenched-

solid DFT (QSDFT) with a roughness parameter for the slit-like pore model, [85] or a hybrid QSDFT model 

where pores smaller than 2 nm are assumed to be slit-like and wider pores are assumed to be cylindrical. 

[86] Another way to improve the kernel was done using two-dimensional NLDFT (2D-NLDFT), which 

considers surface energetical heterogeneity and geometrical corrugation. [87] A direct comparison of 

those models is shown for an activated carbon with mostly micropores (Fig. 8C) and an onion-like 

carbon with mostly mesopores (Fig. 8D). All the kernels show some specific steep increases in a certain 

pore range or no pore volume in relation to certain pore size range. I assume the amount and loading 

of artifacts is lowest for the 2D-NLDFT and QSDFT slit kernels, and that these curves exhibit the most 

accurate PSD. [88] The latter kernels contain most of the parameters implemented in the code, so the 

interactions between gas-solid, liquid-solid and gas-liquid, as well as the non-ideal carbon surface, are 

considered. However, the influence of surface functional groups, surface defects and non-carbon 

content on the adsorption of N2 and CO2 is still not quantifiable. Therefore, SSA measurements must be 

always considered as a method to gain information with an error bar of approximately 10 % and further 

characterization, for example with electron microscopy, elemental analysis, or X-ray diffraction must be 

done. 

 

 

2.3.2 X-ray diffraction  

X-ray diffraction (XRD) is a powerful tool to gain information about the structure of a material on the 

atomic level. The technique is based on the interaction between a monochromatic X-ray source and a 

solid sample, which was first described by Max von Laue in 1913. [89]  

Diffraction of incoming light with the wavelength (λ) on any ordered structure leads to a peak in the 

diffractogram according to the Bragg-equation [90] (Eq. 15) 

 𝑛𝜆 = 2𝑑 ∙ sin (𝛩) (15) 
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with the distance of the atomic planes (d) and the angle (Θ) of the incoming light (Fig. 9A). The theory 

is only valid for full elastic scattering of incoming light with matter since Θ and λ of incoming and 

outgoing waves must be the same and no energy of the incoming wave is transferred to the sample. 

This is a major difference of scattering effects (Ch. 2.3.3), where an interaction of waves and matter is 

wanted and quantified. 

 

Figure 9. (A) Scheme of the Bragg reflection and (B) picture of the custom-built in situ test cell. 

  

The focus of using XRD in this thesis was to introduce the in situ investigation of ion movement between 

the layer of two-dimensional (2D) materials (MXenes [91]) with the interlayer distance d, also known as 

d-spacing. In situ describes the simultaneously measured current signal and the changes in XRD signal 

in a custom-built test cell (Fig. 9B). Since the incoming X-rays are copper K-alpha waves with an energy 

of 8.04 keV, corresponding to λ=0.15405 nm, the resolution of the d-spacing is quite high. Typically, in 

crystallography, the three vectors a, b, and c describe an orthogonal room of a unit cell, which translates 

for 2D materials to the in-plane atomic distances a and b and the inter-plane atomic distance c. The 

distance c and the d-spacing are equivalent in this specific case. In the resulting diffractogram, the two 

main parameters are the peak position, which corresponds to the interlayer distance and the peak width, 

which gives information about the distribution of the distances. [92, 93] In the case of Ti3C2-MXenes, the 

complex assembly of the in situ XRD cell with the PEEK body, glass fiber separator, platinum current 

collector, and polymer cover make a further processing of the diffractogram, like Rietveld refinement 

[94], highly error-prone. 

 

 

2.3.3 Small-angle X-ray scattering 

The interaction of matter with an incoming wave of light can be fully elastic, and the resulting 

diffractogram can be described as in the previous chapter or, in the case of inelastic interaction, it can 

be described with a different theory. Depending on the amount of transferred energy from the incoming 

wave to the solid matter, the residual energy of the scattered wave will be changed, which is documented 

in the scattering pattern. [95] X-ray scattering is firstly described by G. P. Thomson [96] and later on 
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explained by A. H. Compton [97] with the photoelectrical effect. This is where the incoming photon 

removes a bound electron of an atom into the vacuum, and fluorescence radiation occurs due to 

relaxation of electrons from a higher shell (higher energy level of bound electrons).  

 

Figure 10. (A) The custom-built in situ SAXS cell in section with the beam going through the working 

electrode. (B) The SAXS intensity according to Q for an activated carbon (AC) electrode in an empty state 

(black line) and filled with an aqueous electrolyte (red line). (C) 3d real space pore structure of an 

activated carbon and (D) results from Monte-Carlo calculations with cations (blue) and anions (yellow), 

which are visualized for -0.6 V. The local electrode charge density is visualized in the zoomed views, 

whereas red indicates high negative surface charge density, which is generally found close to cations. In 

contrast, a positive electrode charge is visualized in blue (induced by cations). The white areas indicate 

regions with zero electric field. (B+C reproduced from Ref. [98] with permission from the PCCP Owner 

Societies, D reproduced from Ref. [99] with permission from Nature Publishing Group) 

 

Like XRD (previous chapter), the scattering of incoming light with the wavelength (λ) and a wave vector 

(k) will be recorded according to the angle (Θ) (for small-angle X-ray scattering typically >10°) with the 

scattering vector (Q). The scattering vector is defined as the difference between scattered wave vector 

and incoming wave vector 𝑄 = 𝑘2 − 𝑘1. The data for small-angle X-ray scattering (SAXS) is usually 
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plotted as intensity (I) versus Q and any ordering above a characteristic length of 1 nm (like ordered 

mesopores in carbon) will lead to Bragg reflections and a peak in the plot. [100] When using a 

synchrotron radiation source with great intensity SAXS curves can be measured within seconds, and 

kinetical effects or in situ measurements with activated carbon and electrolytes are possible. [98, 99, 101] 

Using our custom-built in situ SAXS cell (Fig. 10A) we can correlate the SAXS signal with electrochemical 

tests, e.g., the influence of an applied voltage on the electrosorption of ions in nanopores. [99] The SAXS 

curve contains a vast amount of information, and the contribution of 4 main factors can be separated 

according to the dashed lines in the graph (Fig. 10B). These are (1) the power-law contribution (Ipower) 

at smallest Q values, which results from scattering contribution of the activated carbon (AC) particles, 

[102] (2) the contribution of nanopores (INP) at intermediate Q values, which is the actual contribution of 

the smallest pores of AC, (3) the constant influence of the carbon structure (IC) [103], and (4) the slightly 

changing influence of the electrolyte structure (Iel), which is a function of the applied voltage and based 

on ion adsorption close to the surface. [98] The changes in Iel are marked with the red arrow in the graph. 

Please note that both structure factors are independent of Q. The total intensity (Itot) is the sum of each 

contribution factor (Eq. 16) 

 𝐼𝑡𝑜𝑡 = 𝐼𝑝𝑜𝑤𝑒𝑟 + 𝐼𝑁𝑃 + 𝐼𝐶 + 𝐼𝑒𝑙 (16) 

The combination of the SAXS signal of a dry carbon electrode and a Gaussian random fields simulation 

calculated a 3d real space pore structure with a size of 15x15x15 nm3 possible (Fig. 10C). [98, 99] The 

application of Monte-Carlo simulations on a system with the 3d pore structure, water as a solvent, and 

cations/anions, allow us to understand and quantify ion movement in nanopores at applied potentials 

(Fig. 10D). [99] In general, the question about the behavior of finite sized ions in nanoconfinement, 

meaning (sub-)nanometer pores was not fully understand. [104] Further, the influence of the hydration 

shell, or more general the solvation shell, around the ions on the electrosorption in small pores was 

poorly understood. [105-107] Calculations about the solvation energy and amount of solvation 

molecules around ions in bulk were done but the influence of narrow pores, sometimes smaller than the 

fully solvated ion, on the degree of solvation was not fully described. The quantification of ion 

confinement and degree of desolvation can be summarized in three major aspects: First, counter ions 

show a preferred movement into sites with a high degree of confinement and this can be explained 

solely by electrostatic interactions. Second, cations prefer to electrosorb on sites with a higher degree 

of confinement due to better electrical screening. Third, the degree of desolvation is a function of the 

average pore size, wherein the amount of desolvation decreases for an increasing pore size. Moreover, 

the desolvation occurs for less than one percent of the hydration shell.  Though, a decrease in solvation 

was measurable for systems where it would not be necessary because the ions could stay fully solvated 

in wider pores. This can be explained by the better screening if ions enter a higher confinement, even if 

the fully solvated ion would be too large to enter the confined space. The energy loss by a partial strip-
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off of hydration shell is smaller than the gained electrical screening energy. [99] The established 

supercapacitor sandbox can be used to predict the performance of certain porous structures in EDLCs. 

 

 

2.3.4 Basic electrochemical characterization methods 

The cornerstone of quantitative electrochemical measurements is a stable and reliable measurement cell 

with good reproducibility. Precise electrochemical measurements require an elaborate cell design, which 

can drastically increase the reproducibility of the measurements. Our cell design is a custom-built spring-

loaded system with a constant load of 10 N. [108] Further parts are titanium pistons (diameter 1.2 cm), 

a polyether ether ketone (PEEK) body and brass lids to close the cell (Fig. 11). The RE can be mounted 

via a titanium screw in the cavity very close to the other electrodes. We often use activated carbon as a 

quasi-reference electrode (QRE) since it is easy to handle and confirmed as a stable quasi-reference 

electrode for organic electrolytes [109] and ionic liquids. [110] We further showed the stability of treated 

activated carbon QREs in lithium-containing electrolytes [111] and neutral aqueous electrolytes.[112] 

One important but often overseen part is the current collector, which must provide a good electrical 

connection between the titanium piston and the electrode. [113-115] In this thesis it is always a carbon-

coated aluminum foil used for all non-aqueous measurements and a platinum disc for aqueous cells to 

ensure a good comparability between the experiments. However, we found a drastic increase in power 

performance when sputtering a very thin aluminum layer directly on the electrode due to the highly 

intertwined structure of aluminum and carbon which drastically decreases the interfacial resistance. [113]  

With a robust cell design, the focus can now be on the measurement. The field of electrochemistry is a 

subset of the field of physical chemistry. The driving force for any reaction is the minimization of the 

Gibbs free energy, which means participating substances must end up at the same chemical potential 

(µ) (Fig. 6). In a Faradaic reaction, an exchange of electrons will occur until the Gibbs free energy reaches 

the local minimum. An applied voltage will lead to a controlled change in chemical potential and the 

resulting electron transfer continues until the reaction is completed. The initial potential of an electrode 

(Φsingle) in contact with an electrolyte is determined by the Nernst equation (Eq. 17) [54] 

  𝛷𝑠𝑖𝑛𝑔𝑙𝑒 = 𝐸0 +
𝑅𝑇

𝑧𝐹
∙ ln (

𝑐𝑂𝑥

𝑐𝑅𝑒𝑑
) (17) 

with the standard electrode potential (E0), gas constant (R), absolute temperature (T), number of involved 

electrons (z), Faraday constant (F), and concentration of oxidized (cOx) and reduced (cRed) species, 

respectively, determine the potential. This process happens at each interface of the working electrode 

(WE) and counter electrode (CE) which is in contact with the electrolyte until a stable potential is reached. 

The same process occurs at the reference electrode (RE). However, because this electrode is currentless, 

the potential is stable and gives a constant value over the whole measurement, which is used as a 

reference potential. The total equilibrium voltage between two electrodes (either between WE and RE in 
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a three-electrode measurement or between WE and CE in a full cell with two electrodes) is determined 

by the difference in the single potentials after an equilibration of the chemical potentials. By applying a 

voltage, the system gets shifted from the equilibrium state into higher or lower potentials, and some 

reactions will occur. For example, tis can be the intercalation of Li-ions into graphite, the exertion of Li-

ions from LFP, or another reaction like conversion, which is not in the focus of this thesis.  

 

Figure 11. (A) Exploded drawing and (B) a picture of the cut-open custom-built electrochemical test cell. 

 

The cell is carefully assembled and placed in a climate chamber at a constant temperature (room 

temperature, 25±1 °C), and measurements begin after an appropriate equilibration time (approximately 

1 h). A standard characterization is performed with cyclic voltammetry (CV) and galvanostatic 

measurements. The reactions take place at a certain potential in a cyclic voltammogram (CV), where the 

potential is linearly changed with the time, one will see some distinct peaks when testing a battery since 

the plot is current over potential/voltage. This is in strong contrast to a CV of a capacitor, where current 

is in the ideal case independent of the applied voltage (dQ/dU=const.) within the stability window of 

the electrolyte. The independence from the voltage results from electrosorption and absence of electron 

transfer between electrode and electrolyte. Those easy to distinguish mechanisms are blurred when the 

electrode architecture gets more complex with, for example, nanometer-sized battery materials, which 

show rectangular-shaped CVs (Fig. 12). [116] The possible mechanisms can be pseudocapacitance with 

Faradaic charge transfer but rectangular-shaped CVs [51] or reversible hydrogen sorption in nanopores. 

[117] Further, the use of a new class of materials with two-dimensional characteristics can show 

pseudocapacitive intercalation. [91] Yet, also the electrolyte can have a contribution on the charging 

mechanism by the use of redox-active electrolytes. [118] All these factors make a direct determination 

based on the shape of CV impossible and further characterization is needed. The material’s behavior and 

interaction with the electrolyte must be investigated separately. 
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Another standard electrochemical characterization technique is the galvanostatic measurement with 

potential limitation (GCPL). Here, in contrast to CVs, the applied current (iGCPL) is constant and the 

potential is measured over time. The advantage of this method is that it makes quantification of charge 

transfer at a certain load possible because the applied current is manually set. The current values are 

either normalized to electrode mass (meaning amperes per gram) or in time with the C-rate, where 1C 

means the charging or discharging duration is one hour. 

 

Figure 12. Comparison of possible charge storage mechanisms and the resulting CVs and GCPL curves 

(adapted from Ref. [119]). 

 

With the GCPL, the internal resistance of the system can be investigated by an iR-drop (UiR) at the 

beginning of the voltage profile. According to Ohm’s law 𝑈𝑖𝑅 = 𝑅𝐸𝑆𝑅 ∙ 𝑖𝐺𝐶𝑃𝐿 the electrical series resistance 

(RESR) can be measured. A typical plot for those measurements in the supercapacitor field is the voltage 

profile over time to show the straight (dis-)charging lines. In the battery field, one commonly plots 

voltage versus charge, where the voltage profile indicates the Coulombic and energy efficiency. The 

Coulombic efficiency (ηC) is the quotient of charge from discharge (Qdis) divided by the charge invested 

for charging (Qch) (𝜂𝐶 =
𝑄𝑑𝑖𝑠

𝑄𝑐ℎ
⁄ ), and the energy efficiency (ηE) is the same quotient but for the invested 

energies (𝜂𝐸 =
𝐸𝑑𝑖𝑠

𝐸𝑐ℎ
⁄ ). The specific energy is in this case calculated by Eq. 18 

 
𝐸𝑠𝑝 =

𝑖𝐺𝐶𝑃𝐿

𝑚
∫ 𝑈(𝑄)𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

 (18) 

with the mass (m) and the integral over the voltage profile U(Q) over the time from start (t0) until end 

(tend). Mind that U is a function of Q. For an ideal supercapacitor the Coulombic efficiency must be one 

because the charge storage mechanism is fully reversible. However, ηE will not reach this value but due 
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to losses based on several effects, for example, the RESR. The ion redistribution and leakage current of 

SCs further diminishes the total efficiency. [56] Moreover, each activated carbon will have a certain non-

carbon content like adsorbed water in the pores and functional groups. Those impurities can catalyze 

electrolyte decomposition (see Ch. 4.1) and are therefore unwanted in non-aqueous electrolytes. [120-

123] The decomposition will lead to a reduced efficiency because the chemical reactions during 

degradation are irreversible. The first cycle effects, which occur during the first contact between 

electrodes and electrolyte as well as during the first applied potential are in this thesis always 

insignificant due to a proper conditioning. Further, usually the third or fifth cycle after conditioning was 

used for published data. 

In general, a system with very high efficiency will also have a promising longevity and therefore the 

calculation of efficiency is a fast technique to roughly extrapolate the lifespan of a SC. [56] Highly 

optimized and laboratory scale supercapacitors can yield values for ηC of 97-99 %. [23]  

 

 

2.3.5 In situ electrochemical dilatometry 

In general, a dilatometer is a device which measures strain (i.e., linear volumetric changes). The 

specification of an in situ electrochemical dilatometer (eD) is the combination of an electrochemical cell 

connected to a dilatometer. The history of eD starts in 1977 with a paper by Métrot et al. [124] where 

the changes in thickness were measured for a pyrographite electrode in contact with boron trifluoride 

in ethoxyethane. [124] The focus at the beginning was on the intercalation behavior of a certain species 

into graphite and the resulting dilatation. The poor resolution of the first used apparatus was improved 

by Biberacher et al. [125] with an estimated resolution of 25 nm. Later, this system was also used for the 

intercalation of Li-ions into industrially produced graphite. [126] The apparatus was further improved at 

the Paul Scherrer Institute in the Group of Rüdiger Kötz by Hahn et al. [127] and is now commercially 

available from the company EL-CELL. The system provides a non-contact setup, where the WE is 

connected to a moveable plunger and via a membrane to the height transducer, which applies a constant 

load on the WE (Fig. 13). The WE is placed between the glass T-frit and the spacer disc (Fig. 13B). This 

setup allows the measurement of a variety of electrode materials and electrolytes since the cell can be 

sealed inside a glove box. This simplifies the use of materials/electrolytes that require handling in a 

certain atmosphere, e.g., oxygen free for lithium or water free for organic electrolytes and ionic liquids. 

Those cells can now be measured in a climate chamber outside of the glove box. 
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Figure 13. (A) Picture of the in situ electrochemical dilatometry system ECD-3nano from EL-CELL. (B) 

Schematic drawing of the main components of the dilatometer (with permission of EL-CELL, Germany).  

 

The expansion for an intercalation type of energy storage can be several percent, for example, for Li-

ions into graphite with full intercalation (ideally until LiC6 is reached) about 10 % [128], for LiFePO4 to 

Li1-xFePO4 about 6.5 % (for x=0.98) in correlation to the phase change from olivine to orthorhombic 

structure. [129] As an example, lithium manganese oxide (LiMn2O4, LMO) particles were drop-casted 

with 10 mass% conductive additive and 10 mass% polyvinylidenfluorid (PVdF) on a platinum disc as a 

current collector and placed as WE in the dilatometer. The LMO is usually used as a cathode in a LIB 

because of the high (de-)lithiation potentials (Fig. 6B). However, the LMO structure and phases are still 

a major concern according to lithium content and unit cell construction. A common accepted model 

describes three major phases, depending on the loading of lithium, which are first almost fully delithiated 

Li1-xMn2O4 (with x < 0.98) rutile structure, second LiMn2O4 with spinel structure, whereas the lithiation 

occurs at 3.6 V vs. Li/Li+, and third a lithium rich Li2Mn2O4 spinel structure which forms at potentials 

below 2.5 V vs. Li/Li+. [131, 132] During the delithiation, the LiMn2O4 spinel structure changes to 

Li1-xMn2O4 rutile structure with a theoretical compaction of up to 6.5 %. [133, 134] Instead, the formation 

of a lithium-rich Li2Mn2O4 phase leads to a further increase in volume by 6 % compared to LiMn2O4. 

[135] Yet, this expansion is not isotropic since the c-direction expands approximately 16 % more than 

the a-direction, what is a Jahn-Teller distortion. [132-136] The thin electrode, which was used in the 

dilatometer, with 2.1 mg total mass and 51 µm thickness shows three distinctive peaks in the CV for 
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anodic and cathodic scan at a scan rate of 1 mV/s, which are typical for battery materials and correspond 

to Nernstian behavior (Ch. 2.2, Fig. 14A). The corresponding height change, normalized to strain by 

dividing the displacement with the initial thickness and set to zero at 0 V vs. Ag/Ag+, follows the peaks 

of the CV, where the slope in strain is highest for the largest current. Applying a positive potential leads 

to the extraction of lithium and the compaction of the structure, which is in this case 0.8 % decrease in 

strain at +0.8 V vs. Ag/Ag+. For negative potentials, the lithium-rich phase occurs after the peak occurs 

in CV at -0.5 V vs. Ag/Ag+ with an increase in strain of 0.7 %. The total volumetric change for the 

composite electrode is significantly less compared to the theoretical values, but this is due to many 

parameters like void volume, reorganization of particles due to plastic deformation of the binder, or 

non-complete lithium insertion and extraction. [32, 137] 

 

Figure 14. Cyclic voltammogram (blue) and simultaneously recorded strain signal (red) for (A) a lithium 

manganese oxide electrode (LIB electrode) in an aqueous lithium sulfate electrolyte, and (B) for an 

activated carbon electrode (EDLC electrode) in an organic electrolyte. (C) The EDLC electrode was 

quantitatively investigated with charge versus strain and compared to simulations. 

 

The next example is an organic EDLC with activated carbon as electrode material (Fig. 14B). In an ill-

considered approximation, no macroscopic change in volume for an electric double-layer capacitor 

would be expected since the energy storage is based on charge separation on the electrode-electrolyte 

interface. The standard electrode material is porous carbon with a high surface area and pores in the 

subnanometer to mesopore range. [34] However, the pressure necessary to place an ion into a 

subnanometer pore can reach several hundred megapascals. This causes a volumetric change of the 

whole electrode, even if the Young’s modulus of carbon (graphite) is in the range of gigapascal. [138, 

139] One can expect that not the elastic stretching of the C-C bonds is the reason for the expansion. The 

simulation of the pressure values, which is based on a constant-voltage grand-canonical ensemble with 

hard spheres as ions, a dielectric constant, a pair of hard electrode planes, constant surface charge, and 

a Coulombic energy term between the ions, may contain mathematical artifacts due to those 

simplifications. [139, 140] However, the electrostatic energy based on Coulombic interaction in 

combination with thermodynamic terms, which are based on surface charge density, ion density and the 

pore size reveal the influence of those parameters on the pressure needed to create an electric double-
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layer in narrow pores at an applied voltage. [140] The results of these simulations show a decrease in 

pressure for higher dielectric constants since the electrostatic force is better shielded in those cases and 

the repulsion force of ions with the same charge is decreasing and buffered by the electrolyte. Further, 

an increased pressure is related to the ion size and pore size, whereas the maximum increase was 

calculated for pore sizes in the range of the ion size. However, for all calculations the pressure was 

increased after applying a voltage. [139] Those simple calculations reveal the importance of ion size, 

pore size, and applied voltage on the macroscopic behavior of the electrode material. A macroscopic 

change in volume will happen when the internal pressure in the micropores increases above the stress 

level that the material can handle without a change in strain. 

Regarding graphitic carbon there are three charge-induced volumetric changes possible: First, the 

intercalation, as described earlier, with an increase in the c-axis and a volumetric change of approx. 10 %. 

[128] Second, the change in the intralayer C-C bond length based on quantum-mechanical effects due 

to electron or hole injection with approx. 1.5 % change in volume. [141] Third, the reduced surface 

tension leads to an expansion of the electrode material with a linear correlation between surface charge 

and strain. [142] This effect has been measured, but the macroscopic volume changes below 0.05 % 

show an almost negligible effect. [143] A direct comparison between intercalation and the 

electrosorption-induced strain shows a large expansion (>5 %) for ion intercalation at potentials far from 

the point-of-zero charge (pzc) and a less pronounced expansion (<3 %) for electrosorption, but the 

expansion begins already at low applied potentials. [127] In EDLCs there is a two-phase interaction 

between the porous carbon electrode and the ions inside the electrolyte. The finite-sized ion together 

with possible solvent molecules is attracted into nanoconfinement to compensate the surface charge.  

Usually the expansion for EDLCs at negative potentials is larger compared to positive potentials, even at 

the same charge. [144] This non-symmetrical behavior is shown for many types of carbons and 

electrolytes. [32, 40, 100, 144-147] Possible explanations for this asymmetry can be based on two main 

factors. Firstly, the different size of ions in the double-layer, where often cations are larger than anions, 

what results in greater pressure for larger ions in the same pore size. [139] Secondly, the change in C-C 

bond length according to quantum-mechanical effects causes a contraction of up to 1.5 % for hole 

injection (positive charging) and up to 1.5 % expansion for electron injection (negative charging). [141] 

Yet, several other competing mechanisms like electrowetting, ion desolvation, and steric effects, which 

are functions of the state of charge and are further influenced by the amount of functional groups, make 

a precise prediction of carbon swelling impossible at present. [32, 40, 105, 148] As an example, activated 

carbon (type YP80-F) bound with 5 mass% polytetrafluoroethylene (PTFE) was measured in an organic 

electrolyte (one molar tetraethylammonium tetrafluoroborate in acetonitrile, 1 M TEA-BF4/ACN) 

(Fig. 14B). The predominately rectangular shape of the CV confirms a near ideal double-layer behavior 

during charging and discharging, whereas the quantum capacitance at higher/lower potentials leads to 



25 

 

the butterfly-shaped CV. [108] The asymmetric expansion with an increase in strain of 0.75 % at -1 V vs. 

carbon and 0.15 % at +0.9 V vs. carbon does not directly correspond to the very symmetric CV. However, 

considering the different size of cation (TEA+ with 0.67 nm diameter) and anion (BF4
- with 0.45 nm 

diameter) and the aforementioned possible effects, the total strain signal is a sum of many parameters. 

[33] Earlier publications predicted, for example, a 
𝑑𝑙

𝑙0
∝ 𝜎2 [138, 140, 145] dependency of expansion (

𝑑𝑙

𝑙0
 ) 

and surface charge (σ) or, based on calculations according to the Donnan model, a dependency of        

𝑑𝑙

𝑙0
∝ 𝜎

4
3⁄ . [149] The measured strain in comparison to the model prediction shows no direct overlapping 

between the different simulation results and the measured points (Fig. 14C). Summarizing, the swelling 

of carbon when applying a potential is depending on many different parameters and a precise prediction 

is not currently possible. 

 

 

2.3.6 Electrochemical quartz-crystal microbalance 

The quartz-crystal microbalance (QCM) is a tool for measuring small masses with the shift of the 

resonance frequency (f) of a quartz crystal. The linear correlation between a rigidly attached mass (m) 

on the quartz-crystal and the change in frequency (df) was formulated by G. Sauerbrey [150] in 1959 

according to Eq. 19 

 𝑑𝑓 = 𝑘 ∙ 𝑚 (19) 

with the characteristic coupling constant (k), which only depends on the type of the quartz-crystal and 

natural constants. This correlation is valid in vacuum or air. For application in a liquid, i.e., water, the 

generated shear wave from the crystal surface towards the liquid needs to be considered. The relation 

between df and the density (ρ) and the kinetic viscosity (μ) can be drawn as (Eq. 20) 

 
𝑑𝑓 = 𝑘 ∙ √

𝜌𝐿𝜇𝐿

𝜌𝑄𝜇𝑄
 (20) 

with the density of the liquid (ρL) and the crystal (ρQ) as well as the viscosity of liquid (μL) and crystal (μQ). 

[151] The first in situ electrochemical measurement with a QCM (so-called EQCM) was published in 1969 

to monitor the electrodeposition of metals. [152] This method was investigated by many groups and the 

influence of an applied voltage on a material deposited on the quartz crystal has a dominant role. [153-

155] Applying knowledge of the mass of ions and solvents on the raw EQCM data improved 

understanding of ion fluxes in supercapacitors [156-161], batteries [162, 163] and 2d materials. [164]  

Further investigation opened the next step in applying EQCM to probe viscoelasticity. This was possible 

by considering the dissipation of the signal and is established as EQCM-D (EQCM with dissipation 

monitoring). By using this technique, the excitation of the quartz-crystal stops immediately and the 

decay of the signal is investigated. [165, 166] The dissipation factor, which is the exponential decay of 
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the amplitude, contains information about viscoelasticity, slipping of active material on the surface, and 

more. [166, 167] 

The understanding of interfacial phenomenon and the correlation with the impact on the EQCM-D signal 

helped us to develop a new approach; the use of overtones in the quartz-crystal resonance together 

with a model fit to the shape of peak and dissipation made hydrodynamic spectroscopy possible. [168, 

169] With this approach the penetration of a shear wave with a certain wave length was correlated to 

the battery performance. The frequency is connected to the penetration depth (δn) of the shear wave, 

according to Eq. 21 

 
𝛿𝑛 = √

𝜂

𝜋𝑛𝑓0𝜌
 (21) 

with η and ρ of the electrolyte, the odd overtone numbers from 3 to 13 (n), and the fundamental 

resonance frequency (f0). [168]  

 

Figure 15. Three stages of loading of an EQCM with (A) a dense layer of active material, which is only 

gravimetric active and has no change in dW, (B) onset of hydrodynamic activity for higher loadings with 

a still fully electrochemical active electrode, and (C) creation of secondary structures, which are no longer 

electrochemical active (dead mass), with huge impact on the dissipation signal and dependency of the 

overtone number (reproduced from Ref. [168] with permission from Nature Publishing Group) 
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The hydrodynamic model is based on a combined mathematical approach with Darcy’s law [170] and a 

special solution of the Navier-Stokes equation. [171] In general, the fitting parameters are the average 

thickness of the hydrodynamic active porous layer (h), the characteristic permeability length (ξ) which is 

linked to the porosity of the electrode layer, the crystal surface coverage (q), the average radius of the 

semi-spherical non-porous aggregates (r, secondary structure, see 3 in Fig. 15C), and the density. [168, 

169] 

The changes of resonance frequency (df(n)) and resonance width (dW(n)) as functions of the overtone 

number made a non-gravimetric measurement of the electrode behavior possible (Fig. 15): We 

conducted EQCM measurements with binder-free LMO particles attached via air-brushing on the gold-

coated quartz-crystal. The measurements start with fully lithiated LMO and during one cycle with 

constant sweep rate the LMO is delithiated and fully lithiated again at the end (df=0). A calculated 

frequency shift according to the measured charge, meaning Li-ion extraction and insertion, is plotted 

with dashed black lines. Very thin layers with free space between the particles result in an exclusive 

gravimetric signal df and no measurable change in dissipation dW (Fig. 15A, 0.16kHz is indicating the 

change in resonance frequency after spray coating the LMO particles on the gold-coated crystal). For 

higher loadings, as soon as a dense layer of active material covers the surface the dissipation signal dW 

changes over time, which is the onset of a possible hydrodynamic spectroscopy measurement. Since the 

hydrodynamic layer is still quite small, the dissipation signal remains independent of n (Fig. 15B). Going 

to even thicker coatings will lead to the creation of dead mass, which is not electrochemically active. This 

shows the frequency shift which is for all n smaller than the expected shift (dashed black line). However, 

the dW signal is now highly dependent on n, and hydrodynamic spectroscopy can be applied (Fig. 15C). 

The dependency of the dW signal on n is related to the penetration depth of the shear wave trough the 

porous electrode. For low overtones, δn is large, and water in pores smaller than δn is trapped. The higher 

overtones have smaller δn values and for those dW is different since the water is no longer trapped but 

hydrodynamic active. 

This new spectroscopy tool helped us to understand in situ the dependency of electrochemical behavior 

of battery materials on mechanical stability. [172] A further development was the implementation of 

surface acoustic waves and their influence on the mechanical rigidity of the attachment between active 

material and crystal surface to the model. [173] Using LFP as an intercalation-active material with either 

small particles (average size 300 nm) or larger particles in an aqueous electrolyte and a soft (sodium 

carboxymethylcellulose, NaCMC) or a rigid (polyvinylidene fluoride, PVdF) binder, the influence of 

particle size and binder rigidity was investigated, showing: (1) Small LFP particles in a rigid binder matrix 

(PVdF) yield exclusive hydrodynamic interaction; no measurable energy dissipation detected. (2) Small 

LFP particles in a soft binder matrix (NaCMC) shows viscoelastic effects, and shear storage and loss 

moduli can be fitted. It is also possible to get information about the effective electrode thickness, which 
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is important since NaCMC swells when getting in contact with water. [169] (3) Large particles slide over 

the surface, even with the rigid PVdF binder. [173] These results help to understand the ageing 

mechanisms based on binder properties of a composite battery electrode and led us to the combination 

of the new EQCM-D approach and eD (see Ch. 4.6). [137] 
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3. SCOPE 

This dissertation is focused on the influence of structure and design of batteries and supercapacitors, 

which are electrochemical energy storage devices. In the first part, the electric double-layer capacitor 

devices are investigated with studies about the role of conductive additives (Ch. 4.1), the influence of 

pore size and ion size on the capacity (Ch. 4.2+4.3), the understanding of ion electrosorption in carbon 

nanopores (Ch. 4.4), and the influence of micropores on the volumetric expansion of carbon electrodes 

during cycling (Ch. 4.5) (Fig. 16). 

 

Figure 16. Influence of material, electrolyte, binder, and conductive additive on an electrochemical 

energy storage device and the conjunction between the parts on the performance of the device. 

 

The performance of an EDLC attributes to three main factors: (1) The energy storage capacitance, which 

is measured in F/g or F/cm3 with gravimetric and volumetric normalization respectively. [174] (2) The 

rate handling or power performance describes the ability of the system to be (dis-)charged with higher 

loads and the capacitance retention is measured versus the specific current/load. [175] (3) The long-time 

stability, which is measured either with cycling by charging and discharging at a specific load (often 

1 A/g) through the whole potential window or voltage floating, where the potential is held at the 

maximum potential window for a certain time. The latter is a faster technique for EDLCs to gain 

information about ageing since the system is held at the maximum potential at which degradation 

reactions of the electrolyte or/and electrode material are most likely to occur. [176]  

EDLCs often contain activated carbon (AC) with a high surface area as the active material. This ACs are 

highly activated, but the electrical conductivity is low in comparison to highly graphitized carbons like 
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carbon black. However, carbon black or other highly conductive carbons are still bad conductors in 

comparison to metals. Further, most highly carbon blacks suffer from a low specific surface area (SSA). 

Hence, the use of high conductive and low SSA carbons as conductive additive in the AC particles matrix 

is the best compromise for high energy density and good rate capability. [177-181] In this study (Ch. 4.1), 

we investigated two different ACs with either a micro or a micro-mesoporous pore size distribution and 

four conductive additive materials, all produced in industry. The addition of conductive additives at low 

rates decreases the capacitance due to the low SSA of the additive. However, an increase of 20% in 

capacitance can be achieved when using an optimized amount of conductive additives (between 2.5-

5 mass%). [177, 179, 181] Regarding the long-time stability in our study, any conductive additive should 

be avoided. The performance for almost all kinds of additive in the AC electrodes was reduced, in the 

worst case more than 10 % less capacitance retention after 100 h floating compared to the bare AC 

electrodes.  The explanation for the inferior long-time stability of mixed carbon electrodes is based on 

acidic and basic surface functional groups. Especially at the contact area of different surface groups the 

generation of water might be possible and water in general is highly critical for the stability of the 

electrolyte at an applied voltage. [120-123]  

In the next chapter (Ch. 4.2), the focus is the maximization of energy storage capacity with non-aqueous 

electrolytes and the influence of pore size dispersity on the capacitance. The scientific controversy about 

the correlation between pore size and SSA normalized capacitance (F/m2) with either the concept of an 

increase in capacitance if the pore size decreases [182] or the concept of a constant capacitance and an 

independency of the pore size [183] was the motivation for this work. In the first part a detailed 

discussion about the deconvolution of gas sorption data into pore size distributions (PSDs) and specific 

surface area (SSA) was done (see also Ch. 2.3.1).  Both concepts could be reproduced with one single 

data set, depending on the normalization. An increase in capacitance was calculated when using the 

BET-SSA and a constant capacitance was calculated using the DFT-SSA. Both concepts only seemingly 

contradict each other; instead, the dispute is overcome when combining carbon dioxide adsorption data 

for micropores smaller than 1 nm with the PSD generated from nitrogen sorption for pores between 1-

30 nm and considering the whole PSD, not an average value. Further, a pore size incremental analysis 

made the identification of specific ranges of pore widths for maximized energy storage possible. [33] 

These core results are presented in a Viewpoint publication (Ch. 4.3). [23] A comprehensive 

understanding of the correlation of pore size and capacitance is found when properly measuring the 

pore size distribution, considering the accessibility of finite ions into pores, and mark the pore size 

dispersity when using average values. [23] Finally, the surface-normalized capacitance is increasing when 

most of the pores are in the range of the bare ion size when the system is equilibrated at slow rates.  

Until now, the research was focused on the measurement of carbon electrodes in different electrolytes 

with standard electrochemical test routines and the explanation of phenomena based on detailed 
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characterization of the materials. The following chapters are based on in situ measurements, where 

electrochemical cells were engineered to simultaneously measure structural changes during an 

electrochemical measurement. According to the type of measurement, a specific characteristic length 

scale is investigated, for example, the structural changes with XRD in a typical probing range of 0.05-50 

nm or dilatometry (eD) with 20 nm-10 µm (Fig. 17). The combination of techniques with different length 

scales allows to quantify and understand the influence of microscopic changes in the macroscopic 

behavior.  

 

Figure 17. Different in situ measurement techniques and their characteristic length scale. 

 

The first study with this approach is a combination of EQCM and eD to understand the mechanisms of 

electrosorption of ionic liquids in carbon nanopores (Ch. 4.4). [32] Combining both in situ methods, the 

correlation of the charging behavior on particle level (EQCM) and electrode level (eD) was possible. The 

study revealed the discriminative behavior of large ions over smaller ions at an applied voltage where 

more smaller ions are exchanged by fewer larger ions. Depending on the size ratio an increased surface 

charge can lead to a macroscopic volume increase or decrease. Moreover, at higher potentials, the 

electrosorption changes to a preferred adsorption of ions with the opposite charge than the surface 

charge due to depletion of ions with the same charge sign. Yet, a crowding of pores with ions of the 

same charge is breaking the electrical neutrality of the electrolyte because of the Coulombic repulsion 

of same charges ions. However, the break of Coulombic ordering of ionic liquids in nanopores was also 

confirmed by other publications. [184-186] Further, the interaction between micropore wall and IL ion is 

strong enough to change the coordination of the ions, as drawn in Ch. 4.4. [187-189] A similar behavior 

was found with different techniques for a solvent-containing organic electrolyte. [190, 191] 

In the next chapter, we combine in situ SAXS with eD to understand the importance of micropores on 

the macroscopic swelling of carbons in an aqueous electrolyte (Ch. 4.5). After a successful introduction 

of in situ SAXS for tracking ion movement in highly diluted aqueous electrolytes [101] and for 

concentrated aqueous electrolytes in a supercapacitor system [98, 99] in activated carbons, the 

measurements were focused on ordered mesoporous carbons. [100] We used a hierarchical carbon with 
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ordered mesopores between the struts and a tunable amount of micropores inside the struts. Combining 

in situ SAXS with eD, we tracked the expansion and shrinkage on the nanometer scale of the electrode 

with the shift of the (10) peak in the SAXS signal and on the macroscopic scale with the displacement in 

eD. The measurements revealed an increased expansion and a more pronounced asymmetry in 

expansion with higher micropore volume. [192]  

At this point of the thesis the investigation of a new class of layered materials, which is called MXenes, 

was done. [91, 193] Those pseudocapacitive materials are measured in ionic liquids. MXenes are based 

on ternary carbides in the MAX phase, where M is an early transition metal, A is an A-group element like 

aluminum, silicon, or tin, and X stands for carbide, nitrogen, or carbonitride. [194] The selective etching 

of A with a strong acid, usually hydrofluoric acid, results in a two-dimensional material with highly 

decorated surfaces and slight van-der Waals interaction between the layers. [195] This binder-free, free-

standing, two-dimensional material with very high conductivity is an ideal specimen to correlate 

expansion on the structural level measured with XRD with bulk expansion measured with eD. [196] To 

avoid any influence of solvation we used two different ILs. The spontaneous wetting of MXenes with IL 

can be explained by the vast amount of negative surface functional groups on the surface of MXene and 

it has been proved that surface functional groups enhance the wetting with IL. [189] Those generate a 

driving force for ions to move between the layers. [93, 197-200] Mostly cations are inserted and 

extracted, depending on the applied potential. [93, 199, 200] This charging mechanism was recently 

confirmed by a molecular dynamics simulation using EMIM-TFSI as electrolyte. [201] Further, the 

enhanced MXene performance after cation intercalation was also confirmed in an aqueous electrolyte. 

[202] 

In the last chapter, a commercial battery material is used with different binders in an aqueous electrolyte 

(Ch. 4.7). [137] After investigating the influence of conductive additives (Ch. 4.1), the role of the 

electrolyte and the material on the capacitance (Ch. 4.2-4.5), and the structural changes of MXenes after 

contact with an IL (Ch. 4.6), now the influence of binder on an intercalation material is focused. With the 

combination of eD and EQCM-D, the changes of the bulk electrode (eD) can be combined with 

knowledge from the particle size level (EQCM-D) for a stiff binder (PVdF) and a soft binder (NaCMC). 

The use of a battery material enhances the stress inside a composite matrix with a polymeric binder since 

the active material has an increase of about 6 vol% during lithiation. Furthermore, the first longtime eD 

measurement over several hundred cycles shows a direct influence of the binder properties on the 

ageing.   
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4. PAPER AND RESULTS 

The following paper are part of this cumulative dissertation: 

 

4.1  Performance Evaluation of Conductive Additives for Activated Carbon Supercapacitors in 

Organic Electrolyte 

4.2  Anomalous or Regular Capacitance? The Influence of Pore Size Dispersity on Double-layer 

Formation 

4.3  Increase in Capacitance by Subnanometer Pores in Carbon 

4.4  Quantitative Information about Electrosorption of Ionic Liquids in Carbon Nanopores from 

Electrochemical Dilatometry and Quartz Crystal Microbalance Measurements 

4.5  In Situ Measurement of Electrosorption-Induced Deformation Reveals the Importance of 

Micropores in Hierarchical Carbons 

4.6 Electrochemical in Situ Tracking of Volumetric Changes in Two-Dimensional Metal Carbides 

(MXenes) in Ionic Liquids 

4.7 In Situ Multi-Length Scale Approach to Understand the Mechanics of Soft and Rigid Binder in 

Composite Lithium Ion Battery Electrodes 

  



34 

 

4.1 Performance Evaluation of Conductive Additives for Activated Carbon 

Supercapacitors in Organic Electrolyte 

N. Jäckel a,b, D. Weingarth a, A. Schreiber a, B. Krüner a,b, M. Zeiger a,b, A. Tolosa a,b, M. Aslan a 

V. Presser a,b 

a INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany 

b Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany 

 

 

published in Electrochimica Acta. 2016. 191: p. 284-298 

 

 

 

Own contribution: 

Data generation 50 % 

Data analysis 90 % 

Interpretation 90 % 

Writing 75 % 

 

  



Electrochimica Acta 191 (2016) 284–298
Performance evaluation of conductive additives for activated carbon
supercapacitors in organic electrolyte

N. Jäckela,b,1, D. Weingartha, A. Schreibera, B. Krünera,b, M. Zeigera,b, A. Tolosaa,b,
M. Aslana, V. Pressera,b,*
a INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
bDepartment of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

A R T I C L E I N F O

Article history:
Received 2 July 2015
Received in revised form 21 November 2015
Accepted 10 January 2016
Available online 16 January 2016

Keywords:
supercapacitor
conductive additive
activated carbon
rate capability
performance evaluation
long-time stability

A B S T R A C T

In this study, we investigate two different activated carbons and four conductive additive materials, all
produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity:
one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous
pore structure. Electrochemical benchmarking was done in one molar tetraethylammonium
tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization
was carried out by varied techniques. This way, we correlate the electrochemical performance with
composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass
loading for different admixtures of conductive additives to activated carbon. The electrochemical rate
handling (from 0.1 A g�1 to 10 A g�1) and long-time stability testing via voltage floating (100 h at 2.7 V cell
voltage) show the influence of functional surface groups on carbon materials and the role of percolation
of additive particles.

ã 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Electrical double-layer capacitors (EDLCs, also known as
supercapacitors or ultracapacitors) are energy storage devices
with high efficiency and long lifetime durability [1–3]. Today,
EDLCs are used in electric vehicles, energy recuperation modules,
systems for uninterrupted power supply, or fast recharging energy
modules for high-power applications [4]. In EDLCs, energy storage
is accomplished via ion electrosorption in the electrical double-
layer (EDL) at the electrically charged interface of high surface area
carbon electrodes with an electrolyte, being typically aqueous or
organic solvent based [5]. Supercapacitors excel in high power
handling and longevity, but they show only a moderate energy
density compared to lithium-ion batteries [6,7]. The electrochem-
ical performance of supercapacitors is related to the pore structure
and high values are obtained for high surface area materials, such
as activated carbon (AC) [3,8,9]. In particular, carbons for super-
capacitor application must show a well-developed porosity and
pore size distribution, which have to be optimized for a certain
* Corresponding author.
E-mail address: volker.presser@leibniz-inm.de (V. Presser).

1 ISE member.

http://dx.doi.org/10.1016/j.electacta.2016.01.065
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electrolyte system with matching the ion size and pore size [10–
14].

Supercapacitor electrodes require mechanical binding of
carbon particles [9,15]. This is commonly accomplished by using
polymeric binders. Dependent on the polymer, typically 5-15 mass
% are needed to obtain film electrodes with sufficient mechanical
integrity [4]. To overcome the intrinsically low electrical conduc-
tivity of such film electrodes, conductive additives like carbon
black (CB) with a specific surface area (SSA) of typically below
100 m2g�1 and average primary particle sizes of about or less than
50 nm are added [16,17]. There are also carbon additives with a
high surface area, for example, some CBs show a SSA of ca.
1500 m2g�1while preserving a nanoscopic size of below 50 nm [4].
In addition to CB, also other materials have been explored as
conductive additive, such as carbon nanotubes, graphite nano-
particles, or carbon onions [16–22]. Typically, the literature reports
an optimum amount of conductive additive at around 5 mass%
[16,19,20]. When we consider that most carbon powders with a
high intrinsic electrical conductivity, especially those used as
conductive additives, have a much smaller SSA compared to typical
AC, we see that mixing results in a lower total surface area of the
electrode and a lower equilibrium capacitance [18]. However, to
enhance the power handling ability, admixing of conductive
additives still is a very practical approach.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2016.01.065&domain=pdf
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As shown previously, the admixture of conductive additives to
an AC particle matrix does not always improve the electrochemical
performance [18]. Especially at a low specific current, the decrease
in total SSA by adding a low surface material to AC leads to a drop in
gravimetric capacitance. Nevertheless, the electrical conductivity
can be increased with an improved capacitance retention at high
loads. Especially small additive particles with low tendency of
forming aggregates are preferred because of the facile dispersi-
bility and resulting distribution homogeneity within a composite
electrode (i.e. lowering the percolation threshold) [17]. The
optimal amount of conductive additive also depends on the target
application and the electrolyte system. For example, in 1 M
TEA-BF4/ACN (TEA-BF4 = tetraethylammonium tetrafluoroborate;
ACN = acetonitrile), the optimum amount of additive was found to
be 5 mass%, whereas in 1 M TEA-BF4/PC (PC = propylene carbonate)
the best performance was reached at 2.5 mass% admixture of
conductive additives like high and low SSA carbon black and
carbon onions [18].
Fig. 1. (A) Particle size distribution of the used carbon materials, derived by centrifugal s
upper to lower pattern. (C) Nitrogen sorption isotherms of the materials without binder
main graph). (D) Pore volume distribution of the two activated carbons. Below 1 nm, th
nitrogen sorption data.
Developing an improved supercapacitor with high power
handling cannot be accomplished without addressing device
lifespan. Typically, supercapacitors are assume to last over
hundreds of thousands of charge and discharge cycles [2]. The
actual lifespan strongly depends on the operation mode and
temperature [13,23]. Device lifetime also concerns the selection of
a suitable cell voltage window in which stable performance is
possible [24]. Even when only operating within the electrochemi-
cal stability window, carbon electrodes will age over time [23]. In
particular, the performance stability is challenged by electrochem-
ical degradation of surface functional groups on the carbon surface,
which can react with the electrolyte and decomposition products
may cause pore blocking [25]. A suitable way of accelerated aging
testing is voltage floating, which is in case of EDLC more adequate
to reveal limitations to the cell operation compared to voltage
cycling [23]. During floating testing, gas evolution can take place
resulting from the decomposition of the electrolyte [24,26].
Compared to many AC materials, higher ordered materials such
as CB tend to have a lower concentration of surface groups and a
edimentation analyses. (B) Raman pattern with increasing degree of ordering from
 (inset: zoom on CB3 and EX-G only; the inset has the same units on the axes as the
e data is derived by carbon dioxide sorption measurements and above 1 nm from
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higher affinity to yield better long-term stability [23,25]. Yet, the
role of surface functionalities on the performance stability in
composite film electrodes (i.e., AC plus conductive additive plus
polymer binder) remains poorly understood.

This study provides a comprehensive comparison of four
different conductive additives used for two kinds of activated
carbon electrodes. Electrodes with up to 10 mass% of conductive
additive were investigated by structural measurements like
transmission electron microscopy (TEM), elemental analysis
(EDX), streaming potential, and gas sorption analysis. The
electrochemical performance was measured via rate capability
in galvanostatic mode. Long-time stability tests were carried out
over 100 h of voltage floating at 2.7 V.

2. Experimental description

2.1. Electrode materials and preparation

Two commercial steam-activated coconut-derived activated
carbon powders (AC) were used, namely type YP-50F and YP-80F
(Kuraray Chemicals Co., Japan), called AC1 and AC2, respectively.
Fig. 2. TEM micrographs of the m
Different commercial conductive additives were used: high surface
area carbon black BP2000 (Cabot, USA; called CB1), medium SSA
carbon black Ensaco350 (CB2) and low surface area carbon black
Super C65 (CB3). The latter two were provided by Imerys Graphite
& Carbon, Switzerland. Another additive was an experimental
expanded graphite (EX-G). The conductive additives were added to
AC at an amount of 2.5 mass%, 5 mass%, and 10 mass% (“100%” with
respect to the total carbon mass without binder).

For electrode preparation, a uniform distribution of AC and
additive components was obtained by mixing the materials as an
ethanolic slurry. For this, 1 g of carbon powder (i.e., activated
carbon plus conductive additive) was dispersed in 20 mL ethanol.
The slurry was sonicated for 15 min and then heated to 90 �C while
stirring to evaporate the ethanol until the slurry became paste-like
consistency. 5 mass% of dissolved polytetrafluoroethylene (PTFE,
60 mass% solution in water from Sigma Aldrich, USA) were added
as binder (for electrodes only composed of conductive additive
materials: 10 mass% PTFE). The resulting material was rolled with a
rolling machine (MTI HR01, MTI Corp., USA) to a 200 � 20 mm thick
free standing film electrode and finally dried at 120 �C at 2 kPa for
24 h before use.
aterials used in this study.
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2.2. Cell preparation, electrical, and electrochemical measurements

Sheet resistance measurements were made with a custom-built
spring-loaded four-point probe with blunt gold contacts (tip
diameter: 1.5 mm, tip distance: 3 mm). For electrochemical testing,
we employed a custom-built polyether ether ketone (PEEK) cell
with spring loaded titanium pistons as a three electrode system
described elsewhere [27]. Electrode discs (same mass and material
for the working- and counter electrode) with 12 mm diameter and
200 � 20 mm thickness were punched out of the free standing film
electrode (total mass of carbon in a symmetrical cell was
20 � 5 mg) and separated by a glass-fiber separator (GF/A from
Whatman, USA) and placed on a carbon-coated aluminum foil
current collector (type Zflo 2653 from Coveris Advanced Coatings,
USA) [28,29]. The assembled cells were dried at 120 �C for 12 h at
2 kPa in an inert gas glove box (MBraun Labmaster 130, O2 and
H2O < 1 ppm) and, after cooling to room temperature, vacuum-
filled with 1 M tetraethylammonium tetrafluoroborate (TEA-BF4)
in electrochemical grade acetonitrile (ACN) purchased from BASF,
Germany (i.e., water content <20 ppm).

Electrochemical measurements were carried out using a
potentiostat/galvanostat VSP300 from Bio-Logic, France, with
cyclic voltammetry (CV) and galvanostatic cycling with potential
limitation (GCPL). CVs were recorded in full cell mode at 10 mV s�1

in the potential range from 0-2.5 V cell voltage. In GCPL mode, the
specific current was increased in several steps from 0.1 A g�1 to
10 A g�1 with 10 s resting period between charging/discharging to
access information on the IR-drop.

The gravimetric capacitance during discharging was calculated
via Eq. (1):

Csp ¼ 4 �
R tend
t0

Idt
� �

U
� 1
m

ð1Þ

with specific capacitance Csp, time t (t0: starting time of
discharge, tend: end of discharging time), IR-drop corrected cell
voltage U, and total mass of the electrodes m (i.e., considering
carbon and the binder). For every type of electrode composition,
four electrodes were prepared and these two cells were tested
individually to calculate mean values. Long-time stability tests
were made after rate capability test in galvanostatic mode at 2.7 V
cell voltage for 100 h with measuring capacitive retention every
10 h at 1 A g�1 with cell potential 0-2.5 V.

2.3. Porosity analysis

Nitrogen gas sorption measurements were carried out with an
Autosorb iQ system (Quantachrome, USA) at the temperature of
liquid nitrogen (-196 �C) after outgasing (at 150 �C for 10 h for
electrode samples and at 300 �C for 24 h for powder samples) at
about 102 Pa. The relative pressure range was varied from 510�7 to
1.0 in 68 steps. The specific surface area (SSA) was calculated with
the ASiQwin-software using the Brunauer–Emmett–Teller (BET)
equation [30] in the linear relative pressure range 0.01-0.2. We also
Table 1
Raman data fitted with two Lorentzian peaks, one for the D-band and one for the G-b

Material D-mode position (cm�1) G-mode position (cm�1) F

AC1 1338 1596 1
AC2 1337 1599 1
CB1 1339 1589 2
CB2 1341 1589 1
CB3 1350 1588 1
EX-G 1350 1581 
calculated the SSA and pore size distribution (PSD) via quenched-
solid density functional theory (QSDFT) with a slit model and pore
size between 0.56 and 37.5 nm [31]. Values for the total pore
volume correspond to p/p0 = 0.95. Carbon dioxide gas sorption
measurements were carried out at 0 �C in the relative pressure
range from 1�10�4 to 1�10�2 in 40 steps. SSA and PSD values were
calculated for pore sizes between 0.3 and 1 nm with the ASiQwin
software using nonlocal density functional theory (NLDFT) for CO2

sorption [32,33].

2.4. Effective density and particle size distribution analysis

The particle size distribution of carbon powders was measured
using centrifugal sedimentation analysis (LUMiSizer from LUM
GmbH, Germany). In a typical measurement, the powder was
dispersed in ethanol (0.25 mg mL�1), sonicated for 30 min, and
measured at 200-4000 rpm. A dispersion in ethanol was chosen for
comparability with the situation during actual electrode prepara-
tion (which involved ethanolic suspensions). The starting trans-
mission for all samples was 25-60%. The d90 and d50 values denote
the particle size in the cumulative particle size distribution
encompassing 90 vol% and 50 vol%, respectively.

For measurements of the effective electrode density, an as-
prepared 5 � 5 cm2 sized film electrode was post-compacted with
1 kN cm�2 to ensure a constant compaction level and analyzed
gravimetrically. The thickness after compaction was measured at
four points with a micrometer caliper (Digi-Met from Helios-
Preisser, Germany).

2.5. Structural characterization

Samples for transmission electron microscopy (TEM) were
dispersed and sonicated in ethanol and placed on a copper grid
with a thin lacey carbon film (Gatan Inc., USA). TEM images were
recorded with a JEOL 2100F system at 200 kV in vacuum. EDX
spectra of carbon powders were measured with a Thermo Fisher
Scientific system placed in a JSM-7500F from JEOL, Japan. Carbon
powder samples were placed on a conductive carbon tape and
spectra were recorded at 50 different positions for each sample
with 10 kV acceleration voltage. The composition of the composite
electrodes was measured by energy dispersive X-ray spectroscopy
(EDX) mapping using a X-Max-150 detector from Oxford Instru-
ments attached to the SEM chamber. Using an accelerating voltage
of 5 kV and an emission current of 10 mA, the mapping was
measured and the average of 3 values were calculated. The aged
(positive) electrodes were several times washed in neat acetoni-
trile to remove the salt from the electrolyte inside the glovebox.
Afterwards they were dried in vacuum and put into the SEM
chamber.

Raman spectra of the raw materials were recorded with a
Renishaw inVia Raman system using an Nd-YAG laser (532 nm)
with 0.2 mW power at the sample’s surface. The spectral resolution
of ca. 1.2 cm�1 corresponds to a grating with 2400 lines mm�1 and
and.

WHM D-mode (cm�1) FWHM G-mode (cm�1) Integral ID/IG ratio

40 65 2.2
61 76 2.1
12 100 2.1
45 78 2.0
73 89 1.8
20 45 0.1



Table 2
Specific surface area of used powder materials. BET-SSA and QSDFT-SSA, pore volume and average pore size.

Material BET SSA (m2 g�1) QSDFT SSA (m2 g�1) Pore volume (cm3g�1) Average pore size (nm)

AC1 1681 1560 0.78 0.9
AC2 2347 1756 1.15 1.6
CB1 1389 1272 1.92 19
CB2 770 715 0.77 14
CB3 65 56 0.15 27
EX-G 20 21 0.10 46

Table 3
Chemical analysis via EDX shows the different amount of carbon and oxygen in
powder samples.

Material Carbon
(atom%)

Oxygen
(atom%)

AC1 97.4 � 0.5 2.4 � 0.5
AC2 97.8 � 0.5 2.0 � 0.5
CB1 98.1 � 0.1 1.3 � 0.1
CB2 97.9 � 0.1 1.9 � 0.1
CB3 98.9 � 0.1 0.9 � 0.1
EX-G 98.8 � 0.6 1.0 � 0.5
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the spot size on the sample was in the focal plane ca. 2 mm
(numeric aperture = 0.9). The acquisition time was 30 s and
50 accumulations were recorded. Peak analysis and peak fitting
were performed assuming one Lorentzian peak for each the D-
mode and the G-mode.

Streaming potential measurements were made in a Mütek PCD
(BTG Eclépens, Switzerland) with 100 mg carbon powder dissolved
in 30 mL DI water. Suspensions were first sonicated for 10 min,
followed by a homogenization step of 48 h on a moving table. Prior
to the experiment, the starting pH value was set to 9.5 with
aqueous 50 mM NaOH solution, which was corrected after another
10 h homogenization on a moving table. For each measurement
20 mL suspension was titrated to an end pH value of 3 by using
50 mM HCl.

3. Results and discussion

3.1. Structure, porosity, and chemistry of the powder materials

Particle size analysis of the carbon materials is a first important
characterization method. We chose two common commercial-
grade steam-activated coconut-derived carbons with anisomeric
shape [18] and typical agglomerate size of several micrometers
(d50� 2 mm, d90� 4 mm; Fig. 1). This is a typical value for AC
materials used for supercapacitor electrodes [34]. The high SSA
carbon black CB1 showed aggregates and particle clusters in the
range of 1-10 mm (d50 = 4.9 mm, d90 = 7.4 mm), whereas these
values are in contrast to the much smaller primary particle size
in the range of 20-50 nm seen in the TEM images (Fig. 2).
CB2 shows no cluster formation (d50 = 0.1 mm, d90 = 0.2 mm) and
CB3 forms much smaller clusters below 1 mm (d50 = 0.2 mm,
d90 = 1.1 mm) even if the primary particle size is about 100 nm,
according to TEM (Fig. 2). The flake size of EX-G is in the
micrometer range (d50 = 4.6 mm, d90 = 7.9 mm).

The materials also differ in the degree of carbon ordering, as
evident from Raman analysis (Fig. 1B) and TEM micrographs
(Fig. 2). Raman spectra are characterized by the D-mode between
1337 and 1350 cm�1 and the G-mode between 1581 and
1599 cm�1. The G-mode is related to the bond stretching of sp2-
hybridized carbon atoms in rings and chains according to the zone
center E2g mode [35]. The double-resonant D-mode, or “disor-
dered” mode, arises due to the breathing of six-fold rings, but is
only Raman active in the presence of defects, such as related to
curvature, edges, heteroatoms, or vacancies [36]. The graphite
flakes (EX-G) demonstrate the Raman spectrum of nearly ideal
graphite with a G-mode at 1581 cm�1, sharp peaks, and a very
small D-mode, resulting in an integral intensity ratio ID/IG of 0.1
(Table 1). The G-mode position varies between 1588 and
1589 cm�1 for the different carbon blacks used in this study
(CB1-CB3). Compared to ideal graphite, this value is slightly shifted
to larger values, but still lower compared to nanocrystalline
graphite at �1600 cm�1 [37]. This indicates the existence of
nanocrystalline domains in the material combined with an
amorphous carbon phase. The presence of an amorphous carbon
phase is supported by the broad transition between the D- and G-
mode, leading to a broad signal at �1520 cm�1. The existence of
nanocrystalline carbon is demonstrated by the large ID/IG areal
intensity ratios with similar values between 1.8 for CB3 and 2.1 for
CB1 [37]. TEM shows small parts with a nanocrystalline nature for
CB2 and CB3, whereas CB1 is mostly characterized by disordered
carbon and only few crystalline areas (Fig. 2). The Raman spectra
for the two activated carbons (AC1 and AC2) present a similar ID/IG
ratio of 2.1 and 2.2, indicative for nanocrystalline carbon [37]. The
nanocrystalline nature of the materials is also shown by TEM, with
small crystalline parts connected by disordered carbon, which is in
agreement with literature [38].

Using Raman spectroscopy and TEM, we can assign the highest
degree of carbon ordering to EX-G [35]. Among the carbon blacks,
CB1 presents the lowest degree of carbon ordering with distinct
bond-length variation and distortion. Both AC materials show a
distinct nanocrystalline nature indicated by a G-mode slightly
smaller than 1600 cm�1 (nanocrystalline carbon), but smaller
FWHMs of the G-mode than CB. Thus, both activated carbons
present a higher degree of carbon ordering than the carbon blacks
but lower than exfoliated graphite (EX-G).

The nitrogen sorption isotherms show a characteristic type I(a)
shape for AC1 and type I(b) for AC2, which is related to
microporous materials with pores smaller than 1 nm or 2.5 nm,
respectively [39], with BET-SSA of 1681 m2g�1 (QSDFT-SSA
1560 m2g�1) for AC1 powder and a larger surface area for
AC2 with BET-SSA of 2347 m2g�1 (QSDFT-SSA 1756 m2g�1).
CB1 and CB2 display a mixture of type I(b) isotherm, related to
the internal microporosity, and type IV(b) isotherm (mesopores)
with a slight H4 hysteresis indicative of a predominantly
microporous and mesoporous material and QSDFT-SSA of
1272 m2g�1 and 715 m2g�1, respectively (Fig. 1C) [39]. The
isotherms of CB3 and EX-G are characteristic for non-porous
carbons with very low SSA of less than 100 m2g�1 (Fig. 1C and
Table 2) with a type II shape and a H3 hysteresis. The very high
nitrogen adsorption of CB1 with a specific pore volume of
1.92 cm3 g�1 is related to its high internal porosity and the large



Fig. 3. (A) Streaming potential of all used carbons in pH range from 9.5 to 3 with
isoelectric point at potential zero and (B) amount of needed HCl solution to set the
pH value.
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amount of interparticle voids due to the primary particle size of
about 50 nm, as shown by TEM (Fig. 2). The same effect can be seen
for CB2. The primarily microporous AC samples show the same
amount of (ultra) micropores, as seen from CO2 sorption data
(Fig. 1D), but AC2 has much more micro-mesopores in the range of
1.5-5 nm in contrast to AC1. As shown in Table 2, this is a result of
the higher total SSA and a much higher pore volume (1.15 cm3 g�1)
of AC2 (1756 m2g�1 QSDFT-SSA) versus AC1 (1560 m2g�1 QSDFT-
SSA, 0.78 cm3 g�1).

EDX measurements confirm the presence of oxygen, as seen
from the data shown in Table 3. Two groups of materials are
distinct with respect to oxygen content, namely very pure carbons
like CB3 and EX-G with more than 98 atom% carbon, and the other
samples with higher amount of oxygen. Oxygen in carbon
materials is mainly resulting from the oxygen containing surface
groups. The nature of the latter can be investigated by streaming
potential measurements. One can see a high amount of acidic
groups (carboxylic, lactonic, and phenolic) on AC1, AC2, and EX-G,
indicated by the negative potential in the measured pH range
from 8.5 to 3 and an isoelectric point below 4 (Fig. 3A and B).
These acidic groups are protonated at low pH values (pH 3-5) and
loose a proton by increasing the pH to neutral and basic regimes,
resulting in a negative surface charge of the carbon [40]. The data
for CB1 show the smallest variation in potential values ranging
from +250 mV to -250 mV in the measured pH range and an
isoelectrical point at neutral pH 6 (Fig. 3A). The high SSA carbons
AC1, AC2, and CB1 have also the highest HCl uptake to decrease
the pH value from 8.5 to 3 in contrast to the low SSA carbons
CB3 and EX-G, which are very close to the uptake of the blank
probe (Fig. 3B). The total amount of surface groups seems to be
related to the total SSA of the material (Table 2) [41]. The
streaming potentials of CB2 and CB3 have an isoelectrical point at
pH 8.5 or higher and the values gradually increase to about
500 mV at pH 3 (Fig. 3A). The positive streaming potential in the
acidic range (pH < 7) is indicative for alkali groups like carbonyl
groups and these groups accept another proton in acidic regime.
The settle point at �pH 6 in Fig. 3B is related to the neutralization
of NaOH with HCl.

3.2. Density, electrical conductivity, and pore size analysis of
electrodes

The effective film electrode density was determined for 5 mass%
PTFE-bound electrodes after compaction (Fig. 4A and C). Without
any conductive additive, the density of free standing AC electrodes
differs greatly: 629 � 4 mg cm�3 for AC1 and 439 � 7 mg cm�3 for
AC2. The major difference in density is related to the much higher
pore volume of AC2 in contrast to AC1 (Table 2). The electrode
density remains constant when admixing CB3 or EX-G to AC1 in the
range of 624-639 mg cm�3 (Fig. 1A). For admixture of CB1, the
electrode film density decreases by 5-10% to values of 569-
601 mg cm�3 since CB1 forms big agglomerates and the filling of
void volume does not occur. The electrode density increases in case
of CB2 to 710 mg cm�3 for 10 mass% CB2 in AC1 (Fig. 4A). This
increase might be related to a unique fitting of CB2 particles in
AC1 interparticle voids, supported by the absence of agglomerate
formation in ethanol by centrifugation analysis (Fig. 1A); by this
virtue, CB2 can effectively fill the void volume between the AC
particles in contrast to all other additive particles. For AC2 and any
admixture of conductive additives, the electrode density remains
fairly constant with values from 425 mg cm�3 to 447 mg cm�3

(Fig. 4C).
The electrical sheet resistance (Fig. 4B and D) can be

significantly improved when admixing a conductive additive to
AC film electrodes (AC1: 11.4 �1 V cm, AC2: 9.0 � 0.5 V cm).
Compared to AC electrode films, electrodes composed only of
the conductive additive (with 10 mass% PTFE) show a much lower
electrical resistance of 0.3–0.9 V cm (Fig. 4B and D, 100%). All
conductive additives show a comparable trend of reduced
resistance with increased loading with conductive additive. For
quite all additives, there is a drop in sheet resistance of 25-35%
with 2.5 mass% additive content. This can be explained by high
intrinsic conductivity of the additives and by a larger number of
particle-particle-contacts, resulting in a higher carbon-carbon
contact area. Especially, CB2 admixture to AC1 at 2.5 mass%
additive content strongly reduces the sheet resistance from
11.4 �1 V cm (constituent AC1) to 3.1 �0.3 V cm with a 5%



Fig. 4. Density of PTFE-bound composite electrodes with conductive additive admixture in (A) AC1 matrix and (C) AC2 matrix. Sheet resistance of the used composite
electrodes with (B) AC2 and (D) AC1. The amount of additive admixture is displayed with the numbers on the x-axis. “100%“ for AC1 and AC2 refers to the sample with
constituent activated carbon (i.e., no conductive additive).

Table 4
Specific surface area of electrodes (BET-SSA and QSDFT-SSA), pore volume and average pore size of all used materials and composites. All values in percent are related to mass-
percent. The average pore size denotes the volume-weighed pore size average.

Material BET SSA (m2 g�1) QSDFT SSA (m2 g�1) Pore volume (cm3 g�1) Average pore size (nm)

AC1 + 5% PTFE 1481 1320 0.67 0.8
AC1 + 2.5% CB1 + 5% PTFE 1392 1302 0.64 1.6
AC1 + 5.0% CB1 + 5% PTFE 1422 1357 0.69 1.0
AC1 + 10% CB1 + 5% PTFE 1403 1357 0.74 1.2
AC1 + 2.5% CB2 + 5% PTFE 1374 1321 0.61 0.9
AC1 + 5.0% CB2 + 5% PTFE 1342 1308 0.64 1.0
AC1 + 10% CB2 + 5% PTFE 1100 1085 0.53 1.0
AC1 + 2.5% CB3 + 5% PTFE 1432 1281 0.71 0.9
AC1 + 5.0% CB3 + 5% PTFE 1355 1356 0.64 0.9
AC1 + 10% CB3 + 5% PTFE 1287 1260 0.61 0.9
AC1 + 2.5% EX-G + 5% PTFE 1445 1317 0.68 0.9
AC1 + 5.0% EX-G + 5% PTFE 1408 1298 0.65 0.9
AC1 + 10% EX-G + 5% PTFE 1277 1300 0.62 0.9
AC2 + 5% PTFE 2105 1672 1.01 1.6
AC2 + 2.5% CB1 + 5% PTFE 1864 1496 0.90 1.6
AC2 + 5.0% CB1 + 5% PTFE 1940 1522 0.98 1.8
AC2 + 10% CB1 + 5% PTFE 1987 1587 1.00 2.0
AC2 + 2.5% CB2 + 5% PTFE 1948 1565 0.98 1.4
AC2 + 5.0% CB2 + 5% PTFE 1912 1496 0.96 1.4
AC2 + 10% CB2 + 5% PTFE 1881 1531 0.94 1.4
AC2 + 2.5% CB3 + 5% PTFE 1962 1506 1.03 1.4
AC2 + 5.0% CB3 + 5% PTFE 1924 1493 1.01 1.4
AC2 + 10% CB3 + 5% PTFE 1773 1363 0.94 1.5
AC2 + 2.5% EX-G + 5% PTFE 1808 1435 0.88 1.3
AC2 + 5.0% EX-G + 5% PTFE 1803 1429 0.91 1.3
AC2 + 10% EX-G + 5% PTFE 1606 1253 0.79 1.4
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Fig. 5. (A) Parity plot of all composite electrodes with measured QSDFT-SSA versus calculated SSA, which is linear addition of constituent SSA measurements. (B) Scheme of
the hierarchical pore size distribution of AC2 with an additive particle blocking the entrance to smaller pores. (C) Scheme of the slit-like pores of AC1, whereas the pore
blocking does not diminish the total SSA of the composite.
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increase in electrode density. This supports the statement with a
unique fitting of CB2 within the AC1 particle matrix. The
percolation of additive particles in AC seems to depend strongly
on the structure of particle shape and interparticle voids of AC and
the agglomerate size of the used additive.

The presence of polymer binder in composite electrodes
impacts on the ion-accessible surface area and pore volume
[42]. The QSDFT-SSA values are significantly lower for film
electrodes containing 5 mass% PTFE compared to the QSDFT-SSA
of the powders without binder with a decrease of 5-18%
(Tables 2 and 4). This effect is caused by pore blocking [43], but
also the mere presence of binder, which basically is dead mass with
a surface area of less than 5 m2�g�1 (see Ref [42]). Roughly, we can
attribute a 5% decrease in QSDFT-SSA just due to the presence of
5 mass% of polymer binder without additionally considering pore
blocking.

The pore blocking effect by PTFE and the influence of conductive
additive particles on the total SSA of the electrodes was calculated
by assuming a mechanical rule-of-mixture (Fig. 5). This enables us
to plot calculated values for an ideal mechanical mixture via linear
addition of constituent carbon electrodes calculated values (e.g.,
0.95�AC1-SSA + 0.05�CB1-SSA = calculated value of AC1 + 5% CB1)
versus the experimentally measured SSA of the electrodes for
different amounts of conductive additive admixture (data also
provided in Table 4). As seen from Fig. 5, most of the values fall
within a �10% error margin (grey box) compared to the ideal case
(parity line = solid line) what is an average error supposed on
nitrogen sorption derived data. The outliers are all related to AC
with admixture of EX-G. The inhomogeneous distribution is
related to the large flake size (Fig.1A) and the low amount of tested
electrode film (approx. 10 mg) as well as the very different SSA of
AC and EX-G can explain the larger difference between calculated
value and measured sample. Nevertheless, in case of AC1 many
points remain below the parity line (measured SSA is larger than
calculated SSA) in contrast to the points of AC2 which are mostly
above the parity line (measured SSA is smaller than calculated
SSA). A smaller measured SSA than calculated can be explained
with pore blocking. For AC2 with a wider pore size distribution and



Fig. 6. (A) CVs of constituent carbon electrodes at 10 mV s�1 in 1 M TEA-BF4/ACN.
(B) Nyquist plot of electrical impedance spectroscopy with two activated carbon
electrodes in 1 M TEA-BF4/ACN. Inset shows the enlarged plot at low resistance.
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more hierarchical pores the additive particles can block the
entrance to several smaller pores and a lot of surface of the AC
particle is no longer available (Fig. 5B). Since AC1 has only long,
uniform and slit-like pores the pore blocking also occurs but there
is only a very small amount of SSA blocked by the additive particle
and the total SSA of the composite electrode is not diminished
(Fig. 5C).

3.3. Electrochemical behavior and rate capability

Cyclic voltammetry (CV) in symmetrical full cells was carried
out first on all constituents, without mixing AC and conductive
additives. The measured CVs show all a rectangular shape at low
scan rates (10 mV s�1) in 1 M TEA-BF4/ACN (Fig. 6A). Both AC
materials yield a more pronounced resistive behavior compared to
electrodes only composed of conductive additive, as seen by the
presence of a resistive knee in the CVs. The characteristic increase
in current at higher voltage, resulting in the so-called “butterfly”
shape and an increase in differential capacitance, is a result of the
increase in density of states (DOS) [27,44,45]. The electrical
impedance spectra show a similar behavior of both ACs, whereas
the slightly higher degree of carbon ordering of AC2 (ID/IG
ratio = 2.1) results in a lower electrical series resistance (ESR) [2]
compared to AC1. In addition, both ACs show roughly the same EDR
(equivalent distributed resistance) [2]. which is particularly
characteristic in predominately microporous carbon materials
where electrolyte ion penetration becomes a limiting factor [22].
As shown in Fig. 1D, the (ultra) micropore structure is equal for
both ACs and this results in equal EDR values. Moreover, both
curves end up at the same resistance what is related to an equal
thickness of electrodes (Fig. 6B).

As a next step, we investigated the electrochemical perfor-
mance when admixing discrete amounts of conductive additive
(i.e., 2.5, 5.0, and 10 mass%) to both AC materials. Four different
conductive additive are added to the two activated carbons (Fig. 7).
The rate capability was evaluated by GCPL from 0.1 A g�1 to 10 A g�1

and the performances at these two specific currents are shown in
Fig. 7. The data shows that AC1 and AC2 exhibit a clear trend at low
specific current of 0.1 A g�1: adding any amount of any of the
investigated conductive additives causes a decrease in specific
capacitance (Fig. 7A and C). This is related to the effective reduction
in total pore volume of the film electrodes when mixing high
surface area AC with conductive additives having a lower porosity.
When only using activated carbon, the film electrodes yield at
lowest specific current a specific capacitance of 104 F g�1 (AC1) or
112 F g�1 (AC2), in agreement with the higher surface area of the
latter. The general trend is that higher amounts of admixture
reduce the specific capacitance even further whereas the decrease
in specific capacitance is more significant for AC2 compared to AC1.

The situation changes at a high specific current of 10 A g�1

(Fig. 7B and D). As a baseline, AC1 without any additive yields a
specific capacitance of 71 F g�1 and AC2 of 81 F g�1. The lower
relative loss in capacitance compared to the low specific current
performance for AC2 (i.e., -32%,) is related to the lower sheet
resistance conductivity (9.0 V cm) in comparison with AC1 (71 F
g�1; i.e., �28%, 11.4 V cm, ID/IG = 2.2). In contrast, composite
electrodes containing additives can deliver up to 87 F g�1 in case
of 2.5% CB2 admixture (Fig. 7B).

From these data, two general conclusions can be drawn: (1) A
capacitance drop of 4–10% at 0.1 A g�1 appears by comparison of
constituent AC electrode with conductive additive composite
electrodes (Fig. 7A and C) and (2) the smallest capacitance loss for
composite electrodes occurs only with certain admixture of
conductive additive at high loads. Thus, conductive additives are
only useful at high specific currents (Fig. 7B and D). This fact has
also been shown for onion-like carbon (OLC) or graphene-based
additives [18,46].

The equilibration time until the final state of ion (re) distribution
within the pore network of micrometer-sized AC particles pores is
rather long at low specific current [47]; this process is much faster in
nanometer-sized porous carbons [48] or non-porous [49] nano-
particles where double-layer formation occurs only on the outer
surface. For better comparability, the specific capacitance of either
AC1 or AC2 at either 0.1 A g�1 or 10 A g�1 has been set to zero in Fig. 8
and only the deviation DC in% of the constituent AC electrode
performance is shown. This way, it is easier to see if adding a
conductive additive increases or decreases the specific capacitance.
When comparing the performance of just AC1 orAC2 with electrodes
containing conductive additive admixtures, one can see a decrease of
2-17% of the specific capacitance at 0.1 A g�1 (Fig. 8A and C).
Especially for AC2 we see a particularly strong decrease about 5-17%
of the electrochemical performance when adding any conductive
additive (Fig. 8C) which is related to the pore blocking phenomenon
as described in Fig. 5. At high specific currents (10 A g�1), the
situation is more complex and while some additives at some
admixture contents still decrease the performance, there are several
important exceptions. For example, there is an increase in capacitive
retention of more than 20% for the system AC1 + 2.5 mass% CB2



Fig. 7. Rate capability measurements of all composite electrodes with (A and C) a low rate of 0.1 A g�1 and (B and D) with a high rate of 10 A g�1. The x-axis shows the amount of
used conductive additive in the AC matrix of (A and B) AC1 and (B and D) AC2. “0%” is related to constituent AC electrode. The color and symbol chart given in panel A and C also
relate for panel B and D, respectively.
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(Fig. 8B), whereas the maximum enhancement of AC2 is 11% with the
mixture AC2 + 5 mass%CB1.

The different effects of the conductive additives can be
rationalized by considering the influence of agglomerate size
(Fig. 1A) and the effective percolation level within the AC particle
matrix. Furthermore, the intrinsic behavior of each carbon
material, like SSA (Table 2), density, and surface functional
groups, has to be taken into account. For example, when mixing
AC1 and CB1, we see a continuous improvement of the
electrochemical performance with higher additive content
related to the high SSA of CB1 (powder: 1272 m2g�1) and its
high electrical conductivity (Fig. 4B). For this system, there is only
a minor loss in total SSA of the electrode (Table 4) and it can be
assumed that the highly conductive particles form a percolated
network at a concentration of around 5 mass% in AC1. For
CB2 with moderate SSA (powder: 715 m2g�1) we see a continuous
decrease in electrode capacitance when increasing the amount of
additive to more than 2.5 mass% in AC1 (Fig. 8B). This effect is due
to the small agglomerate size (d90 = 0.2 mm), resulting in a
homogenous distribution of CB2 even at a very low amount (i.e.,
the percolation threshold is reached at low concentration of CB2).
In case of CB3, a maximum capacitive enhancement is seen when
admixing 5 mass% either to AC1 (+7.1 F g�1 at 10 A g�1,Fig. 8B) or
AC2 (+1.6 F g�1 at 10 A g�1, Fig. 8D). A homogeneous distribution of
all used CB particles in-between AC grains reduces the overall
contact resistance effectively (Fig. 4B and D). Any further increase
of the amount of conductive additive particles beyond 5 mass%
decreases the total electrode SSA and leads to a decreased overall
supercapacitor performance, while the electrical conductivity of
the composite electrode still improves.

In contrast to CB, admixing graphite flakes never yielded any
improvement in the electrochemical performance. We explain this
effect by the very large particle size of EX-G and its very low SSA. It
can be assumed that the two-dimensional in-plane conductivity of
EX-G cannot decrease the interparticle resistance as effectively as a
three-dimensional network of highly conductive graphitic shells of
carbon blacks. Seemingly, the carbon-carbon contact area can be
effectively increased by using spherical carbon additives with a
small aggregate size to ensure a homogeneous distribution in the
AC particle matrix.



Fig. 8. Gain (positive values) or loss (negative values) of specific capacitance for conductive additive composite electrodes in comparison to performance of constituent AC
electrodes (A and C) at a low rate of 0.1 A g�1 and (B and D) at a high rate of 10 A g�1. The black line (and the value) marks the performance of a constituent AC full cell. The color
code in panel (A) relates to all panels.
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3.4. Long-time performance testing by voltage floating

Long-time performance evaluation was carried out at 2.7 V in a
symmetrical full cell for 100 h. Voltage floating enables demanding
benchmarking and is commonly employed in industry [23]. This
method yields stable performance over long floating time when
subjecting AC electrodes to a cell voltage of 2.75 V in 1 M TEA-BF4/
ACN with less than 30 ppm of water [24]. Floating test has proven
as more demanding test compared to cycling in the same voltage
window because the floating test delivers clear results in less time
[23]. First, we investigated the performance stability for AC1 and
admixtures to AC1. In Fig. 9, we see a decrease in capacitance of
6.2% for AC1 after 100 h. Admixing any amount of any of the studied
additives decreased the performance stability over time; yet, the
performance stability of any of the conductive additives constitu-
ently was very high yielding a decrease in capacitance below 5%
after 100 h of voltage floating. The only exception: admixing CB2 to
AC1 (Fig. 9B) slightly increases the floating performance stability
(+2% for 2.5 mass% CB2 in AC1), but any further increase of
CB2 amount also decreases the performance as described before.
Adding CB3 to AC1 (Fig. 9C), the capacitive retention after 100 h is
always below that of either only AC1 or only CB3. The data also
show that different amounts of CB3 admixture barely influence the
performance and the same effect can be seen when adding EX-G
(Fig. 9D).

Next, we investigated the same set of conductive additive
admixtures and their influence on the long-time stability of AC2-
based electrodes. The results are very similar to the data set of AC1
(Fig. 10). However, the performance of constituent AC2 (89%
retention after 100 h floating test) is lower than for AC1 (94% after
100 h). Especially the admixture of CB2 into AC2 matrix decreases
the long-time stability tremendously: already after 10 h of voltage



Fig. 9. Long-time floating stability testing at 2.7 V for AC1 with (A) admixture of CB1, (B) admixture of CB2, (C) admixture of CB3, and (D) admixture of EX-G. The amount of
additive is 0 mass% (i.e., pure AC1), 2.5 mass%, 5 mass%, or 10 mass%.
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floating, the retention drops to 80% C/C0 when adding 10 mass%
CB2.

The decrease in longevity of AC electrodes when using a
composite electrode containing activated carbon and conductive
additive is surprising, especially when considering the excellent
stability for either just AC or just the conductive additives. The
exact mechanism of this behavior remains unclear at the
moment. A possible mechanism explaining the decrease in
long-time performance for composite electrodes may relate to
the combined presence of acidic and alkaline surface groups. The
highly acidic surface groups, for example of AC1 (Fig. 3A), may
react with the mostly alkaline groups of CB2 at an elevated
potential of 2.7 V during voltage floating. This leads to an
exchange of protons and the possible production of free water
molecules, especially at the contact area of both types of carbon,
with a deteriorating effect on the stability of acetonitrile near the
electrode surface [50].

With the limited detectability of degradation products by post
mortem analysis in the electrolyte itself, we investigated chemical
changes of the aged electrodes by EDX to gain further insights
(Fig. 11). Electrochemical decomposition of TEA-BF4/ACN forms
(fluoro) acetic acid, as well as acetamide, depending on the
concentration of free water in the electrolyte, and free water is
generated by condensation of amino-carbonyl compounds. More-
over, the corrosion (i.e., hydrolysis) of the BF4 ion produces free
fluorine atoms which like to react with protons to produce HF and
this is further accelerating the decomposition of the electrolyte
[51]. These processes severely affect the long-time stability, as
shown by Cericola et al. [52]. For our system, we cannot identify
these degradation products via the boron signal considering the
very strong signal intensity of carbon. Thus, we can use for aged
and thoroughly ACN rinsed electrodes the fluorine signal coming
from F trapped at the surface from reactions and decomposition of
the BF4 [51]. The fresh composite electrode after contact with
electrolyte (AC2 + 10 mass% CB2 + 5 mass% PTFE) showed a
constant and omnipresent fluorine signal across the scanned area
related to the PTFE binder. In fact, we did not find any significant
increase in the measured fluorine signal even when mapping the
ultrathin PTFE fibrils seen in the SEM micrographs, whereas the
aged positive electrode shows certain regions with much higher



Fig. 10. Long-time floating stability testing at 2.7 V for AC2 with (A) admixture of CB1, (B) admixture of CB2, (C) admixture of CB3, and (D) admixture of EX-G. The amount of
additive is 0 mass% (i.e., pure AC2), 2.5 mass%, 5 mass%, or 10 mass%.
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fluorine signal. Some slight variations in the total signal strength
only occurred in relation to the particle shape and morphology.
However, reproducibly and significantly at contact between
CB2 and AC2, we found an increase of fluorine (Fig. 11A) which
was absent for the non-aged mixture (Fig. 11D). We assume this is
related to the decomposition of the electrolyte at the interface
between activated carbon and conductive additive where the
exchange of protons is possible at elevated potential. The trace
water may, accordingly, act as a catalyst for the decomposition of
the electrolyte.

The implication of a decreased electrochemical performance
longevity when adding conductivity certain conductive additive is
of high importance for industrial applications and needs to be
considered accordingly.

4. Conclusions

We present a comprehensive study of two activated carbons
and four conductive additives with structural, chemical, and
electrochemical measurements. The conductive additives were
admixed in certain amounts and the electrochemical perfor-
mance was evaluated in laboratory size cells via rate handling
testing up to 10 A g�1 and voltage floating over 100 h in a
standard organic electrolyte (1 M TEA-BF4 in ACN). A decreased
sheet resistance for an increased amount of conductive additive
does not necessarily translate to an improved rate handling.
Especially at low rates, the gravimetric capacitance drops
generally after adding carbons with low SSA to AC. However,
the rate performance can be increased up to 20% at 10 A g�1 by
optimizing the amount of conductive particles to AC (in our
study between 2.5-5 mass%). The long-time stability via voltage
floating of composite electrodes is always inferior to electrodes
composed of either AC or the conductive additive materials. In
our study we explain this effect with the generation of water at
the electrolyte-electrode interface by mixing alkaline and basic
surface groups from different carbons. We demonstrate for the
first time that mixing acidic and basic carbon materials leads
also to a deterioration of long-time performance, especially at
the contact area of basic and alkaline decorated surfaces. Thus,
further work will have to investigate this effect in more detail.



Fig. 11. SEM micrographs and EDX mapping for fluorine and carbon of (A) aged composite electrode AC2 + 10% CB2 + 5% PTFE (AC2 + CB2 aged), (B) aged activated carbon
electrode AC2 + 5% PTFE, (C) aged carbon black electrode CB2 + 10% PTFE, (D) and non-aged (fresh) composite electrode AC2 + 10% CB2 +5% PTFE.

N. Jäckel et al. / Electrochimica Acta 191 (2016) 284–298 297
Acknowledgements

We thank Imerys Graphite & Carbon, Switzerland, for kindly
providing the additives Ensaco350, C65, and the experimental
expanded graphite. We acknowledge funding from the German
Federal Ministry for Research and Education (BMBF) in support of
the nanoEES3D project (award number 03EK3013) as part of the
strategic funding initiative energy storage framework. We also
acknowledge additional funding via the INM FOCUS project IZIcap
and thank Prof. Eduard Arzt (INM) for his continuing support.

References

[1] A. Burke, Ultracapacitors: why, how, and where is the technology, Journal of
Power Sources 91 (1) (2000) 37–50.

[2] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors,
Electrochimica Acta 45 (15–16) (2000) 2483–2498.

[3] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in
supercapacitors, Journal of Power Sources 157 (1) (2006) 11–27.

[4] M. Lu, F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems and
Applications, Wiley, 2013.

[5] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and
Technological Applications, Springer, 1999.

[6] D. Aurbach, Review of selected electrode-solution interactions which
determine the performance of Li and Li ion batteries, Journal of Power Sources
89 (2) (2000) 206–218.

[7] C. Liu, et al., Advanced materials for energy storage, Adv Mater 22 (8) (2010)
E28–62.

[8] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat Mater 7 (11)
(2008) 845–854.

[9] H. Marsh, F.R. Reinoso, Activated carbon, Elsevier, 2006.
[10] J. Chmiola, et al., Desolvation of ions in subnanometer pores and its effect on
capacitance and double-layer theory, Angewandte Chemie - International
Edition 47 (18) (2008) 3392–3395.

[11] R. Mysyk, E. Raymundo-Pinero, F. Beguin, Saturation of subnanometer pores in
an electric double-layer capacitor, Electrochemistry Communications 11 (3)
(2009) 554–556.

[12] L. Zhang, et al., Controlling the effective surface area and pore size distribution
of sp2 carbon materials and their impact on the capacitance performance of
these materials, J Am Chem Soc 135 (15) (2013) 5921–5929.

[13] F. Beguin, et al., Carbons and electrolytes for advanced supercapacitors, Adv
Mater 26 (14) (2014) 2219–2251, 2283.

[14] P.J. Hall, et al., Energy storage in electrochemical capacitors: designing
functional materials to improve performance, Energy & Environmental
Science 3 (9) (2010) 1238–1251.

[15] S. Zhang, N. Pan, Supercapacitors Performance Evaluation, Advanced Energy
Materials 5 (6) (2015) 1401401.

[16] D. Weingarth, et al., Carbon additives for electrical double layer capacitor
electrodes, Journal of Power Sources 266 (2014) 475–480.

[17] A.G. Pandolfo, et al., The Influence of Conductive Additives and Inter-Particle
Voids in Carbon EDLC Electrodes, Fuel Cells 10 (5) (2010) 856–864.

[18] N. Jäckel, et al., Comparison of carbon onions and carbon blacks as conductive
additives for carbon supercapacitors in organic electrolytes, Journal of Power
Sources 272 (2014) 1122–1133.

[19] G.X. Wang, Z.P. Shao, Z.L. Yu, Comparisons of different carbon conductive
additives on the electrochemical performance of activated carbon,
Nanotechnology 18 (20) (2007) 205705.

[20] M.E. Spahr, et al., Development of carbon conductive additives for advanced
lithium ion batteries, Journal of Power Sources 196 (7) (2011) 3404–3413.

[21] W. Guoping, et al., The effect of different kinds of nano-carbon conductive
additives in lithium ion batteries on the resistance and electrochemical
behavior of the LiCoO2 composite cathodes, Solid State Ionics 179 (7–8) (2008)
263–268.

[22] C. Portet, et al., Influence of carbon nanotubes addition on carbon-carbon
supercapacitor performances in organic electrolyte, Journal of Power Sources
139 (1–2) (2005) 371–378.

http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0005
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0005
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0010
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0010
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0015
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0015
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0020
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0020
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0025
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0025
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0030
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0030
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0030
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0035
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0035
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0040
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0040
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0045
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0050
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0050
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0050
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0055
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0055
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0055
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0060
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0060
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0060
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0065
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0065
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0070
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0070
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0070
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0075
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0075
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0080
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0080
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0085
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0085
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0090
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0090
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0090
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0095
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0095
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0095
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0100
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0100
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0105
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0105
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0105
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0105
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0110
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0110
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0110


298 N. Jäckel et al. / Electrochimica Acta 191 (2016) 284–298
[23] D. Weingarth, A. Foelske-Schmitz, R. Kötz, Cycle versus voltage hold—Which is
the better stability test for electrochemical double layer capacitors? Journal of
Power Sources 225 (2013) 84–88.

[24] P.W. Ruch, et al., Aging of electrochemical double layer capacitors with
acetonitrile-based electrolyte at elevated voltages, Electrochimica Acta 55 (15)
(2010) 4412–4420.

[25] P. Azais, et al., Causes of supercapacitors ageing in organic electrolyte, Journal
of Power Sources 171 (2) (2007) 1046–1053.

[26] M. Hahn, et al., Gas evolution in activated carbon/propylene carbonate based
double-layer capacitors, Electrochemistry Communications 7 (9) (2005) 925–
930.

[27] D. Weingarth, et al., Graphitization as a Universal Tool to Tailor the Potential-
Dependent Capacitance of Carbon Supercapacitors, Advanced Energy
Materials 4 (13) (2014).

[28] D. Weingarth, et al., PTFE bound activated carbon—A quasi-reference electrode
for ionic liquids, Electrochemistry Communications 18 (0) (2012) 116–118.

[29] P.W. Ruch, et al., On the use of activated carbon as a quasi-reference electrode
in non-aqueous electrolyte solutions, Journal of Electroanalytical Chemistry
636 (1–2) (2009) 128–131.

[30] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular
Layers, Journal of the American Chemical Society 60 (2) (1938) 309–319.

[31] G.Y. Gor, et al., Quenched solid density functional theory method for
characterization of mesoporous carbons by nitrogen adsorption, Carbon 50 (4)
(2012) 1583–1590.

[32] P.I. Ravikovitch, G.L. Haller, A.V. Neimark, Density functional theory model for
calculating pore size distributions: pore structure of nanoporous catalysts,
Advances in Colloid and Interface Science 76 (0) (1998) 203–226.

[33] A. Vishnyakov, P.I. Ravikovitch, A.V. Neimark, Molecular level models for
CO2 sorption in nanopores, Langmuir 15 (25) (1999) 8736–8742.

[34] F. Beguin, et al., Carbons and electrolytes for advanced supercapacitors,
Advanced Materials 26 (14) (2014) 2219–2251.

[35] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, Journal of Chemical
Physics 53 (3) (1970) 1126–1130.

[36] C. Thomsen, S. Reich, Double resonant raman scattering in graphite, Phys Rev
Lett 85 (24) (2000) 5214–5217.

[37] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured,
diamond—like carbon, and nanodiamond, Philosophical Transactions of the
Royal Society of London Series A 362 (1824) (2004) 2477–2512.

[38] N. Shimodaira, A. Masui, Raman spectroscopic investigations of activated
carbon materials, Journal of Applied Physics 92 (2) (2002) 902–909.
[39] M. Thommes, et al., Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC Technical Report),
Pure and Applied Chemistry 87 (9–10) (2015).

[40] S. Porada, et al., Capacitive Deionization using Biomass-based Microporous
Salt-Templated Heteroatom-Doped Carbons, ChemSusChem 8 (11) (2015)
1867–1874.

[41] A.Y. Mottlau, N.E. Fisher, Measurement of pore volume by a titration technique,
Analytical Chemistry 34 (6) (1962) 714–715.

[42] M. Aslan, et al., Polyvinylpyrrolidone as binder for castable supercapacitor
electrodes with high electrochemical performance in organic electrolytes,
Journal of Power Sources 266 (1) (2014) 374–383.

[43] Q. Abbas, et al., Effect of binder on the performance of carbon/carbon
symmetric capacitors in salt aqueous electrolyte, Electrochimica Acta 140
(2014) 132–138.

[44] H. Gerischer, The Impact of Semiconductors on the Concepts of
Electrochemistry, Electrochimica Acta 35 (11–12) (1990) 1677–1699.

[45] A.A. Kornyshev, N.B. Luque, W. Schmickler, Differential capacitance of ionic
liquid interface with graphite: the story of two double layers, Journal of Solid
State Electrochemistry 18 (5) (2013) 1345–1349.

[46] C. Schütter, et al., Activated Carbon, Carbon Blacks and Graphene Based
Nanoplatelets as Active Materials for Electrochemical Double Layer
Capacitors: A Comparative Study, Journal of the Electrochemical Society 162
(1) (2015) A44–A51.

[47] H.A. Andreas, Self-discharge in electrochemical capacitors: A perspective
article, Journal of the Electrochemical Society 162 (5) (2015) A5047–A5053.

[48] C.R. Pérez, et al., Structure and electrochemical performance of carbide-
derived carbon nanopowders, Advanced Functional Materials 23 (8) (2013)
1081–1089.

[49] J.K. McDonough, et al., Influence of the structure of carbon onions on their
electrochemical performance in supercapacitor electrodes, Carbon 50 (9)
(2012) 3298–3309.

[50] P. Krtil, L. Kavan, P. Novak, Oxidation of Acetonitrile-Based Electrolyte
Solutions at High Potentials, Journal of The Electrochemical Society 140 (12)
(1993) 3390.

[51] P. Kurzweil, M. Chwistek, Electrochemical stability of organic electrolytes in
supercapacitors: Spectroscopy and gas analysis of decomposition products,
Journal of Power Sources 176 (2) (2008) 555–567.

[52] D. Cericola, et al., Effect of Water on the Aging of Activated Carbon Based
Electrochemical Double Layer Capacitors During Constant Voltage Load Tests,
International Journal of Electrochemical Science 6 (4) (2011) 988–996.

http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0115
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0115
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0115
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0120
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0120
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0120
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0125
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0125
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0130
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0130
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0130
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0135
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0135
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0135
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0140
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0140
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0145
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0145
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0145
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0150
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0150
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0155
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0155
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0155
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0160
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0160
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0160
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0165
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0165
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0170
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0170
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0175
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0175
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0180
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0180
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0185
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0185
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0185
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0190
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0190
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0195
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0195
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0195
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0200
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0200
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0200
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0205
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0205
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0210
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0210
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0210
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0215
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0215
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0215
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0220
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0220
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0225
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0225
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0225
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0230
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0230
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0230
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0230
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0235
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0235
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0240
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0240
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0240
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0245
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0245
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0245
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0250
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0250
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0250
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0255
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0255
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0255
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0260
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0260
http://refhub.elsevier.com/S0013-4686(16)30069-X/sbref0260


50 

 

4.2 Anomalous or Regular Capacitance? The Influence of Pore Size 

Dispersity on Double-layer Formation 

N. Jäckel a,b, M. Rodner a,b, A. Schreiber a, J. Jeongwook a, M. Zeiger a,b, M. Aslan a, D. Weingarth a, 

V. Presser a,b 

a INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany 

b Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany 

 

published in Journal of Power Sources, 2016. 326: p. 660-671 

 

Own contribution: 

Data generation 25 % 

Data analysis 80 % 

Interpretation 90 % 

Writing 85 % 

 

Supporting Information: 

Appendix A 



lable at ScienceDirect

Journal of Power Sources 326 (2016) 660e671
Contents lists avai
Journal of Power Sources

journal homepage: www.elsevier .com/locate/ jpowsour
Anomalous or regular capacitance? The influence of pore size
dispersity on double-layer formation

N. J€ackel a, b, M. Rodner a, b, A. Schreiber a, J. Jeongwook a, M. Zeiger a, b, M. Aslan a,
D. Weingarth a, V. Presser a, b, *

a INM - Leibniz Institute for New Materials, Saarbrücken, Germany
b Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
h i g h l i g h t s
� Pore size incremental analysis shows non-constant capacitive contribution.
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a b s t r a c t

The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at
the electrode surface. This process requires high surface area electrodes, typically highly porous carbons.
In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we
consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but
cation-anion coordination requires special consideration. By matching pore size and ion size, two
seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore
size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue
by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the
influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a
difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-
anion interaction of ionic liquids in nanometer sized pores.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Electrical double-layer capacitors (EDLCs, members of the family
of supercapacitors or ultracapacitors) are energy storage devices
with high efficiency and long cycling stability [1e3]. Today, EDLCs
are used, for example, in (hybrid) electric vehicles, systems for
uninterrupted power supply, or trams [4,5]. In EDLCs, energy
storage is accomplished via ion electrosorption in the electrical
double-layer (EDL) at the electrically charged interface of high
surface area carbon electrodes in contact with an electrolyte [6].
The electrolyte can be aqueous, organic, or an ionic liquid and the
New Materials, Saarbrücken,

Presser).
electrochemical stability window determines the ratings for the
maximum operational cell voltage [7]. While EDLCs show a mod-
erate energy density compared to lithium-ion batteries, they enable
high power performance [8]. It is commonly known that the elec-
trochemical performance of EDLCs varies as a function of the
electrode material and the pore structure has been identified as an
important parameter governing power and energy ratings [9e11].
Optimized electrochemical performance requires careful matching
of the electrode properties to the specifics of a certain electrolyte
[7,12].

The most common parameter to describe a supercapacitor's
energy storage capacity used in the community is capacitance
(Farad ¼ Coulomb/Volt). Currently, this parameter is more exten-
sively used than the energy storage capacity (with the unit Wat-
thour, Wh). The capacitance is usually normalized bymass of active

mailto:volker.presser@leibniz-inm.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2016.03.015&domain=pdf
www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2016.03.015
http://dx.doi.org/10.1016/j.jpowsour.2016.03.015
http://dx.doi.org/10.1016/j.jpowsour.2016.03.015


N. J€ackel et al. / Journal of Power Sources 326 (2016) 660e671 661
material (F$g�1) and in a symmetrical cell assembly recalculated for
one electrode (Csingle-electrode ¼ 4$Cdevice). Per definition, capaci-
tance reflects on the prime requisite of supercapacitors, namely, to
exhibit a capacitive charge/discharge profile [9]. This means that
there should be a monotonic, linear relation between applied po-
tential or cell voltage and accumulated charge. Yet, we note (at
least) three general complications to this simplification.

(1) Capacitancemay even intrinsically not be a constantmaterial
property [13]. Fundamentally shown for graphite by Ger-
ischer et al., the capacitance of carbon may increase when
increasing the cell voltage [14]. This effect is not related with
nanoconfinement of ions, but is a result of the non-metallic
nature of carbon: as higher potentials are applied, increas-
ingly more charges (more than predicted from a linear
capacitive correlation) can be accumulated as the density of
states of charge carriers changes during charging [15]. In the
literature, this effect has been denoted as electrochemical
doping and the resulting symmetric distortion measured
during cyclic voltammetry (CV) has been coined as butterfly-
shape. By this virtue, we may have to consider for carbons a
non-constant capacitance as a function of applied potential,
called differential capacitance. This effect depends on the
structure of carbon and was found to be very pronounced for
graphite [14], highly graphitic carbon onions [16], zeolite-
templated carbon [17], nitrogen-doped carbon nanotubes
[18], and metallic carbon nanotubes [19], but much smaller
for more amorphous activated carbon [16].

(2) Another complication to non-constant differential capaci-
tance arises from the structure of the double-layer [20e22].
At very dilute concentrations in the mM range, a constant
increase in differential capacitance needs to be considered
for very low potentials (e.g., below 200 mV). This effect can
be explained in terms of the Gouy-Chapman-Stern model
and relates to the dependency of the total potential drop at
the fluid-solid-interface on the bulk concentration [22e24].
Using high potentials, we can also see a drastic reduction of
the measured capacitance as an effect of ion starvation,
causing a characteristic narrowing in the shape of a corre-
sponding CV [25].

(3) A further issue relates to nomenclature and the conceptual
basis of capacitance. Be it either by non-faradaic (double-
layer capacitor) or faradaic (pseudocapacitor) charge trans-
fer: the prerequisite of a system to qualify as a supercapacitor
is the electric behavior of a capacitor (including the small
deviations thereof caused, for example, by (1) and (2)). If
clear redox-peaks are encountered, then the behavior con-
tains battery-like components up to the point where only
insignificant capacitor-like contributions to the charge stor-
age capacity are found and the concept of capacitance be-
comes unsuitable [26,27]. This issue has led to the report of
very large capacitance values recalculated from battery-like
systems and incorrect calculation of corresponding energy
ratings (esp. specific energy, Wh$kg�1). A critical discussion
of this issue can be found, for example, in Ref. [28].

The large capacitance of EDLCs, compared to electrolytic ca-
pacitors, is accomplished by using nanoporous carbons with high
specific surface area. Typical ACs show a large volume of micro-
pores (i.e., pore size <2 nm) and surface area values of 1500 m2$g�1

or higher [3,29]. Their use brings along a further complication to
capacitive considerations for pores smaller than the Debye length
with typically a few nanometers. Starting with overlapping po-
tential profiles of the double-layers and ending with pores so small
that ions can only enter when (partially) shedding a solvation shell,
there is a large complexity in ion electrosorption processes in
nanometer sized pores [30,31]. The seminal work of 2006 pub-
lished by the B�eguin Group [32] (in organic and aqueous media)
and by the Gogotsi/Simon Groups [33] (in organic media) demon-
strated an increase of the (surface area normalized) capacitance for
microporous carbonswith decreasing pore size. Similar conclusions
were drawn from enhanced salt removal capacity from aqueous
saline electrolytes via capacitive deionization by Porada et al. when
comparing ACs and carbide-derived carbons (CDCs) [34]. However,
(partial) desolvation of ions entering sub-nanometer-sized pores
was discussed even earlier, for example by Salitra et al. in the year
2000 [35]. Remarkable are also the conclusions in the 1986 paper of
Kastening and Spinzig [36] investigating ion electrosorption in sub-
nanometer pores: “In these narrow pores, however, the usual Gouy-
Chapman layer (thickness about 1.3 nm under the conditions
applied) cannot be developed because it would require a diameter of at
least 2.6 nm. The ions will apparently be partially desolvated when
entering these narrow pores.” [36].

The conclusiveness of the reported experimental data is chal-
lenged by several complications.

(1) A first issue concerns the measurement of the pore structure
and specific surface area of the dry powder, and relating such
data to the electrochemical performance of binder-
containing film electrodes induces inconsistencies. The use
of polymer binder (esp. when being used in excess of 5 mass
%) may lead to a significant reduction of the pore volume/
surface area, while the pore size distribution remains less
affected [37,38]. Thus, normalizing the measured electro-
chemical performance to the electrode pore structure should
be favored over the porosity of the dry carbon powder only.

(2) Another issue arises from pore size dispersity. No actual
carbon material has an ideal monodisperse pore size distri-
bution (PSD). While some optimized AC [39] or CDC [40]
materials may come close to being unimodal, we
commonly have to consider a spread of the pore volume
across a certain pore size range from sub-nanometer to
several nanometers. A microporous carbon's pore structure
with multimodal PSDs or very broad distributions cannot
adequately be expressed by stating one average pore size
value [41]. As such, the concept of average pore size may not
be suitable when comparing very diverse carbons. Never-
theless, the term average pore size, defined as the pore size
up to which 50% of the pore volume is encompassed, itself
remains useful for structural comparison.

(3) A third complication is caused by the way values for the
surface area or pore volume are determined. Most
commonly, gas sorption techniques are used to derive pore
characteristics [42]. For example, it has beenwidely accepted
that the BET method [43] fails to accurately represent the
pore structure of microporous carbons [44]. Relating elec-
trochemical data to the BET surface area, for microporous
carbons, is not recommended and more adequate models
have been devised. In particular, deconvolution of nitrogen,
carbon-dioxide, or argon sorption data with density func-
tional theory (DFT) approaches have been proven to be
powerful tools to investigate microporous carbons [44e46].
The mathematical approach of such complex carbon surface
structures with DFT methods leads to certain artefacts.
Regarding nitrogen sorption analysis, the most known arti-
fact in non-local DFT (1D-NLDFT) is the gap at about 1 nm
pore width which is related to the inadequate assumption of
infinite flat, homogenous pore walls and corresponds to the
pressure where the first layer of nitrogen fluid is formed [47].
This was improved by the implementation of molecularly
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heterogeneity in quenched-solid DFT (QSDFT) [46,47] and by
the NLDFT calculation in two dimensions (2D-NLDFT) [45].
Today, QSDFT kernels with different pore shapes are avail-
able, like slit-, cylindrical-, or spherical-shaped and hybrid
kernels with assumption of certain pore shape in defined
pore ranges [46]. The comparison of both new DFT models
(i.e., 2D-NLDFT and QSDFT) showed comparable results as
presented by Puziy et al. [48]. However, the unavailability of
QSDFT kernels for carbon-dioxide sorption currently limits
the comprehensiveness of sub-nanometer pore size distri-
bution (there is only a 1D-NLDFT kernel available at the
moment). The general variation of pore geometry as a func-
tion of synthesis parameters was shown, for example, for
carbide-derived carbons via small angle neutron scattering,
showing a transition from rather spherical to slit-shaped
pores with higher processing temperatures [49]. However,
in most cases, there is a good agreement between porosity
data from gas sorption and scattering methods (typically
within 10e20%) [42]. We also note that the measured surface
area and pore volume may also contain pores which are
electrochemically not relevant, meaning, which are inac-
cessible to the ion electrosorption process by being smaller
than the actual ion size.

Mostly motivated by (3), Centeno and Stoeckli have stimulated a
very important discussion on the question if the enhanced capac-
itance identified for small pore diameters may be an artifact of the
porosity data obtained from gas sorption analysis [50,51]. The
postulated regular pattern of capacitance vs. pore size average
(0.7e15 nm) was demonstrated for polymer-containing film elec-
trodes of a large array of microporous carbons in organic media by
using immersion calorimetry to obtain a more realistic represen-
tation of the electrochemically relevant porosity [50]. A constant
capacitance over pore size between ca. 0.6 nm and 2 nm was also
demonstrated by the Centeno group for monolithic carbon, and it
was shown that a presumably anomalous increase in capacitance
with decreasing pore size would be obtained when using the BET
surface area (BET-SSA) instead of using just pore volume larger than
the ion size [52].

In contrast, a non-regular pattern was identified for organic
electrolytes and ionic liquids using computer simulation [53,54].
For ionic liquids, and using a model with a perfectly monodisperse
pore size dispersion, an oscillatory dependency between ion size
and pore sizewas identified. This oscillatory behavior was shown to
disappear for organic solutions in favor of one main peak of
enhanced differential capacitance when matching the ion size to
the pore size [55]. Modelling may also adopt the pore size dis-
persity of microporous carbons [56], and it was demonstrated for
ionic liquids that a large PSD amplitude may transition the anom-
alous capacitance vs. pore size pattern to a regular one [57].

These conflicting results make the impact of sub-nm pores to
the capacitance controversial. Recently, a number of studies have
engaged in a more detailed analysis of this topic. Mentioning a few,
Pohlmann et al. investigated the influence of anion-cation combi-
nations on different activated carbons in ionic liquids or dissolved
in propylene carbonate in certain concentrations [58,59]. Galhena
et al. provided data on an enhanced specific capacitance in the sub-
nanometer range when the pore size in graphene oxide paper
matches the non-solvated ion size in organic electrolyte [60]. Jiang
et al. used a DFT model to describe the packing density of solvent
molecules and ions in certain pore sizes [55]. They reported (par-
tial) ion desolvation inside narrow pores and showed a constant
differential capacitance for pores larger than 1 nm [61]. For ionic
liquids, Monte-Carlo simulations by Kondrat et al. indicate that
higher voltages favor facile ion storage in larger pores (>1e2 nm)
with saturation of smaller pores occurring at lower potentials [56].
The former work also mentions an expected loss in theoretical
energy storage capacity when a perfect monodisperse pore size
distribution transitions towards a broader dispersity [56]. Zhang
et al. showed the importance of accessible SSA in the sp2-hybrid-
ized material for two different ionic liquids (ILs) [62]. Since they
used a slit/cylindrical NLDFT kernel to calculate the pore size dis-
tribution, the PSD contained two mathematical artefacts at 1 nm
and 2 nm [47]. The disappearing peak capacitance for pore size
matching the ion size in case of broader distributed pore sizes has
also been demonstrated for organic electrolytes [63]. Lee et al.
developed a model including the combined effects of pore size and
ionophobility/ionophobicity on the capacitance in slit-like pores
[64]. Furthermore, Hsieh et al. adopted a model for overlapping
double-layers and applied it to the experimental NLDFT-derived
porosity data of micro- and mesoporous carbons. By employing a
length-dependent value for the dielectric permittivity, they
postulated for aqueous and organic solutions constant differential
capacitance in micropores because of electrostriction effects [65].

This work will investigate the possible pore size dependence of
capacitance and venture to establish that both the regular and the
anomalous pattern can be consolidated by rigorous application of
the concept of differential capacitance. We employed organic so-
lutions and ionic liquid electrolytes and an array of different
microporous carbons. Our data will separate the pore characteris-
tics of the dry powder from the film electrodes and by use of a
reference electrode. The electrochemical performance is surveyed
for the positively and negatively polarized electrodes separately. By
this way, we can separate the data in dependence of the size of
anions and cations. We also apply a model that we have recently
introduced for the highly accurate prediction of the desalination
capacity via capacitive deionization in saline aqueous media [66].
This model uses discretization of the pore volume and calculation
of differential capacitance for such segments to investigate the
correlation between differential capacitance (rather than device
capacitance) and pore size segment (rather than average pore size).

2. Experimental description

2.1. Electrode materials and preparation

Activated carbon YP-50 F from Kuraray (called AC), carbon black
BP2000 from Cabot (called CB1), were used as received from the
suppliers. Carbide-derived carbon (CDC) materials were synthe-
sized from titanium carbide (TiC) powder placed in glass crucibles
and thermally annealed in a furnace in chlorine gas at either 600,
800, or 1000 �C for 3 h and named CDC600, CDC800, or CDC1000,
respectively. To remove residual chlorine, all samples were subse-
quently annealed at 600 �C in hydrogen for 2 h and after cooling
placed in vacuum (0.1 mPa) for several hours. Carbon onions,
named OLC, were derived from nanodiamond powder (NaBond) by
placing the material in graphite crucibles for thermal annealing in
argon at 1700 �C for 1 h with a heating rate of 20 �C$min�1

(Thermal Technology Furnace).
For electrode preparation, carbon powder was soaked with

ethanol and agitated in a mortar. We added 10 mass% of dissolved
polytetrafluoroethylene (PTFE, 60 mass% solution in water from
Sigma Aldrich) as binder. The resulting dough-like material was
rolled with a rolling machine (MTI HR01, MTI Corp.) to a
200 ± 20 mm thick free standing film electrode and finally dried at
120 �C at 2 kPa for 24 h before use.

2.2. Cell preparation, electrical, and electrochemical measurements

For electrochemical testing, we employed a custom-built
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polyether ether ketone (PEEK) cell with spring loaded titanium
pistons as a three electrode system described elsewhere [16]. The
working electrode was punched from a free-standing electrode
containing 10 mass% PTFE with 12 mm diameter and 200 ± 20 mm
thickness with a total mass of 10e20 mg. An oversized YP-80 F
(Kuraray) electrode with 500 mm thickness and 25 mg served as
counter electrode. We employed a glass-fiber separator (GF/A from
Whatman) and a carbon-coated aluminum foil current collector
(type Zflo 2653 from Coveris Advanced Coatings). Further, we used
PTFE-bound YP-50 F as a stable quasi-reference electrode [67,68].
The assembled cells were dried at 120 �C for 12 h at 2 kPa in an inert
gas glove box (MBraun Labmaster 130, O2 and H2O < 1 ppm) and,
after cooling to room temperature, vacuum-filled with 1 M
tetraethylammonium-tetrafluoroborate (TEA-BF4) in electro-
chemical grade (i.e., water content <20 ppm) acetonitrile (ACN) or
propylene carbonate (PC) purchased from BASF. The ionic liquid 1-
ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4; >99%,
Sigma Aldrich) was degassed using a Schlenck flask in a Si-oil bath
heated to 100 �C while applying a vacuum of 1 Pa for at least 6 h to
remove residual gas and water and cells were vacuum-filled as
described before.

Electrochemical measurements were carried out using a
potentiostat/galvanostat VSP300 from Bio-Logic, France, with cyclic
voltammetry (CV) at 2 mV$s�1, galvanostatic cycling with potential
limitation (GCPL) with a 15 min holding step at each potential to
bring the system to an equilibrated state. The specific (gravimetric)
capacitance during discharging was calculated via Eq. (1):

Csp ¼

Z tend

t0
Idt

U
$
1
m

(1)

with specific capacitance Csp, time t (t0: starting time of discharge,
tend: end of discharging time), applied potential difference U,
discharge current I, and total mass of the working electrode m (i.e.,
considering carbon and the binder). For every type of electrode
composition, two electrodes were prepared and these two cells
were tested individually to calculate mean values with a standard
deviation always below 5%.

2.3. Porosity analysis

Nitrogen gas sorption measurements were carried out with an
Autosorb iQ system (Quantachrome) at the temperature of liquid
nitrogen (�196 �C) after degassing at 102 Pa and 150 �C for 10 h for
binder containing film electrodes and at 300 �C for 24 h for powder
samples. For the measurements, the relative pressure (P/P0) was
varied from 5$10�7 to 1.0 in 68 steps. The specific surface area
(SSA) was calculated with the ASiQwin-software using the
Brunauer-Emmett-Teller (BET) equation in the linear relative
pressure range of 0.01e0.2 [43]. We also calculated the SSA and
pore size distribution (PSD) via quenched-solid DFT (QSDFT) with
a slit pore shape model between 0.56 and 37.5 nm [46]. As shown
elsewhere, the error in assuming slit-like pores for OLC is not
insignificant, but smaller than using other kernels [16]. Values for
the total pore volume correspond to p/p0 ¼ 0.95. Carbon dioxide
gas sorption measurements were carried out at 0 �C in the relative
pressure range from 1$10�4 to 1$10�2 in 40 steps. SSA and PSD
values were calculated for pore sizes between 0.3 nm and 1 nm
with the ASiQwin software using nonlocal density functional
theory (NLDFT) for CO2 sorption [69]. 1D-NLDFT kernel suffer from
the assumption of infinite flat, homogenous carbon surface which
results in the incorrect pore size distribution with many sharp
maxima and gaps in-between [70]. Nevertheless, CO2 adsorption is
favorable for measuring of ultramiropores [44,71]. The calculated
PSD was incremented by a linear approximation of the calculated
pore volume (CO2-sorption-derived PSD was used up to a pore size
of 0.9 nm and N2-sorption-derived PSD for pores larger than
0.9 nm) to an equidistant point density of 0.1 nm in the range
0.3e2 nm and a point-to-point distance of 1 nm for pores larger
than 2 nm. In some cases, especially for highly microporous car-
bons, the calculated SSA or pore volume of CO2 sorption at the
intercept-spot 0.9 nm was higher than the one calculated from
nitrogen sorption. In this case, the offset was added to the PSD data
obtained from nitrogen sorption, as described in previous work
[72].

2.4. Structural and chemical characterization

Raman spectra of the raw materials were recorded with a
Renishaw inVia Raman system using an Nd-YAG laser (532 nm)
with 0.2 mW power at the sample's surface. The spectral resolution
of ca. 1.2 cm�1 corresponds to a grating with 2400 lines$mm�1 and
the spot size on the samplewas in the focal plane ca. 2 mm (numeric
aperture ¼ 0.9). The acquisition time was 30 s and 50 accumula-
tions were recorded. Peak analysis and peak fitting were performed
assuming one Lorentzian peak for both, the D-mode and the G-
mode.

Elemental analysis (EDX) of carbon powder was measured with
a Thermo Fisher Scientific system placed in a JSM-7500 F from JEOL.
Samples were placed on a conductive carbon tape and spectra were
recorded at 50 different positions for each sample with 10 kV ac-
celeration voltage.

2.5. Model description

Our approach entails the combination of SSA and electro-
chemical data to obtain the influence of certain pore ranges on
the total capacitance. We take into account the ion size and in-
fluence of solvation shell or ion-ion attraction in IL. In our model
we start with a correction of the surface area to obtain an
accessible SSA compensating for the finite size of the ions. We
subtract the surface area calculated from DFT for pores smaller
than the bare ion size (SSADFTcorr). With this corrected SSA, we
then calculate the cumulated SSA for a certain pore size range.
The range is determined by the bare ion size and the size of fully
solvated ions. The first range goes from the bare ion size to the
size of the fully solvated ion, for example, TEAþ in ACN from 0.7
to 1.3 nm, BF4� in PC from 0.5 to 1.3 nm. The second range ex-
pands from the size of one solvated ion up to the size of two
solvated ions. With this approach we assume no desolvation of
ions in pores larger than the size of one fully solvated ion [73,74].
Regarding the Coulombic repulsion of two equal polarized ions,
we also assume that only for a pore as large as two solvated ions,
both of them will be able to enter the pore [73,74]. For pores
larger than two solvated ions, we calculate an exponential
decrease of the contribution of pores to the total capacitance,
starting from the capacitance value of 2 nm and ending at zero
for pore width of 10 nm [66]. Since we use only highly micro-
porous carbons, the SSA is strongly dominated by pores smaller
than 2 nm and the charge is mainly accommodated in nanopores
[55,73]. The kernel used a linear least-squares solver with two
bounds, the total capacitance and the total SSA of each material.
With this model, we can back calculate the theoretical capaci-
tance in F$g�1 normalized to the average density of microporous
carbon (approx. 2 g$cm�3). For the aprotic ionic liquid, we
assumed bare ion sizes without a solvation shell and the used
thresholds are the size of one and two ion diameters. For larger
pore sizes, we assumed an exponential decrease in importance of
pores, as described before.
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The mean square error values are calculated following equation
2

MSE ¼ 1
n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Cmeas;i � Ccalc;i

�2q
(2)

with calculated capacitance Ccalc and measured capacitance Cmeas.
3. Results and discussion

3.1. Porosity and general analysis of carbon electrodes

The porosity was characterized by gas sorption analysis. For a
better assessment of the sub-nanometer pores down to 0.3 nm, we
have employed CO2 gas sorption at 0 �C in addition to nitrogen gas
sorption at�196 �C. The combined result of both methods contains
the deconvoluted data of carbon-dioxide adsorption in the range of
0.3e0.9 nm and nitrogen sorption in the range of 0.9e30 nm. The
cumulative PSD pattern for the different dry powders and the
consolidated electrode films are shown in Fig. 1, with the full iso-
therms provided in the Supporting Information Fig. S1 and the
resulting PSD of all materials in Fig. S2. The CO2 sorption isotherms
(Supporting Information, Fig. S1A þ B) at 0 �C can be split in two
groups: (1) almost linear correlations (AC þ CB1 þ OLC) and (2)
non-linear sorption isotherms.We note that in all cases, by virtue of
measuring up to atmospheric pressure, only a small segment of the
entire isotherm is accessible at 0 �C. For the first group, we can
assume a constant adsorption increase of CO2 at all measured
relative pressures resulting in a homogenous distribution of pores
over the range of 0.3e0.9 nm [47,75]. For CDC600 and CDC800, the
adsorbed amount is higher in the beginning for a relative pressure
below 0.007 compared to the other samples, resulting in a large
amount of pores smaller than 0.5 nm [47,75]. The N2 sorption
Fig. 1. Cumulative pore volume of (A) powder materials and (C) electrodes containing 10 ma
data) of (B) powder materials and (D) electrodes containing 10 mass% PTFE.
isotherms in Fig. S1C-F (Supporting Information) present a charac-
teristic type I(a) shape for all CDCs and type I(b) for AC, which is
related to microporous materials with pores smaller than 1 nm or
2.5 nm, respectively [44]. CB1 shows a mixture of type I(b)
isotherm, related to the internal microporosity, and type IV(b)
isotherm (mesopores) with a slight H4 hysteresis, which is an in-
dicator for a predominantly microporous and mesoporous material
[44]. The high amount of adsorbed nitrogen of CB1 with a specific
pore volume of 1.83 cm3$g�1 (Table 1) is related to its high internal
porosity and the large amount of interparticle voids due to the
primary particle size of about 50 nm. OLC displays only type IV(b)
isotherm (mesopores) with a slight H4 hysteresis since there is no
internal porosity, only the nanometer-sized pores between the
spheres of OLC particles and agglomerates [76], and the strong
increase in the amount of adsorbed nitrogen above a relative
pressure of 0.95 is related to voids between OLC agglomerates [77].

Based on the cumulative pore size distribution data (Fig. 1A), we
can differentiate (1) exclusive (ultra)microporous carbons (CDCs),
(2) micro-mesoporous carbons (AC and CB1), and (3) non-porous
carbon onions with a large interparticle pore volume (OLC). In
case of CB1, the pore volume above 10 nm is related to interparticle
voids, whereas the smaller pores are internal, and in case of OLC
there are only interparticle pores due to the closed shell of OLCs.
Since the primary OLC particle size is about 5 nm in diameter, there
are also micropores between the spherical particles [76]. The gen-
eral shape of such interparticle pores in OLC materials (i.e.,
continuously narrowing of ogee-shaped pores) is a severe compli-
cation when adapting currently available DFT models which as-
sume slit-, spherical-, or cylindrical shapes (or mixtures thereof)
[16,76]. For the studied carbons, a division into two materials
with high specific surface area, SSA, (AC, CDCs, CB1) and low SSA
(OLC) is possible (Fig. 1B). As seen from Table 1, the DFT-SSA of AC is
1784 m2$g�1, of CDC ranges from 1346 m2$g�1 (CDC600) to
1538 m2$g�1 (CDC1000), of CB1 is 1331 m2$g�1, and of OLC is
ss% PTFE. Combined cumulative specific surface area (derived from CO2 and N2 sorption



Table 1
Gas sorption results assuming BET model and combined NLDFT model for CO2 sorption for pores smaller than 0.9 nm and QSDFT model for N2 sorption for pores larger than
0.9 nm. Average pore size relates to the volume-weighted arithmetic mean value.

BET SSA (m2$g�1) DFT SSA (m2$g�1) Pore volume (cm3$g�1) Average pore size (nm)

Powder
AC 2347 1784 1.08 1.3
CB1 1389 1331 1.83 15
OLC 398 586 1.07 9.7
CDC600 1195 1346 0.48 0.63
CDC800 1324 1513 0.55 0.67
CDC1000 1598 1538 0.74 0.88
Electrode
AC 1839 1599 0.89 1.3
CB1 1097 1210 2.06 15
OLC 232 328 0.86 9.5
CDC600 934 1159 0.36 0.64
CDC800 977 1140 0.38 0.69
CDC1000 967 1016 0.43 0.90
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586 m2$g�1. The corresponding values for the pore volume are in
the range from 0.48 cm3$g�1 (CDC600) to 1.83 cm3$g�1 for CB1.

By comparison of powder and electrode data, one can see a
general decrease of pore volume and SSA in all but one case
(Table 1). The decrease in pore volume ranges between 18% for AC
and 42% for CDC1000. A similar trend was found for the DFT-SSA,
with a loss between 9% (CB1) and 44% (OLC) when comparing
powder data with electrode films. As the only exception, we see for
CB1 a decrease in surface area (DFT-SSA decreases by 9%), but the
pore volume increases by 13%. This effect may relate to the spatial
separation of carbon black nanoparticles during electrode
manufacturing. With such great differences, correlation of dry
powder pore values (volume or surface) with electrochemical
performance of the film electrodes may yield a significant
discrepancy (in our case: up to 44%). It is important to note that the
pore size distribution remains largely unchanged and the values for
average pore size change within a range of only ±5% with or
without binder. This indicates that the predominant effect of add-
ing binder is a certain amount of pore blocking over the sub-
nanometer pore range.

Characterization of the carbon structure of the usedmaterials by
Raman spectroscopy is provided in the Supporting Information
Table S1 and Fig. S4. In short, all materials were incompletely
graphitized with different degrees of carbon ordering; the highest
carbon ordering was seen for OLC, the highest disorder for CDC600.
Regarding possible heteroatoms and functional surface groups, we
have employed EDX analysis and the results show less than 2 atom
% oxygen (Supporting Information, Table S2). The influence of such
low amount of oxygen in aprotic electrolytes can be considered
insignificant [78]. With this information and the rectangular shape
of the CVs (Supporting Information, Fig. S3) we expect a mere
double-layer capacitive energy storage for the investigated samples
without Faradaic contribution.

3.2. Electrochemical analysis of carbon electrodes

All carbons expressed a pronouncedly capacitive behavior in all
used electrolytes (see Supporting Information, Fig. S3 for CV data).
The electrochemical results are plotted in Fig. 2 as specific capaci-
tance vs. applied voltage for all studied electrolytes using galva-
nostatic charge/discharge measurements. Table 2 also provides
data for the ion sizes (bare/solvated). As it is expected for materials
with low or moderate surface area, a low capacitance is measured
in all electrolytes for OLC with values typically below 20 F$g�1.
Higher values, up to ca. 130 F$g�1, can be seen for CDC600 (DFT-
SSA: 1346 m2$g�1). For the latter, we already see profound differ-
ences between the electrolytes. While a high specific capacitance is
seen for CDC600 at þ1 V vs. carbonwith 1 M TEA-BF4 in either ACN
(127 F$g�1) or PC (132 F$g�1), only very small values are found in
EMIM-BF4 (61 F$g�1 at þ1 V vs. carbon). It is important to note that
in all three cases, at positive polarization, electrosorption of the
same anion (BF4�) occurs, but leads to very different charge storage
capacities in organic electrolytes or ionic liquid medium. In EMIM-
BF4, CDC800 and AC show the highest specific capacitance at þ1 V
vs. carbon, namely, 112 F$g�1 and 115 F$g�1, respectively.

We also note that the capacitance for positive and negative
polarization is almost identical at þ0.2 and �0.2 V vs. carbon, but
increases to various degrees at higher absolute potential. The
studied range of applied potential from �1 V to þ1 V vs. carbon
corresponds with symmetrical full cell voltages between �2 V
and þ2 V. Within that range, we see to a different degree for all
carbons an increase in capacitance at higher potential. With carbon
not being a perfectmetallic conductor, the density of states (DOS) of
charge carriers remains limited, but increases during charging; this
gives rise to electrochemical doping and an effective increase in
charge screening ability [14,16].

3.3. Normalization of the electrochemical data by total surface area

The electrochemical results normalized to the electrode SSA
values are plotted in Fig. 3. In the left column, the specific capaci-
tance is normalized by the BET-SSA and normalized by the DFT-SSA
in the right column. The results for 1 M TEA-BF4 in both organic
solvents show a similar behavior of all studied carbons (Fig. 3AeD).
The specific capacitance remains quite constant at negative polar-
ization and the larger increase at positive polarization is compa-
rable for all carbon film electrodes. At a potential of þ1 V vs. carbon
and for both organic solvents, the spread of values for all carbons
stretches between 0.06 F$m�2 and 0.14 F$m�2 for capacitance
values normalized by BET-SSA and between 0.05 F$m�2 and
0.12 F$m�2 for DFT-SSA normalized data. A slightly smaller spread
of the values for the different materials is seen when normalizing
by DFT-SSA.

The areal capacitance is similar for the ionic liquid electrolyte,
ranging from 0.06 F$m�2 to 0.11 F$m�2 (BET-SSA) and between
0.05 F$m�2 and 0.12 F$m�2 (DFT-SSA). For OLC, we see also a pro-
nounced increase in capacitance for increased positive polarization.
The values for CDC600 are very low (around 0.05 F$m�2, see Fig. 3F)
compared to TEA-BF4 in either organic solvent. This aligns with the
conflict of small average pore size (0.63 nm) and large size EMIMþ

(0.76 � 0.43 nm2) and a calculated van-der Waals diameter of
0.61 nm [79], so ion access to such small sub-nanometer pores is
limited [80]. Yet, the anisotropic shape of the EMIMþ ion can be
approximated by a sphere with the diameter of the van-der-Waals



Fig. 2. Specific capacitance in (A) TEA-BF4/ACN, (B) TEA-BF4/PC, and (C) EMIM-BF4. The y-axis unit in panel (A) pertains also to panel (B) and (C).

Table 2
Ion size and solvated ion size of the used electrolytes, according to Ref. [84]. Data for
the solvent molecule size according to Ref. [91,92].

Ion TEAþ(nm) BF4�(nm) EMIMþ(nm) Bare solvent molecule (nm)

Bare ion 0.67 0.45 0.76 � 0.43 e

In ACN 1.3 1.1 e 0.47
In PC 1.4 1.35 e 0.55
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calculation [81]. Noticeably, the capacitance at positive polarization
remains low, which is surprising when considering the small size of
the BF4� anion (0.45 nm). We explain this discrepancy by the rather
strong cation-anion interaction of the ionic liquid, which does not
allow the BF4� to enter the pore alone considering its attraction to
EMIMþ and a high energy barrier for counter ion repulsion [82,83].
For comparison, CDC800 with an average pore size of 0.69 nm
yielded an area-normalized capacitance higher for the IL than for
TEA-BF4/ACN, even though the average pore size is still a bit smaller
than the length of the EMIMþ, but larger than the van-der-Waals
diameter.

3.4. Normalization of the electrochemical data by corrected total
surface area

The considerations so far were based on specific capacitance
normalized by the entire surface area, measured either by BET or
DFT calculations. The data presented so far introduced the issue of
ion size conflicting with pore size considerations. We see that the
anion is the same in all three studied electrolytes, the capacitance
in organic media (normalized by mass or area) varies between
solvents and when compared to the neat ionic liquid. As seen from
Table 2, the ion size of BF4� (0.45 nm) increases because of solvation
to 1.1 nm for ACN and to 1.35 nm for PC. The bare ion size of TEAþ is
0.67 nm and the size increases with solvation to 1.3 nm in case of
ACN and 1.4 nm in case of PC [84]. For the IL cation EMIMþ, size
consideration is complicated by its non-spherical shape. Thus, it is
reasonable to assume a lower cut-off value in the pore size distri-
bution and to calculate a surface area corrected for the amount of
pores which are non-accessible by the bare ion for geometric rea-
sons [35].

In Fig. 4 we plot the capacitance normalized by the DFT-SSA
after subtraction of the inaccessible SSA for ions. The cut-off pore
width is related to the bare ion size and the value for BF4� is 0.4 nm,
for TEAþ 0.6 nm, and for EMIMþ 0.6 nm. Accordingly, the calculated
SSA for pores smaller than the cut-off size was subtracted from the
total SSA. With this correction, the areal capacitances of CDC ma-
terials increase because of their large amount of sub-nanometer
pores. Considering with the difference in anion and cation size,
we see a large difference in calculated areal capacitance for positive
and negative polarization. For the latter, the values almost double
for CDC materials. As an example, we see in 1 M TEA-BF4 in ACN
at þ1 V vs. carbon for CDC600 a corrected areal capacitance of
0.12 F$m�2, while we obtain 0.24 F$m�2 at �1 V vs. carbon. For a
material with a very broad pore size dispersion like OLC, we see
very small variations of the areal capacitance, for example in 1 M
TEA-BF4 in ACN between 0.04 F$m�2 and 0.06 F$m�2 (corrected
DFT-SSA) up to ±1 V vs. carbon.

3.5. Pore size incremental analysis of electrochemical data

Having a comprehensive set of porosity and electrochemical
data, we now compare our results with the values reported by
Chmiola et al. [33], namely plotting the BET-SSA normalized
capacitance vs. the volume-weighted average pore size (Fig. 5A). As
seen, our data align well with the literature and are in line with the
recent study by Garcia-Gomez et al. [52] confirming an “anoma-
lous” increase in areal capacitance. It is important to note that we
used for this plot data normalized by the electrode surface area,
whereas in the literature (with exception of work on monoliths;
[52]) only powder data were utilized. We also remind that the BET
model is not an accurate tool to investigate highly microporous
media, as well-known from the scientific literature and interna-
tional standards [43,44,51,85]. Second, we used the approach by the
Centeno group, namely to normalize the electrochemical data by
the “relevant” porosity (Fig. 5B). The “regular pattern” in capaci-
tance normalized to the DFT-SSA with a mean capacitance about
0.09 ± 0.2 F m�2 (grey box in Fig. 5B) is also confirmed by our
measurements in accordance with the data from Centeno et al. [50]
and Chmiola et al. [33]. In conclusion, depending on the normali-
zation, our data are seemingly in agreement with both the anom-
alous and the regular pattern model.

Calculation of a single value (average pore size) for carbons with
not perfectly unimodal pore size dispersity will generate a severe
complication [56], making a pore size incremental analysis of
capacitive contribution necessary. In our model, we corrected the
DFT-SSA by subtracting the inaccessible SSA for the respective bare
ions in the electrolyte as described in Section 3.4. This aligns well
with the procedure by which the data in Fig. 4 were obtained. For
organic electrolytes, the DFT-SSA is subtracted by the cumulative
SSA value for pores to 0.4 nm in case of positive polarization



Fig. 3. Areal capacitance of all materials in (A þ B) TEA-BF4/ACN, (C þ D) TEA-BF4/PC, and (E þ F) EMIM-BF4. (A þ C þ E) Capacitance normalized to BET-SSA and (B þ D þ F) to entire
DFT-SSA assuming slit-shaped pores.

Fig. 4. Areal capacitance normalized to the DFT-SSA after subtraction of inaccessible SSA for ions. (A) TEA-BF4/ACN, (B) TEA-BF4/PC, (C) EMIM-BF4. Cut-off pore width for BF4� 0.4 nm,
for TEAþ 0.6 nm, and for EMIMþ 0.6 nm.
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Fig. 5. (A) Specific capacitance normalized to the BET-SSA and the volume-weighted DFT average pore diameter, including data from Ref. [33]. (B) Specific capacitance normalized to
the DFT-SSA assuming slit-like pores and the DFT average pore diameter, including data from Ref. [33] and Ref. [50]. The dashed lines and the grey box have been added as a guide to
the eye.
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(diameter BF4� is 0.45 nm) and 0.6 nm for negative polarization
(diameter TEAþ is 0.67 nm). For IL, the DFT-SSA datawere corrected
for both polarization directions by the cumulative SSA at 0.6 nm.

At first, we follow the approach of Centeno et al. [50] and
calculate the capacitance of the studied materials assuming the
same “importance” of all pores. This was done in Fig. 6A in 1M TEA-
BF4 in ACN for þ1 V vs. carbon. The results are plotted in a parity
plot, where themeasured capacitance is related to the x-axis vs. the
calculated capacitance at the y-axis. This mean value calculation of
capacitance (106 F$g�1) results in a strong difference between
calculated and measured capacitance (mean squared error,
MSE ¼ 1.3%). Especially the values for OLC diverge in a 6 times
higher calculated capacitance than measured. In case of CDC600,
the calculated capacitance is 15% smaller than the measured value.

To reduce the deviation between calculated and measured
value, we implemented the assumption of a pore size dependent
ion electrosorption capacity (Fig. 6B). By fitting the values for all
materials, we find an optimal solution at þ0.2 V vs. carbon for
100 F$g�1 for pores smaller 1 nm and 124 F$g�1 for 1e2 nm pores.
In agreement with the literature [66,86], we assumed an expo-
nential decrease of the capacitive contribution of pores larger than
the size of two (solvated) ions. With this assumption, we signifi-
cantly reduced the average error (MSE ¼ 0.09%) and the discrep-
ancy between calculated and measured capacitance is below 10%.
Larger deviations were only observed for OLC. The average error
Fig. 6. Parity plot of measured capacitance normalized to the corrected DFT-SSA vs. calcula
ACN. (A) Results with assuming same contribution of capacitance for all pores, (B) results nor
(C) results normalized to the corrected DFT-SSA of dry powder with weighting importance of
and measured values). MSE: mean squared error.
increases significantly (MSE ¼ 0.73%, Fig. 6C) if we use the capaci-
tance of the measured dry powder SSA with cutting-off pores
smaller than the bare ion diameter.

An overview of the calculated data with the new model is pro-
vided in Fig. 7 in the form of parity plots. The insets show the
calculated capacitance values in F$g�1 normalized by the mean
density of all studied materials, since the areal and the gravimetric
capacitance are linked by the density of the material. With the data
of Fig. 7A, we first explored the positive polarization regime for 1 M
TEA-BF4 in ACN at þ0.2 V and þ1 V vs. carbon. The capacitance
increased with higher applied potential, as seen already for the
total gravimetric capacitance depicted in Fig. 4A. Regarding the
calculated contribution of (partially) desolvated BF4� and fully sol-
vated ions, we can see in accordance to the literature a strong in-
crease of importance of pores large enough to accommodate
solvated ions in the range of 1e2 nmwhenwe apply higher voltage
[73,87]. For (partially) desolvated ions, the importance does only
slightly increase. At þ0.2 V vs. carbon, the ratio between solvated
and desolvated ions is 1.25:1 and this ratio increases to
1.6:1 atþ1 V vs. carbon. The very small bare ion size of 0.45 nm and
the strong electronegative field of BF4� resulting in typically 9 ACN
molecules in the solvation shell [88] cause almost immediate des-
olvation evenwithout applied potential and the degree of solvation
increases only slightly with applied voltage [73]. Noticeably, OLC
does not fit well into this correlation. This can be explained by the
ted capacitance for positive (BF4� adsorption) polarization at 1 V vs. carbon in TEA-BF4/
malized to the value of the film electrode SSAwith weighting the pore increments, and
pores. The grey lines indicate the parity line (i.e., perfect agreement between calculated



Fig. 7. Parity plots for all systems. First row TEA-BF4/ACN, second row TEA-BF4/PC, and third row the ionic liquid EMIM-BF4. Results in the left column belong to positive polar-
ization, on the right column for negative polarization (potential vs. carbon). Insights show the weighting factors for certain pore sizes, recalculated in Farad per gram. Outliers are
marked and explained in text.
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profoundly different porosity character: OLC has ogee-shaped
pores with continuous narrowing between single (spherical) car-
bon onion particles. Yet, none of the currently available DFT pore
models adequately can handle such nanometer sized pores with
positive curvature and we assume the calculated differences to
stem from possible fluctuation in the pore size distribution data by
assuming incorrectly slit-shaped pores [16].

For negative polarization and the electrosorption of TEAþ

(Fig. 7B), the values for gravimetric capacitance are generally lower
since the ion is much larger than BF4� and there are much more
inaccessible pores. The importance of pores with desolvated ions
remains constant over the studied voltage range, but the amount of
solvated ions increases with higher voltage (Fig. 7B) since the en-
ergetic minimum is reached by accommodation of solvated ions
instead of more desolvation and “squeezing” into the smallest
accessible pores.

Now, we compare the aforementioned data of 1 M TEA-BF4 in
ACNwith the same salt in PC, which exhibits a higher viscosity [89].
The amount of PC molecules in the solvation shell decrease to 8 for
BF4� and 4 for TEAþ, resulting in a different solvated ion size
compared to ACN (Table 2) [88]. This explains a different degree of
(partially) desolvation. The plot for positive polarization (Fig. 7C)
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shows a slightly larger contribution of fully solvated ions forþ1 V vs
carbon. This ratio now favors an enhanced importance of (partially)
desolvated ions at lower potential. We conclude a more pro-
nounced desolvation of ions, especially at low potentials compared
to ACN as a result of the smaller polarity of PC and a larger molecule
size (Table 2). Ions prefer (partial) desolvation in PC more than in
ACN, even when there are fewer molecules in the solvation shell in
PC. The outlier OLC is related to the aforementioned issues with the
PSD calculations. At negative potentials (Fig. 7D), the ratio of sol-
vated and (partially) desolvated remains constant for both poten-
tials (i.e., �0.2 V and �1 V vs. carbon) at 1:1.1 with more impact of
desolvated ions than solvated ones. For an optimized EDLC elec-
trode material design strategy, we note that for ACN the amount of
sub-nanometer pores may not need to be as high as it is for PC
because of the preferred desolvation in PC and the stronger ion-
solvent interaction for ACN.

Finally, we investigate the behavior of solvent-free ionic liquid
electrolyte (EMIM-BF4; Fig. 7EeF). For positive polarization
(Fig. 7E), we calculated a very high contribution of pores larger than
one BF4� ion. The ratio of impact for pores containing one and two
ions is 1:2.2 at þ1 V vs. carbon and 1:1.3 at þ0.2 V vs. carbon. For
these results we have to consider the very high viscosity of IL
compared to organic electrolytes and the large attractive force of
cations and anions in the electrolyte. The strong influence of pores
larger than the size of one ion can be correlated to the report of
Wang et al. where a confinement of ions in nanometer sized pores
is resulting in certain favorable ion packing mechanisms [81]. The
authors reported an effective ion diameter of 0.97 nm for EMIMþ,
which means access for these ions to our second range from 1 to
2 nm [81]. The outlier CDC600 is related to the large amount of
pores smaller than the ion size of EMIMþ. BF4� seems not to enter
the pores without EMIMþ because of their high affinity to the
cation, even though the pores would provide ample size for pref-
erential anion adsorption. Even though some ions can enter the
pore the high packing density of the ions in the IL and the absence
of solvation molecules produce a high energy barrier for co-ion
adsorption or counter-ion repulsion at the pore entrance [90].
The results are similar for negative polarization (Fig. 7F), but with
lower values for the incremental capacitance due to the larger size
of EMIMþ and a consequent larger force needed to fit into the
smallest pores.

4. Conclusions

This study provides a comprehensive dataset of six microporous
carbons tested in three different electrolytes (i.e., two organic
electrolytes and one room temperature ionic liquid). The electro-
chemical results and the pore size distribution are correlated by a
model considering the size of ions and the impact of the solvation
shell. From these data, a few key considerations can be projected
onto future carbon design strategies for EDLC electrode materials.
First, it is important to consider all pores and the entirety of the
pore volume and we have to consider that carbon electrodes differ
in porosity from the dry carbon powders, while the average pore
size can be assumed to remain rather unchanged. Second, by
applying a pore size incremental model we see that pores too small
for the fully solvated ion must also contribute to the charge storage
mechanism since the observed capacitances cannot be explained
without ion desolvation. Yet, the latter does not account for the
majority of electrosorbed ions and even at elevated potentials the
pores with sufficient diameter to accommodate solvated ions are
relatively more important. Our data can be explained when
assuming a stronger solvation for BF4� in ACN than in PC and the
impact of pores larger than one solvated ion is much larger in the
case of ACN. For negative polarization, the values are quite constant
for both organic electrolytes with a less strong solvation shell
adherence and a higher impact of pores containing (partially)
desolvated ions. For the ionic liquid, the impact of pores larger than
the bare ion size is much larger (up to 2.3-times) than the pores
containing only one ion for positive and negative polarization.
Summarizing, in organic media with solvent molecules, size dif-
ferences between anions and cations have a strong impact on the
single electrode capacitance when accounting for the difference in
ion accessible pore volume. However, these considerations cannot
be directly translated to ionic liquids, where the strong interaction
between cations and anions excludes the possibility to treat ions
quasi as “desolvated”.

As for the validity of either the anomalous or regular pattern, we
conclude that both models do not adequately implement the issue
of pore size dispersity of practical carbon materials. Both patterns
can be recreated by our data, depending on the normalization
strategy. Yet, a predictive tool to calculate the expected capacitance
of a material should rather be based on a pore size incrementing
approach which adopts a varying contribution of certain pores to
the total capacitance of the electrodes.
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Increase in Capacitance by Subnanometer
Pores in Carbon

Electrical double-layer capacitors (EDLCs, also known as
supercapacitors or ultracapacitors) store energy by
electrosorption of ions at the electrode/electrolyte

interface.1 To achieve a high-energy storage capacity, electrodes
with a high surface area and well-developed pore structure in
the range from several Angstroms to several tens of nanometers
are required.2 However, neither natural precursor-derived
carbons nor templated carbon materials present an ideal,
infinitesimally narrow pore size dispersion.3

In EDLCs, the use of salt dissolved in an organic or aqueous
solvent makes it important to consider the solvation shell
around the ions. The bare ion size is usually below 1 nm,
whereas the solvation shell can increase the size significantly.3

Several studies have provided strong evidence of ion desolva-
tion during electrosorption, which is the only way to explain
why carbon materials with pore sizes smaller than the solvated
ion but larger than the bare ion have high charge storage
capacities.4−8 A maximized capacitance (normalized by the
surface area) was found in experimental and theoretical studies
when matching the pore size with the ion size.9 This effect
seems to be universally applicable for solvent-containing and
solvent-free electrolytes (ionic liquids), while important
secondary differences are to be considered for the latter. For
example, the oscillatory dependency of capacitance on pore size
predicted for neat ionic liquids and ideal carbons with slit pores
is lost when introducing a solvent, where a single maximum is
observed when the ion size and the pore size are identical.10,11

This Viewpoint clarifies the correlation between capacitance
and pore size, which is of high practical importance for the
design of advanced carbon electrode materials. Two extreme
cases are obvious: excessively large pores, accompanied by large
pore volumes and limited specific surface area, will lead to a low
energy storage capacity, whereas very small pores will limit the
ion access due to steric effects (Figure 1), in addition to
imposing obstacles to ion transport.12,13 Yet, for the
intermediate range, down to the point when the pores are
too small for the bare ion to fit, there is no consent in the
literature about the correlation between the pore size and the
corresponding area-normalized capacitance. For example, there
has been criticism about the method of surface area
determination and normalization, especially considering the
inadequacy of the Brunauer−Emmett−Teller (BET) model for
microporous carbons.14,15 Benchmarking various kinds of
carbons, including carbon monoliths, a “regular pattern” was
presented, suggesting that the area-normalized capacitance does
not depend on the pore size.14,16 This lack of dependence can
be explained by neither the ab initio or molecular dynamics
models17,18 nor geometric considerations as when the pore
diameter increases by 50−90%, there is still just one ion in each
pore contributing to charge storage and the remaining surface
area and pore volume remain unused, decreasing the
capacitance normalized by the pore surface or volume.

Recently, we developed a model for understanding the
capacitance of microporous carbons, taking into account the
entire measured pore size distribution, and have established a
comprehensive data set of electrochemical measurements.6

Density functional theory (DFT) kernels were used, which are
currently the most advanced methodology to extract porosity
data from gas sorption isotherms for meso- and microporous
carbons and effectively avoid the fundamental limitations of the
BET theory.19 Activated carbon showed the highest specific
surface area (SSA), followed by two different titanium carbide-
derived carbons (CDCs),20 activated carbon black (CB), and
carbon onions.21 Yet, when normalizing electrochemical
performance data on porosity values, we first have to consider
differences between dry powder and film electrodes.6 Then, we
have to assess the differences in pore size distributions; these
are shown in Figure 2A normalized to 100% for the
aforementioned carbon materials. Many carbons display a
significant dispersion width; this is why the often-used volume-
weighted average pore size d50 does not fully capture the pore
size distribution width, as we show by adding values for d25 and
d75, representing the pore width encompassing 25 and 75% of
the total pore volume, respectively (Table 1, Figure 2A).
More differences in the surface area of the different electrode

materials become evident when we calculate the electrochemi-
cally active surface, that is, the ion-accessible surface area
(Table 1, Figure 2B). Taking into account the bare ion size of
BF4

− (0.45 nm) and TEA+ (0.67 nm), pores smaller than these
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Accepted: November 4, 2016
Published: November 21, 2016

Figure 1. Electrosorption of specific ions with a finite size is only
possible if the pore size is at least equal to the ion size. Therefore,
the specific surface area of pores smaller than the bare ion size is
inaccessible for energy storage. Larger pores can adsorb more than
one ion per pore.
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values are inaccessible to the ions.7 The result is a further
reduction of the specific surface area, and we have to consider
different cutoff values for the positively (cutoff pore size of 0.4
nm) and negatively (cutoff at 0.6 nm) polarized electrodes. In

the case of CDC, only about 40−50% of the total SSA is
accessible to TEA+ compared to about 70% for activated carbon
and carbon black (Figure 2A).
The reported electrochemical measurements using a three-

electrode configuration (for experimental methods see the
Supporting Information) showed a nonlinear correlation of
SSA and gravimetric capacitance measured in F·g−1 (Table 1)
for 1 M TEA-BF4 in acetonitrile (ACN) or propylene carbonate
(PC).6 A very high Coulombic efficiency (up to 99%)
underlines the absence of significant Faradaic reactions in the
chosen potential window (Table 1). When we normalize the
measured electrode capacitance by the surface area accessible to
cations or anions at +1 and −1 V vs carbon, respectively, we see
a clear difference between positive and negative polarization
(Figure 3, Table 1). Instead of just discussing the electro-
chemical data in the context of average pore width (d50), we
added error bars for the x-axis, which spread between d25 and
d75 (Figure 3). Even when considering pore size dispersity, we
still see a clear trend of increased normalized capacitance in
subnanometer pores, which is significantly larger for negative
polarization (i.e., electrosorption of the larger TEA+ cation).
The more effective use of available pores in the case of
matching sizes results in a strong increase in capacitance, which
was already shown by a geometric model of Huang et al. (ref
22; see also the data line in Figure 3). For larger pore sizes, in

Figure 2. (A) The cumulative pore size distribution of electrodes was derived by combining CO2 and N2 sorption and normalizing all data to
100%. (B) Porosity analysis of different carbon electrode materials using a DFT model. Data are normalized for SSA of electrodes containing
10 mass% PTFE as 100% and the calculated accessible surface area for BF4

− anions (0.4 nm, BF4
− accessible) and TEA+ cations (0.6 nm, TEA+

accessible).

Table 1. Combined NLDFT Model for CO2 Sorption for Pores Smaller than 0.9 nm and QSDFT Model for N2 Sorption for
Pores Larger than 0.9 nma

Material

DFT
SSA
(m2·
g−1)

d50(d25−d75) pore
width (nm)

capacitance at
+1 V in ACN

(F·g−1)

Coulomb
efficiency

(%)

capacitance
at +1 V in
PC (F·g−1)

Coulomb
efficiency

(%)
capacitance at −1 V
in ACN (F·g−1)

Coulomb
efficiency

(%)
capacitance at −1 V

in PC (F·g−1)

Coulomb
efficiency

(%)

AC 1839 1.3 (0.8−1.8) 113 96 115 99 103 99 102 99

CB 1097 15 (5−19) 99 99 99 99 88 99 87 99

OLC 232 9.5 (6−14) 20 98 20 99 16 99 16 99

CDC600 934 0.64 (0.53−0.93) 127 97 132 98 121 98 119 99

CDC1000 967 0.90 (0.62−1.4) 101 97 100 98 98 98 96 99
aThe average pore size relates to the volume-weighted arithmetic mean value d50 with the standard deviation from d25 to d75. Capacitance values were
recorded at +1 V vs carbon and −1 V vs carbon in a three-electrode setup (half-cell).

Figure 3. Capacitance of porous carbons normalized to the
accessible surface area for each ion in both solvents. The regular
pattern average of 0.95 F m−2 from ref 15 is added, and data for the
Huang model is from ref 17.
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particular, for mesopores, the capacitance converges toward an
average value below 0.1 F·m−2, which aligns well with the
“regular pattern” value reported by Centeno et al. (ref 15) and
with the calculated value limiting the double-layer capacitance
at the planar carbon interface (or larger than the few-nm pores;
ref 17).
For electrolytes with significant differences between the size

of anions and cations, our data clearly show the importance of
differentiating between ion electrosorption during positive or
negative polarization with use of half-cell measurements (Figure
3). With a larger size of TEA+, and smaller corresponding
surface area accessible to the cations, the values of areal
capacitance during negative polarization are significantly larger
than those for BF4

− electrosorption (i.e., positive polarization).
Accordingly, advanced EDLC cell design could achieve
performance enhancement by developing nanoporous carbon
with slightly different pore sizes for the positive and negative
electrodes.23,24

In summary, our data analysis clearly supports the increase in
surface-normalized capacitance when most of the pores are
below 1 nm, in agreement with previous studies (e.g., see refs 7
and 25). This was shown for carbons with very different pore
structures considering the complexity of pore size dispersity
and for two different solvents (i.e., PC and ACN). This effect is
seen at different amplitudes for positive and negative
polarization, with a smaller increase for BF4

− within the range
of investigated pore sizes.
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∥Reśeau sur le Stockage Electrochimique de l′Energie, RS2E FR
CNRS 3459, 80039 Amiens Cedex, France
⊥Department of Materials Science and Engineering, and A. J.
Drexel Nanotechnology Institute, Drexel University,
Philadelphia, Pennsylvania 19104, United States

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsenergy-
lett.6b00516.

Experimental methods (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: simon@chimie.ups-tlse.fr (P.S.).
*E-mail: gogotsi@drexel.edu (Y.G.).
*E-mail: volker.presser@leibniz-inm.de (V.P.).

Notes
Views expressed in this viewpoint are those of the authors and
not necessarily the views of the ACS.
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank Dr. Weingarth, Dr. Aslan, Anna Schreiber,
Jeon Jeongwook (all at INM), and Katherine Van Aken (Drexel
University) for their technical support and helpful discussion.
N.J. and V.P. also thank Prof. Eduard Arzt (INM) for his
continuing support. Y.G. was supported by the Fluid Interface
Reactions, Structures and Transport (FIRST) Center, an
Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic
Energy Sciences.

■ REFERENCES
(1) Beguin, F.; Frackowiak, E. Supercapacitors; Wiley: Weinheim,
Germany, 2013.
(2) Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.;
Grey, C. P.; Dunn, B.; Simon, P. Efficient storage mechanisms for
building better supercapacitors. Nature Energy 2016, 1, 16070.
(3) Kondrat, S.; Perez, C. R.; Presser, V.; Gogotsi, Y.; Kornyshev, A.
A. Effect of pore size and its dispersity on the energy storage in
nanoporous supercapacitors. Energy Environ. Sci. 2012, 5, 6474−6479.
(4) Kastening, B.; Spinzig, S. Electrochemical polarization of
activated carbon and graphite powder suspensions: Part II. Exchange
of ions between electrolyte and pores. J. Electroanal. Chem. Interfacial
Electrochem. 1986, 214, 295−302.
(5) Levi, M. D.; Sigalov, S.; Salitra, G.; Aurbach, D.; Maier, J. The
effect of specific adsorption of cations and their size on the charge-
compensation mechanism in carbon micropores: The role of anion
desorption. ChemPhysChem 2011, 12, 854−862.
(6) Jac̈kel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.;
Aslan, M.; Weingarth, D.; Presser, V. Anomalous or regular
capacitance? The influence of pore size dispersity on double-layer
formation. J. Power Sources 2016, 326, 660−671.
(7) Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.;
Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes
less than 1 nm. Science 2006, 313, 1760−1763.
(8) Raymundo-Pinero, E.; Kierzek, K.; Machnikowski, J.; Beguin, F.
Relationship between the nanoporous texture of activated carbons and
their capacitance properties in different electrolytes. Carbon 2006, 44,
2498−2507.
(9) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.;
Simon, P. Relation between the ion size and pore size for an electric
double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730−2731.
(10) Jiang, D.; Jin, Z.; Henderson, D.; Wu, J. Solvent effect on the
pore-size dependence of an organic electrolyte supercapacitor. J. Phys.
Chem. Lett. 2012, 3, 1727−1731.
(11) Feng, G.; Qiao, R.; Huang, J.; Sumpter, B. G.; Meunier, V. Ion
distribution in electrified micropores and its role in the anomalous
enhancement of capacitance. ACS Nano 2010, 4, 2382−2390.
(12) Segalini, J.; Iwama, E.; Taberna, P.-L.; Gogotsi, Y.; Simon, P.
Steric effects in adsorption of ions from mixed electrolytes into
microporous carbon. Electrochem. Commun. 2012, 15, 63−65.
(13) Levi, M. D.; Levy, N.; Sigalov, S.; Salitra, G.; Aurbach, D.; Maier,
J. Electrochemical quartz crystal microbalance (EQCM) studies of ions
and solvents insertion into highly porous activated carbons. J. Am.
Chem. Soc. 2010, 132, 13220−13222.
(14) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.;
Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of
gases, with special reference to the evaluation of surface area and pore
size distribution. Pure Appl. Chem. 2015, 87, 1051−1069.
(15) Centeno, T. A.; Sereda, O.; Stoeckli, F. Capacitance in carbon
pores of 0.7 to 15 nm: a regular pattern. Phys. Chem. Chem. Phys. 2011,
13, 12403−6.
(16) Garcia-Gomez, A.; Moreno-Fernandez, G.; Lobato, B.; Centeno,
T. A. Constant capacitance in nanopores of carbon monoliths. Phys.
Chem. Chem. Phys. 2015, 17, 15687−90.

ACS Energy Letters Viewpoint

DOI: 10.1021/acsenergylett.6b00516
ACS Energy Lett. 2016, 1, 1262−1265

1264

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00516
http://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00516
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.6b00516/suppl_file/nz6b00516_si_001.pdf
mailto:simon@chimie.ups-tlse.fr
mailto:gogotsi@drexel.edu
mailto:volker.presser@leibniz-inm.de
http://dx.doi.org/10.1021/acsenergylett.6b00516
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.jpowsour.2016.03.015&citationId=p_12_1
http://pubs.acs.org/action/showLinks?crossref=10.1038%2Fnenergy.2016.70&citationId=p_2_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.elecom.2011.11.023&coi=1%3ACAS%3A528%3ADC%252BC38Xps1WmtA%253D%253D&citationId=p_30_1
http://pubs.acs.org/action/showLinks?pmid=21666915&crossref=10.1039%2Fc1cp20748b&coi=1%3ACAS%3A528%3ADC%252BC3MXot1alt7g%253D&citationId=p_39_1
http://pubs.acs.org/action/showLinks?crossref=10.1039%2Fc2ee03092f&coi=1%3ACAS%3A528%3ADC%252BC38XksVKntbw%253D&citationId=p_3_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjz3004624&coi=1%3ACAS%3A528%3ADC%252BC38XotlSgtrg%253D&citationId=p_24_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjz3004624&coi=1%3ACAS%3A528%3ADC%252BC38XotlSgtrg%253D&citationId=p_24_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.carbon.2006.05.022&coi=1%3ACAS%3A528%3ADC%252BD28XotlKmsbc%253D&citationId=p_18_1
http://pubs.acs.org/action/showLinks?pmid=26028487&crossref=10.1039%2FC5CP01904D&coi=1%3ACAS%3A528%3ADC%252BC2MXoslCkt7k%253D&citationId=p_42_1
http://pubs.acs.org/action/showLinks?pmid=26028487&crossref=10.1039%2FC5CP01904D&coi=1%3ACAS%3A528%3ADC%252BC2MXoslCkt7k%253D&citationId=p_42_1
http://pubs.acs.org/action/showLinks?crossref=10.1515%2Fpac-2014-1117&coi=1%3ACAS%3A528%3ADC%252BC2MXhs1Chtr3I&citationId=p_36_1
http://pubs.acs.org/action/showLinks?pmid=21271632&crossref=10.1002%2Fcphc.201000653&coi=1%3ACAS%3A528%3ADC%252BC3MXivVWnurw%253D&citationId=p_9_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja7106178&coi=1%3ACAS%3A528%3ADC%252BD1cXhsF2rtLs%253D&citationId=p_21_1
http://pubs.acs.org/action/showLinks?pmid=16917025&crossref=10.1126%2Fscience.1132195&coi=1%3ACAS%3A528%3ADC%252BD28Xpsl2qsrw%253D&citationId=p_15_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2F9783527646661&citationId=p_1_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja104391g&coi=1%3ACAS%3A528%3ADC%252BC3cXhtFehu73M&citationId=p_33_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja104391g&coi=1%3ACAS%3A528%3ADC%252BC3cXhtFehu73M&citationId=p_33_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2F0022-0728%2886%2980104-8&coi=1%3ACAS%3A528%3ADyaL2sXktVentg%253D%253D&citationId=p_6_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2F0022-0728%2886%2980104-8&coi=1%3ACAS%3A528%3ADyaL2sXktVentg%253D%253D&citationId=p_6_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnn100126w&coi=1%3ACAS%3A528%3ADC%252BC3cXkt1GktL8%253D&citationId=p_27_1


(17) Huang, J.; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.;
Gogotsi, Y. Curvature effects in carbon nanomaterials: Exohedral
versus endohedral supercapacitors. J. Mater. Res. 2010, 25, 1525−1531.
(18) Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P. L.; Simon,
P.; Gogotsi, Y.; Salanne, M. On the molecular origin of super-
capacitance in nanoporous carbon electrodes. Nat. Mater. 2012, 11,
306−10.
(19) Gor, G. Y.; Thommes, M.; Cychosz, K. A.; Neimark, A. V.
Quenched solid density functional theory method for characterization
of mesoporous carbons by nitrogen adsorption. Carbon 2012, 50,
1583−1590.
(20) Presser, V.; Heon, M.; Gogotsi, Y. Carbide-derived carbons −
from porous networks to nanotubes and graphene. Adv. Funct. Mater.
2011, 21, 810−833.
(21) Zeiger, M.; Jac̈kel, N.; Aslan, M.; Weingarth, D.; Presser, V.
Understanding structure and porosity of nanodiamond-derived carbon
onions. Carbon 2015, 84, 584−598.
(22) Huang, J.; Sumpter, B. G.; Meunier, V. A universal model for
nanoporous carbon supercapacitors applicable to diverse pore regimes,
carbon materials, and electrolytes. Chem. - Eur. J. 2008, 14, 6614−
6626.
(23) Sigalov, S.; Levi, M. D.; Salitra, G.; Aurbach, D.; Jan̈es, A.; Lust,
E.; Halalay, I. C. Selective adsorption of multivalent ions into TiC-
derived nanoporous carbon. Carbon 2012, 50, 3957−3960.
(24) Weingarth, D.; Zeiger, M.; Jac̈kel, N.; Aslan, M.; Feng, G.;
Presser, V. Graphitization as a universal tool to tailor the potential-
dependent capacitance of carbon supercapacitors. Adv. Energy Mater.
2014, 4, 1400316.
(25) Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P.; Gogotsi, Y.
Desolvation of Ions in subnanometer pores and its effect on
capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008,
47, 3392−3395.

ACS Energy Letters Viewpoint

DOI: 10.1021/acsenergylett.6b00516
ACS Energy Lett. 2016, 1, 1262−1265

1265

http://dx.doi.org/10.1021/acsenergylett.6b00516
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.carbon.2011.11.037&coi=1%3ACAS%3A528%3ADC%252BC38XnvF2htw%253D%253D&citationId=p_51_1
http://pubs.acs.org/action/showLinks?crossref=10.1557%2FJMR.2010.0195&coi=1%3ACAS%3A528%3ADC%252BC3cXhtVejtbbM&citationId=p_45_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.carbon.2014.12.050&coi=1%3ACAS%3A528%3ADC%252BC2MXitVWksA%253D%253D&citationId=p_57_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Faenm.201400316&coi=1%3ACAS%3A528%3ADC%252BC2cXhsFertL3P&citationId=p_64_1
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fadfm.201002094&coi=1%3ACAS%3A528%3ADC%252BC3MXisFWkt7w%253D&citationId=p_54_1
http://pubs.acs.org/action/showLinks?pmid=18366034&crossref=10.1002%2Fanie.200704894&coi=1%3ACAS%3A528%3ADC%252BD1cXmtlajsL0%253D&citationId=p_65_1
http://pubs.acs.org/action/showLinks?pmid=22388172&crossref=10.1038%2Fnmat3260&coi=1%3ACAS%3A528%3ADC%252BC38Xjt1eksbw%253D&citationId=p_48_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.carbon.2012.04.002&coi=1%3ACAS%3A528%3ADC%252BC38Xmt12itbc%253D&citationId=p_61_1


 

68 

 

4.4 Quantitative Information about Electrosorption of Ionic Liquids in 

Carbon Nanopores from Electrochemical Dilatometry and Quartz 

Crystal Microbalance Measurements 

N. Jäckel a,b, S. P. Emge c,d, B. Krüner a,b, B. Roling c, V. Presser a,b 

a INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany 

b Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany 

c Department of Chemistry, Philipps-Universität, Marburg, Germany 

d Department of Chemistry, University of Cambridge, United Kingdom 

 

published in The Journal of Physical Chemistry C, 2017. 121(35): p. 19120-19128 

 

Own contribution: 

Data generation 60 % 

Data analysis 75 % 

Interpretation 80 % 

Writing 80 % 

 

Supporting Information: 

Appendix C  



Quantitative Information about Electrosorption of Ionic Liquids in
Carbon Nanopores from Electrochemical Dilatometry and Quartz
Crystal Microbalance Measurements
Nicolas Jac̈kel,†,‡ Steffen Patrick Emge,§,∥ Benjamin Krüner,†,‡ Bernhard Roling,*,§
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ABSTRACT: Electrochemical energy storage using nanoporous carbons and ionic liquids
enables large cell voltages and is a promising way to increase the energy density of electrical
double-layer capacitors. The structure of the double layer in solvent-free electrolytes is
fundamentally different from other systems with organic or aqueous solvents. In our study, we
investigate the physical behavior of nanoporous carbon electrodes in contact with ionic liquids
with a multilength scale approach by combining electrochemical quartz-crystal microbalance and
electrochemical dilatometry. Synergistic combination of both in situ methods allows one to
correlate system properties on particle and electrode level. We find that the charging mechanism
at low charge is characterized by the exchange of more smaller ions by fewer larger ions. At
higher charges, the system is changing to preferred counterion adsorption, which is resulting in a
strong increase in the electrode volume. The maximum linear strain for a bulk electrode is 2% in
our study, which is quite high for a supercapacitor system.

1. INTRODUCTION

Energy storage in electrical double-layer capacitors (EDLCs,
also known as supercapacitors or ultracapacitors) via physical
ion electrosorption at the electrode/electrolyte interface is
highly reversible.1 To achieve a high energy density, this
process requires electrodes with a high surface area, and an
enhanced capacitance can be achieved when most of the pores
are of similar size as the ion.2−5 Possible electrolytes are
aqueous, organic, or ionic liquids (or mixtures thereof), and
depending on the electrolyte, the electrochemical stability
window determines the maximum operational cell voltage.6

Ionic liquids are attractive because their use enables cell
voltages above 3 V and very high capacitance of up to 180 F/
g.7−9 Yet, the power output is drastically reduced by the low ion
mobility in ionic liquids at room temperature compared to
organic electrolytes.10,11 It is known that, in general, the
charging mechanism depends on the pore size, ion size, and
applied voltage.12 Several competing mechanisms, such as
bond-length stretching, electrowetting, electrostatic screening,
and steric effects, which are all changing according to pore size
and amount of functional groups, make a precise prediction of
carbon swelling impossible at present.13

To devise further ways to enhance supercapacitor perform-
ance, it is important to understand the double-layer formation
mechanism in nanoconfined spaces, like in (sub)nanometer-
sized pores of carbon electrodes. In general, the charge

compensation in an electrical double layer can be achieved
either by co-ion expulsion, that is, expelling ions of the same
charge as the electrode from the interface, or by counterion
adsorption, that is, attraction of oppositely charged ions to the
interface.14 To clearly identify the governing mechanism,
studies employing different in situ methods have revealed key
insights. For example, the ionic liquid spontaneously wets the
carbon surface but is unlikely to achieve full wetting. Such
partial filling was shown, for example, for microporous activated
carbon (YP-50F from Kuraray) in 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and N-prop-
yl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide
(Pyr13-TFSI).

15,16 Further, cations play a dominant role in
the double-layer formation, which results in a more pronounced
counterion adsorption at negative potentials.15,17

Molecular dynamic simulations show that for ionic liquids,
counterions can enter the micropores faster than co-ions can
exit.18 For larger pores (i.e., mesopores), the diffusion of
cations in confined space is faster than in the bulk electrolyte,
and cations also seem to have a higher mobility in
micropores.16,17,19 Additionally, screening effects in highly
porous electrodes allow for ions to adsorb in closer proximity
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to the pore walls in nanoconfined spaces as it would be possible
on a planar surface.16 Also, over most potential ranges, the
electrical double layer does not contain only counterions, but
both kinds of ions influence the structure of the double layer. A
significant number of co-ions can remain inside the micropores,
and a so-called superionic state of ions is created.20,21

Calculations and experimental work showed that a preferential
adsorption of counterions (permselectivity) will only occur at
high voltages of 1.0−1.5 V above the point of zero charge
(pzc),17,22,23 and the ion population in micropores increases up
to a certain threshold voltage (i.e., at 1.6 V above pzc) and stays
constant for higher voltages.24

In the case of ionic liquids, the Gouy−Chapman−Stern
model cannot be used to predict electrowetting and the
potential-dependent structuring of ions in the double layers at
electrified interfaces but a different theoretical approach is
required.25,26 In a simplistic two-dimensional simulation of slit-
like pores and ions considered as hard spheres an oscillating
behavior of the capacitance was observed.27,28 This oscillating
capacitance vanishes as soon as the pore model is no longer an
ideal slit pore with infinitesimally narrow size dispersity, and a
broader, more natural pore size distribution is assumed.29,30

The structural ordering becomes even more complex when
taking into account the three-dimensional structure of ionic
liquids in confined spaces.31 In addition, molecular dynamic
studies proclaim an exchange of ions with the bulk electrolyte
without changing the volume of liquid inside the electrode.16

To further advance our nanoscale understanding of the
electrical double layer in ionic liquids, a thorough correlation of
atomistic/molecular simulations with experimental measure-
ments is required.32 With state-of-the-art in situ methods a
quantification of volumetric changes of carbon particles or bulk
electrodes can be monitored. These measurements are usually
done by means of electrochemical dilatometry,33−36 atomic
force microscopy,37,38 or (small-angle) X-ray diffraction.39 In
situ electrochemical dilatometry (eD) has confirmed that the
reversible (linear) expansion of microporous carbons in contact
with organic electrolytes can range up to several percent.33−35

In the case of highly porous carbons, ionic liquid ions in
nanoconfinement may enable favorable ion packing and
crowding,22,40 causing pore swelling of the electrode material.41

In all cases of previous dilatometric studies,42 either with
organic electrolytes or with ionic liquids, the expansion for
negative potentials exceeds the expansion in the positive
potential regime, also at the same charge.33−35 Moreover, a
general trend was observed by an increased expansion for
smaller pores,33,35 and in ionic liquids, the expansion has a
linear correlation with the amount of micropores.42

It was found that the theoretical expansion according to
either ion insertion into bulk electrodes or generated pressure
due to crowding of ions in the pores or carbon bond-length
variation has been smaller than the measured values on
electrodes. This results from the void volume inside the bulk
electrode and the possibility of particle rearrangement.43 To
avoid such secondary effects and to gain further insights on the
particle level, different measurement techniques should be used.
In situ atomic force microscopy (AFM) with ionic liquids
evidenced the reversible expansion and compression of porous
carbon electrodes.37,38 The AFM results combined with
molecular dynamic calculations showed that cations inside of
micropores contribute to increasing pressure to a greater extent
than anions, even at the same state of charge.38 This is in line
with the results from eD.33,42

Although nanoscale expansions can be tracked by in situ
AFM, it remains a very localized probing of single
particles.37,44,45 Therefore, such results cannot be extrapolated
directly to the behavior of bulk electrodes with a thickness of a
few hundred micrometers and characteristic scales of
heterogeneity depending on particle size and the use of binder.
The development of noninvasive in situ techniques for the
continuous monitoring of mechanical properties of composite
electrodes is therefore in high demand. Electrochemical quartz-
crystal microbalance (EQCM) measurements are known for
very sensitive tracking of mass differences resulting from ion
(de)insertion in supercapacitors.17,20,46−51 In this way, we can
quantify the irreversible mass change after cycling or the
desolvation of ions in organic electrolytes, that is, stripping off
the solvation shell, when approaching narrow pores. To date,
there has been only a single paper with EQCM in ionic liquid
(EMIM-TFSI) published,17 but there are no studies comparing
in situ measurements with different ionic liquids and a precise
description of the charging mechanism depending on the
choice of ions.
In our multilength scale approach, we combine EQCM to

monitor low mass changes and eD to observe volume changes
of the electrode on a bulk level. During EQCM measurements,
we monitor simultaneously the charge flow and the mass
changes. Since the ionic liquids contain only two mobile ionic
species (i.e., one type of cation and one type of anion) with
different mass and no solvent molecules, the simultaneous mass
and charge measurements allow us to quantify the contribution
of counterion and co-ions to the double-layer charge storage.
Considering the molar volumes of the ions, we can calculate
potential-dependent volume changes due to the ionic liquid
ions inside the pores. We show that these volume changes are
in good agreement with the measured volumetric expansion
from eD measurements. The much wider potential window
applied in eD further allows us to see the influence of both ions
on the structure of the double layer and the resulting
dilatometric behavior.

2. EXPERIMENTAL SECTION
The synthesis of the novolac-derived carbon beads (NovoCarb)
is described elsewhere.52,53 In short, the novolac pellets (20 g)
with 10 mass% of methenamine were dissolved in 100 mL of
ethanol. The solution was added to 500 mL of water in an
autoclave, heated up to 160 °C with a heating rate of 5 °C/min,
and held at this temperature for 8 h. The resulting dispersion
was freeze dried with liquid nitrogen. The novolac beads were
afterward pyrolyzed in a graphite heating furnace (Thermal
Technology) in argon atmosphere at 1000 °C with a heating
rate of 20 °C/min. CO2 activation was carried out in a quartz
tube furnace (VG Scienta) at 1000 °C for 2 h.
Nitrogen gas sorption measurements were carried out with

an Autosorb iQ system (Quantachrome) with liquid nitrogen
(−196 °C). The electrode was degassed under vacuum at 150
°C for 10 h; the powder was degassed at 300 °C. Isotherms
were recorded at relative pressures (p/p0) from 5 × 10−7 to 1.0
in 74 steps. The specific surface area (SSA) and pore size
distribution were calculated with the ASiQwin software using
the quenched-solid density function theory assuming slit
pores.54

CHNSO analysis was carried out with a Vario Micro Cube
(Elementar GmbH). The temperature of the reduction tube
was 850 and 1150 °C in the combustion tube. The device was
calibrated with sulfanilamide. Oxygen quantification was
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conducted in a rapid OXY Cube with silver crucibles at 1450
°C. The calibration was done with benzoic acid. Room-
temperature ionic liquids (RTIL) from Iolitec were degassed
under vacuum at 120 °C for 24 h. The three used RTIL 1-ethyl-
3-methylimidazolium tetrafluoroborate (EMIM-BF4), 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-
TFSI), and 1-butyl-3-methylimidazolium hexafluorophosphate
(BMIM-PF6) were stored in an argon-filled glovebox (MBraun,
H2O and O2 content below 1 ppm).
In situ electrochemical dilatometry was carried out with an

ECD-3-nano dilatometer from EL-CELL (setup adopting the
design in ref 35 and following the procedure from ref 55). The
measurements were conducted at 25.0 ± 0.1 °C in a three-
electrode setup. The working electrode with 90 mass %
NovoCarb and 10 mass % sodium carboxymethyl cellulose
(NaCMC) in water were dropcasted on the platinum current
collector and dried at 200 °C for 30 min. The cell contained an
oversized activated carbon electrode and a carbon quasi-
reference electrode (type YP-50F, Kuraray) and was vacuum
backfilled with electrolyte (approximately 0.5 mL) in the
glovebox.56 The working electrode was loaded with a constant
force of 1 N, and the strain was tracked with a DP1S
displacement transducer (Solartron Metrology, accuracy ±15
nm). After a resting period of 48 h, cyclic voltammograms were
recorded at 1 mV/s and galvanostatic data was recorded after
an appropriate equilibrium time (10−60 min) at the applied
potential. We used a VMP-300 from Bio-Logic.
Electrochemical quartz-crystal microbalance (EQCM) meas-

urements were conducted with RenLux Crystals at 10 MHz
resonance frequency with gold-sputtered electrodes and an
active surface area of 0.204 cm2. The electrodes were airbrushed
with a suspension of 90 mass % NovoCarb and 10 mass %
NaCMC in water on the gold surface at 200 °C and dried
afterwards in a vacuum oven at 60 °C for 24 h. According to
the electrochemical behavior and the assumption of exclusively
capacitive charge, we can calculate the active mass (i.e., carbon
mass, mC) via mC = I/(CC·v) with the current I during cyclic
voltammetry measurements, the calculated capacitance CC, and
the scan rate v. The electrochemical cell TSC surface from

RHD Instruments was assembled with the coated quartz crystal
as working electrode, a silver wire as quasi-reference electrode,
and a gold disc as counter electrode. The cell was filled with
electrolyte (approximately 0.6 mL) and sealed in the glovebox.
The electrochemical measurements were controlled with an
Interface 1000 system from Gamry, while the resonance
frequency of the crystal was tracked with a Gamry eQCM 10M.
Calculations for the number of ions and the volume changes are
presented in the Supporting Information.

3. RESULTS AND DISCUSSION
3.1. Electrode Characterization. The novolac-derived

carbon beads (NovoCarb) were produced as described
elsewhere.52,53 This type of porous carbon provides a very
narrow pore size distribution3 with an average pore size of
about 1.2 nm, which is larger than the ion size of the used ionic
liquids (Table 1). Furthermore, the noncarbon content is about
5 mass % (Supporting Information, Table S1). The quenched-
solid DFT specific surface area (QSDFT-SSA) of the dry
carbon powder is 1958 m2/g with a total pore volume of 1.13
cm3/g and an average pore size of 1.2 nm. The electrodes
containing 90 mass% carbon and 10 mass% sodium
carboxymethyl cellulose (NaCMC) show a strongly reduced
SSA of 1338 m2/g (−32%) and a pore volume of 0.82 cm3/g
(−27%), whereas the average pore diameter does not change
(Supporting Information, Figure S1). The reduced SSA is
related to pore blocking effects of the NaCMC binder, which
especially blocks subnanometer pores.57,58

3.2. Ionic Liquid Properties. We used three room-
temperature ionic liquids (RTILs), namely, EMIM-TFSI,
EMIM-BF4, and BMIM-PF6, with five different ion species.
These ionic liquids differ regarding the sizes, shapes, and
masses of the ions. For instance, in the case of EMIM-TFSI, the
molar volume and molar mass of the anions are larger than the
molar volume and molar mass of the cations, while the situation
is reversed in the case of EMIM-BF4 (Table 1). Furthermore,
the ionic liquids show distinct transport properties (viscosity
and conductivity), which thus lead to different electrochemical
properties.59 Our work critically requires us to stay within a

Table 1. Physical Properties of the Used Ionic Liquids at 25 °C

cation size (nm3) anion size (nm3) conductivity (mS/cm) density (g/cm3) viscosity (cp) melting point (°C) ref

EMIM-BF4 0.156 ± 0.018 0.073 ± 0.021 14 1.28 43 +14.85 70−72
EMIM-TFSI 0.156 ± 0.018 0.232 ± 0.015 9.2 1.52 34 −15.15 70,71,73
BMIM-PF6 0.196 ± 0.021 0.109 ± 0.008 1.4 1.36 207 +9.85 69−72

Figure 1. In situ dilatometric measurements of NovoCarb in (A) EMIM-TFSI, (B) EMIM-BF4, and (C) BMIM-PF6 with cyclic voltammetry at 1
mV/s. Electrochemical response of the working electrode (black line) can be simultaneously tracked with the height change (red).
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stable electrochemical voltage window to avoid any Faradaic
reactions at the fluid/solid interface between ionic liquid and
carbon electrodes. To find the maximum potential window
when using NovoCarb, we conducted cyclic voltammetry at a
scan rate of 1 mV/s with increasing voltage window in 100 mV
increments (Figure 1).60 All RTILs were tested until an upper
vertex voltage limit of +1.5 V vs carbon. In the cathodic regime,
the lower vertex voltage differs with the limits for EMIM-BF4 at
−1.6 V vs carbon, for EMIM-TFSI at −1.8 V vs carbon, and for
BMIM-PF6 at −2.0 V vs carbon. In accordance with the
viscosity and conductivity properties of the different RTILs, a
rectangular-shaped cyclic voltammogram (CV) is observed for
EMIM-BF4 and EMIM-TFSI, while a more distorted CV with a

large resistive knee is seen for BMIM-PF6 because of the 10-
fold lower conductivity of the latter (Table 1).

3.3. Electrochemical Dilatometry. Using in situ electro-
chemical dilatometry (eD) we can simultaneously record the
CV and the displacement of the working electrode (Figure 1).
This displacement is divided by the thickness of the electrode
to obtain the normalized strain values. We can see a clear
influence of the RTIL on the expansion of NovoCarb
electrodes. The largest expansion of 1.4% is measured for
EMIM-TFSI at a negative potential of −1.8 V vs carbon. This is
followed by the expansion in EMIM-BF4 (0.8%) and then
BMIM-PF6 (0.7%). It can be observed that the expansion is
always more pronounced in the negative potential regime.

Figure 2. Galvanostatic results of NovoCarb in (A) EMIM-TFSI, (B) EMIM-BF4, and (C) BMIM-PF6 with normalization of charge to the point of
zero strain (pzs).

Figure 3. Galvanostatic response of the system at a specific current of 0.1 A/g. Data is derived from the in situ dilatometry system. Charge is
normalized to the point of zero strain (pzs) and plotted versus the resulting strain of the working electrode. Schematic drawings show the different
charging behavior according to the shape of the adsorbed ions with spherical anions (BF4

− and PF6
−) and nonspherical ions (TFSI−). Effect is

exaggerated in the drawing to illustrate the trend but not to reproduce the amplitude shown in the eD data. In all cases the smaller ion is more
involved in energy storage, which results in either preferred co-ion expulsion or counter-ion adsorption.
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However, the measured expansion cannot solely be related to
the electroadsorbing cation, as both EMIM-containing electro-
lytes drastically differ in expansion depending on the type of
anion present. At the most positive potentials (+1.5 V vs
carbon), the expansion is largest for the nonspherical TFSI−,
which is also the largest anion, followed by PF6

− and the
smallest BF4

−.
A strain hysteresis occurs during voltage sweeping at 1 mV/s

and is enhanced for RTILs with lower ion mobility/higher
viscosity as can be seen for BMIM-PF6. The hysteresis is related
to the limited ion migration inside narrow pores and the high
viscosity of the used ionic liquids (Table 1). To avoid the strain
hysteresis, we conducted galvanostatic measurements with the
same voltage steps and an appropriate equilibrium time (Figure
2). The system is quasi-equilibrated at each voltage step, and
we can now correlate charge and strain. The curves are
normalized to zero charge at the minimum strain measured; we
call this point the point of zero strain (pzs). This point is
assumed to be close to the point of zero charge (pzc).
Therefore, an equal number of cations and anions can be
expected in the pores.15,61 A higher strain is seen again at
negative charge compared to positive charge for all RTILs. The
smallest expansion is observed for EMIM-BF4 with 0.25% at
+300 C/g and 0.5% at −300 C/g. In the case of EMIM-TFSI,
we observe a large strain of 0.7% at negative charges (−300 C/
g) compared to a smaller strain of 0.2% at positive charges
(+190 C/g). At a positive charge of 100 C/g, the expansion is
0.25% for BMIM-PF6, 0.13% for EMIM-TFSI and 0.03% for
EMIM-BF4,which shows that in general a larger strain at
negative potentials results also in a more pronounced expansion
at positive charges. For BMIM-PF6 the strain at −300 C/g is
already 1.1%, which can be explained by the larger volume
occupied by the BMIM+ in comparison to EMIM+ (Table 1).
The effect of a more pronounced expansion at negative voltages
is measured for all RTILs, but it is not fully understood yet.
In the case of EMIM-TFSI, the slope in the strain versus

charge plot is smaller than that found for BMIM-PF6. The
higher strain can be correlated to the larger size of BMIM+

(Table 1). It seems likely that the orientation of ions (co-ions
and counterions) influences the strain, especially for the
nonspherical ions.62 A parabolic shape in the strain curve is
generated by the spherical BF4

−, whereas a more linear increase
in strain can be observed for TFSI− and for the PF6

− that is
paired with the BMIM+ cation. Hence, for the two EMIM+-
containing electrolytes, the strain at −300 C/g differs, with
0.5% for EMIM-BF4 and 0.7% for EMIM-TFSI.42 Moreover,

the total charge values also strongly differ, which is related to
the slightly different voltage windows and the surface coverage
per ion, which is changing in the case of nonspherical ions
(Figure 3).62,63 The higher total charge values for EMIM-TFSI
and EMIM-BF4 in comparison to BMIM-PF6, which has the
largest cation and a spherical anion, are related to the bare ion
size and the volume occupied by each ion (Table 1). Hence, we
would expect higher energy E for higher potentials or larger cell
voltages according to E = 1/2CV2 (with capacitance C and cell
voltage V), but the size of the adsorbed ions seems to have a
greater impact on the possible surface charge.
The electrochemical stability of ionic liquids in the literature

does not show a clear trend.4,60,64,65 The different pzs (+0.2 V
vs carbon for EMIM-BF4 and 0.7 V vs carbon for EMIM-TFSI)
might have an influence on the preferred electrosorption of
ions, but there might be also a steric hindrance according to the
different shapes of the ions.66 In the case of EMIM-TFSI, both
ions are nonspherical and can be approximated as cylindrically
shaped. In confinement of nanometer-sized pores, these ions
might slide easier along each other than spherical ions.26,42

Nonspherical ions may create a steric barrier for other ions to
slide along each other by generating the double layer inside the
small pores due to their larger diameter in the x−y direction,
and the shape of the double layer is more affected by the larger
nonspherical ions (Figure 3). In our case, the strain created at
the highest potential is similar for all three types of anions
within a margin of about 0.3% (Figure 3). This is counter-
intuitive considering the different sizes of the ions, but
considering the vastly different charges a direct comparison is
not possible this way.
In general, we observe a larger strain at negative polarization

compared to positive potentials. The expansion is not only
related to the bare ion size as described above for EMIM-TFSI
and EMIM-BF4. Even at the same amount of charge, the
expansion differs for the same type of counterion, which is
ascribed to an influence of the co-ions.

3.4. Electrochemical Quartz-Crystal Microbalance
(EQCM). To better understand the charging mechanism in
the carbon nanopores, we conducted electrochemical quartz-
crystal microbalance (EQCM) measurements. We note that in
the EQCM experiments the electrodes are much thinner
compared to the bulk electrodes in electrochemical dilatometry.
This results in a more flooded electrode (the amount of
electrolyte in comparison to the mass of electrode) and faster
charge transport in the electrolyte but should not affect the
charging mechanism of the nanopores in the quasi-equilibrated

Figure 4. Calculated number of ions in the pores according to the charge difference in (A) EMIM-TFSI, (B) EMIM-BF4, and (C) BMIM-PF6. (A
and B) Measurements are compared with the calculated changes which would result in a nonvolumetric exchange of ions (dashed lines).
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state. The thickness of the active mass should be in a range
where the full width at half-maximum (fwhm) of the resonance
peak does not change significantly. A change of the fwhm
indicates viscoelastic behavior of the electrodes, and in this case,
the origin of the frequency changes would not be exclusively
related to mass changes. Consequently, the Sauerbrey equation
would not be applicable.47,49,67,68 However, in our measure-
ments, the viscoelastic effects were small, since the fwhm of the
resonance peak changed only by about 50−100 Hz, whereas
the frequency shift was about 300−700 Hz (Supporting
Information, Figure S2).
Gravimetric in situ measurements of the electrodes with

adsorbed ions can be used to calculate the change of the
number of ions in the pores. In all cases, the mass of the
electrode is highest at the highest potential (Supporting
Information, Figure S3). The different masses of cations and
anions allow us to track adsorbing and desorbing ions in the
pores, even if there is just a 1:1 exchange of cations and anions.
A higher mass at positive potential results from a larger number
of ions in the pores or is just a result of ion swapping if the
mass difference of cation and anion is large. A clear
differentiation of the changes in ion population is possible
when calculating the change in the number of ions as described
in the Supporting Information. We see that for EMIM-TFSI,
more cations enter the pores than anions are ejected when
applying a negative potential (Figure 4A). Accordingly, the total
number of ions (Δn) increases. This is in contrast to the
measured and simulated behavior of supercapacitors with
aqueous or organic electrolytes.5,14,20,32 This implies that the
absence of a solvation shell leads to a different double-layer
structure in the nanoconfined space.22,26 We see a stronger
increase in the number of cations Δn(EMIM+) compared to
the decrease of anions Δn(TFSI−) for negative polarization.
Thus, the charge storage is dominated by the insertion or
expulsion of the smaller ion (i.e., EMIM+, Figure 4A). This
charge storage mechanism leads only to a small increase of the
volume for negative polarization (Figure 5A).
The mechanism changes when using EMIM-BF4 or BMIM-

PF6 as electrolyte (Figure 4B and 4C). In the case of these ionic
liquids, the sizes of the spherical anions are smaller compared
to the sizes of the cations. When the electrode is charged
negatively, the number of anions decreases more strongly than
the number of cations increases. This mechanism leads also to
an almost constant volume of the ionic liquids within the pores
(Figure 5B and 5C).

3.5. Multilength Scale Behavior. The EQCM results in
the previous subsection reveal that movement of smaller ions is
the dominating part of the charging mechanism at lower surface
charges. We see at larger potentials an increase of the amount
of counterion adsorption (Figure 3) due to the strong depletion
of the smaller ions and the need of further surface charge
compensation. Considering the theoretical volume of each
ion,69,70 we can estimate the volume change of the ionic liquid
inside the porous electrode (Figure 4) for the low charges in
the EQCM measurements. Since we have different sized ions,
the structure of the electric double layer can change without
yielding strong volumetric changes. The volumetric ratio of
EMIM+ to BF4

− is, for example, more than 2:1; accordingly,
two BF4

− ions occupy the same volume as just one EMIM+

(Table 1).
The chosen potential window for the eD measurements is

much wider, so we can see the effect of ion swapping without
volumetric changes and then a drastic increase in strain
according to crowding the pores with counterions to
compensate for the higher surface charge. In contrast to
systems with solvated ions, where the total number of ions in
the pore is constant,5 we can see a crowding of pores which get
filled with more ions to compensate for the surface charge. For
EMIM-BF4, the volume neutral ion swapping occurs at very low
charge difference according to EQCM measurements and
confirmed by eD where no strain is measured for low charges
until −70 C/g (Figure 2B). This means that more BF4

−

migrates than EMIM+ since two anions fit into the space of
one cation. When applying more negative potentials, the strain
increases, as seen by eD. Hence, the slope in EMIM-BF4 is
much smaller compared to EMIM-TFSI, which is caused by the
size difference of anions and the fact that the smaller ions are
more involved in the charge compensation. For BMIM-PF6, the
mechanism of charge storage is similar to EMIM-BF4 without
any significant volumetric change around the pzc (Figure 5C)
due to the larger BMIM+ being exchanged for more of the
smaller PF6

− ions (volumetric ratio BMIM+ to PF6
− is 1.8:1).

The volume increases for more negative charges, where the
amount of counterion adsorption increases. Considering that
BMIM+ is the largest ion in this study, the expected volumetric
changes are highest, too. Moreover, the strain at the most
negative charge is less for the quasi-equilibrated state (Figure
2C) in comparison to the dynamic measurement in Figure 3,
which is related to the very high viscosity of this IL.

Figure 5. Calculation of volumetric changes ΔV according to the changes of number of ions Δn in the double layer in (A) EMIM-TFSI, (B) EMIM-
BF4, and (C) BMIM-PF6. All graphs are plotted versus the charge difference for each system. Black line is the total volumetric change according to
the sum of anion and cation expulsion and/or adsorption.
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In summary, we see at first always smaller ions are being
exchanged for fewer large ions until a critical point is reached,
where the mechanism due to strong diminution of co-ions must
change to a larger amount of counterion adsorption. This aligns
with the dilatometer measurements, where no strain was
measured (up to ±100 C/g for EMIM-BF4), while for higher
negative charges the increased counterion adsorption causes the
slope to rise (Figure 3).
A rigorous quantification is difficult since the pores are not

completely filled without an applied voltage and secondary
effects like electrowetting may occur.15 In the absence of
solvent molecules, ideal RTIL counterion adsorption must
cause an increase in the volume of the electrical double layer
and a crowding of ions in the pores.17,22,26 For potentials far
from pzc, counterion adsorption dominates as the charging
mechanism and the slope of volume expansion increases for
larger ions since each ion occupies a larger volume fraction
inside a narrow pore (Figure 3). However, the expansion differs
for EMIM-TFSI and EMIM-BF4 even though both systems
employ the same cation. This must be related to strong ion−
ion interactions and a non-negligible number of the co-ions are
involved in the charging mechanism. According to the shape
and degree of freedom, also the adsorption sites inside of
micropores might differ strongly (Figure 3).41,42 The spherical
anions seem to create less strain compared to the cylindrical
TFSI−, which also might be caused by a lower degree of
freedom and a larger steric hindrance as co-ion in the double
layer.66

4. CONCLUSIONS
We present a systematic study on capacitive energy storage at a
microporous carbon surface with different ionic liquids. The
electrochemical properties at the fluid/solid interface were
investigated in situ by a multilength scale approach. Electro-
chemical dilatometry on bulk electrodes and electrochemical
quartz-crystal microbalance on thin electrodes were used to
fundamentally understand the charging mechanism and the
resulting bulk behavior. Close to the potential of zero charge,
smaller ions are more involved in the charging mechanism.
Since more smaller ions are exchanged by less larger ions, the
charging takes place at almost constant volume. For potentials
far from the pzc, the mechanism changes to a preferred
counterion adsorption due to depletion of co-ions. Moreover, a
spherical anion creates less strain compared to a nonspherical
one, which might be caused by a lower degree of freedom and a
larger steric hindrance as co-ion in the electrical double layer.
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ABSTRACT: Dimensional changes in carbon-based supercapacitor electrodes were
investigated using a combination of electrochemical dilatometry and in situ small-angle X-
ray scattering. A novel hierarchical carbon material with ordered mesoporosity was synthesized,
providing the unique possibility to track electrode expansion and shrinkage on the nanometer
scale and the macroscopic scale simultaneously. Two carbons with similar mesopore structure
but different amounts of micropores were investigated, employing two different aqueous
electrolytes. The strain of the electrodes was always positive, but asymmetric with respect to
positive and negative applied voltages. The asymmetry strongly increased with increasing
microporosity, giving hints to the possible physical origin of electrosorption induced pore
swelling.

KEYWORDS: electrical double-layer capacitor, supercapacitor, dilatometry, small-angle X-ray scattering, swelling, in situ,
ordered porous carbon

Electrical double-layer capacitors (EDLCs, also known as
supercapacitors) have become a widely used energy

storage technology1 because of their high power density and
long cycle life.2,3 Unraveling the nature of ion charge storage in
nanoporous electrode materials has been an ambitious goal for
years, leading to a variety of in situ experimental, theoretical,
and (atomistic) simulation attempts.4−6 A combination of in
situ X-ray scattering and atomistic modeling has recently
elucidated unknown details on the local arrangement and
desolvation of ions in disordered nanoporous carbons as a
function of the applied cell voltage.7 An important side effect
caused by ion electrosorption is the volumetric expansion of the
carbon electrodes during operation. Although electrode
deformation is usually much smaller as compared to batteries,8

repeated expansion and contraction of the electrode may
contribute toward electrode degradation. Moreover, this
deformation must not necessarily be unwanted, as it opens a
facile way to build highly efficient bilayer actuators of
astonishing simplicity.9,10 So far, dimensional changes of
electrodes in EDLCs were analyzed using in situ dilatometry
or atomic force microscopy.11−16 In situ dilatometry was even
proposed as a method of choice to investigate ion transport in
and out of the electrode pores to gain insight on ion-size effects
and optimized electrolyte/electrode combinations.12 However,
studies trying to relate volume changes unambiguously to ion
concentration and ion-size related steric effects are contra-
dicting.14 In Li-ion battery electrode swelling, Li intercalation

plays by far the dominant role. In contrast, in porous
supercapacitor electrodes, several contributions may be of the
same order of magnitude, including electronic effects on the
surface carbon atoms caused by electrosorbed ions.14,17,18 In
order to exploit the full potential of in situ dilatometry for
studying ion charge storage and transport phenomena, those
contributions have to be identified and understood in detail.
X-ray scattering is considered advantageous in studying

electrosorption-induced pore swelling in EDLCs, as it can
probe concurrently the microscopic strain of the carbon and the
ion location within the nanopores. To the best of our
knowledge, there exists only one X-ray based report on the
dimensional changes so far, where the layer spacing in reduced
graphite oxide was analyzed by X-ray diffraction.19 For
disordered nanoporous carbons, the crystalline order is usually
too low to enable X-ray diffraction for the quantitative study of
expansion/contraction processes. In the small-angle scattering
(SAXS) regime, pore swelling is a second order effect which is
hardly extractable from the data.20 Therefore, we synthesized a
tailored carbon material with an ordered mesoporous structure,
giving rise to sharp Bragg reflections from the mesopore lattice
in the SAXS regime. This allows analyzing the electrosorption
induced strain at the mesopore level via the shift of a distinct
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diffraction peak. Here, we present a novel in situ approach of
studying the microscopic (by in situ SAXS) and macroscopic
(by in situ dilatometry) swelling behavior of supercapacitor
carbon electrodes with ordered mesopores and different
amounts of disordered micropores.
We synthesized carbon monoliths via nanocasting using silica

monoliths with hierarchical porosity (Figure 1). The silica
monoliths were prepared according to Brandhuber et al.21 via a
soft templating approach, resulting in a cellular network

structure with interconnected macropores of several hundreds
of nanometers in diameter. The struts forming the network are
composed of amorphous silica comprising a well-ordered
mesostructure with periodically arranged mesopores of about
6−7 nm in diameter (see also the Supporting Information).21

These silica gels were infiltrated prior to drying with a
resorcinol-formaldehyde solution followed by carbonization at
850 °C and template removal by HF etching (see the
Supporting Information for details). The final carbon material

Figure 1. (A) schematic representation of the synthesis of the ordered mesoporous carbon (see the Supporting Information for details). (B) TEM
image of the nonactivated carbon (sample MC). (C) SEM image of the macroporous structure of MC.

Figure 2. (A) Cumulative specific pore volume and differential pore size distribution of the carbon electrodes containing 10 mass% PTFE binder,
determined from CO2 and N2 sorption isotherms. (B) cyclic voltammetry measurement of both electrode materials with 1 mV s−1 scan rate in 1 M
CsCl and 1 M LiCl aqueous electrolyte using a half cell design. (C) SAXS curves of the dry electrodes and schematic drawing of the carbon rods with
lattice spacing d calculated from the (10) Bragg peak position. (D) Visualization of the (10) peak position for 0 and 0.6 V for MC with aqueous 1 M
CsCl.
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consisted of a macroporous network of carbon struts (Figure
1C) indicating a positive replication at the macropore level,
with each strut resembling a bundle of monodisperse carbon
nanorods which are highly ordered on a 2D hexagonal lattice
(Figure 1A). Thus, templating in the mesoscopic regime
resulted in a negative replication of the periodically arranged
mesopores of the silica mold due to complete filling of the
mesopore with the organic polymer. The nanorods exhibited
some disordered microporosity already after the carbonization
(material MC, Figure 1B), which could be further increased by
physical activation with CO2 (material AMC). Besides the
micropore structure, cylindrical carbon struts are identifiable at
a higher level of hierarchy (Figure 1C). Specific pore volume,
specific surface area (SSA), and pore size distributions (PSD)
were calculated from N2 and CO2 sorption analysis (Figure 2A,
Table 1, and the Supporting Information).22 The differential
PSD of the MC material shows two distinct peaks, one in the
micropore region at ∼0.5 nm and one in the mesopore region
at ∼3 nm. Activation increased the amount of the smallest
pores, and an additional micropore population at ∼1 nm

appeared, while the amount of mesopores remained essentially
unchanged. Cyclic voltammetry (CV) of the MC and the AMC
electrodes was performed in 1 M CsCl and 1 M LiCl aqueous
electrolyte (see the Supporting Information for electrode
fabrication and electrochemical characterization). Figure 2B
shows the typical behavior of a pure EDLC device without any
pseudocapacitive contributions. As expected, the mass-specific
capacitance of the AMC electrode is higher than the one of the
MC electrode due to the increased SSA (Table 1).
The main difference between previously investigated carbons

using in situ SAXS7,20,23 and the new materials presented in this
work is the ordered mesoporous structure created by the 2D
hexagonally ordered carbon rods as shown in Figure 1A. This
resulted in well resolved Bragg reflections in the SAXS curve
(Figure 2C), the main reflection corresponding to a lattice
spacing of d = 8.34 nm. The lattice spacing did not change
upon activation, although the Bragg peak from the activated
sample became broader indicating that the mesopore order is
somewhat reduced by the activation process. The diffuse
scattering below the Bragg peak originates from the disordered

Table 1. Carbon Structure and Properties

total SSAa

(m2 g−1)
SSA between 0.63 and

1.3 nm (m2 g−1)
total pore volume (0.95

p/p0) (cm
3 g−1)

micropore volume
(cm3 g−1)

mesopore volume
(cm3 g−1)

lattice spacing
db (nm)

specific
capacitancec

(F g−1)

MC 742 113 0.48 0.19 0.29 8.34 56
AMC 991 250 0.59 0.29 0.30 8.34 68

aPore structure and electrochemical performance of the carbon were obtained from electrodes containing 10 mass% PTFE binder. bLattice spacing
was calculated from the nonelectrolyte-filled (empty) electrode. cCapacitance values were obtained from cyclic voltammetry at 1 mV s−1 with 1 M
CsCl in the range of ±0.6 V vs carbon.

Figure 3. Strain versus potential from in situ SAXS (red) and in situ dilatometry (black) for (A) MC with aqueous 1 M CsCl, (B) MC with aqueous
1 M LiCl, (C) AMC with 1 M CsCl, and (D) AMC with 1 M LiCl. All strain curves were recorded with a scan rate of 1 mV s−1.
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micropores. The increase of the intensity at large q as a
consequence of activation (Figure 2C), being proportional to
the increase in SSA via Porod’s law,24 is in good agreement with
gas sorption analysis.
To quantify the volumetric changes of the working electrode

during charging and discharging, the change of the peak
position (Figure 2D) was measured in situ providing the lattice
strain as a function of the applied voltage. In situ SAXS
experiments were performed at the Austrian SAXS beamline at
the synchrotron radiation facility Elettra in Trieste.25 CV’s with
a scan rate of 1 mV s−1 were recorded using a two-electrode
setup in a custom-built cell,20 while recording a SAXS pattern
every five seconds. The mesopore lattice parameter was
obtained from the SAXS data by fitting the first order Bragg
peak (see the Supporting Information), and the strain was
determined by calculating the relative peak shift with respect to
the peak position at 0 V. These nanoscopic strains from the
swelling of the mesopore lattice were compared to macroscopic
strains derived from in situ electrochemical dilatometry
performed on electrodes made with the same material (see
the Supporting Information). The results are shown in Figure 3
for two different aqueous electrolytes (1 M CsCl and 1 M
LiCl). As the electron densities of the cations in these two salts
are different, this approach represents a kind of contrast
variation. A similar approach (although with other salts) turned
out suitable to systematically analyze the changes in disordered
carbons with in situ SAXS.20 As shown in Figure 3A-B for the
MC sample, there is a good correspondence between the SAXS
and the dilatometry measurements for both electrolytes. Both
methods show slightly asymmetric curves with higher strain at
negative potentials, which is already known from litera-
ture.14,15,18,26 The good qualitative and reasonable quantitative
agreement between strains from SAXS and dilatometry makes
us confident that the tiny peak shifts (Figure 2D) are in this
case not obscured by contrast induced changes of the SAXS
curves due to the rearrangement of ions.20

The agreement is less satisfactory for the AMC sample
shown in Figure 3C−D. The strain curves measured with
dilatometry are pronouncedly asymmetric, but similar for the
two electrolytes. In the strain curves obtained from SAXS we
observed a distinct dependence on the used electrolyte. For
aqueous 1 M CsCl, the SAXS curve is highly asymmetric, even
exceeding the asymmetry of the dilatometry curve. For aqueous
1 M LiCl, however, the shape of the SAXS curve is almost
symmetric. To be more precise, for positive applied voltage, the
strain curves from SAXS are similar for both electrolytes and
qualitatively consistent with the findings from dilatometry. For
negative potential and aqueous 1 M CsCl, the maximum SAXS
strain exceeds the one from dilatometry by almost a factor of
1.5, whereas for LiCl the situation is reversed. We believe that
these differences are caused by contrast effects due to local ion
rearrangement,7 because upon charging, counterions will
accumulate near the carbon strut surface and within the
micropores. At negative polarization, the carbon pores are
populated dominantly by Cs+ and Li+, respectively, whose
electron densities are strongly different. Therefore, we expect
so-called “pseudostrains” influencing the measured peak shift.27

The deviation from the macroscopic strain measured by
dilatometry depends on the counterion electron density and
the amount of micropores within the carbon struts.
Considering additionally a higher strain at negative voltage as
compared to positive voltage in the AMC sample as suggested
from dilatometry, the data become qualitatively consistent.

An asymmetric shape with higher strains for cation
electrosorption as compared to anion electrosorption has
been reported for in situ dilatometry studies on carbon
electrodes before.12,28 Using in situ SAXS and carbon materials
with an ordered mesopore structure, it is shown here for the
first time experimentally that this strain unambiguously
originates from the micro/mesopore scale by evaluating the
shift of a Bragg reflection from the ordered mesopore lattice.
The magnitude and the asymmetry of the strain with respect to
the sign of the applied voltage was found to depend on the
amount of micropores within the otherwise identical carbon
nanorods of the model material. Therefore, ion size effects can
be rejected to be exclusively responsible for the asymmetry,
implying that the overall strain must be a combination of at
least two individual effects. First, an increase in the total (cation
plus anion) concentration upon electrode charging,20 either
globally (in all micro- and mesopores) or locally (only in sites
with high degree of confinement7), would lead to a positive
osmotic pressure and thus to an expansion for both, positive
and negative polarizations.13,26 A second effect being in the
right order of magnitude is the variation of the C−C bond
length. Electron/hole doping during electrode charging
influences the band structure and hence the length of the C−
C bonding.18,29 Applying a negative potential elongates the
bonding, which in consequence leads to an expansion, and vice
versa. Such effects have been explicitly calculated for a simple
model of the axial elongation of cylindrical nanopores with an
ionic liquid as electrolyte, and have been successfully compared
with experiments.26 Adding to this, we report here that an
increase of microporosity (corresponding to an increase of the
relative amount of surface carbon atoms) strongly enhances this
asymmetry, being in good agreement with previous studies on
different carbon materials.14 A simple estimation of two strain
contributions (symmetric and asymmetric) supports the
prediction that asymmetric swelling is a surface related effect
and caused by electron/hole doping. Comparing the two
carbons investigated in this work reveals a just slightly changed
symmetric strain contribution (osmotic pressure) and roughly a
doubling of the asymmetric contribution (electron/hole
doping) in the micropore rich carbon. This corresponds
roughly to the doubling of the micropore surface area in the
pore size range between 0.63 and 1.3 nm (where the biggest
change occurs) due to the activation process (Table 1). This is
indeed expected because the influence of electron/hole doping
should roughly scale with the surface area.
In conclusion, it was demonstrated that hierarchical carbons

with hexagonally ordered microporous carbon nanorods are
useful model materials to investigate dimensional changes of
supercapacitor electrodes during operation. The unique
combination of a tailored material and novel in situ techniques
makes the pore strain accessible on different length scales. The
use of different electrolytes containing ions with different
electron densities represents a contrast variation approach
which allowed to qualitatively separate X-ray contrast effects
from real strains. By also performing in situ electrochemical
dilatometry we could compare macroscopic swelling with
dimensional changes on the length scale of the ordered
mesopores. The investigation of two materials with different
PSD’s revealed that the amount of micropores inside the
carbon nanorods considerably influences the polarization
dependent magnitude of dimensional changes during operation.
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ABSTRACT: We report the volumetric changes of MXenes in
contact with different ionic liquids and the swelling/
contraction during electrochemical voltage cycling by com-
plementing electrochemical dilatometry with in situ X-ray
diffraction measurements. A drastic, initial, and irreversible
volume expansion of MXenes occurs during first contact to
ionic liquids (wetting). Voltage cycling evidenced a highly
reversible expansion and contraction of electrodes at a very
large amplitude of strain (corresponding with max. 12 vol %),
which may allow the use of MXene as a high-performance electrochemical actuator.
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An increasing number of research studies have explored the
two-dimensional (2D) early transition metal carbides and

nitrides, called MXenes.1−3 MXene has shown tremendous
potential as pseudocapacitive electrode material in aqueous,4

organic,5 and ionic liquid (IL) electrolytes.6,7 The latter two are
attractive because of the possible high cell voltages (>3 V),8 yet
may lead to significant volumetric changes of the electrode
material.9 With so far only two studies on MXene in IL
electrolyte,6,7 there is a great need to study volumetric changes as
a possible mechanical limitation for supercapacitors or as a
promising actuation material.10

In aqueous electrolytes, promising results with high volumetric
capacitance11,12 and highly reversible mechanical changes of
MXenes were observed.4,10 MXenes have shown the unique
possibility to expand and contract without any damage.4,7 This is
in contrast to the inability of nanoporous carbons to contract
below the initial volume after electrolyte wetting during
capacitive charging and discharging.13 We report here the strain
of MXene in contact with ILs, namely EMIM-TFSI (1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide) and
BMIM-BF4 (1-butyl-3-methylimidazolium tetrafluoroborate).
We have investigated the highly reversible swelling and

contraction of Ti3C2-MXene during voltage cycling. In situ X-ray
diffraction (XRD) was complemented by electrochemical
dilatometry measurements. Two ILs with different ion sizes
were selected, one with comparable sizes of anion and cation and
the other one with a large size difference between anion and
cation. As will be shown later, the ion size plays a key role in

explaining the observed irreversible and reversible volumetric
changes of MXenes.
Electrochemical investigations were carried out first by

sequential window opening toward negative potentials, in
parallel with electrochemical dilatometry to track the volumetric
response (Figure 1). During negative polarization, there is
neither a significant capacitive response nor a corresponding
significant volume change for EMIM-TFSI up to a potential of
−0.6 V vs carbon (Figure 1A). At more negative potentials, there
is a large current increase and a peak emerging at −1 V vs carbon
during anodic sweeping and a corresponding peak at −0.5 V vs
carbon during cathodic sweeping. By sweeping from 0 to −1.5 V
vs carbon at a scan rate of 1 mV/s, we see the concurrence of an
increased current signal and an electrode strain of up to 6%
(Figure 1A) in the z-direction (i.e., perpendicular to the aligned
layered nanosheets of the MXene paper electrode). Considering
the large size of EMIM+ ions, the expansion seemingly is related
to intercalation of ions between the MXene nanosheets. That
shows the possibility for even very large ions to intercalate
MXene, in line with a recently published in situ XRD study.7

During positive polarization of EMIM-TFSI, there is a very
low current signal and no expansion is detected. Instead, a
contractive strain of up to −1% is measured at a maximum
potential of +1 V vs carbon. This behavior cannot be explained by
deintercalation of EMIM+, insertion of TFSI−, or the exchange of
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cation and anion between the MXene sheets because the size
difference is too small. We also see differences when cycling

Ti3C2-MXene in EMIM-TFSI between−1.4 V to +1 V vs carbon
compared to just positive or just negative voltage sweeping

Figure 1.Voltage window opening with in situ electrical dilatometry in CVmode at 1 mV/s sweep rate. The expansion/contraction is normalized to the
equilibrium thickness (after 24 h) at 0 V vs carbon. (A) In EMIM-TFSI and (B) in BMIM-BF4. Insets: full range CV with related displacement with
arrows indicating the direction of potential sweeping.

Figure 2. Chronoamperometric measurements with (A, C) fully contracted electrodes as reference thickness at the most positive potential and (B, D)
fully swollen electrodes with reference to the most negative potential. (A, B) In EMIM-TFSI and (C, D) in BMIM-BF4.
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(Figure 1A, inset). By doing so, we see an onset of expansion at
+0.5 V vs carbon and an onset of contraction at−0.7 V vs carbon.
The emerging peaks in CV (smeared out due to high internal
resistance in the dilatometer assembly) correspond with the
measured strain. Most notably, the maximum strain increases to
9% at −1.4 V vs carbon after sweeping from the upper to the
lower stable potential.
A different behavior is seen during voltage cycling Ti3C2-

MXene in BMIM-BF4, where the cation is much larger than the
anion (Figure 1B). We must also consider the difference in
viscosity. This results in a higher resistivity and reduced kinetics
during electrochemical operation with BMIM-BF4, as can be seen
from lowered and broadened signals of charge and strain,
especially during anodic voltage sweeping to−1.4 V vs carbon. At
this maximum vertex potential, we measured a maximum strain
of 4%. Also, MXene contraction during positive polarization in
BMIM-BF4 is smaller than for EMIM-TFSI with a maximum
contraction of 0.4% at +1 V vs carbon. The size difference of
cation and anion makes it difficult to geometrically explain the
smaller contraction in the case of BMIM-BF4. We found in the
cyclic voltammogram during cycling between −1.4 V and +0.8 V
vs carbon, prominent current peaks at −0.6 V and at +0.2 V vs
carbon. These peaks coincide with the maximum slope of
expansion and contraction (inset Figure 1B). We assume de-
intercalation of ions mainly at these potentials.6 The hysteresis
width between expansion and contraction of 0.8 V is related to
the cell assembly and internal kinetics. The maximum expansion
at −1.4 V during this extended voltage cycling (6%) is higher
compared to when cycling between 0 and −1.4 V vs carbon (i.e.,
4%). In general, we see much lower strain for BMIM-BF4
compared to EMIM-TFSI.
To eliminate kinetic effects caused by different ion mobility,

we employed chronoamperometry (CA) with 1 h of equilibrium
time at each potential to achieve the maximum (equilibrium)
expansion for the maximum charged state at the given electrode

potential (Figure 2). In our experiments, we condition the cells
either at the maximum positive electrode potential (i.e., + 1 V vs
carbon for EMIM-TFSI (Figure 2A) or +0.8 V vs carbon for
BMIM-BF4 (Figure 2C) or the maximum negative electrode
potential (i.e., −1.4 V vs carbon for both electrolytes (Figure 2B,
D). When first conditioning at a high positive potential
(maximum contraction) and then lowering the voltage, we
observed an increasing electrode expansion (Figure 2A, C) for
both electrolytes. The opposite case was observed when the
maximum negative potential was kept constant and the voltage
increased. In this case, the electrode started as fully expanded and
higher voltages lead to a continuous compression (Figure 2B, D).
For EMIM-TFSI (Figure 2A, B), the charge increased nearly

linearly with potential, as expected for a capacitive/pseudocapa-
citive material likeMXene. Yet, the strain does not exhibit a linear
dependency and we see a drastic increase/decrease at −0.5 V vs
carbon in expansion or contraction, respectively. This correlates
with the onset of the current peak seen in the CV presented in
Figure 1A. Seemingly, EMIM+ ions gain further access to initially
less accessible sites between the MXene nanosheets when the
potential exceeds −0.5 V vs carbon. It is possible that at this
potential, surface charges are fully compensated and the material
accomplishes counterion electrosorption on the surface of the
nanosheets (ions with opposite charge as the electrode).
Furthermore, the total strain does not change if the electrode
expands or shrinks, which can be attributed to the high
reproducibility and reversibility of ion insertion and extraction
between the nanosheets.
In the case of BMIM-BF4, the correlation of charge (capacity)

and applied voltage is no longer linear (Figure 2C, D). When the
initial conditioning was set at +0.8 V vs carbon, we observed
maximum contraction and only small strain occurred when
lowering the potential to 0 V (Figure 2C). This behavior aligns
with the results shown in Figure 1B (inset) where almost no
change in strain occurs in the potential range of +0.8 to 0 V vs

Figure 3. In situ XRD patterns for (A) EMIM-TFSI and (B) BMIM-BF4 recorded after wetting with ILs and applying different potentials; data
normalized to the (002)-peak. (C) Schematic of increased MXene layer spacing (d-value) and ordering after IL intercalation (wetting) and influence of
positive and negative applied potentials on the lattice spacing.
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carbon. There is a strong increase in slope for charge and strain as
the potential reaches −0.2 V vs carbon. This also correlates with
the peak emerging in the CV (Figure 1B, inset). Continuing
toward lower potentials, we see a capacitor-like, linear increase of
charge and the same trend for strain.
The behavior is different when starting with a fully expanded

electrode, that is, after conditioning the system at −1.4 V vs
carbon. Instead of a linear correlation between charge and
potential, a parabolic dependence is observed for both
electrolytes. We also see two discontinuities in capacity at 0
and at 0.6 V vs carbon. Concurrently, the strain drastically
decreases at these voltages. By comparison with CV (Figure 1B,
inset), the slope in strain signal is the highest at 0 V by sweeping
positive and this matches with the strong decrease in strain in CA
measurements.
The CA results together with information from CVs identify a

certain voltage at which a strong increase in current and strain
occur. Since the surface of MXene is terminated by −OH, O
and −F and acquires negative static charge in solution,
intercalation of cations between the MXene sheets may become
possible at this or lower potentials.14 We can conclude that
insertion of cations results in a large expansion of the electrode.
The contraction during sweeping to positive potentials cannot be
explained by ion swapping or anion insertion because the
contraction is more pronounced for EMIM-TFSI with similar ion
sizes, whereas the values are much lower for BMIM-BF4 with a
much smaller anion. Cation intercalation (negative potential)
and de-intercalation (positive potential) seems to control the
expansion as well as contraction, as has been recently suggested.6

Because BMIM+ has a lower mobility than EMIM+, it is removed
slower and the strain is lower in the former case. The negatively
charged surface lead to a preferred orientation of cations close to
the surface with the same number of anions due to counter-
balanced charge without applied potential.
To further understand the structural changes during electro-

chemical cycling and to also investigate the initial wetting
process, we carried out an in situ XRD study (Figure 3, full XRD
pattern Figure S1). The peak in the range of 6−8° 2θ is from the
(002) reflection of Ti3C2-MXene.11 This initially broad (002)
peak at 7.5° 2θ (fwhm 1.212° 2θ) for dry MXene shifts for
EMIM-BF4 at 0 V to lower angles (6.5° 2θ) and becomes
considerably more narrow (fwhm = 0.321° 2θ). This means the
stacking ordering along the c-axis is drastically increased, whereas
the interlayer spacing of the MXene sheets is also increased
during initial wetting (Figure 3A, B). The relative interlayer
spacing increases and becomes more narrowly distributed when
the IL ions intercalate, leading to a better alignment of MXene
sheets, as schematically shown in Figure 3C. We can see a drastic
initial swelling when the dry nanosheets contact the IL with d-
values increasing from 11.6 to 13.5 Å (Table 1), whereas the
negatively charged surface groups may lead to an enhanced

wetting with cations followed by anions to achieve charge
neutrality.
For EMIM-TFSI, when applying a voltage, we see the expected

swelling (increase in d-value) at negative voltage and
compression (decrease in d-value) at positive potential (Table
1 and Figure 3A). The fwhm values are lowest at +0.5 V and−1 V
vs carbon, which is attributed to the best ordering of MXene
sheets resulting from a homogeneous coverage of ions.
Furthermore, a peak emerges at 9.5° 2θ. This peak shifts to
slightly higher angles under applied positive potential (9.7° 2θ)
and strongly shifts to smaller angles under negative potentials
(8.2° 2θ at −0.5 V and 7.9° 2θ at −1 V vs carbon). This
additional peak can be explained as a (003) reflection typically
found after phase transitions of two-dimensional materials.15

The XRD data of Ti3C2-MXene during electrochemical
cycling in BMIM-BF4 are plotted in Figure 3B. As has already
been seen for EMIM-TFSI, the (002) peak shifts to lower angles
after initial contact with the IL (initial swelling due to IL
intercalation) and moves to even lower values as the potential
decreases. The calculated strain values from XRDmeasurements
(Table 1) follow the same trend as observed in dilatometry
(Figure 1), with expansion during negative polarization (up to
+9% strain) and contraction during negative sweeping (up to
−1% strain). We also see a much larger expansion at −1.0 V vs
carbon for EMIM-TFSI (9%) compared to BMIM-BF4 (7%).
The slightly lower strain values seen in Figure 1 result from the
much more dynamic probing during voltage sweeping at 1 mV/s,
compared to the more equilibrated values recorded by in situ
XRD (Table 1). Higher strain seen from XRD also relates to the
expansion/contraction of individual MXene flakes, whereas
slightly lower values are expected for dilatometry, where the
entire electrode is measured and there is a small applied constant
pressure on the electrode in the device (1 N).
There seems to be a saturation of BMIM+ at −0.5 V vs carbon

because the (002) peak does not shift further at −1 V vs carbon.
Yet, the peak intensity increases and the fwhm decreases which
could be explained by increasing ordering of MXenes due to
more complete filling of interlayer spacing with BMIM+ ions,
forming a complete monolayer on each MXene sheet.
Furthermore, no secondary peak at 10° 2θ emerges in the
BMIM-BF4 pattern because BMIM+ with lower ion mobility
intercalates less compared to EMIM+, which results in the
absence of a phase transition.
In conclusion, we identified a large initial swelling of the

MXene electrode after initial contact with ILs which suggests
spontaneous ion intercalation.16 This swelling occurs without the
application of an external voltage, but is enhanced when applying
negative voltage, suggesting preferential insertion of cations.
Under positive potentials the electrode contracts even further
compared to the thickness at 0 V. Taking into account the
difference in size of BMIM+ and BF4

−, this can be explained by

Table 1. Results of the in Situ XRD Tracking of the (002) Reflection of Ti3C2 MXene with Calculated Strain from XRD and
Resulting Strain from Chronoamperometric Dilatometry Measurements (eD)

EMIM-TFSI BMIM-BF4

condition/applied
potential

(002) d-spacing
(Å)

fwhm
(° 2θ)

strain XDR
(%)

strain eD
(%)

(002) d-spacing
(Å)

fwhm
(° 2θ)

strain XRD
(%)

strain eD
(%)

dry MXene 11.6 1.21 11.6 1.21
+0.5 V 13.4 0.29 −1 −1 13.5 0.25 −1 −1
0 V 13.5 0.32 0 0 13.7 0.33 0 0
−0.5 V 14.2 0.49 +5 +3 14.8 0.24 +7 +4
−1.0 V 14.8 0.28 +9 +6 14.8 0.22 +7 +5
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swapping of cations and anions, but we assume only cation
intercalation at negative potentials and cation deintercalation at
positive potentials.7,17 After applying positive potentials, a
depletion of EMIM+/BMIM+ occurs, whereas the lower ion
mobility of BMIM+ results in lower total expansion/contraction
at applied voltage.
The observed large expansion and contraction of MXene

electrodes in IL electrolytes may explain their fast strain fading in
IL (Figure S2), which may require pillaring of MXene layers with
polymers or other molecules before using in supercapacitor
electrodes.6,19 However, the same large volume change may be
beneficial for the use in electrochemical actuators, especially
taking into account the high strength of MXene paper and
MXene-polymer composites.18,19
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H I G H L I G H T S

• Combination of dilatometry and
quartz-crystal microbalance measure-
ments.

• Synergy of in situ techniques with
different characteristic measurement
scales.

• Identification of suitable binder prop-
erties: not too soft, not too rigid.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Electrochemical quartz crystal microbalance
EQCM-D
Electrochemical dilatometry
LIB
Polymer binder

A B S T R A C T

Intercalation-induced dimensional changes of composite battery electrodes containing either a stiff or a soft
polymeric binder is one of the many factors determining the cycling performance and ageing. Herein, we report
dimensional changes in bulk composite electrodes by in situ electrochemical dilatometry (eD) combined with
electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). The latter tracks the me-
chanical properties on the level of the electrode particle size. Lithium iron phosphate (LiFePO4, LFP) electrodes
with a stiff binder (PVdF) and a soft binder (NaCMC) were investigated by cycling in lithium sulfate (Li2SO4)
aqueous solution. The electrochemical and mechanical electrode performances depend on the electrode cycling
history. Based on combined eD and EQCM-D measurements we provide evidence which properties are preferred
for a binder used for a composite Li-ion battery electrode.

1. Introduction

State-of-the-art lithium-ion batteries (LIB) offer a very broad spec-
trum of applications, from portable devices to all-electric vehicles
[1–3]. Common industrial scale batteries contain porous composite
electrodes with at least three components [4]: the active electrode

material (e.g., particles of lithium iron phosphate, LiFePO4, LFP) [5,6],
a binder (e.g., polyvinylidene fluoride, PVdF, or Na salt of carboxy-
methyl cellulose, NaCMC) [7], and a conductive additive (typically
carbon black) [8]. The movement of Li+ ions in LIBs electrodes during
cycling results in potential-dependent changes of the active material,
for example, phase transformation with related volumetric changes
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[9,10]. These volumetric changes cause mechanical stress, fatigue, and
ultimate delamination from the current collector [11,12]. To determine
the failure mechanisms of batteries, we need to understand the corre-
lation between volumetric changes and the resulting performance de-
gradation of the composite electrodes. Binders play a key role since they
ensure tight electrical contact between the particles and the current
collector and must be able to withstand and buffer the volumetric
changes of the active material in the range of several percent [7,9].

We have recently developed a methodology called in situ hydro-
dynamic spectroscopy to quantify dimensional changes in olivine-type
LiFePO4 (a typical composite intercalation-type LIB cathode material)
using electrochemical quartz-crystal microbalance with dissipation
monitoring (EQCM-D) [12–16]. A unique feature of this approach is the
simultaneous recording of changes of frequency shifts and changes in
resonance peak width as a function of the applied potential [12]. The
response of thin rigid electrode coatings on the gold-covered quartz
crystal is due to the gravimetric changes caused by Li+ (de-)intercala-
tion, and hydrodynamic solid-liquid interactions if there are intercala-
tion-dependent changes of the electrode rough/porous structure [17]. If
the electrode is viscoelastic, the extent of viscoelasticity can strongly
depend on the insertion of solvent molecules and intercalated ions
(intercalation-induced viscoelastic changes), as is the case for elec-
trodes of Ti3C2(OH)2 (MXene) [18].

Electrochemical dilatometry (eD) was introduced as a facile tool to
understand the mechanical properties of common thick electrodes (i.e.,
20–100 μm) [19–22]. The effective nanometer-scale tracking of volu-
metric changes of bulk composite electrodes with eD has been de-
monstrated for battery and supercapacitor materials [19,23–26].

In the present work, our approach is focused on the investigation of
the behavior of composite electrodes containing different binders on
several probing length scales, ranging from a few tenths to several
hundred-nanometer using EQCM-D on multiple overtone orders and in
the range from a few tenth nanometers to several micrometers with eD.
With these complementary in situ experiments, we can track the charge
induced changes in the composite electrodes of a single/few particles
layers level (EQCM-D) and correlate the properties with the results from
bulk electrode measurements (eD).

2. Experimental description

Carbon-coated LiFePO4 powder (battery grade, LFP) was purchased
from Süd-Chemie AG. The investigated binders with always 10 mass%
content in the electrode, namely polyvinylidene fluoride (PVdF) and
sodium carboxy-methyl cellulose (NaCMC), were purchased from
Sigma Aldrich. For dilatometer measurements 10 mass% Super C65

(Imerys) were added as conductive additive. All in situ experiments
were conducted in 0.1 M Li2SO4 in de-aerated water.

The height change (strain) of the composite electrodes during
charging and discharging was measured with an ECD-2-nano dilat-
ometer from EL-CELL. The dilatometer cell is based on a two-electrode
design using an oversized PTFE-bound activated carbon (AC, YP-80F
from Kuraray) as counter and quasi-reference electrode [27]. The
working electrode was dip casted on a Pt disc with 10 mm diameter.
The investigated electrodes were compressed between the separator
and a movable titanium plunger with a constant weight load of 1 N. A
DP1S displacement transducer (Solartron Metrology), with an accuracy
of 15 nm was used and connected to the VMP300 (Bio-logic) po-
tentiostat. The experiments were performed at constant temperature of
25.0 ± 0.5 °C using a Binder climate chamber.

Electrodes for EQCM-D measurements were prepared by coating of
LFP/PVdF in n-methyl-2-pyrrolidone (NMP) or LFP/NaCMC in water on
5 MHz Au polished quartz crystal (14 mm diameter, Biolin Scientific)
by airbrush method [12,15,28]. Multiharmonic EQCM-D measurements
were performed with Q-Sense E1 module (QCM-D from Biolin Scien-
tific) using overtone orders from 3 to 13.

A slurry containing LFP powder and the binder was dispersed in a
suitable solvent by sonication and immediately sprayed on the surface
of a to a quartz crystal surface on a hot plate. The mass ratio of LFP to
binder was also 9:1.

Electrochemical measurements were performed using a BioLogic
VSP-300 potentiostat/galvanostat. The coated Au-quartz crystal was set
as working electrode in a customized electrochemical flooded cell with
Pt counter electrode and Ag/AgCl/KCl (sat.) reference electrode. The
electrolyte solution was aqueous 0.1 M Li2SO4 (Sigma-Aldrich) in
double-distilled H2O. This electrolyte solution was chosen to study a
system with an extremely soft and an extremely stiff binder. PVdF and
NaCMC in aqueous solution ideally corresponds to these conditions.
Moreover, aqueous systems containing LFP as active material are at-
tractive for green and cost-attractive future batteries.

3. Results and discussion

For a first characterization of the aqueous battery system, in situ
electrochemical dilatometry (eD) was recorded during cyclic voltam-
metric operation at different scan rates (Fig. 1). The plots show the
current signal (red curve, similar for both binders) together with the
resulting strain (blue and black curve) versus the electrode potential
(measured vs. activated carbon QRE) [27]. Reversible lithium (de-)in-
tercalation is evidenced by the current peaks in the CV. As seen, the
strain for electrodes containing NaCMC is much larger than for PVdF at

Fig. 1. Cyclic voltammogram (red) of the composite electrodes and simultaneously recorded strain signal for PVdF and NaCMC binder at (A) 1 mV/s, (B) 0.2 mV/s, and (C) 0.1 mV/s. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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all scan rates (Fig. 1). The strain hysteresis during potentiostatic cycling
increases and the current peaks related to lithium (de-)intercalation
become narrower at low sweep rates (Fig. 1B–C). While for samples
with PVdF binder, the total strain at the negative vertex potential is
gradually increasing from 0.3% to 0.55% at 1 mV/s and 0.1 mV/s,

respectively, we see for NaCMC a reduced stain amplitude (fading from
1.3% to 1.1% at 1 mV/s and 0.1 mV/s, respectively). At 0.1 mV/s, the
strain signal at the vertex potentials reaches a plateau as the electrodes
become fully lithiated or fully delithiated. In general, the soft binder
NaCMC allows more strain in the composite electrode than the rigid
PVdF. Note that rigid or soft behavior of binder is also strongly de-
pendent on the type of electrolyte and differ in non-aqueous media
[14].

We further conducted galvanostatic measurements with different
specific currents from high rate (up to 60 °C) to low rate (about C/3;
Fig. 2). As typical for an intercalation material with a two-phase process
at (de-)intercalation, the highest current leads to the lowest charge and
this gradually changes by an increase of charge for lower rates
[5,12,29].

In the case of the PVdF binder, the linear correlation between
charge and strain is indicative of a good correlation between phase
transformation related volume change and stored charge. As mentioned
in our earlier publication, PVdF binder behaves rigidly in aqueous
electrolytes [14]. A different behavior is observed for NaCMC bound
electrodes: the initial strain at high loads is larger compared to PVdF
and in line with the earlier monitored CV measurements. The strain
increases as a function of the charge to about 1.2%. Interestingly, a
further decrease in current with lower discharge rate leads to a higher
amount of charge but to a lower value of strain. This behavior seems to
be inconsistent with the intercalation mechanism as the progressing

Fig. 2. Galvanostatic rate handling with accumulated charge from the discharge branch
and related changes in strain values of the entire composite electrode using either PVdF or
NaCMC binder.

Fig. 3. Monitoring of (A + B) frequency change Δfn/n and (C + D) dissipation change ΔDn over time after contact of the electrode with electrolyte (set as zero) at OCV for composite
electrodes containing (A + C) PVdF and (B + D) NaCMC.
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lithium intercalation is achieved by the phase transformation and the
accompanying strain in LFP [5,30]. Furthermore, the rate handling is
poorer in the case of NaCMC in comparison to PVdF. We explain this by
the very soft behavior of NaCMC in aqueous electrolyte solutions and
the imperfect contact between the active material and the current
collector [31].

A deeper understanding of the mechanical response can be gained
by employing EQCM-D and studying the properties of a thin composite
electrode. By this way, the behavior of particles in contact with the
binder and the electrolyte can be traced with high precision. The basis
for the quantitative analysis of EQCM-D data for composite electrodes
containing both large and small particles as well as rigid and soft bin-
ders is the use of hydrodynamic and viscoelastic models for the layers of
small particles, together with original sliding friction models for the
large particles [32]. The initial changes in frequency and dissipation
over the time after the electrode was immersed into the electrolytes are
negligible for the PVdF-containing electrode (Fig. 3A + C). The absence
of changes in both Δfn/n and ΔDn is consistent with the rigid character
of PVdF [14]. In contrast, a significant change in Δfn/n and ΔDn with
time in case of NaCMC binder is related with its viscoelastic character
when in contact with aqueous solutions (Fig. 3B + D).

Combining now the results from the EQCM-D measurements with
the results from eD, we can explain the decrease in strain at low rates
for NaCMC-containing electrode by a rearrangement of particles. The
constant load of 1 N on the working electrode and the softness of the
binder allow to subject the intercalation particles to a viscous creep.
Consequently, the exclusive information along the z-direction in eD
does not fully reflect the actual volumetric change of the electrode
particles, since significant viscoelastic changes occur at low rates. This
is complicating the intercalation-induced translation in the x-y direc-
tion at a mesoscopic scale. Indeed, as follows from our viscoelastic
modeling for the LFP electrode with NaCMC binder [32], the loss

modulus exceeds by a factor of 2 to the related storage modulus.
Therefore, it is important to carefully interpret eD data related to
composite electrodes containing viscoelastic binders when the viscous
creep distorts the vertical translation of the electrode volume changes.
Moreover, the sliding friction coefficient is 1.7-times higher in the case
of PVdF-bound electrodes in comparison to the NaCMC-bound elec-
trodes. This can be understood as an inability of NaCMC to keep the
particles properly bound to the current collector [32]. The complex
shear moduli of NaCMC in aqueous solutions was quantified in a pre-
vious work with a storage modulus of 50.4 kPa and a loss modulus of
40.8 kPa [32].

To understand the influence of the binders on the longtime perfor-
mance of thicker electrodes, we measured the strain during galvano-
static cycling with eD at a rate of 1 C up to 900 cycles (Fig. 4). The plot
correlates with the charge transferred during lithiation of LFP with the
resulting displacement in the dilatometer signal. We measured dis-
placements, that is, the difference in thickness of the working electrode
in lithiated and delithiated state. Both values, charge and displacement,
are normalized to the initial values (= 100%). In the case of PVdF the
initial decrease in charge after 50 cycles amounting to 88% corresponds
to a significant drop in the displacement down to 69% (Fig. 4A). The
EQCM-D measurements of the LFP electrode reported elsewhere [32]
imply that rigid binder surrounding intercalation particles of the com-
posite electrode does not allow their full and fully-reversible volumetric
change. This can lead to accumulation of stresses in the contact area
(aggravated by non-uniform character of charging of large intercalation
particles), and may in some severe cases result in the formation of
cracks deteriorating cycling performance (Fig. 4C) [14]. Due to dete-
rioration of cycling performance, further cycling leads to a linear de-
crease in charge down to 45% after 900 cycles accompanied by the
displacement decreasing to around 49%. We believe that both re-
sponses, that is: the charge and displacement decrease due to the ageing

Fig. 4. Longtime cycling of composite electrodes at a rate of
1 °C with (A) PVdF binder and (B) NaCMC binder.
Displacement refers to the difference in thickness of the
electrode between lithiated and delithiated state. Values for
the charge and displacement are normalized to the initial
values in the first cycle as 100%. (C–D) Schematic drawing
of ageing mechanisms according to the influence of binder.
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of the composite LFP electrode [5,33] and the gradual loss of the
electric contact to the current collector [9].

In the case of NaCMC-bound composite electrodes, the charge also
decreases linearly but without a significant initial drop (Fig. 4B). No-
tably, the displacement response does not significantly change over the
whole period of 500 cycles. The fluctuations of displacement data are
related to the statistical signal noise of the eD system. We must consider
that aging of LFP electrodes in aqueous electrolyte solutions is de-
pending on many factors, but since we changed only the binder and
kept (to the best possible extent) all other conditions unchanged, we
can correlate the displacement with the battery performance.

We assume the enhanced viscoelasticity revealed by the LFP elec-
trode with NaCMC binder at slow charging rate is both responsible for
the deterioration of the reversible electrode capacity (leading to a loss
of electrical contact) and more efficient and stable intercalation-in-
duced displacement of the electrode. The fading in charge accumulation
might be related to the inactivation of particles by NaCMC flowing
between the active mass and the current collector (Fig. 4D). In general,
a viscoelastic binder effectively accommodates volume changes of the
intercalation particles but can cause a decreased capacity over lifetime
due to inactivation of the LFP particles.

4. Conclusions

The use of a stiff or a soft polymeric binder has a strong influence on
the cycling performance of composite LIB electrodes. The combination
of data obtained from in situ electrochemical dilatometry and electro-
chemical quartz-crystal microbalance with dissipation monitoring
provides important insights into the mechanical properties of the
composite electrode both as a function of its charging level and cycling
number. In our work, we cycled LFP electrodes in aqueous solution of
Li2SO4. This electrolyte leads to a pronouncedly soft behavior of
NaCMC and rigid behavior of PVdF. We found that the charge storage
ability and the mechanical response depend on the electrode cycling
history and the ability of the binder to compensate volume-change re-
lated stress. Based on the combined eD and EQCM-D measurements, we
believe that the optimal polymeric binder for the composite electrode
experiencing moderate intercalation-induced volume changes should
neither be completely rigid nor too soft to allow unrestricted electrode
volume changes but prevent the binder from viscous creep in the active
material.
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5. CONCLUSIONS AND OUTLOOK 

In this thesis, the role of the four main parts of supercapacitors and Li-ion batteries are investigated. 

Electric double-layer capacitors have a better power performance with approx. 5 mass% conductive 

additives, but the longevity can be drastically reduced by the combination of carbons with very different 

surface functional groups. The possible generation of water at the interface between activated carbon 

and carbon black is catalyzing the decomposition of the organic electrolyte. 

Further, the ongoing discussion about the relation between average pore size and surface-normalized 

capacitance is terminated when properly considering the total pore size distribution and the accessibility 

of ions into pores. An ion with a finite size cannot enter a pore with a diameter smaller than the bare ion 

size which can result in a drastically reduced accessible SSA, especially for large ions. The volume-

weighted average pore size influences on the capacitance and a maximum energy storage capability 

arise when the pore width matches the bare ion size. Still, the whole pore size distribution should be 

considered since the solvation energy and the size of the solvated ion also have an influence on the 

capacitance. Ions with a strong bond to the solvation molecules will prefer to electrosorb in pores with 

the size of solvated ions. If the solvation is less strong, the influence of pores in the range of the bare 

ion size will rise.  However, carbon with most pores in the range of the bare ion size will have a reduced 

power performance. These insights can be useful for the future development of industrial-scale 

capacitors. 

A more fundamental understanding of ion movement in nanoconfinement using the new in situ multi-

length scale and multi-apparatus approach showed the power of combined measurements. A correlation 

between electrochemical performance and structural changes on particle and electrode level is possible 

using several in situ techniques with different characteristic length-scales. 

Small ions in an ionic liquid always move first when applying a potential and this is directly correlated 

with the macroscopic expansion of the PTFE-bound carbon electrode. In aqueous electrolytes, the 

volume of micropores determines the total expansion of the electrode and an increase in expansion 

together with an emerging asymmetry of a larger expansion at negative potentials is correlated to the 

total amount of micropores. Future research on double-layer capacitors should be based on a combined 

approach of in situ methods together with simulations. The chronometric in situ measurements can be 

directly correlated to the time-resolved simulations and results can be gained on different kinetical and 

dimensional scales. With this approach a throughout understanding of charging mechanisms and 

charge-related structural changes might be possible. 

In the field of two-dimensional materials, with the example of Ti3C2X-MXene, the charging mechanism 

is mostly based on cation (de-)intercalation. This is a new insight and can be very useful for the use of 

those cells in actuation. A total volumetric change of more than 10 % is huge in comparison to the 
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expansion of activated carbons. Furthermore, the fast and autonomous wetting of MXenes with ionic 

liquids together with the very high conductivity of MXenes can generate a high-energy density and high-

power energy storage device. Yet, the longevity of those systems is currently small in comparison to 

EDLCs and this should be considered for further research. 

For Li-ion batteries, the influence of many parameters and correlations of each part of the complex 

devices are known and intensively researched. In this study, an environmentally friendly approach with 

an aqueous electrolyte is chosen. The importance of binders on power and longevity is investigated with 

the multi-length scale approach. It is the inactive material (binder) which can influence the total 

performance in a non-neglectable way as shown. Consequently, the adjustment of active material with 

binder and electrolyte must always be considered. 
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1. Gas sorption analysis 

 

Figure S1:  Sorption isotherms of the used carbons. First row (A+B) CO2 sorption isotherms 

(at 0 °C) and (C-F) nitrogen sorption isotherms (at -196 °C). The left column 

(A+C+E) are the isotherms for dry powder and the right column (B+D+F) relate to 

the isotherms of electrodes containing 10 mass% PTFE. The symbol legend in 

panel (F) relates to all panels. 
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Figure S2:  Calculated pore size distribution with a NLDFT kernel for carbon-dioxide (CO2) 

sorption and a QSDFT kernel assuming slit-like pores for nitrogen (N2) sorption 

measurements. All electrodes contain 10 mass% PTFE. 
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2. Cyclic voltammetry 

 

Figure S3:  (A-R) Cyclic voltammograms of the studied samples recorded at 2 mV∙s-1. The 

measured current on the y-axis was normalized by the scan rate, hence, resulting 

in a virtual unit of F∙g-1. 
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3. Structural and chemical analysis 

3.1 Raman spectroscopy 

The carbon materials differ in the degree of carbon ordering, as it can be seen from Raman 

spectroscopy (Fig. S4). Raman spectra are characterized by the D-mode between 1338 and 

1347 cm-1 and the G-mode between 1591 and 1599 cm-1. The G-mode is characteristic for 

graphitic material and comes from the bond stretching of sp2-hybridized carbon atoms in rings 

and chains according to the zone center E2g mode.[1] The D-mode, or “disordered” mode, 

arises from a double-resonant process. It relates to the breathing of six-fold carbon rings, but 

is only Raman active in the presence of defects, such as related to curvature, edges, 

heteroatoms, or vacancies.[2] 

 

Figure S4:  Raman spectra recorded using 532 nm wavelength with a power of 0.2 mW. 

 

The position of the G-mode for all carbons is shifted to larger wavelengths compared to ideal 

graphite at 1581 cm-1 and is only slightly smaller than for nanocrystalline graphite at 

~1600 cm-1.[3] This indicates the existence of nanocrystalline domains in the material 

combined with an amorphous carbon phase. The amorphous carbon phase is supported by 

the broad transition between the D- and G-mode, leading to a broad signal at ~1520 cm-1. 

 

Table S1:  Results of peak fitting of Raman data. 
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D-mode 
position 

(cm-1) 

G-mode 
position 

(cm-1) 

FWHM 
D-mode 

(cm-1) 

FWHM 
G-mode 

(cm-1) 

Integral 
ID/IG 
ratio 

AC 1338 1599 140 65 2.2 

CB1 1339 1594 212 100 2.1 

OLC 1343 1591 80 69 1.4 

CDC600 1346 1594 238 103 2.1 

CDC800 1347 1595 223 99 2.2 

CDC1000 1347 1594 174 82 2.1 

 

 

For OLC this transition is negligible, larger for AC and CB1, and decreases with the CDC 

synthesis temperature. This indicates the rather small fraction of amorphous carbon in high 

temperature carbon onions compared to, for example, low temperature CDC (CDC600). The 

high degree of carbon ordering for OLC, compared to all other carbons, is also underlined by 

the small ID/IG areal intensity ratio and comparable small FWHM of D- and G-mode (Table S1). 

All other carbons show a much larger ID/IG ratio of 2.1-2.2 compared to 1.4 for OLC. The higher 

degree of disorder for these materials, is also indicated by the larger FHWM of the D-mode. A 

broad D-peak correlates with strong distortion of six-fold rings, curvature, as well as 

nanocrystalline domains. The largest FWHM of the D-mode is measured for CDC600 with 

238 cm-1, leading to the carbon material with the highest degree of disorder. With increasing 

synthesis temperature, CDC materials increase in carbon ordering as indicated by the 

decreasing FWHM of both D- and G-mode. CB1 presents a similar degree of carbon ordering, 

but lower than AC. The FWHM of the G-mode is similar for the CDC and CB1, but significantly 

smaller for AC and OLC. The reason is the less bond-length variation in the nanocrystalline 

domains of AC and OLC than in the other carbons. 
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Summarizing, the carbons show a different degree of ordering with OLC presenting a more 

pronounced graphitization and with CDC600 characterized by a large fraction of amorphous 

carbon and high degree of disorder. 

 

3.2 Chemical analysis (EDX) 

EDX spectra show a very low amount of oxygen in the used carbon electrodes, proving the 

statement of little amount of heteroatoms and surface functional groups in the investigated 

samples. Especially the CDC samples show no detectable amount of oxygen within the error 

of the method, whereas the industrial produced carbon powders have some small amount 

below 2 atom%. For the CDC samples, the residual difference to 100% relates to residual 

amounts of electrochemically inert carbide species. 

 

Table S2:  Carbon and oxygen content of carbon electrodes, measured with elemental 

analysis. n.d.: not detectable. 

Material Carbon 
(atom%) 

Oxygen 
(atom%) 

Reference 

AC1 97.8±0.5 2.0±0.5 [4] 

CB1 98.1±0.1 1.3±0.1 [4] 

OLC 98.8±0.1 1.2±0.1 [5] 

CDC600 94.6±1.0 n.d.  

CDC800 98.1±0.5 n.d.  

CDC1000 98.3±0.2 n.d.  
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Experimental Methods 

A more detailed experimental description can be found in our earlier work (Ref. 1). Activated 

carbon YP-50F from Kuraray (called AC) and carbon black BP2000 from Cabot (called CB) were 

used as received. Carbide-derived carbon (CDC) samples were derived from titanium carbide 

(TiC) by chlorine gas treatment at 600 °C (TiC600) or 1000 °C (TiC1000) for 3 h (in both cases). 

All samples were subsequently annealed at 600 °C in hydrogen for 2 h and after cooling placed 

in vacuum (0.1 mPa) for several hours to remove residual volatile gas species.2 Carbon onions 

(OLC, stands for: onion-like carbon) were derived from nanodiamond powder (NaBond) by 

thermal annealing in argon at 1700 °C for 1 h with a heating rate of 20 °C∙min-1 (Thermal 

Technology Furnace).3 

For electrode preparation, we added 10 mass% of polytetrafluoroethylene (PTFE, 

60 mass% dispersion in water from Sigma Aldrich) as binder to the carbon powder, which was 

soaked with ethanol and ground in a mortar. The resulting dough-like material was further 

processed with a rolling machine (MTI HR01, MTI Corp.) to a 200±20 µm thick free standing 

film electrode and finally dried at 120 °C at 2 kPa for 24 h before use. 

For electrochemical testing, we employed a custom-built polyether ether ketone 

(PEEK) cell with spring loaded titanium pistons as a three electrode system described 

elsewhere.4 The working electrode was punched out with 12 mm diameter with a total mass 

of 10-20 mg. An overcapacitive YP-80F (Kuraray) electrode with 500 µm thickness and 25 mg 

served as counter electrode. We employed a glass-fiber separator (GF/A from Whatman) and 

a carbon-coated aluminum foil current collector (type Zflo 2653 from Coveris Advanced 

Coatings). PTFE-bound YP-50F was employed as a quasi-reference electrode with a potential 

close to 0 V vs. NHE.5 The assembled cells were dried at 120 °C for 12 h at 2 kPa in an inert gas 

glove box (MBraun Labmaster 130, O2 and H2O <1 ppm) and, after cooling to room 



temperature, vacuum-filled with 1 M tetraethylammonium-tetrafluoroborate (TEA-BF4) in 

electrochemical grade (i.e., water content <20 ppm) acetonitrile (ACN) or propylene 

carbonate (PC), both purchased from BASF. Electrochemical measurements were carried out 

using a VSP300 potentiostat/galvanostat from Bio-Logic, with galvanostatic cycling with 

potential limitation (GCPL) applying a 15 min holding step (e.g., at +1 V vs. carbon) to bring 

the system to an equilibrated state. The specific (gravimetric) capacitance during discharging 

was calculated via Eq. (1): 

𝐶𝐶𝑠𝑠𝑠𝑠 =
∫ 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡0

𝑈𝑈
∙ 1
𝑚𝑚

 , (1) 

with specific capacitance Csp, time t (t0: starting time of discharge, tend: end of discharging 

time), applied potential difference ΔE discharge current I, and total mass of the working 

electrode m (i.e., considering carbon and the binder). For every type of electrode composition, 

two electrodes were prepared and these two cells were tested individually to calculate mean 

values with a standard deviation always below 5 %. 

Nitrogen gas sorption measurements were carried out with an Autosorb iQ system 

(Quantachrome) at the temperature of liquid nitrogen (-196 °C) after degassing at 150 °C for 

10 h. For the measurements, the relative pressure (P/P0) was varied from 5∙10-7 to 1.0 in 68 

steps. The specific surface area (SSA) and pore size distribution (PSD) was calculated with the 

ASiQwin-software via quenched-solid DFT (QSDFT) kernel with a slit pore shape model 

between 0.56 and 37.5 nm.6 As shown elsewhere, the error in assuming slit-like pores for OLC 

is not insignificant, but smaller than using other kernels.4 Carbon dioxide gas sorption 

measurements were carried out at 0 °C in the relative pressure range from 1∙10-4 to 1∙10-2 in 

40 steps. SSA and PSD values were calculated for pore sizes between 0.3 nm and 1 nm with 

the ASiQwin software using nonlocal density functional theory (NLDFT) kernel for CO2 

sorption.7 1D-NLDFT kernel suffer from the assumption of infinite flat, homogenous carbon 



surface which results in the incorrect pore size distribution with many sharp maxima and gaps 

in-between.8 Nevertheless, CO2 adsorption is the most favorable for measuring of 

ultramicropores.9-10 The calculated PSD was incremented by a linear approximation of the 

calculated pore volume (CO2-sorption-derived PSD was used up to a pore size of 0.9 nm and 

N2-sorption-derived PSD for pores larger than 0.9 nm) to an equidistant point density as 

described elsewhere.1 
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1. Quantification of ions 

To calculate the number of ions in the double-layer we expect an exclusive capacitive energy storage 

behavior. The surface charge Q is balanced by adsorption of counter-ions or expulsion of co-ions 

𝑄 = −𝐹(𝛿𝑛+ − 𝛿𝑛−) (S1) 

With the Faradaic Constant F and the change in number of cations δn+
 and the change in number of 

anions δn-. All used ionic liquids contain single charged (monovalent) ions and we can simplify the 

equation by calculating the difference x between co-ions and counter-ions 

−
𝑄

𝐹
= 𝛿𝑛+ − 𝛿𝑛− = −𝑥 (S2) 

The total change of number of ions Δn is the sum of the changes of co-ions and counter-ions: 

𝛥𝑛 = 𝛿𝑛+ + 𝛿𝑛− (S3) 

Since there are only monovalent ions Eq. (S3), we can write the following: 

𝛥𝑛 = 2𝛿𝑛+ + 𝑥 (S4) 

The mass change according to the Sauerbrey equation Δ𝑚 = 𝑘 ∙ Δ𝑓 is linear related to the change in 

frequency.1 Assuming only ion adsorption and desorption 2 we can correlate the mass change with the 

change in number of ions and mass of ion M as: 

𝛥𝑚 = 𝛿𝑛+ ∙ 𝑀+ + 𝛿𝑛− ∙ 𝑀− (S5) 

By combination of Eq. (S3)-(S5), we can calculate the change in number of a single type of ions as: 

𝛥𝑚 = 𝛿𝑛+ ∗ 𝑀+ + (𝛿𝑛+ + 𝑥) ∗ 𝑀− (S6) 

𝛥𝑚 = 𝛿𝑛+ ∗ (𝑀+ +𝑀−) + 𝑥 ∗ 𝑀_ (S7) 

𝛿𝑛+ =
𝛥𝑚−𝑥∗𝑀−

𝑀++𝑀−
 (S8) 

 

2. Volumetric changes 

The changes in volume related to the changes in number of ions in the pores are correlated by the 

molar volume of the ions Vm and the Avogadro constant NA  

𝑉𝑚 = 𝑉 ∙ 𝑁𝐴 (S9) 

Since the voluminal of the ions are quite different there are possible changes of ions in the pores 

without any volumetric changes. If we know the free of volumetric change state of (dis-)charging we 

can calculate the number of ions which is related to the occurring volumetric change. If we assume 

ΔV=0, then we see: 

𝛥𝑉 = 0 = 𝛿𝑉+ + 𝛿𝑉− = 𝛿𝑛0+𝑉𝑚+ + 𝛿𝑛0−𝑉𝑚− (S10) 

𝛿𝑛0− =
𝑄∗𝑉𝑚+

𝐹(𝛿𝑉𝑚−∗𝑉𝑚+)
 (S11) 

𝛿𝑛0+ =
𝑄

𝐹
− 𝛿𝑛0− (S12) 

with δn0 is the number of ions which can be exchanged without any volumetric changes. 
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3. Gas sorption analysis 

Nitrogen gas sorption measurements were carried out on the dry NovoCarb powder and the electrode 

containing 10 mass% NaCMC. The resulting quenched-solid density functional theory (QSDFT) plots 

show a decreased total pore volume in the electrode (Fig. S1A). This is resulted from the pore blocking 

of the binder, which is especially pronounced for the smallest pores below 1 nm as seen when 

normalizing the total pore volume to 100 % (Fig. S1B). Hence, the average pore volume stays constant. 

 

 

Figure S1: Cumulative pore volume for dry powder (red line, dashed) and electrode containing 

10 mass% NaCMC (black line, solid). 
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4. EQCM measurements 

The EQCM measurements for all three ionic liquids show changes in frequency Δf and changes in 

FWHM of the peaks (dissipation ΔW) when applying a potential. To avoid any viscoelastic influence of 

the electrode on the frequency changes the change in dissipation must be much lower than the 

changes in peak shift Δf.3 This is confirmed by our measurements where the change in W is 3-10 times 

less than the change in frequency (Fig. S2). The signal is smoothed with a 20 point Savitzy-Golay filter. 

 

Figure S2: Change in frequency Δf and dissipation W according to the applied voltage (A,B) or to the 

charge (C) in (A) EMIM-TFSI, (B) EMIM-BF4, and (C) BMIM-PF6. 

 

In cyclic voltammetry, the change in mass of the working electrode Δm can be traced in situ with the 

electrochemical response of the system. In all cases the mass increased when applying positive 

potentials (Fig. S3). 

 

Figure S3: In situ tracing of mass changes of the working electrode (red line) and the electrochemical 

response (black line) of the thin EQCM electrodes in (A) EMIM-TFSI, (B) EMIM-BF4, and (C) BMIM-PF6. 

 

The measured changes in mass are correlated to the change in number of adsorbed ions on the 

working electrode. Since we know the volume of each ion,4 a direct calculation of volumetric changes 

according to the composition of the double-layer is possible (Fig. 5). 
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5. Chemical analysis 

Table S1: Chemical analysis of the dry carbon powder via CHNSO analysis. 

Carbon 

(mass%) 

Hydrogen 

(mass%) 

Nitrogen 

(mass%) 

Sulfur 

(mass%) 

Oxygen 

(mass%) 

94.1±1.3 0.5±0.1 0.7±0.1 Not detectable 2.8±0.5 
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Silica gel synthesis: The surfactant, Pluronic P123, was dissolved in 1M HCl in a ratio of  

P123/acid = 30/70 mass%. Tetrakis(2-hydroxyethyl)orthosilicate (EGMS) and P123/acid were 

mixed with a composition of the sol of Si/P123/acid = 7/30/70 mass%. The liquid mixtures 

were allowed to gel in a closed PP cylinder at 40 °C, and the gels were kept at this temperature 

as long as seven days for aging. Silanization of the whole monolith body was performed with a 

solution of 10 mass% trimethylchlorosilane in petroleum ether for 24 h, leading to an 

immediate, visible extraction of the surfactant and aqueous pore liquid. After washing with 

petroleum ether and ethanol, the wet gel bodies could be used for the infiltration.1 

Carbon synthesis: Carbon monoliths were obtained from the above described silica monoliths 

by a nanocasting approach. The silica monoliths were infiltrated at room temperature with an 

aqueous solution of resorcinol (R), formaldehyde (F) and sodium carbonate (C) with a molar 

ratio of R/F/C/H2O = 1/2/0.002/15, stored at 80 °C for 24 h and subsequently carbonized at 

850 °C (holding time 1 h) in argon atmosphere. After cooling to room temperature, the silica-

carbon-composite was immersed in 20 % hydrofluoric acid for 12 h to remove the silica mold. 

The resulting carbon monoliths were washed three times with a mixture of ethanol and water 

and dried under ambient conditions. Part of the material was activated with carbon dioxide at 

925 °C for 1 h resulting in a mass loss of 20 %. 

Electrode preparation and supercapacitor cell assembly: After grinding the monolithic carbon 

samples, electrodes were fabricated by mixing the carbon powder with ethanol and a 60 mass% 

polytetrafluoroethylene (PTFE) dispersion (60 % PTFE in water, Sigma-Aldrich) as a binder. 

The resulting slurry was rolled with a MSK-HRP-MR 100A (MTI Corporation) rolling press to 

a thickness of 300 µm and dried at 120 °C and 5 mbar for 24 h. Sandwich-like supercapacitor 

cells with platinum foil current collectors and a 300 µm glass microfiber filter (Whatman, GE) 

as electrode separator were assembled. The working electrode (WE, diameter 10 mm, thickness 

300 µm, 10 mass% PTFE binder) consisted of the MC and AMC samples, and the five times 
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oversized counter electrode (CE, 5 mass% PTFE binder) was made of a commercial activated 

carbon (YP-80F, Kuraray Chemicals). 

Sorption analysis: Nitrogen gas sorption measurements were carried out with an Autosorb iQ 

system (Quantachrome) with liquid nitrogen (-196 °C). The electrodes were degassed at 102 Pa 

and 150 °C for 10 h. Isotherms were recorded at relative pressures (p/p0) from 5∙10-7 to 1.0 in 

58 steps. The specific surface area (SSA) was calculated with the ASiQwin-software using the 

quenched-solid density function theory SSA (QSDFT-SSA) assuming slit pores. Values for the 

total pore volume correspond to p/p0 = 0.95. Carbon dioxide sorption was carried out at 0 °C in 

the relative pressure range from 1∙10-4 to 1∙10-2 in 40 steps. SSA and pore size distribution 

(PSD) were calculated for pore sizes between 0.3 nm and 1 nm with the ASiQwin software 

using nonlocal density functional theory (NLDFT). The total PSD from 0.3 nm to 30 nm was 

incremented by a linear approximation of the calculated pore volume (CO2-sorption-derived 

PSD was used up to a pore size of 0.9 nm and N2-sorption-derived PSD for pores larger than 

0.9 nm) to an equidistant point density of 0.1 nm in the range 0.3-5.0 nm and a point-to-point 

distance of 1 nm for pores larger than 5 nm. 

In-situ SAXS measurements: In situ small-angle X-ray scattering (SAXS) measurements were 

performed with a custom-made cell built of polyether ether ketone (PEEK) with titanium 

contacts similar to the in situ cell published by Ruch et al.2 A hole of 3 mm diameter through 

all sandwich layers except the working electrode ensured that only the scattering signal from 

the WE was recorded given an X-ray beam size of 1 mm. In-situ SAXS measurements were 

performed at the Austrian SAXS beamline at the synchrotron radiation facility Elettra in 

Trieste.3 A monochromatic X-ray beam with a wavelength of 0.077 nm was used. SAXS data 

were recorded with a 2D Pilatus 1M detector (Dectris). The transmitted intensity was 

determined with an X-ray sensitive photodiode mounted on the beamstop in front of the 

detector. While applying cyclic voltammetry at different scan rates (1 mV·s-1 to 20 mV·s-1) 
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using a Gamry Reference 600 Potentiostat, 2D SAXS patterns as well as corresponding 

transmission values were continuously recorded every 5 s. 

SAXS data evaluation: 2D SAXS patterns were azimuthally integrated using the software 

Fit2D.4 The scattering intensity was normalized with respect to the corresponding monitor and 

transmission values. Fitting of the first order Bragg peak (10) for the different applied voltages 

was done as follows: In the first step, the constant background due to the change of ion 

concentration was determined in the Q range from 7 nm-1 to 9 nm-1 by employing Porod’s law.5 

In the second step, the sum of a log-normal distribution and a power law were fitted to the data 

between 0.5 nm-1 and 2.0 nm-1, where the power law captured the changes of the diffuse 

scattering from the micropores. The Bragg-peak position was determined from the maximum 

position q0 of the fitted log-normal function. Strain as a function of applied voltage was 

determined by calculating the relative shift of this peak position with respect to its position at 

0 V. To reduce the noise level, the peak positions from 10 consecutive SAXS curves were 

averaged. All data treatments were done with the software package Igor Pro 6.37 

(WaveMetrics). 

In situ electrochemical dilatometry was carried out with an ECD-2-nano dilatometer (EL-

CELL). The measurements at 25.0±0.5 °C were conducted in a two-electrode setup with an 

oversized PTFE-bound activated carbon as counter and quasi-reference electrode (type YP-80F, 

Kuraray). The working electrode was loaded with a constant force of 1 N and the strain was 

tracked with a DP1S displacement transducer (Solartron Metrology, accuracy ±15 nm). After a 

resting period of 48 h cyclic voltammograms were recorded at 1 mV·s-1. 

  



 S-5 

REFERENCES 

(1) Brandhuber, D.; Torma, V.; Raab, C.; Peterlik, H.; Kulak, A.; Hüsing, N. Glycol-modified 
Silanes in the Synthesis of Mesoscopically Organized Silica Monoliths with Hierarchical 
Porosity. Chem. Mater. 2005, 17, 4262–4271. 

(2) Ruch, P. W.; Hahn, M.; Cericola, D.; Menzel, A.; Kötz, R.; Wokaun, A. A dilatometric and 
Small-Angle X-ray Scattering Study of the Electrochemical Activation of Mesophase Pitch-
Derived Carbon in Non-aqueous Electrolyte Solution. Carbon 2010, 48, 1880–1888. 

(3) Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First 
Performance Assessment of the Small-Angle X-ray Scattering Beamline at ELETTRA. J. 
Synchrotron Radiat. 1998, 5, 506–508. 

(4) Hammersley, A. P. FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization 
Program. J. Appl. Crystallogr. 2016, 49, 646–652. 

(5) Glatter, O.; Kratky, O. Small angle X-ray scattering; Acad. Press: London, 1982. 



S-1 

Appendix E 

 

Supporting Information 

 

Electrochemical in situ tracking of volumetric changes in 
two-dimensional metal carbides (MXenes) in ionic liquids 

 

N. Jäckel,1,2 B. Krüner,1,2 K. L. Van Aken,3 M. Alhabeb,3 

B. Anasori,3 F. Kaasik,1 Y. Gogotsi,3,* V. Presser1,2,* 

 

1 INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany 
2 Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany 
3 Department of Materials Science and Engineering & A. J. Drexel Nanomaterials Institute, PA 19104 

Philadelphia, USA 
* Corresponding authors: 
  Yury Gogotsi: gogotsi@drexel.edu 
  Volker Presser: volker.presser@leibniz-inm.de 

  

mailto:gogotsi@drexel.edu
mailto:volker.presser@leibniz-inm.de


S-2 

Experimental 

Ti3AlC2 powder as MAX phase was synthesized as described by Naguib et al.1 and Ti3C2 MXene was 

synthesized by etching aluminum from Ti3AlC2 (400 mesh size) using minimally intensive layer 

delamination (MILD) method thoroughly described elsewhere.2-3 Free standing films of MXene were 

made using vacuum assisted filtration of aqueous colloidal solution Ti3C2 (1 mg/mL) using 

polypropylene filter membrane (Celgard 3501, 0.064 µm pore size). 

We purchased 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) from 

IoLiTec Ionic Liquids Technologies, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) 

from Sigma-Aldrich. Prior to use, the electrolytes were dried at 1 mbar and 120 °C for 24 h. 

The height change (strain) of the carbon electrodes during charging and discharging was measured 

with an ECD-2-nano dilatometer from EL-CELL. The dilatometer cell is based on a two-electrode 

design using an oversized PTFE-bound activated carbon (AC, YP-80F from Kuraray) as counter and 

quasi-reference electrode. The investigated electrodes were compressed between the separator and 

a movable titanium plunger with a constant weight load of 1 N. Prior to the experiments, the cell was 

dried for 24 h at 120 °C under vacuum (20 mbar). A DP1S displacement transducer (Solartron 

Metrology), with an accuracy of 15 nm was used and connected to the VMP300 (Bio-logic) 

potentiostat. The experiments were performed at constant temperature of 25.0±0.5 °C using a 

climate chamber (Binder). All cyclic voltammograms were recorded at a sweep rate of 1 mV/s. 

Chronoamperometry (CA) was carried out using an equilibrium time of 1 h at each potential step. 
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X-ray diffraction (XRD) experiments were conducted with a D8 Advance diffractometer (Bruker AXS) 

with a copper X-ray source (Cu Kα, 40 kV, 40 mA) and a nickel filter. Air scattering at low angles is 

subtracted by a linear curve and intensities are normalized to the corresponding (002) peak of 

MXene. The in-situ cell contains an oversized AC electrode acting as the counter and quasi-reference 

electrode. The poly-ether ether ketone cell employed platinum current collectors and a glass fiber 

separator (GF/D from Whatman). The cell was operated by a Gamry Reference 600 potentiostat. 

After applying a constant voltage, a 2 

Supporting information on ionic liquid electrolytes 

The ionic liquids EMIM-TFSI (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) with ion 

sizes of EMIM+ 0.43x0.76 nm2 and TFSI- 0.29x0.79 nm2 and BMIM-BF4 (1-butyl-3-methylimidazolium 

tetrafluoroborate) with BMIM+ 0.45x0.90 nm2, BF4
- 0.45x0.45 nm2 were used.4-5 The viscosity of ionic 

liquids, namely, 28 mPa∙s for EMIM-TFSI and 180 mPa∙s for BMIM-BF4, is vastly different even if the 

conductivities are comparable (3.6 mS/cm for EMIM-TFSI and 3.5 mS/cm for BMIM-BF4).6-7 
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Supporting Information on in situ XRD experiments 

The full XRD patterns show two strong peaks at 26° 2Θ form the Hostaphan foil (strain crystallized 

poly(ethylene terephthalate); PDF-00-061-1413) covering the cell and a sharp peak at 46.2° 2Θ from 

the platinum current collector (PDF-04-0802) (Fig. S1). 

 

 

Figure S1:  Full XRD pattern normalized to the Hostaphan peak at 26 ° 2Θ with (A) 

EMIM-TFSI and (B) BMIM-BF4. 

 

Supporting information on MAX phase and MXenes 

Members of the MXene family are early transition metal carbides or carbonitrides, produced by 

etching ternary carbides (MAX phases), with M being an early transition metal, A - a group 13-15 

metal, and X is carbon or/and nitrogen.8 The transition from MAX to MXene is accomplished by 

selective etching of A-site atoms, for example by treatment in hydrofluoric acid (HF) or mixed 

solutions of lithium fluoride in hydrogen chloride (LiF in HCl).1, 9 Depending on the degree of 

exfoliation, the obtained material exhibits a nano lamellar or flake-like morphology, which is ideally 

suited for the fabrication of binder-free electrodes (MXene paper) with very high intrinsic electrical 

conductivity.3, 10 Just like graphene, MXene flakes may also undergo restacking and the interlayer 

spacing (along the c-axis) may be reduced after loss of water or other solvent. Yet, restacking may be 

mitigated by use of spacing agents like carbon nanotubes or carbon onions.11-12 
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Supporting information on cycling performance 

The longtime CV measurement was conducted at 1 mV/s in BMIM-BF4. The initial voltage window of 

-1.5 V to +0.8 V vs. carbon needed to be changed to -1.7 V to +0.7 V vs. carbon due to the onset of 

degradation at the upper vertex potential (Fig. S2) after the first few cycles. The initially vastly 

smeared anodic and cathodic peaks get sharpened to clear peaks at -0.3 V vs. carbon (anodic) and 

+0.2 V to +0.3 V vs. carbon (cathodic) after some cycles. The narrow peaks lead to a more 

pronounced change in strain at this potentials, meaning the (de-)insertion of BMIM+ is more clearly 

traceable. Yet, the total values of strain decrease from 6 % to 4.5 % after 120 cycles. 

 

Figure S2:  Longtime CV measurement with in situ dilatometry at 1 mV/s sweep rate. The 

expansion/contraction is normalized to the minimum equilibrium thickness. 
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