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Zusammenfassung 

Anorganische Nanoobjekte mit organischen Ligandenhüllen bilden eine interessante Klasse 

nanoskalig strukturierter Materialien, wenn sie zu größeren Einheiten zusammengesetzt 

werden - die Hybridmaterialien. Das Fehlen einfacher Produktionsprozesse verhindert bislang 

deren industrielle Nutzung. Ein vielversprechender Ansatz für einen einfachen 

Produktionsprozess von Hybridmaterialien ist deren Herstellung aus kolloidalen Tinten. 

Hierzu muss allerdings die Kontrolle über die gezielte Nanoobjektanordnung während des 

Verarbeitungsprozesses verbessert werden. Die Ligandenhüllen spielen dabei eine 

entscheidende Rolle, da sie die Anordnungseigenschaften der Nanoobjekte stark 

beeinflussen. 

Um die kolloidale und supramolekulare Chemie der Ligandenhülle besser zu verstehen 

wurden ligandenstabilisierte, stäbchenförmige Nanoobjekte synthetisiert, modifiziert und 

deren Anordnungsverhalten in Verbindung mit dem Dispergiermittel aufgeklärt. Auf der Basis 

dieser Erkenntnisse wurden erfolgreich zwei unterschiedliche Hybridmaterialien aus Tinten 

hergestellt. Zum einen wurden Gold-Nanostäbe mit einer leitfähigen Polymer-Ligandhülle 

beschichtet, die gleichzeitig gute kolloidale Stabilität der Nanostäbe in Tinten und elektrische 

Leitfähigkeit der Hybridstrukturen direkt nach dem Trocknen der Tinte ermöglicht. Zum 

anderen wurde das Zusammenspiel der Ligandenhüllen ultradünner Goldnanodrähte mit dem 

Dispergiermedium ausgenutzt, um die Drähte zu hierarchischen Hybridfasern zu spinnen. 
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Abstract 

Inorganic nano-objects with organic shells form an interesting class of nanostructured 

materials when they are assembled into larger units - hybrid materials. The industrial use of 

materials produced via this bottom-up route is impeded by the lack of simple production 

processes. A promising process is their production from colloidal inks; however, the targeted 

control of the nano-objects’ superstructure formation must be improved. Here interfaces 

and the organic shells are crucial, as they strongly affect the assembly characteristics of the 

hybrid nano-objects. 

Here, the colloidal and supramolecular chemistry of the ligand shell is studied. Ligand-

stabilized wire-like and rod-like nano-objects were synthesized, modified, and their 

assembly behavior in conjunction with the dispersant medium was elucidated. After that, 

two different hybrid materials were produced using an ink-based approach. First, gold 

nanorods were coated with a conjugated polymer ligand shell that enabled both good 

colloidal stability and electrical conductivity of the hybrid structures directly after drying of 

the ink without sintering. Second, ultrathin gold nanowires were spun into hierarchical 

fibers, exploiting the interaction of their ligand shells with the surrounding dispersant 

medium.  
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1 Motivation 

Inorganic nano-objects, with their unique properties are interesting building blocks. 

Nowadays nano-objects are already applied in end-user products. For instance, spherical TiO2 

and SiO2 nano-objects are used in paint, sunscreen, and even in food applications.1 Future 

market-relevant applications of nano-objects are seen in their functional assemblies.2 

Therefore, robust and efficient bulk methods to assemble “nano-monomers” are required.3 

There are various challenges to be overcome before materials from nano-objects can be 

produced on an industrial scale. Scalability and reproducibility issues during the synthesis of 

nano-objects,4 and more importantly, the lack of simple methods for their assembly with a 

high degree of structural control currently do not allow the cost-efficient production of nano-

object superstructures.5 

The structure of the assembled nano-objects can influence the properties of the material 

obtained. Hence, it is interesting to control the positions of the nano-objects within a 

material.6 Established methods that allow the precise positioning of nano-objects typically 

manipulate the position of single nano-monomers sequentially.7,8 These methods enable 

precise structural control, yet they are very time-consuming and usually require complicated, 

expensive equipment. Bulk methods which allow for the simultaneous, structurally controlled 

assembly of nano-objects with simple equipment are required for industrial scale material 

production.5,9  

Solvent-based processes that exploit colloidal self-assembly are suitable approaches because 

they require only basic equipment and manipulate all dispersed nano-objects at once.10,11 

Therefore, nano-objects are processed from inks which are solvent-based formulations 

containing dispersible nano-objects. Inkjet printing is a well-known ink-based processing 

technique to deposit nano-object derived superstructures. This relatively straightforward 

approach is considered a very attractive and promising route towards market-relevant 

products, for instance in the field of printed electronics.12 It can be used to produce radio 

frequency identification (RFID) antennas and printed circuits on packaging material.13 Another 

less straightforward idea may be to profit from decades of experience in the solution 

processing of polymers, for instance fiber-spinning,14 and aim for polymer analogue 

processing of colloidal inks. 
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1 Motivation 

For both processing methods, colloidal interactions need to be carefully controlled, because 

they determine ink stability and the assembly behavior of the nano-objects contained. Ligand-

stabilized nano-objects are a good option for optimizing this behavior, because the ligand shell 

which forms the interface between the nano-object and the solvent can be adapted to tailor 

colloidal interactions independently of the nano-object core. Thus, almost any colloidal 

properties can be given to a selected core material by utilizing valuable know-how from 

organic and supramolecular chemistry. 

Unfortunately, the current understanding of how especially non-polar ligand shells and their 

interactions with their surrounding medium can control assembly is rather limited. To identify 

an appropriate ligand which allows stabilization of a particular nano-object during processing 

and, on the other hand, allows for the controlled destabilization of the suspension to form 

the final nanomaterials, the respective experiment has to be performed with the ligand of 

choice. The thereby gained understanding of the structural control over the assembly of nano-

objects from inks is necessary to enable rational design of functional hybrid materials.15,16 

Consequently, an important aim of this thesis is to study solvent-interactions with the 

ligand shell to enable rational design of colloidal interactions. The interaction of ligand 

shells with the solvent will be investigated in particular, because these interactions are 

important for the stability of the colloidal inks. This is, for instance, very important for 

printing applications, because premature destabilization of the inks might clog the 

printing nozzle. The insights achieved will be exploited to produce two material 

embodiments which demonstrate material fabrication by processing colloidal inks. 

One case elected for implementation as part of this thesis is the use of nano-metal inks for 

inkjet printing of conductive structures. There are already stable, printable nano-metal inks 

on the market. However, typically nano-objects in state-of-the-art inks carry bulky organic 

ligands which impede electron transport between the conductive metal cores. Thus a 

sintering step is required to remove the insulating ligand shells from the printed metal-organic 

hybrid structures to obtain the required percolating network of electrical conductor. This 

thesis aims to overcome this drawback of commercial inks by a clever design of the ligand 

shell. Tailoring the ligand shell such that, on one hand, the metal cores are colloidally 

stabilized in the ink and, on the other hand, the printed hybrid structures are already 

conductive without requiring removal of the ligand shell by sintering would simplify the 
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production of conductive structures and broaden the range of substrates to include materials 

which cannot withstand harsh sintering conditions. Therefore, a stable, water-based inkjet-

compatible ink which can form sinter-free conductive structures should be produced as an 

example for simple material fabrication by processing a colloidal ink.  

In the second case, the feasibility of transferring the technology of commercial polymer fiber 

spinning to ligand-stabilized nano-objects should be demonstrated. In principle, this should 

be achievable by injecting a stabilized dispersion of hybrid nano-objects of suitable shape into 

a poorly dispersing solvent. Here the advantage of the hybrid concept is the similarity to 

supramolecular self-assembly approaches. Organic ligands tethered to a nano-object may 

behave very similarly to self-assembled molecules which interact with the solvent.17 Thus 

hybrid nano-objects may be understood in terms of supramolecular chemistry concepts and 

may form similar superstructures which can be tuned by appropriate solvent choice. This 

thesis should indicate whether this assumption is applicable. The feasibility to produce 

macroscopic hybrid materials with controlled structure from colloidal inks using a polymer 

analogous fiber spinning process should be demonstrated in a second step.  

For both applications, gold nano-objects were chosen as model systems because of their 

chemical inertness and the availability of a multitude of synthesis protocols for gold nano-

objects. For the conductive hybrid inks, gold nanorods synthesized via a standard wet-

chemical synthesis protocol were selected. They are widely used for sensing applications, 

since their optical properties change in response to slight changes in their direct vicinity.18 

This property allows easy progress monitoring of, for instance, ligand exchange reactions by 

simple optical analytical techniques, such as UV-vis spectroscopy. Wet chemically synthesized 

ultrathin gold nanowires were the nano-objects of choice for solution spinning of fibers due 

to their polymers-like shape and their ease of synthesis using a simple, scalable wet-chemical 

protocol.19 
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2 State of the art 

2.1 Hybrid materials 

Hybrid materials are combinations of often complementary components. Unlike in 

composites, these components are mixed at a smaller scale in hybrid materials. According to 

stricter definitions, mixing occurs on the nanoscale or the molecular level.20 By mixing two 

different components, such as a soft organic component with a more rigid inorganic one, new 

and interesting properties can emerge that are not achievable otherwise.21 Small-scale mixing 

contributes to the homogeneity of the resulting material and enables fine-tuning of its 

properties.22 

Even though researchers only recently started to study the field intensively and understand 

how these hybrid materials are built up on the nanoscale, hybrid materials have long been 

used because of beneficial processability or properties compared to single-component 

materials.20 For instance, painters in the 19th century used mastic resin combined with 

inorganic pigments in oil paints to get beneficial rheological properties.23 Inorganic polymer 

composites and hybrids also benefit from the versatile, simple polymer processing 

technology, which makes them easy to manufacture,22 while the inorganic part lends them 

properties that are otherwise not achievable using only organic material.1  

The structure into which the mixed components are assembled can contribute strongly to the 

material properties.6 Hence tailor-made advanced hybrid materials require not only the right 

combination of components but also a controlled, tailored structure.24 For instance, nature 

produces plenty of anisotropically structured, directional hybrid materials. Human bones are 

a typical example. This sophisticatedly structured collagen-hydroxyapatite hybrid material 

does not need the same fracture toughness in every direction. Thus, the structure is optimized 

to provide superior fracture toughness only in the directions needed.25 

This kind of directionality cannot be found in randomly mixed hybrid materials, which are, on 

the other hand, easier to produce. This current trade-off between processing effort and 

functionality of hybrid materials exists because efficient structuring methods are currently 

lacking. According to Sanchez et al.24, a holistic approach in which processing goes hand in 

hand with the chemistry of the components is required to be able to produce hybrid materials 

with tailored structure and functionality. 
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There are many ways to produce hybrid materials, which are described in detail elsewhere.22 

The so-called “building block approach” is the one chosen in this thesis for the fabrication of 

nano-object-based hybrid materials from colloidal inks, which is considered a particularly 

promising and simple method.10 Since inorganic colloids are typically covered with a molecular 

layer of organic molecules, their assembly naturally leads to hybrid materials. Further on, 

colloids can be processed from solution, which is in line with the demand for simple, 

inexpensive processing techniques.26 Therefore the following will focus on the fabrication of 

hybrid materials via this route, starting with a brief description of the chosen building blocks 

for the hybrid material fabrication: colloidal nano-objects. 

2.2 Hybrid material building blocks: colloidal nano-objects 

In nanoscience, the terminology used to describe the building blocks is not entirely clear and 

consistent in the literature. Therefore, the terminology used in this thesis will be described 

below. In accordance with the ISO/TS 8004-2 standard from 2015,27 the size range of 1 to 100 

nm is called the nanoscale. This particular size scale lies between typical length scales of single 

atoms and bulk materials and causes many of the interesting properties known for 

nanoparticles.28 For a nanoparticle, all three dimensions must lie within the nanoscale, 

whereas the term nano-object is defined more broadly and relies only on one dimension of 

the nano-object being on the nanoscale. Hence, it includes nanospheres with three, nanorods- 

and wires with two, and nanoplates with one nanoscale dimension.27 In addition, the widely 

used term “colloid” will be used when referring to a nano-object in dispersion, although the 

term is also sometimes used to describe to the dispersion itself.29 

Nano-objects are attractive building blocks due to the unique properties of both the “nano-

monomers” and their functional assemblies. The unique nano-object properties are caused 

by: 

i. their large surface to volume ratio compared to bulk materials,

ii. the fact that at the nanoscale quantum confinement occurs, or

iii. their small sizes themselves.30

In detail, this means that 
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i. surface-related properties become predominant, especially in the case of

nanoparticles with diameters below 10 nm. For example, approx. 50% of the atoms that

constitute a 4 nm nanoparticle are at the surface.31 This is beneficial, for instance, for their

catalytic properties in relation with the material used. Furthermore, the contribution of the

surface energy of a crystalline structure to the free energy of the system becomes increasingly

dominant, which may lead to stabilization of different crystal structures on the nanoscale than

in bulk.32 These undercoordinated atoms, however, also give rise to a strong intrinsic tendency

to minimize the surface/bulk atom ratio. Therefore ligands, which can passivate surface

atoms, play a crucial role in stabilizing dispersions.

ii. The fact that the electrons of the nanoscale core material are confined lets us see the

colorful effects of their surface plasmon resonances (SPR) in metals like gold and silver,33 and

size-dependent photoluminescence in quantum dots.34 Those effects are interesting for many

applications in (bio)sensing35 or light-emitting diodes (LEDs).36 Further on, the sensitive

dependence of SPR- and photoluminescence signals towards the chemical environment of the

nano-object37–39 allows conclusions to be drawn on the nature of the ligand shell, which

stabilizes the nano-object in dispersion, as well as on distances between nano-objects40 and

their orientation relative to each other.41 Such insights are hard to gain otherwise.

iii. The reason for that is also the third unique nano-object characteristic mentioned

above: their small size. Single objects are too small to be visible to the unaided eye. Technical

imaging methods like electron microscopy or atomic force microscopy are required to make

them visible. This poses several challenges, especially to analyzing the effect of a thin organic

shell which surrounds the nano-object – the ligand shell, which is even harder to see – on their

assembly. First of all, it is necessary to have a good idea of how the ligand shell looks, and

secondly it is necessary to study colloidal behavior in dispersion. To date, the first aspect

requires a combination of complementary analytical methods to get a good impression of

what the ligand shell really looks like.42,43 Monitoring their colloidal behavior in dispersion, on

the other hand, often relies on indirect methods, which exploit the dependence of their

interaction with electromagnetic radiation on their size, shape, chemical composition and the

nature of their immediate vicinity.44

However, the small size of nano-objects also has advantages: even high-density materials such 

as metals can be dispersed in a solvent without immediate sedimentation. This fact makes 
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them workable from solution, meaning that simple printing- or polymer-processing principles 

can be applied for their assembly and deposition. Metal nano-objects, such as the ones used 

in this thesis, are, for instance, considered promising candidates for future printed circuitry.45 

Due to their small size, they might even be used for miniaturized devices and optically 

transparent materials.30 

By building up functional materials from single nano-objects, the scale gets closer to 

components and features of materials used in our everyday life. This similarity of scale 

simplifies the incorporation of nanomaterials within existing technologies. It is thus a 

promising route towards the achievement of new applications for nano-objects,26 which is 

where the greatest potential for future applications of nano-objects is seen.2 In the particular 

case of inorganic nano-objects with organic shells, their assemblies form the desired hybrid 

materials. Mixing of both material types – organic and inorganic – at a very small scale is 

guaranteed. The dimensions of both components can be exquisitely controlled by the 

dimensions of the inorganic nano-object and its ligand shell respectively. 

2.3 Solution processing of colloidal inks 

In general, inks are defined as “a pigmented liquid or paste used especially for writing or 

printing”.46 During colloidal self-assembly and in the context of this thesis, inks are understood 

as liquid formulations containing the dispersed precursors for the material to be produced via 

deposition of the ink. The “pigment” or precursor will be the metal nano-objects with ligand 

shells, which will be described in more detail in Section 2.5. It may further contain additives 

such as stabilizers or modifiers to adjust the fluid properties for a certain printing- or 

deposition technique.47  

Both the bottom-up synthesis of nano-objects from atomically dispersed precursors and 

nanofabrication by self-assembly or process-driven assembly are examples of additive 

manufacturing steps, as depicted in Figure 2.3.1. Therefore the hybrid material fabrication via 

the controlled assembly of wet chemically synthesized colloidal nano-objects can theoretically 

be achieved without the generation of any waste.48 
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Figure 2.3.1 Scheme of the bottom-up nano-object synthesis and the assembly of singe nano-objects 

into nanomaterials process of nanomterials. Ligands are neglected for the sake of clarity. 

2.3.1 Gaining structural control through processing 

As mentioned above, the ability to tailor the structure into which the hybrid material building 

blocks assemble is highly desirable because the structure can help to optimize material 

performance.6 Classical techniques for structuring materials often use costly vacuum 

processes or complicated equipment. For instance, methods to precisely direct the position 

of building blocks may use atomic force microscopy (AFM) manipulation7 and AFM 

nanoxerography.8 However, these methods manipulate the nano-objects sequentially and are 

therefore very time-consuming. A less time-consuming method which has been applied is the 

use of pre-patterned templates to direct assembly.49,50 Here colloidal inks were applied to fill 

the cavities of a template selectively with the nano-objects. It would, however, be desirable 

to obtain structural control without the need for templates. 

The simple processing of inks usually requires only cheap, simple equipment, and high 

throughput processing is possible.51–53 When using electrically conductive nano-object cores 

it is therefore a very promising technique for simple production methods of flexible electronic 

devices in the future.54,55 Furthermore, complex printed structures can be achieved via inkjet 

printing, which allows a high degree of personalization because masks or templates are not 

required.56 For good printing performance the inks need to be colloidally stable during 

printing.45 This can be guaranteed by carefully controlling colloidal interactions.57 

While inkjet printing yields structure by selective placement of the ink, the careful control 

over colloidal interactions can also lead to structural control on the single nano-object level, 

namely by colloidal self-assembly. Inspired by the high degree of control that supramolecular 

chemists gain over nanoscale assemblies by tuning non-covalent intermolecular 



2 State of the art 

P a g e  14 | 121 

interactions,58,59 an approach that selectively sets colloidal interaction forces might also be a 

very promising route towards simple bulk production of tailored hybrid materials.60 To 

achieve assembly and disassembly of nano-objects and tune assembly in a purposeful way, all 

relevant interactions must be considered. Therefore the most important colloidal interactions 

will be described in Section 2.4. 

In this context it would be desirable to tailor the processing parameters to optimize the 

structural control over the building blocks gained by colloidal self-assembly. As predicted by 

Sanchez et al.,24 a holistic approach in which colloidal interactions and processing parameters 

contribute to the structural control will “open a land of opportunities to tailor-made advanced 

inorganic and hybrid materials”.24 To facilitate technical implementation, the production 

process would ideally be integratable with current processing technology.26 In principal this 

should be possible for the fabrication of nanomaterials by colloidal self-assembly since 

printing techniques already use colloidal dispersions61, and there are several liquid-based 

polymer processing techniques available that are optimized for material structuring and could 

be adapted. It would be highly interesting to demonstrate the applicability of such processing 

techniques to colloidal inks.  

2.3.2 Advantages of anisotropic building blocks 

Percolation and mechanical interdigitation are of particular interest in this thesis, since it 

focuses on electrically conductive and mechanically strong hybrid materials. In both cases, 

anisotropic cylindrical nano-objects are beneficial. Even if the typically stronger bound and 

electrically more conductive inorganic component is only randomly dispersed in an organic 

matrix, enhanced mechanical strength62,63 and a lowered percolation threshold64 can be 

obtained by increasing the aspect ratio of the inorganic component in the material. A lowered 

percolation threshold means that greater electrical conductivities can be achieved at lower 

volume fractions of the conducting material.65 For example, solution-processed materials 

which use nanowires can provide improved directionality of electron transport while reducing 

the number of colloid-colloid interfaces for a certain conductive path compared to the 

respective material with spherical nano-objects.4 

Little is known about the mechanical properties of materials obtained by colloidal self-

assembly. These properties, however, are important for many industrially relevant 

applications.26,66 Learning from hybrid materials or composite materials obtained by other 
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processing methods, cylindrical colloids should be beneficial for mechanically strong 

materials, because regardless of the nature of the organic-inorganic interface, the contact 

area is increased. If loads can be distributed efficiently along this enhanced contact area, the 

strength in fiber direction can be significantly increased. This effect is exploited in fiber-

reinforced composites. Many of them are based on carbon nanotubes (CNTs) that reinforce 

elastic materials by the distribution of load along the CNTs.62,63 Conceptually, many natural 

materials are also fiber-reinforced composites but with a much more sophisticated 

structure.67 An optimized process achieves hierarchical assembly of anisotropic building 

blocks to delocalize strain and increase the fracture toughness in materials like bones.25 

Directionality or structural optimization can also be introduced to man-made materials. 

Hucker et al.68, for instance, invented and patented a hybrid fabric material which shows a 

structure of spaced electrically conductive fibers extending in one direction and electrically 

insulating fibers extending in another. The inventors propose their material for use in modern 

aircraft. The lightweight material should replace the traditional electric cabling used, for 

instance, for signal transduction. Tailored connectivity of anisotropic building blocks can, for 

instance, help to reduce the amount of electrically conductive or mechanically strengthening 

material to a minimum because it is only placed where needed. Serendipitously in case of 

anisotropic colloids, simply applicable external influences like electrostatic fields69 or laminar 

flow fields70 can trigger alignment in certain directions. This effect can be exploited to create 

tailored connectivity. Thereby the aspect ratio and degree of alignment of the nano-object 

are variables that allow tuning the materials properties.4 

The effect of this kind of external forces, however, will be mostly reversible, which means that 

the nano-objects will resume a random orientation upon elimination of the external force. 

Hence to allow the stabilization of the structural order induced by electrostatic fields or shear 

flow it would be necessary to fix the processing-induced orientation somehow. This could, for 

instance, be achieved by inducing controlled agglomeration of the building blocks, hence by 

controlling colloidal self-assembly. 
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2.4 How to stabilize colloidal inks and control colloidal self-assembly 

Figure 2.4.1 Schematic representation of two adjacent a 1.6 nm (diameter) gold nanoparticles in 

dispersion. The skeletal formula of different ligands is drawn surrounding the nanoparticle core, 

indicating the ligand layer. 

Stability is crucial for the processability of colloidal inks. Inkjet printers have a tiny nozzle 

which can easily be clogged by agglomerates and/or nano-object assemblies. Other ink-

processing equipment also uses tubing to transport the ink and can be blocked by 

agglomerates or assemblies formed in prematurely destabilizing inks as well. This can severely 

damage processing equipment. On the other hand, if assembly is desired during the process, 

it should be known how to destabilize the ink in a controlled way to trigger nano-object 

assembly into tailored structures during processing. When aiming for selective control over 

nano-object assembly to form hybrid materials, it is necessary to start with a stable dispersion 

which can be destabilized in a controlled manner. In other words: one needs to control 

colloidal interactions.60 Hence a comprehensive understanding of the forces acting on 

dispersed nano-objects like the ones shown in Figure 2.4.1 is required. 

Various intermolecular interaction forces are acting on colloids and their length scales and 

magnitudes determine whether these may become a driving force for assembly or 

disassembly of nano-objects in dispersion.3 The balance of all forces acting on colloidal nano-

objects determines their behavior in dispersion.71 If in sum the attractive forces dominate, 

assembly of the nano-objects will take place, whereas if the repulsive forces dominate, a 

stable dispersion is obtained. In stable colloidal dispersions of inorganic nano-objects, the 

core is typically surrounded by a stabilizing ligand layer, which will be described in detail in 

Section 2.5 (see also Figure 2.4.1). This layer is important because if during their Brownian 

motion in the dispersant bare nano-objects would get close enough to experience the purely 
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attractive interaction between their cores, they would agglomerate and eventually 

aggregate.f1  

The following subsections will describe the most relevant interaction forces in further detail, 

namely van der Waals (v.d.W.), electrostatic, steric, and depletion interactions. There are 

core-core, core-ligand, and ligand-ligand interactions to be considered and which one of them 

dominates depends on various factors. 

2.4.1 DLVO forces 

Van der Waals forces 

Van der Waals forces describe interactions between atoms, molecules and nano-objects but 

of bulk materials too as a consequence of electromagnetic fluctuations caused by the constant 

movement of positive and negative charges within these objects or because of permanent 

dipole moments.3,72 Depending on the type of interaction, they can be further subdivided into 

Keesom,73 Debye,73 or London dispersion74 interactions. They describe interactions between 

two permanent dipoles, an induced dipole with a permanent one or two induced dipoles 

respectively.  

Generally, all kinds of v.d.W. forces are relatively short-ranged. They are always attractive in 

case of interaction between specimen of the same material.75 For instance, core-core 

interaction forces between dispersed nano-objects of the same material are always attractive. 

The magnitude of the attractive force (F) between them depends on the geometry of the 

interacting objects. Using a geometrical factor (Gf) v.d.W. forces can be described by 

𝐹 = −𝐺௙
஺

଺

ଵ

௔మ
(eq. 2.4.1.1) 

where a denotes the distance between the interacting objects and A the Hamaker constant.76 

Detailed formulas for relevant geometries of nano-objects can be found elsewhere.77,78 

The magnitude of the interaction force further depends on the nature of the interacting 

material and can be estimated using listed values of A (for interaction in vacuum).79 Although 

f1 Definitions of agglomeration and aggregation vary strongly in the pertinent literature.166–168 In the context 
of this thesis, agglomeration will be defined as a firm, random assembly of nano-objects still surrounded by 
their ligand shells and which can be separated again upon sufficient energy input, for instance by sonication. 
Aggregation describes agglomerated nano-objects which are not fully covered by their ligand-shells and 
start to fuse with other nano-objects in the positions not covered by ligands due to Ostwald ripening. Thus 
aggregated nano-objects cannot be separated and re-dispersed. 
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A is dependent on the dispersing medium,77 the value in vacuum serves as a convenient 

estimate. For metals, values are around one order of magnitude higher than that of CH2 units 

often present in ligands, which have typical values on the order of A ≈ 5 x 10-20 J.3,77 This means 

that at equal distance, v.d.W. interactions between metal cores of nano-objects would be 

around one order of magnitude stronger than those between their organic ligand shells. 

However, the ligand shells naturally approach closer, because they are on the outside of the 

colloid. The spacing of the nano-object cores is set by the steric demand of the ligand shell. 

When the ligand shells are bulky and thus cause a large core-core distance when their shells 

touch, it may well be that v.d.W. interactions between neighboring ligand shells surpass those 

of the metallic cores. The organic ligand shells can get much closer, and the interaction force 

strongly decreases with increasing distance.3 For instance, Murphy and coworkers80 have 

ascribed the dominant role during assembly of gold nanocrystals capped by CTAB to the 

v.d.W. interactions between their interdigitating ligand shells.

Electrostatic forces 

Electrostatic interaction forces are caused by charged species attached either directly to the 

surface of the nano-object core or to the ligand chain and are attractive in the case of 

oppositely charged species but repulsive for species that are identically charged. Electrostatic 

forces are usually longer in range than v.d.W. forces. However, their range depends on the 

ionic strength of the dispersing medium. Colloids with permanently charged ligands can be 

stable over long periods. This is known from gold nanoparticles prepared with citrate ligands 

according to a synthesis reported by Turkevich et al.81 and later refined by Frens.82 To assure 

long-term stability of such electrostatically stabilized nano-objects, a few criteria have to be 

met. First, the ionic strength of the dispersing medium needs to be low, and second the pH 

needs to be within a certain range to ensure that the stabilizing charged groups do not get 

neutralized by protonation/deprotonation. While the pH sets the effective charge of the 

colloidal object, the ionic strength of the dispersing medium determines how long range 

electrostatic interactions are. In media of high ionic strength, the charge of an ion or a nano-

object capped by charged ligands can be effectively screened by the electric double layer 

which builds up around the charge at a shorter distance, leading to a shorter Debye screening 

length.2,76 Xu et al.26 demonstrated that the Debye screening length can also be used to tune 

the distance between electrostatically stabilized nanoparticles within their assembly. Thus, 
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they demonstrate how selective control of this interparticle force can lead to control over the 

self-assembled material. 

The combination of van der Waals and electrostatic forces 

Both electrostatic and v.d.W. interactions are combined in the Derjaguin Landau Verwey 

Overbeek (DLVO) theory to explain colloidal interaction.83,84 It has been successfully used for 

decades for predicting the behavior and stability of many colloidal systems and is thus a very 

important theory for all colloidal sciences.76,85,86 This underlines the importance of these two 

kinds of interaction forces. Nevertheless, there are limitations to its applicability, which are 

partly due to interaction forces that are not taken into account, often called non-DLVO 

interactions,76,87 and partly due to assumptions made in the theory, which are not always 

valid.15 

2.4.2 Non-DLVO forces 

Non-DLVO interactions include repulsive steric interactions occurring between bulky ligand 

shells,3 entropically driven depletion forces,3,88 chemical bonds between ligand shells3 and all 

kinds of external forces.76 Steric interactions e.g. between bound thiolated polyethylene 

glycol (PEG-SH) chains can also help to stabilize nano-objects in high ionic strength aqueous 

media,2,89 but they can also stabilize colloids in solvents with low dielectric constants. 

Stabilization occurs because long ligand chains minimize entropy when they are compressed 

by the ligand chains of approaching nano-objects. Thus the entropy loss counteracts the 

increasing v.d.W. attraction between cores of the nano-object and can stabilize it in 

dispersion, when the forces are well-balanced.3,89  

Compression of bound ligand layers can also become favorable when the entropy of the 

system is increased thereby. This happens when the entropic gain due to the increased 

volume accessible to the solute molecules surpasses the entropic losses due to ligand 

compression. A high concentration of solute molecule can lead to this situation, which causes 

an attractive interaction between the nano-objects. This attractive interaction is called 

depletion interaction.90 It was, for instance, exploited by Badaire et al.3,91 to direct the 

assembly of cylindrical nano-objects into an end-to-end superstructure. 
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2.4.3 Limitations of colloidal stability theories 

Apart from forces not considered in DLVO theory and other colloidal stability theories,92 the 

predictions of DLVO theory can differ considerably from the experimental results. This can be 

explained by the assumptions on which it is based. These assumptions include: 

a) the shape of the colloid is simple, i.e. does not present any surface roughness;

b) all the interaction potentials considered are strictly additive;

c) both the colloid and its dispersing medium are continuous; and

d) solvent and other solute molecules are negligibly small compared to the colloid.15

While in the case of micrometer sized colloids these assumptions often lead to sufficiently 

accurate results, they are a source of incorrect estimates in the case of nanoparticles and 

other nano-objects which are only a few nanometers in size. Such small nanocrystals are 

typically faceted, and the ligands that are bound to the colloids, as well as the solvents, are in 

the same size range as the colloids themselves and can thus not be neglected.15 

Newer theoretical considerations are working to overcome these limitations.92–94 In 

particular, interactions between adjacent ligand layers95 and ligand-solvent interactions94,96 

have shown a strong effect on colloidal stability and on nanoparticle growth as well. To 

understand that, it is important to understand better the packing of the ligand layer. This 

includes its packing density directly at the organic-inorganic interface97 and whether the 

ligand chains pointing towards the dispersing medium are evenly spread or if ligand 

“bundling” occurs. Molecular dynamics (MD) simulations are capable of predicting such 

conformational details of the ligand layers98 but it is still challenging and time-consuming to 

take interactions with solvent molecules into account. Furthermore, it would be beneficial to 

have an analytic technique that can give such detailed information on the ligand shell in 

solution to compare simulations with experimental results. Unfortunately, there is no simple 

technique to yield comprehensive information.42 In particular, unusually shaped nano-

objects, which could lead to interesting materials by self-assembly99 and are therefore of 

particular interest, have hardly been studied to date. The following section will provide a 

closer look at the ligand shell for an impression of the difficulty in getting a complete picture 

of the colloid and its surrounding ligand shell. It also will provide an impression of how the 

ligand shell can influence the balance of interaction forces described above. Thus it will give 

insight into the ligand shell’s capacity to actively control colloidal self-assembly.94 
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2.5 Ligand layer influence on colloidal stabilization and controlled 

destabilization 

Colloidal stabilization is typically guaranteed by functional chemical groups attached to the 

surface of a nano-object. This can either simply consist of covalently bound charged surface 

groups – consider protonated or deprotonated hydroxy groups found on silica particles – or 

of ions or molecules adsorbed to the core. In this case the adsorbed species carries the 

stabilizing chemical functionality. To produce inorganic-organic hybrid materials by 

assembling colloids, organic molecules adsorbed to inorganic nano-objects are ideally suited. 

The organic shell which they create and which stabilizes nano-objects in dispersion can form 

the organic matrix surrounding the nano-objects after solvent removal. Hence a hybrid 

material is obtained upon solvent removal. 

Thus the following will only focus on ligand layers made from organic molecules, which will 

be called “ligands”. Such ligands should contain at least one functional group that binds to the 

surface atoms of a nano-object core. Anchored to the core, the remaining part of the molecule 

can ensure electrostatic and/or steric stabilization by charged or sterically demanding 

groups.100 Scheme 2.5.1 depicts the skeletal formula of typically used small organic molecules. 

Scheme 2.5.1 Skeletal formulas of commonly used ligands in the synthesis and stabilization of 
nano-objects. 

In the simplest case, one kind of ligand adsorbs to all accessible binding sites of the nano-

object, thereby forming the ligand layer. This layer comprises the interface between the core 

and the dispersing medium and is therefore very important for the formation of a stable, 

colloidal dispersion in a particular solvent. 

Note that polymers are also suitable ligands. They can either be grafted to the nano-object, 

which means that they bind to the core with one anchoring group and exploit the steric 
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demand of the whole polymer chain for steric stabilization, or bind with multiple of their 

repeating units. The latter option binds the polymer closely to the core and consequentially 

reduces the degrees of freedom of the polymer chain and its potential for spacial extension 

away from the core. Hence, steric stabilization becomes less efficient, while the core ligand-

binding strength is increased. Both aspects are important for the stability of colloidal 

dispersions, and will be further discussed in the sections to follow. 

2.5.1 Nano-object-ligand bond 

Figure 2.5.1.1 Ligands binding to a gold nanoparticle with different anchoring groups. From left to right: 

Au-Br bond between gold and CTAB, Au-S bond between gold and hexadecanethiol, Au-S bond 

between gold and hexadecylamine, Au-N bond between gold and oleylamine, Au-COO- bond between 

gold and oleic acid, Au-P bond between gold and trioctylphosphine, and bivalent Au-S bond between 

gold and liponic acid. 

The term “ligand” originates from the field of coordination chemistry. It describes molecules, 

atoms or ions which bind to a metal in solution. Similarly, in the field of colloidal chemistry it 

describes molecules, atoms or ions of organic molecules which bind to the surface atoms of a 

nano-object. Ligands are often bound to the nano-objects’ core via dative bonds in which a 

functional organic group with a lone pair of electrons overlaps with empty d-orbitals of the 

surface atoms of the nano-object (Figure 2.5.1.1).42 Owen101 proposed to classify ligands 

which form dative bonds further, either as X- or as L-type ligands. X-type bonds are formed 

by electrically neutral species such as amines (e.g. OAm), whereas L-type bonds are formed 

by ionic species (e.g. the bromide ions of cetyltrimethylammonium-bromide (CTAB)).102 The 

most common ligands for metal nano-objects are either X- or L-type ligands, where the ligands 

act as Lewis bases and the nano-object as Lewis acids. Accordingly, Figure 2.5.1.1 shows only 
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these two kinds of ligands. A third type of ligand, the Z-type, acts as Lewis acid and plays a 

minor role for metal nano-objects.101  

Pearson’s hard soft acid base (HSAB) concept103 is useful to estimate the strength of ligand-

nano-object bonds. Nath et al.104, for instance, tested the applicability of the principle by 

comparing the binding strength of very “soft” alkanethiol ligands and “harder” alkylamine 

ligands to very “soft” gold nanoparticles and “harder” silver nanoparticles and found that the 

alkanelthiols have a much higher affinity to gold cores than the alkylamines while both ligand 

types have similar affinities to the silver cores. In good agreement with the HSAB concept, 

their results suggest that gold nanoparticles are “softer” than silver nanoparticles.  

Concepts established in coordination chemistry also explain the surface chemistry of nano-

objects and allows us to understand the binding situation, which has major implications on 

nano-object stability. Nonetheless, nano-objects do differ in some ways from central ions 

capped by a ligand shell in coordination chemistry: for instance, certain crystal facets of a 

nano-object can be “harder” or “softer” as a result of the electronic distribution within the 

crystalline lattice.42 Siddiqui105 chose an empirical approach to study the binding strength of 

certain ligands to gold nanoclusters: he synthesized the same kind of nanoparticles with 

different ligands and did ligand replacement studies to obtain the following relative binding 

strengths: 

 “SC12H25 ≫ H2NC12H25 > S(C12H25)2 > S(C10H21)2 > H2NC6H13 ≫ [N(C8H17)4]Br ≫ S(C6H13)2”,105 

which he attributes to a combination of the strength of the dative bond with steric and 

inductive effects caused by the non-binding ligand part. Such studies are very time-

consuming, but the information they yield is very valuable regarding the respective binding 

strengths of different ligands.  

Weaker coordinating ligands may require excess free ligand in the colloidal dispersion to 

sufficiently cover the surface of the nano-object. This is, for instance, the case for CTAB 

capped gold nanorods (AuNR@CTAB).106,107 Adding excess free CTAB, which can adsorb to free 

binding sites of the AuNR, ensures that the ligand layer stays dense enough to avoid 

aggregation.45  

Weakly bound ligands can also be useful, because they enable ligand exchange reactions. 

While L- and Z-type ligands with long hydrocarbon chains provide the required control over 
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nanoparticle nucleation and growth to obtain monodisperse nano-objects of the desired 

shape,42 they are often not suitable for the application. As a consequence, the ligand attached 

to the nano-object due to the synthesis needs to be replaced.4,11 Gold nanorods, for instance, 

are widely used for biosensing, but the cytotoxicity of CTAB (the ligand of choice for synthesis) 

requires a ligand exchange before using the nanorods with living cells.108 Further examples 

where ligand exchange reactions are useful to improve the properties of nano-objects are the 

quantum yield of nano-objects used in LEDs and the electrical conductivity of assemblies of 

nano-objects.30,109 

When planning a ligand exchange reaction, it is useful to know how the ligand to be replaced 

is bound. Generally, ligand exchange reactions are possible via a dissociative or an associative 

pathway. The dissociative pathway relies on dynamic ligand attachment and detachment of 

weakly coordinating ligands. Due to this equilibrium, new ligands can adsorb at vacant binding 

sites. If the ligand to be exchanged is firmly attached, an associative ligand exchange pathway 

is required. Since the attached ligand is replaced by an incoming new ligand, this needs to be 

carefully tailored to fit steric42 and electrostatic107 needs to allow a smooth exchange. This 

means that the binding strength is not the only criterion for a suitable ligand but that there 

are lateral effects as well. If a new ligand causes detachment of neighboring ligands due to 

electrical repulsion or its steric demand, it may happen that nano-objects are not sufficiently 

stabilized against undesired aggregation during ligand exchange because the ligand shell is 

not dense enough.110 Even if, given the time to create a dense shell of the new ligand, this 

ligand could successfully stabilize the colloid, this point will never be reached because the 

aggregation is irreversible. This has been reported, for instance, for ligand exchange reactions 

on AuNR@CTAB.107  

Besides the type of bond, the number of binding sites per ligand can strongly influence the 

stability of the ligand-nano-object cohesion. The principle of multivalency is known from 

coordination chemistry,111 where chelate ligands like ethylenediaminetetraacetic acid (EDTA) 

can interact with a central atom via its 6 interconnected binding sites. The interconnection 

makes the bond stronger than the sum of the corresponding 6 single bonds. Multivalency is 

also used to describe a similar stability enhancement effect in supramolecular chemistry.112 

Liponic acid (shown in Figure 2.5.1.1) and its derivatives are commonly used multivalent 

ligands which form metal nano-object-ligand bonds.113 Other examples are PEG-SH molecules 
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with multiple thiol binding moieties114,115 and polymeric ligands with many repeating units 

each bearing a binding functionality.116 All these cases provide superior ligand-nano-object 

binding strength compared to the respective monovalent ligand. While strong ligand binding 

is important for colloidal stability, it is not the only aspect influencing colloidal stability. The 

structure of the ligand shell also influence colloidal stablity.117  

2.5.2 Ligand shell structure 

Figure 2.5.2.1 Schematic representation of a ligand layer surrounding a small gold nanoparticle in 

dispersion. Ligands attached from left to right: CTAB, hexadecanethiol, hexadecyalamine, oleylamine, 

oleic acid, trioctylphosphine, and liponic acid. 

The ligand shell forms the interface between the colloidal core and the dispersing medium. It 

determines, for instance, whether two adjacent nano-objects can coalesce or not and if and 

how fast certain small molecules like solvents or etchants can reach the core of the nano-

objects. Therefore, the density of the part of the ligand shell highlighted in Figure 2.5.2.1. 

plays a decisive role. While a very dense ligand shell impedes etchants from reaching the core, 

a decreasing ligand shell density increases interaction with solvent molecules, which to a 

certain extent increases colloidal stability.118 The ligand shell density is dependent on three 

main aspects, namely:  

 the steric demand of the non-binding part of the ligand;

 the ligands surface grafting density (); and

 the curvaure of the nano-object.

The first aspect is self-explanatory; the other two aspects and their influence on colloidal 

stabilization will be discussed below. 
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The ligand layer surrounding a nano-object often forms a self-assembled monolayer (SAM) of 

small molecules.119,120 SAMs are well studied on flat surfaces, especially alkanethiols on Au 

(111) surface facets.121  values known from these studies serve as a good first approximation

for the  values and the structure of the ligand shell of the respective ligands on nano-objects.

The influence of curvature 

Such approximations, however, become increasingly imprecise with decreasing nanoparticle 

diameter due to the nanoparticle curvature. Figure 2.5.2.2. shows how the curvature in two 

dimensions – corresponding to the curvature of a circle – increases with decreasing diameter. 

A 1.6 nm spherical nanoparticle with a coordination sphere of OAm, a ligand commonly used 

for nanoparticle synthesis,122 which extends the diameter of the colloid to approximately 5.85 

nm, is chosen as an example. The example is used to illustrate how the ligand layer of 

commonly used, non-bulky ligands naturally becomes sparse towards its outside. In this 

particular case the diameter of a hypothetical circle marking the footprint of the anchoring 

group (D) is 3.2 times smaller than the diameter of the hypothetical circle at the other end of 

the ligand (D ). The example shows the curvature only in one dimension, like it would be found 

on a nanorod or nanowire. In the case of a sphere, the effect would be enhanced by the same 

curvature in a second dimension. 

This fact is one reason why AuNRs can grow preferentially along their tips.123 The greater 

curvature at the AuNRs’ hemispherical tips leads to a less dense CTAB layer. This lower ligand 

density facilitates the transport of gold atoms and ions to this position, and hence the nano-

object can grow preferentially at this position.  

The example shown in Figure 2.5.2.2 further illustrates that in case of a small nano-object core 

compared to the ligand layer thickness, there is plenty of space for gauche defects, 

intercalation of solvents, or other solutes into the coordination sphere, and for interdigitation 

of the ligand layers of adjacent nano-objects.42,43  
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Figure 2.5.2.2 Plot of the 2-dimensional (2D) nanoparticle curvature as a function of nanoparticle 

diameter. Insets: from left to right: schematic representation comparing the (2D) curvature of a 1.6 nm 

nanoparticle (purple) to a 5.85 nm nanoparticle (green), a 10 nm nanoparticle (blue) and a flat surface 

(grey); scheme of a 1.6 nm gold nanosphere, surrounded by a coordination sphere of oleylamine ligands 

(estimated diameter of the colloid including the ligand shell: 5.85 nm) illustrating the increased space 

available to the tail group of the ligand, compared to its headgroup. 

This sparse outer part of the ligand layer is what differentiates ligand layers from SAMs on flat 

surfaces. It allows the intercalation of other molecules, but it can also induce a tighter packing 

of the molecular layer with increasing nano-object curvature. Leff et al.124 reported that the 

ratio of sulfur atoms to gold surface atoms (S/Au) increased from 1/3 to 1/2 for long chain 

alkanethiol-capped gold nanoparticles with decreasing nanoparticle size. The 1/3 ratio is in 

good agreement with values for comparable alkanethiols on bulk Au (111) surfaces.125 The 

same trend was seen for primary amine-capped gold nanoparticles, which generally form less 

dense ligand layers than alkanethiols.126 Interestingly, the authors also observed an increase 

in stability of the Au-N bond in case of the formation of SAMs on strongly curved 

nanoparticles126 compared to SAMs on flat Au substrates, on which they are only stable under 

certain conditions.127 While the Au-S bond is thermodynamically stable on either curved or on 

flat surfaces, they found Au-N bonds to be kinetically stabilized. The energy barrier for 

destabilization was, however, high enough to render the nanoparticles stable in solvent over 

long periods, in contrast to the corresponding flat SAMs, which are only stable in vacuum.126 
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These results are counterintuitive because ligand crystallization is more likely in a plain SAM 

conformation, where weak v.d.W. bonds between CH2 units can form and contribute to the 

stability of the SAM.121 The authors attributed their findings to a finite size effect, which, 

however, does not explain the reason for this stability increase on a molecular level. Ligand 

assembly on a molecular level, in particular when taking its interaction with the dispersing 

medium into account, is still poorly understood.42 Such knowledge would be highly desirable, 

because ligand layer interaction with the dispersing medium has proven useful to tune nano-

object assembly behavior.94 

2.5.3 Ligand-ligand and ligand-solvent interaction dependence on colloid geometry 

As described in the previous section, ligand shell density influences interactions with the 

colloidal surroundings. Ligand shell interactions with solvent molecules or ligand shells of 

adjacent nano-objects, for instance, are important for colloidal dispersion- and assembly 

characteristics. Recent studies on small (i.e. highly curved nanoparticles) underline the 

influence of the solvent on colloidal behavior.92–94 Since the ligand layer density is dependent 

on curvature, it is also dependent on the nano-object geometry, because this sets the 

curvature. Therefore, the colloidal assembly characteristics of nano-objects with non-

spherical geometry are interesting. 

The solvent influence on non-spherical nano-objects in particular has not yet been extensively 

studied. Chemically anisotropic modified AuNRs are a prominent example which has been 

investigated. Here the chemical anisotropy in the ligands shell is exploited rather than the 

shape itself.128,129 The geometrical anisotropy, however, which enables the modification of 

AuNRs with a chemically anisotropic shell,128 could also be used to guide the assembly of such 

anisotropic building blocks. 

A simple comparison of the three basic shapes of colloidal nano-objects depicted in Figure 

2.5.3.1 shows that their surface curvature is strongly dependent on the geometry: while 

spheres are curved in both dimensions, cylinders are only curved in one and platelets in no 

dimension.  
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Figure 2.5.3.1 Scheme comparing curvature of potential interaction sites of a sphere, a cylinder and a 

plate with another one of its kind. 

It is apparent that only cylinders or wires combine curvature with enhanced contact area 

because their surface has a flat and a curved dimension. 

While spheres allow a deeper ligand-ligand interdigitation in adjacent nano-objects, plates 

enable interactions of more ligands in the shell at the same time, because the contact area 

between two plates is much higher than that between two spheres. Cylinders or wires 

combine both effects: along their axial dimension they combine enhanced contact area with 

curvature. Thus these nano-objects can form line contacts with adjacent cylindrical nano-

objects with moderately interpenetrating ligand layers, as depicted in Figure 2.5.3.2.  

Figure 2.5.3.2  Schematic comparison of the contact area generated by interpentration of ligand layers 

for two small gold nanospheres and two gold nano-cylinders. 

Both effects, ligand interpenetration and enhanced ligand layer contact areas, can strengthen 

ligand-ligand interactions between the colloids. The more CH2 units of a hydrocarbon tail can 

interact, the stronger the bond. Even though a single bond is weak (Binding energy: 0.07 eV 

per CH2 unit, which is 30 times less than that of an Au-S bond),121 the sum of all binding 

energies along the line of contact is large. This means that the bond between two wire-like 

colloids is stronger than one between two spherical colloids, and the longer the wire, the 

stronger the bond. 

Not only the contact area for ligand-ligand interactions is influenced by the geometry of the 

nano-object, but the area accessible to solvent as well. Wu et al.96 proposed that solvent 
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molecules interpenetrating into the ligand shell influence its structure and thus the colloidal 

behavior. The authors conducted their studies on small OAm-capped gold nanospheres. 

On the basis of the above geometric considerations, it would be highly interesting to compare 

their results to that of a similar study on wire-like or other anisotropic colloids. Such studies 

might give further insight into the behavior of nano-objects in dispersion at the molecular 

level, which would be highly valuable for better understanding colloidal stabilization and self-

assembly. To date, however, such studies are not available in literature. 

Understanding how to direct assembly of such interesting building blocks by simple means, 

such as solvent exchange would be an important step towards rational design of materials 

from colloidal inks and describe a promising route towards the development of future 

functional hybrid materials.130 

2.6 The three roles of the ligand shell for solution-processed hybrid materials  

The production process to obtain hybrid materials from colloidal inks is very cost effective and 

can be implemented using simple coating or printing equipment.10 It is crucial that the inks 

retain their colloidal stability during application. Furthermore, it would be interesting to be 

able to stimulate the colloids to assemble in a purposeful way. As described in Section 2.5, the 

organic ligands that surround the colloid play an important role in both nano-object 

stabilization and assembly, since they form the interface between the inorganic core and the 

dispersant. They also form the interface between two cores in the dry material, which is why 

the dry ligand shell properties also influence the properties of the hybrid material. 

Furthermore, ligands are also important before ink processing, namely during bottom-up 

synthesis of the colloid and in the performance of the hybrid material.9  

In the following section, each point will be described separately in further detail, focusing on 

AuNRs and ultrathin gold nanowires (AuNWs): 
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2.6.1 Selective shape formation during nano-object synthesis 

Nanomaterial synthesis is the first step of colloidal ink production. It determines shape and 

polydispersity of the colloidal objects in the ink. Metal nano-objects can be synthesized by 

wet chemical methods, which results in nano-objects that are already dispersed.  

Typically, a dissolved molecular precursor is transformed into insoluble metal in the presence 

of ligands by heating or by chemical reduction.131 A popular case is the seeded growth 

method. Here, nanocrystal nucleation and nanocrystal growth are performed as two separate 

steps.132 Small seed nanocrystals are obtained quickly under harsh conditions, which are then 

added to a growth solution. The growth solution typically contains the molecular precursors 

under very mild reducing conditions. The separation of nucleation and growth suppresses 

uncontrolled nucleation in the growth solution and thus allows for improved control over 

nanoparticle size distributions and nano-object shapes.132,133 Ligands can also help to control 

nano-object nucleation and trigger anisotropic growth.134,135 Once attached to nano-objects, 

they can control growth kinetics as a function of ligand density, so that growth processes 

occur preferentially along certain crystal facets.136 Sometimes the structure-directing effect 

of ligands – which are often also surfactants – is attributed to their self-assembly into micelles, 

which act as soft templates.137 Fine-tuning of the micellar shape, and thereby the shape of the 

nano-object, is enabled by external stimuli like pH.138  

The wet chemical synthesis of AuNRs by seeded growth uses CTAB as a structure-directing 

ligand.139,140 This ligand, which is known to form a bilayer around the gold core, stabilizes the 

nanorods electrostatically in aqueous media.141 Worm-like CTAB micelles are widely believed 

to steer their anisotropic growth,137 and it is known that the pH during AuNW growth can 

influence the aspect ratio of the formed rods.142 Other factors like the amount of surfactant, 

the addition of co-surfactant, impurities, silver ions and the shape of the seed particles also 

influence the reaction outcome, indicating a complex interplay between many components 

assisting anisotropic growth.143 The exact mechanism for symmetry breaking and thus 

anisotropic growth is still under debate.144  

Protocols for the wet chemical synthesis of AuNRs are known since 1999;139 the first reports 

on ultrathin gold nanowires are from 2007.145 Thus, their growth is less extensively studied, 

but it seems to crucially depend on OAm as ligand: wet chemical synthesis protocols for 

ultrathin gold nanowires in organic media19,145–150 always use this molecule as a ligand, 
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sometimes in combination with oleic acid (OAc), which is structurally very similar. While 

Halder et al.145 proposed a synthesis mechanism based on oriented attachment of preformed 

small gold nanoparticles with unequally dense OAm layers on different crystal facets, Lu et 

al.149 attributed the morphological anisotropy of the nano-objects to chain-like AuCl-OAm 

complexes that form due to aurophilic interactions. Others147,150 propose the formation of 

OAm micelles as soft templates which are responsible for the growth of AuNWs. All these 

studies, however, rely on slightly different AuNW synthesis conditions. Varying temperatures, 

reducing agents, ligand concentrations, solvent molecules and the addition of a co-surfactant 

in one case make the studies hard to compare. Hence it may well be that all the authors are 

right in their particular case and that different wire formation mechanisms lead to the same 

characteristic shape.151 

The synthesis of ultrathin gold nanowires adapted from Feng et al.,19 which uses 

triisopropylsilane to reduce the gold precursor dissolved in a n-hexane/OAm mixture at room 

temperature, has been investigated in more detail by Loubat and coworkers.152 They studied 

the synthesis in situ by small angle X-ray scattering (SAXS) and dismissed oriented attachment 

as a possible growth mechanism for this synthesis protocol. Instead, they point out similarities 

to the seeded growth of AuNRs described above and propose a micellar growth. 

Generally – it is often not entirely clear how but – it is evident that ligands play a crucial role 

during the wet chemical synthesis of nano-objects.151 

2.6.2 Targeted stabilization or destabilization of colloids for controlled assembly 

The surface modification strategy and the resulting surface chemistry establishes the colloidal 

stability in a given solvent3,153 and is therefore important for the processing of colloidal inks 

and for the assembly of colloidal monomers into functional materials.5 Colloidal stability must 

be assured throughout processing to prevent the clogging of printing nozzles or ink-carrier 

tubing and thus ensure good ink shelf life.45,136 On the other hand, if the controlled formation 

of hybrid materials is desired, it is necessary to enable destabilization and assembly in a 

controlled way.16 

Core-core interactions cannot be switched between attraction and repulsion; they can only 

be screened more or less efficiently by ligand shells. Hence the controlled assembly is 

dominated by the ligand’s properties, which can be influenced by external stimuli.16,154 Klajn 

et al.155 demonstrated that conformational changes in the ligand shell allow for reversible 
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switching between assembly and disassembly of nanoparticles. They introduced a ligand with 

an azobenzene moiety, that carries a trans double bond when irradiated with visible light and 

a cis double bond when exposed to UV light. As the double bond switches configuration, the 

dipole moment of the azobenzene moiety changes. This change influences the interaction 

forces between the colloids that carry this moiety sufficiently to switch between colloidal 

assembly and disassembly. Thereby Klajn et al.155 proved that slight changes in the ligand 

shell, caused by external influences, are a suitable tool to control the assembly of colloidal 

nano-objects. 

Anisotropic or wire-like colloids provide another possibility to direct assembly based on their 

shape, as described in Section 2.5.3. While isotropic particles are limited to basic packing rules 

for their self-assembly, the intrinsic shape anisotropy156,157 and the resulting chemical 

anisotropy in the ligand shell158 can determine superstructures that are formed from them159 

and lead to other interesting assembly structures and geometries. 

Ultrathin gold nanowires, which are of particular interest for this thesis, are prone to form 

hexagonal superstructures (bundles) in which their ligand shells can interact efficiently. The 

bundles are formed in the reaction mixture subsequently to their anisotropic growth (carrying 

OAm bilayers),152 and after washing (carrying single OAm layers).8 Loubat et al.152 concluded 

from the SAXS data that these randomly oriented bundles have the morphology of elongated 

fibers with typical diameters of 70 nm. Their data interpretation also let them infer that only 

40% of the wires in dispersion were embedded in such bundles, whereas 60% of the wires 

remained dispersed. Apparently, the energy differences between the self-assembled state – 

wires in bundles, in which adjacent ligand shells can undergo ligand-ligand interactions with 

their neighbor wires – and the dispersed state – in which the ligand shells of AuNWs can 

undergo ligand-solvent interactions – are small. Hence, AuNWs are a good starting point for 

controlled colloidal self-assembly.  

While the self-assembly into fiber-like bundles is very interesting for the fabrication of hybrid 

fibers, their controlled fabrication will still require major improvements. Using n-hexane as a 

dispersing medium, it seems to be impossible to obtain a colloidally stable ink. Premature 

bundling might clog tubing or other parts of the processing equipment. Ideally, one would 

start with dispersed nanowire monomers and trigger bundling – with improved yield – in a 

controlled way, while being able to control the orientation of the bundles. 
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2.6.3 Hybrid material properties 

Ligands form the organic part of metal-organic hybrid materials created by colloidal self-

assembly, and they strongly influence its properties. Here  

 the degree of ligand interdigitation upon solvent removal,

 the ligand-ligand interaction strength,

 and the strength of the ligand-nano-object bond

set the cohesive strength between the inorganic nano-objects, and the bulk or volume of the 

ligand shell sets the gap between them.43 

Regardless for which application the hybrid materials are designed, their mechanical 

properties are important for their technical use.26 Nanoparticle membranes serve as a 

convenient model system to discuss the cohesion of a nanomaterial as a function of the 

ligands. Membranes produced by the self-assembly of dodecanethiol-capped spherical gold 

nano-objects possessed a tensile strength of 11 MPa.160 Stronger interactions between 

interdigitating ligands could possibly increase membrane cohesion. Andryszewski et al.161 

showed that strong, self-supporting membranes can be created by introducing covalent 

connections between adjacent nanoparticles.  

Ligands do not only determine the mechanical properties of a hybrid material but its electrical 

properties as well in case of electrically conductive cores such as gold. Most ligands suitable 

for synthesis or colloidal stabilization are electrically insulating.42,162 Hence they present 

insulating barriers between the conductive material, and small gaps between the conductor 

can prevent electron transport completely.163 A common approach to improve electrical 

conductivity is post-deposition ligand removal. This additional step of sintering can drastically 

increase electrical conductivity but often adversely affects mechanical material properties 

and leads to cracks because of the volume shrinkage.4,164 Long sintering times and harsh 

conditions are hard to reconcile with high throughput roll-to-roll processing.165 Hybrid 

materials which retain the soft organic ligand layer surrounding the nano-objects offer the 

possibility of flexibility and simple processing.20 Modern concepts focus on ligands which are 

easy to remove or on electrically conductive ligands to overcome these challenges in solution-

processed electronics. Many of these concepts, however, compromise on colloidal stability 

and/or the ease of processing. 
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3 Results and discussion 

All results of this thesis are published in peer-reviewed scientific journals. The publications 

contain discussions of the results in context of the respective topic they describe. Section 4 

will put all results and discussions from this section in context of this thesis.  

Section 3.1 - 3.6 reproduces the following 3 publicatons along ith the respective Supporting 

Information 

1. Reiser, B.; González-García, L.; Kanelidis, I.; Maurer, J. H. M.; Kraus, T. Gold Nanorods with
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3.1.1 Abstract 

Metal-based nanoparticle inks for printed electronics usually require sintering to improve the poor 

electron transport at particle-particle interfaces. The ligands required for colloidal stability act as 

insulating barriers and must be removed in a post-deposition sintering step. This complicates the 

fabrication process and makes it incompatible with many flexible substrates. Here, we bind a 

conjugated, electrically conductive polymer on gold nanorods (AuNRs) as a ligand. The polymer, 

poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate)] (PTEBS), provides colloidal stability and good 

electron transport properties to stable, sintering-free inks. We confirm that the polymer binds 

strongly through a multidentate binding motif and provides superior colloidal stability in polar 

solvents over months by IR and Raman spectrometry and zeta potential measurements. We 

demonstrate that the developed ligand exchange protocol is directly applicable to other 

polythiophenes such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). 

Films of AuNRs coated with above polymers reached conductivities directly after deposition 

comparable to conventional metal inks after ligand removal and retained their conductivity for at 

least one year when stored under ambient conditions. 

3.1.2 State of the art 

The accelerating market of printed electronics requires inks that are suitable for large-area, high-

throughput and low-cost production of lightweight and flexible conductive materials. Relevant 

market drivers are touchscreen panels, memory components, organic photovoltaic, radio 

frequency identification (RFID) tags and optoelectronic devices.1 Preferable deposition methods 

are solution-based processes such as inkjet printing using inks containing metal or conductive 

metal oxide colloids.2–4 

Successful printing requires suitable inks. The performance of nanoparticle-based inks depends 

on their colloidal stability under the conditions that occur during printing.1,5 Conventionally, bulky 

organic molecules are used as ligands to ensure colloidal stability; they provide steric stabilization 

to the nanoparticles. After deposition, these ligands impede the contact between the particles 

and limit electronic conduction. Organic molecules represent insulating barriers; post-deposition 

treatments to remove them after drying are required. Thermal sintering at high temperatures and 

with long residence times is hard to reconcile with polymer substrates and roll-to-roll printing 

processes.6 Alternative post-treatment methods with reduced time and thermal budgets include 

plasma, laser, infrared (IR), microwave and intense pulsed light treatments.1,7–10 Some of them can 

remove organic ligands and improve electrical transport in less than a minute, but the resulting 

volume shrinkage can rupture the material.  



3 Results and discussion 

 

         P a g e  50 | 121 

Sintering-free inks avoid these challenges altogether. Grouchko et al. developed a self-sintering 

metal nanoparticle ink with a non-volatile destabilizing agent.11 Upon solvent evaporation, the 

concentration of this destabilizing agent increases and detaches the ligand from the particles. 

Detachment leads to metal-metal contacts, but the ink with its rapidly decreasing colloidal stability 

is hard to handle. 

Here, we introduce a sintering-free nanoparticle ink in which conjugated polymer ligands lend the 

particles 

• chemical stability due to strong multidentate binding to the metal surface, 

• colloidal stability and compatibility in different relevant solvents, and 

• good electron transport properties in dry state. 

Kanehara and coworkers synthesized tailored phtalocyanine ligands and demonstrated that 

aromatic systems can provide mobile electrons in the ligand shells.2,12 We adapted this idea with 

polymer-coated particles and created hybrid particles with increased colloidal stability using 

commercially available conjugated polymers such as poly[2-(3-thienyl)-ethyloxy-4butylsulfonate)] 

(PTEBS) 40-70 kDa. To ensure that the π-electrons couple to the metal surface, polythiophene 

derivatives were used; they bring the π-system in close proximity to the gold because they contain 

a sulfur heteroatom in the aromatic ring. Polymer chains with more than 100 repetition units, 

molecular weights of more than 20 kDa and highly polar side chains can provide colloidal stability 

in polar solvents. 

We demonstrate the effectiveness of polythiophene ligands in nanoparticle inks based on gold 

nanorods (AuNRs). AuNRs are anisotropic nanoparticles that show lower percolation thresholds 

than spherical particles and thus provide large conductivities at low volume fractions.13 The rods 

can be synthetized using a well-established protocol that yields narrow size distributions and 

negligible shape impurities.14 After synthesis, AuNRs are capped by a cetyltrimethylammonium 

bromide (CTAB) double layer (AuNR@CTAB).15 The ligand plays a crucial role in the anisotropic 

particle growth14,16,17 but leads to poor colloidal stability unless the AuNRs are kept in excess 

CTAB.16 

Most existing strategies for the stabilization of AuNRs are based on large, non-conductive 

polymers that provide stability even if the CTAB has not been exchanged completely.17–20 The poor 

colloidal stability of AuNR@CTAB system renders ligand exchange with small molecules 

challenging.16,18 The few successful exchange protocols that exist for small ligands17,21 require 
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unusual and non-conductive ligands or multi-step ligand exchange protocols. The rods’ anisotropy 

presents an additional challenge: surface properties of the different crystal planes presented on 

the rod are not equivalent. It is possible to specifically exchange ligands only at the tips of the 

rods.22–24 For nanoparticle inks, ligand exchange protocols have to be chosen such that a 

homogeneous ligand shell forms unless anisotropic particle interactions during ink processing are 

desirable. 

Here we describe a facile and straightforward ligand exchange procedure to modify AuNR@CTAB 

with PTEBS. We prove the complete exchange of the ligand and discuss the binding site and 

arrangement of the polymer chains on the surface of the AuNRs. The resulting colloidal dispersion 

was stable in water and in a mixture of polar solvents over months. We formulated inks and used 

them to deposit conductive patterns that immediately reached conductivities in the range of 

annealed metal inks. The protocol is also readily applicable to other polythiophenes, and we 

demonstrate its compatibility with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate 

(PEDOT: PSS), a polymer mixture commonly used in organic electronics. 

3.1.3 Results and discussion 

Nanorod synthesis and ligand exchange 

AuNRs were synthesized using a published protocol.25 Transmission electron microscopy (TEM) 

images of the as-synthesized AuNR@CTAB are shown in Figure 3.1.3.1a and 3.1.3.1b. The mean 

length and width were 115 and 25 nm respectively, both with 6% relative standard deviation 

(Figure 3.1.3.1c). As-synthesized AuNR@CTAB exhibited maxima of longitudinal localized surface 

plasmon resonance (L-LSPR) and transversal resonance (T-LSPR) at 909 and 508 nm, respectively 

(Figure 3.1.3.1d).  

Figure 3.1.3.2a schematically depicts the ligand exchange procedure. Washed AuNR@CTAB 

(excess CTAB below 100 µM)26 were incubated with a solution of PTEBS in water. After the 

ligand exchange, the remaining free (new and old) ligands were separated from the nanorods 

by centrifugation. The ligand exchange protocol was optimized to provide full coverage of the 

surface of the studied particles. We determined that a polymer addition to the dispersion 

equivalent to at least 7 mg/m2 (polymer mass/particle surface area) was required to obtain 

colloidally stable AuNR@PTEBS. We recommend a polymer to surface area ratio equivalent 

to 10 mg/m2 and 8 h incubation for optimal stability. Details on the ligand exchange protocol 

and its optimization are described in section 3.2.1. 
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Figure 3.1.3.1 As-synthesized AuNR@CTAB. (a,b) TEM images. (c) Particle size distribution from 726 

AuNRs measured by TEM. (d) UV-vis/NIR spectrum. 

Surface chemistry characterization 

Figure 3.1.3.2b illustrates the surface of a nanorod before and after modification. The 

constitutional formulas of CTAB and PTEBS suggest that the nanorods’ surface charge should 

reverse during a ligand exchange process. The observed change in zeta potential from +25 mV 

to -40 mV confirms a successful ligand exchange.  

The UV-vis spectrum of the AuNR@PTEBS showed a blueshift in both LSPR maxima compared 

to AuNR@CTAB (Figure 3.1.3.2c), indicating an increased dielectric constant in the direct 

vicinity of the nanorods.27 We attribute the strong shift to the -electrons of the conductive 

polymer that couple with the conduction band of gold. Subtraction of the AuNR@CTAB 

spectrum from the AuNR@PTEBS spectrum revealed the characteristic absorption band of 

PTEBS at max = 415 nm (Figure 3.1.3.2c, inset) from the polymer attached to the gold surface. 
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Figure 3.1.3.2 (a) Ligand exchange process: photographs of dispersions before and after ligand 

exchange. (b) Schematic depiction of the AuNRs surface chemistry before and after ligand exchange. 

(c) UV-vis/NIR spectra of pure PTEBS, AuNR@CTAB, and AuNR@PTEBS. Inset: difference between the 

UV-vis spectra of AuNR@PTEBS and AuNR@CTAB. 

The completeness of the ligand exchange was confirmed by IR spectroscopy. Figure 3.1.3.3a 

compares the fingerprint regions of pure PTEBS, AuNR@CTAB and AuNR@PTEBS. Pure 

polymer exhibited characteristic vibration bands of the sulfonate group28 (s: 1042 cm-1; a: 

1175 cm-1) in the side chain. The original rods, AuNR@CTAB, exhibited two prominent peaks 

at 910 and 960 cm-1. After ligand exchange, AuNR@PTEBS showed only the vibrations of the 

sulfonate group. The signals in the region of the two prominent peaks from CTAB were 

negligible, confirming that CTAB has been removed and replaced by PTEBS on the surface of 

the AuNRs. 

Raman spectroscopy was used to determine the PTEBS-Au binding motifs (Figure 3.1.3.3b). 

The signal of the Au-bromide bond of AuNR@CTAB occurred at a Raman shift of 182 cm-1 as 

reported in literature.20,26 Modified AuNRs did not show this but two other peaks at 172 and 

278 cm-1. The broad peak at 278 cm-1 is in the region where Au-S bonds are typically found.20 

To clarify whether the peak at 172 cm-1 originated from the aromatic ring or from the side 

chain of PTEBS, AuNR@CTAB were plasma-cleaned until the Au-bromide bond was no longer 

visible in the Raman spectra. The cleaned surface was dipped into pure thiophene. The 

resulting spectra (Figure S3.2.2.4) evidenced that both peaks found for AuNR@PTEBS arise 

from thiophene rings adsorbed onto gold. We conclude that PTEBS binds to the AuNRs with 

its conductive backbone as a multidentate ligand. 
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Figure 3.1.3.3 (a) IR spectra of PTEBS, AuNR@CTAB, and AuNR@PTEBS. (b) Raman spectra of 

AuNR@CTAB and AuNR@PTEBS (exc = 782 nm) normalized to the maximum intensity. 

TEM images of AuNR@PTEBS showed dry ligand shells with thicknesses that varied between 

0.7 nm and 2.1 nm (Figure 3.1.3.4a). Thermogravimetric analysis (TGA) on thoroughly washed 

AuNR@PTEBS resulted in 2.9% mass loss after heating to 800 °C. We converted this value to 

an average shell thickness using a geometrical model described in section 3.2.1 (Table 

S3.2.1.1). The packing density of the polymer was estimated for the packing depicted in Figure 

3.1.3.4b with 

• the distance of two neighboring polymer chains (a = 0.90 nm)28, 

• the-stacking distance (b = 0.38 nm)29, and  

• the size of one monomer unit (c = 0.39 nm)29. 

The dry density of perfectly packed PTEBS on the AuNR surface was 7.5 monomers/nm³ (3.5 

g/cm3) according to this model. This corresponds to a volumetric shrinkage upon ligand 

removal of 16.1% and an average dry ligand shell thickness of 0.9 nm, in the range of 

thicknesses observed in TEM.  

Conjugated polymers can bind to a surface face-on or edge-on (Figure 3.1.3.4c).30 The binding 

type affects the electronic properties of the coated particle: the edge-on configuration creates 

spacing between the conjugated polymer backbone and the metal surface. D. Tanaka et al. 

and Y. Abe et al. demonstrated that the spacing between the metal surface and a -electron 

system affects electronic coupling.31,32 Hence, face-on adsorption of the polymer onto the 

AuNRs is beneficial for the conductivity of particle-particle interfaces. Our Raman study shows 

that PTEBS binds face-on with its conductive backbone and not with its side chains. This is in 
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accordance with results previously reported for poly-(3-hexylthiophene) (P3HT), a polymer 

with the same backbone, that adsorbs face-on on Au (111) surface.33 According to the TGA 

data, each AuNR is surrounded by an average of three polymer layers that bind to the gold 

and to each other through -stacking interactions.  

We estimated the binding strength of the multidentate ligand from the amount of desorbed 

polymer measured by inductively coupled plasma mass spectrometry (ICP-MS). A dilute 

particle dispersion was thoroughly purified to remove free polymer and the closed vessel was 

shaken at room temperature for one week to reach equilibrium. All particles were then 

removed by centrifugation. We found 1.1 ± 0.02 ppm of sulphur in the freshly purified, 

particle-containing sample and 0.4% of it (4.9 ± 0.07 ppb) in the supernatant of the centrifuged 

sample, demonstrating strong binding of the polymer. 

 
Figure 3.1.3.4 (a) TEM images of AuNR@PTEBS at low and high magnification. (b) Scheme of the 

polymer chains packing for crystalline PTEBS: a is the distance between 2 polymer chains, b is the -

stacking distance; c is the length of one monomer unit. (c) Two binding types for polymers packed as 

depicted in (b). 

Colloidal stability 

Inkjet inks are typically formulated in a mixture of solvents, often water-alcohol mixtures are 

most convenient.5 The poor colloidal stability of AuNR@CTAB in such mixtures limits their use 

in printed electronics. The rods aggregate even in pure water unless excess CTAB is added, 

and small amounts of short-chain alcohols or acetone precipitate them.16 We compared the 

colloidal stability of AuNR@CTAB to that of AuNR@PTEBS by centrifuging them, seperating 

the supernatant, and adding different solvents to redisperse them after washing. It was easy 

to fully redisperse AuNR@PTEBS in short-chain alcohols and in acetone. In a second 

experiment we introduced rods into solvent mixtures by first dispersing AuNRs in water and 

adding the 2nd solvent subsequently to a final ratio of 75/25 solvent/water (v/v). Figure 
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3.1.3.5a shows that the AuNR@CTAB dispersions responded to the addition of methanol and 

acetone with a color change that was visible to the naked eye after seconds. The 

corresponding blueshift and the decrease in intensity in the L-LSPR band (Figure 3.1.3.5a) are 

due to side-by-side assembly of the nanorods (Figure 3.1.3.5c).34 Aggregates of AuNR@CTAB 

in methanol and acetone precipitated irreversibly after minutes. The same experiments with 

AuNR@PTEBS yielded stable dispersions (Figure 3.1.3.5b) with a slight red-shift in the L-LSPR 

bands that is due to the change of refractive index (RI) caused by the second solvent. 

 
Figure 3.1.3.5 UV-vis/NIR spectra and photographs of dispersions of (a) AuNR@CTAB and (b) 

AuNR@PTEBS recorded directly after the addition of 75% of water, methanol and acetone, respectively. 

(c) Schematic depiction of the AuNR´s sensitivity towards their assembly and towards the chemical 

composition of their surrounding media. 

We formulated inks from AuNR@PTEBS in water, short chain alcohols, acetone, and their 

mixtures. Their shelf lifes depended on the polarity of the solvent, as expected for 

electrosterically stabilized colloids with a zeta potential of 40 mV. Inks in pure acetone or 

alkohols remained stable for 1-2 weeks. Increasing water content increased stability, and a 

fully aqueous ink with 100 mg/mL (12 wt %) was stable under shaking for at least 10 months.  
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Conductivity of deposited inks 

The electron transport properties of the modified AuNRs were measured in films deposited 

from concentrated inks. We compared the results to the properties of AuNRs coated with a 

non-conductive polymer, O-[2-(3-mercaptopropionylamino)ethyl]-O′-methylpolyethylene 

glycol (AuNR@PEG-SH), molecular weight 20 kDa.20 Dense lines of AuNR with a thickness of 1 

± 0.2 µm, determined by profilometry, were deposited onto sputtered gold electrodes 

through masks (Figure 3.1.3.6a and 3.1.3.6b) with inks that contained 25 mg/mL (3 wt%) 

AuNRs in water/methanol (25/75; v/v). No post-treatment was performed after drying at 

room temperature (see detailed deposition parameters in section 3.2.1). Their conductivity 

was calculated from measured current-voltage (I-V) curves (Figure 3.1.3.6c). Note that, in 

Figure 3.1.3.6c, current is normalized to the thickness of each line so that the resistivity of the 

material is equal to the inverse of the slope. AuNR@PTEBS lines were conductive without any 

further treatment; they exhibited a resistivity of 7.0 x 10-6 ·m, equivalent to a sheet 

resistance of 276 m/sq/mil, with a relative standard deviation of 15%. The resistivity of as-

deposited lines of AuNR@PEG-SH was above the limits of our measurement (330 ·m), as 

expected for inks containing a non-conductive polymer ligand.  

A 30 min exposure to a H2/Ar-plasma removed the organic ligands from the AuNR@PEG-SH 

film to below the detection limits of Raman spectroscopy, and the film became conductive. 

The structure of the nanorods was largely retained during the treatment (Figure 3.1.3.6b), but 

the ligand shell removal caused volume shrinkage. The resistivity of the plasma-annealed 

AuNR line was 4.5 x 10-6·m (177 m/sq/mil). This is about one order of magnitude above 

the resistivities reported for fully sintered, nanoparticle-based inks where individual particles 

cannot be distinguished anymore.35 
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Figure 3.1.3.6 (a) Photographs and (b) SEM images of AuNR lines prepared for electrical testing. (c) I-V 

curves with current normalized to film thickness; inset: circuit drawn on glossy paper using a fountain 

pen loaded with AuNR@PTEBS ink. 

The resistivity of the AuNR@PTEBS lines (7.0 x 10-6 ·m) is less than double that of the plasma-

treated AuNR. This resistivity is about 250 times that of bulk gold and similar to that of 

nichrome.36 It is considerably lower (about 10,000 times) than that of purely organic 

conductive polymers and mixtures such as poly(3,4-ethylenedioxy-thiophene) with 

polystyrene sulfonate (PEDOT:PSS).37 

The sinter-free formulation can be applied like a regular ink: we loaded a fountain pen with 

AuNR@PTEBS at 25 mg/mL (2.6 wt%) in an isopropanol/water 10/90 (v/v) mixture and drew 

a circuit on glossy paper (Figure 3.1.3.6c, inset). The pattern dried within minutes and was 

conductive enough to power a light-emitting diode (LED). 

Applicability to other polymers  

We assessed the versatility of the developed ligand exchange protocol using a structurally 

different polymer: PEDOT:PSS. This polymer fulfills the requirements for ligands listed above. 

No changes in the ligand exchange procedure were required to successfully coat AuNRs with 

PEDOT:PSS. 

The resulting AuNR@PEDOT:PSS dispersions possessed a negative zeta potential (-45 mV) 

similar to that of AuNR@PTEBS and blueshifted LSPRs. They formed stable inks in short-chain 
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alcohols and in acetone. The resistivity of deposited lines of AuNR@PEDOT:PSS was 9.9 x 10-7 

·m (39 m/sq/mil), 5 times lower than the resistivity of plasma-annealed AuNRs and 7 times 

lower than the line of AuNR@PTEBS. We believe that the soft PEDOT:PSS shell increases the 

effective contact area between nanorods. Further experiments have to be performed to 

clarify the exact mechanism of inter-particle charge transfer.  

Long-term stability is a critical property for printed electronics, and PEDOT:PSS is acidic 

enough to corrode metals.38 We performed long-term experiments and stored samples under 

ambient conditions. Lines of both AuNR@PTEBS and AuNR@PEDOT:PSS retained their 

electrical performance for at least 1 year. No visible signs of degradation occurred. 

Ink requirements for printing 

Printing requires inks with good colloidal stability and suitable rheological properties. 

Agglomeration leads to inhomogeneous deposition and equipment damage,5 inappropriate 

fluid properties and wetting behavior drastically reduce printing quality.39  

Our particles are colloidally stable in a wide range of formulations. As an example, we 

investigated the rheological properties of a formulation that is suitable for inkjet printing, 

AuNR@PEDOT:PSS, 100 mg/mL (12 wt%) in isopropanol/water (10/90; v/v) and found a 

• density (ρ) of 1.2 ± 0.02 mg/mL, 

• viscosity (η) of 1.46 ± 0.15 cP, and 

• surface tension (γ) of 54.1 ± 1.1 mN/m. 

Commercial piezoelectric printing heads (for example the equipment sold by Microdrop 

technologies, Germany) often require at least 0.4 cP. The Ohnesorge (Oh) number (eq. 3.1.3.1) 

characterizes fluids in ink jet printing: 

Oh =
ఎ

ඥఊఘ௔
      (eq. 3.1.3.1) 

 
where a is a characteristic length, usually the nozzle diameter. Stable printing is possible39 for 

Oh = 0.1-1.0, which implies a upper limit of the nozzle diameter of 3.3m for our ink suitable 

for very high resolution printing. It is straightforward to tune the viscosity; for example, adding 

1 mg/mL of excess PEDOT:PSS (i.e. 0.1 wt% to the liquid ink) increased the viscosity to 4.6 cP, 

made it suitable for larger low-cost nozzles, and retained the conductivity of the printed lines.  
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3.1.4 Conclusion 

In summary, thiophene-based conjugated polymers with polar side chains prove to be highly 

suitable ligands for AuNRs in electronic applications. We developed a simple and 

straightforward protocol to obtain concentrated, stable colloidal inks suitable for printing. IR 

and Raman spectroscopy confirmed the complete exchange of CTAB on the AuNRs. PTEBS 

binds in a face-on configuration with 3 layers of polymer stacked on the gold surface in 

average, a configuration that facilitates electron transport through particle-particle 

interfaces. Deposited, untreated films reached conductivities comparable to plasma-annealed 

AuNRs and no signs of degradation were observed after storing them for one year under 

ambient conditions. 

The ligand exchange protocol is also applicable to other polythiophenes as we demonstrated 

by preparing AuNR@PEDOT:PSS inks. Printed films of AuNR@PEDOT:PSS reached 

conductivities that surpassed that of AuNR@PTEBS films. 

We expect the developed ligand exchange protocol to be applicable to polythiophene 

derivatives beyond the two examples presented here. The concept is not limited to AuNRs: 

other conductive or semi-conductive nanoparticles can be coated with conductive polymer 

ligands to increase inter-particle charge transfer. Nanoparticle based materials in many 

applications can profit from this concept. Sintering-free conductive particle packings are a 

step towards conductive composites of nanoparticles in insulating polymer matrices. 
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3.2 Supporting Information: Gold nanorods with conjugated polymer ligands: 

sintering-free conductive inks for printed electronics 

3.2.1 Experimental section 

Materials 

All chemicals were used as received without further purification. 

Poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate] (PTEBS) (Mw = 40-70 kDa) was purchased from 

Solaris Chem Inc., (Quebec, Canada). 

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (dry, re-dispersible 

pellets; resistance: 200-450 /sq) was purchased from Sigma-Aldrich, (Steinheim, Germany). 

O-[2-(3-mercaptopropionylamino)ethyl]-O′-methylpolyethylene glycol (PEG-SH) (Mw = 20 

kDa) was purchased from Sigma-Aldrich, (Steinheim, Germany). 

Thiophene (≥ 99%) was purchased from Sigma-Aldrich, (Steinheim, Germany). 

Cetylammoniumbromide (≥ 99%) was purchased from Sigma-Aldrich, (Steinheim, Germany). 

Other chemicals were analytical-grade reagents, and all solutions were prepared using Milli-

Q water. 

Sputtered gold electrodes were purchased from ABTECH Scientific, Inc. (South Carolina 29621, 

USA). 

Silver paste (G3692) was purchased from Plano GmbH (Wetzlar, Germany). 

Characterization 

Widths and lengths of the AuNRs were evaluated through transmission electron microscopy 

(TEM) (JEM 2010, JEOL, Japan) operating at 200 kV. The mean lengths of the short and long 

axes were calculated by evaluating 726 AuNRs in TEM images. Volume and surface area were 

calculated using a cylinder with a hemisphere attached at each tip as a model (table S1). Zeta 

potentials were measured in triplicate on colloidal dispersions containing 1 mM KCl using a 

Nano ZSP Zetasizer (Malvern, Germany) at 25°C and the data were analyzed based on the 

Smoluchowski model. Optical characterization of the dispersions was performed with a UV-

vis/NIR spectrophotometer (Cary 5000, Varian, CA, USA) in absorbance mode. Fourier 

transform infrared (FTIR) spectra were recorded in the ATR modus using a Tensor 27 

spectrometer (Bruker, Germany). Raman spectra were recorded on a Raman Labram HR 
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Evolution spectrometer (Horiba Jobin Yvon, Germany) using a 782 nm near-IR laser diode. For 

thermogravimetric analysis (TGA), colloids were washed 3 times with Milli-Q water, dried in 

an Al2O3 crucible at room temperature, placed in a STA Jupiter 449 F 3 analyzer (Netzsch, 

Germany), and heated at 10 °C/min from 50 to 800 °C under an argon atmosphere. Ligand 

shell volume fractions and thicknesses were calculated from the organic mass fraction 

obtained by TGA (Table S3.2.1.1). Inductively coupled plasma mass spectrometry (ICP-MS) 

was used to determine the polymer distribution in a AuNR@PTEBS dispersion by comparing 

the sulfur content before and after removing the nanoparticles by centrifugation. The sulfur 

content (isotope m/z: 32) was measured on an ELEMENT XR mass spectrometer (Thermo 

Fisher, Germany) with 1250 W plasma power and external calibration with PTEBS standards 

(R2: 0.998). Each sample was measured 30 times to calculate the mean value and the standard 

deviation. Electrical measurements were done with a 2450 Sourcemeter (Keithley 

Instruments, Ohio, USA); the relative standard deviation was calculated from the averages of 

10 measurements on each of 4 samples. Scanning electron microscopy (SEM) images were 

recorded after film deposition on glass with a Quanta 400 ESEM (FEI, Germany). The thickness 

of the deposited AuNR patterns was measured with a Surfcom 1500SD3 profilometer (Zeiss, 

Germany). We removed non-conductive ligands by 30 min exposure to H2/Ar (5/95 (v/v)) RF 

plasma (100 W) at 0.3 mbar gas pressure in a PICO plasma reactor (Diener electronic, 

Ebhausen, Germany). The surface tension of the inks was measured with the pendant drop 

method in an OCA 35 setup (Dataphysics, Germany) using the Young-Laplace equation. A 

digital camera was used to record the shape of the pendant drop. Mean values and the 

standard deviations were calculated from a minimum of 200 measured surface tension values. 

Dynamic viscosity of the ink at room temperature was measured in the rotation mode of a 

PHYSICA MCR 300 modular compact rheometer (Anton Paar, Germany). Mean values and the 

standard deviations were calculated from a minimum of 10 shear experiments. 
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Table S3.2.1.1 Properties of AuNR@PTEBS. 

Au core Ligand shell 
  

  

Length (TEM) 113     nm Mass fraction (TGA) 2.9  % 

Width (TEM) 25     nm 
Volume fraction 
(calculated) 16.1  % 

Density (literature1) 19.3 g/cm³ Density (literature2,3) 3.5   g/cm³ 

Volume (calculated) 51380     nm³ Volume (calculated) 8300 nm³ 

Surface area (calculated)  8875     nm² Thickness (calculated) 0.9   nm 

 

Nanoparticle synthesis and ligand exchange 

Gold nanorods (AuNR@CTAB) were prepared following a published protocol4 and washed to 

ensure an excess CTAB concentration of below 80 µM (Note that literature5 recommended 

concentrations below 100 µM, however we found that concentrations below 80 µM were 

preferable in our case). The washed AuNRs were immediately incubated with the new ligand 

at room temperature under vigorous stirring in order to prevent agglomeration due to the 

low CTAB concentration. After the incubation time (2-8 h), the AuNR@PTEBS were separated 

from the excess PTEBS by centrifugation. PTEBS remaining in the supernatant was quantified 

by UV-vis spectroscopy to estimate the amount of polymer adsorbed on the nanorods (Figure 

S3.2.1.2). The remaining concentration was used to calculate the PTEBS surface coverage of 

the AuNRs and thus, the polymer/surface ratio required to form a sufficiently dense polymer 

ligand layer. We found that AuNRs could be redispersed only for PTEBS ratios above 5.6 

mg/m2. Ratios below 6.7 mg/m2 provided AuNRs that were stable but only for a few hours to 

a few days. Larger ratios yielded AuNRs that were stable for weeks. Figure S3.2.1.1 compares 

colloidal dispersions after ligand exchange with insufficient (left) and sufficient (right) PTEBS. 

We attribute the differences in colloidal stability to the ligand surface density. Table 2 shows 

PTEBS surface coverage calculated from the amount of PTEBS remaining in the supernatant. 

The values indicate an increase in coverage for up to a PTEBS/surface ratio of 9.0 mg/m², with 

saturation for greater values.  

We also studied the incubation time required for ligand exchange using the blueshift in the 

AuNRs L-LSPR band. No change in the L-LSPR band occurred after 8 h regardless of the PTEBS 
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excess employed. In summary, we recommend a reaction time of 8 h and a PTEBS/surface 

ratio equivalent to 9-10 mg/m² to obtain complete ligand exchange reliably. For example, to 

obtain 10 mg/mL of AuNR@PTEBS, 5 mL of AuNR@CTAB in a concentration of 20 mg/mL 

(equivalent surface area of 0.886 m2) was incubated with 5 mL of a 1.6 mg/mL of PTEBS 

solution. 

 
Figure S3.2.1.1 Photograph of dispersions after redispersion in Milli-Q water subsequently to ligand 

exchange with a PTEBS/Au surface area ratio of left: 2.8 mg/m² and right: 11.3 mg/m². 

Calibration of PTEBS concentration and measurements 

Aqueous solutions containing between 0.1 and 250 µg/mL of PTEBS were prepared and their 

integrated absorbance between 310 and 550 nm was measured. The peak area showed a 

linear dependence of the PTEBS concentration throughout the full concentration range 

(Figure S3.2.1.2). We used the PTEBS concentration decrease in the supernatant and the 

known amount of gold surface area in the reaction mixture to calculate PTEBS surface 

coverage. 

 
Figure S3.2.1.2 Calibration curve for aqueous solution of PTEBS: Integrated absorbance from 310 and 

550 nm versus PTEBS concentration. 
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Table S3.2.1.2 Quantification of PTEBS adsorbed onto AuNRs using the external calibration curve 

(Figure S3.2.1.2). Incubation time: 2 h. 

PTEBS 
concentration 

[µg/mL] 

PTEBS mass –Au 
surface ratio 

[mg/m2] 

PTEBS in the 
supernatant 

[µg/mL] 

PTEBS adsorbed 
onto AuNRs 

[µg/mL] 

Estimated AuNR 
surface coverage 

[mg/m2] 

250  2.8 193.5 56.5 0.6 

500 5.6 391.7 108.3 1.1 

600 6.7 481.1 118.9 1.2 

800 9.0 632.7 167.3 1.7 

1000 11.3 833.6 166.4 1.7 

 

Layer preparation 

AuNR patterns were prepared by depositing 10 L of the inks (25 mg/mL, 3 wt% gold content, 

dispersed in a mixture of methanol/water (60/40; v/v)) on a glass substrate. PDMS stencil 

masks, placed on the substrate and separated 1 mm, were used to define the deposition area. 

Lines were dried at room temperature overnight to ensure complete drying before 

performing the electrical tests.  

The cartridge of a commercial fountain pen was loaded with sintering-free ink containing 25 

mg/mL (3 wt%) of gold dispersed in a mixture of isopropanol/water (10/90; v/v). Glossy paper 

(for photographic prints) was used as the substrate. A light-emitting diode (LED) and batteries 

were connected to the circuit with silver paste. Photographs of the writing and the circuit are 

shown in Figure S3.2.1.3. 

 
Figure S3.2.1.3 Photographs of (a) writing, (b) the open circuit, and (c) the closed circuit. 
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3.2.2 Comparison of PTEBS and thiophene adsorbed onto AuNRs 

We deposited AuNR@CTAB films, subjected them to H2/Ar plasma for 30 min, and dipped 

them into pure thiophene for 5 minutes to create AuNR@Thiophene films. Residual thiophene 

was evaporated at room temperature before the measurement. 

Figure S3.2.2.4 Normalized Raman spectra of AuNR@PTEBS and AuNR@Thiophene. 
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3.3 Publication 2: Multivalent bonds in self-assembled bundles of ultrathin gold 
nanowires 
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Bonds in Self-Assembled Bundles of Ultrathin Gold Nanowires. Phys. Chem. Chem. Phys. 2016. 
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3.3.1 Abstract 

Ultrathin gold nanowires are unusual colloidal objects that assemble into bundles with line 

contacts between parallel wires. Each molecule in the contact line interacts with many ligand 

and solvent molecules. We used X-ray scattering and electron microscopy to study how these 

interactions control assembly. 

3.3.2 State of the art 

Ultrathin gold nanowires (AuNW) can be prepared using scalable wet-chemical protocols, 

which makes them interesting building blocks for functional materials.1 The wires have 

already been used as active components for surface-enhanced Raman scattering (SERS) 

substrates2, sensors3, and transparent electronics4,5 and are promising candidates for 

nanoscale interconnects.6 Oleylamine (OAm) that is tethered to the particles’ surface serves 

as a ligand and provides good colloidal stability in organic solvents.1 The small diameters 

(below 2 nm) and high aspect ratios (> 1000) of AuNWs lend them high mechanical flexibility.7 

It is possible to coil functionally coated AuNWs into nanosprings that store mechanical 

energy.8 The wires can bundle into hexagonal superstructures and adapt to complex shapes9; 

this ability has been exploited to print them as conductive grids.4 

Self-assembly is an elegant and cost-effective route to fabricate functional particle 

superstructures.9 Controlled self-assembly of AuNWs is a realistic way to fabricate hierarchical 

3D architectures.10 They could, for instance, serve as key components in self-assembled 

electronic circuits.4,11 Engineering self-assembled superstructures requires a substantiated 

understanding of nanoparticle interactions. However, the current understanding of the 

relevant interactions of AuNWs and other nanoparticles with characteristic dimensions in the 

range of 1-20 nm is limited. The sizes of the stabilizing ligands and the solvent molecules are 

on the same order of magnitude as the particle cores for such particles. The interactions 

between their surface ligands can exceed the cores’ interactions by far.12,13 Classical theories 

of colloidal particle-particle interactions, such as the Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory, do not satisfactorily describe the behavior of nanoparticles with diameters 

below 20 nm; for instance, they do not consider ligand-ligand and ligand-solvent 

interactions.14 We believe that such particles are better understood in terms of intermolecular 

interactions, with the concepts of multi- or polyvalency that are used in biochemistry and 

supramolecular chemistry.15,16 Ultrathin nanowires that form line contacts have been 
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described as polymer analogues.17 In a figurative sense, the gold core of AuNWs would be the 

polymer backbone and the ligands the side chains that cause supramolecular interactions. 

Because ligands dominate their behavior, the assembly of very small particles can be tuned 

via ligand type18 and ligand conformation19 as a step towards the rational design of particle 

self-assembly. But the choice of ligands that yield anisotropic particles in wet-chemical 

synthesis is very limited20 and ligand exchange is often challenging. Recent studies suggest 

that the solvent, which is relatively easy to exchange, can also influence nanoparticle 

assembly in dispersion.18,21 Solvent effects have previously been studied for isotropic 

particles;22 here, we study highly anisotropic wires.  

We investigated how ligand-solvent interactions affect the superstructure formation of 

AuNWs in dispersion using small-angle X-ray scattering (SAXS). We demonstrate that the 

solvent determines whether ordered superstructures form, their formation kinetics, and the 

wire-wire distance. We found that ligand excess in solution affects the packing density of the 

superstructures and propose a model based on weak intermolecular interactions to explain 

the solvent dependence of AuNW bundling. Experiments on AuNW growth in different 

solvents prove that ligand-solvent interactions also impact the anisotropic particle growth of 

AuNWs. 

3.3.3 Results and discussion 

Ultrathin AuNWs were synthesized using a protocol adapted from Feng et al.2 that is described 

in the Supporting information. The synthesis uses oleylamine (OAm) to induce wire growth in 

n-hexane. During synthesis, OAm serves as structure directing agent; it adsorbs on the gold

wires with its amine functionality, where it serves as a ligand and provides colloidal stability.

We analyzed as-synthesized AuNW dispersions in the liquid state by SAXS and found wires 

bundled into hexagonal arrangements with a lattice parameter of 9.2 nm (Figure 3.3.3.1a). 

Bundles with a lattice parameter of 9.7 nm have previously been described by Loubat et al.23 

for 1.7 nm thick wires. Oleylamine has a length of approximately 2 nm in its fully stretched 

conformation;24,25 Loubat et al. concluded that four OAm molecules separated the gold wires 

inside a bundle.23 We find 0.5 nm shorter wire-wire distances that we attribute to stronger 

OAm interdigitation. The alkane chains of OAm can interlock like the teeth of a zipper as 

shown in Figure 3.3.3.1c. What determines the extent of interdigitation? 
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Osmotic pressure exerted by solute molecules is a likely candidate. OAm is used in excess 

during synthesis, and free OAm may affect the wire-wire distance. We synthesized AuNWs, 

adjusted the OAm concentration as described in the ESI, and studied the dispersions with 

SAXS (Figure 3.3.3.1a and 3.3.3.1.1b). All SAXS patterns confirmed hexagonal packing of wires; 

the Bragg peaks shifted towards larger scattering angles with increasing OAm volume fraction 

(Figure 3.3.3.1a). The center-to-center distance of the wires was calculated from the 

scattering angle of the first Bragg peak (10). It decreased monotonously with the total OAm 

volume fraction in the dispersion (Figure 3.3.3.1b). We believe that the increasing OAm 

concentration causes an osmotic pressure that drives out solvent molecules from inside of 

the bundles in order to dilute the free OAm. Interdigitation of the ligand shells thus increases 

with free OAm concentration as shown in Figure 3.3.3.1c.  

Figure 3.3.3.1 (a) Normalized SAXS patterns of as-synthesized AuNWs dispersed at different volume 

fractions of OAm. (b) Wire-wire distance depending on free OAm volume fraction in solution. Inset: 

skeletal formula of OAm. (c) Schematic illustration of OAm interdigitation for the closest and the least 

close wire-packing observed and of the difference in solvent volume enclosed between two wires for 

both cases. 

London dispersion interactions between the alkane chains of the tethered OAm molecules 

become stronger with increasing interdigitation.12,26 This explains the increasing intensity of 

the Bragg peaks with increasing OAm volume fraction (Figure 3.3.3.1a): The denser the 

packing of the OAm is between the wires, the stronger are the multivalent interactions 

between them, and the greater is the fraction of ordered bundles in the overall dispersion. 

Similarly variable interdigitation of alkane chains has already been observed for phospholipids 

in water. A phase transition from a separated to an interdigitated bilayer phase is induced 

when increasing ethanol concentration.27 
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To reduce the OAm concentration while keeping the AuNW concentration constant, we 

washed as-synthesized AuNWs by repeated precipitation with ethanol and redispersion in the 

same volume of a fresh solvent. This procedure removed excess OAm and reduced the lattice 

parameter of the hexagonal bundles from 9.2 nm to 5.5 nm as previously reported by Moutet 

et al.28 The reduced spacing is consistent with a wire-wire separation of two OAm molecules 

as visualized in Figure 3.3.3.2a. We assume that the washing procedure removed all OAm that 

was not directly tethered to the gold surfaces. The two remaining OAm monolayers 

interdigitate like a zipper in 3 dimensions. The resulting superlattice reminds of the inverted 

hexagonal phase of lipids in water29 although the formation is driven not by hydrogen bonds 

(as for the lipids in water) but by dispersive interactions. 

Bundling occurred slowly after redispersion in n-hexane (Figure 3.3.3.2b). The evolution of the 

first SAXS Bragg peak (10) was analyzed over time (Figure 3.3.3.2b inset) and its peak height, 

relative to the maximum peak height observed, was used as a measure for bundle formation. 

Peaks appeared after a few minutes; equilibrium was reached after 140 min, when the peak 

heights remained constant. Other solvents led to different bundling behavior. We exchanged 

the solvent after washing and followed the assembly of the AuNWs in three different solvent 

classes: n-alkanes, cycloalkanes, and arenes.  

SAXS patterns were recorded 24 h after redispersion in the new solvent to ensure equilibrium. 

Figure 3.3.3.2c illustrates the effects of the different solvents. Gold nanowires that were 

redispersed in n-hexane and n-octane formed hexagonal bundles with a lattice parameter of 

5.5 nm. Cyclohexane and cyclooctane prevented ordered assembly entirely; the SAXS patterns 

of AuNW in these solvents were dominated by the form factor of the wires (further 

information can be found in section 3.4.2). Dispersions of wires in arenes contained hexagonal 

superstructures; the AuNWs were packed tighter in arenes than in n-alkanes, with wire-wire 

distances of 5.2 - 5.3 nm. 
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Figure 3.3.3.2  (a) SAXS patterns of as-synthesized AuNWs and washed nanowires dispersed in n-

hexane. Inset: Schematic depiction of the ligand layer between two bundled wires. (b) Evolution of the 

first Bragg peak for washed AuNWs over time when redispersed in n-hexane. Inset: SAXS patterns at 

selected times. (c) SAXS patterns of washed AuNWs recorded 24 h after redispersion in different 

solvents. (d) Schematic illustration of our model for the arrangement of solvents in the OAm ligand layer 

of AuNWs and its influence on bundling. 

After redispersion vigorous shaking was required to yield a stable colloidal dispersion of 

AuNWs in arenes, and the dispersion contained bundles immediately after shaking. Shaking 

probably dispersed small bundles of wires rather than dispersing individual wires that self-

assemble subsequently.  

The effects of solvents discussed above support our hypothesis that weak intermolecular 

ligand-ligand and ligand-solvent interactions dominate the AuNW-assembly behavior, similar 

to assembly in supramolecular chemistry.30,31 We propose a model for assembly that is based 

on the balance between an enthalpic term (intermolecular forces) and mixing entropy. 

London dispersion forces between AuNW-tethered OAm molecules are not specific; they will 

act between all solvent and ligand molecules. The entropic gain always favors mixing of 

different molecules; it is the enthalpic contribution that determines whether AuNWs bundle. 

Solvent molecules will readily intercalate into the ligand shell if ligand-ligand and solvent-

solvent interactions are not considerably stronger than ligand-solvent interactions. The 

intercalating solvent will influence the structure of the ligand shell.32,33 Our hypothesis is that 
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wires bundle when the solvent efficiently intercalates neighboring ligand shell or when most 

solvent is expelled from touching ligand shells. 

Short-chained n-alkanes such as n-hexane have sufficient conformational flexibility to 

intercalate an ordered OAm ligand layer and to maximize ligand-solvent interactions.18 Two 

wires with ordered ligand layers bundle to close the “OAm-teeth” of the “zipper” (Figure 

3.3.3.2d1). 

Cycloalkanes such as cyclohexane have less conformational flexibility. The energetically 

favorable "chair"-conformation of cyclohexane cannot intercalate into OAm ligand layers 

without disturbing their order (Figure 3.3.3.2d2). Disordered OAm layers interact less strongly 

with the OAm layers of other wires, and bundling becomes less likely.  

Arenes have little conformational flexibility, but we did observe bundles in benzene and 

toluene. We believe that the relatively strong --interactions between the solvent 

molecules34 reduced the intercalations of solvents into the OAm ligand shell. This explains 

both the difficulty encountered when dispersing wires in arenes and the closer packing of the 

wire bundles when compared to n-alkanes. Little arene molecules remain in the tightly packed 

OAm bilayer (Figure 3.3.3.2d3).  

Our interpretation is inspired by earlier models that highlight the role of the solvent’s 

molecular shape and the solvent-solute interactions in supramolecular assembly.35 The 

solvent effects are so strong that we suspected them to affect the formation of AuNW during 

synthesis, too. Although the exact mechanism of AuNW growth is still under discussion, it is 

accepted that OAm plays a crucial role in the AuNWs’ anisotropic growth.23,36 It is also known 

that solvents affect the polydispersity of spherical gold nanoparticles formed with OAm.32  
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Figure 3.3.3.3 TEM images of as-synthesized AuNWs in (a) n-hexane, (b) n-octane, (c) cyclohexene, (d) 

cyclooctane, e) benzene and (f) toluene. Skeletal formulas of the respective solvents are given as insets. 

To test whether ligand-solvent interactions affect AuNW growth, we used the solvents 

introduced above for wire synthesis while leaving all other parameters unchanged. Figure 

3.3.3.3 shows representative TEM images of the resulting wires (more TEM images can be 

found in the Supporting Information, Figure S3.4.3.1 - S3.4.3.6). N-alkanes, most commonly 

used for AuNW synthesis, yielded large fractions of wires and some small spheres. 

Cycloalkanes and arenes led to much higher contents of spheres and irregularly shaped wires. 

Less suitable solvents apparently impair wire growth, but they do not entirely prevent it. This 

is compatible with the hypothesis of a soft template such as OAm micelles37 guiding 

anisotropic growth. The interactions between the soft templates may be affected by the 

solvent in a way similar to the wire-wire interactions discussed above. Anisotropic micelles, 

their interactions, and their assembly are well-understood in water,29 but little is known about 

the prerequisites for their formation and their dynamics in unpolar solvents. Standard 

techniques for the analysis of aqueous micelles like SAXS are not suitable for OAm in hexane 

and many similar systems. Neutron scattering studies with and without metal cores could 

provide further insight into the dynamics of those templates. 

3.3.4 Conclusion 

In summary, we demonstrated that the intermolecular forces dominate the assembly of 

AuNWs that are strongly affected by solvents. Although the individual forces are weak, the 

synergy of bonds along the contact lines between wires increases their collective strength, 
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similar to the mechanisms responsible for biochemical processes like protein folding.38 The 

qualitative thermodynamic model we propose here explains the role of solvents in AuNW 

superstructure formation and the packing density of the assemblies. It is a first step towards 

a detailed understanding of the ternary system of metal colloids, their ligand shells, and the 

dispersant. Our results suggest that the assembly of ultrathin nanowires can be exquisitely 

controlled through the ligand-solvent interplay. This will facilitate the assembly of AuNW 

building blocks into functional materials for photonic and electronic applications. 
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3.4 Supporting Information: Multivalent bonds in self-assembled bundles of 

ultrathin gold nanowires 

3.4.1 Experimental section  

Chemicals 

All chemicals were used without further purification: 

Oleylamine (technical grade, 70%) was purchased from Sigma-Aldrich (Germany). 

Triisopropylsilane (98%) was purchased ABCR (Germany). 

N-hexane (99 %) was purchased from ABCR (Germany). 

Ethanol (99.8 %) was purchased from Sigma-Aldrich (Germany). 

N-octane (98 %) was purchased from Sigma-Aldrich (Germany). 

Cyclohexane (99 %) was purchased from Sigma-Aldrich (Germany). 

Cyclooctane (99 %) was purchased from Sigma-Aldrich (Germany). 

Benzene (99 %) was purchased from Sigma-Aldrich (Germany). 

Toluene (99.5 %) was purchased from Sigma-Aldrich (Germany). 

Synthesis 

Ultrathin gold nanowires were synthesized using a protocol adapted from Feng and 

coworkers.1 Briefly, HAuCl4 (10 mM) was dissolved in a oleylamine:n-hexane mixture (8:27, 

v/v) to result in a dark yellow solution. Triisopropylsilane (1.2 M) was added and the solution 

was stirred vigorously for 30 s. Afterwards the reaction mixture was flushed with argon and 

kept undisturbed at 20°C for 16 h. 

Variation of the OAm volume fraction of the dispersion 

As-synthesized AuNWs were mixed with n-hexane or oleylamine (OAm) to adjust the volume 

fraction from 5 to 73 vol.% (as-synthesized AuNWs: 18 vol.%). After mixing the resulting 

dispersions were immediately analyzed by SAXS and all SAXS patterns were normalized to the 

gold content of as-synthesized wires. 

Washing and solvent exchange 

As-synthesized AuNWs were washed by repeated precipitation through the addition of 

ethanol. The supernatant was carefully removed and the wires were redispersed in the 

desired organic solvent. The washing step was repeated for a second time. All dispersions 

were kept at 4°C until further use. 
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3.4.2 Characterization 

TEM experiments 

1 µl of as-synthesized AuNWs was left to dry on a 400-mesh carbon coated copper grid (Plano, 

Germany) and then characterized by Transmission Electron Microscopy using a JEM 2010, 

JEOL, Germany, operating at 200 kV. 

SAXS experiments  

We employed a laboratory scale SAXS setup, the XEUSS 2.0 from XENOCS SA (France) 

equipped with a CuK X-ray source and a PILATUS3 R 1M (DECTRIS, Switzerland) X-ray area 

detector, to record the SAXS data. All measurements were performed at room temperature, 

24 hours after solvent exchange, using capillaries with an inner diameter of 1 mm. Scattering 

patterns of regular superlattices exhibit peaks with spacing that corresponds to the distance 

between planes of the (super)lattice. Given the Miller indices h and k, the maxima’s positions 

in q space and the distance between single scatterers of a 2D hexagonal lattice are related 

by2: 

 𝑞(ℎ, 𝑘) =  
ସ గ

√ଷ∗ௗ
√ℎଶ + 𝑘ଶ   (eq. 3.4.2.1) 

Further information extracted from SAXS data 

The SAXS pattern of AuNWs in cyclohexane (Figure S3.4.2.1) did not show any structure peaks, 

hence the pattern was dominated by the form factor of the wires. The minimum of scattered 

intensity was fit with the form factor of a cylinder3 using the ''SASfit'' software package4 and 

yielded a wire-radius of 0.85 ± 0.08 nm, which is in good agreement with TEM. 

 

Figure S3.4.2.1 Small-angle X-ray scattering of AuNWs in cyclohexane 
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3.4.3 Supplementary figures 

 

         

Figure S3.4.3.2 Representative TEM images of AuNWs synthesized in n-hexane. 
 
 

          

Figure S3.4.3.3 Representative TEM images of AuNWs synthesized in n-octane. 
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Figure S3.4.3.4 Representative TEM images of AuNWs synthesized in cyclohexane. 

 
 

       

Figure S3.4.3.5 Representative TEM images of AuNWs synthesized in cyclooctane. 
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Figure S3.4.3.6 Representative TEM images of AuNWs synthesized in benzene. 

 
 

       
Figure S3.4.3.7 Representative TEM images of AuNWs synthesized in toluene. 

 



3 Results and discussion 

 

         P a g e  86 | 121 

3.4.4 References  

(1)  Feng, H.; Yang, Y.; You, Y.; Li, G.; Guo, J.; Yu, T.; Shen, Z.; Wu, T.; Xing, B. Simple and 
Rapid Synthesis of Ultrathin Gold Nanowires, Their Self-Assembly and Application in 
Surface-Enhanced Raman Scattering. Chem. Commun. (Camb). 2009, 1984–1986. 

(2)  Förster, S.; Timmann, A.; Konrad, M.; Schellbach, C.; Meyer, A.; Funari, S. S.; Mulvaney, 
P.; Knott, R. Scattering Curves of Ordered Mesoscopic Materials. J. Phys. Chem. B 2005, 
109, 1347–1360. 

(3)  G. Fournet. Fonctions de Diffusion Pour Des Formes Geometriques. Bull. la Société 
Française Minéralogie Crystallogr. 1951, 74, 39. 

(4) I. Breßler, J. Kohlbrecher, and A. F. Thünemann. SASfit: A comprehensive tool for small-
angle scattering data analysis. arXiv:1506.02958 [physics.data-an]. June 2015. 

 

  



3 Results and discussion 

P a g e  87 | 121 

3.5 Publication 3: Spinning hierarchical gold nanowire microfibers by shear 
alignment and intermolecular self-assembly 

Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H. M.; Kanelidis, I.; Kraus, T. Spinning 

Hierarchical Gold Nanowire Microfibers by Shear Alignment and Intermolecular Self-Assembly. 

ACS Nano 2017. 

Reprinted with permission of all authors. Copyright (2017) American Chemical Society.f4 

f4 Note that Figure, Table and equation numbers as well as section names and numbers have been adapted 
to ensure consistent labeling and numbering throughout the whole thesis. Some Figures have been 
rearranged and resized to better fit the format of the thesis. Furthermore, the reference to supporting 
videos has been changed. 
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3.5.1 Abstract 

Hierarchical structures lend strength to natural fibers made of soft nanoscale building blocks. 

Intermolecular interactions connect the components at different levels of hierarchy, 

distribute stresses, and guarantee structural integrity under load. Here, we show that 

synthetic ultrathin gold nanowires with interacting ligand shells can be spun into biomimetic, 

free-standing microfibers. A solution spinning process first aligns the wires, then lets their 

ligand shells interact, and finally converts them into a hierarchical superstructure. The 

resulting fiber contained 80 vol.% organic ligand but was strong enough to be removed from 

the solution, dried, and mechanically tested. Fiber strength depended on the wire monomer 

alignment. Shear in the extrusion nozzle was systematically changed to obtain process-

structure-property relations. The degree of nanowire alignment changed breaking stresses by 

a factor of 1.25 and the elongation at break by a factor of 2.75. Plasma annealing of the fiber 

to form a solid metal shell decreased the breaking stress by 65%. 

3.5.2 State of the art 

Many natural materials are hierarchically structured composites with remarkable properties. 

Their hierarchical arrangement of small, often anisotropic building blocks distributes loads 

and inhibits defect propagation.1 Bamboo, composed of polysaccharides and lignin arranged 

in at least 7 levels of hierarchy, is highly flexible, yet tough and lightweight.1–3 Human bone is 

composed of a collagen matrix that self-organizes into fibrillar structures in which 

hydroxyapatite crystals are embedded. Its hierarchical structure makes the material fault-

tolerant and strong.3  

Artificially creating complex hierarchical materials by sequential assembly is difficult, in 

particular if the components are small and simple methods to efficiently tune their interaction 

forces are unknown.4,5 Today’s commercial composites are structured on one or two levels of 

hierarchy and otherwise random.6 This provides considerable gains in strength per weight 

already,7 but more levels of hierarchy could further improve perfomance, for example by 

efficient strain delocalization.6,8,9 New production techniques that provide improved control 

over composite structure with limited additional effort are therefore desirable. 

Self-assembly is a facile method to produce nano- and microscale hierarchical structures with 

little effort during material preparation.10,11 Anisotropic building blocks can direct self-

assembly in materials and affect their properties:12 for example, aligned linear chains of 
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ultrahigh molecular weight polyethylene drastically increase the yield strength of DyneemaTM 

fibers.13 An interesting alternative are highly anisotropic inorganic colloids such as ultrathin 

gold nanowires (AuNWs) that remind of linear polymers in shape and interactions.14,15 They 

can be synthesized on the gram scale through a simple and scalable method that yields wires 

of several micrometers in length with a 1.6 nm diameter gold core.16 An oleylamine (OAm) 

ligand shell around the core lends them good colloidal stability in many organic solvents.17 

These wires are flexible enough to bend reversibly with radii of approximately 25 nm.18 They 

were successfully applied in the fields of surface-enhanced Raman scattering (SERS),19 

sensing,20,21 catalysis,22 and transparent electronics.23,24  

Ultrahin gold nanowires interact in dispersion mainly through highly multivalent interactions 

between their OAm shells.14 Dispersed wires tend to self-assemble into hexagonal 

superstructures (bundles)14,25 that can be used to build miniaturized electronic circuits23,26 or 

form nanoscale interconnects.27 We have shown that multivalent interactions between OAm 

ligand shells of AuNWs can be tuned by solvent choice. Cycloalkanes lead to weak interaction 

and dispersion, while, for example, n-alkanes lead to the formation of bundles.14 Cademartiri 

et al. demonstrated that ultrathin Bi2S3 nanowires can be chemically cross-linked by injection 

into a solution of bidentate ligands to form fiber-like assemblies.28 The bidentate ligands form 

covalent connections between adjacent wires.  

Here, we exploit the intermolecular, non-covalent interactions between AuNWs to induce 

their self-assembly into free-standing, hierarchical fibers. Our wire assembly process is similar 

to polymer solution spinning, where a “spinning dope” (a polymer solution) is injected into a 

coagulation bath. This bath contains an anti-solvent that decreases polymer solubility and 

causes precipitation.29 Our spinning process exploits similar interactions to assemble ultrathin 

nanowires rapidly (0.2 m/s) into free-standing, hierarchical microfibers with an organic 

content of approximately 80% by volume. Their diameter was tuned by adapting the AuNW 

volume fraction in the spinning dope. The flow rate of the injected spinning dope determined 

fiber morphology and tensile properties; we introduce a simple model to explain this 

behavior. Shear alignment was a prerequisite for stable fiber formation; better alignment 

increased their mechnical strength by 25%. We compared this increase to the effect of a post 

treatment that converted the outer parts of the fiber into a solid shell and found a 65% 

reduction in breaking stress compared to the best aligned structure.  
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3.5.3 Results and discussion 

AuNW structure, assembly, and fiber Spinning 

Ultrathin gold nanowires (AuNWs) were synthesized following a simple and scalable protocol 

by Feng and coworkers (see details in section 3.5.5).19 This synthesis uses oleylamine (OAm), 

which soft-templates wire growth and serves as a ligand for the highly anisotropic 

nanostructures.14,30 As-synthesized AuNWs were capped by an OAm double-layer;14,25 

precipitation with ethanol and redispersion in cyclohexane yielded dispersed AuNWs with a 

single layer of OAm.14,31 A representative transmission electron microscopy (TEM) image of 

washed AuNWs is shown in Figure 3.5.3.1a. The characteristic spacing of approximately 2 nm 

between the 1.6 nm thick AuNWs can be attributed to fully interdigitated OAm ligand layers 

of neighboring nanowires (Figure 3.5.3.1b). 

Figure 3.5.3.1 a) TEM image of washed AuNWs. b) Skeletal formula of OAm and schematic drawing of 

two AuNWs (1.6 nm diameter) with interacting ligand layers. c) Photograph of AuNWs after precipitation 

with ethanol. d) SAXS pattern of AuNW-precipitate on polyimide (KaptonTM), peaks corresponding to 

hexagonal packing are indexed. 

First, we consider the unconfined precipitation of AuNWs by an anti-solvent like ethanol. The 

precipitates that are formed when ethanol is added to a dispersion of AuNWs in cyclohexane 

are displayed in Figure 3.5.3.1c. Note the elongated shape of the agglomerates that form 

during chaotic mixing of the two liquids. They are very different from globular agglomerates 
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or networks that would form for spherical particles of similar diameter and composition.32 

Small-angle X-ray scattering (SAXS, Figure 3.5.3.1d) indicated that the precipitate consisted of 

hexagonally ordered AuNWs, comparable to the structure of bundles reported previously,14,25 

but with a shorter wire-wire (center-to-center) distance of 3.55 nm. The distance corresponds 

to two fully interdigitated OAm layers (Figure 3.5.3.1b) similar to that of dried wires, while 

bundling in less polar solvents like arenes or n-alkanes leads to typical wire-wire distances of 

5.2 nm to 5.5 nm.14 We conclude that the ethanol-induced wire-wire attraction is stronger 

than in less polar solvents and induces tighter bundling.  

Now we introduce a laminar flow to impress directionality and structure. The setup sketched 

in Figure 3.5.3.2a injects AuNWs in cyclohexane – dispersed as single wires – (spinning dope) 

into an ethanol bath through a 75 µm diameter nozzle. The wires form fibers that consist of a 

loose network of tightly packed AuNW bundles (Figure 3.5.3.2c). When the fibers are pulled 

through the ethanol-air interface, the loose network is compacted by capillary forces (Figure 

3.5.3.2a). Figure 3.5.3.2b shows micrographs of the final product. We used a stagnant spinning 

bath and moved the nozzle with a constant velocity (see section 3.5.5 for details). Videos of 

our spinning process and the fiber collection are provided online on the ACS Publications 

website (Video1 and Video2, see section 3.5.6). A continuous process could use a controlled 

coaxial flow33 or collect the precipitate at constant speed during spinning.29 The velocity of 

the dispersion in the nozzle was a critical process parameter: fibers could only be spun for 

mean liquid velocity above 0.4 m/s. The maximal velocity was only capped by the technical 

limits of our setup. 
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Figure 3.5.3.2 a) Schematic setup for AuNW fiber spinning: AuNWs dispersed in cyclohexane are 

injected into an ethanol bath, from which the fibers can then be collected. b) Optical (top) and SEM 

(bottom) image of free-standing fibers (marked with an arrow). c) Schematic depiction of AuNW injection 

into ethanol and bundle formation on the single nanowire level. 

Influence of AuNW concentration on fiber diameter 

Fiber diameters were tuned via the AuNW concentration in the spinning dope. We tested 

AuNW volume fractions between 0.12% and 0.93% at a flow rate of 4 L/s with nozzle 

displacement velocities of 0.2 m/s; these parameters reliably led to strong fibers in the entire 

concentration range. Electron micrographs (Figure 3.5.3.3a) of as-spun fibers revealed 

increasing fiber diameters for increased AuNW volume fractions of the injected spinning 

dope. We annealed the fibers with a plasma treatment34,35 to create a dense metallic shell and 

facilitate AFM profilometry. Optical microscopy suggests that the fibers did not shrink during 

plasma sintering. Electron micrographs of as-spun fibers (Figure 3.5.3.3a) appeared similar to 

micrographs taken after treatment (Figure 3.5.3.3b).  
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Figure 3.5.3.3 SEM and AFM images of AuNW fibers spun with different AuNWvolume fractions (left to 

right: 0.12%, 0.31%, 0.62% and 0.93%); a) SEM images of as-spun fibers, b) SEM images of fibers after 

plasma treatment. c) AFM measurements of fibers after plasma treatment. Respective profile lines, 

obtained from the AFM images, are plotted on the corresponding position. 

The mean cross-sectional areas given in Table 3.5.3.1 were extracted from atomic force 

microscopy (AFM) height profiles of plasma treated fibers (Figure 3.5.3.3c). The cross section 

of the single fibers varied by approximately 3%. The diameter of the spun fibers monotonously 

increased with the AuNW volume fraction in the spinning dope following:  

Afiber = 
௏ಲೠಿೈ

௏ೞ೛೔೙೙೔೙೒ ೏೚೛೐
 Anozzle , (eq. 3.5.3.1) 

where A denotes the cross-sectional area and V the volume. Deviations from this 

proportionality are caused by inaccuracies in the AuNW volume fraction or partial nozzle 

clogging. Further optimizations should alleviate these issues and provide precise and accurate 

control of the fiber thickness. 
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Table 3.5.3.1  Cross-sectional areas and area fractions of the nozzle of AuNW fibers spun with different 

volume fractions compared to the theoretical cross-sections derived from equation 3.5.3.1. 

AuNW volume fraction in 
spinning-dope [%] 0.12 0.31 0.62 0.93 

Mean cross-sectional area 
from AFM [µm2] 5.1 9.4 28 35 

Standard error of cross-
sectional area [%] 

3.0 3.7 3.2 2.4 

Theoretical cross-
sectional area [µm2] 5.3 14 27 41 

Deviation from the 
experimental results [%] 3.8 33 3.6 15 

Influence of AuNW alignment on fiber morphology 

Shear forces in the injection nozzle can align anisotropic objects36,37 as is well-known for 

polymer spinning.33 Colloidal wires align in the flow direction at sufficient shear rates.38 We 

analyzed the velocity-dependent alignment of AuNWs in a tube flow of 0.9 mm by in situ SAXS 

(Figure 3.5.3.4b). The 2D scattering patterns of single wires dispersed in cyclohexane (Figure 

3.5.3.4a, bottom) and AuNW bundles in n-hexane (Figure 3.5.3.4a, top) became clearly 

anisotropic with increasing flow rates at Reynolds numbers between 1 and 111, all well in the 

laminar regime. The scattering ring seen for n-hexane is caused by the (10) Bragg peak of the 

wires’ hexagonal assembly and does not occur in cyclohexane, which keeps the particles 

dispersed.14 The distribution of the detected scattered intensity I() along the azimuthal angle 

 was quantified using the (10) Bragg peak of AuNWs in n-hexane (Figure 3.5.3.4a, top). Let  

be the angle between the long axis of an anisotropic scatterer and the average orientation. 

The probability distribution of this angle, f() (orientational distribution), is connected to the 

azimuthal distribution of the scattered intensity by39 

 𝐼(𝜑)~ ∫ 𝑓(𝜗)d𝜔 (eq. 3.5.3.2) 

Since the SAXS pattern I() only contains information on the 2D projection of the 3D wire 

orientational distribution, the angle between the long axis of a scatterer and the X-ray beam 

 has to be taken into account as above. The three angles are connected by 

 cos 𝜗 = cos 𝜑 sin 𝜔. (eq. 3.5.3.3)
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Without loss of generality, the average direction is 0°; f() describes the distribution of 

angles around it. Assuming a Pseudo-Voigt peak function as a parametrization of f() allows 

to fit the measured I() via equation (3.5.3.2) and thereby estimate the true shape of the 

orientational distribution f(); examples are given in Figure 3.5.3.4c (details can be found in 

section 3.5.5). We assessed the degree of orientation in terms of the nematic order parameter 

S that is often used for liquid crystals40 and defined as the ensemble average of the second 

Legendre polynomial of cos , 

S〈ଷୡ୭ୱమ஬ିଵ

ଶ
〉 (eq. 3.5.3.4)

S vanishes for isotropic samples and converges to 1 for perfect alignment in the probed 

volume. Typical values of S for nematic liquid crystal phases lie between 0.4 to 0.8.40 We found 

increasing S that attained values close to 0.8 for the highest flow rates of 100 µL/s that 

correspond to a mean velocity of 0.16 m/s and a wall shear rate of 7 µs-1 (Figure 3.5.3.4d). 

Details on the calculation of S can be found in section 3.5.5. 

 The AuNW alignment in the nozzle turned out to be a prerequisite for the spinning process. 

We varied the flow speed during fiber spinning process and observed the spinning dope 

injection with a camera. Continuous fibers were only obtained above a mean liquid velocity 

of 0.4 m/s; the jet disintegrated into droplets otherwise (Figure 3.5.3.4e). Videos of fiber 

spinning at 0.45 m/s and at 9 mm/s can be found online on the ACS Publications website 

(Video1 and Video3, see section 3.5.6). We believe that the alignment in flow increases the 

interaction strength between the injected fiber constituents. Aligned AuNWs form stronger 

fibers that do not immediately decompose in the moving liquids. 

A simple model explains the strong effects of alignment: in situ SAXS indicates that AuNW 

alignment increases with flow speed. Assume that this alignment is retained partially or 

completely as the wires are injected into the anti-solvent and rapidly diffuse to maximize 

contact area. The probability of lateral contact between wires would then increase with flow 

rate, with the limiting case of fully parallel wires that touch each other along their full lengths. 

The intermolecular interactions between parallel wires in full lateral contact are greater than 

in all other contact geometries, and stronger interactions would lead to greater cohesion 

inside the fiber. Figure 3.5.3.4e schematically depicts this model. 
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Figure 3.5.3.4 a) Small-angle X-ray scattering patterns of flowing AuNWs. b) Schematic depiction of the 

SAXS setup for in situ observation of flowing AuNWs. c) Numerical fits of the orientational distribution 

for different flow velocities according to equation (2). d) Nematic order parameter of AuNWs in flow as a 

function of flow velocity. e) Schematic depiction of the impact of anisotropy and alignment on the 

spinability of AuNW fibers with SEM images of a fiber spun with a flow speed of 2 L/s (0.45 m/s) and 4 

L/s (0.91 m/s) as insets. 

The model was tested by comparing AuNW spinning to the extrusion of nanospheres (3.2 nm 

diameter) with oleylamine ligands (AuNS@OAm) as spinning dope. A TEM image of the used 

AuNS@OAm is given in section 3.6.1 (Figure S3.6.1.1). Our aim was to examine whether fiber 

spinning with 0.3% AuNS@OAm, a volume fraction which is readily spinnable in case of 

AuNWs, is possible under conditions used for wires. We found that spheres do not form 

continuous structures at any flow rate (see Figure 3.5.3.4e and Video4, see section 3.5.6). The 

sphere-sphere contact area (that is three orders of magnitude smaller than for aligned wires) 

apparently is insufficient to create mechanically stable fibers. This reminds of the lower limit 

for molecular weight in polymer spinning: polyethylene, for example, can only be spun above 

approximately 300 kDa,41 which corresponds to a hydrocarbon chain length of ≈ 3µm and is 

on the order of the AuNW’s length.  
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The absolute polymer chain length within polymer fibers sets their mechanical strength. 

Foroughi et al.,42 for instance, reported that polypyrrole fibers increased their ultimate tensile 

strength by a factor of 5 when increasing the molecular weight of the polymer by a factor of 

7-60. They demonstrated that the mechanical strength was further improved by post spinning

drawing, a technique that increases molecular alignment and is widely used for polymer 

fibers. It increases breaking stress while reducing the elongation at break.42,43 For AuNW 

fibers, alignment by stretching is impossible, but we find that the alignment in the nozzle is 

largely retained in the fiber. Electron microscopy (insets Figure 3.5.3.4e and Figure S3.6.1.2) 

shows preferential alignment of the bundles in flow direction that increased with flow rate. 

Does this alignment increase mechanical strength as it does for polymers? 

Mechanical characterization 

We investigated the mechanical properties of AuNW fibers produced at a flow rate of 2 and 4 

L/s (“poorly-” and “well-aligned” fibers) and correlated them with the morphology. Fibers 

with diameters between 10 and 20 m were fixed in paper frames to prevent damage prior 

to uniaxial mechanical testing as depicted in Figure 3.5.3.5a. The frame was cut open once the 

fiber was fixed inside of the mechanical testing setup, and the fibers were pulled at a constant 

speed of 0.01 mm/s while the force was measured with a load cell (details on the tensile 

testing setup can be found in section 3.5.5). Typical stress-strain curves are given in Figure 

3.5.3.5b. Well-aligned fibers exhibited a breaking stress of roughly 10 MPa, 25% above that of 

poorly aligned fibers (8 MPa). The elongations at break of poorly-aligned fibers were 2.75 

times that of well-aligned fibers, which is in good agreement with structure-tensile property 

relations found for polymer fibers.42,43  
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Figure 3.5.3.5 a) Schematic depiction of sample preparation and fiber tensile testing setup. b) Typical stress-

strain curves and SEM images of a well-aligned fiber (b1), a poorly-aligned fiber (b2), and a fiber after Ar/H2 

plasma treatment (b3). c) Scheme of hierarchical structure of as-spun fibers and fibers after plasma treatment. 

d) SEM image of as-spun fiber after breaking. e) SEM image of plasma treated fiber after breaking.

The ultimate tensile strength of both fiber types was in the range of wet-spun polypyrrole 

fibers,44 non-crosslinked bulk polymers,45 and thin films of crosslinked polymers,46 but one 

order of magnitude below that of bulk gold.47 The calculated Young’s moduli were 530 MPa 

for well-aligned fibers and 240 MPa for poorly aligned fibers, two orders of magnitude below 

that of bulk gold.48 Note, however, that the fibers contained roughly 80% OAm, which is a 

liquid at room temperature. Surprisingly high mechanical strengths (ultimate tensile strength 

of 11 MPa) were also reported for membranes of 5.2 nm diameter gold spheres with 

dodecanethiol ligand layers without cross-linking.49 The authors assigned the mechanical 

strength to the interactions between intercalated ligand layers. The membranes were 

stretched on a support and at 5 % elongation the membranes showed already severe cracks, 

while our fibers sustained up to 11%. 

We believe that the hierarchical fiber structure explains their comparatively high strength. 

Electron microscopy of failed fibers revealed their internal structure (Figure 3.5.3.5d). The first 

level of hierarchy, single wires, could not be resolved by our SEM. The second level of 

hierarchy were AuNW bundles with a typical size of hundreds of nanometers. We believe that 

they are dense and connected by the intermolecular interactions between intercalating OAm 

ligand shells. Careful observation of the structure of as-spun fibers (Figure S3.6.1.2) revealed 
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a fine structure on the fiber surface with intertwined bundle-like structures. This observation 

suggested that bundles combine into a third level of hierarchy (“super-bundles”). The final 

fibers (top hierarchical level) are several microns in diameter and exhibit a rough surface. Our 

hypothesis is that AuNW bundles can be sheared apart upon strain, before the “stronger” 

multivalent bonds between adjacent wires are sheared apart until failure. The long bundle – 

or super-bundle – pulled out of the fiber upon failure seen in Figure 3.5.3.5d (marked with 

arrows) supports this hypothesis. This mechanism would be in accordance with fiber pull-out, 

a commonly described failure mechanism for fiber-materials.2 This happens because load can 

be distributed along the fiber’s radial and its longitudinal direction, efficiently using the 

enhanced contact area between anisotropic fiber features aligned in parallel. It explains why 

poorly-aligned bundles inside of a fiber reduce breaking stress and Young’s modulus of the 

fiber. The increased elongation at break on the other hand can be explained by uncoiling 

unaligned bundles prior to bundle and wire pull-out. 

We used an Ar/H2 plasma to fuse AuNWs and reduce the number of hierarchical levels. The 

plasma treatment increased the conductivity of the initally insulating fibers to around 800 

S/cm, a value that is approximately 500 times below that of monocrystalline bulk gold,45 

indicative of an interconnected metallic structure. We found no significant difference 

between the tensile properties of well-aligned and poorly-aligned fibers after the plasma 

treatment. Surprisingly, treated fibers were weaker than the original fibers (Figure 3.5.3.5b) 

with a breaking stress of 3.5 MPa, an elongation at break of 3%, and a Young’s modulus of 220 

MPa. The plasma treatment apparently disrupts the hierarchical fiber structure and causes 

the reduced fracture strength (but does not significantly change elastic behavior). Focused 

ion beam (FIB) cross-sections of plasma treated fibers (Figure 3.5.3.6) revealed an outer shell 

that appears to be organic material in backscattering images (section 3.6, Figure S3.6.1.3). 

Inside an approximately 600 nm thick gold shell of moderate porosity was found (also see 

Figure S3.6.1.4). The core appears to contain unsintered, or incompletely sintered, OAm-

covered gold wires with a number of pores. 
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Figure 3.5.3.6 SEM image of a FIB-cut through a fiber after 25 min Ar/H2 plasma treatment observed at 

52° tilt. 

The plasma seems to penetrate roughly 600 nm of the fiber and forms porous gold by OAm 

removal. A certain amount of OAm from the core flows through the pores and forms an 

organic shell. It appears that OAm accumulates at the bottom of hanging fibers, driven by 

gravity. The process destroys the hierarchical structure of the fibers. It is remarkable and 

highlights the importance of the hierarchical AuNW arrangement that the resulting structure 

is 65% weaker (in breaking stress) than the original fibers. 

3.5.4 Conclusion 

We introduced a spinning technique that yields continuous free-standing, hierarchical fibers 

from ultrathin gold nanowires at 0.2 m/s. The fiber mechanical properties depended on the 

spinning conditions that affected alignment and order in the fibers. We used them to 

demonstrate how hierarchical assembly of nanoscale building blocks can be used to create 

functional superstructures and influence their properties through process parameters. 

The spinning setup is similar to a system for solution spinning of polymers. Fiber thickness was 

tuned via the AuNW concentration in the spinning dope. The flow rate of spinning dope in the 

nozzle had to exceed a critical value to enable spinning; it also determined the fiber 

morphology and tensile strength. We found at least three levels of hierarchy in the fibers; 

lower flow rates induced disorder on higher hierarchical levels. Disordered fibers displayed 

greater elongations at break, while well-aligned fibers exhibited higher breaking stresses. 

Plasma treatment of the fibers generated roughly 600 nm thick, porous, but continuous gold 

shells by fusing single nanowires and thereby reducing the number of hierarchical levels. The 
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treatment had detrimental effects on the tensile properties, demonstrating the importance 

of hierarchy for the mechanical properties of our system.  

The method we present here relies on interactions between the colloids’ surface chemistry 

and is therefore not restricted to gold wires. Other nanowires that carry OAm or other ligands 

with moderate to strong attractive interactions could be spun into hierarchical fibers in the 

same manner. The resulting fibers would be interesting sensor elements, because they are 

dominated by interfaces and are easy to contact electrically. We are working on ligand shells 

that are electrically conductive or can be cross-linked after spinning to further increase the 

strength of the fibers. 

3.5.5 Materials and methods 

AuNW synthesis 

The synthesis protocol was adapted from Feng and coworkers.19 Briefly, 200 mg of 

HAuCl4·3H2O were dissolved in a mixture of 30.7 mL of n-hexane (99%, ABCR, Germany) and 

9.3 mL of oleylamine (technical grade, 70%, Sigma-Aldrich, Germany), then 13.1 mL of 

triisopropylsilane (98%, ABCR, Germany) were added. The solution was kept undisturbed to 

react under argon atmosphere within 16 h at 20 °C. As-synthesized AuNWs were purified by 

twofold precipitation with an excess of ethanol (99.8%, Sigma-Aldrich, Germany) and 

subsequent redispersion in cyclohexane (≥ 99%, Sigma-Aldrich, Germany). After the second 

precipitation, a volume of cyclohexane equivalent to 1, 0.4, 0.2, 0.13 and 0.1 of the reaction 

volume was added to obtain volume fractions of 0.12%, 0.31%, 0.62%, 0.93% and 1.24%, 

respectively. Note that the volume of the surrounding ligand layer was considered for the 

calculation of the volume fraction. 

AuNS synthesis 

Gold nanospheres with a diameter of 3.2 nm were produced using a synthesis adapted from 

Wu and coworkers.51 Briefly, 100 mg of HAuCl4·3H2O were dissolved in a mixture of 8 mL of n-

pentane (99%, Sigma-Aldrich, Germany) and 8 mL oleylamine. The solution was stirred at 20 

°C under Ar for 1 h before 40 mg of tert-butylamine borane (97%, ABCR, Germany) dissolved 

in 2 mL of n-pentane and 2 mL of oleylamine, were added. The solution was stirred at 20 °C 

under Ar for 1 h and subsequently purified by repeated precipitation with an excess of ethanol 

and subsequent redispersion in cyclohexane to yield a final particle concentration of 5 mg/mL, 

which corresponds to a particle volume fraction of 0.3%. 
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AuNW fiber production: AuNW fibers were produced using the setup that is sketched in Figure 

3.5.3.2a. An AuNW dispersion in cyclohexane was injected via a glass nozzle (hollow round 

glass capillary ID 0.05mm, OD 0.08mm, CM scientific, United Kingdom) with an inner diameter 

of approx. 75 µm (determined by optical microscopy) in an ethanol bath. The nozzle tip was 

immersed at least 7 mm deep into the ethanol bath and kept at least 5 mm above the bottom 

of the bath. The nozzle was connected to a gas-tight glass syringe (Hamilton, Switzerland) 

filled with AuNWs in cyclohexane via standard HPLC fluorinated ethylene propylene tubing 

(0.8 mm inner diameter). The flow of AuNWs in cyclohexane was controlled with a syringe 

pump type “NEMESYS” (Cetoni, Germany) and initiated with the nozzle submerged in the 

ethanol bath. 10 - 20 s after the flow was started, the nozzle was drawn across the ethanol 

bath at constant speed using a film applicator (TQC, Germany). The speed was slightly below 

the average dope flow velocity to avoid fiber tearing. Between experiments, the nozzle was 

kept in chloroform (≥ 99.8%, Sigma-Aldrich, Germany) to prevent clogging. Fibers were picked 

up with tweezers and pulled through the ethanol-air interface. They were collected either as 

free-standing fibers in paper frames or between metal bars, or on silicon wafers or microscopy 

slides for further investigation. 

Plasma treatment of as-spun AuNW fibers 

As-spun fibers were treated for 25 min in a 13.56 MHz RF (100 W) PICO plasma system (Diener 

electronic, Germany) in a 0.3 mbar Ar/H2 (95/5, v/v) atmosphere. 

Characterization and SAXS data analysis 

0.8 µl of a 0.12 vol.% AuNW dispersion in cyclohexane was left to dry on a 400-mesh carbon 

coated copper grid (Plano, Germany). The dry sample was then analyzed in a transmission 

electron microscope type JEM 2010 (JEOL, Germany) operating at 200 kV. 

To determine the wire-wire distance in AuNW-bundles formed by precipitation with ethanol, 

the precipitate was placed on a KaptonTM sheet to be analyzed in a laboratory scale SAXS 

machine (XEUSS 2.0 from XENOCS SA, France) equipped with a CuK X-ray source and a 

PILATUS3 R 1M (DECTRIS, Switzerland) X-ray area detector. Flowing AuNWs and AuNW-

bundles were analyzed in situ in a round capillary (0.9 mm inner diameter) mounted in the 

same machine as schematically depicted in Figure 3.5.3.4b. We used the same syringe pump 

and tubing for the fiber spinning and to record SAXS patterns. For every measurement, 6 – 50 
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detector images with an acquisition time of 60 s were summed up and divided by the total 

acquisition time. 

The wire-wire (d) distance was extracted from the position of the SAXS Bragg peaks 

corresponding to the relation of the peak position qmax(h, k) in scattering patterns of 2D 

hexagonal lattices and the Miller indices (h, k)52 

 qmaxh, k ସగ

√ଷௗ
√ℎଶ + 𝑘ଶ + ℎ𝑘 (eq. 3.5.5.1)

2D SAXS patterns were analyzed by means of eq. (3.5.3.2). The orientational distribution of 

anisotropic scatterers (Figure 3.5.3.4c) was reconstructed by fitting the integral in eq. 

(3.5.3.2). A Pseudo-Voigt function, which is a weighted sum of a Gaussian and Lorentzian 

distribution functions, was used to parametrize the orientational distribution f(). A Python 

script used the NumPy package and the lmfit library to find the optimal peak parameters to 

fit the integral in eq. (3.5.3.2).  

The nematic order parameter S, defined by eq. (3.5.3.4) and represented in Figure 3.5.3.4d, 

was calculated from the orientational distribution of anisotropic scatterers f() by performing 

the average 

 𝑆 = ∫ 𝑓
ഏ

మ
଴

(𝜗)
ଷୡ୭ୱమణିଵ

ଶ
sin𝜗d𝜗,  (eq. 3.5.5.2) 

where the fitted distribution has been normalized, 

 ∫ 𝑓
ഏ

మ
଴

(𝜗)𝑠𝑖𝑛𝜗𝑑𝜗 = 1.  (eq. 3.5.5.3) 

Scanning electron micrographs (except the cross-section micrographs) were recorded with a 

Quanta 400 ESEM (FEI, Germany) in secondary and backscattering mode. The cross-section of 

plasma treated AuNW-fibers in Figure 3.5.3.6, Figure S3.6.1.3 and Figure S3.6.1.4 were imaged 

using a Versa 3D DualBeam microscope (FEI, Oregon, USA) after cutting it open with a Focused 

Ga+ Ion Beam (FIB). We protected one fiber (Figure S3.6.1.4) by a 100 nm platinum layer 

deposited from the gas phase. A second fiber was left untreated (Figure 3.5.3.6 and Figure 

S3.6.1.3). A trench was cut into the fibers by a Ga+ ion beam operated at 30 kV with a current 

of 500 pA. The cut was then polished at 30 kV with a current of 100 pA. SEM images of the 
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cross-section of both the platinum protected and the unprotected fiber were taken at a tilt-

angle of 52°. 

AFM images were acquired in the tapping mode using a NanoWizard3 (JPK Instruments, 

Germany). 

Tensile testing was performed with the setup depicted in Figure 3.5.3.5a. According to a 

standard preparation method53 fibers were attached to paper frames with a 0.5 cm gauge 

length, which were then clamped inside of the testing setup, and aligned using a Hexapod H-

206 precision alignment system (Physik instrumente, Germany). The paper frame was cut 

open and the fibers were pulled apart with a constant speed of 0.01 mm/s until fiber breakage 

while the force was measured using a 0.5 N load cell (ME Messsysteme, Germany) that was 

manually calibrated prior to use. All tests were performed at 20 °C. The elongation at break 

was calculated by dividing the length of the fiber in pulling direction when failure occured by 

the tested fiber length. The breaking stress was derived from the force measured before 

failure, divided by the fiber cross section area before the measurement. The Young’s modulus 

was extracted from the slope of the linear section of the fiber’s stress-strain curve. 

3.5.6 Associated contents 

The following videos are available free of charge on the ACS Publications website at 

DOI: 10.1021/acsnano.7b01551. 

 Video 1: fast fiber spinning, 450 mmps, shown at 25% of its original speed (MPG)
 Video 2: fiber collection (MPG)
 Video 3: spinning at 9 mmps (MPG)
 Video 4: spinning process when injecting spherical nanoparticles into ethanol (MPG)
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3 Results and discussion 

3.6 Supporting Information: Spinning hierarchical gold nanowire microfibers 

by shear alignment and intermolecular self-assembly 

3.6.1 Supplementary figures  

Figure S3.6.1.1 Transmission electron micrograph of oleylamine-capped gold nanospheres 

(AuNS@OAm). 

Figure S3.6.1.2 Scanning electron micrographs of AuNW fibers spun at flow speeds of a) 4 µL/s and b) 

2 µL/s.  
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Figure S3.6.1.3 a) Scanning electron micrographs of a fiber cross-section after 25 min of Ar/H2 plasma 

treatment. a) Overview image taken at 52° tilt. Detail images taken at 32° tilt: b) secondary electron 

detector image and c) backscattering detector image.  

 

 

Figure S3.6.1.4 False-color scanning electron micrograph of a cross-section obtained by Focused Ion 

Beam (FIB) milling of a gold nanowire-fiber after 25 min Ar/H2 plasma treatment. Size measurements in 

the image are corrected for the tilting angle (52°). 
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4 Contribution to the state of the art 

This thesis demonstrates the bottom-up fabrication of hybrid nanomaterials by colloidal self-

assembly and shows possible ways for the technical implementation of the method. For that 

purpose, dispersions of gold nano-objects with organic shells – the hybrid inks – were used to 

achieve solution-based material fabrication. Two chosen cases were implemented: sinter-free 

conductive hybrid inks for the deposition of conductive paths and fibers spun from hybrid 

nanowire inks, analogous to solution-spun polymers. 

In this thesis, the hybrid approach was beneficial because it allowed tailoring of the material 

properties in two ways, namely 

a) by determining the superstructure formed by processing the ink, because the ligands 

form the interface between the nano-object and the dispersant medium and 

therefore can determine colloidal interactions and 

b) by forming the (soft) interface between the nano-objects in the dry hybrid material. 
 
 

Therefore it was possible to make hybrid materials with very different properties from the 

same inorganic core material simply by adapting the ligand shell. To exploit this approach,  

I. colloidal stabilization and controlled destabilization as a result of the ligand/solvent 

interaction was studied and controlled; 

II. material fabrication from inks was achieved based on these studies, and 

III. the influence of the ligand shell on material properties was investigated and tailored. 
 

The contribution of this work to each of these three aspects is explained in detail in the 

following: 

I. With the hybrid approach chosen in this thesis, colloidal stabilization and 

destabilization can be controlled by the ligand/solvent interaction. This offers two 

different possibilities to tune colloidal stability, adapting the ligand shell to a certain 

solvent, and adapting the solvent to a given ligand. Both approaches have been 

successfully employed in this work.        

 The first option was exploited by systematic ligand exchange to attach the 

optimal ligand to colloidal gold nanorods to create water-based, sinter-free 

conductive inks. Their synthesis via a well-established protocol providing good control 

over size and shape dispersity uses a ligand which is unsuitable for the desired 
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application. However, a subsequent ligand exchange step enabled adjustment of 

colloidal stability, ligand binding strength and the electrical conductivity of the final 

material. These properties needed to be improved to create an ink for printing 

conductive lines and structures that – unlike current state-of-the-art systems – does 

not require any sintering step. A conjugated polythiophene-derivative with a sulfonate 

group in its side chain was identified as a suitable ligand, which was confirmed by a 

series of experiments. The experiments proved the ligand’s excellent resistance to 

detachment due to its multidentate binding motif, while the sulfonate group in the 

side chain provided very good colloidal stability in polar solvents and solvent mixtures. 

Colloidal stabilization was good enough to stabilize high mass fractions of colloids in 

water – with or without the addition of non-aqueous co-solvents – and rheology-

modifying additives.         

 The second option to tune the dispersion characteristics, adapting the solvent, 

was exploited to optimize the bundling behavior of oleylamine (OAm) capped ultrathin 

gold nanowires (AuNWs). These hybrid nano-objects are characterized by a very high 

aspect ratio (>1000) and a very high organic volume fraction of approximately 80%. 

Their unique shape resembles that of linear polymers, and their thick organic shell 

dominates their assembly behavior. Such ultrathin wires combine strong curvature, 

leaving room for solvent interpenetration and solvent interaction, with an enhanced 

contact area on their surface. Enhanced contact area increases the interaction 

strength along the contact lines between wires interacting in parallel, comparable to 

a multidentate binding motif. This explains the wires’ strong intrinsic tendency to form 

wire bundles.           

 It has been one of the aims of this thesis to test how far their behavior can be 

explained using concepts known from supramolecular chemistry. This has been 

achieved by investigating their solvent-dependent assembly behavior. As shown, weak 

intermolecular interactions between ligand and solvent molecules could explain the 

solvent-dependent bundling behavior and kinetics, which is a strong hint to support 

the hypothesis that AuNWs behave similar to supramolecular objects. In fact, the 

observed effect was so strong that supramolecular assemblies were also predicted to 

influence wire formation. This assumption was confirmed by the occurrence of more 

shape impurities formed when employing less suitable solvents for wire growth. In 

summary, I presented the first report on the solvent-dependent assembly behavior of 
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AuNWs and proposed the concept of supramolecular multivalency to understand the 

colloidal interactions between nanowires. 
 

II. The insights mentioned in the above paragraph were then used to perform material 

fabrication from inks. It was the aim to achieve good colloidal stability for the ink 

during processing. The assembly of the colloids in the ink into the hybrid materials 

should only either start upon solvent evaporation or upon a designed trigger. 

 The good colloidal stabilization of the gold nanorods provided by the 

conjugated polythiophene shell enabled the formulation of processable inkjet inks. 

According to predictions of jettability based on the Ohnesorge number, an ink 

composition embodiment with adjusted fluid properties was identified as jettable 

with commercial printing heads. Further on single nano-objects were small enough 

and well-stabilized enough to avoid agglomeration during printing so that nozzle 

clogging would not be expected. These criteria could pave the way to producing 

electrical circuits and other functional structures via well-established inkjet printing.

  On the other hand, AuNWs and their supramolecular, solvent-dependent 

assembly characteristic were used to demonstrate the feasibility of using a colloidal 

ink for material production by a method that has not yet been used for colloids but 

exploits their polymer-like behavior: solution spinning. The method exploits the wires’ 

controlled precipitation by rapidly changing the solvent quality for the wires. While 

wires are readily dispersible in cyclohexane, they tend to form bundles slowly, for 

instance in n-hexane. Rapid bundling is achieved by using ethanol as a solvent or 

adding an excess of ethanol to a dispersion of wires in cyclohexane or n-hexane. 

Exploiting this behavior, wires dispersed in cyclohexane were injected into an ethanol 

bath through a 75 µm (inner diameter) nozzle. Hexagonal bundles were formed very 

quickly, which even allowed the fixation of a previously induced orientation of the 

ultrathin gold nanowires. This phenomenon could be used for the controlled 

formation of directional colloidal superstructures. Using a setup inspired by polymer 

spinning, fibers could be spun at high speeds that were limited only by the technical 

restrictions of the apparatus built in-house. This resulted in the first hybrid fibers spun 

from colloidal nano-objects using a setup that mimics an industrial process. 
 

III. In both, the hybrid inkjet ink and the spun hybrid fibers, it was further shown that the 

organic shell significantly influences the properties of the dry material.  
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 Drying a dispersion of gold nanorods with their organic conjugated polymer, 

which binds directly to the nanorod with its conjugated polymer backbone – the 

hybrid ink – led directly to conductive structures, whereas an ink of the same particle 

core with a shell of a non-conjugated polymer yielded insulating structures. The 

insulating structures only became conductive after a 30 min H2/Ar plasma treatment, 

which removed the organic shell. Hence, the polythiophene-AuNR hybrid ink 

developed in this thesis overcomes the trade-off between colloidal stability and 

sintering effort because it is stable and requires no sintering. It is the first contribution 

to use a conjugated polymer/metal nano-object hybrid concept to formulate inkjet 

printable inks with long-term stability that achieve good conductivities directly after 

drying.          

 While the ligand provides an electrical connection in the dry, sinter-free ink, 

the ligand of the AuNWs provides mechanical interdigitation, which lends the fibers 

structural integrity. This integrity was also shown to depend on the spinning process 

parameters. Only above a minimum shear rate in the injection nozzle were continuous 

fibers obtained. Tensile tests in fiber direction revealed two main findings: first, with 

increasing wire-ink shear rate during spinning (which increases the degree of wire 

monomer alignment) fibers resist higher stresses but failure occurs at lower strains. 

Second, their Young’s modulus resembles that of organic materials rather than metals, 

indicating that the elastic behavior of oleylamine-gold hybrid fibers is dominated by 

their soft ligand shell. It is the first contribution to describe process-structure-property 

relations of hybrid materials obtained by colloidal self-assembly and demonstrates the 

importance of the ligand shell for the mechanical properties of this kind of hybrid 

materials. 
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5 Conclusion 

This thesis deals with several implications of the surface chemistry of colloids in the bottom-

up fabrication of mechanically connected and electrically conductive hybrid materials by wet-

processing techniques. It shows that, starting from the wet-chemical synthesis of the colloids, 

the ligands and their interaction with the dispersant medium play an important role. A 

primary insight is that careful tailoring of the ligand/solvent interface can lead to a high degree 

of control over colloidal interactions. Hence, for the rational design of the interface, both 

ligand and solvent are important. This has been shown by two applications implemented for 

colloidal inks: water-based sinter-free conductive inks and hierarchical fibers spun analogous 

to solution-spun polymers. In the first case, the ligand was tailored for the solvent 

composition of choice, and in the second case the solvent was adjusted to control stabilization 

and destabilization of AuNWs capped by oleylamine. 

Inkjet printing is well-established for color inks but is gaining importance in the additive 

manufacturing of electronic components. Here the trade-off between colloidal stability and 

ease of forming electrically conductive contacts using metal nano-object inks was addressed 

by adapting the ligand shell for low-toxicity water-based formulations. 

A ligand shell that enables the formation of electrically conductive contacts directly after 

solvent evaporation eliminated the need for any sintering effort. It is thus an example for the 

effectiveness of careful design of the ligand/solvent interaction for simple processing of 

colloidal nano-objects. At the same time, this example showed that the importance of the 

ligand shell goes beyond processability and has a major impact on material properties. 

Gold nanowires assembled into defined fibrous superstructures when exchanging the solvent. 

External shear stress caused nanowire alignment. A combination of both structure-directing 

effects was achieved by rapidly injecting a dispersion of nanowires in cyclohexane into 

ethanol. The dispersed wires aligned in the injection nozzle and were then rapidly precipitated 

by the ethanol. Based on the understanding of the interaction between ligand and solvent, 

complex functional hybrid structures were achieved with the simplicity of wet-processing 

approaches known from commercial polymer spinning. This presents an important step 

towards the technical implementation of colloidal self-assembly processes. 
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In both material embodiments obtained by processing colloidal inks, a careful study of the 

ligand/solvent interaction for a specific application, and improvements made thereupon 

constituted major improvements to the state of the art. 

In both exemplary hybrid materials that were obtained by processing colloidal inks a careful 

study of the ligand-solvent interplay towards a specific application were demonstrated to 

constitute major improvements to the state of the art. 

6 Outlook 

It would be highly desirable to adapt the concepts developed in this thesis to other systems 

and applications. The rod shape and unique optical properties of gold nanorods could be used 

to deposit aligned rods to minimize particle/particle interfaces while monitoring alignment 

with an optical on-line analysis setup. Furthermore, the chemical inertness of gold makes the 

hybrid ink a promising candidate for the circuitry of medical sensing devices that can be 

applied in vivo. It would also be worthwhile to test the applicability of the hybrid concept to 

other conducting or semi-conducting cores. The concept could, for instance, help to improve 

the performance of all solution-deposited devices that rely on charge injection- and/or charge 

extraction-like field effect transistors, photodetectors or solar cells. 

Similarly, it would be interesting to try to spin fibers from ultrathin wires of other cores like 

semiconductors to explore their applicability as sensor elements because of the large surface 

area accessible on such fibers. From a more fundamental standpoint, it would also be 

worthwhile to investigate the influence of other ligands on the spinnability and/or the use of 

ligands that are susceptible to other assembly triggers. One possibility would be the 

introduction of azobenzene moieties that switch their conformation with the wavelength of 

light with which they are illuminated. Furthermore, it would be interesting to study the 

dependence of fiber tensile strength on the type of ligand which mechanically connects the 

fiber. 

More generally speaking, further studies towards understanding ligand shells at a molecular 

level and predicting colloidal behavior thereupon are highly recommended. These could make 

simple colloidal self-assembly methods a viable pathway towards a huge variety of hybrid 

materials with minimal process development effort. 
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7 Appendix 

7.1 Abbreviations and symbols 

2D 2-dimensional

3D 3-dimensional

A Hamaker constant 

a Characteristic length 

AFM  Atomic force microscopy  

ATR  Attenuated total reflectance 

AuNR(s) Gold nanorod(s) 

AuNR@CTAB Gold nanorods capped by Cetyltrimethylammonium-bromide (the @ 

connection is also used for other nano-object/ligand combinations) 

AuNS Gold nanospheres 

AuNW(s) Ultrathin gold nanowire(s) 

CNT(s) Carbon nanotube(s) 

CTAB Cetyltrimethylammonium-Bromide 

D Diameter 

d Distance 

DLVO Derjaguin Landau Verwey Overbeek 

EDTA Ethylenediaminetetraacetic acid 

eq. Equation 

F Force 

f() Orientational distribution function 

FIB Focused ion beam 

FTIR Fourier transform infrared 

 Ligand surface grafting density 

 Surface tension 

Gf Geometrical factor 

 Viscosity 

h, k Miller indices 

HSAB Hard Soft Acid Base 
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ICP-MS   Inductively coupled plasma mass spectrometry 

LED(s)   Light-emitting diode(s) 

L-LSPR   Longitudinal localized surface plasmon resonance 

MD   Molecular dynamics 

OAc   Oleic acid 

OAm   Oleylamine 

Oh   Ohnesorge number 

P3HT   Poly-(3-hexylthiophene) 

PDMS   Polydimethylsiloxane 

PEDOT:PSS  Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate  

PEG-SH  Thiolated polyethylene glycol /      
O-[2-(3-mercaptopropionylamino)ethyl]-O′-methylpolyethylene glycol 

PTEBS   Poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate)] 

q   Scattering vector 

   Density 

RFID   Radio frequency identification 

RI   Refractive index 

S   Nematic order parameter 

SAM(s)   Self-assembled monolayer(s) 

SAXS   Small angle X-ray scattering 

SEM   Scanning electron microscopy 

SERS   Surface enhanced raman scattering 

SPR   Surface plasmon resonance 

TEM   Transmission electron microscopy  

TGA   Thermogravimetric analysis  

T-LSPR   Transversal localized surface plasmon resonance 

UV-vis   Ultraviolet-visible 

v.d.W.   Van der Waals 
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7.2 Scientific contributions 
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7.2.2 Patent applications 

(2) Conductive nanocomposites 

Inventors: B. Reiser, T. Kraus, L. González-García, J. H. M. Maurer and I. Kanelidis; 

Original Assignee: Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh;  

File reference: WO2017045989A1;             

Priority date: 2015-09-15 

(1) Method for producing structured surfaces 
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12.2015 4th Nano Today Conference, Dubai, UAE 
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