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Abstract

Today, a wide scope for 3D graphics applications exists, including domains such as scientific

visualization, 3D-enabled web pages, and entertainment. At the same time, the devices and

platforms that run and display the applications are more heterogeneous than ever. Display

environments range from mobile devices to desktop systems and ultimately to distributed dis-

plays that facilitate collaborative interaction. While the capability of the client devices may

vary considerably, the visualization experiences running on them should be consistent. The

field of application should dictate how and on what devices users access the application, not

the technical requirements to realize the 3D output.

The goal of this thesis is to examine the diverse challenges involved in providing consistent and

scalable visualization experiences to heterogeneous computing platforms and display setups.

While we could not address the myriad of possible use cases, we developed a comprehensive

set of rendering architectures in the major domains of scientific and medical visualization, web-

based 3D applications, and movie virtual production. To provide the required service quality,

performance, and scalability for different client devices and displays, our architectures focus on

the efficient utilization and combination of the available client, server, and network resources.

We present innovative solutions that incorporate methods for hybrid and distributed rendering

as well as means to manage data sets and stream rendering results. We establish the browser

as a promising platform for accessible and portable visualization services. We collaborated

with experts from the medical field and the movie industry to evaluate the usability of our

technology in real-world scenarios.

The presented architectures achieve a wide coverage of display and rendering setups and at the

same time share major components and concepts. Thus, they build a strong foundation for a

unified system that supports a variety of use cases.





Zusammenfassung

Heutzutage existiert ein großer Anwendungsbereich für 3D-Grafikapplikationen wie wis-

senschaftliche Visualisierungen, 3D-Inhalte in Webseiten, und Unterhaltungssoftware. Gle-

ichzeitig sind die Geräte und Plattformen, welche die Anwendungen ausführen und anzeigen,

heterogener als je zuvor. Anzeigegeräte reichen von mobilen Geräten zu Desktop-Systemen

bis hin zu verteilten Bildschirmumgebungen, die eine kollaborative Anwendung begünstigen.

Während die Leistungsfähigkeit der Geräte stark schwanken kann, sollten die dort laufenden

Visualisierungen konsistent sein. Das Anwendungsfeld sollte bestimmen, wie und auf welchem

Gerät Benutzer auf die Anwendung zugreifen, nicht die technischen Voraussetzungen zur Erzeu-

gung der 3D-Grafik.

Das Ziel dieser Thesis ist es, die diversen Herausforderungen zu untersuchen, die bei der Bereit-

stellung von konsistenten und skalierbaren Visualisierungsanwendungen auf heterogenen Plat-

tformen eine Rolle spielen. Während wir nicht die Vielzahl an möglichen Anwendungsfällen

abdecken konnten, haben wir eine repräsentative Auswahl an Rendering-Architekturen in den

Kernbereichen wissenschaftliche Visualisierung, web-basierte 3D-Anwendungen, und virtuelle

Filmproduktion entwickelt. Um die geforderte Qualität, Leistung, und Skalierbarkeit für ver-

schiedene Client-Geräte und -Anzeigen zu gewährleisten, fokussieren sich unsere Architekturen

auf die effiziente Nutzung und Kombination der verfügbaren Client-, Server-, und Netzwerkres-

sourcen. Wir präsentieren innovative Lösungen, die hybrides und verteiltes Rendering als auch

das Verwalten der Datensätze und Streaming der 3D-Ausgabe umfassen. Wir etablieren den

Web-Browser als vielversprechende Plattform für zugängliche und portierbare Visualisierungs-

dienste. Um die Verwendbarkeit unserer Technologie in realitätsnahen Szenarien zu testen,

haben wir mit Experten aus der Medizin und Filmindustrie zusammengearbeitet.

Unsere Architekturen erreichen eine umfassende Abdeckung von Anzeige- und Rendering-

Szenarien und teilen sich gleichzeitig wesentliche Komponenten und Konzepte. Sie bilden daher

eine starke Grundlage für ein einheitliches System, das eine Vielzahl an Anwendungsfällen un-

terstützt.
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Chapter 1

Introduction

1.1 Scope

Today, a huge demand for various kinds of 3D graphics applications exists. The focus in this

thesis is on interactive applications that aim to provide immediate feedback to user input or

scene and parameter changes, optimally in real-time at 25 frames per second (FPS) or higher.

With the rapid evolution of computer hardware, the size of data sets generated from acquisition

techniques, measurements, and simulations grows continuously [YWG+10]. Visualization is

essential and in some cases mandatory to analyze and interpret the vast amount of information

contained in the data sets. There is a wide variety of applications. In the medical field [PB13],

the visualization of patient data, for example obtained from a CT-scan, can aid in diagnosis

and decision making [BTJ+13]. Other applications are the analysis of molecules in biology

or chemistry [MHLK06, MDG+10], flow and fluid simulation [Krü07, RCSW14], and terrain

visualization [DKW09].

Further, the visualization of technical systems, manufacturing plants, architecture, or produc-

tion processes supports the monitoring, analysis, and planning of either existing or upcoming

installations [PV06, Yan06, GGH12, BBB+14]. The automotive industry uses visualization

techniques to drive design decisions or to simulate the properties of a car [SE01, BWDS02], for

example in a crash scenario.

While scientific and technical visualization applications deal with a specific set of target users,

there are more common use cases accessible to a broader audience. These include virtual envi-

ronments, training applications like flight simulators, 3D maps, serious games, and educational

content. For example, imagine a Wikipedia page that provides a 3D model of a city for visitors

to explore.
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In the entertainment sector, video games saw a boom with the advent of mobile tablet and

smartphone devices capable of 3D rendering. Also, there are special effects in the movie and

TV industry and even entirely computer-generated movies. Adding and finalizing special effects

has traditionally been a process performed after filming using high-quality offline ray-tracing.

But there is a trend and demand to already incorporate interactive rendering on the set to

increase the flexibility in the creative collaboration of directors, actors, designers, and computer

generated imagery (CGI) experts [GHJ+16]. The integration of ray-tracing in games is of further

interest [FGD+06, Bik07, KKW+13].

At the same time, the heterogeneity in the devices and platforms that can run and display 3D

applications is higher than ever today. In addition to the desktop computers and workstations in

use throughout homes, offices, and research institutions, the spread of tablets and smartphones

has put devices capable to display and to some extent render 3D graphics in use virtually

anywhere and anytime. Further, there are large displays or tiled display walls that provide

content to a larger, potentially public audience or aid in the collaborative examination of data

sets at extremely high resolutions [TSK11, LPHS12].

While native applications may be maintained for each target platform independently, browsers

continuously increase the capabilities they provide, including 3D graphics, media processing,

and networking [TS15, MAN+14]. This enables the development and deployment of portable

applications in standard web pages that users can access from anywhere.

To generate and provide the data for visualizations and to perform or support expensive render-

ing tasks, servers and data centers can provide services for less capable clients [TS16, Ama16].

However, a centralized cloud at the core of the network may impose considerable latency to

clients that are geographically far away. Fog computing [BMZA12] reduces the dependence

on the cloud as it places location-aware resources close to the client devices, thus facilitating

latency-sensitive applications such as interactive rendering.

To conclude, there is a huge demand and also opportunity for 3D applications in various

areas, which we define as “Ubiquitous 3D”. To tackle the heterogeneous requirements, we must

investigate different kinds of rendering architectures, display setups, and methods of interaction.

A scientific visualization of a medical data set may require volume rendering [FK10, BTJ+13],

while a rasterizer is adequate for a simpler illustration of an architectural model [SDHS13].

To judge the effects of realistic lighting on a movie set, a ray-tracer producing physically

correct images may be employed [GHJ+16]. Some applications may target a single user on

a desktop workstation, others may allow collaborative scene editing via mobile devices, and

still others may present content in public on a large display or display wall [TSK11]. There

are augmented reality applications [KRS+13] and applications designed for stereoscopic and
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virtual reality (VR) displays [PZB16] where ultra-low latency feedback is mandatory, again

requiring a dedicated methodology for rendering and interaction. Rendering may be performed

on the display device, remotely on a server or server farm, or even on both sides in a hybrid

fashion [TK14].

The vision of this thesis is a compute continuum [DJX14] that utilizes the available client,

server, and network resources to provide consistent and scalable visualization experiences across

heterogeneous display devices. While we could not cover all the use cases and application

areas, we set out to develop and analyze a comprehensive set of rendering architectures and

methods in the scope of ubiquitous 3D. We address a wide range of display platforms and

collaborated with experts from the medical and movie field to evaluate the applicability of the

solutions in real-world scenarios. Contributions involve visualization on large, tiled displays

(Chapter 2), medical visualization on mobile devices (Chapter 3), hybrid visualization utilizing

client and server machines (Chapter 4), visualization and 3D applications using the browser

as the platform (Chapter 5), and a framework for server-based and distributed rendering that

supports real-time ray-tracing and load balancing (Chapter 6 and 7).

1.2 Challenges

“Ubiquitous 3D” is a term that involves a substantial number of use cases and challenges across

different kinds of rendering architectures. We first give a general description of the challenges

and then introduce the thesis contributions to address them. We can separate the challenges

into the following areas.

Rendering

In an interactive context, a renderer must not only uphold a minimum image quality as required

by the visualization application, it must also provide this quality at interactive or even real-time

frame rates. We consider 25 FPS and above as real-time. Given the possible complexity and

size of 3D scenes and data sets generated today, this can put a strong performance requirement

on the renderer and the hardware it is running on. Not all devices that shall display the

visualization may have the capability to process or even fully store a data set. Some devices

may not be able to run a specific rendering algorithm due to the limitations of the hard- or

software environment. Especially mobile devices may suffer from such limitations. In case of

the browser as the execution platform, persistent storage is restricted and rendering algorithms

are bound by the limited subset of OpenGL that WebGL [Khr17c] provides. The features

of JavaScript (JS) are constrained by the the secured browser environment [YSD+09], while

native code has direct access to the operating system and any external library. JS performance
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still lacks behind native code in some cases, especially for parallel applications [KFBK+14].

In a future exascale scenario, it may not even be feasible to download simulation data from

a supercomputer. Instead, the supercomputer may generate and visualize the data sets in-

situ [Ma09, YWG+10]. Lastly, the scenes or data sets may be confidential, which prohibits a

download for local rendering on the display devices.

A solution for these restrictions is to move the heavy lifting to a stronger remote machine that

is better suited for the task. A server can maintain the data sets, perform rendering, and send

generated images to the client for display [TS15]. In this setup, the client acts as the user

interface only and requirements on the hard- and software environment are typically minimal.

However, a single server might not be able to provide the desired level of service to multiple

clients that connect simultaneously. To increase the scalability, considerable investments in

hardware and the deployment of multiple servers may be necessary depending on the number

of target users and the demands of the visualization. Today, large-scale cloud computing

services exist that support rendering among other applications [Mic16, Ama16, NVI16a].

An approach to tackle the scalability issue is to employ hybrid rendering [TK14]. While the

server component is necessary to provide large-scale visualization to common devices, a purely

server-based setup leaves a considerable amount of hardware idle on the client side. Today,

even commodity mobile devices usually have the capabilities to perform rendering tasks to some

degree. In hybrid rendering, server and client work together to generate results. This requires

to split the rendering process into pieces of work and assigning these pieces appropriately to

both sides. Performing some tasks on the client can increase the overall performance of the

visualization and frees server-side resources for other clients. The client hardware is available

without additional investment from the server provider.

Still, the visualization of potentially large scenes at very high quality, either by employing an

expensive rendering algorithm like ray-tracing or by increasing the display resolution, can put a

server machine under much pressure even for a single client. To uphold interactive frame rates,

the distribution of rendering tasks to a cluster of servers may be required [TS16, GHJ+16].

The crucial process to scale a renderer on such an architecture is load balancing [TS16]. The

load balancer aims to split tasks in a way that achieves maximum utilization of all participants

during the collaborative rendering of a frame.

Network

While remote and distributed rendering can overcome client limitations, it adds the network

as another layer that must be able to keep up with the desired frame rate and rendering

resolution. The server must send the images it produces to the client for display. Should the

client participate in the rendering, it must receive the scene data the server stores or even
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generates. A client running in the browser must perform the download each time it connects,

since the browser does not allow to store large binary data persistently [TS16]. Vice versa, the

client must forward user input such as moving the camera and other possible scene changes

to the server. A collaborative application may require scene synchronization between several

parties. When rendering in a cluster, scene data and updates must be distributed to the

nodes, the distributed rendering process must be coordinated, and rendering results must be

assembled.

Consequently, the chosen network protocol and the connection latency, bandwidth, and re-

liability can substantially impact the quality and responsiveness of the visualization. These

considerations are especially important when there is potentially an unreliable best-effort net-

work like the Internet or a wireless link between client and server. Allowing the client-side

generation of images in a hybrid rendering approach is one way to reduce the dependency on

the network.

Further, the compression of scene data and images is crucial to reduce the required band-

width [SSS14, TS15], but there is a tradeoff between compression ratio and en-/decoding

overhead and latency. In addition, the use of lossy image encoders is prevalent as a feasi-

ble compression ratio can otherwise not be achieved for high resolutions. The result may be a

perceivable loss of image quality. Moreover, encryption can play a role when accessing sensitive

scene and image data stored or generated on a server via a public network.

In a rendering cluster, the nodes may send their results as raw pixel data to be accumulated

at a central master node [TS16]. This requires a dedicated high-bandwidth cluster network,

especially when images should be rendered at high resolutions. The master displays the results

directly or encodes them for sending to a display device outside the cluster. Further, finding

a load balancer that minimizes the inter-node communication to coordinate the rendering is

crucial to overcome intra-cluster network latency as a bottleneck.

Display and Interaction

While hybrid and distributed rendering frameworks can provide large-scale visualization of

highly detailed scenes and data sets, the user must be able to view and interpret the information

appropriately. The resolution of a single desktop display, let alone mobile display, might not be

adequate to capture enough details at once for a proper analysis [BN05, JAW+12]. It can even

be beneficial to display multiple views simultaneously to discover correlations in the data or to

allow several users to focus on different regions. A single user might find it hard to interpret

the data alone, which makes collaborative review an important feature.

A solution to limited resolution and space are distributed display systems [TSK11, LPHS12].
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The prime example is a display wall that aligns multiple displays to act as one large unit.

Such a system provides enough resolution and physical space to present highly detailed 3D

content to multiple individuals. The generation of content for such high-resolution displays

further increases the demands on the rendering architecture, which promotes a distributed

approach with several machines feeding the display. A synchronization layer must make sure

that results are presented seamlessly corresponding with the physical alignment of the displays

and considering possible input from multiple users. Moreover, the traditional mechanisms to

interact with a single-user desktop application do not map well to a display wall setup with

several users in front of it.

The advent of mobile devices provides an opportunity to tackle the interaction issue. Em-

ploying the smartphones and tablets that users are familiar with to interact with the display

wall increases acceptance and accessibility of such a system [TSK11]. In general, allowing

users access on mobile devices is an important concept to establish visualization systems non-

invasively into new environments, facilitate on-site usage, and lower the entry barrier for non-

experts [BTJ+13, SRCW13]. For example, a physician could review patient data at the point of

care without having to interrupt the daily routine by visiting a specialized computer laboratory.

This requires not only a simplified user interface but also the means to reliably distribute the

visualization results or data sets to the target devices in a time-critical, productive environment.

A visualization application may consist of several components including client devices, storage

and rendering servers, network infrastructure, and possibly distributed displays. To reach its

users, the application may target heterogeneous platforms for deployment and access. The

requirement to develop portable code bases and user interfaces can thus be crucial to minimize

the maintenance effort and to maximize availability.

An approach for the portable development of the client-side display application is to use the web

browser as the platform [TS15, TS16]. Modern browsers increasingly expand the functionality

they provide and are thus suitable for a range of use cases including 3D graphics. Developing an

application within web standards and functionality widely supported across browsers enables

a unified client interface running homogeneously across various devices. Users can access the

application simply by visiting a web page on the device of their choice without requiring a

platform-specific installation, which substantially improves the ease of access. However, while

browser APIs close in on the features of native libraries, they still restrict or provide a less

comprehensive access to the crucial resources storage, CPU, GPU, and networking. This poses

an additional challenge when implementing local and remote rendering support in the browser.

Summary

Table 1.1 summarizes the challenges addressed in the thesis and links to the corresponding

6



chapters. The table lists a chapter in normal text if the chapter’s core contribution targets

the corresponding problem description and in brackets if we consider the problem a secondary

topic. Some chapters also touch on areas they are not listed for or reuse parts developed earlier,

which we do not explicitly state here. While the major focus is on server-backed and scalable

rendering architectures, we also address the display and usability side. The comprehensive

coverage is in line with the vision of a compute continuum for ubiquitous 3D.

The next section outlines the core contributions of each chapter with reference to the challenges.

Table 1.1: High-level overview of the challenges addressed in the thesis.

Challenge Chapters Identifier

Rendering

Limited client capability 4, 5, 6, 7 R.1

Limited server capability

To handle multiple clients 4, (6) R.2.1

To uphold required quality and frame rate 6, 7 R.2.2

Network

Latency and unreliable link

Within rendering cluster 6 N.1.1

To display client 4 N.1.2

Limited Bandwidth

Within rendering cluster 7 N.2.1

To display client 4, 5 N.2.2

Display and Interaction

Limited space and resolution 2 DI.1

Limited usability and thus acceptance 2, 3, (5), (6), 7 DI.2

Limited portability and thus availability 5, 6 DI.3

1.3 Contributions

The thesis establishes a comprehensive set of architectures and methods in the scope of ubiq-

uitous 3D. We deal with most of the challenges described in the previous section as Table 1.1

showcases. Here, we give a summary of the contributions and reference the corresponding

publications and projects. We also derive the contributions from the corresponding problem
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statements by referencing the identifiers in Table 1.1.

Chapter 2: The ZAPP Distributed Display System

The first chapter deals with distributed displays. We describe the Zero Administration Power-

wall Package (ZAPP), which is a framework to connect several displays and run visualization

applications on the resulting larger display (DI.1). The term “powerwall” encompasses both

the rendering machines required to power the high-resolution visualization and the tiled display

wall to present the results.

While previous frameworks focus on the distributed rendering techniques needed to generate the

visualization, the main purpose of ZAPP is to improve the user, administrator, and developer

experience in dealing with distributed displays (DI.2). Even a single user with no adminis-

trative knowledge can operate a ZAPP-managed display system. The goal is that practically

anyone is capable of operating the display with less than two minutes of training. To achieve

this, we present a lightweight management framework that links and controls the render work-

stations that drive the displays but also connects to the users’ very own mobile devices, such as

smartphones or tablets, to enable convenient control over the display. Consequently, the users

never need to leave their familiar hardware and operating system environment when accessing

the display wall.

Publication: [TSK11]

Chapter 3: Mobile Visualization for the Selection of Deep Brain Stimulation

Parameters

In this chapter, the focus is on the mobile sector. In particular, we present the scientific

visualization software ImageVis 3D Mobile (IV3Dm) and its deployment in a real-world envi-

ronment to aid in the selection of parameters for the Deep Brain Stimulation (DBS) treatment

of Parkinson’s disease patients. We provided the technical backbone while the Medical College

of Wisconsin conducted the evaluation of the system.

In recent years there has been significant growth in the use of patient-specific models to predict

the effects of neuromodulation therapies such as DBS. However, translating these models from

a research environment to the everyday clinical workflow has been a challenge, primarily due to

the complexity of the models and the expertise required in specialized visualization software.

We deploy IV3Dm, which has been designed for mobile computing devices such as the iPhone

or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who

received DBS therapy. To provide new patient models to the clinicians with minimal distur-

bance of their daily routines, we developed a flexible data distribution architecture based on

instant messaging.
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Selection of DBS settings is a significant clinical challenge that requires repeated revisions to

achieve optimal therapeutic response and is often performed without any visual representation

of the stimulation system in the patient. We provided IV3Dm to movement disorders clinicians

and asked them to use the software to determine: 1) which of the four DBS electrode contacts

they would select for therapy; and 2) what stimulation settings they would choose. We com-

pared the stimulation protocol chosen from the software versus the stimulation protocol that

was chosen via clinical practice (independently of the study). Lastly, we compared the amount

of time required to reach these settings using the software versus the time required through

standard practice. We found that the stimulation settings chosen using IV3Dm were similar

to those used in standard of care but were selected in drastically less time. We show how our

visualization system, available directly at the point of care on a device familiar to the clinician,

can be used to guide clinical decision making for selection of DBS settings (DI.2).

Publication: [BTJ+13]

Chapter 4: Hybrid Rendering of Multi-Resolution Data Sets in Dynamic

Environments

In this chapter, we propose a hybrid rendering method that utilizes both server and client

resources in the interactive visualization of potentially very large data sets. It is a common

approach to represent such data sets in a hierarchical format to allow the rendering of different

levels-of-detail. While rendering at the highest resolution may take arbitrary time, the lowest

levels are intended for interactive performance. The renderer refines the view progressively with

levels of increasing detail.

When processing every level of a multi-resolution data set on the server, requirements on the

client side are minimal as the client only displays the results it receives. However, the client may

have a considerable amount of hardware available that is left idle. Further, the visualization is

put at the whim of possibly unreliable server and network conditions. Server load, bandwidth,

and latency may substantially affect the response time on the client.

Our method assigns visualization workload in terms of levels-of-detail to both server and client

and supports any renderer that can map its data accordingly. A capable client can produce

images independently (N.1.2, N.2.2). The goal is to determine a workload schedule that enables

a synergy between the two sides to provide rendering results to the user as fast as possible

(R.1, R.2.1). The algorithm generates the schedule based on processing and transfer timings

obtained at run-time. The probabilistic scheduler adapts to changing conditions by shifting

levels between server and client and accounts for the performance variability in the dynamic

environment.
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Publications: [TFK12, TK14]

Chapter 5: The Browser as the Platform for Remote Visualization

The previous three chapters described architectures that employ a native client-side application.

In this chapter, we describe how portable and accessible remote visualization applications can

be developed in the browser (DI.3).

Today, users access information and rich media from anywhere using the web browser on their

desktop computers, tablets, and smartphones. But the web evolves beyond media delivery.

Interactive graphics applications like visualization or gaming become feasible as browsers ad-

vance the functionality they provide. However, to deliver large-scale visualization to thin clients

like mobile devices, a dedicated server component is necessary. Ideally, the client runs directly

within the browser the user is accustomed to, requiring no installation of a plugin or native

application. We present the state-of-the-art of technologies that enable plugin free remote ren-

dering in the browser (R.1, N.2.2). Further, we describe a remote visualization system that

unifies the technologies. The server transfers rendering results to the client as images or as a

video stream. We utilize the World Wide Web Consortium (W3C) conform Web Real-Time

Communication (WebRTC) standard and the Native Client (NaCl) technology to deliver video

with low latency.

Publication: [TS15]

Chapter 6: Distributed Real-time Ray-Tracing for Declarative 3D in the Browser

The previous chapter presented browsers as a viable platform for portable application develop-

ment within a web page. To further facilitate the development of browser-based 3D applications,

frameworks that allow a declarative scene description in line with the HTML markup exist.

The goal is to decrease the entry barrier for the common web developer who is accustomed to

HTML but does not necessarily have domain-specific graphics API knowledge. However, the

existing approaches utilize client-side rendering and are thus limited in scene complexity and

rendering algorithms they can provide on a given device.

This chapter presents an extension of the declarative 3D framework XML3D to support server-

based rendering (R.1, DI.3). The server back-end enables distributed rendering with an arbi-

trary hierarchy of cluster nodes in an InfiniBand or standard network (R.2.2). In the back-end,

we deploy a custom real-time ray-tracer that supports additional material properties and effects

compared to XML3D’s client-side rasterizer. To distribute the ray-tracer, we present a load

balancing method that exploits frame-to-frame coherence in the real-time rendering context.

The load balancer achieves strong scalability without inducing communication overhead during

rendering to coordinate the nodes (N.1.1).

10



Publication: [TS16]

Chapter 7: The Dreamspace Distributed Rendering Architecture for Virtual

Production

The traditional pipeline for TV and movie virtual productions, which combine the real world

and CGI, is to add the visual effects during post-production after the on-set filming. However,

this separation limits the creativity and flexibility in the collaboration of directors, actors, and

CGI experts.

The Dreamspace project developed a platform to combine the virtual and the real world on-set

in real-time and give interactive control over the CG components. The ability to experiment

with virtual assets while filming can substantially enhance the creative process and cut post-

production costs. The Dreamspace pipeline involves multiple parts including real world lighting

and depth capture, high-quality rendering of the virtual scene, compositing of virtual and filmed

content, and means to collaboratively edit the parameters of the on-set visualization.

This chapter details a major component in the pipeline: the distributed rendering framework

that provides high-quality and interactive previews of the scene in the on-set environment

(R.1, R.2.2). The design focus is on a maximum level of performance but also on a high level

of usability and flexibility to be readily employed even on commodity hardware (N.2.1) and by

the possibly non-technical staff prevalent on the set (D.2). The main renderer of the framework

is a global illumination ray-tracer that can generate physically correct lighting, thus allowing

the professionals to judge the outcome of visual effects realistically.

Project report: [GHJ+16]

1.4 Thesis Structure

The thesis proceeds with the six main chapters as outlined in the previous section. The last

chapter is the conclusion and discussion of future work.

A good amount of the developed rendering infrastructure and technology resurfaces in variants

across the thesis, which we indicate via cross-references. This includes a library for local and

remote rendering used in the visualization applications from Chapter 2 to 5. It also includes

the distributed rendering framework that we describe in Chapter 6 and build on in Chapter 7.

It further includes the image transport methods that we describe in Chapter 5 and re-utilize

in the distributed rendering framework and its web client.

11



However, rather than describing one overall system, each chapter contains an experiment in

the scope of ubiquitous 3D that can stand on its own. Therefore, we present related and future

work along with each chapter, and the chapters can be read mostly independent from each

other.
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Chapter 2

The ZAPP Distributed Display System

2.1 Introduction

Driven by the rapid evolution of computer simulations, acquisition technologies, and computing

hardware, data sets are growing at a rapid pace, and even with advanced analysis and visualiza-

tion techniques it becomes ever harder for a single user or specialist to interpret the data alone.

Moreover, the display resolution has increased at a substantially lower pace than computing

power, storage, and network bandwidth [WAB+05]. The limited resolution of a single display

can complicate the analysis as the display can only show a small area of the data set at high

detail or a large area at low detail at any one time. Important structures and correlations may

remain hidden.

A method to allow for the real-time collaboration of multiple users is a distributed display

system. Figure 2.1 illustrates a tiled display wall that provides significantly more area and

resolution than a simple computer screen or projection and thus promotes the collaboration of

multiple individuals to examine complex data sets. Ball and North [BN05] demonstrate the

benefit a large display can have to navigate through finely detailed visualizations. The ability

to connect further display resources from remote locations, such as other large displays, simple

workstations, or even mobile devices, provides a flexible platform for visual analysis.

While the software systems required for such a scenario are very complicated, the user interfaces

should not be. In this work, we do not focus on the user interface of a specific visualization

application running on such a display but on user interfaces to manage the display and its

applications in general. To our best knowledge, this part of the user experience has been

neglected. While a number of very mature frameworks exist for communication, rendering,

and synchronization in distributed display environments, administrators and users in addition
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Figure 2.1: A distributed weather analysis and emergency warning system, an exemplary visu-
alization scenario running on top of the ZAPP framework.

require a control layer for installation, maintenance, and configuration and to select, start, and

terminate applications. We developed this framework with the concept in mind that any user

can launch and interact with an application on the display with minimal training and with no

help by experienced staff controlling the display in the background, which we call “director of

the institute proof”. In addition to this stable platform for everyday use of the display, we also

want the system to support rapid development of new applications without compromising the

stability of existing software. With these goals in mind we developed the ZAPP framework.

The remainder of the chapter is structured as follows: In the next section we take a look

at previous work for distributed displays. In Section 2.3 we give an overview of ZAPP. In

the following section we outline ZAPP from the usage perspective and thereby focus on three

main areas: administration, development, and application usage. Section 2.5 then details the

implementation and architecture of ZAPP, focusing on the different components involved and

the communication flow between them. We close the chapter with a summary of the results

and give directions for future work.

2.2 Related Work

There is a substantial amount of research in the area of distributed rendering, where partial

results from each render workstation are either reassembled on a single display or routed to

multiple displays. Humphreys et al. [HBEH00, HEB+01] propose WireGL, a framework for

distributed OpenGL rendering. WireGL distributes OpenGL commands and corresponding ge-

ometry across a cluster of rendering workstations. On top of WireGL, Chromium [HHN+02a]

adds a more general approach to arrange the workstations by utilizing a modular streaming

model. Employing this model also removes the bottleneck of constantly transferring geometry

14



required by the rendering servers over the network, which made efficient fine-grained load bal-

ancing difficult with WireGL. ClusterGL [NHM11] improves on Chromium by only transmitting

compressed command buffer differences between consecutive frames utilizing UDP multicast.

They show the bandwidth savings can outweigh the additional CPU overhead.

Independently of the WireGL branch of systems, Doerr et al. [DK11] developed the Cross

Platform Cluster Graphics Library (CGLX), which specifically targets distributed, high-

performance visualization via a transparent OpenGL interface. Garuda [NHN07] has a similar

approach to Chromium and ClusterGL but targets Open Scene Graph (OSG) applications. The

framework employs culling and caching for each display tile to achieve an efficient distribution

of the per-frame scene graph changes.

Equalizer [EMP09] is another parallel rendering framework based on OpenGL, with a focus

on scalability, flexible configuration, and a developer friendly programming model. Equalizer

supports an arbitrary amount of workstations and displays and provides several improvements

over Chromium such as decentralized geometry access and built-in thread management. Parts

of the framework build on the OpenGL Multipipe SDK [BRE05].

Allowing for both rasterization based approaches as well as ray-tracing, DRONE [RLRS09] is

a flexible framework for interactive visual applications rendering and displaying on multiple

workstations.

SAGE [RJJ+06, JRJ+06, NDV+10] implements a more general approach than the above frame-

works, which focus mostly on the rendering side. SAGE targets collaborative visualization

applications that explore large-scale scientific data sets and may utilize a variable number

of workstations and displays. A windowing system allows to execute several applications on

the display wall in parallel. The image streaming employed in SAGE builds on the previous

work TeraVision [SJR+04], which is a solution for high-resolution image streaming between

an arbitrary number of workstations. SAGE requires a high-bandwidth network to operate,

limiting it to local collaboration. However, it has been extended to support collaboration

between multiple distant endpoints with Visualcasting [Jeo09]. The successor to SAGE is

SAGE2 [MAN+14, RMA+16], which utilizes the browser as the platform to greatly enhance

the portability and accessibility of the system. Unlike SAGE, SAGE2 supports simultaneous

multi-user interaction with shared content.

DisplayCluster [JAW+12] is another general solution that allows the streaming of high-

resolution content to tiled display walls. The system can display images and videos. It also

supports real-time streaming of desktop screens and of image buffers from custom rendering

applications. Similar to SAGE, DisplayCluster implements a windowing system to run multiple

applications freely on the wall. The framework supports user interaction via mobile devices as
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well as scripted events. Nachbaur et al. [NDB+14] present a software stack for parallel rendering

applications on large displays that incorporates DisplayCluster and Equalizer.

Both SAGE and DisplayCluster use image-based methods to transport pixels over the network.

Bundulis and Arnicans [BA15] show the advantage hardware-accelerated video streaming can

have. Display as a Service (DaaS) [LPHS12] is a framework that utilizes video streaming. Us-

ing the concept of virtualization, applications can write into software resources called virtual

frame buffers (VFB) that output to virtual displays (VD). Both resources are network-attached.

VFBs provide video streaming capability, while VDs receive the stream and can map to po-

tentially multiple physical displays. A similar concept has been presented earlier in Hagen’s

work [Hag11]. DaaS can scale and place any number of VFBs anywhere on the display, only

relying on standard IP networking. DaaS employs a tight synchronization layer based on the

work of Miroll et al. [MLM+12] and supports stereoscopic content.

Scheidegger et al. [SVK+12] present a framework to integrate existing scientific visualization

applications with display walls. As an example, they implemented support for VTK. VTK is

a visualization library that packages a suite of visualization tools under a common interface.

Moreland and Thompson [MT03] extend VTK to support cluster-based parallel rendering and

delivering results to a single display or a display wall. The solution to render to a display wall

builds on Chromium and IceT. Implementations for both APIs are included. IceT is a parallel

rendering framework that targets display walls as output and builds on algorithms outlined

by Moreland et al. [MWP01]. DisplayCluster uses IceT to output to a tiled display. Fogal et

al. [FCS+10] use IceT to connect distributed memory multi-GPU clusters for large data set

visualization.

Omegalib [FNM+14] is a framework that combines high-resolution display walls with immersive

experiences to create so called hybrid reality environments. Omegalib uses Equalizer internally

and supports OpenGL, OSG, and VTK applications.

Related to this work is the TileViewer visualization framework [Kim06], which supports multiple

application types including image viewing and video display. TileViewer includes a graphical

user interface (GUI) to manage the displays and deploy files to the workstations.

In contrast to the above generic frameworks, which are designed to run various types of visual

applications, domain-specific solutions exist that have been tailored to a particular area. Ap-

plication areas include rendering and exploration of large geometric or volumetric data sets,

high-resolution image display, video display and information visualization.

Vol-a-Tile [SVR+04] is a distributed volume rendering application able to display high-

resolution data sets on a tiled display wall. Correa et al. [CKS02] present an extension to
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the iWalk out-of-core rendering system to enable distributed rendering of large static geometric

data sets. Nam et al. [NJR+09] describe the integration of ParaView into the SAGE frame-

work to allow the visualization of high-resolution rendering results on a tiled display wall.

JuxtaView [KVV+04] is a distributed, parallel image viewer for ultra-high resolution image

data. JuxtaView distributes data across a cluster of rendering workstations and employs a

caching and pre-fetching strategy to reduce the impact of network latency. Consequently, the

user can view and interact with potentially arbitrary sized images on tiled display walls. Like

JuxtaView, Magic View [LZWH13] is an image viewer ported to SAGE. Magic View provides

considerably better performance than JuxtaView. With Giga-stack, Ponto et al. [PDK10] pro-

pose a technique to explore multi-dimensional, giga-pixel images in a high-resolution display

environment.

While the previous generic and domain-specific solutions describe particular distributed render-

ing and pixel distribution techniques and thereby in some cases have proven to be an especially

valuable contribution, none have a major focus on how to setup, manage, and operate a large

distributed display system from the usability perspective in a real-world, productive, and possi-

bly public environment. In this situation it is highly desirable for the system to be installed and

accessed by non-expert users, for example for presentation purposes. Thus, we present ZAPP,

a management framework to deploy, maintain, and run distributed visualization applications

in a flexible, stable, and user-friendly way. Like ZAPP, SAGE2 and DisplayCluster emphasis

the usage of personal and mobile devices to interact with the display wall. However, these

frameworks have been introduced at a later time.

2.3 Architecture Overview

ZAPP is a lightweight management framework to run and collaboratively interact with dis-

tributed visual applications that can output to multiple displays. We designed the framework

specifically to make development, deployment, and maintenance of applications, as well as

setting up and configuring the framework, and finally running applications easy, flexible, and

stable.

Before starting with ZAPP, an initial hardware setup has to be available to deploy the frame-

work on. The most common architecture is a tiled display wall as Figure 2.2 outlines. The

setup consists of a number of rendering workstations or nodes, each running the distributed

application and powering a single or multiple displays. A rendering node may generate the

visualization for its displays locally or connect to further server machines to offload work. The

right side of Figure 2.1 shows the display wall we used to implement and test ZAPP. The setup

17



consists of five rendering nodes, each connected to four 2560x1600 resolution displays, yielding

an overall resolution of around 82 megapixels.

Display wall

Rendering nodes

UI nodes

Control node

Figure 2.2: Conceptual setup of a distributed display environment. Nodes do not necessarily
correspond to separate systems. For example, the control node can also be a rendering node.

To coordinate the distributed application, one machine must run control software; we call

this machine the control node. The control node is responsible to launch applications and to

configure the overall display alignment. It communicates with and keeps track of the available

rendering nodes and their displays. Therefore, the rendering nodes register with the control

node and periodically notify it about their current state. We recommend to connect rendering

and control nodes via a reliable high-bandwidth network.

Users can issue commands to the control node via one or multiple machines, which we call user

interface (UI) nodes. The UI nodes provide an interface to launch and terminate applications

and, optionally, an application-specific interface to interact with a running application. UI

nodes are usually mobile devices connected wirelessly to the control node. The control node

can be a rendering and UI node at the same time, thus a minimal ZAPP configuration already

runs on a single machine. We detail the different nodes and the software components running

on them in the following sections.

2.4 Usage

This section describes the usage of ZAPP from the perspective of an administrator, a developer,

and a user who runs and interacts with applications.
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2.4.1 Administration

Given the hardware setup depicted in Figure 2.2, the installation of ZAPP requires only a

few steps. ZAPP provides an installer, which should be copied to a USB-device or a network

share. First, the installer prepares the control node. A GUI guides through the initial setup,

which involves setting up the ports the control node uses, defining an optional password that

is required to start and interact with applications, and restricting permission to a range of IP

addresses. It is possible to skip all these steps. In this case, the installer chooses default settings

automatically.

After installation, the control node process starts and waits for rendering nodes to connect.

The next step is the setup of the rendering nodes, which is done using the same installer

that is used for the control node. The procedure is automatic if the installer was run from a

writable medium on the control node. In this case, the installer remembers the control node’s

configuration to setup the rendering nodes. If automatic setup is not possible, another GUI

lets the administrator configure these settings manually. Also, the administrator can choose a

name for each rendering node. The name simplifies identification of the rendering nodes at the

control node. When the ZAPP process starts on a rendering node, it automatically detects the

number of displays attached to it and notifies the control node.

The final step is the configuration of the overall display alignment, also referred to as the display

grid. For this purpose, we provide a GUI-based management software that runs on the control

node. The administrator can map each physical display to a two-dimensional coordinate that

defines its position within the virtual grid. A coordinate identifies a tile in the grid. A tile is

empty if there is no display linked to it. This allows to account for holes in the physical display

wall. In addition, the administrator can set up the physical size of each display and its bezel

individually or collectively for all tiles. An application can later choose whether to ignore the

bezel or consider it a hidden part of the available display space. Consequently, our framework

enables to combine different kinds of tiles flexibly to setup a distributed display environment.

Of course, the recommended setup is a grid representing a homogeneous tiled display wall.

After the alignment procedure, the ZAPP installation is complete. Maintenance is possible at

run-time. The rendering nodes periodically confirm their presence and display setup with the

control node. Should a rendering node or displays attached to it become unavailable, ZAPP

automatically detects this and disables the corresponding tiles in the display grid so application

behavior can remain consistent. The administrator can add rendering nodes at run-time by

repeating the rendering node installation process. At any time, the administrator can edit the

display grid to adapt to missing or additional displays.
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Installing ZAPP enabled visualization applications is straightforward. The management soft-

ware on the control node allows to select packaged application binaries and settings for de-

ployment on the rendering nodes. An application can be flagged as experimental indicating it

should not run in a production environment yet. The user can launch the application directly

from the control node or indirectly through a UI node. The software to launch applications

from a UI node has to be installed separately. Since a UI node never directly communicates

with the rendering nodes, the only required setup is the address and port of the control node

and possibly a password. The control node ultimately processes the user input and forwards

it to the rendering nodes. Currently, ZAPP provides mobile launchers for Apple’s iOS device

family.

2.4.2 Development

Every ZAPP application consists of two parts. The first is the server that runs distributed on

the rendering nodes and displays the visual content. The second is the client that runs on the

control node and is responsible to manage and synchronize the application state as well as issue

interactive commands from a user to the servers. A ZAPP application may have a third part,

the UI, which runs on UI nodes and provides the user with an interface for interaction.

ZAPP provides several APIs to support developing each part of an application. Templates

integrating the APIs are available for server, client, and UI. The templates are a ready-to-go

entry point for development.

The network and synchronization API takes care of communication between servers and clients,

as well as between clients and the UI. The API includes functionality to synchronize the frame

rate across the rendering nodes and make sure that the nodes display their content at the same

time. The network library is platform-independent and applies to any context.

The display grid API works on the client to query information about the rendering nodes and

their display alignment. It maps a 2D grid coordinate to the corresponding rendering node and

display so commands can address a specific tile easily. ZAPP automatically passes information

about the current display grid to an application on start-up.

To simplify the usage, both the network and the display grid library are self-contained and do

not have third-party dependencies.

The multi-monitor rendering API is available for the servers. It provides information for each

available graphics adapter and the displays attached to it. The developer can use the API to
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manage rendering to multiple displays, which the server application template already incorpo-

rates. The API also supports generating offset projection matrices for each tile to represent a

correct global projection on the grid. The application has the option to either ignore or consider

a tile’s bezel when generating a matrix. Furthermore, the library provides an abstraction layer

that encapsulates common functionality of DirectX 10 and 11.

Finally, the mobile rendering API works on the UI nodes. It encapsulates common function-

ality of OpenGL ES1.1 and 2 to support developing rendering features on the UI side of an

application. An application may want to provide the user with a preview while rendering the

final result on the display wall.

While using the aforementioned APIs and application templates greatly simplifies creating or

integrating applications, none of these features are mandatory. Our framework is ultimately a

management solution. Thus, in the end, the developer is responsible to efficiently distribute

an application across the available rendering nodes and displays, which may include distribut-

ing data, assigning rendering tasks, performing load balancing, and choosing the appropriate

rendering technique. In contrast, other generic frameworks [HHN+02a, EMP09] focus on the

rendering side, and features like data distribution or the rendering technique may be built-in.

ZAPP is able to fully operate on a single machine with any number of displays. This facil-

itates local development and debugging before deploying the application to the production

environment.

2.4.3 Interaction

While ZAPP allows to start applications directly from the control node, this is only intended

for developers. A casual user’s entry point is a UI node, which provides a launcher to execute

and terminate applications. The launcher connects to the control node and provides a GUI to

select from the list of applications. Figure 2.3 illustrates the options of the launcher. ZAPP

allows to run an application on a subset of the display grid. Multiple applications can be active

at the same time as long as their display space does not overlap. The launcher consequently

lets the user select the displays the application should use.

If an application provides a specific UI for interaction, the launcher starts this part automat-

ically on the UI node. The user has to install the UI of a ZAPP application separately to

have access to the intended interactive features. The user can also join an already running

application. ZAPP does not limit the amount of UI nodes that connect to an application.

Consequently, the application may allow multiple users to collaborate. Both launcher and UI

ideally run on a device familiar to the user.
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Figure 2.3: The launcher UI running on an Apple iPhone: selecting the displays for an appli-
cation (left), joining an existing session (middle), and maintaining the run-time environment.

An additional feature of the launcher is to send a shut down command to the entire display

hardware. This enables to quickly power down the display wall after a presentation. It is

recommended to combine the feature with an automatic start-up of ZAPP on the control and

rendering nodes, which enables to boot the entire system by simply turning on the power.

2.4.4 Applications

There are several existing applications for the ZAPP framework, ranging from a simple 2D

sliding puzzle game to distributed, high-resolution volume rendering.

Figure 2.1 showcases the YottaPixel Viewer, which allows to explore arbitrary sized 2D images

on the display wall. To quickly access an image at any level-of-detail, the application stores

the image in a multi-resolution hierarchy with a quadtree. Currently, the theoretical tree depth

and thus data set size is limited by the 64-bit indexing to address image tiles in the tree. To

navigate through an image, the application provides a mobile, touch-based interface with a dual

interaction mode that enables relative navigation if the user’s focus is on the wall and additional

absolute navigation features, for example via buttons, if the focus is on the UI device. The

implementation contains a generic data input API to allow sources other than on-disk image

files. Figure 2.4 shows a procedurally, in-situ generated fractal visualization.

An extension to the YottaPixel Viewer is the Multi-Resolution Painter, which in addition

enables to interactively modify images at an arbitrary level-of-detail.

On the 3D rendering side, there is an interactive fish tank demonstrator that incorporates the
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Figure 2.4: A user explores an in-situ generated fractal with the YottaPixel Viewer.

MorphableUI [KGB+16] library to implement its user interfaces.

We implemented a distributed visualization application for multi-resolution data sets, show-

cased in Figure 2.5. A rendering node may be connected to multiple physical displays. This can

cause a performance bottleneck if the node has to generate the visualization for each display

on its own. We therefore implemented a rendering library that allows both local and server-

based rendering. The library is portable and flexible. Since we reuse it for the visualization

applications in Chapter 3, Chapter 4, and Chapter 5, we outline the most prominent features

here.

The library provides a generic API that enables to plug in different renderers. To support

volume rendering, we integrated the Tuvok [FK10] framework. Library functionality includes

progressive rendering of multi-resolution data sets, transfer functions for volume rendering, and

the transfer of server-side data sets to enable client-side and hybrid rendering. To transport

generated images to the client, the server supports JPEG and S3TC encoding. Chapter 5 gives

details about S3TC, which is a very fast, parallel encoder with a fixed compression ratio.

In addition, the server integrates with DaaS [LPHS12] to allow streaming the rendered content

to virtually any display. To improve the bandwidth efficiency and quality of the video stream,

the server supports an application-specific importance mask that guides the encoding in a

manner similar to Tizon et al. [TMP11]. The video encoder consults the mask to encode pixels

based on their priority. In case of DaaS, this means adapting the H.264 quantization per

macroblock. The renderer may generate the mask for each image based on information like

depth, object curvature, edges, or important structures within the visualization. The mask
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may also build on user input such as selected objects or a region of interest (ROI). A future

direction is the use of eye tracking to determine the ROI.

Figure 2.5: A user explores a volume data set on the display wall.

Using the library, the ZAPP visualization application supports to set up a dedicated server for

each display. However, Tuvok is an out-of-core system that can handle very large data sets,

which require substantial resources to render at high detail. Therefore, in a future revision,

we want to increase the scalability by allowing multiple servers per display. Even an adaptive

approach that dynamically assigns servers to displays based on how much of the data set covers

the display area is possible.

To interact with the visualization, we provide a touch interface on a mobile device that allows

rotating and moving the data set. The UI displays a low-resolution equivalent of the visualiza-

tion on the wall. For this purpose, the UI uses the same server-based rendering library as the

rendering nodes.

2.4.5 Evaluation

To confirm that using ZAPP applications is indeed “director proof”, we tested our mobile

launcher installed on an iPod Touch with 15 non-expert users, who were asked to run the

YottaPixel Viewer on a 82 megapixels wall consisting of 5x4 displays. The application showed

a high-resolution world map. We asked the users to find and zoom in on Germany on the map.

No user had prior experience with a display wall environment or ZAPP.

24



Each user was able to browse through the list of applications and then select, run, and interact

with the YottaPixel Viewer. Especially users with prior iPod knowledge were able to finish the

task instantly, while others were able to operate ZAPP with minimal instructions (for example

explaining the touch display of an iPod).

We also noted some areas that could be improved. One user accidentally started another

application at first. After closing the application, the user had to manually restart the launcher

to return to the selection menu. However, we feel that launching and terminating applications

consecutively should be one consistent workflow. We therefore want to allow the launcher to

pop up again automatically after the user closes the current application. Also, even though

feedback indicates that the interaction is intuitive, we want to incorporate help sections in the

launcher and especially the custom applications to accommodate inexperienced users and give

guidance for applications with less self-explaining interaction.

2.5 Implementation

This section details the software components running on the different nodes and the communi-

cation flow between the components.

2.5.1 Control Node Processes

The control node is the center point of the ZAPP framework. It is responsible for managing the

available rendering nodes and their displays as well as all configuration settings. It also runs

the client part of an application, which maintains an application’s state. The control node runs

a persistent controller process, which is a TCP server listening for incoming connections from

rendering and UI nodes. Rendering nodes establish a persistent connection to the controller

and periodically confirm their presence and the displays they have available. Accordingly, the

controller updates the display grid configuration. When a rendering node first connects, the

controller uniquely registers it using the node’s name and physical address.

On initial start-up, the display grid is empty. The administrator thus needs to start another

process, the manager GUI, to adapt the display grid to newly registered rendering nodes. Once

the grid setup is complete, the controller automatically accounts for missing displays at run-

time by deactivating the corresponding tiles in the grid. This happens when a rendering node

or some of its displays become unavailable. Since there is no reliable way to identify a single

display on a rendering node, should a display become unavailable, the controller does not know
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the exact tile linked to it and therefore deactivates the tile with the topmost coordinate assigned

to a display of the rendering node. Ultimately, the administrator should use the manager to

revise the display grid if a permanent change occurs. For example, the removal or addition of

a full column of displays requires resizing the grid. When rebooting the system, the controller

automatically restores the tiles for a registered rendering node once it connects, so there is no

need to setup the grid again.

The controller stores all settings in plain, human-readable text files. An expert user could thus

quickly change settings without having to consult the manager. As the control node is the only

point that holds the settings, a ZAPP configuration can easily be backed up and re-established

by copying a few text files and replacing the files of another installation.

2.5.2 Rendering Node Processes

A rendering node is responsible for outputting visual content to its displays and thus runs the

server part of an application. A rendering node runs a persistent daemon process in the back-

ground, which periodically iterates through the available displays and sends status information

to the controller. The daemon is also a TCP server that listens for connections from the con-

troller. The controller establishes a persistent connection to the TCP server to issue commands

to the daemon. The commands include launching an application, forcing an application to exit,

and shutting down the rendering node all together.

The current ZAPP daemon is a Windows service that builds on DirectX to obtain information

about the available displays. Future extensions to ZAPP will include a platform-independent

solution.

2.5.3 UI Node Processes

A UI node is responsible for providing the user with an interface for interaction and thus runs

the UI part of an application. There is no persistent process running here. The user can start

a launcher process that connects to the controller to request a list of available applications and

the dimensions of the display grid. The request may or may not include applications flagged

as experimental. The user can select an application for launching. By default, an application

runs on the whole display grid. However, it is perfectly valid to restrict an application to a

sub-grid as Figure 2.3 demonstrates.

The manager GUI on the control node also allows to browse through and launch applications,
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but we intend this feature for developers only who are authorized to access the control node

directly. In the following, we focus on the scenario involving a UI node.

2.5.4 Application Launch Communication Flow

Figure 2.6 illustrates the steps involved to launch an application. First, the launcher on a UI

node sends a request to the controller to start a particular application on a sub-grid or the whole

grid. In response, the controller starts the client process on the control node. The controller

passes information about the sub-grid to the client, which for each tile includes the attached

rendering node and display, as well as the tile’s bezel. A tile may be flagged as deactivated if

it is not currently linked to a display. Some displays might be unavailable or there might be

a physical hole in the display wall, which the client needs to know to guarantee a consistent

application behavior. ZAPP can easily be extended to support launching clients remotely on a

different machine than the control node.

ControllerLauncher Daemon

Launch success

Launch request

Start client

Start server

Wait

Start UI Remote launch command

Figure 2.6: Communication flow between launcher, controller, and daemons when starting an
application.

The controller also determines the rendering nodes whose displays are part of the sub-grid and

then remotely starts the server process on these nodes. For this purpose, the controller sends

a launch command to the daemon running on each rendering node. The command includes

information on the displays to use, which may be a subset of the available displays of a rendering

node in case the application runs on a sub-grid or some displays have not yet been linked to a

tile. The daemon then starts the server process of the application.

Furthermore, the controller responds to the launcher to confirm the start of client and servers.

The launcher finally starts the application-specific UI process to enable user interaction.
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2.5.5 Application Run-time Communication Flow

After the start of the UI process, the involvement of launcher, controller, and daemons is over,

and the application takes over. The servers and the UI establish a persistent connection to the

client, which is the central point of communication and runs a TCP server of its own. From

here, communication and features are application-specific and may be implemented in different

ways. We focus on the common scenario depicted in Figure 2.7. The UI sends user input to the

client, which processes it, updates the application state accordingly, and instructs the servers

to update their displays. The client is especially responsible to keep the state of the distributed

application synchronized. It therefore locks the application state until all servers have finished

their work before accepting new input for processing.

ClientUI Server

Frame done

User input

Update state

Update 
displays

Wait

Accept new 
input

Render command

Finish

Synchronize

Figure 2.7: Communication flow between UI, client, and servers during application run-time.

In contrast to the reliable, high-bandwidth connection between client and servers, the connec-

tion between client and UI may be wireless. Should a user get disconnected or close the UI

while an application is running, the user can reconnect at any time to regain control over the

interactive features. The UI automatically attempts to recover if it loses connection.

To connect to the client, the servers and UI must know the client’s address and listening

ports. The controller is aware of the ports used by each application’s client and attaches the

information when remotely launching servers and UI. Other users may also start the UI on their

device to join and interact with the running application. A user can consult the launcher to

connect the UI automatically. The controller confirms the running application to the launcher,

which then starts the UI and passes the client information. Alternatively, the UI may allow to

manually enter address and port of the client, which enables to interact with ZAPP applications

without the need to install the launcher.

For the UI node, it makes no difference whether the application was freshly started or already
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present. However, if a consecutive user attempts to launch an application on a sub-grid that

overlaps the grid another application already runs on, the controller rejects the request. As

long as there is no overlap, it is valid to launch several applications or instances of a single one

on the display wall. The launcher can request the space on the grid that is still available from

the controller. The controller keeps track of the active applications on the grid and rejects or

accepts new launch requests accordingly.

An application is responsible to terminate gracefully, and the UI should provide the user with

a way to do this. The UI issues an exit request to the client, which forwards it to the servers.

Since the controller needs to know about the exit to maintain the list of active applications, it

holds a persistent, idle TCP connection to each client. Given that the client runs on the control

node, this is a loopback connection. A disconnection indicates an application has exited. The

user can also forcefully terminate an application through the launcher or the manager on the

control node. The option enables recovery from a hanging application or should the UI get

permanently disconnected from the client.

2.6 Conclusion and Future Work

In this chapter we presented ZAPP: a management framework for distributed, high-resolution

visualization systems. To our best knowledge, this is the first solution that specifically targets

the administration and launch process of programs on such a system. In an informal sur-

vey we validated that arbitrary casual users are able to operate our framework with minimal

instructions.

There are several directions to improve ZAPP in the future. To simplify the installation process

further, we plan to incorporate an automatic mechanism that allows the control node to discover

the rendering nodes. We also plan to add an automatic system to layout the display grid. The

system will incorporate the camera found in mobile devices to detect the alignment of displays.

Since we intend ZAPP to be a portable open source solution, the entire framework should run

platform independently. This requires to revisit some parts like the multi-monitor rendering

API that currently utilizes DirectX only and the rendering node background daemon that is a

Windows service. In addition, we want to provide our demonstrative applications such as the

volume rendering as open source.

A feature that requires a more thorough extension of ZAPP is the decoupling of the rendering

nodes from the displays. Here we intend to allow a rendering node to stream its output to any

display that is accessible over the network. Chapter 5 examines a set of image encoding methods
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that we could incorporate. The functionality would substantially increase the flexibility of the

system and provide a built-in mechanism to include rendering machines in addition to the ones

directly attached to the displays.
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Chapter 3

Mobile Visualization for the Selection

of Deep Brain Stimulation Parameters

3.1 Introduction

Neuromodulation is the alteration of neural activity by means of implanted devices. Most neu-

romodulation systems consist of a multi-electrode lead that is surgically implanted in the brain

and connected to a subcutaneous implantable pulse generator (IPG) in the torso. The basic

concept behind neuromodulation is that stimulation-induced current flows from electrode(s)

through surrounding brain tissue, which in turn causes a therapeutic functional response. One

important example of this approach is deep brain stimulation (DBS), which is an established

therapy for treating the motor symptoms of Parkinson’s disease (PD) [DSBK+06, WFS+09],

as well as a variety of other disorders [SH08]. Figure 3.1 illustrates the Medtronic DBS system,

which consists of an electrode lead with four cylindrical contacts and an IPG that delivers con-

tinuous stimulation. The stimulation parameters are selected post-operatively and are titrated

to provide good therapeutic benefit with minimal side effects.

A persistent problem with neuromodulation techniques such as DBS has been the selection of

stimulation settings for optimal response. To achieve this, patients must often undergo lengthy

and repeated clinic visits to determine the best settings. A study by Hunka et al. [HSW+05]

found that the total time spent programming the stimulator and assessing DBS patients ranged

from 18-36 hours per patient. Part of the reason for this length of time is the amount of trial

and error involved in choosing the best stimulation protocol without any visual guidance on

the location of the electrode or the effects of stimulation on nearby brain tissue.

This approach has persisted for decades, primarily because the computational tools necessary to
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Figure 3.1: Overview of the DBS system. The DBS electrode is implanted in the brain during
stereotactic surgery. The electrode is attached via an extension wire to the IPG, which is
implanted in the torso. The entire system is subcutaneous and designed to deliver continuous
stimulation for several years at a time.

visualize the effects of stimulation were not available. While significant progress has been made

over the last years in the sophistication of computational models available for neuromodulation,

very few of these have been introduced into clinical practice for several possible reasons: complex

software that lacks a simple interface; complex visualizations that are difficult to interpret; and

new software is perceived as increasing the demands on clinicians who are often under intense

time pressure.

In this study we set out to demonstrate how patient-specific models of DBS can be combined

into a decision support system that clinicians can easily use at the point of care. We developed

ImageVis 3D Mobile (IV3Dm), a visualization system that runs on commodity mobile devices.

We also developed a data distribution framework that interfaces with IV3Dm and allows users

to access new data sets with minimal effort.

We hypothesized that IV3Dm would enable clinicians to choose DBS parameters that are

comparable to standard of care but in much less time. Furthermore, simplified interfaces

common to mobile platforms would lower the barrier to entry and be more readily accepted. We

chose devices that clinicians are accustomed to in their daily routines: their smartphones. In the

current setting we use iPhone class hardware (this includes iPod touch and iPad devices), but

the concepts presented here are in no way restricted to this platform. The IV3Dm visualization

environment consists not only of interactive volume and geometry rendering implementations

but in particular also contains means of receiving and exploring data as well as sharing it

between devices. Both renderers can coexist, enabling seamless interleaving of volumes and
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semi-transparent geometry. To transfer data to a device we utilize techniques from instant

messaging systems, which allows the user to view a new data set with literally a single touch.

We tested our hypothesis by asking five clinicians who have extensive experience with DBS

programming to choose stimulation settings using patient-specific computational models of

DBS visualized with IV3Dm. We compared the DBS settings and time required to retrospective

data that was gathered during standard clinical care independent of the study. We show that

mobile visualization of patient-specific DBS models has compelling features for clinical decision

making.

The remainder of the chapter is structured as follows: The next section presents related work.

Section 3.3 then gives an overview of the study. In Section 3.4, we describe the functional

details of our visualization environment. Section 3.5 and 3.6 describe the evaluation and discuss

the results achieved. We conclude with predictions based on our results and possible future

directions.

3.2 Related Work

A body of work has emerged on computational methods to predict the effects of neuromod-

ulation therapy. However, it has proven difficult to create a visualization system that can be

integrated into clinical care.

3.2.1 Computational Models of DBS

Computational models have been developed to predict and visualize the effects of DBS on an

individual patient basis [MMN+07, BM05, BMM06, BM06, BM07, BM08, MMS+04]. Briefly,

finite element models that are derived from patient medical image volumes are used to deter-

mine the location of the electrode in the brain, calculate the bioelectric fields produced during

stimulation, and predict the neural response to the applied electric field. The primary outcome

of this approach is a model-predicted volume of tissue activated (VTA), which is the region

of neural tissue that is affected by DBS. Figure 3.2 shows the visualization of a VTA and its

surroundings.

The computational models have been validated by comparing model-predicted outcomes to clin-

ically measured responses in PD patients [BCHM07, BCHM06], have been used retrospectively

and prospectively to determine how activation of certain anatomical regions is correlated with

motor [BCH+11, MBW+09] and neuropsychological [BDH+10] outcomes in PD, and have been
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Figure 3.2: IV3Dm visualizes a patient-specific model of DBS. The model shows the location
of the electrode lead relative to the surrounding nuclei in a Parkinson’s disease patient. The
model-predicted VTA during DBS (yellow part) surrounds the distal electrode contact. With
this model it is possible to view the overlap between the VTA and nearby anatomical structures,
which is a key feature in clinical decision making when choosing stimulation settings.

shown to guide clinicians to select stimulation parameters that improve cognitive and motor

outcomes [FWN+10]. However, two problems persist:

• DBS programming is still often performed without any visual guidance on the location

of the DBS electrodes or the effects of stimulation on surrounding structures.

• The software required to perform the visualization can require significant training and is

not widely available in a clinical setting.

Hence, there is a need for a simple, intuitive application that can visualize the effects of DBS

on an individual basis to facilitate clinical decision making.

3.2.2 Visualization on Mobile Devices

Preim and Botha [PB13] outline the importance of visualization for medicine in various areas

like diagnosis, treatment, and education. While early volume rendering systems required su-

percomputers and expensive graphics subsystems, over the years hardware requirements have

become more and more relaxed. Nowadays, commodity PCs and even notebooks are sufficient

to visualize even large data sets interactively [FK10].
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In parallel with commodity hardware, mobile devices have caught the attention of the visual-

ization community as another viable and interesting platform. Even before today’s powerful

mobile devices were available, Encarnação et al. [EFK95] discussed the general issues in using

mobile devices to obtain and access data. Paelke et al. [PRR03] discuss user interface design

aspects for mobile devices. Chittaro [Chi06] focus on the general issues of visualizing content

on mobile devices.

Burigat and Chittaro [BC05] describe a VRML-based system for visualizing what users see as

they roam a city. Park et al. [PKI08] developed a system for collaborative medical visualization,

using parallel server-based volume rendering techniques. Meir and Rubinsky [MR09] investigate

the use of mobile devices as a cost-effective component of a distributed system for performing

ultrasounds. Their system employs simple-to-use, inexpensive client-side devices that generate

ultrasound data. The client sends the data to a server, which performs volume rendering at

pre-defined camera angles and sends the images back to the mobile devices for analysis in the

field. Lluch et al. [LGCV05] present a server-based surface rendering system. The server holds

a scene graph and uses it, along with client view information, to select an appropriate resolution

from a multi-resolution representation on disk. Scene access is done in an out-of-core fashion,

allowing the server to visualize very large models.

Even when rendering is done on the server, for demanding visualizations a single machine

may not be able to provide updates to the mobile device quickly enough. For this reason,

Lamberti and Sanna [LS07] introduce a Chromium-based [HHN+02b] rendering system that

encodes generated images as MPEG video and streams the video to the mobile device for de-

coding and display. In Chapter 6 we present a distributed rendering framework that allows

a browser-based client to access a real-time ray-tracing rendering cluster. Using the browser

as a platform for portable and mobile visualization applications becomes increasingly pop-

ular [CSK+11, MF12, MPJ+13]. Chapter 5 describes a visualization system that supports

server-based volume rendering in a web page.

When capable mobile devices became available, Chang and Ger [CG02] implemented a ray-

caster for opaque geometry on PocketPC devices. Their system realizes a server-backed ren-

dering model that allows desktop machines to accelerate rendering on the mobile device. They

argue that the performance of ray-casting and ray-tracing approaches is dominated by the num-

ber of pixels, and therefore mobile devices, where hardware capabilities are expected to grow

but screen sizes will remain relatively stagnant, are a perfect fit for these approaches. However,

a more recent study [RA12] demonstrates that limitations of the mobile hardware and graphics

APIs as well as the introduction of high-resolution screens such as Apples retina displays can

hamper ray-casting compared to texture-based volume rendering.
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Texture-based volume rendering has positioned itself as a powerful tool for interactive visual

analysis of volumetric data sets [Fer04, HKR+06, Krü10]. Hadwiger et al. [HKR+06] describe a

method that is particularly efficient for mobile devices that lack 3D texture support, which was

the prevalent case at the time of this study. Our volume renderer therefore builds on their work.

Also related to our rendering subsystem is a contribution by Moser and Weiskopf [MW08]. In

particular, our OpenGL ES 1.1 volume renderer is based on their findings.

Schiewe et al. [SAK15] reuse the mobile visualization system presented in this chapter. With

the advent of mobile devices that support modern graphics APIs like OpenGL ES 3.0 with

3D texture support and even low-level APIs such as Metal [App16a], they extend IV3Dm’s

local volume rendering features with ray-casting. Ray-casting does not suffer from the view-

dependent artifacts that texture-based approaches can produce. A comparison between the

different rendering techniques shows the performance advantage of Metal over OpenGL ES 3.0

and of server-based rendering to save battery life.

In addition to the rendering subsystem that offers an intuitive touch-based user interface, this

chapter presents a flexible, easy-to-use data set management and distribution framework that

enables the minimally invasive integration of the software in the medical environment. We

achieve a broad acceptance of the system from the clinicians that used it during the study.

3.3 Overview

In this chapter, we present the mobile visualization system IV3Dm and its deployment in a

real-world environment to support clinical decision making in DBS for PD patients. Using

our system, clinicians were able to make decisions similar to current standard practice but in

substantially less time.

Under the current standard of care for DBS, patients return to the clinic a few weeks after

implantation of the system for their initial programming. If the results for the initial stimulation

settings are not satisfactory then more complex stimulation protocols are considered. The

process can include substantial trial and error, which is partly attributable to the lack of

visualization of the patient anatomy or the effects of stimulation.

In this study we evaluate the accuracy and speed of DBS programming using IV3Dm compared

to standard of care. To do so we identified four Parkinson’s disease patients who previously

received DBS leads implanted in the subthalamic nucleus and were good responders to the ther-

apy. We then constructed patient-specific models of DBS and provided them to the clinicians

in IV3Dm. The clinicians were blinded to the actual identity of the patients and were asked to
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use IV3Dm to determine the best electrode contact to use for monopolar stimulation as well as

the stimulation amplitude that would provide the best therapeutic benefit with minimal side

effects. We compare the values chosen in the study to those used for each patient’s clinical DBS

settings, which were determined through standard medical care outside of this study. Lastly,

we determine the amount of time necessary to program patients using IV3Dm compared to the

time required for standard clinical practice, which was estimated using data gathered from the

patients’ medical records.

3.4 Visualization System

We prepared the technical framework and the data sets to enable the study that was conducted

by our partners at the Medical College of Wisconsin.

IV3Dm is a mobile, interactive visualization system for volume and geometry data, implemented

for Apple’s iOS software platform. iOS runs on a large number of devices and is the platform

of choice for our target users in the evaluation, who are familiar with the user interface and

interaction metaphors the platform provides. As the hardware specifications of iPhone, iPod

and iPad reflect the design of many other mobile devices, our findings in this evaluation are

applicable to a wide range of mobile hardware.

In the following subsections we outline the main components of IV3Dm, the rendering system

and the data transfer. We conclude with a description of the evaluation data sets rendered in

IV3Dm as seen by the clinicians.

3.4.1 Rendering

IV3Dm provides volume and geometry rendering capabilities, which have been implemented to

support both OpenGL ES 1.1 and 2.0. We decided to support the fallback to OpenGL ES 1.1 to

achieve wide availability even on legacy devices. Due to the lack of support for 3D textures in

OpenGL ES at the time of the study, the renderer uses three axis aligned stacks of 2D textures

to access volumetric data on the GPU as described by Hadwiger et al. [HKR+06]. The volume

renderer implements manual trilinear filtering and volumetric lighting in OpenGL ES 2.0.

A key feature of IV3Dm is to render multiple data sets interleaved. Rendering volumes and

geometry together is required for the evaluation since geometric data of a patient’s nuclei

including the placed electrode shaft needs to be overlapped with VTAs, which indicate the

effects of DBS. The requirement favors texture-based volume rendering over ray-casting as the
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former allows the straight-forward combination of both rendering techniques. The renderer

sorts semi-transparent geometry in back-to-front order in each frame and inserts the geometry

in-between the volume texture slices.

IV3Dm is a flexible visualization environment with a focus on usability. Further feature high-

lights are an editor to draw and apply transfer functions for volume rendering, landscape mode

rendering, means to iterate over data sets quickly without leaving the rendering view, and a

2D rendering mode that allows to examine the individual 2D texture slices of a 3D volume.

IV3Dm can automatically translate user interactions in the 2D view to the 3D view and vice

versa, which facilitates alternating between both views when examining a data set.

When using a touch enabled display such as our target platform, the user expects the data to

move in sync with their finger, otherwise the fingers and the data set feel decoupled. Therefore,

IV3Dm provides a number of options to increase rendering speed during periods of interaction,

such as a reduction of the rendering target resolution, the texture sampling quality, the volume

quality, and an option to disable lighting on interaction. In addition to these means in the

volume renderer, the precision of visibility sorting can be reduced to speed up the geometry

rendering as well.

While for this study, a stripped-down visualization that utilizes IV3Dm’s local rendering capa-

bility is adequate and even beneficial due to its simplicity, the software also supports server-

based rendering. For the implementation, we use our rendering library introduced in Sec-

tion 2.4.4. IV3Dm can connect to a rendering server that hosts a list of data sets for remote

visualization. The server-side out-of-core volume renderer allows to interactively view arbi-

trary sized data sets on the mobile device. Figure 3.3 shows the display of a volume that is

impractical for local storage and rendering in IV3Dm.

3.4.2 Data Transfer

IV3Dm is the mobile counterpart of the desktop visualization system ImageVis 3D, which

builds on the volume rendering library Tuvok [FK10]. To generate data sets for rendering on

the mobile device, we extended Tuvok’s modular IO subsystem with the capability to write

out IV3Dm files. This allows our pipeline to accept a number of volume and geometry formats

and convert those automatically into IV3Dm data. Amongst the formats are SCIRun [CS11]

volumes and geometry in which the input data for this study is stored.

While IV3DM provides flexible rendering options and an intuitive interface for interaction, users

must also be able to obtain new data sets. In our particular use case, simple and fast data

transfer not requiring any technical expertise is a key feature to embed the system seamlessly
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Figure 3.3: IV3Dm displaying the Visible Human data set [U.S12] (512x512x1884 8-bit voxels)
via server-based volume rendering.

into the time-critical clinical workflow. Therefore, transfer via a direct cable link from a storage

machine is not desirable for several reasons. First, it requires direct access to the machine, which

is most likely located in a computer laboratory away from the point of care. Second, the solution

requires expertise on how to connect a device to the storage and then how to use additional

software to select and transfer data sets.

IV3Dm therefore provides several ways to access and receive data sets on the go. In all cases,

the user’s single point of interaction is IV3Dm.

In addition to built-in example data that comes with a new IV3Dm installation, the user can

download data sets from a server over a wireless network connection. For this purpose, IV3Dm

provides a simple menu that allows to select one or multiple data sets for downloading. The

user can continue using the application while downloads are ongoing. If desired, the user

can abort the download at any time. As an alternative to data servers, IV3Dm supports the

exchange between devices with a Bluetooth connection. To speed up the transport in the

wireless network, IV3Dm can receive Deflate [Deu96] compressed data sets.

Even though data servers are already a feasible option, they still require the user to visit

a custom menu to set up the connection and another menu to select data sets. The inter-

device exchange detects compatible devices automatically but restricts the exchange to a close

range, which is impractical for the clinicians who must remain mobile in their daily routines.
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Ultimately, both approaches require the clinician to open IV3Dm and check for new data sets.

To avoid these limitations, IV3Dm additionally uses instant messaging technology to automate

the data transfer from the user perspective as much as possible. The data distribution system

thereby builds on a particular technology of the iOS called Push Notifications [App16b]. Push

Notifications are Apple’s means of being able to send messages to devices without the need

to constantly run custom receiver software on the device. Instead, a single daemon runs per-

sistently and distributes instant messages to any application that supports the feature. The

general concept also applies to mobile devices that do not offer Push Notifications or a similar

alternative. On these devices, IV3Dm could run in daemon mode while listening on a network

port.

Using Push Notifications, we support a transfer mechanism that is initiated by the sender. A

central management application keeps track of the available user devices and data sets and

notifies devices about the availability of new data. Figure 3.4 a) depicts the management GUI.

The manager connects to one or several data servers to obtain the list of data sets. These data

servers are the same servers IV3Dm is able to connect to. In addition, devices that run IV3Dm

are able to register with one or several registration servers, which provide the manager with the

list of devices. Optionally, the operator can set up a password to prevent unwanted devices from

registering. The operator can select one or multiple data sets and push a notification about

these data sets to one or multiple devices. The manager passes notifications to the Apple Push

Notification Service, which delivers them via an accredited and encrypted IP connection to a

device immediately or as soon as the device comes online. When the notification arrives, a

dialog window appears allowing the user to accept or decline the download as illustrated in

Figure 3.4 b). Acceptance automatically starts IV3Dm if it is not already running and initiates

the download and display of the data. The whole process requires just a single tap from the

user who is only interested in reviewing the data sets. Should a user decline the download in the

notification dialog, it is still possible to access the data later by connecting to the corresponding

data server. This way, the user can access the data sets at any point without requiring another

Push Notification.

To simplify the initial setup of the management application, the manager comes with a built-in

data and registration server. The operator could therefore simply run the manager on the

machine that hosts and probably even generates the data sets. However, the possibility to set

up multiple data and registration servers on different machines gives the flexibility to represent

a distributed infrastructure with various groups of data sets and devices.

The push-based data distribution framework moves the task to select and distribute data sets

from the user to the service provider, thus achieving the goal of a minimal invasive integration
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a) b)

Figure 3.4: a) The management application enables to notify registered devices about new
data sets. b) A notification dialog appears on the device and allows the user to obtain and
immediately view a new data set with a single tap.

in the clinicians’ demanding schedule. In a future revision, we plan to relieve the operator by

introducing delivery features that push certain data sets automatically to their target users.

3.4.3 Evaluation Data Sets

The patient data sets for the evaluation have a geometric and a volumetric component, which

Figure 3.5 illustrates. The geometric component consists of surface representations of nearby

anatomical nuclei (thalamus and subthalamic nucleus) as well as the DBS lead and electrode

contacts. We deliberately chose geometrically simple surfaces of common anatomical structures

that mimic the types of atlas representations that physicians are likely to be familiar with. We

constructed the anatomical surfaces by coregistering each patient’s magnetic resonance imaging

to an atlas brain using a 3D nonlinear warping algorithm [CJM97]. We constructed surfaces for

the DBS lead and electrode contacts using SCIRun [CS11]. The volumetric component is the

VTA. In total, we provided 36 VTAs for each patient (9 for each electrode contact, representing

a range of voltages from -1V to -5V, all at 130 Hz, 60 µsec pulse width). While indeed special

desktop software is required to produce IV3Dm-compatible visualization data from raw input,

the process is independent from IV3Dm’s simplified interface and can be automated.

Figure 3.6 shows both components interleaved in IV3Dm. The rendering view provides annota-

tions to distinguish between patients (the geometric component, top right), as well as to convey
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a) b)

Figure 3.5: a) Patient thalamus (green), subthalamic nucleus (red), and DBS lead with four
electrode contacts. b) Volume of tissue activated (VTA).

the VTA (top left). The view also provides the DBS stimulation settings for the VTA. The user

can simply iterate through the VTAs for a patient by tapping the VTA annotation. Tapping

the geometry label allows to switch between patients. The user can also leave the rendering

view and go to the data set selection menu to browse through and load data sets.

The combination of the visualization components is ideally suited to our evaluation for several

reasons. First, the use of geometric and volume components allows us to visualize each in their

native format as generated in SCIRun. Second, the text annotations provide details necessary

for the users to know which patient and stimulation settings are being evaluated. Third, the

overlay of volume and geometry data allows the user to quickly determine the amount of overlap

between the VTA and nearby anatomical structures, which is the feature that most strongly

guides the decision making.

The focus in this study is on a simple visualization that highlights the crucial features and is

suitable for distribution over a wireless network. As a result, the total data size per patient

that needs to be transferred over the network is only around 1.48 MB.

3.5 Evaluation

In order to evaluate the utility of IV3Dm for clinical decision making, we constructed patient-

specific models of four PD patients who were good responders to DBS. The models were created

in SCIRun using previously described methods [BCHM07] and subsequently transferred to

IV3Dm. We provided the models to five clinicians (three movement disorders neurologists, one
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Figure 3.6: The interleaved rendering view in IV3Dm shows the VTA for -2.5V at contact 3
for a specific patient.

neurosurgeon, and one nurse) who have extensive experience with programming DBS systems

for PD patients. We asked each clinician to select DBS parameters using IV3Dm on an iPad.

We compare their selections to data collected via standard of care, along with the amount of

time required.

3.5.1 Standard of Care

PD patients who were examined in this study received DBS via standard of care. Four to

six weeks after surgery the IPG is turned on for the first time. The clinician works with the

patient to determine the stimulation parameters that provide the best therapeutic response with

minimal side effects. This is done through a process of activating each of the four individual

electrode contacts and testing a range of stimulation parameters (voltage, pulse width, and

frequency). The process is usually performed over several visits to the clinic. The patients

examined in this study had an average of three to four visits requiring over four hours of time

with a clinician to perform DBS programming.
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3.5.2 Training

Prior to the experimental protocol, we trained each clinician as follows:

1. We informed the clinician of the objectives of the study.

2. We showed the clinician an example data set in IV3Dm on an iPad and demonstrated the

following interactions: rotating, translating, and scaling models in the rendering view;

loading individual patient models of anatomical nuclei and electrode location; overlaying

and selecting VTAs.

3. After the demonstration, we gave the clinician the opportunity to have hands-on experi-

ence with IV3Dm.

The total training time was approximately ten minutes for each clinician.

3.5.3 Experimental Protocol

After training, we conducted the following experimental protocol with each clinician to evaluate

IV3Dm for DBS parameter selection:

1. We announced a patient DBS model via Push Notification so that the clinician could

transfer the model to an iPad running IV3Dm.

2. The clinician loaded the patient model in IV3Dm. While the clinicians involved in the

evaluation previously treated the patients in our study, patients were anonymized, and

clinicians were blinded to their identity. It was not possible to determine the patient

identity from the IV3Dm visualization.

3. We asked the clinician to select the most appropriate electrode contact for stimulation

based on the location of the DBS electrode relative to nearby anatomical nuclei (thalamus

and subthalamic nucleus (STN)).

4. The clinician loaded VTAs for the chosen electrode contact, starting with -1V amplitude.

On-screen annotations provided verification of stimulation settings.

5. The clinician stepped through a range of VTAs from -1V to -5V in 0.5V increments for

the chosen electrode contact. From the range, the clinician selected the most appropriate

voltage value.
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6. The clinician could choose a different electrode contact and repeat the previous two steps

if none of the VTAs seemed appropriate.

We repeated and timed these steps for each patient.

3.6 Results and Discussion

We found that the amount of time required to choose stimulation settings is significantly lower

using IV3Dm compared to standard clinical care. Selection of stimulation settings required

an average of 1.7±0.8 minutes per patient across all clinicians using IV3Dm, compared to an

average of 4±1.4 hours required for programming via standard of care to reach stable settings

with good therapeutic response (usually within three to four clinic visits). In addition, we

found that the stimulation settings chosen using IV3Dm are very similar to those selected via

standard of care. Table 3.1 shows that the voltages selected using IV3Dm are generally equal

to or smaller than the voltages selected using standard of care, and in fact this is a trend that

has been observed previously [FWN+10]. Table 3.2 shows that the active electrode contacts

chosen using IV3Dm are either the same as or adjacent to the contacts chosen using standard

of care. Prior studies have noted comparable therapeutic benefit from more than one electrode

contact [OFW+09]. Hence, we consider this degree of variability to be within the range that is

observed clinically.

Table 3.1: DBS voltages chosen with IV3Dm versus standard of care.

Patient ID Standard of Care IV3Dm (Average)

1 4.1V 2.35±0.34V

2 2.3V 2.4±0.74V

3 2.5V 2.05±0.76V

4 2.2V 2.0±0.71V

In addition, feedback on this system from clinicians is very positive. The user interface is

intuitive, especially for existing iPhone users. The ability to interactively visualize patient

models provides a level of understanding that is not currently available. The clinicians perceive

the system as a welcome alternative to the current process and are optimistic about the long-

range potential to provide the optimal DBS therapy more rapidly than previously possible.

Hence, the salient features of IV3Dm for clinical decision making are to easily retrieve data,

view the DBS electrode location relative to surrounding anatomy on an individual patient
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Table 3.2: Electrode contact (C) chosen with IV3Dm versus standard of care.

Clinician Number

Patient ID Standard of Care 1 2 3 4 5

1 C2 C2 C3 C3 C3 C3

2 C2 C2 C2 C1 C1 C1

3 C2 C1 C2 C1 C1 C2

4 C1 C2 C2 C2 C1 C2

basis at the point of care, view how the DBS-induced VTAs overlap with nearby anatomical

structures, and interact with the visualization using an intuitive touch screen interface.

In this study the clinicians were not provided with any information on how VTAs should be

selected relative to their overlap with surrounding anatomical structures. In fact, the verbal

feedback they provided during the experiment indicates slightly different approaches to param-

eter selection: three of them tried to maximize VTA overlap with the STN; one chose VTAs

that were superior to the STN; two tried to avoid VTA overlap with thalamus as much as

possible. This reflects ongoing discussion in the DBS community about optimal target loca-

tions for stimulation, and we feel that this accounts for some of the variance in our results.

Consequently, even with detailed visualization of patient-specific data, there is not currently a

consensus on the best stimulation target for PD patients.

3.6.1 Interpretation and Potential Influence on Clinical Workflow

Our results show a dramatic decrease in the time required to select stimulation settings using

IV3Dm compared to standard of care. However, an important question remains: what is

responsible for the time difference? There are several possible explanations that may not be

attributable to IV3Dm. First, during standard of care patients often receive a brief motor

exam after each change in DBS parameters. This was not part of our study design because the

clinicians were blinded to the patients’ identities, and the goal was to evaluate the utility of

the software to select DBS parameters.

Second, while our study focused on the selection of DBS voltage alone, clinicians sometimes

also explore pulse width and frequency during initial programming. These variables were fixed

in our study. Current guidelines suggest that good response to DBS can be achieved with

pulse widths ranging from 60 µsec to 210 µsec and frequencies from 130 to 185 Hz. Hence, the
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parameter space that is explored during standard of care is somewhat larger than the range

that we tested. However, this is not a limitation inherent to our system, which we can extend

to support additional variables.

Third, each patient model required between 30 and 60 minutes of preparation by a trained

technician prior to transferring the data to the mobile device, though we anticipate that this

amount of time could be reduced in the future by creating a semi-automated system for model

generation.

Despite the differences in the two approaches and the difficulties of making direct comparisons,

we believe that the above factors cannot completely account for the large effect size we observe

(a 99.5% reduction in the amount of time required to choose DBS parameters). In addition,

our approach could facilitate a fundamentally different clinical workflow. Specifically, the use

of IV3Dm and patient-specific DBS models could allow the clinicians to quickly converge on

a small range of parameters that are likely to provide good therapeutic response. From these

initial settings we anticipate that the clinicians will evaluate motor outcomes while exploring

nearby settings. Thus, instead of performing a comprehensive review of motor outcomes at a

wide range of stimulation settings for all DBS contacts, clinicians could focus their effort on a

much smaller parameter space prior to beginning motor exams.

The ability to access the visualization on mobile computing devices is an important feature.

As indicated earlier, clinicians became proficient at using IV3Dm for DBS parameter selection

in very little time. We believe this is a reflection of the simplified means to obtain and interact

with data sets as well as the representation of information such as electrodes, anatomical nuclei,

and VTAs in a familiar manner.

While we did not compare IV3Dm to an equivalent desktop-based system, we anticipate that the

latter would require clinicians to spend substantially more time to become used to the interface

and access their data sets for review. The use of mobile devices with wireless data delivery

is convenient for the clinical workflow and does not require clinicians to rely on stationary

computers that might not be available at the point of care. Significant attention has been

paid recently to the role of mobile computing devices in a clinical environment for this very

reason. Also, utilizing the users’ very own mobile devices could enable to establish a system

like IV3Dm without considerable investments into dedicated rendering hardware. Hence, we

believe that our implementation could be a welcome addition to a healthcare delivery system

that is attempting to reduce reliance on desktop-based architectures.
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3.6.2 Insights into Visualization Applications

We believe that some of the developments in this study are of much broader interest. In

particular:

• Use of Instant Messaging for Data Distribution Most of the systems outlined

in Section 3.2.2 focus mainly on the renderer and present efficient ways of visualizing

data fast and at high quality. While this is a important characteristic of a visualization

environment, the deployment in a productive setup also requires sufficient means for the

users to access the data that they are interested in. We provide a flexible data distribution

architecture that moves the effort to manage data sets from the user to the publisher side.

We employ a push-based transfer mechanism that builds on instant messaging technology

to notify users about new data anywhere over a wireless network.

• Natural Multi-Touch Interfaces While multi-touch technology dates back to the early

eighties [Bux07], only in the last decade, after the introduction of the iPhone, have such

devices become popular. In a short period multi-touch displays have become available

for a wide range of hardware (for example large display systems, workstations, mobile

devices). While we are certainly not the first to point out this fact, we believe that in

particular visualization applications and their acceptance can benefit significantly from

the integration of touch-based interaction metaphors.

• User Familiarity As most people spend quite a decent amount of time per day using

their smartphones, it seems only natural to use the smartphones for as many tasks as

possible, sometimes even if this means passing on a more capable hardware environment.

Interestingly, in this work we found that clinicians are more than willing to ignore the

disadvantages of the small display in favor of working with their own well-known handheld

devices on the go.

3.7 Conclusion and Future Work

In this chapter, we presented the mobile visualization environment IV3Dm and evaluated its de-

ployment to support the selection of parameters for DBS therapy of PD patients. We anticipate

that the system could provide a significant step forward in clinical practice for several reasons:

mobile devices have generated significant interest in the clinical community, and physicians

already widely use these devices in their daily life; computational models are gaining accep-

tance by practitioners and are being used more often for clinical decision making; IV3Dm has
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a simple, intuitive interface, flexible means to access data sets, and can be used at the patient

bedside.

This study is retrospective, and we did not test the stimulation settings chosen using IV3Dm

in each patient. Consequently, it is possible that the chosen settings are better than, equal

to, or worse than the settings chosen via standard of care. Therefore, one important area of

future work is to assess whether use of the system improves patient outcomes. A follow-up

study to that effect is already ongoing at the time of writing this thesis. The study will span

multiple years and builds on the DBS decision support system presented here. The goal is to

prospectively measure the effectiveness of the approach. For this purpose, the system will be

deployed to treat PD patients in an established PD clinic as well as in a home environment.

Outcomes will be tested for non-inferiority to standard of care. The hypothesis is that the use

of the mobile support system will enable substantial time savings to manage the patients and

reduce the burden for patients, family caregivers, clinicians, and nurses.

In a future study we will examine whether the inclusion of evidence gathered from other patients

results in further improvements in the selection of DBS parameters. Previous work has begun

to develop methods to define optimal stimulation targets from multi-patient studies [BCH+11,

MBW+09]. We will extend the visualization with these target locations.

While previous attempts have been made to provide interactive visualization of patient-specific

DBS models, these systems require significant amounts of training and domain knowledge to

become proficient. An advantage of IV3Dm is the minimal amount of expertise required and

its attractive features for the clinical workflow. We predict that the approach could have

significant impact not only in DBS for PD but also in other neuromodulation methods where

patient-specific models could provide useful insights into the best way to prescribe the therapy.

To further improve the ease-of-access, a future generation of our system could incorporate a

portable browser-based interface that users can access from a range of mobile and stationary

devices without requiring a platform-specific software installation. Chapter 5 and 6 establish

the browser as a viable platform for graphics applications.

The current system is in a prototype state and requires further testing before introducing it

into a clinical environment. This is especially true for the data distribution subsystem when

considering protected health information and security aspects.
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Chapter 4

Hybrid Rendering of Multi-Resolution

Data Sets in Dynamic Environments

4.1 Introduction

Today, simulations and measurements regularly generate large scientific data sets. Often these

data sets can only be understood by means of visual analysis. However, the interactive visual-

ization of high-resolution data sets requires significant computing and storage resources. These

resources may not be available on all devices that shall display the data. Mobile devices may

especially lack the capabilities to fully store and process large or even medium-sized data sets.

Another more extreme case is an exascale scenario [exa10], where simulations run on highly

parallel, dedicated supercomputing architectures. As it is predicted that processing power will

increase more rapidly than storage capacity and I/O bandwidth in such systems [exa11], it may

not even be feasible to permanently store exascale simulation results. The supercomputer may

therefore generate and visualize data sets in-situ.

A solution to provide visualization to devices with limited capability is to outsource processing.

A rendering server or a cluster of servers processes part of or the whole visualization pipeline

and then transmits the results to the client for further processing. The approach reduces

client-side requirements, which are minimal if the client is used for display only. Bethel et.

al. [BCH12] and Luke et. al. [LH02] classify how the visualization pipeline can be distributed

across server and client machines. However, network bandwidth, latency, and reliability can

affect the user experience. The consideration is especially relevant for best-effort networks

like the Internet or wireless connections. Further, scalability on the server becomes an issue

if multiple clients request rendering services simultaneously. The user experience suffers if an
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overloaded server cannot complete requests in a reasonable time. To increase server scalability,

considerable investments in hardware may be necessary. This particularly applies to distributed

architectures that employ multiple servers to power the visualization and that we address in

Chapter 6 and 7 and also in Section 2.4.4.

In this chapter, the client connects to a single server. We refer to remote rendering if the client

is used for display only.

While the server component is necessary to provide the resources for large-scale visualiza-

tion, a purely server-based approach may leave a considerable amount of client hardware idle.

Nowadays, even mobile devices often have capabilities to support interactive visualization to a

certain degree; and using them for such tasks becomes increasingly popular as we demonstrated

in Chapter 3.

Hybrid rendering techniques utilize both server- and client-side resources. When the server

initially holds the data, the three core aspects are: Splitting the visualization process into units

of workload, assigning workload to client and server, and transferring the data required for

client-side processing. Performing work on the client reduces server load and may also reduce

network load compared to remote rendering (for example there may be no need to constantly

transfer image data; see Section 4.2 for references). Further, the cooperation of server and client

can result in faster image generation. The increased scalability by using each client hardware

is available without investment from the server provider.

We present a hybrid rendering method that adaptively adjusts what rendering workload needs

to be done and where it is done based on server, client, and network conditions. We identify

workload in terms of quality levels (QL) of a data set. Displaying higher QLs progressively

refines the view. Any renderer adhering to the QL concept can plug into our system. The

scheduler selects QLs for rendering on server and client. The goal is to provide the client

with the next QL as soon as possible. The client supports a subset of the QLs depending

on its capabilities. For the implementation, we utilize the rendering library introduced in

Section 2.4.4, which is designed for multi-resolution data sets.

Our approach uses a probabilistic scheduling model. The scheduler acquires probability dis-

tributions for rendering and transfer timings at run-time for each QL to determine what QLs

are to be rendered on each side. This method allows to account for the uncertain conditions

that affect the performance. A client with arbitrary capabilities may connect to a server via a

network link with arbitrary characteristics. Load on server and network may vary depending

on how many clients are active and what outside traffic is on the link. We make no assumptions

about these conditions, which are subject to change. Additional factors like other applications

that run in parallel, background tasks performed by the operating system, hardware character-
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istics, and rendering system events (for example allocating memory) may result in fluctuating

timing observations. To account for the dynamic variables, our method updates and compares

timings in terms of a probability distribution to adapt the schedule.

The remainder of the chapter is structured as follows: First, we present related work in the

area of hybrid rendering and scheduling under uncertainty. The core part then describes our

hybrid rendering method. We address how the system acquires timing distributions, uses the

distributions to schedule QLs, and adapts to changing conditions. The results section presents

different test scenarios and comparisons. Further, we underline the suitability to use probability

distributions. The chapter concludes with a discussion and finally future directions.

4.2 Related Work

4.2.1 Hybrid Rendering

We divide hybrid rendering methods into three categories as illustrated in Figure 4.1. First,

server and client cooperatively render every image. Second, the client renders a number of

images independently after an initial input from the server. From time to time, the server

provides additional input to uphold the rendering on the client. Third, server and client produce

individual images independently.

Falling into the first category, Aranha et. al. [ADD+07] distribute ray-tracing workload. They

use a cost function to decide on the number of pixels to be rendered on each side.

Several techniques have been developed for volume rendering. To progressively render unstruc-

tured, tetrahedral grids, Callahan et. al. [CBPS06] utilize the client as the rendering unit

while the server stores the data and pre-processes the geometry. Prohaska et. al. [PHKH04]

use a hierarchical volume renderer on the client for CT-scan exploration. The client accesses

data blocks remotely to progressively refine the view. The system supports a user-defined

region-of-interest (ROI) for which the highest resolution is chosen.

Diepstraten et. al. [DGE04] describe a server-centered approach for line rendering on mobile

devices. The server extracts 3D lines and projects them to image space. The client then

renders a package of 2D lines received from the server. Okamoto et. al. [OOI11] propose a

system where the server stores geometric data and a repository of pre-rendered images. When

the client requests a view, the server sends a selection of images most closely matching the view

along with a coarse version of the mesh. The client then reconstructs the view.
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Figure 4.1: Classification of hybrid rendering approaches.

Noguera et al. [NSOJA11, NSOJA13] present a method for hybrid terrain rendering. The client

receives geometry for terrain close to the viewer for local rendering. For the far-away parts, the

server renders panoramic images that the client merges with the local rendering result.

Falling into the second category, Engel et. al. [EWE99] discuss distributed isosurface recon-

struction. Their approach employs a hierarchical level-of-detail (LOD) concept. The user can

define a ROI, which the system reconstructs at the highest quality. After the reconstruc-

tion completes, local interaction on the client is possible until the isosurface changes. Engel

et. al. [EOEI00] outline similar approaches for the visualization of multi-dimensional chemical

data sets.

Li et. al. [LSK11] render an image on the server and extract a mesh from the depth buffer. The

server textures the mesh with the color buffer and sends it to the client for rendering. Should

the error due to view changes get too high, the client requests a new mesh from the server.

Luke et. al. [LH02] outline a similar approach. Visapult [BTl+00] produces images using a

parallel volume renderer on the server and then interactively constructs new views from the

images on the client. Client-side rendering is decoupled from receiving image updates.

Shi et al. [SNC12] present a method that allows the client to synthesize a range of views based

on a set of server-generated depth and color reference images. However, fast and arbitrary

user interaction causes the frequent transfer of new reference sets and thus limits the approach.
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Doellner et al. [DHK12] use the server to generate G-Buffer cube maps for views requested by

the client. The client uses the latest received G-Buffer to reconstruct the rendering while the

server asynchronously produces more up-to-date maps.

The techniques outlined above require an application-specific algorithm to distribute the render-

ing workload. Further, a persistent connection to the server is required. High latency reduces

the interactivity. Connection loss terminates the visualization on the client immediately or

when new input from the server is required.

Our approach falls into the third category: generic hybrid rendering. Engel et. al. [EEH+00]

show a medical application using two different volume renderers. The client performs low-

quality rendering while the server provides higher quality on demand. Dyken et. al. [DLS+12]

describe an application that supports a browser-based client. The client interactively draws an

illustrative, coarse representation of a geometric data set with WebGL. The server processes the

detailed original model and transfers rendering results to the client as images. The framework

presented by Schinko et al. [SBEF14] also targets the browser as the client platform. The client

interactively renders low-resolution proxy geometry with X3DOM [BEJZ09], and the server

back-end provides higher-quality renderings with additional material properties for static views.

Generic hybrid rendering allows to maintain interactivity on a capable client should the con-

nection suffer from latency or limited bandwidth or the server be occupied or unavailable. In

addition, the generic approach allows to support applications independent of the rendering

algorithm.

4.2.2 Scheduling under Uncertainty

In various scheduling problems, uncertainty is a significant factor. The time required to com-

plete a task may be difficult to estimate before actual observations. Resources may be unreli-

able, occupied, or even become unavailable. Probabilistic approaches have been employed to

deal with such scenarios. Instead of absolute values, probability distributions represent the state

of the system. Related methods find application in the areas of project management [HA89],

maintenance and production [VP01, BBQL16], and process planning [IL09]. Handling uncer-

tainty also plays a role in domains that are not directly linked to scheduling like clinical decision

making [BIHGO16].

Ierapetritou and Li [LI08, IL09] distinguish two scheduling approaches and give several refer-

ences for each. First, a preventive scheduling system models the behavior of uncertain factors

based on historical data and statistics gathered previously. Thus, the scheduler either knows

or can estimate the characteristics of the probability density function (PDF) to determine
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the schedule in a pre-process. Janak et. al. [JLF07] as well as Balasubramanian and Gross-

mann [BG01] describe examples.

In contrast, in a reactive scheduling system, not enough information about the uncertain fac-

tors is available before the tasks are performed. Therefore, the schedule constantly adapts in

response to changing conditions.

Our method can be classified as reactive. The timings for QL rendering and transfer are

subject to fluctuation due to several dynamic factors (see Section 4.4.2), which the scheduler

cannot know a priori for any client-server connection. Therefore, the system obtains timing

distributions at run-time to determine the schedule. However, our approach adds additional

complexity because we consider to skip certain QLs to keep load from the system and allow

the rendering of QLs to be aborted to maintain responsiveness. Consequently, the scheduler is

not guaranteed to obtain timings for every QL in frequent intervals.

Our approach is also related to resource-aware scheduling on an abstract level. Resource-aware

scheduling partitions data-parallel problems into pieces of load and then distributes the pieces

for processing on possibly heterogeneous computing resources. Similar to our hybrid rendering,

knowledge about the availability, capability, and performance of the resources is essential to

balance the load.

Viswanathan et. al. [VVR07] implement a resource-aware system based on the divisible load

theory [BGR03]. They use cluster nodes that are connected in a local area network (LAN).

Source nodes generate load at run-time, and sink nodes perform the processing. A control

node coordinates the distribution of load based on the sinks’ estimated memory and processing

capabilities as well as the sources’ load size and deadline requirements, which are not real-time.

The goal is a maximum utilization and throughput and a maximum acceptance rate of new

load. The algorithm runs iteratively until all load has been admitted and processed. Unlike our

system, the approach regards network overhead as negligible and requires to pass a substantial

amount of control information between the nodes.

Teresco et. al. [TFF05] schedule load for large simulations in a heterogeneous computing

environment. This includes possibly non-dedicated nodes that process additional tasks apart

from the target application, which is similar to a scenario in our setup: a loaded server that

processes rendering tasks for multiple clients simultaneously. Teresco’s scheduler discretizes

the problem domain for cooperative processing using a mesh partitioning algorithm. The

system obtains performance characteristics of computing and network components to guide the

partitioning. Run-time monitoring allows to adapt the partitioning. Developers have to write

their applications within a specific architecture to plug them into the scheduling system.
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4.3 Scheduling Fundamentals

First, we describe the fundamentals required for the hybrid rendering method. The goal of the

scheduler is to provide the client with a new QL for display as fast as possible. We therefore

start with the definition of quality levels. Next, we describe the requirements on the rendering

system, which includes addressing limitations of the QL concept. Last, we outline the transfer

of the data required to render QLs from server to client to enable client-side rendering.

4.3.1 Quality Levels

Our method builds on the concept of quality levels, QLs. A QL is a representation of a data set

that client or server can render independently to produce an image. We require a total ordering

of the QLs, with detail increasing with the level number. The client requests QLs consecutively

within a frame to progressively refine the view. When we use the term “frame” in the context

of QLs, it includes all QLs that are to be displayed for a view. We often refer to either server

or client instance of a QL when using the term “QL”.

The underlying rendering system provides the classification of a data set into a set of totally

ordered QLs. The classification is thus ultimately up to the application developer who integrates

the renderer into our framework. Our hybrid scheduling layer on top of the rendering system

must not know the format of the QL data, including possible compression and the rendering

algorithm to produce images from the data.

We assume that the server can render the highest QL. In contrast, a resource limited client

may not support some QLs. There may be QLs tailored for a specific renderer. For example,

a different or feature-reduced renderer may be used on mobile devices.

4.3.2 Underlying Rendering System

Our approach supports any renderer that can map its data to QLs, for example using a multi-

resolution hierarchy, different sampling rates, or some other unforeseen representation. The

approach is therefore applicable to any visualization system that already uses a multi-resolution

data set representation.

We acknowledge the mapping to QLs may not be straightforward. This especially applies

to view-dependent rendering systems where the LOD may vary over regions of the data set.

Also, to integrate renderers that offer a continuous refinement, it is required to discretize the
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continuous representation to distribute QLs for scheduling. Here it is feasible to create a QL

hierarchy that is not too fine considering images for QLs rendered server-side must be sent over

the network. Finally, we will investigate how to adapt or extend the QL concept to support

renderers that generate an additive refinement where an iteration adds to the previous image

instead of replacing it. The ray-tracers presented in Chapter 7 are examples for such renderers.

We expect the renderer to be interactive. The renderer should provide at least one QL per data

set that can be completed at interactive frame rates. The renderer should also be interruptible

to maintain responsiveness.

We allow the renderer to reject QLs above a certain level. For example, the renderer may use

the screen space size of the visualization to limit the rendering of higher QLs to avoid processing

unnoticeable details and consequently save resources.

We have integrated two rendering systems so far. The first is the Tuvok volume rendering

library [FK10]. Tuvok provides a hierarchical renderer that divides a data set into LODs.

These LODs can be independently stored and rendered. We can map the LODs directly to

our QLs. Moreover, to underline the flexibility of the concept, in Section 4.5.3 we divide

each LOD into multiple QLs to improve interactive rendering and enable a more fine-grained

view refinement . The second system is a proprietary geometry renderer based on progressive

meshes [Hop96]. Figure 4.2 and 4.3 show example data sets for both renderers.

Figure 4.2: QLs 4 to 1 of the male Visible Human volume data set [U.S12] rendered with Tuvok.

4.3.3 Interleaved QL Data Transfer

We make no assumptions as to the availability of QL data on the client. Initially, the server

solely stores the data and performs the rendering. The server encodes images as JPEG and

sends them to the client via a TCP connection.
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Figure 4.3: Rendering of the Thai Statue mesh data set [Sta11] with six QLs. The right side
shows QL6 (top) and QL1.

To enable the ability to switch where QLs are rendered, the client needs to obtain the QL

data for local rendering. Figure 4.4 outlines the process. First, the system determines the QLs

the client supports in a handshake phase. The client queries the server-side renderer for QL

specifications of a data set. This meta-data contains application-specific information such as

the QL data size and required renderer features (like 3D textures). Using the specification, the

client-side rendering system determines whether a QL can be supported.

ServerClient

2.

Network

Scheduling layer

2. Request QL specifications 
for data set

3. QL specifications 3.3.

4. Request supported QLs4.

5. Data of supported QLs

Rendering layer1. User selects data set

4.

5.5.

Figure 4.4: Determining the QLs a client supports during the handshake phase, and transferring
the corresponding data to enable rendering on the client.

The client may not support a QL due to limited memory and processing power. Required

renderer features may not be present. The client may also deliberately disapprove a QL to save
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memory, network bandwidth, or battery time. It may not be feasible to transfer large QL data,

for example to a mobile device over a wireless link. Further, a small display resolution could

make it infeasible to even consider a high-resolution QL on either side. Finally, the QL data

may be confidential and should not leave the server.

After the handshake, the server sends the supported QL data to the client using the Deflate

compression algorithm. The server uses time division multiplexing to interleave QL and image

data. Since the prompt display of images has the highest priority, the server inserts chunks of

QL data in phases where the image transfer is idle. There are two suitable scenarios. First, if

user interaction stops, the server renders QLs of increasing number to progressively refine the

view. Rendering a high QL can take time during which the client waits for the next image.

Second, after the client received the final QL, both sides are idle waiting for a new interaction

event. The server increases the QL transfer bit rate over idle time but does not exceed a

maximum to guarantee seamless interruption should an image transfer come up.

4.4 Scheduling Quality Levels

The scheduler runs on the client. For simplicity of the explanation, we assume in this section

that the client has all supported QLs available. Figure 4.5 gives an architecture overview to

set the stage for the following detailed description: First, we describe the timing distributions

the client holds to base the scheduling decision on and the fluctuation expected to occur in the

timings. Next, we present the details of the scheduling algorithm and how it connects to the

rendering process. We then describe how the scheduler initializes the distributions and updates

them with timings at run-time. Finally, we discuss how the system obtains timings.

4.4.1 Timing Distributions

For each QL on server and client, the scheduler maintains a continuous processing and transfer

time normal distribution (ND) with millisecond accuracy. A discussion on why we choose the

ND as the distribution type follows in Section 4.6. The scheduling algorithm uses the NDs

to decide which side should render which QLs. The scheduler builds NDs by accumulating

timings. Processing time includes the rendering time and in case of the server also the image

encoding time. Transfer time only applies to server QLs. It includes the time to request a QL

for rendering and to send the rendered image to the client in return.

We simply use the term “random sampling” to describe generating random variates distributed

according to a ND. We simply refer to a variate as a sample. Press et al. [PTVF07] describe
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Figure 4.5: Illustration of a frame’s rendering. Scheduling runs in the main display thread con-
currently to the local rendering thread. The server handles each client in a separate rendering
thread. Once user input comes in, the scheduling algorithm determines the QLs to be rendered.
The display thread requests the rendering of the server and client QLs. Consequently, gener-
ated images and corresponding timings gradually arrive. The scheduler updates its state with
the timings. The display thread refines the view with incoming QLs. Should the user issue
new input before view refinement concludes, the client can prompt to interrupt the rendering
to immediately start the next frame.

several sampling methods. Our system enforces a lower bound for time NDs by falling back to

the mean should a sample <= 0 occur.

The scheduler bases its decisions on probability distributions due to the uncertain conditions

that affect the timings.

4.4.2 Timing Fluctuation

Fluctuation in the timings can occur due to several uncertain conditions, which we classify in

the following. The conditions may not only change between rendering sessions but also within

a session.

First, server load affects processing timings for server QLs. We make no assumptions about

the number of clients that connect to a server, and the load may thus be arbitrary. Network

load affects transfer timings. Since we make no assumptions about the link between client and

server, bandwidth, latency, and outside traffic are arbitrary. Transfer and processing timings

move along with changes in these conditions.

Second, rendering system parameters affect processing timings on both server and client. There
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are the view changes but also other parameters like the display resolution or a volume rendering

transfer function.

Third, processing time fluctuation can occur due to background factors such as operating system

activity and hardware characteristics, even when server load and rendering system parameters

are stable. Task scheduling and memory performance variation are persistent examples. There

may be temporary factors like a copy or update procedure or a throttling of the GPU due to

overheating. The user may perform other tasks alongside the rendering session. Our generic

method cannot model the range of external factors, which affect server and client timings

independently.

Finally, fluctuation may occur due to outliers. An outlier is a timing that is not representative

for subsequent timings under the same conditions. Outliers are difficult to predict, but we

can make assumptions about when they are likely to occur for the processing time. Rendering

system specific initialization like the allocation of resources and the creation of acceleration

structures occurs particularly on the first rendering of each QL. Also, hardware-specific warm-

up effects are possible, especially for a GPU-heavy renderer (for example setting up GPU

state).

To mitigate the effect of outliers our approach utilizes a weighting system when adding tim-

ings to a ND (Section 4.4.5). Section 4.4.4 describes parameters that allow to account for

initialization and warm-up related outliers.

4.4.3 Scheduling Algorithm and Rendering Process

This section presents the probabilistic algorithm that allows the scheduler to adapt to changing

conditions. We assume there are a number of QLs on server and client and that the corre-

sponding NDs are available. The following sections describe how the scheduler obtains NDs

and timings at run-time.

Given a frame to render, the goal of the scheduling algorithm is to update the view with a

newly completed QL as fast as possible on the way to reach the highest QL. Completing a QL

means its rendering result is available at the client for display.

To set the stage for the following algorithm description, we give a summary first. The scheduler

executes once every frame and determines the list of QLs that the client requests for rendering

in the frame (as illustrated in Figure 4.5). The scheduler uses the timing information contained

in the NDs for its decision. This information tells when a QL is expected to complete. The
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scheduler takes into account that client and server can operate in parallel but each side indi-

vidually works sequentially. Thus, scheduling a QL on one side affects the expected completion

time of other QLs on that side. The goal is to minimize the time until the client displays a

new QL. The scheduler thus always chooses the QL that is expected to complete earliest next.

The exception is the start of the frame, where the scheduler may also choose the highest QL

that still adheres to a desired frame rate. As rendering and network transfer are expensive,

the scheduler skips QLs lower or equal to the chosen QL, even though no timings can then be

obtained for the skipped QLs.

We describe two versions of the algorithm. The pre-sampling strategy reflects the variance in

the NDs perfectly, but undesirable slow downs can occur as a side effect. Therefore, we provide

the alternative distribution-comparison strategy to mitigate the side effect.

4.4.3.1 Pre-Sampling Strategy

Let list A be a list containing all QLs and their processing and transfer time NDs. First, the

scheduler takes a random sample from the processing and the transfer time ND for each QL

in A. The accumulated sample time is the sum of processing and transfer time sample. The

scheduler stores the processing and accumulated sample of each QL in a new list B and sorts

B by the accumulated time in ascending order. Should two QLs match in number and time,

the scheduler prioritizes the client QL to keep load off server and network.

The scheduler optionally allows to set up a desired frame rate. The scheduler looks for the

highest QL in B that fulfills the frame rate and removes lower or equal QLs from the list. Ren-

dering these QLs would cause unnecessary load as a higher QL already meets the application’s

requirement. By default, the scheduler considers all QLs in B for rendering.

The main execution loop of the algorithm now processes B. The scheduler generates no further

samples from the NDs within the loop, which is why the strategy proceeds deterministically

from here on and is called pre-sampling. The scheduler adds the first QL q in B to the end

of a list C. C is the output of the algorithm and contains the QLs to render in the frame.

QLs lower or equal q are then removed from B. If B is not empty, the scheduler adds the

processing time sample of q to the accumulated sample of every QL on the same rendering side

as q. The renderer on that side cannot process the next QL before finishing q. The transfer

time does not delay the rendering of the next QL and is thus not added. The scheduler sorts

B by accumulated time again and iterates until B is empty.

The first QL in C is the interactive QL as it is expected to complete first and thus should

provide interactive performance. The remaining QLs in C are the non-interactive QLs. The
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scheduler finally splits C into client and server QLs, which the client then requests for rendering.

Server and client can process their list of QLs independently and thus render in parallel.

The client uses a small time interval between completing the interactive QL and requesting the

non-interactive QLs. This request timer prevents requesting non-interactive QLs prematurely

even though the user is still active, which would result in permanent rendering aborts during

interaction phases. The overhead to abort the renderer can be noticeable, which depends on

how quickly the renderer can exit. In contrast, if a new interaction event arrives within the

interval, the client can immediately start the next frame.

Each time the scheduling algorithm runs, different random samples could be chosen to create

list B, causing a different scheduling outcome in list C. The order of QLs in B is uncertain

and reflects the variance in the NDs. The PDF of a ND approaches zero but never reaches it.

A sample can therefore take on any value and any order of QLs is possible. The probability of

a specific ordering is arbitrary and may only exist theoretically; in practice, zero probabilities

are possible due to limited computer precision.

The probabilistic approach allows the system to adapt to the uncertain and changing conditions.

The scheduler will eventually select every QL for rendering. Gathering timings for completed

QLs allows the scheduler to notice change. However, the adaptation process is not guaranteed

to be immediate. First, how fast a ND shifts in response to new conditions is dependent on the

weighting system to adding timings (Section 4.4.5). Second, the scheduling frequency for a QL

may be irregular. The probability of a QL to be scheduled for rendering in a frame is the sum

of probabilities of the scheduling outcomes that contain the QL. This sum may be very small.

If the system rarely renders a QL, for example on an occupied server, it can be slow to notice

change in the QL’s performance behavior.

Table 4.1 illustrates the possible outcomes of a scheduling scenario. While the chance for the

scheduling of QL2 on the client is seemingly low (∼0.52%), the scheduler still produces the

case every few seconds in practice considering that this is an interactive environment and the

scheduler re-evaluates every frame.

The pre-sampling strategy produces a schedule that takes into account the variance in the

observed timings. However, there is an undesirable side effect as the scheduler potentially

chooses any QL as the interactive QL. If a QL is chosen that does not fulfill the interactivity

requirement, the user may notice a slow down. To uphold responsiveness, the system allows to

interrupt the rendering of the interactive QL if the QL does not complete within a target FPS.

This is optional since it causes another problem. If no QL can meet the target FPS reliably,

the system suffers from constant aborting and gaps in updating the display during interaction.
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Table 4.1: Demonstrating the variability of a scheduling scenario. a) Given a fictional state
(mean, variance), we have run the pre-sampling strategy one million times. b) The scheduler
produced multiple outcomes (client QLs in orange). We derived the probability for each outcome
statistically from the runs. For simplification, we used the same transfer time distribution for
the server QLs.

Processing time distributions

Client Server

QL1 30 9 20 35

QL2 200 139 105 870

QL3 1100 2227 1000 7828

Transfer time distributions

QL1-3 15 9

(a)

Scheduling outcomes

1-2-3 40.3652%

1-2-3 34.9583%

1-2-3 14.9797%

1-2-3 9.084%

1-2-3 0.4896%

2-3 0.0738%

1-2-3 0.0244%

2-3 0.0226%

1-2-3 0.0024%

(b)

4.4.3.2 Distribution-Comparison Strategy

To mitigate the side effect of the pre-sampling strategy, the scheduler provides an alternative

strategy: distribution-comparison. The basic structure of the algorithm stays the same. The

accumulated time ND is the sum of the independent processing and transfer time ND. The

scheduler stores the accumulated time ND of each QL in list B and sorts B by the distribution

mean.

The scheduler incorporates the optional desired frame rate by searching B for the highest QL

i that can maintain the frame rate with at least a minimum probability. QLs lower or equal to

i are removed from B.

The main execution loop then produces C. The scheduler compares the accumulated NDs of

the first two QLs in B by taking a random sample from each ND. The QL q with the smaller

sample goes into C. If only one QL is left, it is chosen without competition. The scheduler

removes QLs lower or equal q from B. If B is not empty, the scheduler adds the processing

time ND of q to the accumulated ND of all QLs on the same render side, sorts B again, and

proceeds with the next iteration.

Since B contains distributions sorted by the mean, QLs with higher completion time, which

are more likely to disrupt an interactive frame rate, are always further up in the list. Random

sampling cannot cause these QLs to occasionally end up as the interactive QL anymore.
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While the distribution-comparison strategy does not account for all the possible scheduling

outcomes like the pre-sampling strategy, it can still provide a smoother user experience. Both

strategies are viable, and we recommend an application-specific selection. The system does not

automatically switch between the two. Though, we consider to investigate run-time detection of

the pre-sampling strategy side effect to automatically decide whether to fall back to distribution-

comparison.

4.4.4 Distribution Initialization and Auto-Scheduling

When a rendering session starts, our system has not gathered any timings yet. Before the

scheduler includes a QL in the scheduling algorithm, the system has to acquire timings to

initialize mean and variance of the QL’s NDs. Until this state is reached, the scheduler auto-

matically adds the QL for rendering to facilitate the timing acquisition. We call this process

auto-scheduling.

The scheduler provides an option to ignore the first N processing timings for a QL. In addition,

the scheduler may ignore all timings for a rendering side until a minimum of processing time

occurred on that side. These parameters allow to account for initialization and warm-up related

outliers. We assume an initial rendering of a QL to be a likely outlier, and we observed this

behavior for Tuvok, which is an out-of-core system that needs to page in data from disk. The

first accepted timing initializes a ND and is the initial mean.

The scheduler also needs to determine the initial variance. There is limited information on-

hand with the first accepted timing, which could still be an outlier. Therefore, the scheduler

artificially adds variance to a ND newly initialized from a single timing. Starting with uncer-

tainty in the schedule benefits the acquisition of timings across the QLs to gradually narrow

down the NDs and the schedule according to the actual conditions.

The scheduler sets the initial variance of a ND to the maximum valid variance. We define

the largest interval that random samples taken from the ND can fall into as [0, 2 ·mean]. The

goal is to set the initial variance to the maximum value that still reflects this requirement. To

determine the value, we solve the cumulative distribution function (CDF) for deviation using

1− ε as the target probability for a very small ε (the CDF never becomes one, thus the ε):

0.5 ·
(

1 + erf

(
h

d ·
√

2

))
= p+

1− p
2
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v = d2 =

(
0.707107 · h

erfinv (p)

)2

where erfinv is the inverse error function, h the half length of the interval, p the target

probability, d the deviation, and v the variance.

4.4.5 Distribution Update and Reset

A newly initialized ND is a sparse representation of the current conditions as only one timing

has been acquired so far. The scheduler updates a ND with further timings as they become

available. The scheduler provides an option to accumulate more timings before considering a

ND meaningful and including it in the scheduling algorithm.

The system passes timings for completed QLs to the scheduler. However, a QL is not guaranteed

to complete as the client may issue the abort of the rendering. In this case, estimated timings

may still be available as described in Section 4.4.7. Since rendering is expensive, the scheduler

skips QLs that are expected to complete later than a higher or equal QL. Concluding, the

scheduler is not guaranteed to obtain timings for each QL in frequent intervals.

The scheduler adds timings to a ND using the following time-based weighting system. It is

not necessary to retain the timings as the scheduler updates mean and variance incremen-

tally [Fin09]. The weighting method should have two characteristics. First, it should be resis-

tant to outliers. Second, newer timings should have more significance. Our approach takes the

time since the last timing into account to determine the weight for a new timing. For each QL,

the scheduler allows to define a weighting function that takes the elapsed time in milliseconds

as a parameter. The function returns the factor of weight difference between the last and the

current timing. The new weight w is calculated as:

w = lw · wf(et)

where lw is the weight of the last timing, wf the weighting function, and et the elapsed time

since the last timing.

The scheduler uses a function that increases weights linearly by default, but an exponential

function or another approach can be used at will. There is a tradeoff between adapting to

changing conditions quickly and being outlier resistant.

The more time passes since the last update of a ND, the less representative the ND becomes.

Conditions might be different than before, and thus timings loose their significance over time.

In terms of the weighting function, the larger the weight of a new timing is, the less significant
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the previous timings are. The scheduler allows to set up the maximum weight of a timing. If

a timing would reach this weight, the scheduler resets the corresponding ND to the uninitial-

ized state to facilitate the acquisition of up-to-date timings. Previous timings have lost their

significance, and we must assume that start-up outliers may happen again.

4.4.6 Obtaining Processing and Transfer Timings

This section describes how the system obtains the timings to generate the NDs. We distinguish

between measured timings, which are available if a QL completes, and estimated timings, which

may be available after the abort of the rendering. There are two types of timings: processing

and transfer.

For the processing time measurement, the rendering time and in case of the server also the

image encoding time counts.

For the transfer time measurement, the client starts a timer before requesting the rendering of

the server QLs. The client probes the timer when the response for a QL arrives to determine

the waiting time. The client immediately restarts the timer for the next QL. The response

includes the processing time and for completed QLs also the image data for display. The client

determines the transfer time t as follows:

t = pt+ w − p (4.1)

where pt is the transfer time of the previous QL that completed within the request. For the

first requested QL, pt is zero. w is the waiting and p the processing time.

Equation 4.1 must include pt for two reasons. First, after having sent the image for a rendered

QL, the server immediately proceeds with the next QL. Consequently, rendering continues

during the transfer of previously generated images. Second, the latency to send a rendering

request from client to server is only included in the measurement for the first QL, but the

scheduler must consider the latency for subsequent QLs as well.

4.4.7 Rendering Abort and Timing Estimation

Here we describe the unfavorable effects of incomplete and lost timings caused by rendering

abort and how our system can compensate the loss by estimating both processing and transfer

time.
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Our system allows to abort the rendering to stay responsive. Progressive view refinement

terminates if the next frame is about to start due to new user input. However, interrupting the

rendering prevents the system from completing the time measurements. There is only a partial

measurement for the QL aborted while rendering and no measurement for consecutive QLs

that are still scheduled for processing. Missing timings can cause the NDs to stay or become

unrepresentative, which prevents the scheduler from adapting. The scheduler could then keep

up a warped schedule that does not reflect the current conditions. To mitigate these effects,

timing estimation is in place.

4.4.7.1 Processing Time Estimation

To enable the estimation of rendering time, we introduce the concept of work units. For each

QL, the rendering system defines a number of work units. QL N has less units than QL N + 1.

We expect each unit to require about the same rendering time under stable conditions. The

mapping of actual rendering work to linear work units is up to the rendering system.

Such a mapping may only approximately be possible. For Tuvok, we use a direct mapping to

the number of bricks. However, there may be significant differences in the rendering time of

bricks. While estimations may be off, they at least likely push a ND in the right direction.

The advantage of keeping the state up-to-date outweighs the possible inaccuracy. The outlier-

resistant weighting system is in place to absorb the impact of largely inaccurate estimations.

When rendering the list of QLs requested for a frame, each rendering side tracks the average

work unit completion time. The server also tracks the average encoding time. After an abort,

the estimated remaining processing time ep for a QL is calculated as follows:

ep = w · wc+ e

where w is the number of work units still to complete, wc the average work unit completion

time, and e the average encoding time.

Since uncertain conditions such as server load affect the rendering and encoding time, the

estimation relies on information obtained within the bounds of a frame. Only if the abort hits

so early that no measurements for the current frame are available, the estimation falls back on

the most recent data from previous frames.

4.4.7.2 Transfer Time Estimation

Transfer time is dependent on latency, bandwidth, and the size of the image.

69



For each aborted QL, the server estimates the encoded image size based on the last image that

was encoded. Since the image size is view-dependent, it is reasonable to base the estimation

on the most recent sample that was probably generated within the same frame. But the size

may also differ between QLs. Therefore, we consider an extension that keeps information from

previous frames persistent. The server could employ a view-matching metric to decide whether

a previous image size for the same QL is still representative for the current view. The approach

may be feasible as view changes between adjacent frames are likely small in the interactive

context.

The client tracks the image transfer rate. Further, the client uses a monitor to approximate

the round-trip time. The round-trip time is independent of the image size and thus excluded

from the transfer rate measurement.

The client estimates the transfer time et as follows:

et =
ei

tr
+ rt

where ei is the estimated image size, tr the transfer rate, and rt the round-trip time.

4.5 Results

We tested the hybrid rendering in a number of scenarios to demonstrate characteristics of the

method.

In Section 4.5.1, we set out to demonstrate that our method reacts to network latency and

limited bandwidth as well as to the performance capability of client and server. We compare

against remote rendering and expect the advantages of the hybrid approach to be visible from

the results. We used Dummynet [CR10] to simulate network conditions.

In Section 4.5.2, we set out to demonstrate that our probabilistic scheduler reacts to run-time

change in the performance behavior of a rendering side, even if QLs are barely scheduled for

rendering on that side. We make a comparison to a deterministic scheduler, which we expect

to behave differently and less accurate.

In Section 4.5.3, we set out to underline the flexibility of the QL concept by adaptively refining

a large data set into a variable amount of QLs. We compare this approach to the standard

non-adaptive version of the system in a specific scenario and expect the adaptive approach to

provide better performance in that case.
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Table 4.2 lists the client and server machines that we used for the tests. In Section 4.5.1.1,

we used the geometry renderer with the Thai Statue (TS) data set (Figure 4.3, 10 million

triangles). Otherwise, we used Tuvok as the renderer. The data set is the Visible Human (VH)

(Figure 4.2, 512x512x1884 8-bit voxels). In Section 4.5.3, we used the Mandelbulb (MB) data

set (8192x8192x8192 8-bit voxels). The rendering resolution is 1280x800. To enable remote

rendering, we simply set up a client to not support any QLs.

Table 4.2: Server and client machines used for the results.

Site 1 (Saarbrücken, Germany)

Name CPU & Memory GPU & Network

lab server Intel i7-2600K @ 3.4GHz GeForce GTX 680

16GB 1 GBit/s

fat client Intel i7-860 @ 2.8GHz GeForce GTX 560

8GB 1 GBit/s

thin client Intel Pentium E5500 @ 2.8GHz GeForce GT 420

2GB 100 MBit/s

thinnest client AMD E-450 @ 1.65GHz Radeon HD 6320

3.6GB 1 GBit/s

Site 2 (Salt Lake City, USA)

orion server Intel i7-2600 @ 3.4GHz GeForce GTX 560 Ti

16GB 1 GBit/s

For equal conditions and reproducibility, we automatized the tests by replaying a four minute

set of interaction events that we recorded beforehand. There is a mixture of interactive phases

that move the data set in place and idle phases for examination. We repeated the set ten times

for each scenario. The results are the averages from the ten runs (thus fractional parts appear).

For each scenario, if not stated otherwise, hybrid rendering is enabled, both sides support all

QLs, and no constraints were put on the network link or the rendering performance of either

side.

4.5.1 Comparison with Remote Rendering

In the following scenarios, we test the resilience of the the hybrid rendering method towards

network latency, limited bandwidth, and server load. We show the synergy the scheduler
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creates between client and server. We compare the scenarios to remote rendering to underline

the advantages of the hybrid approach.

The upcoming tables and statistics back up our findings. The tables show for each QL how

often it was scheduled for rendering on server and client, how often the client actually requested

the scheduled QL for rendering, how often the QL was the interactive QL, and how often the

QL completed. The request timer described in Section 4.4.3.1 may prevent the client from

requesting a QL. A QL may not complete due to rendering abort. In addition to the tables, we

state the average time it took to display the interactive QL each frame (iQL DT), the average

of the average time it took to refine the view with a non-interactive QL each frame (niQL DT),

the total processing time spent on each side (PT client/server), and the total transfer time

(TT). For remote rendering, we present no tables as the scheduling is one-sided with only the

server being utilized.

4.5.1.1 Heterogeneous Clients

This section examines the scheduler reaction to clients with different capability. We used the

lab server. Server and clients are in a LAN, and the latency is therefore negligible.

In scenario 1 (Table 4.3), we used the thin client.

Frames: 1440.4; iQL DT: 27.4 ms; niQL DT: 325.8 ms; PT client: 30.8 s; PT server: 113.7 s;

TT: 11 s

Table 4.3: QL scheduling and rendering with a thin client.

Scheduled Requested Interactive Completed

QL1
S 507.9 507.9 507.9 505.6

C 940.4 940.4 940.4 929.5

QL2
S 1371.9 116.6 0.8 105

C 98.9 6 0 4.7

QL3
S 1371.6 116.1 0 77.6

C 60.9 5 0 1.9

QL4
S 1146.7 99 0 40.5

C 57.5 5 0 0

QL5
S 1077 94.8 0 26.5

C 37.9 3 0 0

QL6
S 1426 122.2 0 25.9

C 46.9 4.1 0 0.3
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The client is able to compete with the server for the simple QL1 (100008 triangles), while the

substantially more powerful server is almost exclusively in charge otherwise. The scheduler

barely chooses QL2 as the interactive QL, which indicates a stable rendering time gap between

QL1 and 2 and consequently low-variance NDs.

The total number of times a QL is scheduled for rendering may exceed or fall below the frame

count. Auto-scheduling can cause the scheduler to assign a QL to both sides. On the other

hand, the scheduler skips QLs that are expected to complete later than a higher QL. Apart

from these two cases, the scheduler assigns a QL to either the client or the server.

In scenario 2 (Table 4.4), we used the fat client.

Frames: 2019.4; iQL DT: 10.8 ms; niQL DT: 230.8 ms; PT client: 82.9 s; PT server: 119.8 s;

TT: 0.4 s

Table 4.4: QL scheduling and rendering with a fat client.

Scheduled Requested Interactive Completed

QL1
S 52.2 52.2 52.2 46.8

C 1975 1975 1975 1969.6

QL2
S 1913.1 119.2 0 118.7

C 324.9 14.1 0 12.9

QL3
S 1294.4 80.2 0 75.8

C 855.7 52.1 0 28.2

QL4
S 984.5 62.4 0 47.5

C 1091.5 67.4 0 23.8

QL5
S 1149.8 70.9 0 36

C 724.9 44.2 0 12.1

QL6
S 1300.5 82.2 0 26.1

C 779.7 48.1 0 10.7

We repeated the test with remote rendering.

Frames: 1672.2; iQL DT: 21.3 ms; niQL DT: 300.7 ms; PT server: 117.6 s; TT: 2.1 s

We repeated the test with client-side only rendering.

Frames: 2049.9; iQL DT: 10.5 ms; niQL DT: 338 ms; PT client: 121.7 s

This scenario demonstrates a strong synergy of client and server as no side provides a substantial

performance lead. Hybrid rendering achieves a faster view refinement compared to both remote

and client-side only rendering. For the higher QLs, the focus slightly shifts from client to server.
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The about constant encoding and transfer time have less impact on the scheduling decision as

the rendering time difference increases in favor of the server.

4.5.1.2 Network Latency and Limited Bandwidth

This section examines the scheduler reaction to latency and limited bandwidth.

In scenario 1 (Table 4.5), we used the orion server and the thin client. Latency was around 73

ms and bandwidth around 3.2 Mbit/s.

Frames: 564.5; iQL DT: 152.5 ms; niQL DT: 375.4 ms; PT client: 81.2 s; PT server: 28.4 s;

TT: 80.1 s

Table 4.5: QL scheduling and rendering in a network setup with moderate bandwidth and
latency.

Scheduled Requested Interactive Completed

QL1
S 48 48 48 43.2

C 489.8 489.8 489.8 471.2

QL2
S 317.4 59.4 19.1 53.7

C 181.1 32.3 13.6 28.3

QL3
S 432.2 54.5 0 43

C 76.8 9.3 0 4.9

QL4
S 558.5 68.2 0 20.1

C 161.7 16.5 0 0.3

The scheduler reacts to the latency by shifting the interactive QL to the client. The server is

still the more powerful machine and therefore in focus to render the remaining QLs. The about

constant latency becomes less significant as the difference in rendering time between server and

client increases for higher QLs.

Requested QLs do not always complete. The client more likely interrupts the rendering of

higher QLs that take long to complete. Further, QL3 and 4 provide detail that is not required

for far away views. The renderer thus rejects these QLs for such views, which is a feature

described in Section 4.3.2.

We repeated the test with remote rendering.

Frames: 346.9; iQL DT: 285 ms; niQL DT: 440 ms; PT server: 31.4 s; TT: 132.2 s

The iQL display time is greatly increased compared to hybrid rendering. The client cannot

bypass the latency by rendering the interactive QL locally. Also, the hybrid approach creates a
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schedule in which client and server complement each other. Table 4.5 shows that the server does

not have to bother with QL1 most of the time. The server can thus complete the non-interactive

QLs for view refinement faster, which results in the lower niQL display time compared to remote

rendering.

In scenario 2 (Table 4.6), we used the orion server and the thin client. We simulated a

bandwidth reduction to 500 KBit/s and an additional latency of 150 ms on top of the actual

73 ms.

Frames: 551.4; iQL DT: 138.7 ms; niQL DT: 731.4 ms; PT client: 118.2 s; PT server: 21.7 s;

TT: 172.2 s

Table 4.6: QL scheduling and rendering in a network setup with low bandwidth and high
latency.

Scheduled Requested Interactive Completed

QL1
S 7 7 7 1.8

C 490.6 490.6 490.6 475.7

QL2
S 55.1 9.3 0 7.2

C 489.7 113.8 59.8 86.7

QL3
S 208.2 30.8 0 18.7

C 352.9 39.5 0 17.1

QL4
S 542.7 65.9 0 18.3

C 152 16 0 0.1

The additional network constraints significantly increase the transfer time. The scheduler thus

shifts the focus further to the client. While QL4 is still almost exclusively scheduled on the

server, the client now concentrates on QL1, 2 and 3.

We repeated the test with remote rendering.

Frames: 133.2; iQL DT: 760.5 ms; niQL DT: 1400.8 ms; PT server: 16 s; TT: 241.2 s

The iQL display time shows that the remote rendering can barely maintain an interactive

frame rate. We set up the client to abort the rendering of the interactive QL if the QL does

not complete within one second. The client indeed regularly discards the interactive QL for

close views that show a lot of detail. For QL1, the abort-to-request ratio is 0.5. Aborting the

interactive QL, which is the first QL of a frame, ultimately means display updates are lost, and

the user input becomes decoupled from the visible result. The situation is even worse than the

iQL display time indicates as the measurement only includes QLs that could complete within

a second. Even though the client regularly issues a rendering abort for the interactive QL, the
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server likely already finished the QL and sent it to the client as the delay on the client is caused

by the network and not the rendering.

The hybrid approach maintains interactive performance regardless of the network and server

conditions as long as the client renders at least the first QL at interactive frame rates. There-

fore, when mapping a renderer’s data sets to QLs, it is reasonable to make the first QL render

interactively on all target hardware even if this means reducing the QL’s visual quality consid-

erably. The scheduler is able to automatically choose the highest QL adhering to a target frame

rate, and as a consequence the low quality QL only comes into play if there is no alternative.

In scenario 3 (Table 4.7), we used the lab server and the thin client. We simulated a latency

of 200 ms. Bandwidth is a negligible factor for the high-speed local area link.

Frames: 585.4; iQL DT: 138.2 ms; niQL DT: 558.7 ms; PT client: 111.1 s; PT server: 15.1 s;

TT: 126.4 s

Table 4.7: QL scheduling and rendering in a network setup with high bandwidth and latency.

Scheduled Requested Interactive Completed

QL1
S 8.5 8.5 8.5 3.1

C 523 523 523 499.3

QL2
S 113 18.8 1.3 18.2

C 435.7 102.8 57.6 81.5

QL3
S 335.9 42.2 0 35.3

C 238.9 25.5 0 12.3

QL4
S 582.4 69.6 0 29.1

C 159.1 16.3 0 0.1

The scheduler mostly assigns QL1 and 2 to the client to bypass the latency. For QL3 and 4,

which take substantially longer to render on the client than on the server, the server remains

primarily in charge. The client unburdens the server and vice versa.

We repeated the test with remote rendering.

Frames: 202.4; iQL DT: 531 ms; niQL DT: 842.1 ms; PT server: 16.6 s; TT: 200.1 s

The client cannot bypass the latency, and neither side can take load off the other. Thus, iQL

and niQL display time increase compared to hybrid rendering.

4.5.1.3 Server Load

This section examines the scheduler reaction to server load.
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We used the lab server and both thin and fat client. The thin client captured the measurements.

We ran 19 remote rendering sessions on the fat client to generate server load. The fat client

sessions kept running until the thin client finished. Table 4.8 shows the scheduling result.

Frames: 529.3; iQL DT: 150.4 ms; niQL DT: 921.8 ms; PT client: 136.7 s; PT server: 148.6 s;

TT: 0.9 s

Table 4.8: QL scheduling and rendering with a server under high load.

Scheduled Requested Interactive Completed

QL1
S 20.2 20.2 20.2 16.4

C 453.1 453.1 453.1 445.6

QL2
S 110.3 19.3 3.8 16.2

C 407.7 102.2 57.8 84

QL3
S 222.7 30.3 0.3 20.1

C 323.3 39 0 16.5

QL4
S 386.8 48.3 0 5.8

C 296.3 36.8 0 2.8

The scheduler responds to the server load by shifting QLs to the client. Except for QL4, the

focus is on the client. We observe a low completion rate of QL4 since both loaded server and

thin client can hardly deliver in time before the next interaction event interrupts the progressive

refinement.

We repeated the test with remote rendering. The performance loss compared to hybrid render-

ing is substantial.

Frames: 303.7; iQL DT: 310.6 ms; niQL DT: 1594.4 ms; PT server: 226.5 s; TT: 4.3 s

To conclude, the previous three sections demonstrated that the hybrid rendering method can

overcome limited client capability, latency, limited bandwidth, and server load by shifting

rendering work between client and server. The method is able to create a synergy of the two

sides to improve the user experience. We demonstrated the advantages over a remote rendering

system. The findings confirm the expectations we originally formulated.

4.5.2 Comparison with Deterministic Scheduling

In the following scenarios, we compare our probabilistic scheduling method to a deterministic

approach that always produces the same schedule from a given input. We examine the reac-

tion to run-time condition changes. We identify similarities and differences and outline the
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advantages of the probabilistic scheduler.

To enable deterministic scheduling, we set up the scheduler to always use the mean of a ND.

We modified the system to simulate a run-time change in the rendering performance. Client and

server can delay the rendering of a QL. In each run, the condition change hits after two minutes.

We performed the tests with a new four minute interaction set that represents a continuous

rotation in a fixed distance. We used QL1 only. The usage of the simplified interaction set

with just a single QL demonstrates the behavior of the scheduler over time most clearly.

In scenario 1, we used the thin client and the lab server. The condition change is a slow down

of the server performance by a factor of 7.5. Figure 4.6 shows the schedule amount of QL1 on

each rendering side over time in milliseconds. The schedule amount is the number of times a

QL was scheduled for rendering. The histogram scale of client and server is not equivalent. The

server without delay is substantially faster, and thus a higher frame rate is present if the server

is the active side. The active side is the rendering side the scheduler focuses on. In contrast,

the scheduler only infrequently assigns the QL to the idle side.

Figure 4.6: Schedule amounts determined by the probabilistic scheduler in response to a server
slow down.

As expected, the server is the active side until the slow down occurs. Due to the probabilistic

nature of the scheduler, the client side is still sampled from time to time. The distribution ini-

tialization process (Section 4.4.4), which facilitates timing acquisition to adapt to the unknown

conditions, is reflected in the initially higher schedule amount on the client. Once the slow

down hits, the client schedule amount first decreases before starting to climb. The transition

to the client as the active side is not immediate. The focus stays briefly on the slowed server,
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which results in a lower frame rate and thus fewer chances for the scheduler to assign the QL

to the client. The reason for the incremental shift is the proximity in rendering performance

between the slowed server and the client. The advantage of the client is not substantial. The

weighting function also affects how quickly new timings cause the overtaking. The scheduler’s

behavior is thus valid given its parameters and the conditions.

We repeated the scenario with the deterministic scheduler. We provide no histograms as the

server is the only active side.

Rendering on the client stops after the initialization phase until the slow down occurs. Since the

slow down occurs on the active server, the deterministic scheduler notices the change. However,

unlike our expectation, the scheduler does not switch rendering persistently to the client. First,

the server side distribution does indeed fall behind the client, causing the rendering of the QL

on the client. However, the client timing is an outlier as there was no client-side rendering since

the beginning. The client’s distribution was thus also not updated since the beginning, and

the outlier has a huge impact. As a result, the server’s distribution, even though it reflects the

slowed down state, stays in front in the end. The problem is the abrupt transition with only a

single guaranteed rendering sample on the client, which is prone to outliers.

In contrast, the probabilistic approach enables a smooth transition when one distribution ap-

proaches another. Each timing affects the subsequent scheduling decisions, accelerating the

shift in the direction of change. In a chain-reaction, the chances for one side gradually increase

while they decrease for the other. This causes an outlier-resistant transition, with multiple

samples taken from both sides until a stable state representing the changed conditions has

been reached. The approach is flexible due to the weighting function that can either favor

fast reaction to change or outlier-resistance. The deterministic approach is not able to absorb

client-side outliers, which results in permanently keeping up a bad scheduling decision.

We repeated the scenario with the deterministic scheduler, replacing the linear with an expo-

nential weighting function (Figure 4.7).

Now the scheduler performs the switch to the client similarly to the probabilistic approach.

The exponential weighting function causes a distribution reset (Section 4.4.5) on the idle client

about every 45 seconds. The reset allows the scheduler to obtain several client-side timings

depending on the initialization parameters, which here is enough to absorb initial outliers.

Consequently, a deterministic scheduler that probes the idle side with a certain interval can

achieve a similar behavior than the probabilistic approach. This also applies to the next sce-

nario, which simulates change on the idle side. However, the probing frequency is arbitrary

and does not reflect the actual conditions. There is no chain-reaction to smooth and accelerate
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Figure 4.7: Schedule amounts determined by the deterministic scheduler with an exponential
weighting function in response to a server slow down.

the adaptation process as timings do not affect the scheduling decision until one distribution

finally overtakes the other, which causes an abrupt transition. Probing is no generally applica-

ble concept that can adapt to any situation. A low frequency may result in reacting to change

late. In our scenario, the distribution reset that triggers the switch to the client would be about

40 seconds late if the slow down occurred at the 95 second mark. The timings obtained after

a reset might not be enough to complete the shift of a distribution. Outliers might heavily

influence these timings. A high probing frequency might result in generating unnecessary load

if conditions are stable and the two sides far apart performance-wise. If the performance is

similar, the probabilistic scheduler is able to react by equalizing the schedule, which is espe-

cially relevant to balance multiple-client scenarios. The deterministic approach would instead

focus on one side while probing the other with an arbitrary interval that does not take the

performance proximity into account.

The results underline the benefit of the generic concept behind our probabilistic scheduling

method, which should adapt to any unknown situation without requiring specific parameters

or workarounds.

In scenario 2 (Figure 4.8), we used the thin client and the lab server. The condition change is

a speed up of the server performance by a factor of 7.5. The server slows its performance down

by this factor initially and returns to normal performance to simulate the speed up.

As expected, the client is the active side until the speed up occurs on the server. The prob-

abilistic scheduler notices the change as it continues to sample the server from time to time.

In contrast to scenario 1, the transition concludes quickly. Once the server regains full perfor-
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Figure 4.8: Schedule amounts determined by the probabilistic scheduler in response to a server
speed up.

mance, the difference to the client is substantial, which allows the server-side timings to quickly

put the server in front.

We repeated the scenario with the deterministic scheduler. We provide no histograms as the

client is the only active side.

The scheduler does not notice the condition change. The server is left alone entirely after the

initialization phase. Without a workaround, such as forcing to reactivate the idle side every N

time steps, the deterministic scheduler is not able to react to change that occurs only on the

idle side.

We repeated the scenario with the deterministic scheduler, replacing the linear with an expo-

nential weighting function (Figure 4.9).

Now the scheduler performs the switch to the server similarly to the probabilistic approach. The

distribution reset caused by the exponential weighting function triggers auto-scheduling of the

QL on the server. The scheduler can thus obtain several timings, which are enough to trigger

the transition, though at a later point. However, the result is again specific to the situation and

the scheduling parameters chosen and does not reflect a generically applicable concept. The

small schedule amount peak on the client in the end is also induced by a distribution reset.

Summarizing, the probabilistic scheduler has an advantage in absorbing outliers, especially in

the transition phase when one side overtakes the other, and in reacting to change on the idle

rendering side. Still, a problem with the latter can occur if the probability for a QL to get

scheduled for rendering on the idle side gets very low or even towards zero. Such a scenario is
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Figure 4.9: Schedule amounts determined by the deterministic scheduler with an exponential
weighting function in response to a server speed up.

possible if the two sides are far apart performance-wise and timing variance is low. We assume

condition changes can affect the situation any time. The scheduler cannot predict the changes

given the current state represented by the distributions. Therefore, a mechanism independent

of the state is required to guarantee that the scheduler notices change in a timely manner. The

customizable weighting function allows to address the problem. The function could trigger a

reset faster or in predefined intervals. It is up to the developer what kind of logic is put into

the function. We provide predefined options including the linear and exponential versions used

in this chapter.

In addition to modifying the weighting function, the scheduler supports another more generic

solution that is called probabilistic auto-scheduling. The more a QL’s distribution approaches

the reset threshold in terms of the weighting function, hence the longer the distribution has

not been updated, the higher is the probability for the QL to bypass the scheduling algorithm

and get automatically selected for rendering. The scheduler evaluates the decision every frame

for every QL. Parametrization is possible to control how fast and to what maximum the prob-

ability rises. The mechanism is an optional component and recommended in environments

where substantial condition changes are expected. Using auto-scheduling extensively can cause

unnecessary load and thus be counter-productive.

Concluding, our probabilistic scheduler is able to react to changes in the performance behavior

of active and idle side. While a deterministic approach can achieve similar results in some

situations, such a method especially fails to adapt to change on the idle side reliably. Our system

provides parameters and optional features to tune the scheduling if desirable. Probabilistic
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auto-scheduling and an exponential weighting function have proven to be viable options to

accelerate the adaptation process.

4.5.3 Adaptive QL Mapping

This section demonstrates how our system enables the interactive rendering of a large data set

on a client with limited resources. We used the thinnest client and the fat client as the server.

The thinnest client is restricted in disk space, with only 60GB available in total. This is not

enough to store the MB data set in its uncompressed form. In its compressed form, the MB still

occupies more than 23GB, which makes it infeasible to store the data set on such a machine

(considering an additional 15GB for the operating system alone). We therefore only enable a

subset of the QLs on the client.

Further, the client is restricted in rendering performance. The MB has seven LODs. When

using a direct LOD-to-QL mapping, even the first QL renders barely interactively. We tested

the interaction set from Section 4.5.1 and measured an iQL display time of 620.2 ms with

client-side only rendering of QL1. To improve interactivity and enable a more fine-grained view

refinement, we extended the QL mapping for Tuvok with an adaptive approach that allows to

split each LOD into a variable amount of QLs. These QLs are distinguished by the sampling

frequency and resolution at which they are rendered. Frequency and resolution are run-time

parameters of the renderer. Figure 4.10 shows example QLs for a LOD of the MB.

Figure 4.10: LOD1 of the MB split into three QLs. QL3 (right) renders at full resolution and
with the default sampling frequency. Resolution and frequency decrease for the lower QLs to
enable faster rendering.

For the test, we split each LOD into two QLs, resulting in 14 QLs overall. We introduced 28

ms of network latency to facilitate iQL rendering on the client. The client supports QL1 to 6.

Frames: 734.5; iQL DT: 82.7 ms; niQL DT: 286.8 ms; PT client: 42.4 s; PT server: 101.7 s;

TT: 35.8 s
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The client mostly renders the iQL (62.7% share). Though, for close views that demand more

rendering time, the scheduler regularly switches the iQL to the server as the impact of the

latency fades. The server almost exclusively handles the niQLs.

We repeated the test without the adaptive QL mapping, thus ending up with seven QLs. QLN

is equivalent to QL2 ∗N in the adaptive mapping. The client supports QL1 to 3.

Frames: 514.1; iQL DT: 146 ms; niQL DT: 487.1 ms; PT client: 14.8 s; PT server: 114.1 s;

TT: 37.8 s

The server performs almost all rendering including the iQL. The latency has no impact on the

schedule as the performance difference between client and server is too substantial. Both iQL

and niQL display time are increased compared to the adaptive approach.

The results underline the flexibility of the abstract QL concept, which allows an arbitrary,

application-specific mapping of a data set to QLs. The adaptive mapping substantially im-

proved the interactive rendering of the demanding MB data set.

4.6 Normal Distribution Usage

Our system obtains discrete timings to gradually approach the underlying continuous distri-

bution, which we assume to be normal. In general, the distribution characteristics are unfore-

seeable. They are dependent on unknown factors especially attributed to renderer, operating

system, hardware, and network. The distribution type may differ between data sets, QLs,

and even views. Along with changing conditions, distribution characteristics may also change.

Insight could be obtained for a specific hard- and software setup with stable conditions. How-

ever, such an offline assessment does not apply to our generic approach that should adapt to

variable run-time conditions. We support arbitrary server and client machines and make no

assumptions about the possibly changing environment during a rendering session.

We performed a number of tests using the machines and data sets presented in Section 4.5

to confirm the ND is a reasonable choice in the majority of cases. In each run, the test

machine rendered a single QL repeatedly for four minutes. There was no additional load on the

machine. We performed the runs with a static view as well as with the data set slightly and

continuously moving (rotating or zooming in and out). Figure 4.11 and 4.12 show millisecond

timing histograms with NDs fitted to the data for a selection of runs. A ND has proven to be

a good fit in most cases.

When enabling the movement, we could still fit NDs of increased variance to much of the data.

In some cases, the different views caused by the movement resulted in several peaks in the
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Figure 4.11: A ND fitted to the histogram of processing timings in six scenarios.
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Figure 4.12: A ND fitted to the histogram of processing timings in comparison to a generalized
extreme value distribution and an error distribution.

histogram and thus more than one distribution being present. This is expected and we assume

a ND can be fit to the timings for a specific view.

We further performed tests using the fat client and the orion server to obtain transfer timings.

Generally, we could fit a ND with very low variance to the data. However, major outliers were

regularly present in some test runs. The client reaches the orion server via the Internet, and

there are possible external influences on the link.

The results show that the ND decently represents the timing data in our system. The choice

to approximate the performance state with NDs is thus feasible. We ultimately decided to use

the ND as the default distribution type in our generic method.

However, isolated scenarios with a stable setup of client, server, and network components as

well as renderers and data sets are possible. In such a case, tests like the ones described in

this section could be performed to gain an understanding about the distribution characteristics.

Figure 4.12 also fits a generalized extreme value distribution (EVD) and an error distribution

to the timing data. Those distributions are more suitable in the depicted cases. A ND is still a

reasonable fit. Though, the ND deviates more clearly from the histogram in the middle scenario

of Figure 4.12.

While our system uses NDs by default for the deployment in a heterogeneous and uncertain

setup, the system is not bound to NDs. The pre-sampling strategy is independent of the

distribution type as the strategy only relies on random sampling. Thus, the system is config-
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urable and allows the replacement of the distribution type. There are other parameters like

the weighting function that can be used for adjustment. In the future, we will investigate the

incorporation of additional distribution types. Especially the EVD has shown to fit some tim-

ing data well. We will also investigate setting the distribution type for each QL individually to

account for the possible difference between QLs.

4.7 Conclusion and Discussion

We presented a generic hybrid rendering method that distributes workload to server and client

in terms of QLs of a data set. We use a probabilistic scheduling algorithm to account for

the various uncertain factors when determining which QLs are to be rendered on which side.

The system obtains and updates timing NDs for the QLs at run-time to adapt the schedule to

initially unknown and potentially changing conditions. The weighting system to add timings

absorbs outliers. The method balances the utilization of server and client resources. Client-side

rendering capabilities reduce the dependency on server and network. Utilizing the client puts

less load on server and network and thus improves the scalability of the system. We demon-

strated the usability of our approach for renderers of multi-resolution data sets, in particular

for a LOD-based volume renderer and a progressive geometry renderer.

In a steady situation, the schedule converges to a state that reflects the current conditions.

However, the adaptation may not be immediate due to the possible irregularity in the scheduling

of QLs, which we addressed in Section 4.4.3.1. Given the scheduler’s goals and probabilistic

view, the irregularity is expected behavior. But this implies two problems.

First, if the probability for QLs to be rendered on a side is low, the scheduler may only

slowly react to a condition change on that side. This especially applies to server QLs, where

substantial timing fluctuation is more likely due to arbitrary server and network load. The

user does not benefit from an improved server performance until the scheduler incorporates

this change. The speed of the adaptation process is also dependent on whether and in what

direction conditions change on the other rendering side. If the client performance decreases,

the probability for server-side rendering indirectly increases. Further, the weighting function

determines how much a timing impacts a ND. But increasing weights fast makes a ND less

resistant to outliers. Also, the scheduler must first acquire a timing. With arbitrarily low

probabilities being possible, resetting a ND and probabilistic auto-scheduling ultimately enable

to update the state.

Second, if conditions on a side change rapidly, the scheduler may constantly be behind with its

predictions, even if timings come in regularly. An incremental shift of a ND may be counter-
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productive if the conditions quickly change again in the opposite direction. This is more likely

for server QLs, where a sudden increase or drop in load is possible. A weighting function that

increases the impact of the next timing fast helps dealing with such volatile conditions.

The scheduler may schedule non-interactive QLs, but the client may not request these QLs

for rendering due to the request timer described in Section 4.4.3.1. The scheduler may thus

only sporadically receive measured or estimated timings for non-interactive QLs. Consequently,

setting up QLs that have a high expected completion time to reach initialized and meaningful

NDs with fewer timings along with giving new timings more weight can be reasonable.

Finally, we briefly outline a possible approach to let the scheduler adapt faster in response to

server load changes. For each QL, the scheduler stores the server load that was present when

the QL’s processing time ND was last updated. The scheduler can then determine whether a

ND still approximately reflects the current server load. If not, the scheduler could decide to

switch to auto-scheduling. For the concept to be beneficial, the server load metric must be

accurate. If the scheduler draws conclusions due to incomplete or inaccurate assumptions, the

correctness of the method is undermined, even if improved scheduling results occur in some

scenarios.

4.8 Future Work

We plan to deploy the system more widespread by incorporating additional devices, especially

mobile ones, which are placed at different locations. We want to incorporate the interleaved data

transfer in future tests. We are also considering a cloud computing environment for deployment.

The cloud becomes increasingly popular to provide services to heterogeneous clients. Hybrid

rendering could be such a service.

We described two scheduling strategies. In both, the goal is to provide the user with the next

QL as soon as possible. We want to investigate the design of an alternative strategy that gives

more priority to the scalability of the system. The strategy would not necessarily select the

schedule optimal for the user but find a compromise that is still acceptable in terms of user

perception but puts less load on server and network.

Further, when determining the next non-interactive QL for rendering, the scheduler always

selects the one expected to complete earliest. However, the time difference to following QLs

may be minimal in terms of user perception. It could be beneficial to prefer a higher QL or the

client instance if the user would barely notice a delay or missing refinement step. The strategy

would enable to put less load on the system while possibly reaching the highest QL faster.
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Chapter 5

The Browser as the Platform for

Remote Visualization

5.1 Introduction

Graphics-intense applications like scientific visualization and games require computing and

storage resources that may not be available on all display devices. Especially mobile devices

may lack the capabilities to handle large scenes and data sets at interactive frame rates or at

all. The browser as the execution platform imposes additional challenges as applications run in

a secured environment that restricts access to persistent storage and native libraries. WebGL

is a limited subset of OpenGL and thus impairs the options of rendering algorithms. Exascale

visualization may make it infeasible to even download simulation data from a supercomputer.

Further, the data may be confidential and must not be sent to a client.

Remote rendering tackles these restrictions, most importantly by providing visualization to

devices with limited resources. A rendering server or a cluster of servers generates images and

transfers them to the client for display. Client-side requirements are minimal. However, network

latency, bandwidth, and reliability can impact responsiveness and quality of the application.

Therefore, incorporating both client- and server-side rendering is a feasible approach, which we

have demonstrated in Chapter 4.

The browser has established itself as a ubiquitous application across operating systems and

platforms, step by step closing in on functionality otherwise provided by native applications.

Persistent network connections via WebSockets (WS), client-side graphics via WebGL, as well

as audio and video media support are now widespread available as built-in features that require

no plugin. Efforts to reflect these developments in HTML-conform standards and thus increase
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the accessibility for web developers emerge. Examples are declarative 3D [SKR+10, BEJZ09]

and real-time communication [LR12]. Further, the cloud concept becomes increasingly popular

to provide data and services to users anywhere. These developments enable building new types

of browser applications like games, virtual worlds, visualization, and videoconferencing.

In this chapter, we provide a classification and description of the technologies that enable plugin

free remote rendering in the browser. We present an interactive remote visualization system

that unifies the technologies. Supporting several technologies enables widespread support across

desktop and mobile browsers as well as adaptivity to network conditions and application re-

quirements.

While developing a browser plugin or using an existing one like Flash for the client functionality

is one solution, this has several disadvantages. Plugins with full privileges on the client system

(NPAPI, ActiveX) are a stability and security risk. The installation thus requires a user dialog.

There is no standardized plugin mechanism across browsers, which complicates development.

The provider therefore has to maintain a tailored plugin version for each supported browser.

Existing plugins may not be available on all platforms (for example Apple does not support

Flash in their mobile products). Browser developers move away from plugins [Sch13, Sme15,

Mic15] and instead continue to extend the browser’s functionality to support more use cases.

Consequently, we do not consider plugins future proof to develop web applications.

Our solution therefore stays close to HTML5 and within the functionality browsers provide

today. Adhering to W3C standards simplifies the possible integration into other compatible

technologies and improves the accessibility for web developers. In Chapter 6, we integrated the

remote rendering techniques presented here into XML3D [SKR+10]. If browsers widely adopt

standardized functionality, a single, portable client application with no or minor cross-browser

tweaks can be maintained. This ultimately enables users to access the application from any

device that runs a capable browser.

Our system supports several methods to transport images to the client. The server can

send images encoded with JPEG, Motion JPEG (MJPEG), and S3 texture compression

(S3TC) [HIN99].

Furthermore, the server utilizes the WebRTC [LR12] technology to stream video directly into

the web page’s video element. WebRTC is primarily intended for browser to browser real-

time communication via webcam and microphone. The video stream is thus optimized for

low latency, which is a major requirement in our interactive context. Consequently, we have

adapted the WebRTC framework and plugged in our rendering component.

Finally, we support the Native Client (NaCl) [YSD+09] technology available in Chrome to
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receive a video stream. NaCl can run native code safely within the browser’s sandbox, which

allows to close in on the performance of a native application. However, as of 2017, NaCl has

been declared deprecated in favor of WebAssembly [Nel17], which is a cross-browser solution

for high performance code in the web. WebAssembly already runs in multiple browsers and is

in the process of standardization. However, it still lacks several of the API features that NaCl

offers [Goo17]. We expect the gap to close until NaCl support is removed from the open web

in early 2018.

The remainder of the chapter is structured as follows: In the next section, we describe related

work in the area of remote rendering in the browser, with a focus on real-time video streaming.

We then provide a classification of the technologies that match our requirements. The imple-

mentation section describes the visualization system that unifies the technologies. The results

section provides measurements and comparisons. The chapter finishes with a conclusion and

future directions.

5.2 Related Work

One application area of remote rendering is visualization. EnVision [JMWJ09] enables remote

rendering in Java-enabled browsers and uses Virtual Network Computing [RSFWH98] as the

strategy to deliver rendered images from the server to a Java applet. Yoon and Neumann [YN00]

describe an early server-backed system that combines ray-casting with image-based rendering

and also enables browser access via a Java applet.

ParaViewWeb [JJAM11] is a visualization framework for the web, which allows to receive

remotely rendered images within a Java or Flash plugin. In addition, a plugin free client

using HTTP long-polling [Lor11] is available. Other plugin free approaches that rely on HTTP

exist [JKKM+03, SBEF14]. McLane et al. [MCY+10] use Ajax communication to receive base64

encoded JPEG images in an XML response. Dyken et al. [DLS+12] employ a browser-based

client for their hybrid geometry rendering system. The client draws a coarse version of the

data set interactively while the server generates more detailed views on demand. To receive

server-generated images, the client issues HTTP requests including support for long-polling.

HTTP requests represent no persistent connection. After the client has received an image, the

browser drops the connection and the client needs to reconnect to send updates and request the

next image. This is a considerable overhead in our context where the server performs rendering

at interactive frame rates. In contrast, the overhead is negligible in systems that use the server

only for static view refinement [DLS+12, SBEF14].
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An approach that induces less overhead and provides more flexibility at least for the image

transfer is MJPEG over HTTP. Here, the browser keeps a connection open to receive consecutive

images as a multipart message. Kaspar et al. [KPS10] use MJPEG in their remote volume

rendering system.

While techniques that enable bidirectional communication with HTTP exist, HTTP is ul-

timately not designed for such usage, and multiple issues can arise from using these tech-

niques [Lor11]. Hence, relying only on HTTP complicates the implementation of an asyn-

chronous pipeline that enables the client to request several frames in advance, thus facilitating

server utilization, and then receive resulting images on a separate channel.

With the advent of WS, persistent connections are now possible and provide a viable alternative

to communicate with the server. Wessels et al. [WPJR11] use the JS WS API to receive JPEG

images, which is similar to our image-based implementation. ParaViewWeb has been extended

to support WS [MPJ+13].

Behr et al. [BMP+15] describe a service infrastructure for visualization applications in the

browser. The framework includes client-side rendering using the hare3d [SLTB15] library in

addition to a server-side rendering component that supports WS image transport.

While most of the above visualization systems focus on individual image encoding, video en-

coding can provide superior compression, which makes it especially viable in situations where

bandwidth is a bottleneck. Multiple clients may be active at the same time and generate net-

work load. Video streaming can also absorb packet loss to some degree. The user perceived

quality might still be acceptable even if artifacts appear. Video is thus especially suited for

unreliable networks like the Internet or wireless links.

Cloud gaming platforms [CCT+11], which need to serve a possibly large number of clients con-

currently, have widely adopted video streaming. There is research to optimize the video stream

for such platforms [HJNS+13, SHNC11, SSB09]. Games@Large [JFE+09, FE10] optimizes the

stream using rendering context information, which is particularly related to our adaptive video

streaming outlined in Section 2.4.4.

Chen et al. [CCT+11] list a number of cloud gaming platforms. We only consider the ones

that provide a browser client. The now discontinued service OnLive [OnL16] provided demos

within the browser while the user needed to download a native client for full games. The game

streaming service Gaikai, which has now been integrated into PlayStation Now [Sar14], could

deliver games as a video stream to Java or Flash enabled browsers. Gaikai also developed a

plugin free client using NaCl [YSD+09].

The HTML5 video element does currently not support real-time video streaming even with
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standard protocols such as RTSP [Moz16]. The fall back to WS transport and JS video decoders

is an option to implement the functionality plugin free in the browser. However, even with

ongoing improvements in JS performance and features, JS video decoders like Broadway.js still

lack behind native counterparts that may even utilize hardware-acceleration.

Otoy presented the ORBX codec [Oto15a, Oto13], which is supported by ORBX.js for efficient

video decoding purely with JS and WebGL. The approach does thus not rely on browser-

specific video codecs. In cooperation with Mozilla, Autodesk, and Amazon, the technology has

been deployed on Amazon Web Services to provide remote gaming and desktop applications.

However, ORBX is not publicly available.

A way to transmit live video to the browser without a plugin is segmented streaming over

HTTP. Bringuier [Bri11] discusses and compares existing methods. While there are a number

of proprietary solutions (Apple HTTP Live Streaming, Adobe HTTP Dynamic Streaming,

Microsoft Smooth Streaming), DASH [Sod11] is an ISO standard that is already widely used

by service providers such as Netflix or Google. But on the browser side, there is no native

DASH adaptation and interoperability yet. However, the upcoming Media Source Extension

standard (MSE) [W3C16a] allows to construct media streams for the HTML5 media elements in

JS. All major platforms except iOS already support MSE. MSE enables to implement support

for DASH with JS and the video element, and portable implementations such as dash.js or

Bitmovin Player exist.

Live streaming methods like DASH require the segmentation into small video files, which the

client continuously downloads via HTTP. This introduces overhead and buffering delay, which

our interactive remote rendering application is very sensitive to (in contrast to a sports event

or similar, where even several seconds delay are usually acceptable). Zorrilla et al. [ZMS+14]

use DASH for their remote rendering but also demonstrate the substantially increased latency

of segmented streaming compared to RTSP [ZMM+12]. The proprietary MSE-based solutions

Unreal Media Server [Unr16] and EvoStream [Evo16] reach sub-second latency. Unreal Media

Server uses WS transport and supports video segments of very small size, but the minimum

delay is still around 200 ms.

We require instant reaction to user input. WebRTC [LR12] has been designed for real-time

purposes and is an upcoming standard with a JS API. All major browser vendors already

adopted the standard. To our knowledge, the system presented in this chapter is the first to

utilize WebRTC for remote rendering. Later systems [QLB+16] also employ the technology,

which underlines the feasibility of the approach.

While HTTP streaming can avoid traversal issues with Firewalls and Network Address Trans-

lation (NAT) in contrast to UDP/RTP based solutions, this is no major requirement for us.
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We assume that a dedicated server is available, which the client can connect to. Also, WebRTC

has mechanisms in place to overcome connection establishment issues.

5.3 Classification

In this section we identify five methods that are suitable for plugin free remote rendering in

the browser with minimal response time. Table 5.1 gives an overview of the methods, which

we describe and compare in the following.

Table 5.1: Technologies that enable plugin free, interactive remote rendering in the browser.

Method Transport Display

Image-based methods

JPEG, PNG WebSocket img element

Motion JPEG HTTP img element

S3TC WebSocket WebGL with S3TC

Video-based methods

WebRTC RTCPeerConnection video element

NaCl WebSocket, TCP, UDP OpenGL ES

5.3.1 Image-based Methods

The first approach transfers JPEG or PNG images to the client via a a WS connection. To reach

legacy browsers that do not support WS, a HTTP fallback using XMLHttpRequest and long-

polling is possible, but we do not consider this option here. Today, the WS API is widespread

available in browsers, and HTTP requests have significant disadvantages as described in the

previous section. We therefore set WS support as our minimum requirement.

Any image format natively supported by the browser is suitable. The client translates a received

image to a JS image object, either by using the createObjectURL function or by base64 encoding

the binary data. We do not recommend to perform the base64 encoding on the server as it

increases the network traffic. The browser takes care of the decoding, thus avoiding the usage

of slower JS image decoders. The client displays the image with an img element or draws the

raw pixels into a HTML5 canvas element.
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The main advantage of the method is its simplicity and almost ubiquitous availability. Even if

a browser supports no other method, the client can almost certainly fall back to this approach.

However, in best-effort networks, we want to be able to switch to a video-based solution that

is more bandwidth-efficient and may also absorb packet loss.

The second approach utilizes MJPEG, which has plugin free support in Safari, Chrome, and

Firefox, including Chrome and Firefox for Android and Safari on iOS. The web page contains

an img element with the src attribute pointing to the rendering server. The browser then takes

care of establishing a persistent HTTP connection and receiving and displaying the images.

The server sends each JPEG as part of a HTTP multipart message.

While not as ubiquitously available as WS, the advantage of MJPEG is the bypassing of WS

and JS to receive and display the images. The browser performs these steps natively and can

apply any optimization it sees fit. Also, no base64 encoding is required.

The third approach utilizes WebGL capable browsers that support the S3TC [HIN99] extension.

S3TC is a lossy block-compression technique that achieves a fixed compression ratio of 6:1 for

24-bit RGB images. S3TC enables fast parallel en- and decoding. Via the WebGL extension,

decoding on the GPU is supported. The client can thus upload compressed images as is to the

GPU for display.

S3TC cannot achieve the compression ratio of the other methods. However, in scenarios where

the necessary bandwidth is known to be available and possible visual artifacts attributed to

S3TC (mostly visible when encoding sharp edges and gradients) are acceptable, S3TC’s fast

en- and especially client-side decoding performance make it a feasible approach to achieve

high frame rates and minimal latency. There are similar texture compression methods like

PVRTC [Fen03] and ETC [Str08]. We choose S3TC as it is the only method with broad

support across browsers, including Chrome and Firefox for Android.

5.3.2 WebRTC

The goal of WebRTC is to enable real-time video and audio applications to run within the

browser, only using HTML5 and JS. The WebRTC specification [W3C16c] is in the process of

standardization. While the central use case is browser to browser communication in a peer-

to-peer fashion, the native WebRTC framework is open source and allows the integration of

the technology into other applications. Here, this means enabling our native rendering server

to stream WebRTC video. The client uses the RTCPeerConnection JS API to setup the

connection. The browser takes care of displaying the video in the HTML5 video element.
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5.3.2.1 Architecture

Figure 5.1 shows the components of WebRTC.

Peer

STUN

TURN Peer

Signaling
Server

Video, Audio
Raw Data

ICE ICE

SDP 
Candidates

Figure 5.1: The WebRTC architecture.

To enable the exchange of video and audio data between two endpoints, first a session has to be

established. The setup involves negotiating session parameters using the Session Description

Protocol (SDP) [Han06] and an offer/answer scheme (for example finding video settings sup-

ported on both sides). The initiating peer communicates its desired parameters to the other

side, which determines an answer according to its own capabilities. The setup includes finding

reachable address and port candidates for the endpoints, which may be behind a NAT router

or a firewall. Each peer gathers candidates with the Interactive Connectivity Establishment

(ICE) [Ros10] technique using STUN [Ros08] servers. If the candidate exchange does yield a

direct connection, ICE falls back to TURN [Mah10] servers that relay the traffic.

How session description and candidates are signaled to the other side is not specified. Applica-

tions may use any suitable channel of communication. We consider XMLHttpRequest support

as the minimum requirement to implement the signaling. Usually, the service provider deploys

a publicly reachable server to forward signaling messages between the endpoints.

After the setup, the media transport can begin. In addition, the endpoints can exchange arbi-

trary messages using a data channel. Media and data channels exist independently. WebRTC

enforces the encryption of all traffic.
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5.3.2.2 Discussion

We decided to use WebRTC video streaming for our remote visualization for the following

reasons: WebRTC is an upcoming standard that allows plugin free browser clients and thus the

non-invasive integration into other HTML5-only technologies. Second, the video streaming has

been specifically designed for real-time purposes. Third, there is already wide browser support

with Chrome, Firefox, Opera, Edge, and Safari, including Chrome and Firefox for Android and

Opera Mobile. In addition, WebRTC is the technology of choice if confidential transfer of the

generated images is required.

While Internet Explorer does not offer native WebRTC support, plugins exist that enable the

functionality. Apple finally supports WebRTC with Safari 11. While there was a competing

proposal from Microsoft with CU-RTC-Web, Microsoft moved on and now supports the ORTC

API in their main browser Edge. ORTC [W3C16b] removes the dependency on the SDP-based

offer/answer session negotiation, which generated a lot of skepticism in the community [Ray13],

and instead encapsulates the RTC functionality in configurable JS objects.

The JS objects provide more control over the real-time communication than WebRTC. But

ORTC also allows to layer a WebRTC compatible API on top of the ORTC API, which benefits

developers that are familiar with WebRTC. Edge supports the WebRTC API. Extensions of

the WebRTC specification already incorporate many of the ORTC JS objects, and thus ORTC

can be seen as the future direction of WebRTC.

The WebRTC API has been designed for easy access by web developers. As of now, the API only

provides a high-level access to the underlying video streaming and encoding parameters, which

complicates tweaking towards a special use case. This chapter demonstrates that applications

beyond communication exist.

There is a debate whether to prefer H.264 over VP8 as the main WebRTC video codec [Bom13].

Levent-Levi [Lev16] lists several arguments for H.264. One argument is the widespread hard-

ware support of H.264, especially on mobile devices where CPU decoding of high-resolution

video can be a bottleneck and drain battery life quickly. Google pushes VP8 and also the suc-

cessor VP9 as the codec of choice. However, the interoperability between the major browsers

is currently only given with H.264. While Chrome, Firefox, Opera, and Edge support H.264

and VP8, Safari so far only offers H.264.

This chapter demonstrates the feasibility of WebRTC for remote rendering in the browser.

WebRTC development is ongoing, and we expect improvements in the future, such as extended

hardware acceleration support for VP8, additional API features, or the upgrade to modern

video formats like H.265 and VP9.
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5.3.3 NaCl

While JS video decoders exist, they still offer less flexibility, features, and performance than

native implementations. We therefore instead focused on the NaCl technology built into Chrome

to implement the video receiver. While NaCl is now deprecated and to be replaced with

WebAssembly, it provides a video decoding API that has no equivalent in WebAssembly yet.

NaCl enables application developers to run native code safely within the sandbox environment of

the Chrome browser. NaCl automatically validates code to adhere to the security requirements

(for example direct OS system calls are prohibited) and thus requires no user dialog to obtain

permission. Similar to a plugin, a NaCl module can be embedded into a web page, optionally

covering a visible area. Web page and module can communicate using a simple API. Within the

module, the Pepper Plugin API (PPAPI) provides standard functionality, including networking

and restricted access to local storage. In addition, many third-party libraries have been ported

to run under NaCl and are made available via webports [Goo16]. NaCl has been developed as

the replacement for the legacy NPAPI plugins, which have full access to the OS and require

user installation due to their potential impact on the security and stability of the host system.

NaCl enables to implement a client that can receive and display video streams in various

formats. The rendering server can transfer the stream over WS or over raw TCP and UDP

sockets. FFmpeg [aut17a] and Libav [aut17b] are available in webports, and the client can use

these libraries to decode the video. Further, the PPAPI includes its own video decoder. The

client can display frames with the PPAPI Graphics2D class or with an Graphics3D context

and OpenGL ES 2.0.

The main advantage of NaCl over WebRTC is the low-level control of the video stream. Within

the proprietary NaCl solution, fine-tuning for a specific use case or a closed scenario with known

network conditions is possible. This includes flexibility in the video codec to use (as long as it

is real-time capable and can be ported to NaCl) and the option to avoid encryption, which is

mandatory in WebRTC. With the high-level WebRTC API, adaptability is limited, especially

on the client side.

NaCl has two types of modules. The traditional NaCl modules are portable across operating

systems but are architecture-dependent. The browser must decide at run-time which executable

to load for the given architecture. Applications that contain NaCl modules must be distributed

over the Chrome Web Store (CWS) and thus require user installation.

With the advent of PNaCl [Don10], applications can also be published on the open web without

requiring installation. PNaCl modules are OS- and architecture-independent. The browser

translates a PNaCl module at run-time to a hardware-specific executable. While PNaCl is
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truly portable, the traditional NaCl provides some additional features like architecture-specific

inline assembly and SIMD instructions. However, the goal was to eventually provide portable

replacements for most of these features in PNaCl.

NaCl can close in on a native application’s performance, but there is still a feature gap to

NPAPI. The PPAPI does not expose the rich functionality that native libraries offer. A NPAPI

plugin can utilize OS-specific libraries and optimizations that do not run in NaCl due to the

sandbox’s restrictions. However, we expect the browser platform in general to become more

feature-rich and close the gap to native applications.

NaCl is only available in the desktop version of the Chrome browser. It is no HTML5 compatible

standard technology with widespread support like WebRTC. However, given the large user

base of Chrome and the flexibility that NaCl provides on the development side, we decided to

incorporate the technology in addition to WebRTC to enable video-based remote rendering. We

could also implement the image-based methods in NaCl. However, we deem this unnecessary.

Standardized browser functionality, which is more widespread available than NaCl and close to

HTML5, is adequate to implement the image-based approaches.

5.4 Implementation

We have presented a classification and description of the technologies that enable a browser

client to receive images and video generated by a rendering server in real-time and without a

plugin. In this section, we present an interactive remote visualization system that unifies the

technologies.

By employing several technologies, we expand the support across browsers and thus devices.

Our client is able to run in a wide range of browsers including mobile ones. Further, the

ability to select from several methods increases the adaptability to different conditions and

requirements. The switch to a video streaming solution is feasible and may even be required to

maintain interactive frame rates if limited bandwidth and packet loss become the bottleneck.

Bandwidth efficiency is especially relevant if multiple clients connect to a server. We are able

to deploy the system under real-world conditions where network restrictions can occur, like in

the Internet or in wireless networks. But we can also tune the system in closed scenarios, for

example by switching to fast S3TC en- and decoding in dedicated networks to keep up with a

desired high frame rate. Using WebRTC, we can provide a secured connection.
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5.4.1 Rendering System

The server uses the rendering library introduced in Section 2.4.4 to implement its rendering

functionality. The API is therefore generic and enables to integrate different renderers.

Like in Chapter 4, the core concept is a multi-resolution representation of data sets. A data

set consists of one or more quality levels (QLs), which the server can render independently

from each other. The QLs are totally ordered, and detail increases with the level number. At

least the first level should render fast enough to provide interactive frame rates. The server

progressively refines the view with consecutive QLs once user interaction stops.

Any renderer that can map its data sets to QLs can be plugged in. A renderer that does

not require QLs, for example a common rasterizer, can still plug in by advertising only a

single QL to the API. The renderer must be interruptible during view refinement to maintain

responsiveness. We make no assumptions about the rendering time of QLs apart from the first

QL.

We have tested the system with the two renderers described in Section 4.3.2. Tuvok [FK10]

provides a hierarchical, LOD-based volume renderer, which maps directly to QLs. Secondly,

we integrated a proprietary geometry renderer based on progressive meshes. Figure 5.2 and 5.3

show the renderers in action.

Figure 5.2: The Visible Human volume data
set [U.S12] with four QLs, rendered with Tu-
vok (QL1 (left), QL4 with 512x512x1884 8-
bit voxels).

Figure 5.3: The Thai Statue mesh data
set [Sta11] with six QLs (QL6 with 10 million
triangles shown).

5.4.2 Handshake

Before the visualization session begins, the client needs to determine which of the remote

rendering methods depicted in Table 5.1 it supports and then provide the user with an option

to select the method for the session. Checking for support includes verifying the existence of
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the JS objects WebSocket and RTCPeerConnection, WebGL with the S3TC extension, and the

NaCl mime types application/x-nacl and application/x-pnacl. Chrome and Firefox still prefix

some parts of the WebRTC JS API until the standardization progresses. Therefore, we use the

polyfill wrapper adapter.js [Web17] to access the WebRTC interface. We call the connection to

transfer images or video from the server to the client the display channel.

Further, the client establishes another connection, which we call the synchronization (sync)

channel. The sync channel is a reliable connection used to perform the handshake that initializes

the rendering session. The client sends information such as the selected remote rendering

method, the resolution and data set for rendering, and also the preferred streaming frequency

and bit rate for the video. The server sets up its end of the connection according to what the

client chooses. Connection setup with WebRTC is a special case as it involves a signaling stage

before establishing the sync channel, which we detail in Section 5.4.5.

After the handshake, the client sends user interaction events to the server over the sync chan-

nel. Most importantly, the user can modify the data set pose via transformations, but other

parameters like the resolution, the selected data set, and a transfer function in case of the

volume renderer also fit in here.

Figure 5.4 gives an overview of the sync and display channel types our system supports for

the different remote rendering methods. Even though raw TCP in NaCl avoids the overhead

attributed to the WS protocol, we prefer WS by default. The WS overhead is not crucial.

More importantly, raw sockets require the user to install a NaCl application from the CWS,

which we want to avoid. The WebRTC data channel is currently the only way to access UDP

from JS in the open web. Since the data channel also supports reliable transport, it is suitable

to implement the sync channel. But we allow switching to a WS sync channel to bypass the

data channel encryption. In the future, we might add encryption support to the image-based

methods through the data channel. However, for MJPEG, we can only control the sync channel

as the browser establishes the HTTP display channel internally.

To conclude the session setup, the client creates the HTML element for display according to

the selected remote rendering method and establishes the display channel to receive the image

or video data. For example, the client embeds a PNaCl module in the page where the H.264

video is to be shown.

5.4.3 Synchronization

The client captures mouse, keyboard, and touch events with JS and requests the rendering of the

data set for a new transformation over the sync channel. After the server rendered the first QL of
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Figure 5.4: Supported synchronization and display channel combinations for the remote ren-
dering methods.

a frame, it waits a small time interval before rendering the consequent QLs for view refinement.

If the client issues a new transformation within the interval, the server can immediately start the

next frame without having to interrupt ongoing rendering. Rendering abort can cause noticeable

overhead depending on how fine-grained the renderer-specific interruption mechanism is.

The synchronization of user input can operate in two modes. First, the client does not send

the next transformation before having displayed the first QL for the previous transformation.

This sequential mode enables to measure the achievable frame rate and response time under

consideration of all factors, which includes the rendering but also the en-/decoding as well as

the network transfer and latency. However, the server is idle waiting for the next transformation

after sending a completed QL to the client. The idle time is at least the sum of network round-

trip, transfer, client-side decoding, and display time. Vice versa, the client is idle while network

and renderer are busy.

In contrast, the non-sequential mode decouples sync and display channel and enables parallel

utilization of server, client, and network. The client sends transformations with a fixed fre-

quency (30 per second by default) while rendering results arrive asynchronously on the display

channel. The user perceives a constant response delay, but the frame rate can stay smooth

independent of the network latency. This is true if server, network, and client are capable to

reflect the frame rate that the update frequency dictates.

However, if the update frequency is higher than the achievable frame rate, transformations are

either lost or have to be queued at the point of the bottleneck. If rendering is the bottleneck

(which may be view-dependent, for example falling short for close data set views in a pixel

102



shading heavy volume renderer), the server unnecessarily receives transformations while still

rendering the first QL for a previous transformation. The server must consequently either

drop transformations except the most recent one or queue the transformations. Though, losing

transformations sporadically is not crucial and barely noticeable. We prefer this approach over

queuing. Queuing results in the display becoming decoupled from the user input if the server is

a noticeable amount of frames behind, which is the worse side effect than gaps occurring after

skipping updates.

The network link is the bottleneck if the transfer of the images is not fast enough due to limited

bandwidth or packet loss. The client might not be able to receive, decode, and display frames

at the rate the server sends them. Network and client-side bottlenecks are more crucial as they

result in the server wastefully rendering images that are dropped further down the pipeline. In

contrast, sending a few bytes of unnecessary transformations is no major overhead.

The update frequency dictates but also limits the frame rate. The renderer is done early if

it processes transformations faster than new ones arrive. The capping is reasonable to free

resources for other clients.

5.4.4 Remote Visualization using Images

Figure 5.5 shows the architecture of the image-based remote visualization.

Client
Rendering

Server
Images

Native applicationBrowser

User input

WebSocket

WebSocket, HTTP

Figure 5.5: Image-based remote visualization architecture.

For JPEG and S3TC, the client establishes both sync and display channel as WS connections.

The client receives encoded images, similar to the system outlined by Wessels et al. [WPJR11].

However, our server sends images directly as WS binary frames and thus bypasses the base64

encoding. Browsers now widely support WS binary data.

The client uses the browser’s createObjectURL function to load the JPEG images into a JS

image object for decoding and then draws the decoded pixels into a HTML5 canvas element.
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Using WebGL, the client directly uploads S3TC compressed images to the GPU for decoding

and display.

To save en-/decoding time and bandwidth, the server only encodes the frame buffer area that

the data set covers. To determine the area, the renderer calculates the data set’s screen space

bounding box using the Sutherland-Hodgman algorithm [SH74]. The client shows the image

inside the canvas with the corresponding offset.

For MJPEG, the display channel is a persistent HTTP connection between the browser inter-

nally and the rendering server. The server advertises a multipart message to the browser in a

HTTP response of content type multipart/x-mixed-replace and then sends the rendered JPEGs

as message parts delimited by a boundary. The browser decodes and displays the images

automatically.

Firefox triggers the img element’s onload event for each JPEG decoded as part of the multipart

stream. The client can thus implement the sequential synchronization mode by waiting for

the onload event to fire before sending the next transformation. However, Chrome behaves

differently and fires the event only once for the first decoded image. Therefore, the client

cannot directly support the sequential synchronization mode for MJPEG in Chrome. The

client still provides indirect support through a workaround that we describe in Section 5.4.5.1

for WebRTC.

5.4.5 Remote Visualization using WebRTC

Figure 5.6 shows the architecture of the WebRTC-based remote visualization. The server

delivers rendering results to the client with low-latency VP8 video streaming. At the point of

the implementation, there was no H.264 support for WebRTC in Chrome.

Using the WebRTC JS API, the client creates an offer that contains the session description.

The client sends the offer and the ICE candidates to the signaling server via a WS connection.

We have implemented the signaling server as a native application with proprietary WS support

and as a node.js [TV10] application using the WebSocket-Node module. The signaling server

forwards the client messages to the rendering server using a TCP connection. We could also

merge signaling and rendering server. The system is not dependent on the presence of a separate

signaling server, but the separation reflects the design goals of the WebRTC architecture shown

in Figure 5.1. The rendering server utilizes the native WebRTC framework and responds with

candidates and an answer according to the client’s offer. Since WebRTC is a peer-to-peer

approach, the role of rendering server and client is interchangeable during connection setup.
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Figure 5.6: WebRTC-based remote visualization architecture.

The server could therefore also send the initial offer. Once the client has received the answer

and found a candidate pair to receive the video stream, the display channel is established.

The rendering server should be reachable with a public address. Existing STUN and TURN

solutions can be integrated to improve the connectivity in the Internet. We use one of Google’s

public STUN servers by default.

The client displays the video stream in a HTML5 video element. The browser takes care of

streaming and decoding internally. WebRTC tries to use UDP for the media transport but can

switch to TCP if a UDP connection is not possible, for example due to a firewall that blocks

the UDP ports.

5.4.5.1 Synchronization

For remote rendering with WebRTC, the system supports two ways to synchronize user input

with the rendering server. First, the client sends transformations to the server with a WS sync

channel. Alternatively, the client establishes a reliable WebRTC data channel.

There is no API available that allows the client to determine when a newly rendered image

encoded at the server side is reflected in the video. Thus, the client cannot wait for the display

of a QL before sending the next transformation. This prevents the direct implementation of
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the sequential synchronization mode. In Section 5.4.4, we described the same issue for MJPEG

in Chrome.

Therefore, when using the sequential synchronization mode, the server sends a confirmation

over the sync channel after the first QL of a frame has been rendered. The client does not send

the next transformation before having received the confirmation for the current frame. However,

the confirmation messages are not synchronized with the video stream and the display of the

QL. As outlined in Section 5.3.2.2, WebRTC currently only provides a high-level API, which

can complicate fine grained adaptation to special use cases.

5.4.5.2 Video Streaming

The video streaming runs concurrently to the rendering. The server encodes each image im-

mediately after its generation, which results in a dynamic encoding frequency that is aligned

with the rendering output. For static views, the server keeps encoding the last generated image

repeatedly for at least a certain amount of time to allow the decoded image quality on the

client to progressively improve.

We prefer the dynamic approach to an encoder that operates at a fixed frequency. The immedi-

ate encoding enables the client to reflect each image as fast as possible. Further, the rendering

frame rate may be initially unknown and subject to fluctuation, which can result in misalign-

ment with a fixed encoding frequency. If rendering is fast, the renderer may wastefully produce

several images between encoding passes. Vice versa, if rendering is slow, the server may encode

the last image repeatedly while the renderer is busy with the next image. Performing encoding

passes during rendering can affect the image completion time, especially if both renderer and

encoder heavily rely on the same resources. Therefore, the server only encodes images once

during interactive rendering.

5.4.6 Remote Visualization using NaCl

Figure 5.7 shows the architecture of the NaCl-based remote visualization. The server deliv-

ers rendering results to the client with low-latency H.264 video streaming. Our client-side

implementation compiles with both traditional NaCl and PNaCl.

The client places a NaCl or PNaCl module in its HTML code. The module implements the

display channel to receive the video stream. We support WS, TCP, and UDP for the transport.

However, Chrome only permits raw socket communication if the web page is packaged as a

CWS app with special permissions. Such an app requires a user dialog before execution like a
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Figure 5.7: NaCl-based remote visualization architecture.

plugin. We primarily target PNaCl and the open web as the execution environment. Therefore,

WS is the default transport mode.

The module displays decoded frames using OpenGL ES 2.0. The module also supports dis-

play with the PPAPI Graphics2D context and the ReplaceContents function, which enables to

replace the context’s back buffer with the decoded image without a copy.

The module’s default sync channel implementation uses WS. The web page captures user input

and passes handshake information and transformations to NaCl. The module may also handle

the user input internally, which avoids the overhead of sending messages from JS to NaCl.

Alternatively, the client may implement the sync channel in JS outside of the module. As the

communication overhead is minor, we have not added either option yet.

We use Libav with enabled x264 [Vid17] support to en- and decode the video. The client also

supports the PPAPI video decoder, which is the preferred option as this decoder utilizes the

browser’s native capabilities. In contrast, the webports version of Libav must adhere to NaCl’s

security requirements, and we were only able to compile the library with disabled assembly

optimizations.

The server uses the fast preset and the zerolatency and fastdecode tune options of the x264

library. Consequently, server and client use multi-threaded, slice-based en- and decoding. The

server defaults to a selectable constant quality with an optional bit rate cap but also supports

a selectable constant bit rate that optionally tolerates some fluctuation. The server aligns the

video streaming frequency with the rendering frame rate as outlined in Section 5.4.5.2. The

client can select bit rate and quality in the handshake to account for the expected connection

characteristics.
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On the dedicated server, we are free to include any hardware-accelerated video encoder to

increase the scalability and facilitate the streaming of high resolution content. On the client

side, the PPAPI video decoder enables hardware-acceleration.

Using NaCl, we can avoid the encryption that is mandatory with WebRTC. In our use case,

confidential transfer of the encoded video frames is less likely a concern than in a communication

scenario where audio data is also transmitted.

5.5 Results

This section demonstrates the usage of the remote visualization methods. Table 5.2 shows

the test machines. The machines were connected in a LAN, and the network latency is thus

negligible. We used Dummynet [CR10] to simulate limited bandwidth. We ran the tests using

the sequential synchronization mode, which enabled us to measure the overall latency for each

frame independently. The latency is the time from requesting the first QL of a frame for

rendering until the display of the QL minus the rendering time. Thus, the latency includes

encoding, decoding, and display as well as network transfer and round-trip time (RTT).

Table 5.2: Server and client machines used for the results.

CPU & Memory GPU & Network

Server Intel i7-4770K @ 3.5GHz & 16GB GeForce GTX 760 & 1 GBit/s

Client Intel i7-2600K @ 3.4GHz & 16GB GeForce GTX 680 & 1 GBit/s

We used the Chrome browser on the client machine. Only for MJPEG, we switched to Firefox

to enable direct support for the sequential synchronization mode. The rendering resolution is

1280x720. We used Tuvok and the Visible Human data set shown in Figure 5.2 for rendering.

The video encoder used x264’s default constant quality mode.

To perform comparable and reproducible runs, the client automatically played back a predefined

one minute set of interaction events in each run. The focus is on continuous movement. The

latency is crucial when the user interacts, which is the context we compare our methods in.

In contrast, for view refinement in static phases, where QLs may take an arbitrary amount of

rendering time, a latency difference of even several 100 milliseconds has no considerable impact

on the user experience. Therefore, using images encoded with high quality for view refinement

is the best option as long as bandwidth is not heavily restricted. We are considering a hybrid

108



approach that uses video streaming during interactive rendering and image-based encoding

during view refinement.

Table 5.3 shows the average measurements without constrained bandwidth.

Table 5.3: Statistics for the remote visualization methods in a network setup with high band-
width.

Images Video

JPEG MJPEG S3TC WebRTC NaCl

Frames per second 103.1 109.8 121.6 40.1 30.5

KBytes/s sent 1469.5 1564.5 13650.1 229.4 99.2

Latency (ms) per frame 3.7 2.9 1.9 15.5 22.6

The image-based methods provide the superior performance. With network limitations being

of negligible concern, encoding, decoding, and rendering time dictate the frame rate. Especially

the S3TC en- and decoding is extremely fast. We attribute the slight advantage of MJPEG

over JPEG to the bypassing of JS and WS to receive and display the images. However, the

results also show that the video-based methods are far more bandwidth-efficient.

The interaction set contains several sections where the data set covers only part of the screen

with the rest being a regular black background. These sections facilitate fast execution of the

pixel-shading bound volume renderer and also fast encoding with small-sized output images.

The average frame rate is consequently high. The particularly low latency for the image-based

methods is attributed to an encoding optimization that we discuss further below.

At the time we produced the results in Table 5.3 and 5.4, NaCl did not provide an internal

video decoder, and we thus used the Libav decoder. Due to NaCl’s restrictions, we could only

use Libav with disabled assembly optimizations.

Since a PPAPI video decoder is now available, we performed another set of tests to compare

the decoding options. We tested three different decoding setups with a new interaction set

and the rasterizer and city scene from Chapter 6. The setups are the PPAPI decoder with

and without hardware-acceleration and the Libav decoder. Results show that the hardware-

accelerated PPAPI decoder is the fastest option. It provided a performance gain of around

144% over PPAPI without hardware-acceleration and 385% over Libav.

On the encoding side, our server does currently not support hardware-acceleration for both

video streaming methods. Incorporating hardware-acceleration could further reduce the la-
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tency of these methods. However, for WebRTC’s VP8 codec, hardware-acceleration is not as

widespread available as for H.264.

To demonstrate the advantage of the video-based methods in a bandwidth-limited scenario, we

simulated a bandwidth reduction to 2 MBit/s. Table 5.4 shows the average measurements.

Table 5.4: Statistics for the remote visualization methods in a network setup with low band-
width.

Images Video

JPEG MJPEG S3TC WebRTC NaCl

Frames per second 12.9 13.7 4 23 20.5

KBytes/s sent 151 157.7 215.4 142.1 65.5

Latency (ms) per frame 53.7 50.2 231.5 33.9 36.2

The image-based methods begin to break, especially S3TC, which requires the most band-

width. The performance loss is substantial compared to Table 5.3. In contrast, the video-based

methods can uphold a frame rate that is much closer to what we observed under unrestricted

conditions. NaCl catches up to the performance of WebRTC as WebRTC uses more bandwidth

per frame, and the bandwidth is the bottleneck. The decoding performance in NaCl is thus

less of a factor.

For the image-based methods, the server optimizes the encoding based on the screen space

bounding box of the data set as described in Section 5.4.4. The optimization is of great

benefit for the interaction set, where the data set often covers only a fraction of the screen. To

illustrate the effect, we repeated the run for MJPEG without bandwidth limitation but disabled

the optimization this time. We measured 59.3 frames per second, 1547.9 KBytes/s sent, and a

latency of 8.3 ms per frame, which is substantially worse than what Table 5.3 shows. However,

given a different data set or sequence of view changes, the optimization might be of less or no

benefit. In that case, the advantage of the image- over the video-based methods in Table 5.3

would be less significant while the video-based methods would have a stronger lead in Table 5.4.

5.6 Conclusion and Future Work

This chapter presented a two-fold contribution. We described and compared the state-of-the

art of the technologies that enable plugin free, interactive remote rendering in the browser.

We then described a visualization system built on top of the technologies, which supports
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multi-resolution data sets and allows different renderers to be plugged in. The system unifies

the technologies to achieve widespread browser support and adaptivity to different connection

conditions and application requirements. We have demonstrated the application of WebRTC

beyond communication. To our knowledge, this is the first remote visualization system that

utilizes WebRTC.

Figure 5.8 and 5.9 show the remote visualization deployed on desktop and mobile browsers.

Figure 5.8: The remote visualization system running with MJPEG in Chrome (left, the geom-
etry renderer), JPEG in Opera Mobile (middle, volume rendering), and NaCl in Chrome.

Figure 5.9: The remote visualization system running with S3TC in Firefox for Android (left),
WebRTC in Chrome (middle), and WebRTC in Chrome for Android.

While this chapter focused on the visualization of multi-resolution data sets, the remote ren-

dering methods are also interesting for other applications like simulations, games, and virtual

worlds. We particularly want to investigate collaborative applications. Since collaboration may

require shared views, video streaming with UDP multicast could be an interesting option. How-

ever, there is a lack of multicast support in WebRTC, which makes the method less suitable

for the use case. NaCl supports UDP multicast, but Chrome restricts network communication

to WS in the open web. Also, since NaCl development has been discontinued, we will instead

investigate WebAssembly for future implementations.

The conditions of the network affect remote rendering. Bandwidth, latency, and reliability can

impact the user experience, especially in best-effort networks like the Internet. Further, provid-

ing the server scalability for multiple clients may require substantial investments in hardware.
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Today, even thin mobile devices may have a considerable amount of computing capability. A

purely server-based approach leaves the client-side rendering resources idle. Therefore, we con-

sider the incorporation of hybrid rendering to allow server and client to cooperate. Client-side

rendering can bypass network issues and reduce server load. Our hybrid rendering method

from Chapter 4 is particularly suitable as it also builds on QLs and does not necessarily require

persistent storage at the client side.

Currently, the user selects a fixed remote rendering method at the beginning of a visualization

session. To enable automatic switching to the best suitable method, we consider to monitor the

connection characteristics at run-time. If bandwidth is the bottleneck, switching from image

to video transfer is the most prominent example. Though, the establishment of a new display

channel and encoding pipeline might cause a noticeable slow down. A solution could be to

already setup several methods in the beginning, which would increase the initial start-up time

but facilitate seamless switching between methods.

In the non-sequential synchronization mode, the client could support automatically adapting

the transformation update frequency. The client could decrease the frequency if server or

network cannot keep up but also increase it if the system can maintain higher frame rates.
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Chapter 6

Distributed Real-time Ray-Tracing for

Declarative 3D in the Browser

6.1 Introduction

Modern browsers continuously expand the functionality they provide and thus establish them-

selves as a platform for a wide range of applications. The tendency is further reflected in the

restriction and ultimately removal of plugin-based approaches in recent and upcoming browser

versions. These plugins are a stability risk as they run with full privileges on the client sys-

tem and may contain platform- and OS-specific code. They therefore require a user dialog for

installation. In contrast, an application within the browser’s bounds enables cross-platform

development and user access via a standard web page on any capable device.

One application area in the browser is interactive graphics. The widely adopted WebGL enables

the development of GPU-accelerated 3D applications within a web page. However, WebGL is

a low-level API. While higher-level libraries like three.js [thr17] exist, they are separate from

HTML5 and the Document Object Model (DOM), apart from the integration with the HTML5

canvas element for display. Therefore, graphics- or library-specific programming knowledge is

required to develop proprietary WebGL applications.

To make graphics content creation more accessible for the web developer, approaches for the

declarative description of 3D scenes, tightly coupled with the web page, have been devel-

oped [BEJZ09, SKR+10, A-F17]. Especially XML3D has been designed as a HTML5 extension

and utilizes the DOM directly for the scene hierarchy and manipulation.

An aspect not addressed by above WebGL-based libraries is server-based rendering. Not every

device may have the capabilities to store and interactively render a scene at the desired frame
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rate and resolution. Specific to the browser environment, persistent storage for large binary

data is restricted and only a subset of the OpenGL features is available in WebGL. JavaScript

(JS) provides reduced features and performance compared to native code. Moving the rendering

workload to a dedicated server back-end can overcome these limitations.

In this chapter, we present the extension of XML3D to support server-based rendering. We

decided to use XML3D due to its HTML5-embedded, generic approach for 3D content creation

accessible for the common web developer. Also, XML3D is an established framework, and there

is recent work to further improve declarative 3D and XML3D [LSSS16]. This allows us to make

the server back-end available to a range of upcoming and already existing applications.

The server back-end provides a rasterizer as well as a real-time ray-tracer, which supports

additional features and material properties. Real-time ray-tracing has been a topic of research

for over a decade [PMS+99, WS01]. Being an embarrassingly parallel problem, the key for high

performance is the careful utilization of parallelism on modern computing architectures. Still,

rendering diffuse effects like ambient occlusion and area lights in real-time at high resolution is

barely possible on a single commodity machine. For this, running a ray-tracer distributed on

multiple machines is required.

Our server back-end can operate in a distributed fashion, supporting an arbitrary hierarchy of

servers in a standard or InfiniBand network. The load balancing process determines how well

a ray-tracer scales on such an architecture. Ray-tracing workload can be highly heterogeneous.

Some areas in an image may be more expensive to compute than others, which depends on the

number of intersection tests required to find hit points, the properties of the hit materials, and

the amount of secondary rays being cast. To achieve linear scalability with more workers, load

balancing aims to keep all workers occupied until the image generation concludes.

We present a load balancing approach that exploits frame-to-frame coherence in a real-time

scenario. Based on cost measurements for the previous frame, the load balancer can achieve an

accurate balance for the next frame with negligible overhead. During the rendering of a frame,

there is no coordination between the master node, which accumulates the final image, and the

rendering nodes and also no communication among the rendering nodes. The approach is thus

especially suitable if the connection between some nodes is a bottleneck or not possible.

The following section outlines related work for declarative 3D and server-based rendering in

the browser as well as for real-time ray-tracing and load balancing. The next section focuses on

the client-side extension of XML3D to support server-based rendering. We then describe the

server back-end and the load balancing method for distributed ray-tracing. The results section

provides measurements and an analysis of the distributed ray-tracer.
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6.2 Related Work

6.2.1 Declarative 3D in the Web and Server-based Rendering

There are three initiatives to embed declarative 3D content in a web page and thus make

3D applications accessible for the web developer without requiring domain-specific or graphics

programming knowledge. X3DOM [BEJZ09, JRS+13] utilizes the XML-based X3D format to

describe 3D content within a web page. In contrast, XML3D [SKR+10, KSSS14] is an extension

of HTML5. A XML3D scene is part of the DOM and can be manipulated using the existing

JS API that developers are accustomed to. A-Frame [A-F17] builds on top of three.js to allow

creating virtual reality applications in the browser using a HTML-embedded scene description.

All approaches are currently implemented as a polyfill JS library with an internal WebGL

renderer. The original XML3D was implemented as a browser modification and provided a

client-side ray-tracer [GS08] for high-quality rendering.

Chapter 5 describes the state-of-the-art methods for plugin free server-based rendering in the

browser and presents a visualization system that consolidates the methods. The existing server-

based rendering solutions are domain-specific and require proprietary libraries to operate from a

web page. Further, most solutions have no support for a distributed server back-end to facilitate

high quality and performance rendering. In contrast, we enable server-based rendering in the

declarative 3D library XML3D, which allows to specify generic 3D content in HTML5. Custom

application logic can be built on top of XML3D with JS. Using this approach, we make the

distributed rendering back-end available to a wide array of potential applications.

6.2.2 Real-time Ray-Tracing and Load Balancing

With the advances in parallel computing architectures, real-time ray-tracing is a topic of in-

creasing interest. Today, even commodity multi-processor machines provide a high level of

parallelism. Since the focus in this chapter is on the load balancing, we give only a brief

overview of real-time ray-tracing.

Parker et al. [PMS+99] describe an early interactive ray-tracer. Wald et al. [WS01] thor-

oughly outline the research area and its challenges and present their own distributed ray-tracer.

Georgiev et al. [GS08] describe a generic, template-based interactive ray-tracing framework.

OptiX [PBD+10], a ray-tracing framework running on the GPU, enables a range of applica-

tions including real-time usage. On the CPU side, a collection of optimized kernels has been

made available with Embree [WWB+14].
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Load balancing is the process to distribute the potentially heterogeneous ray-tracing tasks

to the processing units, with the goal to achieve maximum utilization. We distinguish be-

tween methods that divide the image space and methods that divide the scene among the

workers [NFLC12, SY17]. In this chapter, the focus is on image space decomposition. We

distinguish between dynamic and static load balancing [CDR02].

6.2.2.1 Dynamic Load Balancing

A dynamic load balancer assigns initial tasks of potentially varying cost to the workers. When

a worker becomes idle, it is assigned still outstanding tasks on demand. The first approach

is to manage a central task queue. Workers request new tasks from the queue as they finish

their current work [Pla02]. Ize et al. [IBH11] describe an out-of-core ray-tracing system that

uses a queue both locally to schedule tasks on threads and globally for the nodes in a cluster.

The queue manager described by Wald et al. [WS01] attempts to assign the nodes tasks they

have previously rendered, which facilitates good cache locality assuming temporal coherence in

interactive ray-tracing.

The second approach is work stealing [BL99]. Workers attempt to steal tasks from others

instead of relying on a central queue. This effectively removes the queue manager as a possi-

ble communication bottleneck as different node pairs can communicate in parallel. Tzeng et

al. [TPO10] use work stealing to assign irregular workload to the GPU, giving ray-tracing as

one application. Their variant called “task donation” additionally allows workers to offload

tasks to others in case memory is not sufficient to hold the data for the locally outstanding

tasks. DeMarle et al. [DGP04] initially assign previously rendered tasks to exploit temporal

coherence in their distributed shared memory ray-tracing system. This is crucial to minimize

fetching missing data from another node. After the initial assignment, work stealing is used.

Dynamic load balancers are generically applicable to parallel problems and naturally handle

heterogeneous computing resources. Freisleben et al. [FHK97] demonstrate the advantage of a

queue-based approach over traditional static load balancing variants in a setup with heteroge-

neous workers. However, dynamic approaches can suffer from communication overhead, which

increases with the number of workers. A low-latency connection between the master and the

workers and in case of work stealing between all workers is essential.

While a way to hide network latency is to assign several tasks to the workers in advance, a

process that has been called task prefetching [WBDS03], this has several drawbacks. When

a worker finishes a task and sends the result, it should already have another task available,

otherwise the worker would be idle until more tasks arrive from the queue manager or another
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worker. However, the amount of work that needs to be prefetched to hide the latency depends

on the latency, computing power of each worker, and the time it actually takes to process

the tasks, for which the cost is unknown. Further, assigning tasks in advance reduces the

granularity of the load balancer. The more work is assigned to workers in advance, the higher

the potential for load imbalance, which results in reduced scalability. The results presented

by Wald et al. [WBDS03] show that a linear speedup could not be achieved. Therefore, task

prefetching is no generic solution, and its benefits are configuration dependent.

6.2.2.2 Static Load Balancing

A static load balancer assigns fixed tasks to the workers before rendering a frame and thus avoids

task management and communication overhead during rendering. Our distributed rendering

back-end supports any hierarchy of nodes, and a dedicated network setup is not mandatory.

We do not assume a fast or any link between the rendering nodes. The node hierarchy can span

multiple levels, and thus not even the master is necessarily directly connected to a rendering

node. Therefore, we employ static load balancing. However, a static approach cannot react to

imbalance by shifting tasks to workers that become idle. Thus, determining a task distribution

that accurately equalizes the rendering cost on the workers decides about the effectiveness.

Heirich et al. [HA98] discuss several load balancing strategies for ray-tracing, including a ran-

domized static assignment of pixels among workers. While such highly granular scattering can

achieve an even cost distribution, it facilitates bad cache and data locality as each worker oper-

ates across the whole image [WPSB03]. Scattering and image space decomposition in general

have shown to perform poorly in large-scale out-of-core and especially distributed memory sys-

tems if memory access dictates the performance [NFLC12]. Scattering individual pixels does

also not fare well with a modern ray-tracer that traces packets of coherent rays.

More recent approaches attempt an estimation of the cost distribution for the next frame.

From the cost predicate, the load balancer can derive a partitioning into tasks of equal cost.

Rincón-Nigro and Deng [RND13] perform a reduced ray traversal through the bounding volume

hierarchy to estimate the cost of ray-tracing tasks. They use the estimate to balance the

task distribution in a multi-GPU setup. On each GPU, they use a queue-based scheduling

mechanism similar to Aila and Laine [AL09].

Moloney et al. [MWMS07] calculate a per-pixel cost estimate for their direct volume rendering

system. Gillibrand et al. [GDC05] propose to time profiling rays at a lower image resolution

and then apply the resulting cost map to the full resolution. They tested the approach only

with primary rays. Though, producing a representative cost map by profiling can cause major
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overhead, especially when considering secondary rays.

Similar to our approach, Cosenza et al. [CCDC+08] assume temporal coherence in a real-time

ray-tracing system. They consider timings obtained for the previous frame representative for

the next frame. However, along with Gillibrand et al. [GDC05], their approach suffers from

inaccuracy as timings are obtained in a lower resolution than the one of the renderer. Each node

only measures the rendering cost of each task assigned to it. However, the cost of rays or ray

packets within a task may vary, which can lead to unbalanced scheduling decisions. Also, the

cost map and thus the precision of the load balancer is irregular as the task sizes may change

every frame. Consequently, the system additionally incorporates a task queue to account for

possible imbalance.

Cosenza et al. [CDE13] render a rasterized preview on the GPU to approximate the cost map

for the next frame. The load balancer then uses a summed area table based tiling algorithm to

derive tasks of equal cost from the map. Though, the approximation suffers from substantial

inaccuracy, which prevents a scaling similar to a dynamic approach. Therefore, they ultimately

propose a work stealer that is optimized through sorting of the initial tasks by the approximated

cost.

Our renderer uses packet-tracing [WWB+14] and thus divides the image space into packets

of adjacent pixels. Each node obtains a cost map for its task in packet space using high-

resolution timings. The load balancer can thus achieve a strong accuracy while still only

generating one static task per node and frame, effectively minimizing communication and tiling

overhead. In contrast, Cosenza et al. [CCDC+08, CDE13] end up with variants of existing

dynamic approaches due to the limitation of their static attempts, eliminating the advantage

of not requiring communication during rendering. They do not consider non power of two node

counts and heterogeneous nodes. We extend the tiling of Cosenza et al. [CDE13] to support

any amount of heterogeneous workers.

6.3 System Architecture

Our goals are to support server-based rendering in XML3D and to provide a distributed ren-

dering back-end suitable for real-time ray-tracing. Figure 6.1 outlines the architecture of our

system. From the user’s perspective, accessing an application is as simple as opening a standard

web page. Embedded into the page is a XML3D scene as well as the application logic on top

of XML3D. If feasible and desirable, the user can select the client-side WebGL renderer.

In addition, XML3D may offload rendering to a native server back-end. There are two indepen-
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Figure 6.1: Exemplary architecture of the distributed rendering system. XML3D clients connect
to a cluster with a hierarchy of rendering nodes connected via InfiniBand.

dent connections between the client and the master node and between each pair of connected

nodes in the cluster. The first transfers the scene updates from the client to the master. Each

node forwards the data to its child nodes. The second transfers the output from the resident

renderer and the child nodes down the pipeline. As there may be bandwidth restrictions be-

tween client and master, the master performs an image encoding step. Within the cluster, we

support a standard network and also InfiniBand, which can offer higher bandwidth and is thus

ideally suitable to transport high-resolution image data. The separate connections enable an

asynchronous pipeline where the client already prepares and synchronizes the updates for the

next frame while the current frame is still being rendered or transferred to the client.

The cluster network sends raw pixel data to avoid issues with encoding multiple parts of an

image separately and later joining them. This can result in an overall reduced compression ratio

and decoding performance and most importantly produce visual artifacts in the merged image.

Though, these drawbacks do not apply to S3TC, which operates on independent pixel blocks

with a fixed compression ratio. We therefore utilize distributed S3TC encoding in Chapter 7.

6.4 Client Side

A web page may contain a statically embedded XML3D scene. The web developer can also build

arbitrary application logic on top of XML3D to manipulate the existing scene and add new
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elements or the entire scene dynamically. With the server-based rendering extension, we want

to keep and utilize this flexibility. We therefore followed a minimally invasive approach that

exposes the server-side functionality with a small set of attributes described in Section 6.4.4.

The attributes are an optional addition to existing XML3D elements. There are no new elements

the developer needs to get accustomed to.

Consequently, existing applications can immediately be used and new ones created as before.

The approach enables a hybrid architecture where the client executes the application logic

in parallel to the server-side rendering. The server does not need to adopt XML3D-specific

features, which avoids maintaining redundant functionality and makes the server easily portable

to other clients. In Chapter 7, we describe a native client application that is compatible with

the server back-end.

The disadvantage is that the client holds the scene and needs to synchronize resources like

buffers and textures with the server. Though, the synchronization procedure is progressive, so

rendering can already commence and provide the user with intermediate results quickly while

part of the scene is still loading. Server-side caching is a strategy to avoid the synchronization

overhead for static resources. However, in XML3D, every resource is potentially dynamic and

could require continuous updates. Section 6.9 therefore outlines a different approach for a

future version of the system.

6.4.1 Connection Setup

To enable server-based rendering, the xml3d HTML element must contain a server attribute

that points to the address and port of a rendering server. Otherwise, the client-side WebGL

renderer processes the scene. The client first establishes a WS connection to synchronize the

scene data. This synchronization channel is also used to send an initial handshake to the server.

Via the handshake, the client can select the server-side renderer to use.

The handshake also tells the method to encode and transfer the image data. According to the

selection, XML3D creates the display channel, which establishes the connection for incoming

images and provides the HTML element to display the images in the web page. The client places

the display element behind the transparent canvas element otherwise used for local rendering.

The canvas is still required to capture user input, for example to select objects or move the

camera. The architecture is modular and enables to integrate several display channel types.

Section 6.4.3 outlines the supported types.
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6.4.2 Synchronization

The data to be sent over the synchronization channel includes the resolution, camera, and

lights. The data also includes a collection of meshes. A mesh does not store data other than

a transformation but references buffers, textures, texture samplers, and material properties.

Meshes may share references, enabling the reuse of data (for example for geometry instancing).

This separation offers a lot of flexibility to compile meshes. The client can compress buffers

with the Deflate algorithm and send JPEG and PNG compressed textures.

XML3D loads resources asynchronously and progressively. An event notifying the initialization,

change, or deletion of a data entry can be generated anytime. Instead of synchronizing the

update immediately with the event, the client schedules the update on the main run loop. This

loop runs at a selectable rate to pass outstanding updates to the synchronization channel. If at

least one update was sent during an iteration, the client requests the rendering of a new frame.

The application logic may trigger update events at a high rate. If multiple updates of the same

resource or parameter occur between loop iterations, the client only keeps the most recent

version for the synchronization. The scheduling prevents either excessive rendering requests or

the sending of redundant updates between requests.

Especially the initial loading of the scene may trigger heavy traffic for geometry and textures.

The client therefore implements a rate control by postponing updates if the amount of data in

the WS send buffer exceeds a threshold, thus preventing a potential overflow of the buffer.

6.4.3 Display

The client receives rendering results asynchronously to the sending of scene updates. We sup-

port several of the plugin free image transfer and display methods from Chapter 5, which allows

the application to choose the most appropriate method given the conditions and requirements.

In a dedicated network, the focus may be on maximum en- and decoding performance. In a

best-effort network, bandwidth efficiency may be of more concern.

The server can transfer JPEG images over WS and MJPEG over HTTP. To trade compression-

ratio for more en- and decoding speed, the server also supports S3TC. S3TC enables fast

parallel encoding. Using a commonly supported WebGL extension, the client decodes S3TC

images in hardware on the GPU. For more bandwidth efficiency, the server supports H.264 video,

which the client receives and decodes using NaCl [YSD+09]. Chapter 5 presents measurements

regarding latency and bandwidth efficiency for the methods.
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In addition to the methods supported in the web client, the server can also interface with

DaaS [LPHS12] to enable streaming rendered content to virtually any display.

6.4.4 HTML Integration

We expose server-based rendering to the developer with a set of attributes that can be added

to the xml3d HTML element. With the exception of the server attribute, all attributes are

optional.

• server: Address and port of a rendering server.

• renderer: The renderer to use. The server currently supports a rasterizer and a real-time

ray-tracer (defaults to the rasterizer).

• display: Method to transfer and display images. The system currently supports JPEG

and S3TC via WS, MJPEG via HTTP, and H.264 via NaCl (defaults to JPEG).

• naclTransfer: NaCl-specific option that specifies the connection to receive the video,

supporting WS, TCP, and UDP (defaults to WS, which is the only connection permitted

in the open web).

• nodes: The maximum number of nodes to use for distributed rendering (defaults to all

nodes). It may be desirable to only use a subset or single node to increase the server

back-end’s client capacity. A renderer may not require or benefit from several nodes.

Further, we extended XML3D with a set of new material properties to reflect the capability

of the server-side ray-tracer. Refraction and reflection coefficients and the refraction index can

now be specified for any material.

Figure 6.2 demonstrates the simple changes to port a scene to server-based rendering. By

simply removing or renaming the server attribute, XML3D falls back to the WebGL renderer,

which silently ignores unsupported features.

6.5 Server Side

Figure 6.3 illustrates the main components of the server back-end. Analogous to the client, the

server manages a synchronization and a display channel. The display channel is responsible to

send the image data to the client and thus interfaces with the renderer. The display channel

122



<xml3d …>
<lightshader …>

<float3 name=“intensity>…
…

….
<shader id=“water”>

<texture name=“diffuseTexture” …>…
….

</xml3d>

<xml3d server=“localhost:8080” 
renderer=“ray-tracer” ...>

<lightshader …>
<float3 name=“intensity>…
<bool name=“castShadow”>true
…

….
<shader id=“water”>

<texture name=“diffuseTexture” …>…
<float3 name=“refractionCoefficients”>1 1 1
<float name=“refractionIndex”>1.333
….

</xml3d>

Client-side rasterizer

Server-side ray-tracer

Figure 6.2: The simplified original version of a XML3D scene (top) and the adapted declaration
for the server-side ray-tracer (changes highlighted in red).

passes scene updates from the synchronization channel to the renderer or caches the updates

if the renderer is still busy with a previous frame. We call the last image receiver the display

client. The master encodes the final image to be sent to the display client.

For distributed rendering, synchronization and display channel also act as a client by estab-

lishing a connection to each of the participating child nodes. The corresponding handshake

requests a dedicated display channel for raw pixel transport in the cluster network. The child

nodes receive updates from and send their rendering output to their parents. The master runs

a renderer-specific load balancer to determine the rendering tasks for the next frame, which

we address in Section 6.5.2. Every node has the same capabilities and can assume the role of

the master. This results in a flexible architecture that allows to chain an arbitrary hierarchy of

nodes.

The server facilitates asynchronous execution. The components in Figure 6.3 run in separate

threads. While the local renderer executes, rendering results from the child nodes may arrive

and be forwarded to the parent. Concurrently, scene updates for the next frame may arrive to
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Figure 6.3: The components that run a distributed rendering session in the server back-end.

be forwarded to the child nodes and cached for the local renderer. The server can immediately

start the next frame from cached updates, keeping the renderer occupied. The encoder can

run in parallel to the rendering of the next frame. The display client prepares the upcoming

application state while the rendering back-end is busy. Therefore, we achieve strong parallel

utilization of the computing and network resources.

6.5.1 Renderers

The server provides an abstract API that developers can implement to plug in their renderers.

So far, we have integrated two renderers. The first is the reference rasterizer, which mimics the

functionality of XML3D’s WebGL renderer. The second is a custom CPU ray-tracer that we

implemented on top of the Embree [WWB+14] ray-tracing kernels. The ray-tracer is optimized

for real-time performance. It operates on packets of rays for both tracing and shading, capable

to utilize the SSE, AVX, and AVX2 instruction sets. Also supporting 512-bit SIMD instructions
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(AVX-512) is straight-forward once the required hardware is avalable to us. To run the renderer

locally on multiple cores, we utilize the CilkPlus multi-threading language, which originates

from Blumofe et al. [BJK+95], and its internal work stealer.

The ray-tracer supports ambient occlusion, which is a Monte Carlo technique that requires a

good amount of sample rays to avoid noisy results. The rendering cost can snowball quickly

with more samples, especially considering materials that trigger secondary rays. The feature

is barely adequate for real-time performance on a single commodity machine, which motivates

the usage of a rendering cluster.

Our ambient occlusion implementation exploits the fact that the hit points for a packet of

coherent rays are likely close together on the same mesh. The normals are thus also likely

similar. Given a number of random hemispherical rotations, for each rotation, the renderer

transforms the normals to generate a set of ambient occlusion rays and then uses packet-tracing

to sample the set. The rotations can be pre-computed.

As shown in Chapter 7, we also integrated a global illumination ray-tracer as a third renderer

in a new version of the distributed rendering framework.

6.5.2 Distributed Rendering

Nodes that participate in rendering, which may include the master, are called rendering nodes.

For each renderer, a rendering node stores a coefficient that indicates the node’s performance

relative to the other nodes in the cluster. In a cluster of homogenous machines, all nodes

have the same coefficient. It is up to the operator to determine coefficients that reflect the

heterogeneous nodes in the cluster, for example with benchmark tests. Such tests could be

integrated into the framework, which is a topic for future work. Section 6.6.3 describes the

coefficient calculation for our ray-tracer.

When the display client connects, the master requests the coefficients of the renderers available

in each child’s sub-hierarchy. A child node adds its own renderer to the list and further traverses

the node tree by requesting the coefficients from its children. Effectively, this process flattens the

node hierarchy and the master ends up with the complete list of coefficients without requiring

a direct connection to each rendering node. The master then selects the rendering nodes to use

in this session, prioritizing stronger nodes if only a subset of the available nodes should take

part.

For the communication between two nodes, the server supports TCP over Ethernet and Infini-

Band. Ethernet enables the deployment in a commodity setup but may be limited in band-
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width. Since the cluster network transports raw pixels, we recommend a bandwidth of at least

10 GBit/s.

To determine the screen space rendering task for each node in the upcoming frame, the master

asks a renderer-specific load balancer. The server provides an abstract API for static load

balancing, which a renderer implements to benefit from distributed execution. A renderer

may generate custom cost data for the current frame, which the node transports to its parent

along with the pixel data. The master gathers the cost data from the nodes and passes it

to the load balancer to generate the task distribution. The load balancer may consider the

renderer coefficients to weigh nodes. To facilitate integrating new renderers quickly, we provide

a default load balancer that keeps returning a fixed set of evenly sized tasks. We use the default

implementation to distribute the rasterizer.

Concluding, our architecture enables a flexible setup of possibly heterogeneous nodes with dif-

ferent roles. Nodes not suitable for rendering may still contribute as a master that is dedicated

for encoding or as a network hub that gives access to a set of rendering nodes otherwise not

reachable. Since each node can be the master, the service provider can define sub-clusters that

provide different access levels for varying clients. A ray-tracing client may access the whole

hierarchy while it may be enough to restrict rasterization to a small branch. Due to the static

nature of the load balancing, the rendering nodes do not need to connect with low latency to

each other.

6.6 Load Balancing

This section describes the static load balancing for the distributed real-time ray-tracer. The

foundation is the observation that in a real-time scenario, view changes between consecutive

frames are likely small. Thus, in most cases timings for one frame are representative for the

following frame. The concept fits our server back-end and the ray-tracer, which are explicitly

designed for real-time operation.

The ray-tracer processes the image space in packets of neighboring pixels. During rendering,

the ray-tracer measures the cost to determine the colors for each packet and thus effectively

produces a cost map in packet space. The renderer transforms the cost map into a summed area

table (SAT), which the display channel transfers to the master in addition to the pixel space

image produced for the current task. The SAT allows to determine the cost of any rectangular

region in constant time. Once the master has accumulated the SATs from the rendering nodes,

the load balancer uses the SATs to determine a tiling into tasks of balanced rendering cost.

Figure 6.4 outlines the steps to acquire the task distribution for the upcoming frame.
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Figure 6.4: The static load balancing for real-time ray-tracing. In this example, the ray-tracer
uses SSE with packets of 2x2 pixels. Since the timings are per-packet, the cost map is four
times smaller than the rendered image. Each node outputs a SAT to the master, which runs
the tiling algorithm on the array of SATs to generate tasks of balanced cost for the next frame.

Due to the high timing granularity in the packet space of the ray-tracer and the frame-to-frame

coherence present in the real-time system, the load balancer can achieve a strong accuracy and

thus scalability as we demonstrate in Section 6.8. There is no communication during rendering

and no communication between the rendering nodes at all, which makes a basic deployment

with any setup of machines and network possible.

The load balancer requires each node to generate a cost map during rendering, convert the

map to a SAT, and send the SAT to the master. The overhead is constant and depends on the

resolution of the image. More nodes effectively reduce the overhead as they process continuously

smaller parts of the image in parallel. More cores on a node reduce the cost map generation

overhead as the rendering threads acquire timings concurrently. In contrast, the communication

overhead of a dynamic load balancer increases with the number of nodes and tasks. While the

tiling cost on the master also increases with more nodes, Section 6.8.2 demonstrates that the

cost stays insignificant even for many tasks.

As the rendering cost increases, the constant overhead becomes increasingly negligible. In con-

trast, a dynamic approach may require a finer task granularity in response to a high rendering

time of individual tasks to avoid a single worker and task to stall the completion in the end.

More tasks in return increase the communication overhead.
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6.6.1 Cost Map

The mechanism to measure the cost for the pixel packets must be fine-grained and induce little

overhead. We support two techniques that reflect the requirements. The processor time stamp

counter (TSC) [Int98] stores the number of clock cycles since its last reset. Since the TSC is

a 64-bit value, the chance that a reset disrupts a measurement is extremely low. To acquire

values that are consistent across heterogeneous nodes, the ray-tracer divides the cycle count

by the maximum core frequency in Kilohertz, assuming that all cores on a node run at this

frequency under the ray-tracing load. This essentially yields time in milliseconds.

In our tests, the TSC produced reliable results. Still, the approach may suffer from issues that

can reduce the timing accuracy. The TSCs on different cores may not be tightly synchronized.

A thread that switches core between two measurements can thus result in distorted values. Also,

processors with out-of-order execution support may shift the execution order of instructions,

which can cause a slightly misplaced read of the TSC via the rdtsc [Int16a] intrinsic. The

rdtscp intrinsic takes care of serialization but is not as widespread supported in hardware

and performed substantially worse. The processor switching its frequency can cause further

inconsistencies.

To account for the potential issues with the TSC, the ray-tracer alternatively supports the

performance counter provided by the Windows OS. The performance counter usually relies on

the TSC internally and thus also provides high precision and speed. It adds logic to handle

the TSC issues and can be considered as portable and reliable across recent systems. Mostly

on older systems, the performance counter may use a slower and possibly less accurate timing

mechanism than the TSC internally.

6.6.2 Summed Area Table Generation

Hensley et al. [HSC+05] describe fast SAT generation on the GPU. However, since our cost

map resides on the CPU, we implemented a multi-threaded CPU version that utilizes SIMD

instructions and induces minimal overhead. The network already transfers the image data while

the node generates its SAT. The master can thus start the encoding of the accumulated image

while the SAT array is still incomplete.

Cost map and SAT store a 32-bit value per pixel packet. In a bandwidth setup of 10 GBit/s,

the SAT transfer therefore only takes around 0.369 ms for a 720p image divided into packets

of eight pixels. Since the SAT sending is distributed among the nodes, the transfer overhead

is further mitigated. Also, the master may participate in the rendering, which reduces the
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network load.

6.6.3 Tiling

The master stores the SATs from the rendering nodes in the SAT array data structure. The

array is the input to the tiling algorithm, which determines the tasks for the next frame. The

tiling executes asynchronously to the image encoding, mitigating the already low overhead of

the algorithm. The array behaves like a single SAT in the overall packet space resolution and

provides the cost for a rectangular image region from the origin to any packet. Several SATs

may contribute to the cost, which Figure 6.5 illustrates. The load balancer initially sorts the

SATs by their offset on the x-axis, which then allows to quickly reject SATs that start beyond

a region of interest using binary search.

SAT 2

A

B

SAT 1

SAT 4

SAT 3

Area cost
= A + B

Figure 6.5: Sampling two SATs in the SAT array to obtain the rendering cost for the pixel
packets in an area.

The tiling algorithm starts with a packet space resolution tile that all the nodes belong to.

Consulting the SAT array, the algorithm uses a binary search to split the tile into two child sides

with the cost balanced according to the nodes attributed to each side. The algorithm recursively

splits the child tiles, switching the axis on each level, until a leaf tile representing the task for

a single node has been reached. For an even count of homogeneous nodes, balancing means

finding the split that evens out the cost on both sides. However, the algorithm also considers

tiles with an uneven node count and the presence of heterogeneous nodes. The algorithm weighs

nodes according to their renderer coefficient.

A timing represents the cost to render a packet of pixels on a single core. But the core perfor-

mance may vary between heterogeneous nodes. We therefore statically assign a performance

coefficient to each node, which indicates the performance increase for a single core of the node
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relative to the node with the weakest cores. The load balancer normalizes the cost values re-

trieved from a SAT by multiplying with the performance coefficient of the originating node.

The coefficient is an empirical factor that the cluster operator must choose. If all nodes share

the same processor family, we set the coefficients proportional to the nodes’ core frequencies.

Each node locally distributes the ray-tracer across the logical cores with a work stealing load

balancer. The static load balancer in the cluster thus assumes a linear scaling of the ray-tracing

performance to the number of cores on each node. The load balancer therefore calculates a

node’s renderer coefficient as the product of the number of logical cores and the single-core

performance coefficient.

When splitting a tile, the algorithm balances the normalized cost based on the ratio between

the sum of renderer coefficients attributed to the first and the second child, thus accounting

for any node count and heterogeneous nodes. For an uneven node count, the load balancer

assigns the additional node to the child that brings the sums on both sides closest together.

This facilitates producing child tiles of similar cost.

The ordering of the nodes in the tile tree is fixed, which causes each node to stick to roughly

the same image area. This facilitates good cache locality and thus can improve the rendering

performance.

6.7 Applications

Here we introduce several existing applications that utilize the distributed rendering framework

and its XML3D client.

Within the SINNDODIUM [Sof15] project, we integrated the technology into two demonstrator

applications. The first demonstrator supports the layout planning and stocking of the shelves in

the retail industry. The demonstrator provides a web interface that visualizes a real sales floor.

The sales floor is an instrumented, sensor-equipped environment that enables to automatically

translate changes to products or product information to the virtual world. The virtual camera

can control cameras in the real setup to allow a side by side display of both worlds. Since the

sales floor may contain thousands of objects, the offloading of the rendering work to the server

back-end improved the user experience especially on mobile devices.

The second demonstrator supports the collaborative analysis and maintenance of production

plants. A web interface visualizes the production machinery and the associated sensor data.

The system integrates video streaming to enable the collaboration of multiple staff via webcam.
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The video streaming incorporates the PRRT [GSH12, GGH13] protocol, which enables adaptive

error control under specific time constraints and is suitable for real-time applications. The

demonstrator currently still uses a NPAPI browser plugin to implement the video receiver.

To enable the PRRT-based video streaming also for our distributed rendering solution, we

created a new display channel in XML3D that incorporates the plugin. The integration is

experimental until a portable version of the receiver exists. The video streaming server is a

separate component that runs on the master node. The rendering server passes images to the

video server via shared memory.

A third example application allows multiple users to collaboratively roam a virtual city and

potentially any other scenery with an avatar. The client interfaces with the FiVES [FIW15]

synchronization server to keep the application state synchronized across the connected partici-

pants. Figure 6.6 shows the views for two avatars as they explore the city side by side, with one

view being generated by the server-side ray-tracer on four nodes and the other by XML3D’s

client-side renderer.

Figure 6.6: Two users explore a shared world in an example application running on top of
XML3D and the distributed rendering framework. The server-side ray-tracer generates the left
view, while the client-side WebGL rasterizer produces the right one. The tiling visualizes the
server-side task distribution. The red lines show the distribution among four rendering nodes
as determined by the cluster-level static load balancer. The white lines show the small tasks
that the renderer uses on each node for the thread-level work stealing load balancer.

In Chapter 7, we present a novel version of the rendering back-end and its deployment to

generate on-set feedback for virtual production.

6.8 Results

This section demonstrates the performance of the server back-end and the distributed real-time

ray-tracer. The cluster consists of 20 rendering nodes. Each node is equipped with two Intel
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Xeon X5650 six-core processors running at 2.66 GHz. The processors do not support AVX

instructions. Consequently, the ray-tracer falls back to SSE and packets of 2x2 pixels. We

compared the performance of the ray-tracer in SSE and AVX mode on a modern machine and

measured an average performance increase of 88.8% with AVX.

The nodes are connected with 1 GBit/s Ethernet. Moreover, there is a 10 GBit/s InfiniBand

link between ten of the nodes. The rendering nodes send RGBA output with 32 bits per pixel.

The master uses the S3TC encoder. The image resolution is 1280x720.

We used the example scenes shown in Figure 6.7 to produce the results. The scenes are

textured with diffuse and specular maps. The city has 66 thousand, the tavern 1.38 million,

and the hacienda 7.7 million triangles. All scenes contain parts where there is heterogeneity

in the rendering cost. The background is the cheapest area. The city contains a river that

causes secondary rays due to refraction. The tavern contains a wet reflective table. The most

demanding scene is the hacienda with refraction for the glasses and the fountain as well as a

large amount of leafs that are rendered via alpha mapping. Each scene has a single light. There

are 16 ambient occlusion rays per hit for the city and eight for the tavern and the hacienda

scene.

Figure 6.7: The city (top left), the tavern (top right), and the San Miguel hacienda scene. The
city rendering visualizes the tiling into rendering node tasks.

For reproducible results, the master automatically replayed a recorded set of camera interaction

events for each scene. The camera movement is continuous, and the view changes between
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consecutive frames are small as expected in a real-time scenario. The camera creates different

viewing angles, effectively shifting the rendering cost distribution. The results build on the

following per-frame measurements.

On each Rendering Node

• Kernel: The total cost spent in the ray-tracing kernel across all threads to determine

the colors for the pixel packets. The load balancer aims to equalize the kernel cost on the

nodes. Therefore, this is the core measurement to show the scalability.

• Rendering: The time to render the frame. The kernel executes on the logical cores using

a work stealing scheduler. This value thus includes the thread management and also the

kernel timing overhead.

• SAT Generation: The time to generate the SAT from the cost map.

Master Node

• Tiling: The time to determine the tasks for the next frame.

• Pipeline: The time in addition to the rendering spent to send the final image on its

way to the display client and generate the rendering tasks for the next frame. The value

includes the encoding and in case of distributed execution SAT generation, image and

SAT transfer, and the tiling.

6.8.1 Scalability

Table 6.1 states the single node performance for each scene to set the benchmark. For the

kernel and rendering measurements, the table states the strong scaling efficiency in the cluster.

The values are the averages across all frames. Figure 6.8 illustrates the performance increase

as nodes are added.

The kernel exhibits a super linear scalability. With more nodes, the load balancer assigns

increasingly smaller tasks to the nodes in a fixed order. This can result in an increased cache

locality, which we attribute the super linear effect to. Also, the foundation for the strong

result is the accurate rendering cost balance that the algorithm can derive from the SAT array

generated for the previous frame.

Along with the kernel, we observe a strong scalability for the rendering time. The rendering

includes the thread management overhead, which stays about constant with more nodes. There

133



Table 6.1: The scaling efficiency and pipeline time for different node counts with reference to
the single node (SN) performance.

City (SN Rendering: 384.1 ms, Pipeline: 0.884 ms)

2 3 4 5 6

Kernel 100.8% 100.9% 100.5% 100.7% 100.4%

Rendering 100% 99.6% 99.1% 98.7% 98.6%

Pipeline 2.645 2.275 2.393 2.801 3.358

7 8 9 10 20

Kernel 100.3% 100.4% 100.4% 100.6% 100.8%

Rendering 98.1% 97.7% 97.4% 97.3% 95.1%

Pipeline 3.714 4.022 4.29 4.495 36.98

Tavern (SN Rendering: 823.5 ms, Pipeline: 0.862 ms)

2 3 4 5 6

Kernel 100.9% 101.3% 100.9% 101% 100.7%

Rendering 97.9% 98.2% 97.8% 97.9% 97.9%

Pipeline 1.376 1.979 1.615 2.033 2.046

7 8 9 10 20

Kernel 100.8% 100.9% 101% 101.2% 101.5%

Rendering 98% 98% 98.1% 98% 95.9%

Pipeline 2.315 2.637 2.363 2.892 35.23

Hacienda (SN Rendering: 818.7 ms, Pipeline: 0.861 ms)

2 3 4 5 6

Kernel 101.9% 102% 101.7% 101.5% 101.5%

Rendering 100.7% 99.1% 99.4% 99.2% 96.1%

Pipeline 2.4 2.259 2.098 2.307 2.187

7 8 9 10 20

Kernel 101.2% 101.1% 101.3% 101.5% 101.5%

Rendering 96.3% 94.8% 95.3% 95.5% 92.9%

Pipeline 2.266 2.112 2.322 2.331 33.5
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Figure 6.8: The kernel and the rendering performance increase as a function of the node count.

is also the per-thread overhead to iterate over and time the assigned pixel packets. This overhead

depends on the task size and does thus not necessarily decrease comparatively to the kernel

cost with more nodes. Therefore, the rendering time scaling efficiency is naturally below the

kernel equivalent. As the per-node ray-tracing cost decreases with more nodes, the constant

overhead accounts for a larger portion of the rendering time, which can cause the efficiency to

gradually drop as nodes are added.

We observed an almost identical single node rendering time with en- and disabled cost map

generation, which demonstrates that the timing overhead is minimal and becomes negligible

with increasing per-packet cost. This is true for both the TSC and the performance counter

as the timing mechanism. We only measured a marginally increased rendering time with the

performance counter compared to the TSC.

Due to the execution on multiple cores, the rendering time is especially susceptible to fluctuation

and outliers caused by outside interference, like the OS occupying a core for a different task.
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Such occurrences can temporary reduce the scaling efficiency of the work stealer. The more

nodes, the more likely a disruption on any node occurs. Also, the efficiency of the work stealer

can fluctuate by itself. Imbalance of the thread-level scheduling reflects negatively on our

cluster-level load balancer, which assumes a consistent scaling to the number of cores on each

node. To mitigate the effect, we increased the process and rendering thread priority, which

substantially reduced the appearance of outliers.

The scalability for both kernel and rendering remains stable over time with occasional minor

fluctuation and outliers as Figure 6.9 illustrates. Only the second half of the hacienda run

shows a more substantial fluctuation of the rendering time scaling efficiency. In contrast, the

kernel measurements stay stable. The fluctuation is therefore not caused by our static cluster-

level load balancer but by the thread-level work stealing, for which we employ the third-party

solution CilkPlus. Figure 6.10 shows a consistent result with single-threaded execution.

6.8.2 Pipeline Time

The tendency is the increase of the pipeline time with more nodes. The master participates in

the rendering. As the task size assigned to the master shrinks with more nodes, the network

load increases proportionally. For 20 nodes, we switched from 10GBit/s InfiniBand to 1GBit/s

Ethernet, and the transfer speed therefore drops substantially.

We observe a higher pipeline time for the city than for the other scenes in Table 6.1. Even

though all scenes show a strong scaling efficiency of the renderer, the nodes still do not finish

their tasks exactly at the same time and thus send their results to the master with some offset

to each other. The tavern’s and hacienda’s higher rendering cost causes the offset to be higher

in absolute time. Therefore, when the last node finishes its rendering, a larger part of the

overall transfer already happened, resulting in a larger reduction of the pipeline time. Also,

the sending with offset relieves the network interface on the master since there is less overlap

of the incoming results.

The hacienda shows a slightly reduced rendering time scaling efficiency compared to the tavern

from node count six onwards. Once more, the consequence is a higher offset between transfer

operations, which prevents a pipeline time increase with more nodes as is the case with the

other scenes. Vice versa, the scaling efficiency for the hacienda is initially higher than for the

tavern, which results in the pipeline time being initially higher as well.

Some of our tests even show that minor load imbalance can be beneficial as the reduction of

the network bottleneck outweighs a slightly improved rendering scalability.
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Figure 6.9: The kernel cost and rendering time scaling efficiency for eight nodes as a function
of the frame number.
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Figure 6.10: The rendering time scaling efficiency for eight nodes as a function of the frame
number. For this run, each node disabled the local work stealing scheduler and only used a
single rendering thread.
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The SAT generation overhead is low even on a single node with around 0.244 ms. Due to the

distributed SAT array generation, the overhead drops with more nodes.

The tiling time increases with more nodes as the master must split more tiles to find a task

for each node. Most crucially, the sampling of the SAT array becomes increasingly expensive.

However, the cost stays low with around 0.236 ms across the 20 node runs. For much higher

node counts, we plan to extend the framework so that the master can also accumulate cost

maps to generate one overall SAT on its own. For test purposes, we extended the tiling with

multi-threading and ran it several times with a single SAT and 50000 tasks. The algorithm

concluded in only 0.67 ms on average. For high node counts, the heavily accelerated tiling

outweighs the distributed SAT generation benefit.

6.8.3 Comparison

We observe a similar scaling efficiency compared to Cosenza et al. [CDE13]. They utilize a

cluster-level work stealing scheduler, which makes a low-latency network between the rendering

nodes mandatory. In contrast, we achieve the results with a static load balancer that allows

a flexible network setup. Their system is not interactive even for the highest presented node

count of 16.

Further, we repeated the run for the city and eight nodes but this time only measured the overall

cost of a task like Cosenza et al. [CCDC+08]. In that case, the scaling efficiency of the kernel

drops substantially to 49.8%. To achieve competitive scalability, Cosenza et al. [CCDC+08]

incorporate a task queue to compensate the inaccuracy. In contrast, our method can solely rely

on the fine-grained timing mechanism.

We further performed a comparison with prevalent dynamic approaches on the thread level.

For this, we repeated the runs on a single node with disabled ambient occlusion and used three

different load balancing methods to distribute the tasks among the threads: our static load

balancer, a task queue, and work stealing. Table 6.2 shows the rendering performance of the

static method in competition with the dynamic methods.

The static approach performs almost on a par with the dynamic schedulers. Dynamic load

balancers are ideally suitable locally due to the direct link between a moderate amount of

cores. However, within a cluster, network communication and the coordination of many nodes

can decrease the efficiency of these approaches. The task queue on the master can become a

synchronization bottleneck if there are many simultaneous requests. A low-latency network is

essential and must be available between all nodes in case of work stealing. In contrast, our

method scales independent of the latency and can utilize nodes that are not connected to each
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Table 6.2: The rendering performance of the static load balancer on the thread level relative
to prevalent dynamic approaches: a task queue using OpenMP’s dynamic scheduler and work
stealing using CilkPlus.

City Tavern Hacienda

Task Queue -3.6% -3.4% -1.4%

Work Stealing -0.9% -2.1% -1.4%

other. Only the tiling overhead increases with the number of nodes but stays at a negligible

level.

6.8.4 Reduced Frame-to-Frame Coherence

The load balancer relies on a strong coherence between consecutive frames in real-time render-

ing. To test the method under restricted conditions, we repeated the runs with the city scene

but used a new set of interaction events with coarser view changes this time. The new set

contains only every fourth view of the original set. As expected, the accuracy of the load bal-

ancer drops with the larger discrepancy between frames, which Figure 6.11 illustrates. Though,

the scaling efficiency is still strong. While the load balancer breaks if view changes become

arbitrary, the results demonstrate that the method is well-suited for an interactive environment

with continuous camera movement.
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Figure 6.11: The city scene kernel performance increase as a function of the node count for the
original and the coarser interaction set.
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6.8.5 Multiple Clients

To test the system under more pressure, we repeated the run with the city and eight rendering

nodes. This time, we connected three clients simultaneously. For each client, we measured

a rendering time comparable to a single client that uses three nodes. Due to a minor offset

between the connections, there is a short span in the beginning and end where not all renderers

are active. This explains the higher than expected average performance per client.

For each client, the load balancer still achieves a strong kernel scalability, which only drops

by around 2.6% compared to a single client. Due to the fine-grained timing mechanism in

packet space, the OS unlikely switches to another thread during a measurement. Therefore,

the measurements within a rendering session are mostly unaffected by the other clients and

remain stable. The load balancer can consequently operate each session accurately, which

ultimately results in an equally smooth execution for all clients.

6.9 Conclusion and Future Work

The contribution of this chapter is twofold. We presented the extension of the XML3D frame-

work, which enables declarative 3D content in the web, with server-based rendering. The

minimally invasive integration keeps the application logic untouched in the XML3D front-end,

enabling arbitrary existing and upcoming applications to harness the back-end’s power. The

back-end is capable to run different renderers in a cluster. We presented a static load bal-

ancing method to distribute a real-time ray-tracer in this architecture. The load balancer

exploits temporal coherence between adjacent frames in the real-time scenario. Based on high-

resolution timings gathered for the previous frame, the load balancer derives rendering tasks

of balanced cost for the potentially heterogeneous nodes in the cluster. We demonstrated the

strong scalability and low overhead the approach can achieve.

The combination of XML3D, which enables generic and portable graphics applications in the

browser, and the dedicated server back-end, which gives these applications access to a selection

of high-performance and possibly distributed renderers, makes our architecture accessible to

both the common web developer and the expert user.

The main limitation of the current architecture is the necessity that the client holds and syn-

chronizes the scene data, which the application logic may change at any time. We therefore plan

to investigate the execution of the XML3D page in a headless, server-side browser environment.

The client only runs a reduced XML3D version that captures user input and displays rendering

results. The approach would enable XML3D to interface with the rendering back-end directly
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and also remove potentially expensive XML3D features like data processing and animations

from a less capable client. However, the original architecture remains a viable option as it

utilizes the client-side resources for application state management in parallel to the server-side

rendering and reduces server load.
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Chapter 7

The Dreamspace Distributed

Rendering Architecture for Virtual

Production

7.1 Introduction

Virtual production encompasses the creation of movie and TV experiences using a composition

of filmed and computer-generated elements. In the traditional approach, the production pipeline

begins with the filming in the on-set environment including actors, scenery, and props and ends

with the visual effects creation in post-production. However, postponing the embedding of

visual effects till post-production severely limits the creativity and experimental freedom of the

on-set professionals. It also puts more pressure on the post-production process to adjust for

effects that have not at least preliminary been tested before.

The European Commission funded the Dreamspace project to develop a platform that allows

film professionals to combine the real and the virtual world on-set and in real-time [GHJ+16].

The platform enables experimentation by giving interactive control over the on-set visualization.

Incorporating the CG elements already during filming not only increases the flexibility in the

collaboration of director, actors, and the CGI experts but also improves the cost-effectiveness.

Overlapping the two traditional pipeline steps can avoid lengthy adjustments in post-production

as the evaluation already happened during filming. Another major goal of the project is to make

the technology available and affordable for a wide range of production contexts. Usability plays

an important role to allow the non-technical staff on the set to operate the platform without

overhead.
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This chapter details a major component of Dreamspace: the distributed rendering framework

that provides high-quality and interactive renderings of the virtual scene in the on-set environ-

ment.

There is a close connection between the rendering framework and several other components

developed within Dreamspace. The main display client is the LiveView application, which

performs the compositing of the filmed and the rendered content. LiveView also acts as a hub

to receive scene updates from other components, in particular from the light capturing system,

the camera tracking and depth capture, and the on-set editing tools. Our rendering client plugs

into LiveView to synchronize the scene with the server back-end and hand received images back.

The rendering server enables different levels of service to account for the possibly varying de-

mands on set. For the use cases where a simple preview of the lighting or the alignment of virtual

and real objects is adequate, we provide a rasterizer. We also support a direct illumination

ray-tracer that enables additional material properties such as reflection and refraction.

To allow the professionals to judge the impact of virtual elements realistically, we require an-

other renderer that can simulate lighting conditions with physical correctness. The framework’s

main renderer is thus a global illumination ray-tracer. Global illumination uses a computing

intense Monte Carlo simulation that converges slowly to the correct image. However, to en-

able interactive experimentation, we require a high-performance system that translates scene

changes into meaningful results immediately and ideally maintains real-time frame rates. We

therefore present an architecture that can distribute the expensive rendering procedure to an

arbitrary number of nodes in a standard or InfiniBand network.

In addition to high performance, a key design goal of the framework is accessibility and usability.

The architecture allows flexibility in the hardware and operating system it can be deployed on

and provides several mechanisms to simplify and automate the installation and usage. While a

dedicated high-performance rendering machine and network setup is recommended to achieve

the best experience, the system is already functional in a commodity environment. In addition

to the stationary LiveView client, we provide a simple portable web client for display only,

which can be accessed from any device via a standard browser. We also integrated a client into

the popular 3D modeling solution Blender [Ble17], which makes our system available to a large

user base.

The remainder of the chapter is structured as follows: The next section discusses related work in

the area of interactive distributed ray-tracing solutions. The following sections then detail the

distributed rendering architecture, first the client and then the server side. The results section

provides performance measurements and also an evaluation of the system during a multi-day

test production at a film studio. We conclude with a summary and future directions.
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7.2 Related Work

7.2.1 Global Illumination and Real-time Ray-Tracing

Global illumination algorithms attempt to produce realistic lighting conditions by simulating

advanced material properties such as diffuse reflections, caustics, and subsurface scattering.

Integrating these methods into practical applications like film production renderers is a topic

of much interest [TL04, KFC+10, CHS+12, LGXT17].

While rasterization-based approximate methods exist, which can produce adequate results for

domains like games, we ultimately require realistic and artifact-free image quality at high

resolution. This is important as critical decisions affecting the production cost and time as well

as the quality of the final product depend on how well visual effects can be judged and prepared

on-set. Recently, there is a research focus on progressive Monte Carlo techniques [GKDS12,

DKHS14] that produce noisy results initially but eventually converge to the correct image.

In Dreamspace we do not only require high-quality images with low noise but also need to

produce these images at interactive frame rates. However, ray-tracing and in particular global

illumination is an expensive task requiring a substantial amount of computing power. There

are several low-level frameworks that are highly optimized for performance. An early attempt

is OpenRT [WPSB03], which provides an OpenGL like API for CPU ray-tracing. The cur-

rent state-of-the-art on the CPU is the Embree ray-tracing kernel library [WWB+14]. Op-

tiX [PBD+10] enables generic ray-tracing applications leveraging the GPU.

Our direct illumination ray-tracer builds on top of Embree. The high-quality ray-tracer is a

custom implementation [PGM16, PGTM16] that can leverage both CPU and GPU and supports

several progressive global illumination techniques including the recent Vertex Connection and

Merging [GKDS12].

7.2.2 Distributed Rendering

Even with the most optimized renderer, a single machine may not be able to uphold interactive

performance for high-resolution ray-tracing. This is especially crucial in our setup that should

be already operational with standard hardware. Ray-tracing is an embarrassingly parallel

problem and thus ideally suitable for distributed execution. In Chapter 6, we described the

importance of load balancing to account for the heterogeneity in the ray-tracing workload and

achieve linear scalability. We also presented a distributed ray-tracing system with a web-based

front-end. That system is the basis for the Dreamspace framework.
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Benthin et al. [BDWS02] describe an interactive system that finds its application in the car

industry. The foundation is OpenRT, which has native support to distribute the ray-tracing

tasks. A more recent library with distributed rendering functionality is OSPray [Int16b], which

utilizes Embree internally. However, our focus is on complete pipelines that support distributed

ray-tracing with global illumination and are potentially suitable for an on-set environment.

Several professional solutions supporting distributed ray-tracing have emerged [Cha17, NVI16d,

Aut16, OTO15b, Ren16]. We concentrate on the most prominent examples that specifically

target interactive rendering. The recent MoonRay [LGXT17] is a fully vectorized production

renderer that uses Embree internally. While MoonRay also targets interactive performance and

cloud-based rendering [FHF+17], not enough details for a proper comparison are available at

this time.

V-Ray [Cha17] provides a setup with a scattering load balancer, where the coordinating master

node also acts as the display client. The master connects to the other nodes via TCP/IP to

collect raw pixels. While V-Ray focuses on offline rendering, the extension V-Ray RT enables

interactive performance. The rendering engine is split into two versions. The CPU version is

feature-rich and resembles the regular V-Ray offline renderer. It uses Embree for acceleration.

The GPU version is optimized for performance but has limited features.

NVIDIA offers a special hardware called Visual Computing Appliance (VCA) [NVI16d] at a

price of around 50.000$ as of 2016. The VCA contains several high-end GPUs and comes with

built-in support for OptiX and Iray [NVI16b]. Iray is a rendering solution built on top of OptiX

and supports photo-realistic, interactive, and real-time rendering modes. Other production-

level renderers accelerated with OptiX are FurryBall [Art15] and Mental Ray [NVI16c].

The display client connects with 1 or 10 GBit/s Ethernet to the VCA, which returns lossless

images, JPEG, or H.264 video. The VCA takes care of distributing OptiX calculations and Iray

rendering tasks to the GPUs. The interconnection of several VCAs via InfiniBand is possible.

The cluster manager automatically handles scene distribution and load balancing for OptiX

and Iray. Third-party applications are possible but must handle the pipeline on their own. An

example is V-Ray RT, which can run on VCA.

Above solutions provide fully featured production-quality renderers and are integrated into

post-production software like 3ds Max, Cinema 4D, and Maya. While a complete set of state-

of-the-art rendering features could not be addressed within Dreamspace, we provide a more

flexible framework. V-Ray RT requires to connect all nodes including the display client in a

local high-bandwidth network to transfer raw pixels. The setup is not extendable with third-

party renderers. While VCA supports streaming encoded images to a display client outside the

cluster, the solution depends on dedicated high-end hardware. VCA only has built-in support
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for OptiX and Iray. Third-party renderers must implement a custom scene distribution and

load balancing pipeline.

The Dreamspace framework provides a flexible architecture that is already functional with

commodity hardware and networking. The server supports several methods to stream images

to the display client including bandwidth-efficient video, which facilitates access from a remote

set or a best-effort network. Third-party renderers integrate with the existing infrastructure.

Several renderers can coexist to provide different levels of service. The client can run in a web

browser without requiring a plugin, giving users access from a standard web page with their

possibly mobile devices. The solution already runs in LiveView, a display client specifically

designed for on-set usage, and in Blender, but the integration into other clients like 3ds Max

and Maya is possible.

The scene distribution approach is similar to Iray on VCA and V-Ray RT. There is an initial

heavy distribution and caching step of the on-disk scene managed by the display client followed

by subsequent incremental live updates.

7.3 Architecture Overview

Figure 7.1 illustrates the distributed rendering pipeline. The goal of the pipeline is to provide

the display client with high-quality, globally illuminated rendering results. The pipeline should

be real-time capable and give the user immediate feedback when navigating or manipulating

the scene.

LiveView

HTTP Server

Scene
Export

Master Node

Renderer

Sub-Images

Encoded 
Images

Updates

Client

Node

Renderer

Node

Renderer

Node

Renderer

Download

Ethernet
Ethernet or 
InfiniBand

Scene, Updates

Figure 7.1: Architecture of the on-set distributed rendering system. LiveView connects to a
rendering cluster that operates in a standard or dedicated InfiniBand network.
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The main on-set client machine runs the LiveView application, which loads the virtual scene to

be used during the production. LiveView supports a plugin mechanism to integrate renderers.

A plugin has access to the initial scene and subsequent updates like camera movement and

passes its rendering results back to LiveView for compositing and display.

The Dreamspace rendering plugin exports the scene into a generic and portable XML format.

The export is made available to the outside via a HTTP server and only regenerated if LiveView

loads a new or modified scene. The HTTP server is an independent process and therefore can

provide the scene even if LiveView is not up.

The plugin connects to the master node of a rendering cluster, which downloads the scene from

the HTTP server and distributes it among the rendering nodes. Due to server-side caching,

download and distribution only occur if the HTTP server advertises a new version of the scene.

Once the renderer on each node has loaded the scene, updates issued by LiveView trigger the

rendering of new frames. The plugin sends updates to the master node, which distributes them

in the cluster. The master collects the partial images produced by the nodes and forwards the

final result to LiveView for display.

The pipeline is specifically designed for real-time operation. The execution model is asyn-

chronous to allow client, network, and rendering to operate in parallel. While the cluster

renders the current frame, the network transfers the previous frame to the client, which already

prepares and sends updates for subsequent frames. A server queues updates when occupied

and restarts its renderer immediately from the queue, enabling full utilization.

7.4 Client Side

This section describes the display client applications to be used in the on-set environment: the

stationary LiveView client, in particular our distributed rendering plugin for it, the flexible web

client, and the Blender client. While we developed the rendering plugin for LiveView, LiveView

itself was created by the project partner The Foundry.

7.4.1 LiveView

LiveView is the main display client, which runs on a Linux desktop machine on the set. Live-

View can load virtual scenes authored in and exported from the professional lighting and look

development tool Katana. Katana imports from modeling solutions like 3ds Max and Maya.
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But while Katana is designed for production-level rendering, LiveView targets interactive us-

age. LiveView therefore provides an internal rasterizer, based on the physically-based shading

model from Burley [MHH+12], as the default local renderer.

LiveView also provides an API to plug in other renderers. There are local production ren-

derers like Arnold and PRMan as well as our network-attached plugin, which can access the

distributed, high-performance rendering back-end. Multiple renderers can coexist at run-time,

so switching back and forth to see and compare different outputs is possible. For example, a

fast rasterizer may be adequate to review the geometry only. But to simulate the lighting and

advanced effects realistically, a higher-quality renderer must be consulted.

LiveView gives the active rendering plugins access to the initial scene and lighting setup present

on-disk as exported from Katana. LiveView also forwards subsequent run-time updates to the

renderers. While LiveView currently only allows navigating the virtual camera via the GUI, it

can receive changes to the appearance and transformation of lights and objects from an external

source.

First, LiveView links to the light calibration system, which can capture the lighting conditions

on the set automatically [EG15]. The goal is to harmonize the real and virtual lighting.

Second, LiveView links to the camera tracking and depth capture system [GHJ+16, Boi16].

The system enables the matching of the real and virtual camera in real-time. By capturing

depth information for the real scene, it also enables LiveView to composite the filmed with the

virtual content. This requires a renderer to return depth as well. The composition of virtual

elements with a background video plate or the camera feed is an important task of LiveView.

Third, LiveView links to the on-set editing tools [TGS+15]. The tools run on tablet devices

and provide an intuitive interface to control lighting, material, and object parameters. Each

tablet stores a low level-of-detail version of the scene to allow interaction with a locally raster-

ized preview rendering. The tools can also directly connect to the camera tracking system to

automatically match the real on-set camera.

To facilitate collaborative editing, parties other than a renderer that are interested in run-time

updates can also plug into LiveView and distribute updates to external receivers. Consequently,

there is a plugin to synchronize the scene and updates across the tablet editing tools. Another

plugin communicates changes to the lighting parameters back to the real lights using DMX

controllers.
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7.4.2 Rendering Plugin

To allow real-time ray-tracing and global illumination to run in LiveView at the highest possible

quality, we implemented a plugin that accesses a rendering cluster over the network. LiveView

can be set up to load the plugin as the initial renderer, or the user can later select the plugin

from the LiveView GUI. The plugin is also compatible with Katana, on which LiveView is

based on and which provides a very similar plugin mechanism.

7.4.2.1 Configuration

There is a simple configuration file that points the plugin to the IP address and port of the

cluster master node. The file may also contain the following optional settings.

Renderer: String

Like LiveView, the server side supports to integrate different renderers. This setting determines

the renderer to use. If left empty, the server uses the global illumination ray-tracer by default.

Nodes: Integer

The number of rendering nodes to use. If this value exceeds the number of available nodes, it

is automatically capped. Defaults to infinity.

Real-time Rendering Quality: Integer

An integer value telling the renderer the desired quality for real-time rendering, with 0 being

the lowest quality. Real-time rendering should give immediate feedback in response to scene

updates. The cluster must keep up to produce frames at the desired rate. The user may set

this to 0 if only a single node is available and increase the value as more nodes are added.

Increasing the value reduces the noise artifacts for global illumination as the renderer samples

more rays, but this potentially requires additional nodes to maintain interactive performance.

The scale is abstract to be applicable to any renderer. Thus, it is up to a specific renderer to

map the values to internal parameters. Defaults to 0.

Progressive Rendering: Boolean

Once camera movement and scene updates stop, the server supports progressive rendering to

gradually refine the quality of the static view. For the global illumination ray-tracer, this means

adding more samples to the existing image with each pass. New updates interrupt the procedure

and the system goes back to real-time rendering. This setting has no effect for renderers that

do not support the feature. Defaults to “true”.

Maximum Frames Pending: Integer

The plugin synchronizes scene updates with the master node and thereby requests the rendering
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of new frames. This setting determines the maximum number of frames the client may request in

advance before having received a rendering result back. Setting this to 1 creates a synchronous

pipeline since the client waits for the result of each requested frame before requesting the

next one. A value higher than 1 enables asynchronous execution but may decouple the user

interaction from the displayed result if the rendering is a noticeable amount of frames behind.

Defaults to 2.

Encoder: String

Select how the master node encodes the rendering results for network transfer to the client. We

discuss the available options in Section 7.4.2.4.

7.4.2.2 Loading and Exporting the Initial Scene

On start-up, the plugin iterates over the scene graph provided by LiveView to gain access to

the geometry, materials, texture resources, and lights. The plugin exports this information to

a portable XML format stored on disk. The format is generic and supports transformations,

instancing, and object groups. It is based on and directly compatible with XML3D [SKR+10].

The approach allows us to load a scene directly into the web client described in Section 7.4.3.

To make the export available to the rendering cluster, we deploy a standard HTTP web server.

The server runs independently to LiveView and thus gives access to the scene even if LiveView

is not active.

The LiveView version of the scene and the export contain a timestamp. To speed up the

next loading of the scene, the plugin uses the timestamps to determine whether the scene has

changed and only triggers another export if that is the case.

Using a text-based, generic format is less efficient than a dedicated binary-only format, for

both network transfer and loading into a renderer. However, we followed this concept including

the exposure via a web server to make the scene easily available to and usable by potential

third-parties other than the distributed rendering back-end. In our case, there is XML3D in

particular. The approach goes along with one of the main goals for the overall architecture:

flexibility. Also, while the scene structure and properties reside in XML files, geometry and

textures, which are the vast majority of the scene data, reside in binary files. We utilize

Blast [SSS14] as the geometry format. Further, the server side converts the export into an

efficient binary format tuned for the distributed rendering back-end and cached on disk, thus

enabling immediate consecutive loadings of the same scene.
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7.4.2.3 Dynamic Updates

After loading the initial scene, the plugin connects to the master node of the rendering cluster

via TCP/IP. During a handshake, the client communicates the settings from the configuration

file to the server, which concludes the establishment of the rendering session.

LiveView now passes run-time updates to the plugin. There can be several updates passed

at once. The plugin immediately forwards a set of updates to the master node and thereby

requests the rendering of a new frame if the maximum number of pending frames has not been

reached. Otherwise, the plugin accumulates and potentially overwrites redundant updates until

the rendering result for a previous request comes in. The plugin then flushes the updates to

the server. The mechanism allows asynchronous execution due to different frames being at

different stages in the pipeline at once. However, the server side queues rendering requests and

corresponding updates if it is still busy with a previous request. Restricting the number of

frames that the client requests in advance prevents the queue to fill if the cluster cannot keep

up with the update rate, which ultimately prevents an increasing delay in the visual response

to updates during real-time rendering.

Since the LiveView scene graph and dynamic updates are string-based, the plugin maps the

updates to a binary format for more efficient communication to the master node. This step

induces only minor overhead.

The plugin currently supports camera, light, and material property updates, as well as light

and object transformations. While the server back-end also supports updates of the geometry

and textures, this is not exposed in the plugin at the moment as there was no corresponding

use case in Dreamspace. However, the client already flags meshes as static, transformable, or

unstructured to facilitate renderer-specific optimizations for building acceleration structures.

7.4.2.4 Receiving Rendering Results

The master node sends the images produced by the cluster to the client for display. Figure 7.2

shows the global illumination ray-tracer in LiveView.

Our goal is to allow a flexible network setup to connect the on-set and potentially other clients

to the cluster. We consider the use case where a client connects from a remote location over a

best-effort network like the Internet. Vice versa, there may be a remote rendering cluster not

located on the set. The web client may run on mobile devices and therefore connect over a

wireless network. Consequently, bandwidth and reliability of the link between client and master

node may be limited.
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Figure 7.2: The global illumination ray-tracer in LiveView rendering the San Miguel hacienda
scene, which was used as a reference throughout Dreamspace.

The server therefore supports several methods to encode the images. The client can select the

most appropriate option as required. Chapter 5 gives details about each option.

The fastest variant is S3TC. However, S3TC can produce artifacts for sharp edges and gra-

dients and also is the least bandwidth-efficient method, apart from raw pixel transport. The

server thus provides alternatives that induce more en- and decoding overhead but facilitate the

deployment under restricted network conditions and potentially generate better image quality.

The most bandwidth-efficient method is H.264 video. The server supports constant quality and

constant bit rate streaming using the x264 library as outlined in Section 5.4.6. Since x264 is a

software encoder, though a highly optimized one, we plan to incorporate hardware-accelerated

alternatives in the future. In addition, there is support for JPEG, which any display device

should be able to decode.

The distributed rendering framework currently does not return a depth map needed for com-

positing in LiveView. We want to address this limitation in a future revision. However, Live-

View currently always requires floating point images with 32 Bit per color channel in CPU

memory for the composition step. Since the encoded images provide only 8 Bit per channel,

the plugin could perform a conversion after decoding. The conversion causes only minor over-

head and avoids the substantially increased network load for sending pixels at their native

precision.
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7.4.3 Web Client

In addition to LiveView, we provide a client that runs in a web browser. The client utilizes

the extended XML3D presented in Chapter 6, which supports server-based rendering and is

compatible with the Dreamspace distributed rendering back-end. Users have access through a

standard web page without requiring a plugin.

The basic thin version of the web client does not have a local copy of the scene. It is intended for

display only, thus only allowing camera movement. This works as the server side automatically

loads the latest scene it has cached if there is no new version advertised by the HTTP server

or no HTTP server is available.

However, the XML scene format exported by the LiveView rendering plugin is compatible

with XML3D. The web client can therefore potentially load part of or the entire scene, given

the scene size does not exceed the capacity in the browser environment. The client can then

use its local WebGL renderer or synchronize the scene with the server. This enables the web

client to implement editing interfaces for lights and objects, which facilitates experimentation

independent of the main LiveView client. The interfaces may also allow to add new lights and

objects that are not present in the original scene.

While we have not implemented a web client with editing functionality yet, the concept enables

a lot of flexibility in where and how to access the rendering cluster. Figure 7.3 showcases an

exemplary setup with multiple levels of service that is possible with the display client and

cluster architecture.

LiveView connects to a master node that has access to five rendering nodes. The master

keeps all these nodes up-to-date if a new scene export occurred. The upper three nodes plus

the master are dedicated to provide the best quality renderings to the main display client.

They could be in a high-speed cluster network with InfiniBand support. But every node can

assume the role of the master, which facilitates accessing the cluster at different entry levels.

Consequently, the lower two nodes provide preview renderings to the remaining devices that

run the web client. A commodity machine and network setup could be adequate here.

The clients can independently navigate and update the scene within their rendering session,

enabling different settings to be tested in parallel. The flexible image transfer options promote

the collaboration with remote clients.

A node may support both renderers. It is further possible that several server-side renderers

exist at the same time in LiveView. This can be achieved by simply duplicating the plugin

on disk and loading each one in LiveView with a different renderer and possibly server in its
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Figure 7.3: Exemplary distributed rendering architecture with web clients and two server-side
renderers.

configuration file. The option enables to use multiple clusters in LiveView.

7.4.4 Blender

Blender is a portable and open-source solution for 3D modeling and animations that has a large

worldwide user base and also has occasionally been used in professional productions. Blender

provides an offline as well as an interactive rendering mode and can import scenes from various

other tools like 3ds Max. Third-party renderers can plug in using a Python API. To make our

server back-end available to the Blender community, we implemented an interactive rendering

plugin for Blender.

Our plugin integrates with Blender’s GUI and provides the options described in Section 7.4.2.1

to setup the renderer. Figure 7.4 shows the direct illumination ray-tracer running in Blender.

To synchronize the scene with the server, the plugin can generate an exported version of the
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Figure 7.4: The direct illumination ray-tracer rendering a scene in Blender.

scene similar to the LiveView plugin. But in contrast to LiveView, the Blender plugin can

directly send the export to the rendering server without requiring a HTTP server. Also, for

efficiency reasons and to streamline the export pipeline, the plugin bypasses the XML format

and directly generates the proprietary binary format the server side uses to distribute the scene

in the cluster.

While using the export feature speeds up subsequent loadings of the scene, this is not manda-

tory. The plugin supports dynamic updates including geometry and textures during rendering,

and the dynamic updater works together with the exporter. If there is no export available, the

updater synchronizes the entire scene at each start-up of the renderer. Otherwise, the updater

only synchronizes differences between the currently loaded scene in Blender and the export.

The plugin supports a subset of the scene, mesh, material, and lighting settings exposed in

the GUI for Blender’s native renderer. Blender also provides a second internal renderer named

Cycles that uses physically-based rendering (PBR) materials and supports global illumination.

To also facilitate a material workflow for PBR, our plugin supports glTF [Khr17b] as a sec-

ond export format by reusing the official glTF exporter [Khr17a] for Blender. glTF is a generic

delivery format for 3D scenes that supports PBR materials and has received considerable atten-

tion in recent years. However, since glTF does not support incremental updates yet, dynamic

updates are disabled when using the format. Also, the integration is still experimental since

none of our server-side renderers are capable of loading glTF at this time.
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7.5 Server Side

This section describes the server side of the rendering architecture. The framework enables to

run a renderer distributed in a cluster setup as the right side of Figure 7.1 depicts. The master

node interfaces with the client side to receive scene updates and send generated images back

for display.

7.5.1 Deployment

A major design goal of the rendering back-end is to allow a flexible deployment to facilitate

the usage under different on-set conditions and production budgets. We target a dedicated

high-end rendering node and network setup, which is recommended to provide the best results

with the real-time global illumination ray-tracer. But we also target a less costly approach

that interconnects commodity machines in a standard network. The investment in fewer or less

powerful nodes may be adequate for use cases that do not rely on high rendering resolution

and quality.

Another goal is to simplify the installation and configuration procedure for the on-set profes-

sionals, which do not necessarily have technical expertise.

The rendering server runs under both Windows and Linux. To form a cluster, the server must

be installed on several rendering nodes that are able to connect to each other via Ethernet.

Section 7.5.4 describes the distributed encoding that allows a low overhead transport for high-

definition images already within a 1 GBit/s cluster network. However, the server also supports

communication over InfiniBand to maximize the performance, either with a low-level implemen-

tation using the libibverbs [Ope17] library or indirectly via IP over InfiniBand (IPoIB) [Chu06].

To simplify the installation, we provide a self-contained package that the operator can copy onto

a new system without the necessity to install missing libraries. In a future revision, we plan to

provide system images for cloning onto rendering nodes that do not run the recommended or

any operating system yet.

Once the server runs on all nodes, the display client may connect to any of the nodes to initiate

a rendering session. The node that accepts a client connection automatically assumes the role

of the master. The master coordinates the distributed rendering. It broadcasts scene updates

in the cluster and collects the partial images produced by the nodes. Section 7.5.6 describes

the load balancing method to assign rendering tasks to the nodes for linear scalability.

The master node may participate in the rendering, which is feasible to improve performance
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and reduce the network load in the cluster. A setup with only a single node is thus possible. But

the master can also be a network hub only, giving access to the rendering nodes. This allows

to use a machine as the cluster entry point that is dedicated for networking but not necessarily

suitable for rendering. Also, the master can encode images for transport to the client over a

possibly bandwidth-limited network. It may therefore be beneficial to avoid competition with

a local CPU-bound renderer. Due to asynchronous execution, the renderer may already work

on the next frame while the encoder processes the current one.

There is a configuration file on the master node to specify IP address and port of each server.

Also, the file tells the master whether to participate in the rendering.

While the operator can manually set up and edit the configuration file, the server also supports

an automatic discovery mechanism to find rendering nodes. The mechanism is triggered if a

client connects to the master and there is no configuration file. The master then attempts to find

servers running on other nodes and generates the file. For this feature to work, the nodes must

be able to communicate via multicast. The operator can still manually edit the configuration

later, for example to disable the master as a renderer, which is the default setting, or to prefer

different network interfaces, like an IPoIB over a lower-bandwidth Ethernet interface.

7.5.2 Downloading and Distributing the Initial Scene

When a display client connects, the master node downloads the most recent version of the

scene from the HTTP server. The operator can set up any HTTP server in a configuration file.

In the designated use case, the server runs along with LiveView on the main client machine.

This allows the LiveView plugin to export the scene directly to the HTTP server without

another intermediate distribution step being necessary. Therefore, if no HTTP server has

been configured, the master automatically attempts to reach the server on the client side that

connected. The concept enables a self-contained setup that requires minimal configuration but

also allows to run the scene server anywhere independent of where LiveView runs.

Since the downloaded scene is a generic, text-based XML format, the master translates it into

a proprietary binary format only containing raw data for fast loading into a renderer. The

master caches this binary format on disk. It also creates a second cache that utilizes geometry

buffer and texture compression to accelerate network transfer and distributes this cache across

the rendering nodes. Each node reconstructs the raw binary cache from the network cache

for fast local loading of the scene. Download and translation only occur if the HTTP server

advertises a new version of the scene. Transfer to a rendering node only occurs if the node has

not already cached the latest version. Like the client side, each node manages a timestamp to
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determine whether it should receive an updated scene. The master node automatically loads

the current cache if the HTTP server is unavailable. A constantly running HTTP server is thus

not mandatory once the scene has been deployed in the cluster.

Depending on the size of the scene, the initial export and cluster distribution procedure can

take several minutes. A major cause is the traversal and conversion of LiveView’s scene rep-

resentation. Due to the client- and server-side caching, subsequent loadings of the scene take

seconds or even less.

Loading and caching a LiveView scene before commencing the rendering is the designated use

case in Dreamspace. But we have built the server back-end with more generic functionality

in mind. The server supports to receive scene data and updates while the rendering session

is already active. The client can thus create the scene incrementally and add, remove, or

manipulate elements anytime. This is supported in both the XML3D and the Blender client.

The master can also receive the network cache directly from the client side, which is supported

in the Blender client.

7.5.3 Dynamic Updates

After loading the initial scene, the master node is ready to receive run-time updates from the

client. The master forwards the updates to the nodes that participate in the rendering session.

The server supports lightweight updates of camera, light, and material properties as well as

dynamic geometry and textures. Meshes can reference and reuse data to facilitate implementing

optimization strategies such as instancing in a renderer.

The display client may generate updates and corresponding rendering requests at a variable

frequency. If a renderer completes a frame before the next update iteration arrives, it becomes

idle for a short interval. If a new request arrives during the interval, the renderer can immedi-

ately start the next frame. Otherwise progressive rendering may commence, which must then

be interrupted before starting the next frame. The idle time also frees resources for other clients

that may be connected in parallel.

The client can fill the pipeline with multiple rendering requests to allow client, servers, and

network to operate in parallel on different frames. Therefore, updates may also arrive at a

higher frequency than a renderer can reflect. If a server is still busy with a previous frame, it

queues incoming rendering requests. The server can immediately restart its renderer from the

queue. However, the client should avoid filling the queue with outstanding requests, since this
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results in the decoupling of the user input with the displayed image. The client consequently

only requests a selectable number of frames in advance.

The ideal case is an exact alignment of the update frequency and the rendering frame rate, so

the queue never fills up and the server side is still fully utilized. But the frame rate cannot be

known beforehand a rendering session and may be subject to major fluctuation due to factors

like server load and scene regions with heterogeneous rendering cost. Therefore, we plan to add

a mechanism that automatically adapts the update frequency according to the frame rate.

7.5.4 Accumulating and Sending Rendering Results

The master node receives partial images from the rendering nodes and accumulates them in a

final frame buffer. The server back-end supports two methods to transport the images in the

cluster.

Each node can send its output as raw 32 Bit RGBA pixels. The master encodes the final frame

buffer for bandwidth-efficient transport to the display client over a potentially unreliable, best-

effort network. Section 7.4.2.4 describes the available encoding options. To avoid considerable

overhead, raw pixel transport requires a high-bandwidth network especially for high image

resolutions. We recommend to use this option only in a cluster setup with InfiniBand or 10

plus GBit/s Ethernet.

To achieve the lowest possible latency for both encoding and intra-cluster image transport, the

back-end also supports a distributed encoding method. Each node encodes its partial rendering

result using S3TC. The overhead is minimal and negligible. We rendered 720p images in an

eight node cluster with two heavily outdated Xeon X5650 CPUs per node and measured only

around 0.07 ms encoding time per node. The fixed compression ratio of 8:1 for raw RGBA input

enables even a 1 GBit/s commodity cluster network to accumulate high-resolution images at

the master node quickly. A costly high-bandwidth Ethernet or InfiniBand setup is therefore

still recommended but not mandatory. The master can directly forward the final S3TC image

to the client. Removing the encoding on the master is especially important when considering

image resolutions of 2K and more. However, if the client chooses to receive images as JPEG or

H.264 instead, the master must transcode to the selected format. While this induces additional

overhead on the master and may result in a loss of perceivable image quality, the improved

transport performance in the cluster may still outweigh the disadvantages.
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7.5.5 Renderers

The server back-end provides an API that developers can implement to plug in their renderers.

We have included four renderers so far. Figure 7.5 demonstrates the two main options.

Figure 7.5: The web client shows the San Miguel scene rendered by the direct illumination
ray-tracer (top left). The global illumination ray-tracer renders the San Miguel (top right) and
the battleground scene.

7.5.5.1 Dummy Renderer

The dummy renderer ignores all scene input and renders a procedural sphere in the center of the

screen. Each node color-codes its output differently, so the sphere has a colored check pattern

if multiple nodes participate. The cluster operator can use the dummy renderer to confirm a

working framework setup in case other renderers are still error-prone or unavailable.

7.5.5.2 Rasterizer

We integrated the rasterizer from Chapter 6, which mimics XML3D’s WebGL renderer. As

a notable addition to the WebGL counterpart, the server side implements geometry instanc-

ing and therefore performs especially well for scenes with many objects that share the same

resources.
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We intend the rasterizer to mostly provide preview renderings to the mobile web clients on the

set. LiveView has a native rasterizer and thus would only rely on the server-side option if local

rendering is not possible or performs worse.

7.5.5.3 Direct Illumination

We integrated the direct illumination ray-tracer from Chapter 6. The ray-tracer runs on the

CPU, using Embree for high-performance ray packet traversal and the CilkPlus work stealer to

execute on multiple cores.

The direct illumination ray-tracer is the intermediate option when it comes to quality. It can

simulate reflection and refraction and is thus more suitable than the rasterizer for scenes where

these features are important.

There is also support for ambient occlusion. While a single machine equipped with a decent

CPU can already provide interactive frame rates for the direct illumination, ambient occlusion is

an expensive Monte Carlo technique that requires a good amount of sample rays to converge to

a smooth result. The ray-tracer therefore supports progressive rendering to refine the ambient

occlusion effect gradually for static views.

7.5.5.4 Global Illumination

The global illumination ray-tracer builds on top of the AnyDSL compiler framework [LBH+15].

Using AnyDSL, the renderer can describe its core routines in a high-level programming style.

AnyDSL takes care to map the algorithms efficiently to CPU or GPU target hardware. Pérard-

Gayot and Membarth [PGM16] show the traversal routines perform on a par with the hand-

tuned equivalents of Embree and OptiX. The ability to generate highly optimized code from

concise and readable algorithm descriptions reduces the programming effort substantially and

thus facilitates extending and prototyping the renderer with future advancements. Being able

to target different platforms enables flexible deployment.

The global illumination ray-tracer is the main on-set renderer that enables the director and

other professionals to judge and experiment with realistic lighting conditions. The implemen-

tation supports three progressive Monte Carlo simulation methods [PGTM16]: Path Tracing,

Bidirectional Path Tracing, and Vertex Connection and Merging. Choosing the most suitable

method depends on the scene characteristics as well as the requirements on real-time rendering

quality and overall convergence speed.
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Global illumination consumes a lot of processing power. To enable interactive performance

already with standard hardware, the renderer produces noisy preliminary images during real-

time rendering and iteratively converges to the final image during progressive rendering. But

the client can increase the real-time rendering quality indefinitely by choosing the number of ray

samples per pixel. We therefore recommended to run the renderer in a cluster with a dedicated

CPU and GPU setup to enable a higher number of samples and also speed up progressive

refinement. The ultimate goal is to provide noise-free production-level quality already during

real-time rendering, which requires a high-performance cluster of a magnitude that was not

available to us.

7.5.6 Load Balancing

Ray-tracing is an embarrassingly parallel problem that allows to divide the image space among

the processing units. Since the ray-tracing workload can be heterogeneous, a load balancer that

keeps the workers busy is required to achieve linear scalability. Chapter 6 outlines the existing

load balancing methods.

Dynamic load balancers initially assign tasks of possibly varying cost to the workers. When

a worker becomes idle, it receives tasks that are still outstanding. The worker either requests

tasks from a central queue or attempts to steal from other workers.

Under optimal conditions, dynamic approaches scale linearly and naturally handle heteroge-

neous workers. However, they induce communication and task management overhead during

rendering, which increases with the number of workers. A low-latency link between the master

and the workers and in case of work stealing between all workers is essential. To achieve linear

speed-ups, the load balancer must split the frame into tasks of fine granularity. Otherwise, in

the end of the frame, some workers might stall the rendering when busy with a demanding task

while there are no more tasks left for the idle workers. Dynamic methods are therefore ideally

suitable for local thread-level scheduling on a single machine with a moderate amount of CPUs.

The rendering back-end supports a commodity network setup that does not guarantee a low-

latency link between the nodes. Also, the back-end targets a high number of rendering nodes to

ultimately enable high-quality global illumination at interactive frame rates. The global illumi-

nation ray-tracer utilizes the GPU. Dynamically assigning or shifting small tasks is inefficient

due to the transfer overhead between CPU and GPU and between the nodes.

The rendering back-end consequently uses a static load balancer. A static approach assigns a

fixed task per frame to each node. There is no communication overhead during rendering. To
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achieve linear scalability, the load balancer must find tasks to equalize the rendering time on

the nodes.

Chapter 6 presents a static approach that exploits frame-to-frame coherence in the real-time

context. Based on timings acquired for the previous frame, the method derives a balanced task

distribution for the next frame. However, the fine-grained timing mechanism is not available

in a GPU environment.

We instead use the classic approach to static load balancing: a pseudo-random scattering of

pixels or small pixel blocks among nodes, which can achieve an even cost distribution. The

disadvantage is the loss in cache locality as each node works across the entire image. Scattering

easily integrates with any ray-tracer, while work stealing requires an invasive adaptation of the

renderer to allow handing back tasks from the renderer’s internal scheduling to the network and

vice versa. This conflicts with our design goal of a flexible architecture that allows arbitrary

third-party renderers to plug in and benefit from distributed execution.

The master node runs the scattering load balancer once in the beginning of each rendering

session. The tasks do not change even between frames, so there is no further load balancing

overhead. The scattering operates on pixel blocks that are sized to enable SIMD instructions.

The larger the block size, the better the renderer on each node can benefit from cache locality.

On the other hand, a higher granularity can enable a more accurate load balance. Since the

impact of both effects is scene- and view-dependent, the operator can select the granularity in

a configuration file to fine tune the performance. Figure 7.6 illustrates the distribution of the

image space among a set of nodes.

The current limitation of the load balancer is that it does not account for heterogeneous nodes.

We therefore recommend to use a cluster with homogeneous nodes to achieve linear scalability.

In a future revision, we plan to incorporate the weighing of nodes based on their capability.

To also distribute the rasterizer, the master assigns one coherent tile to each node. While this

was not necessary for the scenarios we encountered in Dreamspace, a rasterizer may also benefit

from distributed execution at very high resolutions due to the reduced pixel shading cost per

node and for large scenes due to the ability to quickly cull geometry outside the view.

7.6 Results

The first part of this section presents performance measurements for the distributed rendering

architecture. The second part evaluates the usage of the solution during a real-world, multi-day

test production that utilized the technologies developed in Dreamspace.
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Figure 7.6: In this example, the load balancer splits a 720p image into blocks of 32x32 pixels
and scatters the blocks to ten nodes. Each color indicates one node.

7.6.1 Timings

We used a cluster that consists of ten nodes connected via IPoIB with 10 GBit/s. Each node

has two Intel Xeon X5650 six-core processors. Since the nodes do not have GPUs, we preferred

the direct over the global illumination ray-tracer. On the display side, we ran LiveView and the

web client in the latest Chrome browser. The connection to the cluster is 1 GBit/s Ethernet.

The image resolution is 1920x1080. The cluster employs distributed S3TC encoding. The

master sends the final S3TC image directly to the client.

The test scene is the San Miguel hacienda, which is the main reference scene of Dreamspace.

We already used the scene in Chapter 6. The hacienda has 7.7 million triangles and contains

many parts with heterogeneous rendering cost. There are many small leafs, glasses, bottles,

and a water fountain. The scene has seven lights.

To compare the results for different node counts, we recorded a camera movement through the

scene and replayed it for each run. The following tables present average measurements over all

frames of a run.

7.6.1.1 Scalability

The scalability tests involve the following per-frame measurements on each rendering node.
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• Kernel: The total ray-tracing cost spent across all threads. The kernel cost does not

include the thread management overhead attributed to the local work stealer that runs

on each node. The measurement is therefore best suitable to show the efficiency of the

cluster-level scattering load balancer.

• Rendering: The time to render the frame. Since the kernel executes on multiple cores,

this value includes the thread management overhead.

Table 7.1 shows that both kernel cost and rendering time show a strong scaling efficiency.

Figure 7.7 illustrates the linear performance increase.

Table 7.1: The scaling efficiency and its coefficient of variation (CV) for different node counts
with reference to the single node performance.

Single Node Rendering: 854.8 ms

2 3 4 5 6

Kernel 98.7% 97.5% 97.7% 97.4% 97.3%

Kernel CV 0.002 0.003 0.003 0.004 0.004

Rendering 98.6% 97.3% 97.3% 96.7% 96.5%

Rendering CV 0.007 0.007 0.011 0.014 0.014

7 8 9 10

Kernel 96.9% 96.8% 96.9% 96.8%

Kernel CV 0.005 0.006 0.006 0.006

Rendering 95.7% 95.5% 95.1% 94.9%

Rendering CV 0.02 0.019 0.025 0.025

The rendering time includes overhead attributed to the multi-threaded execution. Since the

overhead is about constant, it has a higher impact as the kernel cost per node decreases with

a larger cluster. Therefore, the scaling efficiency for the rendering time is expectedly slightly

below the kernel and tends to drop gradually with more nodes.

The low coefficient of variation demonstrates that the high efficiency stays stable over the entire

runs. The coefficient is even lower for the kernel cost due to the multi-threading being no factor

that can cause fluctuation or outliers. The result is a smooth user experience without noticeable

slowdowns.

As the node count increases, the chance for fluctuation or an outlier on any node increases,

which causes the CV to slightly go up with more nodes. The effect can also cause the scaling

efficiency to slightly drop with more nodes independent of the accuracy of the load balancer.
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Figure 7.7: The kernel and the rendering performance increase as a function of the node count.

7.6.1.2 Pipeline

The pipeline tests involve the following per-frame measurements.

On each Rendering Node

• Encoding: The time to encode the sub-image to be sent to the master node.

Master Node

• Framework: The time from starting the frame until having sent the final image to the

display client excluding the rendering time. This measurement includes the encoding and

the intra-cluster image transfer.

Display Client

• Network: The time from requesting the rendering of the frame until having received the

final image for display excluding the cluster framework and rendering time.

Table 7.2 shows the minimal latency the framework induces in addition to the rendering.

The encoding time is negligible even for a single node and decreases further with more nodes due

to the distributed encoding. Since the cluster network transports already encoded image data,

167



Table 7.2: The pipeline measurements in milliseconds for the different node counts.

1 2 3 4 5

Encoding per Node 0.607 0.336 0.256 0.211 0.176

Cluster Framework 1.259 1.64 1.368 1.215 1.235

Web Client Network 13.38 13.18 13.19 13.16 13.55

LiveView Network 9.06 9.07 9.1 9.09 9.26

6 7 8 9 10

Encoding per Node 0.155 0.148 0.135 0.123 0.116

Cluster Framework 1.376 1.42 1.512 1.52 1.577

Web Client Network 13.03 13.15 13.27 13.19 13.34

LiveView Network 9.08 9.09 9.11 9.29 9.29

the framework overhead stays consistently below two milliseconds despite the high-definition

1080p image resolution. The overhead is even lower than the one presented in Chapter 6 for

720p images. The framework time tends to increase slightly with more nodes. The master

participates in the rendering. As the task size assigned to the master decreases with more

nodes, the network load increases.

The time to transport the final image to the display client is higher due to the 1 GBit/s standard

network. For the web client, we attribute some of the delay to the browser environment, in

particular to the JavaScript WebSocket API. We measured a clearly lower delay with the native

LiveView client.

Due to the asynchronous execution that allows the renderers to process the next frame while

the current one is on its way to the master and client, the framework and network time does

not affect the frame rate on the display side as long as the overhead is below the rendering time

per node.

7.6.2 Test Production

We evaluated the rendering architecture in the Battleground test production [SCM+16,

HSK+16], which was conducted by Stargate Studios in collaboration with the other Dreamspace

partners in a studio of the Filmakademie Ludwigsburg, Germany. The goal was to test the dif-

ferent Dreamspace technologies together in a representative scenario under a typical timescale.

The production involved around twelve team members and spanned five days including a final

day for visitors. The visitors included visual effects companies from the area as well as the
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minister of education and cultural affairs of Baden-Württemberg, Germany.

The production created a teaser for a new type of interactive virtual reality TV show where two

teams of real contestants control computer-generated robots that fight in a virtual battleground.

The distributed rendering framework was used to provide preview and high-quality renderings

while shooting, thus allowing to coordinate the final rendering already before post-production.

Figure 7.8 shows photographs from the production.

Figure 7.8: Impressions from the battleground test production. On the top left, a team member
uses a tablet to manipulate the scene rendered by the global illumination ray-tracer.

During the first two days, the set was prepared and the hardware deployed. Camera and depth

tracking, light capturing, and tablet editing tools were available and connected to the main
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LiveView client. LiveView also connected to the rendering cluster, which consisted of four

commodity machines. Each machine was equipped with an NVIDIA GTX 970 GPU. Three of

the machines had an Intel i7-4790 processor. The last machine, which we used as the master

node, had an Intel i7-6700 processor. The network setup between all machines including the

LiveView client was 1 GBit/s Ethernet.

The setup of the cluster proved to be straightforward. The self-contained installation package

allowed us to quickly launch the rendering server on each node. Due to the node discovery

feature, the master could find the other nodes automatically. In addition, we launched a

standard HTTP server on the LiveView machine to make the scene available to the rendering

back-end.

On the third day, the shooting of the first setting happened, which is the preparation room

where the teams configure their robot before entering the arena. The setting consisted of a

rendered robot as the foreground composited with the live camera feed.

The fourth day was the production effort for the main setting, where the two teams control

their robots via motion capture to fight each other in the arena. The scenario was the central

use case for the distributed rendering architecture. Throughout the shooting, the professionals

switched regularly from LiveView’s native rasterizer to the global illumination ray-tracer to

review more realistic rendering results.

Using the limited cluster, the framework could not provide production-level image quality in

real-time. However, the low-budget setup already was able to provide interactive globally illu-

minated previews in 1080p resolution at around 20 FPS. Progressive rendering quickly reduced

the noise artifacts for static views to allow a more accurate judgment of the lighting conditions.

Stargate Studio’s review [HSK+16] states a substantially improved rendering performance com-

pared to V-Ray.

The professionals edited the base scene frequently in Maya and Katana and re-exported it

from LiveView to the cluster. After the caching procedure, the plugin could display the scene

instantly for subsequent loadings. This was an advantage over LiveView’s local renderer that

currently performs a lengthy traversal of the scene graph each time. The plugin and the server

side responded to run-time updates generated by the camera tracking, light capturing, and

tablet editing tools.

Alternatively to LiveView, the portable web client proved to be popular to access the rendering

back-end at various stages in the production. The web client was also used to demonstrate the

renderer during the final visiting day.

There were minor issues with the matching of the lighting between LiveView’s native rasterizer,
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the production renderer Arnold, and our renderer. However, the inconsistency is caused by

a missing global, physically-based specification of the lighting parameters in LiveView and

thus renderer-specific interpretations. Other feedback states that the set up and also run-

time calibration of the cluster and the rendering could be further improved, for example by

introducing management software and UI-based controls.

Overall, the rendering architecture proved to be stable and easy to use for the non-technical

professionals. Feedback indicates that the experimentation with realistic rendering quality is

beneficial to prepare and already work towards the post-production. On the other hand, in

the fast-paced on-set environment, trading quality for faster response times was often pre-

ferred to facilitate quick and smooth experimentation. These heterogeneous demands fit our

flexible framework, which supports different levels of rendering service and scales in a cluster

environment to ideally achieve both high quality and performance.

7.7 Conclusion and Future Work

This chapter presented the Dreamspace distributed rendering architecture for virtual produc-

tion. The architecture provides interactive, high-quality renderings of the virtual scene in the

on-set environment. The goal is to narrow the gap to post-production by enabling creative

control of the visual effects already while filming.

The client side of the architecture interfaces with traditional pre-production modeling tools to

receive the scene data. On the set, the client receives live updates from other components of the

Dreamspace pipeline: the camera tracking, the light calibration, and the tablet editing tools.

The client forwards the scene and incremental updates to the rendering back-end. We also

provide a portable web client to allow mobile access to the visualization and a client running

in Blender.

The server side of the architecture is a flexible and scalable solution that runs in a cluster setup.

The back-end supports different renderers including a global illumination ray-tracer for realistic

image quality. To enable the deployment under different production budgets, the framework

is already operational with commodity hardware. We successfully evaluated the solution in a

real-world test production that combined the technologies developed in Dreamspace.

While the main intention of the architecture is real-time rendering on the set, the high-

performance distributed global illumination can also benefit the offline rendering in post-

production. Being able to cut the rendering time by only a few percent could already translate

to major savings considering final quality rendering still may take hours per frame. However,
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our renderer does currently not support the full set of features required for a post-production

system.

Since the framework is flexible and allows to plug in any renderer, we plan to investigate

use cases other than film production. The integration of real-time ray-tracing in games is of

particular interest. To increase the availability, we intend the integration in other client software

like Maya and 3ds Max as well as the Dreamspace on-set editing tools.

The Dreamspace pipeline allows experimentation with the real and virtual scene on the set. A

crucial feature is the ability to store and reproduce the run-time changes and transport them

seamlessly to the post-production phase for final adjustments. Within Dreamspace, we could

not address this aspect thoroughly. A major future goal is therefore to efficiently translate

incremental updates back to disk and port the modified scene to post-production software.
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Chapter 8

Conclusion

8.1 Summary of Achievements

In this thesis we set out to develop a comprehensive and representative set of rendering archi-

tectures that utilize the available client, network, and server-side resources to bring scalable

and consistent 3D experiences to heterogeneous computing environments and display setups.

We thereby widely covered the problem statements we originally formulated in Chapter 1.

The term “Ubiquitous 3D” encompasses a myriad of use cases and application areas, which

we could not explicitly address in their entirety within the thesis. We instead focused on a

wide coverage of the display setups and platforms that visualization applications can target

today, ranging from mobile devices to desktop and distributed displays as well as from native

platforms to the web browser as a portable execution environment. We utilize both client and

server-side resources to enable the desired level of quality, performance, and scalability for the

target applications and the associated display devices.

Ultimately, the described architectures enable to develop various kinds of applications, and we

tested our technology in the major areas of scientific and medical visualization, web-based 3D

applications, and virtual film production. The practicability of the solutions is not limited to

specific use cases, since our frameworks have been designed with general concepts in mind and

thus provide generic means to plug in different renderers, distribute data and rendering results,

and, in case of ZAPP and the XML3D-enabled frameworks, implement custom application

logic. We collaborated with experts from the medical field and the movie industry to transfer

our technology from the research realm to real-world usage.

The architectures described in this thesis build on an innovative utilization and combination

of technologies as well as on new methods and algorithms to enable the efficient utilization
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of the heterogeneous computing resources. We incorporated the major rendering techniques

volume rendering, rasterization, and ray-tracing. We employ local, server-based, hybrid, and

distributed rendering and present results on mobile, desktop, and distributed displays. Using

the browser as the client-side execution platform, we provide an accessible and portable user

interface. Given the broad scope of the thesis, an indirect contribution is also the wide literature

review across the different architectures.

The following paragraphs reiterate the contributions of each chapter in a summarized form.

In Chapter 2, we presented the ZAPP framework to develop and manage visualization appli-

cations for distributed and tiled display setups. In contrast to previous solutions, ZAPP lays

its focus on the usability side and provides accessible interfaces to install and maintain the

framework as well as to develop and run applications. We developed a distributed visualization

solution for multi-resolution data sets as a central ZAPP example application.

In Chapter 3, we presented the mobile visualization application IV3Dm and its deployment to

aid in the selection of parameters for DBS treatment of PD patients. A major component of

the setup is the data distribution and management framework that utilizes instant messaging

technology to simplify the data retrieval for the users. Using the mobile devices the clinicians

are accustomed to in combination with the simplified, one-tap data transfer mechanism, we

achieved a minimally invasive integration into the clinical workflow and thus a high acceptance

of the system. The evaluation conducted with real clinicians and patient data demonstrates

the potential for large time savings to determine the DBS parameters compared to the current

standard of care.

In Chapter 4, we combined hybrid rendering and scheduling under uncertainty. We presented

a hybrid rendering method that utilizes both client and server in the visualization of large,

multi-resolution data sets in dynamic environments. Given a separation of a data set into

multiple levels of quality that are consecutively rendered, the goal is to provide interactive

performance for at least the lowest level and to reach the highest quality as fast as possible.

The probabilistic scheduler obtains performance timings at run-time for each QL to determine

which QLs to render on which side. The scheduler is able to adapt to initially unknown and

possibly changing conditions. We demonstrated the advantage of the approach over pure remote

rendering and over deterministic scheduling.

In Chapter 5, we established the browser as a viable, promising platform to implement accessible

and portable visualization applications. We described, implemented, and tested the state-of-

the-art methods that enable plugin-free remote rendering in the browser, which includes the

first utilization of WebRTC in that context. We presented a novel remote visualization system

in the browser that combines all methods and is thus highly adaptable to different application
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requirements, target platforms, and network conditions.

In Chapter 6, we presented the first extension of a framework for declarative 3D in the web with

server-based rendering. We choose XML3D, which is a HTML5 extension and JS library that

enables the common web developer to create arbitrary 3D applications in the browser. On the

server side, we presented a distributed rendering framework that supports a hierarchy of nodes

and different types of renderers. To run our custom real-time ray-tracer in this architecture, we

developed a static load balancing methods that builds on temporal coherence between adjacent

frames during real-time rendering. Unlike previous related approaches that ultimately need to

incorporate a dynamic load balancer to counteract inaccuracies, our method achieves a stable

linear scalability and can even compete with dynamic load balancers for local thread-level

scheduling.

In Chapter 7, we presented a novel virtual production platform that provides interactive ren-

derings of the virtual scene composited with the real world already on the set. Our contribution

to this platform is a highly flexible and efficient distributed rendering framework that interfaces

with other components of the production pipeline. While existing production-level solutions

are limited to specific renderers or require dedicated hardware, our solution supports multiple

types of rendering service, including interactive global illumination and web-based access, and

is already operational with commodity hardware and networking. We successfully evaluated

the system in a real-world, multi-day film studio test production.

8.2 Future Work

Since we wrote each chapter as an experiment that can stand on its own, we already presented

specific future directions at the end of each chapter. Here, we focus on the overall scope and

direction the work of this thesis could evolve into.

The ultimate vision is one overall, generic system that provides a compute continuum for ubiq-

uitous 3D. The thesis developed a strong foundation for this long-term goal. The frameworks

developed in the thesis address a wide range of computing architectures, display setups, and

potential applications. We can identify several major components that are heavily re-utilized

across the rendering architectures. The visualization applications from Chapter 3 to 5 share

the same rendering library, which enables local, server-based, and hybrid rendering of multi-

resolution data sets. The distributed visualization application for the ZAPP framework also

builds on the library. The image transport methods introduced in Chapter 5 resurface in the

distributed rendering frameworks and the corresponding clients from Chapter 6 and 7. The

distributed rendering framework presented in Chapter 7 builds on the solution from Chapter 6
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and is also compatible with the XML3D browser client. Consequently, a central future task is

to unify the comprehensive range of related concepts and technologies presented in the thesis

into a single, generic framework capable to cover the various application requirements.

One aspect that is especially challenging for a system that supports different types of rendering

service is a common ground for material descriptions, shading parameters, and custom shaders.

The available material and shading parameters and also the shading functionality may vary

considerably across different rendering applications, algorithms, and target platforms. Sons et

al. [SKSS14] present the shade.js system, which provides application-independent material de-

scriptions and an environment-aware shading language. Shaders can inspect their environment

to adapt to different conditions. A run-time compiler then produces executable code specialized

according to the actual conditions. Since shade.js has already been integrated into XML3D,

which is one of our main client solutions, we consider to use the concept as the basis for a

unified shading system.

The distributed rendering solutions we presented are designed for maximum performance. How-

ever, the clusters that were available to us for the implementation and testing are limited in size

or do not offer up-to-date hardware. This especially limited the quality we could achieve for

the interactive global illumination ray-tracer. A future step is to run the distributed rendering

on a dedicated, high-end cluster infrastructure. We were already able to generate and run an

initial build of the framework and global illumination ray-tracer from Chapter 7 on the Hazel

Hen supercomputer [HLR16] at the High-Performance Computing Center in Stuttgart, Ger-

many. To see how the solution scales to hundreds or even thousands of nodes is an interesting

prospect. Though, the project is in an early stage and performance tests have yet to be carried

out.
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Jeulin, Maik Thöner, Christian Stein, Michael Schmitt, Max Limper, Miguel

de Sousa, Tobias Alexander Franke, and Gerrit Voss. webVis/Instant3DHub: Visual

computing as a service infrastructure to deliver adaptive, secure and scalable user

centric data visualisation. In Proceedings of the 20th International Conference on

3D Web Technology, Web3D ’15, pages 39–47, New York, NY, USA, 2015. ACM.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing

and its role in the internet of things. In Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York,

NY, USA, 2012. ACM.

[BN05] Robert Ball and Chris North. Effects of tiled high-resolution display on basic vi-

sualization and navigation tasks. In CHI ’05 extended abstracts on Human factors

in computing systems, CHI EA ’05, pages 1196–1199, New York, NY, USA, 2005.

ACM.

[Boi16] Boivin, Sam. Short range depth maps. Technical report, ncam, 2016. http://www.

dreamspaceproject.eu/Docs.

[Bom13] Boman, B. and Isomaki, M. and Aboba, B. and Martin-Cocher, G. and Mandyam,

G. and Marjou, X. H.264 as mandatory to implement video codec for WebRTC, 2013.

http://tools.ietf.org/id/draft-burman-rtcweb-h264-proposal-01.html.

[BRE05] Praveen Bhaniramka, P. C. D. Robert, and S. Eilemann. OpenGL multipipe SDK: a

toolkit for scalable parallel rendering. In VIS 05. IEEE Visualization, 2005., pages

119–126, Oct 2005.

[Bri11] Bringuier, L. OTT streaming, September 2011. http://www.bogotobogo.com/

VideoStreaming/images/mpeg_dash/Anevia_White-Paper_OTT-Streaming_

2nd_Edition.pdf.

[BTJ+13] Christopher Butson, Georg Tamm, Sanket Jain, Thomas Fogal, and Jens Krüger.
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[DKW09] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU ray-casting for scalable

terrain rendering. In Proceedings of Eurographics 2009 - Areas Papers, pages 43–50,

2009.

[DLS+12] C. Dyken, K.O. Lye, J. Seland, E.W. Bjonnes, J. Hjelmervik, J.O. Nygaard, and

T.R. Hagen. A framework for OpenGL client-server rendering. In Cloud Computing

Technology and Science (CloudCom), 2012 IEEE 4th International Conference on,

pages 729–734, 2012.

[Don10] Donovan, A. and Muth, R. and Chen, B. and Sehr, D. PNaCl: Portable Native

Client executables, February 2010. http://www.chromium.org/nativeclient/

reference/research-papers.

[DSBK+06] G. Deuschl, C. Schade-Brittinger, P. Krack, J. Volkmann, H. Schafer, K. Botzel,

C. Daniels, A. Deutschlander, U. Dillmann, W. Eisner, D. Gruber, W. Hamel,

J. Herzog, R. Hilker, S. Klebe, M. Kloss, J. Koy, M. Krause, A. Kupsch, D. Lorenz,

S. Lorenzl, H. M. Mehdorn, J. R. Moringlane, W. Oertel, M. O. Pinsker, H. Reich-

mann, A. Reuss, G. H. Schneider, A. Schnitzler, U. Steude, V. Sturm, L. Timmer-

mann, V. Tronnier, T. Trottenberg, L. Wojtecki, E. Wolf, W. Poewe, and J. Voges.

A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med,

355(9):896–908, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16943402.

[EEH+00] K. Engel, T. Ertl, P. Hastreiter, B. Tomandl, and K. Eberhardt. Combining local

and remote visualization techniques for interactive volume rendering in medical

183



applications. In Proceedings of the conference on Visualization ’00, VIS ’00, pages

449–452, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[EFK95] J. L. Encarnação, M. Frühauf, and T. Kirste. Mobile visualization: Challenges and

solution concepts. In In Proc. CAPE’95, 1995.

[EG15] Farshad Einabadi and Oliver Grau. Discrete light source estimation from light

probes for photorealistic rendering. In Proceedings of the British Machine Vision

Conference (BMVC), pages 43.1–43.10. BMVA Press, September 2015.

[EMP09] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. Equalizer: A scalable

parallel rendering framework. IEEE Transactions on Visualization and Computer

Graphics, 15(3):436–452, May 2009.

[EOEI00] Klaus Engel, Frank Oellien, Thomas Ertl, and Wolf-Dietrich Ihlenfeldt. Client-

server-strategien zur visualisierung komplexer struktureigenschaften in digitalen

dokumenten der chemie. it+ti - Informationstechnik und Technische Informatik,

42(6):17–23, 2000.

[Evo16] EvoStream. EvoStream, 2016. https://evostream.com.
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[Krü07] Jens Krüger. GI-Edition Lecture Notes in Informatics (LNI), chapter A GPU Frame-

work for Interactive Simulation and Rendering of Fluid Effects. GI, 2007.
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[LPHS12] Alexander Löffler, Luciano Pica, Hilko Hoffmann, and Philipp Slusallek. Networked

displays for VR applications: Display as a service. In Ronan Boulic, Carolina

Cruz-Neira, Kiyoshi Kiyokawa, and David Roberts, editors, Virtual Environments

2012: Proceedings of Joint Virtual Reality Conference of ICAT. Joint Virtual Reality

Conference (JVRC-2012), October 17-19, Madrid, Spain. Eurographics Association,

2012.

[LR12] S. Loreto and Simon Pietro Romano. Real-time communications in the web: Is-

sues, achievements, and ongoing standardization efforts. Internet Computing, IEEE,

16(5):68–73, 2012.

[LS07] Fabrizio Lamberti and Andrea Sanna. A streaming-based solution for remote vi-

sualization of 3D graphics on mobile devices. IEEE Transactions on Visualization

and Computer Graphics, 13(2):247–260, 2007. http://dx.doi.org/10.1109/TVCG.

2007.29.

[LSK11] Ming Li, Arne Schmitz, and Leif Kobbelt. Pseudo-immersive real-time display of

3D scenes on mobile devices. In Proceedings of the 2011 International Conference

on 3D Imaging, Modeling, Processing, Visualization and Transmission, 3DIMPVT

’11, pages 41–48, Washington, DC, USA, 2011. IEEE Computer Society.

[LSSS16] Stefan Lemme, Jan Sutter, Christian Schlinkmann, and Philipp Slusallek. The basic

building blocks of declarative 3D on the web. In Proceedings of the 21st International

Conference on Web3D Technology, Web3D ’16, pages 17–25, New York, NY, USA,

2016. ACM.

[LZWH13] Yihua Lou, Haikuo Zhang, Wenjun Wu, and Zhenghui Hu. Magic View: An opti-

mized ultra-large scientific image viewer for SAGE tiled-display environment. In Pro-

ceedings of the 2013 IEEE 9th International Conference on e-Science, ESCIENCE

’13, pages 262–269, Washington, DC, USA, 2013. IEEE Computer Society.

192



[Ma09] Kwan-Liu Ma. In situ visualization at extreme scale: Challenges and opportunities.

IEEE Comput. Graph. Appl., 29(6):14–19, November 2009.

[Mah10] Mahy, R. and Matthews, P. and Rosenberg, J. Traversal Using Relays around NAT

(TURN): Relay extensions to Session Traversal Utilities for NAT (STUN), 2010.

https://tools.ietf.org/rfc/rfc5766.txt.

[MAN+14] T. Marrinan, J. Aurisano, A. Nishimoto, K. Bharadwaj, V. Mateevitsi, L. Renam-

bot, L. Long, A. Johnson, and J. Leigh. SAGE2: A new approach for data intensive

collaboration using scalable resolution shared displays. In Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom), 2014 International

Conference on, pages 177–186, Oct 2014.

[MBW+09] C. B. Maks, C. R. Butson, B. L. Walter, J. L. Vitek, and C. C. McIntyre. Deep

brain stimulation activation volumes and their association with neurophysiological

mapping and therapeutic outcomes. J. Neurol Neurosurg Psychiatry, (In Press),

2009. http://www.ncbi.nlm.nih.gov/pubmed/18403440.

[MCY+10] Jonathan C. McLane, W. Walter Czech, David A. Yuen, Mike R. Knox, Shuo Wang,

Jim B. S. Greensky, and Erik O. D. Sevre. Ubiquitous interactive visualization

of large-scale simulations in geosciences over a Java-based web-portal. Concurr.

Comput. : Pract. Exper., 22(12):1750–1773, August 2010.

[MDG+10] L. Marsalek, A. K. Dehof, I. Georgiev, H. P. Lenhof, P. Slusallek, and A. Hilde-

brandt. Real-time ray tracing of complex molecular scenes. In 2010 14th Interna-

tional Conference Information Visualisation, pages 239–245, July 2010.

[MF12] M. M. Mobeen and Lin Feng. Ubiquitous medical volume rendering on mobile

devices. In Information Society (i-Society), 2012 International Conference on, pages

93–98, June 2012.

[MHH+12] Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits,

Brent Burley, and Adam Martinez. Practical physically-based shading in film and

game production. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, pages 10:1–

10:7, New York, NY, USA, 2012. ACM.

[MHLK06] Andreas Moll, Andreas Hildebrandt, Hans-Peter Lenhof, and Oliver Kohlbacher.

BALLView: a tool for research and education in molecular modeling. Bioinformatics

(Oxford, England), 22(3):365–6, feb 2006.

193



[Mic15] Microsoft Edge Team. A break from the past, part 2: Saying goodbye to ActiveX,

VBScript, attachEvent..., 2015. https://blogs.windows.com/msedgedev/2015/

05/06.

[Mic16] Microsoft. Microsoft Azure, 2016. https://azure.microsoft.com/en-us.

[MLM+12] J. Miroll, A. Löffler, J. Metzger, P. Slusallek, and T. Herfet. Reverse genlock for

synchronous tiled display walls with smart internet displays. In Consumer Electron-

ics - Berlin (ICCE-Berlin), 2012 IEEE International Conference on, pages 236–240,

Sept 2012.

[MMN+07] S. Miocinovic, C. B. Maks, A. M. Noecker, C. R. Butson, and C. C. McIntyre.

Cicerone: Deep brain stimulation neurosurgical navigation software system. Acta

Neurochir Suppl (Wien), 97:561–567, 2007.

[MMS+04] C. C. McIntyre, S. Mori, D. L. Sherman, N. V. Thakor, and J. L. Vitek. Electric field

and stimulating influence generated by deep brain stimulation of the subthalamic

nucleus. Clin Neurophysiol, 115(3):589–95, 2004.

[Moz16] Mozilla. Live streaming web audio and video, 2016. https://developer.mozilla.

org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Live_streaming_

web_audio_and_video.

[MPJ+13] Charles Marion, Joachim Pouderoux, Julien Jomier, Sebastien Jourdain, Marcus

Hanwell, and Utkarsh Ayachit. A hybrid visualization system for molecular models.

In Proceedings of the 18th International Conference on 3D Web Technology, Web3D

’13, pages 117–120, New York, NY, USA, 2013. ACM.

[MR09] Arie Meir and Boris Rubinsky. Distributed network, wireless and cloud com-

puting enabled 3-D ultrasound; a new medical technology paradigm. PLoS

ONE, 4(11):e7974, 11 2009. http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2775631.

[MT03] Kenneth Moreland and David Thompson. From cluster to wall with VTK. In

Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data Visualization

and Graphics, PVG ’03, pages 5–, Washington, DC, USA, 2003. IEEE Computer

Society.

[MW08] M. Moser and D. Weiskopf. Interactive volume rendering on mobile devices. In

Workshop on Vision, Modelling, and Visualization VMV ’08, pages 217–226, 2008.

http://www.vis.uni-stuttgart.de/~weiskopf/publications/vmv08.pdf.

194



[MWMS07] Brendan Moloney, Daniel Weiskopf, Torsten Möller, and Magnus Strengert. Scal-
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[NSOJA13] José M. Noguera, Rafael J. Segura, Carlos J. Ogáyar, and Robert Joan-Arinyo. A
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