
From Perception over Anticipation to
Manipulation

A dissertation submitted towards the degree
Doctor Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

by
Wenbin Li, M.Sc.

Saarbrücken, 2018

ii

Day of Colloquium 25/04/2018

Dean of the Faculty Univ.-Prof. Dr. Sebastian Hack

Chair of the Committee Prof. Dr. Dietrich Klakow

First Reviewer, Advisor Dr. Mario Fritz

Second Reviewer Prof. Dr. Aleš Leonardis

Third Reviewer Prof. Dr. Philipp Slusallek

Academic Assistant Dr. Michael Xuelin Huang

Abstract

From autonomous driving cars to surgical robots, robotic system has enjoyed signifi-
cant growth over the past decade. With the rapid development in robotics alongside
the evolution in the related fields, such as computer vision and machine learning,
integrating perception, anticipation and manipulation is key to the success of future
robotic system. In this thesis, we explore different ways of such integration to extend
the capabilities of a robotic system to take on more challenging real world tasks.

On anticipation and perception, we address the recognition of ongoing activity
from videos. In particular we focus on long-duration and complex activities and hence
propose a new challenging dataset to facilitate the work. We introduce hierarchical
labels over the activity classes and investigate the temporal accuracy-specificity
trade-offs. We propose a new method based on recurrent neural networks that learns
to predict over this hierarchy and realize accuracy specificity trade-offs. Our method
outperforms several baselines on this new challenge.

On manipulation with perception, we propose an efficient framework for pro-
gramming a robot to use human tools. We first present a novel and compact model
for using tools described by a tip model. Then we explore a strategy of utilizing a
dual-gripper approach for manipulating tools – motivated by the absence of dexterous
hands on widely available general purpose robots. Afterwards, we embed the tool use
learning into a hierarchical architecture and evaluate it on a Baxter research robot.

Finally, combining perception, anticipation and manipulation, we focus on a
block stacking task. First we explore how to guide robot to place a single block
into the scene without collapsing the existing structure. We introduce a mechanism
to predict physical stability directly from visual input and evaluate it first on a
synthetic data and then on real-world block stacking. Further, we introduce the
target stacking task where the agent stacks blocks to reproduce a tower shown in
an image. To do so, we create a synthetic block stacking environment with physics
simulation in which the agent can learn block stacking end-to-end through trial
and error, bypassing to explicitly model the corresponding physics knowledge. We
propose a goal-parametrized GDQN model to plan with respect to the specific goal.
We validate the model on both a navigation task in a classic gridworld environment
and the block stacking task.

iii

Zusammenfassung

Von autonom fahrenden Autos bis zu chirurgischen Robotern haben Robotersysteme
in den letzten zehn Jahren ein beträchtliches Wachstum erfahren. Mit der rasanten
Entwicklung in der Robotik und der Entwicklung in den verwandten Bereichen, wie
Computer Vision und Machine Learning, ist die Integration von Wahrnehmung,
Antizipation und Handhabung der Schlüssel zum Erfolg zukünftiger Robotersysteme.
In dieser Arbeit untersuchen wir verschiedene Möglichkeiten einer solchen Integra-
tion, um die Fähigkeiten eines Robotersystems zur Bewältigung anspruchsvollerer
Aufgaben in der realen Welt zu erweitern.

Im Bereich der Antizipation und Wahrnehmung beschäftigen wir uns mit der
Erkennung laufender Aktivitäten aus Videos. Insbesondere konzentrieren wir uns
auf lang andauernde und komplexe Aktivitäten und schlagen somit einen neuen
anspruchsvollen Datensatz vor, um die Arbeit zu erleichtern. Wir führen hierarchische
Label über die Aktivitätsklassen ein und untersuchen die zeitlichen Zielkonflikte zwis-
chen Genauigkeit und Spezifität. Wir schlagen eine neue auf rekurrenten neuronalen
Netzen basierende Methode vor, die lernt, über diese Hierarchie vorherzusagen und
Zielkonflikte zwischen Genauigkeit und Spezifität zu erkennen. Unsere Methode
übertrifft mehrere Baselines bei dieser neuen Herausforderung.

In Bezug auf Handhabung mit Wahrnehmung schlagen wir ein effizientes Sys-
tem für die Programmierung eines Roboters zur Verwendung von menschlichen
Werkzeugen vor. Wir stellen zunächst ein neuartiges und kompaktes Modell für
die Verwendung von Werkzeugen, die durch ein Werkzeugspitzenmodell beschrieben
werden, vor. Dann untersuchen wir die Strategie, einen Doppelgreifer-Ansatz für
die Handhabung von Werkzeugen zu verwenden - motiviert durch das Fehlen von
geschickten Händen bei allgemein verfügbaren Allzweckrobotern. Anschließend bet-
ten wir das Tool-Use-Learning in eine hierarchische Architektur ein und werten es
auf einem Baxter-Forschungsroboter aus.

Schließlich konzentrieren wir uns bei der Kombination von Wahrnehmung, An-
tizipation und Handhabung auf eine Blockstapelaufgabe. Zuerst untersuchen wir, wie
man Roboter anleitet, einen einzelnen Block zu platzieren, ohne dass die bestehende
Struktur zusammenbricht. Wir führen einen Mechanismus ein, um die physikalis-
che Stabilität direkt aus der visuellen Eingabe vorherzusagen und bewerten ihn
zunächst auf Grundlage von synthetischen Daten und dann auf Grundlage einer

v

vi

Blockstapelaufgabe aus der realen Welt. Außerdem führen wir die Stapelaufgabe
mit Vorgabe ein, bei der der Agent Blöcke mit dem Ziel stapelt, einen in einem Bild
gezeigten Turm zu reproduzieren. Um dies zu erreichen, erstellen wir eine synthetis-
che Blockstapelumgebung mit Physiksimulation, in der der Agent das Stapeln von
Blöcken durchgehend durch Versuch und Irrtum lernen kann, um das entsprechende
physikalische Wissen explizit zu modellieren. Wir schlagen ein zielparametriertes
GDQN-Modell vor, um in Bezug auf das spezifische Ziel zu planen. Wir validieren das
Modell sowohl für eine Navigationsaufgabe in einer klassischen Gridworld-Umgebung
als auch für die Blockstapelaufgabe.

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Mario Fritz for giving me
the opportunity to work under his guidance in the Scalable Learning and Perception
group at the Max Planck Institute for Informatics. His vision for research and full
support make it possible for me to explore across multiple fronts between computer
vision, machine learning and robotics that I can never imagine before.

I would like to thank Prof. Aleš Leonardis for agreeing to serve as an external
reviewer and Prof. Philipp Slusallek for being part of the thesis committee. I would
also like to thank Prof. Dietrich Klakow for being the chair of the thesis committee
and Dr. Michael Xuelin Huang for being the academic assistant.

Also, I would like to express my sincere gratitude to all my collaborators. Thanks
to Seyedmajid Azimi for running the initial CNN classifier in the visual stability
prediction work. Special thanks to Prof. Aleš Leonardis for the discussion throughout
the same project and helping out at the ICRA interactive presentation session. I
am also truly grateful to Prof. Jeannette Bohg for being part of the target stacking
project with her constant insightful feedback.

Furthermore, I would like to thank all the members in D2 department. In
particular, I would like to thank Prof. Bernt Schiele, for his lead and efforts of
creating such a great research environment for the whole department. I also appreciate
countless conversations and discussions with Mateusz Malinowski and Wei-Chen
Chiu in the Scalable Learning and Perception group. Moreover, I would like to
thank all my former office mates, Leonid Pishchulin, Hosnieh Sattar and Yang He for
creating such a wonderful working atmosphere. Special thanks to our department
secretary Connie Balzert for her numerous help during my stay at the institute and
the assistance for the German translation of the thesis’ abstract.

Last but not least, I would like to thank all my friends in Saarbrücken along the
years and I can never thank my parents enough for their always understanding and
never-ending support in my life.

vii

Contents

1 Introduction 1
1.1 Perspective . 1
1.2 Contributions . 3
1.3 Outline . 6

2 Related Work 9
2.1 Anticipation from Video . 10

2.1.1 Deeper Understanding of Videos 10
2.1.2 Anticipation from Visual Data 12
2.1.3 Video Representation . 13

2.2 Learning from Demonstration . 15
2.2.1 Basic Concepts . 15
2.2.2 Dynamic Movement Primitives 16
2.2.3 Applications . 19

2.3 Intuitive Physics . 20
2.3.1 Origin . 20
2.3.2 Research in Cognitive Science 21
2.3.3 Research in Development Psychology 22

2.4 Reinforcement Learning . 25
2.4.1 Basic Elements in Reinforcement Learning 25
2.4.2 Markov Decision Process . 26
2.4.3 Q-Learning and Deep Q-Network 29
2.4.4 Outlook . 33

I From Perception to Anticipation 35

3 Recognition of Ongoing Complex Activities 37
3.1 Introduction . 38
3.2 Related Work . 39
3.3 Method . 42

3.3.1 Video Representation . 42

ix

x contents

3.3.2 Early Recognition . 43
3.3.3 Recurrent Neural Networks 44
3.3.4 Early Recognition in a Semantic Hierarchy 45

3.4 Experiments . 48
3.4.1 Datasets . 48
3.4.2 Full Video Recognition . 50
3.4.3 Recognition from Partial Observation 50

3.5 Conclusion . 53

II From Perception to Manipulation 55

4 Participation in Amazon Picking Challenge 57
4.1 Amazon Picking Challenge . 57
4.2 System Architecture . 59

4.2.1 System Overview . 59
4.2.2 Baxter Research Robot . 60
4.2.3 Perception Module . 62
4.2.4 Actuation Module . 63
4.2.5 Limitations . 65

5 Teaching Robots the Use of Human Tools 67
5.1 Introduction . 68
5.2 Related Work . 69
5.3 Method . 70

5.3.1 Compact Modeling of Human Tools 71
5.3.2 Robot Manipulation of Human Tools 71
5.3.3 Learning Tool Use from Demonstration 73

5.4 Experiments . 78
5.4.1 Experiment 1: Learning to use a hot-glue pen 79
5.4.2 Experiment 2: Learning to use an electric drill 79
5.4.3 Experiment 3: Learning to use an electric tacker 80
5.4.4 Evaluation . 81

5.5 Conclusions . 83

III From Perception over Anticipation to Manipulation 85

6 Simulation Environment 87
6.1 Introduction to Panda3D . 88
6.2 Data Generator for Visual Stability Prediction 89

6.2.1 Tower Generation . 90
6.2.2 Stability Simulation . 91

6.3 Stacking Environment for Skill Learning 91
6.3.1 State Representation . 92

contents xi

6.3.2 Collision and Stability Detection 94
6.3.3 Interface Design . 96

7 Visual Stability Prediction for Robotic Manipulation 97
7.1 Introduction . 98
7.2 Related Work . 100
7.3 Recognition . 101

7.3.1 Synthetic Data . 102
7.3.2 Stability Prediction from Still Images 103
7.3.3 Prediction Performance . 105

7.4 Manipulation . 109
7.4.1 Prediction on Real World Data 112
7.4.2 Manipulation Test . 113
7.4.3 Discussion . 114

7.5 Conclusion . 114

8 Acquiring Target Stacking Skills 115
8.1 Introduction . 116
8.2 Related Work . 117
8.3 Learning . 118

8.3.1 Task Description . 118
8.3.2 Task Distinction . 118
8.3.3 Environment Implementation 119

8.4 Goal-Parameterized Deep Q Networks 120
8.4.1 Learning Framework . 121
8.4.2 Implementation Details . 122

8.5 Experiments . 123
8.5.1 Toy Example with Goal Integration 123
8.5.2 Target Stacking . 125

8.6 Conclusion . 126

9 Conclusions and future perspectives 127
9.1 Conclusions . 127

9.1.1 From Perception to Anticipation 127
9.1.2 From Perception to Manipulation 128
9.1.3 From Perception over Anticipation to Manipulation 128

9.2 Future Perspectives . 128
9.2.1 Higher Level Intelligence . 129
9.2.2 Higher Level Integration . 130

List of Figures 133

List of Tables 139

Bibliography 141

Chapter 1
Introduction

Contents
1.1 Perspective . 1
1.2 Contributions . 3
1.3 Outline . 6

1.1 Perspective

The field of Robotics enjoyed a significant growth over the past decade. With the
rapid development in sensing, communication and computing technology, robotic
system is getting closer to our daily life, from the autonomous driving cars to the
deployment of surgical robots. To further advance the study in robotics and take on
more challenging real world tasks, it is important to extend the capabilities of the
current robotic system to act in complex and dynamic environments.

In this dissertation, we base on three important modules in robotic system,
namely perception, manipulation and anticipation, bringing them together to deal
with complex tasks.

Perception This refers to the process that transforms the raw sensory information
into the internal representation. It is a major topic in general pattern recognition: in
speech recognition, an audio signal is converted into corresponding text; in computer
vision, an image can be labeled by the categories of objects inside it, or regions of
distinct semantic concepts.

Manipulation This refers to the operation that interacts with objects to achieve
a certain goal. It is a major topic in robotic application: from pick-and-place to
automatic assembly in production line.

1

2 Chapter 1. Introduction

Anticipation This refers to the mechanism that predicts the future consequence.
It can take different forms and develop into various interesting problems (c.f. sec-
tion 2.1.2).

These modules are closely connected with each other, and our work mainly
explores three ways of integrations with one another as shown in Figure 1.1:

Anticipation

Perception

Manipulation

I II
III

Figure 1.1: Our work explores different ways of integrations with perception, antici-
pation and manipulation modules in intelligent systems.

I. From Perception to Anticipation There is a close tie between perception
and anticipation. Perception generally provides a description of what the current
state is or in other words, an understanding of the current state. This often serves as
a good base for anticipation to extrapolate to the future. In return, anticipation can
strengthen the current perception and decision-making. There are a lot of robotic
applications that can benefit from the anticipation mechanism. In autonomous
driving, observing the surrounding traffic flow can hint on nearby vehicles’ incoming
behavior, the autonomous vehicle can hence take precautions of others’ misbehaviors.
In assisted living, recognizing personnel’s current activity can suggest his or her
possible follow up, the service robot can thus provide necessary assistance.

The key challenge along this direction is how to relate the future with the presence.
Depending on specific problems, the model can take different forms. For example, to
predict the trajectory in the near future, it can assume certain consistency between
consecutive time frames; to predict the physical consequence, it can assume some
form of physical knowledge. In section 2.1.2, we will see more of related examples.

Our work in chapter 3 tackles the recognition of ongoing activity from videos, i.e.
given the observation so far, anticipating the activity class for the whole sequence.

1.2. Contributions 3

From assisted living and many other applications such as surveillance system, crime
prevention and human robot interaction can make use of such mechanism to infer
which activity is currently going on and hence being able to behave proactive or
context-aware.

II. From Perception to Manipulation In robotics literature, it is common to
couple planning with perception. For instance, in classic pick-up task, the robot
needs to first detect the object and then figures out where and how to reach and
pick it up. In a modern unmanned aerial vehicle, various sensors provide it with
information about local environment to navigate without collisions.

Yet when it comes down to the specific domain of robotic manipulation, such
applications have not gone too far from the aforementioned pick-up and some other
low-level primitives like grasping. There are various reasons for this situation such
as the disagreement between the information demanded for planning and the noisy
and insufficient input from the perception module.

Another important reason is that in general, it is nontrivial to formulate a
planning model with perception for a complex manipulation which often includes
multiple steps of operations. Our work in chapter 5 explores the possibility along
this line and proposes a framework for the general tool using process. With further
introduction of the dynamic movement primitive method, the robot can learn to use
tool with one or a few expert demonstrations.

III. From Perception over Anticipation to Manipulation Finally, to achieve
higher level of intelligence for a robotic system, it is necessary to pursue a more
advanced integration of both perception and anticipation into manipulation.

In chapter 7 and chapter 8, we focus on a block stacking task. In the former, we
attempt the explicit learning of intuitive physics into anticipation to guide stacking
a single block into the scene without collapsing the existing structure; in the latter,
we explore the end-to-end learning of stacking multiple blocks to achieve a specified
target structure.

1.2 Contributions
This thesis contributes along the three major areas that we have just discussed in
the previous section with the following major works:

Recognition of Ongoing Complex Activities This work lies at the intersection
of perception and anticipation. It takes place in the domain of video analysis and
aims to anticipate activity class from video data. In this work:

• We propose the first dataset of complex activities that have a substantial time
span and are organized in a semantic hierarchy.

4 Chapter 1. Introduction

• We introduce a new representation that models the uncertainty over different
time frames across different levels of the semantic hierarchy.

• We study how prediction can be performed from partial observation of ongoing
activities with a semantic hierarchy back-off strategy.

• We propose a performance measure that evaluates the gain in specificity over
time as more observation becomes available.

• Our new method outperforms several baselines as well as techniques that we
adopt from the literature on accuracy specificity trade-offs for object recognition.

This work was presented at WACV (Li and Fritz, 2016).

Teaching Robots the Use of Human Tools This work integrates perception
and manipulation. Here we want to find a faster way to program robot in a
manipulation task within a perception-manipulation loop. Specially, we focus on the
task of tool using. In this work:

• We present a novel and compact model for using tools that can be described
by a tip model. With this model, we can decompose the tool using procedures
into manipulation primitives.

• We explore a strategy of utilizing a dual-gripper approach for manipulating
tools – motivated by the absence of dexterous hands on today’s most widely
deployed general purpose robots.

• We formulate a hierarchical architecture to embed the tool use in a learning
from demonstration framework. At a high-level, we learn temporal orders for
dual-arm coordination and at lower-level, we learn DMPs for manipulation
primitives.

• The approach is evaluated on a Baxter research robot with learning and
operation of three human tools, including an electric tacker, an electric drill
and a hot-glue pen.

This work was presented at Humanoids (Li and Fritz, 2015).

Visual Stability Prediction for Robotic Manipulation This work combines
perception, anticipation and manipulation. Here we search for a mechanism to
predict physical stability directly from visual input, it can then be used in the block
stacking manipulation. In this work:

• In contrast to existing approaches, we bypass explicit 3D representations and
physical simulation and learn a model for visual stability prediction from data.

1.2. Contributions 5

• We evaluate our model on a range of conditions including variations in number
of blocks, size of blocks and 3D structure of the overall tower, reflecting the
challenges of inference with growing complexity of the structure.

• We conduct a human subject study on a subset of our synthetic data and show
that our model achieves comparable or even better results than humans in the
same setting.

• We investigate the discriminative image regions found by the model and spot a
correlation between such regions and the initial collapse area in the structure,
providing additional insights into our obtained model.

• We apply our approach to a block stacking setting and guide a robot for the
block placement with the stability predictions of the future states.

This work started as a tech report (Li et al., 2016) focusing on visual stability
prediction. It was later extended with the content of robotic manipulation and
accepted as an oral presentation at 2016 NIPS workshop on Intuitive Physics. The
final paper is published at ICRA (Li et al., 2017b).

Acquiring Target Stacking Skills This work extends the previous one by tack-
ling the task of stacking multiple blocks. Anticipation for a single stacking step is no
longer sufficient in such task, instead it requires more a complex planning while still
encoding the essential knowledge and additional constraints, such as physics and the
specified target shape in our experiment. In this work:

• We create a synthetic block stacking environment with physics simulation in
which the agent can learn block stacking end-to-end through trial and error,
bypassing an explicit modeling of the corresponding physics knowledge.

• We introduce a target stacking task where the agent stacks blocks to reproduce
a tower shown in an image. The task presents a distinct type of challenge
requiring the agent to reach a given goal state that may be different for every
new trial.

• We propose a goal-parametrized GDQN model to plan with respect to the
specific goal, allowing better generalization across different goals.

• We validate the model on both a navigation task and the target stacking task
itself. Our proposed model shows good performances on both tasks.

This work was presented in a tech report (Li et al., 2017a).

6 Chapter 1. Introduction

1.3 Outline
This dissertation is composed of three major parts:

Part I chapter 3. In this part, we explore anticipations from the perception and
specifically we propose a learning framework to anticipate in video data.

Part II chapters 4 and 5. In this part, we integrate the perception module into
the manipulation. The first system builds its actions directly on the visual
information for a picking task in an automatic warehouse scenario whereas the
latter plans further with respect to experts’ demonstrations.

Part III chapters 6 to 8. This part attempts the integration of both the perception
and the anticipation into the manipulation. We specifically focus on a block
stacking scenario and employ both synthetic and real-world experiments.

A brief summary of the content in each chapter is as follows:

Chapter 2: Related Work. We review related works and provide the readers with
a background knowledge to better understand the content in later chapters.

Chapter 3: Recognition of Ongoing Complex Activities. Observing an on-
going complex activity, how can the machine effectively predict its activity
class before seeing the whole sequence? In this work, we present a framework
to predict activities over a hierarchical label space, making trade-off between
the accuracy over the specificity.

Chapter 4: Participation in Amazon Picking Challenge We describe our sys-
tem participated in the first Amazon Picking Challenge and introduce the
robotics platform used in later chapters.

Chapter 5: Teaching Robots the Use of Human Tools. Conventional indus-
trial robots require experts to carefully script each step of a fixed procedure,
here we show an alternative way to this paradigm with learning from demon-
stration. By one or a few expert’s demonstrations, we successfully taught the
robot to use a few human tools.

Chapter 6: Simulation Environment We discuss the details on both design and
implementation for the environments used in the next two chapters.

Chapter 7: Visual Stability Prediction for Robotic Manipulation. Given a
physical structure, human has a sense of feeling if it is stable. This is an exam-
ple of intuitive physics. In this work, we show it is possible to learn a model to
mimic such capability to guide the robot for a one-block stacking task.

1.3. Outline 7

Chapter 8: Acquiring Target Stacking Skills. Going beyond the one-block stack-
ing task in the previous chapter, we attempt to build an agent to stack multiple
blocks to a specified target shape. The task motivates us to extend the the
DQN with goal-parameterized learning.

Chapter 9: Conclusions and future perspectives. This chapter concludes the
thesis and offers insights of some interesting directions for future research.

Chapter 2
Related Work

Contents
2.1 Anticipation from Video . 10

2.1.1 Deeper Understanding of Videos 10
2.1.2 Anticipation from Visual Data 12
2.1.3 Video Representation . 13

2.2 Learning from Demonstration 15
2.2.1 Basic Concepts . 15
2.2.2 Dynamic Movement Primitives 16
2.2.3 Applications . 19

2.3 Intuitive Physics . 20
2.3.1 Origin . 20
2.3.2 Research in Cognitive Science 21
2.3.3 Research in Development Psychology 22

2.4 Reinforcement Learning . 25
2.4.1 Basic Elements in Reinforcement Learning 25
2.4.2 Markov Decision Process 26
2.4.3 Q-Learning and Deep Q-Network 29
2.4.4 Outlook . 33

In this chapter, we provide a more general context for the work in this thesis.
The contents are arranged in four topics corresponding to the later chapters.

In section 2.1, we start with the research trend of pursuing deeper understanding
of video data and then focus on one particular direction, i.e. the anticipation
model. This directly connects to the idea in chapter 3 on Recognition of Ongoing
Complex Activities, where we anticipate activity class from videos with only partial
observation.

In section 2.2, we discuss the general paradigm of learning from demonstration
and its applications. Further we review the framework of the dynamic movement
primitives and supply readers with more detailed insights into it. All of these help
readers to better understand our work in chapter 5 on Teaching Robots the Use of

9

10 Chapter 2. Related Work

Human Tools.
In section 2.3, we revisit the idea of intuitive physics and sketch a broader

landscape across the research in cognitive science and development psychology. This
connects to the work in chapter 7 where we apply the similar idea to learn physics
from synthetic data.

In section 2.4, we go through some basics of reinforcement learning and then
examine in more details on the recent developed deep Q-Network. This supply
readers with a better background knowledge to understand our work in chapter 8 on
Acquiring Target Stacking Skills.

2.1 Anticipation from Video

From recognition of simple activities in short video clips to anticipating long and
complex activities, research in video analysis has made significant progress over the
past decade. In this section, we first give a brief review over the recent progress
in related areas on video. Then we focus on the sub-area of anticipation from
video data which closely connects to our work of recognition of ongoing activities
described in chapter 3. Afterwards we also discuss some developments in video
data representation, in particular providing more detailed information about the
trajectory feature used in our work described in chapter 3.

2.1.1 Deeper Understanding of Videos
A picture is worth a thousand words, and a minute long video-clip easily contains
more than a thousand pictures 1. Naturally, videos can provide significant more
dynamic contexts than static images. This in return also presents some unique
challenges on the analysis of videos.

Identifying and localizing objects can provide a basic level of information about
the video. Established techniques in computer vision such as semantic segmentation
and object detection can be applied to address this task. However, it is often not
sufficient to describe a video by the objects alone. This leads to another unique
element in videos, the motion. The objects can actively move in the video frames
and interact with each other. Techniques such as optical flow and tracking can
partially address issues from this perspective. Yet, even with the addition of motion
information, it still seems inadequate to express the video as the information obtained
so far only offers a plain summary about the video. Hence the third essential element
is needed as the event. An event is a succinct and meaningful abstraction of the
video, which can embody in the form of simply an event or an activity label in the
classification task, a temporal localization of event’s occurrence in the event detection
or a compatible textual description as in the video captioning task. In a sense, with

1With a simple calculation in a common video frame rate of 24FPS, a minute long video contains
24× 60 = 1440 image frames.

2.1. Anticipation from Video 11

the introduction of event, we achieve a deeper understanding of videos as shown in
Figure 2.1.

Video

Event

Motion

Object

Optical Flow

Detection

Segmentation

Tracking

Detection

Classification

Anticipation

Captioning

Deep

Shallow

Figure 2.1: A hierarchy of video analysis.

Along the years, there are several trends in pursuing a deeper understanding
of videos. For starters, the studied videos have become more and more complex.
Early datasets in the literature including the KTH dataset (Schuldt et al., 2004)
and the Weizmann dataset (Blank et al., 2005) feature simple activities like walking
and jumping. Later datasets such as the UCF Sports include activities like golf
swinging and the MPII cooking dataset (Rohrbach et al., 2012) on making different
dishes. This can be attributed to the advancement of research in video representation
and machine learning. In the section 2.1.3, we will discuss more specifically on the
development of research in video representation.

The second trend is that datasets are collected from more and more diverse sources.
There are datasets from movies such as the Hollywood2 Marszalek et al. (2009),
surveillance footage like the VIRAT (Oh et al., 2011) and daily living recordings like
the TUM Kitchen (Tenorth et al., 2009). We also see ego-centric datasets (Fathi
et al., 2011; Stein and McKenna, 2013). With the growing machinery to analyze
video data, researchers are inspired to apply different techniques to solving problems
in more practical scenarios.

Another development from a different perspective is the rise of anticipation

12 Chapter 2. Related Work

model. While most of the aforementioned works focus on elaborating the facts in
the observation so far, researchers now become more interested in reflecting the
knowledge from the observation and applying it to anticipate the unseen future. We
will briefly review some recent works along this line in the following subsection.

2.1.2 Anticipation from Visual Data
An anticipation model generally makes certain predictions about the future based on
the observation so far. The prediction can take different forms and develops into
various interesting specific problems:

The anticipated object can be qualitative (qualitative anticipation), such as
Ryoo (2011) and Li and Fritz (2016) to predict activity class based on a partial
observation as shown in Figure 2.2. If we further include images into the observation,
such as the models proposed in Lerer et al. (2016) and Li et al. (2016), it can
anticipate the possible physical outcomes.

t1 t2 t3 t4 t5 t6

?

Figure 2.2: Example of qualitative anticipation: recognition of ongoing activity (Li
and Fritz, 2016).

The anticipated object can also be quantitative (quantitative anticipation,
such as the model in Hoai and De la Torre (2012) to predict pedestrian’s walking path
from the surveillance video footage, or the one in Mottaghi et al. (2016), Fragkiadaki
et al. (2016) and Bhattacharyya et al. (2018) to predict the objects’ path under
physical law as shown in Figure 2.3.

?

t t+1 t+2 t+3

Figure 2.3: Example of quantitative anticipation: predicting the objects’ trajectory

A quite a few aforementioned works on anticipation model are built on the

2.1. Anticipation from Video 13

physical understanding from observation which related to another important topic in
this thesis, namely the intuitive physics. We will discuss more on this in section 2.3.

2.1.3 Video Representation
Significant progress has been made for video representation in recent years, in
particular with the rise of deep learning methods. In earlier research, a common way
to do feature representation is based on image descriptors located at spatio-temporal
interest points, such as Laptev (2005).

A later work (Wang et al., 2011) has advanced the idea to track those spatio-
temporal key points across multiple image frames and accumulate bag-of-words
descriptors aligned with these trajectories. More specifically, the key points are first
densely sampled on a image pyramid across multiple scales, as shown in Figure 2.4,
based on the sampled key points, trajectories are tracked separately for each spatial
scale with respect to the frame-wise optical flow. Local descriptors including the
histograms of oriented gradients (HOG) (Dalal and Triggs, 2005), histograms of
optical flow (HOF) and motion boundary histogram (MBF) (Dalal et al., 2006)
located at the key points are accumulated to represent the whole video stream. The
proposed representation (Wang et al., 2011) has shown state-of-art performance by
the time of its publication.

Trajectories Descriptors

HOFHOG MBH

...
... ...

...

Video

t t+1 t+2 t+3

Scales

Figure 2.4: The architecture for the improved trajectory feature for video data.

Interestingly, at the similar time frame, with the increasing popularity of deep
learning, in particular with some initial success of deep neural network in image

14 Chapter 2. Related Work

domain (Krizhevsky et al., 2012), researchers started to explore its application in
video domain. A closely related work following the dense trajectory feature by
Wang et al. (2015) presented a way to interchange the hand-crafted descriptors with
convolutional neural network. This is a hybrid approach with the trajectories still
coming from the optical flow.

A later work (Yue-Hei Ng et al., 2015) proposed an end-to-end descriptor based
completely on deep neural networks as shown in Figure 2.5, where the frame-wise
feature comes from the convolutional neural network and the overall descriptor is
formed from a long-short term memory network (Hochreiter and Schmidhuber, 1997)
over the frame feature.

Frame Feature

Video Frames

t t+1 t+2

...

t+3

...

CNN CNN CNN CNN CNN CNN

LSTMVideo Feature

Figure 2.5: The architecture for the deep learning based representation for video
data.

2.2. Learning from Demonstration 15

2.2 Learning from Demonstration

In this section, we recap the learning from demonstration paradigm which is used later
in chapter 5. Robot learning from demonstration enables the robot to automatically
derive control schemes on a task from the observation of an expert’s performance on
it. There are a variety of methods in the learning from demonstration literature, a
comprehensive survey on the topic in robotics can be found in Argall et al. (2009)
and a general overview article is available on-line by Billard and Grollman (2013).
Here we first give a brief overview of some basics in learning from demonstration
and then revisit the Dynamic Movement Primitives (DMP), a particular framework
of learning from demonstration used chapter 5. Afterwards, we cover some related
example applications.

2.2.1 Basic Concepts
With the introduction of the policy, we can more formally formulate the idea of
control scheme for a robot. A policy π is defined as a mapping from state s to a
corresponding action a: π : s→ a. The policy is one of the most important concepts
in the literature of robot control. As we shall see later in the related work, it is also a
key ingredient in the reinforcement learning. A traditional way to obtain the policy
for the robot control, e.g. to program a robot arm, is to analytically decompose
and manually code the desired task execution. However this approach is in general
very demanding and the obtained the policy is often not easy to adapt to novel
cases. To tackle these issues, learning from demonstration builds its model for policy
learning from example executions. More specifically, as shown in Figure 2.6, given
the same environment of the task, a teacher first performs sample executions as
the demonstrations, in the form of a series of interactions observing the state s
and act a. The demonstrations are provided to the robot to derive its own policy π,
under which given a state s′ it selects an action a′.

Demonstration

ᶢ: RobotEnvironment

s

Teacher

a

s’

a’

Figure 2.6: Learning from demonstration paradigm.

16 Chapter 2. Related Work

From one hand, there are different ways to perform demonstrations, which in
return decide how the demonstrator’s policy can differ from the ones used by the
robot. For example, in the most straightforward case, the demonstration can be done
with the robot itself through teleoperations by human teachers with the observation
of its own sensor. The policy applied in demonstration can be very similar to the
one at test as both subject to the comparable constraints, such as the mechanical
constraints from the robot. The other extreme case is that the demonstration is
done by a drastically different body and provided to the robot through external
observations, e.g. the robot observes a human demonstrator to perform sample
executions. The policy applied in the demonstration can be significantly different
from what will be used at test time, considering the operations are achieved under
different mechanical structures.

From the other hand, the learned policy itself should be rich enough so that it
can be applied to novel cases other than only the ones seen during demonstration,
namely the policy should have the capacity for generalization. There are various
approaches to allow generalizations, including the Dynamic Movement Primitive
(Ijspeert et al., 2002), which we will discuss in more details in the following subsection.

2.2.2 Dynamic Movement Primitives
The name of dynamic movement primitives (DMPs) is inspired by the biological
concept of motor primitives designed to be used and modulated in real time for
generating complex movements (Ijspeert et al., 2013). In particular, the term
of “dynamic” comes from the use of nonlinear dynamical system to formalize the
movement primitives.

Formally speaking, a dynamical system defines a rule for time evolution on a
state space. The state space describes the state at any instant, and the dynamical
rule specifies the immediate future of all state variables given only the present values
of those same state variables (Meiss, 2007).

In DMPs, the state space is formalized with a kinematic representation, i.e.
location, velocity and acceleration. The dynamical system encodes the desired
kinematic motor behaviors with the trajectories in the state space as shown in
Figure 2.7, and the kinematic behaviors are later converted into motor commands
(such as the torque from the robot’s joint) with some inverse dynamic controller.

The dynamical rule for DMPs is intended to generate the motion plan with
respect to a specified goal state where the planned trajectory resembles the ones seen
in the demonstrations. This naturally leads to two criteria for the dynamical rule:

1. Reach a specified goal state.

2. The generated path is adjustable to imitate the ones in the demonstrations.

To meet criteria (1) a base point attractive system is formulated based on a
damped spring model to converge to the goal state:

2.2. Learning from Demonstration 17

Demonstration

Y0’

G = (yg, ẏg,ÿg)

Y1 = (y1, ẏ1,ÿ1)

Y2 = (y2, ẏ2,ÿ2)
Y3 = (y3, ẏ3,ÿ3)

G’

Y0 = (y0, ẏ0,ÿ0)

Y1’

Y2’
Y3’

Novel Case

DMPs

Figure 2.7: Movement generation with DMPs.

τ ÿ = αz(βz(g − y)− ẏ + f

or more commonly as written in first-order notation in the related work:

τ ż = αz(βz(g − y)− z + f

τ ẏ = z

where τ is a global time scaling parameter and αz and βz are positive constants.
g is the known goal state, also known as the point attractor. f is the forcing term
and the component to drive the system to imitate paths seen in the demonstration
for criteria (2). Note the particular form of first-order notation was taken from a
more recent publication (Ijspeert et al., 2013), as pointed out in it, earlier works took
a slightly different form and turned out to be analytically less favorable. Further
the nonlinearity is enforced by the forcing term f representing arbitrary nonlinear
functions as a normalized linear combination of basis functions:

f(t) =
∑N
i=1 Ψi(t)wi∑N
i=1 Ψi(t)

where Ψi are the fixed basis functions and wi are the adjustable weights. This
formulation still renders the system of explicit time dependence, also known as
nonautonomous, which does not allow straightforward coupling with other dy-
namical systems and the coordination of multiple DOF in one dynamical system as
discussed in Ijspeert et al. (2013). The solution is to reformulate it by introducing
the canonical system:

τ ẋ = −αxx

18 Chapter 2. Related Work

The x = x(t) acts as a phase variable, given some arbitrarily chosen initial state
x0 such as x0 = 1, the state x converges monotonically to zero: x = 1 indicates the
start of the trajectory and x→ 0 indicates the goal state g has been achieved. Then
the forcing term f and corresponding basis function Ψi are defined as:

f(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x(g − y0)

Ψi(x) = exp(− 1
2σ2

i

(x− ci)2)

where σi and ci are constants for the basis functions. Comparing the new
formulation with the previous one, we note:

• The resulted system no longer depends explicitly on time but on the phase
variable x and hence becomes autonomous as desired.

• Additional term of x(g−y0) is introduced to modulate the forcing term with the
phase variable x to control the amplitude (as x→ 0 to reach the goal state, the
force also diminishes to 0) and the movement amplitude g−y0 (assuming g 6= y0
preserves useful spatial scaling properties, i.e. the generated trajectory is
scaled to it. Reader can find more detailed discussion in Ijspeert et al. (2013).

The eventual learning process is formulated in a supervised learning framework.
Given one or multiple desired trajectories in terms of the kinematics representation
as (ydemo(t), ẏdemo(t), ÿdemo(t)) where t ∈ [0, ..., P] with:

g = ydemo(t = P)
y0 = ydemo(t = 0)
τ = P

The weights parameters wi are learned with locally weighted regression
(Schaal and Atkeson, 1998) by minimizing its loss with respect to the forcing term f
for each kernel function Ψi:

Li =
P∑
t=0

Ψi(t)(ftarget(t)− wix(t)(g − y0))2

where ftarget is obtained from the demonstrated trajectory:

ftarget = τ 2ÿ − αz(βz(g − ydemo)− τ ẏdemo)

To generalize to novel cases, e.g. a different goal state, one only needs to plug in
the new goal state g for the movement amplitude g − y0 in the obtained dynamic

2.2. Learning from Demonstration 19

system and can then derive motion plan in kinematic representation. As discussed
in Ijspeert et al. (2013), the weights parameters wi and the other constants αz,βz
define qualitatively a particular behavior, i.e. movement primitive, hence are kept
constant for the very kind of behavior. There are many more details, such as the
stability properties of the system and an alternative formulation for rhythmic pattern
generator which we have left out here for the sake of space, readers can find detailed
discussion in the aforementioned paper (Ijspeert et al., 2013).

2.2.3 Applications
There are a wide range of applications of learning from demonstration in robotics. As
for DMPs, early works taught a 30 degrees-of-freedom humanoid robot for performing
tennis swings and drumming movements(Ijspeert et al., 2002). Extensions with
coupling of additional sensor reading has been applied for grasping. Our work of
teaching the robot to using human tools also built up on the DMPs which we will go
into details in chapter 5.

As the learning from demonstration process often involves the participation of
human teacher, it naturally become an interesting topic in the field of human-robot
interaction. One perspective is that human can be more actively in the learning
process, for example in active imitation learning (Shon et al., 2007), the robot
can request helps from the teacher.

Another initiative from learning from demonstration is that the demonstration
can be used in different ways other than the aforementioned supervised learning in
the DMPS, for instance, when combining with reinforcement learning, it can further
guide the exploration in search for potentially better policy than the ones shown in
demonstration. We have seen applications, such as aerobatic helicopter flight with
apprenticeship learning as described in Abbeel (2008).

20 Chapter 2. Related Work

2.3 Intuitive Physics
In this section, we introduce the research in intuitive physics. Intuitive Physics
generally refers to the commonsense knowledge for human to understand physical
environment and interaction. This is in contrast with the thorough and rigorous
physics study, such as the Newtonian Physics. Yet intuitive physics works well
enough for most situations in our daily life. It is intriguing what exactly represents
such a knowledge, where it comes from and how we can possibly build it into artificial
intelligent systems. Along the years, research have been conducted from many
different perspectives across psychology, cognitive science and artificial intelligence.
In particular, with the recent advance of deep learning, new computational model
has been proposed to do physics inference from direct visual observations. We will
continue the discussion of such approach later in our visual stability prediction work
in 7.

Here we briefly review relevant research on this topic in a more broader context.
In particular, the research in development psychology how infant acquire knowledge
of intuitive physics is one of the main inspirations for our work in 7. Readers can
also find a recent review on intuitive physics by Kubricht et al. (2017).

2.3.1 Origin
The concept of intuitive physics aims to describe the knowledge enables human
to understand physical environment and interact accordingly. In particular, the
“intuitive” part emphasize the knowledge is a part of commonsense to normal people
not reliant on specialized training in physics. Intuitive physics is ubiquitous in
guiding humans’ action in daily life, such as where to put a cup stably and how to
catch a ball.

Historically, Hayes first used the term Navie Physics to describe his approach
to developing a “large-scale formalism” of commonsense knowledge about the world
(Hayes et al., 1978), pioneering the study to model the intuitive physics. The use
of the word “naive” reveals its nature including commonsense knowledge that is
normally taken for granted by “the man in the street” other than specialized-trained
physicists. Through his seminal “Naive Physics Manifesto” (Hayes et al., 1978) and
its revision in the “Second Naive Physics Manifesto” (Hayes, 1985), he argued such
knowledge should:

• attempt reasonable completeness - describing a significant portion of the way
how human understand the world rather than just small pieces

• include both commonsense normally taken for granted in formal physics and
elements outside what is considered to be the field of physics

Hayes’ work pioneered the study to formally model human’s knowledge of intuitive
physics and influence later work along the line of research. A succinct discussion
about this can be found in the thesis’ chapter by Blackwell (1988).

2.3. Intuitive Physics 21

2.3.2 Research in Cognitive Science
As pointed out by Hayes, the intuitive physics can also include elements outside
what is considered to be the field of physics and may hence also choose to describe
the phenomena in a way that is familiar to “the man in the street”, but would not
be considered appropriate to a physicist (Blackwell, 1988). In other words, it can
sometimes deviate from physical reality due to certain cognition bias. Researchers
in cognitive science have addressed this issue, i.e. the misconception in intuitive
physics. A notable such example is the “impetus” theory of motion discussed by
McCloskey (1983). As shown in Figure 2.8, where the object is released while the car
is moving, the subjects are asked to predict which trajectory the object will follow.
49% of people in the experiment considered the trajectories B and 6% considered C
are correct, and only 45% picked the the actual right trajectory A. The large portion
of misconception about trajectory B resembles the pre-Newtonian theory of impetus
that motion must have a cause – as long as the object is released there is nothing
keeps it moves and hence trajectory B is considered correct.

ABC

Figure 2.8: Example of misconception about motion. The object is released while
the car is moving, the subjects are asked to predict which trajectory the object will
follow. The solid line A is the actual trajectory for the object, however according to
the study by McCloskey (1983), a significant portion of people consider B and C as
the answer.

A different line of research is to explore possible models to explain the be-
haviors from intuitive physics, accounting for not only the success part but also
aforementioned failure cases. Specifically, computational models focusing on the
mathematical formulation have becoming increasingly popular. A symposium of
computation model of intuitive physics has been held to discuss recent progress from
several different perspectives, an overview can be found in Battaglia et al. (2012).

One recent idea is that human have an internal probabilistic physics engine,
also known as the Intuitive Physics Engine (IPE) to support physical inference
(Battaglia et al., 2013). As shown in Figure 2.9, given a scene, the IPE first generates
its internal state based on the scene’s true state from a certain view. Note a Gaussian
noise is injected here to represent the uncertainty during the generation process.

22 Chapter 2. Related Work

Afterwards, a simulation is carried out on the internal state and arrives at its
outcome. As the scene can be observed from multiple views, each view can lead to
slightly different internal states, the final judgement for the scene’s physics can be
an aggregation based on the simulated outcomes from theses corresponding internal
states. In the experiments, along with the predictions from IPE, human subjects
were tested with same set of different blocks scenes and required to predict, such as
if a specific structure will fall and in which direction it will fall. Results have been
found to show high correlation between IPE’s and people’s average judgments.

Interestingly, the authors further explored the possibility that people’s judgments
do not involve any mental simulation. So the alternative explanation for people’s
physical scene understanding is that they use the model-free methods that depend
heavily on their experienced interactions with the world. In a sense, it is the widely
adopted data-driven approach in computer vision. In experiments, they used a
multivariate regression based on a set of predefined geometric features, such as
tower’s height and height of the tower’s center of mass to represent the alternative
model. They found it consistently worse at predicting people’s judgments than the
IPE model and hence concluded that it is not viable as a general-purpose alternative
to the IPE model. Additionally, they gave several possible reasons why a purely
model-free account is inefficient, including:

• it has to be compact so that it can be learned from finite experience.

• it has to be rich enough so that it can generalize to novel scenes.

The analysis actually inspired us to start our research in visual stability prediction
described in chapter 7. For starters, human may actually come across more data
than “finite”, as we will describe in the following subsection, research in development
psychology sheds some light on how the infant can develop its understanding on
physics at an early stage through the interaction and the observation. Moreover,
other than the predefined geometric features, there can be much richer representation
for the visual information to allow generalization to novel instances, in particular
with the rise of deep learning methods, learner has been shown to perform very well
on large-scale real world image dataset (Krizhevsky et al., 2012). Though we are not
arguing the data-driven approach can explain better about human’s judgement, we
would like definitely to show the high feasibility of it.

2.3.3 Research in Development Psychology
In contrast to seeking what makes the mechanism for intuitive physics, related
research in development psychology focuses more on answering if and how human
develop intuitive physics. The chapter by Baillargeon (2002) has summarized the
progress on the very topic by the time of its publication. First and foremost, infants
do acquire rules about physical event. The rules specify for them what are the
likely outcomes of events and hence can be understood as the intuitive physics. This
provides a positive answer to the if question. Infants’ rules become more sophisticated

2.3. Intuitive Physics 23

True State

View 1

...

View 2

View k

Scene Judgement

Noise

Internal State 1

Internal State 2

Internal State k
...

Simulation Aggregation

Outcome 1

Outcome 2

Outcome k

...

Figure 2.9: The architecture of intuitive physics engine proposed by Battaglia et al.
(2013).

over time. The rules about different events all seem to develop according to the same
general pattern, i.e. first forming an initial concept on all-or-none distinction and
then gradually identifying a sequence of variables to refine the understanding. This
provides leads on the how question.

These findings are based on a series of experiments across multiple different
physical events, such as the support event where a box was held in one of several
positions relative to the platform, and the infants judged if the box remains stable
when released as shown in Figure 2.10, the collision event where objects with
different weights roll down from the ramp and collide with the object at the bottom,
infants reasoned about heavier and lighter objects as shown in Figure 2.11. The
key to identify the learning or development process is through the observation of
violation-of-expectation when infants watch these events. More specifically, as the
intuitive physics specify for them the likely outcome of events (expectation), when
faced with events inconsistent with their expectation, they typically are surprised
or puzzled and most often look reliably longer at the violation. In the initial stages
of learning, infants often err in predicting the outcome of events suggesting their
understanding about physical events is likely rather primitive or incomplete. However,
that is not the end of story, the physical knowledge develops over time. Take the
support event as an example, in the first few months, infants only formed an initial
concept of support centered on a simple contact/no-contact distinction, namely they
expect the box to remain stable if released in contact with the platform, and to fall
otherwise. In the following months, infants identify a sequence of variables to refine
their initial concept: from the type of contact between the box and the platform to
the amount of contact between the box and the platform till finally the proportional
distribution of the box (Baillargeon, 2002).

24 Chapter 2. Related Work

X
… ...

… ...

Event A

Event B

Y

Y Y

Y

X

X

X

Figure 2.10: Support event.

Y

X

YX

Y

X’

YX’

… ...

… ...

mX < mX’

Event A

Event B

Figure 2.11: Collision event.

2.4. Reinforcement Learning 25

2.4 Reinforcement Learning
In this section, we give a brief overview on reinforcement learning which we used later
to formulate learning the framework for acquiring stacking skill of blocks. We start
with introducing a generic agent-environment interface for reinforcement learning
problems, then dive into the widely-used Markov Decision Process (MDP) formulation.
Afterwards, we briefly look back into some classical methods in solving reinforcement
learning problems under the MDP formulation and how some of them connects to
more recent advanced techniques in the related research areas, in particular the Deep
Q-Network (DQN), which we extended later in chapter 8. The readers can find more
systematic and detailed description on reinforcement learning in the monograph
by Sutton and Barto (1998). A newer version of the book draft is kindly provided
on-line 2 by the author with updated contents and discussion of recent advancement
on the topic.

2.4.1 Basic Elements in Reinforcement Learning
The agent-environment interface is a generic way to describe reinforcement learning
paradigm as shown in Figure 2.12. The agent observes the state from the environment
it acts on, performs action and receives reward signal, the environment then transit
into a new state, and the agent continues the process. If the process naturally breaks
into subsequences (episodes), each terminates after finite steps, it is usually referred
to as being Episodic. Otherwise, if it goes on continually without limit, it is then
referred to as being Continuous. In this thesis, we focus on the episodic settings.

Environment

Agent

ActionObservation Reward

Figure 2.12: Agent Environment Interface for Reinforcement Learning.

The strategy for the agent on how to act at a given observation is generally
referred to as the policy π. The policy can be either deterministic or stochastic.

2http://incompleteideas.net/book/the-book.html

http://incompleteideas.net/book/the-book.html

26 Chapter 2. Related Work

The objective of reinforcement learning is to seek an optimal policy for the agent
to maximize the overall rewards (this will become more formal in the formulation
introduced in the next subsection).

An important concept arised in the learning process is the trade-off between the
exploration and the exploitation. Since the policy is in general refined through the
interactions with the environment, the agent faces the choice either to exploit the
estimated optimal policy so far or to explore other possible actions beyond the
current estimate so that it may find an overall better policy.

2.4.2 Markov Decision Process

st st+1… st+2

at at+1 at+2

…

at-1

rt rt+1 rt+2

Figure 2.13: Markov Decision Process

In the literature, under certain assumption, namely the Markov property, rein-
forcement learning is usually mathematically formulated into a Markov Decision
Process (MDP) as shown in Figure 2.13. Given a state st, the action taken at time
t as at, the next state as st + 1 and the received reward as rt, the key dynamics of
the environment is defined as:

p(st+1, rt+1|st, at)

Note in the most general case, st+1, rt+1 v s0, a0, r1, ..., rt, st, at, however as
already mentioned earlier it is reduced to this form under Markov assumption. With
this formulation, the state-transition probability is defined over the two consecutive
states as:

p(st + 1|st, at)

This in a sense assumes a model for the environment. Methods with explicit
formulation on the state-transition model are sometimes referred to asModel-based,
the counter part without explicit transition model are referred to as Model-free.

The policy π is defined as a function over the current state:

2.4. Reinforcement Learning 27

π(st) = p(at|st)

As discussed earlier, pi can be either deterministic or stochastic. In the former
case, given st, the agent performs a specific action A with p(at = A|st) = 1, the pi is
then simply a lookup table to specify which action to take under different states. In
the latter case, pi defines a probability distribution of actions over states, and given
a state st, the agent samples an action with respect to pi.

One unique concept that distinguishes reinforcement learning from other learning
paradigms like supervised learning and unsupervised learning is the reward. When an
agent interacts with an environment, the reward signal returned from the environment
regulates its decision for the actions. Under the MDP formulation, a commonly
used generic formulation for reward is the reward function, i.e. the current reward
rt+1is defined as a function of the previous state st, the action taken before at and
the resulted current state st+1:

rt+1 = r(st, at, st + 1)

Often the agent only receives direct reward at the end of the episode. However
we can introduce additional intermediate rewards with reward shaping methods
to speed up the learning process. The reward shaping should be designed in a way
to maintain the policy invariance, i.e. the optimal policy remains unchanged under
the new reward settings. The reader can find more detailed discussion in Ng et al.
(1999).

In general, an agent does not act by only greedily maximizing the current reward
but instead seeks to maximize the cumulative reward received in the long run. Under
the episodic settings, the accumulative reward is defined as the return, which is the
sum of rewards afterwards till the end of the episode:

Rt =
T∑
i=0

rt+i+1

By introducing γ(0 ≤ γ ≤ 1) as the discounting factor, we can control the
overall strategy for the agent, i.e. how much the agent weights the decision based
on current reward over the ones in the future: with γ = 0, the agent is "myopic",
degrading to a greedy decision for immediate reward; with γ approaches 1, the agent
is "farsighted", weighting the future rewards more strongly. The discounted return
is defined as:

Rt =
T∑
i=0

γt+i+1rt+i+1

28 Chapter 2. Related Work

Since the agent makes decisions before it actually observes the return, the objective
can be hence formulated in terms of an estimate for the return as the expected
return Eπ[Rt] subjected to a specified policy pi. Hence the overall learning objective
is defined as:

maxEπ[Rt]

The expected return can be defined for each state. This leads to the concept of
state-value function for policy π as vπ(s), defining the value of a given state s,
i.e. the expected return after state s following policy π:

vπ(s) = Eπ[Rt|st = s]

A similar concept of action-value function for policy π as qπ(s, a) is also
defined for each state-action pair (s, a), being the expected return starting from a
given state s, taking action a and following the policy π afterwards:

qπ(s, a) = Eπ[Rt|st = s, at = a]

Both vπ and qπ subject to the associated policy π. Naturally, different policies
can lead to different values. The optimal policy π∗ is defined as the one with the
maximum value, or more formally put as:

v∗(s) = max
π

vπ(s),∀s ∈ S

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S, a ∈ A(s)

The S denotes the state space that the agent acts on and A(s) refers to the set
of all possible actions given a state s.

By now, solving a reinforcement learning can be reduced to a search problem for π∗.
Yet with various representations for the problems of interest, there are different ways
to solve the corresponding formulation. For example, one can represent the problem
based on the value function (value-function based method). The iterative
methods are often used, such as the notion of generalized policy iteration
(GPI) by Sutton and Barto (1998). As shown in Figure 2.14, π0 is initialized first
for the policy and then it is evaluated for the associated value function v0 (policy
evaluation), then greedy choices based on v0 is used to refine the policy as π1, and
this process is repeated until it ultimately converges to π∗ and v∗. An alternative
paradigm is to directly model the policy and search for the optimal solution in
policy space (policy-based method). The DQN used in our work is an example
of value-based method for which we will describe in more details in the following
subsection.

2.4. Reinforcement Learning 29

π0 v0 …

Improvement

Evaluation

π1 v1 π* v*

Figure 2.14: Generalized Policy Iteration

2.4.3 Q-Learning and Deep Q-Network

One important framework to solve reinforcement learning is the temporal-difference
(TD) learning. It is one of the value-function based methods and fits in the GPI
framework as we just discussed in the previous subsection. The name of ’temporal
difference’ was first used by Sutton (1988) and derives from its usage of updating value
function estimates based on the difference between temporally successive predictions.

Consider a simple example, TD(0), as discussed in Sutton and Barto (1998) is
defined by:

V (st)|t+1 ← V (st)|t + α[rt+1 + γV (st+1)|t − V (st)|t]

Here α is a constant step-size (can be also understood as the learning rate), γ is
the discount factor, V (st), V (st+1)|t are the estimates at time t for V (st) and V (st+1),
and the difference between the two contributes to the update to the estimate at time
t+ 1 for V (st).

Q-learning (Watkins and Dayan, 1992) is an prominent example of TD methods.
As the name indicates, its estimate is based on Q-value (action-value) function and
is defined as:

Q(st, at)|t+1 ← Q(st, at)|t + α[rt+1 + γmax
a

Q(st+1, a)|t −Q(st, at)|t]

The update is repeated until it converges, i.e. the TD-update rt+1+γmaxaQ(st+1, a)|t−
Q(st, at)|t approaches 0 or some other specified threshold. The full procedures are

30 Chapter 2. Related Work

sketched as below.
Initialize Q(s, a),∀s, a
while not converge criteria do

// Repeat episodes
Initialize S
while S is not terminal do

// Repeat steps
Choose A from S w.r.t. Q // e.g.ε-greedy
Take action A, observe R, S ′
Update Q(S,A)
S = S ′

end
end

Algorithm 1: Q-Learning
Note at each step, ε-greedy is often used for selecting actions for the balance

between exploration and exploitation with respect to the current estimate of Q-value.
It is defined as:

A←

arg maxaQ(s, a) with probability 1− ε
a random action with probability ε

One obvious limitation of the original Q-learning is that it does not scale to
real-world problem with arbitrarily large state space. One idea to overcome this is
to explore some parametrized function approximation to the Q-value function so
that it can represent all different states in a more compact way other than simply
memorizing.

Image

CNN

DQN

Figure 2.15: The DQN by Mnih et al. (2015).

One recent success along this line is the Deep Q-Network (DQN) by Mnih
et al. (2015), which achieves human-level performance across a variety of Atari games.
Several techniques contributed to the working system. For starters, the Q-value
function is now represented by a deep Convolutional Neural Network (CNN),
which has been shown great success on image classification task (Krizhevsky et al.,
2012). The CNN is parameterized by θ, receives the observed images as the input,

2.4. Reinforcement Learning 31

and outputs the predicted q-value Q(s, a; θ) for all possible actions a as shown in
Figure 2.15.

The learning follows the same idea of the original Q-learning but takes slightly
different forms as the update now takes place in the parameter space θ of Q-value
function other than Q-value directly. Hence the learning objective now is to minimize
a loss function in terms of the temporal difference:

L(θt) = [rt+1 + γmax
a

Q(st+1, a; θt)−Q(st, at; θt)]2

The resulted update can therefore be expressed in the gradient-descent form as:

θt+1 ← θt + α∇θtL(θt)

Here α is the learning rate for the gradient-descent step. In practice, α is set
using the RMSProp (Tieleman and Hinton, 2012).

st st+1 st+2 ...

Sample

Images

DQNt

at at+1Actions

Rewards

...

r t+1 r t+2

Experience

Memory Pool

… ...

DQNt+1

mini-batch

… ...

Update

Figure 2.16: Experience replay used in DQN.

32 Chapter 2. Related Work

Along with the CNN modeling, experience replay (Lin, 1992) is also used. As
shown in Figure 2.16, at each time-step t, the sequence of current observation st,
the action at, the resulted next observation st+1, the reward rt+1 are collected as an
experience into the memory pool, and θ is then updated by a mini-batch sampled
from it. The memory pool is usually set to a fixed size M queue structure, whenever
a new experience enters the pool, the ’oldest’ experience leaves the pool, i.e. the
lifespan of an experience in the pool is M . In practice, M is often set to be a large
number so that a single experience can stay in the memory for a long time and is
likely to be sampled several times. In this way, the data efficiency is increased,
as experience can be reused for the update. Also, since each update is done by
randomly sampled data, it removes the dependence among successive experiences on
the current weights, hence improves the learning in general.

Noticeably, the memory pool is first filled from empty to full and then the old
experience leaves whenever new experience enters. In actual implementation, since it
often pre-allocates space for the full memory pool with certain ways of initialization,
mini-batch should only be sampled among the actual experience in the pool other
than blindly from all the entries in it. This is because those initialized entries are
not generated from interactions in the environment and can hence deteriorate the
learning.

Another important technique used in the work is the skip-frame (Bellemare
et al., 2012). More specifically, the agent sees and selects actions on every k-th frame
(k = 4 is used) instead of every frame, and its last action is repeated on the skipped
frames. Skip-frame is used together with the stack-frame representation. Note, in
the actual DQN working system, each state is not the single image for the current
time-step but a stack of consecutive l frames (l = 4 is used). Overall, single update
spans across k × l frames as shown in Figure 2.17.

st st+2 st+3Images

at
Actions

st+4 st+5 st+6 st+7 st+8 st+9 st+10 st+11 st+12 st+13 st+14 st+15st+1

States st+3st+2st+1st
st+7st+6st+5st+4

st+11st+10st+9st+8
st+15st+14st+13st+12

Stack-Frame

Skip-Frame

at+16

...st+16

st+16

Repeat

Figure 2.17: Skip-frame used in DQN.

Following the DQN, several variants have been proposed to further improve the
results, including the dueling network (Wang et al., 2016), double DQN (Van Hasselt
et al., 2016) and prioritized replay (Schaul et al., 2016).

2.4. Reinforcement Learning 33

2.4.4 Outlook
The DQN has been shown to be a great success in beating the Atari games, yet the
games themselves are still limited in terms of the visual richness and control schemes.
Therefore, researchers now are working on tasks with more complex visual input and
more challenging control schemes, examples include the Vizdoom (Kempka et al.,
2016) and Starcraft II (Vinyals et al., 2017). Further, (Brockman et al., 2016) set up a
user-friendly platforms for benchmarking different reinforcement learning algorithms
for a larger variety of tasks, including ones for continuous control and many more.
Another notable recent highlight in reinforcement learning is the AlphaGo (Silver
et al., 2016) has outplayed top human players.

Part I
From Perception to Anticipation

Vision is a wide-spread modality for robotic perception, in computer vision, research
has made great progress on tasks describing the content in the current image or video.
For example, object detection to localize object in the frame, recognition to identify
object class. To pursue higher level of understanding, it is necessary to expand the
analysis for more complex tasks. Anticipation is one of such tasks, making prediction
over the future based on the current observation, which can facilitate robotic systems
to act in complex and dynamic environments.

In chapter 3 we tackle the recognition of ongoing activity from videos. Given the
observation so far, we want to anticipate the activity class for the whole sequence.

35

Chapter 3
Recognition of Ongoing Complex
Activities by Sequence Prediction over A
Hierarchical Label Space

Contents
3.1 Introduction . 38
3.2 Related Work . 39
3.3 Method . 42

3.3.1 Video Representation . 42
3.3.2 Early Recognition . 43
3.3.3 Recurrent Neural Networks 44
3.3.4 Early Recognition in a Semantic Hierarchy 45

3.4 Experiments . 48
3.4.1 Datasets . 48
3.4.2 Full Video Recognition 50
3.4.3 Recognition from Partial Observation 50

3.5 Conclusion . 53

Human activity recognition from full video sequence has been extensively studied.
Recently, there has been increasing interest in early recognition or recognition from
partial observation. In general, it is very challenging to make a fine grained prediction
of an activity given only a small fraction of the observation. To this end, we propose
a method to predict ongoing activities over a hierarchical label space. We approach
this task as a sequence prediction problem in a recurrent neural network where we
predict over a hierarchical label space of activities. Our model learns to realize
accuracy-specificity trade-offs over time by starting with coarse labels and proceeding
to more fine grained recognition as more evidence becomes available in order to meet
a prescribed target accuracy.

In order to study this task we have collected a large video dataset of complex
activities with long duration. The activities are annotated in a hierarchical label space

37

38 Chapter 3. Recognition of Ongoing Complex Activities

from coarse to fine. By directly training a sequence predictor over the hierarchical
label space, our method outperforms several baselines including prior work on
accuracy specificity trade-offs originally developed for object recognition.

This work has been published in WACV (Li and Fritz, 2016).

3.1 Introduction
Strong progress has been achieved in the area of human activity recognition over
the last decade ranging from coarse actions (Schuldt et al., 2004) to fine-grained
activities (Rohrbach et al., 2012). The majority of these techniques focus on what
has happened. However, many application in surveillance system, crime prevention,
assistive technology for daily living, human computer interaction interface, human
robot interaction would like to infer which activity is currently going on in order to
enable a system to behave proactive or context-aware.

Pottery

Crafting

Teapot

Full Observation

Observation

Observation

Observation

Doing…
…
…

…
…
…

…
…
…

…
…
…

Figure 3.1: An overview of our approach to inferring goal during the recognition
process of a complex activity by predicting with semantic abstraction.

The current systems that address early recognition and also activity recognition
in general have a relatively short temporal reach. Typically the investigated activities
are on the order of a minute – with a few exceptions like cooking activities. This limits
the systems in the way they can act and assist to a more immediate, anticipatory
response. In order to increase the temporal reach of our systems we have to study a
richer set of longer term activities.

While this goal is desirable, it raises the question how much can be inferred about
a complex activity from a very short observation? The natural concern is that in
many cases the information might be quite limited until a more substantial fraction

3.2. Related Work 39

is being observed. Therefore we argue that recognition of complex activities from
partial observation has to go hand in hand with a mechanism to predict at different
semantic granularity in order to deliver a useful prediction at anytime. In this sense,
we have to bring coarse and fine-grained recognition together in a single approach.

In order to study this challenging problem, we propose the first dataset of complex
activities that have a substantial time span and that are organized in a semantic
hierarchy. We study how prediction can be performed from partial observation of
ongoing activities in this setting by employing of a semantic back-off strategy. We
introduce a new representation that models the uncertainty over different time frames
across different levels of the semantic hierarchy. More specifically, we propose a
recurrent neural network formulation that learns to directly predict on this hierarchical
label space from coarse to fine in order to achieve an accuracy specificity trade off. A
performance measure is proposed that evaluates the gain in specificity over time as
more observations become available. Our new method outperforms several baselines
as well as techniques that we adopt from the literature on accuracy specificity
trade-offs for object recognition.

3.2 Related Work
Early computer vision research in recognizing human motion and activities can be
date back in early 1990’s (Aggarwal and Ryoo, 2011). Researchers have explored
various approaches to tackle the task and excellent surveys are available (Moeslund
et al., 2006; Poppe, 2010; Aggarwal and Ryoo, 2011; Weinland et al., 2011). In this
section, we first review related datasets for activity recognition and then discuss
some related approaches for analysis from partial observation.

Activity Datasets There is a large number of datasets proposed for activity
recognition or detection with various levels of complexity. Early efforts to construct
such datasets include the KTH dataset (Schuldt et al., 2004) and the Weizmann
dataset (Blank et al., 2005) which feature simple activities like walking and jumping.

More complex datasets are introduced later with various backgrounds, slightly
longer duration and more importantly, with additional interaction of objects or
peoples. Typical examples are answering phone (human-object interaction) in the
Hollywood2 (Marszalek et al., 2009), golf swinging (human-object interaction) in the
UCF Sports (Rodriguez et al., 2008) and hand shaking (human-human interaction) in
the UT-Interaction (Ryoo and Aggarwal, 2010). However, activities covered in these
datasets usually consist only very few types of (in most cases only one) interactions,
hence their structure are still relatively simple and individual video’s length is rather
short.

In contrast to this, there are also long-duration datasets collected from surveillance
video like VIRAT (Oh et al., 2011) or daily living recordings like TUM Kitchen
(Tenorth et al., 2009), CMU-MMAC (De la Torre et al., 2008), URDAL (Messing
et al., 2009), TRECVID (Over et al., 2010), ego-centric datasets (Fathi et al., 2011;

40 Chapter 3. Recognition of Ongoing Complex Activities

Dataset #Class Avg. #Frames per Seq.
KTH 6 91
UT interaction 6 84
UCF sports 9 58
HMDB51 51 93
MPI cooking 65 157
Youtube action 11 163
Olympics sports 16 234
Hollywood2 12 285
VIRAT 12 357
KSCGR 8 786
Our dataset 48 8.7K

Table 3.1: An overview of action/activity datasets in the literature.

Stein and McKenna, 2013), and MPII Cooking (Rohrbach et al., 2012). Videos from
these datasets show complex activities that comprise multiple interactions of different
type. Considering the example of making a dish in the cooking dataset (Rohrbach
et al., 2012), one needs to interact with different tools and ingredients to complete a
recipe.

One limitation about current long-duration datasets is that they are mostly
used for recognition of elementary activities within the long sequence instead of
the recognizing the overall process. In addition, they are limited to a particular
domain and do not provide a hierarchical label space. Our dataset exactly aims to
fill this gap by providing dataset of complex activities across multiple domains that
are organized in a semantic label hierarchy. A related dataset was built in Fabian
Caba Heilbron and Niebles (2015) where activities are grouped with respect to social
interactions and places where the activity usually takes places. There are several
recent works collecting videos from YouTube (Liu et al., 2009; Kuehne et al., 2011;
Sergio et al., 2013). We also collect our dataset from web sources, as it is a practical
way to collect a sizable dataset of realistic videos. A more detailed overview of our
dataset together with the aforementioned datasets is shown in Table 3.1.

Analysis from Partial Observation There are a few recent works focusing on
analysis from partial observation. Early recognition (Ryoo, 2011) aims to recognize
activity from the forepart of videos. The authors use accumulated histogram with
respect to the observed frames to represent the activity of interest, and performs
sequence matching with templates averaged from training dataset. Following the
similar idea of sequence matching, Cao et al. (2013) relaxes the location of observed
part and addresses recognition from partial observation and applies sparse coding
for better representation of the matching likelihood. A slightly different line of
work (Hoai and De la Torre, 2012) focuses on early detection, deciding the temporal
location of the activity, yet as shown in Cao et al. (2012) the algorithm does not

3.2. Related Work 41

work so well in practical recognition task. A more recent work (Lan et al., 2014)
builds the early activity prediction on the human detection and uses the resulted
tracks to form a hierarchical representation, yet in real world scenario, the detection
and tracking are usually expensive for complex scene involving multiple people and
can often be unreliable, not mention in situations like ego-centric video where it is
impossible to obtain a detection result for the person doing the activity.

Beyond predicting a label for the sequence, Kitani et al. (2012) poses a more
challenging task to predict activity where a MDP is used for the distribution over all
possible human navigation trajectories. The walking path addressed in Kitani et al.
(2012) is still relatively simple, hence Koppula and Saxena (2013) further explores
indoor activities which involves more complex interactions between human and object.
They represent the distribution over incoming states with a set of particles sampled
from an augmented CRF. The activities exploited in Koppula and Saxena (2013), like
taking medicine, already meets our definition of complexities, yet it only applies to a
very limited number of objects in very simple scenes under controlled lab conditions.
It is not clear how it scale up to real world application and longer time scales.

Prediction vs. Early Recognition Here we want to distinguish two differ-
ent types of problems addressed in related literature, i.e. prediction for unseen
action/activity or early recognition on the current observation. This is illustrated
in Figure 3.3 with the example of making a salad which involves multiple activities
including peeling, cutting and mixing. As one watches the activity moving on, predic-
tion is to forecast what is the next move after mixing whereas early recognition is to
tell the main theme of the activity as cooking regardless of only partial observation of
the whole process. Kitani et al. (2012) and Koppula and Saxena (2013) are examples
of prediction and Ryoo (2011), Cao et al. (2013) and Lan et al. (2014) are for early
recognition.

Indeed predicting real world activity is a very difficult task, it generally requires
various components including but not limited to pose estimation, object detection
and temporal segmentation where each task along is challenging already in real world
application not to mention it is nontrivial to combine them for a reasonable solution.
Our work focuses on early recognition which due to the long temporal duration of
our investigated activities, also extend to the future.

Activity Recognition with Recurrent Neural Networks Baccouche et al.
(2011) applies a different variant of RNN to action recognition task. Our work differs
from it in that we focus on the early recognition and prediction over a hierarchical
label space with a learned accuracy-specificity tradeoff. Our results show the joint
training of the sequence model w.r.t. to the accuracy specificity trade-off is key to
our performance improvements.

42 Chapter 3. Recognition of Ongoing Complex Activities

3.3 Method
In this section, we first discuss different ways of video representation and formulate
the task of early recognition in video sequence. Our goal is to predict at any point
in the sequence over a hierarchical label space in order to realize accuracy-specificity
trade-offs. In order to have a temporal integration of information over time and
learn classifier and the hierarchical trade-off jointly, we employ recurrent neural
networks for modeling videos and extend it to labeling in a hierarchy, and learning
accuracy-specificity trade-off in early activity recognition in videos.

3.3.1 Video Representation
Given a specific descriptor x, a video sequence can then be represented as [x1, x2, ..., xT],
where T denotes the frame index. There are several ways to obtain a compact represen-
tation for sequences as shown in Figure 3.2: (1) pooling over the whole sequence; (2)
partition the video into separated temporal segments, and combine the representation
from the segments into a temporal sequence representation [x1:t, xt+1:2t, ...xT−t+1:T],
where t is the number of frames for each segment. This approach has been applied
in Cao et al. (2012); Tang et al. (2012); (3) sample clips (also temporal segments)
from the video to represent the video, each clip is trained as a single instance in the
video class, i.e. [xt1:t1+t]∪ [xt2:t2+t]∪ ..., where t1, t2, ... are the time stamps when the
clips are sampled, and final prediction on the video is based on the majority vote
from the sampled clips. This approach is applied in the large-scale video recognition
work (Karpathy et al., 2014).

Temporal Segment Sampled ClipsFull Sequence

Figure 3.2: Different ways to represent individual video sequence: full sequence (left),
use one representation for the full sequence; temporal segment (middle), partition full
sequence into temporal segments and combine representation for individual segments
into one representation; sampled clips (right), sample video clips from the sequence
to form several representations.

We use improved dense trajectory feature (Wang et al., 2011) as the basic feature
to encode spatio-temporal information across frames in the videos with a code book of
size 4000 obtained via k-means clustering. It uses a dense representation of extracted
trajectories and combines with trajectory-aligned features, including HOG (Dalal

3.3. Method 43

and Triggs, 2005), HOF (Laptev et al., 2008), motion boundary histograms (MBF)
(Dalal et al., 2006). The descriptor itself has been shown to achieved the state-of-art
performances on several public datasets.

3.3.2 Early Recognition

Peel Peel Cut Mix! ?

?(Making a Salad)

Action
Prediction

Early Recognition
with

accuracy-
specificity trade-off

Observed

Early
Recognition

 ?(Making a Garden Salad)

 ?(Making a Salad)

 ?(Cooking)

Unobserved

Figure 3.3: Example to show the difference between action prediction and early
recognition. Given a streaming video sequence, (top) action prediction aims to give
a label to a incoming local temporal segment (mix or cut); (middle) standard early
recognition gives a label for the global video sequence (make a salad); (bottom) our
proposed framework to predict in the hierarchy with accuracy-specificity trade-off.
The solid arrows mark when the decision is made.

Given a video sequence [x1, x2, ..., xT], where T is the last frame index of the
video. Early recognition generally refers to the task of classification:

y = f([x1, x2, ..., xt̃]) , t̃ ≤ T

44 Chapter 3. Recognition of Ongoing Complex Activities

The standard full video classification can be seen as a special case of this formula-
tion where t̃ = T . It is important to point out the difference between early recognition
of activity (Ryoo, 2011) and human action prediction/anticipation (Kitani et al.,
2012; Koppula and Saxena, 2013; Lan et al., 2014) whereas the former is essentially
a sequence classification problem that maps sequence in a single label

X : [x1, x2, ..., xT] 7→ y

and the latter is a temporal classification problem that maps a input sequence
into a target sequence.

X : [x1, x2, ..., xT] 7→ [y1, y2, ..., yL]

A specific example is shown in Figure 3.3 for ongoing video stream of making
salad. Assume we already observe the person in video peeled the cucumber, cut it
into slice, mix it with other ingredients, early recognition generally aims to output
a global label for the sequence based on the available observation, in this case, the
label should be ‘making salad’ while the action prediction tries to predict the specific
local action label for the incoming video frames, in this case, the correct label would
be ‘put the salad in plate’.

3.3.3 Recurrent Neural Networks
A recurrent neural network (RNN) is a class of artificial neural network that allows
connections between units to form a directed cycle.

We consider an architecture with one self-connected hidden layer, which can be
unrolled in time as shown in Figure 3.4. One notable merit for RNN is that the
recurrent connections allow a ‘memory’ of previous inputs to persist in the network’s
internal state which can then be used to influence the network output (Graves, 2012).
This characteristic makes it suitable for sequence analysis, especially in our case,
with long duration and complex video sequences.

Given a video sequence composed of temporal segments x1, x2, ..., xT , each in
Rd, the network computes a sequence of hidden states h1, h2, ..., hT , each in Rm and
predictions y1, y2, ..., yT , each in Rk. The hidden unit integrates the information from
the arrived observation and those propagated from previous blocks of the networks:

x̃i = Wxhxi +Whhhi−1 + bh

hi = tanh(x̃i)
Each prediction unit represents the class label up to the current observation and

is activated by the hidden unit via a softmax function:

h̃i = Whyhi + by

yi = softmax(h̃i)

3.3. Method 45

where Wxh,Whh,Why are the weight matrices and bh, by are the biases. The
training is done by BackPropagation Through Time (BPTT) (Rumelhart et al., 1985)
and the parameter is learned by conjugate gradient descent method.

xt

ht

yt

(a)

xt-1 xt xt+1

ht-1 ht ht+1

yt-1 yt yt+1

… …

(b)

xt-1 xt xt+1

ht-1 ht ht+1

yt-1,L3 yt,L3 yt+1,L3

… …

yt-1,L2 yt,L2 yt+1,L2

yt-1,L1 yt,L1 yt+1,L1

(c)

Figure 3.4: Graphical model for recurrent neural networks. (a) The recurrent neural
networks with a single, self-connected hidden layer. (b) The unrolled model with
respect to discrete time steps from (a). (c) The recurrent network with structural
output over the hierarchy.

3.3.4 Early Recognition in a Semantic Hierarchy
Deng et al. (2012) first introduce the concept of optimizing an accuracy-specificity
trade-off for hierarchical image classification with the DARTS algorithm. Here we
briefly recap the formulation of the concept and discuss how we extend it to our
settings.

46 Chapter 3. Recognition of Ongoing Complex Activities

Optimizing Accuracy-Specificity Trade-Offs The key idea behind the accuracy-
specificity trade-off is to make cost-sensitive prediction over the hierarchy, where
predictions at upper level (fine-grained level categories) of the hierarchy get penalized
more than those at lower level (coarse level categories). By optimizing over both
the specificity and accuracy an optimal trade-off is found. More formally, given a
classifier f : X 7→ Y , with accuracy Φ(f) defined as,

Φ(f) = E[f(X) ∈ π(Y)]

where π(Y) is the set of all possible correct predictions, [P] is the Iverson bracket,
i.e., 1 if P is true and 0 otherwise. The preference for specific class labels over general
class labels at each node v, i.e. the specificity is encoded with information gain
(decrease in entropy) by

rv = log2|Y | − log2
∑
y∈Y

[v ∈ π(y)]

The total reward for the classifier f is hence defined as

R(f) = E(rf (X)[f(X) ∈ π(Y)])

The optimal trade-off between accuracy and specificity is then formulated as
maximizing the reward given an accuracy guarantee 1− ε ∈ (0, 1]:

minimize
f

R(f)

subject to Φ(f) ≥ 1− ε

Accuracy-specificity Trade-off Over Time Motivated by ideas from incremen-
tal feature computation and anytime recognition (Karayev et al., 2012, 2014), we
extend this concept with a temporal dimension to early recognition and model the
decision process when analyzing an ongoing video stream. At each time step, we
have to predict a label in the hierarchy and hereby trade-off between accuracy and
specificity.

R(f, t) = E(rf (Xt)[f(Xt) ∈ π(Y)])

The intuition behind this is that when only observing a small portion of the
video, we have little evidence to accurately predict at a fine-grained level but may
still be able to give a sensible coarse-level class label. By considering the total cost
of possible wrong prediction at fine-grained level and probably correct prediction
at coarse-level, together with our preference to predict at different levels, we are
likely to give prediction at coarse-level given little observed data. When observing
more and more parts of the video, we become more certain about our prediction at
the fine-grained level, and by the same mechanism, we start to predict at a more

3.3. Method 47

fine-grained level. Figure 3.3 shows a concrete example. By summing up the term
over time T ,

T∑
t

R(f, t) =
T∑
t

E(rf (Xt)[f(Xt) ∈ π(Y)])

we can evaluate the efficiency for accuracy-specificity from a classifier f .

Structured Output RNN for Predictions Over Hierarchical Label Spaces
We propose an RNN optimizing the objective from above by predicting over a
structured output space – our hierarchy H. We denote labels at top-layer, middle-
layer and bottom layer in the hierarchy as Y1, Y2, Y3 (coarse to fine). As shown in
Figure 3.4, our RNN model directly predicts an output layer y3,i representing the
posterior probabilities over the fine grained labels in the bottom layer.

y3,i = p(Y3 = i|x), i = 1, ..., K3

where K3 is the number of classes within the layer. On top of this layer, we
introduce an additional layer to represent the middle layer, where the connections
between these two layers are defined according to the hierarchy H, i.e. if class i
in bottom layer belongs to class j in middle layer, node i and j are connected or
(i, j) ∈ H. Accordingly, the middle layer activations are defined as follows:

y2,j = p(Y2 = j|x), j = 1, ..., K2

=
∑
i

p(Y2 = j|Y3 = i)p(Y3 = i|x)

Similarly we define another layer above this layer to represent top layer prediction
(coarse labels):

y1,k = p(Y1 = k|x), k = 1, ..., K1

=
∑
j

p(Y1 = k|Y2 = j)p(Y2 = j|x)

=
∑
j

∑
i

p(Y1 = k|Y2 = j)p(Y2 = j|Y3 = i)p(Y3 = i|x)

The complete model is shown in Figure 3.4. Based on the this prediction over the
hierarchy we define a structured loss in order to optimize for the desired accuracy
specificity trade-off:

Loss(θ,D) = −
∑
i

log p(Y1 = y
(i)
1 |x(i), θ)

+ log p(Y2 = y
(i)
2 |x(i), θ)

+ log p(Y3 = y
(i)
3 |x(i), θ)

where D denotes the training set{X, Y1, Y2, Y3}, and i indexes the i-th data
instance in D.

48 Chapter 3. Recognition of Ongoing Complex Activities

3.4 Experiments
We first present our new dataset of complex activities with a hierarchical label space
and afterwards perform a quantitative comparison of our proposed method and
compare to several baselines.

3.4.1 Datasets
We explore various complex activities composed of multiple interactions. Recording
videos for a large set of diverse classes is difficult, considering we need to find experts
in different fields to perform the activities and capture multiple videos for a single
class. In addition, this would eliminate the challenge of different capture devices.
Hence, we build our dataset on videos from web to create our dataset. In the following
part, we briefly discuss how we collect videos, pre-process the data and tackle the
associated challenges of building such a dataset.

Figure 3.5: 3-layer hierarchy defined in our dataset.

Data Collection We begin by defining a 3-layer semantic hierarchy (we count the
root node of “Doing something” as layer 0) with 3 nodes in the first layer (cooking,
crafting, repairing), then for each node, we select 4 specific derived categories as

3.4. Experiments 49

nodes to form the following layer, and for each node in the middle layer, we select 4
more specific classes as leaf nodes to form the bottom layer. For example, we include
making “pizza”, “soup”, “salad” and “sandwich” as the second layer for “cooking”,
and for “salad”, we consider making 4 different kinds of salads, namely “egg salad”,
“garden salad”, “chicken salad” and “Greek salad”. Overall, we obtain a tree for
complex activities with total 3× 4× 4 = 48 activity classes as leaf nodes. The full
hierarchy is shown in Figure 3.5. 10 videos are collected for each leave node from
YouTube and eHow, which sum up to 480 video clips with total length of more than
41 hours or more than 4.18 million frames. The dataset is available online3. Sample
frames of the videos are shown in Figure 3.6. We use half number of videos for
training and the rest for testing.

Figure 3.6: Some sample frames from our dataset.From top to bottom: make
Neapolitan pizza, make cheese steak sandwich, repair bike brake, change car oil,
make vase, build chair.

These videos from the web differ from the ones recorded from lab: while the
latter record the whole process for each activity with good controlled conditions, the

3http://www.mpii.de/ongoing-activity

http://www.mpii.de/ongoing-activity

50 Chapter 3. Recognition of Ongoing Complex Activities

former are often edited (adding head leader, tail leader, titles, flashback, etc) from
the uploaders under various conditions (different point of view, shooting skills, etc).
Hence such data is very noisy and exposes many of the aforementioned challenges of
realistic videos. We rescale video into 360p for further processing (640× 360).

3.4.2 Full Video Recognition
First we consider a setting where we classify full video sequences. This is particularly
interesting since our collected videos are significant more complex than previous
datasets on both the temporal scale and internal structure. This provides a relative
measure of difficulty for activity recognition on our database. We train and predict
on full sequences with a SVM classifier. While a χ2 kernel is usually applied to
integrate different descriptors in a multi-channel fashion as in Wang et al. (2011), we
find out that a linear kernel gets slightly better results on our dataset. Therefore
we use the linear SVM for all our experiments. As can be seen from Table 3.2, the
performance reaches 25.7% at layer−3 (fine-grained), which suggests that we have
established indeed a very difficult task at this detailed level.

An alternative to training on full sequence is to use sampled clips to represent
the whole video (Karpathy et al., 2014). Accordingly, we randomly sample 20% of
each video in the training set for training, and test on the full video sequences in the
test set. Note here we predict directly on the entire video sequence instead of the
average on the prediction of sampled clips from each test sequence. As shown in 3.2,
this approach is also valid on our dataset and is only slightly worse than training on
full video sequence.

Layer Clips-training(%) Full-training(%)
bottom-layer 25.3 25.7
middle-layer 52.3 59.1
top-layer 76.4 78.1

Table 3.2: Classification results on full video sequence

3.4.3 Recognition from Partial Observation
We proceed by examining the case where the video is only partially observed. We
simulate two types of video segments to represent incremental arrival of video frames,
(i) frames from the beginning with different observation ratios [10%, 20%, ..., 100%]
where we explore different strategies for early recognition (ii) continuous frames
taking up 10% of the full observation starting at different temporal location.

As a result a video is represented as a temporal sequence of these frame segments
[0−10%, 10−20%, ..., 90−100%,]. This setting simulates the practical setting where
the observer starts from arbitrary position and perceive a part of videos and wants
to infer the current activity class. We refer to this as online recognition.

3.4. Experiments 51

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Observation Ratio
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
Train on full observation

bottom layer(48-class)
middle layer(12-class)
top layer(3-class)

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Observation Ratio
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Train on full observation
bottom layer(48-class)
middle layer(12-class)
top layer(3-class)

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Observation Ratio
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Train on full observation
bottom layer(48-class)
middle layer(12-class)
top layer(3-class)

(c)

Figure 3.7: (a): train SVM model from full video and predict at different observation
ratios. (b): train model from full video sequences and augmented dataset.(c): train
model from sampled clips.

Early Recognition We evaluate the following strategies for early recognition: (1)
train single model on full video and predict at different observation ratios; (2) train
with augmented data i.e the combination of full video and video segments of different
observation ratios and make predictions; (3) train on sampled video segments and test
on partial observation, this is inspired by the result from our full-video recognition
experiment and we would like to investigate how models trained on sampled clips
can discriminate activity classes based on partial observation. We use the same
pipeline as in the full video recognition and also test on differ layers in the label
hierarchy. The results are shown in Figure 3.7. As we see from the plots, while
the training on sampled clips gets slightly worse results than the other two settings,
i.e. training on full sequence and on both full sequence and augmented data is still
feasible. Comparing training on full sequence with and without the augment dataset,
we observe improvement on upper two layer. At the lower-level, it helps when the
observation ratio is below 60% but degrades the performance slightly afterwards.

52 Chapter 3. Recognition of Ongoing Complex Activities

In addition to early recognition setting, we also evaluate the accuracy-specificity
trade-off over time as shown in Figure 3.8. We compare to our adaption of the
DARTS algorithm as described above as a baseline. As we can see from the expected
information gain at fixed target accuracy, training with full sequence and augment
data (red curve) most of the time achieve the best reward over the other two,
i.e. training on full sequence (green curve) and training on clips (blue curve). To
help better understand the concept, Figure 3.8 also shows examples of prediction a
distribution over the hierarchy and observation ratios at several target accuracy. The
proportion of predictions at lower level grows with time, which means the classifier
gets more certain about the activity class over time. When specifying a lower target
accuracy, there are more predictions at lower levels in the hierarchy, with higher
target accuracy the other way around. In order to reach the target accuracy, the
prediction has to move to higher layer that has better confidence.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Target Accuracy
1.0

1.5

2.0

2.5

3.0

3.5

Su
m

/A
vg

. I
nf

or
m

at
io

n
G

ai
n

full+aug2seg
full2seg
seg2part

(a)

10 20 30 40 50 60 70 80 90 100
Observation Ratio

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tri
bu

tio
n

Guaranteed accuracy @ 20.0%

root
layer1
layer2
layer3

(b)

10 20 30 40 50 60 70 80 90 100
Observation Ratio

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tri
bu

tio
n

Guaranteed accuracy @ 50.0%

root
layer1
layer2
layer3

(c)

10 20 30 40 50 60 70 80 90 100
Observation Ratio

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tri
bu

tio
n

Guaranteed accuracy @ 70.0%

root
layer1
layer2
layer3

(d)

Figure 3.8: (a): the expected information over time given specific accuracy. (b),(c),(d):
example of prediction distribution over time based on the optimization over accuracy-
specificity trade-off for train on full and augment segments.

3.5. Conclusion 53

Online Recognition We evaluate online recognition using our proposed RNN
model that performs a structured prediction over the label hierarchy (structRNN)
and compare it to the DARTS algorithm and a plain RNN. For RNN and struct
RNN, we use 50 units for the hidden layer and use a L2 regularizer. Parameters
were selected based on the validation set. We perform dimensionality reduction by
using the decision value from linear classifiers trained over different layers in order
to reduce the raw feature vector of 20K dimension. In a preliminary study we have
observed that this generally gives better performance on the expected reward for
accuracy-specificity trade-off. The final results are show in Figure 3.9. Compared
to the baseline DARTS algorithm, the RNN achieves better performance. This is
due to the connectivity between the hidden units that improve the propagation of
information along time. The structRNN further improves the RNN performance as
we enforce the structural loss with respect to the hierarchy. In addition, we note
that our structRNN even outperforms the previously investigated early recognition
settings. Figure 3.10 shows some example predictions for videos.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Target Accuracy
1.0

1.5

2.0

2.5

3.0

3.5

Su
m

/A
vg

. I
nf

or
m

at
io

n
G

ai
n

DARTS
RNN
structRNN

Figure 3.9: Results for online recognition.

3.5 Conclusion
In this paper, we proposed a new challenging dataset with hierarchical labels to study
the recognition of long-duration, complex activities and temporal accuracy-specificity
trade-offs. We propose a new method based on recurrent neural networks that
learns to predicts over this hierarchy and realizes accuracy specificity tradeoffs. Our
method outperforms several baselines on this new challenge including an adaptation
of hierarchical prediction from object recognition.

54 Chapter 3. Recognition of Ongoing Complex Activities

DARTS doing doing doing doing
RNN doing doing doing doing

structRNN doing repairing changing filter changing filter

change
fuel filter

change
CPU

make
a cup

DARTS doing repairing computer repairing repairing
RNN repairing changing repairing computer repairing computer

structRNN repairing computer changing CPU changing CPU changing CPU

DARTS doing making a cup making a cup doing
RNN doing doing pottery doing pottery making a cup

structRNN doing making a cup making a cup making a cup

Figure 3.10: Example prediction over three activities in the video, from top to
bottom: change car filter, change a CPU and make a cup.

Part II
From Perception to Manipulation

In robotics research, it is a common practice to couple planning with perception.
Chapter 4 presents a such set-up for a classic pick-up task grounded in a modern
automated warehouse scenario and introduces the robot platform also used in later
chapters.

Chapter 5 tackles a more complex manipulation task of tool using. In general, it is
nontrivial to formulate a planning model with perception for complex manipulation
tasks which often include multiple steps of operations. Our work explores the
possibility along this line and proposes a framework for the process. With further
introduction of the dynamic movement primitive method, the robot can learn to use
tool with one or few expert’s demonstrations.

55

Chapter 4
Participation in Amazon Picking
Challenge

Contents
4.1 Amazon Picking Challenge . 57
4.2 System Architecture . 59

4.2.1 System Overview . 59
4.2.2 Baxter Research Robot 60
4.2.3 Perception Module . 62
4.2.4 Actuation Module . 63
4.2.5 Limitations . 65

We participated in the first Amazon Picking Challenge in 2015 and qualified for
the first stage of the competition. This section starts with a brief description of the
challenge itself and then goes through the design of our system for the competition.

After the competition, we have used the same robot setup in later projects
discussed in chapter 5 on Teaching Robots the Use of Human Tools and chapter 7 on
Visual Stability Prediction for Robotic Manipulation where some of the submodules
used for the competition, such as the reaching movement, were also reused there.

This chapter also provides a compact overview of some basic background knowl-
edge on the robotic system, such as the ROS system and motion planning. We
integrate related contents in the description of the system architecture.

4.1 Amazon Picking Challenge

The Amazon Picking Challenge (APC) 4 was initiated by Amazon.com to further
improve their automated warehouse system. Figure 4.1 sketches a basic set-up for

4The challenge began in 2015 and continued in 2016. In 2017, it was renamed to Amazon
Robotics Challenge.

57

58 Chapter 4. Participation in Amazon Picking Challenge

current warehouse system in Amazon. In contrast to the traditional warehouse, the
items are stored on the shelf system that can be transported by thousands of mobile
robots. Upon receiving the order from a customer, the shelves that contain the items
within the order can navigate to the picking station where a human operator can
pick off corresponding ones into the package, the package then enters the delivery
process. Note the process of picking items from shelves into the package still relies on
human labor, hence it is essential to come up with a automatic picking mechanism
in order to further automate the whole system.

Customer’s Order

Shelf system

Picking Station

❑ 1⨉A
❑ 2⨉B

C

A A B B

D D

E

F F

C

A A B B

D D

A B B

Delivery

Picking

Figure 4.1: Pipeline for processing order: from receiving the customers’ order to
delivering the package of the ordered the items.

Besides the commercial motivation, the competition also presents some unique
challenges to robotics research, not only the system needs to integrate various
submodules like object recognition, grasp planning, compliant manipulation and
motion planning but also it should be both robust, fast and efficient.

The first APC carried on in multiple stages. In the first stage, the participated
team submitted a demo video for their initial system, and qualified teams were
awarded with both a shelf unit and a set of practice inventory that will be used in
the field competition. In the next stage, the teams brought their robot system to
the competition held during two days at the 2015 IEEE International Conference

4.2. System Architecture 59

on Robotics and Automation (ICRA) in Seattle, Washington. Each team needs to
perform the picking under the rule of the competition and is scored by both the
quantity and quality of the picking operations. A review of the challenge can be
found in Correll et al. (2016). We participated and qualified in the first stage of the
competition. From over 30 global submissions only 20 awards were given out to those
who showed the most progress and focus towards completing the challenge goals.

4.2 System Architecture
In this section, we first give a brief overview of our system. Then we elaborate on
the Baxter research robot from both the hardware and the software perspective.
Afterwards, we describe in more details about two major components in our system,
namely the segmentation for the perception module and the action primitive for the
actuation module.

Shelf

Kinect

Order Bin

Gripper

Figure 4.2: Setup for our system in APC.

4.2.1 System Overview
An overview of the set-up for our system is shown in Figure 4.2. More specifically, a
wood shelf is used for the shelf unit and a blue plastic basket is used for the order
bin which holds the item picked off from the shelf. For the operator, we use a Baxter
research robot equipped with a head-mounted first generation Kinect. The Kinect
is used for the perception to detect and locate items on the shelf and the robot’s
parallel gripper performs the actual picking operation.

The goal for our system by the time of submission is to correctly localize items
and perform reach, pick-and-place operations. This is done without the recognition

60 Chapter 4. Participation in Amazon Picking Challenge

of specific items and the planning of picking a series of items as the full picking
process discussed earlier shown in Figure 4.1. Our main purpose is to showcase that
we can implement a relative complete system to achieve most parts of the whole
pipeline.

4.2.2 Baxter Research Robot
Baxter is a humanoid, anthropomorphic robot produced by Rethink Robotics. It is
equipped with two seven degree-of-freedom arms as shown in Figure 4.3, each with
the sensor readings of force, torque and position at every joint. Moreover, there are
three built-in cameras: one on the head, one of each on the wrist per arm. All these
components are connected to the built-in computer inside the torso. To control the
robot, we have an additional workstation connected to the computer. Other external
sensors such as the Kinect and any other cameras or sensors can be connected to the
workstation with communication to the robot control system.

S0

E0

E1

W0

W1

W2

Figure 4.3: The arm joints in Baxter robot.

The communication between different components (including the built-in com-
puter and the external workstation) are done via the Robot Operating System
(ROS) as a peer-to-peer network. Each component is a node in the network where the
built-in computer acts as the master node providing lookup for nodes to find each
other. The overall topology of the network for Baxter robot is shown in Figure 4.4.
While there still exists some proprietary programming frameworks for certain robots,
more and more robots nowadays are integrated with ROS support.

To better understand how the communication is done in the network, a few more
important concepts need to be introduced, namely the messages, the topics and the
services. As shown in Figure 4.5, information circulates in the network in the form

4.2. System Architecture 61

 Head Camera

 L-Wrist Camera R-Wrist Camera

 L-arm Motor Controller R-arm Motor Controller

 ROS Master Node Computer

 L-gripper Motor Controller R-gripper Motor Controller

 Head Sonar

 L-IR Range Sensor R-IR Range Sensor

 Kinect

 External Camera

 Workstation

Left Arm Right Arm

Head

Torso

External Sensors

Baxter Robot

Figure 4.4: Components in Baxter robot.

of a message, it can be a reading from the sensor, such as the point cloud from the
Kinect, or it can also be the control command to a arm-joint to move by a certain
angle. A node can publish its message to a given topic, the master node provides
information of available published topics, and then other node that is interested in
data of specific topic can subscribe to it as shown in Figure 4.5a. Although the
topics model is very flexible, it is not very appropriate for request/reply interactions.
Hence the service model is created. As shown in Figure 4.5b, a providing node
offers a service, the master node provides information on available services, and then
the other client nodes can request it on demand. One such example is the inverse
kinematics planner, which is implemented as a service for the Baxter robot. Given a
desired location of the gripper, the service computes the rotation angle for each arm
joint.

62 Chapter 4. Participation in Amazon Picking Challenge

Master Node

Node

Publication

Subscription

Message

Topic

Node

(a)

Master Node

Node

Node

Service

Message (Request)

Message (Reply)

(b)

Figure 4.5: (a): ROS topics model. (b): ROS services model.

4.2.3 Perception Module
The perception is implemented by a first generation Kinect mounted on the head
of the robot as shown in Figure 4.2. The objective for the module is to detect
and localize the object in 3D coordinates so that the actuation module can plan
pick-and-place operation afterwards. An overview of the perception module is shown
in Figure 4.6.

RGB

Point Clouds Object Segmentation

Object Image

Kinect

Figure 4.6: An overview for the perception module.

The module is implemented with Point Cloud Library (PCL) 5 with ROS integra-
tion. Both the RGB image and the corresponding point clouds from the Kinect are

5http://pointclouds.org/

http://pointclouds.org/

4.2. System Architecture 63

used for the process. At the beginning we capture the scene of the shelf without any
items as the background. Then upon a picking scene with actual items on the shelf,
we can perform background subtraction to get the point clouds for the foreground ob-
jects, i.e. the items on the shelf. Afterwards, we extract clusters from the foreground
point clouds with the pcl::EuclideanClusterExtraction class. Note due to the
noise in the point cloud, it is often necessary to filter out some small clusters so that
each of the obtained clusters approximately corresponds to a different item on the
shelf. From these clusters, we can estimate the item’s volume by a 3D bounding box
with the pcl::getMinMax3D. The pick-and-place movement is then planned with
respect to the estimated 3D bounding box. Meanwhile, with the correspondence of
the point clouds and RGB image, we can trace the extracted point cloud clusters to
their corresponding regions in the RGB image. Combined with image-based classifier,
we can further recognize the category of the item.

4.2.4 Actuation Module

Gripper

Shelf

Item

Order Bin

Reaching Picking Placing

Figure 4.7: An overview for the actuation module.

Once the perception system obtained the bounding box of an item, the actuation
module is relatively straightforward. The movement is decomposed into three stages:
1) reach a pre-grasp position where gripper can firmly grasp the item, 2) close the
gripper to pick the item and lift it up, 3) move over the order bin, release the gripper
to put the item into it. An overview of the process is shown in Figure 4.7.

Reaching. One key component to accomplish the module is given a location and
the robot arm should plan its movement for individual joints so that the end-effector,

64 Chapter 4. Participation in Amazon Picking Challenge

i.e. the gripper can reach the specified location. This applies throughout the process,
such as the reaching the pre-grasping location and moving to above the order bin.
This is done by requesting the Baxter’s built-in IKService (Inverse Kinematics
Service). Solving Inverse Kinematics is an important task in robotics, it refers
to the procedure we have just described, i.e. given a desired position to derive the
moving angle for each joint. The opposite direction that given the moving angles for
each joint to derive the resulted position is called forward kinematics. Figure 4.8
shows a simple example of 2-joints robot arm in 2D. The arm’s link lengths are l0, l1.
The initial position of the gripper is at (x, y) and initial joint angles are θ0, θ1. In
forward kinematics as shown in Figure 4.8a, given new joint angles θ′0, θ′1, it derives
the corresponding new location at (x′, y′). In inverse kinematics shown in Figure 4.8b,
given the goal position at (x′, y′), it derives the corresponding angles of (θ′0, θ′1).

ᶊ0

ᶊ1

ᶊ’0

ᶊ’1

(x,y) (x’,y’)=?

l0

l1

(a)

ᶊ0

ᶊ1

ᶊ’0=?

ᶊ’1=?

(x,y)

l0

l1

(x’,y’)

(b)

Figure 4.8: (a): Forward kinematics. (b): Inverse kinematics.

Picking. As described in the perception module, each object is represented by a
3D bounding box of its volume, the gripper is then aligned with the center of the
bounding box after the reaching step. To pick the object, the robot simply closes
the grippers and lifts the arm. Note, the grippers is set to a specific grip force level
so that they will not pull harder once the object is held tight enough to the specified
force level. This intends to avoid potentially damage to the picked object or the
mechanical structure of the gripper.

4.2. System Architecture 65

Placing. To put the picked object into the order bin, the same control module
is applied to the arm, only this time, the target location is a predefined location
relative to the order bin. Once reaching the location, the grippers are released so
that the object is dropped into the bin.

An example of the complete actuation process is shown in Figure 4.9.

Figure 4.9: Example picking process.

4.2.5 Limitations
The main limitations for the current system come from the approximated representa-
tion of the 3D bounding box for each individual object through the Kinect sensor.
First of all, the relatively low resolution of the Kinect sensor makes it very difficult to
detect small objects, such as a single pencil or eraser. Further, with current method,
it is infeasible to detect individual object with the presence of clutter, i.e. there
are multiple objects occlude each others in the view. In addition, the variation of
objects’ sizes can also challenge the system, for example, if the object is wider than
the gripper can open, then it is impossible to pick the object.

To overcome the aforementioned limitations, the system needs to adopt both a
more advanced perception module and a more capable actuation mechanism. As
discussed earlier for the picking challenge, the setup itself presents some unique
challenges in robotics, and it is an ongoing effort to construct a practical system.

Chapter 5
Teaching Robots the Use of Human Tools
from Demonstration with Non-Dexterous
End-Effectors

Contents
5.1 Introduction . 68
5.2 Related Work . 69
5.3 Method . 70

5.3.1 Compact Modeling of Human Tools 71
5.3.2 Robot Manipulation of Human Tools 71
5.3.3 Learning Tool Use from Demonstration 73

5.4 Experiments . 78
5.4.1 Experiment 1: Learning to use a hot-glue pen 79
5.4.2 Experiment 2: Learning to use an electric drill 79
5.4.3 Experiment 3: Learning to use an electric tacker 80
5.4.4 Evaluation . 81

5.5 Conclusions . 83

In the previous chapter, we went over our set-up for the classic pick-and-place
task, however to cope with more complex manipulation task, we need to further
devise models with respect to its characteristics. Hence in this chapter, we explore
along this direction by focusing on a tool using scenario.

Commercial, affordable and general-purpose robots like the PR-2, Baxter and
UBR-1 robots can take over a wide range of tasks or assist human workers in
a mixed human-robot environment. However, end-effectors on these robots are
usually restricted to low-cost, non-dexterous grippers which constrains the application
scenarios. In this work, we levitate this limitation via a dual-gripper strategy in
replacement of the much less widely deployed dexterous hand for tool manipulation.

We present a novel and compact model for the use of human tools and propose
a hierarchical architecture to embed tool use in a learning from demonstration

67

68 Chapter 5. Teaching Robots the Use of Human Tools

framework, learning temporal order for dual-arm coordination at higher level and
Dynamic Movement Primitives at lower level for a multi-step execution. The approach
is demonstrated and evaluated on a Baxter research robot for three human tools.

This work has published in Humanoids (Li and Fritz, 2015).

5.1 Introduction
Humans use tools to extend their reach, to amplify their physical strength, and
achieve many daily tasks, making tool use a very important aspect of human life.
Being able to use tools is generally interpreted as a sign of intelligence. In contrast,
even with the advent of commercial, affordable, general purpose robots, that start
to penetrate human work places, their use cases are often restricted to simpler
activities like pick-and-place actions. On the other hand, industrial robots use
highly customized tools for much more sophisticated tasks like welding, cutting
and painting and generally require experts to carefully script each step of a fixed
procedure. We aim at narrowing this gap by exploring the possibility to teach
affordable, general-purpose robots to use human tools in an easy way.

Figure 5.1: Example of manipulating a human tool: Our approach enables the Baxter
research robot to use an electric tacker.

We envision a system that allows the end-users to intuitively and easily teach
robots, which is key in facilitating wide spread deployment of robots into real world
application. We approach this challenge by the Learning from Demonstration (LfD)

5.2. Related Work 69

framework (Billard et al., 2008; Argall et al., 2009): the robotic system observes a
teacher’s demonstration, automatically derives a representation of the activity and
applies them to novel situation afterwards. One of the challenges of applying LfD to
learning tool use is that manipulating a tool is generally a multiple-step process. It is
non-trivial to separate the individual steps and properly model the stepwise operation.
Building on recent work of Dynamic Movement Primitives (DMPs) (Ijspeert et al.,
2002; Pastor et al., 2009), we propose a formulation to embed tool use in a Learning
from Demonstration framework.

Following the LfD framework, we need to encode the interaction patterns between
the tools and human hands and transfer them to the robot’s end-effectors. Dexterous
hands featured on robots such as Honda’s Asimo and NASA’s Robonaut could follow
this approach, since little changes are required to transfer the interaction pattern.
Yet the hardware cost and limited deployment of these robots makes this approach
less accessible. In contrast, the mechanical grippers equipped on low-cost robots
are much more affordable and more widely deployed. Hence, we explore a strategy
of utilizing dual-grippers to replace the dexterous hand for tool manipulation. We
believe that this approach will significantly increase the range of tasks that can be
performed by today’s most widely deployed general purpose robots.

In the following, we first review related work about tool use and tool use in
robotics and LfD and its applications. Then we discuss our novel approach to
modeling tool use and express it in a LfD framework. We test and evaluate our
approach on a Baxter research robot by learning and using three tools.

5.2 Related Work

Early work on tool use in animals can be found in the work by Beck (1980). Yet until
recently, there are few studies of autonomous robotic tool use. In Stoytchev (2005),
a behavior-grounded approach is proposed for tool representation by connecting the
tool’s affordance with feasible exploratory behaviors. While the idea is appealing,
it is only tested in a simplified setting, i.e. like scoring with a hockey puck and
different shapes of sticks. Kemp and Edsinger (2006) address the modeling of the
tool’s tip as the task relevant feature. Later work (Edsinger and Kemp, 2007) from
the same group combines tip detection and tracking to model tool use, and test
it on a brushing task. However, there are clearly more circumstances where the
procedures of tool use are beyond the pure movement of tool tip including examples,
like screwdriver and hot-glue gun used for tip detection in Kemp and Edsinger (2006).
Our tool use model works with the similar type of tools and can tackle more complex
instances by only using non-dexterous grippers.

There is a large body of work on LfD to program robots. Contrary to traditional
approaches to robot control with domain dynamics and mathematically derived
policies, LfD typically acquires the polices from demonstration, opening the policy
development to non-robotics-experts. An overview of the topic can be found in
Billard et al. (2008) and Argall et al. (2009). Among many approaches in LfD, DMPs

70 Chapter 5. Teaching Robots the Use of Human Tools

(Ijspeert et al., 2002) for motor skill learning is widely used due to its compactness
and efficiency. Most related to our work, Tamosiunaite et al. (2011) demonstrated
how to learn to pour water using DMPs and in Niekum et al. (2013), a variant of
HMM and DMPs are applied for LfD to assembling an Ikea table. Our work also
builds on a DMP formulation and explores extensions to model tool use.

Learning complex tasks with a single policy can be challenging. A common
approach to handle this issue is to segment the complex task into multiple simpler
sub-tasks where each sub-task can then be formulated in a established LfD framework.
While it is appealing to automate the segmentation process and a number of attempts
have been made towards this direction (Grollman and Jenkins, 2010; Chiappa and
Peters, 2010; Konidaris et al., 2011; Niekum et al., 2012), the unsupervised nature
of these proposed methods cannot guarantee they will spot the exactly transition
states which are often crucial to structured complex tasks. Hence in our work, we
align different sub-tasks with the activation states’ changes between the robot’ arms
and model each sub-task in a DMPs framework.

A line of relevant work are described in Aksoy et al. (2011) and Aksoy et al.
(2015) where the authors segmented tasks with Semantic Event Chain (SEC) by
touching-nontouching relation. It is similar to our tool-tip model to decompose
tool-use process by contact states, yet we aligned this with states’ change between
the dual-arm coordination, and together we present a efficient strategy for robot
with dual-gripper to use human tools over dexterous hand.

5.3 Method

Tip Tool

Action Point Action Point Action Point Action Point

Start End
Preparation ReturningInteracting

Figure 5.2: Illustration of our tool-tip modeling where it decompose the process into
three stages: preparation, interacting and returning. The arrow sketches the moving
direction of the tool tip.

5.3. Method 71

5.3.1 Compact Modeling of Human Tools
While there are various kinds of common tools, a large body of them can be char-
acterized by interaction patterns between the world and a tool tip (Radwin et al.,
1996; Kemp and Edsinger, 2006). The general process to operate such tools can
be decomposed into three stages, including preparation, interaction and returning
to standby as illustrated in Figure 5.2. In the preparation stage, the tool is moved
to align the tip and the action point on the object. In the interaction stage, the
tip of tool makes contact with the action point, triggering related mechanisms with
respect to the functions of different tools. In the returning to standby stage, the
tool tip is detached from the action point. This decomposition is consistent with
the widely used definition of tool use from Beck (1980), for example the preparation
stage includes the requirement that “user is responsible for the proper and effective
orientation of the tool” and the interaction stage is a compact representation for this
type of tools as “an unattached environmental object to alter more efficiently the
form, position, or condition of another object, another organism...”.

5.3.2 Robot Manipulation of Human Tools
Although industrial robots use tools, those tools are in general highly customized and
the operating procedure is typically carefully scripted and fixed. There are various
issues making programming a robot to manipulate human tools very challenging: (1)
as discussed in related work, the process of manipulating a tool often goes beyond a
single primitive movement. To construct a complete model for tool use, one approach
is to apply the model-based approach built on the tool’s affordance. Yet the modeling
of affordance itself is non-trivial and often such modeling relies on the perception of
the tool where the uncertainty of perception could bring about additional difficulties.
(2) the design of human tools are usually optimized for human hands which are
extremely dexterous.

Figure 5.3: End-effectors on different robots, from left to right: dexterous hand on
NASA’s robonaut, PR2’s jaw gripper, Baxter’s parallel plate gripper and UBR1
parallel jaw gripper

The most straightforward way to transfer the operating manner from human to
robot would be a close and complete mapping of finger-palm movement to a dexterous

72 Chapter 5. Teaching Robots the Use of Human Tools

hand end-effector on a robot like the NASA robonaut (Figure 5.3). Nevertheless
such end-effectors are extremely expensive and not widely deployed to date.

To cope with the aforementioned issues, we make carefully design choice for our
method as follows:

5.3.2.1 Model-free Approach for Tool Use

Unlike the tool-specific affordance modeling as in the model-based approaches, we
turn to a general, tool-agnostic paradigm for tool use modeling. With our tool-tip
model, the action point P and the state of the tip T are tracked. Note we do not
actually track the tip of the tool as in Kemp and Edsinger (2006) but the end-effector
with the tool under the assumption that the tool is held firmly by the end-effector
with the same configuration. Hence the process of using a tool X is represented as
sequence of state changes in time:

ToolUseX := {P, T}t

where t denotes time stamp for each state, P for the pose of the action point, T
for the state of the end-effector, including the pose and other information like the
closure of the gripper depending on the type of the end-effector.

5.3.2.2 Dual-Gripper Coordination for Complex Manipulation

With the rapid development in robotics, there is a trend that has supplied affordable
robots to industry and research communities. Typical examples like the PR-2,
Baxter and UBR-1 robot are equipped with reasonably low-cost grippers as shown
in Figure 5.3. Although the much more expensive dexterous robot hands offer more
flexibility, we can actually decouple the manipulation primitives and propose to
achieve the complete operation using two arms with simple, non-dexterous grippers,
i.e. with one gripper to hold the tool and the other to do additional operations,
like pushing button. One such example is shown in Figure 5.4. Note that this can
introduce additional step in the preparation phase like in the case of the electric
tacker in Figure 5.4. While the first end-effector is holding the tacker, the second
end-effector needs extra alignment step in order to finish the preparation stage.

Similar to the required coordination of different fingers in the dexterous hand
system, the dual-gripper also needs proper coordination. This coordination reflects
the temporal order in manipulations between different grippers which is essential
to tool use and is typically asymmetric as discussed in Guiard (1987); Zöllner et al.
(2004). Yet explicit condition/event modeling as in Zöllner et al. (2004) is not needed
in our approach, as the temporal order between the two gripper can be included in
the model-free formulation by replacing the single end-effector T with the gripper
pair T1, T2. Hence we formalize the overall process as:

Tool UseX := {P, T1, T2}t

5.3. Method 73

Align I Align II Push Button Release Button Move Away II

Start End
Preparation ReturningInteracting

Align Push Button Release Button Move Away II
Start End

Preparation ReturningInteracting

D
ex
te
ro
us
-H
an
d

D
ua
l-G
rip
pe
r

Figure 5.4: Example of manipulating an electric tacker with dexterous hand and a
dual-gripper.

5.3.3 Learning Tool Use from Demonstration

Tool Use
Demonstration Task Coordination

Primitives Replay

Temporal Order

DMPsTool Use with
Novel Setting

Learning from Demonstration

Left Arm
Controller

Right Arm
Controller

Figure 5.5: Overview of our approach. The solid arrow denotes the learning process
from demonstration, the dashed arrow for the process of replaying on novel task.

74 Chapter 5. Teaching Robots the Use of Human Tools

We apply a hierarchical architecture to embed tool use in a learning from demon-
stration framework: on a higher level, temporal order for dual-arm coordination is
learned and on the lower level, primitives are learned by constructing DMPs from
exemplars. The pipeline is shown in Figure 5.5.

Figure 5.6: Kinesthetic demonstration to use an electric tacker.

5.3.3.1 Temporal Segmentation for Manipulation Primitives

We teach the robot to learn the use of tools from kinesthetic demonstration, i.e.
the teacher physically moves the robot’s arm to perform manipulation as shown in
Figure 5.6. In addition to the state of end-effectors T1, T2 and action point P , we
track the activation state of each arm as S1, S2 respectively. The activated periods
for each S1, S2 naturally segment the whole process into Manipulation Primitive
(MP):

MPSi,τ , i ∈ {1, 2}

where τ denotes the temporal interval of the corresponded activated period for
MP. S1, S2 together encode the temporal order of manipulative primitives between
two arms. We assume only one arm is activated at a time. An example is shown in
Figure 5.7. The MPs are in line with our tool use model shown in Figure 5.2 except
for the part of additional alignment step introduced by the dual-gripper design.

5.3.3.2 DMPs for Manipulation Primitives

Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2002) describe the evolution
of dynamical systems over time using a system of non-linear differential equations.

5.3. Method 75

Align I Align II Push Button Release Button Move Away II

t

t

S1

S2

MP
MPs1,t1

MPs2,t2
MPs1,t3

Figure 5.7: An illustration of the LfD approach. S1, S2 represent the activated states
for end-effector 1 and 2, MP for Manipulation Primitive.

In general it is nontrivial to represent the whole tool use process with a single DMP
since it involves muti-stage operations, each with a distinct contraint between the
stage-transition, yet we can encode the Manipulation Primitive at each stage with a
DMP. In our study, we are only interested in the formulation for discrete movements
and apply an improved version (Pastor et al., 2009) formulated as follows:

τ v̇ =K(g − x)−Dv −K(g − x0)s+Kf(s)
τ ẋ =v
τ ṡ =− αs

where x and v are the position and velocity of the system, x0 and g are the start
and goal position, τ is the temporal scaling factor, K is a spring constant, s a phase
variable, and D a damping term. The non-linear function f(s) defines the shape
of the movement and is approximated by a weighted set of basis functions φi(s).
Compared to the original DMPs formulation, it better adapts the movement to a
new goal position by changing the goal parameter g (Pastor et al., 2009). We use
Scott Niekum’s DMP implementation 6, where f(s) = ∑N

i=1 wiφi(s)s is approximated
6https://github.com/sniekum/dmp

https://github.com/sniekum/dmp

76 Chapter 5. Teaching Robots the Use of Human Tools

by the univariate Fourier basis (Niekum et al., 2012) and the target function is
formulated as:

ftarget(s) = −K(g − x(s)) +Dẋ(s) + τ ẍ(s)
g − x0

.

Given a demonstration trajectory {x(t), ẋ(t), ẍ(t)}, we can then learn a set of
values for the weights wi (Ijspeert et al., 2002). The spring and damping constants
are set to ensure critical damping.

In the case of tool use, the goal positions T = {T1, T2} of the two end-effectors
are coded in the coordinate frame of the action point P and in order to execute the
DMPs in a novel situation, the goals are then shifted based on the coordinate frame
of the new action point P ′ as T ′ = {T ′1, T ′2} as shown in Figure 5.8. Let M(i, T ′i)τ
be the model learned on the temporal interval τ for end-effector i over T ′ (recall
the notation Si for the activation signal for end-effector i) then the overall tool use
process in LfD framework is defined as:

ToolUseX := {M(i, T ′i)τ , Si}

T1’

T2’

{P}

T1
T2

{P}

Figure 5.8: The geometry of the tool use model. The trajectory of both end-effectors
T1, T2 is transformed into the coordinate system of the action point {P}, encoding
the goal position T ′ = {T ′1, T ′2} in our tool use model.

Further, the second manipulation primitive that interacts with the tool has to
be segmented into three primitives, i.e. ‘before interaction’, ‘during interaction’ and
‘after interaction’, in the case of using the tacker, these correspond to ‘move the
second end-effector to the button’, ‘push the button’ and ‘release the button→ move
away the second end-effector’ 7.

7the second primitive ‘during interaction’ is a trivial one since it only models how long the
gripper opens or closes; we keep it as a constant in our experiments

5.3. Method 77

t

t

S1

S2

MP
MPs1,t1

MPs2,t2
MPs1,t3

G2

MP
MPs1,t1 MPs2,t2

MPs1,t5
MPs2,t4MPs2,t3

t

(a) gripper changes from ‘open’ to ‘close’, then ‘open’.

t

t

S1

S2

MP
MPs1,t1

MPs2,t2
MPs1,t3

G2

MP
MPs1,t1

MPs1,t5

MPs2,t2
MPs2,t4MPs2,t3

t

(b) gripper changes from ‘close’ to ‘open’, then ‘close’

Figure 5.9: Additional segmentation of manipulation primitives introduced by the
state changes of the gripper compared to the original segmentation shown in Figure 5.7.
S1, S2 are the activation signal for end-effector 1, 2, G2 is the gripper’s open/close
state for end-effector 2.

78 Chapter 5. Teaching Robots the Use of Human Tools

This is due to the nature of the DMP model — DMPs allow the generalization of
different paths between the starting and goal position. If it is applied to model the
whole primitive from ‘move the second end-effector’ to ‘move away the end-effector’,
there is no guarantee that the end-effector will be pushed at the same location
relative to the tool as in the demonstration. In our settings, this segmentation is
made by the identifying the state changes of the gripper during demonstration as
shown in Figure 5.9, including two pattens, i.e. the gripper changes from ‘close’ to
‘open’ and from ‘open’ to ‘close’.

5.4 Experiments
We implement our system in ROS (Quigley et al., 2009) and test it on a Baxter
research robot by learning to use three different tools: a tacker, a glue-pen and a
drill as shown in Figure 5.10.

Figure 5.10: Tools used in our experiments, (left) an electric tacker, (middle), an
electric drill and (right) a hot-glue pen.

Example tasks are provided to the robot via kinesthetic demonstration, in which
the teacher physically moves the robot’s arm in zero-gravity mode to perform the
task and uses the button on the cuff to set the closure of the grippers. On pushing
the button on a arm, the recording begins, the teacher starts to move the same
arm to perform manipulation. When the manipulation is done, the teacher presses
again the button to pause the recording. To continue the manipulation with another
hand and the recording, the teacher simply repeats the steps. The signals of arm
activation and the grippers’ state during the demonstration are recorded to segment
the tool use process into sequential manipulation primitives, where each primitive is
characterized by a starting pose, an ending pose of the actuated end-effector and
the sequence of the poses during the primitive. The primitives are learned via the
DMPs framework. These primitives and the sequencing of the primitives constitute
the model for tool use.

At test time, the tool use model is replayed on novel configurations, generating
a sequence of primitives, where each primitive’s starting pose and ending pose are
adjusted according to the action point. For both demonstration and test time, action
points are tracked with AR tag as in Niekum et al. (2013) using an ASUS Xtion Pro
Live sensor mounted on the robot.

5.4. Experiments 79

5.4.1 Experiment 1: Learning to use a hot-glue pen
We first evaluated our system on learning to use a hot-glue pen. During the
demonstration, the teacher moves one of the robot’s arms holding the glue pen to the
action point T , until there is only a small distance vertically between the tip and T .
Then the other arm is moved to reach the button of the glue pen, and presses it with
the gripper to release the hot glue. Afterwards, the arm pressed the button releases
the gripper and returns to a neutral position. At test time, given an action point,
the robot is required to (1) position the glue pen, (2) correctly press the button,
(3) release button and (4) return to the neutral position. A failure case is counted
whenever the robot fails to finish the whole process, for example, one arm fails to
reach the button and hence cannot press it to use the tool. One successful run and
corresponding signal sequences are shown in Figure 5.11.

t

t

S1

S2

G2
t

Figure 5.11: Steps of robot using a gluepen after learning. S1, S2 are the activation
signals for robot’s arm 1, 2, G2 is the gripper’s open/close state for arm 2.

5.4.2 Experiment 2: Learning to use an electric drill
Next, we evaluated our approach for an electric drill. Ideally, one would expect the
tip of the drill to go into the contact surface, yet for the purpose of our experiments
we refrain from penetrating the target. Thereby we make an alternative design for
this experiment, similarly to the glue pen, we aim the tip of the drill to be correctly
positioned right above the action point. At test time, given an action point, the
robot is required to (1) position the drill, (2) correctly press the button, (3) release
the button and (4) return to the neutral position. A failure case is counted when the
robot fails to finish the whole process. One successful run and the corresponding
signal sequences are shown in Figure 5.12.

80 Chapter 5. Teaching Robots the Use of Human Tools

t

t

S1

S2

G2
t

Figure 5.12: Steps of robot using a drill after learning. S1, S2 are the activation
signals for robot’s arm 1, 2, G2 is the gripper’s open/close state for arm 2.

t

t

S1

S2

G2
t

Figure 5.13: Steps of robot using an electric tacker after learning. S1, S2 are the
activation signals for robot’s arm 1, 2, G2 is the gripper’s open/close state for arm 2.

5.4.3 Experiment 3: Learning to use an electric tacker

We also evaluate our approach for learning to use an electric tacker. During the
demonstration, the teacher moves one of the robot’s arms holding the tacker to the
action point T . Then the other arm is moved to reach the button of the tacker,

5.4. Experiments 81

and press it with the gripper. Afterwards, the arm returns to a neutral position. A
successful run requires the robot to (1) position the tacker, (2) correctly press the
button, (3) release the button and (4) return to the neutral position. Whenever the
robot fails to finish the whole process, a failure case is counted. Note that different
from using the glue pen and the drill, the second gripper starts with the ‘close’ state
and changes to ‘open’ state to press the button in this process for better maneuvering
the tacker. One successful run and the corresponding signal sequences are shown in
Figure 5.13.

5.4.4 Evaluation

Figure 5.14: Configuration tested in our experiment (top view of the robot), where
the green dot denotes the position seen in the demonstration, blue dots for the novel
locations.

For all three tools we have tested 11 novel configurations together with the one
seen in the demonstration as shown in Figure 5.14. The range of the configurations
was chosen based on the reachable space of the robot holding the tool.

As shown in Figure 5.15, alternatively to applying DMPs for each manipulation
primitive, one can also use an end-to-end model from start to end position relative
to the action point, then query the inverse kinematic solver for a plan. However, this
approach tends to neglect the kinematic pattern, some of which reflect the physical
constraint of the tool that can be crucial for the end-effector’s operation. Two such
failure cases of direct planning in contrast to the employment of DMPs are given in
Figure 5.16.

82 Chapter 5. Teaching Robots the Use of Human Tools

T1’

T2’

T2’

T2’

T2’

P

(a)

P

T1’

T2’

T2’

(b)

Figure 5.15: Two different approaches for modeling the manipulation primitive: (a):
the second gripper fails to reach the proper position for the gluepen. (b): the second
gripper fails to reach proper position for the drill.

(a) (b)

Figure 5.16: Examples of failure cases for end-to-end modeling: (a) the second
gripper fails to reach the proper position for the gluepen. (b) the second gripper fails
to reach proper position for the drill.

Sequential MPs Sequential MPs + DMPs
Glue-pen 66.7%(8/12) 100.0% (12/12)
Drill 33.3%(4/12) 66.7%(8/12)
Tacker 66.7%(8/12) 91.7% (11/12)

Table 5.1: Success rate of tool use in our experiments

A quantitative comparison of results for our sequential Manipulation Primitives
with and without DMPs for individual primitives is shown in Table 5.1. For simpler

5.5. Conclusions 83

tasks, like the glue pen and tacker, sequential MPs with simple end-to-end modeling
for each primitive achieves a reasonable success rate. Overall, DMPs significant
improve the success rate for using all the three tools.

5.5 Conclusions
In this work, we first present a novel and compact model for using tools that can
be described by a tip model. Then we explore a strategy of utilizing a dual-gripper
approach for manipulating tools – motivated by the absence of dexterous hands
on today’s most widely deployed general purpose robots. Afterwards, we describe
and formulate our hierarchical architecture to embed tool use in a learning from
demonstration framework. At a high-level, we learn temporal orders for dual-arm
coordination and at lower-level, we learn DMPs for manipulation primitives. The
approach is tested and evaluated on a Baxter research robot. Learning and operation
of three human tools, including an electric tacker, an electric drill and a hot-glue
pen are shown.

Part III
From Perception over Anticipation

to Manipulation

To achieve complex, intelligent behavior of an autonomous system, it is necessary
to pursue a more advanced integration of both perception and anticipation into
manipulation.

In this part, we focus on a block stacking task. In chapter 6, we first introduce the
simulation environments used in the following two chapters and discuss some details
on their design and implementation. In chapter 7, we explore an explicit learning
of intuitive physics into anticipation to guide stacking single block into the scene
without collapsing the existing structure. In chapter 8, we employ an end-to-end
learning of stacking multiple blocks to achieve a specified target structure.

85

Chapter 6
Simulation Environment

Contents
6.1 Introduction to Panda3D . 88
6.2 Data Generator for Visual Stability Prediction 89

6.2.1 Tower Generation . 90
6.2.2 Stability Simulation . 91

6.3 Stacking Environment for Skill Learning 91
6.3.1 State Representation . 92
6.3.2 Collision and Stability Detection 94
6.3.3 Interface Design . 96

Modern machine learning techniques build on data. With the rise of deep learning
models, the need of data becomes even more prominent. One of the key elements for
the recent success of deep learning model in domains like generic image and speech
recognition is the abundance of data in related fields. However, when it comes to a
specific domain, it often runs short of data and in reality, collecting data is still an
expensive process. One remedy for this issue is to exploit the domain knowledge to
synthesize data and utilize the generated data for learning. This also happens to be
true for our cases as there is no obvious source of clean and sufficient data to learn
physics from. Hence, we make use of the game engine with physics engine to create
a simulation environment. Within the environment, we can efficiently collect data to
meet our specific needs.

In this chapter,we start with the introduction of the Panda3D game engine which
we used to build the simulation environments for the projects in the next two chapters.
Then we go through some detailed design in the environments for chapter 7 on Visual
Stability Prediction for Robotic Manipulation and chapter 8 on Acquiring Target
Stacking Skills respectively.

87

88 Chapter 6. Simulation Environment

6.1 Introduction to Panda3D

Panda3D 8 is an open source game engine for Python and C++ programs. It was
originally developed by the Disney’s VR studio to be “flexible enough to support
everything from realtime graphics applications to the development of high-end virtual
reality theme park attractions or video games” (Goslin and Mine, 2004) and it has
evolved significantly along the years.

As a game engine, the Panda3D provides additional capabilities besides 3D
rendering including the physics system with integration of different physics engines.
Asides from its own built-in basic physics engine, it also supports more advanced
ones including the Open Dynamics Engine (ODE) 9 (Smith et al., 2005) and the
Bullet 10 (Coumans, 2010) for physics simulation back-end. We used the Bullet in
both of our simulation environments.

The workflow of Panda3D builds on the concept of scene graph. The Scene
graph is a general data structure to represent and organize a graphical scene. In
Panda3D, the scene graph is maintained as a tree of objects to be rendered. The
tree consists of objects of class PandaNode. As shown in Figure 6.1, the root node is
called the render and the rest define different perspectives of the scene with various
attributes. For example, the LensNode controls the camera such as the perspective,
the LightNode manages the lighting in the scene such as the color and type of the
lighting and the ModelNode encodes the 3D object in the frame.

Render

LensNode LightNode ModelNode...

Type ColorType State...

Figure 6.1: An example of scene graph in Panda3D.

Another important concept is the task. Tasks are functions called by Panda3D
at every frame or for every specified amount of time. Together with event handler
which is called upon special conditions (events) occur, update can be made to the
scene in Panda3D between rendering steps as shown in Figure 6.2. For instance, the
task can be the simulation subroutine that updates the states of objects in the scene
caused by physics.

8https://www.panda3d.org/
9http://www.ode.org/

10http://bulletphysics.org/wordpress/

https://www.panda3d.org/
http://www.ode.org/
http://bulletphysics.org/wordpress/

6.2. Data Generator for Visual Stability Prediction 89

Render

Frame t+1Frame t... ...

Task i

...

...

Sequence

Event Handler

Figure 6.2: The render process in Panda3D.

6.2 Data Generator for Visual Stability Predic-
tion

In chapter 7, in order to learn a model to predict physical stability directly from
mono-view image of a block structure, we need a lot of images for the structures
and their corresponding stability labels. Collecting data in real world requires
tedious efforts of setting up the scene for different structures, capturing their images,
observing and recording the stability outcomes. Instead, we refer to the game engine
to build a simulation environment to do all of these procedures in an automatic way.

Figure 6.3 gives an overview of the data generator. The first key component
is the tower generation. It automatically generate a large number of different
blocks structures (tower) under the scene parameters, including the number of
blocks, stacking depth and block size (for more details, please refer the description in
chapter 7). These towers are recorded as scene files which only track all the locations
of blocks in the scene.

The next component is the stability simulation. It loads the stored scene files
and simulates their stability with physics engine. The images for the towers before
running the physics engine are captured as the scene images, the stability labels from
the simulation are automatically determined and recorded for the corresponding
towers. Both the scene images and the obtained stability labels are later put into
the deep convolutional neural network to learn the visual stability classifier.

90 Chapter 6. Simulation Environment

Generation

Stable

Unstable

Simulation

...

Scene Stability

Simulation

Scene Image

Figure 6.3: Overview of the data generator for visual stability prediction. The scene
images and their corresponding stability labels are collected.

6.2.1 Tower Generation
An example of the scene setup is shown Figure 6.4. The tower is placed on a plane,
and a camera is positioned at the front-facing location of which the elevation is
adjusted for the towers of different heights. For different scenes, the towers are
generated differently, and the scene images are captured through the camera. To
make the scene images more realistic, wood texture is added to all the blocks.

Camera

Tower

Plane

Figure 6.4: Example set-up of the scene for the data generator.

The basic tower generation system is based on the framework by Battaglia
et al. (2013). Given a specified number of total blocks in the tower, the blocks

6.3. Stacking Environment for Skill Learning 91

are sequentially added into the scene under the geometrical constraints, such as no
collision between blocks. Some examples of obtained scene images are shown in
Figure 6.5.

(a) 4 Blocks (b) 6 Blocks (c) 10 Blocks (d) 14 Blocks

Figure 6.5: Example of generated scene images with different total number of blocks.

6.2.2 Stability Simulation
During the stability simulation, we set the simulation time universally to 2 seconds
for all the scenes. We count the displacements of all the blocks in the scene before
and after the simulation. If the displacement for any block is above a threshold, it is
deemed to be unstable, otherwise stable. This is necessary as the blocks in stable
towers can generate small displacement during the simulation process, simply using
zero displacement to determine the stability can lead to lots of erroneous cases where
the stable towers are labeled as unstable. In practice, we picked the threshold based
on the evaluation of a small set of towers.

6.3 Stacking Environment for Skill Learning
An overview of the stacking environment is shown in Figure 6.6. For each episode, a
target structure is randomly picked from a pool of structures and then the blocks
are spawned according to the target. The agent moves the spawned block in the
scene until the placement is done. During this process, if the agent’s move causes
the block to (1) move out over the boundary of the scene or (2) collide with existing
structure (3) collapse the structure with the placement, the episode is terminated
and a new episode can start. A new block is spawned upon the previous one is
placed successfully till reaching the total number of blocks in the target. When all
the blocks are placed in the scene, the environment determines if the agent achieves
the assigned target structure.

Compared to the environment for visual stability prediction as a data generator,
the stacking environment is a much more engaging component for the learning
process with which the agent closely interact with and hence is more complex. The
environment implements a more dynamic system where different moves from the

92 Chapter 6. Simulation Environment

agent can lead to different consequences. For example, when a block (not the last
one for the episode) is placed stably in the scene, a new block should be spawned into
the environment whereas if the block collapses the existing structure, the current
episode is terminated so that a new one can be started. The key to react correctly
under these different conditions is to detect them effectively. We will describe the
mechanism for collision and stability detection in the later subsection. Furthermore,
with the rise of interest in deep reinforcement learning, researchers may want to
benchmark their own agent’s implementation on the standardized environment, so
we make additional efforts to formalize the interface design as discussed in the last
subsection.

New Episode

Random

Spawn

Agent

← → ↑ ↓

Agent

← → ↑ ↓

Target

✓ ×

New Episode

Figure 6.6: Overview of the environment for target stacking.

6.3.1 State Representation
To further reduce the appearance difference caused by varying perspective, the
state in the stacking environment is rendered using orthographic projection. It
is implemented by the OrthographicLens in Panda3D where parallel lines stay
parallel and don’t converge as shown in Figure 6.7b. This is in contrast with regular
perspective camera used in the visual stability prediction environment as shown in
Figure 6.7a.

6.3. Stacking Environment for Skill Learning 93

(a) (b)

Figure 6.7: Different perspective lens used in this thesis.(a): Perspective projection.
(b): Orthographic projection.

Additionally, as we consider the action in discrete space, namely {left,right,down}
for the task, the state representation can also be formalized correspondingly as shown
in Figure 6.8. The individual block size follows a ratio of l : w : h = 5 : 2 : 1,
where l,w,h denote length, width and height respectively. With the aforementioned
orthographic camera, only length and height are preserved on the projected image
with a ratio of l : h = 5 : 1. Each action moves the block by a displacement of the
block’s height along its direction. Hence the state can be represented in a grid map
of unit square cells with length of the block’s height (u in the image space). In actual
implementation, the blocks have to be set with coordinates in continuous values, so
a separate binary matrix is used to maintain the discrete representation of the state
where 1 denotes the block presence in the cell and 0 otherwise.

ℓ
w

h

Figure 6.8: State representation in the stacking environment

The environment can query both the rendered image from the camera and the grid
map for the state’s representation, though in our current experiments in chapter 8,
we use mostly the grid map for a simplified representation. Another benefit from the
grid map representation is that it can be used as a occupancy map which is crucial
for our implemented collision detection mechanism discussed in the next subsection.

94 Chapter 6. Simulation Environment

6.3.2 Collision and Stability Detection
As the block is maneuvered in the environment, it will eventually make contact with
the scene. The occurrence of contact marks an important transition of the state for
the environment. As shown in Figure 6.9:

If the contact is made by a block from above (vertical), it suggests a placement11,
then physics simulation is called to obtain the stability. The stability detection is
implemented the same way as the one used in the data generator for visual stability
prediction. Here the simulation only activates upon vertical contact is detected to
save runtime. If the block remains stable in the scene and is not the last block
for the episode, a new block is then spawned at the top of the scene with random
horizontal location. If the block is the final one and remains stable or it collapses
the structure in the scene, then the current episode is terminated and a new episode
can be started.

If the contact is made by a horizontal movement, it will not directly affect the
current episode. If an additional move causes the collision, then the episode will be
terminated, otherwise the block can be moved further until either vertical contact
happens, it goes into the simulation and stability-detection branch or collision and
terminated.

Note if the block is about to move out of the view of the camera, it is also con-
sidered a sub-type of collision. This is implemented straightforwardly by comparing
the block’s incoming location with the boundary of the scene.

Stability DetectionSimulation

Move

Y

Y

Vertical

Horizontal

Move Contact Detection

Collision Detection

Figure 6.9: Process of collision and stability detection

The contact and collision detection are implemented with the grid map represen-
tation described in the previous subsection as shown in Figure 6.10.

11In our environment, we simplify the release movement from the real world block placement,
i.e. the block is deemed to be released once it makes vertical contact with the scene, either the
ground or the structure in the scene.

6.3. Stacking Environment for Skill Learning 95

Background Map

Foreground MapScene Current Grid Map

Contact Detected

Incoming Foreground MapIncoming Grid Map

+

+

Non-empty

(a)

Background Map

Foreground MapScene Current Grid Map

Collision Detected

Incoming Grid Map

+

+

Overlap

Incoming Foreground Map

(b)

Figure 6.10: Internal representation to detect contact and collision conditions: (a)
Detect vertical contact. (b) Detect collision.

96 Chapter 6. Simulation Environment

We keep two grid map for each episode, one for the existing structure in the
scene (background map) and the other for the moving block (foreground map).
A state (grid map) is internally represented as the summation of the background
map and foreground map. Given a state and a specified action, the system will
compute the incoming foreground map after the action, if the incoming foreground
map overlaps with the background map, then collision is detected as shown in
Figure 6.10b; if any of the adjacent cells below the block in the incoming foreground
map is non-empty in the incoming grid map, then a vertical contact is detected as
shown in Figure 6.10a.

6.3.3 Interface Design
With recent progress in reinforcement learning, there is an increasing need for the
standardized benchmarks for different learning agents. To this end, OpenAI recently
introduced Gym (Brockman et al., 2016) to provide access to a standardized set
of environments, such as Atari games and board games. By encapsulating the
environment’s internal mechanism from the agent, different agents can be evaluated
on the environment with minimal modification.

We also adopt a similar design in our environment. The diagram in Figure 6.11
shows part of the design of the environment with interactions with an agent. The
agent’s act method takes the current state from the environment, decides its action
and pass the decision to the environment. The step method receives the action
from the agent and updates the environment’s state. The reward_shape method
evaluates the current state and transforms the reward with specific designs. Then
the pair of states before and after the action, together with the reward, are input
to the update method of the agent to update its parameter depending on different
learning algorithms.

As a side note, the environment for the toy navigation task described in chapter 8
is implemented with the same design, so that the same learning agent can be applied
to both tasks without further adaptation.

Environment Agent

+ state
+ reward

+ act(state):action
+ update(state,next_state,action, reward)
...
+ save_snapshot()

+ parameter

+ step(action): state
+ reward_shape(state)
...
+ reset()

Figure 6.11: Interface design for the environment with interaction of the agent.

Chapter 7
Visual Stability Prediction for Robotic
Manipulation

Contents
7.1 Introduction . 98
7.2 Related Work . 100
7.3 Recognition . 101

7.3.1 Synthetic Data . 102
7.3.2 Stability Prediction from Still Images 103
7.3.3 Prediction Performance 105

7.4 Manipulation . 109
7.4.1 Prediction on Real World Data 112
7.4.2 Manipulation Test . 113
7.4.3 Discussion . 114

7.5 Conclusion . 114

In this chapter, we start to tackle the manipulation task of block stacking. The
goal for the task in this work is to place a single block into the scene without
collapsing the existing structure. For this purpose, we introduced a mechanism to
predict physical stability directly from visual input. This relates to the concept of
intuitive physics as we discussed earlier in the relate work in section 2.3. It is a key
competence that enables humans and animals to act and interact under uncertain
perception in previously unseen environments containing novel objects and their
configurations.

We present a learning-based approach based on simulated data that predicts
stability of towers comprised of wooden blocks under different conditions and quan-
tities related to the potential fall of the towers. We first evaluate the approach on
synthetic data and compared the results to human judgments on the same stimuli.
Eventually, we extend this approach to reason about future states of such towers
that in return enables successful stacking (Figure 7.1).

This work started as a tech report (Li et al., 2016) focusing on the visual stability

97

98 Chapter 7. Visual Stability Prediction for Robotic Manipulation

prediction on the synthetic data. Later it was extended with the robotic manipulation
and accepted as an oral presentation at 2016 NIPS workshop on Intuitive Physics.
The final paper is published at ICRA (Li et al., 2017b).

Unstable Stable Stable Unstable

Visual Stability Prediction

Manipulation

Figure 7.1: Given a wood block structure, our visual stability classifier predicts the
stability for future placements, the robot then stacks a block among the predicted
stable placements.

7.1 Introduction
Scene understanding requires, among others, understanding of relations between the
objects. Many of these relations are governed by the Newtonian laws and thereby rule
out unlikely or even implausible configurations for the observer. They are ubiquitous
in our everyday visual data which helps us interpret the configurations of objects
correctly and accurately. Although objects simply obey these elementary laws of
Newtonian mechanics, which can very well be captured in simulators, uncertainty in
perception makes exploiting these relations challenging in artificial systems.

In contrast, humans understand such physical relations naturally, which e.g.,
enables them to manipulate and interact with objects in unseen conditions with

7.1. Introduction 99

ease. We build on a rich set of prior experiences that allow us to employ a type
of commonsense understanding that, most likely, does not involve symbolic repre-
sentations of 3D geometry that is processed by a physics simulation engine. We
rather build on what has been coined as “naïve physics” (Smith and Casati, 1994)
or “intuitive physics” (McCloskey, 1983), which is a good enough proxy to make us
operate successfully in the real-world.

It has not yet been shown how to equip machines with a similar set of physics
commonsense – and thereby bypassing a model–based representation and a physical
simulation. In fact, it has been argued that such an approach is unlikely due to e.g.,
the complexity of the problem (Battaglia et al., 2013). Only recently, several works
have revived this idea and reattempted a fully data driven approach to capturing
the essence of physical events via machine learning methods (Mottaghi et al., 2016;
Wu et al., 2015; Fragkiadaki et al., 2016; Bhattacharyya et al., 2018).

In contrast, studies in developmental psychology (Baillargeon, 1994) have shown
that infants acquire knowledge of physical events by observation at a very early
age, for example, support, how an object can stably hold another object; collision,
how a moving object interact with another object. According to their research,
the infant with some innate basic core knowledge (Baillargeon, 2008) gradually
builds its internal model of the physical event by observing its various outcomes.
Amazingly, such basic knowledge of physical event, for example the understanding
of support phenomenon can make its way into relatively complex operations to
construct structures. Such structures are generated by stacking up an element or
removing one while retaining the structure’s stability primarily relying on effective
knowledge of support events in such toy constructions. In our work, we focus on
exactly this support event and construct a model for machines to predict object
stability.

We revisit the classic setup of Battaglia et al. (2013) and explore to which extent
machines can predict physical stability events directly from appearance cues. We
approach this problem by synthetically generating a large set of wood block towers
under a range of conditions, including varying number of blocks, varying block
sizes, planar vs. multi-layered configurations. We run those configurations through
a simulator (only at training time!) in order to generate labels whether the tower
would fall or not. We show for the first time that the aforementioned stability test
can be learned and predicted in a purely data driven way—bypassing traditional
model-based simulation approaches. Further, we accompany our experimental study
with human judgments on the same stimuli.

We also apply the approach to guide the robot to stack blocks based on the
stability prediction. To circumvent the domain shift between the synthesized images
and the real world scene images, we extract the foreground masks for both synthesized
and captured images. Given a real world block structure, the robot uses the model
trained on the synthesized data to predict the stability outcome across possible
candidate placements, and performs stacking on the feasible locations afterwards.
We evaluate both the prediction and manipulation performance on the very task.

100 Chapter 7. Visual Stability Prediction for Robotic Manipulation

7.2 Related Work
As humans, we possess the ability to judge from vision alone if an object is physically
stable or not and predict the objects’ physical behaviors. Yet it is unclear: (1)
How we make such decisions and (2) how we acquire this capability. Research
in development psychology (Baillargeon, 1994, 1995, 2002) suggests that infants
acquire the knowledge of physical events at very young age by observing those events,
including support events and others. This partly answers Question 2, however,
there seems to be no consensus on the internal mechanisms for interpreting external
physical events to address Question 1. Battaglia et al. (2013) proposed an intuitive
physics simulation engine for such a mechanism and found that it resembles behavior
patterns of human subjects on several psychological tasks. Historically, intuitive
physics is connected to the cases where people often hold erroneous physical intuitions
(McCloskey, 1983), such as they tend to expect an object dropped from a moving
subject to fall vertically straight down. It is rather counter-intuitive how the proposed
simulation engine in Battaglia et al. (2013) can explain such erroneous intuitions.

While it is probably illusive to fully reveal the human’s inner mechanisms for
physical modeling and inference, it is feasible to build up models based on observation,
in particular the visual information. In fact, looking back to the history, physical
laws were discovered through the observation of physical events (MacDougal, 2012).
Our work is in this direction. By observing a large number of support event instances
in simulation, we want to gain deeper insights into the prediction paradigm.

In our work, we use a game engine to render scene images and a built-in physics
simulator to simulate the scenes’ stability behavior. The data generation procedure
is based on the platform used in Battaglia et al. (2013), however as discussed before,
their work hypothesized a simulation engine as an internal mechanism for human
to understand the physics in the external world while we are interested in finding
an image-based model to directly predict the physical behavior from visual channel.
Learning from synthetic data has a long tradition in computer vision and has recently
gained increasing interest (Li and Fritz, 2012; Rematas et al., 2014; Peng et al., 2015;
Rematas et al., 2016) due to data hungry deep-learning approaches.

Understanding physical events also plays an important role in scene understanding
in computer vision. By including additional clues from physical constraints into the
inference mechanism, mostly from the support event, it has further improved results
in segmentation of surfaces (Gupta et al., 2010), scenes (Silberman et al., 2012) from
image data, and object segmentation in 3D point cloud data (Zheng et al., 2013).

Only very recently, learning physical concepts from data has been attempted.
Mottaghi et al. (2016) aim at understanding dynamic events governed by laws
of Newtonian physics, but use proto-typical motion scenarios as exemplars. In
Fragkiadaki et al. (2016), they analyze billiard table scenarios, learning the dynamics
from observation with explicit object notion. An alternative approach based on
boundary extrapolation (Bhattacharyya et al., 2018) addresses similar settings
without imposing any object notion. Wu et al. (2015) aims to understand physical
properties of objects. They again rely on an explicit physical simulation. In contrast,

7.3. Recognition 101

we only use simulation at training time and predict for the first time visual stability
directly from visual inputs of scenes containing various towers with a large number
of degrees of freedom.

In Lerer et al. (2016), the authors present their work similar to our setting.
Yet the focus of their work is different from ours, namely predicting outcome and
falling trajectories for simple 4 block scenes, whereas we significantly vary the scene
parameters, investigating if and how the prediction performance from image trained
model changes according to such changes, and further we examine how the human’s
prediction adapt to the variation in the generated scenes and compare it to our
model.

To shed more light on the capabilities of our model, we explore how it can be used
in a robotic manipulation task, i.e., stacking a wood block given a block structure.
In the past, we have seen researchers perform tasks with wood blocks, like playing
Jenga from different perspectives. Kröger et al. (2006) demonstrated multi-sensor
integration by using a marker-based system with multiple cameras and sensors: a
random block is first chosen in the tower, then the robot arm will try to pull the
very block, if the force sensor detects large counter force or the CCD cameras detect
large motion of tower, then it will stop pulling and try other block. Wang et al.
(2009) improved on Kröger et al. (2006) by further incorporating a physics engine
to initialize the candidates for pulling test. A different line of research is Kimura
et al. (2010) where physical force is explicitly formulated with respect to the tower
structure for planning. In our work, we do not do explicit formation of contact force
as in Kimura et al. (2010), nor do we perform trials on-site for evaluating the robot’s
operation. We only use physics engine to acquire synthesized data for training the
visual-physics model. At test time, the planning system for our robot mainly exploits
the knowledge encoded in the visual-physics model to evaluate the feasibility of
individual candidates and performs operations accordingly.

7.3 Recognition

In order to tackle a visual stability test, we require a data generation process that
allows us to control various degrees of freedom induced by the problem as well as
generation of large quantities of data in a repeatable setup. Therefore, we follow the
seminal work on this topic (Battaglia et al., 2013) and use a simulator to setup and
predict physical outcomes of wood block towers. Afterwards, we describe the method
that we investigate for visual stability prediction. We employ state-of-the-art deep
learning techniques, which are the de-facto standard in today’s recognition systems.
Lastly, we describe the setup of the human study that we conduct to complement
the machine predictions with a human reference. An overview of our approach is
shown in Figure 7.2.

102 Chapter 7. Visual Stability Prediction for Robotic Manipulation

Scene

Train Set

Test Set

Train
Images

Test Images

Stability
Labels

Stability
Prediction

Visual-Stability Classifier

Physics Engine

Rendering Engine

Training

Test

Figure 7.2: An overview of our approach for learning visual stability. Note that
physics engine is only used during training time to get the ground truth to train the
deep neural network while at test time, only rendered scene images are given to the
learned model to predict the physical stability of the scenes.

7.3.1 Synthetic Data
Based on the scene simulation framework used in Hamrick et al. (2011) and Battaglia
et al. (2013), we also generate synthetic data with rectangular cuboid blocks as
basic elements. The number of blocks, blocks’ size and stacking depth are varied in
different scenes, to which we will refer as scene parameters.

Numbers of Blocks We expect that varying the size of the towers will influ-
ence the difficulty and challenge the competence of “eye-balling” the stability of
a tower in humans and machine. While evidently the appearance becomes more
complex with the increasing number of blocks, the number of contact surfaces and
interactions equally make the problem richer. Therefore, we include scenes with
four different number of blocks, i.e., 4 blocks, 6 blocks, 10 blocks and 14 blocks as
{4B, 6B, 10B, 14B}.

Stacking Depth As we focus our investigations on judging stability from a monoc-
ular input, we vary the depth of the tower from a one layer setting which we call
2D to a multi-layer setting which we call 3D. The first one only allows a single
block along the image plane at all height levels while the other does not enforce
such constraint and can expand in the image plane. Visually, the former results
in a single-layer stacking similar to Tetris while the latter ends in a multiple-layer
structure as shown in Table 7.1. The latter most likely requires the observer to pick
up on more subtle visual cues, as many of its layers are heavily occluded.

Block Size We include two groups of block size settings. In the first one, the
towers are constructed of blocks that have all the same size of 1×1×3 as in Battaglia
et al. (2013). The second one introduces varying block sizes where two of the three

7.3. Recognition 103

dimensions are randomly scaled with respect to a truncated Normal distribution
N(1, σ2) around [1 − δ, 1 + δ], σ and δ are small values. These two settings are
referred to as {Uni,NonUni}. The setting with non-uniform blocks introduces small
visual cues where stability hinges on small gaps between differently sized blocks that
are challenging even for human observers.

Scenes Combining these three scene parameters, we define 16 different scene groups.
For example, group 10B-2D-Uni is for scenes stacked with 10 Blocks of same size,
stacked within a single layer. For each group, 1000 candidate scenes are generated
where each scene is constructed with non-overlapping geometrical constraint in a
bottom-up manner. There are 16K scenes in total. For prediction experiments, half
of the images in each group are for training and the other half for test, the split is
fixed across the experiments.

Rendering While we keep the rendering basic, we like to point out that we
deliberately decided against colored bricks as in Battaglia et al. (2013) in order to
challenge perception and make identifying brick outlines and configurations more
challenging. The lighting is fixed across scenes and the camera is automatically
adjusted so that the whole tower is centered in the captured image. Images are
rendered at resolution of 800× 800 in color.

Physics Engine We use Bullet (Coumans, 2010) in Panda3D (Goslin and Mine,
2004) to perform physics-based simulation for 2s at 1000Hz for each scene. Surface
friction and gravity are enabled in the simulation. The system records the configura-
tion of a scene of N blocks at time t as (p1, p2, ..., pN)t, where pi is the location for
block i. The stability is then automatically decided as a Boolean variable:

S =
N∨
i=1

(∆((pi)t=T − (pi)t=0) > τ)

where T is the end time of simulation, δ measures the displacement for the blocks
between the starting point and end time, τ is the displacement threshold, ∨ denotes
the logical Or operator, that is to say it counts as unstable S = True if any block in
the scene moved in simulation, otherwise as stable S = False.

7.3.2 Stability Prediction from Still Images
Inspiration from Human Studies Research in Hamrick et al. (2011) and Battaglia
et al. (2013) suggests the combinations of the most salient features in the scenes
are insufficient to capture people’s judgments, however, contemporary study reveals
human’s perception of visual information, in particular some geometric feature, like
critical angle (Cholewiak et al., 2013, 2015) plays an important role in the process.

104 Chapter 7. Visual Stability Prediction for Robotic Manipulation

Block Numbers

(a) 4 Blocks (b) 6 Blocks (c) 10 Blocks (d) 14 Blocks

Stacking Depth Block Size

(e) 2D-stack (f) 3D-stack (g) Size-fix (h) Size-Vary

Table 7.1: Overview of the scene parameters in our rendered scenes. There are 3
groups of scene parameters across number of blocks, stacking depth and block size.

Regardless of the actual inner mechanism for humans to parse the visual input, it is
clear there is a mapping f involving visual input I to the stability prediction P .

f : I, ∗ → P

Here, ∗ denotes other possible information, i.e., the mapping can be inclusive, as
in Hamrick et al. (2011) using it along with other aspects, like physical constraint
to make judgment or the mapping is exclusive, as in Cholewiak et al. (2013) using
visual cues alone to decide.

Image Classifier for Stability Prediction In our work, we are interested in the
mapping f exclusive to visual input and directly predicts the physical stability. To
this end, we use deep convolutional neural networks as it has shown great success
on image classification tasks (Krizhevsky et al., 2012). Such networks have been
shown to be able to adapt to a wide range of classification and prediction task
(Razavian et al., 2014) through re-training or adaptation by fine-tuning. Therefore,
these approaches seem to be adequate methods to study visual prediction on this
challenging task with the motivation that by changing conventional image classes
labels to stability labels the network can learn “physical stability salient” features.

7.3. Recognition 105

In a pilot study, we tested on a subset of the generated data with LeNet (LeCun
et al., 1995), a relatively small network designed for digit recognition, AlexNet
(Krizhevsky et al., 2012), a large network and VGG Net (Simonyan and Zisserman,
2015), an even larger network than AlexNet. We trained from scratch for the
LeNet and fine-tuned for the large network pre-trained on ImageNet (Deng et al.,
2009). VGG Net consistently outperforms the other two, hence we use it across our
experiment. We use the Caffe framework (Jia et al., 2014) in all our experiments.

7.3.3 Prediction Performance
In this part of the experiments, the images are captured before the physics engine is
enabled, and the stability labels are recorded from the simulation engine as described
before. At the training time, the model has access to the images and the stability
labels. At test time, the learned model predicts the stability results against the
results generated by the simulator.

We divide the experiment design into 3 sets: the intra-group, cross-group and
generalization. The first set investigates influence on the model’s performance from
an individual scene parameter, the other two sets explore generalization properties
under different settings.

7.3.3.1 Intra-Group Experiment

In this set of experiments, we train and test on the scenes with the same scene
parameters in order to assess the feasibility of our task.

Number of Blocks (4B, 6B, 10B, 14B) In this group of experiment, we fix
the stacking depth and keep the all blocks in the same size but vary the number
of blocks in the scene to observe how it affects the prediction rates from the image
trained model, which approximates the relative recognition difficulty from this
scene parameter alone. The results are shown in Table 7.2. A consistent drop of
performance can be observed with increasing number of blocks in the scene under
various block sizes and stacking depth conditions. More blocks in the scene generally
leads to higher scene structure and hence higher difficulty in perception.

Block Size (Uni. vs. NonUni.) In this group of experiment, we aim to explore
how same size and varied blocks sizes affect the prediction rates from the image
trained model. We compare the results at different number of blocks to the previous
group, in the most obvious case, scenes happened to have similar stacking patterns
and same number of blocks can result in changes visual appearance. To further
eliminate the influence from the stacking depth, we fix all the scenes in this group to
be 2D stacking only. As can be seen from Table 7.2, the performance decreases when
moving from 2D stacking to 3D. The additional variety introduced by the block size
indeed makes the task more challenging.

106 Chapter 7. Visual Stability Prediction for Robotic Manipulation

Num.of Blks Uni. NonUni.

2D 3D 2D

4B 93.0 99.2 93.2
6B 88.8 91.6 88.0
10B 76.4 68.4 69.8
14B 71.2 57.0 74.8

Table 7.2: Intra-group experiment by varying scene parameters.

Stacking Depth (2D vs. 3D) In this group of experiment, we investigate how
stacking depth affects the prediction rates. With increasing stacking depth, it
naturally introduces ambiguity in the perception of the scene structure, namely some
parts of the scene can be occluded or partially occluded by other parts. Similar
to the experiments in previous groups, we want to minimize the influences from
other scene parameters, we fix the block size to be the same and only observe the
performance across different number of blocks. The results in Table 7.2 show a little
inconsistent behaviors between relative simple scenes (4 blocks and 6 blocks) and
difficult scenes (10 blocks and 14 blocks). For simple scenes, prediction accuracy
increases when moving from 2D stacking to 3D while it is the other way around for
the complex scene. Naturally relaxing the constraint in stacking depth can introduce
additional challenge for perception of depth information, yet given a fixed number
of blocks in the scene, the condition change is also more likely to make the scene
structure lower which reduces the difficulty in perception. A combination of these
two factors decides the final difficulty of the task, for simple scenes, the height factor
has stronger influence and hence exhibits better prediction accuracy for 3D over 2D
stacking while for complex scenes, the stacking depth dominates the influence as the
significant higher number of blocks can retain a reasonable height of the structure,
hence receives decreased performance when moving from 2D stacking to 3D.

7.3.3.2 Cross-Group Experiment

In this set of experiment, we want to see how the learned model transfers across
scenes with different complexity, so we further divide the scene groups into two large
groups by the number of blocks, where a simple scene group for all the scenes with 4
and 6 blocks and a complex scene for the rest of scenes with 10 and 14 blocks. We
investigate in two-direction classification, shown in the figure in Table 7.3:

1. Train on simple scenes and predict on complex scenes: Train on 4 and 6 blocks
and test on 10 and 14 blocks

2. Train on complex scenes and predict on simple scenes: Train on 10 and 14
blocks and test on 4 and 6 blocks

7.3. Recognition 107

Simple2Complex

Complex2Simple

Setting Simple → Complex Complex → Simple
Accuracy (%) 69.9 86.9

Table 7.3: The upper figure shows the experiment settings for Cross-group classifica-
tion where we train on simpler scenes and test on more complex scenes. The lower
table shows the results.

As shown in Table 7.3, when trained on simple scenes and predicting on complex
scenes, it gets 69.9%, which is significantly better than random guess at 50%. This
is understandable as the learned visual feature can transfer across different scene.
Further we observe significant performance boost when trained on complex scenes
and tested on simple scene. This can be explained by the richer feature learned from
the complex scenes with better generalization.

7.3.3.3 Generalization Experiment

In this set of experiment, we want to explore if we can train a general model to predict
stability for scenes with any scene parameters, which is very similar to human’s
prediction in the task. We use training images from all different scene groups and test
on any groups. The Result is shown in Table 7.4. While the performance exhibits
similar trend to the one in the intra-group with respect to the complexity of the scenes,
namely increasing recognition rate for simpler settings and decreasing rate for more
complex settings, there is a consistent improvement over the intra-group experiment
for individual groups. Together with the result in the cross-group experiment, it
suggests a strong generalization capability of the image trained model.

7.3.3.4 Discussion

Overall, we can conclude that direct stability prediction is possible and in fact fairly
accurate at recognition rates over 80% for moderate difficulty levels. As expected,
the 3D setting adds difficulties to the prediction from appearance due to significant
occlusion for towers of more than 10 blocks. Surprisingly, little effect was observed
for small tower sizes switching from uniform to non-uniform blocks - although the
appearance difference can be quite small. To better understand our results, we

108 Chapter 7. Visual Stability Prediction for Robotic Manipulation

Num.of Blks Uni. NonUni.

2D 3D 2D 3D

4B 93.2 99.0 95.4 99.8
6B 89.0 94.8 87.8 93.0
10B 83.4 76.0 77.2 74.8
14B 82.4 67.2 78.4 66.2

Table 7.4: Results for generalization experiments.

further discuss the following two questions:
How does the model performs compared to human? To answer this, we

conduct a human subject test. We recruit human subjects to predict stability for
give scene images. Due to large number of test data, we sample images from different
scene groups for human subject test. 8 subjects are recruited for the test. Each
subject is presented with a set of captured images from the test split. Each set
includes 96 images where images cover all 16 scene groups with 6 scene instances per
group. For each scene image, subject is required to rate the stability on a scale from
1− 5 without any constraint for response time:

1. Definitely unstable: definitely at least one block will move/fall

2. Probably unstable: probably at least one block will move/fall

3. Cannot tell: the subject is not sure about the stability

4. Probably stable: probably no block will move/fall

5. Definitely stable: definitely no block will move/fall

The predictions are binarized, namely 1) and 2) are treated as unstable prediction,
4) and 5) as stable prediction, “Cannot tell” will be counted as 0.5 correct prediction.

The results are shown in Table 7.5. For simple scenes with few blocks, human
can reach close to perfect performance while for complex scenes, the performance
drops significantly to around 60%. Compared to human prediction in the same
test data, the image-based model outperforms human in most scene groups. While
showing similar trends in performance with respect to different scene parameters,
the image-based model is less affected by a more difficult scene parameter setting,
for example, given the same block size and stacking depth condition, the prediction
accuracy decreases more slowly than the counter part in human prediction. We
interpret this as image-based model possesses better generalization capability than
human in the very task.

Does the model learn something explicitly interpretable? Here we apply
the technique from Zhou et al. (2016) to visualize the learned discriminative image

7.4. Manipulation 109

Num.of Blks Uni. NonUni.

2D 3D 2D 3D

4B 79.1/91.7 93.8/100.0 72.9/93.8 92.7/100.0
6B 78.1/91.7 83.3/93.8 71.9/87.5 89.6/93.8
10B 67.7/87.5 72.9/72.9 66.7/72.9 71.9/68.8
14B 71.9/79.2 68.8/66.7 71.9/81.3 59.3/60.4

Table 7.5: Results from human subject test a and corresponded accuracies from
image-based model b in format a/b for the sampled data.

regions from CNN for individual category. The approach is illustrated in Figure 7.3a.
With Global Average Pooling (GAP), the resulted spatial average of the feature maps
from previous convolutional layers forms fully-connected layer to directly decides
the final output. By back-projecting the weights from the fully-connected layer
from each category, we can hence obtain Class Activation Map (CAM) to visualize
the discriminative image regions. In our case, we investigate discriminative regions
for unstable predictions to see if the model can spot the weakness in the structure.
We use deep flow (Weinzaepfel et al., 2013) to compute the optical flow magnitude
between the frame before the physics engine is enabled and the one afterwards to serve
as a coarse ground truth for the structural weakness where we assume the collapse
motion starts from such weakness in the structure. Though not universal among
the unstable cases, we do find significant positive cases showing high correlation
between the activation regions in CAM for unstable output and the regions where
the collapse motion begins. Some examples are shown in Figure 7.3b.

7.4 Manipulation
In the previous section, we have shown that an appereance-based model can predict
physical stability relatively well on the synthetic data. Now we want to further
explore if and how the synthetic data trained model can be utilized for a real world
application, especially for robotic manipulation. Hence, we decide to set up a testbed
where a Baxter robot’s task is to stack one wood block on a given block structure
without breaking the structure’s stability as shown in Figure 7.1. The overview of
our system is illustrated in Figure 7.4. In our experiment, we use Kapla blocks as
basic unit, and tape 6 blocks into a bigger one as shown in Figure 7.5a. To simplify
the task, adjustments were made to the free-style stacking:

• The given block structure is restricted to be single layer as the 2D case in the
previous section. For the final test, we report results on the 6 scenes as shown
in Table 7.6.

110 Chapter 7. Visual Stability Prediction for Robotic Manipulation

C
O

N
V

C
O

N
V

C
O

N
V

C
O

N
V

C
O

N
V

C1

C2

Unstable

Stable

Feature Map

F1

Fk
…

…

GAP Layer

W

* W’ =Class Activation Mapping

(a) By introducing the GAP layer directly connected to the final output, the
learned weights can be backprojected to the feature map for each category to
construct the CAM. The CAM can be used to visualize the discriminative image
regions for individual category.

(b) Examples of CAM showing the discriminative regions for unstable prediction
in comparison to the flow magnitude indicating where the collapse motion begins.
For each example, from left to right are original image, CAM and flow magnitude
map.

Figure 7.3: We use CAM to visualize the results for model interpretation.

7.4. Manipulation 111

Current
Scene

Scene
Image

Candidates’
Configurations

Candidates’
Images

Feasible
ConfigurationsActions

Visual-Stability Classifier

Figure 7.4: An overview of our manipulation system. Our visual-stability classifier is
integrated to recognize feasible candidate placement to guide manipulation.

(a) Kapla block (left), block in test (right).

Vertical

Horizon
tal

(b) Allowed configurations in
test.

Figure 7.5: Blocks used in our experiment.

• The block to be put on top of the given structure is limited two canonical
configurations {vertical, horizontal} as shown in Figure 7.5b. and assumed to
be held in hand of robot before the placement.

• The block is constrained to be placed on the top-most horizontal surface
(stacking surface) in the given structure.

• The depth of the structure (perpendicular distance to the robot) is calibrated
so that we only need to decide the horizontal and vertical displacements with
respect to the stacking surface.

112 Chapter 7. Visual Stability Prediction for Robotic Manipulation

7.4.1 Prediction on Real World Data
Considering there are significant difference between the synthesized data and real
world captured data, including factors (not limited to) as texture, illumination
condition, size of blocks and accuracy of the render, we performed a pilot study
to directly apply the model trained on the RGB images to predict stability on the
real data, but only got results on par with random guessing. Hence we decided
to train the visual-stability model on the binary-valued foreground mask on the
synthesized data and deal with the masks at test time also for the real scenes. In this
way, we significantly reduce the effect from the aforementioned factors. Observing
comparable results when using the RGB images, we continue to the approach on real
world data.

Foreground Mask

Stacking SurfaceScene Image

Background Image Candidate Image

Vertical

Horizontal

Figure 7.6: The procedure to generate candidates placement images for a give scene
in our experiment.

At test time, a background image is first captured for the empty scene. Then for
each test scene (shown in Table 7.6), an image is captured and converted to foreground
mask via background subtraction. The top-most horizontal boundary is detected as

7.4. Manipulation 113

the stacking surface and then used to generate candidate placements: the surface is
divided evenly into 9 horizontal candidates and 5 vertical candidates, resulting in 84
candidates. The process is shown in Figure 7.6. Afterwards, these candidates are
put to the visual-stability model for stability prediction. Each generated candidate’s
actual stability is manually tested and recorded as ground truth. The final recognition
result is shown in Table 7.6. The model trained with synthetic data is able to predict
with overall accuracy of 78.6% across different candidates in real world.

7.4.2 Manipulation Test

Id. 1 2 3

Scene
Pred.(%) 66.7 100.0 66.7 60.0 88.9 100.0
Mani.(%) 80.0(4/5) 100.0(5/5) 66.7(2/3) 100.0(3/3) 66.7(2/3) 100.0(1/1)

Placement H V H V H V

Id. 4 5 6

Scene
Pred.(%) 77.8 80.0 100.0 40.0 66.7 60.0
Mani.(%) 66.7(2/2) 66.7(2/3) 100.0(3/3) 25.0(1/4) 0.0(0/3) 0.0(0/1)

Placement H V H V H V

Table 7.6: Results for real world test. “Pred.” is the prediction accuracy. “Mani.”
is the manipulation success rate with counts for successful placements/all possible
stable placements for each scene. “H/V” refer to horizontal/vertical placement.

At test time, when the model predicts a give candidate placement as stable,
the robot will execute routine to place the block with 3 attempts. We count the
execution as a success if any of the attempt works. The manipulation success rate is
defined as:

#{successful placements}
#{all stable placements}

114 Chapter 7. Visual Stability Prediction for Robotic Manipulation

where #{successful placements} is the number of successful placements made by
the robot, and #{all stable placements} is the number of all ground truth stable
placements.

As shown in Table 7.6, the manipulation performance is good across most of the
scenes for both horizontal and vertical placements except for the 6-th scene where
the classifier predicts all candidates as unstable hence no attempts have been made
by the robot.

7.4.3 Discussion
Comparing to the work in block manipulation (Wang et al., 2009), we do not fit 3D
models or run physics simulation at test time for the given scene but instead use the
scene image as input to directly predict the physics of the structure. Simply putting
the block along the center of mass (COM) of the given structure may often be a
feasible option, yet, there are two limitations to this approach: first, it is nontrivial
to compute the COM of a given structure; second, it only gives one possible stable
solution (assuming it actually stay stable). In comparison, our method does not rely
the COM of the structure and provide a search over multiple possible solutions.

7.5 Conclusion
In this work, we answer the question if and how well we can build up a mechanism
to predict physical stability directly from visual input. In contrast to existing
approaches, we bypass explicit 3D representations and physical simulation and learn
a model for visual stability prediction from data. We evaluate our model on a range
of conditions including variations in number of blocks, size of blocks and 3D structure
of the overall tower. The results reflect the challenges of inference with growing
complexity of the structure. To further understand the results, we conduct a human
subject study on a subset of our synthetic data and show that our model achieves
comparable or even better results than humans in the same setting. Moreover, we
investigate the discriminative image regions found by the model and spot correlation
between such regions and initial collapse area in the structure. Finally, We apply
our approach to a block stacking setting and show that our model can guide a robot
for placements of new blocks by predicting the stability of future states.

Chapter 8
Acquiring Target Stacking Skills by
Goal-Parameterized Deep Reinforcement
Learning

Contents
8.1 Introduction . 116
8.2 Related Work . 117
8.3 Learning . 118

8.3.1 Task Description . 118
8.3.2 Task Distinction . 118
8.3.3 Environment Implementation 119

8.4 Goal-Parameterized Deep Q Networks 120
8.4.1 Learning Framework . 121
8.4.2 Implementation Details 122

8.5 Experiments . 123
8.5.1 Toy Example with Goal Integration 123
8.5.2 Target Stacking . 125

8.6 Conclusion . 126

In chapter 7, we have addressed the manipulation task for the single block’s
placement without collapsing the existing structure. Here, we want to go further
along the task and seek solutions to place multiple blocks. More specifically, we are
interested in a setting that resembles how children play wood block, where for every
trial, a (different) target is given, the agent should be able to stack back to it.

Rather than explicitly modeling physical knowledge within the policy as in
chapter 7, we take a different approach in this work. We investigate how an
artificial agent can autonomously acquire this intuition through interaction with the
environment. To this end, we created a synthetic block stacking environment with
physics simulation in which the agent can learn a policy end-to-end through trial
and error.

115

116 Chapter 8. Acquiring Target Stacking Skills

We propose a deep reinforcement learning framework that learns policies which
are parametrized by a goal and validate the model on a toy example navigating in a
grid world with different target positions and in a block stacking task with different
target structures of the final tower. This work was presented in a tech report (Li
et al., 2017a).

8.1 Introduction

Understanding and predicting physical phenomena in daily life is an important
component of human intelligence. This ability enables us to effortlessly manipulate
objects in unseen conditions. It is an open question how this kind of knowledge
can be represented and what kind of models could explain human manipulation
behavior (Yildirim et al., 2017). In this paper we are concerned with the question of
how an artificial agent can autonomously acquire physical interaction skills through
trial and error.

Until recently, researcher have attempted to build computational models for
capturing the essence of physical events via machine learning methods from sensory
inputs (Mottaghi et al., 2016; Wu et al., 2015; Fragkiadaki et al., 2016; Bhattacharyya
et al., 2018; Lerer et al., 2016; Li et al., 2016). Yet there is little work to investigate
how the knowledge captured by such a model can be directly applied for manipulation.

In this work, we aim to learn block stacking through trial-and-error, bypassing to
explicitly model the corresponding physics knowledge. For this purpose, we build a
synthetic environment with physics simulation, where the agent can move and stack
blocks and observe the different outcomes of its actions. We apply deep reinforcement
learning to directly acquire the block stacking skill in an end-to-end fashion.

While previous work focuses on learning policies for a fixed task, we introduce goal-
parameterized policies that facilitate generalization of the learned skill to different
targets. We study this problem in the aforementioned block stacking task in which
the agent has to reproduce a tower as shown in an image. The agent has to stack
blocks into the same shape while retaining physical stability and avoiding pre-mature
collisions with the existing structure.

In particular, we aim to learn a single model to guide the agent to build different
shapes on request. This is generally not intended in conventional reinforcement
learning formulations where the policy is typically optimized to reach a specific goal.
In our learning framework, the varying goals are given to the agent as input. We
first validated this extended model on a toy example where the agent has to navigate
in a gridworld. Both, the location of the start and end point are randomized for each
episode. We observed good generalization performance.

Then we apply the framework to the block stacking task. We show that exe-
cution depends on the desired target structure and observe promising results for
generalization across different goals.

8.2. Related Work 117

8.2 Related Work
Humans possess the amazing ability to perceive and understand ubiquitous physical
phenomena occurring in their daily life. There is research in psychology that seeks
to understand how this ability develops. Baillargeon (2002) suggest that infants
acquire the knowledge of physical events at a very young age by observing those
events, including support events and others. Interestingly, in a recent work (Denil
et al., 2017), the authors introduce a basic set of tasks that require the learning
agent to estimate physical properties (mass and cohesion combinations) of objects
in an interactive simulated environment and find that it can learn to perform the
experiments strategically to discover such hidden properties in analogy to human’s
development of physics knowledge.

Battaglia et al. (2013) proposes an intuitive physics simulation engine as an
internal mechanism for such type of ability and found close correlation between its
behavior patterns and human subjects’ on several psychological tasks.

More recently, there is an increasing interest in equipping artificial agents with
such an ability by letting them learn physical concepts from visual data. Mottaghi
et al. (2016) aim at understanding dynamic events governed by laws of Newtonian
physics and use proto-typical motion scenarios as exemplars. Fragkiadaki et al.
(2016) analyze billiard table scenarios and learn dynamics from observation with
explicit object notion. An alternative approach based on boundary extrapolation
Bhattacharyya et al. (2018) addresses similar settings without imposing any object
notion. Wu et al. (2015) aims to understand physical properties of objects based
on explicit physical simulation. Mottaghi et al. (2017) proposes to reason about
containers and the behavior of the liquids inside them from a single RGB image.

Moreover, Lerer et al. (2016) propose using a visual model to predict stability and
falling trajectories for simple 4 block scenes. Li et al. (2016) investigate if and how the
prediction performance of such image-based models changes when trained on block
stacking scenes with larger variety. They further examine how the human’s prediction
adapts to the variation in the generated scenes and compare to the learned visual
model. Each work requires significant amounts of simulated, physically-realistic data
to train the large-capacity, deep models.

Another interesting question that has been explored in psychology is how knowl-
edge about physical events affects and guides human’s actual interaction with objects
(Yildirim et al., 2017). Yet it is not clear how machine model trained for physics
understanding can be directly applied into real-world interactions with object and
accomplish manipulation tasks. Li et al. (2017b) makes a first attempt along this
direction by extending their previous work (Li et al., 2016) on stability classification.
They task a robot to place a wooden block on an existing structure while maintaining
stability. Placement candidates are first generated and then evaluated through the
visual stability classifier, so that only predicted stable placements are executed on
the robot.

In this paper, reinforcement learning is used to learn an end-to-end model
directly from the experience collected during interaction with a physically-realistic

118 Chapter 8. Acquiring Target Stacking Skills

environment. The majority of work in reinforcement learning focuses on solving
task with a single goal. However, there are also tasks where the goal may change
for every trial. It is not obvious how to directly apply the model learned towards a
specific goal to a different one. An early idea has been proposed by Kaelbling (1993)
for a maze navigation problem in which the goal changes. The author introduces
an analogous formulation to the Q-learning by using shortest path in replacement
of the value functions. Yet there are two major limitations for the framework: 1)
it is only formulated in tabular form which is not practical for application with
complex states 2) the introduced shortest path is very specific to the maze navigation
setting and hence cannot be easily adapt to handle task like different targets stacking,
serving as a general solution to this type of problem. In contrast, we propose a
goal-parameterized model to integrate goal information into a general learning-based
framework that facilitates generalization across different goals. The model has been
shown to work on both a navigation task and target stacking.

8.3 Learning
We introduce a new manipulation task: target stacking. In this task, an image of
a target structure made of stacked blocks is provided. Given the same number of
blocks as in the target structure, the goal is to reproduce the structure shown in
the image. The manipulation primitives in this task include moving and placing
blocks. This is inspired by the scenario where young children learn to stack blocks
to different shapes given an example structure. We want to explore how an artificial
agent can acquire such a skill through trial and error.

8.3.1 Task Description
For each task instance, a target structure is generated and its image is provided
to the agent along with the number of blocks. Each of these blocks has a fixed
orientation. The sequence of block orientations is such that reproducing the target is
feasible. The agent attempts to construct the target structure by placing the blocks
in the given sequence. The spawning location for each block is randomized along the
top boundary of the environment. A sample task instance is shown in Figure 8.1.

8.3.2 Task Distinction
The following characteristics distinguish this task from other tasks commonly used
in the literature.

Goal-Specific A widely-used benchmark for deep reinforcement learning algorithm
are the Atari games (Bellemare et al., 2013) that were made popular by Mnih et al.
(2013). While this game collection has a large variety, the games are defined by a
single goal or no specific goal is enforced at a particular point in time. For example

8.3. Learning 119

Target Shape Placement of Block 1 Placement of Block 2

Figure 8.1: Target stacking: Given a target shape image, the agent is required to
move and stack blocks to reproduce it.

in Breakout, the player tries to bounce off as many bricks as possible. In Enduro,
the player tries to pass as many cars as possible while simultaneously avoiding cars.

In the target stacking task, each task instance differs in the specific goal (the
target structure), and all the moves are planned towards this goal. Given the same
state, moves that were optimal in one task instance are unlikely to be optimal in
another task instance with a different target structure. This is in contrast to games
where one type of move will most likely work in similar scenes. This argument also
applies to AI research platforms with richer visuals like VizDoom (Kempka et al.,
2016).

Longer sequences Target stacking requires looking ahead over a longer time
horizon to simultaneously ensure stability and similarity to the target structure. This
is different from learning to poke (Agrawal et al., 2016) where the objective is to
select a motion primitive that is the optimal next action. It is also different from the
work by Li et al. (2017b) that reasons about the placement of one block.

Rich Physics Bounded Besides stacking to the assigned target shape the agent
needs to learn to move the block without colliding with the environment and existing
structure and to choose the block’s placement wisely not to collapse the current
structure. The agent has no prior knowledge of this. It needs to learn everything
from scratch by observing the consequence (collision, collapse) of its actions.

8.3.3 Environment Implementation

A deep reinforcement learning agent requires to learn from a larger number of samples.
To enable this, we build a simulated environment for the agent to interact with
physical-realistic task instances. While we keep the essential parts of the task, at
its current stage the simulated environment remains an abstraction of a real-world
robotics scenario. This generally requires an integration of multiple modules for a
full-fledged working system, such as Toussaint et al. (2010), which is out of scope of
this paper.

120 Chapter 8. Acquiring Target Stacking Skills

Figure 8.2: Example scenes constructed by the learned agent.

In detail, the simulated stacking environment is implemented in Panda3D (Goslin
and Mine, 2004) with bullet (Coumans, 2010) as physics engine. The block size
follows a ratio of l : w : h = 5 : 2 : 1, where l,w,h denote length, width and
height respectively. We ignore the impact during block placement and focus on
the resulting stability of the entire structure. Once the block makes contact with
the existing structure, it is treated as releasing the block for a placement. In each
episode, if the moving block collides with the environment boundary or existing
structure, it will terminate the current episode. Further, if the block placement
causes the resulting new structure to collapse, it will also end the episode. Stability
is simulated similar to Li et al. (2017b) by comparing the change of displacement
across all the blocks to a pre-selected small threshold within a fraction of time. If all
of the blocks’ displacements are below this threshold, the structure is deemed stable,
otherwise unstable. To simplify the setting, we further constrain the action to be
{left, right, down}.

The physics simulation runs at 60Hz. However considering the cost of simulation
we only use it when there is contact between the moving block and the boundary or
the existing structure. Otherwise, the current block is moving without actual physics
simulation. To further reduce the appearance difference caused by varying perspective,
the environment is rendered using orthographic projection. Figure 8.2 shows example
images. The environment provides a user-friendly Python interface (similar to Gym
(Brockman et al., 2016)) so that it can be used to test different reinforcement learning
agents. At time of publication we will release our implementation of the environment.

8.4 Goal-Parameterized Deep Q Networks

As one major characteristic of this task is that it requires goal-specific planning:
given the same or similar states under different objectives, the optimal move can be
different. To this end, we extend the typical reinforcement learning formulation to
incorporate additional goal information.

8.4. Goal-Parameterized Deep Q Networks 121

8.4.1 Learning Framework
In a typical reinforcement learning setting, the agent interacts with the environment
at time t, observes the state st, takes action at, receives reward rt and transits
to a new state st+1. A common goal for a reinforcement learning agent is to
maximize the cumulative reward. This is commonly formalized in form of a value
function as the expected sum of rewards from a state s, E[

∞∑
i=0

γirt+i+1|st = s, π]
when actions are taken with respect to a policy π(a|s), with 0 ≤ γ ≤ 1 being the
discount factor. The alternative formulation to this is the action-value function
Qπ(s, a) = E[

∞∑
i=0

γirt+i+1|st = s, at = a].
Value-based reinforcement learning algorithms, such as Q-learning (Watkins and

Dayan, 1992) directly search for optimal Q-value function. Recently by incorporating
deep neural network as a function approximator for Q-function, the DQN (Mnih
et al., 2015) has shown impressive results across a variety of Atari games.

DQN For our task, we apply a Deep Q Network (DQN) which uses a deep neural
network for approximating the action-value function Q(s, a; θ), mapping from an
input state s and action a to Q values. In particular, two important improvements
have been proposed by Mnih et al. (2015) for the learning process, including (1)
experience replay, the agent stores observed transitions in a memory buffer for some
time, and uniformly samples from the memory to update the network (2) the target
network, agent maintains two networks for the loss function — one for the current
estimator of Q function and one for the surrogate of the true Q function. For the
current estimator, the parameters are constantly updated. For the surrogate, the
parameters are only updated for every certain number of steps from the current
estimator network otherwise kept fixed.

Learning Goal-Parameterized Policies To plan with respect to the specific
goal, we can parametrize the agent’s policy π by the goal g:

π(s, g, a) (8.1)

Since in this work, we applies DQN as value-based method, this corresponds to
the update to original Q function with the additional goal information. The new
Q-value function is hence defined as:

Qπ(s, g, a) = E[
∞∑
i=0

γirt+i+1|st = s, g, at = a] (8.2)

As shown in Figure 8.3, in contrast to the original DQN model, where state and
action are used to estimate Q-value, the new model further include the current goal
into the network to produce the estimate. We call this model as Goal-Parametrized
Q Network (GDQN).

The resulted loss function is as:

122 Chapter 8. Acquiring Target Stacking Skills

LQ = E[(R + γmax′aQπ(s′, g, a′; θ−)−Q(s, g, a; θ))2] (8.3)

where θ− are the previous parameters and the optimization is with respect to θ.

Goal g

State s Action aGDQN

Figure 8.3: Our proposed model GDQN which extends the Q-function approximator
to integrate goal information.

8.4.2 Implementation Details
The DQN agent is implemented in Theano and Keras to adapt to the settings in our
experiment, while we use a 2 hidden layer (each with 64 hidden units and rectified
linear activation) multilayer perceptron (MLP) for most cases, we additionally swap
the MLP with the CNN and follow the reported parameter settings as in the original
paper (Mnih et al., 2015) to ensure our implementation can reach similar performance.

Note we don’t apply the frame-skipping technique (Bellemare et al., 2012) used
for Atari games (Mnih et al., 2015) allowing the agent sees and selects actions on
every kth frame where its last action is repeated on skipped frames. It does not
suit our task, in particular when the moving block is getting close to the existing
structure, simply repeating action decided from previous frame can cause unintended
collision or collapse.

Reward In the target stacking task, the agent gets reward +1 when the episode
ends with complete reproduction of the target structure, otherwise 0 reward.

Further, we explore reward shaping (Ng et al., 1999) in the task providing more
prompt intermediate reward. Two types of reward shaping are included: overlap
ratio and distance transform.

For the overlap ratio, for each state st under the same target gi, an overlap ratio
is counted as the ratio between the intersected foreground region (of the current
state and the target state) and the target foreground region (shown in Figure 8.4a):

8.5. Experiments 123

o(st, gi) = st ∩ gi
gi

(8.4)

For each transition (st, at, st+1), the reward is defined by the change of overlap
ratio before and after the action:

rt =


1, if ∆ot→t+1 = o(st+1)− o(st) > 0
−1, if ∆ot→t+1 = o(st+1)− o(st) < 0
0, otherwise

(8.5)

The intuition is that actions increasing the current state to become more over-
lapped with the target scene should be encouraged.

For the distance transform (Fabbri et al., 2008), it generates a map D whose
value in each pixel p is the smallest distance from it to a target object O:

D(p) = min{dist(p, q)|q ∈ O} (8.6)

where dist can be any valid distance metric, like Euclidean or Manhattan distance.
For each state st under the same target gi, a distance to the goal is the sum of

all the element-wise distance in st to gi under Dgi
(shown in Figure 8.4b) as:

d(st, gi) =
∑
j

Dgi
(sjt), sjt ∈ st (8.7)

For each transition (st, at, st+1), the reward is defined as:

rt =


1, if ∆dt→t+1 = d(st+1)− d(st) < 0
−1, if ∆dt→t+1 = d(st+1)− d(st) > 0
0, otherwise

(8.8)

The intuition behind this is that action decreasing the distance between the
current state and the target scene should be encouraged.

8.5 Experiments
We evaluate the proposed GDQN model on both a navigation task and target stacking
and compare it to the base DQN model which does not integrate goal information.
In addition, we include the result from GDQN model with different ways of reward
shaping in the target stacking task.

8.5.1 Toy Example with Goal Integration
As a toy example, we introduce a type of navigation task in the classic grid-
world environment. The locations for the starting point and goal are randomized
for each episode. The agent needs to reach the goal with four possible actions

124 Chapter 8. Acquiring Target Stacking Skills

Target Scene Overlap Ratio Current Scene

(a)

Target Scene Distance Transform Current Scene

(b)

Figure 8.4: Reward shaping used in target stacking. (a): overlap ratio to the target.
The gray area in the middle figure denotes the intersected foreground region between
current and target scene, and the overlap ratio is the ratio between the areas of the
two. (b): distance under the distance transform of the target. The middle figure
denotes the distance transform under the target shown in the left. The distance from
current scene to the target is the sum of distances masked by the current scene in
the distance transform.

Grid Size DQN GDQN
5× 5 0.67 0.97
7× 7 0.67 0.95

Table 8.1: Results from navigation task.

{left, right, up, down}. Action that will make the agent go off the grid will leave
it stay in the same location. The episode only terminates once the agent reaches
the goal. The agent only receive reward +1 when reaching the current goal. Two
different sizes of gridworld are tested at 5× 5 and 7× 7.

The training epoch size is 1000 in steps for the smaller gridworld and 3000 for
the larger one, the test sizes are the same for both at 100. All the agents run for
100 epochs and the ε for ε-greedy anneals linearly from 1.0 to 0.1 over the first 20
epochs, and fixed at 0.1 thereafter. The memory buffer size is set the same to the
annealing length, i.e. for the smaller gridworld, the buffer size equals to the length
20 epochs in training with 20000 steps whereas for the larger one, the buffer size is
30000 steps. We measure the proportion of episodes in the test epoch that reaches
the goal in shortest distance as the success ratio. The results are shown in Table 8.1
for the best agents throughout the training process.

As in this simple task with relative small state space, DQN gets some performance
due to running an average policy across all the the goals, but this is not addressing
the task we set out to do. In contrast, GDQN parametrized specifically to include
goal information achieves significant better results on both sizes of the environment.

8.5. Experiments 125

8.5.2 Target Stacking
We set up 3 groups of target structures consisted of different number of blocks
{2, 3, 4} in the scene as shown in Figure 8.5. Within each group of target shapes,
a random target (with the accompanied orientation order) is picked at the very
beginning for individual episode. Each training epoch consists of 10000 steps and
each test epoch with 1000 steps. Similar to the setting in the toy example, all the
agents run for 100 epochs and the ε anneals for the first 20 epochs, and the memory
buffer size is set as long as the annealing steps at 200K steps.

(a) (b)

(c)

Figure 8.5: a: Targets for 2 blocks.b: Targets for 3 blocks. c: Targets for 4 blocks.

We computed both average overlap ratio (OR) and success rate (SR) for the
finished stacking episodes in each test epoch. Here overlap ratio is the same as
defined in the reward shaping in Equation 8.4, but simply measures the end scene
over the assigned target scene. This tells the relative completion of the stacked
structure in comparison to the assigned target structure, the higher the value is, the
better completion it is to the target. At the maximum of 1, it suggests completely
reproduction of the target. The success rate counts the ratio how many episodes
complete the exact same shape as assigned over the total number of episodes finished
in the test epoch. This is the absolute metric counting overall successful stacking.
The results are shown in Table 8.2 for the best agents throughout the training
process.

Over all groups on both metrics, we observe GDQN outperforms DQN, showing
the importance of integrating goal information. In general, the more blocks in the
task, the more difficult it becomes. When there are only small number of blocks (2

126 Chapter 8. Acquiring Target Stacking Skills

Num. of Blks. DQN GDQN GDQN + OR GDQN + DT
OR SR OR SR OR SR OR SR

2 0.70 0.70 0.82 0.72 0.84 0.77 0.88 0.78
3 0.43 0.43 0.76 0.67 0.86 0.63 0.83 0.65
4 0.03 0.0 0.41 0.17 0.73 0.55 0.79 0.56

Table 8.2: Results for target stacking. For “GDQN + X”, X denotes different ways
for reward shaping as described in previous section, OR for overlap ratio, DT for
distance transform. For metrics, OR stands for average overlap ratio, SR for average
success rate.

blocks and 3 blocks) in the scene, the single policy learned by DQN averages over
the few target shapes can still work to some extent. However when introducing more
blocks into the scene, it becomes more and more difficult for this averaged model
to handle. As we can see from the result, there is already a significant decrease
of performance (success rate drops from 0.70 to 0.43) when increasing the blocks
number from 2 to 3, whereas GDQN’s performance only decreases slightly from 0.72
to 0.67. In 4 blocks scene, the DQN can no longer reproduce any single target (0.0
for success rate, 0.03 for overlap ratio) while GDQN parametrized specifically to
include goal information can still do. Though the success rate (absolute completion
to the target) for the basic GDQN is relatively low at 0.17 but the average overlap
ratio (relative completion to the target) still holds up pretty well at 0.41. Also we see
reward shaping can further improves GDQN model, in particular distance transform
can boost the performance more than overlap ratio.

8.6 Conclusion
We create a synthetic block stacking environment with physics simulation in which
the agent can learn block stacking end-to-end through trial and error, bypassing to
explicitly model the corresponding physics knowledge.

We introduce a target stacking task where the agent stacks blocks to reproduces a
tower shown in an image. The task presents a distinct type of challenge requiring the
agent to reach a given goal state that may be different for every new trial. Therefore
we propose a goal-parametrized GDQN model to plan with respect to the specific
goal, allowing better generalization across different goals. We validate the model on
both a navigation task in a classic gridworld environment with different start and
goal positions and the block stacking task itself with different target structures. Our
proposed model shows good performance on both tasks.

Chapter 9
Conclusions and future perspectives

Contents
9.1 Conclusions . 127

9.1.1 From Perception to Anticipation 127
9.1.2 From Perception to Manipulation 128
9.1.3 From Perception over Anticipation to Manipulation . . . 128

9.2 Future Perspectives . 128
9.2.1 Higher Level Intelligence 129
9.2.2 Higher Level Integration 130

In this thesis, we have explored different ways of integrations with perception,
anticipation and manipulation for robotic systems. In this chapter, we conclude the
thesis by summarizing our key contributions and discuss potential future directions.

9.1 Conclusions

9.1.1 From Perception to Anticipation

In chapter 3, we addressed the task on recognition of ongoing activity from videos.
In particular we focused on long-duration and complex activities and proposed a
new challenging dataset to facilitate the work.

We introduced hierarchical labels over the activity classes and investigated the
temporal accuracy-specificity trade-offs. We propose a new method based on recurrent
neural networks that learns to predicts over this hierarchy and realizes accuracy
specificity tradeoffs. Our method outperforms several baselines on this new challenge
including an adaptation of hierarchical prediction from object recognition.

127

128 Chapter 9. Conclusions and future perspectives

9.1.2 From Perception to Manipulation

In chapter 5, we explored efficient frameworks for programming robot to use tools.
We first present a novel and compact model for using tools that can be described
by a tip model. Then we explore a strategy of utilizing a dual-gripper approach
for manipulating tools – motivated by the absence of dexterous hands on today’s
most widely deployed general purpose robots. Afterwards, we describe and formulate
our hierarchical architecture to embed tool use in a learning from demonstration
framework: at a high-level, we learn temporal orders for dual-arm coordination and
at lower-level, we learn DMPs for manipulation primitives. The approach is evaluated
on a Baxter research robot. We showed its promising application on learning and
operation of three human tools, including an electric tacker, an electric drill and a
hot-glue pen.

9.1.3 From Perception over Anticipation to Manipulation

In chapter 7 and chapter 8, we tackled the manipulation task of block stacking.
In chapter 7, we explored how to guide robot to place a single block into the
scene without collapsing the existing structure. For this purpose, we introduced a
mechanism to predict physical stability directly from visual input and evaluated it
on a synthetic data. To better understand the model, we conducted accompanied
human subject test and attempted a model interpretation. Finally, we validated it
on a real-world block stacking task.

In chapter 8, we introduced the target stacking task where the agent stacks
blocks to reproduces a tower shown in an image. The task presents a distinct type
of challenge requiring the agent to reach a given goal state that may be different for
every new trial. To do so, we created a synthetic block stacking environment with
physics simulation in which the agent can learn block stacking end-to-end through
trial and error, bypassing to explicitly model the corresponding physics knowledge.

We proposed a goal-parametrized GDQN model to plan with respect to the
specific goal, allowing better generalization across different goals. We validated the
model on both a navigation task in a classic gridworld environment with different
start and goal positions and the block stacking task itself with different target
structures.

Overall, bringing together perception, anticipation and manipulation has shown
to deal with complex tasks and that will facilitate future research on acting in
complex and dynamic environments.

9.2 Future Perspectives

Now that the discussion of my work is finished, I will give a perspective of future
research along the proposed contributions. More specifically:

9.2. Future Perspectives 129

9.2.1 Higher Level Intelligence

This applies to both: (1) the growing model capability, from shallowly perceiving
the data to inferring the implication based on the data and (2) the increasing model
interpretability, from merely searching for a working model to designing towards a
more tractable model.

Deeper understanding from visual data. More research can be done in the
direction of anticipation from the data. Starting from the very topic of anticipation for
complex activity from videos in chapter 3, one can go into fine-grained modeling
over the sub-activities inside individual complex activity and anticipate the incoming
sub-activity. Now that our work has shown that one can infer the activity class for
the whole sequence with partial observation, this can be further used to reduce the
search space for the anticipation. In addition, one can explore the combination of
the fine-grained modeling and objectness representation and exploit anticipation
with richer and more semantic-meaningful description. For example, in the cooking
video, the model can predict what tools is the person going to use in the following
sub-activity or what ingredient the person needs in the next procedure. This in
return will be directly useful in a service robot for daily assistance.

Another interesting extension is to perform anticipation over group or inter-
person activity, such as sports activity or other social activities. Focusing on
the interaction between the individuals in the observation, it is crucial to adopt
more dedicated representation to capture the characteristics of the scenarios. This
can be the quantitative anticipation discussed in section 2.1.2 built on trajectory
analysis, for example, to predict the direction for a specific player will move in a
soccer game, or can be the qualitative anticipation built on holistic representation
over the incurred interaction.

A more relevant idea related to our intuitive physics modeling discussed in
chapter 7 is to integrate common sense or prior knowledge into the anticipation
over the visual data. For example, the prior knowledge of stability can hint the
possible placement locations for objects in a manipulation task, the awareness of
behavioral social cues can suggest potential directions for the following interactions.

Better understanding of the model. A major reservation holds the deep learn-
ing model back from real world applications is the lack of interpretability. In our
work in chapter 7, we made an initial attempt to seek insight into the deep model
we learned for the visual stability prediction. Yet, for the target stacking task in
chapter 8, we haven’t been able to pull off explicit connections between the placement
decision and the physics. Exploration of model interpretation for deep learning model
will be an important topic among the community in the perceivable future.

The straightforward approach is to trace the intermediate computation results in
the deep-nets, but an alternative can be to directly couple the network with prior
knowledge or intuition so that we can inspect the obtained model more easily.

130 Chapter 9. Conclusions and future perspectives

9.2.2 Higher Level Integration
In this dissertation, we have explored the integration of perception, anticipation and
manipulation in intelligent system. Integration of information from different channels
and conforming to more sophisticated decision mechanism will be a continuous
pursuit in both academic and industrial world.

Towards Real World Application. A most relevant application from the thesis
is the mobile manipulator, which is still at its primitive stage. Most production
robots aimed at household service still fall into the category of robot arm for simple
pick-and-place with basic object detection modules. To take up real world tasks with
higher autonomy in the system, it is essential to be capable of processing information
in a more complex and dynamic environment.

In chapter 7 and chapter 8, we have demonstrated how a system plans its
manipulation with physics understanding. Yet to put this mechanism to real world
application, further groundings of the task need to be considered. A very simple
example task would be placing the tablewares, though the system can always find
feasible placement for the plate on top of the bowl but it is preferable for the other
way around. In such scenario, task groundings, together with physics should be
accounted into the planning loop.

Moreover, it is appealing to further include the context information. In applica-
tions of human-robot interactions, not only should the robot understand the task and
plan its actions by the task’s constraints but also be able to anticipate the behavior
or intention of humans as we discussed in chapter 3 to provide precise and timely
assistance.

Synergy of data and learning. Even in an age often characterized by “big data”,
obtaining sufficient quality annotation is always expensive. With simulation and
data synthesis, one can more easily and relatively cheaply generate data for specific
needs. This has been particular successful in games (Mnih et al., 2015; Silver et al.,
2016). In our work in both chapter 7 and chapter 8, we used synthetic data for our
studies.

While simulation engines and game engines, such as the Gazebo12, the Unreal
Engine13 and the Panda3D used in our work provide a generic platform to write
environment to different needs. It is still very time-consuming to customize an
environment to a specific tasks and limits its use from a broader application. Hence,
an interesting direction would be to develop a user-friendly generic platform with
easy customization.

Further, in domains where the real world data are significantly more complex
and different than the simulation can capture, such as the manipulation task in the
real world, it is often nontrivial to adopt the model that works on the synthetic data
for the real world counter-part. Hence, how to bridge the gap between the synthetic

12http://gazebosim.org/
13https://www.unrealengine.com/

http://gazebosim.org/
https://www.unrealengine.com/

9.2. Future Perspectives 131

data and real world data will be a constant topic in the field. In chapter 7, we chose
the representation to reduce the discrepancy between the real world and synthetic
data. An alternative is to train an initial model on the synthetic data and fine-tune
it on the real world data. Various possibilities can be explored here.

List of Figures

1.1 Our work explores different ways of integrations with perception,
anticipation and manipulation modules in intelligent systems. 2

2.1 A hierarchy of video analysis. 11
2.2 Example of qualitative anticipation: recognition of ongoing activity

(Li and Fritz, 2016). 12
2.3 Example of quantitative anticipation: predicting the objects’ trajectory 12
2.4 The architecture for the improved trajectory feature for video data. . 13
2.5 The architecture for the deep learning based representation for video

data. 14
2.6 Learning from demonstration paradigm. 15
2.7 Movement generation with DMPs. 17
2.8 Example of misconception about motion. The object is released while

the car is moving, the subjects are asked to predict which trajectory
the object will follow. The solid line A is the actual trajectory for
the object, however according to the study by McCloskey (1983), a
significant portion of people consider B and C as the answer. 21

2.9 The architecture of intuitive physics engine proposed by Battaglia
et al. (2013). 23

2.10 Support event. 24
2.11 Collision event. 24
2.12 Agent Environment Interface for Reinforcement Learning. 25
2.13 Markov Decision Process . 26
2.14 Generalized Policy Iteration . 29
2.15 The DQN by Mnih et al. (2015). 30
2.16 Experience replay used in DQN. 31
2.17 Skip-frame used in DQN. 32

3.1 An overview of our approach to inferring goal during the recognition
process of a complex activity by predicting with semantic abstraction. 38

133

134 list of figures

3.2 Different ways to represent individual video sequence: full sequence
(left), use one representation for the full sequence; temporal segment
(middle), partition full sequence into temporal segments and combine
representation for individual segments into one representation; sampled
clips (right), sample video clips from the sequence to form several
representations. 42

3.3 Example to show the difference between action prediction and early
recognition. Given a streaming video sequence, (top) action prediction
aims to give a label to a incoming local temporal segment (mix or
cut); (middle) standard early recognition gives a label for the global
video sequence (make a salad); (bottom) our proposed framework to
predict in the hierarchy with accuracy-specificity trade-off. The solid
arrows mark when the decision is made. 43

3.4 Graphical model for recurrent neural networks. (a) The recurrent
neural networks with a single, self-connected hidden layer. (b) The
unrolled model with respect to discrete time steps from (a). (c) The
recurrent network with structural output over the hierarchy. 45

3.5 3-layer hierarchy defined in our dataset. 48
3.6 Some sample frames from our dataset.From top to bottom: make

Neapolitan pizza, make cheese steak sandwich, repair bike brake,
change car oil, make vase, build chair. 49

3.7 (a): train SVM model from full video and predict at different observa-
tion ratios. (b): train model from full video sequences and augmented
dataset.(c): train model from sampled clips. 51

3.8 (a): the expected information over time given specific accuracy.
(b),(c),(d): example of prediction distribution over time based on
the optimization over accuracy-specificity trade-off for train on full
and augment segments. 52

3.9 Results for online recognition. 53
3.10 Example prediction over three activities in the video, from top to

bottom: change car filter, change a CPU and make a cup. 54

4.1 Pipeline for processing order: from receiving the customers’ order to
delivering the package of the ordered the items. 58

4.2 Setup for our system in APC. 59
4.3 The arm joints in Baxter robot. 60
4.4 Components in Baxter robot. 61
4.5 (a): ROS topics model. (b): ROS services model. 62
4.6 An overview for the perception module. 62
4.7 An overview for the actuation module. 63
4.8 (a): Forward kinematics. (b): Inverse kinematics. 64
4.9 Example picking process. 65

list of figures 135

5.1 Example of manipulating a human tool: Our approach enables the
Baxter research robot to use an electric tacker. 68

5.2 Illustration of our tool-tip modeling where it decompose the process
into three stages: preparation, interacting and returning. The arrow
sketches the moving direction of the tool tip. 70

5.3 End-effectors on different robots, from left to right: dexterous hand on
NASA’s robonaut, PR2’s jaw gripper, Baxter’s parallel plate gripper
and UBR1 parallel jaw gripper . 71

5.4 Example of manipulating an electric tacker with dexterous hand and
a dual-gripper. 73

5.5 Overview of our approach. The solid arrow denotes the learning
process from demonstration, the dashed arrow for the process of
replaying on novel task. 73

5.6 Kinesthetic demonstration to use an electric tacker. 74
5.7 An illustration of the LfD approach. S1, S2 represent the activated

states for end-effector 1 and 2, MP for Manipulation Primitive. . . . 75
5.8 The geometry of the tool use model. The trajectory of both end-

effectors T1, T2 is transformed into the coordinate system of the action
point {P}, encoding the goal position T ′ = {T ′1, T ′2} in our tool use
model. 76

5.9 Additional segmentation of manipulation primitives introduced by the
state changes of the gripper compared to the original segmentation
shown in Figure 5.7. S1, S2 are the activation signal for end-effector
1, 2, G2 is the gripper’s open/close state for end-effector 2. 77

5.10 Tools used in our experiments, (left) an electric tacker, (middle), an
electric drill and (right) a hot-glue pen. 78

5.11 Steps of robot using a gluepen after learning. S1, S2 are the activation
signals for robot’s arm 1, 2, G2 is the gripper’s open/close state for
arm 2. 79

5.12 Steps of robot using a drill after learning. S1, S2 are the activation
signals for robot’s arm 1, 2, G2 is the gripper’s open/close state for
arm 2. 80

5.13 Steps of robot using an electric tacker after learning. S1, S2 are the
activation signals for robot’s arm 1, 2, G2 is the gripper’s open/close
state for arm 2. 80

5.14 Configuration tested in our experiment (top view of the robot), where
the green dot denotes the position seen in the demonstration, blue
dots for the novel locations. 81

5.15 Two different approaches for modeling the manipulation primitive: (a):
the second gripper fails to reach the proper position for the gluepen.
(b): the second gripper fails to reach proper position for the drill. . . 82

5.16 Examples of failure cases for end-to-end modeling: (a) the second
gripper fails to reach the proper position for the gluepen. (b) the
second gripper fails to reach proper position for the drill. 82

136 list of figures

6.1 An example of scene graph in Panda3D. 88
6.2 The render process in Panda3D. 89
6.3 Overview of the data generator for visual stability prediction. The

scene images and their corresponding stability labels are collected. . . 90
6.4 Example set-up of the scene for the data generator. 90
6.5 Example of generated scene images with different total number of

blocks. 91
6.6 Overview of the environment for target stacking. 92
6.7 Different perspective lens used in this thesis.(a): Perspective projection.

(b): Orthographic projection. 93
6.8 State representation in the stacking environment 93
6.9 Process of collision and stability detection 94
6.10 Internal representation to detect contact and collision conditions: (a)

Detect vertical contact. (b) Detect collision. 95
6.11 Interface design for the environment with interaction of the agent. . . 96

7.1 Given a wood block structure, our visual stability classifier predicts
the stability for future placements, the robot then stacks a block
among the predicted stable placements. 98

7.2 An overview of our approach for learning visual stability. Note that
physics engine is only used during training time to get the ground
truth to train the deep neural network while at test time, only rendered
scene images are given to the learned model to predict the physical
stability of the scenes. 102

7.3 We use CAM to visualize the results for model interpretation. 110
7.4 An overview of our manipulation system. Our visual-stability classi-

fier is integrated to recognize feasible candidate placement to guide
manipulation. 111

7.5 Blocks used in our experiment. 111
7.6 The procedure to generate candidates placement images for a give

scene in our experiment. 112

8.1 Target stacking: Given a target shape image, the agent is required to
move and stack blocks to reproduce it. 119

8.2 Example scenes constructed by the learned agent. 120
8.3 Our proposed model GDQN which extends the Q-function approxi-

mator to integrate goal information. 122

list of figures 137

8.4 Reward shaping used in target stacking. (a): overlap ratio to the
target. The gray area in the middle figure denotes the intersected
foreground region between current and target scene, and the overlap
ratio is the ratio between the areas of the two. (b): distance under
the distance transform of the target. The middle figure denotes the
distance transform under the target shown in the left. The distance
from current scene to the target is the sum of distances masked by
the current scene in the distance transform. 124

8.5 a: Targets for 2 blocks.b: Targets for 3 blocks. c: Targets for 4 blocks. 125

List of Tables

3.1 An overview of action/activity datasets in the literature. 40
3.2 Classification results on full video sequence 50

5.1 Success rate of tool use in our experiments 82

7.1 Overview of the scene parameters in our rendered scenes. There are 3
groups of scene parameters across number of blocks, stacking depth
and block size. 104

7.2 Intra-group experiment by varying scene parameters. 106
7.3 The upper figure shows the experiment settings for Cross-group clas-

sification where we train on simpler scenes and test on more complex
scenes. The lower table shows the results. 107

7.4 Results for generalization experiments. 108
7.5 Results from human subject test a and corresponded accuracies from

image-based model b in format a/b for the sampled data. 109
7.6 Results for real world test. “Pred.” is the prediction accuracy. “Mani.”

is the manipulation success rate with counts for successful place-
ments/all possible stable placements for each scene. “H/V” refer to
horizontal/vertical placement. 113

8.1 Results from navigation task. 124
8.2 Results for target stacking. For “GDQN + X”, X denotes different

ways for reward shaping as described in previous section, OR for
overlap ratio, DT for distance transform. For metrics, OR stands for
average overlap ratio, SR for average success rate. 126

139

Bibliography

P. Abbeel (2008). Apprenticeship learning and reinforcement learning with application
to robotic control, Stanford University. Cited on page 19.

J. Aggarwal and M. S. Ryoo (2011). Human activity analysis: A review, ACM
Computing Surveys (CSUR). Cited on page 39.

P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine (2016). Learning to
poke by poking: Experiential learning of intuitive physics, in Advances in Neural
Information Processing Systems 2016 . Cited on page 119.

E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter (2011).
Learning the semantics of object–action relations by observation, The International
Journal of Robotics Research, p. 0278364911410459. Cited on page 70.

E. E. Aksoy, F. Wörgötter, A. Ude, et al. (2015). Probabilistic semantic models
for manipulation action representation and extraction, Robotics and Autonomous
Systems, vol. 65, pp. 40–56. Cited on page 70.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning (2009). A survey of robot
learning from demonstration, Robotics and autonomous systems, vol. 57(5), pp. 469–
483. Cited on pages 15 and 69.

M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt (2011). Sequential
deep learning for human action recognition, in Human Behavior Understanding
2011 , Springer. Cited on page 41.

R. Baillargeon (1994). How do infants learn about the physical world?, Current
Directions in Psychological Science. Cited on pages 99 and 100.

R. Baillargeon (1995). A model of physical reasoning in infancy, Advances in infancy
research. Cited on page 100.

R. Baillargeon (2002). The acquisition of physical knowledge in infancy: A summary
in eight lessons, Blackwell handbook of childhood cognitive development. Cited on
pages 22, 23, 100, and 117.

141

142 bibliography

R. Baillargeon (2008). Innate ideas revisited: For a principle of persistence in infants’
physical reasoning, Perspectives on Psychological Science. Cited on page 99.

P. Battaglia, T. Ullman, J. Tenenbaum, A. Sanborn, K. Forbus, T. Gerstenberg, and
D. Lagnado (2012). Computational Models of Intuitive Physics, in Proceedings of
the Cognitive Science Society 2012 . Cited on page 21.

P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum (2013). Simulation as an
engine of physical scene understanding, Proceedings of the National Academy of
Sciences. Cited on pages 21, 23, 90, 99, 100, 101, 102, 103, 117, and 133.

B. B. Beck (1980). Animal tool behavior: the use and manufacture of tools by animals,
Garland STMP Press. Cited on pages 69 and 71.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling (2013). The Arcade Learning
Environment: An Evaluation Platform for General Agents, Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279. Cited on page 118.

M. G. Bellemare, J. Veness, and M. Bowling (2012). Investigating Contingency
Awareness Using Atari 2600 Games., in AAAI 2012 . Cited on pages 32 and 122.

A. Bhattacharyya, M. Malinowski, B. Schiele, and M. Fritz (2018). Long-Term Image
Boundary Prediction, in Association for the Advancement of Artificial Intelligence
(AAAI) 2018 . Cited on pages 12, 99, 100, 116, and 117.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal (2008). Robot programming by
demonstration, in Springer handbook of robotics 2008 , pp. 1371–1394, Springer.
Cited on page 69.

A. Billard and D. Grollman (2013). Robot learning by demonstration, Scholarpedia,
vol. 8(12), p. 3824. Cited on page 15.

A. F. Blackwell (1988). Spatial reasoning for robots: a qualitative approach. Cited
on pages 20 and 21.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri (2005). Actions as
Space-Time Shapes, in ICCV 2005 . Cited on pages 11 and 39.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba (2016). OpenAI gym, arXiv preprint arXiv:1606.01540 . Cited on
pages 33, 96, and 120.

L. Cao, Y. Mu, A. Natsev, S.-F. Chang, G. Hua, and J. R. Smith (2012). Scene
aligned pooling for complex video recognition, in ECCV 2012 2012 . Cited on
pages 40 and 42.

Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu, A. Michaux, Y. Lin,
S. Dickinson, J. M. Siskind, and S. Wang (2013). Recognizing Human Activities
from Partially Observed Videos, in CVPR 2013 . Cited on pages 40 and 41.

bibliography 143

S. Chiappa and J. R. Peters (2010). Movement extraction by detecting dynamics
switches and repetitions, in Advances in neural information processing systems
2010 . Cited on page 70.

S. A. Cholewiak, R. W. Fleming, and M. Singh (2013). Visual perception of the
physical stability of asymmetric three-dimensional objects, Journal of vision. Cited
on pages 103 and 104.

S. A. Cholewiak, R. W. Fleming, and M. Singh (2015). Perception of physical stability
and center of mass of 3-D objects, Journal of vision. Cited on page 103.

N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada,
A. Rodriguez, J. M. Romano, and P. R. Wurman (2016). Analysis and observations
from the first amazon picking challenge, IEEE Transactions on Automation Science
and Engineering. Cited on page 59.

E. Coumans (2010). Bullet physics engine, Open Source Software: http://bulletphysics.
org, vol. 1. Cited on pages 88, 103, and 120.

N. Dalal and B. Triggs (2005). Histograms of oriented gradients for human detection,
in CVPR 2005 . Cited on pages 13 and 42.

N. Dalal, B. Triggs, and C. Schmid (2006). Human detection using oriented histograms
of flow and appearance, in ECCV 2006 . Cited on pages 13 and 43.

F. De la Torre, J. Hodgins, A. Bargteil, X. Martin, J. Macey, A. Collado, and
P. Beltran (2008). Guide to the carnegie mellon university multimodal activity
(cmu-mmac) database. Cited on page 39.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A
large-scale hierarchical image database, in CVPR 2009 . Cited on page 105.

J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei (2012). Hedging your bets: Optimizing
accuracy-specificity trade-offs in large scale visual recognition, in CVPR 2012 .
Cited on page 45.

M. Denil, P. Agrawal, T. D. Kulkarni, T. Erez, P. Battaglia, and N. de Freitas
(2017). Learning to perform physics experiments via deep reinforcement learning,
in International Conference on Learning Representations 2017 . Cited on page
117.

A. Edsinger and C. C. Kemp (2007). Toward robot learning of tool manipulation
from human demonstration, Technical report, Citeseer. Cited on page 69.

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno (2008). 2D Euclidean
distance transform algorithms: A comparative survey, ACM Computing Surveys
(CSUR), vol. 40(1), p. 2. Cited on page 123.

144 bibliography

B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles (2015). ActivityNet:
A Large-Scale Video Benchmark for Human Activity Understanding, in CVPR
2015 . Cited on page 40.

A. Fathi, A. Farhadi, and J. M. Rehg (2011). Understanding egocentric activities, in
ICCV 2011 . Cited on pages 11 and 39.

K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik (2016). Learning Visual Predictive
Models of Physics for Playing Billiards, in ICLR 2016 . Cited on pages 12, 99,
100, 116, and 117.

M. Goslin and M. R. Mine (2004). The Panda3D graphics engine, Computer ,
vol. 37(10), pp. 112–114. Cited on pages 88, 103, and 120.

A. Graves (2012). Supervised sequence labelling with recurrent neural networks,
Springer. Cited on page 44.

D. H. Grollman and O. C. Jenkins (2010). Incremental learning of subtasks from
unsegmented demonstration, in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on 2010 . Cited on page 70.

Y. Guiard (1987). Asymmetric division of labor in human skilled bimanual action:
The kinematic chain as a model, Journal of motor behavior , vol. 19(4), pp. 486–517.
Cited on page 72.

A. Gupta, A. A. Efros, and M. Hebert (2010). Blocks world revisited: Image
understanding using qualitative geometry and mechanics, in ECCV 2010 . Cited
on page 100.

J. Hamrick, P. Battaglia, and J. B. Tenenbaum (2011). Internal physics models guide
probabilistic judgments about object dynamics, in Proceedings of the 33rd annual
conference of the cognitive science society 2011 . Cited on pages 102, 103, and 104.

P. J. Hayes (1985). The second naive physics manifesto. Cited on page 20.

P. J. Hayes et al. (1978). The naive physics manifesto. Cited on page 20.

M. Hoai and F. De la Torre (2012). Max-margin early event detectors, in CVPR
2012 . Cited on pages 12 and 40.

S. Hochreiter and J. Schmidhuber (1997). Long short-term memory, Neural compu-
tation, vol. 9(8), pp. 1735–1780. Cited on page 14.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal (2013). Dynamical
movement primitives: learning attractor models for motor behaviors, Neural
computation, vol. 25(2), pp. 328–373. Cited on pages 16, 17, 18, and 19.

bibliography 145

A. J. Ijspeert, J. Nakanishi, and S. Schaal (2002). Learning Attractor Landscapes for
Learning Motor Primitives, in Advances in Neural Information Processing Systems
2002 . Cited on pages 16, 19, 69, 70, 74, and 76.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell (2014). Caffe: Convolutional architecture for fast feature embedding,
in Proceedings of the ACM International Conference on Multimedia 2014 . Cited
on page 105.

L. P. Kaelbling (1993). Learning to achieve goals, in IJCAI 1993 . Cited on page
118.

S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell (2012). Timely Object Recog-
nition, in NIPS 2012 . Cited on page 46.

S. Karayev, M. Fritz, and T. Darrell (2014). Anytime Recognition of Objects and
Scenes, in CVPR 2014 . Cited on page 46.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei (2014).
Large-scale video classification with convolutional neural networks, in CVPR 2014 .
Cited on pages 42 and 50.

C. C. Kemp and A. Edsinger (2006). Robot manipulation of human tools: Au-
tonomous detection and control of task relevant features, in Int. Conf. Development
and Learning 2006 . Cited on pages 69, 71, and 72.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski (2016). Vizdoom:
A doom-based ai research platform for visual reinforcement learning, in Computa-
tional Intelligence and Games (CIG), 2016 IEEE Conference on 2016 . Cited on
pages 33 and 119.

S. Kimura, T. Watanabe, and Y. Aiyama (2010). Force based manipulation of Jenga
blocks, in IROS 2010 . Cited on page 101.

K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert (2012). Activity forecasting,
in ECCV 2012 . Cited on pages 41 and 44.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto (2011). Robot learning from
demonstration by constructing skill trees, The International Journal of Robotics
Research, p. 0278364911428653. Cited on page 70.

H. S. Koppula and A. Saxena (2013). Anticipating human activities using object
affordances for reactive robotic response. Cited on pages 41 and 44.

A. Krizhevsky, I. Sutskever, and G. E. Hinton (2012). Imagenet classification with
deep convolutional neural networks, in NIPS 2012 . Cited on pages 14, 22, 30,
104, and 105.

146 bibliography

T. Kröger, B. Finkemeyer, S. Winkelbach, S. Molkenstruck, L. Eble, and F. M.
Wahl (2006). Demonstration of multi-sensor integration in industrial manipulation
(poster), in ICRA 2006 . Cited on page 101.

J. R. Kubricht, K. J. Holyoak, and H. Lu (2017). Intuitive physics: Current research
and controversies, Trends in cognitive sciences, vol. 21(10), pp. 749–759. Cited
on page 20.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre (2011). HMDB: a large
video database for human motion recognition, in ICCV 2011 . Cited on page 40.

T. Lan, T.-C. Chen, and S. Savarese (2014). A Hierarchical Representation for Future
Action Prediction, in ECCV 2014 . Cited on pages 41 and 44.

I. Laptev (2005). On space-time interest points, International Journal of Computer
Vision, vol. 64(2-3), pp. 107–123. Cited on page 13.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld (2008). Learning realistic
human actions from movies, in CVPR 2008 . Cited on page 43.

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, et al. (1995). Comparison of learning algorithms
for handwritten digit recognition, in International conference on artificial neural
networks 1995 . Cited on page 105.

A. Lerer, S. Gross, and R. Fergus (2016). Learning Physical Intuition of Block Towers
by Example, in International Conference on Machine Learning 2016 . Cited on
pages 12, 101, 116, and 117.

W. Li, S. Azimi, A. Leonardis, and M. Fritz (2016). To fall or not to fall: A visual
approach to physical stability prediction, arXiv preprint arXiv:1604.00066 . Cited
on pages 5, 12, 97, 116, and 117.

W. Li, J. Bohg, and M. Fritz (2017a). Acquiring Target Stacking Skills by Goal-
Parameterized Deep Reinforcement Learning, arXiv preprint arXiv:1711.00267 .
Cited on pages 5 and 116.

W. Li and M. Fritz (2012). Recognizing Materials from Virtual Examples, in ECCV
2012 . Cited on page 100.

W. Li and M. Fritz (2015). Teaching robots the use of human tools from demonstration
with non-dexterous end-effectors, in Humanoid Robots (Humanoids), 2015 IEEE-
RAS 15th International Conference on 2015 . Cited on pages 4 and 68.

W. Li and M. Fritz (2016). Recognition of ongoing complex activities by sequence
prediction over a hierarchical label space, in Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on 2016 . Cited on pages 4, 12, 38,
and 133.

bibliography 147

W. Li, A. Leonardis, and M. Fritz (2017b). Visual Stability Prediction for Robotic
Manipulation, in IEEE International Conference on Robotics and Automation
2017 . Cited on pages 5, 98, 117, 119, and 120.

L.-H. Lin (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching, Machine learning, vol. 8(3/4), pp. 69–97. Cited on page
32.

J. Liu, J. Luo, and M. Shah (2009). Recognizing realistic actions from videos “in the
wild”, in CVPR 2009 . Cited on page 40.

D. W. MacDougal (2012). Galileo’s Great Discovery: How Things Fall, in Newton’s
Gravity 2012 , Springer. Cited on page 100.

M. Marszalek, I. Laptev, and C. Schmid (2009). Actions in context, in CVPR 2009 .
Cited on pages 11 and 39.

M. McCloskey (1983). Intuitive physics, Scientific american. Cited on pages 21, 99,
100, and 133.

J. Meiss (2007). Dynamical systems, Scholarpedia, vol. 2(2), p. 1629. Cited on page
16.

R. Messing, C. Pal, and H. Kautz (2009). Activity recognition using the velocity
histories of tracked keypoints, in ICCV 2009 . Cited on page 39.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller (2013). Playing Atari With Deep Reinforcement Learning, in NIPS
Deep Learning Workshop 2013 . Cited on page 118.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). Human-
level control through deep reinforcement learning, Nature. Cited on pages 30, 121,
122, 130, and 133.

T. B. Moeslund, A. Hilton, and V. Krüger (2006). A survey of advances in vision-based
human motion capture and analysis, Computer vision and image understanding.
Cited on page 39.

R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi (2016). Newtonian
scene understanding: Unfolding the dynamics of objects in static images, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
2016 . Cited on pages 12, 99, 100, 116, and 117.

R. Mottaghi, C. Schenck, D. Fox, and A. Farhadi (2017). See the Glass Half Full:
Reasoning About Liquid Containers, Their Volume and Content, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition 2017 . Cited
on page 117.

148 bibliography

A. Y. Ng, D. Harada, and S. Russell (1999). Policy invariance under reward transfor-
mations: Theory and application to reward shaping, in ICML 1999 . Cited on
pages 27 and 122.

S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto (2013). Incremental
Semantically Grounded Learning from Demonstration, in Robotics: Science and
Systems 2013 2013 . Cited on pages 70 and 78.

S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto (2012). Learning and
generalization of complex tasks from unstructured demonstrations, in IEEE/RS
Int. Conf. Intelligent Robots and Systems (IROS) 2012 . Cited on pages 70 and 76.

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee,
J. Aggarwal, H. Lee, L. Davis, et al. (2011). A large-scale benchmark dataset for
event recognition in surveillance video, in CVPR 2011 . Cited on pages 11 and 39.

P. Over, G. Awad, J. G. Fiscus, B. Antonishek, M. Michel, W. Kraaij, A. F. Smeaton,
and G. Quénot (2010). TRECVID 2010 - An Overview of the Goals, Tasks, Data,
Evaluation Mechanisms and Metrics, in TRECVID 2010 . Cited on page 39.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal (2009). Learning and generalization
of motor skills by learning from demonstration, in IEEE Int. Conf. Robotics and
Automation (ICRA) 2009 . Cited on pages 69 and 75.

X. Peng, B. Sun, K. Ali, and K. Saenko (2015). Learning Deep Object Detectors
from 3D Models, in ICCV 2015 . Cited on page 100.

R. Poppe (2010). A survey on vision-based human action recognition, Image and
vision computing. Cited on page 39.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng (2009). ROS: an open-source Robot Operating System, in ICRA workshop on
open source software 2009 . Cited on page 78.

R. G. Radwin, J. T. Haney, A. I. H. Association, E. Committee, et al. (1996). An
ergonomics guide to hand tools, American Industrial Hygiene Association. Cited
on page 71.

A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson (2014). CNN features off-the-
shelf: an astounding baseline for recognition, in CVPR workshops 2014 . Cited on
page 104.

K. Rematas, T. Ritschel, M. Fritz, E. Gavves, and T. Tuytelaars (2016). Deep
Reflectance Maps, in CVPR 2016 . Cited on page 100.

K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars (2014). Image-based Synthesis
and Re-Synthesis of Viewpoints Guided by 3D Models, in CVPR 2014 . Cited on
page 100.

bibliography 149

M. D. Rodriguez, J. Ahmed, and M. Shah (2008). Action MACH a spatio-temporal
Maximum Average Correlation Height filter for action recognition, in CVPR 2008 .
Cited on page 39.

M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele (2012). A database for fine
grained activity detection of cooking activities, in CVPR 2012 . Cited on pages
11, 38, and 40.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1985). Learning internal
representations by error propagation, Technical report, DTIC Document. Cited
on page 45.

M. Ryoo (2011). Human activity prediction: Early recognition of ongoing activities
from streaming videos, in ICCV 2011 . Cited on pages 12, 40, 41, and 44.

M. Ryoo and J. Aggarwal (2010). UT-Interaction Dataset, ICPR contest on Semantic
Description of Human Activities(SDHA). Cited on page 39.

S. Schaal and C. G. Atkeson (1998). Constructive incremental learning from only
local information, Neural computation, vol. 10(8), pp. 2047–2084. Cited on page
18.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver (2016). Prioritized Experience
Replay, in International Conference on Learning Representations 2016 . Cited on
page 32.

C. Schuldt, I. Laptev, and B. Caputo (2004). Recognizing human actions: a local
SVM approach, in ICPR 2004 . Cited on pages 11, 38, and 39.

G. Sergio, N. Krishnamoorthy, G. Malkarnenkar, T. Darrell, R. Mooney, and
K. Saenko (2013). YouTube2Text: Recognizing and Describing Arbitrary Ac-
tivities Using Semantic Hierarchies and Zero-Shoot Recognition, in ICCV 2013 .
Cited on page 40.

A. P. Shon, D. Verma, and R. P. Rao (2007). Active imitation learning, in AAAI
2007 . Cited on page 19.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus (2012). Indoor segmentation and
support inference from RGBD images, in ECCV 2012 . Cited on page 100.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016).
Mastering the game of Go with deep neural networks and tree search, Nature,
vol. 529(7587), pp. 484–489. Cited on pages 33 and 130.

K. Simonyan and A. Zisserman (2015). Very deep convolutional networks for large-
scale image recognition, in ICLR 2015 2015 . Cited on page 105.

150 bibliography

B. Smith and R. Casati (1994). Naive Physics: An Essay in Ontology, Philosophical
Psychology. Cited on page 99.

R. Smith et al. (2005). Open dynamics engine. Cited on page 88.

S. Stein and S. J. McKenna (2013). Combining embedded accelerometers with
computer vision for recognizing food preparation activities, in Proceedings of the
2013 ACM international joint conference on Pervasive and ubiquitous computing
2013 . Cited on pages 11 and 40.

A. Stoytchev (2005). Behavior-grounded representation of tool affordances, in IEEE
Int. Conf. Robotics and Automation (ICRA) 2005 . Cited on page 69.

R. S. Sutton (1988). Learning to predict by the methods of temporal differences,
Machine learning, vol. 3(1), pp. 9–44. Cited on page 29.

R. S. Sutton and A. G. Barto (1998). Introduction to reinforcement learning, vol.
135, MIT Press Cambridge. Cited on pages 25, 28, and 29.

M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter (2011). Learning to pour with
a robot arm combining goal and shape learning for dynamic movement primitives,
Robotics and Autonomous Systems, vol. 59(11), pp. 910–922. Cited on page 70.

K. Tang, L. Fei-Fei, and D. Koller (2012). Learning latent temporal structure for
complex event detection, in CVPR 2012 . Cited on page 42.

M. Tenorth, J. Bandouch, and M. Beetz (2009). The TUM kitchen data set of
everyday manipulation activities for motion tracking and action recognition, in
ICCV Workshops 2009 . Cited on pages 11 and 39.

T. Tieleman and G. Hinton (2012). Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude, COURSERA: Neural networks for
machine learning, vol. 4(2), pp. 26–31. Cited on page 31.

M. Toussaint, N. Plath, T. Lang, and N. Jetchev (2010). Integrated motor control,
planning, grasping and high-level reasoning in a blocks world using probabilistic in-
ference, in Robotics and Automation (ICRA), 2010 IEEE International Conference
on 2010 . Cited on page 119.

H. Van Hasselt, A. Guez, and D. Silver (2016). Deep Reinforcement Learning with
Double Q-Learning., in AAAI 2016 . Cited on page 32.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al. (2017). StarCraft
II: a new challenge for reinforcement learning, arXiv preprint arXiv:1708.04782 .
Cited on page 33.

H. Wang, A. Klaser, C. Schmid, and C.-L. Liu (2011). Action recognition by dense
trajectories, in CVPR 2011 . Cited on pages 13, 42, and 50.

bibliography 151

J. Wang, P. Rogers, L. Parker, D. Brooks, and M. Stilman (2009). Robot Jenga:
Autonomous and strategic block extraction, in IROS 2009 . Cited on pages 101
and 114.

L. Wang, Y. Qiao, and X. Tang (2015). Action recognition with trajectory-pooled
deep-convolutional descriptors, in Proceedings of the IEEE conference on computer
vision and pattern recognition 2015 . Cited on page 14.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas (2016).
Dueling Network Architectures for Deep Reinforcement Learning, in International
Conference on Machine Learning 2016 . Cited on page 32.

C. J. Watkins and P. Dayan (1992). Q-learning, Machine learning, vol. 8(3-4),
pp. 279–292. Cited on pages 29 and 121.

D. Weinland, R. Ronfard, and E. Boyer (2011). A survey of vision-based methods for
action representation, segmentation and recognition, Computer Vision and Image
Understanding. Cited on page 39.

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid (2013). Deepflow: Large
displacement optical flow with deep matching, in ICCV 2013 . Cited on page 109.

J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum (2015). Galileo:
Perceiving Physical Object Properties by Integrating a Physics Engine with Deep
Learning, in NIPS 2015 . Cited on pages 99, 100, 116, and 117.

I. Yildirim, T. Gerstenberg, B. Saeed, M. Toussaint, and J. Tenenbaum (2017).
Physical problem solving: Joint planning with symbolic, geometric, and dynamic
constraints, arXiv preprint arXiv:1707.08212 . Cited on pages 116 and 117.

J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici (2015). Beyond short snippets: Deep networks for video classification,
in Proceedings of the IEEE conference on computer vision and pattern recognition
2015 . Cited on page 14.

B. Zheng, Y. Zhao, J. Yu, K. Ikeuchi, and S.-C. Zhu (2013). Beyond point clouds:
Scene understanding by reasoning geometry and physics, in CVPR 2013 . Cited
on page 100.

B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba (2016). Learning Deep Features
for Discriminative Localization., CVPR. Cited on page 108.

R. Zöllner, T. Asfour, and R. Dillmann (2004). Programming by demonstration: dual-
arm manipulation tasks for humanoid robots., in IEEE/RS Int. Conf. Intelligent
Robots and Systems (IROS) 2004 . Cited on page 72.

bibliography 153

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Perspective
	1.2 Contributions
	1.3 Outline

	2 Related Work
	2.1 Anticipation from Video
	2.1.1 Deeper Understanding of Videos
	2.1.2 Anticipation from Visual Data
	2.1.3 Video Representation

	2.2 Learning from Demonstration
	2.2.1 Basic Concepts
	2.2.2 Dynamic Movement Primitives
	2.2.3 Applications

	2.3 Intuitive Physics
	2.3.1 Origin
	2.3.2 Research in Cognitive Science
	2.3.3 Research in Development Psychology

	2.4 Reinforcement Learning
	2.4.1 Basic Elements in Reinforcement Learning
	2.4.2 Markov Decision Process
	2.4.3 Q-Learning and Deep Q-Network
	2.4.4 Outlook

	I From Perception to Anticipation
	3 Recognition of Ongoing Complex Activities
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Video Representation
	3.3.2 Early Recognition
	3.3.3 Recurrent Neural Networks
	3.3.4 Early Recognition in a Semantic Hierarchy

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Full Video Recognition
	3.4.3 Recognition from Partial Observation

	3.5 Conclusion

	II From Perception to Manipulation
	4 Participation in Amazon Picking Challenge
	4.1 Amazon Picking Challenge
	4.2 System Architecture
	4.2.1 System Overview
	4.2.2 Baxter Research Robot
	4.2.3 Perception Module
	4.2.4 Actuation Module
	4.2.5 Limitations

	5 Teaching Robots the Use of Human Tools
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Compact Modeling of Human Tools
	5.3.2 Robot Manipulation of Human Tools
	5.3.3 Learning Tool Use from Demonstration

	5.4 Experiments
	5.4.1 Experiment 1: Learning to use a hot-glue pen
	5.4.2 Experiment 2: Learning to use an electric drill
	5.4.3 Experiment 3: Learning to use an electric tacker
	5.4.4 Evaluation

	5.5 Conclusions

	III From Perception over Anticipation to Manipulation
	6 Simulation Environment
	6.1 Introduction to Panda3D
	6.2 Data Generator for Visual Stability Prediction
	6.2.1 Tower Generation
	6.2.2 Stability Simulation

	6.3 Stacking Environment for Skill Learning
	6.3.1 State Representation
	6.3.2 Collision and Stability Detection
	6.3.3 Interface Design

	7 Visual Stability Prediction for Robotic Manipulation
	7.1 Introduction
	7.2 Related Work
	7.3 Recognition
	7.3.1 Synthetic Data
	7.3.2 Stability Prediction from Still Images
	7.3.3 Prediction Performance

	7.4 Manipulation
	7.4.1 Prediction on Real World Data
	7.4.2 Manipulation Test
	7.4.3 Discussion

	7.5 Conclusion

	8 Acquiring Target Stacking Skills
	8.1 Introduction
	8.2 Related Work
	8.3 Learning
	8.3.1 Task Description
	8.3.2 Task Distinction
	8.3.3 Environment Implementation

	8.4 Goal-Parameterized Deep Q Networks
	8.4.1 Learning Framework
	8.4.2 Implementation Details

	8.5 Experiments
	8.5.1 Toy Example with Goal Integration
	8.5.2 Target Stacking

	8.6 Conclusion

	9 Conclusions and future perspectives
	9.1 Conclusions
	9.1.1 From Perception to Anticipation
	9.1.2 From Perception to Manipulation
	9.1.3 From Perception over Anticipation to Manipulation

	9.2 Future Perspectives
	9.2.1 Higher Level Intelligence
	9.2.2 Higher Level Integration

	 List of Figures
	 List of Tables
	 Bibliography

