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Abstract

This thesis deals with a certain class of variational problems of higher order that
stem from applications in mathematical image processing. The main intention is
to study the regularity behavior of minimizers of integral functionals on Sobolev
spaces Wm,1(Ω) (m ∈ N, Ω an open and bounded subset of Rn) with di�eren-
tiable energy densities of linear growth approximating the TV -case. Building
upon results that were given by Bildhauer, Fuchs, Tietz and Weickert in the
�rst-order case (m = 1), we treat existence of weakly di�erentiable, relaxed,
dual as well as of classically di�erentiable solutions under suitable conditions
on the model. Our considerations are supplemented with a detailed study of
the lower-dimensional cases n = 1, 2, as well as with a �coupling model� which
o�ers an alternative approach to the higher-order case.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einer bestimmten Klasse von Varia-
tionsproblemen höherer Ordnung, die von Anwendungen in der mathematischen
Bildverarbeitung herrühren. Das Hauptaugenmerk liegt dabei auf der Unter-
suchung des Regularitätsverhaltens der Minimierer von Integral-Funktionalen
auf Sobolev-Räumen Wm,1(Ω) (m ∈ N, Ω eine o�ene und beschränkte Teil-
menge von Rn) mit di�erenzierbaren Energiedichten von linearem Wachstum,
die den TV -Fall approximieren. Aufbauend auf Resultaten, die von Bildhauer,
Fuchs, Tietz und Weickert im Falle erster Ordnung (m = 1) erbracht wurden,
behandeln wir die Existenz von schwach di�erenzierbaren, relaxierten, dualen
sowie von klassisch di�erenzierbaren Lösungen unter jeweils hinreichenden Vo-
raussetzungen an das Modell. Unsere Betrachtungen werden ergänzt durch eine
eingehendere Analyse der niederdimensionalen Fälle n = 1, 2, sowie eines �Kop-
plungsmodells�, das einen alternativen Zugang zum Fall höherer Ordnung bietet.
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Introduction

Application Background: TV-Denoising of Images

Driven by technological progress, the mathematical branch of image analysis has
undergone a rapid development during the last three decades, gaining more and
more the attention not only of computer scientists and applied mathematicians,
but also that of �pure theorists�. This is surely promoted by the opportunity
to fathom new �elds of application for classical theories from mathematical
analysis (with the Calculus of Variations and the theory of Partial Di�erential
Equations leading the way), often linking interesting new theoretical aspects
with the gratifying prospect of a practical use for the obtained results. Of
particular note in this context is e.g. the theory of BV functions (i.e. functions
of bounded variation, see e.g. [1], [2]), whose development was promoted by De
Giorgi and Caccioppoli in the context of the minimal surface problem around
the midst of the 20th century and which nowadays �nds widespread application
in the modeling of digital images and total variation (TV-) denoising algorithms.
This already brings us to the underlying topic of this thesis.

The history of �TV-denoising� has its roots in the seminal work [3] of Rudin,
Osher and Fatemi that was published in 1992 and in which the authors are
concerned with the following problem: assume that we are given an image that
was recorded with some optical device such as a camera. Due to technical
reasons, the occurrence of artifacts is practically unavoidable and �nding ways
to restore the actual image from the defective data is the fundamental task of
image processing. Mathematically, we may model a (black and white) image as
a function f : Ω→ [0, 1] that maps every point x in the image domain Ω ⊂ R2

(think e.g. of the rectangular piece of cardboard a customary photograph is
printed on) to a gray value f(x) between zero and one; f(x) = 0 indicating
a black and f(x) = 1 indicating a white point. Let f0 denote the �clean�
image, and assume that the artifacts are incorporated by a distortion function
n : Ω→ R, so that the actually observed image f is given by the superposition
f = f0 + n. If n has a certain statistical pro�le (e.g. if the values of n are
normally distributed), one speaks of a (Gaussian) noise and any process that
restores f from f0 is called denoising. At this point, Variational and PDE
methods come into play. The idea is to reconstruct f0 as the minimizer of a
suitable functional that penalizes wild oscillations of the data. To this purpose,
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we consider a variational problem of the general form
minimize F [u] subject to the constraint

−
∫

Ω
(u− f)2 dx = σ,

where σ is the variance of the distribution of the values n(x). F acts on a
suitable function class for which a natural choice in the context of variational
methods would e.g. be some Sobolev space (see Appendix B). Usually, it is
advantageous to consider the related free problem (also known as Tikhonov
problem) which reads as

minimize I[u] := F [∇u] + λ

∫
Ω

(u− f)2 dx, (1)

where the real valued parameter λ now plays the role of a Lagrangian multiplier.

a) b)

Fig. 1: An example image a) without and b) with a noisy data corruption.

So far we have neither �xed the class of functions u in which we want to de-
termine the solution of (1), nor have we speci�ed the regularizing functional
F . A realistic image f , having sharp contours and edges, will surely not give a
classically, yet not even a weakly di�erentiable function (cf. the example image
in Figure 1 a)). In their work [3], the authors therefore propagated the space
BV (Ω) of functions of bounded variation (see Section 1.1) as the correct frame-
work for mathematical imaging tasks, which was already proposed by Rudin in
his 1987 doctoral thesis (see [4]). BV-functions can be characterized as functions
with distributional derivatives in form of a �nite Radon measure. Maybe the
simplest example is the Heaviside function (i.e. the characteristic function of the
interval [0,∞)), whose distributional derivative is a Dirac measure δ0 of mass 1
concentrated in the point x = 0. As this example shows, BV -functions can have
jump-type discontinuities which enables them to reproduce discontinuous image
features, while on the other hand they are still in some sense �smooth enough� to
allow a meaningful treatment with analytical methods. Now the idea of Rudin,
Osher and Fatemi in [3] was to consider (1) with the choice F [u] := |∇u|(Ω)
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(i.e. F [u] is the total variation of u) and thereby the variational problem

minimize I[u] = |∇u|(Ω) + λ

∫
Ω

(u− f)2 dx in BV (Ω). (2)

The numerical results which could be produced with this approach were so con-
vincing, that TV-denoising and related concepts soon became a major �eld of
investigation in image processing and (2) is today simply referred to as the
�ROF-model�. In an abstract form, this is also the basis of the thesis at hand
where, broadly speaking, we consider a generalized variant of problem (1), in
which the gradient ∇u is replaced with a higher derivative. To understand the
intention behind this approach, we have to look at a certain phenomenon which
frequently leads to a degradation of the solutions of (2) and is called staircasing
e�ect. This may occur whenever the data function f0 is smooth on a subregion
Ω0 ⊂ Ω of the image domain. If then f is a�icted with a noise, it may happen
that, on Ω0, the solution u of (2) displays a �blocky� pattern of piecewise con-
stant sections, resembling a staircase (therefore the name). This e�ect has been
studied rigorously in the one dimensional case in [5] and numerical examples for
its occurrence can be found e.g. in [6], [7], [8] and [9]. Figure 2 below depicts
an idealized visualization of this phenomenon.

a) b)

Fig. 2: The staircasing e�ect. a) Noisy data function (the dashed line marks the piecewise
a�ne �clean� signal). b) The denoised signal features a staircase-like pattern.

This poses the problem, to avoid �staircasing� while at the same time preventing
the data from �oversmoothing�, for which one possible solution was found in form
of higher-order models such as

minimize Im[u] = |∇mu|(Ω) + λ

∫
Ω

(u− f)2 dx (3)

(for another approach, based on �TV-H1-interpolation�, see e.g. [10]). In (3),
m ∈ {2, 3, 4, ...} and ∇mu =

(
Dα1...αmu

)
αi=1,2

stands for the tensor of all m-th

order partial derivatives of u (in the sense of distributions). We say that �u
is of m-th order bounded variation� (or u ∈ BV m(Ω) for short), if the tensor
∇m−1u lies in the class BV

(
Ω,R2m−1)

(for notational simplicity, we consider

∇ku(x) as an element of the Euclidean space R2k), see Section 1.1 for the details.
Numerical experiments then con�rm that the solutions of (3) are free from
the undesired staircasing since the unpleasant artifacts are relocated to the
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(m − 1)-th derivative and therefore become less visible to the observer. As
representatives of many others we mention in this regard the contributions [6],
[11], [12], [13], [14] [15], [16], [17], [18], [19] and [20]. In alternative to the simple
model (3), extensive research in this �eld over the last years gave rise to a
number of varying approaches to the higher-order (TV-) case (some of which
are specially geared to certain applications or with regard to computational
performance). We particularly mention the �in�mal convolution� model from
[21] which initialized the study of the higher-order case, the concept of �total
generalized variation� as developed in [22], the �coupling model� from [23] and
the combined �rst an second order approach from [24]. We also noticed that the
study of merely theoretical aspects of such higher-order models seems to enjoy
a rising popularity as e.g. the works [20], [25], [26] and, more recently, [27]
document.

Next to denoising, another prominent example of a classical task in image pro-
cessing comes from the so called inpainting problem. Here, the defectiveness
of the data is not caused by the interference of a noisy signal, but is the result
of a partial loss of image information on some parts of the domain Ω. Think
e.g. of a section D ⊂ Ω (for de�ciency set) that has been cut out from the
picture (cf. Figure 3). In this case, f is a map from the di�erence set Ω − D
to [0, 1] and the objective is to �nd a sensible extrapolation of f to the points
of D where it is yet unde�ned (therefore, some authors favor the term image
completion over the term image inpainting). There exist many di�erent tech-
niques related to the inpainting problem, we recommend the survey [28] for an
overview. However, in the context of this thesis, the variational approach using
the ROF-model (2) that was introduced in [29] is of central signi�cance. The
idea is simply as follows: in (2), replace the data �tting term λ

∫
Ω(u − f)2 dx

with λ
∫

Ω−D(u− f)2 dx and solve

minimize I[u] = |∇u|(Ω) + λ

∫
Ω−D

(u− f)2 dx in BV (Ω). (4)

a) b)

A A
Fig. 3: The inpainting problem: a) On the de�ciency set D (dashed region) no image data
are available. b) Inpainting algorithms strive to �ll in the missing parts.

Since in applications noise and other types of data corruption often go hand in
hand, one of the main advantages of this combined denoising-inpainting model
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is its robustness to noise, which Chan and Shen in [29] even declare as one of
the fundamental principles any reasonable inpainting technique should obey to.

Interestingly, in some situations (namely if there is a larger gap in the image
data), the numerical results e.g. from [13], [24] and [30] indicate that even for
the inpainting problem itself (i.e. detached from the staircasing e�ect) it is
advantageous to consider higher-order variants of (4), i.e.

minimize Im[u] = |∇mu|(Ω) + λ

∫
Ω−D

(u− f)2 dx in BV m(Ω). (5)

This variational problem can be regarded as the basic object of research of this
thesis, which will be formulated with all details in the following section.

Concretization of the Problem, General Assumptions

Until now, the image domain Ω was assumed to be a subset of R2. However,
some applications (such as e.g. MRI in medical imaging) can lead to three
or even higher dimensional data (cf. e.g. the monograph [31]). Therefore we
may allow Ω to be an open and bounded subset of some Euclidean space Rn
with at least Lipschitz smooth boundary (see e.g. [32] for an explanation of this
terminology). The imposed smoothness condition on ∂Ω and the boundedness
are su�cient for the application of many fundamental theorems such as e.g.
Sobolev's embedding theorems (cf. [32]) and does not represent a severe restric-
tion from the viewpoint of applications (note that in particular the �standard�
domain of image processing, i.e. a rectangle in R2, has this property). As far
as the inpainting problem is concerned, we will assume that the de�ciency set
D ⊂ Ω is at least Lebesgue (Ln-) measurable, satisfying 0 ≤ Ln(D) < Ln(Ω).
The higher-order setting will also require in some cases the Lipschitz-smoothness
of the boundary ∂(Ω−D) (cf. Theorem 1.2.1). As above, the image data is given
by a function f de�ned on Ω−D, where we replace the condition f(x) ∈ [0, 1]
with the more general assumption f ∈ L∞(Ω) (i.e. f is an essentially bounded
Ln-measurable real valued function). For the general existence results in the
�rst part of this thesis, we could also allow vector valued data f ∈ L∞(Ω,RN )
(N ∈ N), corresponding to a multi-channel image (think e.g. of a color pic-
ture), but in order to safe us from another index, we prefer to formulate our
results merely for the scalar case. We emphasize in this connection that for the
regularity results from the second and third part the assumption N = 1 is not
optional. Now on the basis of (5), we de�ne the underlying variational problem
on the function class Wm,1(Ω) ∩ Lq(Ω−D) for some m ∈ N and q ∈ [1,∞) as

minimize I[u] :=

∫
Ω

F (∇mu) dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx

in Wm,1(Ω) ∩ Lq(Ω−D).

(V )
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Here, F : Rnm → [0,∞) denotes a strictly convex energy density of class C2,
satisfying the following set of conditions (Z ∈ Rnm):

F (0) = 0 and F (−Z) = F (Z), (F1)

|∇F (Z)| ≤ ν1, (F2)

F (Z) ≥ ν2|Z| − ν3, (F3)

for some positive constants ν1, ν2, ν3, and the so called �delity function φ :
[0,∞)→ R is at least of class C1 and should have the properties

φ is strictly convex and φ(0) = 0 as well as φ′(0) = 0, (φ1)

c1t
q ≤ φ(t) ≤ c2

(
1 + tq

)
for some q ∈ [1,∞), c1, c2 > 0. (φ2)

We would like to remind the reader of the fact that the strict convexity of F
implies that the second derivative is a positive semi-de�nite bilinear form, i.e.

D2F (Z)(Y, Y ) ≥ 0 for all Y, Z ∈ Rn
m
,

which is important since we will often employ the Cauchy-Schwarz inequality in
the form

D2F (Z)(X,Y ) ≤ D2F (Z)(X,X) ·D2F (Z)(Y, Y ), X, Y, Z ∈ Rn
m
.

Moreover, we note that by the strict convexity of φ, φ(0) = 0, (φ2) and the
mean value theorem we have

φ′(t) ≥ φ(t)

t
≥ c1t

q−1,

which together with Lemma 2.2 on p. 156 of [33] yields the estimate

c′1t
q−1 ≤ φ′(t) ≤ c′2

(
1 + tq−1

)
(φ3)

for the �rst derivative of φ. The reader has probably already noticed that
the requirement F ∈ C2 prohibits the choice F (Z) = |Z|, meaning that (5)
is not included as a special case of (V ). This has the following background:
since in this thesis we are mainly interested in the analytical study of regularity
properties of solutions to (V ) with methods from the Calculus of Variations and
elliptic PDE's, it is not sensible to choose a non-di�erentiable density such as |·|.
However, our conditions on F allow for some well known smooth approximations
of the TV-density, most prominently the regularized TV-density

F (Z) = Fε(Z) :=
√
ε2 + |Z|2 for some small ε > 0

as well as

F (Z) = Φµ(|Z|) :=

|Z|∫
0

s∫
0

(1 + t)−µ dt ds, r ≥ 0, µ ∈ [1,∞), (6)
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which is the standard example of a so called µ-elliptic density. This is how a
density function F is called which in addition to (F1)-(F3) also satis�es the
ellipticity estimate

ν4

(
1 + |Z|

)−µ|X|2 ≤ D2F (Z)
(
X,X

)
≤ ν5

1

1 + |Z|
|X|2, (Fµ)

where ν4, ν5 are positive constants, X,Z ∈ Rnm and the exponent µ can be
chosen from the interval (1,∞). In the boundary case µ = 1, condition (Fµ)
corresponds to the notion of L logL-growth (see e.g. [34]). As we will see in the
second part of this thesis, the notion of µ-ellipticity plays an important role in
connection with the solvability of problem (V ) (cf. also the works [35], [36], [37]
and [38]). Note further that we have the explicit formulasΦµ(r) =

1

µ− 1
r +

1

µ− 1

1

µ− 2
(r + 1)−µ+2 − 1

µ− 1

1

µ− 2
, µ 6= 2,

Φ2(r) = r − ln(1 + r), r ≥ 0

(7)

from which it is easily seen that µ ·Φµ

(
| · |
)
⇒ | · | as µ→∞. Hence µ ·Φµ can

be used to approximate the TV-density just as well as Fε.

Contents and Aim of this Thesis

Let us begin with a short account of some earlier results concerning the �rst-
order case m = 1. This is the subject of numerous publications of Bildhauer,
Fuchs, Tietz and Weickert that were mainly concerned with regularity proper-
ties of minimizers to relaxed and dual formulations of (V ). We should mention
in this connection the works [35], [36], [37] and [39] that stand at the beginning
of their research in this direction and which contain various results for the case
m = 1, n = 2 and Ln(D) = 0 (i.e. pure denoising is considered) as well as for
related models of nearly linear growth, proving existence, higher integrability
and regularity for minimizers of (V ) with µ-elliptic densities. Another impor-
tant contribution, despite not being directly related to the denoising problem, is
the maximum principle from [40], which states that if the data function f is (es-
sentially) bounded, then ‖u‖∞ ≤ ‖f‖∞ holds for the solution of (V ), provided
m = 1 and F (Z) = g(|Z|) for some real valued function g : [0,∞) → [0,∞),
if vector valued data f are considered. This result constitutes the basis for the
study of the vector valued and higher dimensional generalizations that Tietz
considered in his Thesis [41]. It is one of the major drawbacks of the higher-
order model that there is no comparable boundedness principle, as e.g. the
counterexample from [6] on p. 213 shows. More recent are the works [42] which
may serve as a synopsis of the widespread topic, [38] which treats the solvability
of (V ) in the Sobolev class for m = 1, [23] where the authors investigate ana-
lytical properties of a decoupled version of the problem (V ) for m = n = 2 with
superlinear densities (cf. also Part III of the thesis at hand), [43] where a certain
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class of anisotropic densities for vector valued images is considered, [44] and �-
nally [45], where the �maximum principle� for the �rst-order case is established
even if f is only of class L2.

As the reader may guess from the title of this work, we are not primarily inter-
ested in questions concerning the performance and applicability of the proposed
model in practice, but instead in its examination from the viewpoint of elliptic
regularity theory (cf. e.g. the monograph [46]). The various bene�ts that the
use of higher-order methods provides for the solution of the denoising/inpainting
problem have been revealed in a large number of publications, where the reader
will also �nd many numerical examples that justify its usefulness; we refer to
the list of citations at the top of p. 4.

Our further considerations are divided into three parts, the �rst of which treats
general aspects of the variational problem (V ) concerning the existence of gen-
eralized solutions in the class BV m and an analysis of the convex dual problem.
It is initialized by a chapter in which we collect some basic properties of the
function class BV m. Of particular note is the density result from Section 1.2,
which proves that the class of smooth functions C∞(Ω) is a dense subspace
of Wm,1(Ω) ∩ Lq(Ω − D) (with respect to the norm topology) as well as of
BV m(Ω) ∩ Lq(Ω − D) (with respect to the area strict topology). This will be
useful for the study of the relaxed and the dual problem in the second chapter,
where we follow basic ideas from [36] and [37] to examine the set of generalized
minimizers of problem (V ) and establish their connection to the solution of the
convex dual problem via a so called duality formula. This approach becomes
necessary due to the non-re�exivity of the Sobolev space Wm,1(Ω), which ren-
ders an application of the �direct method of the Calculus of Variations�, relying
on the weak compactness principle, impossible.

The second part is devoted to the examination of regularity properties of the
solutions of (V ). By its very nature, this requires to add some further constraints
to our model. We start with the easiest possible case in Chapter 3, where we
set m = n = 1. Although this one dimensional model may appear trivial at �rst
glance, its study will shed a light on some aspects of the general case, especially
the connection between the solvability of (V ) in the Sobolev class Wm,1(Ω) and
the ellipticity parameter µ from (Fµ). Namely, we will construct an example
which proves that, for values µ > 2, problem (V ) does not admit a solution
in the Sobolev class, in general. Following up on this, we take a look at the
two-dimensional specialization m = n = 2 in Chapter 4; without doubt the
setting with the highest relevance to possible applications in image analysis.
The framework of µ-ellipticity will here allow us to prove Sobolev regularity of
generalized minimizers (i.e. the existence of a solution of (V )) with the optimal
bound µ < 2 in the case of pure denoising (Ln(D) = 0), and µ < 3

2 in the
general setting. An application of the blow-up technique by Evans and Gariepy
(see [47]) will yield that this minimizer is even locally Hölder continuous away
from a set of Hausdor� dimension zero on the interior of Ω in Section 4.3.

The third and last part �nally discusses a di�erent approach to the higher-
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order case that was already proposed and analyzed in [23] for densities F of
superlinear growth. The basis for this is a certain coupling procedure, where
an additional set of tensor valued variables is introduced in order to replace the
higher-order derivatives. The resulting variational problem then involves only
�rst-order terms, and the associated di�erential equations are of second order
which constitutes an enormous simpli�cation from the viewpoint of numerics
and computation. Following the general scheme of the thesis, we discuss the
relaxation and the dual problem, followed by a study of regularity properties
for suitable µ-elliptic coupling-densities. In the last section we will be able to
deduce partial interior Hölder regularity of the corresponding minimizers by an
adaption of the method described in [36] by Bildhauer and Fuchs, based on
results by Frehse and Seregin (cf. [48], [49]).

In a short Appendix, the reader will �nd a roundup of some fundamental results
from the theory of function spaces and convex functions of a measure that
will hopefully facilitate the understanding of the text, as well as the execution
of a rather technical auxiliary calculation in connection with the well known
di�erence quotient technique.

With some few exceptions (concerning only minor adjustments or elementary
observations), all results of this thesis are published and can be found in the
papers [50], [51], [52], and [53].
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Chapter 1

Functions of Higher-Order

Bounded Variation

The natural domain of an m-th order variational problem of linear growth is the
Sobolev spaceWm,1(Ω), which consists of all L1(Ω)-functions with distributional
(partial) derivatives up to order m in L1. However, due to the nonre�exivity of
this space, bounded sets fail to be precompact in its weak topology, which means
that there is no direct method to prove the existence of a solution for this class
of problems. Therefore, one has to resort to a suitable relaxed formulation of
the underlying problem, which can e.g. consist in an extension of the associated
functional to a larger class of functions where a minimum is attained owing
to an appropriate compactness principle. In the �rst-order context (m = 1),
this is found in the space BV (Ω) of functions of bounded variation, i.e. those
L1(Ω)-functions whose �rst-order distributional derivatives are Radon measures
of �nite total mass. We refer to the monographs [1] and [2] for a detailed
introduction to this topic. Since we are interested in functionals that involve
m-th derivatives, we have to consider a higher-order equivalent of the space
BV (Ω) which we denote by BV m(Ω) (m = 1, 2, ...). This space consists of all
Wm−1,1(Ω)-functions whose (m−1)-th partial distributional derivatives are BV -
functions. Note that BV 1(Ω) coincides with the classical BV (Ω). In the �rst
section of this chapter, we collect some basic properties of the spaces BV m(Ω)
which, for the most part, follow directly from the corresponding results in the
�rst-order case. The second section treats a speci�c approximation result for
functions in the class BV m(Ω)∩Lq(Ω−D), which will be needed for the further
discussion of the higher-order inpainting problem. This result is published in [50]
(see also [51] for the more general version that is presented here).
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1.1 The Space BV m(Ω)

Let Ω ⊂ Rn (n = 1, 2, ...) be an open set. We de�ne

BV m(Ω) :=
{
u ∈Wm−1,1(Ω) : Dα1...αmu ∈ BV (Ω), αi = 1, ..., n

}
and call it the space of functions of m-th order bounded variation, which together
with the norm

‖u‖BVm(Ω) := ‖u‖Wm−1,1(Ω) + |∇mu|(Ω)

becomes a Banach space. Here |∇mu|(Ω) denotes the total variation of the
tensor �eld

∇m−1u(x) =
(
Dα1...αm−1u(x)

)n
α1,...,αm−1=1

,

as de�ned by

|∇mu|(Ω) := sup

 n∑
α1,...,αm=1

∫
Ω

Dα1...αm−1u · ∂αm ϕα1,...,αm dx

 ,

where the supremum is taken over all ϕ ∈ C1
0

(
Ω.Rnm

)
with ‖ϕ‖∞ = 1.

Obviously, Wm,1(Ω) is a subspace of BV m(Ω) and ‖u‖BVm(Ω) = ‖u‖m,1;Ω

holds for all u ∈ Wm,1(Ω). Function spaces of this type have e.g. been con-
sidered in [54] (and particularly in [55], where the notion HB(Ω) (�Hessien
bornée�=�bounded Hessian�) has been used for the case m = 2). The norm
topology of BV m(Ω) is generally too restrictive for most applications, which
is due to the fact that the set of smooth functions C∞(Ω) ∩ BV m(Ω) is not
dense with respect to ‖ · ‖BVm . This is easily seen from the fact that the
subspace Wm,1(Ω) ⊃ C∞(Ω) ∩ BV m(Ω) is complete and therefore closed in
(BV m(Ω), ‖ ·‖BVm). However, since quite often approximation by smooth func-
tions is a useful tool, this gives reason to equip BV m with another topology
that is induced by the following metric: for u, v ∈ BV m(Ω) we de�ne

ρ(u, v) :=‖u− v‖m−1,1;Ω +
∣∣|∇mu|(Ω)− |∇mv|(Ω)

∣∣
+

∣∣∣∣ ∫
Ω

√
1 + |∇mu|2 −

∫
Ω

√
1 + |∇mv|2

∣∣∣∣, (1.1)

where for the convex function F : R → R, t 7→
√

1 + t2 the term
∫

Ω F (|∇u|)
is de�ned according to [54], see also Appendix B. Convergence with respect to
this metric is called area strict convergence owing to the presence of the surface-
area term in the last summand. If this term is canceled out from the de�nition
of ρ, then the induced convergence is simply referred to as strict convergence.
The following result is obtained as a corollary from a more general result by
Demengel and Temam (see Theorem 2.2 and Remark 2.1 in [54]):

Lemma 1.1.1

Let Ω ⊂ Rn be an open subset with Lipschitz boundary. Then, for any u ∈
BV m(Ω) and ε > 0 there exists ϕ ∈ C∞(Ω) ∩BV m(Ω) such that

ρ(u, ϕ) < ε.
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Remark 1.1.1 a) In [54] it is actually proved that the above result is true if√
1 + t2 is replaced with any other convex function of linear growth and ∇m

is replaced with any other linear di�erential operator with constant coe�-
cients.

b) Demengel and Temam actually require ∂Ω to be of class C1. However, the
proof of Lemma 1.1.1 does not seem to make use of this stronger regularity
assumption and works for Lipschitz boundaries as well.

The next result concerns the existence of boundary traces of BV m-functions.
It is a simple consequence of the corresponding result in the �rst-order case
(m = 1), see Theorem 3.87 and Theorem 3.88 in [1]:

Lemma 1.1.2

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary, and let u ∈ BV m(Ω).
Then there exist (m − 1) linear operators T1, ..., Tm−1 which map u to Tku ∈
L1
(
∂Ω,Rnk

)
such that for Hn−1-almost all x ∈ ∂Ω it holds

lim
r↓0
−
∫
Br(x)∩Ω

|∇ku(y)− Tku(x)|dy = 0, i ∈ {1, ...,m− 1}.

Furthermore, there is a constant C > 0 which depends only on Ω such that
‖Tku‖L1(∂Ω) ≤ C‖u‖BVm(Ω) for all k ∈ {1, ...,m − 1} and the operators Tk are
continuous even with respect to the area-strict topology of BV m(Ω).

Proof. This immediately follows from an application of Theorem 3.87 and The-
orem 3.88 from [1] to each of the functions ∇ku ∈ BV (Ω,Rnk), k ∈ {1, ...,m−
1}.

Remark 1.1.2 (See Remark 2.2 in [54])
If Ω is bounded with Lipschitz boundary, then the approximating functions ϕ ∈
C∞(Ω)∩BV m(Ω) from Lemma 1.1.1 in [54] can be chosen to satisfy Tkϕ = Tku
for all k = 1, ...,m− 1.

Another useful feature of BV -functions is their extension property from Ω to Rn,
provided the domain Ω is a so called extension domain, which is in particular
the case for our choice of Ω (see Proposition 3.21 in [1]):

Lemma 1.1.3

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary. Then, for any u ∈
BV m(Ω) there exists ũ ∈ BV m(Rn) such that u = ũ on Ω and |∇mũ|(∂Ω) = 0.

Proof. By Lemma 1.1.1 (see Remark 1.1.2) there is a function ϕ ∈ C∞(Ω) ∩
BV m(Ω) ⊂ Wm,1(Ω) with Tkϕ = Tku, k = 1, ...,m − 1. Hence we can apply
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Stein's extension theorem (see Theorem 5 on p. 181 in [56]) to obtain a function
v ∈Wm,1(Rn) with v = ϕ on Ω. We claim that the function

ũ(x) :=

{
u(x) if x ∈ Ω,

v(x) if x ∈ Rn − Ω

has the desired properties. First we note that due to Tk(u − ϕ) = 0 for k =

1, ...,m− 2, each of the functions ∇k(u− φ) lies in the space
◦
W 1,1

(
Ω,Rnk

)
(cf.

Theorem 2, p. 275 in [57]). Hence we can extend u − ϕ by zero outside of Ω
and

ṽ(x) :=

{
u(x)− ϕ(x) if x ∈ Ω,

0 if x ∈ Rn − Ω

is consequently an element of the Sobolev spaceWm−1,1(Ω). But then it follows
that ũ = v + ṽ lies in Wm−1,1(Rn), too. Now Corollary 3.89 in [1] applied to
∇m−1u and ∇m−1v yields ũ ∈ BV m(Rn) together with

|∇mũ|(∂Ω) =

∫
∂Ω

|Tm−1u− Tm−1v| dHn−1 = 0.

Next we consider embeddings of BV m into Lp-spaces. As before, the results of
the following theorem are straight consequences of the corresponding �rst-order
embedding theorem, see Theorem 3.47, Corollary 3.49 in [1]:

Lemma 1.1.4

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary, and u ∈ BV m(Ω).

a) If n = 1, then u ∈ L∞(Ω).

b) If n > m, then u ∈ Lp(Ω) for every 1 ≤ p ≤ n
n−m .

c) If n ≥ 2 and n = m, then u ∈ Lp(Ω) for every 1 ≤ p <∞.

d) If n < m, then u ∈ Cm−n−1,1(Ω).

Proof. By the BV -embedding Theorem (see Theorem 3.49 in [1]), it follows that

∇m−1u ∈ L∞
(
Ω,Rn(m−1))

if n = 1 and ∇m−1u ∈ Ln/(n−1)
(
Ω,Rn(m−1))

if n > 1.

Thus u ∈Wm−1, n
n−1 (Ω) and the results b)-d) follow from Sobolev's embedding

Theorem (see Theorem 4.12 in [32]).

The following compactness result is the key tool for proving the existence of
minimizers in the class BV m(Ω):
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Lemma 1.1.5

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary, and let (uk)
∞
k=1 be a

sequence of BV m(Ω)-functions such that

‖uk‖BVm(Ω) ≤M

for some constant M > 0. Then there is a subsequence (ukl)
∞
l=1 and a function

u ∈ BV m(Ω) such that

‖u− ukl‖Wm−1,1(Ω) → 0 for l→∞ and ‖u‖BVm(Ω) ≤M.

Proof. By Lemma 1.1.1, there is a sequence (ϕk)
∞
k=1 ⊂ C∞(Ω) ∩BV m(Ω) such

that

‖uk − ϕk‖Wm−1,1(Ω) ≤ 1/k as well as ‖ϕk‖BVm(Ω) ≤M + 1/k.

Since by the Rellich-Kondrachov Theorem (see Theorem 6.3 in [32])Wm,1(Ω) is
compactly embedded intoWm−1,1(Ω), there exists a subsequence (ϕkl)

∞
l=1 which

converges to a function u ∈Wm−1,1(Ω) as l→∞. In particular,

∇m−1ϕkl
l→∞−−−→ ∇m−1u in L1

(
Ω,Rn

m−1)
and therefore ∇m−1u ∈ BV

(
Ω,Rnm−1)

together with

|∇mu|(Ω) ≤ lim inf
l→∞

∫
Ω

|∇mϕkl |dx

by Propositions 3.6 and 3.13 in [1]. Thus u ∈ BV m(Ω) and

‖u‖BVm(Ω) ≤ lim inf
l→∞

‖ϕkl‖BVm(Ω) ≤M.

We end this section with a higher-order variant of the famous Poincaré inequal-
ity, which will be useful throughout the following:

Lemma 1.1.6

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary, m ∈ N, 1 ≤ p < ∞
and let D ⊂ Ω be a measurable subset with 0 ≤ Ln(D) < Ln(Ω).

a) There is a constant C > 0, depending only on Ω, D, m,n and p such that
for all u ∈Wm,p(Ω)

‖u‖Wm,p(Ω) ≤ C ·
(
‖∇mu‖Lp(Ω) + ‖u‖L1(Ω−D)

)
.

b) There is a constant C > 0, depending only on Ω, D, m and n such that for
all u ∈ BV m(Ω)

‖u‖BVm(Ω) ≤ C ·
(
|∇mu|(Ω) + ‖u‖L1(Ω−D)

)
.
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Proof. Ad a). From Theorem 1.1.15 and Corollary 1.1.11 in [58] it follows that
due to Ln(Ω−D) > 0,

‖∇mu‖Lp(Ω) + ‖u‖L1(Ω−D)

is a norm on the Sobolev space Wm,p(Ω), which is equivalent to ‖ · ‖m,p;Ω. Part
b) now immediately follows from a) via approximation with smooth functions
in the area strict topology (cf. Lemma 1.1.1).

1.2 A Density Result in BV m(Ω) ∩ Lq(Ω−D)

In the context of the inpainting problem, intersection spaces of type BV m(Ω)∩
Lq(Ω−D) play an important role. As the embedding theorem from the preceding
section shows, these are proper subspaces of BV m(Ω) if m < n and q > n/(n−
m). Here we will be concerned with an adaption of Lemma 1.1.1, where now
the approximating smooth function is additionally required to respect the q-
integrability of u ∈ Wm,p(Ω) ∩ Lq(Ω − D) and u ∈ BV m(Ω) ∩ Lq(Ω − D),
respectively. In the �rst-order case (m = 1), this was achieved by using a
Lipschitz-truncation argument, the details can be found in [41], Lemma 2.2.4
and Lemma 2.2.7 (cf. also Lemma 2.1 in [59]). However, in the higher-order
setting, this procedure fails due to the fact that for m ≥ 2 there exists no
nontrivial function φ : R → R such that φ(u) ∈ Wm,p(Ω) holds for all u ∈
Wm,p(Ω) (see [60]), in general. Therefore, we pursue a di�erent approach which
is based on �local translations� of the function u. Roughly speaking, this means
that, via a partition of unity, u is split into a sum of functions with compact
support each of which is then slightly shifted across the boundary of Ω − D
with the result that the domain of q-integrability of the reassembled function
is extended outside of Ω − D. The approximating function is then obtained
from molli�cation. In contrast to the �rst-order case, this technique requires
the additional assumption of Lipschitz regularity of the boundary ∂(Ω−D) (or,
equivalently, of ∂D).

Theorem 1.2.1

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary, and let D ⊂ Ω be
an open subset with 0 ≤ Ln(D) < Ln(Ω) and such that Ω − D has Lipschitz
boundary, as well. Then, for arbitrary values 1 ≤ p, q < ∞, the following
assertions hold:

a) Any function u ∈ Wm,p(Ω) ∩ Lq(Ω−D) can be approximated by a sequence
of smooth functions (ϕk)

∞
k=1 ⊂ C∞(Ω) such that

‖u− ϕk‖m,p;Ω + ‖u− ϕk‖q;Ω−D → 0 for k →∞.

b) Any function u ∈ BV m(Ω) ∩ Lq(Ω−D) can be approximated by a sequence
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of smooth functions (ϕk)
∞
k=1 ⊂ C∞(Ω) such that

‖u−ϕk‖m−1,1;Ω + ‖u− ϕk‖q;Ω−D +

∣∣∣∣∣|∇mu|(Ω)−
∫
Ω

|∇mϕk|dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω

√
1 + |∇mu|2 −

∫
Ω

√
1 + |∇mϕk|2 dx

∣∣∣∣∣→ 0 for k →∞.

Remark 1.2.1 a) For p > 1, part a) can be deduced from an approximation
Lemma by Hedberg (see [61], Theorem 3.4.1) even without the assumption
of Ω−D having Lipschitz boundary. The proof avoids truncation and uses
arguments from Potential Theory instead. Therefore it fails for p = 1 and
a fortiori in the BV -case.

b) It will be evident from the proof that it makes no di�erence whether we
require Ω−D or D to have Lipschitz boundary in the statement of Theorem
1.2.1.

c) Theorem 1.2.1 was �rst published in [50] under more restrictive assumptions
on the geometry of the set D, which could later be relaxed to those given above
(cf. [51]).

Proof. We begin with part a) and �rst look at the special case in which Ω is a
cuboid in Rn,

Ω = (a1, b1)× ...× (an, bn)

and Ω −D is bounded by the graph of a Lipschitz continuous function φ with
Lipschitz constant L := Lip(φ), i.e.

Ω−D =
{

(x1, ..., xn) ∈ Ω
∣∣xn < φ(x1, ..., xn−1)

}
.

We de�ne

Ω−1 := ∅,

Ωi :=

{
x ∈ Ω

∣∣ dist(x, ∂Ω) >
1

i+ 1

}
, i ∈ N0.

Then, for j ∈ N0, the sets Aj := Ωj+1 − Ωj−1 cover Ω. Let (ηj)
∞
j=0 ⊂ C∞0 (Ω)

denote a partition of unity with respect to this covering, i.e. spt ηj b Aj and
∞∑
j=0

ηj ≡ 1. Let further C denote the cone

C :=
{

(x1, ..., xn) ∈ Rn
∣∣xn < −L · ∣∣(x1, ..., xn−1, 0)

∣∣}
and let ρε be a symmetric molli�er supported in the ball Bε(0) for some ε > 0.
Note that for any x ∈ Ω−D we then have

(C + x) ∩ Ω ⊂ Ω−D.
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For a given δ > 0, we will �rst construct a function ϕδ ∈ C∞(Ω) such that

‖u− ϕδ‖m,p;Ω + ‖u− ϕδ‖q;Ω−D < δ. (1.2)

To this purpose, consider uj := ηju and the shifted functions

u
hj
j := uj(x1, ..., xn − hj)

for some �xed hj > 0, which is small enough such that spt(ηj)+(0, ..., 0, hj) b Ω.
Since translations act continuously on Lp(Rn) (and hence on Sobolev spaces),

Fig. 1.1

we can choose a decreasing sequence of positive numbers hj such that sptuj +
(0, ..., 0, hj) b Aj for each j and

‖uj − u
hj
j ‖m,p;Ω + ‖uj − u

hj
j ‖q;Ω−D < δ2−(j+2). (1.3)

Further, we can select a decreasing sequence of positive numbers εj which satisfy

Bεj (0)− (0, ..., 0, hj) b C, (1.4)(
spt(ηj) + (0, ..., 0, hj)

)εj b Aj , (1.5)

where for a subset A ⊂ Rn we denote by Aεj the outer parallel set in distance
εj . Moreover, we may assume that it holds

‖ρεj ∗ u
hj
j − u

hj
j ‖m,p;Ω + ‖ρεj ∗ u

hj
j − u

hj
j ‖q;Ω−D < δ2−(j+2). (1.6)

Note that, due to (1.4), we have ρεj ∗ u
hj
j ∈ Lq(Ω−D) since u

hj
j is q-integrable

on
{
x ∈ Ω |xn < φ(x1, ..., xn−1) + hj

}
(cf. Figure 1.1). By (1.3) and (1.6) we

further have

‖uj − ρεj ∗ u
hj
j ‖m,p;Ω + ‖uj − ρεj ∗ u

hj
j ‖q;Ω−D < δ2−(j+1). (1.7)

Consequently, ϕδ :=
∞∑
j=0

ρεj ∗ u
hj
j is a smooth function that satis�es (1.2). Fur-

thermore, from the construction of ϕδ it is clear that

Tku = Tkϕδ Hn−1-a.e. on ∂Ω for k = 1, ...,m− 1, (1.8)
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where Tk denotes the k-th boundary trace operator from Lemma 1.1.2.

Now we consider the general case. Let δ > 0 be given. Since u can be extended
outside of Ω we may, w.l.o.g., assume u ∈Wm,p(Rn). Cover ∂(Ω−D) by a �nite
number of cuboids Q1, ..., QN such that (Ω−D)∩Qi lies beneath the graph of
a Lipschitz function (with respect to a suitable local coordinate system), and
such that Ω −D is a compact subset of (Ω −D) ∪ Q1 ∪ ... ∪ QN . This means
that, on each of the cuboids, we are in the situation of our special case. Starting
with Q1, we therefore �nd a smooth function ϕ1 ∈ C∞(Q1) such that

‖u− ϕ1‖m,p;Q1 + ‖u− ϕ1‖q;(Ω−D)∩Q1
<

δ

2N

and by (1.8), the function u1 de�ned through

u1(x) :=

{
u(x), x ∈ Rn −Q1,

ϕ1(x), x ∈ Q1

is an element of Wm,p(Rn) ∩ Lq(Ω−D) for which it holds that

‖u− u1‖m,p;Rn + ‖u− u1‖q;Ω−D <
δ

2N
.

Continuing this process on Q2 with u replaced by u1 and so on, we �nally end
up with a function uN which satis�es

‖u− uN‖m,p;Rn + ‖u− uN‖q;Ω−D <
δ

2

and which is locally q-integrable on

U := (Ω−D) ∪
N⋃
i=1

Qi c (Ω−D).

Hence we can choose ε < dist(Ω−D, ∂U) small enough, such that

‖ρε ∗ uN − uN‖m,p,Rn + ‖ρε ∗ uN − uN‖q;Ω−D <
δ

2

and observe that ϕδ := ρε ∗uN ∈ C∞(Rn) ⊂ C∞(Ω) approximates u as desired.

We continue with the proof of part b), keeping the notation from above. Let
u ∈ BV m(Ω) ∩ Lq(Ω − D). Again it will essentially su�ce to prove the claim
in the special case of Ω being an n-dimensional cuboid and ∂(Ω − D) being
the graph of a Lipschitz continuous function. For a given δ > 0, we choose a
sequence (hj)

∞
j=0 of positive numbers such that spt(ηj) + (0, ..., 0, hj) b Aj and

such that the following conditions are satis�ed:

‖(ηju)hj − ηju‖m−1,1;Ω + ‖(ηju)hj − ηju‖q;Ω−D < δ2−(j+2), (1.9)∥∥(∇m(ηju)− ηj∇mu
)hj − (∇m(ηju)− ηj∇mu

)∥∥
1;Ω

< δ2−(j+2). (1.10)
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Note that ∇m(ηju)−ηj∇mu ∈ L1(Ω) so that we can require hj to satisfy (1.10).

Furthermore, since
∞∑
j=0

ηj ≡ 1 on Ω, it holds
∞∑
j=0

(
∇m(ηju) − ηj∇mu

)
≡ 0.

Consider now

uδ :=

∞∑
j=0

(ηju)hj .

We claim that uδ approximates u in BV m(Ω) ∩ Lq(Ω−D) with respect to the
metric ρ(., .) that de�nes the area-strict topology on BV m(Ω), see (1.1). First,
from (1.9) it follows that

‖u− uδ‖m−1,1;Ω + ‖u− uδ‖q;Ω−D < δ/2.

Let us compute the total variation of ∇muδ. For a measure µ ∈ M(Ω), let
µhj denote the image measure under translation by hj in the n-th coordinate

direction. By Proposition 3.18 in [1] it then holds ∇m(ηju)hj =
(
∇m(ηju)

)hj
and therefore (recall

∞∑
j=0

ηj ≡ 1 and note that the occurring sums are locally

�nite):

∇muδ =

∞∑
j=0

∇m(ηju)hj =

∞∑
j=0

(
∇m(ηju)

)hj
=
∞∑
j=0

[
(ηj∇mu)hj + (∇m(ηju)− ηj∇mu)hj

]
=
∞∑
j=0

[
(ηj∇mu)hj +

{
(∇m(ηju)− ηj∇mu)hj − (∇m(ηju)− ηj∇mu)

}]
,

so that∫
Ω
|∇muδ| ≤

∞∑
j=0

∫
Ω

∣∣(ηj∇mu)hj
∣∣

+

∞∑
j=0

∫
Ω

∣∣∣(∇m(ηju)− ηj∇mu)hj − (∇m(ηju)− ηj∇mu)
∣∣∣ dx

≤

 ∞∑
j=0

∫
Ω

∣∣∣(ηj∇mu)hj
∣∣∣
+

δ

2
=

 ∞∑
j=0

∫
Ω
ηj d|∇mu|

+
δ

2
=

∫
Ω
|∇mu|+ δ

2
.

Letting δ ↓ 0, it follows lim sup
δ→0

|∇muδ|(Ω) ≤ |∇mu|(Ω) and the lower semicon-

tinuity of the total variation together with uδ → u in Wm−1,1(Ω) thus implies

|∇muδ|(Ω)→ |∇mu|(Ω).

Moreover, we claim that it even holds

∇ma uδ → ∇ma u in L1
(
Ω,Rn

m)
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as δ ↓ 0 (∇ma u denoting the Lebesgue density of the measure ∇mu). To justify
this, we observe that on Ωi it holds

∇muδ|Ωi =

(
i∑

j=0

(
∇m(ηju)

)hj)∣∣∣∣∣∣
Ωi

and since for two measures µ and ν it holds (µ + ν)a = µa + νa as well as
(µhj )a = (µa)hj , it follows

χΩi
· ∇ma uδ = χΩi

·

(
i∑

j=0

(
∇ma (ηju)

)hj) = χΩi
·

( ∞∑
j=0

(
∇ma (ηju)

)hj).
Due to χΩi

· ∇ma uδ
i→∞−−−→ ∇ma uδ in L1(Ω,Rnm), we infer

∇ma uδ =
∞∑
j=0

(
∇ma (ηju)

)hj .
Since ∇ma (ηju) ∈ L1(Ω,Rnm), we can choose hj small enough such that∥∥(∇ma (ηju)

)hj −∇ma (ηju)
∥∥

1;Ω
< δ2−(j+1)

and therefore ‖∇ma uδ −∇ma u‖1;Ω < δ. Hence

∇ma uδ → ∇ma u in L1(Ω) as δ ↓ 0

and since the functional v 7→
∫

Ω

√
1 + v(x)2 dx is continuous on L1(Ω), we infer

that ∫
Ω

√
1 + |∇ma uδ|2 dx

δ↓0−−→
∫

Ω

√
1 + |∇ma u|2 dx. (1.11)

Now |∇muδ|(Ω)→ |∇mu|(Ω) together with |∇ma uδ|(Ω)→ |∇ma u|(Ω) implies

|∇ms uδ|(Ω)→ |∇ms u|(Ω), (1.12)

which together with (1.11) proves∫
Ω

√
1 + |∇muδ|2 →

∫
Ω

√
1 + |∇mu|2 as δ ↓ 0.

Hence, for δ > 0 arbitrarily small, we can choose 0 < δ̃ ≤ δ such that

ρ(u, u
δ̃
) + ‖u− u

δ̃
‖q;Ω−D < δ/2.

Then, we may follow the arguments from the proof of Theorem 2.2 in [54] and
choose a sequence εj ↓ 0 such that the smooth function

v
δ̃

:=
∞∑
j=0

ρεj ∗ (ηjuδ̃)

satis�es
ρ(v

δ̃
, u

δ̃
) + ‖v

δ̃
− u

δ̃
‖q;Ω−D < δ/2,

where we tacitly assume that εj < min
{
hj−1, hj , hj+1

}
, so that ρεj ∗ (ηjuδ̃) ∈

Lq(Ω−D). Altogether, we �nd that v
δ̃
approximates u as required. The general

case now follows via the same covering argument as in the proof of part a).
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Chapter 2

Relaxation and Dual

Formulation

Following the ideas in [36] and [37], this chapter will treat the relaxation and
dual formulation of the variational Problem (V ). To this purpose we choose a
suitable extension of the functional I to the class BV m(Ω) ⊃Wm,1(Ω), where we
can prove the existence of a generalized minimizer due to the BV m-compactness
property (see Lemma 1.1.5). We will see that this function coincides with the
solution of (V ) in the Sobolev class whenever such a minimizer exists. In the
second Section, the dual of our minimization problem I → min in the sense of
convex optimization (cf. e.g. [62]) will be introduced and shown to possess a
unique solution in the class L∞

(
Ω,Rnm

)
. Eventually, the connection between

the generalized BV m-minimizers and the dual solution will be established in
form of a so called duality formula. The results of this chapter are published
in [51] with the sole di�erence that in this reference, for simplicity, only the
second order case (m = 2) was treated.

2.1 Generalized Solutions in BV m(Ω)

The concept of convex functions of a measure (see Appendix B) enables us to
give a natural extension of the quantity

∫
Ω F (∇mu) dx, de�ned on the Sobolev

space Wm,1(Ω), to the class of BV m(Ω)-functions through the formula∫
Ω

F (∇mu) :=

∫
Ω

F (∇ma u) dx+

∫
Ω

F∞
(
∇ms u
|∇ms u|

)
d|∇ms u|.

Here, ∇mu = ∇ma u · Ln +∇ms u is the Lebesgue decomposition of the measure
∇mu and

F∞(Z) := lim
t→∞

F (tZ)

t
for all Z ∈ Rn

m
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is the so called recession function, which is well de�ned due to our assumption
(F2) on F . Now we de�ne the functional K : BV m(Ω)→ [0,∞] by

K[u] :=

∫
Ω

F (∇mu) + λ

∫
Ω−D

φ
(
|u− f |

)
dx. (2.1)

Note that for u ∈Wm,1(Ω) it holds ∇ms u ≡ 0 and therefore K ≡ I on Wm,1(Ω),
which means that K is a reasonable extension of our primal functional.

The following lemma is an immediate consequence from Reshetnyak's continuity
Theorem (see Theorem B.1 in Appendix B) and will be very useful in the study
of the functional K:

Lemma 2.1.1

Let F : Rnm → R satisfy (F1)-(F3), (wk)k∈N ∈ BV m(Ω) be a bounded sequence
and w ∈ BV m(Ω).

(a) If wk → w in Wm−1,1(Ω) for k →∞, then∫
Ω

F (∇mw) ≤ lim inf
k→∞

∫
Ω

F (∇mwk). (2.2)

(b) If we know in addition∫
Ω

√
1 + |∇mwk|2 →

∫
Ω

√
1 + |∇mw|2 for k →∞,

then ∫
Ω

F (∇mw) = lim
k→∞

∫
Ω

F (∇mwk).

In contrast to the primal problem (V ), the relaxed problem

K[u]→ min in BV m(Ω) (Ṽ )

always possesses a (not necessarily unique!) minimizer even under our general
assumptions on the regularizer F and the penalty function φ. The next theorem
collects some properties of these minimizers:

Theorem 2.1.1

Let Ω and D be as in Theorem 1.2.1, assume F satis�es (F1)-(F3) and that φ
ful�lls (φ1), (φ2) for some q ≥ 1. Then we have:

a) The problem (Ṽ ) admits at least one solution u ∈ BV m(Ω).

b) Suppose that u and ũ are two distinct solutions of (Ṽ ). Then u = ũ almost
everywhere on Ω−D and ∇ma u = ∇ma ũ a.e. on Ω. In particular, the solution
u is unique if Ln(D) = 0 (i.e. in the case of pure denoising).
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c) We have

inf
Wm,1(Ω)

I = inf
BVm(Ω)

K.

d) LetM denote the set of all Wm−1,1-cluster points of I-minimizing sequences
from the space Wm,1(Ω). ThenM coincides with the set of all K-minimizers
in BV m(Ω).

e) IfM contains a function u ∈Wm,1(Ω), then it already holdsM = {u}.

Proof. By part b) of Lemma 1.1.6, it follows that any K-minimizing sequence
(uk)

∞
k=1 is uniformly bounded in BV m(Ω)∩Lq(Ω−D) and hence, by the BV m-

compactness property (and possibly after passing to a suitable subsequence)
there is a function u ∈ BV m(Ω) such that uk → u in Wm−1,1(Ω) and a.e. on
Ω. Furthermore, Fatou's lemma implies∫

Ω−D

φ
(
|u− f |

)
dx ≤ lim inf

k→∞

∫
Ω−D

φ
(
|uk − f |

)
dx

and an application of Lemma 2.1.1 a) yields that the limit function u is in fact
a minimizer of the functional K. Part b) is an immediate consequence of the
strict convexity of F and φ. For part c), we note that infBVm K ≤ infWm,1 I is
clear since K ≡ I on Wm,1(Ω). For the other inequality, we choose a sequence
of smooth functions

(ϕl)
∞
l=1 ⊂ C∞(Ω) ∩ Lq(Ω−D)

that approximates u in the area-strict topology of BV m as in Theorem 1.2.1.
Since by (φ2) the convex functional

Lq(Ω−D) 3 u 7→
∫

Ω−D

φ
(
|u− f |

)
dx

is locally bounded and therefore continuous, it follows that∫
Ω−D

φ
(
|ϕl − f |

)
dx

l→∞−−−→
∫

Ω−D

φ
(
|u− f |

)
dx

and together with part b) of Lemma 2.1.1 this gives

inf
BVm

K = lim
l→∞

K[ϕl] = lim
l→∞

I[ϕl] ≥ inf
Wm,1

I.

Now to d). Again, Theorem 1.2.1 in combination with Lemma 2.1.1 implies
that any K-minimizer occurs as the Wm,1-limit of an I-minimizing sequence.
Moreover, let w ∈ BV m(Ω) be any Wm,1-limit of an I-minimizing sequence
(wk)

∞
k=1. Then by part a) of Lemma 2.1.1 it holds

K[w] ≤ lim inf
k→∞

K[uk] = lim inf
k→∞

I[uk] = inf
Wm,1(Ω)

I
c)
= inf

BVm(Ω)
K
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so that w is in fact K-minimal. It remains to give a proof of the statement in e).
Assume that there exist two distinct elements u ∈ M ∩Wm,1(Ω) and ũ ∈ M.
Then K[u] = K[ũ] together with b) implies∫

Ω

F∞
(
∇ms ũ
|∇ms ũ|

)
d|∇ms ũ| = 0.

Since F (Z) > 0 if Z 6= 0 ∈ Rnm , this implies

∇ms ũ
|∇ms ũ|

= 0 |∇ms ũ| -a.e.,

hence ∇ms ũ ≡ 0, i.e. ũ ∈Wm,1(Ω). Then b) implies

∇mũ = ∇ma ũ = ∇ma u = ∇mu a.e. on Ω,

so that ũ− u = p is a polynomial of degree at most m− 1. From ũ = u a.e. on
Ω−D together with Ln(Ω−D) > 0 we �nally infer p ≡ 0 and thus ũ = u a.e.
on Ω.

2.2 The Dual Problem

In this section, we are going to describe the convex dual of problem (V ). This
approach has already been successfully pursued for m = 1 in [37], [63] and [59],
whose results are now transfered to the m-th order setting. Following these
ideas, we pass to the dual formulation via Lagrangians as it is described in detail
in Chapter III, section 4 of the monograph [62]. This method is based on the
notion of the convex conjugate of a functional, which is de�ned as follows (cf. [62],
p. 16): let V denote some Banach space with dual V ∗ and G : V → R ∪ {∞} a
functional on V . Then, for every u∗ ∈ V ∗, we de�ne the convex dual functional
of G through the formula

G∗(u∗) := sup
u∈V

[
u∗(u)−G(u)

]
.

It is shown in Proposition 2.1 from p. 271 in [62] that for a convex integral
functional on Lp(Ω,RN ) of the form G(u) =

∫
Ω F (u) dx with F : RN → R it

holds

G∗(v) =

∫
Ω

F ∗(v) dx for all v ∈ Lp∗(Ω,RN ),

where p∗ is the conjugate exponent of p and

F ∗(y) := sup
x∈RN

[
x · y − F (x)

]
, y ∈ RN . (2.3)

Moreover, Proposition 4.1 on p. 18 of [62] shows that for a convex function F :
RN → R it always holds F ∗∗ = F , which gives us the following representation
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of our functional I: for all w ∈Wm,1(Ω) ∩ Lq(Ω−D) it holds

I[w] = sup
κ∈L∞(Ω,Rnm )

∫
Ω

[
κ : ∇mw − F ∗(κ)

]
dx+ λ

∫
Ω−D

φ
(
|w − f |

)
dx. (2.4)

This motivates the following de�nition: for all w ∈ Wm,1(Ω) ∩ Lq(Ω −D) and
κ ∈ L∞

(
Ω,Rnm

)
, we de�ne the Lagrangian of our variational problem (V ) as

the bivariate functional

l(w, κ) :=

∫
Ω

[
κ : ∇mw − F ∗(κ)

]
dx+ λ

∫
Ω−D

φ
(
|w − f |

)
dx.

The dual functional R : L∞(Ω,Rnm)→ [−∞,∞] is then obtained by exchanging
�sup� with �inf� in the above formula for I, i.e.

R[κ] := inf
w∈Wm,1(Ω)

l(w, κ), (2.5)

and the dual problem consists in maximizing R:

R[κ]→ max in L∞(Ω,Rn
m

). (V ∗)

Theorem 2.2.1

Let Ω and D be as in Theorem 1.2.1, assume F satis�es (F1)-(F3) and that φ
ful�lls (φ1), (φ2) for some q ∈ [1, 2]. Then we have:

(a) The dual problem (V ∗) admits a unique solution σ ∈ L∞
(
Ω,Rnm

)
.

(b) The solution from a) is unique and if u ∈ M ⊂ BV m(Ω) is any minimizer
of (Ṽ ), then the duality formula holds:

σ = DF
(
∇ma u

)
(note that by Theorem 2.1.1 b) ∇ma u is independent of the choice of u ∈M).

(c) The functionals I and R obey the so called �inf-sup� relation:

inf
Wm,1(Ω)

I = sup
L∞(Ω)

R.

Proof. As in the �rst-order case (see, e.g. [37], [59] or [41]), we will construct a
maximizer of the dual functional R as the limit of a sequence of solutions to a
family of regularized problems. For 0 < δ < 1 we de�ne

Jδ[u] :=
δ

2

∫
Ω

|∇mu|2 dx+ I[u]

=
δ

2

∫
Ω

|∇mu|2 + F (∇mu) dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx

=:

∫
Ω

Fδ(∇mu) dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx,
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where we have set

Fδ(Z) :=
δ

2
|Z|2 + F (Z) for all Z ∈ Rn

m
.

Lemma 2.2.1

Under the assumptions of Theorem 2.2.1 we have:

a) For �xed δ ∈ (0, 1), the problem

Jδ → min in Wm,2(Ω) (Vδ)

admits a unique solution uδ ∈Wm,2(Ω) ∩ Lq(Ω−D).

b) We have

sup
δ>0
‖uδ‖m,1;Ω <∞. (2.6)

c) It holds (not necessarily uniform in δ)

uδ ∈Wm+1,2
loc (Ω).

Proof of the Lemma. Ad a). For δ ∈ (0, 1) �xed, consider a Jδ-minimizing
sequence vk ∈Wm,2(Ω). By the structure of J we clearly have

sup
k
‖∇mvk‖L2(Ω) <∞, (2.7)

sup
k
‖vk‖Lq(Ω−D) <∞. (2.8)

Quoting Lemma 1.1.6 it therefore follows

sup
k
‖vk‖m,2;Ω <∞. (2.9)

Then there exists a function uδ ∈Wm,2(Ω) such that, after passing to a suitable
subsequence, vk ⇁ uδ in W

m,2(Ω) and classical results on lower semicontinuity
of (quasi-)convex functionals of power growth (see, e.g. [64]) together with Fa-
tou's lemma directly imply the Jδ-minimality of uδ. Clearly uδ ∈ Lq(Ω − D)
due to

∫
Ω−D φ

(
|uδ − f |

)
dx <∞ and (φ2). Assume v is a second Jδ-minimizer.

The strict convexity of Fδ would imply ∇mv = ∇muδ a.e. on Ω, so that uδ and
v only di�er by a polynomial p of degree at most m−1. Furthermore, the strict
convexity of the penalizer φ yields v = uδ a.e. on Ω −D and since we assume
Ln(Ω − D) > 0 it must hold p ≡ 0, hence v = uδ a.e. on Ω. For part b), we
note that

sup
δ>0
‖∇muδ‖L1(Ω) <∞, (2.10)

sup
δ>0
‖uδ − f‖Lq(Ω−D) <∞, (2.11)

sup
δ>0

δ

∫
Ω

|∇muδ|2 dx <∞, (2.12)
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is immediate from Jδ[uδ] ≤ Jδ[0] = const. Lemma 1.1.6 a) then implies (2.6).
Finally, part c) is obtained via an application of the well-known di�erence quo-
tient technique to the quadratic minimization problem Jδ → min for �xed δ:
for the �rst-order case m = 1, we may quote [41], Lemma 7.1.1 b). If m ≥ 2,
we note that uδ solves the following Euler equation:∫

Ω

DFδ(∇muδ) : ∇mϕdx = −λ
∫

Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)ϕdx (2.13)

for all ϕ ∈ Wm,2(Ω) ∩ Lq(Ω −D). We may choose ϕ := ∆−hγ (η6∆h
γuδ), where

γ ∈ Rn is an arbitrary vector, η ∈ C∞0 (Ω) and

∆h
γuδ(x) :=

uδ(x+ hγ)− uδ(x)

h
.

Due to (φ3), the right-hand side of (2.13) can now be estimated by

− λ
∫

Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)∆−hγ (η6∆h

γuδ) dx

≤ cλ
∫

Ω−D

(
1 + |uδ − f |q−1

)∣∣∆−hγ (η6∆h
γuδ)

∣∣dx
≤ cλ

∫
Ω−D

1 + |uδ − f |2(q−1) dx+ c

∫
Ω−D

∣∣∆−hγ (η6∆h
γuδ)

∣∣2 dx

≤ cλ
∫

Ω−D

1 + |uδ − f |2(q−1) dx+ c

∫
Ω−D

|∇uδ|2 + |∇2uδ|2 dx,

where we have applied Lemma 7.23 from [65]. Due to our assumption q ≤ 2 and
(2.11), the terms in the last line are bounded by a constant and from this point
on, we can argue just like in [66], �Step 2 � on p. 353 to �nish the reasoning.

We proceed with the proof of Theorem 2.2.1. By the compactness property of
BV m(Ω) (cf. Lemma 1.1.5) and (2.6) there exists u ∈ BV m(Ω) such that (for
a suitable sequence δ ↓ 0) it holds uδ → u in Wm−1,1(Ω). Furthermore, an
application of Fatou's Lemma gives∫

Ω−D

φ
(
|u− f |

)
dx ≤ lim inf

δ↓0

∫
Ω−D

φ
(
|uδ − f |

)
dx ≤ Jδ[0] = const.

which by (φ2) implies u ∈ Lq(Ω−D). Together with Lemma 2.1.1 a), we infer
that

K[u] ≤ lim inf
δ↓0

K[uδ] = lim inf
δ↓0

I[uδ] ≤ lim inf
δ↓0

Iδ[uδ] ≤ lim inf
δ↓0

Iδ[w] = I[w]

for all w ∈ Wm,2(Ω), which, by an approximation argument, holds even for all
w ∈ Wm,1(Ω). This shows that u is a solution of (Ṽ ). In view of the duality
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relation that is stated in Theorem 2.2.1 b), it is reasonable to consider the
functions

σδ := DFδ(∇muδ) as well as τδ := DF (∇muδ) (2.14)

and to investigate their behavior as δ ↓ 0. Due to the boundedness of |∇F | (cf.
(F2)), the family of the τδ is uniformly bounded in L∞

(
Ω,Rnm

)
and there exists

τ ∈ L∞
(
Ω,Rnm

)
such that (possibly for another subsequence δ ↓ 0)

τδ
∗
⇁ τ in L∞(Ω,Rn

m
) as δ ↓ 0. (2.15)

Furthermore, (2.12) implies that δ∇muδ → 0 in L2
(
Ω,Rnm

)
so that there exists

σ ∈ L2
(
Ω,Rnm)

)
and another subsequence for which

σδ ⇁ σ in L2
(
Ω,Rn

m)
as δ ↓ 0. (2.16)

From the formula σδ = τδ +δ∇muδ it then follows that σ = τ a.e. on Ω. We are
going to prove that τ in fact maximizes R. Therefore, we �rstly note that due
to their Jδ-minimality the functions uδ satisfy the Euler equation (2.13) from
above:

δ

∫
Ω

∇muδ : ∇mϕdx+

∫
Ω

τδ : ∇mϕdx

+ λ

∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)ϕdx = 0

(2.17)

for all ϕ ∈ Wm,2(Ω) ∩ Lq(Ω −D). We further observe that thanks to (φ3) the

sequence φ′
(
|uδ−f |

)
sgn(uδ−f) is bounded in L

q
q−1 (Ω), so that we may assume

φ′
(
|uδ − f |

)
sgn(uδ − f) ⇁ φ′

(
|u− f |

)
sgn(u− f) in L

q
q−1 (Ω).

By δ∇muδ → 0 in L2 and τδ
∗
⇁ τ , we can pass to the limit δ ↓ 0 in (2.17) and

obtain ∫
Ω

τ : ∇mϕdx+ λ

∫
Ω−D

φ′
(
|u− f |

)
sgn(u− f)ϕdx = 0. (2.18)

We actually need the validity of this equation for all ϕ in the domain of I, i.e.
ϕ ∈Wm,1(Ω)∩Lq(Ω−D). Therefore, we employ Theorem 1.2.1 to approximate
ϕ ∈Wm,1(Ω) ∩ Lq(Ω−D) with a sequence of smooth functions (ϕk) ⊂ C∞(Ω)
such that ϕk → ϕ in Wm,1(Ω) and ϕk → ϕ in Lq(Ω − D). The equality in
(2.18) is then preserved in the limit k →∞. We continue with the observation
that τδ and DF (∇muδ) are connected through the following relation (cf. [62],
Proposition 5.1 on p. 21):

F (∇muδ) = τδ : ∇muδ − F ∗(τδ).
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In Jδ[uδ], we replace F (∇muδ) by the above expression and subtract (2.17) with
the admissible choice ϕ = uδ to obtain

Jδ[uδ] =
δ

2

∫
Ω

|∇muδ|2 dx+

∫
Ω

τδ : ∇muδ − F ∗(τδ) dx+ λ

∫
Ω−D

φ
(
|uδ − f |

)
dx

=− δ

2

∫
Ω

|∇muδ|2 dx−
∫
Ω

F ∗(τδ) dx

+ λ

∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
sgn(uδ − f)uδ dx

and therefore

Jδ[uδ] ≤−
∫
Ω

F ∗(∇muδ) dx

+ λ

∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
sgn(uδ − f)uδ dx.

(2.19)

From the de�nition of R and (2.4) it is clear that sup
L∞(Ω)

R ≤ inf
Wm,1(Ω)

I. Moreover,

inf
Wm,1(Ω)

I ≤ I[uδ] ≤ Jδ[uδ], and we infer that

sup
L∞(Ω)

R[κ] ≤−
∫
Ω

F ∗(τδ) dx

+ λ

∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
sgn(uδ − f)uδ dx.

(2.20)

Now we pass to the limit δ ↓ 0 in the above inequality, noting that as a convex
function, F ∗ is weak-∗ lower semicontinuous (cf. [33] Theorem 3.23 and Remark
3.25 (ii)), so that

lim sup
δ↓0

∫
Ω

−F ∗(τδ) dx ≤
∫
Ω

−F ∗(τ) dx.

Furthermore, using uδ = uδ − f + f , we may write∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
sgn(uδ − f)uδ dx

=

∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
|uδ − f |dx+

∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)f dx.

By the strict convexity of φ, the term φ(|x|)−φ′(|x|)|x| is nonpositive and since
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uδ → u pointwise a.e., we can apply Fatou's Lemma to obtain

lim sup
δ↓0

∫
Ω−D

φ
(
|uδ − f |

)
− φ′

(
|uδ − f |

)
|uδ − f |dx

≤
∫

Ω−D

φ
(
|u− f |

)
− φ′

(
|u− f |

)
|u− f |dx.

Due to

φ′
(
|uδ − f |

)
sgn(uδ − f) ⇁ φ′

(
|u− f |

)
sgn(u− f) in L

q
q−1 (Ω)

and f ∈ L∞(Ω) it further holds∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)f dx

δ↓0−−→
∫

Ω−D

φ′
(
|u− f |

)
sgn(u− f)f dx,

and letting δ ↓ 0 in (2.20) yields

sup
κ∈L∞(Ω)

R[κ] ≤−
∫
Ω

F ∗(τ) dx

+ λ

∫
Ω−D

φ
(
|u− f |

)
− φ′

(
|u− f |

)
sgn(u− f)u dx.

(2.21)

We are going to show that the right-hand side of this inequality equals R[τ ].
Observing

R[τ ] = inf
w∈Wm,1(Ω)

∫
Ω

τ : ∇mw − F ∗(τ) dx+ λ

∫
Ω−D

φ
(
|w − f |

)
dx

and using the identity (2.18) it follows

R[τ ] =−
∫
Ω

F ∗(τ) dx

+ inf
w∈Wm,1

λ ∫
Ω−D

φ
(
|w − f |

)
− φ′

(
|u− f |

)
sgn(u− f)w dx


=−

∫
Ω

F ∗(τ) dx

+ inf
w∈Wm,1

[
λ

∫
Ω−D

φ
(
|w − f |

)
− φ′

(
|u− f |

)
sgn(u− f)(w − f)

+ φ′
(
|u− f |

)
sgn(u− f)f dx

]
.
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For any a ∈ R, the term φ(|t|)−at is minimal for t0 ∈ R such that φ′(|t0|) sgn(t0) =
a. Consequently,

φ
(
|u− f |

)
− φ′

(
|u− f |

)
sgn(u− f)u ≤ φ

(
|w − f |

)
− φ′

(
|u− f |

)
sgn(u− f)w

holds for all w ∈Wm,1(Ω), and

R[τ ] =

∫
Ω

F ∗(τ) dx+ λ

∫
Ω−D

φ
(
|u− f |

)
− φ′

(
|u− f |

)
sgn(u− f)u.

(2.21) thus implies
sup

κ∈L∞(Ω)
R[κ] ≤ R[τ ],

i.e. τ is R-maximal and

R[τ ] ≤ inf
w∈Wm,1(Ω)

I[w] ≤ lim sup
δ↓0

I[uδ] ≤ lim sup
δ↓0

Jδ[uδ]
(2.19)

≤ R[τ ]

yields
inf

w∈Wm,1(Ω)
I[w] = R[τ ] = sup

κ∈L∞(Ω)
R[κ].

We have thereby proved part a) of Theorem 2.2.1 as well as the �inf-sup� relation
from part c), and it remains to establish the duality formula from part b). To
this purpose, we adopt the ideas from [63] which are based on the following
observation:

Lemma 2.2.2

Let u ∈M ⊂ BV m(Ω) be any minimizer of the functional K from (2.1). Then
the tensor

σ0 := ∇F (∇ma u)

is a maximizer of the dual functional R.

Proof of Lemma 2.2.2. Note at �rst that since |∇F | is bounded, σ0(x) lies in
L∞(Ω,Rnm), i.e., σ0 is admissible. For v ∈ Wm,1(Ω) ∩ Lq(Ω −D) and κ = σ0

we thus obtain

l(v, σ0) =

∫
Ω

DF (∇ma u) : ∇mv − F ∗
(
DF (∇ma u)

)
dx+ λ

∫
Ω−D

φ
(
|v − f |

)
dx,

which, by means of the duality relation

F (Z) + F ∗(DF (Z)) = Z : DF (Z), valid for all Z ∈ Rn
m
,

reads as

l(v, σ0) =

∫
Ω

F
(
DF (∇ma u)

)
dx+

∫
Ω

(
∇mv −∇ma u

)
: DF (∇ma u) dx

+ λ

∫
Ω−D

φ
(
|v − f |

)
dx.

(2.22)
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Since u minimizes K in BV m(Ω), we have that

0 =
d

dt

∣∣∣∣
t=0

K[u+ tv]

=

∫
Ω

DF
(
∇ma u

)
: ∇mv dx+ λ

∫
Ω−D

φ′
(
|u− f |

)
sgn(u− f)v dx.

(2.23)

Here we have used that for v ∈Wm,1(Ω) the singular part

∇ms (u+ tv) = ∇ms u

is independent of the variable t. The K-minimality of u further implies the
identity

0 =
d

dt

∣∣∣∣
t=0

K[u+ tu] =

∫
Ω

DF
(
∇ma u

)
: ∇ma udx

+

∫
Ω

F∞
(
∇ms u
|∇ms u|

)
d|∇su|+ λ

∫
Ω−D

φ′
(
|u− f |

)
sgn(u− f)u dx.

(2.24)

Inserting (2.23) and (2.24) in (2.22) now yields

l(v, σ0) =

∫
Ω

F
(
DF (∇ma u)

)
dx+

∫
Ω

F∞
(
∇ms u
|∇ms u|

)
d|∇su|

+ λ

∫
Ω−D

φ
(
|v − f |

)
− φ′

(
|u− f |

)
sgn(u− f)(u− v) dx.

(2.25)

Observing that

T :=

∫
Ω−D

φ
(
|v − f |

)
− φ′

(
|u− f |

)
sgn(u− f)(u− v) dx

=

∫
Ω−D

φ
(
|v − f |

)
− φ′

(
|u− f |

)
sgn(u− f)(u− f)

+ φ′
(
|u− f |

)
sgn(u− f)(v − f) dx,

and using

φ
(
|v − f |

)
− φ′

(
|u− f |

)
sgn(u− f)(v − f)

≥ φ
(
|u− f |

)
− φ′

(
|u− f |

)
sgn(u− f)(u− f),

we obtain

T ≥ λ
∫

Ω−D

φ
(
|u− f |

)
dx. (2.26)

Combining (2.26) with (2.25), it follows that

l(v, σ0) ≥ K[u].
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From the de�nition of the dual functional R and the K-minimality of u we thus
infer

R[σ0] ≥ K[u] = inf
BVm(Ω)

K = inf
Wm,1(Ω)

I = sup
L∞(Ω)

R,

i.e. σ0 is R-maximal. This completes the proof of Lemma 2.2.2.

Part b) of Theorem 2.2.1 will now follow once we have shown that σ0 is the
unique R-maximizer. Assume that the dual problem admits a second solution
σ̃, satisfying σ̃ 6= σ0 on a set of positive measure. Arguing as in the proof of
Theorem 2.15 in [67], the strict convexity of F su�ces to deduce the inequality∫

Ω

(−F ∗)
(
σ̃ + σ0

2

)
dx >

1

2

∫
Ω

(−F ∗)(σ̃) dx+
1

2

∫
Ω

(−F ∗)(σ0) dx.

Moreover, the functional

L∞
(
Ω,Rm

n) 3 κ 7→ inf
v∈W 1,1(Ω)

∫
Ω

κ : ∇mv − χΩ−Dφ
(
|v − f |

)
dx

is concave and, together with the above inequality, this yields

R

[
σ̃ + σ0

2

]
>

1

2
R[σ̃] +

1

2
R[σ0],

which is a contradiction to the R-maximality of σ0 and σ̃. This completes the
proof of Theorem 2.2.1.

Remark 2.2.1

Note that the identity

DF (∇ma u) = τ = σ a.e. on Ω,

with τ , σ as de�ned in (2.15) and (2.16), respectively, is an immediate conse-
quence of the proof.
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Part II

Fine Regularity Properties in

Lower Dimensions
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Chapter 3

The One-Dimensional Case

In the second part of this thesis, we will have a closer look at two speci�c cases
of our general variational problem (V ), starting with the simplest one where
we choose m = n = 1. The one-dimensional setting comes with the advantage
of being accessible to a variety of methods that do not have an equivalent in
higher dimensions. On the other hand, studying the behavior of solutions in
one dimension permits a better understanding of the general case. A particular
example for this will be given in Section 3.6, where examining the dependence of
the regularity behavior of the minimizer u on the ellipticity parameter µ (cf. (Fµ)
in the introduction) for a certain choice of the data function f , will show that, for
µ > 2, problem (V ) does in general not admit a solution in the Sobolev class.
Besides these theoretical aspects, one-dimensional TV-type denoising models
seem to have some interesting applications as well, mainly in connection with the
recovery of piecewise constant data as it is frequently encountered in practical
sciences such as geophysics or biophysics (cf. [68] and the introduction of [69]),
whereas in [70], TV-models have been applied to the �ltering of gravitational
wave signals. In this context we also mention the works [9], [71] and [72] which,
like us, treat the classical TV-model as well as higher-order variants in one
dimension from a more theoretical point of view.

In contrast to the foregoing part, we will in the following not be concerned with
proving things in utmost generality. On the contrary: for the sake of simplicity,
we restrict ourselves to the minimization problem

J [u] :=

1∫
0

F (u̇) dt+
λ

2

1∫
0

(u− f)2 dt→ min in W 1,1(0, 1) (3.1)

for a density function F : R → R, which in addition to (F1)�(F3) satis�es the
strict inequality

F ′′(t) > 0 for all t ∈ R (F4)

and with a �xed quadratic �delity term. Note that we do not consider inpaint-
ing.
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Here we use the notation u̇ := d
dtu to denote the (weak) derivative of a function

u : (0, 1) → R and λ > 0 is a regularization parameter which controls the
balance between the smoothing and the data-�tting e�ect that results from the
minimization of the �rst and the second integral, respectively. f ∈ L∞

(
[0, 1]

)
represents the given data for which, without loss of generality, we may assume

0 ≤ f(t) ≤ 1 for almost all t ∈ [0, 1]. (3.2)

Since, in view of applications, F should be an approximation to the TV -density,
reasonable choices of F are e.g. given by the regularized TV-density, Fε(p) :=√
ε2 + p2 − ε for some ε > 0 or F (p) := Φµ(|p|) as de�ned in (6). In regard

to regularity properties we will work with densities that satisfy the condition of
µ-ellipticity (see (Fµ)) in the simpli�ed form

F ′′(t) ≥ c1

(1 + |t|)µ
, (F5)

with a constant c1 > 0 and parameter µ ∈ (1,∞). We further de�ne the critical
value of the parameter λ to be

λ∞ = λ∞(F ) := lim
t→∞

F ′(t). (3.3)

This value will play a crucial role in the study of regularity properties of J-
minimizers.

Example 3.0.1. For Fε it is immediate that λ∞(Fε) = 1 independently of ε,
whereas for F = Φµ we have

λ∞(Φµ) =
1

µ− 1
.

The following table gives a �rst overview of the various regularity results of this
chapter, which are published in [52]:

Data f Density F Bound on λ Regularity of u Reference

L∞(0, 1) (F1)-(F4) 0 < λ < λ∞ C1,1
(
[0, 1]

)
Theorem 3.2.1 a)

L∞(0, 1) (F1)-(F4) λ > 0 W 2,∞
loc

(
Reg(u)

)
Theorem 3.3.1 b)

W 1,2
loc (a, b)

(F1)-(F4),
(F5)

λ > 0
W 1,1(a, b)
∩W 1,2

loc (a, b)
Theorem 3.3.1 c)

continuous
at t0

(F1)-(F4) λ > 0
continuous

at t0
Theorem 3.4.1 a)

W 1,1(0, 1) (F1)-(F4) λ(1
2 + ‖ḟ‖1)
< ω∞

C1,1
(
[0, 1]

)
Theorem 3.4.1 c)

L∞(0, 1)
(F1)-(F5)
µ ∈ (1, 2]

λ > 0 C1,1
(
[0, 1]

)
Theorem3.6.1

L∞(0, 1)
(F1)-(F4)
ω∞ =∞ λ > 0 C1,1

(
[0, 1]

)
Corollary 3.6.2 a)

L∞(0, 1) (F1)-(F4) 0 < λ < λµ W 2,1(0, 1) Theorem 3.6.3
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3.1 Sobolev and BV -functions of One Real Variable

We start with some basic facts about functions on R, referring to the relevant
sections of [1] or the classical monograph [73] for proofs and details. One main
advantage of the one-dimensional setting in compare to the general case consists
in the fact that here we have a more classical characterization of Sobolev- and
BV functions. We begin with the space W 1,1(Ω), where now Ω = (a, b) ⊂ R is
an open interval. In one dimension, the functions f having a weak derivative in
the space L1(Ω) are exactly the �absolutely continuous� functions (denoted by
f ∈ AC(Ω)), which classically means that f can be represented by an integral
of a suitable L1-density g = ḟ ,

f(t) =

t∫
a

g(s) ds+ f(a).

In particular, every f ∈ W 1,1(Ω) is even uniformly continuous which implies
that it has a continuous extension to the boundary points of Ω.

For BV functions in one dimension, we simply write

Du := D1u

to denote the distributional derivative of u, which is a real-valued Radon mea-
sure. De�ning the so called pointwise variation by

pV(u,Ω) := sup

{
n−1∑
i=1

|u(ti+1)− u(ti)| : n ≥ 2, a < t1 < ... < tn < b

}
,

as well as the essential variation through

eV(u,Ω) := inf
{

pV(v,Ω) : v = u L1-a.e. in Ω
}
,

the following is proved in [1] (see Theorem 3.27, p. 135 and Theorem 3.28, p.
136):

Lemma 3.1.1

Let u ∈ L1(a, b) satisfy eV(u, (a, b)) <∞. Then it holds:

a) u ∈ BV (a, b) and eV(u, (a, b)) = |Du|(a, b).

b) There always exists a so called �good� L1-representative u = u a.e. for which
it holds

|Du|(a, b) = pV(u, (a, b)).

Moreover, u is continuous up to a countable set of jump-type discontinuities.
In particular, the left- and the right limit of u exist at all points of Ω, i.e. u
is a regulated function.
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In what follows, we will tacitly identify any BV -function with its good repre-
sentative. We further note that this representative has a classical derivative at
L1-almost all points of Ω which is an L1-representative of the absolutely con-
tinuous (with respect to L1) part of the measure Du, and which, by an abuse
of notation, will be denoted by u̇, also. Hence Du reads as

Du =

=: Dau︷ ︸︸ ︷
u̇ · L1 +

=: Dsu︷ ︸︸ ︷∑
k∈N

h(xk)δxk +Dcu, (3.4)

and it holds (compare [1], Corollary 3.33)

|Du|(a, b) =

b∫
a

|u̇|dt+
∑
k∈N
|h(xk)|+ |Dcu|(a, b).

Here, for k ∈ N, xk denotes the discontinuity points of the good representative
of u,

h(xk) := lim
x↓xk

u(x)− lim
x↑xk

u(x)

is the �jump-heigh� and δxk is Dirac's measure of mass 1 concentrated at xk.
The sum

∑
k∈N h(xk)δxk is the so called jump part Dju of Du which, together

with the residual part Dcu := Dsu−Dju (the so called Cantor part), forms the
singular part Dsu in the Lebesgue decomposition of Du.

3.2 Sobolev Regularity

Of course, even in the one-dimensional case, the space W 1,1(Ω) is not re�exive
and the existence of a solution of problem (3.1) is the exception rather than
the rule. Interestingly, the following theorem shows that it su�ces to put a
constraint on the parameter λ to guarantee the existence of a J-minimizing
function in the Sobolev class:

Theorem 3.2.1

Suppose (3.2) holds for the data f and let F satisfy (F1)�(F4). Assume further
that the parameter λ is bounded by

λ < λ∞(F ) (3.5)

with λ∞(F ) de�ned in (3.3). Then it holds:

a) Problem (3.1) admits a unique solution u ∈W 1,1(0, 1) = AC
(
[0, 1]

)
and this

solution satis�es 0 ≤ u(x) ≤ 1 for all x ∈ [0, 1].

b) The minimizer u belongs to the class W 2,∞(0, 1) = C1,1
(
[0, 1]

)
and solves the

following Neumann-type boundary value problem ü = λ
u− f
F ′′(u̇)

a.e. on (0, 1),

u̇(0) = u̇(1) = 0.

(BVP)
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Remark 3.2.1

The bound λ < λ∞ is the most general condition under which we can establish
existence of a Sobolev solution of problem (3.1) and is far from being optimal.
In Section 3.4 we will point out the dependence of the regularity behavior of u
on the qualities of the data function f .

Remark 3.2.2

Note that, in contrast to the n-dimensional setting, Theorem 3.2.1 goes without
additional constraints on the density F (e.g. µ-ellipticity condition).

Proof. We start with the statement of part a). Let us assume the validity of the
hypotheses of Theorem 3.2.1. We �rst note that problem (3.1) has at most one

solution thanks to the strict convexity of the data �tting quantity
1∫
0

(w − f)2 dt

with respect to w. Next we show that there exists at least one solution. To this
purpose we once more employ the δ-regularization from Lemma 2.2.1, i.e. for
�xed δ ∈ (0, 1] we consider the problem

Jδ[w] :=

1∫
0

Fδ(ẇ) dt+
λ

2

1∫
0

(w − f)2 dt→ min in W 1,2(0, 1), (3.6)

where

Fδ(t) :=
δ

2
|t|2 + F (t), t ∈ R. (3.7)

Quoting Lemma 2.2.1, it holds that problem (3.6) admits a unique solution uδ
which lies in the local class W 2,2

loc (Ω) and satis�es

sup
0≤δ<1

‖uδ‖1,1;Ω <∞ (3.8)

as well as sup
0≤δ<1

δ

1∫
0

|u̇δ|2 dt <∞. (3.9)

Moreover, it holds

0 ≤ uδ(t) ≤ 1 for all t ∈ [0, 1], (3.10)

which can easily be proved by contradiction: if this were not the case, then

vδ(t) := min{uδ(t), 1} −min{uδ(t), 0}

would be a distinct W 1,2(0, 1)-function, satisfying |vδ(t)| ≤ |uδ(t)| as well as
|v̇δ(t)| ≤ |u̇δ(t)| for L1-a.a. t ∈ [0, 1], hence Jδ[vδ] ≤ Jδ[uδ]. This, however,
contradicts the uniqueness of the minimizer uδ.

Remark 3.2.3

We emphasize that in the one-dimensional cased u̇δ(t) exists for all t ∈ (0, 1) in
the classical sense as a continuous function due to the embedding W 2,2

loc (0, 1) ↪→
C1(0, 1).
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We continue with the observation that from the assumptions (F1)�(F4) imposed
on the density F and the de�nition of λ∞ (compare (3.3)) we can infer

Im(F ′) = (−λ∞, λ∞). (3.11)

Next, we �x λ ∈ (0, λ∞) and observe the validity of the following lemma which,
despite its elementary nature, will be important during the further proof:

Lemma 3.2.1

The inverse function of F ′δ : R→ R is uniformly (in δ) bounded on the interval
[−λ, λ].

Proof of Lemma 3.2.1. Since F ′ is an odd, strictly increasing function that in-
duces a di�eomorphism between R and the open interval (−λ∞, λ∞). Let us
write (F ′)−1

(
[−λ, λ]

)
= [−α, α], where F ′(α) = λ. Next we choose t ∈ [−λ, λ]

and assume that (F ′δ)
−1(t) > α. Then it follows (note that F ′δ is strictly increas-

ing)

t > F ′δ(α) = δα+ F ′(α) = δα+ λ > λ,

which is clearly a contradiction. The case (F ′δ)
−1(t) < −α is treated in the same

manner and the lemma is proved.

After these preparations, we proceed with the proof of Theorem 3.2.1 a). First,
we introduce (compare (2.14))

σδ := F ′δ(u̇δ) ∈ C0(0, 1). (3.12)

Using (F2) together with (3.9), we obtain

σδ ∈ L2(0, 1) uniformly in δ. (3.13)

Owing to their Jδ-minimality, the uδ solve the Euler equation

0 =

1∫
0

F ′δ(u̇δ)ϕ̇dt+ λ

1∫
0

(uδ − f)ϕdt (3.14)

for all ϕ ∈ W 1,2(0, 1). Note that this means exactly that σδ is weakly di�eren-
tiable with derivative

σ̇δ = λ(uδ − f) a.e. on (0, 1). (3.15)

Combining (3.10) with (3.13) and (3.15) it follows (recall our assumption 0 ≤
f ≤ 1 a.e. on (0, 1))

σδ ∈W 1,∞(0, 1) = C0,1
(
[0, 1]

)
uniformly in δ and ‖σ̇δ‖∞ ≤ λ. (3.16)
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Choosing ϕ ∈ C1
(
[0, 1]

)
in (3.14) and using (3.15) together with the fundamen-

tal theorem of calculus (which holds for the class of AC-functions; see e.g. [74]
(18.16) Theorem on p. 285 or [73] Chapter 2), we infer that

0 =

1∫
0

(
σ̇δϕ+ σδϕ̇

)
dt =

1∫
0

d

dt

(
σδϕ

)
dt = σδ(1)ϕ(1)− σδ(0)ϕ(0),

and since ϕ ∈ C1
(
[0, 1]

)
is arbitrary it must hold

σδ(0) = σδ(1) = 0. (3.17)

Note that (3.16) and (3.17) imply

‖σδ‖∞ ≤ λ. (3.18)

At this point, the de�nition of σδ, (3.16), (3.17), (3.18) and Lemma 3.2.1 yield
the existence of a constant M > 0, independent of δ, such that

‖u̇δ‖∞ ≤M. (3.19)

Here we have made essential use of the restriction λ < λ∞. As a consequence,
there exists a function u ∈W 1,∞(0, 1) such that uδ ⇒ u as δ ↓ 0 and u̇δ ⇁ u̇ in
Lp(0, 1) for all �nite p > 1 as δ ↓ 0, at least for a subsequence. Our goal is to
show that u is J-minimal: thanks to the Jδ-minimality of uδ it follows that for
all v ∈W 1,2(0, 1) it holds

J [uδ] ≤ Jδ[uδ] ≤ Jδ[v]
δ↓0→ J [v].

By lower semicontinuity, we further have

J [u] ≤ lim inf
δ→0

J [uδ]

and thus J [u] ≤ J [v] for all v ∈ W 1,2(0, 1). This yields J [u] ≤ J [w] for all
w ∈W 1,1(0, 1) by approximating w with functions vk ∈W 1,2(0, 1) in the W 1,1-
norm, which �nally proves u to be a solution of problem (3.1) and thereby part
a) of Theorem 3.2.1. We continue with the proof of part b). By (3.14) it holds

üδ = λ
(uδ − f)

F ′′δ (u̇δ)
a.e. on (0, 1),

so that u̇δ ∈ W 1,∞(0, 1) uniformly (in δ) on account of (3.19). Consequently,
the functions u̇δ have a unique Lipschitz extension to the boundary points 0
and 1, which particularly implies the di�erentiability of uδ at 0 and 1 , i.e.
there is a clear meaning of u̇δ(0) and u̇δ(1). For continuity reasons, the de�ning
equation (3.12) for σδ extends to the boundary points of (0, 1) as well and since
F ′δ vanishes exactly in the origin, it follows from (3.17) that u̇δ(0) = u̇δ(1) = 0.
Combining this with the uniform boundedness of uδ in C

1,1
(
[0, 1]

)
, we see that
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u ∈ C1,1
(
[0, 1]

)
holds together with the boundary condition u̇(0) = u̇(1) = 0.

Furthermore, u solves the Euler equation

0 =

1∫
0

F ′(u̇)ϕ̇dt+ λ

1∫
0

(u− f)ϕdt

for all ϕ ∈ C1
0 (0, 1) and we infer the validity of the relation

d

dt
F ′(u̇) = λ(u− f) a.e. on (0, 1).

Consequently, it holds

ü = λ
u− f
F ′′(u̇)

a.e. on (0, 1),

together with u̇(0) = u̇(1) = 0, i.e. u solves the boundary value problem (BVP),
as it was claimed in part b).

3.3 The Relaxed Problem

For arbitrarily large values of the parameter λ, problem (3.1) does not neces-
sarily possess a solution. For that reason, we have to study the one-dimensional
version of the relaxed problem (Ṽ ) from Section 2.1 in the space BV (0, 1). Here,
the functional K from (2.1) takes a particularly simple form: under our assump-
tions imposed on F , the recession function F∞(t) := lim

s→∞
F (st)/s simpli�es to

F∞(t) = λ∞|t| with λ∞ as de�ned in (3.3), and the relaxed problem therefore
reads as

K[w] =

1∫
0

F (ẇ) dt+ λ∞

1∫
0

|Dsw|+
λ

2

1∫
0

(w − f)2 dt

→ min in BV (0, 1).

(3.20)

Quoting Theorem 2.1.1, (3.20) has a solution u ∈ BV (0, 1) which is even unique
due to our assumption D = ∅ during this chapter. But as the following theorem
shows, we now obtain much �ner properties of u:

Theorem 3.3.1

Suppose (3.2) for the data function f and let the density F satisfy (F1)-(F4)
Moreover, let λ > 0 denote any number. Then it holds:

a) Problem (3.20) admits a unique solution u ∈ BV (0, 1), satisfying 0 ≤ u ≤ 1
a.e.
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b) There is an open subset Reg(u) of (0, 1) such that u ∈ W 2,∞
loc (Reg(u)) and

L1
(
(0, 1)− Reg(u)

)
= 0. We have

Reg(u) :=
{
s ∈ (0, 1) : s is a Lebesgue point of u̇

}
,

where u̇ is de�ned in (3.4). Moreover, there are numbers 0 < t1 ≤ t2 < 1
such that u ∈ C1,1

(
[0, t1] ∪ [t2, 1]

)
.

c) If F , in addition to (F1)-(F4), satis�es

F ′′(t) ≤ c2
1

1 + |t|
(F6)

for all t ∈ R and a constant c2 > 0, and if there is a subinterval (a, b) ⊂ (0, 1)
such that f ∈ W 1,2

loc (a, b), then we also have u ∈ W 1,1(a, b) ∩W 1,2
loc (a, b). In

case (a, b) = (0, 1) we get that u ∈W 1,1(0, 1)∩W 1,2
loc (0, 1) is J-minimizing in

W 1,1(0, 1).

Remark 3.3.1

The requirement (F6) is not as restrictive as it may appear at �rst sight. In
particular, it is easy to con�rm that for a given ε > 0 and µ > 1 our examples
from the introduction, F (p) := Fε(p) and F (p) := Φµ(|p|) satisfy condition (F6).

Proof. Let us assume the validity of the hypotheses of Theorem 3.3.1. As already
mentioned above, part a) follows from Theorem 2.1.1 where it was also shown
that a BV -minimal function u can be obtained as the L1-limit of the regularizing
sequence uδ from Lemma 2.2.1. That u is indeed unique with this property
follows from part b) of the aforesaid theorem. Due to (3.10) and uδ → u L1-a.e.
it further holds 0 ≤ u ≤ 1 a.e.

Now to part b). With σδ as de�ned in the proof of Theorem 2.1.1 (see (3.12)),
we recall that we have (3.15)-(3.17) at hand. Note that at this stage no bound
on λ was necessary. Thus, there exists σ ∈W 1,∞(0, 1) with σδ ⇒ σ as δ ↓ 0 (at
least for a subsequence). Moreover

σ̇ = λ(u− f) and |σ̇(t)| ≤ λ a.e.,

|σ(t)| ≤ λ on [0, 1],

σ(0) = σ(1) = 0.

(3.21)

By Theorem 2.2.1 from Section 2.2, σ is the unique solution of the dual problem
associated to (3.1) and it holds

σ = F ′(u̇) a.e. (3.22)

Due to the continuity of σ (recall (3.21)), (3.22) particularly holds for all
Lebesgue points of u̇, i.e. all t ∈ (0, 1) such that

lim
ε↓0

1

2ε

t+ε∫
t−ε

|u̇(s)− u̇(t)|ds = 0.
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Thus, identifying u̇ in the following with its Lebesgue point representative, we
have the formula

σ(t) = F ′(u̇(t)), for all t ∈ (0, 1)−A. (3.23)

where A is the set

A :=

t ∈ (0, 1) : lim
ε↓0

1

2ε

t+ε∫
t−ε

|u̇(s)− u̇(t)|ds 6= 0

 .

Note that by Lebesgue's di�erentiation theorem (see Corollary 1, p. 44 in [75])
A is a nullset, i.e. L1(A) = 0. Let us �x some point t0 ∈ (0, 1)− A. Then, due
to (3.22) it holds |σ(t0)| < λ∞ and since σ is continuous, there exists ε > 0 with

|σ(t)| ≤ λ∞ − α for all t ∈ [t0 − ε, t0 + ε], (3.24)

if α > 0 is chosen appropriately small. Recalling σδ ⇒ σ, (3.24) yields for δ
small enough

|σδ(t)| ≤ λ∞ −
α

2
for all t ∈ [t0 − ε, t0 + ε]. (3.25)

Quoting Lemma 3.2.1, (F ′δ)
−1 is uniformly (with respect to δ) bounded on the

interval
[
−λ∞+ α

2 , λ∞−
α
2

]
. Hence, there exists a number L > 0, independent

of δ, such that (compare (3.19))

‖u̇δ‖L∞(t0−ε,t0+ε) ≤ L for all small enough δ. (3.26)

Since u is the L1-limit of the sequence (uδ), (3.26) implies

u ∈ C0,1
(
[t0 − ε, t0 + ε]

)
and using the Euler equation (3.14) for uδ on (t0 − ε, t0 + ε), we deduce

üδ = λ
(uδ − f)

F ′′δ (u̇δ)
a.e. on (t0 − ε, t0 + ε).

This yields the existence of a number L′ > 0 such that, independently of δ, it
holds

‖üδ‖L∞(t0−ε,t0+ε) ≤ L′. (3.27)

From (3.27) it �nally follows that

u ∈ C1,1
(
[t0 − ε, t0 + ε]

)
which proves u to be of class C1,1 in a neighborhood of every point t ∈ (0, 1)−A.
Recalling (3.21), we then infer that (3.24) must hold on a suitable interval
[0, t1] (choose, for instance, t1 < sup{s ∈ [0, 1] : |σ(s)| < λ∞}). Hence, u ∈
C1,1

(
[0, t1]

)
follows and, using analogous arguments, we can show the existence
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of a number t2 with 0 < t1 ≤ t2 < 1 and such that u ∈ C1,1([t2, 1]). This proves
part b) of the theorem.

For proving part c), our strategy is to show uδ ∈ W 1,2
loc (a, b) uniformly with

respect to δ. Along with the fact that the K-minimizing function u ∈ BV (0, 1)
is obtained as the limit of the sequence uδ, we then infer that u ∈ BV (a, b) ∩
W 1,2

loc (a, b), hence u ∈ W 1,1(a, b). We �rst recall uδ ∈ W 2,2
loc (0, 1) (compare

Lemma 2.2.1 c)) so that F ′δ(u̇δ) is of class W
1,2
loc (0, 1), satisfying

(F ′δ(u̇δ))
′ = F ′′δ (u̇δ)üδ a.e. on (0, 1).

From (3.14) we therefore get

1∫
0

F ′′δ (u̇δ)üδϕ̇dt = λ

1∫
0

(uδ − f)ϕ̇dt (3.28)

for all ϕ ∈ C∞0 (0, 1) and by approximation, (3.28) remains valid for functions
ϕ ∈ W 1,2(0, 1) whose support is a compact subset of (0, 1). Next, we �x a
point x0 ∈ (a, b), a number R > 0 such that (x0 − 2R, x0 + 2R) b (a, b) and
η ∈ C∞0 (x0 − 2R, x0 + 2R) with η ≡ 1 on (x0 −R, x0 +R), 0 ≤ η ≤ 1 as well as
|η̇| ≤ c

R . Choosing ϕ := η2u̇δ in (3.28) we obtain

I0 : =

x0+2R∫
x0−2R

F ′′δ (u̇δ)(üδ)
2η2 dt

= −2

x0+2R∫
x0−2R

F ′′δ (u̇δ)üδu̇δη̇η dt+ λ

x0+2R∫
x0−2R

(uδ − f)ϕ̇dt

=: I1 + λI2.

(3.29)

We continue with I1 for which Young's inequality yields (ε > 0 can be chosen
arbitrarily small)

|I1| ≤ εI0 + cε−1

x0+2R∫
x0−2R

F ′′δ (u̇δ)u̇
2
δ η̇

2 dt. (3.30)

An integration by parts (recall f ∈W 1,2
loc (a, b)) further gives for I2

I2 = −
x0+2R∫
x0−2R

(u̇δ − ḟ)u̇δη
2 dt = −

x0+2R∫
x0−2R

u̇2
δη

2 dt+

x0+2R∫
x0−2R

ḟ u̇δη
2 dt. (3.31)

Putting together (3.30) and (3.31) and absorbing terms (choose ε > 0 su�ciently
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small), (3.29) implies

x0+2R∫
x0−2R

F ′′δ (u̇δ)(üδ)
2η2 dt+ λ

x0+2R∫
x0−2R

u̇2
δη

2 dt

≤ c
x0+2R∫
x0−2R

F ′′δ (u̇δ)u̇
2
δ η̇

2 dt+ c

x0+2R∫
x0−2R

|ḟ ||u̇δ|η2 dt.

(3.32)

The �rst integral on the right-hand side of (3.32) can be handled by the uni-
form estimate Jδ[uδ] ≤ J [0], the linear growth of F and condition (F6). More
precisely, we have

x0+2R∫
x0−2R

F ′′δ (u̇δ)u̇
2
δ η̇

2 dt ≤ c(R)

x0+2R∫
x0−2R

(
δ + (1 + u̇2

δ

)− 1
2 )u̇2

δ dt ≤ c(R),

where c(R) denotes a local constant being independent of δ. To the second
integral we apply Young's inequality which yields

x0+2R∫
x0−2R

|ḟ ||u̇δ|η2 dt ≤ ε
x0+2R∫
x0−2R

u̇2
δη

2 dt+ cε−1

x0+2R∫
x0−2R

ḟ2η2 dt.

Absorbing terms by choosing ε > 0 su�ciently small, (3.32) implies (recall η ≡ 1
on (x0 −R, x0 +R) and f ∈W 1,2

loc (a, b) once again)

x0+R∫
x0−R

F ′′δ (u̇δ)(üδ)
2 dt+ λ

x0+R∫
x0−R

u̇2
δ dt ≤ c(f,R), (3.33)

where c(f,R) is a local constant, independent of δ. This proves

uδ ∈W 1,2(x0 −R, x0 +R) uniformly with respect to δ

and part c) of the theorem now follows from a covering argument.

Remark 3.3.2

From the proof of part b) we see how the set of possible singularities,

Sing(u) := [0, 1]− Reg(u),

can be given in terms of the function σ: due to (3.22), we have |σ(t)| < λ∞ at
almost all points t ∈ [0, 1] and since σ is continuous it therefore holds

−λ∞ ≤ σ(t) ≤ λ∞ for all t ∈ [0, 1].

We claim that Sing(u) is exactly the set of points where |σ| attains the maximal
value λ∞, i.e.

Sing(u) =
{
t ∈ [0, 1] : |σ(t)| = λ∞

}
.
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Indeed, let t0 ∈ [0, 1] be a regular point of u, i.e. there is a small neighborhood
(t0−ε, t0+ε) of t0 such that u is of class C1,1(t0−ε, t0+ε). Hence |u̇| is bounded
on (t0−ε, t0 +ε) and (3.23) along with the continuity of σ implies |σ(t0)| < λ∞.
Conversely, if s0 ∈ [0, 1] is a point where |σ(s0)| < λ∞ the arguments given after
(3.23) show that s0 is a regular point.

3.4 The Dependence on the Regularity of the Data

Part c) of Theorem 3.3.1 already indicated the connection between the regularity
of the solution u of problem (3.20) and the regularity of the data function f . In
this section, we are going to study some typical model cases of data functions as
they might appear in practice, such as piecewise constant or triangular signals
(see Figure 3.1), and how their regularity behavior in�uences the minimizer u.

Theorem 3.4.1

Suppose (3.2) holds for the data function f and let the density F satisfy (F1)-
(F4). Let u denote the unique K-minimizer from Theorem 2.2.1. Then, the
following assertions hold:

a) If t0 ∈ (0, 1) is a point, where some representative of the data function f is
continuous. Then the good representative of u introduced in front of (3.4) is
continuous at t0, as well.

b) Assume that there is an interval [a, b] ⊂ (0, 1) such that f ∈ W 1,∞(a, b).
Then we have u ∈ C2(a, b).

c) Suppose f ∈W 1,1(0, 1) and de�ne

ω∞ := lim
t→∞

tF ′(t)− F (t) ∈ [0,∞). (3.34)

If λ
(

1
2 + ‖ḟ‖1

)
< ω∞, then u ∈ C1,1

(
[0, 1]

)
.

Corollary 3.4.1

If the data function f is globally Lipschitz-continuous on [0, 1], then u ∈ C2
(
[0, 1]

)
.

Proof of Corollary 3.4.1. Applying Theorem 3.4.1 b) with a and b arbitrarily
close to 0 and 1, respectively, yields u ∈ C2(0, 1). Hence u satis�es the di�er-
ential equation from Theorem 2.1.1 c)

ü = λ
u− f
F ′′(u̇)

(3.35)

in the classical sense at all points of (0, 1). Due to Theorem 2.2.1 b) we have
t1, t2 > 0 for which u ∈ C1

(
[0, t1]∪[t2, 1]

)
and therefore u̇ is uniformly continuous

on [0, 1], which means that the right-hand side of equation (3.35) belongs to the
space C0

(
[0, 1]

)
. Hence ü exists even in 0 and 1 as a continuous function on

[0, 1].
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Remark 3.4.1 (i) From part a) we infer that if f is continuous on an interval
(a, b) ⊂ [0, 1] , then also u ∈ C0(a, b).

(ii) We would like to remark that part b) in particular applies to piecewise
a�ne data functions such as triangular or rectangular signals as shown
in Figure 3.1. For these types of data functions, we obtain K-minimizers
which are di�erentiable away from the discontinuity points of the data.

Fig. 3.1

(iii) The point of the assertion in c) is that even though full C1,1-regularity may
fail to hold in general if the parameter λ exceeds λ∞, it can still hold up to
2λ∞ provided the oscillation of the data f is su�ciently small. If e.g. F
is the regularized minimal surface integrand F (t) := Fε(t) =

√
ε2 + t2−ε,

it is easily seen that
ω∞(Fε) = ε.

Consequently, we get full C1,1-regularity for all parameters λ up to the
bound

ε
1
2 + ‖ḟ‖1

,

which can be larger than λ∞(Fε) = 1. For F (t) = Φµ(|t|) it holds λ∞ =
1

µ−1 , whereas

lim
t→∞

tΦ′µ(t)− Φµ(t) =


1

µ− 1

1

µ− 2
, µ > 2,

∞ 1 < µ ≤ 2,

so that ω∞ is even unbounded if we let µ approach 2 from above.

Proof. We begin with part a). Without loss of generality we will in the following
identify f with the representative that is continuous in t0. Moreover, we recall
that we always consider the �good� representative of u as speci�ed in Section
3.1. Assume that the statement is false, i.e. the left- and the right limit of u at
t0,

u−(t0) := lim
tk↑t0

u(tk) and u+(t0) := lim
tk↓t0

u(tk)

do not coincide. W.l.o.g. we may assume

u−(t0) < f(t0) and u+(t0) ≥ f(t0), (3.36)
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and it will be clear from the proof that the other possible cases can be treated
analogously. Let h0 := u+(t0) − u−(t0) denote the jump-height at t0. Then
(3.36) implies the existence of ε > 0 and 0 < d < h0 such that

u(t) < f(t)− d for all t ∈ [t0 − ε, t0].

We may further assume that u is continuous at t0 − ε. Now de�ne ũ by

ũ(t) := u(t) + dχ[t0−ε,t0](t).

This means that on [t0− ε, t0] we shift the graph of u a little closer to the graph
of f so that in particular

1∫
0

(ũ− f)2 dt <

1∫
0

(u− f)2 dt. (3.37)

Let us write (compare (3.4)) Du = u̇L1 +
∑∞

k=0 hkδxk +Dcu, where xk are the
discontinuity points of u. Clearly, ũ ∈ BV (0, 1) and it holds

Dũ = u̇L1 + (h0 − d)δt0 + dδt0−ε +

∞∑
k=1

hkδxk +Dcu

and in conclusion

K[ũ] =

1∫
0

F (u̇) dt+ λ∞

(
|h0 − d|+ d+

∞∑
k=1

|hk|

)

+ λ∞|Dcu|(0, 1) +
λ

2

1∫
0

(ũ− f)2 dt.

Since d < h0 and due to (3.37) this implies

K[ũ] < K[u],

which is a contradiction to the minimality of u.

Now to part b). First, we note that due to part b) of Theorem 3.3.1 there are
points s1 and s2 in (a, b), arbitrarily close to a and b, respectively, such that u
is C1,1-regular in a small neighborhood of s1 and s2. Hence, the singular set

S := Sing(u) ∩ [s1, s2]

is a compact subset of the open interval (s1, s2). Moreover, by part a) of
Theorem 3.4.1 we have u ∈ C0(a, b). Assume S 6= ∅. Then there exists
s := inf S > a (which is an element of S itself since Sing(u) is closed). In
particular, σ(s) = ±λ∞ (cf. Remark 3.3.2), i.e. σ has a maximum respectively
minimum in s and since σ̇ = λ(u− f) ∈ C0(a, b) it follows that

σ̇(s) = 0,
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which means that

u(s) = f(s). (3.38)

W.l.o.g. we may assume σ(s) = λ∞. Since σ is continuous in s it must hold
that, for any sequence tk ↑ s approaching s from the left, σ(tk) → λ∞ and
because of u̇ = DF−1(σ),

u̇(tk)→∞ for any sequence tk ↑ s. (3.39)

In particular, for arbitrary M > 0 there exists ε > 0 such that

u̇(t) > M for t ∈ [s− ε, s). (3.40)

Now choose M := ‖ḟ‖∞;[s1,s2] in (3.40). Then

u̇− ḟ > 0 on [s− ε, s),

which is not compatible with (3.38) unless u − f < 0 on [s − ε, s). But in this
case, the di�erential equation

ü = λ
u− f
F ′′(u̇)

a.e. on [s− ε, s) (3.41)

implies that u̇ is strictly decreasing on [s − ε, s) and thereby u̇(s − ε) ≥ u̇(s)
for all s ∈ [s− ε, s). This clearly contradicts (3.39). Since s1, s2 can be chosen
arbitrarily near to boundary points of (a, b), we infer Sing(u) ∩ (a, b) = ∅, i.e.
u ∈ W 2,∞

loc (a, b). Consequently, (3.41) holds at almost all points of (a, b) and
by the continuity of u̇, the right-hand side of (3.41) is continuous and thus
u ∈ C2(a, b).

It remains prove part c). In Section 2.2 we have seen that the function σ
maximizes the dual functional R in L∞(0, 1) which, with the Lagrangian

l(v, κ) =

1∫
0

κv̇ dt−
1∫

0

F ∗(κ) dt+
λ

2

1∫
0

(v − f)2 dt

︸ ︷︷ ︸
=: Ψ(v)

,

is de�ned by

R[κ] = inf
v∈W 1,1(0,1)

l(v, κ), κ ∈ L∞(0, 1).

Since σ ∈ W 1,∞(0, 1) along with σ(0) = F ′(u̇(0)) = 0 = F ′(u̇(1)) = σ(1) (cf.
(3.21)), an integration by parts yields the following representation of R[σ] (cf.
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also Theorem 9.8.1 on p. 366 in [76]):

R[σ] = inf
v∈W 1,1(0,1)

1∫
0

σv̇ dt−
1∫

0

F ∗(σ) dt+ Ψ(v)

= −
1∫

0

F ∗(σ) dt− sup
v∈W 1,1(0,1)

− 1∫
0

σv̇ dt−Ψ(v)


= −

1∫
0

F ∗(σ) dt− sup
v∈W 1,1(0,1)

 1∫
0

σ̇v dt−Ψ(v)


= −

1∫
0

F ∗(σ) dt−Ψ∗(σ̇),

where Ψ∗ denotes the convex dual of Ψ, see Section 2.2. We want to determine
Ψ∗(σ̇) explicitely. By de�nition we have

Ψ∗(σ̇) = sup
v∈W 1,1(0,1)

∫
Ω

vσ̇ dx− λ

2

∫
Ω

(v − f)2 dx


= sup

v∈W 1,1(0,1)

∫
Ω

v
(
σ̇ − λ

2
v + λf

)
dx− λ

2

∫
Ω

f2 dx.

Applying Hölder's inequality, we �nd that∫
Ω

v
(
σ̇ − λ

2
v + λf

)
dx ≤ −λ

2
‖v‖22 + ‖σ̇ + λf‖2‖v‖2 (3.42)

and the term −λ
2 · t

2 + ‖σ̇ + λf‖2 · t is maximal for t = ‖ σ̇λ + f‖2. Indeed, the
left-hand side of (3.42) attains this maximal value with the choice v = σ̇

λ + f
and it follows

Ψ∗(σ̇) =

1∫
0

(
σ̇

λ
+ f

)
σ̇ dt− λ

2

1∫
0

(
σ̇

λ
+ f

)2

dt

=

1∫
0

σ̇2

2λ
+ σ̇f dt.

For R[σ] we thus obtain

R[σ] = −
1∫

0

σ̇2

2λ
+ σ̇f dt−

1∫
0

F ∗(σ) dt. (3.43)

Now assume that Sing(u) 6= 0. By Remark 3.3.2, this means that there exists
at least one point t ∈ [0, 1] where σ(t) = ±λ∞. Let t̂ := inf Sing(u). Since
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σ(0) = 0 it follows that t̂ > 0 and, without loss of generality, we may assume
σ(t̂) = λ∞. Let ϕ ∈ C∞0

(
[0, t̂)

)
be an arbitrary test function. On [0, t̂) it holds

|σ| < λ∞ and since sptϕ is a compact subset of [0, t̂) (and σ is continuous)
there exists ε0 > 0 such that |σ(t) + εϕ(t)| ≤ λ∞ − δ for some δ > 0 and for
all 0 ≤ ε < ε0. By Theorem 26.4 and Corollary 26.4.1 in [77], F ∗ is �nite and
continuously di�erentiable on (−λ∞, λ∞) (with derivative (F ∗)′ = (F ′)−1) so
that

d

dε

∣∣∣∣
ε=0

F ∗(σ(t) + εϕ(t)) = (F ∗)′
(
σ(t)

)
ϕ(t)

exists. We may therefore use the representation (3.43) and the maximality of σ
to derive the following Euler equation:

−
1∫

0

σ̇

λ
ϕ̇+ fϕ̇dt−

1∫
0

(F ∗)′(σ)ϕdt = 0. (3.44)

Since [0, t̂) ⊂ Reg(u) and f ∈W 1,1(0, 1) by assumption, we have (see (3.21))

σ̇ = λ(u− f) ∈W 1,1(0, t̂) (3.45)

and therefore σ ∈ W 2,1(0, 1). Hence (3.44) implies the following di�erential
equation:

σ̈

λ
+ ḟ − (F ∗)′(σ) = 0 a.e. on (0, t̂). (3.46)

Let sk ⊂ [0, t̂) (k ∈ N) denote a sequence with sk ↑ t̂ as k → ∞. Multiplying
(3.46) with σ̇ and integrating by parts (recall σ̇ ∈W 1,1(0, t̂)) then yields

σ̇(sk)
2

2λ
− σ̇(0)2

2λ
+

sk∫
0

ḟ σ̇ dt− F ∗(σsk) = 0.

Since σ̇ is bounded by λ, this implies the estimate

F ∗(σ(sk)) ≤ λ
(

1

2
+ ‖ḟ‖1

)
(3.47)

and thereby

lim
k→∞

F ∗(σ(sk)) ≤ λ
(

1

2
+ ‖ḟ‖1

)
. (3.48)

But the following calculation (cf. also Figure 3.2) shows that the limit on the
left-hand side is just the quantity ω∞ from the assumptions of part c):

lim
q↑λ∞

F ∗(q) = lim
q↑λ∞

q∫
0

(F ∗)′(t) dt = lim
q↑λ∞

q∫
0

(F ′)−1(t) dt
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Fig. 3.2

= lim
q↑λ∞

q(F ′)−1(q)−
(F ′)−1(q)∫

0

F ′(t) dt
p:=(F ′)−1(q)

= lim
p↑∞

pF ′(p)− F (p).

Hence (3.48) is in contradiction to our assumption and Sing(u) = ∅ must hold.

3.5 Discontinuous Minimizers

The regularity results from the previous sections raise the question, whether
our model (3.1) is able to produce a discontinuous output at all. Keeping in
mind that it is the distinguishing feature of the TV-model to maintain sharp
discontinuities of the data, it is desirable to know under which conditions the
generalized minimizer u from Theorem 3.3.1 is strictly contained in the class
BV (0, 1)−W 1,1(0, 1). The one dimensional setting enables us to give an explicit
example where, for large enough values of the parameter λ, the functional J
does not attain its minimum in the Sobolev class. This example can easily
be transported to higher dimensions, thereby showing that (V ) is indeed a
practically useful alternative to the TV-model. In the following, we denote by
uλ for λ ∈ [0,∞) the unique minimizer of

Kλ[w] :=

1∫
0

F (ẇ) dt+ λ∞|Dsw|(0, 1) +
λ

2

1∫
0

(w − f)2 dt

for a �xed density F satisfying (F1)-(F4) and data f as in (3.2). We make the
following (trivial) observation on the convergence behavior of uλ as λ→∞:

Lemma 3.5.1

Let F , f and uλ be de�ned as above. Then it holds

uλ → f in L2(0, 1) as λ→∞.

Proof. This is immediate from λ
2‖uλ − f‖L2(0,1) ≤

√
Kλ[uλ] ≤

√
Kλ[0].
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We will in the following �x a certain data function f , which is designed to be
sort of a �model case� of a discontinuous data function. Namely we set f = f0

with

f0 : [0, 1]→ [0, 1], f0(t) =


0, 0 ≤ t ≤ 1

2
,

1,
1

2
< t ≤ 1.

(3.49)

By a slight abuse of notation, we still denote by uλ the BV -minimizer of Kλ,
even if f = f0. Based upon our previous results, we can gather the following
properties of uλ:

Lemma 3.5.2

Let F , f = f0 and uλ be as above. Then we have:

a) uλ ∈ C2
(
[0, 1]− {1

2}
)
, 0 ≤ uλ ≤ 1 a.e. and uλ satis�es

üλ = λ
uλ

F ′′(u̇λ)
, u̇λ(0) = 0, on [0, 1/2) (1),

üλ = λ
1− uλ
F ′′(u̇λ)

, u̇λ(1) = 0, on (1/2, 1] (2),

b) u̇λ is increasing on [0, 1
2) and u̇λ is decreasing on [0, 1

2),

c) uλ is increasing on [0, 1] .

d) The two continuous branches, uλ|[0, 1
2

) and uλ|( 1
2
,1], of uλ are symmetric with

respect to the point (1
2 ,

1
2), i.e.

uλ(t) = 1− uλ(1− t)︸ ︷︷ ︸
=: ũλ(t)

, for t ∈ [0, 1]− {1/2} .

e) 0 ≤ uλ < 1
2 on [0, 1

2) and 1
2 < uλ ≤ 1 on (1

2 , 1].

f) uλ converges locally uniformly to f0 on [0, 1
2) and on (1

2 , 1] as λ→∞.

Proof. a) 0 ≤ uλ ≤ 1 is clear since f0 ful�lls (3.2) and uλ ∈ C2
(
[0, 1]− {1

2}
)
is

immediate from part b) of Theorem 3.4.1. That uλ satis�es the system (1), (2)
at all points where it is di�erentiable follows as in Theorem 3.2.1 b) from the
Kλ-minimality.

b) By part a) we have uλ − f0 ≥ 0 on [0, 1
2) and uλ − f0 ≤ 0 on (1

2 , 1] so that
(1), (2) imply üλ ≥ 0 on [0, 1

2) and üλ ≤ 0 on (1
2 , 1].

c) Due to u̇λ(0) = 0 and b) we have u̇λ(0) ≥ 0 on [0, 1
2). Similarly, u̇λ(1) = 0

together with b) implies u̇λ(t) ≥ 0 on (1
2 , 1].
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d) We show K[ũλ] = K[uλ]. The result then follows from the uniqueness of the
K-minimizer in BV (0, 1) in the case of pure denoising (Theorem 2.2.1 a)). Let

h := lim
t↓ 1

2

uλ(u)− lim
t↑ 1

2

uλ(u)

denote the height of the (possible) jump of uλ at t = 1/2. Then the distributional
derivative of uλ is given by

Duλ = u̇λ + hδ1/2,

where δ1/2 is Dirac's measure of mass 1 concentrated in 1
2 . Hence

K[uλ] =

1
2∫

0

F (u̇λ) dt+

1∫
1
2

F (u̇λ) dt+ λ∞|hδ1/2|(0, 1) +
λ

2

1∫
0

(uλ − f0)2 dt

=

1
2∫

0

F (u̇λ) dt+

1∫
1
2

F (u̇λ) dt+ λ∞h+
λ

2

1∫
0

(uλ − f0)2 dt.

For ũλ we obtain

K[ũλ]

=

1
2∫

0

F (u̇λ(1− t)) dt+

1∫
1
2

F (u̇λ(1− t)) dt+ λ∞|hδ1/2|(0, 1) +
λ

2

1∫
0

(ũλ − f0)2 dt

=

1
2∫

0

F (u̇λ) dt+

1∫
1
2

F (u̇λ) dt+ λ∞h+
λ

2

1∫
0

(ũλ − f0)2 dt,

but clearly
∫ 1

0 (ũλ − f0)2 dt =
∫ 1

0 (uλ − f0)2 dt and therefore K[ũλ] = K[uλ].

e) Consider the function

vλ(t) :=



min

{
1

2
, uλ(t)

}
, if t <

1

2
,

max

{
1

2
, uλ(t)

}
, if t >

1

2
,

1

2
, if t =

1

2
.

Now assume that there exists t0 ∈ [0, 1
2) with uλ(t0) ≥ 1

2 . Then due to part c)
and d) it holds uλ >

1
2 on (t0,

1
2) and uλ <

1
2 on (1

2 , 1−t0), hence vλ ∈W 1,1(0, 1).

Clearly, |v̇λ| ≤ |u̇λ| and
∫ 1

0 (vλ−f0)2 dt <
∫ 1

0 (uλ−f0)2 dt, so thatK[vλ] < K[uλ],
in contradiction to the minimality of uλ. This means that uλ <

1
2 on [0, 1/2)

and the symmetry from part d) implies uλ >
1
2 on (1/2, 1].
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f) By Lemma 3.5.1,

‖uλ‖L2(0, 1
2

) → 0 as λ→∞. (3.50)

Fix s ∈ (0, 1
2). Due to part c) it holds

1
2∫

0

u2
λ dt ≥

1
2∫
s

u2
λ dt ≥

1
2∫
s

uλ(s)2 dt =

(
1

2
− s
)

sup
t∈[0,s]

|uλ(t)|,

so that (3.50) implies supt∈[0,s] |uλ(t)| → 0 on every interval [0, s] with s < 1
2 .

The corresponding statement on (1
2 , 1] follows via the symmetry from d).

Corollary 3.5.1

Under the assumptions of Lemma 3.5.2 the BV -minimum uλ is of class C
1,1
(
[0, 1]

)
if λ ≤ 4λ∞.

Proof. By Remark 3.3.2, uλ is C1,1 if the corresponding function σλ := F ′(u̇)
satis�es |σλ| < λ∞ on [0, 1]. Moreover, due to (3.21) we have σ̇λ(t) = λ(uλ −
f0) ≥ 0 on [0, 1

2) and σ̇λ(t) ≤ 0 on (1
2 , 1], so that σλ(t) reaches its maximal value

in t = 1
2 . Together with part e) of the above Lemma we thus obtain

σλ(t) ≤ σλ
(1

2

)
= λ

1
2∫

0

uλ − f dt < λ

1
2∫

0

1

2
− 0 dt =

λ

4
,

so that |σλ| < λ∞ if λ ≤ 4λ∞.

In what follows, we are going to show that the bound λ ≤ 4λ∞ is optimal in
the context of Corollary 3.5.1, which is to say that whenever λ > 4λ∞, there
exists a density function F (satisfying (F1)-(F4)) such that the corresponding
K-minimizer (where f = f0) uλ is discontinuous (exactly at t = 1

2). The proof
of this fact relies on a comparison of uλ with the minimizer of the standard
TV-model:

KTV [w] :=

1∫
0

|Dw|+ λ

2

1∫
0

(w − f)2 dt→ min for w ∈ BV (0, 1).

Lemma 3.5.3

Suppose f is some arbitrary data function satisfying (3.2). Then it holds:

a) The problem KTV → min admits a unique solution uTV in the class BV (0, 1).
It holds 0 ≤ uTV ≤ 1 a.e. on (0, 1).

b) If we choose f = f0 from (3.49), then the KTV -minimum uTV is constant
on each of the intervals [0, 1

2) and [1
2 , 1).
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c) For f = f0 we actually have: uTV ∣∣[0, 1
2

)
≡ 1

2 , if λ ≤ 4 and uTV ∣∣[0, 1
2

)
≡ 2

λ , if

λ > 4. In particular, uTV is continuous on [0, 1] if λ ≤ 4 and discontinuous
with a jump of height λ−4

λ at t = 1
2 if λ > 4.

Remark 3.5.1a) As in Theorem 3.4.1 a), we can show that any point of con-
tinuity of the data function f is a point of continuity of the TV -minimum
uTV .

b) Part b) of the above lemma could be stated in wider generality: if f is con-
stant on some open interval (a, b) ⊂ [0, 1], then so is uTV . The proof works
analogously to that of part b).

Proof. a) This follows along the lines of Theorem 2.1.1 and 3.3.1 a).

b) We identify uTV with its good representative (cf. Lemma 3.1.1), such that

1∫
0

|DuTV | = pV(u, (0, 1)).

Now consider the function

ũTV (t) :=


inf

0≤s≤ 1
2

uTV (s), if t ∈
[
0,

1

2

]
,

sup
1
2
<s≤1

uTV (s), if t ∈
(1

2
, 1
]
.

Then it holds

1∫
0

|DũTV | =

∣∣∣∣∣ sup
t∈( 1

2
,1]

uTV (t)− inf
t∈[0, 1

2
)
uTV (t)

∣∣∣∣∣ ≤ pV(uTV , (0, 1)) =

1∫
0

|DuTV |

as well as
1∫

0

(ũTV − f0)2 dt ≤
1∫

0

(uTV − f0)2 dt.

Hence, KTV [ũTV ] ≤ KTV [uTV ], so that the uniqueness statement of part a)
implies uTV = ũTV a.e.

c) By part b), there are numbers x, y ∈ [0, 1] such that uTV ≡ x on [0, 1
2 ] and

uTV ≡ y on (1
2 , 1]. Thus

KTV [uTV ] =
λ

4
(x2 + (1− y)2) + |x− y|.

It is easily con�rmed that this expression is minimal for x = y = 1
2 , if λ ≤ 4

and x = 2
λ , y = 1 − 2

λ if λ > 4. Hence, for λ ≤ 4, the minimizer uTV ≡ 1
2 is

continuous on [0, 1] and discontinuous with a jump of height 1 − 4
λ for values

λ > 4.
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In the following calculations, we specify the density F , setting F = Fε with

Fε(t) :=
√
ε2 + t2 − ε

for some ε > 0. We then consider the problem (note that λ∞(Fε) = 1)

Kε[w] :=

1∫
0

Fε(ẇ) dt+ |Dsw|(0, 1) +
λ

2

1∫
0

(w − f)2 dt→ min in BV (0, 1),

(3.51)

where the parameter λ is �xed, and ε varies in (0,∞).

Theorem 3.5.1

Suppose f is as in (3.2) and denote by uε ∈ BV (0, 1) the unique Kε-minimizer.
Let uTV be as in Lemma 3.5.3. Then there exists a subsequence ε ↓ 0 such that

uε → uTV L1-a.e. on (0, 1) and uε ⇁ uTV in L2(0, 1).

Moreover, uε converges locally uniformly to uTV on the open set

S :=

{
s ∈ [0, 1] :

∣∣∣∣∣λ
s∫

0

uTV − f dt

︸ ︷︷ ︸
=: σTV (s)

∣∣∣∣∣ < 1

}
.

Remark 3.5.2 (i) In Theorem 3.5.1 we can replace Fε with µ · Φµ or any
other one-parameter family of density functions which approximates | · |
uniformly.

(ii) For f = f0, part c) of Lemma 3.5.3 implies that S = [0, 1] if λ < 4 and
S = [0, 1]− {1

2} for λ ≥ 4.

(iii) Note that always S 6= ∅: since σTV (0) = 0 and σTV is continuous by
de�nition, S contains a small interval [0, δ) for some δ > 0. In particular,
we always have uε(0)→ uTV (0) as ε ↓ 0.

Proof. By Kε[uε] ≤ Kε[0], the family uε is uniformly bounded in BV (0, 1)
as well as in L2(0, 1). Hence, by the BV-compactness theorem and the weak
compactness of L2, there exists u ∈ BV (0, 1) such that uε → u in L1(0, 1) as
well as uε ⇁ u in L2(0, 1). Since |t| − ε ≤ Fε(t) holds for all t ∈ R and ε > 0,
we have

KTV [uε]− ε ≤ Kε[uε] ≤ Kε[uTV ]

which yields

KTV [u] ≤ lim inf
ε↓0

KTV [uε]− ε ≤ lim
ε↓0

Kε[uTV ] = KTV [uTV ],

and hence u = uTV a.e. by the uniqueness of uTV .
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Now let s ∈ [0, 1] be some point with σTV (s) < 1. Since uε → uTV in L1(0, 1),
it follows that

σε(s) := λ

s∫
0

uε − f dt
ε↓0−−→ λ

s∫
0

uTV − f dt < 1

so that there exists ε0 > 0 with |σε(s)| < 1 for all ε < ε0. From (3.21) it follows
that σε is Lipschitz continuous with Lipschitz constant

‖σ̇ε‖∞ ≤ λ‖uε − f‖∞ ≤ λ,

being uniformly bounded with respect to the parameter ε. Hence we can choose
δ > 0 small enough such that on the interval (s− δ, s+ δ) it holds |σε| < 1 for
all ε < ε0. With the same arguments as in the proof of Theorem 3.3.1 b) we
then see that uε is C

1,1 on (s− δ, s+ δ) together with

u̇ε = (F ′ε)
−1(σε) for all ε < ε0.

Since |σε| is uniformly bounded away from 1 and

(F ′ε)
−1(r) =

εr√
1− r2

⇒ 0 locally on (−1, 1) as ε ↓ 0,

it follows that u̇ε is uniformly bounded on (s − δ, s + δ). Consequently, the
Arzelà-Ascoli Theorem implies the existence of a subsequence ε ↓ 0 for which
uε ⇒ uTV on the interval (s− δ, s+ δ).

After these preparations we have now everything at hand to prove the optimality
of the bound λ ≤ 4λ∞ for our example data f0 in Corollary 3.5.1:

Lemma 3.5.4

Choose f = f0 as in (3.49) and let uε denote the unique BV -minimum of
Kε from (3.51). If λ > 4, then there exists a value ε > 0 for which uε is
discontinuous at t = 1

2 . In particular, since λ∞(Fε) = 1, the bound λ ≤ 4λ∞
given in Corollary 3.5.1 cannot be improved.

Proof. By part d) of Lemma 3.5.2, uε is not continuous unless uε(1/2) = 1/2.
This means that it su�ces to prove that uε is bounded away from 1/2 on [0, 1/2)
for small enough values of ε to infer that the minimizer has a jump at t = 1

2 .
To this purpose, consider equation (1) from part a) of Lemma 3.5.2:

üε(t) = λ
uε(t)

F ′′ε (u̇ε(t))

⇔ F ′′ε (u̇ε(t))üε(t) = λuε(t)

⇔ d

dt
F ′ε(u̇ε(t))u̇ε(t) = λuε(t)u̇ε(t).
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An integration from 0 to s (where s is some value in the interval [0, 1
2)) then

yields:

s∫
0

d

dt
F ′ε(u̇ε(t))u̇ε(t) dt =

s∫
0

λuε(t)u̇ε(t) dt

⇔
[
F ′ε(u̇ε(t))u̇ε(t)

]s
0

−
s∫

0

F ′ε(u̇ε(t))üε(t)︸ ︷︷ ︸
= d

dtF
′
ε(u̇ε(t))

dt =

[
λ

2
uε(t)

2

]s
0

,

and with u̇ε(0) = 0 and F ′ε(0) = 0, we arrive at

u̇ε(s)F
′
ε(u̇ε(s))− Fε(u̇ε(s)) =

λ

2

(
uε(s)

2 − uε(0)2
)
. (3.52)

The left-hand side of (3.52) is nonnegative due to F ′′ε > 0 and we therefore
obtain:

uε(s) =

√
uε(0)2 +

2

λ

(
u̇ε(s)F ′ε(u̇ε(s))− Fε(u̇ε(s))

)
for s ∈ [0, 1/2) . (3.53)

By the convexity of the function Fε, the term pF ′ε(p) − Fε(p) is increasing on
[0,∞) and can therefore be bounded by lim

t→∞
tF ′ε(t) − Fε(t) = ω∞(Fε) = ε, so

that

uε(s) ≤
√
uε(0)2 +

2ε

λ
for all s ∈

[
0,

1

2

)
.

If now λ > 4, Remark 3.5.2 (iii) together with Lemma 3.5.3 implies√
uε(0)2 +

2ε

λ

ε↓0−−→ 2

λ
<

1

2
.

Hence there exist ε0 > 0 and δ > 0 such that uε0 ≤ 1
2 − δ on [0, 1

2), which means
that uε must have a jump discontinuity at t = 1

2 .

3.6 µ-elliptic Densities

So far, we have seen that we can prove the existence of a solution to problem
(3.1) despite the nonre�exivity of the function spaceW 1,1(Ω), provided the value
of the parameter λ does not exceed a certain threshold. However, the results
from [35], [36], [37] and [38] indicate that such a solution exists even for arbitrary
values of λ, if we choose the density function F in a certain class. These are the
so called �µ-elliptic� functions for which, in addition to (F1)-(F3), also (F5) is
satis�ed for some µ ∈ (1,∞). In the �rst-order case, it was shown in [36], [38]
and [78] that the assumption µ < 2 su�ces to show that the functional I attains
its minimum in the Sobolev class. In the one dimensional setting here, we will
now study this dependence of the regularity behavior of the function u on the
parameter µ more closely. Namely we will show that for any µ > 2 there
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exists a density F , satisfying (F1)-(F5), and data f such that the solution u of
(3.20) is discontinuous and consequently is not an element of W 1,1(0, 1). This
counterexample can be transported easily to the higher-dimensional case n ≥ 2,
thus con�rming the optimality of the bound µ ≤ 2.

Theorem 3.6.1

Suppose f is as in (3.2) and consider a density F satisfying (F1)-(F5). More-
over, �x any number λ > 0. Then, if

µ ∈ (1, 2] (3.54)

holds, the unique solution u ∈ BV (0, 1) of problem (3.20) is of class C1,1
(
[0, 1]

)
.

Proof. We recall the de�nition of the set Reg(u) from Theorem 3.3.1:

Reg(u) :=
{
t ∈ [0, 1] : u is C1,1 in a neighborhood of t

}
.

From Theorem 3.3.1 b) we deduce that Sing(u) := [0, 1]− Reg(u) is a compact
subset of (0, 1). Assume that Sing(u) 6= ∅ and let s := inf Sing(u) > 0. Then
u ∈ C1,1

(
[0, s)

)
and therefore it holds

üF ′′(u̇) = λ(u− f) a.e. on [0, s). (3.55)

From (3.55) we deduce (compare the derivation of (3.52)) the validity of

u̇(t)F ′(u̇(t))− F (u̇(t)) =
λ

2

(
u(t)2 − u(0)2

)
−

t∫
0

f(τ)u̇(τ) dτ (3.56)

for t ∈ [0, s). Setting ω(p) := pF ′(p) − F (p) for p ∈ R, (3.56) implies (recall
0 ≤ u, f ≤ 1 a.e. on (0, 1))

|ω(u̇(t))| ≤ λ

2
+ |Du|(0, 1) <∞, t ∈ [0, s). (3.57)

By the convexity of F (together with F (0) = 0) we see that ω(p) ≥ 0, ω(0) = 0.
Moreover,

ω(p) =

p∫
0

ω′(q) dq =

q∫
0

qF ′′(q) dq

and hence (F5) together with assumption (3.54) implies

lim
p→∞

ω(p) =∞, lim
p→−∞

ω(p) =∞. (3.58)

Since we assume that u is singular in s, it must hold

lim
k→∞

|u̇(tk)| =∞

for a suitable sequence tk ↑ s, since otherwise

|σ(s)| = lim
t→s

∣∣(F ′)−1(u̇(t))
∣∣ < λ∞,

yielding s ∈ Reg(u) (cf. Remark (3.3.2)). But this contradicts (3.57) on account
of (3.58).
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Next, we look at the case µ > 2. We �x f = f0 from (3.49) and choose
F = Φµ

(
| · |
)
(see (6)). We will see that if µ > 2 and λ > λ∞ is appropriately

large, the BV -minimum of the functional

Kµ[w] :=

1∫
0

Φµ(ẇ) dt+ λ∞|Dsw|(0, 1) +
λ

2

∫
(w − f0)2 dt

is discontinuous at t = 1
2 . Actually, this is a consequence of a more general

statement: going through the arguments of the proof of Theorem 3.6.1 the
reader will notice that the critical factor is the behavior of the function ω(p) as
|p| → ∞:

Theorem 3.6.2

Assume F satis�es (F1)-(F4) and let u ∈ BV (0, 1) denote the unique solution
of (3.20). De�ne ω∞ as in (3.34). Then it holds:

a) In case ω∞ = ∞, u is of class C1,1
(
[0, 1]

)
for every value of λ and for

arbitrary data f as in (3.2).

b) If ω∞ < ∞ and f = f0 from (3.49), then there is a critical value λcrit of
the parameter λ such that u is discontinuous (exactly at t = 1/2) provided we
choose λ > λcrit.

Remark 3.6.1

It is easily seen that for F = Φµ

(
| · |
)
it holds

ω∞ =


+∞, if µ ≤ 2,

1

µ− 1

1

µ− 2
, if µ > 2.

Hence, for µ > 2 (and f = f0) problem (V ) does in general not admit a solution
in the Sobolev class.

Proof. a) Sing(u) = ∅ follows from the same arguments that were used to prove
Theorem 3.6.1.

b) As in the proof of Lemma 3.5.4, we deduce the identity

u(s) =

√
u(0)2 +

2

λ
ω(u̇(s)) for s ∈

[
0,

1

2

)
.

If now the function ω is bounded, then by Lemma 3.5.2 f) the right-hand side
converges to 0 as λ→∞. In particular, there is a value λcrit > 0 such that√

u(0)2 +
2

λ
ω∞ <

1

2
for λ > λcrit. (3.59)

Lemma 3.5.2 d) then implies that u is discontinuous at t = 1
2 if λ > λcrit.
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Remark 3.6.2

The relation (3.59) provides a lower bound for the critical parameter value:

λcrit > 2ω∞

(1

4
− u(0)2

)
.

Remark 3.6.3

Setting

Ω := (0, 1)× ...× (0, 1), F (x1, ..., xn) := Φµ

(√
x2

1 + ...+ x2
n

)
as well as

f(x1, ..., xn) := f0(x1)

with f0 from (3.49), we can transfer this example for a discontinuous solution
of (V ) to the n-dimensional case.

Example 3.6.1. The following simulation con�rms the statement of Theorem
3.6.2 b) numerically: Figure 3.3 depicts the BV -minimizer of Kµ for µ = 3,
on the left with λ = 4, and on the right with λ = 5. The solution develops a
discontinuity at t = 1/2 for λ > λcrit ≈ 4.16.
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Fig. 3.3: Example plots of the K-minimizer u for µ = 3 and a) λ = 4, b) λ = 5.

So far, our approach to problem (V ) was by variational means. However, we
could just as well take the boundary value problem (BVP) as our starting point
and study it with methods from the theory of di�erential equations. In the
one dimensional setting, this strategy is especially promising since we are then
dealing with an ordinary rather than a partial di�erential equation. In the ar-
ticles [79] and [80], Thompson has worked out an extensive theory for a large
class of two-point boundary value problems with both continuous and measur-
able right-hand sides, which applies to our situation in the following way:
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Theorem 3.6.3

Suppose (3.2) holds for f and let F ful�ll (F1)-(F5). If the parameter λ satis�es

0 < λ < c1

∞∫
1

s ds

(1 + s)µ
=: λµ,

where c1 is as in (F5) on p. 39, then there exists a function v ∈ W 2,1(0, 1),
satisfying 0 ≤ v(t) ≤ 1 for almost all t ∈ [0, 1] and which solves the Neumann
problem (BVP) a.e. on [0, 1]. Furthermore, v solves (3.1).

Remark 3.6.4 a) The reader familiar with the theory of lower and upper so-
lutions will recognize in the above bound λµ a �Nagumo-condition� (see,
e.g. [81]), which guarantees a priori bounds on the �rst derivative of the
solution v.

b) If f is continuous, it follows from the di�erential equation that v ∈ C2
(
[0, 1]

)
.

c) At the example of F (p) = Φµ(|p|), we would like to demonstrate how λµ
might actually improve the bound λ < λ∞ from Theorem 3.2.1: obviously,
the integral de�ning λµ diverges for 1 < µ ≤ 2. If µ > 2, it is not di�cult
to show that the optimal constant c1 in (F5) is given by 2

(µ−1)(µ−2) . This
yields

λµ =
22−µµ

(µ− 1)2(µ− 2)2
.

It holds λµ > λ∞(Φµ) = 1
µ−1 for µ < 2.9.

Proof. We essentially have to show that, for λ < λµ, the conditions of Theorem
6, p. 295, in [80] are ful�lled. Without further explanation we adopt the notation
of this work. First of all, we notice that, due to our restriction 0 ≤ f(t) ≤ 1, the
constant functions α(t) ≡ 0 and β(t) ≡ 1 are a trivial lower and upper solution
of (BVP), respectively: it holds

0 ≥ λ 0− f
F ′′(0)

as well as 0 ≤ λ 1− f
F ′′(0)

.

Secondly, the right-hand side of the equation (BVP) may be considered as a
tri-variate function

Φ(t, v, v̇) = λ
v − f(t)

F ′′(v̇)
,

with

Φ : [0, 1]× [0, 1]× R→ R, Φ(t, y, p) := λ
y − f(t)

F ′′(p)

being a Carathéodory function (even if f is merely measurable). Using (F5), we
can estimate Φ by

|Φ(t, y, p)| ≤ λ

c1

(
1 + |p|

)µ
.
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In accordance with the notation of [80], we now de�ne

h(p) :=
λ

c1
(1 + p)µ, h(p) ≡ 1 and

r(t) := ε for some arbitrarily small ε > 0.

Furthermore, we set

K := sup

{
s

h(s)

∣∣∣ s ∈ [1,∞)

}
<∞.

If we now choose λ small enough such that

λ <
c1

(1 +Kε)

∞∫
1

s ds

(1 + s)µ
, (3.60)

we �nd that for some large enough L > 0, Φ satis�es the following Bernstein-
Nagumo-Zwirner condition (compare [80], De�nition 4):

|Φ(t, y, p)| ≤ h(|p|)h(p) + r(t) for all (t, y) ∈ [0, 1]× [0, 1] and

L∫
1

s ds

h(s)
> 1 +Kε.

In the next step, we reformulate the boundary conditions of (BVP) as a �set
condition� (as it is required in the context of [80]):

(v(0), v̇(0)) ∈ J (0) and (v(1), v̇(1)) ∈ J (1)

where
J (0) = J (1) := [0, 1]× {0}.

To verify that the sets J (0) = J (1) := [0, 1] × {0} are of �compatible type 1�
in the sense of De�nition 14 in [80] is straightforward. Let us further de�ne the
sets S0, S1, S2 and S3 according to De�nition 15 in [80] (see the Figure 3.4).
Then we have

J (0) ∩ {S0 ∪ S2} = J (1) ∩ {S1 ∪ S3} = {(0, 0), (0, 1)} 6= ∅,

which means that all conditions of Theorem 6 are ful�lled and we can infer
that there exists a solution v ∈ W 2,1(0, 1) of (BVP). Moreover, 0 ≤ v(t) ≤ 1
for almost all t ∈ [0, 1] follows since α(t) ≡ 0 and β(t) ≡ 1 is an upper and
lower solution, respectively. Note that letting ε tend to zero in (3.60) yields the
claimed bound λµ for λ.

Let now v ∈W 2,1(0, 1) be a solution of (BVP). We want to show that v coincides
with the K-minimizer u from Theorem 3.3.1 a.e. on [0, 1]. Using the convexity
of the functional J , we see that for any w ∈ C1,1

(
[0, 1]

)
it holds

J [w] ≥ J [v] + 〈DJ [v], w − v〉 (3.61)
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Fig. 3.4

where we use the shorthand notation

〈DJ [v], w − v〉 :=

1∫
0

F ′(v̇)(ẇ − v̇) dt+ λ

1∫
0

(v − f)(w − v) dt.

On account of F ′(0) = 0 we have

1∫
0

F ′(v̇)(ẇ − v̇) dt =

1∫
0

d

dt

[
F ′(v̇)(w − v)

]
dt−

1∫
0

F ′′(v̇)v̈(w − v) dt

= −
1∫

0

F ′′(v̇)v̈(w − v) dt.

By assumption, v solves (BVP) a.e. on (0, 1), which implies

〈DJ [v], w − v〉 = −
1∫

0

(w − v)
[
F ′′(v̇)v̈ − λ(v − f)

]
dt = 0 (3.62)

for all w ∈ C1,1
(
[0, 1]

)
. Therefore, (3.61) yields

J [v] ≤ J [w] for all w ∈ C1,1
(
[0, 1]

)
.

Now let u denote the unique minimizer of K in BV (0, 1). By Theorem 1.2.1,
there exists a sequence uk ∈ C∞

(
[0, 1]

)
such that

|Duk|(0, 1)
k→∞−−−→ |Du|(0, 1), uk → u in L1(0, 1),

as well as
1∫

0

√
1 + |Duk|2

k→∞−−−→
1∫

0

√
1 + |Du|2

and from Reshetnyak's continuity theorem (see Lemma 2.1.1) we thus infer

J [v] ≤ J [uk] = K[uk]
k→∞−−−→ K[u].
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Since u is K-minimal, it follows that

K[u] ≤ K[v] = J [v] ≤ K[u],

which means K[u] = K[v] and therefore u = v a.e. by the uniqueness of the
K-minimizer.
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Chapter 4

The Two-Dimensional Case

As we have already outlined in the introduction of this thesis, a major �eld of
application for variational models of linear growth is the mathematics of image
processing. In this context, f : R2 ⊃ Ω−D → [0, 1] models the data of a black
and white picture that might be a�icted with a noise, or where parts of the data
(namely on the de�ciency set D) are even entirely missing. Solving the problems
(V ) and (Ṽ ) then corresponds to a restoration of the original image from the
data f , and yields particularly good results if the density F is of �TV-type� (i.e.
approximates | · |). However, the solutions of the �rst-order model are typically
downgraded by the staircasing e�ect, which serves as the main motivation for
the study of the higher-order model with m ≥ 2. Against this backdrop, it is
plausible to take a closer look at the two-dimensional case, which is the matter
of this chapter. In view of existence and regularity question, the case n = 2
will be seen to stand out against the general, higher-dimensional setting. The
results of this chapter are published in [51].

4.1 Sobolev Regularity

As it was shown in [82] for m = 1, the assumption (Fµ) together with µ < 2
su�ces to prove the existence of a classical solution of (V ) in the Sobolev class
even in arbitrary dimensions n ∈ N. Furthermore, the results from Section
3.6 prove that the bound µ ≤ 2 is optimal in this respect. For systems, Tietz
has proved (see [78] or [41]) that this still holds if the regularizing density F
is rotationally invariant, i.e. if it only depends on the modulus |∇u|. These
results mainly rely on the �maximum principle� from [40], which does not have
an analog at higher orders. However, if we restrict ourselves to the planar
setting Ω ⊂ R2, then the required degree of integrability is granted by Sobolev's
embedding Theorem and this allows us to prove the following:

Theorem 4.1.1

Let Ω ⊂ R2 be a bounded Lipschitz domain and D ⊂ Ω a measurable subset
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with L2(Ω−D) > 0. Assume that F satis�es (F1)-(F3),(Fµ) and that φ ful�lls
(φ1) and (φ2) for some q ∈ [1, 2]. Let further f ∈ L∞(Ω−D) hold for the data
function. Then, for any 1 ≤ s < 2 we have:

a) If m = 1 and µ ∈ (1, 2), then (V ) has a unique solution in the Sobolev space
W 1,1(Ω) ∩W 2,s

loc (Ω).

b) If m = 2 and µ ∈
(
1, 3

2

)
, then (V ) has a unique solution in the Sobolev space

W 2,1(Ω) ∩W 3,s
loc (Ω).

c) If m ≥ 3 and µ ∈
(
1, 2
)
, then (V ) has a unique solution in the Sobolev space

Wm,1(Ω) ∩Wm+1,1
loc (Ω).

Remark 4.1.1

The uniqueness part follows directly from part e) of Theorem 2.1.1 in each case.

Proof. Throughout the following calculations, we apply the summation conven-
tion that the sum is taken with respect to the index �i� whenever it appears
twice within the same formula. We do not give the proof of part a), which was
treated in [41] (even for arbitrary dimensions n ≥ 2). Let us therefore start with
b), i.e. m = 2. The strategy of the proof will be the same at any order so that
we start our computations with general m ∈ N and later switch to m = 2 where
this becomes relevant. Our arguments rely on the K-minimizing sequence uδ,
whose properties were gathered in Lemma 2.2.1. In particular, we have equation
(2.17) serving as our starting point: for all ϕ ∈Wm,2(Ω) it holds∫

Ω

DFδ(∇muδ) : ∇mϕdx+ λ

∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)ϕdx = 0. (4.1)

Replacing ϕ with Diϕ (i ∈ {1, ..., n}) for some ϕ ∈ Wm+1,2(Ω), an integration
by parts leads to∫

Ω

D2Fδ(∇muδ)
(
Di∇muδ,∇mϕ

)
dx = λ

∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)Diϕdx,

(4.2)

which, by an approximation argument (cf. Theorem 1.2.1), holds even for ϕ ∈
Wm,2(Ω). Let now x0 ∈ Ω be an arbitrary point and R > 0 such that the ball
B2R(x0) is compactly contained in Ω. Choose a test function η ∈ C∞0 (Ω) that
ful�lls 

supp(η) ⊂ B2R(x0),

0 ≤ η ≤ 1,

|∇kη| ≤ c

Rk
for k = 1, ...,m and

η ≡ 1 on BR(x0),

(4.3)
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where c is some positive constant. Due to Lemma 2.2.1 c) we have that ϕ :=
η2mDiuδ ∈Wm,2(Ω) is an admissible choice, for which (4.2) reads as∫

Ω

D2Fδ(∇muδ)
(
Di∇muδ, Di∇muδ

)
η2m dx

= −
∫
Ω

D2Fδ(∇muδ)
(
Di∇muδ,∇m(η2mDiuδ)− η2mDi∇muδ

)
dx

+ λ

∫
Ω−D

φ′
(
|uδ − f |

)
sgn(uδ − f)Di(η

2mDiuδ) dx

︸ ︷︷ ︸
=: T

.

To the �rst summand on the right-hand side, we apply the Cauchy-Schwarz
inequality followed by Young's inequality, giving∫

Ω

D2Fδ(∇muδ)
(
Di∇muδ, Di∇muδ

)
η2m dx

≤ ε
∫
Ω

D2Fδ(∇muδ)
(
Di∇muδ, Di∇muδ

)
η2m dx

+ c(ε, η)

∫
B2R(x0)

m∑
k=0

∣∣D2Fδ(∇muδ)
∣∣|∇kuδ|2 dx+ |T |,

where ε > 0 can be chosen arbitrarily small. After absorbing terms on the
left-hand side, it remains∫

Ω

D2Fδ(∇muδ)
(
Di∇muδ, Di∇muδ

)
η2m dx

≤ c

[ ∫
B2R(x0)

m∑
k=0

∣∣D2Fδ(∇muδ)
∣∣|∇kuδ|2 dx

︸ ︷︷ ︸
=: S

+ |T |

]
.

(4.4)

Introducing the quantity

ϕδ :=
(
1 + |∇muδ|

)1−µ
2 , (4.5)

we observe that, in combination with (Fµ), inequality (4.4) now implies∫
B2R(x0)

|∇ϕδ|2 dx ≤ c
(
|S|+ |T |

)
. (4.6)

Note that if the right-hand side of (4.6) is bounded uniformly in δ, Sobolev's
embedding Theorem yields

∇muδ ∈ Lploc

(
Ω,Rn

m)
uniformly with respect to δ (4.7)
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for all exponents p < ∞. We may therefore choose a subsequence δ ↓ 0 such
that

uδ → u in Wm−1,1
(
Ω
)

as well as uδ ⇁ u in Wm,p
loc (Ω)

for some u ∈ BV m(Ω), which minimizes the relaxed functional K from (2.1).
In particular, u ∈ BV m(Ω) ∩Wm,1

loc (Ω) ⊂ Wm,1(Ω) and since u is K-minimal
(and K ≡ I on Wm,1(Ω)), it follows that u is I-minimal in the Sobolev class.
Consequently, we have to examine the behavior of the quantities |S| and |T | for
m = 2 and m ≥ 3, respectively. Starting with |S|, we note that

S ≤
∫
Ω

∣∣D2Fδ(∇muδ)
∣∣|∇muδ|2 dx+ c‖uδ‖2m−1,2;Ω.

Since n = 2 and uδ ∈ Wm,1(Ω) uniformly, Sobolev's embedding theorem guar-
antees the boundedness of the second summand. To the �rst one, we apply the
second inequality in (Fµ) together with (2.12) from the proof of Lemma 2.2.1,
yielding

∫
Ω

∣∣D2Fδ(∇muδ)
∣∣|∇muδ|dx ≤ c

1 +

∫
Ω

|∇muδ|2

1 + |∇muδ|
dx

 <∞.

We proceed with the quantity T . Let m = 2. Using the growth estimate (φ3),
we have

|T | ≤ c
∫

Ω−D

(
1 + |uδ − f |q−1

)
|Di(η

4Diuδ)|dx

≤ c

 ∫
Ω−D

(
1 + |uδ − f |q−1

)
|∇uδ| dx+

∫
Ω−D

η4
(

1 + |uδ − f |q−1
)
|∇2uδ| dx


≤ c

1 +

∫
Ω−D

η4|uδ − f |q−1|∇2uδ| dx

 ,
since, by Sobolev's embedding Theorem, |uδ − f | ∈ Lp(Ω − D) uniformly for
any p ∈ [1,∞). An application of Young's inequality further yields

|T | ≤ c

1 +

∫
Ω−D

η4|uδ − f |(q−1) µ
µ−1 dx+

∫
Ω

η4|∇2uδ|µ dx


≤ c

1 +

∫
Ω

η4|∇2uδ|µ dx

 (4.8)

and it remains to give a bound on the integral

T ′ :=

∫
Ω

η4|∇2uδ|µ dx.
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Here, we bene�t from the µ-ellipticity condition (Fµ), once again. With

ψδ :=
(
1 + |∇2uδ|

)µ
2 ,

we may estimate

T ′ ≤ c
∫
Ω

(η2ψδ)
2 dx. (4.9)

Sobolev's inequality yields

∫
Ω

(η2ψδ)
2 dx ≤ c

∫
Ω

∣∣∇(η2ψδ)
∣∣dx

2
µ<2
≤ c

1 +

∫
Ω

η2|∇ψδ| dx

2

≤ c

1 +

∫
Ω

η2|∇ψδ| dx

2 .
(4.10)

Observing (cf. (4.5)) the relation

ψδ = ϕαδ with α =
µ

2− µ
,

we obtain (recall our choice of η)∫
Ω

η2|∇ψδ| dx ≤ c
∫

B2R(x0)

η2|∇ϕδ|ϕα−1
δ dx

≤ c

 ∫
B2R(x0)

η4|∇ϕδ|2 dx


1
2

·

 ∫
B2R(x0)

ϕ2α−2
δ dx


1
2

.

(4.11)

Inserting (4.11) into (4.10) and going back to (4.9) we infer

T ′ ≤ c

1 +

 ∫
B2R(x0)

ϕ2α−2
δ dx

 ·
 ∫
B2R(x0)

η4|∇ϕδ|2 dx


 (4.12)

and therefore it follows from (4.8) that

|T | ≤ c

1 +

 ∫
B2R(x0)

ϕ2α−2
δ dx

 ·
 ∫
B2R(x0)

η2|∇ϕδ|2 dx


 . (4.13)

With (4.13) at hand, we return to (4.6), observing �rst

|∇ϕδ|2 ≤ cD2Fδ(∇2uδ)
(
Di∇2uδ, Di∇2uδ

)
.
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Second we note

ϕ2α−2
δ =

(
1 + |∇2uδ|

)(α−1)(2−µ) ∼ |∇2uδ|(α−1)(2−µ)

with exponent

(α− 1)(2− µ) = 2µ− 2 < 1⇔ µ <
3

2
.

Thus, by Lemma 2.2.1 b) and Hölder's inequality we obtain∫
B2R(x0)

ϕ
(α−1)(2−µ)
δ dx ≤ cLn (B2R(x0))γ

for some positive exponent γ and (4.6) in combination with our previous results
yields

(1− cLn (B2R(x0))γ)

∫
B2R(x0)

η4D2Fδ(∇2uδ)
(
Di∇2uδ, Di∇2uδ

)
≤ c. (4.14)

From this inequality we deduce: if we restrict ourselves to radii R ≤ R0 for
some R0 > 0 independent of δ, then∫

B2R(x0)

|∇ϕδ|2 dx ≤ c(R) <∞

and hence

|∇2uδ| ∈ Lploc(Ω) for all p <∞. (4.15)

Let now s ∈ [1, 2) be given and let Ω∗ b Ω denote some compact subset. Using
Hölder's inequality together with (4.14) and (4.15), we obtain∫

Ω∗

|∇3uδ|s dx =

∫
Ω∗

(
1 + |∇2uδ|

)−µ s
2 |∇3uδ|s

(
1 + |∇2uδ|

)µ s
2 dx

≤

∫
Ω∗

(
1 + |∇2uδ|

)−µ|∇3uδ|2 dx

 s
2
∫

Ω∗

(
1 + |∇2uδ|

) µs
2−s dx

1− s
2

< c,

with a constant c = c(Ω∗) independent of δ due to (4.15). This proves part b)
of Theorem 4.1.1.

We proceed with a brief discussion of the case m ≥ 3. Looking at the relevant
quantity T from (4.6), we �nd that

|T | ≤ c

1 +

∫
Ω−D

|uδ − f |q−1|∇uδ|dx+

∫
Ω−D

η2|uδ − f |q−1|∇2uδ| dx

 .
Note that by Sobolev's embedding Theorem we even have |uδ−f | ∈ L∞(Ω) and
|∇2uδ| ∈ L2(Ω) (uniformly in δ) if m ≥ 3, so that T is obviously bounded. We
may thus adopt the arguments for m = 2 to deduce

ϕδ ∈W 1,2
loc (Ω) uniformly in δ, (4.16)

i.e. |∇muδ| ∈ Lp(Ω) for all p <∞ and the claim uδ ∈Wm+1,s
loc (Ω) for s ∈

[
1, 2)

follows the same way.
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4.2 The Case of Pure Denoising

In this short addendum we show that, under the condition Ln(D) = 0 (i.e. in
the case of �pure denoising�), the bound µ < 3

2 from part b) of Theorem 4.1.1
can be improved to the more natural assumption µ ∈ (1, 2). In fact, if we choose
the quadratic �delity function φ(t) = 1

2 t
2, then we have:

Theorem 4.2.1

Let Ω ⊂ R2 be a Lipschitz domain, assume f ∈ L∞(Ω), let F satisfy (F1)-(F3)
and (Fµ) together with µ ∈ (1, 2) and choose φ(t) := 1

2 t
2. Then, for m = 2,

problem (V ) admits a unique solution u in the space W 2,1(Ω)∩W 3,s
loc (Ω) for any

s ∈ [1, 2).

Proof. Going back to the proof of Theorem 4.1.1 a), we see that the critical
term T now takes the form

T = λ

∫
Ω

(uδ − f)Di(η
2uδ) dx

which expands to

T = λ

∫
Ω

uδDi(η
2Diuδ) dx− λ

∫
Ω

fDi(η
2Diuδ) dx.

An integration by parts then yields

T = −λ
∫
Ω

η2|∇uδ|2 dx− λ
∫
Ω

fDi(η
2Diuδ) dx,

and, together with the boundedness of f , (4.6) implies∫
Ω

D2Fδ(∇muδ)(Di∇muδ, Di∇muδ)η2 dx+ λ

∫
Ω

η2|∇uδ|2 dx

≤ c(η) + λ‖f‖∞;Ω


∫
Ω

|∇η2||∇uδ| dx+

∫
Ω

η2|∇2uδ|dx

 .

(4.17)

By Lemma 2.2.1 all terms on the right-hand side of (4.17) are bounded inde-
pendently of δ and thus

sup
δ>0

∫
Ω∗

D2Fδ(∇2uδ)(Di∇2uδ, Di∇2uδ) dx <∞ (4.18)

on all compact subsets Ω∗ b Ω. The assertion of Theorem 4.2.1 now follows
from the same arguments as in the proof of Theorem 4.1.1.
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4.3 Partial Hölder Regularity

In this section, we use the well-known blow-up technique by Evans and Gariepy
(see [47]) to prove that the Sobolev solution from Theorem 4.1.1 is actually
partially Hölder continuous:

Theorem 4.3.1

Let Ω ⊂ R2 be a bounded Lipschitz domain and let D ⊂ Ω be a measurable
subset with L2(Ω−D) > 0. Assume further f ∈ L∞(Ω−D) holds for the data
function, that the density F is of class C2, satisfying (F1)-(F3) as well as (Fµ)
together with

µ < 2 if D = ∅,

or µ <
3

2
in case of general D,

and set φ(t) := 1
2 t

2. Then for theWm,1-solution u of problem (V ) from Theorem
4.1.1, the following assertions hold:

a) There is an open subset Ω0 of Ω with full L2-measure such that the minimizer
u is of class Cm,α(Ω0) for any α ∈ (0, 1).

b) The set Ω − Ω0 of possible singularities has Hausdor� dimension zero, i.e.
Hε(Ω− Ω0) = 0 for any ε > 0.

c) Let σ ∈ L∞
(
Ω,Rnm

)
denote the solution of the dual problem from Theorem

2.2.1 a). Then it holds σ ∈W 1,2
loc

(
Ω,Rnm

)
.

Remark 4.3.1

Our restriction to the quadratic �delity term φ(t) := 1
2 t

2 is merely for notational
simplicity. We could just as well do the following calculations with general φ,
satisfying (φ1) and (φ2) for some q ∈ [1, 2].

Proof. As already mentioned, the basis for the proof of part a) is the so called
blow-up technique whose idea together with appropriate references is explained
in the monograph [46]; we also suggest to consult the paper [47]. Our arguments
follow these ideas and their higher-order generalizations developed in [83], sec-
tion 3. However, for the sake of of simplicity, we restrict ourselves in the follow-
ing calculations to m = 2, i.e.

I[u] =

∫
Ω

F (∇2u) dx+
λ

2

∫
Ω−D

(u− f)2 dx.

We emphasize that the general case follows from the same arguments.

For disks Bρ(x) b Ω we de�ne the so called excess function by

E(x, ρ) := −
∫
Bρ(x)

∣∣∇2u(y)− (∇2u)x,ρ
∣∣2 dy,
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where u ∈ W 2,1(Ω) is the Sobolev minimum of the functional I, which exists
due to Theorem 4.1.1 and satis�es u ∈W 2,p

loc (Ω) for any p ∈ [1,∞) (hence E sis
well de�ned). Note that by

(∇2u)x,ρ := −
∫
Bρ(x)

∇2u(y) dy

we denote the mean value of ∇2u on the disk Bρ(x). The essential step is to
show the following excess decay, or �blow-up� lemma:

Lemma 4.3.1

Given L > 0, de�ne the constant C∗(L) according to (4.32) below and set C∗ =
C∗(L) := 2C∗(L). Then, for any τ ∈ (0, 1

2) there is ε = ε(L, τ) such that
whenever

|(∇2u)x,r| ≤ L, E(x, r) + r ≤ ε, (4.19)

then also

E(x, τr) ≤ τ2C∗(L) ·
(
E(x, r) + r

)
(4.20)

for disks Br(x) b Ω.

Remark 4.3.2 a) Due to Lebesgue's di�erentiation theorem, the condition (4.19)
is valid for L2-almost all points x ∈ Ω, i.e. the set

Ω0 :=

{
x ∈ Ω : lim sup

r→0
|(∇2u)x,r| <∞

}
∩
{
x ∈ Ω : lim inf

r→0
E(x, r) = 0

}
has full Lebesgue measure.

b) That in fact ∇2u is Hölder continuous on Ω0 and that Ω0 is an open subset
of Ω follows from Lemma 4.3.1 in a standard way, as e.g. outlined in detail
on p. 95 �. in the monograph [46]: by iteration, inequality (4.20) yields
(0 < α < 1)

E(x, τr) ≤ τ2α(E(x, r) + r),

where τ is such that C∗(L)τ2−2α = 1. This implies

E(x, ρ) ≤ c
(ρ
r

)2α
(E(x, r) + r)

for all ρ ≤ r and Morrey's integral characterization of Hölder continuity
(cf. [46], chapter III, Theorem 1.3) then implies the assertion of Theorem
4.3.1 a).

We continue with an indirect proof of the blow-up Lemma. Fix L > 0. If
the statement of the lemma is false, then there is τ ∈ (0, 1

2) and a sequence
Brk(xk) b Ω (k ∈ N) of disks with∣∣(∇2u)xk,rk

∣∣ ≤ L, E(xk, rk) + rk =: λ2
k → 0, (4.21)
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but at the same time

E(xk, τrk) > τ2C∗(L)λ2
k. (4.22)

Now we rescale the function u and subtract a suitable second-degree polynomial,
setting

ak := (u)xk,rk , Ak := (∇u)xk,rk , Hk = (∇2u)xk,rk (4.23)

uk(z) :=
1

λkr
2
k

[
u(xk + rkz)− rkAk · z − ak −

r2
k

2
Hk(z, z)

+
r2
k

2
−
∫
B1(0)

Hk(y, y)dy

]
,

where z ∈ B1(0). These scalings are chosen in such a way that (uk)0,1 = 0,
(∇uk)0,1 = 0, (∇2uk)0,1 = 0 and we further have

∇uk(z) =
1

λkrk

[
∇u(xk + rkz)−Ak −

1

2
rk∇(Hαβ

k zαzβ)

]
, (4.24)

∇2uk(z) =
1

λk

[
∇2u(xk + rkz)−Hk

]
, (4.25)

(Note that we apply summation convention with respect to the Greek indices)
as well as

−
∫
B1(0)

|∇2uk(z)|2 dz = λ−2
k E(xk, rk) ≤

(4.21)
1. (4.26)

Hence we may assume that for a suitable subsequence k → ∞ there exists a
function û in W 2,2(B1(0)) such that

uk ⇁ û in W 2,2(B1(0)) (4.27)

and consequently

λk∇2uk → 0 in L2(B1(0)) and a.e. (4.28)

According to (4.21) we may further assume that

Hk →: H (4.29)

for a 2 × 2-matrix H as k → ∞. We claim that the function û ful�lls the
following constant coe�cient elliptic system (implying the smoothness of û):∫

B1(0)

D2F (H)(∇2û,∇2ψ) dz = 0 for all ψ ∈ C∞0 (B1(0)). (4.30)

Fix some function ψ and set

ϕ(x) := ψ

(
x− xk
rk

)
, x ∈ Brk(xk).
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By the minimality of u, it holds

0 =

∫
Brk (xk)

DF (∇2u) : ∇2ϕdx

︸ ︷︷ ︸
=: S1

+ λ

∫
Brk (xk)−D

(u− f)ϕdx

︸ ︷︷ ︸
=: S2

On any open subset Ω∗ b Ω, both u and f are bounded (recall u ∈ W 3,s
loc (Ω),

s < 2 by Theorem 4.1.1). Thus we can estimate S2 by

|S2| ≤ c
∫

Brk (xk)

|ϕ|dx = c

∫
Brk (xk)

∣∣∣∣ψ(x− xkrk

)∣∣∣∣ dx = cr2
k

∫
B1(0)

|ψ(z)| dz

≤ C(ψ)r2
k.

After the coordinate transformation z = x−xk
rk

, the integral S1 reads as

S1 =

∫
B1(0)

DF (Hk + λk∇2uk) : ∇2ψ dz

=

∫
B1(0)

1∫
0

d

ds
DF (Hk + sλk∇2uk) : ∇2ψ ds dz +

∫
B1(0)

DF (Hk) : ∇2ψ dz

︸ ︷︷ ︸
= 0 due to ψ ∈ C∞0 (B1(0))

=

∫
B1(0)

1∫
0

D2F (Hk + sλk∇2uk)(∇2uk,∇2ψ)λk dsdz,

and together with our estimate for S2 this yields

∣∣∣∣∣
∫

B1(0)

1∫
0

D2F (Hk + sλk∇2uk)(∇2uk,∇2ψ) ds dz

∣∣∣∣∣ ≤ C(ψ)λ−1
k r2

k. (4.31)

Because of (4.21), rkλ
−1
k ≤ λk → 0 for k → ∞ and thus (note that rk is

bounded) also r2
kλ
−1
k → 0. Now we turn to the left-hand side of (4.31). Let

δ > 0 be given. By (4.28) and Egorov's Theorem (see e.g. Theorem 1.34 in [1])
there is a set S ⊂ B1(0) with L2(B1(0) − S) < δ and λk∇2uk ⇒ 0 a.e. on S.
With (4.27) and (4.28) it follows:

∫
S

1∫
0

D2F (Hk + λks∇2uk)(∇2uk,∇2ψ) ds dz →
∫
S

D2F (H)(∇2û,∇2ψ) dz.

At the same time, due to the boundedness of D2F and by Hölder's inequality
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we infer that ∣∣∣∣∣
∫

B1(0)−S

1∫
0

D2F (Hk + λks∇2uk)(∇2uk,∇2ψ) ds dz

∣∣∣∣∣
≤ c‖∇2uk‖2;B1(0)‖∇2ψ‖2;B1(0)−S

≤
(4.27)

C‖∇2ψ‖2;B1(0)−S ≤ C(ψ)δ
1
2 ,

and since δ can be chosen arbitrarily small, this proves

∫
B1(0)

1∫
0

D2F (Hk + sλk∇2uk)(∇2uk,∇2ψ) dsdz →
∫

B1(0)

D2F (H)(∇2û,∇2ψ) dz

so that (4.30) follows. We can therefore draw on the results in [84] and [85]
on higher-order elliptic systems (see also the comments subsequent to (3.10)
in [83]) and �nd a constant C∗(L) such that

−
∫
Bτ (0)

|∇2û− (∇2û)0,τ |2 dz ≤ C∗(L)τ2, (4.32)

which together with the de�nition of C∗(L) contradicts (4.22) once that (4.27)
is improved to

∇2uk → ∇2û in L2
loc(B1(0)). (4.33)

In fact, after scaling (4.22) reads as

−
∫
Bτ (0)

∣∣∇2uk − (∇2uk)0,τ

∣∣2 dz = λ−2
k E(xk, τrk) > τ2C∗(L),

and hence, along with (4.33) we obtain

−
∫
Bτ (0)

|∇2û− (∇2û)0,τ |2 dz ≥ τ2C∗(L),

which contradicts (4.32). In order to complete the proof of the blow-up lemma
we therefore need to verify (4.33). To do this, we proceed just like in [83] and
notice that we have (cf. (3.14) therein) the relation

lim
k→∞

∫
Bρ(0)

(
1 + |Hk|+ λk|∇2û|+ λk|∇2wk|

)−µ
|∇2wk|2 dz = 0, (4.34)

where ρ ∈ (0, 1) and

wk := uk − û. (4.35)
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Since the derivation of (4.34) is somewhat lengthy, we postpone its proof to the
end and continue to establish (4.33) with its help. Fix ρ ∈ (0, 1) and choose
M ≥ 1: it holds ∫

Bρ(0)

|∇2wk|2 dz =

∫
Bρ(0)∩[

λk|∇2uk|≤M
]
|∇2wk|2 dz + εk,

εk :=

∫
Bρ(0)∩[

λk|∇2uk|>M
]
|∇2wk|2 dz.

Due to ∇2û ∈ L∞loc(B1(0)) and the boundedness of the sequence Hk, equation
(4.34) implies

lim
k→∞

∫
Bρ(0)∩[

λk|∇2uk|≤M
]
|∇2wk|2 dz = 0. (4.36)

Let

ϕk := λ−1
k

{(
1 + |Hk + λk∇2uk|

)1−µ
2 −

(
1 + |Hk|

)1−µ
2

}
.

We claim the validity of

sup
k

∫
Bρ(0)

|∇ϕk|2 dz ≤ c(ρ) <∞. (4.37)

Accepting this inequality for the moment, we further observe

|ϕk| = λ−1
k

∣∣∣∣∣∣
1∫

0

d

ds

(
1 + |Hk + sλk∇2uk|

)1−µ
2 ds

∣∣∣∣∣∣ ≤ c|∇2uk|,

so that (4.26) implies the L2(B1(0))-boundedness of the ϕk and thereby

sup
k∈N
‖ϕk‖W 1,2(Bρ(0)) <∞. (4.38)

By the de�nition of the ϕk, for M ≥M0 su�ciently large, we have

ϕk ≥
1

2
λ−1
k

(
λk|∇2uk|

)1−µ
2 =

1

2
λ
−µ

2
k |∇

2uk|1−
µ
2

on the set Bρ(0) ∩
[
λk|∇2uk| > M

]
, and therefore

|∇2uk|2 ≤ (2ϕk)
4

2−µλ
2µ

2−µ
k on Bρ(0) ∩

[
λk|∇2uk| > M

]
.
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According to (4.38), ϕ
4

2−µ
k is uniformly integrable and thus∫

Bρ(0)∩[
λk|∇2uk|>M

]
|∇2uk|2 dz → 0 for k →∞. (4.39)

From λk|∇2uk| → 0 a.e. (cf. (4.28)) it further follows that

lim
k→∞

∫
Bρ(0)∩[

λk|∇2uk|>M
]
|∇2û| dz = 0, (4.40)

and (4.39), (4.40) together with (4.36) imply ∇2wk → 0 in L2(Bρ(0)), i.e. (4.33)
holds, which proves part a) of Theorem 4.3.1 once that the technicalities (4.34)
and (4.37) have been established. This is about to follow:

ad (4.37). We start with the Euler equation (4.2), choosing

ϕ := η6Di(uδ − P ),

where P denotes a polynomial of degree at most two and η is as in (4.3). It
holds:∫
B2R(x0)

η6D2Fδ(∇2uδ)
(
Di∇2uδ, Di∇2uδ

)
dx

=−
∫

B2R(x0)

D2Fδ(∇2uδ)
(
Di∇2uδ,∇2η6Di[uδ − P ] + 2∇η6 ⊗∇Di(uδ − P )

)
dx

+ λ

∫
B2R(x0)−D

(uδ − f)Di

(
η6Di(uδ − P )

)
dx.

From (4.7) we infer that uδ ∈ L∞loc(Ω) uniformly. Applying the Cauchy-Schwarz
inequality to the �rst integral on the right-hand side, Young's inequality and
using the boundedness of D2F we get the following estimate, which corresponds
to inequality (2.11) in [83]:∫
B2R(x0)

η6D2Fδ(∇2uδ)
(
Di∇2uδ, Di∇2uδ

)
dx

≤ c

{
R−4

∫
B2R(x0)

|∇(uδ − P )|2 dx+R−2

∫
B2R(x0)

|∇2(uδ − P )|2 dx

+

∫
B2R(x0)

|∇2(uδ − P )|dx+R−1

∫
B2R(x0)

∣∣∇(uδ − P )
∣∣dx}

≤ c

{
R−4

∫
B2R(x0)

|∇(uδ − P )|2 dx+R−2

∫
B2R(x0)

|∇2(uδ − P )|2 dx+R2

}
. (4.41)
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Let ϕδ be as in (4.5). Due to (4.16), we may choose a sequence δ ↓ 0 such that

ϕδ ⇁ ϕ̂ in W 1,2
loc (Ω).

for some function ϕ̂ ∈W 1,2
loc (Ω). Moreover, since ∇2uδ → ∇2u a.e. on Ω we �nd

that

ϕ̂ =
(
1 + |∇2u|

)1−µ
2 a.e. on Ω. (4.42)

After passing to the limit δ ↓ 0 in (4.41), the �rst inequality in the ellipticity
estimate (Fµ) implies∫
BR(x0)

|∇ϕ̂|2 dx

≤ c

R−4

∫
B2R(x0)

|∇u−∇P |2 dx+R−2

∫
B2R(x0)

|∇2u−∇2P |2 dx+R2

 .

Now let ρ ∈ (0, 1) be arbitrary. If we choose in (4.3) η ≡ 1 on BρR(x0),
spt η ⊂ BR(x0), etc., then it is clear that, in place of the latter inequality, we
obtain∫
BρR(x0)

|∇ϕ̂|2 dx

≤ c(ρ)

R−4

∫
BR(x0)

|∇u−∇P |2 dx+R−2

∫
BR(x0)

|∇2u−∇2P |2 dx+R2

 .

(4.43)

By (4.42) together with (4.25) and ∇3uk(z) = r2
kλ
−2
k ∇

3u(xk + rkz) it is not
di�cult to verify the relation∫

Bρ(0)

|∇ϕk|2 dz ≤ cλ−2
k

∫
Bρrk (xk)

|∇ϕ̂|2 dx.

Hence (4.43) yields∫
Bρ(0)

|∇ϕk|2 dz ≤ c(ρ)λ−2
k

{
r−2
k

∫
B1(0)

|∇u(xk + rkz)−∇P (xk + rkz)|2 dx

+

∫
B1(0)

|∇2u(xk + rkz)−∇2P (xk + rkz)|2 dx+ r2
k

}
,

which holds for all k ∈ N. If we now choose (for k ∈ N �xed) P (x) = Pk(x),
with

Pk(x) = rkAk ·
x− xk
rk

− ak −
1

2
r2
kHk

(x− xk
rk

,
x− xk
rk

)
+

1

2
r2
k−
∫
B1(0)

Hk(y, y)dy

(4.44)
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where Ak, ak and Hk are as in (4.23), we obtain the estimate∫
Bρ(0)

|∇ϕk|2 dz ≤ c(ρ)λ−2
k

{
λ2
k

∫
B1(0)

|∇uk(z)|2 dz + λ2
k

∫
B1(0)

|∇2uk(z)|2 dz + r2
k

}
,

and (4.26) together with λ−2
k r2

k → 0 now implies that the right-hand side is
bounded uniformly in k, which proves (4.37).

ad (4.34). Fix a cut-o� function η ∈ C∞0 (B1(0)), 0 ≤ η ≤ 1. Noting that the
function

R 3 s 7→
∫

B1(0)

ηF
(
Hk + λk∇2û+ sλk∇2wk

)
dx

is twice continuously di�erentiable on R, an application of the Taylor formula
with expansion point s = 0 yields:

λ−2
k

∫
B1(0)

η

[
F (Hk + λk∇2uk)− F (Hk + λk∇2û)

]
dz

− λ−1
k

∫
B1(0)

ηDF (Hk + λk∇2û) : ∇2wk dz

=

∫
B1(0)

1∫
0

ηD2F
(
Hk + λk∇2û+ sλk∇2wk

)
(∇2wk,∇2wk)(1− s) ds dz

︸ ︷︷ ︸
=: R(1)

. (4.45)

Due to (Fµ), we can estimate the remainder R(1) by

R(1) ≥ c
∫

B1(0)

1∫
0

η
(
1 + |Hk + λkD

2û+ sλkD
2wk|

)−µ|D2wk|2(1− s) ds dz.

Consequently,

R(1) ≥ c

2

∫
B1(0)

η
(
1 + |Hk|+ λk|∇2û|+ λk|∇2wk|2

)−µ|∇2wk|2 dz. (4.46)

and we see that, for proving (4.34), it will su�ce to show that the left-hand side
of (4.45) converges to zero as k →∞ (note that R(1) is obviously nonnegative).
We make use of the convexity of F to obtain

ηF
(
Hk + λk∇2uk

)
− ηF

(
Hk + λk∇2û

)
= ηF

(
Hk + λk∇2uk

)
−
{
ηF
(
Hk + λk∇2û

)
+ (1− η)F

(
Hk + λk∇2uk

)}
+ (1− η)F

(
Hk + λk∇2uk

)
≤ ηF

(
Hk + λk∇2uk

)
+ (1− η)F

(
Hk + λk∇2uk

)
−F
(
Hk + ηλk∇2û+ (1− η)λk∇2uk

)
= F

(
Hk + λk∇2uk

)
− F

(
Hk + λk

[
η∇2û+ (1− η)∇2uk

])
,
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hence:

l.h.s. of (4.45)

≤ λ−2
k

∫
B1(0)

F (Hk + λk∇2uk) dz

− λ−2
k

∫
B1(0)

F
(
Hk + λk

[
η∇2û+ (1− η)∇2uk

])
dz

− λ−1
k

∫
B1(0)

ηDF (Hk + λk∇2û) : ∇2wk dz =: I1 − I2 − I3.



(4.47)

The I-minimality of u implies that for all v ∈ W 2,1(Ω), which satisfy spt (u −
v) b Brk(xk), it holds

I1 =λ−2
k

∫
B1(0)

F
(
∇2u(rkz + xk)

)
dz = λ−2

k r−2
k

∫
Brk (xk)

F (∇2u) dx

≤λ−2
k r−2

k

{ ∫
Brk (xk)

F (∇2v) dx+
λ

2

∫
Brk (xk)−D

|v − f |2 dx

− λ

2

∫
Brk (xk)−D

|u− f |2 dx

}
.

(4.48)

Now we set

vk(z) := uk(z) + η(z)(û− uk)(z), z ∈ B1(0),

and de�ne

ṽk(z) := λkr
2
kvk(z) + Pk(z),

where Pk(z) is as in (4.44). Finally, we de�ne

v̂k(x) := ṽk

(
x− xk
rk

)
.

Then spt
(
u− v̂k

)
b Brk(xk), and

∇2v̂k(x) = r−2
k ∇

2ṽk

(
x− xk
rk

)
= λk∇2vk

(
x− xk
rk

)
+∇2Pk

(
x− xk
rk

)
r−2
k

= λk∇2
{
uk + η(û− uk)

}(x− xk
rk

)
+Hk,

87



which means that

λ−2
k r−2

k

∫
Brk (xk)

F (∇2v̂k) dx

= λ−2
k

∫
B1(0)

F
(
Hk + λk∇2

{
uk + η(û− uk)

})
dz.

Going back to (4.48), we infer that

I1 ≤

=: Ĩ1︷ ︸︸ ︷
λ−2
k

∫
B1(0)

F
(
Hk + λk∇2

{
uk + η(û− uk)

})
dz

+
λ

2
λ−2
k r−2

k

∫
Brk (xk)−D

(
|f − v̂k|2 − |f − u|2

)
dx.

(4.49)

Using that f is in L∞(Ω−D), we can estimate the second term on the right-hand
side of (4.49) by

λ−2
k r−2

k

∫
Brk (xk)−D

(
|f − v̂k|2 − |f − u|2

)
dx

≤ cλ−2
k r−2

k

∫
Brk (xk)

|v̂k − u| (1 + |u|+ |v̂k|)︸ ︷︷ ︸
locally bounded on Ω

dx

≤ cλ−2
k r−2

k

∫
Brk (xk)

|v̂k − u| dx

= cλ−2
k

∫
B1(0)

|ṽk(z)− u(xk + rkz)| dz

= cλ−2
k

∫
B1(0)

|λkr2
kvk(z) + Pk(z)− u(xk + rkz)|dz

= cλ−1
k r2

k

∫
B1(0)

∣∣∣∣vk(z)− r−2
k λ−1

k

((
u(xk + rkz)− Pk(z)

))∣∣∣∣ dz
= cλ−1

k r2
k

∫
B1(0)

|vk − uk|dz

= cλ−1
k r2

k

∫
B1(0)

η|û− uk|dz

≤ cλ−1
k r2

k =: εk → 0 as k →∞,

where the last estimate uses (4.27). The above estimate combined with (4.47)
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and (4.49) now implies

l.h.s. of (4.45) ≤ Ĩ1 − I2 − I3 +
λ

2
εk. (4.50)

Starting from (4.50), we can basically follow the arguments in [83], p. 209: let

Xk := Hk + λk
[
(1− η)∇2uk + η∇2û

]
, Zk := 2∇η ⊗∇(û− uk) +∇2η(û− uk).

Observing that

Xk + λkZk = Hk + λk∇2
{
uk + η(û− uk)

}
,

an application of Taylor's formula yields

Ĩ1 − I2 = λ−1
k

∫
B1(0)

DF (Xk) : Zk dz

+

∫
B1(0)

1∫
0

D2F
(
Xk + sλkZk

)
(Zk, Zk)(1− s) ds dz.

Using the boundedness of D2F , this implies

Ĩ1 − I2 ≤ λ−1
k

∫
B1(0)

DF (Xk) : Zk dz + c

∫
B1(0)

|Zk|2 dz.

By (4.27) and the Rellich-Kondrachov embedding theorem, we may assume that
uk → û in W 1,2(B1(0)) which implies c

∫
B1(0) |Zk|

2 dz → 0. Hence (4.50) yields

l.h.s. of (4.45)

≤ λ−1
k

∫
B1(0)

DF (Xk) : Zk dz

− λ−1
k

∫
B1(0)

ηDF (Hk + λk∇2û) : ∇2wk dz + εk


(4.51)

= λ−1
k

∫
B1(0)

(
DF (Xk)−DF

(
Hk + λk∇2û

))
: Zk dz

+ λ−1
k

∫
B1(0)

DF (Hk + λk∇2û) : ∇2(ηwk) dz + εk

=: λ−1
k I4 + λ−1

k I5 + εk,

with εk → 0 as k → ∞. Using the ideas from [83], p. 211, the integral I4 can
be estimated by

λ−1
k I4 =

∫
B1(0)

1∫
0

D2F (Hk + λk∇2û+ sλk(1− η)∇2wk)(∇2wk, Zk)(1− η) ds dz

≤
Hölder
+(Fµ)

c ‖∇2wk‖2;B1(0)︸ ︷︷ ︸
bounded by (4.27)

· ‖Zk‖2;B1(0)︸ ︷︷ ︸
→ 0 by (4.27)

<∞.
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Moreover, we have

λ−1
k I5 = λ−1

k

∫
B1(0)

1∫
0

D2F
(
Hk + sλk∇2û

)(
λk∇2û,∇2(ηwk)

)
ds dz

=

∫
B1(0)

1∫
0

D2F
(
Hk + sλk∇2û

)(
∇2û,∇2(ηwk)

)
ds dz

−→ 0 for k →∞,

since ∇2(ηwk) ⇁ 0 in L2 by (4.27), and consequently

r.h.s. of (4.51) −→ 0 for k →∞,

which �nally proves (4.34).

The next step in the proof of Theorem 4.3.1 is to verify the assertion on the
Hausdor�-dimension of the singular set Ω − Ω0 given in part b). We therefore
notice that by Remark 4.3.2 a) we have

Ω− Ω0

=

{
x ∈ Ω : lim sup

r→0
|(∇2u)x,r| =∞

}
︸ ︷︷ ︸

=: Ω1

∪
{
x ∈ Ω : lim inf

r→0
E(x, r) > 0

}
︸ ︷︷ ︸

=: Ω2

.

Since ∇2u ∈ W 1,s
loc (Ω) for all s < 2, it follows from [46], Theorem 2.1 on p. 100

that

H2−s+κ(Ω1) = 0 ∀κ > 0

and hence Hε(Ω1) = 0 for ε > 0 arbitrarily small. Further, by the Sobolev-
Poincaré inequality it holds

E(x, r)
1
2 ≤ cr−

∫
Br(x)

|∇3u|dy ≤ c

rs−2

∫
Br(x)

|∇3u|sdy


1
s

,

and Theorem 2.2 on p. 101 [46] now states that |∇3u|s ∈ L1
loc(Ω) in combination

with the above estimate yields H2−s(Ω2) = 0, and Hε(Ω2) = 0 for any ε > 0
which concludes the proof of Theorem 4.3.1 b). It remains to give the proof
of Theorem 4.3.1 c): Let σδ := DFδ(∇2uδ). By an application of the Cauchy-
Schwarz inequality to the bilinear form D2Fδ(·, ·), we have

Diσδ : Diσδ = D2Fδ(∇2uδ)
(
Di∇2uδ, Diσδ

)
≤ D2Fδ(∇2uδ)

(
Di∇2uδ, Di∇2uδ

) 1
2D2Fδ(∇2uδ)

(
Diσδ, Diσδ

) 1
2 ,
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so that |∇σδ|2 ≤ Θδ

∣∣D2Fδ(∇2uδ)
∣∣ 1

2 |∇σδ| where we use the shorthand notation

Θδ := D2Fδ(∇2uδ)
(
Di∇2uδ, Di∇2uδ

) 1
2 .

According to inequality (4.14), we know that

Θδ ∈ L2
loc(Ω) uniformly in δ.

By the condition of µ-ellipticity (Fµ) it further holds
∣∣D2Fδ(Z)

∣∣ ≤ c(1 + δ) and
thus

|∇σδ| ≤ c
√

1 + δΘδ,

which implies σδ ∈ W 1,2
loc (Ω) uniformly (in δ) and there exists a function σ ∈

W 1,2
loc (Ω) such that

σδ ⇁ σ in W 1,2
loc (Ω)

for a suitable subsequence δ ↓ 0. But then it must hold σ = σ = DF (∇2u),
since (due to uδ ∈ W 3,s

loc (Ω) uniformly for s < 2) ∇2uδ → ∇2u a.e. and DF
is continuous. This veri�es part c) and thereby �nishes the proof of Theorem
4.3.1.
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Part III

An Alternative Approach to the

Higher-Order Case
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Chapter 5

Coupling Models: Relaxed and

Dual Solutions

In the third and last part of this thesis we will have a look at a certain class
of coupled variational problems which represent an alternative approach to the
higher-order case. In this respect, the work [23] serves as a model and we
are concerned with transferring the theory developed therein for superlinear
densities to our linear-growth case. Thereby, we make use of the techniques
from [36] and [37] which will allow us to prove existence as well as (partial)
Hölder regularity of both generalized and dual solutions.

More precisely, the underlying idea is the following: for a reduction of the
di�erentiability order of the functional

I[u] :=

∫
Ω

F (∇mu) dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx, u ∈Wm,1(Ω)

from (V ), we introduce a vector-valued variable v ∈ Rn along with the additional
term ∫

Ω

|∇u− v| dx

and then minimize the bivariate functional

I1(u, v) :=

∫
Ω

F (∇m−1v) dx+

∫
Ω

|∇u− v| dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx

in the class W 1,1(Ω) × Wm−1,1(Ω,Rn). Minimizing the middle term, the so
called �coupling term�, entails �v ≈ ∇u�, so that �∇m−1v ≈ ∇mu�. We have
thereby reduced the order of our model by one and it is clear that an iteration of
this procedure, introducing m− 1 further coupling terms, leads to a functional
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which involves only �rst derivatives:

Im(u, v1, ..., vm−1) :=

∫
Ω

F (∇vm−1) dx+

∫
Ω

|∇vm−2 − vm−1|dx

+

∫
Ω

|∇vm−3 − vm−2| dx+ ...+

∫
Ω

|∇u− v1| dx+ λ

∫
Ω−D

φ
(
|u− f |

)
dx,

which is to be minimized in the product space

(u, v1, ..., vm−1) ∈W 1,1(Ω)×W 1,1(Ω,Rn)× ...×W 1,1(Ω,Rn
m−1

).

Of course, every further iteration of the coupling procedure may possibly lead
to a degradation of the quality in which u approximates the solution of problem
(V ). However, the reduction of the order is extremely advantageous when it
comes to numerical computations.

Let us continue with a few words on the general assumptions of this part. As
before, Ω ⊂ Rn is a bounded Lipschitz domain, D ⊂ Ω is a (possibly empty)
measurable subset, where now we do not only require Ln(Ω−D) > 0 but that
even Ω−D 6= ∅. The data function f : Ω−D → R is supposed to be a bounded
and measurable real-valued function, i.e.

f ∈ L∞(Ω−D).

For simplicity, we will assume n = 2 and choose the quadratic data term φ(t) =
t2. However, we would like to emphasize that the results of this chapter which
concern the existence of generalized and dual solutions remain true in arbitrary
dimensions n ≥ 2 and even for vector valued data f ∈ L∞(Ω − D,RN ) in
combination with general penalty terms

∫
Ω−D φ

(
|u − f |

)
dx (φ : [0,∞) → R

satisfying (φ1) and (φ2) for some q ∈ [1, 2]). Note, however, that this is not
true for the regularity results of Chapter 6!

Let F : R2×2 → R and G : R2 → R be strictly convex functions, satisfying the
following set of conditions (where c denotes a generic positive constant):

(F1) F ∈ C2(R2×2), F (−p) = F (p), F (0) = 0, |∇F (p)| ≤ c ∀p ∈ R2×2,

(F2) 0 < D2F (p)(q, q) ≤ c 1

1 + |p|
|q|2 for all p, q ∈ R2×2,

(F3) c1|p| − c2 ≤ F (p) for some c1 > 0, c2 ∈ R and all p ∈ R2×2.

(G1) G ∈ C2(R2), G(−y) = G(y), G(0) = 0, |∇G(y)| ≤ c ∀y ∈ R2,

(G2) 0 < D2G(y)(x, x) ≤ c 1

1 + |y|
|x|2 for all x, y ∈ R2,

(G3) c1|y| − c2 ≤ G(y) for some c1 > 0, c2 ∈ R and all y ∈ R2.
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We further use the short-hand notation

V := W 1,1(Ω)×W 1,1(Ω,R2). (5.1)

The underlying problem then reads as

E(u, v) := α

∫
Ω

F (∇v) dx+ β

∫
Ω

G(∇u− v) dx+

∫
Ω−D

(u− f)2 dx

→ min in V,

(P)

where α and β are positive parameters which control the balance between the
�leading term�

∫
Ω F (∇v) dx and the �coupling term�

∫
ΩG(∇u− v) dx.

Of course, as for the problem (V ), we can in general not expect to �nd a solution
of (P) in the nonre�exive function class V and therefore have to consider suitably
relaxed variants of the above problem.

5.1 Relaxation in BV (Ω)×BV (Ω,R2)

The �rst method is the relaxation of (P) in the space BV (Ω)×BV (Ω,R2) using
the concept of convex functions of a measure (see Appendix B). This means
that we replace E with the functional

Ẽ(u, v) = α

∫
Ω

F (∇v) + β

∫
Ω

G(∇u− v · L2) +

∫
Ω−D

(u− f)2 dx

and look for solutions of

Ẽ(u, v)→ min in Ṽ := BV (Ω)×BV (Ω,R2), (P̃)

where ∫
Ω

F (∇v) :=

∫
Ω

F (∇av) dx+

∫
Ω

F∞
(
∇sv
|∇sv|

)
d|∇sv|,

and ∫
Ω

G(∇u− v) :=

∫
Ω

G(∇au− v) dx+

∫
Ω

G∞
(
∇su
|∇su|

)
d|∇su|.

The next theorem gathers our results concerning the existence of solutions and
their connection to minimizing sequences of the primal problem (P) (cf. Theo-
rem 2.1.1):

Theorem 5.1.1

Under our general assumptions regarding Ω, D, f , F and G from the introduc-
tion of Part III it holds:
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a) Problem (P̃) has at least one solution (u, v) ∈ Ṽ = BV (Ω)×BV (Ω,R2).

b) If (u, v) and (ũ, ṽ) are two distinct solutions of (P̃), then

u = ũ a.e. on Ω−D, ∇au− v = ∇aũ− ṽ a.e. on Ω

and ∇av = ∇aṽ a.e. on Ω.

In particular, if D = ∅, i.e. in the case of pure denoising, the solution of (P̃)
is unique.

c) It holds inf
Ṽ
Ẽ = inf

V
E.

d) The set M ⊂ BV (Ω) × BV (Ω,R2) of all solutions of (P̃) coincides with
the set of all L1(Ω)×L1(Ω,R2)-cluster points of E-minimizing sequences in
W 1,1(Ω)×W 1,1(Ω,R2). If E admits a minimizer (u, v) in the Sobolev class
V, thenM =

{
(u, v)

}
.

Proof of Theorem 5.1.1. A key tool is the following adaption of the density
result from Section 1.2 (cf. also Lemma 2.2 in [63]):

Lemma 5.1.1

Let Ω ⊂ R2 be a bounded Lipschitz domain. Given (u, v) ∈ BV (Ω)×BV (Ω,R2),
there is a sequence (ϕk, ψk) ⊂ C∞(Ω)× C∞(Ω,R2) such that

ϕk → u in L2(Ω), (5.2)

ψk → v in L2(Ω,R2), (5.3)∫
Ω

√
1 + |∇ψk|2 dx→

∫
Ω

√
1 + |∇v|2, (5.4)

∫
Ω

√
1 + |∇ϕk − ψk|2 dx→

∫
Ω

√
1 + |∇u− v · L2|2. (5.5)

Proof of the Lemma. First, we note that the existence of a sequence ψk with the
properties (5.3) and (5.4) follows directly from Lemma 1.1.1 (note that due to
Ω ⊂ R2 it holds u ∈ L2(Ω), v ∈ L2(Ω,R2) thanks to embedding theorems, and
since the approximating sequence ψk is obtained via molli�cation, it particularly
follows ψk → v in L2(Ω,R2)). Let S : C∞0 (Ω) × C∞0 (Ω,R2) → C∞0 (Ω,R2) be
de�ned by

S(η, ϑ) := ∇η − ϑ.

Then S is a �rst-order di�erential operator with constant coe�cients. Moreover,
it is easy to verify that S satis�es the conditions of Theorem 2.2 in [54] which
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yields the existence of a sequence (ϕk, ψ̃k) ⊂ C∞(Ω)× C∞(Ω,R2) such that

(ϕk, ψ̃k)→ (u, v) in L2(Ω)× L2(Ω,R2) as well as∫
Ω

√
1 + |S(ϕk, ψ̃k)|2 dx→

∫
Ω

√
1 + |S(u, v)|2 =

∫
Ω

√
1 + |∇u− v · L2|2.

(5.6)

Furthermore,∣∣∣∣∣∣
∫
Ω

√
1 + |S(ϕk, ψ̃k)|2 dx−

∫
Ω

√
1 + |S(ϕk, ψk)|2 dx

∣∣∣∣∣∣ ≤
∫
Ω

|ψ̃n − ψn|dx→ 0,

since ψ̃k, ψk both converge to v in L1(Ω,R2) which, together with (5.6), proves
that (ϕk, ψk) approximates (u, v) as claimed.

We continue with the proof of Theorem 5.1.1. Ad a). Let (uk, vk) ∈ BV (Ω) ×
BV (Ω,R2) denote an Ẽ minimizing sequence. By Lemma 5.1.1 in combination
with Reshetnyak's continuity theorem (see Theorem B.1 in Appendix B) we may
assume that (uk, vk) ∈ W 1,1(Ω)×W 1,1(Ω,R2). Thanks to the linear growth of
F and G, it is clear that there are constants M1,M2,M3 > 0 such that

sup
k∈N

∫
Ω

|∇vk| dx ≤M1, (5.7)

sup
k∈N

∫
Ω

|∇uk − vk| dx ≤M2 (5.8)

and sup
k∈N

∫
Ω−D

|uk|dx ≤M3. (5.9)

Now we need the following variant of Poincaré's inequality (cf. Lemma 4.2
in [23]):

Lemma 5.1.2

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and ρ ∈ C1
0 (Ω) with∫

Ω ρ dx = 1. Then there is a constant c > 0 which only depends on Ω and ρ,
such that for any function u ∈W 1,1(Ω) it holds∥∥∥∥u− ∫

Ω
ρudx

∥∥∥∥
1;Ω

≤ c‖∇u‖1;Ω.

Continuing with the proof of Theorem 5.1.1, we choose ρ as in the Lemma
and such that spt ρ ⊂ Ω −D (note that this is possible due to our assumption
Ω−D 6= ∅). Then we have:

sup
k∈N

∣∣∣∣∣∣
∫
Ω

ρ∇uk dx−
∫
Ω

ρvk dx

∣∣∣∣∣∣ ≤ ‖ρ‖∞ sup
k∈N

∫
Ω

|∇uk − vk|dx ≤ ‖ρ‖∞M2. (5.10)
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Furthermore:∣∣∣∣∣∣
∫
Ω

ρ∇uk dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

∇ρuk dx

∣∣∣∣∣∣ ≤ ‖∇ρ‖∞
∫

Ω−D

|uk| dx ≤ ‖∇ρ‖∞M3. (5.11)

Thus, from (5.10) and (5.11) we infer

sup
k∈N

∣∣∣∣∣∣
∫
Ω

ρvk dx

∣∣∣∣∣∣ <∞
and (5.7) together with Lemma 5.1.2 therefore implies

sup
k∈N
‖vk‖1,1;Ω <∞.

But then the boundedness of vk in L1(Ω,R2) along with (5.8) and (5.9) gives
(by another application of Poincaré's inequality):

sup
k∈N
‖uk‖1,1;Ω <∞,

so that (uk, vk) is indeed bounded inBV (Ω)×BV (Ω,R2). By theBV -compactness
theorem, there exists (u, v) ∈ BV (Ω)×BV (Ω,R2) such that

(uk, vk)→ (u, v) in L1(Ω)× L1(Ω,R2) and a.e..

That (u, v) is indeed Ẽ-minimal is now immediate since the relaxation Ẽ is lower
semicontinuous with respect to weak-∗ convergence of measures by Reshetnyak's
theorem (see Appendix B, Theorem B.1 a)).

The statements of part b) are a mere consequence of the strict convexity of the
functions F , G and the quadratic �delity term.

For the equality of the in�ma of E and Ẽ that is stated in c), we �rst note
that inf Ẽ ≤ inf E is clear from E = Ẽ on V. For the opposite inequality,
let (uk, vk) ∈ W 1,1(Ω) × W 1,1(Ω,R2) be a sequence which approximates an
Ẽ-minimum (u, v) in the sense of Lemma 5.1.1. Thus, Reshetnyak's theorem
gives

inf
V
E ≤ E(uk, vk) = Ẽ(uk, vk)

k→∞−−−→ inf
Ṽ
Ẽ.

Now to part d). That every Ẽ-minimizer is indeed the L1-limit of an E-
minimizing sequence in the Sobolev class V follows from Lemma 5.1.1 together
with Ẽ|V = E and part c). That every such limit indeed minimizes Ẽ is a conse-
quence of the above mentioned lower semicontinuity property of the relaxation.
It remains to prove that (P̃) has a unique solution if M ∩ V 6= ∅. Assume
therefore that (u, v) ∈ V minimizes Ẽ and let (ũ, ṽ) be another element ofM.
From Ẽ(u, v) = E(u, v) = Ẽ(ũ, ṽ) and part b) we infer∫

Ω

F∞
(
∇sṽ
|∇sṽ|

)
d|∇sṽ|+

∫
Ω

G∞
(
∇sũ
|∇sũ|

)
d|∇sũ| = 0
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and therefore

∇sṽ
|∇sṽ|

= 0 |∇sṽ|-a.e. and
∇sũ
|∇sũ|

= 0 |∇sũ|-a.e.,

i.e. ∇sṽ ≡ 0 and ∇sṽ ≡ 0, i.e. (ũ, ṽ) ∈ V. But then b) implies ∇ṽ = ∇v and
thereby v = ṽ+ c. Further it follows from ∇u− v = ∇ũ− ṽ that ∇u = ∇ũ+ c,
i.e. u(x) = ũ(x) + c · x + b, for some b ∈ R, c ∈ R2. Finally, due to u = ũ on
Ω −D along with L2(Ω −D) > 0, we infer b = c = 0. Hence u = ũ and v = ṽ
a.e. on Ω.

5.2 The Dual Problem

As done in Section 2.2 for the problem (V ), we are now going to study the convex
dual of (P). In order to simplify our notation, we de�ne the linear operator

Λ : V → Y, u = (u, v) 7→ (∇u− v,∇v), (5.12)

where
Y := L1(Ω,R2)× L1(Ω,R2×2),

as well as the function

F : R2 × R2×2 → R, (y, p) 7→ αF (p) + βG(y).

Then problem (P) can be written in short-hand notation as

E(u) =

∫
Ω

F(Λu) dx+

∫
Ω−D

(u− f)2 dx→ min, (5.13)

where u = (u, v) ∈ W 1,1(Ω) ×W 1,1(Ω,R2). By means of this representation,
it is easy to see how to apply the results from [62], Remark 4.1 and 4.2 on pp.
60-61 in order to obtain the problem in duality to (P): �rst, for www = (u, v) ∈ V
and y = (κ, λ) ∈ Y∗ = L∞(Ω,R2) × L∞(Ω,R2×2), we de�ne the associated
Lagrangian through

`(www,y) :=

∫
Ω

Λ(www)� y dx−
∫
Ω

F∗(y) dx+

∫
Ω−D

(u− f)2 dx, (5.14)

where for (x, p), (y, q) ∈ R2 × R2×2 we set

(x, p)� (y, q) := x · y + p : q,

�·� and �:� denoting the canonical dot products of R2 and R2×2, respectively.
Furthermore, F∗ is the convex dual to the function F which, by Remark 4.3
in [62] on p. 61 is given by

F∗(κ, λ) = αF ∗(λ) + βG∗(κ),
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with F ∗, G∗ as de�ned by the formula (2.3) from Section 2.2. Hence, we may
write (5.14) as

`(www,y)

=

∫
Ω

∇v : κ+ (∇u− v) · λ dx−
∫
Ω

αF ∗(λ) + βG∗(κ) dx+

∫
Ω−D

(u− f)2 dx

and it holds (see [62], p. 56)

E(www) = sup
y∈Y∗

`(www,y).

Just like in Section 2.2 from the �rst part, the dual functional R : Y ∗ → [0,∞]
is now de�ned as

R(y) := inf
www∈V

`(www,y), y ∈ Y∗, (5.15)

and the dual problem consists in maximizing R:

R→ max in L∞(Ω,R2)× L∞(Ω,R2×2). (P∗)

Theorem 5.2.1

Under our general assumptions regarding Ω, D, f , F and G it holds:

a) Problem (P∗) has at least one solution (ρ, σ) ∈ L∞(Ω,R2)× L∞(Ω,R2×2).

b) The problems (P) and (P∗) are related via the �inf-sup� relation:

inf
www∈V

E(www) = sup
y∈Y∗

R(y).

c) Let (u, v) ∈ BV (Ω) × BV (Ω,R2) be a solution of the relaxed problem (P̃).
Then the following formula holds:

(ρ, σ) = DF
(
Λa(u, v)

)
= βDG(∇au− v)⊕ αDF (∇av) a.e. on Ω, (5.16)

where we declare
Λa(u, v) := (∇au− v,∇av).

In particular, the solution of the dual problem is unique by Theorem 5.1.1 b).

Proof of Theorem 5.2.1. Since the proof relies more or less on the same argu-
ments as used in the proof of Theorem 2.2.1 in Section 2.2, we will merely give
a rather condensed sketch of it.

As in the uncoupled case (see Lemma 2.2.1), we employ a suitable δ-approximation
of problem (P). This means that for δ ∈ (0, 1) we consider the problem

Eδ(u, v) :=
δ

2

∫
Ω

|∇u|2+|∇v|2 dx+ E(u, v)

→ min in W 1,2(Ω)×W 1,2(Ω,R2).

(Pδ)
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Lemma 5.2.1

Under our general assumptions regarding Ω, f , F and G it holds:

a) For any δ ∈ (0, 1), problem (Pδ) admits a unique solution uδ = (uδ, vδ) in
the space W 1,2(Ω)×W 1,2(Ω,R2).

b) The family of the uδ's ful�lls:

sup
δ∈(0,1)

δ

∫
Ω

|∇uδ|2 + |∇vδ|2 dx <∞, (5.17)

as well as sup
δ∈(0,1)

∫
Ω−D

|uδ|2 dx <∞. (5.18)

c) It holds (not necessarily uniformly with respect to δ)

uδ ∈W 2,2
loc (Ω)×W 2,2

loc (Ω,R2). (5.19)

Proof of Lemma 5.2.1. Ad a). Let δ ∈ (0, 1) be �xed. Quoting standard re-
sults concerning the weak lower semicontinuity of convex functionals on Sobolev
spaces (see, e.g. [64]), the existence of a minimizer follows via the direct method
once we have shown that an Eδ minimizing sequence is bounded in W 1,2(Ω)×
W 1,2(Ω,R2). So let us �x δ ∈ (0, 1) and denote by uk = (uk, vk) such a mini-
mizing sequence. From Eδ(uk) ≤ Eδ(0, 0) = E(0, 0), it is clear that |∇vk| and
|∇uk| are bounded in L2(Ω). Furthermore, f − uk is bounded in L2(Ω − D).
By Poincaré's inequality we therefore have∫

Ω

∣∣∣uk(x)−
(
uk(x)

)
Ω−D

∣∣∣2 dx ≤ c
∫
Ω

|∇uk|2 dx,

where
(
uk(x)

)
Ω−D := −

∫
Ω−D uk(t) dt. It thus follows that uk is bounded in

W 1,2(Ω). But then, ∫
Ω

G(∇uk − vk) dx ≤ E(0, 0)

implies that also |vk| is bounded in L1(Ω) and another application of Poincaré's
inequality yields the boundedness of vk in W

1,2(Ω,R2).

Ad b): this follows immediately from Eδ(uδ) ≤ Eδ(0, 0) = E(0, 0).

Ad c): let δ ∈ (0, 1) be �xed. The proof of this statement is a standard applica-
tion of the di�erence quotient technique to the quadratic variational problems

Eδ(u, vδ)→ min in W 1,2(Ω), with vδ �xed

and

Eδ(uδ, v)→ min in W 1,2(Ω,R2), with uδ �xed,
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respectively. We refer to Appendix C for the details of the calculation.

The core of the proof of Theorem 5.2.1 now consists in a careful analysis of the
convergence behavior of uδ as δ approaches zero. Our claim is that (at least
for a subsequence) uδ converges in L

1(Ω)×L1(Ω,R2) towards a solution of the
relaxed problem (P̃), and that

σσσδ = (ρδ, σδ) := δΛuδ +DF(Λuδ)

=
[
δ(∇uδ − vδ) + βDG(∇uδ − vδ)

]
⊕
[
δ∇vδ + αDF (∇vδ)

] (5.20)

converges weakly in L2(Ω,R2) × L2(Ω,R2×2) towards a solution of the dual
problem (P∗).

Lemma 5.2.2

The family uδ is uniformly bounded in the space V = W 1,1(Ω) ×W 1,1(Ω,R2).
In particular, there exists a function u = (u, v) ∈ BV (Ω)×BV (Ω,R2) such that
uδ → u in L1(Ω)× L1(Ω,R2) and a.e. for a suitable sequence δ ↓ 0.

Proof of Lemma 5.2.2. We start with the observation that due to Eδ(uδ) ≤
Eδ(0, 0) = E(0, 0) and the linear growth of F and G we have the following
bounds:

sup
δ∈(0,1)

∫
Ω

|∇vδ| dx ≤M ′1, (5.21)

sup
δ∈(0,1)

∫
Ω

|∇uδ − vδ|dx ≤M ′2, as well as (5.22)

sup
δ∈(0,1)

∫
Ω−D

|uδ|2 dx ≤M ′3 (5.23)

for constants M ′1,M
′
2,M

′
3 > 0. From here on, we may repeat the arguments

from p. 98 to prove the boundedness of (uδ, vδ) in W 1,1(Ω) ×W 1,1(Ω,R2) via
Lemma 5.1.2, and the existence of a function u as claimed follows from the
BV -compactness property.

We will see later during the proof of Theorem 5.2.1, that the function u from
Lemma 5.2.2 in fact minimizes Ẽ. Let us �x a null-sequence δ ↓ 0 as in Lemma
5.2.2. By (5.17), it holds δuδ → 0 in W 1,2(Ω,R2) as well as δvδ → 0 in
W 1,2(Ω,R2×2), so that

δΛuδ =
(
δ(∇uδ − vδ), δ∇vδ

)
→ 0 in L2(Ω,R2)× L2(Ω,R2×2). (5.24)

Since further |∇F(y, p)| is bounded for all (y, p) ∈ R2×R2×2 by our assumptions
on F and G, it follows that

sup
δ∈(0,1)

∫
Ω

|σσσδ|2 dx <∞. (5.25)
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Thus there exists σσσ ∈ L2(Ω,R2)× L2(Ω,R2×2) such that

σσσδ ⇁σσσ in L2(Ω,R2)× L2(Ω,R2×2) as δ ↓ 0,

at least for a suitable subsequence. Furthermore, setting τττ δ := DF(Λuδ), we
may assume that there exists τττ ∈ L∞(Ω,R2)× L∞(Ω,R2×2) such that

τττ δ
∗
⇁ τττ. (5.26)

Due to σσσδ = δΛuδ + τττ δ and (5.24) it must further hold

σσσ = τττ a.e. on Ω. (5.27)

Next we observe that, thanks to its Eδ-minimality, uδ satis�es for all pairs of
functions φφφ = (ϕ,ψ) ∈ W 1,2(Ω,R)×W 1,2(Ω,R2) the following Euler-Lagrange
equation:

δ

∫
Ω

∇uδ · ∇ϕ+∇vδ : ∇ψ dx+

∫
Ω

DF(Λuδ)� Λφφφ dx

+2

∫
Ω−D

(uδ − f)ϕdx = 0.

(EL)

This can be decoupled into the two equations

0 =

∫
Ω

DFδ(∇vδ) : ∇ψ dx−β
∫
Ω

DG(∇uδ − vδ) · ψ dx

for all ψ ∈W 1,2(Ω,R2),

(EL1)

where Fδ(p) := δ
2 |p|

2 + αF (p) for all p ∈ R2×2, and

0 = δ

∫
Ω

∇uδ · ∇ϕdx+ β

∫
Ω

DG(∇uδ − vδ) · ∇ϕdx

+ 2

∫
Ω−D

(uδ − f)ϕdx for all ϕ ∈W 1,2(Ω).

(EL2)

We note that φφφ = uδ is admissible in (EL) and, using the duality relation
(see [62], Proposition 5.1 on p. 21)

F(Λuδ) = τττ δ � Λuδ −F∗(τττ δ), (5.28)

we obtain the formula

Eδ(uδ) = −δ
2

∫
Ω

|∇uδ|2 + |∇vδ|2 dx−
∫
Ω

F∗(τττ δ) dx−
∫

Ω−D

u2
δ dx+

∫
Ω−D

f2 dx

≤ −
∫
Ω

F∗(τττ δ) dx−
∫

Ω−D

u2
δ dx+

∫
Ω−D

f2 dx. (5.29)
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Note that from the de�nition of R (see (5.15)) it is clear that

sup
y∈Y∗

R(y) ≤ inf
www∈V

E(www)

and, observing that infwww∈V E(www) ≤ E(uδ) ≤ Eδ(uδ), we obtain after passing to
lim sup
δ↓0

on both sides of (5.29) the inequality

sup
y∈Y∗

R(y) ≤ inf
www∈V

E(www) ≤ −
∫
Ω

F∗(τττ) dx−
∫

Ω−D

u2 dx+

∫
Ω−D

f2 dx. (5.30)

Here we have used that F∗ is convex and therefore weakly-∗ lower semicon-
tinuous, as well as Fatou's Lemma. Passing to the limit δ ↓ 0 in (EL) (using
δ∇uδ → 0 in L2(Ω,R2) and δ∇vδ → 0 in L2(Ω,R2×2) as well as uδ ⇁ u in
L2(Ω−D)) further yields the relation∫

Ω

τττ � Λwww dx+ 2

∫
Ω−D

(u− f)w1 dx = 0, (5.31)

which (by a standard approximation argument) holds for all www = (w1, w2) ∈ V.
From

R[τ ] = inf
www∈V

`(www,τττ)

and (5.31) we can therefore deduce the formula

R(τττ) = −
∫
Ω

F∗(τττ) dx+ inf
www=(w1,w2)∈V

 ∫
Ω−D

(u− w1)2 + f2 − u2 dx

 ,
and since the term in brackets is obviously minimal for w1 = u, (5.30) allows us
to infer the equation

sup
y∈Y∗

R(y) = R(τττ) = inf
www∈V

E(www),

i.e. the inf-sup relation. Furthermore, we see that τττ = σσσ maximizes the dual
functional and in particular, (5.29) implies

inf
www∈V

E(www) ≤ lim sup
δ↓0

E(uδ) ≤ R(τττ),

which shows that uδ is indeed an E-minimizing sequence. Part a) and b) of
Theorem 5.2.1 are thereby proved.

It remains to establish the duality formula that is claimed in part c) of Theorem
5.2.1. Arguing as in the proof of Theorem 2.15 in [67] (cf. also Theorem 2.2.1
in Section 2.2 of this thesis), it is essentially enough to revise the single steps
with F replaced by F and ∇a replaced by Λa, but for the reader's convenience,
we give a sketch of the main arguments. We �rst claim that the tensor

t := DF(Λa(u, v))
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is in fact a maximizer of the dual functional R. Note that due to our assumptions
(F1) and (G1) it holds t ∈ L∞(Ω,R2)× L∞(Ω,R2×2), i.e. t is admissible in R.
Let www = (w1, w2) ∈ V be arbitrary and let `(·, ·) be the Lagrangian de�ned in
(5.14). Using the duality relation

F∗(DF(p)) = p�DF(p)−F(p), p ∈ R2 × R2×2

from Proposition 5.1 on p. 21 of [62] with the choice p = Λa(u, v), we obtain

`(www, t) =

∫
Ω

DF(Λa(u, v))� Λwww −F∗
(
DF(Λa(u, v))

)
dx+

∫
Ω−D

(w1 − f)2 dx

=

∫
Ω

F(Λa(u, v)) dx+

∫
Ω

(Λwww − Λa(u, v))� t dx+

∫
Ω−D

(w1 − f)2 dx. (5.32)

The Ẽ-minimality of (u, v) implies the equation

0 =
d

dt

∣∣∣∣
t=0

Ẽ(u+ tw1, v + tw2) =

∫
Ω

DF(Λa(u, v))� Λwww dx

+ 2

∫
Ω−D

(u− f)w1 dx,

(5.33)

where we used (∇sw1,∇sw2) = (0, 0) ∈ R2 × R2×2 and, likewise, we obtain

0 =
d

dt

∣∣∣∣
t=0

Ẽ(u+ tu, v + tv)

=

∫
Ω

DF(Λa(u, v))� Λa(u, v) dx+

∫
Ω

F∞(Λs(u, v)) dx

+ 2

∫
Ω−D

(u− f)u dx,

(5.34)

which is due to

Λa(u+ tu, v + tv) = (1 + t)Λa(u, v)

and

Λs(u+ tu, v + tv) = (1 + t)Λs(u, v) = (1 + t)(∇su,∇sv).

Note that here we have tacitly set

Λs(u, v) := (∇su,∇sv)

as well as

F∞(Λs(u, v)) := α

∫
Ω

F∞
(

d∇su
d|∇su|

)
d|∇su|+ β

∫
Ω

G∞
(

d∇sv
d|∇sv|

)
d|∇sv|.
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Inserting (5.33) and (5.34) into (5.32), it now follows that

`(www, t) =

∫
Ω

F(Λa(u, v)) dx+

∫
Ω

F∞(Λs(u, v))

+

∫
Ω−D

(w1 − f)2 + 2(u− f)(u− w1)︸ ︷︷ ︸
= (u− f)2 + (u− w1)2

dx

= Ẽ(u, v) +

∫
Ω−D

(u− w1)2 dx ≥ Ẽ(u, v),

(5.35)

which implies

R[t] = inf
www∈V

`(www, t) ≥ Ẽ(u, v) = inf
Ṽ
Ẽ = inf

V
E

Thm.5.2.1a)
= sup

Y∗
R,

i.e. t is indeed a maximizer of the dual functional. Now assume that there exists
another maximizer t̃ of R. Arguing as in the proof of Theorem 2.15 in [67], we
will see how this assumption leads to a contradiction. Let therefore

U := Im(DF)

which, by our assumptions (F2) and (G2) on the second derivatives of F and G
and the inverse function theorem, is an open set. Furthermore, Theorem 26.5
on p. 258 in [77] proves that U is convex. Consider now the partition of U into
the subsets

Σ1 :=
{
x ∈ Ω : t(x) 6= t̃(x) and t̃(x) ∈ U

}
,

Σ2 :=
{
x ∈ Ω : t(x) 6= t̃(x) and t̃(x) ∈ ∂U

}
,

and Σ3 :=
{
x ∈ Ω : t̃(x) /∈ U}.

Since t̃ is a maximizer of the functional R and F∗ = +∞ on (R2 × R2×2) − U
(cf. Theorem 26.5 in [77]), it directly follows that L2(Σ3) = 0. Making use of
the strict convexity of the conjugate function F∗ on U (which also follows from
Theorem 26.5 in [77]) as well as the concavity of the mapping

L∞(Ω,R2)× L∞(Ω,R2×2) 3 y 7→ inf
www=(w1,w2)∈V

∫
Ω

Λwww� y dx+

∫
Ω−D

(w1 − f)2 dx,

we can furthermore verify L2(Σ1) = L2(Σ2) = 0 along the lines of the proof of
Theorem 2.15 in [67]. Hence the set

{
x ∈ Ω : t 6= t̃

}
= Σ1 ∪ Σ2 ∪ Σ3 is a null

set, which thereby proves part c) of Theorem 5.2.1.
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Chapter 6

Regularity Properties

In accordance with the general scheme of this thesis, after having established the
existence of generalized and dual solutions, we now proceed with a discussion of
Sobolev and Hölder regularity. Again we will need to restrict our considerations
to the two-dimensional setting, where we have all the required embeddings at
hand. For proving the existence of a classical solution of problem (P) in the
Sobolev class, we will once more employ the concept of µ-ellipticity where, in
the context of our coupling model, we will have to require the main as well as
the coupling term to be µ- and ν-elliptic, respectively, with parameters (µ, ν)
varying in some bounded subregion of [1,∞) × [1,∞). Additionally, since our
coupling model involves the vector variable v, it will become necessary to assume
that the density F is rotationally invariant. In the second section, by adapting
the technique that was developed in [36] for the �rst-order case, we will show
that these classical solutions are actually partially Hölder continuous on a dense
open subset of Ω.

6.1 Sobolev Regularity

After having discussed the relaxed and dual formulation of problem (P), we
now consider the question whether or not there exists a �classical� solution in
the Sobolev class W 1,1(Ω) ×W 1,1(Ω,R2). To that purpose, as in our previous
considerations in Chapter 4, we impose an additional µ-ellipticity condition (cf.
(Fµ) in the introduction) on our densities F and G. This means that we replace
the rather general ellipticity condition (F2) with the stronger assumption

c1
1

(1 + |p|)µ
|q|2 ≤ D2F (p)(q, q) ≤ c2

1

1 + |p|
|q|2, for some

c1, c2 > 0, parameter µ ∈ (1,∞) and for all p, q ∈ R2×2
(F2)′
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and, likewise, (G2) is replaced with

c1
1

(1 + |y|)ν
|x|2 ≤ D2G(y)(x, x) ≤ c2

1

1 + |y|
|x|2 for some

c1, c2 > 0, parameter ν ∈ (1,∞) and for all x, y ∈ R2.

(G2)′

We want to emphasize that, unlike to the statements of Theorems 5.1.1 and
5.2.1, the planarity assumption Ω ⊂ R2 is essential for the regularity results
to follow. We will also have to make a distinction between the case of pure
denoising D = ∅ and the general case. Precisely we have:

Theorem 6.1.1

Together with our general assumptions regarding Ω and f , let F satisfy (F1),
(F2)', (F3) and let G satisfy (G1), (G2)', (G3) with parameters µ, ν > 1. Then
it holds:

a) If D = ∅ (pure denoising) and

(µ, ν) ∈ (1, 3/2)× (1, 2), (6.1)

then problem (P) admits a unique solution (u, v) in the Sobolev class

V = W 1,1(Ω)×W 1,1(Ω,R2).

It even holds (u, v) ∈W 1,p
loc (Ω)×W 1,p

loc (Ω,R2) for every p ∈ [1,∞).

b) If D 6= ∅, and if we replace the quadratic �delity term
∫

Ω−D(u − f)2 dx in
(P) e.g. with ∫

Ω

√
1 + |u− f |2dx,

and (6.1) with the stronger condition

(µ, ν) ∈ (1, 3/2)× (1, 3/2), (6.2)

then the statement of Theorem 6.1.1 a) holds for the problem

Ê(u, v) := α

∫
Ω

F (∇v) dx+ β

∫
Ω

G(∇u− v) dx

+

∫
Ω−D

√
1 + |u− f |2 dx→ min in V.

(P̂)

Remark 6.1.1 a) The uniqueness of a possible Sobolev-minimizer follows di-
rectly from Theorem 5.1.1 part d).

b) The results from [38] indicate that the bound µ < 3/2 is not optimal, whereas
the considerations from Section 3.6 have proved that that µ, ν < 2 is nec-
essary for making a general statement on the existence of a solution in the
Sobolev class.
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c) In the case D 6= ∅, we may just as well choose any �delity term of the more
general form ∫

Ω

φ
(
|u− f |

)
dx

with a convex, di�erentiable and increasing function φ : [0,∞) → [0,∞) of
linear growth.

Proof of Theorem 6.1.1. We begin with part a), i.e. D = ∅ in the following
calculations. Let uδ = (uδ, vδ) be the Ẽ-minimizing sequence as constructed in
the previous section. Our proof mainly relies on the following lemma:

Lemma 6.1.1

Under the assumptions of Theorem 6.1.1 we have that

ϕδ :=
(
1 + |∇vδ|

)1−µ
2 , (6.3)

ϕ̃δ :=
(
1 + |∇uδ|

)1− ν
2 (6.4)

are uniformly bounded in W 1,2
loc (Ω).

Proof of Lemma 6.1.1: Ad (6.3). Throughout the following, we use summation
convention with respect to the index i ∈ {1, 2} and denote by c a generic positive
constant. We start with the discussion of the quantity ϕδ. First, we note that
the uniform boundedness of ϕδ in L

2
loc(Ω) is clear since we assume µ > 1 and vδ

is uniformly bounded in W 1,1(Ω,R2) by Lemma 5.2.2. Choosing ∂iψ for some
ψ ∈ C∞0 (Ω,R2) in the Euler equation (EL1) and performing an integration by
parts, we obtain

0 =

∫
Ω

D2Fδ(∇vδ)(Di∇vδ,∇ψ) dx+ β

∫
Ω

DG(∇u− vδ) · ∂iψ dx, (EL1)'

which, by a standard approximation argument, holds even for all ψ ∈W 1,2(Ω,R2)
which are compactly supported in Ω. Let x0 ∈ Ω denote some point and let
R > 0 be such that B2R(x0) b Ω. We choose ψ = η2Divδ, where η ∈ C∞0 (Ω)
satis�es the conditions listed in (4.3). With this choice of ψ, equation (EL1)'
reads as

0 =

∫
Ω

D2Fδ(∇vδ)
(
Di∇vδ,∇(η2Divδ)

)
dx

+ β

∫
Ω

DG(∇uδ − vδ) ·Di(η
2Divδ) dx
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which can be expanded to

0 =

∫
Ω

D2Fδ(∇vδ)
(
Di∇vδ, Di∇vδ

)
η2 dx

+ 2

∫
Ω

D2Fδ(∇vδ)
(
ηDi∇vδ, Divδ ⊗∇η

)
dx

︸ ︷︷ ︸
=: T1

+ β

∫
Ω

DG(∇uδ − vδ) ·Di(η
2Divδ) dx

︸ ︷︷ ︸
=: T2

.

(6.5)

We de�ne

Θδ := D2Fδ(∇vδ)
(
Di∇vδ, Di∇vδ

) 1
2

and may then write (6.5) for short as∫
Ω

Θ2
δη

2 dx = −T1 − T2. (6.6)

Recalling (F2)′, we see that the �rst claim of Lemma 6.1.1 follows via a uniform
estimate of the integral

∫
Ω Θ2

δη
2 dx on the left-hand side of (6.6). So let us have

a look at the quantity T1 �rst. Applying the Cauchy-Schwarz inequality to the
bilinear form D2Fδ(∇vδ)( · , · ) and then Young's inequality, we infer that (for
ε > 0 arbitrarily small)

|T1| ≤ ε
∫
Ω

Θ2
δη

2 dx+ ε−1

∫
Ω

D2Fδ(∇vδ)
(
Divδ ⊗∇η,Divδ ⊗∇η

)
dx. (6.7)

Choosing ε = 1
2 , the �rst summand can be absorbed in the right-hand side of

(6.6) whereas to the second summand we apply the estimate (F2)′ as well as
Lemma 5.2.1 b) and Lemma 5.2.2 with the result∫

Ω

D2Fδ(∇vδ)
(
Divδ ⊗∇η,Divδ ⊗∇η

)
dx

≤ c

R2
+

c

R2

∫
Ω

1

1 + |∇vδ|
|∇vδ|2 dx = c(R).

(6.8)

Hence, we have shown ∫
Ω

Θ2
δη

2 dx ≤ c(R)− T2,

and it remains to estimate T2. Therefore, we notice that due to our assumption
(G1) on the function G, we have DG(∇uδ − vδ) ∈ L∞(Ω,R2) uniformly and
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thus

|T2| ≤ c
∫
Ω

|Di(η
2Divδ)| dx ≤ c

∫
Ω

|∇η||∇vδ|dx+ c

∫
Ω

η2|∇2vδ| dx

Lemma 5.2.2
= c(R) + c

∫
Ω

η2|∇2vδ| dx

=: c(R) + T3.

For the quantity T3 we observe

T3 =

∫
Ω

η2
(
1 + |∇vδ|

)µ
2

|∇2vδ|(
1 + |∇vδ|

)µ
2

dx,

which, using Young's inequality, can be estimated through

T3 ≤ ε
∫
Ω

η2 |∇2vδ|2(
1 + |∇vδ|

)µ dx+ ε−1

∫
Ω

η2
(
1 + |∇vδ|

)µ
dx, (6.9)

where ε > 0 is arbitrary. Therefore (F2)′ implies

T3 ≤ cε
∫
Ω

Θ2
δη

2 dx+ ε−1

∫
Ω

η2
(
1 + |∇vδ|

)µ
dx =: cε

∫
Ω

η2Θ2
δ dx+ T4.

Choosing ε small enough, we may absorb the �rst term in the left-hand side of
(6.6). Furthermore, with the notation

ωδ :=
(
1 + |∇vδ|

)µ
2 (6.10)

we may write

T4 =

∫
Ω

(ηωδ)
2 dx.

This integral can be treated exactly as the corresponding quantity T ′ from (4.9)
in Chapter 4: First, we apply the Sobolev inequality to get

|T4| ≤ c

∫
Ω

|∇(ηωδ)| dx

2

≤ c(R) + c

∫
Ω

η|∇ωδ| dx

2

.

Observing the relation ωδ = ϕ
µ

2−µ
δ , it follows that

|T4| ≤ c(R) + c

∫
Ω

η|ϕδ|
2µ−2
2−µ |∇ϕδ|dx

2

,
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and an application of the Hölder inequality then yields

T4 ≤ c(R) + c

∫
B2R(x0)

ϕ
4µ−4
2−µ
δ dx

∫
Ω

η2|∇ϕδ|2 dx

≤ c(R) + c

∫
B2R(x0)

ϕ
4µ−4
2−µ
δ dx

∫
Ω

η2Θ2
δ dx.

Here, our assumption (6.1) is indispensable for 4µ−4
2−µ (1− µ

2 ) = 2µ−2 < 1, which
enables us to apply Hölder's inequality once more, giving:

∫
B2R(x0)

ϕ
4µ−4
2−µ
δ dx ≤ πsR2s

∫
Ω

1 + |∇vδ| dx

2µ−2

≤ cR2s, (6.11)

where s = 3 − 2µ > 0 and the constant c is independent of the Radius R.
Combining our estimates of T1 and T2 with (6.6), we arrive at

(1− cR2s)

∫
Ω

η2Θ2
δ dx ≤ c(R). (6.12)

Thus, for radii R < R0 (with R0 suitably small such that cR2s
0 < 1), we end up

with the uniform estimate ∫
Ω

η2Θ2
δ dx ≤ c(R0). (6.13)

Claim (6.3) of Lemma 6.1.1 now follows from a covering argument.

Note that as a consequence of (6.3) and Sobolev's embedding Theorem (recall
n = 2), we obtain

∇vδ ∈ Lploc(Ω,R
2×2) for any p ∈ [1,∞), uniformly with respect to δ. (6.14)

In particular (due to our assumption n = 2) it follows that

vδ ∈ L∞loc(Ω,R2×2) uniformly with respect to δ. (6.15)

Therefore, after passing to a suitable subsequence δ ↓ 0, we infer that ∇vδ has
a weak Lploc(Ω,R

2×2)-limit (for some p > 1) and since vδ → v in L1(Ω,R2) and

a.e., it holds v ∈W 1,p
loc (Ω,R2). Hence v ∈W 1,1

loc (Ω,R2)∩BV (Ω,R2) and thereby

v ∈W 1,1(Ω,R2).

Let us now turn to the corresponding quantity ϕ̃δ involving the scalar function
uδ. We start with the Euler equation (EL2) (keep in mind that D = ∅ in
the setting of Theorem 6.1.1 a)), where we choose ϕ = Di(η

2Diuδ) for some
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η ∈ C1
0 (Ω0) satisfying the set of conditions from (4.3). Writing Gδ(x) := δ|x|2 +

βG(x) for x ∈ R2, (EL2) (after an integration by parts) reads as:∫
Ω

D2Gδ(∇uδ − vδ)
(
Di∇uδ,∇(η2Diuδ)

)
dx

− β
∫
Ω

D2G(∇uδ − vδ)
(
Divδ,∇(η2Diuδ)

)
dx

− 2

∫
Ω

(uδ − f)Di(η
2Diuδ) dx = 0.

(6.16)

Now we de�ne

Θ̃δ := D2Gδ(∇uδ − vδ)
(
Di∇uδ, Di∇uδ

)1/2
due to which we may write (6.16) as∫

Ω

η2Θ̃2
δ dx =− 2

∫
Ω

D2Gδ(∇uδ − vδ)
(
ηDi∇uδ,∇ηDiuδ

)
dx

+ β

∫
Ω

D2G(∇uδ − vδ)
(
ηDivδ, ηDi∇uδ

)
dx

+ 2β

∫
Ω

D2G(∇uδ − vδ)
(
ηDivδ,∇ηDiuδ

)
dx

+ 2

∫
Ω

(uδ − f)Di(η
2Diuδ) dx

=: −T ′1 + T ′2 + T ′3 + T ′4.

(6.17)

First, we note that due to (G2)′ it holds

η2Θ̃2
δ ≥ c1

1(
1 + |∇uδ − vδ|

)ν |η∇2uδ|2

(6.15)

≥ c1
1(

1 + |∇uδ|+ ‖vδ‖L∞(B2R(x0))

)ν |η∇2uδ|2

≥ cη2|∇ϕ̃δ|2.

(6.18)

Hence, by (6.17) and our choice of η we have∫
BR(x0)

|∇ϕ̃δ|2 dx ≤ c
(
|T ′1|+ |T ′2|+ |T ′3|+ |T ′4|

)
.

To the Integral T ′1, we �rst apply the Cauchy-Schwarz inequality to the bilinear
form D2Gδ(∇uδ − vδ)(·, ·), followed by Young's inequality to obtain

|T ′1| ≤ ε
∫
Ω

η2Θ̃2
δ dx+ c(ε)

∫
Ω

D2Gδ(∇u− vδ)(∇ηDiuδ,∇ηDiuδ) dx,
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where ε > 0 is arbitrarily small. The �rst summand can be absorbed in the
left-hand side of (6.17). For the second term, consider the set

Σ :=
{
x ∈ B2R(x0) : |∇uδ(x)| ≤ ‖vδ‖L∞(B2R(x0)) + 1

}
.

We observe that∫
Ω

D2G(∇uδ − vδ)(∇ηDiuδ,∇ηDiuδ) dx

≤
∫
Σ

|D2G(∇uδ − vδ)||∇η|2|∇uδ|2 dx

+

∫
B2R(x0)−Σ

D2G(∇uδ − vδ)(∇ηDiuδ,∇ηDiuδ) dx

(G2)′& (6.15)

≤ c

 1

R2
+

1

R2

∫
B2R(x0)−Σ

1

1 + |∇uδ − vδ|
|∇uδ|2 dx


≤ c

 1

R2
+

1

R2

∫
B2R(x0)−Σ

1

1 + |∇uδ| − ‖vδ‖L∞(B2R(x0))
|∇uδ|2 dx

 ≤ c(R).

Together with Lemma 5.2.1 b), this implies the boundedness of |T ′1|. To the
quantity T ′2 we apply the Cauchy-Schwarz inequality and then Young's inequal-
ity with the following result:

|T ′2| ≤ ε
∫
Ω

η2Θ̃2
δ dx+ c(ε)

∫
Ω

D2G(∇uδ − vδ)(ηDivδ, ηDivδ) dx.

Again, we absorb the �rst term in the left-hand side of (6.17) and the second
term is bounded by (6.14). Combining the arguments for T ′1 and T ′2, we can
estimate T ′3 by

|T ′3| ≤
c

R2

and (6.17) consequently reads as∫
Ω

η2Θ̃2
δ dx ≤ c

(
1 +

1

R2

)
+ |T ′4|. (6.19)

It remains to give a bound on |T ′4|. An integration by parts yields (here we need
the assumption D = ∅!)

T ′4 = −
∫
Ω

η2|∇uδ|2 dx−
∫
Ω

fDi(η
2Di∇uδ) dx.
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The Dirichlet integral can be moved to the left-hand side of (6.19), so that∫
Ω

η2Θ̃2
δ dx+

∫
Ω

η2|∇uδ|2 dx ≤ c(R) +

∫
Ω

|f ||Di(η
2Di∇uδ)|dx. (6.20)

Note that by our assumptions we have f ∈ L∞(Ω) and thus (6.20) together with
Lemma 5.2.2 implies∫

Ω

η2Θ̃2
δ dx+

∫
Ω

η2|∇uδ|2 dx ≤ c(R) + c

∫
Ω

η2|∇2uδ|dx.

The non-constant term on the right-hand side can now be estimated just like
the corresponding term T3 in (6.9), which yields∫

Ω

η2|∇2uδ| dx ≤ cε
∫
Ω

η2Θ̃2
δ dx+ ε−1

∫
Ω

η2
(
1 + |∇uδ − vδ|

)ν
dx.

For ε small enough, the �rst term can be absorbed in the left-hand side of (6.20)
and to the second term we apply Young's inequality once again (making use of
ν < 2 and (6.15)), which results in∫

Ω

η2
(
1 + |∇uδ − vδ|

)ν
dx ≤ ε

∫
Ω

η2|∇u|2 dx+ c(R).

The Dirichlet integral on the right-hand side can be absorbed in the left-hand
side of (6.20) if we choose ε small enough. Then claim (6.4) now follows from
(6.19) and (6.18). Via Sobolev's embedding Theorem, (6.4) yields

∇uδ ∈ Lploc(Ω) for any p ∈ [1,∞) and uniform with respect to δ, (6.21)

which allows us to infer u ∈W 1,1(Ω) and u ∈W 1,p
loc (Ω) as for vδ. From (6.21) it

even follows

uδ ∈ L∞loc(Ω) uniformly with respect to δ. (6.22)

Let us now brie�y comment on part b) of Theorem 6.1.1. If D 6= ∅, we cannot
readily perform an integration by parts to estimate the crucial quantity

T ′4 :=

∫
Ω−D

(uδ − f)Di(η
2Diuδ) dx.

However, switching to an error term of linear growth, T ′4 turns into

T ′′4 :=

∫
Ω−D

|uδ − f |√
1 + |uδ − f |2

sgn(uδ − f)Di(η
2Diuδ) dx,

so that

|T ′′4 | ≤
∫

Ω−D

|Di(η
2Diuδ)|dx ≤ c(R) + c

∫
Ω

η2|∇2uδ|dx,

and we can employ the same arguments that have been used for the term T3 to
infer u ∈W 1,1(Ω) even for D 6= ∅.
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6.2 Partial C1,α-regularity

In this �nal section we want to prove that the Sobolev solution (u, v), whose
existence was established in the preceding section under the assumption that the
densities F and G are µ-elliptic, is actually a pair of locally Hölder continuous
functions if we additionally assume that F is rotationally invariant. This means
that, in addition to the ful�llment of (F1), (F2)' and (F3), we require F to be
of the particular form

F (p) = g
(
|p|2
)

(F4)

with a convex, increasing function g : [0,∞)→ [0,∞), which is at least of class
C2. We restrict ourselves to the case of pure denoising (D = ∅) (see Remark
6.2.1). Then we can show:

Theorem 6.2.1

Together with our general assumptions regarding Ω and f , assume D = ∅ and let
F satisfy (F1), (F2)', (F3), (F4), and let G satisfy (G1), (G2)' and (G3) with
parameter µ and ν satisfying (6.1). Let (u, v) be the W 1,1(Ω) ×W 1,1(Ω,R2)-
minimizer of problem (P) from Theorem 6.1.1. Then there is an open set Ω0 ⊂ Ω
of full measure, i.e.

L2(Ω− Ω0) = 0, (6.23)

such that ∇v and ∇u satisfy a local Hölder-condition on Ω0. Precisely:

(u, v) ∈ C1,α1(Ω)× C1,α2(Ω,R2) for all pairs (α1, α2) ∈ (0, 1)× (0, 1).

Moreover,

(u, v) ∈W 2,2
loc (Ω)×W 2,2

loc (Ω,R2).

For the set Ω− Ω0 of possible singularities it further holds

H-dim(Ω− Ω0) = 0, (6.24)

which means that the ε-dimensional Hausdor� measure Hε(Ω0) is zero for every
ε > 0.

Remark 6.2.1

For D 6= ∅ the statement of Theorem 6.2.1 still holds if the modi�ed problem
(P̂) is considered, where (6.1) is replaced with (6.2) and F satis�es the structure
condition (F4).

Remark 6.2.2

Let us mention once more that, in contrast to Theorems 5.1.1 and 5.2.1, the
statements of Theorems 1.2.1 and 6.2.1 crucially depend on the planarity as-
sumption Ω ⊂ R2.
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Proof of Theorem 6.2.1. Throughout the following, we use summation conven-
tion with respect to the index i ∈ {1, 2} and denote by c a generic positive
constant. We follow the ideas in [36], where, based on results by Frehse and
Seregin (see [48] and [49]), partial C1,α-regularity of the minimizer of uncoupled
�rst-order problems was established. The proof is split into two parts, where
we discuss the regularity of v and u separately.

Part 1. We begin with the following observation concerning the sequence (uδ, vδ)
as introduced in Lemma 5.2.1:

Lemma 6.2.1

Under the assumptions of Lemma 6.1.1 it holds for any s ∈ [1, 2):

(uδ, vδ) is uniformly bounded in W 2,s
loc (Ω)×W 2,s

loc (Ω,R2). (6.25)

Moreover,

ωδ :=
(
1 + |∇vδ|

)µ
2 is uniformly bounded in W 1,2

loc (Ω). (6.26)

Proof of the lemma. Ad (6.25). Recalling the de�nition of ϕδ from Lemma
6.1.1 as well as inequality (F2)′, we see that the uniform boundedness of ∇ϕδ in
L2

loc(Ω,R2), which is obtained from (6.14), implies that for any compact subset
Ω∗ b Ω, there is a constant c(Ω∗) > 0 (independent of δ!) such that∫

Ω∗

|∇2vδ|2(
1 + |∇vδ|

)µ dx ≤ c(Ω∗).

Let now s ∈ (1, 2) be arbitrary. We may write

∫
Ω∗

|∇2vδ|s dx =

∫
Ω∗

(
|∇2vδ|2(

1 + |∇vδ|
)µ
) s

2 (
1 + |∇vδ|

)µ s
2 dx

and an application of Hölder's inequality yields

∫
Ω∗

|∇2vδ|s dx ≤

∫
Ω∗

|∇2vδ|2(
1 + |∇vδ|

)µ dx

 s
2
∫

Ω∗

(
1 + |∇vδ|

) 2−s
2 dx

 2
2−s

,

so that vδ ∈ W 2,s
loc (Ω,R2) follows from (6.3) and (6.14). The same argument

works for uδ if we replace ϕδ with ϕ̃δ above and use (6.21) instead of (6.14)
(when µ is replaced with ν, of course).

We continue with (6.26). Let B2R(x0) ⊂ Ω and η be as in (4.3). Setting

Γδ := 1 + |∇vδ|2,
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we observe∫
BR(x0)

|∇ωδ|2 dx ≤ c
∫

BR(x0)

(
1 + |∇vδ|

)µ−2|∇2vδ|2 dx

= c

∫
BR(x0)

(
1 + |∇vδ|

)−µ|∇2vδ|2
(
1 + |∇vδ|

)2µ−2
dx

(F2)′

≤ c

∫
B2R(x0)

η2D2Fδ(∇vδ)
(
Di∇vδ, Di∇vδ

)
Γµ−1
δ dx.

(6.27)

Choosing ψ = Di(η
2DivδΓ

µ−1
δ ) in (EL1) yields∫

B2R(x0)

η2D2Fδ(∇vδ)
(
Di∇vδ, Di∇vδ

)
Γµ−1
δ dx

=− β
∫

B2R(x0)

DG(∇uδ − vδ) ·Di(η
2DivδΓ

µ−1
δ ) dx

− 2η

∫
B2R(x0)

D2Fδ(∇vδ)
(
Di∇vδ, Divδ ⊗∇η

)
Γµ−1
δ dx

−
∫

B2R(x0)

D2Fδ(∇vδ)
(
Di∇vδ, Divδ ⊗∇Γµ−1

δ

)
η2 dx

=:− I1 − I2 − I3.

We start with the term I2. Applying the Cauchy-Schwarz inequality to the
bilinear form D2Fδ(·, ·) followed by Young's inequality yields

|I2| ≤c

[ ∫
B2R(x0)

D2Fδ(∇vδ)(Di∇vδ, Di∇vδ)η2 dx

+

∫
B2R(x0)

D2Fδ(∇vδ)(Divδ ⊗∇η,Divδ ⊗∇η)Γ2µ−2
δ dx

]

≤ c

R2

 ∫
B2R(x0)

Θ2
δη

2 dx+

∫
B2R(x0)

δ|∇vδ|2Γ2µ−2
δ +

1

1 + |∇vδ|
|∇vδ|2Γ2µ−2

δ dx

 ,
which is bounded due to (6.13) and (6.14). Let us continue with I3. At this
point, we make use of the structure condition (F4) which enables us to write
(cf. the calculation on the bottom of page 62 in [67]):

D2Fδ(∇vδ)
(
Di∇vδ, Divδ ⊗∇Γµ−1

δ

)
η2

= (µ− 1)
1

2
D2Fδ(∇vδ)

(
ei ⊗∇|∇vδ|2, ei ⊗∇|∇vδ|2

)
Γµ−2
δ > 0,
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where ei denotes the canonical basis of R2. Therefore, we may just neglect the
term I3 and it remains to give a bound on the quantity I1. We note that due
to the boundedness of DG(∇uδ − vδ) it holds

|I1| ≤ c
∫

B2R(x0)

∣∣Di(η
2DivδΓ

µ−1
δ )

∣∣ dx
≤ c

R

 ∫
B2R(x0)

|∇vδ|Γµ−1
δ dx+

∫
B2R(x0)

η2|∇2vδ|Γµ−1
δ dx

 .
(6.28)

The �rst term in the bracket is bounded by (6.14). For the second one, we note
that an application of Young's inequality yields

∫
B2R(x0)

η2|∇2vδ|Γµ−1
δ dx ≤ c

 ∫
B2R(x0)

η2 |∇2vδ|2(
1 + |∇vδ|

)µ dx+

∫
B2R(x0)

η2Γ
5
2
µ−2

δ dx


(F2)′

≤ c

∫
Ω

Θ2
δη

2 dx+

∫
B2R(x0)

Γ
5
2
µ−2

δ dx

 ,
which is bounded by (6.13) and (6.14). Consequently, (6.27) implies (6.26) of
Lemma 6.2.1.

We continue with the proof of Theorem 6.2.1. In the di�erentiated Euler-
Lagrange equation (EL1)' (see p. 110), we now choose ψ = η2

(
Divδ − Divδ

)
,

where we set

Divδ := −
∫

Ω
Divδ dx

and η ∈ C∞0 (Ω) satis�es the set of conditions from (4.3). Denoting by T the
annulus B2R(x0)−BR(x0), (EL1)' reads as (remember η ≡ const. outside T )

0 =

∫
Ω

Θ2
δη

2 dx+ 2

∫
T

D2Fδ(∇vδ)
(
Di∇vδ, (Divδ −Divδ)⊗∇η

)
η dx

+ β

∫
Ω

DG(∇uδ − vδ)︸ ︷︷ ︸
∈ L∞(Ω,R2)

·Di

(
η2(Divδ −Divδ)

)
dx

and we infer that for some constant c > 0, independent of η, it holds

∫
Ω

Θ2
δη

2 dx ≤ c

∫
T

∣∣D2Fδ(∇vδ)
(
Di∇vδ, (Divδ −Divδ)⊗∇η

)
η
∣∣ dx

+β

∫
Ω

∣∣∣Di

(
η2(Divδ −Divδ)

)∣∣∣ dx
 =: c

[
S1 + S2

]
.

(6.29)
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In S1, an application the Cauchy-Schwarz inequality to the bilinear formD2Fδ(·, ·)
yields

S1 ≤
∫
T

= Θδ︷ ︸︸ ︷
D2Fδ(vδ)

(
Di∇vδ, Di∇vδ

) 1
2

·D2Fδ(∇vδ)
(
(Divδ −Divδ)⊗∇η, (Divδ −Divδ)∇η

) 1
2 dx.

Now, by Hölder's inequality, we infer

S1 ≤

∫
T

Θ2
δ dx

 1
2

·

∫
T

D2Fδ(∇vδ)
(
∇η ⊗ (Divδ −Divδ),∇η ⊗ (Divδ −Divδ)

)
dx

 1
2

≤c

∫
T

Θ2
δ dx

 1
2
∫
T

|∇η|2|Divδ −Divδ|2 dx

 1
2

and hence

S1 ≤
c

R

∫
T

Θ2
δ dx

 1
2
∫
T

|Divδ −Divδ|2 dx

 1
2

≤ c

R

∫
T

Θ2
δ dx

 1
2 ∫
T

|∇2vδ|dx,

(6.30)

where the Sobolev-Poincaré inequality has been applied in the last step. Next,
we note that by (F2)′ we have(

1 + |∇vδ|
)−µ

2 |∇2vδ| ≤ cΘδ

and therefore

|∇2vδ| ≤ cΘδ

(
1 + |∇vδ|

)µ
2 = cΘδωδ, (6.31)

with ωδ as in Lemma 6.2.1. Consequently, (6.30) reads as

S1 ≤
c

R

∫
T

Θ2
δ dx

1/2 ∫
T

|∇2vδ| dx
(6.31)

≤ c

R

∫
T

Θ2
δ dx

1/2 ∫
T

Θδωδ dx. (6.32)

The term S2 can be treated as follows:

S2 ≤ c

 1

R

∫
T

|Divδ −Divδ| dx+

∫
Ω

η2|∇2vδ|dx


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which, after an application of Poincaré's inequality and using (6.31), becomes

S2 ≤ c

∫
T

Θδωδ dx+

∫
Ω

η2Θδωδ dx

 .
The estimates of S1 and S2 together with (6.29) now establish the crucial in-
equality

∫
B2R(x0)

η2Θ2
δ dx ≤ c

R

∫
T

Θ2
δ dx+R2

 1
2 ∫
T

Θδωδ dx+ c

∫
B2R(x0)

η2Θδωδ dx,

(6.33)

which holds for all radii 0 < R < R0 and all points x0 ∈ Ω for which B2R0(x0) b
Ω, with a constant c only depending on R0. To the last term, we apply Young's
and Hölder's inequality to get∫

B2R(x0)

η2Θδωδ dx ≤ c
∫

B2R(x0)

Θ2
δη

2 dx+ cR
2
q , (6.34)

where, due to (6.14), the exponent q can be chosen arbitrarily in (1,∞). We
�x exponents γ < γ̃ < 2 and observe that from (6.34) and (6.33) (note that we
may assume R < 1) we obtain the estimate:

∫
BR(x0)

Θ2
δ dx ≤ c

R

∫
T

Θ2
δ dx+Rγ

 1
2 ∫
T

Θδωδ dx+ cRγ̃ . (6.35)

According to [83], p. 295, this inequality together with Θδ ∈ L2
loc(Ω) and

ωδ ∈ W 1,2
loc (Ω) (cf. (6.26)) su�ces to deduce the following growth estimate for

the quantity Θδ: ∫
BR(x0)

Θ2
δ dx ≤ c 1

ln
(

1
R

)t for all t ≥ 1, (6.36)

which is valid on all balls BR(x0) such that B2R(x0) b Ω with radius 0 < R <
R0, and with a constant c that only depends on the choice of R0. Observing
that for σδ = DFδ(∇vδ) (cf. (5.20)) it holds

|∇σδ|2 = Diσδ : Diσδ = D2Fδ(∇vδ)(Di∇vδ, Diσδ)

≤
(
D2Fδ(∇vδ)(Di∇vδ, Di∇vδ)

)1/2(
D2Fδ(∇vδ)(Diσδ, Diσδ)

)1/2

≤ cΘδ|∇σδ|,

(6.37)

and thereby

|∇σδ| ≤ cΘδ, (6.38)
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the estimate (6.36) implies∫
BR(x0)

|∇σδ|2 dx ≤ c 1

ln
(

1
R

)t for all t ≥ 1.

According to [49] (see (31) on p. 287), this estimate implies the continuity of
each component (σδ)ij (i, j ∈ {1, 2}) of the tensor σδ on every ball BR(x0) with
R < R0 (cf. also Lemma 6 and 7 in [86]), with modulus of continuity given by

oscBR(x0)(σδ)ij := sup
x∈BR(x0)

(σδ)ij(x)− inf
y∈BR(x0)

(σδ)ij(y) ≤ K| lnR|1−
t
2 , (6.39)

and where the constant K does not depend on δ. The uniform boundedness of
σδ in L

2(Ω,R2×2) (cf. (5.25)) along with (6.39) now implies

sup
δ∈(0,1)

‖σδ‖L∞(BR(x0)) <∞. (6.40)

Furthermore, (6.39) yields the equicontinuity of the σδ on any compact subset
Ω∗ b Ω. The Arzelà-Ascoli compactness-theorem therefore implies the existence
of a continuous function σ such that

σδ ⇒ σ locally,

at least for a suitable subsequence δ ↓ 0.

We next observe that, due to (6.25) and the Rellich-Kondrachov embedding
theorem, we may (after possibly passing to another subsequence) assume that

∇vδ → ∇v in L1
loc(Ω,R2×2) and a.e.,

where (u, v) ∈W 1,1(Ω)×W 1,1(Ω,R2) is the unique E-minimizer from Theorem
6.1.1. For almost all x ∈ Ω, we therefore have the equation (note that due to
δ∇vδ → 0 in L2(Ω,R2×2) it holds δ∇vδ → 0 a.e.)

DF (∇v(x)) = lim
δ↓0

DFδ(∇vδ(x)) = lim
δ↓0

σδ(x) = σ(x). (6.41)

By the strict convexity of F , for all p 6= q ∈ R2×2 it holds that[
DF (p)−DF (q)

]
: (p− q) > 0,

so that the mapping DF : R2×2 → Im(DF ) is one-to-one and the inverse
function theorem (recall that D2F (p) is positive de�nite for all p ∈ R2×2 by
(F2)′) it therefore follows that DF is a C1-di�eomorphism between R2×2 and
the open set Im(DF ). The equation (6.41) thus gives

∇v(x) = DF−1(σ(x)) for almost all x ∈ Ω, (6.42)
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i.e. ∇v has a continuous representative on Ω. We now want to estimate the size
of the singular set. In the following calculations, we identify ∇v with its precise
representative (cf. [75], De�nition on p. 46), i.e. for all x ∈ Ω we set

∇v(x) =


lim
r↓0
−
∫
Br(x0)

∇v dx if this limit exists and is �nite,

0 otherwise.

Let

Ω0 :=

{
x ∈ Ω : lim

r↓0
−
∫
Br(x0)

∇v dx exists in R2×2

}
.

We claim that Ω0 coincides with the set of all points x ∈ Ω, for which the
equality (6.41) holds. Let therefore x0 be some point in Ω0. Since (6.42) holds
a.e. on Ω, it follows that

∇v(x0) = lim
ρ↓0
−
∫
Bρ(x0)

∇v(x) dx = lim
ρ↓0
−
∫
Bρ(x0)

DF−1(σ(x)) dx = DF−1(σ(x0)),

since DF−1(σ) is continuous. If conversely x0 is a point for which the equation
(6.41) holds, then it is clear that x0 ∈ Ω0. Thus we have

∇v(x) = DF−1(σ(x)) for all x ∈ Ω0.

That Ω− Ω0 does indeed have Hausdor�-dimension 0 is now a immediate con-
sequence of Theorem 2.1 on p. 100 of [46] and v ∈ W 2,s

loc (Ω,R2), s ∈ [1, 2).
Moreover, the set Ω0 is an open subset of Ω: let x0 ∈ Ω0 be some point. Our
preceding considerations show that

x0 ∈ σ−1(Im(DF )).

Since σ is continuous and Im(DF ) is an open set, we �nd a small radius ε >
0 such that Bε(x0) ⊂ σ−1(Im(DF )). But then on Bε(x0), DF−1(σ(x)) is a
continuous representative of ∇v, hence Bε(x0) ⊂ Ω0.

Now that ∇v is proved to be locally bounded on the set Ω0, the deduction of
the Hölder continuity of ∇v follows from standard results: we �rst observe that
|∇v| ∈ L∞loc(Ω0) implies that for any compact subset Ω′ b Ω0 we have

1(
1 + ‖∇v‖L∞(Ω′)

)µ ∫
Ω′

|∇2v|2 dx ≤
∫
Ω′

|∇2v|2(
1 + |∇v|

)µ dx ≤ c
∫
Ω′

Θ2
δ dx <∞,

hence
v ∈W 2,2

loc (Ω0).

Going back to inequality (6.33), �x B2R(x0) ⊂ Ω0. Since |∇v| ∈ L∞loc(Ω0) and
thereby |ωδ| ∈ L∞loc(Ω0), we obtain from Hölder' inequality

∫
B2R(x0)

η2Θ2
δ dx ≤ c

∫
T

Θ2
δ dx+R2

 1
2
∫
T

Θ2
δ dx

 1
2

+ cR

 ∫
B2R(x0)

η2Θ2
δ dx


1
2

124



and an application of Young's inequality to the products on the right-hand side
then yields (after absorbing terms on the left-hand side)

∫
BR(x0)

Θ2
δ dx ≤

∫
B2R(x0)

η2Θ2
δ dx ≤ c

∫
T

Θ2
δ dx+R2

 .
�Filling the hole� on the right-hand side then leads to the estimate∫

BR(x0)

Θ2
δ dx ≤ c

c+ 1

∫
B2R(x0)

Θ2
δ dx+ cR2, (6.43)

which, according to [46], p. 164, su�ces to deduce the following Morrey-type
inequality for the quantity Θ2

δ

∫
BR(x0)

Θ2
δ dx ≤ c

(
R

R0

)λ  ∫
B2R(x0)

Θ2
δ dx+ 2(R0)λ

 , (6.44)

valid for all R ≤ R0 and with exponent λ = log2

(
c+1
c

)
∈ (0, 1). Along with

Θδ ∈ L2
loc(Ω) uniformly (by (6.13)), the inequalities (6.44) and (6.38) imply∫

BR(x0)

|∇σδ|2 dx ≤ cRλ.

Passing to the limit δ ↓ 0 in the above inequality yields∫
BR(x0)

|∇σ|2 dx ≤ lim inf
δ↓0

∫
BR(x0)

|∇σδ|2 dx ≤ cRλ,

which, by Theorem 1.1 on p.64 of [46] implies σ ∈ C0,λ
2 (BR(x0),R2×2). Since

for all x ∈ Ω0 it holds
∇v(x) = DF−1(σ(x))

and DF−1 is locally of class C0,1, we thus infer that

∇v ∈ C0,λ
2 (Ω0,R2×2). (6.45)

Let now γ ∈ {1, 2} be �xed and set w := Dγv. Since (u, v) minimizes E, we
have that, for any ϕ ∈ C∞0 (Ω0,R2), w solves the Euler equation∫

Ω0

αD2F (∇v)
(
∇w,∇ϕ

)
dx+ β

∫
Ω0

DG(∇u− v) · ϕdx = 0. (6.46)

Setting

Aijkl(x) :=
∂2F

∂pik∂p
k
l

(∇v(x)) as well as f ik(x) = δγk
∂G

∂xi
(∇u(x)− v(x))
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(δγk being the Kronecker symbol), we therefore �nd that w is a weak solution
of the system

Dk

(
Aijkl(x)Djw

l
)

+Dkf
i
k = 0, i ∈ {1, 2}, (6.47)

where the sum is taken with respect to the indices j, k, l ∈ {1, 2}. Let now
Ω∗ b Ω0 be a compact subset of Ω0. By (6.46), we have that the coe�cients
Aijkl(x) are uniformly elliptic and continuous on Ω∗. Moreover, the boundedness
of DG implies f ik ∈ L∞(Ω∗). We may therefore quote Theorem 3.1 from p. 87
in [46] (see also Footnote 11 on p. 88) to infer that

w = Dγv ∈ C0,1− 2
p (Ω∗) for any p > n,

hence
v ∈ C1,α1(Ω0) for any α1 ∈ (0, 1).

Part 2. Now we discuss the regularity of the function u. In the following
calculations, we restrict ourselves to the open subset Ω0 ⊂ Ω on which we have
already established local Hölder-continuity of v. We introduce a (formally) new
sequence (ũδ) of δ-regularizers which solve

β

∫
Ω0

G(∇w − v) dx+

∫
Ω0

(w − f)2 dx+
δ

2

∫
Ω0

|∇w|2 dx→ min in W 1,2(Ω0),

where v is �xed as the Hölder continuous minimizer from above. We claim that
the sequence (ũδ, v) is E-minimizing. Indeed, for all w ∈W 1,2(Ω0) it holds

lim inf
δ↓0

E(ũδ, v) = lim inf
δ↓0

α

∫
Ω0

F (∇v) dx+ β

∫
Ω0

G(∇ũδ − v) dx+

∫
Ω0

(ũδ − f)2 dx

≤ lim inf
δ↓0

α

∫
Ω0

F (∇v) dx+ β

∫
Ω0

G(∇ũδ − v) dx+

∫
Ω0

(ũδ − f)2 dx+
δ

2

∫
Ω0

|∇ũδ|2 dx

≤ lim inf
δ↓0

α

∫
Ω0

F (∇v) dx+ β

∫
Ω0

G(∇w − v) dx+

∫
Ω0

(w − f)2 dx+
δ

2

∫
Ω0

|∇w|2 dx

= E(w, v).

If now ϕk denotes a sequence of W 1,2(Ω0)-functions which converges to u in
W 1,1(Ω0), it follows

lim inf
δ↓0

E(ũδ, v) ≤ E(ϕk, v)
k→∞−−−→ E(u, v) = inf

V
E,

which proves that (a subsequence of) (ũδ, v) in fact minimizes the functional E.
Therefore, the uniqueness statement from Theorem 2.1.1 c) implies

ũδ → u in L1(Ω0) and a.e.,

at least for another subsequence δ ↓ 0.
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Repeating the arguments from the proofs of Lemma 6.1.1 and Lemma 6.2.1 with
uδ replaced by ũδ (and vδ by v) we can show

Θ̂δ := D2Gδ(∇ũδ − v)
(
Di∇ũδ, Di∇ũδ

) 1
2 ∈W 1,2

loc (Ω0), (6.48)

ϕ̂δ :=
(
1 + |∇ũδ|

)1− ν
2 ∈W 1,2

loc (Ω0), (6.49)

ũδ ∈W 2,s
loc (Ω0) for all s ∈ (1, 2), (6.50)

where we set Gδ(x) = |x|2 + βG(x) for x ∈ R2. Furthermore, we claim:

Lemma 6.2.2

It holds

ω̂δ :=
(
1 + |∇ũδ|

) ν
2 ∈W 1,2

loc (Ω0).

uniformly with respect to the parameter δ

Proof of the lemma. By their minimality, for any ϕ ∈ C∞0 (Ω0), ũδ satis�es the
Euler equation

δ

∫
Ω0

Di∇ũδ · ∇ϕdx+β

∫
Ω0

D2G(∇ũδ − v)
(
Di∇ũδ −Div,∇ϕ

)
dx

= 2

∫
Ω0

(ũδ − f)Diϕdx,

(6.51)

which, by an approximation argument, holds even for all ϕ ∈ W 1,2(Ω) with
compact support. Setting

Γ̃δ := 1 + |∇ũδ|2,

we may therefore choose ϕ = η2DiũδΓ̃
ν−1
δ in (6.51), where η ∈ C∞0 (Ω0) satis�es

(4.3) (now with x0 ∈ Ω0 and B2R(x0) b Ω0). We obtain:

∫
Ω0

D2Gδ(∇ũδ − v)
(
Di∇ũδ,∇(η2DiũδΓ̃

ν−1
δ )

)
dx

− β
∫
Ω0

D2G
(
Div,∇(η2DiũδΓ̃

ν−1
δ )

)
=2

∫
Ω0

(ũδ − f)Di(η
2DiũδΓ̃

ν−1
δ ) dx,
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which can be expanded to∫
Ω0

D2Gδ(∇ũδ − v)
(
Di∇ũδ, Di∇ũδ

)
η2Γ̃ν−1

δ dx

=− 2

∫
Ω0

D2Gδ(∇ũδ − v)
(
Di∇ũδ, η∇η

)
DiũδΓ̃

ν−1
δ dx

−
∫
Ω0

D2Gδ(∇ũδ − v)
(
Di∇ũδ, Diũδ∇(Γ̃ν−1

δ )
)
η2 dx

+

∫
Ω0

D2G(∇ũδ − v)
(
Div,∇(η2DiũδΓ̃

ν−1
δ )

)
dx

+ 2

∫
Ω0

(ũδ − f)Di(η
2DiũδΓ̃

ν−1
δ ) dx.

=: −J1 − J2 + J3 + J4.

(6.52)

The quantity J1 can be estimated just like the corresponding integral I2 from
the proof of Lemma 6.2.1. For J2, we note that

D2Gδ(∇ũδ − v)
(
Di∇ũδDiũδ,∇(Γ̃ν−1

δ )
)

= (ν − 1)
1

2
D2Gδ(∇ũδ − v)

(
∇|∇ũδ|2,∇|∇ũδ|2

)
Γ̃ν−2
δ > 0,

so that we may neglect this term. Since |D2G(x)| is bounded and |∇v| ∈
L∞loc(Ω0), we further have

|J3| ≤
∫
Ω0

|D2G(∇ũδ − v)||∇v||∇(η2DiũδΓ̃
ν−1
δ )| dx

≤ c
∫
Ω0

|∇(η2DiũδΓ̃
ν−1
δ )|dx ≤ c

R

∫
Ω0

η|∇ũδ|Γ̃ν−1
δ dx+

∫
Ω0

η2|∇2ũδ|Γ̃ν−1
δ dx

 .
The �rst summand is clearly bounded since |∇ũδ| ∈ Lploc(Ω0) uniformly for all
p ∈ [1,∞) due to (6.49). For the second one, we note∫

Ω0

η2|∇2ũδ|Γ̃ν−1
δ dx =

∫
Ω0

η2 |∇2ũδ|(
1 + |∇ũδ − v|

) ν
2

(
1 + |∇ũδ − v|

) ν
2 Γ̃ν−1

δ dx

(G2)′

≤
∫
Ω0

η2Θ̂2
δ dx+

∫
Ω0

η2
(
1 + |∇ũδ − v|

)ν
Γ̃2ν−2
δ dx

≤
∫
Ω0

η2Θ̂2
δ dx+

∫
Ω0

η2Γ̃
5
2
ν−2

δ dx <∞,
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where we have used |∇v| ∈ L∞loc(Ω0), again. Now to J4: an integration by parts
yields

J4 =

∫
Ω0

ũδDi(η
2DiũδΓ̃

ν−1
δ ) dx−

∫
Ω0

fDi(η
2DiũδΓ̃

ν−1
δ ) dx

= −
∫
Ω0

|Diũδ|2η2Γ̃ν−1
δ dx−

∫
Ω0

fDi(η
2DiũδΓ̃

ν−1
δ ) dx.

The �rst term on the right-hand side, being strictly negative, is clearly negligible
for the further calculations. For the second term, we note that due to our
assumption f ∈ L∞(Ω) it follows

∣∣∣∣∣∣
∫
Ω0

fDi(ηDiũδΓ̃
ν−1
δ ) dx

∣∣∣∣∣∣ ≤ ‖f‖∞
∫
Ω0

∣∣Di(ηDiũδΓ̃
ν−1
δ )

∣∣ dx

which can be treated like J3 above. We thus infer that the left-hand side of
(6.52) is bounded uniformly in δ, so that the statement of Lemma 6.2.2 follows
from

∫
BR(x0)

|∇ω̂δ|2 dx ≤ c
∫

BR(x0)

(
1 + |∇ũδ|

)ν−2|∇2ũδ|2 dx

= c

∫
BR(x0)

(
1 + |∇ũδ|

)−ν |∇2ũδ|2
(
1 + |∇ũδ|

)2ν−2
dx

≤ c
∫

BR(x0)

(
1 + |∇ũδ − v|

)−ν |∇2ũδ|2
(
1 + |∇ũδ|

)2ν−2
dx

≤ c
∫

B2R(x0)

η2D2Gδ(∇ũδ − v)
(
Di∇ũδ, Di∇ũδ

)
Γ̃ν−1
δ dx.

Remark 6.2.3

Again we see that if D 6= ∅, the integration by parts in the estimate of the
quantity J4 above does not work. We therefore have to switch to a �delity term
of linear growth, which eliminates this problem.

Continuing with the proof of Theorem 6.2.1, we choose ϕ = η2(Diũδ −Diũδ) in
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(6.51), which gives∫
Ω0

Θ̂2
δη

2 dx =− 2β

∫
Ω0

D2Gδ(∇ũδ − v)
(
Di∇ũδ, η(Diũδ −Diũδ)⊗∇η

)
dx

+

∫
Ω0

(ũδ − f)Di

(
η2(Diũδ −Diũδ)

)
dx

+ β

∫
Ω0

D2G(∇ũδ − v)(Div,Di∇ũδ)η2 dx

+ 2β

∫
Ω0

D2G(∇ũδ − v)
(
Div, η(Diũδ −Diũδ)⊗∇η

)
dx

=: S̃1 + S̃2 + S̃3 + S̃4.

We see that the terms S̃1 and S̃2 can be treated like the corresponding quantities
S1 and S2 from the �rst part of the proof, with the result

|S1| ≤
c

R

∫
Ω0

η2Θ̂2
δ dx

 1
2 ∫
T

Θ̂δω̂δ dx,

|S2| ≤ c
∫
Ω0

∣∣∇(η2(Diũδ −Diũδ)
)∣∣ dx ≤ c

∫
T

Θ̂δω̂δ dx+

∫
Ω0

η2Θ̂δω̂δ dx

 .
Here we have used that, due to (6.49) and Sobolev's embedding theorem, ũδ ∈
L∞loc(Ω0) uniformly. To S̃3 we apply the Cauchy-Schwarz and Young's inequality:

|S̃3| ≤ cε
∫
Ω0

Θ̃2
δη

2 dx+ cε−1

∫
Ω0

|∇v|2η2 dx

≤ ε
∫
Ω0

Θ̃2
δη

2 dx+ cR2.

For S̃4, using the Sobolev-Poincaré inequality, we �nally obtain

|S̃4| ≤
c

R

∫
T

|∇v||∇ũδ −∇ũδ|dx

≤ c

R

∫
T

|∇v|2 dx

 1
2
∫
T

∣∣∇ũδ −∇ũδ∣∣2 dx

 1
2

≤ c
∫
T

|∇2ũδ| dx ≤ c
∫
T

Θ̂δω̂δ dx.

Altogether, this gives the estimate∫
BR(x0)

Θ̂2
δ dx ≤ c

R

∫
T

Θ2
δ dx+R2

 1
2 ∫
T

Θ̂δωδ dx+ cRγ ,
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(γ ∈ (0, 2)) which, as for Θδ from the �rst part of the proof, implies∫
BR(x0)

Θ̂2
δ dx ≤ c 1

ln
(

1
R

)t for any t ≥ 1.

From this point on, we can just repeat the arguments from the �rst part to
deduce the Hölder continuity of u. However, one should note that we have to
replace σδ with the quantity ρδ := DGδ(∇ũδ − v) (cf. (5.20)). Then, as in
(6.37), we have ∫

BR(x0)

|∇ρδ|2 dx =

∫
BR(x0)

Diρδ ·Diρδ dx

=

∫
BR(x0)

D2Gδ(∇ũδ − v)
(
Di∇ũδ −Div,Diρδ

)
dx

≤ c


 ∫
BR(x0)

Θ̂2
δ dx


1
2

+

 ∫
BR(x0)

|∇v|2 dx


1
2


 ∫
BR(x0)

|∇ρδ|2 dx


1
2

and therefore ∫
BR(x0)

|∇ρδ|2 dx ≤ c
∫

BR(x0)

Θ̂2
δ dx+ cR2.

Since
1

ln
(

1
R

)t +R2 ≤ c 1

ln
(

1
R

)t for R ↓ 0,

we arrive at  ∫
BR(x0)

|∇ρδ|2 dx


1
2

≤ c 1

ln
(

1
R

) t
2

for any t ≥ 1.

Arguing as in the �rst part, we thus infer that there exists a continuous function
ρ ∈ C0(Ω0,R2) such that ρδ ⇒ ρ and

∇u = DG−1(ρ) + v a.e. on Ω0.

In particular it follows that

∇u ∈ L∞loc(Ω0). (6.53)

We further observe that, for any ϕ ∈ C∞0 (Ω0), the functions wi := Diu (i ∈
{1, 2}) solve the equation∫

Ω0

D2G(∇u− v)(∇wi,∇ϕ) dx =

∫
Ω0

D2G(∇u− v)(Div,∇ϕ) + (u− f)ϕdx,
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whose coe�cients aij(x) := ∂2

∂xi∂xj
G(∇u(x)−v(x)) are locally uniformly elliptic

on Ω0 due to (6.53) and ((G2)′). The Hölder continuity of u therefore follows
from the classical results of De Giorgi, Moser and Nash (see, e.g. Theorem 8.22
on p. 200 in [65]), which �nishes the proof of Theorem 6.2.1.

Remark 6.2.4

Note that if we assume F ∈ C2,1(R2×2), then the coe�cients Aijkl(x) from (6.47)
are even locally Lipschitz continuous. The (local) Hölder continuity of ∇u fur-
thermore implies the Hölder continuity of the functions f ik(x) = δγk

∂G
∂xi

(∇u(x)−
v(x)), and we may quote Theorem 3.2 from [46] to infer that v ∈ C2,α1(Ω0) for
some α1 ∈ (0, 1) in this case.
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Appendix

A Function Spaces

Here we give a short overview of the various function spaces that appear in the
text. However, the main intent of these remarks is to explain our notation and
we refer to the relevant literature for proofs and details, see e.g. [1], [2], [32], [58]
and [87]. In the following, let Ω be an open and bounded subset of Rn with
Lipschitz boundary or Ω = Rn. Note that for all x = (x1, ..., xn) ∈ Rn we denote
the Euclidean norm by

|x| :=

√√√√ n∑
i=1

x2
i .

We start with the standard Lebesgue space Lp(Ω,RN ) (or just Lp(Ω) if N =
1), which consists of all RN -valued p-integrable functions (p ∈ [1,∞]) and is
endowed with the norm

‖u‖p;Ω :=

∫
Ω

|u|p dx

1/p

, if p <∞,

and
‖u‖∞;Ω := ess sup |u| for p =∞.

ByM(Ω,RN ) (or justM(Ω), if N = 1) we denote the linear space of all RN -
valued Radon measures on Ω, i.e. RN -valued Borel measures that are �nite on
compact subsets of Ω. We say that µ ∈M(Ω,RN ) has �nite total mass, if

|µ|(Ω) := sup

{ ∞∑
i=1

|µ(Ei)| : Ω =
∞⋃
i=1

Ei
is a covering of Ω by

pairwise disjoint Borel sets

}
(A.1)

is �nite. If a function u ∈ L1(Ω) has a (distributional) gradient in form of a
Radon measure of �nite total mass, then we say that u has bounded variation
(for short u ∈ BV (Ω)) and write

|∇u|(Ω) =

∫
Ω

|∇u| = sup

{∫
Ω
u divϕdx : ϕ ∈ C1

0 (Ω,Rn), ‖ϕ‖∞ ≤ 1

}
.
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The next item is the Sobolev space Wm,p(Ω) which consists of those functions
u ∈ Lp(Ω), whose partial distributional derivatives up to order k lie in the class
Lp, as well. We write ∇ku for the tensor

∇ku :=
(
Dα1...αku

)
αi=1,...,n

of all k-th order partial (distributional) derivatives, which, for simplicity, is

construed as an Rnk -valued function. We de�ne the norm of u ∈Wm,p(Ω) by

‖u‖m,p;Ω :=
m∑
k=0

‖∇ku‖p;Ω,

where we declare ∇0u := u. Of course, Wm,p(Ω,RN ) is the space of RN valued
functions whose components lie in Wm,p(Ω). An important tool in the context
of Sobolev functions is Poincaré's inequality (see, e.g., [1], Remark 3.50 and
Exercise 7.7):

Theorem A.1

Let E ⊂ Ω be a measurable subset of Ω with Ln(E) > 0. Then there exists a
constant c > 0, depending only on Ω and E such that for all u ∈ Wm,p(Ω) it
holds

‖u− (u)E‖p;Ω ≤ c‖∇mu‖p;Ω,

with (u)E := −
∫
E udx.

Finally, by Cm,α(Ω) we denote the space of m-times continuously di�erentiable
functions whose derivatives are locally Hölder continuous with exponent α, i.e.
u ∈ Cm,α(Ω) i� for every compact subset Ω̃ b Ω and every k = 0, ...,m it holds

sup
x,y∈Ω̃
x 6=y

∣∣∇ku(x)−∇ku(y)
∣∣

|x− y|α
≤ c(Ω̃) <∞.

B Convex Functions of a Measure

In this section, we brie�y present the concept of convex functions of a measure
as introduced in the paper [88] (see also Section 2.6 in [1]). Let �rst F : RN → R
be a sublinear, positively 1-homogeneous function, i.e.

F (x+ y) ≤ F (x) + F (y) ∀x, y ∈ RN ,
F (λx) = λF (x) ∀x ∈ RN , λ > 0

and let µ ∈M(Ω,RN ) be Borel measure with values in RN . Let further

F (x) ≤ c|x|
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hold with some constant c > 0. Then, based on (A.1), we de�ne for every Borel
set E ⊂ Ω∫

E

F (µ) := sup

{
k∑
i=1

F (µ(Ei)) : Ω =
∞⋃
i=1

Ei
is a covering of Ω by

pairwise disjoint Borel sets

}
.

Note that if F (x) = |x|, then
∫
E F (µ) =

∫
E |µ| is the usual total variation

measure. One can show that under the above conditions on F the set function
F (µ) de�nes a Borel measure on Ω. Now, for a not necessarily 1-homogeneous
convex function F : RN → R that ful�lls

|F (x)| ≤ c(1 + |x|)

with some positive constant c > 0, we de�ne F (µ) via its homogenization:

Fh : [0,∞)× RN → R, Fh(t, x) :=

 tF
(x
t

)
, if t 6= 0,

F∞(x), if t = 0.

Here, F∞(x) := lims→∞
F (sx)
s is the so called recession function of F . We note

that Fh is sublinear and positively 1-homogeneous, which allows us to de�ne

F (µ) := Fh(LN , µ),

where LN is Lebesgue's measure on RN . If µ = µa·LN+µs denotes the Lebesgue
decomposition of µ, Theorem 2' in [88] gives the representation∫
E

F (µ) =

∫
E

Fh
(
(1, µa) · Ln + (0, µs)

)
=

∫
E

F (µa) dx+

∫
E

F∞
(
µs

|µs|

)
d|µs|.

An important property is the following continuity Theorem of Reshetnyak (see
[89] and cf. [90], Proposition 2.2 as well as [1], Theorem 2.34 and Proposition
3.15):

Theorem B.1

Let Ω ⊂ Rn be a bounded Lipschitz domain and let (µk) be a sequence of RN -
valued Radon measures, which weakly-∗ converges to a Radon measure µ. Let
further F : RN → R be a strictly convex function that satis�es the growth
estimate

0 ≤ F (p) ≤ c(1 + |p|) (B.1)

for some constant c > 0. Then:

a)

∫
Ω

F (µ) ≤ lim inf
k→∞

∫
Ω

F (µk).
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b) If in addition ∫
Ω

√
1 + |µk|2 →

∫
Ω

√
1 + |µ|2,

then it also holds ∫
Ω

F (µk)→
∫
Ω

F (µ).

In this thesis, we employ the formula for F (µ) to de�ne the relaxation of convex
functionals of linear growth on the class BV (Ω) (see, e.g. Section 5.5 in [1]): let
F : Rn → R be a convex function which satis�es (B.1) and let Ω ⊂ Rn be open.
Then the functional

E[u] :=

∫
Ω

F (∇u) dx

is well de�ned on the Sobolev spaceW 1,1(Ω). However, due to the lack of re�ex-
ivity, E-minimizing sequences need not to be weakly compact in W 1,1(Ω,RN ).
One therefore de�nes the relaxed functional Ẽ on the space BV (Ω) in its ab-
stract form by

Ẽ[u] := inf

{
lim inf
k→∞

E[uk] : (uk) ⊂ C1(Ω,RN ), uk → u in L1(Ω,RN )

}
.

In [91] it was proved (even under the more general condition that F is quasi-
convex) that the relaxed functional Ẽ[u] then coincides with

∫
Ω F (∇u), which

means that Ẽ can be expressed through the formula

Ẽ[u] =

∫
Ω

F (∇u) =

∫
Ω

F (∇au) dx+

∫
Ω

F∞
(
∇su
|∇su|

)
d|∇su|,

where ∇u = ∇au ·Ln+∇su denotes the Lebesgue decomposition of the measure
∇u.

C Proof of Lemma 5.2.1 c)

Let (uδ, vδ) ∈W 1,2(Ω)×W 1,2(Ω,R2) be the unique minimizer of

E(u, v) =
δ

2

∫
Ω

|∇u|2 + |∇v|2 dx+ α

∫
Ω

F (∇v) dx+ β

∫
Ω

G(∇u− v) dx

+

∫
Ω−D

(u− f)2 dx

with Ω, F,G, f, α, β as speci�ed in Chapter 5. We want to prove part c) of
Lemma 5.2.1, i.e.

(uδ, vδ) ∈W 2,2
loc (Ω)×W 2,2

loc (Ω,R2)
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which follows from an application of the so called di�erence quotient technique.
Let δ ∈ (0, 1) be �xed. We start with the observation, that uδ minimizes the
quadratic functional

E1[u] :=
δ

2

∫
Ω

|∇u|2 dx+ β

∫
Ω

G(∇u− vδ) dx+

∫
Ω−D

(u− f)2 dx

inW 1,2(Ω) and therefore solves the Euler-Lagrange equation (EL2) from p. 104:

δ

∫
Ω

∇uδ · ∇ϕdx+ β

∫
Ω

DG(∇uδ − vδ) · ∇ϕdx+ 2

∫
Ω−D

(uδ − f)ϕdx = 0

(C.1)

for all ϕ ∈ W 1,2(Ω). Now, for a testing function η ∈ C∞0 (Ω) and some vector
γ ∈ R2, we set ϕ := ∆−hγ (η2∆h

γuδ), where

∆h
γuδ(x) :=

uδ(x+ hγ)− uδ(x)

h
,

and |h| is small enough such that spt η±hγ b Ω. After an integration by parts,
(C.1) reads as

δ

∫
Ω

∆h
γ∇uδ · ∇(η2∆h

γuδ) dx+

∫
Ω

∆h
γDG(∇uδ − vδ) · ∇(η2∆h

γuδ) dx

= 2

∫
Ω−D

(uδ − f)∆h
γ(η2∆h

γuδ) dx.

(C.2)

Next we observe that

β∆h
γDG(∇uδ − vδ) = β

1

h

1∫
0

d

dt
DG

(
∇uδ − vδ + th∆h

γ(∇uδ − vδ)
)

dt

=

β 1∫
0

D2G
(
∇uδ − vδ + th∆h

γ(∇uδ − vδ)
)

dt


︸ ︷︷ ︸

=: B(·, ·)

(
∆h
γ(∇uδ − vδ), ·

)
,

where due to our assumption (G2) on D2G we have that B(·, ·) is symmetric
bilinear form B(·, ·) for which there exists a constant λ > 0 such that

B(x, x) ≥ λ|x|2 for all x ∈ R2.

Setting further

Bδ(x, y) := δ(x · y) +B(x, y) for x, y ∈ R2,
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we may write (C.2) as∫
Ω

Bδ
(
∆h
γ∇uδ,∇(η2∆h

γuδ)
)

dx

=

∫
Ω

B
(
∆h
γvδ,∇(η2∆h

γuδ)
)

dx

︸ ︷︷ ︸
=: T1

+ 2

∫
Ω−D

(uδ − f)∆h
γ(η2∆h

γuδ) dx

︸ ︷︷ ︸
=: T2

and thus

λ

∫
Ω

η2|∆h
γ∇uδ|2 dx+ 2

∫
Ω

ηBδ
(
∆h
γ∇uδ,∇η∆h

γuδ
)

dx ≤ T1 + T2. (C.3)

We note, that (C.3) di�ers from the corresponding equation (7.1.11) in [41] only
through the presence of the term T1. It will therefore su�ce to give an estimate
of this quantity. Expanding the di�erentiation yields

T1 =

∫
Ω

η2B
(
∆h
γvδ,∆

h
γ∇uδ

)
dx+ 2

∫
Ω

ηB
(
∆h
γvδ,∇η∆h

γuδ
)

dx

and an application of the Cauchy-Schwarz inequality to the bilinear form B(·, ·),
followed by Young's inequality leads to

|T1| ≤ ε
∫
Ω

η2B
(
∆h
γ∇uδ,∆h

γ∇uδ
)

dx+ ε−1

∫
Ω

η2B
(
∆h
γvδ,∆

h
γvδ
)

dx

+
1

2

∫
Ω

ηB
(
∆h
γvδ,∆

h
γvδ
)

dx+
1

2

∫
Ω

ηB
(
∇η∆h

γuδ,∇η∆h
γuδ
)

dx.

We see that (G2) implies the boundedness of the bilinear form B and together
with Lemma 7.23 from [65] applied to the di�erence quotients ∆h

γvδ and ∆h
γuδ,

we obtain

|T1| ≤ c

ε∫
Ω

η2|∆h
γ∇uδ|2 dx+ ε−1

∫
Ω

|∇vδ|2 dx+

∫
Ω

|∇uδ|2 dx

 .
If we choose ε small enough, the �rst term in the bracket can be absorbed in
the left-hand side of (C.3), whereas the other two terms are clearly bounded (we
remind the reader that δ is a �xed number in this calculation!). For the term T2

we observe that Young's inequality in combination with Lemma 7.23 from [65]
implies

|T2| ≤ c(ε)
∫

Ω−D

(uδ − f)2 dx+ ε

∫
Ω−D

|∇(η2∆h
γuδ)|2 dx

≤ c+ ε

∫
Ω

η2|∆h
γ∇uδ|2 dx
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and the non-constant term can be absorbed in the left-hand side of (C.3) for ε
small enough. From that point on, we may follow the arguments from [41], chap-
ter 7 to obtain a bound for

∫
Ω η

2|∆h
γ∇uδ|2 dx in terms of ‖∇uδ‖L2(Ω), ‖∇vδ‖L2(Ω)

and ‖∇η‖∞ which implies uδ ∈W 2,2
loc (Ω) via Lemma 7.23 from [65].

For the corresponding statement on vδ we apply the same strategy. Choose
ψ := ∆h

γ(η2∆h
γvδ) in the Euler-Lagrange equation (EL1) on p. 104. Comparing

with the computations in the proof of Lemma 7.1.1 (b) in [41], we see that it
su�ces to estimate the new quantity

T̃ := β

∫
Ω

DG(∇uδ − vδ) ·∆h
γ(η2∆h

γvδ) dx,

stemming from the coupling term. But since |DG| is bounded by (G1), we have

|T̃ | ≤ c
∫
Ω

∣∣∆h
γ(η2∆h

γvδ)
∣∣dx,

and how this quantity can be treated is shown after equation (7.1.12) in [41].

139



140



Bibliography

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and
free discontinuity problems. Clarendon Press, Oxford, 2000.

[2] E. Giusti. Minimal surfaces and functions of bounded variation, volume 80
of Monographs in Mathematics. Birkhäuser, Basel, 1984.

[3] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259 � 268, 1992.

[4] L. I. Rudin. Images, numerical analysis of singularities and shock �lters.
Caltech, C.S. Dept. Report #TR:5250:87, 1987.

[5] G. Dal Maso, I. Fonseca, G. Leoni, and M. Morini. A Higher Order Model
for Image Restoration: The One Dimensional Case. Siam J. Math. Anal.,
40(6):2351�2391, 2009.

[6] S. Didas, J. Weickert, and B. Burgeth. Properties of Higher Order Nonlinear
Di�usion Filtering. IEE Transactions on Image Processing, 35(3):208�226,
2009.

[7] G. Steidl, S. Didas, and J. Neumann. Relations Between Higher Order TV
Regularization and Support Vector Regression. In Ron Kimmel, Nir A.
Sochen, and Joachim Weickert, editors, Scale Space and PDE Methods in
Computer Vision: 5th International Conference 2005. Proceedings, pages
515�527. Springer Berlin Heidelberg, 2005.

[8] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the Equiv-
alence of Soft Wavelet Shrinkage, Total Variation Di�usion, Total Varia-
tion Regularization, and SIDEs. SIAM Journal on Numerical Analysis,
42(2):686�713, 2004.

[9] D. Strong and T. Chan. Exact Solutions to Total Variation Regularization
Problems. Technical report, UCLA CAM Report, 1996.

[10] P. Blomgren, T. Chan, and P. Mulet. Extensions to total variation denois-
ing. In Proceedings-SPIE of the International Society for Optical Engineer-
ing, pages 367�375. SPIE International Society for Optical Engineering,
1997.

141



[11] C. Brito-Loeza and K. Chen. On High-Order Denoising Models and Fast Al-
gorithms for Vector-Valued Images. J. Math. Imaging Vision, 19(6):1518�
1527, 2010.

[12] T. Chan, A. Marquina, and P. Mulet. High Order Total Variation-Based
Image Restoration. Siam J. Sci. Comput., 22(2):503�516, 2000.

[13] R. Bergmann and A. Weinmann. A Second Order TV-type Approach for
Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector
Space Data. J. Math. Imaging Vision, 55(3):401�427, 2016.

[14] C. Pöschl and O. Scherzer. Characterization of minimizers of convex regu-
larization functionals. In Frames and operator theory in analysis and signal
processing, volume 451 of Contemp. Math., pages 219�248. Amer. Math.
Soc., Providence, RI, 2008.

[15] O. Scherzer. Denoising with Higher Order Derivatives of Bounded Variation
and an Application to Parameter Estimation. Computing, 60(1):1�27, 1998.

[16] Y.-L. You and M. Kaveh. Fourth-Order Partial Di�erential Equations for
Noise Removal. IEEE Transactions on Image Processing, 9(10):1723�1730,
2000.

[17] M. Bergounioux and L. Pi�et. A second-order model for image denoising.
Set-Valued Var. Anal., 18(3-4):277�306, 2010.

[18] M. Lysaker, A. Lundervold, and X.-C. Tai. Noise removal using fourth-
order partial di�erential equation with applications to medical magnetic
resonance images in space and time. IEEE Transactions on Image Process-
ing, 12:1579 � 1590, 2003.

[19] G. Steidl, S. Didas, and J. Neumann. Splines in Higher Order TV Regular-
ization. International Journal of Computer Vision, 70(3):241�255, 2006.

[20] C.-B. Schönlieb.Modern PDE Techniques for Image Inpainting. PhD thesis,
University of Cambridge, 2009.

[21] A. Chambolle and P.L. Lions. Image recovery via total variation minimiza-
tion and related problems. Numer. Math., 76(2):167�188, 1997.

[22] K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM
J. Imaging Sciences, 3(3):492 � 526, 2010.

[23] M. Bildhauer, M. Fuchs, and J. Weickert. An alternative approach towards
the higher order denoising of images. Analytical aspects. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 444(45):47�88, 2016.

[24] K. Papa�tsoros and C.-B. Schoenlieb. Combined First and Second Order
Total Variation Inpainting using Split Bregman. J. Math. Imaging Vision,
48(2):308�338, 2014.

142



[25] A. Bertozzi, J. Greer, S. Osher, and K. Vixie. Nonlinear regularizations
of TV based PDEs for image processing. In Nonlinear partial di�erential
equations and related analysis, volume 371 of Contemp. Math., pages 29�40.
Amer. Math. Soc., Providence, RI, 2005.

[26] W. Hinterberger and O. Scherzer. Variational methods on the space of
functions of bounded Hessian for convexi�cation and denoising. Computing,
76(1-2):109�133, 2006.

[27] T. Valkonen. The jump set under geometric regularisation. Part 2: Higher-
order approaches. J. Math. Anal. Appl., 453(2):1044�1085, 2017.

[28] C. Guillemot and O. Le Meur. Image Inpainting : Overview and Recent
Advances. IEEE Signal Processing Magazine, 31(1):127�144, 2014.

[29] J. Shen and T. Chan. Mathematical Models for Local Nontexture Inpaint-
ings. SIAM Journal on Applied Mathematics, 62(3):1019�1043, 2002.

[30] C.-B. Schönlieb and A. Bertozzi. Unconditionally stable schemes for higher
order inpainting. Commun. Math. Sci., 9(2):413�457, 2011.

[31] J. Toriwaki and H. Yoshida. Fundamentals of three-dimensional digital
image processing. Springer-Verlag London, Ltd., London, 2009.

[32] R. A. Adams. Sobolev spaces, volume 65 of Pure and Applied Mathematics.
Academic Press, New-York-London, 1975.

[33] B. Dacorogna. Direct Methods in the Calculus of Variations. Applied Math-
ematical Sciences. Springer New York, 2007.

[34] M. Fuchs and G. Seregin. A regularity theory for variational integrals
with L lnL-growth. Calc. Var. Partial Di�erential Equations, 6(2):171�
187, 1998.

[35] M. Bildhauer and M. Fuchs. A variational approach to the denoising of
images based on di�erent variants of the TV-regularization. Appl. Math.
Optim., 66(3):331 � 361, 2012.

[36] M. Bildhauer and M. Fuchs. On some perturbations of the total variation
image inpainting method. Part I: regularity theory. J. Math. Sciences,
202(2):154 � 169, 2014.

[37] M. Bildhauer and M. Fuchs. On some perturbations of the total variation
image inpainting method. Part II: relaxation and dual variational formula-
tion. J. Math. Sciences, 205(2):121 � 140, 2015.

[38] M. Bildhauer, M. Fuchs, J. Müller, and C. Tietz. On the solvability in
Sobolev spaces and related regularity results for a variant of the TV-image
recovery model: the vector-valued case. J. Elliptic Parabol. Equ., 2(1-
2):341�355, 2016.

143



[39] M. Bildhauer and M. Fuchs. On Some Perturbations of the Total Variation
Image Inpainting Method. Part III: Minimization Among Sets with Finite
Perimeter. Journal of Mathematical Sciences, 207(2):142�146, 2015.

[40] M. Bildhauer and M. Fuchs. A geometric maximum principle for variational
problems in spaces of vector-valued functions of bounded variation. J.
Math. Sciences, 178(3):235�242, 2011.

[41] C. Tietz. Existence and regularity theorems for variants of the TV-image
inpainting method in higher dimensions and with vector-valued data. PhD
thesis, Saarland University, 2016.

[42] M. Bildhauer, M. Fuchs, and J. Weickert. Denoising and inpainting of
images using TV-type energies: : Theoretical and Computational Aspects.
J. Math. Sciences, 219(6):899�910, 2016.

[43] M. Fuchs, J. Müller, C. Tietz, and J. Weickert. Convex Reg-
ularization of multi-channel images based on variants of the TV-
model. Complex Variables and Elliptic Equations, Special issue
dedicated to 130th anniversary of Vladimir I. Smirnov:1�20, 2017.
http://dx.doi.org/10.1080/17476933.2017.1386181.

[44] M. Fuchs and J. Müller. A remark on the denoising of greyscale im-
ages using energy densities with varying growth rates. J. Math. Sciences,
228(6):705�722, 2018.

[45] M. Bildhauer, M. Fuchs, J. Müller, and X. Zhong. On the local
boundedness of generalized minimizers of variational problems with lin-
ear growth. Annali di Matematica Pura ed Applicata (1923 -), 2017.
https://doi.org/10.1007/s10231-017-0716-6.

[46] M. Giaquinta. Multiple integrals in the calculus of variations and nonlin-
ear elliptic systems. Annals of Mathematics Studies. Princeton University
Press, Princeton, New Jersey, 1983.

[47] L. C. Evans and R. F. Gariepy. Blowup, compactness and partial regular-
ity in the calculus of variations. Indiana University Mathematics Journal,
36(2):361 � 372, 1987.

[48] J. Frehse and G. Seregin. Regularity for solutions of variational problems
in the deformation theory of plasticity with logarithmic hardening. Transl.
Am. Math. Soc., 193:127�152, 1999.

[49] J. Frehse. Two Dimensional Variational Problems with Thin Obstacles.
Mathematische Zeitschrift, 143:279�288, 1975.

[50] J. Müller. A density result for Sobolev functions and functions of higher
order bounded variation with additional integrability constraints. Ann.
Acad. Sci. Fenn. Math., 41(2):789�801, 2016.

144



[51] M. Fuchs and J. Müller. A higher order TV-type variational problem related
to the denoising and inpainting of images. Nonlinear Analysis: Theory,
Methods & Applications, 154(Supplement C):122�147, 2017. Calculus of
Variations, in honor of Nicola Fusco on his 60th birthday.

[52] M. Fuchs, J. Müller, and C. Tietz. Signal recovery via TV-type energies.
Algebra i Analiz, 29(4):159�195, 2017.

[53] J. Müller. A Coupled Variational Problem of Linear Growth Related to the
Denoising and Inpainting of Images. J. Math. Sciences, 224:1�26, 2017.

[54] F. Demengel and R. Temam. Convex functions of a measure and applica-
tions. Indiana University Mathematics Journal, 33(5):673 � 709, 1984.

[55] F. Demengel. Fonctions à hessien borné. Annales de l'institut Fourier,
34(2):155 � 190, 1984.

[56] E. Stein. Singular Integrals and Di�erentiability Properties of Functions.
Princeton Mathematical Series. Princeton University Press, 2016.

[57] L.C. Evans. Partial Di�erential Equations. Graduate studies in mathemat-
ics. American Mathematical Society, 2010.

[58] V. Maz'ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer-
Verlag, Berlin-Heidelberg, 1985.

[59] J. Müller and C. Tietz. Existence and almost everywhere regularity of
generalized minimizers for a class of variational problems with linear growth
related to image inpainting, 2015. Technical Report No. 363, Department
of Mathematics, Saarland University.

[60] B. J. E. Dahlberg. A note on Sobolev spaces. In Proc. Sympos. Pure Math.
Harmonic analysis in Euclidean spaces Part 1, pages 183�185. Amer. Math.
Soc., 1979.

[61] D. Adams and L. Hedberg. Function Spaces and Potential Theory.
Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidel-
berg, 2012.

[62] I. Ekeland and R. Témam. Convex Analysis and Variational Problems.
Classics in Applied Mathematics. Society for Industrial and Applied Math-
ematics, 1999.

[63] M. Fuchs and C. Tietz. Existence of generalized minimizers and of dual
solutions for a class of variational problems with linear growth related to
image recovery. J. Math. Sciences, 210(4):458 � 475, 2015.

[64] E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of varia-
tions. Archive for Rational Mechanics and Analysis, 86(2):125�145, 1984.

[65] D. Gilbarg and N. Trudinger. Elliptic partial di�erential equations of second
order. Grundlehren der mathematischen Wissenschaften. Springer, 1998.

145



[66] M. Bildhauer and M. Fuchs. Higher order variational problems on two-
dimensional domains. Ann. Acad. Sci. Fenn. Math., 31:349 � 362, 2006.

[67] M. Bildhauer. Convex Variational Problems: Linear, nearly Linear and
Anisotropic Growth Conditions. Lecture Notes in Mathematics. Springer
Berlin Heidelberg, 2003.

[68] M. A. Little and N. S. Jones. Generalized methods and solvers for noise
removal from piecewise constant signals. I. Background theory. Proc. Math.
Phys. Eng. Sci., 467(2135):3088�3114, 2011.

[69] I. Selesnick, A. Parekh, and I. Bayram. Convex 1-D Total Variation Denois-
ing with Non-convex Regularization. IEEE Signal Process. Lett., 22(2):141�
144, 2015.

[70] A. Torres, A. Marquina, J. A. Font, and J. M. Ibáñez. Total-variation-
based methods for gravitational wave denoising. Phys. Rev. D, 90:084029,
2014.

[71] K. Bredies, K. Kunisch, and T. Valkonen. Properties of L1-TGV2: The
one-dimensional case. Journal of Mathematical Analysis and Applications,
398(1):438�454, 2013.

[72] K. Papa�tsoros and K. Bredies. A study of the one dimensional total gen-
eralised variation regularisation problem. Inverse Problems and Imaging,
9(2):511�550, 2015.

[73] G. Buttazzo, M. Giaquinta, and S. Hildebrandt. One-dimensional Vari-
ational Problems: An Introduction. Oxford lecture series in mathematics
and its applications. Clarendon Press, 1998.

[74] E. Hewitt and K. Stromberg. Real and abstract analysis. A modern treat-
ment of the theory of functions of a real variable. Springer-Verlag, New
York, 1965.

[75] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of
Functions. Studies in Advanced Mathematics. Taylor & Francis, 1991.

[76] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev
and BV spaces, volume 6 of MPS/SIAM Series on Optimization. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

[77] R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics
and Physics. Princeton University Press, 2015.

[78] C. Tietz. C1,α-interior regularity for minimizers of a class of variational
problems with linear growth related to image inpainting in higher dimen-
sions, 2015. Technical Report No. 356, Department of Mathematics, Saar-
land University.

146



[79] H. B. Thompson. Second order ordinary di�erential equations with fully
nonlinear two-point boundary conditions. I. Paci�c J. Math., 172(1):255�
277, 1996.

[80] H. B. Thompson. Second order ordinary di�erential equations with fully
nonlinear two-point boundary conditions. II. Paci�c J. Math., 172(1):279�
297, 1996.

[81] C. De Coster and P. Habets. Two-point Boundary Value Problems: Lower
and Upper Solutions. Mathematics in Science and Engineering : a series of
monographs and textbooks. Elsevier, 2006.

[82] M. Bildhauer, M. Fuchs, and C. Tietz. C1,α-interior regularity for minimiz-
ers of a class of variational problems with linear growth related to image
inpainting. Algebra i Analiz, 27(3):51�65, 2015.

[83] D. Apushkinskaya and M. Fuchs. Partial regularity for higher order varia-
tional problems under anisotropic growth conditions. Ann. Acad. Sci. Fenn.
Math., 32:199 � 214, 2007.

[84] M. Giaquinta and G. Modica. Regularity results for some classes of higher
order non linear elliptic systems. J. Reine Angew. Math., 311_312(4):145
� 169, 1979.

[85] M. Kronz. Partial regularity results for minimizers of quasiconvex func-
tionals of higher order. Annales de l'I.H.P. Analyse non linéaire, 19(1):81
� 112, 2002.

[86] M. Bildhauer and M. Fuchs. A regularity result for stationary electrorhe-
ological �uids in two dimensions. Mathematical Methods in the Applied
Sciences, 27(13):1607�1617, 2004.

[87] F. Demengel and G. Demengel. Functional Spaces for the Theory of Elliptic
Partial Di�erential Equations. Universitext. Springer London, 2012.

[88] C. Go�man and J. Serrin. Sublinear functions of measures and variational
integrals. Duke Math. J., 31(1):159�178, 1964.

[89] Yu. G. Reschetnyak. Weak convergence of completely additive vector func-
tions on a set. Sibirsk. Maz. Ž, 9:1386 � 1394, 1968.
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