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Short Abstract

The main goal of this work is the fusion of multiple images to a single composite
that offers more information than the individual input images. We approach those
fusion tasks within a variational framework. First, we present iterative schemes that
are well-suited for such variational problems and related tasks. They lead to efficient
algorithms that are simple to implement and well-parallelisable. Next, we design a
general fusion technique that aims for an image with optimal local contrast. This is
the key for a versatile method that performs well in many application areas such as
multispectral imaging, decolourisation, and exposure fusion. To handle motion within
an exposure set, we present the following two-step approach: First, we introduce the
complete rank transform to design an optic flow approach that is robust against se-
vere illumination changes. Second, we eliminate remaining misalignments by means
of brightness transfer functions that relate the brightness values between frames. Ad-
ditional knowledge about the exposure set enables us to propose the first fully coupled
method that jointly computes an aligned high dynamic range image and dense dis-
placement fields. Finally, we present a technique that infers depth information from
differently focused images. In this context, we additionally introduce a novel second
order regulariser that adapts to the image structure in an anisotropic way.
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Kurzzusammenfassung

Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das
mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese
Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir itera-
tive Schemata, die sich gut für solche variationellen Probleme und verwandte Auf-
gaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optima-
lem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode,
die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen,
Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belich-
tungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen
wir die komplette Rangtransformation vor, um eine optische Flussmethode zu ent-
werfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren
wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die
Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die
Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustel-
len, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder
berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten
Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neu-
en Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst.
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Abstract

The main goal of this work is the fusion of multiple images of the same scene to a
single composite that provides more information than the individual inputs. While
some applications are mainly interested in a nice looking output image, others aim
for additional information such as high dynamic range or depth. In this work, we ap-
proach those fusion tasks within a variational framework that allows for a transparent
modelling with a solid mathematical background.

As a first contribution, we propose novel iterative solvers for such variational tech-
niques. In fact, they are applicable to various diffusion processes, elliptic problems,
and constrained convex optimisation. In this context, basic iterative solvers such as
explicit schemes, Richardson iterations, and projected gradient descent methods are
simple to implement and well-suited for parallel computing. However, their efficiency
suffers from severe step size restrictions. As remedy we introduce a simple and highly
efficient acceleration strategy, which leads to our so-called Fast Semi-Iterative (FSI)
schemes. They extrapolate a basic solver iteration with the previous iterate. To derive
suitable extrapolation parameters, we establish a recursion relation that connects box
filtering with an explicit scheme for 1D homogeneous diffusion. Our schemes avoid
the main drawbacks of recent Fast Explicit Diffusion and Fast Jacobi techniques, and
have an interesting connection to Polyak’s heavy ball method in optimisation. Our
experiments demonstrate benefits of our FSI schemes in the context of image pro-
cessing as well as convex and strongly convex optimisation. In fact, we apply those
schemes as efficient solvers for our fusion applications throughout this work.

Next, we present a general variational approach for image fusion that combines
multiple images of the same scene to a single composite that is well-exposed and
provides optimal saturation and local contrast. To this end, we design our model
assumptions directly on the fusion result. In particular, we formulate the output image
as a convex combination of the input and incorporate concepts from perceptually
inspired contrast enhancement such as a local and nonlinear response. This output-
driven approach is the key to our versatile image fusion method. We demonstrate the
performance of our fusion scheme with several applications such as exposure fusion,
multispectral imaging, and decolourisation. For all application domains, we conduct
thorough validations that illustrate improvements w.r.t. state-of-the-art approaches
that are specifically tailored to the individual tasks.

Additionally, we deal with camera and object motion during the acquisition of expo-
sure series. Such movement might cause severe ghosting artefacts in the fusion result
since pixels are merged that do not belong to the same object. As remedy we propose
the following two-step approach: First, we model a variational optic flow approach
that is robust w.r.t. severe illumination changes which are characteristic for exposure
series. To this end, we introduce the complete rank transform (CRT) that stores for
every pixel the intensity order in its neighbourhood. In this way, we preserve rich
local information while providing an invariance to monotonically increasing intensity
rescalings. We illustrate the robustness and accuracy of our method experimentally.
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Next, we present an intuitive ghost removal approach to tackle remaining mis-
alignments. In fact, we do not only identify remaining registration errors, but also
compensate for them in an appropriate way. To this end, we base our method on
the concept of a brightness transfer function (BTF) that relates brightness values be-
tween different frames. We compute those BTFs with image histograms that provide
a robustness to small scene motion. Moreover, in this way the proposed approach
is independent of the exposure times and the camera response function, and hence
well-suited for the general exposure fusion setting. The processed images can directly
serve as input of standard fusion techniques. We demonstrate this with experiments.

Provided additional knowledge about the exposure set, in particular the exposure
times, we propose an alternative to the discussed two-step approach. In fact, we
present the first technique that simultaneously computes an aligned high dynamic
range (HDR) composite as well as dense displacement maps. In this way, we cannot
only cope with dynamic scenes but even accurately represent the underlying scene
and camera motion. The proposed joint optimisation has beneficial effects, such as
an intrinsic ghost removal and an HDR-coupled smoothing. Our experiments show
that both, the HDR images and the optic flow fields benefit substantially from those
features and the induced mutual feedback.

Also in the context of images taken with varying focal settings, we exploit additional
knowledge about the input data. In particular, we consider the relative distance
of the focal planes. They specify regions where objects are captured sharply. In
this way, we are able to infer depth information about the scene in addition to a
fused all-in-focus image. To this end, we present a variational depth from focus
technique that first identifies in-focus regions by means of specific sharpness criteria
to create initial depth maps. Next, we smooth those depth maps with an advanced
anisotropic diffusion process combined with robust data fidelity terms. Experiments
with synthetic and real-world data demonstrate benefits of our approach compared
to competing methods.

On top of that, we introduce a novel anisotropic second order regularisation strategy
that explicitly accounts for the piecewise affine nature of real-world depth maps. To
this end, we make use of two important concepts and link them in a profitable way:
On the one hand, anisotropic regularisation is a well-established technique that has
improved numerous computer vision approaches by direction-dependent smoothing.
On the other hand, recent applications have uncovered the importance of second order
regularisation. We build a bridge between both worlds, and propose a novel second
order regulariser that allows to steer the unknown function and its slope in a direction-
dependent way. To this end, we start with an isotropic second order coupling model,
and systematically incorporate anisotropic concepts from first order approaches. We
demonstrate benefits of the resulting approach with experiments, and apply it to
improve our depth from focus method even further.
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Zusammenfassung

Das grundlegende Ziel dieser Arbeit ist die Fusion mehrerer Bilder derselben Szene
zu einem einzelnen Gesamtbild, das mehr Informationen bietet als die individuel-
len Eingangsbilder. Während einige Anwendungen hauptsächlich an einem schönen
Ausgangsbild interessiert sind, zielen andere auf zusätzliche Informationen wie Hoch-
kontrast oder Tiefe. Wir gehen diese Fusionsaufgaben in einem variationellen Rahmen
an, der eine transparente Modellierung mit solider mathematischer Grundlage erlaubt.

Als ersten Beitrag stellen wir neue iterative Lösungsverfahren für solche Variations-
techniken vor. Tatsächlich sind diese anwendbar für verschiedene Diffusionsprozes-
se, elliptische Probleme und konvexe Optimierung mit Nebenbedingungen. In diesem
Kontext sind iterative Basislösungsverfahren wie explizite Verfahren, Richardsonitera-
tionen und projizierte Gradientenabstiegsverfahren einfach zu implementieren und gut
geeignet für paralleles Rechnen. Jedoch leidet deren Effizienz unter starken Schritt-
weitenbeschränkungen. Als Abhilfe stellen wir eine einfache und höchst effiziente Be-
schleunigungsstrategie vor, welche zu unseren sogenannten schnellen semi-iterativen
(FSI) Verfahren führt. Diese extrapolieren eine Iteration des Basislösungsverfahrens
mit der vorherigen Iterierten. Um geeignete Extrapolationsparameter herzuleiten, eta-
blieren wir eine Rekursionsrelation, die Boxfilter mit einem expliziten Verfahren für
1D homogene Diffusion verbindet. Unsere Verfahren vermeiden die Hauptnachteile der
modernen schnellen expliziten Diffusions- und schnellen Jakobi-Verfahren und haben
eine spannende Verbindung zu Polyaks schwerer Kugelmethode in der Optimierung.
Unsere Experimente zeigen Vorteile unserer FSI-Verfahren im Bildverarbeitungskon-
text sowie für konvexe und stark konvexe Optimierung. Zudem nutzen wir diese Ver-
fahren als effiziente Lösungsmethoden für unsere Fusionsanwendungen.

Als nächstes präsentieren wir einen generellen Variationsansatz zur Bildfusion, der
mehrere Bilder derselben Szene zu einem einzelnen Gesamtbild kombiniert, welches op-
timale Belichtung, Sättigung und lokalen Kontrast bietet. Hierzu gestalten wir unsere
Modellannahmen direkt hinsichtlich des Fusionsergebnisses. Im Besonderen formulie-
ren wir das Ausgangsbild als eine konvexe Kombination des Eingangs und integrieren
Konzepte von wahrnehmungsinspirierter Kontrastverbesserung wie ein lokales und
nichtlineares Ansprechverhalten. Dieser ausgangsgetriebene Ansatz ist der Schlüssel
für unsere vielseitige Bildfusionsmethode. Wir demonstrieren die Leistungsfähigkeit
unseres Fusionsschemas mit verschiedenen Anwendungen wie Belichtungsreihenfusion,
Multispektralaufnahmen und Bildentfärbung. Wir führen für alle Anwendungsgebiete
sorgfältige Evaluationen durch, welche Verbesserungen gegenüber neuartigen Verfah-
ren veranschaulichen, die speziell auf die individuellen Aufgaben zugeschnitten sind.

Zusätzlich behandeln wir Kamera- und Objektbewegungen während einer Belich-
tungsreihenaufnahme. Solche Bewegungen können zu starken Geisterartefakten im
Fusionsergebnis führen, weil Pixel gemischt werden, die nicht zum selben Objekt
gehören. Daher schlagen wir folgenden Zweischrittansatz vor: Zunächst modellieren
wir eine variationelle optische Flussmethode, die robust ist gegenüber starken, für
Belichtungsreihen charakteristischen Beleuchtungsänderungen. Hierzu führen wir die
komplette Rangtransformation (CRT) ein, die für jedes Pixel die Helligkeitsordnung
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in seiner Nachbarschaft speichert. Damit bewahren wir reichhaltige lokale Informati-
on, während wir eine Invarianz gegenüber monoton steigenden Helligkeitsänderungen
bieten. Experimente zeigen die Robustheit und Genauigkeit unserer Methode.

Als nächstes präsentieren wir eine intuitive Geisterentfernungsmethode, um ver-
bleibende Registrierungsfehler zu handhaben. Tatsächlich identifizieren wir nicht nur
Registrierungsfehler, sondern kompensieren sie sachgemäß. Hierzu gründen wir unsere
Methode auf dem Konzept der Helligkeitstransferfunktion (BTF), welche die Hellig-
keitswerte zwischen verschiedenen Bildern in Verbindung setzt. Wir berechnen diese
BTFs mit Bildhistogrammen, die eine Robustheit gegenüber kleinen Szenenbewegun-
gen aufweisen. Des Weiteren ist die vorgeschlagene Methode dadurch unabhängig von
den Belichtungszeiten und der Kameraantwortkurve und damit gut geeignet für die
generelle Belichtungsreihenfusion. Wir verdeutlichen dies mit Experimenten.

Ausgestattet mit zusätzlichem Wissen über die Belichtungsreihe, insbesondere über
die Belichtungszeiten, schlagen wir eine Alternative zum obigen Zweischrittansatz vor.
Tatsächlich präsentieren wir die erste Technik, die gleichzeitig ein registriertes Hoch-
kontrastbild (HDR) sowie dichte Bewegungsfelder berechnet. Dadurch können wir
nicht nur dynamische Szenen behandeln, sondern die zugrundeliegende Szenen- und
Kamerabewegung präzise beschreiben. Die gemeinsame Optimierung hat vorteilhafte
Effekte wie eine intrinsische Geisterentfernung und eine HDR-gekoppelte Glättung.
Unsere Experimente zeigen, dass sowohl die HDR Bilder als auch die Flussfelder sub-
stanziell von diesen Eigenschaften und der beidseitigen Rückkopplung profitieren.

Auch im Kontext von Bildern mit verschiedenen fokalen Einstellungen machen wir
uns zusätzliches Wissen über die Eingangsdaten zu Nutzen. Im Besonderen betrach-
ten wir die relative Distanz der Fokalebenen. Diese beschreiben Regionen, in denen
Objekte scharf aufgenommen werden. Wir können somit Tiefeninformation zusätzlich
zu dem fusionierten scharfen Bild ableiten. Hierzu präsentieren wir eine variationel-
le Tiefe-von-Fokus Technik, die zuerst fokussierte Regionen mit Hilfe von speziellen
Schärfemaßen identifiziert, um initiale Tiefenkarten zu erstellen. Danach glätten wir
diese Tiefenkarten mit einem hochentwickelten anisotropen Diffusionsprozess, kom-
biniert mit robusten Datentreuetermen. Experimente mit synthetischen und realen
Daten demonstrieren Vorteile unserer Methode im Vergleich zu Konkurrenzverfahren.

Darüber hinaus stellen wir eine neuartige anisotrope Regularisierungstechnik zwei-
ter Ordnung vor, die explizit für die stückweise affine Gestalt realer Tiefenkarten
Rechnung trägt. Hierzu machen wir Gebrauch von zwei wichtigen Konzepten und ver-
binden sie gewinnbringend: Einerseits ist anisotrope Regularisierung eine fest etablier-
te Technik, die zahlreiche Bildanalysemethoden durch richtungsabhängige Glättung
verbessert hat. Andererseits haben neuste Anwendungen die Wichtigkeit von Regula-
risierung zweiter Ordnung aufgedeckt. Wir bauen eine Brücke zwischen diesen beiden
Welten und schlagen einen neuen Regularisierer zweiter Ordnung vor, der es erlaubt,
die unbekannte Funktion und ihre Steigung in einer richtungsabhängigen Art und
Weise zu lenken. Hierzu beginnen wir mit einem isotropen Kopplungsmodell zweiter
Ordnung und integrieren systematisch anisotrope Konzepte von Methoden erster Ord-
nung. Wir demonstrieren die Vorteile des resultierenden Verfahrens mit Experimenten
und wenden es an, um unsere Tiefe-von-Fokus Methode noch weiter zu verbessern.
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Chapter 1

Introduction

“All for one, and one for all.”

Alexandre Dumas

Maurice Leloir (1894)

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and Contributions . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivation

Pursuing his famous land- and seascape photography, the French photographer Gus-
tave Le Gray (1820–1884) faced the following problem: Due to the physical limitations
of the camera hardware and photographic material at that time, it was impossible to
create a photograph that includes at the same time, the details of a bright sky and
a dark sea. As remedy, he recorded two negatives with different exposure times such
that each of them captured the details of the sky and the sea individually. Afterwards,
he produced a single composite image by carefully combining suitable parts of both
negatives in the printing process. In this way, the resulting image was well-exposed
everywhere. In Figure 1.1(a), we depict an example image that was created by Le
Gray in such a way already in 1857.

Another pioneer of this photographic technique was the English photographer Henry
Peach Robinson (1830–1901). An early example of his work can be seen in Fig-
ure 1.1(b). Also here, the dynamic range of the captured scene exceeded the dynamic
range of the camera hardware at that time. Thus, at least two differently exposed
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(a) The Great Wave, Sète (1857) (b) Fading Away (1858)

Figure 1.1: Early examples of combination printing. (a) The Great Wave, Sète (1857) by
Gustave Le Gray composed of two negatives [Le 57]. (b) Fading Away (1858) by Henry
Peach Robinson composed of five negatives [Rob58].

negatives were required to capture the interior of the room and the sky within the
window area in an appropriate way. However, to ensure an optimal focus of every
part of the scene, Robinson made use of even more negatives. In total, he composed
the depicted image, entitled Fading Away, by means of five negatives. Interestingly,
Henry Peach Robinson was not only a photographer but also an author. Already
in 1860, Robinson discussed this innovative multi-negative approach in an article of
the British journal of photography [Rob60]. Nine years later, he even published an
entire handbook for photographers that contains a chapter about this technique that
he named combination printing [Rob69]. Historians still use this terminology to refer
to such a photographic procedure that combines several negatives to a single com-
posite image; see e.g. [Dav99, Aub02, SL15]. Besides Le Gray and Robinson, further
famous pioneers of combination printing at that time have been William Lake Price
(1810–1896) and Oscar Gustave Rejlander (1813–1875) [Han05].

Certainly, such problems were severe in the beginnings of photography. However,
despite the enormous technical improvements of camera hardware from that time till
today, similar problems still persist. In certain situations, a single photograph is still
not enough to capture all the details of a scene. Indeed, there might be no camera
setting such that the photograph offers the desired quality. As a common remedy,
several images are taken while varying the settings of the camera. This can often
be easily realised by so-called burst or bracketing modes of standard consumer cam-
eras or also smartphones. Subsequently, in a postprocessing step, the captured set of
images is combined to a single composite image that provides the desired quality. Ob-
viously, the early combination printing techniques in the nineteenth century required
a tedious manual selection and masking process of experts during the printing of the
negatives. Nowadays, we aim at a fully automatic composition provided by intelli-
gent image processing software. This digital process of combining several images to
a single composite is generally referred to as image fusion. In the meantime, it has
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(a) short exposure (b) middle exposure (c) long exposure (d) fused

Figure 1.2: Example of exposure fusion. From left to right : (a–c) Differently exposed input
images [Jof07]. (d) Our fused composite image.

developed to an important area of research with various publications; see e.g. the text
books [Sta08,Mit10,Zhe11] and the references therein.

In fact, the main goal of this work is to contribute to this image fusion research
field in several aspects. To this end, let us first take a deeper look at some modern
image fusion applications, and point out essential problems.

Exposure Fusion. As already mentioned, with standard consumer cameras is it not
always possible to capture all the bright and dark details of a real-world scene with a
single acquisition. Clearly, there exists specifically tailored camera hardware that is
suited for this task; see e.g. [TKTS11,MRK+13] and references therein. However, such
cameras are still on a rather prototype level or too expensive, and thus not available
for average consumers. Nevertheless, taking several images with a standard camera
while changing the exposure settings also allows to produce an overall well-exposed
image in a postprocessing step. We illustrate this in Figure 1.2. Here, Figure 1.2(a–c)
depict differently exposed input images of the same scene. None of those offers the
desired quality. However, the fusion of such an exposure stack, which is referred to as
exposure fusion [MKV09], results in an overall well-exposed composite image. In this
regard, Figure 1.2(d) shows the result of our fusion approach proposed in this work.

Multispectral Fusion. Besides changing the exposure settings of the camera, it is
also possible to use different filters or even different imaging modalities to acquire
an input stack that contains different spectral ranges. In our example image set in
Figure 1.3(a–d), we depict four images where each of them captures different details of
Anton Raphael Mengs’ copy of Raphael’s Sistine Madonna from the Bergen Museum
of Art [Cos12]. Fusing those images yields a composite that offers more details than
any of the individual photographs; cf. Figure 1.3(e).

Another prominent example for multispectral image fusion is the combination of
a visible spectrum and a near-infrared image; cf. Figure 1.4(a,b). While neither the
visible spectrum image nor the near-infrared image captures all details of the scene,
the fused composite in Figure 1.4(c) condenses the information of both inputs in an
adequate way; see for example the mountains in the background. Such an enhance-
ment of standard images with the near-infrared spectrum is for instance beneficial in
the context of night vision; cf. e.g. [WGF+97,MB10].
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(a) visible (b) raking light (c) infrared (d) ultraviolet (e) fused

Figure 1.3: Example of multispectral fusion. From left to right : (a) Visible spectrum,
(b) raking light, (c) infrared, and (d) ultraviolet fluorescence image [Cos12]. (e) Our fused
composite image.

(a) visible spectrum (b) near-infrared (c) fused

Figure 1.4: Example of visible spectrum and near-infrared fusion. From left to right : (a) Vis-
ible spectrum and (b) near-infrared image [BS11]. (c) Our fused composite image.

Focus Fusion. Especially in macro photography and optical microscopy, a typical
problem is the limited depth of field of common cameras and microscopes, respec-
tively. Due to this, objects only appear sharp at a certain distance range to the
imaging device. Hence, it is often not possible to capture a single image that is sharp
everywhere. Also in this context, a common remedy is to take several photographs
while varying the focal settings. In this regard, focus fusion describes the task of com-
bining the acquired focal stack to an all-in-focus composite that is desirably sharp in
every image region. We illustrate this in Figure 1.5, where Figure 1.5(a–c) depict
three of thirteen images of a focal stack capturing an insect. Here, the in-focus region
moves away from the camera from frame to frame. Fusing this focal stack results in
a composite image that provides the desired sharpness; cf. Figure 1.5(d).

Decolourisation. Although not immediately obvious, also decolourisation can be
approached by image fusion. In general, decolourisation describes the conversion of a
colour image to its greyscale representation. This is for instance important for black
and white printing of coloured data, or for displaying such data on monochrome de-
vices such as electronic book readers. The main challenge of decolourisation is to
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(a) near focus (b) middle focus (c) far focus (d) fused

Figure 1.5: Example of focus fusion. From left to right : (a–c) Input images with different
focal settings [ADA+04]. (d) Our fused composite image.

(a) input (b) R (c) G (d) B (e) fused

Figure 1.6: Example of decolourisation. From left to right : (a) Input colour image [Čad08].
(b–d) RGB colour channels. (e) Our fused greyscale composite.

preserve as much information as possible. In this work, we approach decolourisation
by first decomposing the input image into its colour channels, and subsequently fus-
ing them to a convincing greyscale counterpart; see Figure 1.6. While none of the
colour channels (cf. Figure 1.6(b–d)) is able to represent the input colour image in
Figure 1.6(a) appropriately, the fusion result in Figure 1.6(e) preserves the most im-
portant features. Obviously, due to the drastic intensity range restriction by a colour
to greyscale transformation, it is hardly possible to preserve all details of the input
image. Hence, to achieve convincing results the applied fusion technique is of great
importance.

Deghosting. Up to now we have considered the case of perfectly aligned input im-
ages, where no camera or scene movement takes place during the acquisition of the
image stack. However, in a practical setting, we cannot always assume such data
sets. In fact, especially in the context of exposure series, such movement is often un-
avoidable. Unfortunately, already small misalignments might lead to severe artefacts
in the fused composite image, which are often referred to as ghosts. We illustrate
this in Figure 1.7. Here, a näıve direct fusion of the unaligned input images provides
unsatisfactory results; cf. Figure 1.7(d). Hence, a registration of the input images is
often inevitable. Obviously, due to the inherent drastic illumination changes between
different exposures, this is a difficult problem which requires specifically tailored mod-
ifications and extensions of established alignment strategies. Moreover, in many cases
an additional so-called ghost removal step is required to identify and to eliminate
remaining misalignments.
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(a) short exposure (b) middle exposure (c) long exposure (d) fused

Figure 1.7: Illustration of ghosting artefacts. From left to right : (a–c) Unaligned input
images with different exposure settings. (d) Näıve direct fusion causes undesirable ghosting
artefacts due to camera and object motion during the acquisition.

High Dynamic Range Imaging. In many situations, additional information about
the image stack is available. For instance, in the context of exposure bracketing, many
images contain the applied camera settings in the file headers. In fact, this knowledge
about the imaging process can be exploited to compute an high dynamic range (HDR)
representation of the captured scene. We illustrate such an HDR reconstruction with
differently exposed images in Figure 1.8. Here, Figure 1.8(a–c) depict three input
images of an exposure set with known exposure times. In Figure 1.8(d), we plot the
camera response functions for the RGB colour channels. In particular, such a response
function describes the mapping of the incoming light energy (amount of photons) to
the actual intensity values. In Figure 1.8(e,f), we show the recovered HDR irradiance
values.1 Compared to the input low dynamic range (LDR) images, the computed HDR
irradiance image offers a much larger dynamic range. Since standard monitors and
printers do not support such a large dynamic range, we present a logarithmic false
colour representation of the HDR luminance values in Figure 1.8(e). Additionally,
we compress the acquired high dynamic range again with a so-called tone mapping
technique [FLW02] to produce the overall well-exposed LDR image in Figure 1.8(f).
This tone mapped result contains bright and dark details from the entire input stack.
In fact, this illustrates the high amount of information contained in the HDR image.

With the computed HDR data, it is for instance possible to produce LDR images
with desired exposure times and response functions in a postprocessing step. Further-
more, such HDR values are beneficial for several image-based rendering applications;
see e.g. [DM97, RHD+10]. Certainly, similar to exposure fusion (cf. Figure 1.7), also
in this HDR context camera shakes and moving objects pose a big challenge for HDR
reconstruction methods. In fact, an appropriate handling of such movement during
the acquisition of the image set is of great importance and hence, has been an active
field of research in recent years.

1The term irradiance describes how much light the image sensor receives per time (incident power).
In this work, we consider HDR imaging as the computation of irradiance values incident on the
imaging sensor. The actual scene radiances emitted/reflected by the scene objects are propor-
tional to those irradiances. The exact relation depends on the imaging system and may be
spatially varying; see e.g. [DM97] for further details.
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(a) 0.25 seconds (b) 1 second (c) 4 seconds

light energy
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(d) camera response function (e) false colour irradiances (f) tone mapped irradiances

Figure 1.8: Illustration of high dynamic range imaging. Top: (a–c) Three of 13 differently
exposed input images with given exposure times [Max05b]. Bottom: (d) Camera response
function for red, green, and blue colour channel. (e) HDR irradiance values in logarithmic
false colour representation from blue over green to red. (f) Tone mapped HDR irradiance
values with tone mapping operator of Fattal et at. [FLW02].

Depth from Focus. Also in the context of focal stacks, knowledge about the imaging
process is highly valuable. For instance, if the (relative) distance is known for which
objects appear in focus for a particular image, it is possible to reconstruct 3D depth
information besides the entirely sharp composite image. Such an approach is called
depth from focus [DW88], or also shape from focus [NN94]. With the computed depth
map and all-in-focus image, it is for instance possible to create images with desired
focus settings in the postproduction; see e.g. [JBL12]. An example for depth from
focus can be found in Figure 1.9. Here, Figure 1.9(a–c) depict three of the 91 input
images of the focal stack, where the focal plane distance increases from frame to
frame. In Figure 1.9(d,e), we show our computed all-in-focus image and depth map.
Additionally, in Figure 1.9(f) we present a 3D rendering of the captured scene with
the computed all-in-focus image as texture.
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(a) short focal plane distance (b) mid focal plane distance (c) large focal plane distance

(d) all-in-focus image (e) rendered depth map (f) textured rendering

Figure 1.9: Example of depth from focus. Top: (a–c) Three of 91 input images with increas-
ing focal plane distance [BO10]. Bottom: (d) Computed all-in-focus image, (e) computed
depth map, and (f) rendering with all-in-focus image as texture. Here, we render our 3D
models with the open source software Blender [Ble16].

1.2 Scope and Contributions

In this thesis, we approach those image fusion tasks within a variational framework.
More specifically, we regard the input images as discrete samples of continuous 2D
functions, and compute the unknowns by minimising suitable energy functionals. This
not only allows a transparent modelling with an established mathematical background
and well-founded optimisation techniques, but also leads to high accuracy and state-
of-the-art results. Additionally, such a variational approach provides intuitive ways to
couple individual tasks in joint models that highly benefit from the induced mutual
feedback. In this regard, we prefer simple and comprehensible models with solid
mathematical foundations to sophisticated approaches that are explicitly tuned for
specific benchmark results. Hence, our main focus is not to reach unconditionally the
ultimate quality, but to propose rather general concepts with strong mathematical
justifications. In this way, we intend to uncover the main ingredients and ideas that
are most responsible for qualitatively good results. Nevertheless, we hope that the
presented concepts stimulate further research, and in this way might enter practical
application software. While we consider image fusion as the main motivation for our
work, the presented concepts can be seen as contributions to several research fields
such as efficient numerical solvers, multispectral imaging, decolourisation, exposure
fusion, high dynamic range imaging, stereo and optic flow computation, ghost removal,
depth from focus, and higher order regularisation. In the following, we outline the
individual contributions of our work in more detail.
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1.2 Scope and Contributions

Fast Semi-Iterative Schemes. As a first contribution, we introduce our novel so-
called Fast Semi-Iterative (FSI) schemes that serve as efficient solvers for our upcom-
ing variational fusion techniques. In fact, they are well-suited for various diffusion-like
processes, elliptic problems, and constrained optimisation. For those tasks, there exist
basic iterative approaches that are simple to implement and well-parallelisable; such
as explicit schemes, Richardson iterations, or projected gradient descent methods.
However, the efficiency of such basic solvers suffers from severe step size restrictions.
As a remedy, we propose a simple and highly efficient acceleration technique: We
extrapolate a basic solver iteration with the previous iterate. To derive suitable ex-
trapolation weights, we establish a recursion relation that relates box filtering with an
explicit scheme for 1D homogeneous diffusion. Our resulting FSI schemes overcome
the main drawbacks of recent Fast Explicit Diffusion (FED) and Fast Jacobi tech-
niques. Moreover, we uncover an interesting connection to the heavy ball method in
optimisation. Our experiments show benefits of our FSI schemes for image processing
applications and Nesterov’s worst case problems in the context of convex and strongly
convex optimisation.

Variational Image Fusion. Indeed, there exist many approaches that are tailored
to the individual image fusion tasks that we discussed in the previous section. Hence,
the natural question arises if those methods can be substituted by a single generic
fusion technique. In fact, we observe that many fusion applications aim at a com-
posite image with a high local contrast. Based on this finding, we propose a general
variational image fusion method that works well in many application domains. In
particular, we combine different images of the same scene to a single composite that
is well-exposed and offers optimal saturation and local contrast. Previous research
approaches this task by first precomputing application-specific weights based on the
input, and then combining those weights with the images to the final composite in a
second decoupled step. In contrast, we design our model assumptions directly on the
fusion result. To this end, we formulate the output image as a convex combination
of the input and incorporate concepts from perceptually inspired contrast enhance-
ment techniques such as a local and nonlinear response. This output-driven approach
is the key to the versatility of our general image fusion model. In this regard, we
demonstrate the performance of our fusion scheme with several applications such as
exposure fusion, multispectral imaging, and decolourisation. We conduct thorough
validations that illustrate the improvements compared to state-of-the-art approaches
that are specifically tailored to the individual tasks.

Alignment with Complete Rank Transform. Image fusion methods rely on the as-
sumption that the input images are perfectly aligned. Otherwise, pixels that do not
belong to the same object are merged in the fusion process. As discussed, this may
lead to severe artefacts in the resulting composite. However, since camera shakes and
moving objects during the image acquisition are omnipresent in a practical setting,
we usually cannot assume perfectly aligned input images. Hence, a registration of
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the image sets is often inevitable. To this end, we base on well-established varia-
tional alignment strategies and adapt them to the difficult exposure series setting.
More specifically, we propose a novel patch-based descriptor that is invariant un-
der monotonically increasing brightness changes, which are characteristic brightness
changes for exposure series. We derive our novel complete rank transform (CRT) from
successful descriptors proposed by Zabih and Woodfill in 1994, called rank and cen-
sus [ZW94]. However, in contrast to rank and census, our CRT feature provides richer
local information without leaving this class of invariance. We experimentally demon-
strate quality improvements to related state-of-the-art techniques in the context of
illumination-robust optic flow.

Ghost Removal with Brightness Transfer Function. Due to violations of the model
assumptions such as occlusions or highly saturated image regions, we have to cope
with remaining inaccuracies in the alignment results. As outlined above, even small
misalignments may lead to severe ghosting artefacts in the fusion results. Hence, an
additional postprocessing step is required to eliminate remaining misalignments. For
this task, we present an intuitive ghost removal approach that identifies registration
errors and compensates for them in an appropriate way. To this end, we base on
the concept of a brightness transfer function (BTF) that relates the brightness values
between the differently exposed input images. Following Grossberg and Nayar [GN03],
we compute the BTFs by means of image histograms. In this way, the proposed
approach is independent of the knowledge of the exposure times and the camera
response function, and hence well-suited for the general exposure fusion setting. On
top of that, we design our ghost removal technique in such a way that the processed
images can directly serve as input of standard fusion techniques without modification.

Simultaneous HDR and Optic Flow Computation. As mentioned above, further
knowledge about the image acquisition process such as the exposure times or the
camera response function allows to infer additional information about the captured
scene. In this regard, we discuss approaches to reconstruct physically plausible HDR
irradiance values from a set of images taken with varying exposure times. Also here,
we consider the case of unaligned input images, and demonstrate that this additional
prior knowledge does not only allow an HDR reconstruction, but also supports the
alignment process in a beneficial way. More specifically, we present the first fully
coupled approach that simultaneously computes an aligned HDR composite as well
as accurate dense displacement maps (optic flow fields). In this way, we cannot only
cope with dynamic scenes but even precisely represent the underlying scene motion.
The proposed joint optimisation has advantageous effects, such as an intrinsic ghost
removal and an HDR-coupled smoothing. Both the HDR images and the optic flow
fields benefit substantially from those features and the induced mutual feedback. We
demonstrate this with synthetic and real-world experiments.
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1.3 Thesis Outline

Variational Depth from Focus. Focus fusion is the task of combining a set of dif-
ferently focused images to a single composite that is entirely sharp. Also in this
context, we make beneficial use of further information. In fact, if for each image
the (relative) distance is known at which objects appear in focus, it is possible to
infer 3D depth information of the captured scene. The crucial point of such a depth
from focus approach is the decision about the in-focus areas. To this end, we con-
sider several sharpness criteria to construct initial depth maps. Next, we present a
variational method that introduces novel regularisation strategies onto such depth
maps. In particular, we regularise the depth maps with a sophisticated anisotropic
technique combined with robust data fidelity terms. Experiments with synthetic and
real-world data demonstrate that our new model provides significantly better quality
than related state-of-the-art approaches.

Anisotropic Second Order Coupling Model. On top of that, we account for the
piecewise affine shape of real-world depth maps. To this end, we propose a novel
anisotropic second order regularisation technique that combines two important con-
cepts in a beneficial way: On the one hand, anisotropic regularisation is a success-
ful and well-established strategy that enables direction-dependent smoothing. On
the other hand, recent computer vision applications show the need for second order
smoothness in the context of depth map computation. In this work, we combine the
benefits of both worlds, and introduce a second order regulariser that allows to penalise
the unknown function and its slope in a direction-dependent way. In particular, we
build on an isotropic coupling model and systematically incorporate anisotropic ideas
from first order approaches. Moreover, we embed the resulting regulariser into our
variational depth from focus approach, and experimentally demonstrate the benefits
of the new model.

1.3 Thesis Outline

The order of the discussed contributions in the previous paragraphs reveals already
a coarse outline of the presented work. The complete structure of this thesis is as
follows: After a discussion of the foundations that build the basis of our work in
Chapter 2, we present our novel iterative schemes in Chapter 3. In Chapter 4, we
explain our general variational image fusion method that performs well for many fusion
applications. Chapter 5 covers our two-step approach for the alignment of exposure
series that consists of an optic flow-based registration and a ghost removal method.
Provided further knowledge about the exposure series, we additionally present our
joint model for HDR and optic flow computation. In the subsequent Chapter 6, we
propose our depth from focus approach and introduce our novel anisotropic second
order regularisation technique. We conclude this thesis with a summary and outlook in
Chapter 7. In the Appendix A and B, we give a list of the notation and abbreviations
applied throughout this thesis. Moreover, in Appendix C we itemise our individual
publications.
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Chapter 2

Foundations

“You have to learn the rules of the game.
And then you have to play better

than anyone else.”

Albert Einstein

pixabay.com

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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2.4 Projections onto Closed Convex Sets . . . . . . . . . . . 18
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2.1 Introduction

This chapter builds the basis of our work. First, we describe how we interpret digi-
tal images as continuous functions in Section 2.2. In this context, we also introduce
different colour spaces. Next, we present our general variational framework and ex-
plain its minimisation by means of the Euler-Lagrange equations in Section 2.3. In
Section 2.4, we discuss additional side-constraints that restrict the unknowns to some
convex sets. Moreover, we consider the direct solution of equation systems by means
of a Cholesky decomposition in Section 2.5.
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n1h1

n2h2

f1,1 f2,1 f3,1 f4,1

f1,2 f2,2 f3,2 f4,2

f1,3 f2,3 f3,3 f4,3

h1

h2

(f1,3, . . . , f4,3, f1,2, . . . , f4,2, f1,1, . . . , f4,1)T ∈ Rn1·n2

(a) sampling (b) vector notation

Figure 2.1: Illustration of 2D function sampling with n1 = 4 and n2 = 3, and its represen-
tation in vector notation, where we concatenate the image rows on top of each other.

2.2 Images as Functions

2.2.1 From Images to Functions

Generally, a digital greyscale image is a two-dimensional array where each cell repre-
sents a single picture element (pixel). The associated cell value specifies the brightness
of the corresponding pixel. We interpret those pixels as discrete sampling points of
a continuous 2D function f : Ω → R, where Ω ⊂ R2 describes the rectangular image
domain. Let h1 and h2 define the horizontal and vertical grid sizes, and let n1 and
n2 denote the corresponding number of pixels in horizontal and vertical direction.
Then, the value of each pixel (i, j) with i = 1, . . . , n1 and j = 1, . . . , n2 is obtained by
sampling the 2D function f at

(
(i− 1

2
) · h1, (j − 1

2
) · h2

)
; cf. Figure 2.1(a).

2.2.2 Colour Spaces

The extension of the discussed concept from greyscale to colour images is straight-
forward. Instead of considering scalar-valued functions f : Ω → R, we regard vector-
valued functions f : Ω → R3, where each pixel contains a 3D vector that specifies
its colour. In this work, we consider three different colour spaces illustrated in Fig-
ure 2.2. For a broad discussion of various colour spaces and related concepts, we refer
the interested reader e.g. to the extensive text book of Wyszecki and Stiles [WS00].

RGB

The most common colour space is the RGB colour space where R represents the red,
G the green, and B the blue colour channel. This colour space is motivated by the
trichromatic human visual system that contains three different kind of cones. Each
of them is most sensitive to the light wavelength that corresponds to the mentioned
colours red, green, and blue; see e.g. [Fai13]. If not explicitly mentioned otherwise,
we apply this RGB colour space in our work.
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(a) colour image (b) R (c) G (d) B

(e) Y (f) Cb (g) Cr

(h) L (i) a (j) b

Figure 2.2: Illustration of colour spaces. In reading order : (a) Colour test image Baboon.
(b–d) Decomposition in RGB colour space. (e–g) Decomposition in YCbCr colour space.
(h–j) Decomposition in CIE-Lab colour space. For visibility reasons, the CIE-Lab channels
are shifted and scaled appropriately.
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YCbCr

The RGB colour space separates a colour into the primary colours red, green, and blue.
However, for some applications a different colour decomposition might be beneficial.
To this end, the YCbCr colour space is frequently applied. Here, the luma channel
Y describes the luminance of the colour, whereas the chroma channels Cb and Cr
describe the blue-yellow and red-cyan chromatic components, respectively. For RGB
and YCbCr values in the range [0, 1], the transformations between the two colour
spaces are given by (cf. [Pra01]) Y

Cb
Cr

 =

0.0
0.5
0.5

+

 0.299000 0.587000 0.144000
−0.168736 −0.331264 0.500000

0.500000 −0.418668 −0.081312

R
G
B

 (2.1)

and R
G
B

 =

1.000000 0.000926 1.401687
1.000000 −0.343695 −0.714169
1.000000 1.772160 0.000990

 Y
Cb
Cr

−
0.0

0.5
0.5

 . (2.2)

CIE-Lab

The CIE-Lab colour space is designed in such a way that the Euclidean distance
between two colours reflects the colour difference perceived by a human observer; see
e.g. [Fai13]. Since the RGB colour space is device-dependant while the CIE-Lab space
is not, a direct transformation from RGB values to CIE-Lab values is not possible.
Hence, in a fist step, the RGB values need to be transformed to a device-independent
representation. Following the sRGB standard (IEC 61966-2-1:1999), the conversion
from RGB to the device-independent CIE-XYZ colour space is given by

C̄ =

{
C

12.92
if C ≤ 0.04045,(

C+0.055
1.055

)2.4
else

(2.3)

with C ∈ {R,G,B}, followed byX
Y
Z

 =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

R̄
Ḡ
B̄

 . (2.4)

Then, the nonlinear transformation from CIE-XYZ to CIE-Lab reads (cf. [Pra01,
GW07]) L

a
b

 =

 116 ·Θ(Y/Yn)− 16
500 · (Θ(X/Yn)−Θ(Y/Yn))
200 · (Θ(Y/Yn)−Θ(Z/Zn))

 , (2.5)

where Xn

Yn

Zn

 =

0.950456
1.000000
1.089058

 (2.6)
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is the reference white point under the illuminant D65, and

Θ(z) =

{
7.787 · z + 0.1379 if z ≤ 0.008856,
3
√
z else.

(2.7)

2.3 Calculus of Variations

2.3.1 Variational Framework

In this section, we explain the general variational framework that forms the basis
of our models. Since we work with two-dimensional images, we restrict ourselves to
functions of x = (x1, x2)T ∈ Ω ⊂ R2. Moreover, we consider vector-valued functions
u = (u1, . . . , unu)T, where the number of unknown functions nu and the meaning of
ui depend on the actual application. Our general energy functional is given by

E(u) =

∫
Ω

F(u1, . . . , unu ,∇u1, . . . ,∇unu) dx , (2.8)

where ∇ := (∂x1 , ∂x2)
T denotes the spatial gradient operator. The design of the inte-

grand F(u1, . . . , unu ,∇u1, . . . ,∇unu) is the crucial point of all our variational meth-
ods. It depends on the considered problem and the associated model assumptions.
Generally, we are interested in the desired solution u that is computed as a minimiser
of the energy functional in (2.8).

2.3.2 Euler-Lagrange Equations

According to the calculus of variations (see e.g. [GF00]), the necessary conditions for
a minimiser of the energy in (2.8) are given by the so-called Euler-Lagrange equations

Fui − ∂x1F∂x1ui − ∂x2F∂x2ui = 0 (i = 1, . . . , nu) . (2.9)

With n as the outer normal vector on the image boundary ∂Ω, the corresponding
boundary conditions read

nT

(
F∂x1ui
F∂x2ui

)
= 0 (i = 1, . . . , nu) . (2.10)

2.3.3 Numerical Solution

Generally, we discretise the Euler-Lagrange equations on a rectangular grid with uni-
form horizontal and vertical grid sizes h1 and h2, respectively. The resulting discrete
Euler-Lagrange equations lead to (non)linear systems of equations in the form of

B(u) u = d(u) , (2.11)
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where the matrix- and vector-valued functions B : RN → RN ×RN and d : RN → RN

might depend in a nonlinear way on u ∈ RN . Please note that we consider here in the
discrete setting a vector notation for the unknown u. In fact, there is an unique one-
to-one mapping between the 2D pixel notation in (2.9) and the single index notation
in (2.11). More specifically, this is achieved by stacking the rows of each channel ui,
i = 1, . . . , nu, on top of each other to form the vector u; cf. Figure 2.1(b). With n1

and n2 denoting the number of pixels in horizontal and vertical direction, the number
of equations N is given by N = nu · n1 · n2. We present efficient schemes for the
solution of such large equation systems in Chapter 3.

2.4 Projections onto Closed Convex Sets

For some applications it is beneficial to constrain the solution of the minimisation
problem to a specific set. In this regard, we deal with closed convex sets C: A set C is
said to be convex if for all u,v ∈ C and ε ∈ [0, 1] the point (1− ε)u+ εv also belongs
to the set C (cf. [BV04]).

To realise such constrains, we project the current solution after each solver step
onto the permitted convex set. In this regard, the Euclidean projection of a vector
u ∈ Rn onto a closed convex set C ⊂ Rn is given by minimising (see e.g. [PB14])

E(ǔ) = |ǔ− u|2 s.t. ǔ ∈ C , (2.12)

where |·| denotes the Euclidean norm. Next, we give three examples of convex sets and
their corresponding projections that we consider in this work; cf. Figure 2.3. Further
details about those projections onto convex sets can for instance be found in [PB14].

Box. First, we consider the convex set Cbox = {u | a ≤ u ≤ b}, where the relation
≤ is meant component-wise, and in this sense a ≤ b. The analytic projection onto
this set is for each component ui of the vector u given by

PCbox(ui) =


ai if ui ≤ ai ,

ui if ai < ui < bi ,

bi else.

(2.13)

Unit Ball. A unit ball is defined by the set Cball = {|u| ≤ 1}. The corresponding
projection of u onto Cball reads

PCball(u) =
u

max{1, |u|}
. (2.14)

Simplex. The unit simplex is defined by the convex set Csimp = {u | u ≥ 0 and uT1 =
1}, where 1 ∈ Rn is a vector of ones. The analytic projection onto this set is for each
component ui given by

PCsimp
(ui) = max{0, ui − θ} , (2.15)
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a1 b1

a2

b2

1

1

1

1

1

(a) box in R2 (b) unit ball in R2 (c) simplex in R3

Figure 2.3: Illustration of convex sets.

Algorithm 2.1: Projection onto simplex in Rn [SS06].

input : vector u ∈ Rn

output: projected vector ǔ ∈ Csimp

1 v = sort(u) such that v1 ≥ . . . ≥ vn

2 q = max
{
j ∈ {1, . . . , n}

∣∣ vj − 1
j

( j∑
i=1

vi − 1
)
> 0
}

3 θ = 1
q

( q∑
i=1

vi − 1
)

4 for i = 1, . . . , n do
5 ǔi = max {0, ui − θ}

where θ is chosen such that the projected vector ǔ satisfies ǔT1 = 1. An efficient way
for computing such a projection onto a simplex in Rn is given in Algorithm 2.1 [SS06].

2.5 Cholesky Decomposition

The discussed Euler-Lagrange equations lead to large (non)linear systems in the form
of (2.11). Efficient iterative solvers for such large systems are presented in Chapter 3.
However, in this thesis, we are also concerned with small linear systems where di-
rect solution methods are applicable. In this context, we deal with small symmetric
positive definite matrices B ∈ RM×M , where M � N . Accordingly, our goal is to
compute the unknown solution u ∈ RM of the small linear system

Bu = d (2.16)

with known right hand side d ∈ RM . A well-suited method for such problems is the
Cholesky decomposition (see e.g. [GV96]). Here, the goal is to decompose the system
matrix B such that

B = CCT , (2.17)

where C is a lower triangular matrix with real and positive diagonal entries. More
specifically, we compute the entries cij of C by means of the entries bij of B as follows
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(see e.g. [PTVF07]):

cij =



√
bii −

i−1∑
q=1

c2
iq if i = j ,

1
cjj

(
bij −

j−1∑
q=1

ciqcjq

)
if i > j ,

0 else.

(2.18)

With the help of this unique decomposition B = CCT the solution of the system
Bu = d is straightforward: First, we replace CTu by the vector v and solve

Cv = d (2.19)

with forward substitution. Next, backward substitution allows to solve

CTu = v (2.20)

which finally yields u. Note that such forward and backward substitutions can be
realised efficiently.
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Chapter 3

Fast Semi-Iterative Schemes

“FSI engines achieve higher performance
and better dynamics than conventional engines,

with better efficiency.”

AUDI AG

pixabay.com
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Main parts of this chapter base on our work published in [HOW+16].

3.1 Introduction

In this chapter we propose efficient numerical solvers for three problem classes in
image processing and computer vision: (i) diffusion evolutions, (ii) variational models
leading to elliptic partial differential equations (PDEs), and (iii) constrained convex
optimisation problems.
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Diffusion processes have applications e.g. as linear or nonlinear scale-spaces [Iij62,
PM90,Wei98]. In the space-discrete case, they lead to dynamical systems defined by

∂tu = A(u)u , (3.1)

where the vector u ∈ RN contains the grey values in N different pixel locations,
t ∈ (0,∞) denotes the diffusion time, and A ∈ RN×N is a symmetric negative semi-
definite matrix that may depend in a nonlinear way on the evolving image u. This
abstract model holds in any dimension and includes isotropic as well as anisotropic
diffusion models with differential operators of second or higher order.

Elliptic problems frequently arise as steady states of diffusion evolutions or as Euler-
Lagrange equations of variational models [BPT88]. Space-discrete formulations lead
to systems of equations in the form of

B(u)u = d(u) , (3.2)

where B ∈ RN×N is symmetric positive definite, and d ∈ RN is the known right hand
side. In case of nonlinear evolutions or nonquadratic variational models, the system
matrix B and the vector d may depend on the evolving image u.

Constrained convex optimisation problems appear e.g. in dual formulations of cer-
tain nonsmooth minimisation tasks such as total variation (TV) regularisation [ROF92,
AV94]. A general framework can be cast as

minimise F (u) s.t. u ∈ C , (3.3)

where F : RN → R is a smooth convex function, and C denotes a convex set that
models the constraint. Such constrained optimisation methods are flexible modelling
tools that have a broad range of applications.

For all three problem classes there exist basic iterative schemes, namely (i) explicit
(Euler forward) finite difference schemes, (ii) Richardson iterations, and (iii) pro-
jected gradient descent methods. These schemes are easy to implement and well-
suited for parallel architectures such as graphics processor units (GPUs). Unfortu-
nately, severe restrictions of the time step sizes or the relaxation parameters render
such algorithms rather inefficient. Hence, it would be highly desirable to find accel-
eration strategies that improve the efficiency of those basic schemes while preserving
their advantages.

Main Contributions. We propose an acceleration strategy that consists of a semi-
iterative approach in the sense of Varga [Var57]. It computes the new iterate uk+1

by applying the basic iterative scheme to uk and extrapolating the result by means
of uk−1. Here, the extrapolation step is responsible for a substantial acceleration.
We call our techniques Fast Semi-Iterative (FSI) schemes. In contrast to classical
semi-iterative approaches from the numerical literature, we obtain different extrapo-
lation parameters that can be derived in an intuitive way from box filter recursions.
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A first appearance of this recursion relation can be found in the Ph.D. thesis of
Grewenig [Gre13], where box filters are shown to give a good compromise between ef-
ficiency and numerical stability (cf. also [WGSB16]). Additionally, we present several
extensions of our techniques such as an adaptation to constrained optimisation and to
strongly convex problems. On top of that, we uncover interesting connections of our
FSI schemes to well-performing iterative procedures such as Fast Explicit Diffusion
(FED) [WGSB16] or Polyak’s heavy ball method [Pol64].

Chapter Outline. After a discussion of related work in Section 3.2, we review 1D
linear diffusion and expose its relation to box filtering in Section 3.3. Subsequently,
we transfer this concept to iterative schemes and present our novel FSI techniques
for diffusion evolutions (Section 3.4), elliptic problems (Section 3.5), and constrained
convex optimisation (Section 3.6). Our experiments in Section 3.7 illustrate the ben-
efits of our algorithms. We discuss possible limitations in Section 3.8, and conclude
this chapter with a summary and outlook in Section 3.9. Additionally, we present
details of our mathematical analysis in the Appendix 3.A of this chapter.

3.2 Related Work

Our schemes are closely related to nonstationary iterative schemes, where the algo-
rithmic parameters vary from iteration to iteration. In this context, already in 1911,
Richardson discussed possible benefits of varying relaxation parameters in his itera-
tive scheme [Ric11]. Later, based on Chebyshev polynomials of the first kind, cyclic
parameter choices were proposed that allow substantial speed-ups; see e.g. [Lan52,
Sho53,You54]. Inherently, the Richardson method in [Ric11] is closely related to gra-
dient descent schemes, and thus to the solution of parabolic PDEs. In this context,
similar ideas have been proposed by Yaun’Chzhao-Din [Yua58] and Saul’yev [Sau64].
They are known under the name super time stepping [GS78,AAG96]. Recently, mo-
tivated by box filter factorisations, Weickert et al. [WGSB16] proposed cyclically
varying parameters that substantially improve the damping properties of the result-
ing schemes. Additionally, the authors introduced a Jacobi-like scheme for elliptic
problems. Setzer et al. [SSM13] built on the work of [WGSB16] and provided an
extension to projection methods with application to nonsmooth optimisation. Fur-
thermore, we can relate such cyclic Richardson approaches to so-called semi-iterative
procedures that rely on Chebyshev recursion formulas [Var57,GV61]; see e.g. [You89]
for a historical overview. In this regard, we additionally discuss relations to closely re-
lated Runge-Kutta-Chebyshev methods for parabolic problems [vS80,VHS90]. For the
interested reader, we refer to [vdH96] for a survey of Runge-Kutta methods for partial
differential equations. On top of that, we are able to derive a connection of our semi-
iterative schemes to Polyak’s heavy ball method [Pol64], where Ochs et al. [OBP15]
recently proposed an extension that includes proximal mappings. Similarly, our tech-
nique relates to the so-called momentum method that is frequently applied in machine
learning approaches; see e.g. [RHW86,Qia99,SMDH13]. The term momentum stems
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from an analogy to physics, in particular to the movement of a Newtonian particle
through a viscous medium in a conservative force field; see e.g. [Qia99].

With the knowledge gained in the upcoming sections, we will be able to discuss the
connections of our FSI schemes to the mentioned algorithms in more detail.

3.3 How to Benefit from Box Filtering

3.3.1 Explicit Scheme for 1D Linear Diffusion

As starting point of our work we consider linear diffusion of a 1D signal u(x, t):

∂tu = ∂xxu . (3.4)

With grid size h and time step size τ , an explicit scheme for (3.4) is given by

uk+1
i = (I + τ L)uki , (3.5)

where

L :=
1

h2
· 1 −2 1 (3.6)

denotes the standard discretisation of the 1D Laplacian in stencil notation,

I := 1 (3.7)

the identity operator, and uki approximates u in pixel i at time level k. For stability
reasons, all stencil weights should be nonnegative. This implies that the time step
size must satisfy τ ≤ h2/2. Obviously, this restriction makes such an explicit scheme
inefficient: With n explicit diffusion steps, we can only reach a stopping time of O(n).

3.3.2 Box Filtering via Iterative Explicit Diffusion

In order to apply explicit schemes more efficiently, let us make a didactic excursion
to box filters. A box filter B2n+1 of length (2n+ 1)h is defined by

B2n+1 :=
1

2n+ 1
· 1 . . . 1

(2n+ 1)h

(3.8)

such that

[B2n+1 u]i =
1

2n+ 1

n∑
j=−n

ui+j . (3.9)

It is well-known [Hel77] that linear diffusion with stopping time T is equivalent to a
convolution with a Gaussian of variance σ2 = 2T . Moreover, the central limit theorem
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Figure 3.1: Iterated box filtering. An m-fold iteration of a box filter B2n+1 with variance
σ2
n (here: n = 1, black) approximates Gaussian convolution with variance mσ2

n (blue).
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Figure 3.2: Illustration of the connection between box filtering and an explicit scheme for
1D homogeneous diffusion (n = 3). From top to bottom: k = 0, 1, 2. This illustration is
inspired by Prof. Joachim Weickert.

tells us that iterated box filtering approximates Gaussian convolution. Indeed, an m-
fold iteration of a box filter B2n+1 with variance σ2

n approximates a Gaussian with
variance mσ2

n; cf. Figure 3.1. The variance σ2
n of B2n+1 is given by (cf. also [Wel86])

σ2
n =

1

2n+ 1

n∑
j=−n

(jh− 0)2 =
2h2

2n+ 1

n(n+ 1)(2n+ 1)

6
=

n(n+ 1)

3
h2 . (3.10)

This implies that a single application of a box filter B2n+1 approximates linear diffusion
with stopping time TB2n+1 = σ2

n/2 = n(n+1)
3

h2

2
. Note that this stopping time is O(n2).

Hence, if we were able to implement B2n+1 by means of n explicit linear diffusion
steps, we could accelerate the explicit scheme from O(n) to O(n2). To this end, let
us consider the following theorem (cf. [Gre13, Theorem 4.1]):

Theorem 1 (Connection of Box Filters and Explicit Diffusion). A box filter B2n+1 of
length (2n+ 1)h can be constructed iteratively by n explicit linear diffusion steps:

B2k+3 = αk · (I + τL)B2k+1 + (1− αk) ·B2k−1 (k = 0, . . . , n− 1)

with τ := h2/2, αk := (4k + 2)/(2k + 3), and B−1 := I.

We illustrate this connection for n = 3 in Figure 3.2. Note that for k = 0 we have
B3 = I + h2

3
L, which is a single diffusion step with time step size 2

3
τ .
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Proof. We proof Theorem 1 by induction. Let us fist consider k=0 and k=1:

[B3 u]i =
2

3
(I + τL)ui +

1

3
ui =

1

3
(ui−1 + ui+1) +

1

3
ui =

1

3

1∑
j=−1

ui+j ,

[B5 u]i =
6

5
(I + τL) [B3 u]i −

1

5
ui =

1

5

( 0∑
j=−2

ui+j+
2∑
j=0

ui+j − ui
)

=
1

5

2∑
j=−2

ui+j .

Then, the inductive step for k ≥ 2 yields

[B2k+3 u]i =
4k + 2

2k + 3
· (I + τL) [B2k+1 u]i −

2k − 1

2k + 3
· [B2k−1 u]i

=
1

2k + 3

( k−1∑
j=−k−1

ui+j +
k+1∑

j=−k+1

ui+j −
k−1∑

j=−k+1

ui+j

)
=

1

2k + 3

k+1∑
j=−(k+1)

ui+j .

3.3.3 Accelerating the Explicit Scheme for 1D Linear Diffusion

To apply Theorem 1 for accelerating the explicit diffusion scheme (3.5), let us first
rewrite it in matrix-vector notation:

uk+1 = (I + τ L)uk , (3.11)

where the vector u ∈ RN contains the discrete entries of u, I ∈ RN×N is the identity
matrix, and the symmetric negative semi-definite matrix L ∈ RN×N implements the
Laplacian. The box filter relation in Theorem 1 suggests the following scheme to ac-
celerate the explicit diffusion scheme (3.11) such that uk corresponds to an application
of a box filter B2k+1:

uk+1 = αk · (I + τ L)uk + (1− αk) · uk−1 (3.12)

with τ = h2/2, αk = (4k + 2)/(2k + 3), and u−1 := u0. As we have seen, n iterations
of this scheme implement a box filter B2n+1 of length (2n + 1)h. However, a single
box filter might be a poor approximation for the actual linear diffusion process that is
equivalent to Gaussian convolution. To improve the approximation quality, we should
iterate the box filter; cf. Figure 3.3. Hence, we propose a cyclic application of (3.12),
where the m-th cycle with cycle length n is given by

um,k+1 = αk ·
(
I + τ L

)
um,k + (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(3.13)

For the next cycle, we set um+1,0 := um,n. Here, the number of cycles is responsible
for the accuracy, while the cycle length n accounts for the O(n2) efficiency; cf. also
Figure 3.3.
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Figure 3.3: Different approximations of Gaussian convolution with variance σ2 = 4 (blue) by
means of m-fold applications of a box filter B2n+1 with length 2n+ 1 (black). We see that
the approximation quality improves with the number of box filter iterations. Moreover, this
figure illustrates the tradeoff between accuracy and efficiency: While the approximation in
(a) requires only three solver iterations, the more accurate approximation in (c) requires six
iterations. A good tradeoff in this example is given by (b) with four solver iterations.

3.4 FSI Schemes for Diffusion Evolutions

Our discussion so far was for didactic reasons only, since linear diffusion can be im-
plemented directly as an efficient box filter without explicit iterations. However, it
suggests how we could generalise these ideas to arbitrary isotropic or anisotropic non-
linear diffusion processes (3.1) that have explicit schemes of type

uk+1 =
(
I + τ A(uk)

)
uk , (3.14)

where A is symmetric and negative semi-definite. Such schemes have the time step
size restriction 0≤ τ < 2/%(A(uk)), where % denotes the spectral radius. Obviously,
there is a strong similarity of (3.14) to the linear diffusion scheme in (3.11). Hence,
it appears to be natural to formulate, in analogy to (3.13), the following Fast Semi-
Iterative (FSI) scheme with a symmetric and negative semi-definite A:

um,k+1 = αk ·
(
I + τ A(um,k)

)
um,k + (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(3.15)

This scheme describes the m-th cycle with length n of our FSI algorithm. We repeat
it several times to reach a specific stopping time.

Connection to Fast Explicit Diffusion (FED)

As explained in Section 3.3, we build on the connection between box filtering and
explicit schemes. This was inspired by the cyclic FED approach of Weickert et
al. [WGSB16] which demonstrates the benefits of a reliance on box filters. More
specifically, Weickert et al. [WGSB16] exploit a factorisation of a box filter into sev-
eral explicit diffusion steps to construct highly efficient algorithms. In case of linear
problems, one can even show that FED and FSI schemes yield identical results after
each cycle; cf. Section 3.A.2. However, in case of nonlinear problems, the discussed
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semi-iterative structure of our FSI schemes seems to be beneficial since it shows a
higher robustness to nonlinear updates within one cycle. We demonstrate this by
means of experiments in Section 3.7. Moreover, FED schemes are highly sensitive to
numerical inaccuracies. Due to this, FED approaches require sophisticated rearrange-
ments of possibly unstable time steps to avoid the explosion of rounding errors; see
e.g. [GS78, CR96, WGSB16] and references therein. We eliminate this drawback by
our FSI technique and its semi-iterative structure.

Connection to Runge-Kutta-Chebyshev Method

Additionally, we can relate our FSI schemes to another class of numerical methods
for the solution of parabolic PDEs, so-called Runge-Kutta-Chebyshev methods; see
e.g. [vS80,VHS90,vdH96] and references therein. Here, the algorithmic parameters of
the multi-step Runge-Kutta scheme are determined by means of Chebyshev polyno-
mials of the first kind. In comparison to that, we are able to show a connection of our
schemes to Chebyshev polynomials of the second kind; cf. Section 3.A.1. Interestingly,
this underlying difference seems to be the main reason for better damping properties:
While for instance the method of van der Houwen and Sommeijer [vS80] requires an
additional damping parameter, our FSI schemes can be used without any additional
damping; cf. also [Gre13].

3.5 FSI Schemes for Elliptic Problems

So far, we have considered diffusion-like processes that correspond to parabolic PDEs.
Next, we explain how to transfer this concept to discretised elliptic PDEs, or more
generally to the solution of equation systems in the form of (3.2). In the linear case,
formulating (3.2) as u = u− ω(Bu− d) gives rise to the Richardson scheme [Ric11]

uk+1 = (I − ωB)uk + ω d (3.16)

with 0 ≤ ω < 2/%(B). Considering the error vector ek := uk−u∗ between the current
estimate uk and the unknown exact solution u∗ yields

ek+1 = uk+1 − u∗ = uk − u∗ − ω(Buk − d−Bu∗ + d) = (I − ωB) ek , (3.17)

where we used that Bu∗ = d. We observe a strong similarity of (3.17) to the explicit
diffusion scheme in (3.11). Hence, we propose the following FSI scheme for elliptic
problems:

um,k+1 = αk ·
(
(I − ωB)um,k + ω d

)
+ (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(3.18)

To extend (3.18) to nonlinear systems of equations in the form of (3.2), we replace
B and d by their nonlinear counterparts B(um,k) and d(um,k). Moreover, we choose
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0 ≤ ω < 2/L , where L > 0 denotes the Lipschitz constant of the smooth strictly
maximal monotone map G(u) := B(u)u− d(u) with

(u− v)T (G(u)−G(v)) > 0 ∀u,v ∈ RN with u 6= v (3.19)

and

|G(u)−G(v)| ≤ L · |u− v| ∀u,v ∈ RN . (3.20)

Preconditioning

The discussed FSI method yields fast convergence for problems where the coefficients
of the equation system have a similar value of magnitude. However, in case of strongly
differing coefficients a preconditioning or, in other words, a different splitting of the
system matrix B, turns out to be highly beneficial. As an example, we consider the
Jacobi overrelaxation splitting B = 1

ω
P + (B − 1

ω
P ), where P denotes a positive

definite diagonal matrix. This leads to

um,k+1 = αk ·
(
(I − ωP−1B)um,k + ωP−1d

)
+ (1− αk) · um,k−1 . (3.21)

Assuming a symmetric positive definite matrix B, we require a suitable ω such that
the eigenvalues of I − ωP−1B lie in (−1, 1].

Connection to Fast Jacobi

Similar to the connection to FED in the parabolic case, we can show a relation of
our FSI scheme to the recent Fast Jacobi solver of Weickert et al. [WGSB16] for
elliptic problems; cf. Section 3.A.2. As discussed before, we eliminate the drawback
of rearranging the relaxation parameters and we can observe a larger robustness to
intermediate nonlinear updates in our experiments.

3.6 FSI Schemes for Constrained Optimisation

Often, the elliptic problem from the previous section can be interpreted as the min-
imality condition of a suitable optimisation problem. In fact, the gradient descent
scheme to compute a minimiser of the optimisation problem (3.3) without side-
constraints is given by

uk+1 = uk − ω∇F (uk) (3.22)

with 0 ≤ ω < 2/L , where L > 0 is the Lipschitz constant of ∇F . Again, the
structural similarity to (3.11) suggests the following FSI iteration:

um,k+1 = αk ·
(
um,k − ω∇F (um,k)

)
+ (1− αk) · um,k−1 . (3.23)
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Adaptation to Constrained Problems

Several optimisation problems constrain the solution u to some closed convex set C.
To apply our FSI scheme also to such constrained optimisation problems, we adapt it
in the following way:

um,k+1 = PC
(
αk ·

(
um,k − ω∇F (um,k)

)
+ (1− αk) · um,k−1

)
with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.

(3.24)

Here, PC denotes the orthogonal projection operator that projects onto the closed
convex set C; cf. also Section 2.4.

Adaptation to Strongly Convex Problems

So far, we have considered the case where the Lipschitz constant L is assumed to be
known. However, strongly convex problems additionally provide information about
the strong convexity parameter `. To make use of this additional knowledge, we
propose the following recursive parameter choice to accelerate our iterative scheme:

αk =
1

1− αk−1

4
·
(

L−`
L +`

)2 (k = 1, . . . , n− 1) , (3.25)

where α0 = 2(L + `)/(3L + `) and ω = 2/(L + `). Since our derivation of the
parameter choice in (3.25) is quite technical, we skip it at the current point and refer
the interested reader to Section 3.A.3. Note that for ` = 0 these parameters come
down to (3.24).

We present a full description of our FSI method in Algorithm 3.1. Also in the
elliptic case (Section 3.5) we can apply such a parameter choice. In this case, ` and
L are related to the smallest and largest eigenvalues of the positive definite system
matrix B.

Connection to Heavy Ball Method

Let us now derive a close relation of the proposed FSI scheme to Polyak’s heavy
ball (HB) method [Pol64] where one iteration is given by

uk+1 = uk − αHB ·∇F (uk) + βHB · (uk − uk−1) . (3.26)

The first part of this iterative scheme can be seen as a gradient descent step, while
the second part represents an inertial term. It relates the current iterate uk to the
old time step uk−1. This allows significant speed-ups. A similar concept is known
under the name momentum which has shown its usefulness in many machine learning
approaches; see e.g. [RHW86,Qia99,SMDH13].

Interestingly, we can connect (3.26) to our FSI approach by applying cyclically
varying parameters

αHBk = ωαk and βHBk = αk − 1 (3.27)
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Algorithm 3.1: FSI scheme with projection operator PC and 0 ≤ ` < L .

input : ∇F , PC, L , `, n, u0

1 ω = 2/(L + `)
2 α0 = 2(L + `)/(3L + `)
3 for k = 1, . . . , n− 1 do

4 αk = 1
/(

1− αk−1

4
·
(

L−`
L +`

)2
)

5 u0,−1 = u0,0 = u0

6 for m = 0, 1, . . . do
7 for k = 0, 1, . . . , n− 1 do

8 um,k+1 = PC
(
αk
(
um,k − ω∇F (um,k)

)
+ (1− αk)um,k−1

)
9 um+1,−1 = um+1,0 = um,n

with αk given by (3.23) and combined with a restart um,−1 := um,0 after each cycle.
We illustrate benefits of our approach by means of experiments in the upcoming
section.

3.7 Experiments

Our experimental evaluation consists of three main parts. In Section 3.7.1 and 3.7.2,
we illustrate the performance of our FSI schemes on image processing applications.
Additionally, we compare our methods to related iterative schemes by means of Nes-
terov’s worst case problems in Section 3.7.3. As error measure, we apply the mean
squared error (MSE) that is given by

MSE(u, uref) =
1

|Ω|

∫
Ω

(
u(x)− uref(x)

)2
dx , (3.28)

where u denotes the computed and uref the reference solution. Furthermore, Ω ⊂ R2

denotes the rectangular image domain, and |Ω| its cardinality.

3.7.1 Inpainting with Edge-Enhancing Anisotropic Diffusion

Our first experiment is concerned with image inpainting. Here, the task is to recover
missing information by an interpolation of known data points. In the extreme case,
where only very sparse data points are given (cf. Figure 3.4(a)), such an inpainting
approach can be exploited for image compression; see e.g. [GWW+08]. In this re-
gard, successful approaches rely on edge-enhancing anisotropic diffusion [Wei96], and
consider the steady state solution of the following PDE for image inpainting:

∂tu = (1− w(x)) · div (D(∇uσ)∇u) − w(x) · (u− f) , (3.29)
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where w : Ω → {0, 1} is a binary mask that indicates known data. Furthermore,
D(∇uσ) is the so-called diffusion tensor that we determine by

D(∇uσ) := µ1 · r1r
T
1 + µ2 · r2r

T
2 , (3.30)

where the first eigenvector r1 ‖ ∇uσ points across image edges, and the second one
r2 ⊥ ∇uσ along them. Here, uσ := Gσ ∗ u denotes convolution of u with a Gaussian
Gσ of standard deviation σ. Since we want to perform full diffusion along edges but
reduced smoothing across them, we set µ2 = 1 and determine µ1 by means of the
Charbonnier diffusivity [CBAB94] with a contrast parameter λ > 0, i.e.

µ1 =
1√

1 + |∇uσ|2/λ2
. (3.31)

We discretise Equation (3.29) with the finite difference approach presented by Weick-
ert et al. [WWW13], where we apply the parameters αstencil = 0.4 and γstencil = 1.0;
cf. also Section 5.A.

Figure 3.4 depicts the sparse input data as well as our inpainting results. First,
the provided speed-up by our FSI technique compared to the baseline explicit dif-
fusion (ED) scheme is obvious. Moreover, we perform nonlinear updates after each
iteration step. As discussed in [WGSB16], FED schemes are not robust to such inter-
mediate updates within one cycle. Experimentally, our FSI schemes show this desired
robustness. Hence, we offer more flexibility in this regard which further allows for a
better performance.1

3.7.2 Total Variation Regularisation

In this experiment we deal with image regularisation, where the goal is to recover an
undisturbed version of a noisy input image; cf. Figure 3.5. To this end, we consider
the following energy functional [ROF92,AV94]:

E(u) =
1

2

∫
Ω

(u− f)2 dx + α ·RTV(u) , (3.32)

where f : Ω→ R represents a noisy input image, and the parameter α > 0 steers the
amount of smoothness. The regularisation term2

RTV(u) := sup
‖|p|‖∞≤1

∫
Ω

u divp dx (3.33)

1When optimising the actual algorithmic runtime, one should also take into account the time needed
for a single iteration step and a nonlinear update. In this regard, there is always a tradeoff
between few iterations with many nonlinear updates on the one hand, and more iterations with
less iterations on the other hand.

2Note that the regularisation term in (3.33) is for differential functions u equivalent to
∫

Ω
|∇u|dx.

This can be shown by means of the divergence (Gauss-Ostrogradsky) theorem.
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Figure 3.4: Inpainting with edge-enhancing anisotropic diffusion, initialised with a black
image. (a) Input data where only 5% of the pixels are known. (b) Converged inpainting
result of a standard explicit diffusion (ED) scheme that serves as reference. (c) Result of
ED after 600 iterations. (d) Result of FSI after three cycles with length n = 200. (e) Mean
squared error (MSE) between current estimates and reference solution. The grey value range
is [0, 1].

penalises the total variation (TV) of u, where p : Ω → R2 denotes a smooth vector
field with compact support on Ω and

‖|p|‖∞ := sup
x∈Ω
|p(x)| . (3.34)

The minimality condition of (3.32) w.r.t. u reads

u = f − α divp . (3.35)

Next, we replace in (3.32) u by (3.35) which leads to the dual problem (cf. [Cha04])

sup
‖|p|‖∞≤1

∫
Ω

(
1

2
(α divp)2 + αf divp− (α divp)2

)
dx (3.36)

= sup
‖|p|‖∞≤1

−1

2

∫
Ω

(
(α divp)2 − 2αf divp

)
dx . (3.37)

We discretise (3.37) with finite differences, and solve the resulting constrained opti-
misation problem for p with the proposed FSI scheme in Algorithm 3.1. Here, we
account for the constraint ‖|p|‖∞ ≤ 1 by pointwise projections onto the unit ball (cf.
also Section 2.4):

PC
(
p(x)

)
=

p(x)

max{1, |p(x)|}
. (3.38)
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(a) input (b) reference
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Figure 3.5: Total variation (TV) regularisation. (a) Input with white Gaussian noise of
standard deviation σ=0.25. The grey value range is [0, 1]. (b) Converged reference result of
standard projected gradient (PG) approach. (c) Result of PG after 200 iterations. (d) Result
of FSI after one cycle with length n = 200. (e) Mean squared error (MSE) between current
estimates and reference solution.

Finally, we determine the solution u by means of (3.35).

Figure 3.5 shows the noisy input image and our smoothed results. Also here, the
provided acceleration of the baseline projected gradient (PG) scheme by our FSI ap-
proach is obvious. Moreover, the comparison to the cyclic FED-like projection method
by Setzer et al. [SSM13] (CPG) demonstrates that our FSI scheme is more robust un-
der the applied projections within each iteration, while the standard CPG approach
without backtracking does not converge properly for such large cycle lengths.

3.7.3 Performance on Nesterov’s Worst Case Problems

In our last experiment, we evaluate the performance of our FSI techniques w.r.t.
related iterative schemes on Nesterov’s worst case problems for smooth convex and
strongly convex optimisation [Nes04]. These are quadratic minimisation problems
which are difficult for any algorithm that can solve all instances of the respective class
of problems. On the one hand, the strongly convex problem is given by minimising

Fκ(u) =
κ − 1

8

(
u2

1 +
N∑
i=1

(ui − ui+1)2 − 2u1

)
+

1

2
|u|2 (3.39)

with some positive parameter κ and u ∈ RN . In [Nes04, Theorem 2.1.13], Nesterov
provides a lower bound for all iterations and predicts a linear convergence rate for
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Figure 3.6: Numerical comparisons by means of worst case functions of Nesterov [Nes04].
(a) Strongly convex optimisation. (b) Convex optimisation. Here, the lower bound only
holds for k = 50 (dashed grey line). In both cases, the problem dimension is N = 105 and
u∗ represents a known exact solution.

this problem class. On the other hand, minimising

Fκ(u) =
L

8

(
u2

1 +
κ−1∑
i=1

(ui − ui+1)2 + u2
κ

)
− L

4
u1 (3.40)

constitutes a convex optimisation problem with some positive parameters κ and L .
The lower bound for such smooth convex problems derived in [Nes04, Theorem 2.1.7]
is only valid for one specific iteration count k ∈ N (here: k = 50 since κ = 101).
Nothing is said about the error before and after the k-th iteration.

Figure 3.6 plots for both problems the resulting error curves of different solvers.
While our FSI scheme offers state-of-the-art performance for the strongly convex prob-
lem (Figure 3.6(a)), it even outperforms competing methods in the case of the convex
optimisation problem (Figure 3.6(b)). In particular, this illustrates the benefits of our
nonstationary cyclic parameter choice compared to Polyak’s heavy ball method.

3.8 Limitations and Discussion

The experimental evaluation in the previous section illustrated benefits of our ap-
proach. As a mainly practical drawback we have to mention that, in comparison
to a standard gradient descent scheme, our FSI schemes require the storage of the
older iterate uk−1. This might be problematic for applications that are limited in the
available resources. However, exactly this usage of the older iterate is essential for an
algorithmic speed-up; cf. also Nesterov’s method [Nes04] and the heavy ball method
by Polyak [Pol64]. In this regard, it is worth to note that also well-established succes-
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sive overrelaxation and conjugate gradient methods can be interpreted as techniques
that make efficient use of the older iterate; see e.g. [HY04,Var09].

Referring to the conjugate gradient method [HS52], another drawback of our tech-
nique is the required knowledge of the maximal spectral radius or the Lipschitz con-
stant, and the appropriate choice of τ or ω, respectively. Indeed, we require a precise
approximation to provide high efficiency. Conjugate gradient methods circumvent
this by a clever usage of inner products. On the other hand, such inner products are
unfavourable for parallel computing. In fact, our FSI method refrains from such inner
products and thus, is well-suited for highly parallel architectures such as GPUs.

Last but not least, let us comment on a stability or convergence proof of the pre-
sented iterative schemes. We are only able to prove global convergence in case of
linear problems or quadratic optimisation without constraints; cf. Section 3.A. Fur-
ther convergence results are not given in this thesis, but would certainly be highly
interesting to investigate in future work. Nevertheless, we could observe an asymp-
totic convergence of our algorithms in all conducted experiments, i.e. our algorithms
converged to the desired result in any norm with sufficiently many iterations. The
theoretical proof of such a convergence is a goal of future work. It may also allow us
to state precise convergence rates for different optimisation problems. Moreover, we
could observe that our method is not a descent method; i.e. the error in the Euclidean
norm might not decrease for every intermediate iteration. However, such statements
might be nevertheless possible for the results after a complete cycle.

A good starting point for future work might be the work of Golub and Kan-
nan [GK86], who analyse a related stationary semi-iterative method for the solu-
tion of nonlinear equation systems. Additionally, our FSI schemes can be related to
the so-called (k, `)-step methods of Gutknecht [Gut89]. Hence, also the mathemati-
cal investigations in this context [GNV86, Gut89, Gut15] might be helpful for future
research. Moreover, also the recent analysis of heavy ball methods for convex optimi-
sation by Ghadimi et al. [GFJ15] seems to be a promising starting point for future
work.

3.9 Summary and Conclusions

In this chapter, we have presented our novel Fast Semi-Iterative (FSI) schemes that
offer efficient solutions for diffusion evolutions, elliptic problems, and constrained op-
timisation. The proposed schemes are simple to implement and well-suited for parallel
implementations. Hence, they are applicable for a wide range of image processing and
computer vision tasks. More specifically, we investigated the relation between box fil-
tering and explicit schemes for 1D homogeneous diffusion. It is fascinating to see how
such a rather simple concept generalises to flexible and highly efficient algorithms.
Compared to FED-like approaches, our techniques do not require sophisticated rear-
rangements to avoid numerical instabilities and experimentally provide a significantly
higher robustness to nonlinear updates and projections within each iteration. More-
over, our experiments demonstrate benefits w.r.t. related iterative procedures.
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3.9 Summary and Conclusions

As mentioned in Section 3.8, a goal of future work is an extended theoretical anal-
ysis of the presented approaches which may allow us to state a general convergence
theory. Furthermore, generalisations of our schemes, e.g. to general nonexpansive
proximal operators and nonsymmetric system matrices, would be highly interesting
to investigate in future work.
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3.A Mathematical Analysis

In this appendix, we show a connection of our FSI schemes to Chebyshev polynomials;
see e.g. [AS72, MH03]. First, this allows to show stability of our schemes for linear
processes in the Euclidean norm after each cycle. Next, we can establish a connection
to related iterative schemes. Moreover, it opens the door to a beneficial adaptation of
our FSI scheme to strongly convex problems or, in the elliptic case, to a known lower
bound of the eigenvalues of the system matrix.

3.A.1 Connection to Chebyshev Polynomials

To investigate the connection of our schemes to Chebyshev polynomials, let us first
consider a linear process with the following explicit scheme:

uk+1 =
(
I + τ A

)
uk (3.41)

with a symmetric negative semi-definite matrix A ∈ RN×N . Next, let us proof the
following statement:

Theorem 2 (Connection to Chebyshev Polynomials). The result of one FSI step for
linear problems in the form of

uk+1 = αk ·
(
I + τ A

)
uk + (1− αk) · uk−1 (3.42)

with u−1 := u0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1 can be expressed as

uk+1 =
1

2k + 3
· U2k+2

(√
I + τ

2
A
)
u0 , (3.43)

where U2k+2 denotes an even Chebyshev polynomial of the second kind.

Proof. An even Chebyshev polynomial of the second kind is defined by (cf. [AS72,
MH03] and Figure 3.7)

U0(z) = 1 and U2(z) = 4z2 − 1 , (3.44)

and the recurrence relation for k > 0

U2k+2(z) = 2 · T2(z) · U2k(z)− U2k−2(z) , (3.45)

where
T2(z) = 2z2 − 1 (3.46)

denotes a Chebyshev polynomial of the first kind. Similar to Theorem 1, we proof
Theorem 2 by induction. For k = 0, we have

u1 =
2

3
·
(
I + τ A

)
u0 +

1

3
· u0 =

1

3
·
(
3I + 2τA

)
u0

(3.44)
=

1

3
· U2

(√
I + τ

2
A
)
u0 .

(3.47)
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Figure 3.7: Illustration of even Chebyshev polynomials of the second kind U2k for k ∈ N.

Similarly, k = 1 yields

u2 =
6

5
·
(
I + τ A

)
u1 − 1

5
· u0

=
1

5
·
(
6 ·
(
I + τ A

)
u1 − I u0

)
(3.47)
=

1

5
·
(

2 ·
(
I + τ A

)
· U2

(√
I + τ

2
A
)
− I

)
u0

(3.44)
=

1

5
·
(

2 ·
(
I + τ A

)
· U2

(√
I + τ

2
A
)
− U0

(√
I + τ

2
A
))

u0

(3.46)
=

1

5
·
(

2 · T2

(√
I + τ

2
A
)
· U2

(√
I + τ

2
A
)
− U0

(√
I + τ

2
A
))

u0

(3.45)
=

1

5
· U4

(√
I + τ

2
A
)
u0 .

(3.48)

Assuming that (3.47) holds for all k ≥ 0 and (3.48) for all k ≥ 1, we get for the
inductive step (k ≥ 2)

uk+1 =
4k + 2

2k + 3
·
(
I + τ A

)
uk − 2k − 1

2k + 3
· uk−1

(3.46)
=

1

2k + 3
·
(

(4k + 2) · T2

(√
I + τ

2
A
)
· uk − (2k − 1) · uk−1

)
(3.47)
=

1

2k + 3
·
(

(4k + 2) · T2

(√
I + τ

2
A
)
· uk − U2k−2

(√
I + τ

2
A
)
u0
)

(3.48)
=

1

2k + 3
·
(

2 · T2

(√
I + τ

2
A
)
· U2k

(√
I + τ

2
A
)
− U2k−2

(√
I + τ

2
A
))

u0

(3.45)
=

1

2k + 3
· U2k+2

(√
I + τ

2
A
)
u0 .

(3.49)

As an important consequence of Theorem 2, we can formulate the result of one
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complete FSI cycle with cycle length n for linear processes as

un =
1

2n+ 1
· U2n

(√
I + τ

2
A
)
u0 . (3.50)

In Theorem 2, we have considered our FSI scheme for linear diffusion evolutions.
However, in the same way one can show that similar results also hold for linear elliptic
problems and quadratic optimisation without constraints, where F (u) = 1

2
uTBu −

uTd. In this context, we consider the error vector ek = uk − u∗ that yields

ek+1 = αk ·
(
I − ωB

)
ek + (1− αk) · ek−1 . (3.51)

Accordingly, we obtain

en =
1

2n+ 1
· U2n

(√
I − ω

2
B
)
e0 . (3.52)

Since we require 0 ≤ τ < 2/%(A), 0 ≤ ω < 2/%(B), and 0 ≤ ω < 2/L , respec-
tively (cf. Section 3.4, 3.5, and 3.6), our schemes for linear processes are stable in the
Euclidean norm; i.e. the Euclidean norm is nonincreasing after each cycle:

|un| =
∣∣∣∣ 1

2n+ 1
U2n

(√
I + τ

2
A
)
u0

∣∣∣∣ ≤ ∣∣∣∣ 1

2n+ 1
U2n

(√
I + τ

2
A
)∣∣∣∣ ∣∣u0

∣∣ ≤ ∣∣u0
∣∣ (3.53)

and

|en| =
∣∣∣∣ 1

2n+ 1
U2n

(√
I − ω

2
B
)
e0

∣∣∣∣ ≤ ∣∣∣∣ 1

2n+ 1
U2n

(√
I − ω

2
B
)∣∣∣∣ ∣∣e0

∣∣ ≤ ∣∣e0
∣∣ , (3.54)

where we used the property (cf. also Figure 3.7)

−1 <
U2n(z)

2n+ 1
≤ 1 for z ∈ (0, 1] . (3.55)

Please note at this point that a diagonal preconditioning with P−1 (cf. Section 3.5)
requires an appropriate adaptation of ω such that the eigenvalues of I − ω

2
P−1B lie

in (0, 1].

3.A.2 Connection to FED and Fast Jacobi

The discussed representation in terms of Chebyshev polynomials helps to show a close
connection to FED schemes [WGSB16], where one cycle with length n reads

uk+1 =
(
I + τkA

)
uk (k = 0, . . . , n− 1) (3.56)

with varying time step sizes

τk =
τ

2 cos2
(
π 2k+1

4n+2

) . (3.57)
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Interestingly, 1/τk are given as the zeros of the polynomial U2n

(√
1 + τ

2
z
)

(cf. [Gre13]).
With (3.56) the result of one FED cycle is given by

un =
n−1∏
k=0

(I + τkA)u0 . (3.58)

Using Vieta’s formula and the property U2n(1) = 2n + 1 [AS72], we can rewrite the
matrix product in (3.58) as

n−1∏
k=0

(I + τkA) =
n−1∏
k=0

τk ·
n−1∏
k=0

( 1
τk
I + A) =

1

2n+ 1
· U2n

(√
I + τ

2
A
)
. (3.59)

Comparing (3.50) and (3.59) uncovers the equivalence of the results of one FED
and one FSI cycle in case of linear evolutions. In a straightforward way, the same
equivalence holds for Fast Jacobi and FSI cycles in case of linear equation systems.

3.A.3 Adaptation to Strongly Convex Problems

On top of that, the representation of our FSI schemes in terms of Chebyshev poly-
nomials (3.50) allows for a natural adaptation of our algorithms to strongly convex
problems or, in the elliptic case, to the eigenvalues of the positive definite system ma-
trix B. More specifically, we assume a larger bound L > 0 of the largest eigenvalue
of the system matrix and a lower bound ` ≥ 0 of the smallest eigenvalue.

To derive our recursive parameter choice in (3.25), let us first revisit the general
case. With Theorem 2, the error vector (3.17) after one cycle can be written as

en =
1

2n+ 1
· U2n

(√
I − ω

2
B
)
e0 , (3.60)

where the parameter ω in (3.60) is chosen such that the eigenvalues of the matrix
I − ω

2
B are mapped to the interval (0, 1]; cf. Equation (3.54). Now, we are given the

lower and upper bounds ` and L of the eigenvalues of B. Beneficially, this allows for
a tighter mapping to the interval (0, 1] in the form of

L · I −B

L − `
. (3.61)

Moreover, the factor 1
2n+1

in (3.60) provides consistency of the iterative scheme:

If B would be identical to the zero matrix O ∈ RN×N , all iterates should remain
unchanged, i.e. ek = e0 ∀k. This implies the normalisation factor

1

U2n

(√
1− ω

2
0
) =

1

U2n(1)
=

1

2n+ 1
(3.62)

such that
1

2n+ 1
· U2n

(√
I − ω

2
O
)

= I . (3.63)
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Analogously, we determine the normalisation factor for the mapping in (3.61) by

1

U2n

(√
L ·1−0
L−`

) =
1

U2n

(√
L

L−`

) , (3.64)

which finally leads to the matrix polynomial

1

U2n

(√
L

L−`

) · U2n

(√
L I−B
L−`

)
. (3.65)

Consequently (cf. Equation (3.43)), the error at k + 1 is given by

ek+1 =
1

U2k+2

(√
L

L−`

) · U2k+2

(√
L I−B
L−`

)
e0 . (3.66)

Applying the recurrence relation (cf. Equation (3.45))

U2k+2

(√
L I−B
L−`

)
= 2 · T2

(√
L I−B
L−`

)
· U2k

(√
L I−B
L−`

)
− U2k−2

(√
L I−B
L−`

)
(3.67)

leads to

ek+1 =
2 · T2

(√
L I−B
L−`

)
· U2k

(√
L

L−`

)
U2k+2

(√
L

L−`

) · ek −
U2k−2

(√
L

L−`

)
U2k+2

(√
L

L−`

) · ek−1 . (3.68)

With

T2

(√
L I−B
L−`

)
=

(L + `) I − 2B

L − `
=

L + `

L − `
·
(
I − 2

L + `
B

)
(3.69)

and

U2k−2

(√
L

L−`

)
= 2 · T2

(√
L

L−`

)
· U2k

(√
L

L−`

)
− U2k+2

(√
L

L−`

)
(3.70)

= 2 · (L + `)

L − `
· U2k

(√
L

L−`

)
− U2k+2

(√
L

L−`

)
(3.71)

we obtain

ek+1 = αk · (I − ωB) ek + (1− αk) · ek−1 | +u∗ (3.72)

uk+1 = αk ·
(
(I − ωB)uk + ω d

)
+ (1− αk) · uk−1 (3.73)

where ω = 2
L +`

and

αk =
2(L + `)

L − `
·
U2k

(√
L

L−`

)
U2k+2

(√
L

L−`

) . (3.74)
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To determine those parameters efficiently, we make once again use of the recurrence
relation in (3.45). For k = 0, we have

α0 =
2(L + `)

L − `
· 1

4 L
L−` − 1

=
2(L + `)

3L + `
. (3.75)

For k ≥ 1, we consider 1
αk

and exchange U2k+2 by the right hand side of (3.45), i.e.

1

αk
=

L − `
2(L + `)

·

2 · T2

(√
L

L−`

)
−
U2k−2

(√
L

L−`

)
U2k

(√
L

L−`

)
 (3.76)

(3.46)
=

L − `
2(L + `)

·

2(L + `)

L − `
−
U2k−2

(√
L

L−`

)
U2k

(√
L

L−`

)
 (3.77)

(3.74)
= 1 − αk−1

4
·
(

L − `
L + `

)2

. (3.78)

This finally leads to our efficient recursive parameter choice in (3.25).
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Chapter 4

Variational Image Fusion

“Contrast is what makes
photography interesting.”

Conrad L. Hall

Beau Lotto [Lot02]
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Main parts of this chapter base on our work published in [HW15,HW16].

4.1 Introduction

As outlined in Chapter 1, the fusion of multiple images is an important component
in many visual computing applications. In particular, it is an essential tool when
several photographs or sensors are required to capture all important structures of a
scene. In this context, image fusion approaches aim at condensing the most important
information from the acquired image stack to a single composite that is richer in details
than any of the input images.

In fact, there exist many fusion approaches that are tailored to one specific appli-
cation. Most of them pursue the following two-step pipeline: Based on application-
specific quality measures, they determine weights for each of the input images in a first
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step. Then, in a second step, those weights are combined with the input images to
form the output image. Contrary to such a decoupled two-stage approach, we propose
a conceptually different idea. Instead of precomputing weights based on the input im-
ages, we present a variational method that directly aims for an optimal output image
with high quality. This has several advantages: First, all our model assumptions and
parameters have an intuitive meaning and directly influence the fusion result in the
desired way. Moreover, our approach produces images with visual phenomena such
as a Cornsweet illusion that optimise the contrast locally.1 This is hardly achievable
with standard two-step fusion methods. Most importantly, this output-driven idea is
the key concept to refrain from an application-specific weight precomputation and,
in this way, to provide a general image fusion framework that performs well in many
fusion applications.

Main Contributions. While the input data differ for each image fusion application,
most applications aim at a similar goal: an output image with important perceptual
qualities such as being well-exposed or offering a high local contrast. Based on this
observation, we introduce a general variational technique for image fusion. We achieve
this by refraining from an application-specific precomputation of weights based on the
input images. Instead, we formulate the fusion result as a convex combination of the
input, and directly opt for an output that is optimal w.r.t. our energy functional.
Here, we base our model assumptions on important perceptually inspired image en-
hancement concepts that account for the local contrast adaptation of the human visual
system. The minimisation of our energy yields fusion results that capture the most
important information from the input and feature a desirable visual quality.

We demonstrate the general applicability of our technique with several fusion appli-
cations. For our three main application domains, i.e. multispectral fusion, exposure
fusion, and decolourisation, we conduct thorough evaluations on public image data
sets and compare to previous work in the individual research areas. Last but not
least, we present an efficient algorithmic solution by exploiting ideas of [BCPR07]
and applying our FSI scheme from Chapter 3. In combination with a parallel im-
plementation on the graphics card, this leads to desirably fast runtimes of our fusion
approach.

Chapter Outline. We start with a discussion of related work in Section 4.2. Af-
terwards, we present our general variational image fusion model in Section 4.3. Its
minimisation yields the desired composite image. Here, we also analyse our model
and investigate its parameters. The experiments in Section 4.4 demonstrate the versa-
tility and performance of our technique for different image fusion applications. After

1An illustrative example of a Cornsweet illusion is given in the teaser image of this chapter. Al-
though the red and blue patches have exactly the same brightness value, we perceive the red
patch slightly darker than the blue one. This is achieved by the local intensity variation between
the lower and upper part of the object. For further details about the Cornsweet illusion and
related concepts, we refer the interested reader to [Cor70,SE84,PSL99] and references therein.

46



4.2 Related Work

discussing possible limitations of our method in Section 4.5, we conclude this chapter
with a summary and outlook in Section 4.6.

4.2 Related Work

To explain how our model relates to previous work, let us first give a survey of our
three main application domains (Section 4.2.1–4.2.3). Furthermore, since we base our
model assumptions on variational contrast enhancement concepts, we additionally
review related work in this field (Section 4.2.4).

4.2.1 Multispectral Fusion

In multispectral imaging, multiple sensors or filters are used to acquire a set of images.
They all capture a different spectral range of the scene, e.g. the visible and the near-
infrared band (cf. for instance [FS08, BS11]). The fusion of those images results in
an image that offers more details than any of the input photographs; see e.g. our
exemplary results in Figure 1.3 and Figure 1.4. Based on brightness and saturation of
the visible spectrum image, Zhang et al. [ZSM08] precompute a weight map to identify
image regions that should be improved. Then, contrast and texture is transferred
from the near-infrared band to the visible spectrum image. Lau et al. [LHM11] and
Eynard et al. [EKB14] interpret the near-infrared as a fourth colour channel, and
regard multispectral image fusion as a colour transformation task. However, this has
the following drawback: In some parts of the image the visible spectrum is more
reliable than the near-infrared, and vice versa. Consequently, it is not optimal to
assume the same importance of all spectral ranges in every image region. Hence,
contrary to [LHM11] and [EKB14], we interpret the near-infrared information as an
additional spatial lightness information. Interestingly, this is in accordance to the
psychophysical study of Fredembach and Süsstrunk [FS08] in the context of near-
infrared imaging. Thus, we explicitly model a spatially varying importance of the
different spectral ranges. We demonstrate the resulting benefits of our approach by
means of experiments in Section 4.4.1.

4.2.2 Decolourisation

Although not immediately obvious, also decolourisation can be approached by image
fusion. In general, decolourisation describes the conversion of a colour image to its
greyscale representation, while preserving as much information as possible. For a
detailed review and evaluation of decolourisation approaches before 2009, we refer to
the article of Čad́ık [Čad08]. Here, we mainly focus on more recent decolourisation
methods.

A straightforward idea is to compute the greyscale image as the Y channel of the
CIE-XYZ colour space; cf. Section 2.2.2. However, such a simple global mapping is not
always sufficient to preserve the colour contrast. Hence, Smith et al. [SLTM08] first
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apply a global mapping that is based on the Helmholtz-Kohlrausch effect. Afterwards,
they locally add details with an unsharp masking technique. Gooch et al. [GOTG05]
propose a fully local decolourisation method by forcing the differences between pixels
in the greyscale image to resemble them from the colour image. Lu et al. [LXJ12]
relax this constraint with a weak colour ordering, i.e. the sign of the greyscale differ-
ences is not assumed to be identical to the sign of the colour counterparts. Also the
structure preserving technique of Eynard et al. [EKB14] is applicable for decolourisa-
tion. Here, they aim at a greyscale image whose graph Laplacian resembles the one
of the colour image. Another successful idea to approach the decolourisation task is
to fuse the colour channels of the input image; see e.g. [AAHB11]. Generally, none of
the colour channels or a simple global combination of them is sufficient to represent
the original colour image adequately. However, a spatially varying channel fusion
can provide satisfying results. In this work, we also approach decolourisation by im-
age fusion; cf. Figure 1.6. However, contrary to [AAHB11], we do not precompute
decolourisation-specific fusion weights based on the input. Rather, we directly aim at
an optimal output greyscale image. This not only affords the general applicability of
our model to various fusion applications, but also realises visual phenomena such as
a Cornsweet illusion that optimise the contrast locally (cf. [Cor70,SE84,PSL99]). As
we will see, this is an important feature to visually preserve the contrast of the input
image if one considers the drastic intensity range restriction by a colour to greyscale
transformation.

4.2.3 Exposure Fusion

Classical high dynamic range (HDR) methods combine several low dynamic range
(LDR) images to one HDR image with the help of the exposure times and the camera
response function; see e.g. [MP95, DM97, MN99]. However, displaying those HDR
results on standard monitors or printing them requires to compress the high dynamic
range again. This process is called tone mapping ; see e.g. [RHD+10] for a survey
and [ČWNA08] for a discussion and evaluation of various tone mapping operators.
Since tone mapping is not the focus of our work, we restrict our discussion to tone
mapping operators that are most related to our fusion technique.

The tone mapping operator of Fattal et al. [FLW02] works in the gradient domain,
and accounts for the local contrast adaptation of the visual system by attenuating large
gradients, and maintaining or even enhancing smaller ones. Comparably, Durand
and Dorsey [DD02] decompose the HDR image into a base and a detail layer by
means of bilateral filtering. Then, they compress the base while keeping the details.
Reinhard et al. [RSSF02] apply first a global transform, and locally increase the
contrast afterwards. Also Mantiuk et al. [MMS06] show and discuss the importance
of the contrast adaptation of the human visual system with regard to tone mapping.
Most related to our work is the two-stage tone mapping operator of Ferradans et
al. [FBPC11] that applies a variational contrast enhancement in the second stage;
cf. also Section 4.2.4.
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If the ultimate goal is anyway a displayable and well-exposed LDR image, there is an
interesting alternative to the described two-step procedure of HDR imaging and tone
mapping, namely exposure fusion [MKV09]. Here, the idea is to skip the HDR image
generation by a direct fusion of the differently exposed LDR images to an overall well-
exposed composite. Due to the visual similarity to a tone-mapped HDR image, the
result of exposure fusion is also sometimes referred to as pseudo-HDR image. Such an
exposure fusion approach has several advantages: First, there is no need to know the
exposure times or the camera response function. It is even possible to include images
that do not follow the HDR imaging model, such as images captured with different
camera settings, e.g. with and without photoflash. Second, this one-step approach
allows a direct tuning of the final results without the detour via an intermediate HDR
image. Obviously, exposure fusion is related to tone mapping. However, the different
types of input data ask for different requirements and model assumptions. In the
meantime, exposure fusion has even developed to an own research area with various
publications that we review next.

Most existing exposure fusion methods pursue the following processing pipeline:
In a first step, based on exposure fusion-specific quality measures, weighting maps
are computed for each of the input images. Such quality measures are for instance
the magnitude of the Laplacian [Bog00, MKV09], the entropy [Gos05, HP10], or the
colour saturation [MKV09, SCSB11, SKB14]. A similar idea, e.g. applied by Raman
and Chaudhuri [RC09] or by Singh et al. [SKB14], is to decompose the input images
into base and detail layers. Then, the amount of detail is considered as measure
to determine the input image weights. In a second step, these weighting maps are
combined with the input images to form the final composite image. Here, the fusion
strategies vary from region-based blending [Gos05] and pixelwise weighted averag-
ing [RC09,HP10,SCSB11,SCB13,SKB14] to gradient domain fusion [CH04,STC+12]
and pyramid-based techniques [BK93, Bog00, MKV09]. Different to those two-step
approaches, Raman and Chaudhuri [RC07] propose a variational method to directly
compute the fused composite. However, they require a smoothness constraint of the
final image which is prone to over-smoothed, blurry results. Hence, a more suitable
idea by Kotwal and Chaudhuri [KC11] is to formulate the output image as a weighted
average of the input. Then, they design an energy on this composite. In this work,
we follow a similar idea. However, we base our model assumptions on perceptually
inspired contrast enhancement concepts. This allows e.g. for optimising the local
contrast in the sense of the Cornsweet effect and for producing images with vivid
colours.

4.2.4 Variational Contrast Enhancement

The discussions above show that there are many approaches that are specifically tai-
lored to the individual fusion tasks. However, all presented applications share a similar
goal: The fusion of several images to one composite that offers optimal local contrast.
In fact, we make use of exactly this observation to present a general variational fusion
approach. To this end, we profit from important findings in histogram modification
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and contrast enhancement that we review next.
Based on the seminal work of Sapiro and Caselles [SC97] on histogram modifi-

cation with differential equations, Bertalmı́o et al. [BCPR07] introduce a variational
approach to locally increase the contrast of an image. In this context, Palma-Amestoy
et al. [PPBC09] investigate several perceptually inspired energy terms. Interestingly,
there are strong connections of such models to Land’s retinex theory [LM71] and to
visual neuroscience; see e.g. [Ber14]. Moreover, Batard and Bertalmı́o [BB15] discuss
and connect nonlocal image regularisation (cf. [GO08]) and such variational contrast
enhancement methods [BCPR07] by means of their dual formulations.

Those contrast enhancement techniques have already found several successful ap-
plications: In Section 4.2.3, we have already mentioned the two-stage tone mapping
operator of Ferradans et al. [FBPC11] that applies such a variational contrast enhance-
ment in the second stage. Further application areas are gamut mapping [ZVB14] and
image dehazing [GVPB15]. More related to image fusion is the work of Bertalmı́o
and Levine [BL13]. They propose a gradient-based variational approach to fuse a
pair of images with different exposure times. Unfortunately, this method is specifi-
cally tailored to two input images and cannot be extended to multiple images in a
straightforward way. Piella [Pie09] incorporates a gradient domain term in the en-
ergy of [BCPR07]. This forces the similarity to a precomputed gradient field that
combines the gradients from multiple images. Here, the weights for the individ-
ual images are predetermined based on the input. In contrast, our energy min-
imisation that directly aims at an optimal composite is able to refrain from such
an application-specific weight precomputation. Nevertheless, those existing success-
ful applications motivate us to also base our model on such perceptually inspired
contrast enhancement concepts. They clearly have demonstrated their usefulness,
and their perceptual basis has been extensively discussed in various publications; see
e.g. [BCPR07,PPBC09,BCP09,PC14,Ber14,PAB+17].

4.3 Variational Model

4.3.1 Energy Formulation

Our general goal is to fuse nf input images f1, . . . , fnf
to a single composite image

u that condenses the most important information from the image stack. For didac-
tic reasons, we consider greyscale images first and discuss our adaptations to colour
images later. Let us start with formulating the output image as a pointwise convex
combination of the input:

u(x) =

nf∑
i=1

wi(x) · fi(x) , (4.1)

where

wi(x) ≥ 0 and

nf∑
i=1

wi(x) = 1 . (4.2)
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Here, x = (x1, x2)T denotes the position on the rectangular image domain Ω ⊂ R2,
and wi : Ω→ [0, 1] is the weight map of the image fi.

As discussed in Section 4.2, most previous research concentrates on determining
weights based on application-specific quality measures that are defined on the input
images. In contrast to such a weight precomputation, we directly opt for an optimal
fusion result u. To this end, we propose the following energy functional:

E(w) =
1

2

∫
Ω

((
u(x)− f̃(x)

)2

+ δ · (u(x)− µ)2
)

dx

− γ

2

∫
Ω

∫
Ω

Gσ(x− y) ·Ψλ(u(x)− u(y)) dx dy

+
α

2

∫
Ω

nf∑
i=1

|∇wi(x)|2 dx

(4.3)

subject to the constraints (4.1) and (4.2). We will discuss the meaning and inter-
play of all components of this energy functional step by step in the upcoming para-
graphs. At this point, we ask for the patience of the reader. The image weights
w = (w1, . . . , wnf

)T that follow from this energy optimisation can be seen as a side-
product of our output-driven approach. In fact, we are mainly interested in the fused
image u. However, formulating this image as a convex combination of the input allows
to impose a smoothness constraint on the weights and not on the image itself. While
the latter is prone to cause over-smoothed, blurry fusion results, the former is a much
more intuitive and meaningful assumption. A further important advantage of this
formulation is the inherent attachment of u to the input data that prevents so-called
halo artefacts and an unrealistic appearance of the fusion results.

As discussed in Section 4.2, the energy functional in (4.3) is inspired by suc-
cessful variational histogram modification and contrast enhancement techniques; see
e.g. [SC97,BCPR07,PPBC09,BCP09]. In particular, these works discuss and analyse
in detail in which way the energy terms mimic important properties of the human
visual system, and for instance how they relate to Land’s retinex theory [LM71]. In
line with this, let us now explain our model assumptions and corresponding energy
terms in (4.3).

Dispersion Term

Following [BCPR07], we model in the first line of (4.3) a so-called dispersion term. The
first part of this dispersion term forces u to resemble the attachment image f̃ , which
we choose as an average of the input images. As discussed in [PPBC09], this provides
a desirable attachment to the original data and accounts for the colour constancy
assumption [LM71]. The second part implements the grey world principle [Buc80,
SE84,PPBC09]. In fact, it provides well-exposed images by keeping the solution close
to the constant µ. Here, the influence of the second assumption can be steered with
the positive parameter δ.
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Contrast Term

The second term, the contrast term, counteracts this dispersion term since it favours
images with a high local contrast more than uniform images that are close to a con-
stant. Please note the minus sign in front of the contrast term. Intuitively speaking,
this energy term favours solutions that differ much from pixel to pixel. Here, locality
is introduced by the Gaussian weighting

Gσ(x− y) =
1

2πσ2
exp

(
− |x− y|2

2σ2

)
(4.4)

with standard deviation σ. Furthermore, the function

Ψλ(z) =
√
z2 + λ2 (4.5)

provides a nonlinear behaviour. More specifically, in accordance with [BCPR07],
its sigmoid-shaped derivative Ψ′λ(z) = z/

√
z2 + λ2 that appears in the algorithmic

iteration (cf. Equation 4.7) mimics the nonlinear response of the human visual system
in the sense of a contrast transducer function [Wil80,McC89]. Here, the parameter λ
allows to tune this nonlinearity, and γ > 0 weights the influence of the contrast term.

Regularisation Term

The third term of our energy functional is a regularisation term that rewards smooth
weight maps. More specifically, it renders the assumption that neighbouring pixels in
the fused composite should have similar weights. Here, ∇ := (∂x1 , ∂x2)

T denotes the
gradient operator, and α > 0 steers the amount of smoothness.

In the context of image regularisation, more sophisticated edge-preserving smooth-
ness terms have shown advantages compared to the proposed linear isotropic regular-
isation; see e.g. [Wei98] and references therein. However, as it turns out, this is not
the case for our image fusion task. Here, smooth weight maps and a resulting smooth
blending of the input images are beneficial (also at image edges). In particular, this
explains why edge-preserving regularisation does not lead to better results in the con-
sidered image fusion setting. In fact, it may even lead to undesirable visual seams
that deteriorate the output image.

Simplex Constraint

Our energy in (4.3) is equipped with the simplex constraint (4.2) on the image
weights w; cf. also Section 2.4. In particular, this constraint restricts the fusion
result u to pointwise convex combinations of the input images. Hence, it provides a
close attachment to the input. In combination with the smoothness constraint, this
prevents an unnatural high amount of contrast and, in this way, undesirable artefacts
such as colour shifts or halos in the output image.

52



4.3 Variational Model

Colour Image Processing

For the sake of simplicity, we have restricted ourselves to greyscale images so far. In
case of colour images, we transform the input images from the RGB to the YCbCr
colour space (cf. Section 2.2.2), and define the dispersion and contrast term on the
luminance channel uY : Ω→ [0, 1]. Additionally, to prevent colour casts, we compute
joint weight maps for all channels.

Moreover, largely saturated colours make images to look vivid and expressive. To
this end, we extend our energy (4.3) in case of colour images with the following
saturation term:

−ϑ
2

∫
Ω

((
uCb(x)− 1/2

)2
+
(
uCr(x)− 1/2

)2
)

dx , (4.6)

where uCb : Ω → [0, 1] and uCr : Ω → [0, 1] denote the chroma channels of u. This
term favours values different from grey, i.e. where both chroma channels are equal to
1/2. Hence, this term aims for images with vivid colours. Here, the positive parameter
ϑ allows to control the amount of colour saturation. Once again, the minus sign in
front of this saturation term should be noted.

4.3.2 Minimisation

Gradient Descent

With iteration index k and time step size τ , the gradient descent of the energy in (4.3)
with the saturation term in (4.6) is for i = 1, . . . , nf given by

wk+1
i (x) = wki (x)− τ

(
fYi(x)

(
ukY(x)− f̃Y(x) + δ (ukY(x)− µ)

− γ
∫
Ω

Gσ(x− y) ·Ψ′λ(ukY(x)− ukY(y)) dy
)

− ϑ
(
fCbi(x)

(
ukCb(x)− 1/2

)
+ fCri(x)

(
ukCr(x)− 1/2

))
− α ∆wki (x)

)
,

(4.7)

where (ukY, u
k
Cb, u

k
Cr)

T =
∑nf

i=1w
k
i (x) · (fYi, fCbi, fCri)

T. We discretise Equation (4.7)
with finite differences on a rectangular grid with uniform grid sizes, and approximate
the integral with the rectangle method. Furthermore, we initialise wi with 1/nf , and
assume the images to be mirrored at the boundaries.

Algorithmic Speed-Up

Although the contrast term in (4.3) accounts for an optimal local contrast, we want to
point out that it is nonlocal in its nature: For each point, we have to consider a large
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nonlocal neighbourhood to determine the local contrast. The size of this neighbour-
hood depends on the standard deviation σ of the Gaussian weighting function, which
is chosen large to provide good quality; cf. Section 4.3.3. The contrast term results in
the integral term in the second line of (4.7). Hence, the computational complexity of a
single iteration step is O(N2), where N denotes the number of pixels. Obviously, this
shows the need for efficient algorithms. To this end, we apply the following numerical
approximation [BCPR07]: First, we approximate the sigmoid-shaped function Ψ′λ(z)
with a polynomial

∑na

i=0 aiz
i of degree na (cf. Figure 4.1). Specifically, we obtain the

coefficients a0, . . . , ana by minimising the quadratic error function2

F (a0, . . . , ana) =

∫ 1

−1

( na∑
i=0

aiz
i −Ψ′λ(z)

)2

dz , (4.8)

where we assume an intensity range [0, 1]. We solve the resulting small linear system
with the discussed Cholesky decomposition from Section 2.5. Obviously, since Ψ′λ(z) is
an odd function, we only need to consider the odd parts of the polynomial, i.e. ai = 0
for all even i. In our experiments, we apply a polynomial of degree na = 7 since it
provides a good trade-off between approximation quality and efficiency.

Next, the determined coefficients allow us to approximate the term Ψ′λ(u(x)−u(y))
as follows:

Ψ′λ (u(x)− u(y)) ≈
na∑
i=0

ai (u(x)− u(y))i

=
na∑
i=0

ai

(
i∑

j=0

(
i

j

)
ui−j(x) (−1)j uj(y)

)

=
na∑
j=0

(
na∑
i=j

(−1)j ai

(
i

j

)
ui−j(x)

)
uj(y) ,

(4.9)

where we applied in the second step the binomial formula with
(
i
j

)
= i!

j!(i−j)! . Moreover,

the last step follows from an exchange of the summations. With (4.9), we finally
approximate the integral term in the second line of (4.7) as∫

Ω

Gσ(x− y) ·Ψ′λ(ukY(x)− ukY(y)) dy

≈
na∑
j=0

(( na∑
i=j

(−1)jai

(
i

j

)
ui−j(x)

)
︸ ︷︷ ︸

(I)

·
∫

Ω

Gσ(x− y)uj(y) dy︸ ︷︷ ︸
(II)

)
.

(4.10)

2In this context, one could also make use of Chebychev polynomials that are known to minimise the
maximum norm of the approximation [MH03] or Bernstein polynomials as proposed in [PM16,
PAB+17]. However, the applied approximation in the form of (4.8) was sufficient for our purposes.
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Figure 4.1: Polynomial approximations of the sigmoid-shaped function Ψ′λ(z) = z√
z2+λ2

,

where na denotes the order of the polynomial, and λ = 0.1 in this example.

We see that we can compute (I) pointwise with powers of u(x). Moreover, (II) is
nothing else than a Gaussian convolution of uj, i.e.

Gσ ∗ uj(x) =

∫
Ω

Gσ(x− y)uj(y) dy . (4.11)

We compute those convolutions with a fast recursive algorithm [Yv95]. In this way,
we can reduce the overall complexity of one iteration step from O(N2) to O(N).

FSI Scheme

To compute the steady state solution of (4.7) with the discussed polynomial approxi-
mation, we apply our projected FSI scheme from Chapter 3 (Algorithm 3.1). Here, we
realise the projection of wk onto the simplex in Rnf as discussed in Section 2.4 (Al-
gorithm 2.1). The combination of both techniques, i.e. the polynomial approximation
with a fast recursive realisation of Gaussian convolution [Yv95] and the application of
our FSI scheme, enables a fast parallel implementation of our fusion method on the
graphics card; cf. our upcoming runtime evaluation in Section 4.3.3.

4.3.3 Model and Parameter Analysis

Benefits of Local Contrast Term

Inspired by Bertalmı́o et al. [BCPR07], let us first consider a variational histogram
equalisation in Figure 4.2. In our framework, this can be achieved by setting the
smoothness parameter α = 0 and by replacing the simplex constraint (4.2) with
0 ≤ w(x)f(x) ≤ 1. Applying a global contrast term, i.e. degrading Gσ(x − y) to
the constant 1/|Ω|, yields a standard histogram equalisation (cf. Figure 4.2(b)). On
the other hand, a local contrast term allows to visually increase the contrast in the
sense of a Cornsweet illusion [Cor70,SE84,PSL99] (cf. Figure 4.2(c)). This experiment
illustrates the general advantages of a local contrast term compared to a global one.
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Figure 4.2: Comparison of global and local contrast term for histogram equalisation. Top:
Intensity images. Bottom: Corresponding horizontal scanlines, where the horizontal axes
represent the pixel indices and the vertical axes the intensity values. This experiment is
inspired by Bertalmı́o et al. [BCPR07].

(a) input [Čad08] (b) Ancuti et al. [AAHB11] (c) our result

Figure 4.3: Benefits of output-driven optimisation. This example demonstrates that our
output-driven optimisation implements a local contrast adaptation that keeps the colour
patches in the greyscale image better distinguishable.

Benefits of Output-Driven Optimisation

Thanks to our output-driven optimisation, our fusion technique is capable of produc-
ing fusion results with the just discussed Cornsweet illusions. This is hardly pos-
sible with standard two-stage fusion methods, since they do not take into account
the quality of the final output image when precomputing weights for the input im-
ages in advance. Let us consider a decolourisation example in Figure 4.3: Ancuti
et al. [AAHB11] precompute decolourisation-specific weights based on the input and
fuse the images later on. In this way, it is not possible to create greyscale gradients in
the individual patches; cf. Figure 4.3(b). In contrast, our output-driven optimisation
produces such gradients that optimise the contrast locally (cf. Figure 4.3(c)). Further-
more, our direct optimisation w.r.t. the output image is the key concept to present a
general technique for image fusion without tailoring it to the individual applications.
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Figure 4.4: Input images of example exposure set with image sizes 1200× 800 [Jof07].

µ = 0.1 σ = 1% γ = 0 ϑ = 0

µ = 0.9 σ = 100% γ = 0.5 ϑ = 2

Figure 4.5: Influence of main model parameters. Parameter σ is given in percent of the
image diagonal. The corresponding input images can be found in Figure 4.4.

Model Parameters

Let us now illustrate the influence of our main model parameters on the example of
fusing an exposure set. The corresponding input image set is depicted in Figure 4.4.

In the first column of Figure 4.5, we apply different values of µ. Since the dispersion
term favours solutions that are close to µ, it is obvious that larger values lead to
brighter results. We propose to compute µ automatically as an average of the input
images. The second column in Figure 4.5 depicts composite images for different scales
σ of the Gaussian Gσ in the contrast term. We observe a larger local contrast with
decreasing σ. Obviously, there is a trade-off: A too large local contrast might be
perceived as unnatural, a too small one as too flat. As a rule of thumb, we propose
to set σ to 10% of the image diagonal. Similar observations apply to the contrast
parameter γ in the third column of Figure 4.5. Choosing it too small yields an image
with low contrast, while choosing it too large gives unrealistic looking results. In
general, setting it to 1/4 provides good quality. Last but not least, the fourth column
of Figure 4.5 shows the effects of the proposed saturation term and its parameter ϑ.
Generally, a larger value of ϑ leads to more saturated colours, and in this way to a
more vivid appearance. Setting ϑ = 1 yields a good compromise in this regard.

In all our experiments below, we apply the discussed procedure to determine µ
and σ automatically. All other parameters are fixed for the individual applications.
Table 4.1 shows the standard parameter setting. The corresponding final fusion result
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Table 4.1: Default parameter setting of our fusion technique.

α ϑ γ δ λ µ σ

1 1 1/4 1 1/10 input average 10% of diagonal

Table 4.2: Runtimes on an NVIDIA GeForce GTX 970.

number of images image size runtime in seconds

3 640 × 480 4
3 1024 × 768 7
5 640 × 480 8
5 1024 × 768 18

for the exposure set from Figure 4.4 with this standard parameter choice can be found
in Figure 1.2(d).

To conclude, all our model parameters have an intuitive meaning and are fixed or
can be determined automatically. This allows an easy and straightforward use of our
approach, also for non-experts. Obviously, this is an important feature of our fusion
technique since it provides the users with intuitively comprehensible parameters to
tune the output w.r.t. their personal preferences.

Runtime Experiments

Our reference implementation is written in CUDA and runs on an NVIDIA GeForce
GTX 970 graphics card.3 We assume the algorithm to be converged if the root
mean squared difference of two fusion results between 100 iterations is less than 10−4.
Table 4.2 lists the runtimes for different number of images and different image sizes.
This evaluation demonstrates that the discussed algorithm from Section 4.3.2 provides
fast execution times for common image set sizes.

4.4 Experiments

In the following sections, we evaluate our approach in the context of its main applica-
tion domains, i.e. multispectral fusion (Section 4.4.1), decolourisation (Section 4.4.2),
and exposure fusion (Section 4.4.3). Last but not least, we additionally demonstrate
its potential for further image fusion applications in Section 4.4.4.

4.4.1 Multispectral Fusion

The idea of multispectral imaging is to capture different spectral ranges with two or
more photographs of the same scene. Fusing them allows for producing an image that

3At this point, special thanks go to Sabine Müller for providing her personal computer to conduct
those runtime experiments.
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offers details that cannot be captured within the visible spectrum only. In this regard,
Figure 1.4 illustrates the performance of our method for the enhancement of standard
photographs (RGB) with a near-infrared (NIR) image. We process the images in
the following way: First, we convert the RGB image to the YCbCr colour space
(cf. Section 2.2.2). Next, we apply the presented technique to fuse the luminance
channel Y with the single channel NIR image. Since we want to stay close to the
visible spectrum image while adding details from the near-infrared range, we choose
the luminance channel Y as attachment image f̃ . Finally, we combine the fused
luminance composite with the original chroma channels to form the output image.

In Figure 4.6, we compare our RGB-NIR fusion results to two state-of-the-art ap-
proaches from the literature. As mentioned in Section 4.2.1, contrary to Lau et
al. [LHM11] (Figure 4.6(c)) and Eynard et al. [EKB14] (Figure 4.6(d)), we do not
regard the near-infrared range as a fourth colour channel. Instead, in accordance to
psychophysical studies [FS08], we treat it as an additional spatial lightness informa-
tion. As our result demonstrates, this is an important model assumption. Compared
to both competing approaches, our fused image (Figure 4.6(e)) offers the most details
from both spectral ranges; see for instance the trees and the mountains. Besides pro-
viding better quality, our approach has an additional important advantage compared
to the approach of Eynard et al.: Their method requires the user to specify the output
colour of some pixels explicitly. This is pivotal for reasonable results. In contrast, our
output-driven approach requires no such user interaction, and is fully automatic.

To underline those findings, we conduct a detailed comparison to the approach of
Eynard et al. [EKB14] on further image sets. To this end, we use the public database
provided by Brown and Süsstrunk [BS11], which contains RGB and NIR images for
different real-world sceneries. Figure 4.7 depicts for three of those image sets the
original RGB input images (Figure 4.7(a)), the results of Eynard et al. (Figure 4.7(b)),
and our results (Figure 4.7(c)). Since the method of Eynard et al. requires user
interaction by an expert, we compare to resulting images that are kindly provided
by the authors. First, the experiments show that both approaches add important
structures to the final images that have not been visible in the input RGB images.
However, in this respect, the zooms illustrate that our results are richer in details.
Second, for the results of Eynard et al. one can observe undesirable colour casts
compared to the RGB images; cf. for instance the last row in Figure 4.7. This would
be acceptable if the details would increase significantly in this way. However, this
is not the case. Since we regard the NIR image as an additional spatial lightness
information, our results do not suffer from such artefacts.

To demonstrate the overall good performance of our general fusion approach for
multispectral imaging, we provide our resulting images for all 477 image sets from the
mentioned database of Brown and Süsstrunk [BS11] online: www.mia.uni-saarland.
de/Research/Image_Fusion.

In our last multispectral experiment, we deal with more than two input images
(Figure 1.3(a)–(d)). Also here, our fused image in Figure 1.3(e) demonstrates the
capability of our method to incorporate structures from all spectral ranges, without
leading to an unrealistic appearance.
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(a) input RGB image (b) input NIR image

(c) Lau et al. [LHM11] (d) Eynard et al. [EKB14] (e) our result

Figure 4.6: Comparison of multispectral image fusion. Top: Input images [Nat08]. Bot-
tom: Resulting images with zooms. Our fusion result features the most local details from
both spectral ranges without appearing unrealistic.
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(a) input RGB (b) Eynard et al. [EKB14] (c) our results

Figure 4.7: RGB and NIR fusion [BS11]. Our fused images in (c) show more details than the
standard photographs in (a), and also than the resulting images of Eynard et al. [EKB14]
in (b).

61



Chapter 4 Variational Image Fusion

4.4.2 Decolourisation

We approach the decolourisation task as follows: First, we decompose the input colour
image into its RGB channels, and regard them as input of our fusion algorithm. Then,
we fuse all three channels to a grey-valued image that offers an optimal local contrast.
Here, we use the pointwise average over all colour channels as attachment image f̃ ,
and set δ = 0. Figure 1.6 illustrates this procedure and depicts our corresponding
decolourisation result. While a single channel is not sufficient to preserve the details
from the colour image, our fused composite offers a desirable quality.

In [Čad08], Čad́ık presents a decolourisation benchmark that consists of 24 im-
ages, which are intended to represent various image classes. With the help of this
benchmark set we compare our method to different state-of-the-art decolourisation
approaches from the literature. For illustration, we depict three of those 24 bench-
mark images in Figure 4.8(a). The remaining images with a visual comparison to
various decolourisation techniques can be found online: www.mia.uni-saarland.de/
Research/Image_Fusion. Here, we restrict ourselves to a comparison with the best
performing approaches, namely the method of Lu et al. [LXJ12] (Figure 4.8(b)) and
Eynard et al. [EKB14] (Figure 4.8(c)). All decolourisation results in Figure 4.8 are
of similar high quality. However, in some image regions, our results (Figure 4.8(d))
tend to preserve more details from the colour image than the other ones; cf. also our
upcoming quantitative comparison.

Lu et al. [LXJ14] argue that the decolourisation benchmark of Čad́ık [Čad08] is
biased to synthetic images. Hence, they propose a new benchmark dataset that con-
sists of 250 colour images. Additionally, they introduce the so-called E-score quality
measure to quantitatively judge different decolourisation results. Definitely, this is
an important step to provide objective quality metrics and in this way, to trigger
further research in the area of decolourisation. However, as it turns out, this measure
unfortunately does not take into account the local contrast adaptation of the human
visual system. Rather, it even penalises effects such as a Cornsweet illusion with high
errors. This is illustrated in Figure 4.9: Although Figure 4.9(b) offers a better visual
quality than Figure 4.9(a), it receives a significantly worse E-score measure. Here,
a higher E-score means a better quality, and τE-score defines a colour difference that
is not perceivable by the human visual system; cf. [LXJ14] for further details. This
leads us to apply our method with a global contrast term for the conducted E-score
evaluation. The corresponding E-score graphs for the benchmarks of Čad́ık [Čad08]
and Lu et al. [LXJ14] are depicted in Figure 4.10. Considering the benchmark of
Čad́ık (Figure 4.10(a)), we obtain the best quality measures for almost all τE-score val-
ues. Similar observations hold for the decolourisation benchmark of Lu et al. [LXJ14]
(Figure 4.10(b)). Here, we outperform the competing methods for large τE-score values.
First, this shows that our general image fusion approach performs well for decolouri-
sation. It produces greyscale images that are of similar or even superior quality than
state-of-the-art approaches, which are especially tailored to the decolourisation task.
Second, as Figure 4.9 illustrates, our results could be even more improved with a
local contrast term. In this regard, we believe that modifications and extensions of
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(a) input (b) Lu et al. (c) Eynard et al. (d) our results

Figure 4.8: Results for the decolourisation benchmark of [Čad08]. From left to right : (a) In-
put colour images, (b) results of Lu et al. [LXJ12], (c) results of Eynard et al. [EKB14], and
our results.

existing decolourisation quality measures are highly desirable in order to account for
such properties of the visual system. This is an important goal for future research.
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Figure 4.9: Effect of (a) global and (b) local contrast term on the E-score measure of Lu et
al. [LXJ14] in (c). The higher the E-score value, the better. We see that the E-score measure
does unfortunately not account for the local contrast adaptation of the visual system. It
even penalises it with much smaller E-score values.
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Figure 4.10: E-score evaluation [LXJ14] for decolourisation benchmarks of (a) Čad́ık [Čad08]
and (b) Lu et al. [LXJ14]. The higher the E-score value, the better.

64



4.4 Experiments

4.4.3 Exposure Fusion

The task of exposure fusion is to combine differently exposed images to a single
composite that is well-exposed and offers an optimal local contrast. We show an
example result of our method for exposure fusion in Figure 1.2. Here, our fused
image contains details from all input images, is well-exposed, and features a good
local contrast.

To thoroughly evaluate our general image fusion method for the task of exposure
fusion, we conduct an extensive comparison to state-of-the-art approaches. In partic-
ular, we first consider the popular exposure fusion method of Mertens et al. [MKV09].
It builds the basis of many exposure fusion approaches and still provides top results
compared to more recent techniques. Additionally, we compare to the recent method
of Singh et al. [SKB14]. This exposure fusion method provides high quality results and
compares favourably to other state-of-the-art techniques; cf. [SKB14]. As mentioned
in Section 4.2.3, both methods precompute weights based on the input images, and
combine them later on. We will show that our idea, which directly aims for an opti-
mal output image, is able to outperform those input-based approaches. In cooperation
with the authors of [SKB14], we selected twelve representative exposure sets from the
HDR photographic survey of Fairchild [Fai07]. Each set consists of nine differently ex-
posed LDR images. For illustration, we depict in Figure 4.11 results for three of those
exposure sets. Especially in the zooms in Figure 4.11, the higher amount of local con-
trast offered by our approach is obvious, both in dark and bright image regions. More-
over, our images do not suffer from halos or blurring effects that can be observed for the
method of Singh et al. [SKB14]; cf. Figure 4.11(b,c). A comparison for the other expo-
sure sets can be found online: www.mia.uni-saarland.de/Research/Image_Fusion.
There, we additionally include our fusion results for all 105 images sets provided by
Fairchild to demonstrate the generally good performance of our method for exposure
fusion.

Unfortunately, no established quality measures exist to objectively evaluate expo-
sure fusion results based on the given input LDR images. However, in a related
context, Aydin et al. [AMMS08] introduced the so-called dynamic range independent
metric (DRIM). This metric bases on properties of the human visual system, and
can be applied to compare images with different dynamic ranges. In particular, it is
especially suited to compare an HDR reference image and an LDR representative of
it. Hence, it is frequently applied in the context of tone mapping. To make use of this
metric for evaluating our exposure fusion results, we consider publicly available HDR
images [Max05a], and create sets of LDR images with different exposure times from
them. To ensure that those images are representatives of real LDR images, we apply
appropriate exposure times and a common camera response function. Specifically,
we compute for each HDR image five LDR images separated by one exposure value.
These images serve as input for the exposure fusion techniques. Finally, we apply
DRIM to compare the reference HDR image with the exposure fusion results. DRIM
does not output a single quality measure, but informative distortion maps that use the
following colour code: Green indicates a loss of visible contrast, blue an amplification
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of invisible contrast, and red a reversal of visible contrast. In addition, the colour
saturation is proportional to the amount of distortion; cf. [AMMS08] for further de-
tails. Figure 4.12 depicts the fusion results and the corresponding DRIM distortion
maps of the method of Mertens et al. [MKV09] (Figure 4.12(a)), Singh et al. [SKB14]
(Figure 4.12(b)), and our approach (Figure 4.12(c)). As the DRIM maps indicate, our
results show less distortions compared to the competing approaches. This illustrates
that our model assumptions, which are based on perceptually inspired concepts from
variational contrast enhancement, are well-suited to create exposure fusion results
with a high perceptual quality.

In our last exposure fusion experiment in Figure 4.13, we additionally compare to
the method of Kotwal and Chaudhuri [KC11] since it is a related exposure fusion
approach. Also here, we observe a higher local contrast provided by our approach
compared to the competing methods. Furthermore, in comparison to Kotwal and
Chaudhuri, our method does not suffer from a colour cast and provides a vivid colour
impression. We achieve this by the proposed saturation term and the coupled handling
of all colour channels. Referring to the method of Singh et al., our result does not only
feature more local contrast, but is also free from an unrealistic detail enhancement;
see for instance the texture at the wall in Figure 4.13(c).
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(a) Mertens et al. [MKV09] (b) Singh et al. [SKB14] (c) our results

Figure 4.11: Exposure fusion results (with zooms) for LDR image sets provided by
Fairchild [Fai07]. High resolution images and results for various further exposure sets can
be found online: www.mia.uni-saarland.de/Research/Image_Fusion.
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(a) Mertens et al. [MKV09] (b) Singh et al. [SKB14] (c) our results

Figure 4.12: DRIM-based exposure fusion comparison. Odd rows: Resulting images. Even
rows: Corresponding DRIM distortion maps. The more colours, the more visible distortions.
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(a) [KC11] (b) [MKV09] (c) [SKB14] (d) our result

Figure 4.13: Exposure fusion results of (a) Kotwal and Chaudhuri [KC11], (b) Mertens et
al. [MKV09], (c) Singh et al. [SKB14], and (d) our result. Input exposure stack is available
at [Col99]. Particularly at the lamps, the better local contrast provided by our method is
obvious.
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4.4.4 Further Image Fusion Applications

We have seen that our output-driven approach leads to a versatile image fusion method
with a broad range of applications. To further demonstrate its general applicability,
let us illustrate its potential for two additional image fusion tasks.

Multilight Image Collection

In contrast to the classical two-stage pipeline of HDR imaging and tone mapping,
our approach is completely independent of the knowledge of the exposure times and
the camera response function. On top of that, also images that do not follow the
HDR imaging model, e.g. images captured with different camera settings or under
non-constant lighting conditions, can be included easily into the input stack. We
illustrate this by fusing a flash and no-flash image set in Figure 4.14. Additionally,
we show an example for the fusion of images captured with changing illumination in
Figure 4.15.

Focus Fusion

As discussed in Chapter 1, the goal of focus fusion is to combine a stack of images with
different focal settings to a single composite that is desirably sharp everywhere. In
Figure 4.16(a,b), we depict two input images from such a focal stack. The first one is
sharp in the back, but blurred in the front; the second one vice versa. The computed
weight maps in Figure 4.16(c,d) illustrate that our method works as expected. It fuses
the images in such a way that the result has a high local contrast, and is desirably
sharp; cf. Figure 4.16(e). Here, we set the attachment image f̃ to the average of both
input images. Moreover, since the dispersion term is obviously not that important for
focus fusion as for the other applications, we weight it down by increasing the weights
for the contrast and regularisation term, i.e. we set γ = 2.5 and α = 10.
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(a) ambient image (b) flash image (c) fusion result

Figure 4.14: Fusion of flash and no-flash photographs.

(a) lighting 1 (b) lighting 2 (c) lighting 3 (d) fusion result

Figure 4.15: Fusion of images captured under varying lighting conditions. (a–c) Multilight
image collection [FAR07], and (d) our fused result. It contains details from all input images
where the amount of details can be steered with the contrast parameters γ and σ.

(a) input image 1 (b) input image 2

(e) fusion result

(c) weight map 1 (d) weight map 2

Figure 4.16: Focus fusion. (a,b) Differently focused input images [BO10]. (c,d) Our com-
puted weight maps and (e) corresponding fusion result illustrate that our method picks
meaningful in-focus regions.
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4.5 Limitations and Discussion

Our model is tailored to static scenes, i.e. the input images have to be aligned prop-
erly. Obviously, this is no problem for decolourisation. However, especially exposure
series may suffer from either camera shakes or object motion during the acquisition
of the image set. Fusing unregistered images might result in so-called ghosting arte-
facts in the fused composite; cf. Figure 4.17. We thoroughly examine this deghosting
task in Chapter 5. There, we additionally explain how to make use of supplementary
information about the image stack. In this regard, knowledge about the image acqui-
sition process allows us to reconstruct physically plausible HDR irradiances from an
exposure series. The general fusion scheme that we presented in this chapter does not
consider such additional information. On the other hand, this increases its applica-
bility if this information is not available. Similarly, knowledge about the image set is
also highly beneficial in the context of focus fusion. In particular, knowing the relative
distances of the focal planes allows for inferring depth information; cf. Chapter 6.

At this point, we also want to comment on the numerical minimisation of the
presented energy functional; cf. Section 4.3.2. Depending on the parameter setting
our energy functional is nonconvex. Thus, the solution depends on the initialisation.
In all our experiments, setting wi = 1/nf , where nf denotes the number of input
images, yields good results. Moreover, it is hard to establish theoretical limits for
the allowed time step size τ of our iterative scheme. Even in the case of variational
contrast enhancement of a single image only very conservative results are known in
this regard; see e.g. [BCPR07, PPBC09]. Considering the fact that the resulting
differential equation can be interpreted as a nonlocal variant of backward diffusion
underlines the difficulty of finding theoretically justified time step size restrictions.
However, in all our experiments we could easily determine an appropriate time step
size τ in an empiric way such that the resulting algorithm is stable and fast. Here, we
want to note that the contrast parameter γ has the greatest influence on the restriction
of the time step size.
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(a) short exposure (b) middle exposure (c) long exposure

(d) fused composite

Figure 4.17: Moving objects may lead to ghosting artefacts in the fused composite. (a–
c) Input images from [SS12]. (d) Fused image with zoom into a ghost region.

4.6 Summary and Conclusions

In this chapter, we have presented a general variational method for image fusion. The
main difference to previous research is that we intentionally refrain from precomputing
application-specific weights based on the input images and combining the images with
those predetermined weights later on. Instead, we model an energy functional that
directly opts for an optimal composite image. This output-driven idea is the key
concept why our method works that well in various application areas. We demonstrate
this by means of thorough evaluations in all three main application areas, namely
multispectral imaging, decolourisation, and exposure fusion. Here, we compare to
state-of-the-art and well-performing methods in each field. As it turns out, our general
approach produces results of similar high quality, and even outperforms competing
methods for various example images. This shows the generally good performance and
versatility of our technique. On top of that, all components of our variational model
have a plain meaning and allow a direct manipulation of desired properties of the
output. In this regard, all parameters can be fixed or determined automatically in
a straightforward way. This allows an intuitive use, even by non-experts. This is an
important feature to easily adapt the fusion results to the personal preferences, display
and printer settings. To conclude, we believe that our technique is generally suitable
for applications that require the fusion of multiple images. It provides a composite
that condenses the most important information from the input images in an adequate
way, and offers important properties such a local contrast adaptation.

To further improve the fusion results, it might be beneficial to adapt the weighting
function in our contrast term in an image-dependant way. This would allow to steer
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the contrast by means of the spatial and tonal differences in a bilateral sense; cf. for
instance [AW95, TM98, CWS15]. Moreover, from a more general point of view, in
this work we have considered a variational formulation for histogram equalisation
(cf. [SC97]) to design our general image fusion method. In a similar way, it would
be highly interesting to consider variational histogram matching to propose novel
methods for further applications such as the colour transfer between two images; see
e.g. [PPC11,BL13].
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Chapter 5

Deghosting and HDR Imaging

“I ain’t afraid of no ghost.”

Ray Parker, Jr.
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Main parts of this chapter base on our work published in [DHW13,HDW14,DHW15]
and the master’s thesis of Maria Luschkova [Lus13].

5.1 Introduction

As illustrated in Section 4.5, already small misalignments in the exposure set may
lead to undesirable artefacts in the fusion result. However, in a practical setting we
cannot assume perfectly aligned input images. In fact, camera shakes and moving
objects during the acquisition of the exposure stack are omnipresent. Even when
using a tripod, already the triggering of the camera shutter may cause significant
misalignments. Additionally, completely static scenes without any moving objects
such as moving clouds or waving leafs are seldom. Hence, an appropriate processing
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Chapter 5 Deghosting and HDR Imaging

step to handle such motion within an exposure series is often indispensable. To this
end, we present two different strategies in this chapter. First, we consider the following
two-step approach: In a first step, we compute displacement maps between a chosen
reference image of the exposure set and all other frames. To this end, we base on
successful variational optic flow approaches and adapt them to the difficult exposure
series setting, where common constancy assumptions such as the brightness constancy
assumption do not hold. Subsequently, the computed displacement maps are used to
align all input images. In a second step, we remove remaining misalignments by a
so-called ghost removal technique that identifies regions of the input images which are
prone to produce artefacts in the fused composite image.

Alternatively, provided further information about the exposure set, we present a
conceptually different approach. Since knowledge about the camera response func-
tion (CRF) and the exposure times allows for inferring high dynamic range (HDR)
information, we propose to simultaneously compute an aligned HDR image and dense
displacement fields for all input images. We will see that both tasks influence each
other, and thus highly profit form the induced mutual feedback provided by our joint
approach.

Chapter Outline. In Section 5.2, we give a broad overview of related work in expo-
sure series alignment and ghost removal. We deepen this discussion in the individual
sections, where we explicitly explain the relation to previous work. The core part
of this chapter consists of three main sections: In Section 5.3, we discuss our vari-
ational framework for displacement estimation. Here, we focus on the general case
of differently exposed images, and propose our complete rank transform (CRT) for
this purpose. Subsequently, in Section 5.4 we discuss our ghost removal approach for
identifying and eliminating remaining misalignments. Next, we present our simul-
taneous HDR and optic flow computation in Section 5.5. We conclude this chapter
with a summary and outlook in Section 5.6. Additionally, we give details of our finite
difference discretisation in the Appendix 5.A of this chapter.

5.2 Related Work

Previous work on deghosting can be classified into two main classes. First, we con-
sider approaches that try to match all images of the exposure set, and in this way
try to make optimal use of the available information. Accordingly, we call them im-
age matching methods. Second, we discuss so-called ghost removal techniques that
already assume an adequate alignment of the images, and aim at removing remaining
misalignments. Here, the main goal is a result free of artefacts at the price of discard-
ing valuable information. Certainly, we also cover some hybrid approaches that may
fit into both classes. Recent surveys of deghosting approaches in the context of HDR
imaging can be found in [SS12] and [TAEE15].
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5.2.1 Image Matching

Let us first review methods that aim at aligning the input images of the exposure
stack. In this context, we again differentiate two types of methods: First, we dis-
cuss approaches that are suited for pure camera motion. Subsequently, we consider
techniques that additionally cope with local scene motion, i.e. moving objects.

Camera Motion

The techniques in this class assume a global motion pattern between two input im-
ages that is mainly caused by a movement of the camera. Here, the methods differ in
the considered motion models. In particular, several methods model a simple global
translation between the different frames [War03, KHC+06, Aky11]. Grosch [Gro06]
and Jacobs et al. [JLW08] extend the method in [War03] and additionally account
for global rotations. Similarly, Im et al. [ILLP11] determine an affine transformation
between an image pair by minimising a quadratic error function. Alternatively, the
techniques in [CH06,RMVS07,GG07,Yao11] determine a global translation and rota-
tion by means of the Fourier transform. Moreover, several approaches relate the input
images by so-called homographies which turn out to be well-suited for realistic camera
movements; see e.g. [MMF03,Can03,EUS06,TM07,HLL+10,GKTT13,OLTK15].

Besides the considered motion models, the methods differ in the actual matching as-
sumptions. Ward [War03] introduces the so-called median threshold bitmaps (MTBs)
that are invariant under monotonically increasing grey value rescalings, and thus
well-suited for exposure series. Similarly, Akyüz [Aky11] proposes so-called corre-
lation maps that are robust w.r.t. varying exposure times. Interestingly, both ap-
proaches share similarities to our illumination-robust descriptors that we consider in
Section 5.3. Further descriptor-based methods applied in such a setting are based on
the scale-invariant feature transform (SIFT) [Low04,EUS06,TM07,HLL+10], speeded-
up robust features (SURF) [BETV08, GKTT13], or the contrast invariant feature
transform CIFT [GG07]. Contrary to considering descriptors that are robust against
brightness changes, Mann et al. [MMF03] and Candocia [Can03] present a joint regis-
tration of the input images and photometric alignment. Here, photometric alignment
or also photometric calibration describes the process of relating the intensity values
between the different frames; cf. also Section 5.4.

Camera and Object Motion

The approaches discussed so far assume a global transformation between an input
image pair. This may be suited for pure camera movement. However, any moving
scene object during the acquisition violates this assumption. Hence, the following
methods try to locally match all parts of the input images under arbitrary scene
motion.

Optic Flow-Based Alignment. Bogoni [Bog00] and Kang et al. [KUWS03] first
compute a global transform for the whole image, and refine the resulting motion field
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locally in a second step with a variant of the local optic flow approach of Lucas and
Kanade [LK81]. Sand and Teller [ST04] match sparse feature points and locally refine
and interpolate the flow fields afterwards. In [MG07, MG10, CPOL12] hierarchical
block matching schemes are applied to locally register all input images. Moreover,
there exit several energy-based techniques for computing the optic flow fields. For
instance, Hossain and Gunturk [HG11] and Bouzaraa et al. [BUC15] apply histogram
matching to photometrically align the intensity values of differently exposed frames;
cf. also Section 5.4. Then, the resulting constancy assumption is incorporated as
data term into a variational optic flow framework. In a similar context, Bengts-
son et al. [BML15] investigate a temporal smoothness of the flow fields in the form
of [VBVZ11], and analyse different weightings of the data terms to handle saturated
image regions. Ferradans et al. [FBPC12] propose an irradiance-based data term, and
embed it into the optic flow approach of Chambolle and Pock [CP11]. Comparably,
Jinno and Okuda [JO12] present a Markov random field approach that also implements
an irradiance-based constancy assumption. Moreover, Gupta et al. [GIN13] advocate
an exposure bracketing technique based on the Fibonacci numbers to improve the op-
tic flow computation. Lin and Chang [LC09] propose a disparity map computation in
case of differently exposed stereo pairs. In particular, they estimate the response func-
tion of the camera by means of sparse SIFT correspondences, and subsequently apply
it to formulate an appropriate constancy assumption. In [SEM11], Sellent et al. ex-
plicitly tackle the problem of motion blur caused by large exposure times. Zimmer et
al. [ZBW11a] align the exposure stack with a variational approach, where the gradient
constancy assumption is imposed. The resulting motion fields with subpixel precision
are subsequently applied to construct an HDR composite with super-resolution.

To a great extent, the above mentioned approaches are especially tailored to expo-
sure sets. For instance, some of the discussed techniques require explicit knowledge
about the exposure times or the camera response function. However, there exist vari-
ous optic flow approaches that are suited for the more general alignment of differently
exposed input images. Indeed, there is a long tradition of designing methods for
illumination-robust optic flow computation, either by introducing robust features or
by modelling the illumination changes explicitly. In the following, we review alignment
approaches that fit into this category.

The gradient constancy assumption renders the optic flow model robust w.r.t. global
additive brightness changes. It goes back to Nagel [Nag83], Tretiak and Pastor [TP84],
and Uras et al. [UGVT88], while embeddings in a variational setting have been studied
e.g. by Schnörr [Sch93] and Brox et al. [BBPW04]. Constancy assumptions on higher
order derivatives have been proposed by Papenberg et al. [PBB+06]. There are further
gradient-based features that have shown their usefulness for optic flow computation.
Famous examples are the scale-invariant feature transform (SIFT) [Low04, LYT11],
the histogram of oriented gradients (HOG) [DT05,RMG+13], or local directional pat-
terns (LDP) [JKC10, MRM+14]. Also the gradient orientation is a suitable con-
stancy assumption in case of drastic illumination changes; see e.g. Haber and Mod-
ersitzki [HM07]. Another illumination-robust feature that has found great attention
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in recent years is the so-called census transform by Zabih and Woodfill [ZW94]. The
resulting census signatures offer a strong invariance against monotonically increas-
ing brightness changes. Interestingly, also those census features share a strong rela-
tion to the gradient constancy assumption as discussed in [HDW13] and [HDWR15].
Stein [Ste04] uses the census signatures in an efficient feature matching approach,
where a hash table-based indexing scheme provides flow estimates in real-time and is
well-suited for large displacements. Müller et al. [MRRF11] as well as Mohamed and
Mertsching [MM12] exploit those sparse feature matches to handle large displace-
ments and to recover image details lost in a coarse-to-fine minimisation technique.
Furthermore, Müller et al. [MRR+11] embed the census transform as data term into
a variational optic flow framework. Tests in real-world scenarios demonstrate the de-
sired robustness of the resulting dense flow fields w.r.t. illumination changes. Vogel et
al. [VRS13] compare different data terms and show that the census transform is well-
suited for challenging lighting conditions. Puxbaum and Ambrosch [PA10] apply the
modified census transform of Fröba and Ernst [FE04] to the image gradients and use
it for optic flow estimation. Braux-Zin et al. [BZDB13] combine the brightness and
census-based constancy assumption in a variational framework. In [RBP14], Ranftl
et al. propose an extension of the census transform to increase the robustness to scale
changes. Also in the context of stereo estimation, Mei et al. [MSZ+11] and Ranftl et
al. [RGPB12] have illustrated the usefulness of the census transform. In Section 5.3,
we will present variants of the census and the related rank transform of Zabih and
Woodfill [ZW94], and embed it into our variational optic flow approach.

Moreover, Steinbrücker et al. [SPC09], Molnár and Chetverikov [MCF10], and
Werlberger et al. [WPB10] achieve an invariance against multiplicative illumination
changes via patch-based data terms using normalised cross correlation. In this con-
text, Drulea and Nedevschi [DN13] introduce the so-called correlation transform for
motion estimation. Wedel et al. [WPZ+09] perform a structure-texture decomposition
of the input images by means of the image denoising method of Rudin et al. [ROF92].
Here, the textural part shows an increased robustness under shadows and shading
reflections. In presence of colour imagery, robustness w.r.t. illumination changes can
also be achieved by exploiting photometric invariants [GB97, vG04, MBW07] or by
switching to other colour spaces as performed in [ZBW11b]. Also the mutual infor-
mation [VW97] turns out to be a useful feature for registering images with differ-
ent illumination; see e.g. Hermosillo et al. [HCF02] and Panin [Pan12]. In [XJM10]
and [KLL13] robust data terms are incorporated in an adaptive way by switching
locally between different constancy assumptions.

Instead of matching illumination-robust features, the following approaches follow
a different idea to tackle brightness changes: They model them explicitly. Based
on comparagrams [Man00], Kim and Pollefeys [KP04] as well as Dederscheck et
al. [DMM12] estimate the brightness transfer function (BTF) that allows to compen-
sate for global brightness changes. In order to handle also local changes, the model
of Cornelius and Kanade [CK83] allows smooth additive variations from the bright-
ness constancy assumption. Further approaches that model such additive changes
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are presented in [Shu89, Muk90, CP11, ARS12]. Gennert and Negahdaripour [GN87]
extend this idea and jointly optimise for spatially varying multiplicative and ad-
ditive illumination changes in addition to the optic flow field. Also the methods
in [Neg98, HSGL11, FDW12] apply such an affine illumination model. Hager and
Belhumeur [HB96] apply a principal component analysis to set up the basis of an il-
lumination model whose parameters are jointly computed with the motion. Similarly,
Demetz et al. [DSV+14] learn a set of basis functions and jointly recover locally vary-
ing illumination parameters and a dense flow field. The methods in [BFY00, HF01]
propose to estimate physically based illumination parameters to support the motion
estimation. Kim and Kak [KK06] compare different local and global approaches under
brightness changes and in particular improve the robustness against noise.

Patch Matching Techniques. If the actual displacement maps (optic flow fields) are
of rather less importance and the main goal is a nice looking composite image, there
exists an interesting alternative to the discussed optic flow-based alignment strategies.
Instead of computing explicit displacement maps and subsequently aligning the input
images, several approaches apply so-called patch matching techniques. Here, the basic
idea is to choose a reference image and to find for every image region of this reference
image corresponding patches in the other images of the exposure stack. In this context,
Zheng et al. [ZLZ+13] propose a hybrid approach, where they search for corresponding
pixels by means of the brightness transfer function if the intensity value of the reference
pixel is reliable. Otherwise, a block-based template matching is performed. Also Hu et
al. [HGP12] make use of an advanced patch matching algorithm to find corresponding
image regions. Additionally, this method contains a ghost removal step after the
registration to handle wrong correspondences. In their follow-up work [HGPS13], the
authors explicitly improve the handling of saturated regions. In an HDR setting, Sen
et al. [SKY+12] jointly align the input images and estimate an HDR composite image.
In [KSB+13], this work is extended to an HDR video setting.

5.2.2 Ghost Removal

Assuming the images to be sufficiently aligned, the task of so-called ghost removal
methods is to identify and eliminate remaining motion artefacts that may show up as
ghosts in the final composite images; cf. Figure 4.17. In recent years, a variety of ghost
removal approaches has been proposed. In particular, they differ in their underlying
assumptions about the exposure set. For instance, some require knowledge of the
exposure times and the camera response function, while others do not make specific
assumptions about the imaging process. While the former one might be useful in
an HDR imaging context, the later one has a wider area of application; cf. exposure
fusion. Detailed surveys of recent ghost removal literature can be found in [SSM12]
and [TAEE15]. Here, we give a broad overview and discuss the main concepts.

One idea for detecting ghosts in an exposure sequence is to predict the intensity
values of an LDR image with the help of the brightness transfer function (BTF)
that transfers the brightness values from one frame to another. If the predicted
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and the measured pixel values differ more than a predefined threshold, the pix-
els are indicated as ghosts. While some methods assume a linear camera response
function (CRF) [KHC+06, GGC+09, SSM12, TAEE15], others explicitly estimate the
CRF/BTF that is applied for the brightness transfer. In particular, several approaches
determine the BTF by means of pixels that are static along the exposure set. To
detect such static pixels, Wu et al. [WXRL10] consider the image gradients while
Raman [RC11] apply a variance-based measure. Alternatively, Heo et al. [HLL+10]
compute the BTF based on the joint probability density function between different
exposures, where they iteratively discard pixels that significantly differ from the pre-
dicted values. In contrast to such a sample-based BTF estimation, Grosch [Gro06],
Li et al. [LRZ+10], and Moon et al. [MTCL12] transform the brightness values by
means of histogram matching. This procedure is similar to the approach of Grossberg
and Nayar [GN03] who show that a CRF estimation based on the image histograms
is robust w.r.t. a certain amount of camera and scene motion. Wang et al. [WT13]
perform a brightness normalisation by an additive offset and compute the prediction
difference by means of the lightness channel of the CIE-Lab colour space (cf. also
Section 2.2.2). Moreover, several methods make use of the observation that the pixel
value should increase if the exposure time increases. Violations of this consistency
check are an indication of a moving object; see e.g. [SPS09,WXRL10,ALKC11].

Another approach for ghost detection is to compare features that are robust un-
der varying exposure times. Example features are local entropy measures [JLW08],
coarsely quantised intensity values [MPC09], the median threshold bitmaps [War03,
PK10], the rank of the intensity values [LPC11], zero mean cross correlation [ALKC11,
SPLC13], or the gradient direction [ZC12a]. In all methods, a significant change of
the considered feature indicates a ghost. Furthermore, Reinhard et al. [RHD+10] ex-
amine the variance of a pixel value over the exposure stack to identify ghosts, and
Granados et al. [GKTT13] incorporate a camera noise model for ghost detection. At
this point, we also want to mention that several methods impose specific types of
spatial smoothness on the computed ghost maps. Examples are applications of mor-
phological operations in [PK10,SPLC13] or the explicit modelling of a regularisation
term such as in [HLL+10].

Alternative approaches for ghost removal were proposed by Granados et al. [GSL08]
as well as Silk and Lang [SL12]. Instead of explicitly detecting ghosts, they aim at
identifying a static background that is later used for the HDR reconstruction. Two
techniques that also do not require an explicit detection of moving objects are the
methods by Khan et al. [KAR06] and by Pedone and Heikkilä [PH08]. In their HDR
reconstruction, they iteratively reduce the influence of pixels with a high probability
of being nonstatic.

5.3 Alignment with Complete Rank Transform

As we have seen, a popular approach to render computer vision algorithms robust
against illumination changes is to incorporate features that are invariant w.r.t. the
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Figure 5.1: Monotonically increasing grey value rescalings. From left to right : Input intensity
patch, monotonically increasing rescalings, resulting rescaled intensity patches. Values are
rounded to the nearest integers. Note that the intensity order within the patch remains
unchanged. We exploit this observation to design our illumination-robust descriptors.

occurring brightness variations. In case of exposure series we have to expect strong
illumination changes. In fact, without further knowledge about the exposure set,
we can only assume a general global monotonically increasing transformation of the
brightness values from frame to frame; cf. Figure 5.1. Evidently, a monotonically in-
creasing rescaling does not alter the ordering of the intensity values.1 Hence, it seems
intuitive to consider descriptors that are based on this grey value order to design
illumination-robust techniques. In accordance to [AGLM93], we call such features
that are invariant under monotonically increasing rescalings morphologically invari-
ant. A prominent representative of such illumination-robust descriptors is the rank
transform of Zabih and Woodfill [ZW94]. It computes the rank of a pixel’s intensity
within a local neighbourhood. Indeed, this transform is invariant against any (global)
monotonically increasing intensity changes. However, it is also clear that only stor-
ing the rank of the pixel means to discard all other local information. In the same
paper [ZW94], the census transform is proposed. It compares a pixel with all its
neighbours and stores which one is larger. In this way (besides encoding the rank in
a different form), also some spatial information is stored. However, also here a lot of
information is discarded. Thus, it would be highly desirable to develop a feature that
is on the one hand morphologically invariant and on the other hand discards as little
information as possible.

1To a certain extent, quantisation noise and a clamping of the intensity values in saturated image
regions might violate this assumption in practice. However, as we will see in our upcoming
experiments (cf. Section 5.3.5), our proposed optic flow approach is robust against such effects
and nevertheless provides good results.
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Main Contributions. In this section, we propose descriptors that exhibit the same
strong morphological invariance as the rank, but carry significantly more information.
In fact, our general idea is to extend the concept of the rank transform in a beneficial
way: Instead of solely considering the rank of the central pixel, we compute the
ranks of all pixels in its neighbourhood. In this way, we store the complete local
intensity order. We claim that our resulting complete rank transform (CRT) can
be used as a generally superior alternative to the census transform: It is equally
computationally efficient, as parameter-free as the census transform, and leads to
clearly improved results. We embed our feature into a variational energy functional
for optic flow computation. In this way, we demonstrate the benefits of the proposed
descriptor w.r.t. existing approaches. Moreover, we illustrate the overall performance
of our technique for the alignment of exposure sets. Since we assume the exposure
times and the camera response function to be unknown, our method is applicable for
general alignment tasks that exhibit severe illumination changes; i.e. our method is
not limited to the HDR reconstruction or exposure fusion setting.

Section Outline. We start with a discussion of related illumination-robust descrip-
tors in Section 5.3.1. In Section 5.3.2, we explain the rank and census transform,
and introduce their complete counterparts. Next, we embed them into our variational
framework for optic flow computation in Section 5.3.3. We describe its numerical
minimisation in Section 5.3.4. In Section 5.3.5, we evaluate our model by means of
experiments, and discuss possible limitations in Section 5.3.6.

5.3.1 Relation to Previous Work

There are many other transforms that are related to our idea: Independently of Zabih
and Woodfill’s rank and census transform [ZW94], Pietikäinen et al. performed broad
research on various kinds of so-called local binary patterns ; see e.g. the comparative
study in [OPH96] or the book [PHZA11] and references therein. However, the majority
of these local binary patterns discard rather more than less available information
(cf. e.g. [CKZP13]), and hence go in the opposite direction of our research.

The binary robust independent elementary features (BRIEF) of [CLO+12] are a vari-
ation of the census transform which performs the comparisons on arbitrary pixel pairs
in the neighbourhood. Stein [Ste04] applies a ternary variant of the census transform
as an efficient descriptor for sparse structure matching in driver assistance systems,
and Fröba and Ernst [FE04] propose the modified census transform for face recogni-
tion. Another variation of the census transform is proposed by Ranftl et al. [RBP14],
who develop a scale-robust census descriptor by sampling radial stencils with differ-
ent radii that depend on the locally estimated scale. The first appearance of ordinal
measures of full patches goes back to the work of Bhat and Nayar [BN98] for block
matching in the context of stereo computation. Related to that, several sparse in-
terest point descriptors building on intensity order-based ideas have been proposed:
With their chained circular neighbourhoods, Chan et al. [CGKC12] make a first step
towards representing neighbourhood ordinal information. The local intensity order
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Figure 5.2: Illustration of the presented intensity order transforms with a 3×3 neighbourhood
patch (K = 9), where the reference pixel is marked in grey. From left to right : (a) Input
intensity patch, (b) rank transform (RT), (c) census transform (CT), (d) complete rank
transform (CRT), and (e) complete census transform (CCT).

pattern (LIOP) descriptor of Wang et al. [WFW11] describes the intensity order of a
very large neighbourhood and is specifically tailored for sparse interest point matching.
A similar idea of matching order distributions is proposed by Tang et al. [TLCT09].
Moreover, Mittal and Ramesh [MR06] combine order and intensity information to
increase the robustness against noise.

In Section 5.2.1, we have already discussed several successful applications of the
census transform or variants of it for optic flow and stereo computation; see e.g. [Ste04,
PA10,MSZ+11,MRR+11,MRRF11,RGPB12,MM12,HDW13,VRS13,BZDB13,RBP14,
HSW15]. In fact, those approaches might benefit from our illumination-robust CRT
descriptor that we introduce in the following sections.

5.3.2 Morphologically Invariant Descriptors

In Figure 5.2, we give an overview of the considered morphologically invariant transfor-
mations, i.e. transforms that are invariant under any global monotonically increasing
rescalings of the input signal. Formally, each transform maps a local image patch
to a ζ-dimensional feature vector s : RK → Rζ , where we define the image patch as
the K closest neighbouring pixels w.r.t. the spatial Euclidean distance. For didactic
reasons, we represent in the following the patch intensity values by a K-dimensional
vector f ∈ RK , where the values are ordered by increasing spatial distance from
the centre. Hence, the intensity of the central pixel is assigned to the first entry
f1. In case of equal distances, we always start with the right neighbour and proceed
counter-clockwise. Accordingly, for the example intensity patch in Figure 5.2(a) the
neighbourhood vector is given by f = (25, 88, 14, 4, 15, 83, 4, 3, 65)T.

Rank Transform

The rank transform (RT) proposed by Zabih and Woodfill [ZW94] encodes for each
pixel the position of its grey value in the ranking of all grey values in the neighbour-
hood. In other words, it describes the number of neighbours with a smaller grey value
than the central one. Formally, the rank transform maps each pixel to its scalar rank
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signature sRT ∈ {0, . . . , K − 1}, and can be computed as

sRT(f) :=
K∑
i=2

χ(fi<f1) , (5.1)

where χ(z1<z2) denotes the indicator function

χ(z1<z2) :=

{
1 if z1 < z2 ,

0 otherwise.
(5.2)

Census Transform

In the same paper [ZW94], Zabih and Woodfill introduce the census transform (CT).
This transform has attracted a lot of attention in recent years and can be seen as
an extension of the rank transform. Besides encoding the rank, it adds a spatial
component by expressing the relationship between the central pixel and each of its
neighbours explicitly. Specifically, one bit of information is stored for each pixel of
the neighbourhood: If the neighbour is smaller than the reference pixel the bit is 1,
and 0 otherwise. In the final binary signature, all bits are concatenated. While the
order of this concatenation is in general arbitrary, it has to be consistent such that
each bit can be uniquely associated with one neighbour.

In mathematical terms, each image patch of size K is mapped to a binary signature
vector sCT ∈ {0, 1}K−1. Note that we do not need to store a bit for the central pixel
itself, which explains the signature length K−1. Consequently, we compute the K−1
digits of the census signature sCT as follows:

(sCT(f))i := χ(fi<f1) ∀i ∈ {2, . . . , k} . (5.3)

Hence, we compare every neighbouring pixel to the central one f1. Furthermore, it
is interesting to note that the sum of the digits of a census signature coincides with
the rank sRT of that pixel. Hence, the information of the rank transform is naturally
contained by a census signature. However, as discussed, the census transform adds
additional valuable spatial information.

Complete Rank Transform

Although the two signatures proposed in [ZW94] exhibit the same morphological
invariance, the census transform obviously encodes by construction more information
than the pure rank. However, there is still some more information that can be used
without losing the desired class of invariance. To this end, let us now introduce
an extension of Zabih and Woodfill’s basic transform: the complete rank transform
(CRT). We will see that the resulting signature carries much more information than
its predecessors.

Given the census signature sCT of an image patch, we know which pixels in the
patch are smaller than the central one. However, the relationships among all neigh-
bours cannot be determined by the pure census information. For instance, if two
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neighbouring pixels are both smaller than the central one, it is still unclear which of
the two neighbours is smallest. Hence, to also encode this valuable information, we
propose the complete rank transform. Specifically, we determine the K-dimensional
CRT signature sCRT ∈ {0, . . . , K − 1}K by computing and storing the rank of all
pixels in the patch:

sCRT(f) := (s1
RT, . . . , s

K
RT)T , (5.4)

where

siRT :=
K∑
j=1
j 6=i

χ(fj<fi) . (5.5)

With this CRT signature, the whole intensity order is represented. From the viewpoint
of morphological invariance, this is the maximal amount of information that can be
extracted without leaving this class of invariance.

The explanation of the CRT signatures in Equation (5.4) is demonstrative and
intuitive to understand, but also inefficient. In fact, the complexity of the discussed
computation of sCRT is quadratic in K. However, essentially what has to be done is
to sort the intensity values of the patch. To this end, we propose to apply an efficient
sorting algorithm such as Quicksort which leads to O(K logK); see e.g. [PTVF07].

Complete Census Transform

After motivating the complete rank transform via the missing relationship information
between all pixels in the patch, another transform comes naturally into mind, namely
an analogue extension of the census transform: the complete census transform (CCT).

Instead of storing all K ranks, it stores for each pixel of the patch whether it is
smaller or larger than any other pixel in the patch. Thus, we obtain a signature
sCCT ∈ {0, 1}K(K−1) which contains all census signatures with each of the pixels as
reference:

sCCT(f) := (s1
CT

T
, . . . , sKCT

T
)T , (5.6)

where, similar to (5.3), the K − 1 digits of each individual signature siCT are given by(
siCT

)
j

:= χ(fj<fi) ∀j ∈ {1, . . . , K} \ i . (5.7)

Evidently, the original census signature from Equation (5.3) coincides with s1
CT.

Please note that the information contained in complete rank and complete census
is equivalent. This can be seen from the bijection between them: On the one hand,
it makes no difference if we compute the CCT signature directly from the intensity
values or from the CRT signature of a patch, i.e.

sCCT(f) = sCCT (sCRT(f)) . (5.8)

In the opposite direction, the complete rank digits are just the sums of corresponding
CCT bits:

(sCRT(f))i =
K−1∑
j=1

(
siCT

)
j
. (5.9)

86



5.3 Alignment with Complete Rank Transform

Both complete rank and complete census signatures, do also represent tied ranks,
i.e. if pixels in the patch have the same intensity value. Thus, the number of possible
signatures for a patch withK pixels is given by theK-th ordered Bell number OBN(K)
(also called K-th Fubini number) which is defined by [SP95]

OBN(K) =
K∑
i=0

i∑
j=0

(−1)i−j
(
i

j

)
jK . (5.10)

It expresses the maximally possible number of weak orderings of a set of K elements.

Discussion

In each pixel, our complete rank signature contains the full local image intensity or-
der. Obviously, this is much more information than the rank or census signatures
carry. In particular, it is not possible to encode more local image information without
leaving the class of morphologically invariant descriptors. The reason for this is that
the only property that cannot be changed by a monotonic function is monotonicity,
i.e. whether one pixel is larger than the other or not. Here, we want to note that
our notion of image information does not coincide with the classical notion of infor-
mation content in terms of coding length. The work on actionable information by
Soatto [Soa09] goes more in our direction, as it only includes the information content
of image (sequences) that is relevant for the task at hand. In particular, this means
that so-called nuisances (illumination and viewpoint changes) are discarded and do
not count as actionable information. Interestingly, Soatto [Soa09] models illumina-
tion changes with monotonically increasing continuous functions. In that sense, our
morphologically invariant descriptors do only discount nuisances and no actionable
information.

In fact, due to its much more compact representation and lower dimensionality, the
CRT signatures are generally preferable to the CCT signatures. However, this alter-
native census-inspired perspective of our CRT feature offers an unexpected insight:
As pointed out in [HSW15], each binary digit of a census signature can be regarded as
the sign of the corresponding directional derivative (in a finite difference sense). Thus,
from this point of view, one can conclude that the complete rank transform inherently
contains rich local differential information. In this regard, dealing with derivatives of
such signatures as in [PA10] actually corresponds to second order image derivative
information. This fact is not obvious from just considering the rank representation
and should be kept in mind.

For the sake of clarity, we summarise the discussed transforms and compare their
essential properties in Table 5.1.

5.3.3 Variational Model

Our ultimate goal is to align the images of an exposure series to a selected reference
frame. This comes down to the computation of displacement fields (optic flow) that

87



Chapter 5 Deghosting and HDR Imaging

Table 5.1: Comparison of the proposed intensity order transforms. The number of pixels in
the considered neighbourhood is given by K.

transform
range D of
one digit

signature
length ζ

spatial
information

size of
descriptor

space

rank (RT) {0, . . . , K− 1} 1 − K

census (CT) {0, 1} K − 1 X 2K−1

complete rank (CRT) {0, . . . , K− 1} K X OBN(K)

complete census (CCT) {0, 1} K(K − 1) X OBN(K)

relate each position in a first (reference) frame f1 to the corresponding position in
a second frame f2. To this end, we present in this section our general variational
framework for optic flow computation. It is based on the seminal work of Horn and
Schunck from 1981 [HS81], and allows a transparent and flexible modelling while
being able to provide accurate state-of-the-art results as demonstrated in various
optic flow benchmarks. First, we assume that the input images have been mapped
by one of the introduced transforms to a vector-valued function s : Ω → Dζ , where
Ω ⊂ R2 denotes the 2D rectangular image domain and D describes the range of a
single signature digit; cf. Table 5.1. Next, we model the constancy assumption that
signatures of corresponding pixels in the first and second frame coincide. To this
end, let v = (v1, v2)T : Ω → R2 denote the unknown flow field, where v1 represents
the horizontal and v2 the vertical flow component. With this notation, our energy
functional is given by

E(v) = D(v) + α ·R(v) . (5.11)

The first term D(v) is the data term that implements our constancy assumption. We
reward small cost if a feature s1 of the first image at position x is similar to the feature
s2 of the second image at the corresponding position x + v(x). More specifically, we
realise this by modelling the data term

D(v) =

∫
Ω

Ψ
(

1
ζ
|s2(x + v)− s1(x)|2

)
dx , (5.12)

where we omit the argument x of the optic flow field v for the sake of readability.
Here, ζ denotes the signature length; cf. Table 5.1. In case of colour images, this
signature length is tripled since we concatenate the signatures of each colour channel.
Moreover, we apply the penalisation function Ψ(z2) =

√
z2 + ε2 with the small positive

parameter ε to increase the robustness w.r.t. outliers that may be caused by noise or
occlusions; see e.g. [Hub81,BA91,Coh93]. In the exposure series setting, it additionally
provides a robustness w.r.t. highly under- and over-saturated image regions where the
imposed constancy assumption might be violated.

The second term R(v) in (5.11) is the so-called regularisation term. It rewards
smooth flow fields with small spatial variations, while the positive smoothness param-
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eter α determines the amount of smoothness. In particular, we model the regularisa-
tion term

R(v) =

∫
Ω

Ψ
(
|∇v1(x)|2 + |∇v2(x)|2

)
dx (5.13)

to provide a discontinuity preserving smoothing with the penalisation function Ψ(z2) =√
z2 + ε2, ε > 0. It can be interpreted as regularised total variation (TV) regularisa-

tion of the optic flow v; see e.g. [ROF92,AV94,PBB+06].

Discussion. Certainly, one can also think of more advanced smoothness terms which
for instance adapt to the local image structure in an anisotropic way; cf. e.g. [NE86,
ZBW11b] or our upcoming Chapter 6. However, as for instance pointed out by Zim-
mer [Zim11, p. 124], they do not consistently improve the flow computation in the
exposure series setting. This can be explained by the possibly large under- and over-
saturated image regions that yield unreasonable or even misleading directional cues.
Thus, we refrain from such smoothness terms in our setting. Furthermore, there
exist also higher order regularisation terms; cf. also our upcoming Chapter 6. For
instance, second order terms are especially beneficial if the optic flow fields are as-
sumed to be (piecewise) affine, which is for instance a well-suited assumption for traffic
scenes [GLU12,MG15]. However, here we cannot assume such a prior knowledge, and
hence stick to the discussed discontinuity preserving smoothness term in (5.13) that
penalises first order flow derivatives.

Moreover, one can also think of modelling the alignment task of all image pairs
in the exposure series within one joint energy functional. This would enable us to
apply some kind of temporal smoothness, i.e. a smoothness of the optic flow along
different acquisitions in the sense of [Nag90,WS99,VBVZ11,BML15]. However, in the
general setting such a temporal smoothness is not fulfilled due to arbitrary camera
shakes between the acquisitions. Thus, we refrain from such a model assumption in
our general setting. Nevertheless, such a temporal smoothness might be beneficial in
the HDR video setting; cf. our discussion of future work in Section 5.6.

5.3.4 Minimisation

Multiresolution Technique

Due to the data term, the energy in (5.11) is nonconvex w.r.t. the optic flow variables
v1 and v2. As a remedy we consider, similar to [BBPW04], a fixed point iteration
scheme that is embedded into a multiresolution pyramid-based approach. This leads
to a linearised and convex version of the data term that allows for handling large
displacements. More specifically, on each pyramid level ` we compute small flow
increments dv` := (dv`1, dv

`
2)T. Introducing these flow increments to the data term

in (5.12) yields

D`(dv`) =

∫
Ω

Ψ
(

1
ζ
|s2(x + v` + dv`)− s1(x)|2

)
dx . (5.14)
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Subsequently, first order Taylor linearisation of s2(x + v` + dv`) leads to

s2(x + v` + dv`) ≈ s2(x + v`) + ∂x1s2(x + v`) dv`1 + ∂x2s2(x + v`) dv`2 . (5.15)

Next, we interpret the difference s2(x + v`) − s1(x) as a temporal derivative and
abbreviate it by st. Consequently, the corresponding linearised version of the data
term in (5.14) reads

D̄`(dv`) =

∫
Ω

Ψ
(

1
ζ
|sx1 dv`1 + sx2 dv

`
2 + st|2

)
dx , (5.16)

where the vector-valued derivatives

sx1 := ∂x1s2(x + v`) and sx2 := ∂x2s2(x + v`) (5.17)

are calculated componentwise. After computing the flow increment dv`, we succes-
sively update the overall flow in the form of

v`+1 = v` + dv` . (5.18)

Moreover, we penalise on each level the derivatives of the complete flow by means
of the regularisation term

R`(dv`) =

∫
Ω

Ψ
(
|∇(v`1 + dv`1)|2 + |∇(v`2 + dv`2)|2

)
dx . (5.19)

To conclude, the final energy that we solve on each pyramid level ` is with (5.16)
and (5.19) given by

E`(dv`) = D̄`(dv`) + α ·R`(dv`) . (5.20)

Euler-Lagrange Equations

Following the calculus of variations (cf. Section 2.3), a minimiser of the energy in (5.20)
has to fulfil the Euler-Lagrange equations w.r.t. the flow increments dv`1 and dv`2. For
the sake of readability, let us first introduce the following abbreviations:

Ψ′D := 1
ζ
·Ψ′
(

1
ζ
|sx1 dv`1 + sx2 dv

`
2 + st|2

)
, (5.21)

Ψ′R := Ψ′
(
|∇(v`1 + dv`1)|2 + |∇(v`2 + dv`2)|2

)
. (5.22)

With these abbreviations, the Euler-Lagrange equations of (5.20) are given by

Ψ′D · sTx1
(
sx1 dv

`
1 + sx2 dv

`
2 + st

)
− α div

(
Ψ′R ·∇(v`1 + dv`1)

)
= 0 , (5.23)

Ψ′D · sTx2
(
sx1 dv

`
1 + sx2 dv

`
2 + st

)
− α div

(
Ψ′R ·∇(v`2 + dv`2)

)
= 0 , (5.24)

with the associated boundary conditions

nT∇(v`1 + dv`1) = 0 and nT∇(v`2 + dv`2) = 0 , (5.25)

where n denotes the outer normal vector on the boundary of Ω.
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Implementation Details

All occurring spatial derivatives of the feature vector s in (5.23) and (5.24) are com-
puted by means of the fourth order stencil (1,−8, 0, 8,−1)/(24hq), where q ∈ {1, 2}.
Moreover, to compute the downsampled transformed images, we presmooth them with
a Gaussian whose standard deviation is proportional to the current grid size η` · hq,
where η = 0.95 is the downsampling factor. Accordingly, we solve a sparse nonlinear
system of equations on each pyramid level, where the nonlinearities are caused by the
Ψ′ terms in (5.21) and (5.22). To solve those systems, we apply our FSI scheme which
we presented in Chapter 3. More precisely, one iteration step at the pyramid level
` with single index notation i, cycle index m, and iteration index k is for the flow
increments dv1

` and dv2
` given by

dv1
`,m,k+1
i = (1− αk) · dv1

`,m,k−1
i + αk · (5.26)(

(1− ω) · dv1
`,m,k
i + ω ·

(
−Ψ′Di · sx1

T
i (sx2 i · dv2

`,m,k
i + sti)

+
2∑
q=1

∑
j∈Nq(i)

α ·
Ψ′Ri + Ψ′Rj

2hq
·
(v1

`,m,k
j − v1

`,m,k
i + dv1

`,m,k
j

hq

))
/(

Ψ′Di · sx1
T
i sx1 i +

2∑
q=1

∑
j∈Nq(i)

α ·
Ψ′Ri + Ψ′Rj

2h2
q

))
, (5.27)

dv2
`,m,k+1
i = (1− αk) · dv2

`,m,k−1
i + αk · (5.28)(

(1− ω) · dv2
`,m,k
i + ω ·

(
−Ψ′Di · sx2

T
i (sx1 i · dv1

`,m,k
i + sti)

+
2∑
q=1

∑
j∈Nq(i)

α ·
Ψ′Ri + Ψ′Rj

2hq
·
(v2

`,m,k
j − v2

`,m,k
i + dv2

`,m,k
j

hq

))
/(

Ψ′Di · sx2
T
i sx2 i +

2∑
q=1

∑
j∈Nq(i)

α ·
Ψ′Ri + Ψ′Rj

2h2
q

))
, (5.29)

where N1 and N2 describe the neighbouring pixels in horizontal and vertical direction,
respectively. Moreover, ω represents the numerical relaxation parameter, and αk are
the cyclic parameters of our FSI scheme; cf. Chapter 3.

5.3.5 Experiments

Our experimental section is structured as follows: In the first part, we demonstrate
that the invariance against any monotonically increasing rescalings is indeed fulfilled
by simulating such mappings artificially. Additionally, we investigate the behaviour
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under noise and the impact of the neighbourhood size K. Next, we assess the perfor-
mance of our approach on public benchmark data sets. Last but not least, we apply
our method for the alignment of exposure series.

Choice of Parameters. Due to the simplicity of our model, only very few parameters
have to be chosen. The main free parameter of our optic flow method is the weight of
the smoothness term α. We optimise α for every experiment. The parameter of the
nonlinear function Ψ has less influence and we set in all our experiments ε = 10−2.

Evaluation

Concerning synthetic perturbations, we consider the eight training image sequences
of the Middlebury optic flow benchmark [BSL+11] because no severe illumination
changes are present and reliable ground truth flow fields are available. To assess the ac-
curacy of the optic flow fields, we evaluate the average angular error (AAE) [BFB94]:

AAE(v,vGT) =
1

|Ω|

∫
Ω

arccos

(
v1vGT1 + v2vGT2 + 1√

(v1
2 + v2

2 + 1)(vGT
2
1 + vGT

2
2 + 1)

)
dx , (5.30)

where v = (v1, v2)T is the estimated and vGT = (vGT1, vGT2)T the known ground
truth (GT) displacement field. As usual we state the AAE values in degree.

Morphological Invariance. Our first experiment examines the behaviour of the pro-
posed method under monotonically increasing intensity changes. To this end, we con-
sider the eight Middlebury training image sequences, where we show in Figure 5.3 the
RubberWhale sequence as an example. In particular, in Figure 5.3(a,b) we depict the
two unaligned input images while Figure 5.3(c,d) represent the ground truth displace-
ment field (optic flow) between both frames as arrow and colour plot, respectively.
Here, the hue specifies the direction, and the saturation determines the amount of
motion; cf. Figure 5.4. Moreover, a grey colour means that no reliable flow vector is
given at this position.

To synthetically generate severe illumination changes, we apply a gamma correction
to the second frames, i.e. f γ̃2 (x) with γ̃ ∈ [0.2, 3], where we assume intensity values
in the range of [0, 1]. The results of this experiment are depicted in Figure 5.5. To
ensure a fair comparison, the regularisation parameter α has been optimised for each
graph. First, the plot in Figure 5.5 indeed demonstrates the morphological invariance
of the considered features. Second, we see that we outperform the rank and census
transform by the proposed complete descriptors. In this regard, our CRT and CCT
features show a similar performance. However, one should keep in mind that CRT is,
due to its lower dimensionality (cf. Table 5.1), much more computationally efficient.

Sensitivity to Noise. In this experiment we perturb both input images of the im-
age sequences with zero-mean Gaussian noise of varying standard deviations σ, and
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(a) first image (b) second image

(c) ground truth flow (arrows) (d) ground truth flow (colour)

Figure 5.3: RubberWhale training sequence from the Middlebury optic flow bench-
mark [BSL+11]. In reading order : (a,b) Unaligned input images, (c) ground truth dis-
placement map as arrow plot (black boundary added for visibility reasons), and (d) ground
truth displacement map as colour plot; cf. Figure 5.4.

measure the resulting accuracy. The outcome of this experiment is depicted in Fig-
ure 5.6. Compared to the rank and census transform, the complete rank as well as the
complete census transform loose a bit less accuracy if the contamination with noise
increases. Also here, CRT and CCT provide a similar performance. Hence, as for
the same reasons as before, we prefer the use of our CRT features for computational
efficiency.

Neighbourhood Size. Let us investigate our CRT feature in more detail. As it
turns out, the best neighbourhood size K, i.e. the one that leads to the smallest error
measure, depends on the input image size. To systematically analyse this behaviour,
we consider a benchmark set where the image sequences are available in different
resolutions. In particular, we test different neighbourhood sizes by means of the Mid-
dlebury stereo benchmark from 2005 [HS07]. It provides six image sets with ground
truth data in a low, middle, and high resolution. Since only horizontal displacements
are present in the considered stereo setting, we adapt our energy functional accord-
ingly and only optimise for the horizontal flow component v1. Moreover, we apply the
average endpoint error (AEE) [ON94]

AEE(v,vGT) =
1

|Ω|

∫
Ω

|v(x)− vGT(x)| dx , (5.31)

which is a more reasonable error measure for stereo computation. Obviously, in our
setting we have v2(x) = vGT2(x) = 0.
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(a) arrow plot (b) colour plot

Figure 5.4: Illustration of applied optic flow colour coding. Here, the hue denotes the
direction while the colour saturation represents the amount of motion. Moreover, a grey
colour indicates that no reliable flow vector is given at this position.

In Figure 5.7(f), we plot the AEE for different CRT neighbourhood sizes and image
resolutions. Here, we optimised the smoothness parameter α for every neighbourhood
size, where we considered for each resolution the average error over all six image se-
quences. In Figure 5.7(a–e), we depict the corresponding shapes of the neighbourhood
patches for different K. First of all, we observe that the chosen neighbourhood size
does not have a drastic effect on the results. However, we can also see that the best
neighbourhood size K increases with the image resolution. Hence, we recommend to
adapt K to the actual image size in order to reach ultimate quality.

Performance on Public Benchmark Systems

Since our method is tailored to challenging illumination conditions, we also focus our
evaluation on image material where such conditions are present. In that respect, the
KITTI vision suite [GLU12] offers a good testbed for our needs. It provides a huge
amount of image sequences captured from a driving car, along with corresponding
ground truth flow fields that are acquired with a laser scanning technique. Due to the
inherent small-scale imprecisions of the ground truth data acquisition process of the
KITTI benchmark, the usual error measures such as the average angular error are not
well suited for a quantitative evaluation. Thus, the common measure for the KITTI
benchmark is the so-called bad pixel error (BPE) [SS02,GLU12]:

BPEθ(v,vGT) =
1

|Ω|

∫
Ω

χ(θ<|v(x)−vGT(x)|) dx . (5.32)

In particular, we consider BPE3 which expresses the percentage of estimated flow
vectors that differ by more than 3 pixels form the measured ground truth solution,
i.e. the percentage of pixels with an endpoint error above 3 pixels.

Let us first compare our method to related optic flow approaches from the literature.
To this end, we compute flow fields for four real-world test sequences of the KITTI
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(a) γ̃ = 1
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Figure 5.5: Investigation of morphological invariance. For illustration, (a–d) depict the
second frame of the RubberWhale sequence from Figure 5.3 with different gamma corrections.
In (e), we plot the resulting average angular errors (AAEs), where we consider for each γ̃ the
mean AAE over all eight training image sequences of the Middlebury benchmark [BSL+11].

benchmark suite [GLU12], which exhibit severe illumination changes. In particular,
we have chosen the same data set as selected for the GCPR 2013 – Special Session
on Robust Optical Flow [Deu13]. Table 5.2 summarises the obtained results. As
reference, the numbers for the methods of [ZBW11b] and [BW05] are taken from the
website of this special session. The method of [BW05] is particularly interesting to
compare, since our regularisation strategy is similar to the one applied in this paper.
As one can see, our complete rank transform consistently outperforms the competing
methods.

Next, we assess the error rates on the Middlebury optic flow training images which
are less demanding w.r.t. illumination changes. Hence, the goal of this experiment is
to test our approach under normal lighting conditions. For each signature type, the
regularisation parameter α has been optimised and then kept constant over all images.
Table 5.3 depicts the errors for the different image sets. Also in this setting, the rank
and census transform are outperformed by their complete counterparts. Moreover, we
see again that CRT and CCT provide similar results. Hence, we generally propose
the use of CRT features since they are much more computationally efficient.

For the sake of completeness, we also evaluate our method on the test images of the
Middlebury optic flow benchmark [BSL+11]. Since the test sequences of this bench-
mark exhibit almost no illumination changes or other scenarios that our highly invari-
ant descriptors are designed for, we cannot expect top-ranking results on this bench-
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Figure 5.6: Investigation of behaviour under noise. For illustration, (a–d) depict the second
frame of the RubberWhale sequence from Figure 5.3 perturbed by Gaussian noise with zero
mean and varying standard deviation σ. In (e), we plot the resulting average angular errors
(AAEs), where we consider for each choice of σ the mean AAE over all eight training image
sequences of the Middlebury optic flow benchmark [BSL+11].

mark. Nevertheless, it turns out that our variational model can keep up with its near-
est competitors (cf. [Sch16]). In fact, our method ranks between the method of Brox
et al. [BBPW04] and the much more advanced method by Zimmer et al. [ZBW+09].
These results are remarkable in the sense that they prove our invariant data term to
include hardly less information than the combined grey value and gradient informa-
tion of [BBPW04,ZBW+09] that offers significantly less robustness w.r.t. illumination
changes.

Application to Exposure Series Alignment

Last but not least, let us demonstrate the performance of our approach for the align-
ment of exposure series. To this end, we consider first a synthetic exposure set that
allows for comparing the computed flow fields by means of the AAE. In Figure 5.8(a–
c), we depict the differently exposed input images, where the ground truth flow fields
from the reference image to the other images are given in Figure 5.8(d,e). In partic-
ular, we generated this scene with the open source software Blender [Ble16], where
we computed the ground truth flow with a plug-in that we especially developed for
this purpose and which makes efficient use of the Blender -internal rendering engine.
Here, we apply a common camera response function and appropriate exposure times
to ensure that the created exposure set constitutes a realistic example sequence.
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(a) K = 5 (b) K = 9 (c) K = 13 (d) K = 21 (e) K = 25
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Figure 5.7: Investigation of CRT-neighbourhood size for different image resolutions. (a–
e) Different neighbourhood patches depending on neighbourhood size K. Reference pixel is
marked in dark grey and considered neighbouring pixels in light grey. (f) Resulting average
endpoint errors (AEEs) for different image sizes. Here, we consider for each image size the
mean AAE over all six image pairs of the Middlebury stereo benchmark set [HS07]. Best
results are highlighted by the coloured circles.

In Figure 5.8(f,g), we show the computed optic flow fields using our CRT features.
First of all, we observe that our approach provides desirable alignment results for such
difficult input images. A comparison with the method of Zimmer et al. [ZBW11a] in
terms of the AAE underlies this finding: While the approach in [ZBW11a], which was
in fact also designed for such difficult exposure series settings, yields an AAE of 12.60◦,
we achieve an AAE of 5.17◦. For both approaches, we optimised the smoothness
parameter to gain the best error measures.

However, we also observe that the discussed approach fails in aligning the balloon
correctly. This is also obvious in Figure 5.8(i) where we show the exposure fusion
result of the aligned short and long exposure (Figure 5.8(h,j)) and the reference frame
(Figure 5.8(b)). For fusing those images, we applied our general fusion technique
presented in Chapter 4 with the default parameter setting. While most parts of the
scene are registered precisely, the unaligned balloon produces undesirable ghosting
artefacts in the fusion result; cf. in particular the zoom in Figure 5.10(a).

Similar results apply for real-world exposure sets such as the one depicted in Fig-
ure 5.9(a–c). The computed flow fields in Figure 5.9(d,e) allow for an accurate align-
ment for most of the image regions; cf. Figure 5.9(f,g). However, also here incorrectly
matched parts such as the ears of the rabbit produce ghosts in the fusion result;
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Table 5.2: Behaviour for real-world scenarios of the KITTI benchmark suite [GLU12]. Errors
are given in terms of the BPE3 measure, i.e. the percentage of pixels having a Euclidean
error larger than 3. Best results are written in bold face.

KITTI image sequence: #11 #15 #44 #74 average

Zimmer et al. [ZBW11b] 37.3 32.3 23.2 62.9 38.9

Bruhn and Weickert [BW05] 33.9 47.7 32.4 71.4 46.7

census transform 36.5 28.6 28.5 63.8 39.4

complete tank transform 29.8 22.8 22.6 61.5 34.2

Table 5.3: Quantitative comparison of the rank (RT), census (CT), complete rank (CRT) and
complete census transform (CCT) on the Middlebury optic flow training images [BSL+11]
in terms of the average angular error (AAE). Values are given in degree and the best results
are written in bold face.
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RT 5.46 3.69 8.89 2.17 3.55 3.59 7.51 10.30 5.65

CT 4.67 2.76 6.41 1.72 2.78 3.21 4.58 7.10 4.15

CRT 3.80 2.61 6.37 1.86 2.92 2.56 3.85 4.37 3.54

CCT 3.73 2.51 6.33 1.70 2.72 2.77 4.30 4.26 3.54

cf. Figure 5.9(g) and Figure 5.10(b). Here, we want to mention that decreasing the
smoothness weight α indeed allows for aligning the rabbit ears, but unfortunately
introduces more severe errors elsewhere.

5.3.6 Limitations and Discussion

We have seen that our variational approach with the proposed CRT features provides
accurate alignment results and compares favourably with related illumination-robust
optic flow approaches from the literature. However, we have also observed that we
cannot expect perfect alignment results in every image region. Violations of the
model assumptions such as occlusions or highly under- or over-saturated image regions
may lead to registration errors that further produce ghosts in the fused composite
images; cf. for instance Figure 5.10. Hence, an additional postprocessing step is often
unavoidable. To this end, we propose an appropriate ghost removal technique in
Section 5.4.

Indeed, our CRT-based approach is rather general and can be applied to match
differently exposed images. However, further knowledge about the input data might
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allow for more specific model assumptions, which would allow a better handling of
saturated image regions or of quantisation effects introduced by the camera response
function. We present such an approach in Section 5.5.

Moreover, in certain sceneries the amount and type of illumination varies spa-
tially. However, our CRT features are only invariant to global monotonically increasing
brightness rescalings, i.e. where every pixel undergoes the same brightness transfor-
mation. Any local illumination changes violates this assumption. At this point, we
also would like to mention that our CRT feature lacks rotational invariance. To ensure
such an invariance, we have to stick to the original rank transform (with a circular
neighbourhood). Note that also the original census transform and the CCT lack such a
rotational invariance. However, this invariance comes at a high cost of discarding a lot
of valuable information. In fact, we could not confirm a benefit of such an invariance
in our experiments. This might be explained by a sufficiently small rotational motion
from frame to frame. Nevertheless, the design of an illumination-robust descriptor
that provides a good tradeoff between the loss of information and a high robustness
to specific motion patterns such as rotations or scale changes is an interesting topic
for future work.

Last but not least, as for every variational pyramid-based approach large motion
of small-scale objects pose a big challenge. In this regard, an application of our CRT
features for sparse feature matching might be also promising. At least, it would be
interesting to formulate a CRT-based variational approach that consequently incor-
porates sparse CRT matches in the energy formulation; cf. e.g. [BM11] for related
ideas. Due to the patch-based nature of our CRT feature also an application of the
fast nearest neighbour search algorithm PatchMatch [BSFG09] seems to be natural
in this context. In particular, a combination of PatchMatch with a variational optic
flow method constitutes a promising research topic for an adequate handling of large
motion; see e.g. [Mus16].
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(a) short exposure (b) middle exposure (c) long exposure

(d) ground truth flow (b) to (a) (e) ground truth flow (b) to (c)

(f) computed flow (b) to (a) (g) computed flow (b) to (c)

(h) aligned short exposure (i) fusion result (j) aligned long exposure

Figure 5.8: Exposure set Balloon synthetically generated with Blender [Ble16]. (a–c) In-
put images created with a common camera response function and appropriate exposure
times to mimic a real-world scene. (d,e) Ground truth flow field produced with our plug-in
for Blender. (f,g) Resulting flow fields computed by our CRT-based variational approach.
(h,j) Aligned short and long exposures using the flow fields from (f) and (g). (i) Exposure
fusion of (b,h,j) with the proposed method from Chapter 4. A zoom into (i) can be found
in Figure 5.10(a).
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(a) short exposure (b) middle exposure (c) long exposure

(d) flow from (b) to (a) (e) flow from (b) to (c)

(f) aligned short exposure (g) fusion result (h) aligned long exposure

Figure 5.9: Real-world exposure set Rabbit. (a–c) Three of the five input images of the
exposure set. (d,e) Computed flow fields using our CRT features. (f,h) Aligned short and
long exposures using those flow fields. (g) Exposure fusion result created with the approach
from Chapter 4. A zoom into (g) can be found in Figure 5.10(b).
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(a) Balloon fusion result (b) Rabbit fusion result

Figure 5.10: Exposure fusion results of the aligned exposure sets from Figure 5.8 and 5.9.
Top: Full images. Bottom: Zooms. While our registration strategy provides accurate align-
ment results for most image regions, it fails in some difficult parts. Unfortunately, this
carries over to undesirable ghosting artefacts when fusing the images.
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5.4 Ghost Removal with Brightness Transfer Function

In the last section of this chapter, we have described how to align differently exposed
images to a chosen reference frame of the exposure set. The discussed variational
approach is able to handle local scene motion, i.e. motion caused by camera shakes
as well as moving objects. However, e.g. due to violations of the model assumptions
such as large displacements of small objects or occlusions, we have to cope with small
remaining imprecisions; cf. Figure 5.10. In such cases, an additional postprocessing
step is required to identify and to eliminate remaining misalignments. This step is
called ghost removal. In particular, we compute for each image a so-called ghost map
that indicates if an image region is reliable, i.e. if it should be considered in the fusion
process, or not.

Main Contributions. In Section 5.2.2 we have seen that, depending on their under-
lying assumptions about the exposure set, ghost removal approaches differ in their
area of application. For instance, some require the knowledge of the exposure times
and the camera response function (CRF), while others do not make such assump-
tions about the imaging process. While the former one might be useful in an HDR
reconstruction context, the later one has a wider application area. Indeed, in certain
set-ups the CRF and the exposure times are unknown. Moreover, in a general setting,
the images in the exposure set do not necessarily have to follow the HDR observation
model. This motivates us to present in this section a ghost removal algorithm that
is independent of the knowledge of the CRF and the exposure times. To this end,
we base our ghost removal technique on the concept of a brightness transfer function
(BTF) that relates the brightness values between differently exposed frames. More-
over, we design our method in such a way that the processed ghost-free output images
can directly serve as input for exposure fusion methods; without any specific modifi-
cations. This enables a straightforward application of our method as an intermediate
processing step between alignment and image fusion.

Section Outline. We explain the relation of our ghost removal scheme to previous
work in Section 5.4.1. Next, we present the core part of our technique in Section 5.4.2,
and propose modifications in Section 5.4.3. In Section 5.4.4, we evaluate our approach
by means of experiments, and discuss possible limitations in Section 5.4.5.

5.4.1 Relation to Previous Work

As discussed in Section 5.2.2, there exist several approaches that also make use of
the BTF for ghost removal. In this work, we aim at a versatile technique and thus,
do not restrict the CRF to be linear such as in [KHC+06,GGC+09,SSM12,TAEE15],
but allow CRFs with arbitrary shape. Moreover, since we assume the input images to
be pre-aligned (e.g. with the variational technique from Section 5.3), the histogram-
based BTF estimation as proposed by Grossberg and Nayar [GN03] is well-suited for
our needs. Thus, our ghost removal approach is closely related to the methods of
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Grosch [Gro06], Li et al. [LRZ+10], and Moon et al. [MTCL12] that also apply such a
histogram-based BTF estimation. In fact, Li et al. [LRZ+10] and our approach share
strong similarities. As main differences, our method is completely independent from
knowing the exposure times (no adaptive thresholding based on the exposure time),
and we perform our pixel comparison in the perceptually motived CIE-Lab colour
space; cf. Section 2.2.2.

5.4.2 Bidirectional BTF-Based Ghost Removal

Formally, a brightness transfer function (BTF) ϕi→j : [0, 1]→ [0, 1] maps the intensity
values from the image fi to the image fj. Mann [Man00] presents a method for
estimating the BTF by means of the joint probability density function (comparagram)
between corresponding pixels in the first and in the second image. However, already
small misalignments render the construction of such a comparagram difficult since it
requires the computation of correspondences. Hence, we follow a different idea in this
work: Grossberg and Nayar [GN03] propose to compute the BTF by means of the
(cumulative) image histograms. As demonstrated in [GN03], such histograms provide
a robustness w.r.t. small scene motion and thus, are well-suited for our setting.

Let us describe this method in more detail. Generally, a histogram measures the
frequency of the intensity values in an image. Normalising each frequency by the total
number of pixels leads to a normalised histogram that maps an intensity value z ∈ [0, 1]
to a probability between 0 and 1. Moreover, a cumulative histogram H : [0, 1]→ [0, 1]
can be seen as a cumulative distribution function that represents the probability
that an intensity value is smaller or equal to z. Hence, the value of the cumulative
histogram of the maximal intensity values is always 1, i.e. H(1) = 1. Let H1 and H2

denote the cumulative histograms of the images f1 and f2. Eventually, we can relate
both cumulative histograms as follows:

H2(ϕ1→2(z)) = H1(z) , (5.33)

where z ∈ [0, 1] represents an intensity value and ϕ1→2 : [0, 1] → [0, 1] the unknown
BTF from f1 to f2. Accordingly, ϕ1→2 is given by

ϕ1→2(z) = H−1
2 H1(z) . (5.34)

Obviously, in the discrete setting H2 is not necessarily a strictly monotonically in-
creasing function. Hence, computing the inverse H−1

2 of the cumulative histogram
H2 is strictly speaking not possible. However, it can be approximated by so-called
histogram specification that transforms the (cumulative) histogram of one image into
the other one; cf. for instance [GW07]. More specifically, for each intensity value z1

in f1, we find the smallest value z2 such that

H1(z1) ≤ H2(z2) , (5.35)

and assign the corresponding output of the BTF ϕ1→2 for the considered intensity
value z1 to z2, i.e.

ϕ1→2(z1) = z2 . (5.36)
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(a) f1 (b) f2 (c) ϕ1→2(f1)
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Figure 5.11: Illustration of cumulative histograms and brightness transfer function. For di-
dactic reasons, we consider here only the green colour channel. (a) First image f1. (b) Second
image f2. (c) Transferred image ϕ1→2(f1). (d) Cumulative histograms H1 and H2 of first
and second image. (e) Corresponding BTF ϕ1→2 that maps the intensity values from f1 to
f2. In this example, the intensity value z1 is mapped to z2; cf. Equation (5.35) and (5.36).
In this way, the cumulative histogram of the transferred image in (c) matches H2.

In this way, the (cumulative) histogram of the transferred image ϕ1→2(f1) approx-
imates the (cumulative) histogram of the second image f2. We illustrate this in
Figure 5.11.

Now, having understood how to compute the BTF between an image pair, we first
select a reference image fr from the exposure set. Then, we compute the brightness
transfer functions between this reference image and all other images in the set with the
discussed histogram specification. Next, we apply those BTFs to transfer the intensity
values of the reference to the other images, and compare the resulting values. If the
difference is too large, this region is likely to produce a ghosting artefact in the fusion
result and thus, should be excluded from the fusion process.

However, whenever an intensity value is under- or over-saturated in the reference
image fr, the output of the BTF does not provide reasonable information. In fact, in
such cases, it is more reasonable to transfer the pixel values the other way around,
i.e. from the tested image to the reference fr, because this pixel might be less saturated.
Accordingly, we apply a bidirectional check, and compute for each image fi a binary
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Figure 5.12: BTF-based deghosting. Top: Input images fi with reference image fr in the
centre [SS12]. Middle: Transferred images ϕr→i(fr) where ϕr→i is the BTF from the ref-
erence image fr to the image fi. Bottom: Computed binary ghost maps wi, where black
pixels indicate ghost-prone regions (black boundary added for visibility reasons).

ghost map wi : Ω→ [0, 1] as follows:

wi(x) =

{
1 if |b(x)| < θ ,

0 else ,
(5.37)

where θ > 0 is a user-defined threshold parameter. Here, b(x) measures the distance
of the transferred intensity value and the observed one in a bidirectional way, i.e.

b(x) =

{
ϕr→i

(
fr(x)

)
− fi(x) if |fr(x)− 1

2
| < |fi(x)− 1

2
| ,

ϕi→r
(
fi(x)

)
− fr(x) else,

(5.38)

such that we always transfer the brightness value that is closer to the middle grey
value 1

2
, i.e. least saturated. In case of colour images, we consider the Euclidean

distance in the CIE-Lab colour space (cf. Section 2.2.2), and use the lightness channel
L for the bidirectional decision in (5.38).

Figure 5.12 depicts an example exposure set, the transferred images ϕr→i(fr), and
the corresponding ghost maps wi. Obviously, the ghost map wr of the reference image
fr is by construction 1 (white) everywhere.

5.4.3 Modifications

The depicted ghost maps demonstrate that our technique provides a suitable ghost
removal. However, in the following we propose two modifications that improve our
deghosting results even further.
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(a) origninal ghost map (b) input image overlaid with (a)

(c) eroded ghost map (d) input image overlaid with (c)

Figure 5.13: Erosion of ghost map with disc-shaped structuring element with radius rB set
to 0.5% of the image diagonal. The applied erosion successfully removes remaining ghosting
artefacts at the edge of the can; cf. zooms in (b) and (d).

Erosion

Due to noise in the input images, the ghost map estimation might be also noisy and
thus, some ghost-prone regions might be undetected; cf. e.g. boundary of the can in
the zoom of Figure 5.13(b). As a remedy, we suggest to take into account neighbouring
pixels for the decision if a pixel is prone to produce a ghost or not. To this end, we
apply the morphological erosion operation on the previously computed ghost maps:

w̃i(x) = inf{wi(x + y) | y ∈ B} , (5.39)

where B ⊂ R2 is a so-called structuring element. It describes the neighbourhood
region that is considered for determining the infimum. In this work, we apply a disc-
shaped structuring element whose radius depends on the image diagonal. Figure 5.13
illustrates a result of this technique. The ghost regions are enlarged such that less
wrong information will be used in the fusion process. Obviously, there is a trade-off
between discarding too much information and keeping ghost-prone regions. To this
end, the threshold parameter θ and the radius of the structuring element need to be
adapted adequately; cf. upcoming Section 5.4.4.

At this point, we want to note that one could also think of an opening operation that
is less dissipative in the sense that less pixels are indicated as ghost-prone. However,
we follow a conservative approach in this work, i.e. we prefer to indicate some ghost-
free regions as ghost-prone as vice-versa. Thus, we apply erosion instead of opening
in this setting. Due to similar reasons, we also refrain from a patch-based consistency
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check in this work, where the decision of a single pixel depends on its neighbourhood.

Intensity Exchange and Adjacent Ghost Removal

Very dark and very bright images contain large under- and over-saturated regions,
respectively. Due to this, the BTF estimation by means of histogram specification
might provide unreasonable results. In this regard, the bidirectional approach can
be seen as a remedy. Nevertheless, the BTF estimation might be difficult in both
directions in certain cases. As remedy, we make use of the observation that two
adjacent images (close in brightness) allow the best BTF estimation. Hence, we
propose an adjacent deghosting approach: We start with the reference image fr and
compute ghost maps for the adjacent images fr−1 and fr+1, as discussed above. Here,
we assume that the exposure series is ordered with increasing overall brightness. Next,
we exchange the ghost-prone regions, i.e. where wi(x) = 0, with the help of the
transferred reference image. Subsequently, we continue with this procedure where the
ghost-corrected image r − 1 serves as reference for the image r − 2. Similarly, the
ghost-corrected image r + 1 is the reference for r + 2. We repeat this procedure until
the ghost maps for every image are computed.

The discussed intensity exchange has a further important benefit: Our ghost-
corrected images can directly serve as input for exposure fusion. There is no need
to adapt the existing fusion technique. More specifically, it is not required to include
the actual ghost maps in the fusion approach. In fact, the deghosted images can be
seen as a standard input series, free of ghosts. This is an essential advantage of our
approach compared to related ghost removal techniques, which simplifies its usage.

5.4.4 Experiments

In Figure 5.14, we juxtapose the exposure fusion results of the previously considered
exposure sets without (Figure 5.14 (a)) and with (Figure 5.14(b)) the discussed ghost
removal procedure. Especially, the zooms illustrate the usefulness of the proposed
technique. The ghosting artefacts are reduced significantly, and the final fusion results
offer a good quality.

Next, we additionally test our ghost removal approach for three different image
stacks of the deghosting benchmark set of Tursun et al. [TAEE15]. Figure 5.15 shows
the corresponding input images and our ghost-corrected versions. Here, the images are
separated by ±2 exposure values (EVs). Indeed, our deghosted images demonstrate
that our approach provides results of high quality such that the ghost-corrected images
are ready to be used in any exposure fusion method. Due to space restrictions, we
depict here only three example exposure sets. However, we want to note that our
ghost removal technique generalises well to other image sets. Moreover, we applied
the same parameter setting for all experiments: The threshold parameter θ is set to
32, and we set the radius rB of the structuring element to 0.5% of the image diagonal.

2Please note the we measure here the pixel difference in the CIE-Lab colour space; cf. Section 2.2.2.
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(a) without ghost removal (b) with proposed ghost removal

Figure 5.14: Comparison of exposure fusion results (a) without and (b) with proposed ghost
removal. Especially the zooms indicated by the red rectangles illustrate the good perfor-
mance of our technique.

Figure 5.16 compares the corresponding exposure fusion results using the uncor-
rected input images (Figure 5.16(a)) and our ghost-corrected versions (Figure 5.16(b)).
The fusion results illustrate the sound performance of our ghost removal technique.
While the fusion of the original images produces severe ghosting artefacts, the fusion
of the processed images is free of such undesirable ghosts; cf. zooms in Figure 5.16.

5.4.5 Limitations and Discussion

As discussed, we apply a rather selective ghost removal produce. In fact, we prefer to
indicate ghost-free regions as likely to produce ghosts as vice-versa. On the one hand,
this allows to produce fusion results that are free of any ghosting artefacts. On the
other hand, this strategy might be too dissipative, i.e. too much information might
be lost. One remedy to tackle this problem is a careful selection of the parameters
θ and rB such that this information loss is minimised. Moreover, we apply a binary
ghost decision: If some pixel might produce a ghost, it is completely excluded in the
fusion process. Certainly, this is the right way to go for creating ghost-free fusion
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results. However, it might be beneficial to include the confidence about this decision
into the ghost maps. In this regard, ghost maps with continuous values that reflect
the probability of producing a ghost seem to be reasonable. This is part of future
work.

Moreover, our ghost removal approach is tailored to exposure series where we can
assume a global brightness change caused by changing the exposure time or the CRF.
However, e.g. in the context of multispectral image fusion, it might be appropriate
to also model local brightness changes. One possibility to implement this could be a
similar clustering scheme as proposed in [DSV+14].

Furthermore, we have seen that the discussed bidirectional BTF-based consistency
check enables a desirably robust ghost removal technique. Hence, a natural idea
would be to transfer this concept to an alignment strategy. In this regard, we also
implemented and evaluated a variational optic flow approach that incorporates a
bidirectional BTF-based constancy assumption; cf. also [HG11,BUC15]. However, the
computed optic flow fields offered in most cases an inferior quality compared to the
CRT-based approach presented in Section 5.3. On the one hand, this again illustrates
the generally high performance of our CRT-based alignment. On the other hand, this
shows the need for a more sophisticated handling of saturated image regions when
transforming pure intensity values; cf. also [BML15]. Nevertheless, this is a promising
topic for future work. Apart from that, we propose a conceptually different approach
in the upcoming section of this chapter, which can be seen as a successful alternative
to such a hand-tailored technique.
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Figure 5.15: Ghost removal results for three exposure series of the benchmark dataset of
Tursun et al. [TAEE15]. Odd rows: Input images, separated by ±2 EV. Even rows: Ghost-
corrected images produced by our proposed ghost removal technique. Here, the central
image is chosen as reference.
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(a) without ghost removal (b) with proposed ghost removal

Figure 5.16: Comparison of exposure fusion results with and without proposed ghost re-
moval. (a) Fusion of original input images (odd rows in Figure 5.15). Ghosts are clearly
visible. (b) Fusion of ghost-corrected images (even rows in Figure 5.15). Ghost artefacts
are eliminated; cf. zooms indicated by red rectangles.
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5.5 Simultaneous HDR and Optic Flow Computation

Many modern cameras have an auto exposure bracketing (AEB) mode that creates a
set of images with varying exposure times. This option of capturing differently ex-
posed low dynamic range (LDR) images can be exploited to recover a larger dynamic
range of the scene that goes beyond the contrast range of the sensor. The resulting
high dynamic range (HDR) images are of great importance for many visual comput-
ing applications. First of all, it allows to visualise real HDR content on specific HDR
monitors that offer a visual perception close to the real-world. Moreover, the HDR
information generally allows to produce LDR images with an arbitrary exposure time
and camera response function in a postprocessing step. Similarly, tone mapping tech-
niques enable the photographer to produce overall well-exposed LDR images with a
nice artistic appearance based on the HDR content. Also several image processing
applications such as image deconvolution can profit from HDR information since the
brightness values are ensured to behave linearly and saturation problems are reduced
or even eliminated. A further application that benefits from HDR information is
image-based modelling, where HDR values are important to recover specific surface
properties. One example is the estimation of the bidirectional reflectance distribution
function (BRDF) by means of several images; see e.g. [LKG+03]. For a more detailed
discussion of HDR imaging, the displaying of HDR data and its usefulness for visual
computing applications we refer the interested reader to the extensive textbook of
Reinhard et al. [RHD+10].

To produce HDR composite images, standard multi-exposure methods in the litera-
ture such as [MP95,DM97,MN99] require perfectly aligned input images. As we have
seen, in a practical scenario this requirement is often not fulfilled: Even small camera
shakes or moving objects may lead to severe artefacts in the final result. In Sec-
tion 5.3, we have already discussed optic flow-based alignment strategies that do not
make use of the exposure times or the camera response function. Consequently, such
approaches are especially useful in the exposure fusion setting where those quantities
are assumed to be unknown. On the contrary, in this section we present a method
that is specifically tailored to the multi-exposure HDR reconstruction setting. In par-
ticular, we propose a technique that makes efficient use of this additional knowledge
about the imaging process.

Main Contributions. Most previous research on HDR imaging of dynamic scenes
tries to compensate for the present motion by preprocessing the LDR images before
combining them. However, since the alignment task and the HDR reconstruction
highly influence each other, we propose to solve them in a joint ansatz that benefits
from mutual interactions. Moreover, in contrast to existing methods, we are not
only interested in a nice-looking image with high contrast, but also in an accurate
representation of the scene motion. On the one hand, this opens the possibility for
further computer vision tasks that are based on precise motion estimations such as
inter-frame computation or scene analysis. On the other hand, in this way we aim
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at only merging pixels in the composite that belong to the same object. This is
particularly important if the physical correctness of the computed HDR irradiance
values is required.

Our goal is to pursuit this joint approach by presenting the first fully coupled
approach that simultaneously computes

(i) an aligned HDR irradiance map,

(ii) dense and accurate optic flow fields for each input image.

In particular, we propose an energy functional that is simultaneously minimised
w.r.t. these two quantities. Although our functional is composed of relatively simple
and intuitive assumptions, the resulting overall model turns out to be very powerful.
Indeed, we show that the inherent feedback among the HDR irradiance map and the
optic flow is highly beneficial for the quality of both estimates.

Section Outline. We start with a discussion of the relation to previous work in
Section 5.5.1. Next, we present our variational approach for the simultaneous compu-
tation of the HDR image and the optic flow fields in Section 5.5.2. After explaining our
algorithmic realisation in Section 5.5.3, we evaluate the performance of our approach
in Section 5.5.4. Finally, we discuss possible limitations in Section 5.5.5.

5.5.1 Relation to Previous Work

The pure HDR reconstruction problem with perfectly aligned LDR images has been
widely researched in the last two decades; see e.g. [MP95,DM97,MN99,RBS03,GN03,
GN04,GAW+10] or the book of Reinhard et al. [RHD+10] for a broad overview. More
recently, there has also been a lot of research tackling the problem of motion in the
HDR acquisition pipeline; cf. discussion of related work in Section 5.2.

In particular, our approach can be attributed to the image alignment methods that
try to register all parts of the images. This generally allows to merge all available
information in the HDR composite, and in this way to make optimal use of the
input data. Contrary to early approaches (e.g. [War03]) that assume a single global
transformation for each image pair, we perform a local registration of the images under
generally arbitrary motion patterns. Most related to our idea is the patch matching
approach of Sen et al. [SKY+12]. In contrast to a decoupled pre-alignment, they
are the first to jointly estimate the aligned input images and the HDR composite.
However, in contrast to their method we do not only output aligned images. In fact,
we also compute dense accurate representations of the scene motion (optic flow) which
may serve as input for further tasks. Moreover, our model incorporates the camera-
specific response function explicitly. First, this allows us to refrain from preliminary
transformations of the LDR images to the linear domain as required in the method of
Sen et al. [SKY+12]. Second, and even more importantly, it allows our optimisation
to adapt to the shape of this function in an accurate way.
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5.5.2 Variational Model

Observation Model

We assume that the unknown HDR irradiance image u : Ω → R is related to the
observed LDR images fi (i = 1, . . . , nf ) via the camera response function (CRF) Φ in
the following way:

fi(x) = Φ(ti · u(x)) , (5.40)

where x = (x1, x2)T denotes the position on the 2D rectangular image domain Ω ⊂ R2,
and ti is the exposure time applied for capturing the LDR image fi. As mentioned
in the introduction, varying the exposure times and merging the differently exposed
images allows to reconstruct the HDR content of the scene; cf. Figure 1.8. In the
following we assume that the CRF Φ maps the incident light energy ti · u(x) to the
interval [0, 1]. After this mapping, the values are quantised and stored with a certain
amount of bits per brightness value.

Obviously, Equation (5.40) only holds for a stack of perfectly registered input im-
ages. Even small camera shakes or moving objects break this assumption. Hence, to
account for such motion, we modify our model in the following way:

fi(x + vi(x)) = Φ(ti · u(x)) , (5.41)

where the optic flow vector field vi = (vi1, vi2)T : Ω→ R2 allows for each position x in
the irradiance map u to specify the corresponding position x+vi(x) in the unaligned
input image fi. Thus, once the optic flow has been computed, the registration of the
input images is straightforward. For the sake of readability, we will from now on omit
the argument x of the optic flow vi and the HDR image u.

Energy Functional

Let us now embed the discussed observation model as data term into a variational
framework. To this end, we develop an energy functional whose minimiser yields the
irradiance map u as well as the optic flow fields v1, . . . ,vnf

. In particular, our energy
consists of three main components:

E(u,v1, . . . ,vnf
) =

nf∑
i=1

Di(u,vi) + α ·
nf∑
i=1

Rv(vi) + β ·Ru(u) . (5.42)

With the discussed observation model in (5.41), every LDR image yields one data
term

Di(u,vi) =

∫
Ω

Ψ
((
fi(x + vi) − Φ(ti u)

)2
)

dx (5.43)

that rewards small cost if the measured brightness value fi at position x+vi is close to
the predicted brightness value that is computed by Φ(ti u). Furthermore, we penalise
the difference between those two quantities with the subquadratic function

Ψ(z2) =
√
z2 + ε2 , ε > 0 . (5.44)
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This provides a robustness w.r.t. outliers, caused e.g. by occlusions or noise [Hub81,
BA91, Coh93]. Please note that we apply a separate penalisation of each individual
data term Di(u, vi). In this way, we account for the fact that the positions of such
outliers are often not correlated between the different input frames. In particular,
the applied penalisation provides a beneficial behaviour w.r.t. ghosting artefacts. We
deepen this discussion later by analysing the Euler-Lagrange equations.

Next, the regularisation terms

Rv(vi) =

∫
Ω

(
|∇vi1|2 + |∇vi2|2

)
dx and Ru(u) =

∫
Ω

|∇u|2 dx (5.45)

reward smooth flow fields and a smooth irradiance map, respectively. Here, ∇ :=
(∂x, ∂y)

T denotes the gradient operator. Moreover, the positive parameters α and β
allow to steer the respective amount of smoothing.

We select the image with the fewest saturated pixels to be the reference, to which the
final irradiance map should be aligned. Consequently, the flow field vr corresponding
to the reference frame fr is obviously identical to 0 everywhere.

Euler-Lagrange Equations

According to the calculus of variations (cf. Section 2.3), the minimiser of the energy
in (5.42) must necessarily fulfil the Euler-Lagrange equations. With the abbreviation

Ψ′i := Ψ′
(
(fi(x + vi)− Φ(ti u))2) (5.46)

they are for the flow variables vi1 and vi2 (i = 1, . . . , nf ) given by

Ψ′i · (fi(x + vi)− Φ(tiu)) · ∂xfi(x + vi)− α∆vi1 = 0 , (5.47)

Ψ′i · (fi(x + vi)− Φ(tiu)) · ∂yfi(x + vi)− α∆vi2 = 0 . (5.48)

For the irradiance part, we obtain

nf∑
i=1

(
Φ′(tiu) · ti ·Ψ′i · (Φ(tiu)− fi(x + vi))

)
− β∆u = 0 . (5.49)

The corresponding homogeneous Neumann boundary conditions read

nT∇vi1 = 0 , nT∇vi2 = 0 , and nT∇u = 0 , (5.50)

where n is the outer normal vector at the boundary of Ω.

Discussion

In contrast to previous HDR reconstruction methods, we define our data terms (5.43)
in the intensity domain and not in the irradiance domain, i.e. we do not apply the
inverse camera response function. This seems at first glance like a minor difference.
However, this is in fact an important design choice as we will see in the following
paragraphs.
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Selective Weighting. To compute the irradiances u in (5.49), the term Φ′(ti u) · ti
provides an intuitive weighting of the different LDR images. First, the derivative of
the camera response function Φ′ is a natural confidence measure of the intensity values
that accounts for quantisation noise and saturated pixels (cf. [MP95]): The smaller
the derivative of the CRF, the larger the quantisation noise and the less the resulting
weight of the considered brightness value. Second, the additional weighting by the
exposure time ti accounts for the fact that images taken with longer exposure times
contain less sensor noise and thus, should get a higher weight (cf. [RBS03]). In other
words, larger exposure times stretch the irradiance range in such a way that small
values are quantised more finely, which consequently yields less under-saturated pixels.
Contrary to the irradiance computation, the discussed weighting term Φ′(ti u) · ti does
not show up in the Euler-Lagrange equations of the optic flow in (5.47) and (5.48).
In fact, this is an advantageous property that naturally arises from the carefully
designed energy, too: If the estimated irradiance or rather the predicted brightness
value Φ(ti u) suggests that a pixel should be saturated in the i-th input image, we
do not discard this information. Instead, we make optimal use of this knowledge by
implicitly enforcing the matching of under- and over-saturated pixels.

Inherent Ghost Removal. Besides the described discriminative weighting of the in-
tensity values, the term Φ′(ti u) ·ti plays an additional important role in the irradiance
computation. In fact, it intrinsically performs a ghost removal by an intuitive plau-
sibility check : The estimated irradiance u yields the predicted light energy ti u. If
this prediction is larger than 1, Φ′ vanishes and we do not consider the corresponding
brightness value fi in the irradiance computation since it is physically not meaningful.
In addition, this ghost removal behaviour is substantially supported by the robustified
data terms (5.43). From an optic flow point of view, the penaliser Ψ increases the
robustness w.r.t. outliers. For instance, such outliers might be caused by noise or oc-
cluded regions, i.e. parts of the reference image that are not visible in the other frames
or vice versa. However, in our setting, the nonlinear terms Ψ′i also appear in the com-
putation of the irradiance map in (5.49). Here, they play a different but nevertheless
important role: If the motion estimation is incorrect in some parts of the image, the
brightness value fi(x+vi) differs significantly from its prediction Φ(ti u). In fact, the
proposed penalisation function accounts for these cases and weights those terms down
that would cause artefacts in the HDR image. This leads to ghost-free images which
further help to improve the motion estimation, and the other way around.

Both features, i.e. the selective weighting and the inherent deghosting, share simi-
larities to existing HDR imaging and deghosting approaches that are tailored to those
tasks explicitly. In contrast, in our case, those features naturally follow from our care-
fully designed energy functional. In this way, both successful features are inherently
incorporated in our model, and support the alignment as well as the HDR reconstruc-
tion process. In particular, instead of performing the alignment and the ghost removal
in two subsequent steps (cf. Section 5.3 and 5.4), our joint approach benefits form the
induced feedback between both tasks.
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Anisotropic Modification

The optic flow regularisation terms Rv(vi) in (5.45) lead to the Laplacian terms
∆vi1 and ∆vi2 of the Euler-Lagrange equations in (5.47) and (5.48). They provide
a linear isotropic diffusion of the flow fields that is space-invariant and equal in all
directions. However, such a smoothing is not always desirable. In fact, we want to
reduce smoothing across object structures if the motion differs between the objects.
To this end, we propose to adapt the amount of smoothing to the local structure in
a nonlinear anisotropic way. Inspired by [ZBW11b], we present a joint irradiance-
and flow-driven smoothing that is steered by 2× 2 diffusion tensors Dv(u,vi). More
specifically, we construct these tensors by the normalised vectors r1 and r2 that point
along and across edges of the evolving HDR image u. To this end, we compute those
vectors as the orthonormal eigenvectors of the irradiance structure tensor (cf. [FG87])

Gρ ∗
(
∇(Gσ ∗ u) ∇(Gσ ∗ u)T

)
, (5.51)

where Gρ∗ and Gσ∗ denote convolutions with a Gaussian of standard deviation ρ and
σ, respectively. The corresponding eigenvalues of Dv(u,vi) determine the amount of
smoothing. With the Charbonnier diffusivity [CBAB94]

g(z2) =
1√

1 + z2/λ2
, λ > 0 (5.52)

we compute those eigenvalues as follows:

g
(
(rT
j ∇vi1)2 + (rT

j ∇vi2)2
)

where j ∈ {1, 2} . (5.53)

Finally we exchange the homogeneous diffusion terms ∆vi1 as well as ∆vi2 by their
anisotropic counterparts

div(Dv(u,vi)∇vi1) and div(Dv(u,vi)∇vi2) , (5.54)

where div denotes the divergence operator. The reliance on the evolving HDR image
instead of the LDR input images (irradiance- vs. image-driven) is highly beneficial.
In fact, it allows for adapting to object structures that are hardly visible in the
single LDR images, but clearly distinctive in the HDR composite which combines all
information from the whole exposure sequence.

In a similar way, we also apply such an anisotropic modification to the smoothness
term of the HDR irradiance map:

div(Du(u)∇u) , (5.55)

where the eigenvectors of the irradiance diffusion tensor Du(u) are, as above, given
by eigenvectors r1 and r2. Here, we compute the corresponding eigenvalues by

g
(
(rT
j ∇u)2

)
where j ∈ {1, 2} . (5.56)
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Thanks to its edge-preserving property, this anisotropic diffusion of the irradiances
is particularly beneficial in the presence of noise or under a high light sensitivity
setting of the camera. In fact, our regularisation approach can be interpreted as an
extension of the work by Rameshan et al. [RCV11] who showed that an incorporation
of (isotropic) regularisation in the HDR fusion process is preferable to a decoupled
denoising of the input images before composing the HDR image.

Colour Images

For didactic reasons, we have restricted ourselves to greyscale images so far. However,
a modification of our method to colour images is straightforward: First, we perform
a joint robustification of all colour channels, i.e. we sum up the channels in the argu-
ment of Ψ in (5.43). Second, we use the combined structure tensor to determine the
eigenvectors r1 and r2 of the diffusion tensors (cf. [Di 86,WS99]):∑

C∈{R,G,B}

Gρ ∗
(
∇(Gσ ∗ uC) ∇(Gσ ∗ uC)T

)
. (5.57)

Moreover, we add up the squared directional derivatives of all colour channels in the
argument of the diffusivity function g in (5.56) to compute the eigenvalues of Du.

5.5.3 Minimisation

We discretise the Euler-Lagrange equations in (5.47), (5.48) and (5.49) with finite dif-
ferences on a rectangular grid with uniform grid sizes. Here, we apply the approach
of Weickert et al. [WWW13] with αstencil = 0.4 and γstencil = 1.0 in order to discre-
tise the diffusion expressions that originate form our anisotropic modification; cf. also
Section 5.A. This results in a nonconvex and nonlinear system of equations. Similar
to [BBPW04], we transform this nonconvex problem to a series of convex subprob-
lems. To avoid being trapped in local minima and to handle large motions, we embed
this series into a coarse-to-fine pyramid-based approach; cf. also Section 5.3.4. Con-
sequently, in each step we solely compute small incremental values of v1, v2, and u.
These increments are then successively used to update the solutions from the previ-
ous iterations. Hereby, all optic flow vectors are initialised with 0 while we determine
the initialisation of the irradiance map by means of the reference frame fr. With
this procedure, we have to solve sparse nonlinear equations systems on each pyramid
level. To this end, we apply our FSI scheme from Chapter 3. Moreover, we constrain
the irradiance values to the physically plausible positive range, which additionally
counteracts possible linearisation errors. The resulting solver is well-suited for fast
parallel computing on the GPU.

5.5.4 Experiments

Our experimental evaluation consists of two main parts. First, we consider a synthetic
HDR scene. The main reason for the use of such synthetic data is the availability of
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ground truth data that is particularly required for a quantitative comparison of the
optic flow fields. In the second part, we demonstrate the performance of our method
on a real-world exposure series. In order to appropriately visualise the computed
HDR irradiance maps, we apply the popular tone mapping operator of Fattal et
al. [FLW02]3. Furthermore, we applied a common nonlinear CRF and appropriate
exposure times for the synthetic scene to ensure that the produced LDR images are
good representatives of real LDR images. For the real-world scene, we calibrated the
CRF in advance with a set of perfectly aligned LDR images following the method of
Grossberg and Nayar [GN04].

Synthetic Data Set

The three input images of our synthetic Balloon data set are depicted in Figure 5.8(a–
c). During the acquisition, the camera is rotating clock-wise while the balloon is
moving towards the upper right corner. Moreover, the exposure times of the images
vary by ±3 exposure values (EVs), and every LDR image contains large over- and
under-saturated regions, respectively. As discussed in Section 5.3.5, we created this
scene in Blender and computed the ground truth flow fields with our Blender plug-in.

Let us now compare our approach to state-of-the-art HDR alignment methods from
the literature. In our evaluation, we want to focus on methods that do not only aim at
rejecting moving objects but try to align all parts of the input images. Otherwise, it
would not be possible to reconstruct the HDR content of moving objects. Additionally,
we want to stress that we are also especially interested in the underlying scene motion:
We consider the motion estimation not only as a side-product, but rather as a valuable
information about the scene. In particular, we compare our method to the optic flow-
based technique of Zimmer et al. [ZBW11a] and the patch-based methods of Sen et
al. [SKY+12] and Hu et al. [HGPS13]. Since Zimmer et al. and Hu et al. do not
output an HDR image directly, we used their aligned images as input for the HDR
reconstruction algorithm of Robertson et al. [RBS03]3.

Let us first compare our approach with the state-of-the-art method for optic flow-
based HDR registration by Zimmer et al. [ZBW11a]. Figure 5.17 shows that while
the method of Zimmer et al. is not able to detect the motion of the balloon, our
approach yields reliable flow fields. This observation is underlined by Table 5.4 that
rates the quality of the computed flow fields in terms of the average angular er-
ror (AAE) [BFB94] (cf. Equation (5.30)). Here, we also see that our joint method
clearly outperforms the CRT-based optic flow method discussed in Section 5.3 which
is specifically tailored to such illumination changes. It is worth mentioning that also
further pre-alignment tests with top-ranked optic flow methods produced unsatisfac-
tory results. This demonstrates that our proposed coupled computation of the HDR
irradiances and the optic flow is clearly preferable to a decoupled optic flow-based
pre-alignment. In fact, our joint approach marks the state-of-the-art of optic flow
computation in this HDR setting.

3implementation provided by pfstools [MKMS07]
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Table 5.4: Quantitative comparison of the computed optic flow fields for the synthetic data
set in Figure 5.17. Best result is written in bold face.

method AAE (in degree)

Sen et al. [SKY+12] not available

Hu et al. [HGPS13] 44.20

Zimmer et al. [ZBW11a] 12.60

CRT-based flow (Section 5.3) 5.17

proposed 3.47

Concerning the irradiance maps in Figure 5.18, we observe that an additional ghost
removal as postprocessing step is necessary for the approach of Zimmer et al. In
contrast, our approach contains such deghosting features inherently. This is very ad-
vantageous: Obviously, it removes ghosts in the evolving HDR images. On top of
that, ghost-free HDR irradiance maps yield better motion estimations; consider for
instance the irradiance-driven smoothing or the explicit enforcing of the mapping of
saturated pixels. In this way, our joint optimisation and the induced mutual interac-
tions successively improve both estimates and produce accurate final results.

As mentioned in Section 5.5.1, Sen et al. [SKY+12] also follow the idea of a joint
computation of the HDR image and aligned LDR images. However, due to the patch-
based nature of their approach they do not compute a meaningful displacement map
with subpixel precision. Thus, it is not possible to accurately specify the scene motion
which may serve as input for further computer vision tasks. Regarding the HDR
image, we observe artefacts especially in regions that are saturated in one of the
LDR images like the sky region; cf. last column in Figure 5.18. Here, their algorithm
produces unpleasant results with low contrast.

Hu et al. [HGPS13] do not explicitly exploit the benefits of a joint alignment and
irradiance computation since their main goal is the pure alignment of the image stack
— not the HDR composite. The final image looks visually similar to our result.
Nevertheless, differences can again be found especially in the sky region. Furthermore,
the noisy displacement maps in Figure 5.17(a) illustrate that the method does not
always combine the correct pixels. This may result in visually attractive HDR images
but not in accurate, physically meaningful irradiances.

Last but not least, it is important to note that Sen et al. [SKY+12] and Hu et
al. [HGPS13] highly weight down the influence of all other input images whenever the
reference image is not saturated. On the one hand, this increases the robustness of
their algorithms. On the other hand, this discards valuable information which results
in less accurate HDR maps. Hence, we refrain from such a high preference of the
reference image and aim at merging all available data to recover a maximal dynamic
range.
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(a) Hu et al. [HGPS13] (b) Zimmer et al. [ZBW11a] (c) CRT flow (Section 5.3)

(d) proposed (e) ground truth

Figure 5.17: Computed flow fields that describe the motion from Figure 5.9(a,c) to the
reference frame in Figure 5.9(b). Compared to all other methods, the proposed approach
produces the most accurate displacement maps. Thanks to our joint optimisation, we are
able to estimate the motion of the balloon (besides the camera motion) with high precision
even though it is hardly visible in some of the LDR images.

Real-World Data Set

Let us now experimentally verify our observations on real-world data. To this end,
we consider a sequence of five images each separated by one exposure value. In
Figure 5.9(a–c), we show three of those five images where again camera and object
motions are present. While all competing methods have problems especially with the
specularities on the window sill, our final HDR image shows less artefacts; cf. Fig-
ure 5.19. In particular, we observe a severe drawback of patch-based approaches: The
algorithm of Sen et al. [SKY+12] clones content from the background region to the
specular region on the sill, which leads to unrealistic results. This clearly illustrates
that optic flow is important to produce a reliable representation of scene motion and
thereby to correctly combine corresponding pixels. In this regard, our flow fields in
Figure 5.20 again show highly accurate motion estimations.

5.5.5 Limitations and Discussion

Similar to Section 5.3, there is one general limitation of all warping-based optic flow
methods that unavoidably carries over to our approach: If the sequence is undersam-
pled in time such that small objects undergo a too large displacement, the motion
estimation tends to fail. Clearly, it is the task of future research to overcome this
drawback. To address this issue, an interesting way might be the design of appro-
priate hardware with sufficiently small time intervals between the differently exposed
images. Other approaches incorporate sparse feature matching to handle such large
displacements; see e.g. [BM11]. For this purpose, an application of our illumination-
robust CRT features might be promising.

Moreover, we have seen how to benefit from the exposure times and the camera

122



5.5 Simultaneous HDR and Optic Flow Computation

response function. On the one hand, this allows for a joint model with inherent
features that benefit from the induced mutual feedback. On the other hand, this
limits the applicability of the proposed technique since the input images are assumed
to follow the HDR imaging process, and the CRF and exposure times have to be
known. Hence, depending on the input data available prior knowledge either the more
generally applicable two step approach of CRT-based alignment and the discussed
ghost removal step or the presented joint approach is to prefer.

123



Chapter 5 Deghosting and HDR Imaging

Z
im

m
er

et
al

.

[Z
B

W
1
1a

]
S

en
et

al
.

[S
K

Y
+

12
]

H
u

et
al

.
[H

G
P

S
1
3]

ou
r

re
su

lt
g
ro

u
n

d
tr

u
th

Figure 5.18: Visual comparison of the HDR images. The full HDR irradiance maps (first
column) with their zoom-ins (second and third column) illustrate that our method produces
the most accurate irradiances.
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(a) Zimmer et al. [ZBW11a] (b) Hu et al. [HGPS13]

(c) Sen et al. [SKY+12] (d) our result

Figure 5.19: Visual comparison of the HDR results for the real-world example from Fig-
ure 5.9. While the competing methods have especially problems with the highlights on the
window sill, our method yields a convincing irradiance map.

(a) flow from reference to short exposure (b) flow from reference to long exposure

Figure 5.20: Computed optic flow fields for the real-world example from Figure 5.9. Com-
pared to the CRT-based flow from Section 5.3 (cf. Figure 5.9(d,e)), our joint approach allows
for more precise displacement maps. In particular, with our joint approach we are able to
recover the movement of the small-scale rabbit’s ears accurately. This posed a big challenge
for the CRT-based flow.
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5.6 Summary and Conclusions

5.6.1 Alignment with Complete Rank Transform

In the first part of this chapter, we have presented a variational approach for the gen-
eral alignment of differently exposed frames. To this end, we have introduced two novel
morphologically invariant descriptors, namely the complete rank transform (CRT) and
the complete census transform (CCT). Compared to their predecessors, both trans-
forms carry as much local image information as possible without leaving this class of
invariance. Our descriptors are well suited for pattern matching applications where
highest accuracy is desired, such as optic flow estimation. We have demonstrated
this within a variational framework, where we achieved state-of-the-art results for
the KITTI benchmark. In this regard, our experiments illustrated a comparable per-
formance of CCT and CRT. Hence, due to its higher computationally efficiency, we
recommend our CRT-based flow as method of choice. It not only provides high quality
results in case of drastic illumination changes, but it is also competitive if only mild
brightness changes are present. In particular, we recommend it as a general alterna-
tive to census-based optic flow approaches. Last but not least, we have illustrated the
performance of our technique for the alignment of exposure series.

As we have seen, our CRT-based approach provides not only good results under
strong illumination changes, but it also yields competitive flow fields when no bright-
ness changes are present. Nevertheless, an adaptive spatially varying decision about
which constancy assumption to choose seems to be a promising direction for future
work. This would allow to adapt the amount of invariance to the underlying illumi-
nation conditions.

From a more general point of view, we have designed an optic flow approach that
is robust to illumination changes by incorporating morphologically invariant features.
In a similar way, the systematic design and embedding of features that are robust to
different degradations such rotations or scale changes would be highly interesting to
investigate in future work.

5.6.2 Ghost Removal with Brightness Transfer Function

While our CRT-based optic flow approach provides accurate displacement maps for
most image regions, due to violations of the model assumptions such as occlusions
or under- and over-saturated brightness values we cannot expect perfect alignment
results everywhere. Unfortunately, even small misalignments may cause severe ghost-
ing artefacts when fusing the images to an overall well-exposed composite image. As
remedy, we have proposed a ghost removal technique that identifies image regions
that are likely to produce ghosts in the output image. More specifically, we based our
approach on the concept of a brightness transfer function that relates the intensity
values from frame to frame. We determined those BTFs by means of image histograms
which provide a robustness w.r.t. to small scene motion (cf. [GN03]). With the com-
puted BTFs, we performed a bidirectional consistency check to identify ghosts. We
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further increased the robustness of our approach by applying erosion and an adjacent
ghost removal strategy. Last but not least, the proposed intensity exchange leads to
output images that can directly severe as input for a fusion approach without modi-
fication. In this regard, we intentionally refrain from the knowledge of the exposure
times and the camera response function such that our method is well-suited for the
general exposure fusion setting.

Our ghost removal scheme provides robustly good results for many image sequences.
However, to systematically compare our results to related ghost removal approaches, a
more extensive evaluation would be desirable. Certainly, this has to be best performed
on the basis of perceptual user studies; see e.g. [TAEE15]. Additionally, an evaluation
of different deghosting results by means of objective quality metrics is an important
step for future work. Recently, Tursun et al. [TAEE16] introduced such a quality
metric for the HDR setting. It would be interesting to analyse our approach with this
metric, and for instance to automatically adapt the parameters of our ghost removal
technique accordingly.

5.6.3 Simultaneous HDR and Optic Flow Computation

Provided further knowledge about the image set, we proposed an alternative approach
to the discussed two-step procedure of optic flow-based pre-alignment and subsequent
ghost removal. More specifically, we have presented the first fully coupled approach
that simultaneously computes an HDR irradiance map as well as accurate dense dis-
placement fields. Especially the introduced feedback in this joint computation of the
irradiances and the optic flow turned out to be highly beneficial. We have demon-
strated that the proposed strategy is clearly preferable to a decoupled optic flow-
based pre-alignment presented in previous work. In contrast to existing patch-based
approaches, our dense displacement maps represent the underlying motion reliably.
This is particularly of great importance for tasks that require accurate motion estima-
tions with subpixel precision, such as object removal, artificial motion blur generation
or bullet time effects in an HDR context. To conclude, we do not only produce a
nice-looking HDR image, but we additionally compute accurate motion estimations
of dynamic scenes. In summary, whenever optic flow is required in an HDR setting,
we recommend to consider a simultaneous computation of the HDR image and the
flow fields as demonstrated by this work.

Thanks to the reliance on optic flow we believe that our method is especially suited
for continuous image sequences. Hence, an application to the production of HDR
videos seems to be promising (cf. for instance [KUWS03,KSB+13]). In this regard, a
modelling of a temporal smoothness in the sense of [Nag90,WS99,VBVZ11,BML15]
could be profitable since we can assume a continuous scene and camera motion. More-
over, the explicit integration of the camera response function in our model generally
allows to additionally compute such a CRF and/or estimate the exposure times on-
the-fly if unknown. First experiments in this direction show very promising results.
Last but not least, we want to point out the need for image deblurring in the HDR
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setting as a possible future research topic. Since the usage of large exposure times
inherently causes motion blur in the input images, it would be interesting to inves-
tigate possible adaptations of our joint HDR alignment approach to such a difficult
scenario.
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5.A Finite Differences for Anisotropic Diffusion

Following Weickert et al. [WWW13], we explain in this section a finite difference
discretisation of the anisotropic diffusion term

div (D∇u) (5.58)

with a space-variant symmetric positive definite diffusion tensor

D :=

(
a(x) b(x)
b(x) c(x)

)
. (5.59)

To obtain a suitable discretisation of (5.58), Weickert et al. [WWW13] propose to
consider the following energy functional

E(u) =

∫
Ω

∇uTD∇u dx =

∫
Ω

(
a u2

x1
+ 2 b ux1ux2 + c u2

x2

)
dx (5.60)

since its Euler-Lagrange equation is given by

− div (D∇u) = 0 . (5.61)

In particular, with the abbreviations

u :=
ui+1,j − ui,j

h1

and u :=
ui+1,j+1 − ui,j+1

h1

(5.62)

as well as

u :=
ui,j+1 − ui,j

h2

and u :=
ui+1,j+1 − ui+1,j

h2

(5.63)

Weickert et al. discretise (5.60) at intermediate grid points (i+ 1
2
, j + 1

2
) as follows:

(ux1)
2
i+ 1

2
,j+ 1

2
≈ 1− α

2
·
(
u u + u u

)
+ α · u u , (5.64)

(ux2)
2
i+ 1

2
,j+ 1

2
≈ 1− α

2
·
(
u u + u u

)
+ α · u u , (5.65)

(ux1ux2)i+ 1
2
,j+ 1

2
≈ 1− β

4
·
(
u u + u u

)
+

1 + β

4
·
(
u u + u u

)
. (5.66)

Next, a discretisation of (5.58) is given by differentiation of the discrete energy func-
tional. Consequently, this discretisation results in the following stencil for a pixel
(i, j) and its 3× 3 neighbourhood:

1

2h2
·

[(β−1)b+α(a+c)]i−1
2
,j+1

2

[(1−α)c−αa−βb]i+1
2
,j+1

2

+ [(1−α)c−αa−βb]i−1
2
,j+1

2

[(β+1)b+α(a+c)]i+1
2
,j+1

2

[(1−α)a−αc−βb]i−1
2
,j+1

2

+ [(1−α)a−αc−βb]i−1
2
,j−1

2

− [(1−α)(a+c)−(β−1)b]i+1
2
,j+1

2

− [(1−α)(a+c)−(β+1)b]i+1
2
,j−1

2

− [(1−α)(a+c)−(β+1)b]i−1
2
,j+1

2

− [(1−α)(a+c)−(β−1)b]i−1
2
,j−1

2

[(1−α)a−αc−βb]i+1
2
,j+1

2

+ [(1−α)a−αc−βb]i+1
2
,j−1

2

[(β+1)b+α(a+c)]i−1
2
,j−1

2

[(1−α)c−αa−βb]i+1
2
,j−1

2

+ [(1−α)c−αa−βb]i−1
2
,j−1

2

[(β−1)b+α(a+c)]i+1
2
,j−1

2

(5.67)
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where we assume an equal grid size h := h1 = h2 in both dimensions. Please note
that we refer to the parameters α and γ as αstencil and γstencil throughout this work
(except for this appendix to shorten the notation).

Weickert et al. show that stable discretisations are obtained with α ∈ [0, 1
2
] and

|β| ≤ 1− 2α. In the general case, the parameters α and β can also be space-variant.
In particular, it turns out be to beneficial to adapt β to the sign of b, i.e. β = γ(1−
2α) sign(b), where γ ∈ [−1, 1]. In fact, this discretisation of the anisotropic diffusion
can be seen as a generalisation of various discretisation approaches. Moreover, it
opens the door to superior discretisations. For more details, we refer the interested
reader to the paper of Weickert et al. [WWW13].
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Chapter 6

Depth from Focus with Anisotropic
Second Order Regularisation

“Where your focus goes,
your energy flows.”

Les Brown
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Main parts of this chapter base on our work published in [BHW13,BHW15,HSW15].

6.1 Introduction

Especially in optical microscopy and macro photography, a typical problem is the
limited depth of field of common imaging devices. Due to this, it is often not possible
to capture a single image that is entirely sharp. A common remedy to address this
problem is to take several photographs while varying the focal settings. In this way,
the acquired image stack contains all required information to produce a single image
that is desirably sharp. The task of combining the images of such a focal stack to an
all-in-focus composite is referred to as focus fusion; cf. Section 4.4.4.

Similar to the previous chapter, further knowledge about the image stack allows to
infer additional information about the captured scene. In particular, knowledge about
the (relative) distances of the focal planes is highly beneficial. A focal plane describes
the distance to the camera where scene objects are captured sharply. Hence, such

131



Chapter 6 Depth from Focus with Anisotropic Second Order Regularisation

knowledge allows to infer depth information in addition to an all-in-focus composite
image. In this regard, approaches that compute a depth map by means of a focal stack
are referred to as depth from focus or depth from defocus techniques; cf. for instance
the textbook of Chaudhuri and Rajagopalan [CR99]1. More specifically, depth from
focus methods make use of the in-focus regions, i.e. regions that are captured sharply,
to determine the depth values. In contrast, depth from defocus techniques additionally
infer depth information from the amount of blur. In fact, they model how the amount
of blur relates to the distance to the focal plane. Incorporating such a relation requires
to rely on sophisticated camera models that mimic the out-of-focus effect in a realistic
way. Unfortunately, this usually renders depth from defocus methods rather complex
and computationally expensive. In this regard, depth from focus approaches offer
a better efficiency and applicability. Hence, we prefer such a variational depth from
focus approach in this work. As it turns out, it is robust and computationally efficient
while providing high quality results.

Moreover, in the context of depth map computation, several applications have
demonstrated the benefits of second order regularisation. This is due to the fact that
many real-world scenes can be well described by (piecewise) planar objects. Hence,
we additionally introduce a novel second order regularisation strategy that adapts to
the local image and depth structure in a beneficial anisotropic way. In this way, we
are able to improve the results of our variational depth from focus approach even
further.

Chapter Outline. This chapter consists of two main parts: In Section 6.2, we
present our variational framework for depth from focus. Next, we introduce our
novel anisotropic second order regularisation technique in Section 6.3. We conclude
this chapter with a summary and outlook in Section 6.4.

6.2 Variational Depth from Focus

In this section, we present our variational approach for depth from focus. Given a
set of differently focused images, we aim at an all-in-focus composite as well as an
accurate depth map of the captured scene.

Main Contributions. The crucial point of all depth from focus methods is the deci-
sion about the in-focus areas. To this end, we investigate different in-focus measures
that lead to initial depth maps. Such initial depth maps are prone to outliers and
noise. Hence, we present a general variational framework that introduces a modern
regularisation strategy on those depth maps. In fact, we assume that neighbouring
pixels in the fused image belong to similar depth layers. Following this assumption, we
smooth the depth maps with a sophisticated anisotropic diffusion process combined

1The terms shape from focus or shape from defocus are also frequently used in the literature for
such approaches. In this work, we stick to the terms depth from focus or depth from defocus.
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with robust data fidelity terms that are capable of incorporating multiple in-focus
measures. Finally, the computed depth maps allow to fuse the input images in a
straightforward way. Here, the explicit modelling of smooth transitions in depth pro-
vides not only more accurate depth maps, but also counteracts unpleasant seams in
the final composite images. In fact, in this way, we are able to adequately handle
pixels that are never captured totally in-focus since they lie between two focal planes.

Section Outline. We start with a survey of related work in Section 6.2.1. After
outlining the general structure of our framework in Section 6.2.2, we discuss its indi-
vidual components in Section 6.2.3, 6.2.4, and 6.2.5. Next, we evaluate our approach
by means of experiments, and compare it to related techniques in Section 6.2.6. Fi-
nally, we discuss possible limitations in Section 6.2.7.

6.2.1 Related Work

Focus Fusion

An early example of focus fusion can already be found in the article of Adelson et
al. [AAB+84] from 1984. Here, Laplacian pyramids [BA83] are applied to select the
in-focus regions and to fuse the input images accordingly. Later, Burt and Kolczyn-
ski [BK93] generalise this technique to alternative pyramid representations. Related
to such a pyramid-based approach are focus fusion methods that base on wavelet
transforms; see e.g. [LMM95, LKTW04, FVB+04, DC06, LON+07]. Such techniques
apply a multiscale transformation of the complete image stack. Next, all transformed
images are combined by selecting the transform-based coefficients that have the high-
est probability of belonging to in-focus areas. Then, the composed multiresolution
representation is transformed back to the spatial domain, which finally yields the de-
sired all-in-focus image. In [ZB99], Zhang and Blum present a generic framework for
multiscale image fusion and compare different approaches.

In contrast to such multiscale approaches, several methods directly work in the spa-
tial domain. Here, the basic idea is to first select regions from all frames that are in
focus, and then to combine them to one composite. To this end, Ghoshtasby [Gos06]
performs a local blending of blocks of the input images. Similarly, Eltoukhy and
Kavusi [EK03] apply a smoothness of the in-focus map w.r.t. two neighbouring frames.
Moreover, several focus fusion methods employ machine learning techniques: For in-
stance, Wang et al. [WMG10] consider a neural network, Wu et al. [WYP+13] propose
a hidden Markov model, and Wan et al. [WZQ13] perform a principal component
analysis for the focus fusion task. Furthermore, Wang et al. [WSF08] and Yuan et
al. [YMG+14] explicitly model a smoothness of the output image within a variational
framework. Comparably, Pop et al. [PLTB07] propose a PDE-based approach for
focus fusion. Another successful idea is to segment the in-focus map such that each
segment corresponds to one input frame. This is for instance accomplished by graph
cut methods [ADA+04,XTAA04,LY08,LJW+14] or level set approaches [vCF06]. Af-
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ter segmentation, the input images are combined appropriately e.g. by a gradient
domain fusion technique such as in [ADA+04].

Depth from Focus

Indeed, depth from focus methods are closely related to focus fusion approaches. How-
ever, besides an all-in-focus composite image, depth from focus methods additionally
aim at a reliable depth map of the captured scene. Already in 1968, Horn [Hor68]
presented a method to measure the distance to the captured object by finding the
focus setting where the image region is sharpest. In particular, he determined the
sharpness of an image by means of the Fourier transform. Similar to Adelson et
al. [AAB+84], Darrell and Wohn [DW88] consider Laplacian pyramids to estimate the
depth of the captured scene. In the meantime, various sharpness measures have been
proposed. A recent evaluation of such sharpness measures can be found in [PPG13a].
In [PPG13b], Pertuz et al. additionally discuss the reliability of such measures which
reflects the probability of computing an accurate depth. Several of those measures are
inspired by autofocus techniques that search for the best focus setting of the camera
such that the produced image is desirably sharp. In this context, Tenenbaum [Ten70]
considers the gradient magnitude as measure for sharpness. This measure is in the
literature often referred to as Tenegrad. Jarvis [Jar67, Jar83] suggests the entropy,
the variance, and the sum of absolute differences to measure sharpness. Analyses
and evaluations of such sharpness criteria in the context of automatic focusing can be
found in [SSNW83,GYL85,Kro88,SCN93,ST98,MXv14].

Finding the image where the sharpness of a specific image region is maximal yields
a depth estimate for this region. Obviously, due to several distortions such as noise
or edge bleeding those depth estimates might be inaccurate in some image parts;
see e.g. the discussion in [NS92]. As a remedy, several approaches model a smooth-
ness of the underlying depth map.2 For instance, Nayar and Nakagawa [NN94] apply
a Gaussian interpolation technique to smooth initial depth maps that are created
with the sum of modified Laplacian as sharpness measure. In [SC95, YC99], the au-
thors explicitly model piecewise planar and piecewise curved surfaces, respectively.
Goldsmith [Gol00] smooth the depth map by iterative applications of median filters.
Comparably, Shim and Choi [SC10] iteratively apply averaging filters to remove out-
liers. Moreover, several approaches employ machine learning techniques to produce
smooth 3D shapes. Examples are neural networks [AC01], kernel regression [MC10],
or genetic programming [MMC11]. In [Mah13,MBSC15], regularisation of the depth
map is modelled by means of total variation (TV).

2Please note that such a smoothness assumption of the depth map along the image stack implicitly
requires a knowledge of the relative distances of the focal planes. Otherwise, it would be unclear
how to relate the images of the focal stack in terms of depth measurements. In other words,
the knowledge of the relative focal plane distances allows to define the grid size in the depth
dimension that is required for depth regularisation. This is important to keep in mind since it
constitutes a major difference to focus fusion methods that refrain from such an assumption.
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Related to a regularisation of the depth map, Aydin and Akgul [AMMS08] apply
a bilateral filter-based technique to smooth the initial sharpness measures. Similarly,
Mahmood and Choi [MC12a] consider 3D diffusion process for this task. Moreover,
several approaches investigate the acquisition of the focal stack in order to perform
an efficient depth sampling; see e.g. [XS93,VGT+11,MC12b,PGP15].

Depth from Defocus

Already Pentland [Pen87] and Grossmann [Gro87] discussed the possibility of not
only considering sharp image information but to additionally infer depth information
from the amount of blur in unsharp regions. To this end, so-called depth from defocus
approaches explicitly model the relation between the focal setting of the camera and
the amount of blur; see e.g. [EL93]. Variational depth from defocus methods can
for instance be found in [JFS02, AVU08, PSSW14]. On the one hand, such depth
from defocus approaches are able to extract more information from the input images
than depth from focus techniques. This might lead to better depth maps while less
input images are required. On the other hand, depth from defocus methods are more
computationally demanding and often require additional information about the image
acquisition system such as the point spread function. In this regard, depth from focus
approaches as presented in this work offer a greater efficiency and applicability.

6.2.2 Depth from Focus Framework

Let f1, . . . , fnf
denote the nf differently focused input images. Here, we assume that

the focal plane distance increases equidistantly from frame to frame. Our goal is to
find a depth map d : Ω → R that selects for each location x ∈ Ω the frame that is
most in focus. To this end, our depth from focus approach consists of three main
parts: In the first step (Section 6.2.3), we identify sharp image regions by means of
specific in-focus measures. This allows to construct initial depth maps. However,
due to possibly misleading in-focus cues and noise in the input data those initial
depth maps might be unreliable in some image regions. Hence, in the core part
of our method (Section 6.2.4), we propose a variational technique to smooth these
initial depth maps. To this end, we model an anisotropic image- and depth-driven
regularisation technique, and combine it with robust data fidelity terms. Finally, the
computed depth map d allows to fuse the input images to an all-in-focus composite
u : Ω → R in a straightforward way. In fact, we select for each position x the input
image that corresponds to the computed depth d(x); cf. Section 6.2.5.

6.2.3 Initial Depth Map Computation

To determine which image regions are in focus, various sharpness measures have been
proposed; see e.g. [Ten70,SSNW83,SI85,Kro88,NN94,SCN93,XTAA04,HJ07,AK09,
TCMY11, PPG13a] and references therein. All of those approaches share the idea
that an extremum of a sharpness measure corresponds to the image that is most in
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Table 6.1: Overview of applied in-focus measures. See text for further details.

in-focus measure formula

m1: gradient magnitude |∇fσ|
m2: trace of structure tensor tr(Jρ(∇fσ))

m3: determinant of structure tensor det(Jρ(∇fσ))

m4: Laplacian magnitude |∆fσ|
m5: Frobenius norm of Hessian |Hfσ|F
m6: variance 1

|N (x)|

∫
N (x)

(
fσ(y)− f̄σ(x)

)2
dy

focus. We store this information in an initial depth map d̃ : Ω→ R. In particular, it
specifies for each pixel a depth value that corresponds to the focal plane distance of
the considered image.

In-Focus Measures

Our method is not limited to a specific sharpness measure. To illustrate this, we
consider six different in-focus measures that are summarised in Table 6.1. To tackle
noise, we presmooth the input images with a Gaussian of standard deviation σ.

Gradient Magnitude. Our first sharpness criterion is the gradient magnitude (see
e.g. [Ten70]):

m1(x) := |∇fσ(x)| , (6.1)

where fσ denotes a presmoothed input image, ∇ := (∂x1 , ∂x2)
T the gradient operator,

and | · | the Euclidean norm.

Trace of Structure Tensor. Following [LMW10,LLM11] we also consider the struc-
ture tensor [FG87]

Jρ(∇fσ) := Gρ ∗
(
∇fσ ∇fT

σ

)
, (6.2)

where Gρ∗ denotes convolution with a Gaussian of standard deviation ρ. To identify
sharp image regions, we determine the trace of the structure tensor, i.e.

m2(x) := tr(Jρ(∇fσ)) . (6.3)

We can interpret tr(Jρ(∇fσ)) as the sum of the eigenvalues of Jρ(∇fσ). Thus, this
measure provides useful information about image features such as edges and corners.

Determinant of Structure Tensor. Similarly to the previous measure, we addition-
ally consider the determinant of the structure tensor as sharpness criterion:

m3(x) := det(Jρ(∇fσ)) . (6.4)
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This can be seen as the product of the eigenvalues of the structure tensor. Hence,
both eigenvalues should be nonzero for a high sharpness value. Furthermore, since
two large eigenvalues of the structure tensor represent corners, this in-focus measure
can be interpreted as a corner detector.

Laplacian Magnitude. The sharpness criteria discussed above base on first order
image derivatives. In contrast, a measure of the second order variation is the absolute
value of the Laplacian:

m4(x) := |∆fσ(x)| = |∂x1x1fσ + ∂x2x2fσ| . (6.5)

For completeness, we also want to mention the frequently applied modified Laplacian
(see e.g. [NN94]) that is given by

|∂x1x1fσ| + |∂x2x2fσ| . (6.6)

Obviously, this measure it not rotationally invariant. Hence, we refrain from the
modified Laplacian as in-focus measure in this work.

Frobenius Norm of Hessian. As an additional second order sharpness criterion we
investigate the Frobenius norm | · |F of the 2×2 Hessian Hfσ:

m5(x) := |Hfσ|F =
√

(∂x1x1fσ)2 + 2 (∂x1x2fσ)2 + (∂x2x2fσ)2 . (6.7)

It is a measure of local second order variation and is related to the image curvature.

Variance. Another frequently applied sharpness criterion is the local variance in
some neighbourhood N (x) (see e.g. [SI85]):

m6(x) :=
1

|N (x)|

∫
N (x)

(
fσ(y)− f̄σ(x)

)2
dy , (6.8)

where f̄σ(x) is the mean value in N (x), i.e. f̄σ(x) := 1
|N (x)|

∫
N (x)

fσ(y) dy.

We implement those six sharpness measures in a straightforward way with central
finite difference approximations. Subsequently, we determine for each pixel the frame
where the in-focus measure takes its maximal value. For each criterion, this yields an
initial depth map d̃i : Ω→ R.

Confidence Function

Two types of locations cause severe problems while construction those initial depth
maps: homogeneous regions that hardly have any texture and regions that are never
captured in focus. Here, the sharpness criteria attain small values in all frames. Thus,
the decision of the depth value is highly influenced by noise. To tackle this problem,
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we propose a confidence function w : Ω→ R that specifies the quality of the computed
depth map. In particular, we consider the binary confidence function

w(x) :=

{
1 if m(x) ≥ θ ,

0 else.
(6.9)

Accordingly, we treat values of a measure m that are larger or equal to the threshold
parameter θ ≥ 0 as reliable. In contrast, smaller values are discarded since we assume
they are too much influenced by noise, and thus not reliable.

Discussion. Obviously, also real-valued confidence functions that seem to offer a
better discrimination of the computed sharpness measures appear to be a reasonable
choice. However, the proposed binary function turned out to provide superior results
in most experiments. Moreover, we also investigated further confidence indicators
such as the variation (variance) of a specific sharpness criterion over the focal stack.
However, also here the proposed confidence function that is based on the maximal
value of the sharpness measure led to better results. Due to those reasons, we stick
in the following to the simple confidence function presented in Equation (6.9).

6.2.4 Depth Map Regularisation

Indeed, the discussed confidence function helps to specify the quality of the initial
depth maps, and in this way to detect unreliable estimations. However, we still
need to determine which depth values should be used at pixels that are identified as
unreliable. Moreover, the confidence function is only an indicator of the quality. The
depth map may still be erroneous or noisy although indicated as reliable.

To address these issues, we propose a diffusion-based approach that allows to com-
pute a dense and smooth depth map d, given the initial maps d̃i and their confidence
functions wi. In particular, we assume a spatial continuity between parts selected
from different frames, i.e. neighbouring pixels most probably should be chosen from
a similar depth level. As a first step to explain our model, we consider the following
energy functional:

E(d) =

∫
Ω

( nd̃∑
i=1

wi ·Ψ
(

(d− d̃i)2
)

+ α · |∇d|2
)

dx , (6.10)

where the regularisation parameter α allows to steer the impact of the smoothness
term |∇d|2, and nd̃ describes the number of considered initial depth maps. The data

term
∑nd̃

i=1wi ·Ψ
(

(d− d̃i)2
)

models our similarity assumptions of the solution d and

the initial maps d̃i. Here, the use of multiple in-focus measures or rather initial
depth maps is particularly beneficial when the selected measures supplement each
other, i.e. when each performs best in different image regions. The summands of the
data term are weighted with the corresponding confidence functions wi. In addition,
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in order to reduce the influence of outliers in the initial depth maps, we apply the
subquadratic penalisation function

Ψ(z2) =
√
z2 + ε2 , (6.11)

with the small positive constant ε. As discussed, each initial depth map might offer a
different quality in a specific image region; i.e. we cannot necessarily assume a strong
correlation between the individual initial depth maps d̃i. This motivates our separate
penalisation of the individual data term parts in (6.10).

Euler-Lagrange Equation

Following the calculus of variations (cf. Section 2.3), the minimiser of the energy
functional in (6.10) satisfies the Euler-Lagrange equation

nd̃∑
i=1

wi ·Ψ′
(

(d− d̃i)2
)
· (d− d̃i) − α ·∆d = 0 (6.12)

with the homogeneous Neumann boundary condition

nT∇d = 0 , (6.13)

where n is the outer normal vector on the image boundary ∂Ω.

Anisotropic Modification

The smoothness term |∇d|2 leads to the linear isotropic diffusion term ∆d in (6.12).
It provides a smoothing that is space-invariant and equal in all directions. However,
similar to Section 5.5.2, it may be beneficial to adapt the diffusion process to the
local structure of the image. Thus, inspired by [NE86,Wei96,ZBW+09], we replace the
discussed linear isotropic diffusion term by a nonlinear anisotropic variant. In fact, we
propose an anisotropic joint image- and depth-driven regularisation technique: First,
we determine the smoothing directions by the structures of the evolving all-in-focus
image u, because this image is supposed to provide a richer directional information
than the individual unsharp input images. Second, we adjust the amount of smoothing
by the gradients of the computed depth map d.

More specifically, we determine the smoothing directions r1 and r2 as the normalised
eigenvectors of the structure tensor (cf. [FG87])

Jρ(∇uσ) = Gρ ∗
(
∇uσ ∇uT

σ

)
. (6.14)

In our upcoming experiments we set the standard deviations of the applied Gaussians
to σ = 1.0 and ρ = 1.3. The vector r1 corresponds to the largest eigenvalue, and
consequently points across edges of u. Accordingly, r2 points along edges. These
vectors build the basis of our diffusion tensor

D = (r1 r2)

(
g
(
(rT

1 ∇d)2
)

0
0 1

)(
rT

1

rT
2

)
, (6.15)
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where g : R→ [0, 1] denotes the Charbonnier diffusivity [CBAB94]

g(z2) =
1√

1 + z2/λ2
(6.16)

with some contrast parameter λ > 0. The diffusion tensor in (6.15) effects a reduced
smoothing across image structures (along r1) and a strong smoothing along them
(along r2). Replacing ∆d in (6.12) by its anisotropic counterpart div(D∇d) yields
our final model

nd̃∑
i=1

wi ·Ψ′
(

(d− d̃i)2
)
· (d− d̃i) − α · div(D∇d) = 0 (6.17)

with the natural boundary condition

nTD∇d = 0 . (6.18)

Implementation Details

We discretise Equation (6.17) on a rectangular pixel grid with uniform grid sizes.
Accordingly, we apply a finite difference scheme for the space discretisation of the
divergence expression. In particular, we compute for each pixel a 3 × 3 stencil fol-
lowing the approach of Weickert et al. [WWW13] with parameters αstencil = 0.4 and
γstencil = 1.0; cf. also Section 5.A. This results in a large nonlinear system of equations
which we solve with our FSI scheme from Chapter 3. As discussed, this scheme is
well-parallelisable and hence well-suited for a fast GPU implementation. Furthermore,
the runtime of the core part of our algorithm, the anisotropic depth map smoothing,
is almost independent of the number of images in the focus stack. Favourably, this
provides beneficial scaling properties of our algorithm to large image sets; cf. Sec-
tion 6.2.6.

Extension to Colour Images

For didactic reasons, we have restricted ourselves to grey-valued images so far. How-
ever, the extension of our model to colour images is straightforward. Instead of using
the structure tensor in (6.14) for a single colour channel, we apply the combined
structure tensor (cf. [Di 86,WS99])

Gρ ∗
∑

C∈{R,G,B}

∇uσ,C ∇uσ,C
T (6.19)

to determine the eigenvectors r1 and r2. Here, uσ,C represents the colour channel C
of the smoothed fused RGB image uσ. Please note that we still determine one joint
depth map d for all channels.
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6.2.5 Image Fusion

With the computed depth map d we are able to directly fuse the input colour images
f1, . . . ,fnf

to an all-in-focus composite u : Ω→ R3. In fact, we select for each position
x the input image that corresponds to the computed depth value d(x). Since our
variational approach yields real-valued depth maps, we apply linear interpolation
between the nearest input frames:

u(x) = (1− ε(x)) · fbd(x)c + ε(x) · fbd(x)c+1 , (6.20)

where bd(x)c denotes the largest integer smaller or equal to d(x), and ε(x) := d(x)−
bd(x)c.

6.2.6 Experiments

Our experimental section consists of the following five main parts: First, we evalu-
ate the discussed in-focus measures and demonstrate improvements provided by the
proposed depth map smoothing technique. Second, we show that our anisotropic
modification further enhances the quality of the fused images. Next, we illustrate
that our method beneficially combines the information from multiple in-focus mea-
sures, and in this way yields even more accurate results. Moreover, we compare the
performance of our approach to competing methods from the literature. Finally, we
evaluate the runtime of our algorithm.

Evaluation of In-Focus Measures

To systematically evaluate the discussed sharpness criteria in terms of quality mea-
sures, we generated a synthetic focal stack with ground truth data; cf. Figure 6.1.
To this end, we developed a Blender [Ble16] plug-in that makes efficient use of the
internal rendering engine. This engine implements a realistic depth of field effect by a
suitable camera model and ray casting techniques. The resulting focal stack consists
of thirteen images with size 512×512, where the focal plane distance increases from
frame to frame. In addition, we provide the ground truth depth map (Figure 6.1(c))
and the ground truth all-in-focus image (Figure 6.1(d)). In this way, we are able
to measure the difference between the resulting fused images and the ground truth
all-in-focus image that we produced with a pinhole camera model.

Results with Initial Depth Maps. First, we compare the quality of the initial depth
maps created with the discussed in-focus measures; cf. Table 6.1. We depict the result-
ing depth maps and the fused images in Figure 6.2. In addition, the second column
of Table 6.2 lists the corresponding quantitative results. In particular, we analyse
the mean squared error (MSE) between the fused image and its ground truth. Here,
we apply optimised parameters. We observe that the gradient (m1), the Laplacian
(m4) and the Hessian (m5) perform worst, while the trace (m2) and the determinant
(m3) of the structure tensor as well as the variance (m6) produce the most accurate
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(a) Frame 1 (b) Frame 13 (c) depth map (d) all-in-focus image

Figure 6.1: Synthetic data set modelled and generated with our plug-in for Blender [Ble16].
From left to right : (a) Frame 1 with shortest focal plane distance. (b) Frame 13 with largest
focal plane distance. (c) Ground truth depth map. The grey value indicates the distance
to the camera; i.e. the brighter, the larger the distance (black boundary added for visibility
reasons). (d) Ground truth all-in-focus image.

initial depth maps. This can be explained as follows: The sharpness criteria m1, m4,
and m5 are local, pointwise measures, while m2, m3, and m6 inherently contain rich
neighbourhood information; consider the outer Gaussian convolution in m2 and m3

and the neighbourhood size in m6. Hence, the latter criteria already include valuable
spatial information that leads to more reliable initial depth maps.

Results with Smoothed Depth Maps. In this paragraph, we investigate the be-
haviour of the sharpness measures when combined with the proposed regularisation
techniques. To this end, Figure 6.3 depicts the final depth maps and the fused images
after smoothing the initial depth maps with our linear isotropic model; cf. Equa-
tion (6.12). We observe that all depth maps improve substantially. The final depth
maps are much more reliable. This observation is underlined by the error measures
in Table 6.2. The MSEs of the fused images are significantly reduced for all in-focus
measures, which clearly illustrates the usefulness of our depth map regularisation.
Moreover, we see that the variation between the different in-focus measures is de-
creased compared to the initial depth maps. This is caused by our regularisation
technique that incorporates rich spatial information in every depth computation.

Evaluation of Anisotropic Regularisation

Let us now compare the linear isotropic to the proposed nonlinear anisotropic regular-
isation strategy. To this end, we depict in Figure 6.4 the results with our anisotropic
joint image- and depth-driven technique. The corresponding MSEs in Table 6.2 clearly
demonstrate the benefits compared to the linear isotropic approach. In fact, it pro-
vides improvements of up to 24%. Moreover, we see that the trace of the structure
tensor (m2) and the Hessian (m5) provide the best overall results in this setting.
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Table 6.2: Results with initial and smoothed depth maps. The parameters are optimised
w.r.t. the mean squared error (MSE) between the fused image and its ground truth. The
best results for each measure are written in bold face.

in-focus measure initial isotropic anisotropic

m1: gradient magnitude 95.35
(σ = 0.7)

8.66
(θ = 30, α = 2)

8.39
(θ = 37, α = 6)

m2: trace of structure tensor 3.59
(σ = 0.2, ρ = 1.7)

3.57
(θ = 0, α = 1)

3.48
(θ = 0, α = 4)

m3: determinant of structure tensor 4.74
(σ = 0.6, ρ = 1.8)

4.45
(θ = 0, α = 0.5)

4.17
(θ = 0, α = 8)

m4: Laplacian magnitude 23.08
(σ = 0.5)

4.61
(θ = 48, α = 1)

3.53
(θ = 60, α = 2)

m5: Frobenius norm of Hessian 10.55
(σ = 0.5)

4.19
(θ = 37, α = 1)

3.47
(θ = 41, α = 3)

m6: variance 4.74
(σ = 0, 9×9 patch)

4.00
(θ = 0, α = 8)

3.98
(θ = 0, α = 9)

Multiple In-Focus Measures

As discussed, our general approach is not restricted to the use of a single in-focus
measure. In fact, a combination of multiple in-focus measures allows to improve the
quality of our depth from focus approach even further. In this regard, Figure 6.5(d)
shows the resulting depth map and the corresponding fused image when combining
the initial depth maps created with the trace of the structure tensor (m2), the Lapla-
cian (m4), and the Hessian (m5) in the data term of our energy functional. Here,
we also apply our anisotropic regularisation technique. The corresponding MSE is
3.25 with the smoothness parameter α = 2. This demonstrates the benefits of the
combination of multiple in-focus measures. We want to note that this result might be
even further improved by introducing weights for the individual data term parts and
optimising for them.

Comparison to Competing Methods

Let us now compare our method to competing methods from the literature. As multi-
scale transformation-based method, we select the approach of Forster et al. [FVB+04]
that performs a complex wavelet decomposition. As a representative of segmentation-
based techniques we choose the method of Agarwala et al. [ADA+04]. In addition,
in particular to evaluate our depth map estimation, we compare our results to the
depth from defocus method of Aguet et al. [AVU08]. They explicitly model the phys-
ical image acquisition process and jointly optimise for the sharp image and the depth
map. We computed the results of Forster et al. and Aguet et al. with ImageJ plug-ins
provided by the authors; see [Bio15]. To ensure a fair evaluation we optimised the
involved model parameters. For the method of Agarwala et al. we considered the

143



Chapter 6 Depth from Focus with Anisotropic Second Order Regularisation

Table 6.3: Comparison to competing methods in terms of the mean squared error (MSE),
the correlation, and the structural similarity (SSIM) index between the fused image and its
ground truth. Best results are written in bold face.

method MSE correlation SSIM

Forster et al. [FVB+04] 152.12 0.95 0.98

Agarwala et al. [ADA+04] 135.97 0.98 0.98

Aguet et al. [AVU08] 113.73 0.98 0.98

proposed 3.25 1.00 1.00

provided executable [ADA+04], where we computed all results with the maximum
contrast image objective setting and gradient-domain fusion.

We depict the results for our synthetic data set in Figure 6.5. The visual comparison
shows that our technique provides the most accurate depth map. To objectively
evaluate the results, we apply the following three quality measures: the MSE, the
correlation, and the structural similarity (SSIM) [WBSS04]3. While smaller MSE
values indicate a better performance, larger values of the correlation and the SSIM
are superior. Table 6.3 lists the resulting quality measures between the fused images
and the ground truth all-in-focus image. Also here, our method yields the best results
w.r.t. all three quality measures.

Besides tests with synthetic data, we additionally evaluate our approach on two
commonly available real-world data sets in Figure 6.6 and 6.7.

The Insect data set in Figure 6.6 consists of thirteen frames with size 1344× 1021
while the focal plane distance increases from frame to frame. We observe that our
computed depth map is less noisy and more reliable than the other depth maps. The
zooms into the fused images help to provide more details: The quality of our approach
outperforms the methods of Forster et al. and Aguet et al. The method of Agarwala
et al. is comparable to our method. Both methods preserve fine-scale details in a
desirable way.

The Clock data set in Figure 6.7 consists of two frames with size 480×480. Again, we
see that our technique creates a more reliable depth map compared to the competing
approaches. Moreover, the zooms into the fused images illustrate that our result
provides sharp small-scale details without visible artefacts.

In addition, we evaluate our depth from focus technique for several synthetic and
real-world focal stacks provided by Mahmood and Choi [MC12a]. To this end, we
depict our results for the synthetic sets in Figure 6.8. The computed depth maps in
Figure 6.8(e) convincingly resemble the ground truth depth maps in Figure 6.8(c).
Also the fused images in Figure 6.8(d) are desirably sharp. In Table 6.4, we provide
a quantitative comparison to the method of Mahmood and Choi [MC12a] in terms of

3We compute the SSIM with the code provided by the authors using the default parameter set-
ting [WBSS04].
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Table 6.4: Comparison to the method of Mahmood and Choi [MC12a] in terms of the root
mean squared error (RMSE). Best results are written in bold face.

data set Mahmood and Choi [MC12a] proposed

slope 0.67 0.12

sinusoidal 3.61 0.46
wave 5.32 0.58

Table 6.5: Runtimes of our depth from focus approach on an NVIDIA GeForce GTX 460.

number of images image resolution runtime in seconds

2 256× 256 0.5
2 512× 512 1.2
2 1024× 1024 4.1
13 256× 256 0.5
13 512× 512 1.3
13 1024× 1024 4.2

the root mean squared error (RMSE). We outperform their method for all three data
sets.

Furthermore, we present our resulting depth maps and all-in-focus images for the
real-world data sets of Mahmood and Choi [MC12a] in Figure 6.9. Once again, we
observe precise depth estimates that lead to the desired image fusion results. Indeed,
the produced depth maps are piecewise smooth while preserving important depth
structures, and the fused images are desirably sharp.

To further demonstrate the general good performance of our technique, we depict
our results for additional real-world data sets in Figure 6.10. Thanks to our anisotropic
edge-preserving regularisation strategy the resulting depth maps are of high quality
and the fused images provide the desired sharpness.

Runtime Evaluation

Finally, let us investigate the efficiency of our method. Our reference implementa-
tion is written in CUDA and runs on an NVIDIA GeForce GTX 460 graphics card.
Table 6.5 lists the runtimes for different focal stacks that differ in the number of im-
ages and the image resolution. First of all, we provide desirably fast runtimes of less
than five seconds for realistic data sets with an image resolution of up to 1024×1024.
Moreover, the main part of our technique is the regularisation of the depth map.
Except for the computation of the diffusion tensor, this step is independent of the
number of images in the focal stack. Hence, increasing the number of images does not
significantly increase the runtime of our algorithm. This is a clear advantage of our
depth-based approach compared to related focus fusion methods.
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6.2.7 Limitations and Discussion

The conducted experiments on various focal stacks demonstrate that our variational
technique provides robust and efficient solutions for the depth from focus task. Both,
the computed depth maps and the fused all-in-focus images are of high quality and
compare favourably to competing approaches from the literature.

As an intrinsic drawback of depth from focus methods, we want to mention that
the quality of the output depth maps inherently depends on the number of input
images or, in other words, on the depth sampling by means of the different focal
plane positions. Since we only consider image regions that are in-focus to compute
our initial depth maps, few number of images do not allow precise depth estimates.
In this regard, depth from defocus approaches offer a greater potential since also the
information of blurred image features is taken into account. In fact, an accurate
modelling of the relation between the amount of blur and the distance to the focal
plane theoretically allows to reconstruct the depth of surface points that are never
captured sharply. To a certain extent, we also provide this feature by filling-in depth
values by means of neighbouring points. However, this regularisation approach would
certainly benefit from additional data term assumptions in such image regions.

An interesting idea to incorporate such assumptions is to directly model a data
term that opts for a maximal sharpness criterion instead of forcing the similarity to
an initial depth map. In this way, also information about the blurriness is included
such that such a strategy can be interpreted as an intermediate approach between
depth from focus and depth from defocus. Indeed, first experiments in this direction
yield promising results. However, in all conducted experiments the computed depth
maps were less accurate that the one obtained with the presented simpler depth from
focus approach. This can be explained by the fact that a direct optimisation for a
maximal sharpness measure is highly nonconvex, and thus we are not guaranteed to
find the optimal solution. Nevertheless, this approach might be a fruitful starting
point for future work. Main tasks in this regard are the selection of measures with
reasonable sharpness curves over the image stack and suitable optimisation techniques
that may approximate those sharpness curves by sufficiently smooth functions and/or
apply appropriate linearisation strategies. A method that goes in a similar direction
can be found in [MBSC15]. Such a technique could offer a desirable tradeoff between
the incorporation of blurred image features and the high complexity of standard depth
from defocus approaches.

Besides extensions of the data term, also more advanced regularisation techniques
might be an option for further quality improvements. Indeed, the discussed depth
from focus approach models a first order smoothness of the depth maps. However,
several applications have uncovered the need for second order regularisation in the
context of depth map computation since real-world scenes can often be well described
by piecewise planar objects. In fact, we introduce such a second order regularisation
technique in Section 6.3 where we also attach great importance to the incorporation
of directional image information to steer the smoothing process. In this sense, this
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approach can be seen as a natural extension of the presented anisotropic first order
regularisation technique to higher order.
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(a) gradient (b) trace (c) determinant

(d) Laplacian (e) Hessian (f) variance

(g) gradient (h) trace (i) determinant

(j) Laplacian (k) Hessian (l) variance

Figure 6.2: Comparison of different in-focus measures by means of the initial depth maps
in (a–f) and the fused images in (g–l). The corresponding parameters and error measures
can be found in Table 6.2.
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(a) gradient (b) trace (c) determinant

(d) Laplacian (e) Hessian (f) variance

(g) gradient (h) trace (i) determinant

(j) Laplacian (k) Hessian (l) variance

Figure 6.3: Comparison of different in-focus measures by means of the smoothed depth
maps in (a–f) and the fused images in (g–l) with the isotropic approach. The corresponding
parameters and error measures can be found in Table 6.2.
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(a) gradient (b) trace (c) determinant

(d) Laplacian (e) Hessian (f) variance

(g) gradient (h) trace (i) determinant

(j) Laplacian (k) Hessian (l) variance

Figure 6.4: Comparison of different in-focus measures by means of the smooth depth maps
in (a–f) and the fused images in (g–l) with the anisotropic approach. The corresponding
parameters and error measures can be found in Table 6.2.
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(a) Forster et al. (b) Agarwala et al. (c) Aguet et al. (d) proposed

Figure 6.5: Visual comparison for the synthetic data set from Figure 6.1. Top: Computed
depth maps. Bottom: Fused all-in-focus images. Here, we use multiple in-focus measures,
namely the trace of the structure tensor (m2), the Laplacian (m4), and the Hessian (m5) to
compute our result in (d).
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(a) Frame 1 (b) Frame 5 (c) Frame 9 (d) Frame 13

(e) Forster et al. (f) Agarwala et al. (g) Aguet et al. (h) proposed

Figure 6.6: Results for the Insect data set [ADA+04]. From top to bottom: Input frames
with increasing focal plane distance, computed depth maps, and fused images with zooms.
In this experiment, we use the Frobenius norm of the Hessian as in-focus measure with the
parameters σ = 0.5, θ = 60, and α = 5 to compute our result in (h).
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(a) Frame 1 (b) Frame 2

(c) Forster et al. (d) Agarwala et al. (e) Aguet et al. (f) proposed

Figure 6.7: Results for the Clock data set available at [BO10]. From top to bottom: Input
frames with different focal planes, computed depth maps, and fused images with zooms.
In this experiment, we use the Frobenius norm of the Hessian as in-focus measure with
parameters σ = 1.0, θ = 6, and α = 100 to compute our result in (f).
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(a) near focus (b) far focus (c) ground truth (d) our image (e) our depth

Figure 6.8: Our results for the synthetic data sets of Mahmood and Choi [MC12a]. From
top to bottom: Slope data set (σ = 2.5, θ = 0, α = 42), Sinusoidal data set (σ = 0.5, θ = 46,
α = 2), and Wave data set (σ = 0.4, θ = 31, α = 1). Each set consist of 60 frames with
size 300 × 300. From left to right : (a,b) Two input frames of the focal stack with a short
and long focal plane distance. (c) Provided ground truth depth map. (d) Our computed
all-in-focus image. (e) Our computed depth map. For all sets, we use the Frobenius norm
of the Hessian as in-focus measure.
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(a) near focus (b) far focus (c) fused image (d) depth map

Figure 6.9: Our results for the real-world data sets of Mahmood and Choi [MC12a]. From
top to bottom: Cone data set with 97 frames of size 200 × 200 (σ = 1.0, θ = 0, α = 10),
TFT-LCD color filter data set with 60 frames of size 300 × 300 (σ = 0.5, θ = 0, α = 7), and
Letter I data set with 60 frames of size 300 × 300 (σ = 0.2, θ = 15, α = 1). From left to
right : (a,b) Two input frames of the focal stack with a short and long focal plane distance.
(c) Our computed all-in-focus image. (d) Our computed depth map. For all sets, we apply
the Frobenius norm of the Hessian as in-focus measure.
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(a) fused images (b) final depth maps

Figure 6.10: Results for real-world data sets from [BO10]. From top to bottom: Watch data
set with 395 frames of size 640 × 427 (θ = 10, α = 5), Fly data set with 20 frames of size
1024 × 682 (θ = 10, α = 5), Coffee data set with 91 frames of size 1024 × 683 (θ = 10,
α = 25), and Flower data set with 20 frames of size 1024 × 683 (θ = 5, α = 30). Here, we
apply the Frobenius norm of the Hessian as in-focus measure with presmoothing parameter
σ = 1.0.
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6.3 Anisotropic Second Order Coupling Model

Second order regularisation has become a powerful tool in various visual computing
applications. For example, it is well-suited for the computation of depth maps since
many real-world scenes can be well described by (piecewise) planar objects. In a
variational context, there exist three popular approaches to model such a second order
smoothness assumption: (i) The most intuitive one is to directly penalise second order
derivatives; see e.g. [Gri81, Ter83]. However, such a direct penalisation only allows
to model second order variations of the solution explicitly. It does not give direct
access to its first order derivative, which is for instance required to model jumps of
the solution. (ii) In this regard, coupling models offer an interesting alternative for
higher order regularisation; see e.g. [Har87, BKP10] or related infimal convolution
approaches [CL97]. In the second order case, such a coupling model consists of two
terms: The first term (coupling term) couples the gradient of the unknown with some
auxiliary vector field, while the second one (smoothness term) enforces smoothness of
this vector field. The combination of both terms allows to treat both, first and second
order variations in the solution explicitly. (iii) A related idea is to locally parametrise
the unknown by affine functions, and to optimise for the introduced parameters with
suitable smoothness constraints; see e.g. [NBK08]. However, this does not allow such
an explicit access to both derivative orders; cf. also [TPCB08].

Concerning first order regularisation, several approaches have demonstrated the
benefits of incorporating anisotropy in the smoothing process; see e.g. [NE86,ZBW11b,
SZV+12, BHW15, PWM+15]. Consequently, it seems to be a fruitful idea to also
apply anisotropic concepts in second order regularisation. For instance, Lenzen et
al. [LBL13] incorporate directional information into a direct second order approach.
Unfortunately, as discussed above, such a direct approach constrains the degree of
freedom in the modelling. Also the nonlocal coupling model of Ranftl et al. [RBP14]
can be seen as related to our work. However, we aim at a fully local model that
allows a natural modelling of the anisotropy in terms of image and depth derivatives.
In this way, we can provide a natural, systematic transition from anisotropic first to
anisotropic second order approaches. In a local framework, Ranftl et al. [RGPB12] and
Ferstl et al. [FRR+13] propose a coupling model that incorporates directional image
information, but the anisotropy is restricted to the coupling term. To summarise,
first steps to include anisotropy into second order models have been done. However,
existing approaches do not exploit successful anisotropic ideas to the full extent.

Main Contributions. The main goal of our work is to close this gap and to system-
atically incorporate well-established anisotropic ideas from first order approaches into
second order coupling models. Here, we make maximal use of the directional informa-
tion by introducing anisotropy both, into the coupling as well as into the smoothness
term. In addition, we propose a joint image- and depth-driven technique that allows a
different amount of coupling and smoothing along and across image structures. Con-
trary to previous work, we apply a direction-dependent penalisation that is important
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for good inpainting results. Last but not least, we demonstrate the performance of
our anisotropic second order technique in the context of depth from focus (cf. also
Section 6.2).

Section Outline. We start with a survey of related second order regularisation ap-
proaches in Section 6.3.1. In Section 6.3.2, we present an isotropic coupling model
that marks the starting point of our work. Next, we explain how to extract directional
information from images in Section 6.3.3. We incorporate this information into the
coupling and smoothness term in Section 6.3.4 and Section 6.3.5, respectively. This
leads to our fully anisotropic coupling model in Section 6.3.6. After explaining our
numerical realisation in Section 6.3.7, we evaluate our technique and compare it to
related approaches in Section 6.3.8. Section 6.3.9 illustrates the performance of our
method for depth from focus. Finally, we discuss possible limitations of our work in
Section 6.3.10.

6.3.1 Related Work

Direct Models

Let us first discuss methods that apply a direct penalisation of second order deriva-
tives. As one of the first approaches in image processing and computer vision,
Grimson [Gri81, Gri82, Gri83] investigated several second order regularisers in the
context of surface interpolation. In particular, he proposed a penalisation of the
Laplacian and the Frobenius norm of the Hessian, which he referred to as quadratic
variation. The surfaces that minimise this penalisation term are so-called thin plate
splines ; cf. e.g. [Duc76]. Related early regularisation techniques have been described
in [Ter83,KLB85,Bou86].

In [NFD97], Nielsen et al. consider general higher order Tikhonov regularisation
terms and discuss recursive implementations under specific boundary conditions. In
order to preserve discontinuities, Geman and Reynolds [GR92] propose nonlinear
higher order smoothness terms. Comparably, Scherzer [Sch98] presents higher order
variants of bounded variation regularisers for the task of image denoising. Related
to that are approaches that consider the space of bounded Hessians; see e.g. [HS06,
BP10,PS14]. Mathematical analyses of such direct methods are conducted in [SDN05,
PS08,DFLM09]. Moreover, Steidl [Ste06] discusses the dual treatment of such higher
order regularisation functionals. In this regard, Chan et al. [CEP10] consider a dual
method for higher order regularisation with application to texture extraction and
image smoothing.

Lysaker et al. [LLT03] suggest a nonlinear penalisation of the Frobenius norm of the
Hessian and a separate nonlinear penalisation of the diagonal entries of the Hessian
(modified Laplacian), respectively. Note that the latter one lacks rotationally invari-
ance. Motivated by second order directional derivatives, the authors in [DLBU11,
LBU12] motivate the penalisation of the spectral and Frobenius norm of the Hes-
sian matrix in the context of image deblurring in biomedical applications. Lai et
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al. [LTC13] penalise the Frobenius norm of the Hessian in a nonlinear way for 3D
surface reconstruction. Trobin et al. [TPCB08] present a second order regulariser for
motion estimation that is intended to eliminate a bias of conventional second order
approaches w.r.t. certain affine flow fields.

In [CMM00,LT06], the authors combine a first order total variation (TV) term and
second order terms to counteract staircasing artefacts that are characteristic for pure
TV regularisation. In a similar way, Lenzen et al. [LSG11] combine anisotropic first
order smoothness with an isotropic second order penalisation of the Hessian to denoise
time-of-flight data. Here, the weight of both smoothness terms adapts locally.

In the context of shape from shading, Vogel et al. [VBWD07] propose a Hessian-
based regularisation that is guided the image and depth structure. In [LBL13], Lenzen
et al. present an adaptive second order TV regulariser that adjusts to the local image
structure in an anisotropic way. Second order TV-like methods for cyclic data are
discussed by Bergmann et al. [BLSW14]. Furthermore, Lellmann et al. [LPSS15]
analyse and apply a nonlocal variant of the Hessian for image smoothing.

Alternative ideas are second order div-curl regularisation terms. They are for ex-
ample successfully applied in the context of optic flow computation; see e.g. [Sut94,
GP96, YSS07, YSM07]. Moreover, several approaches consider curvature-based reg-
ularisation. For instance, Terzopoulos [Ter83, Ter84] proposes a strain energy term
that incorporates the mean and Gaussian curvature of the surface. Masnou and
Morel [MM98] present an elastica-based image inpainting process. Such an approach
is analysed by Shen et al. in [SKC03], and Tai et al. [THC11] present a fast method for
elastica-based regularisation using an augmented Lagrangian approach. An approx-
imation of Euler’s elastica energy was recently proposed by Bredies et al. [BPW15].
Fischer and Modersitzki [FM03] present a curvature-based image registration method.
Brito-Loeza and Chen [BLC10] discuss extensions of curvature-based models to vector-
valued images, and Zhu and Chan [ZC12b] perform image denoising by minimising
the mean curvature of the image surface.

Variational models with direct second order penalisation lead to fourth order PDEs.
In this regard, there exist several approaches that directly model such higher order
evolution processes. For example, Wei [Wei99] presents a generalisation of the Perona-
Malik evolution [PM90]. Also the so-called low curvature image simplifier (LCIS) by
Tumblin and Turk [TT99] constitutes such an evolution process, where an analysis
of this process can be found in [BG04]. Shen and Chan [SC02] present a biharmonic
image inpainting by means of Green’s functions. You and Kaveh [YK00] propose
fourth order PDEs for noise removal. Related to those approaches, Greer and Be-
trozzi [GB04a] consider travelling wave solutions of fourth order PDEs for image pro-
cessing. The authors also conduct a mathematical analysis of such nonlinear fourth
order PDEs in [GB04b]. A further modelling and analysis of higher order nonlinear
PDEs can be found in [DWB05, DWB09]. In the master’s thesis of Roth [Rot09],
several anisotropic variants of fourth order PDEs are investigated. Another idea, in
the context of image inpainting, is to consider the higher order Cahn-Hilliard equa-
tion [BEG07a,BEG07b,BHS09] or fourth order total variation flow [SBBH09].
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Coupling Models

As discussed above, those direct approaches allow to model second order variations
of the solution explicitly. This might be useful to guide discontinuities of the slope of
the solution which correspond to kinks. However, it does not give explicit access to
the first derivative which is for instance required to model jumps. Hence, researchers
came up with coupled higher order regularisation techniques. To the best of our
knowledge, a first appearance of such a model is given by the coupled depth/slope ap-
proach for surface reconstruction by Harris [Har86,Har87]. Motivated by the human
visual system, he presented a general coupling framework that allows to treat each
derivative order explicitly. Further early approaches that are inspired by this work
are the method of Horn [Hor90] in the context of shape from shading and the stereo
reconstruction method of Belhumeur [Bel93]. In [Sut91], Suter discusses a generali-
sation of Harris’ approach by means of augmented Lagrangian formulations. A more
recent coupling model for arbitrary order in the sense of [Har86,Har87] was proposed
by Hewer et al. [HWS+13]. It is applied to compute the Lagrangian strain tensor from
image sequences in a direct way.

To penalise the curvature of an image in the context of image inpainting, Ballester
et al. [BBC+01] couple the normal directions of the level lines with an auxiliary
variable and penalise its divergence. In the area of motion estimation, Corpetti et
al. [CMP02] couple the divergence and the curl of the flow field with auxiliary variables
to apply a second order div-curl penalisation. Two methods that can also be seen as
related to coupling models were presented by Tasdizen et al. [TWBO03] and Lysaker
et al. [LOT04]. In the context of surface reconstruction, the authors propose a two-
step approach where they first smooth the surface normals, and in a second step fit a
surface to the smoothed normal field.

Also the infimal convolution (IC) approach by Chambolle and Louis [CL97] and the
total generalised variation (TGV) method of Bredies et al. [BKP10] can be interpreted
in the sense of a coupling model. Comparisons and evaluations of IC- and TGV-based
approaches are presented in [BBBM13,Mül13,PB15,Ste15,DSV17].

The infimal convolution technique [CL97] formulates an unknown function u as a
sum of two auxiliary functions u1 and u2. Then, different regularisation terms are
applied to both functions; e.g. modelling a first order smoothness assumption on u1

and second order smoothness assumptions on u2. In fact, a reformulation of this
approach uncovers a close connection to coupling models in the form of [Har87]. As a
major difference, here the auxiliary coupling field is required to be integrable. Infimal
convolution has found numerous applications and extensions. For instance, Chan et al.
[CEP07] apply a variant of it for decomposing an image into its structural and textural
components. In [SS08, SST11], the authors study discrete IC functionals. Holler
and Kunisch [HK14] apply an IC-type approach for image and video reconstruction.
Moreover, Balle et al. [BEF+15] consider it for analysing the deformation of metallic
materials. Recent mathematical analyses of such IC methods are conducted by Burger
et al. in [BPPS16a, BPPS16b]. A generalisation of IC to manifold-valued images is
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proposed by Bergmann et a. [BFPS17].

In [BKP10], Bredies et al. introduced total generalised variation that can be seen as
a higher order generalisation of first order TV smoothness to arbitrary order. A second
order variant of it is analysed by Bredies and Valkonen [BV11], where also applications
to image denoising and deconvolution are presented. Further applications include the
fusion of range images [PZB11], magnetic resonance imaging [KBPS11], stereo and
optic flow computation [RGPB12, RBP14], depth map upsampling [FRR+13], and
diffusion tensor imaging [VBK13]. An extension to vector-valued images is addressed
in [LWP+15]. Moreover, there are several mathematical analyses that investigate
the properties of TGV-based approaches. Theoretical properties in the 1D case are
considered in [BKV13,PS15,PB15]. Bredies and Holler [BH14] study TGV for regu-
larisation in inverse problems. In [BH15a,BH15b], the authors present and analyse a
TGV-based framework for image decompression, zooming, and reconstruction. While
the first part [BH15a] focusses on a mathematical analysis, the second part [BH15b]
mainly deals with numerical aspects. An asymptotic behaviour of TGV is investigated
by Papafitsoros and Valkonen [PV15]. Moreover, an analysis of related coupling mod-
els was recently conducted by Bildhauer et al. [BFW16].

This large variety of second order approaches and in particular of second order
coupling models demonstrates the need and success of second order regularisation
in recent years. Moreover, as we have seen, there are already a few techniques
that also include some kind of anisotropy into higher order smoothing processes;
see e.g. [Wei99, TT99, Rot09, RGPB12, LBL13, FRR+13, RBP14, LPSS15]. However,
as mentioned above, existing approaches do not exploit successful anisotropic ideas
to the full extent. To close this gap, we systematically introduce a novel anisotropic
second order coupling model in this work.

6.3.2 Isotropic Coupling Model

Compared to direct implementations of higher order regularisation, coupled formu-
lations as in [Har87, BKP10, HWS+13] offer several advantages: First, they do not
require the explicit estimation and implementation of higher order derivatives. Sec-
ond and even more importantly, they allow to individually penalise each derivative
order explicitly, which enables an explicit modelling of jumps and kinks of the solu-
tion. Hence, we base our anisotropic second order regulariser on the following isotropic
coupling model that replaces a direct second order smoothness term of a depth map
d by

RI(d) = inf
p

{∫
Ω

(
Ψ
(
|∇d− p|2

)
+ β ·Ψ

(
|Jp|2F

))
dx

}
, (6.21)

where Ψ(z2) =
√
z2 + ε2 is a subquadratic function with a small positive constant ε,

| · | denotes the Euclidean norm, and | · |F the Frobenius norm. Here, the auxiliary
vector field p = (p1, p2)T can be seen as an approximation of the gradient ∇d of the
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(a) jump (b) kink (c) jump and kink

Figure 6.11: 1D illustration of jumps and kinks.

unknown d. Furthermore, Jp denotes the Jacobian of this vector field p, i.e.4

Jp =

(
∂x1p1 ∂x2p1

∂x1p2 ∂x2p2

)
. (6.22)

Since the first term in (6.21) inherently couples ∇d to p, we refer to it as coupling
term. The second term provides smoothness of the auxiliary vector field p. Hence,
we refer to it as smoothness term. Here, the parameter β > 0 allows to steer the
importance of both terms.

Next, we explain the meaning and interplay of both terms in more detail: As dis-
cussed, the coupling term forces a similarity of the gradient of d and the auxiliary
vector field p. For didactic reasons, let us first assume a hard coupling, i.e. p is identi-
cal to ∇d. Since the smoothness term penalises first order variations of p, it implicitly
penalises second order variations of d. In other words, it allows to model the smooth-
ness of the slope of the solution. In particular, the nonlinear function Ψ provides a
discontinuity preserving behaviour such that discontinuities of the slope are preserved.
Such slope discontinuities correspond to kinks of the solution; cf. Figure 6.11(b).

With that in mind, let us now investigate the behaviour of the coupling term. With
the nonlinear function Ψ, it provides a discontinuity preserving coupling, i.e. it allows
sparse deviations of the gradient of d from the smooth vector field p. This shows
that the coupling term allows to model discontinuities of the solution directly. Such
discontinuities correspond to jumps ; cf. Figure 6.11(a).

Summing up, the discussed coupling model provides direct access to both derivative
orders and in this way, allows to model jumps and kinks of the unknown function d
by the coupling and smoothness term, respectively. For small ε, the coupling model
in (6.21) resembles total generalised variation (TGV) of second order [BKP10]. In
many image processing and computer vision applications, such isotropic coupling
models have led to high quality results. However, they do not make use of any
directional information which is important for a variety of applications such as the
one that we consider in this work.

4One could also think of considering the so-called symmetrised Jacobian, as for instance discussed
in [BKP10]. However, this renders the actual implementation more difficult, and did not lead to
superior results in basic experiments. Hence, we consider the standard Jacobian (6.22) in this
work.
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6.3.3 Extracting Directional Information

As for instance demonstrated by Nagel and Enkelmann [NE86] in the context of optic
flow estimation, it is highly beneficial to guide the regularisation of the unknown by
the local structure of the given input images in an anisotropic way. In fact, this allows
to apply a different kind of smoothing along and across image structures. In this work,
we transfer this successful concept from first to second order regularisation, and in
particular to the discussed coupling model. To this end, let us first determine a way
to identify the structures of an image or more specifically the directions across and
along them.

Let f denote a given guidance image. In the case of depth from focus we take the
evolving all-in-focus image as guidance. Then, we calculate the smoothing directions
r1 and r2 as the normalised eigenvectors of the structure tensor [FG87]

Gρ ∗
(
∇(Gσ ∗ f)∇(Gσ ∗ f)T

)
, (6.23)

where ∗ describes a convolution, and Gσ and Gρ are Gaussians with standard devia-
tion σ and ρ, respectively. The computed eigenvectors form an orthonormal system
where the vector r1, which belongs to the dominant eigenvalue, points across image
structures and r2 along them.

In the following sections, we describe how to successfully incorporate this directional
information into the isotropic coupling model (6.21). To make optimal use of the
directional information, we introduce anisotropy both in the coupling (Section 6.3.4)
and in the smoothness term (Section 6.3.5).

6.3.4 Anisotropic Modification of Coupling Term

The isotropic coupling term from (6.21) can be rewritten as

CI(d,p) = Ψ
(
|∇d− p|2

)
= Ψ

( 2∑
i=1

(
eT
i (∇d− p)

)2
)
, (6.24)

where e1 = (1, 0)T and e2 = (0, 1)T. This reformulation of the coupling term in terms
of the unit vectors e1 and e2 allows to incorporate the directional information as
follows: First, we exchange e1 and e2 in Equation (6.24) by the smoothing directions
r1 and r2. Second, we penalise both directional components differently to introduce
an anisotropic behaviour, i.e. we exchange the position of the penalisation function Ψ
and the summation

∑2
i=1. In the context of first order regularisation, this idea has

been proposed by Weickert and Schnörr in 2001 [WS01]. Finally, this results in our
anisotropic coupling term

CA(d,p) =
2∑
i=1

Ψi

((
rT
i (∇d− p)

)2
)
. (6.25)
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Here, we apply different penalisation functions Ψi along and across image structures.
This allows for instance to enforce a full coupling along edges by setting the corre-
sponding Ψ2(z2) = z2, and to relax the coupling constraint in the orthogonal direction
with Ψ1(z2) = 2ε

√
z2 + ε2 such that Ψ′1(z2) is the Charbonnier diffusivity [CBAB94].

To analyse the introduced anisotropy in a better way, let us take a look at the Euler-
Lagrange equations of (6.25) w.r.t. d and p:

div(D∇d) = div(Dp) , (6.26)

D∇d = Dp . (6.27)

Equation (6.26) is similar to the Poisson equation ∆d = div(p) that builds the basis
of gradient domain methods; see e.g. [FLW02, PGB03, BZCC10]. However, here the
tensor

D(d,p) =
2∑
i=1

Ψ′i

((
rT
i (∇d− p)

)2
)
· rirT

i (6.28)

steers this process in an anisotropic way (cf. also [ARC06]). Moreover, this equation
shows a nice feature of our model: When fixing the coupling variable p to 0, our
second order coupling model comes down to a first order anisotropic diffusion process
on the unknown d; see e.g. [Wei98] and references therein. Please note that for p = 0
the smoothness term vanishes since in this trivial case |Jp|2F is equal to 0 everywhere.

Furthermore, Equation (6.27) implements a similarity of p and ∇d that is enforced
along edges (r2) and relaxed across (r1). This becomes obvious when considering the
tensor D in (6.28) that adapts the amount of similarity in a directional dependent
way. This is achieved by a solution-driven scaling of the eigenvalues of D, where its
eigenvectors are given by r1 and r2.

6.3.5 Anisotropic Modification of Smoothness Term

Let us now introduce anisotropy into the smoothness term in a similar way. To this
end, we first rewrite the isotropic variant from (6.21) by means of the unit vectors e1

and e2:

SI(p) = Ψ
(
|Jp|2F

)
= Ψ

( 2∑
i=1

2∑
j=1

(
eT
j Jpei

)2
)
. (6.29)

The term eT
j Jpei can be interpreted as a pendant of the second order directional

derivative ∂ejeid = eT
jHd ei where Hd represents the Hessian of d. Our goal is to

penalise this term differently along and across image structures. Hence, similarly
to the anisotropic modification of the coupling term, we modify Equation (6.29) by
exchanging e1 and e2 with r1 and r2, and swapping the positions of the penalisation
function Ψ and the summation

∑2
i=1. This leads to our anisotropic smoothness term

SA(p) =
2∑
i=1

Ψi

( 2∑
j=1

(
rT
j Jpri

)2
)
, (6.30)
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where we again apply different penalisations Ψi in both directions. Also here, let us
shed light on the introduced anisotropy by analysing the associated Euler-Lagrange
equation of (6.30) that is given by

div(JpT ) =

(
div(T ∇p1)

div(T ∇p2)

)
= 0 , (6.31)

where div is a common extension of the standard divergence operator div. In partic-
ular, div applies the divergence operator div to the rows of a matrix-valued function
and thus yields a column vector with two components. Equation (6.31) can be seen
as an anisotropic diffusion of the coupling variable p. Here, the diffusion tensor

T (p) =
2∑
i=1

Ψ′i

( 2∑
j=1

(
rT
j Jpri

)2
)
· rirT

i (6.32)

effects this anisotropic behaviour: We smooth the coupling variable p differently across
and along image structures, where the amount of smoothness is determined by the
eigenvalues of T .

6.3.6 Anisotropic Coupling Model

With the proposed anisotropic coupling (6.25) and smoothness term (6.30), our fully
anisotropic coupling model is given by

RA(d) = inf
p

{∫
Ω

(
CA(d,p) + β · SA(p)

)
dx

}
. (6.33)

As in the isotropic case (6.21), the coupling term CA(d,p) is responsible for han-
dling jumps whereas the smoothness term SA(p) is responsible for handling kinks.
However, contrary to the isotropic model, our novel anisotropic model now effectively
incorporates directional information to steer this coupling and smoothing process.

Furthermore, for scenarios where jumps and kinks of the unknown function highly
correlate with edges of the guidance image, it is beneficial to include also the strength
of an image edge in addition to its direction. To this end, we scale both summands
of the coupling term (6.25) and of the smoothness term (6.30) with gi

(
(rT
i ∇fσ)2

)
,

where gi(z
2) is a decreasing function with gi(0) = 1, and fσ = Gσ ∗ f a smoothed

version of the guidance image f . This further reduces coupling and smoothing across
image edges while enforcing it along them. Referring to Section 6.3.4 and 6.3.5,
this solely causes an additional scaling of the eigenvalues of the tensors D and T in
Equation (6.28) and (6.32), respectively.

In Table 6.6 we summarise different regularisation terms that result from our model
with specific parameter choices. We will evaluate those regularisers in Section 6.3.8.
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Table 6.6: Overview of regularisers covered by our model. Note that D and T degenerate
to the identity matrix I if Ψi(z

2) = z2 and gi(z
2) = 1 for i ∈ {1, 2}.

regularisation model p D T

(FI) 1st order isotropic fixed to 0 I I

(FA) 1st order anisotropic fixed to 0 Eq. (6.28) Eq. (6.32)

(CI) coupled isotropic optimised I I

(CA) coupled anisotropic optimised Eq. (6.28) Eq. (6.32)

6.3.7 Minimisation

Combining the proposed regularisation term (6.33) with the data term (6.10) of our
variational depth from focus approach leads to the energy functional

E(d) =

∫
Ω

nd̃∑
i=1

wi ·Ψ
(

(d− d̃i)2
)

dx + α inf
p

{∫
Ω

(
CA(d,p)+β ·SA(p)

)
dx

}
(6.34)

with the smoothness weight α > 0. A minimiser of this energy functional has to fulfil
the Euler-Lagrange equations

nd̃∑
i=1

wi(x) Ψ′
((
d(x)− d̃i(x)

)2
) (
d(x)− d̃i(x)

)
− α div(D(∇d− p)) = 0 , (6.35)

D(p−∇d)− β div(JpT ) = 0 . (6.36)

With n as outer normal vector on the image boundary ∂Ω, the corresponding bound-
ary conditions read

(∇d− p)TDn = 0 and JpT n = 0 . (6.37)

We discretise Equation (6.35) and (6.36) on a uniform rectangular grid and ap-
proximate the derivatives at intermediate grid points. Accordingly, we appropriately
discretise the divergence expressions with the approach of Weickert et al. [WWW13]
using the stencil parameters αstencil = 0.4 and γstencil = 1; cf. also Section 5.A. We
solve the resulting system of equations with the discussed FSI scheme from Chapter 3.

6.3.8 Evaluation

In this section we evaluate the proposed regularisation model and compare it to the
baseline methods from Table 6.6. To this end, we consider a synthetic data set where
ground truth is available. In Figure 6.12(a–d), we depict the input guidance image,
the ground truth depth map that consists of two segments with a linear slope in
vertical direction, a noisy depth map, and a sparse version of it. The last one serves
as input for our evaluation. More specifically, we generated the input depth map
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(a) guidance image (b) ground truth (c) noisy (d) sparse and noisy

(e) FI (2.85) (f) FA (1.96) (g) CI (2.60) (h) CA (0.44)

Figure 6.12: Synthetic experiment. (a) Input guidance image. (b) Ground truth depth map.
(c) Noisy version of (b). (d) Sparse and noisy version of (b) that serves as input depth
map. (e–h) Computed depth maps with different regularisation techniques; cf. Table 6.6.
We state the root mean squared error (RMSE) between the computed and the ground truth
depth map in brackets under the corresponding results (×10−2).

in the following way: First we add Gaussian noise of standard deviation 0.1 to the
ground truth depth map, where the initial depth values range from 0 to 1. Next, we
randomly select 10% of this noisy version to obtain the final sparse and noisy input
depth map that we consider as input for our approach.

In Figure 6.12(e–h), we show the resulting depth maps that are computed with first
order isotropic (FI), first order anisotropic (FA), coupled isotropic (CI), and coupled
anisotropic (CA) regularisation; cf. also Table 6.6. For each approach the regularisa-
tion parameters α and β are optimised w.r.t. the root mean squared error (RMSE).
The resulting RMSEs between the ground truth and the computed depth maps are
listed right below the corresponding results in Figure 6.12. First, this experiment
demonstrates that incorporating directional information from the guidance image is
highly beneficial. Both first and coupled anisotropic regularisers outperform their
isotropic counterparts. With anisotropic regularisation the edges of the computed
depth maps are desirably sharp, while the isotropic variants cannot provide this qual-
ity. Second, the assumption of piecewise affine functions is much more suited than
assuming piecewise constant depth maps in this case. Accordingly, both second order
coupling models yield superior results than their corresponding first order variants.
It is clearly visible that the latter ones lead to piecewise constant patches, which is
not desirable in the considered scenario. Here, the difference between the assumption
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(a) p1 (b) dGTx1 (c) p2 (d) dGTx2

Figure 6.13: Comparison of the computed coupling vector field p = (p1, p2)T and the gradient
of the ground truth depth map ∇dGT = (dGTx1 , dGTx2)T from Figure 6.12(b). Top: Colour
coded values from −0.5 · 10−2 (blue) over 0 (green) to 0.5 · 10−2 (red). Bottom: Horizontal
scanlines of row 100 where the image size is 256× 256.

of piecewise constant and piecewise affine depth maps is especially noticeable in the
background region. Last but not least, the proposed coupled anisotropic regulariser
provides the best result, both visually and in terms of the RMSE.

Moreover, let us illustrate an important feature of the proposed anisotropic cou-
pling model in more detail. To this end, Figure 6.13 juxtaposes the computed coupling
vector field p to the gradient ∇dGT of the ground truth depth map dGT from Fig-
ure 6.12(b). Across an edge of the guidance image f , i.e. in r1-direction, the coupling
term allows a deviation of p from ∇dGT. In fact, there are horizontal jumps in the
computed depth map d, but these discontinuities are not contained in p1; cf. Fig-
ure 6.12(h) and Figure 6.13(a,b). In other words, p1 can be constant while still allow-
ing a jump in d. This demonstrates that the computed p does not have to resemble
the gradient of the ground truth depth map dGT everywhere to get a good approxi-
mation. In fact, deviations in a specific direction are allowed and even beneficial to
get a smaller energy and consequently better depth estimates.

6.3.9 Application to Depth from Focus

In this section, we want to demonstrate the performance of our novel anisotropic sec-
ond order coupling model for the task of depth from focus; cf. also Section 6.2. To
this end, let us first consider our synthetic focal stack from Figure 6.1. It contains
ground truth data that allows for a comparison in terms of the mean squared error
(MSE). Figure 6.14(a) shows one of the thirteen focal stack images. In Figure 6.14(b)
we depict the confidence map w from Section 6.2 that is computed with the Frobenius
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(a) one input image (b) confidence map (c) fused image (d) ground truth

(e) initial depth (f) Section 6.2 (g) proposed (h) ground truth

Figure 6.14: Results for synthetic data set from Figure 6.1. Top: (a) One of the thirteen
unsharp input images. (b) Confidence map. (c) Our fused image. (d) Ground truth image.
Bottom: Rendered depth maps. The initial depth map in (e) is created with the Frobenius
norm of the Hessian as sharpness measure with σ = 0.5 (cf. Table 6.2). In (f), we show
the corresponding final depth map computed with the first order anisotropic approach from
Section 6.2. The depth map in (g) is computed by means of our novel anisotropic second
order coupling model, and (h) depicts the ground truth depth map for comparison.

norm of the Hessian as sharpness measure using the parameters σ = 0.5 and θ = 41;
cf. Table 6.2. In Figure 6.14(e–h), we compare the corresponding initial depth, the
result from Section 6.2, and our novel depth estimation to the ground truth. We see
that both smoothing techniques are able to improve the initial depth map effectively.
Moreover, our novel anisotropic second order approach leads to significantly less stair-
casing artefacts than the first order smoothness process from Section 6.2. In fact, it
resembles the ground truth depth map convincingly. Also our corresponding fused
image in Figure 6.14(c) offers a high quality and is close to the ground truth all-in-
focus image in Figure 6.14(d). These findings are underlined by Table 6.7, where we
compare our results in terms of the MSE between the fused image and its ground
truth. Using the initial depth map to fuse the images yields an error of 10.55. This is
improved by the first order approach from Section 6.2 which leads to an MSE of 3.47.
Exchanging the first order regularisation technique by our novel anisotropic second
order approach provides a further improvement with an MSE of 3.08.

The comparison to further state-of-the-art approaches in Table 6.7 illustrates the
usefulness of our technique for the task of depth from focus.

In Figure 6.15, we additionally demonstrate the performance of our approach by

169



Chapter 6 Depth from Focus with Anisotropic Second Order Regularisation

Table 6.7: Mean squared error (MSE) between computed and ground truth all-in-focus image
(cf. also Table 6.3). Best result is written in bold face.

Forster et
al. [FVB+04]

Agarwala et
al. [ADA+04]

Aguet et
al. [AVU08]

1st order
anisotropic

coupled
anisotropic

152.12 135.97 113.73 3.47 3.08

(a) one input image (b) Section 6.2 (c) coupled anisotropic

Figure 6.15: Results for real-world focal stack of an insect from Figure 6.6. From left to
right : (a) One of the thirteen unsharp input images. (b) Fused image computed with the
anisotropic first order approach from Section 6.2; cf. also Figure 6.6(h). (c) Our fused image
computed with our novel anisotropic second order coupling model. The zooms into the
images provide more details. Here, the red rectangles indicate important differences.

means of a real-world experiment with a focal stack of an insect; cf. also Figure 6.6.
Since no ground truth data is available, we have to restrict ourselves to a visual
comparison. To this end, we depict one unsharp input image of the focal stack in
Figure 6.15(a). The resulting fused image obtained with the first order approach
from Section 6.2 is shown in Figure 6.15(b), and the one computed with our novel
anisotropic second order coupling model in Figure 6.15(c). Especially the zooms
illustrate that our new all-in-focus image contains less errors and more small scale
details than the one produced with the first order approach from Section 6.2.

6.3.10 Limitations and Discussion

We have seen that the proposed anisotropic second order coupling model is well-
suited for piecewise affine functions and that it beneficially incorporates directional
information from a guidance image. In this way, we were able to improve the quality
of our depth from focus approach from Section 6.2 even further.

As a main drawback, we want to mention that the gain in quality comes at the price
of a larger runtime of the algorithm. While the first order approach offers runtimes
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of less than five seconds for image sizes such as 1024 × 1024, the proposed second
order approach requires more than twice as much. In this regard, we also need to
take into account the additional smoothness parameter β. On the one hand, this
parameter allows to steer the smoothness of the solution in a desired way. However,
on the other hand, it is an additional parameter that has to be chosen carefully to
provide good results. In this context, the bilevel parameter learning approach for
higher order models of De Los Reyes et al. [DSV17] might be an interesting starting
point for future work.

6.4 Summary and Conclusions

6.4.1 Variational Depth from Focus

In the first part of this chapter (Section 6.2), we have presented our variational frame-
work for depth form focus. Our method incorporates modern techniques such as robus-
tified data fidelity terms and joint image- and depth-driven anisotropic regularisation.
Moreover, our flexible approach is able to combine the information from multiple in-
focus measures. In this way, we provide state-of-the-art results. We demonstrate this
with several in-focus measures and evaluate our final results w.r.t. competing methods
from the literature. Not only the all-in-focus composites benefit from the proposed
approach, but also the computed depth maps provide valuable information that may
serve as input for further computer vision tasks. Last but not least, the proposed
algorithmic realisation on the GPU leads to desirably fast algorithms.

As discussed in Section 6.2.7, a direct optimisation for a maximal sharpness measure
in the data term of our energy functional might be a promising direction for future
work. Moreover, there exist several approaches that estimate a blur map based on a
single input image; see e.g. [BD07,SXJ15]. This for instance allows to a certain extent
to refocus the captured image in a postprocessing step. It would be interesting to
investigate how such approaches benefit from the anisotropic regularisation techniques
presented in this work. Vice versa, the applied blurriness measures might be also useful
for the proposed depth from focus technique; cf. our discussion in Section 6.2.7.

6.4.2 Anisotropic Second Order Coupling Model

We have seen that anisotropic techniques allow to obtain results of highest quality
when using first order regularisation. On the other hand, recent developments have
rendered higher order regularisation very attractive. Hence, in the second part of
this chapter (Section 6.3), we built a bridge between both approaches and system-
atically combined anisotropic ideas and higher order regularisation. As a result, our
novel anisotropic second order coupling model allows to steer the preferred direction
of jumps and kinks by means of local image structures. To achieve this, we have
introduced a direction-dependent behaviour both in the coupling and the smoothness
term. We have experimentally shown that this yields superior results compared to
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baseline approaches, i.e. first order anisotropic and second order isotropic regularisa-
tion. Moreover, we have demonstrated the usefulness of the proposed regularisation
technique for the task of depth from focus.

In this regard, we believe that our novel anisotropic second order smoothness term
is advantageous for further computer vision applications such as stereo or optic flow
computation as well. In fact, first applications of our model can for instance be
found in [MJBB16, MSV+17, MSB17]. Moreover, an extension of our model to even
higher order in the sense of [Har86, BKP10, HWS+13] might be an interesting topic
for further research. Besides, the presented method is by construction well-suited for
applications that intrinsically come along with a so-called guidance image. If such a
guidance image is not available, a determination of the smoothing directions by means
of the evolving solution in the sense of edge-enhancing anisotropic diffusion processes
(cf. [Wei98]) might be beneficial, and thus interesting to investigate in future work.
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Chapter 7

Conclusions and Outlook

“Learn from yesterday, live for today,
hope for tomorrow. The important thing is

not to stop questioning.”

Albert Einstein
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7.1 Summary and Conclusions

As discussed in Chapter 1, the main goal of our work was the fusion of multiple images
to one composite that offers more information than any of the inputs. To achieve
this goal, we approached the individual fusion tasks within a variational framework,
since such a variational framework provides a transparent modelling with a solid
mathematical background.

Fast Semi-Iterative Schemes. In Chapter 3, we introduced a novel solver class
for the solution of such variational problems, our so-called Fast Semi-Iterative (FSI)
schemes. In fact, they are well-suited for various diffusion-like processes, elliptic prob-
lems, and constrained convex optimisation. In particular, we considered a recursion
relation between box filtering and an explicit scheme for 1D homogeneous diffusion.
Generalisations of this concept led to our FSI schemes that extrapolate a basic solver
iteration by means of the older iterate. The resulting algorithms are simple to imple-
ment and well-suited for parallel computing. We have demonstrated their benefits for
image processing tasks and Nesterov’s worst case problems for convex and strongly
convex optimisation. In fact, we applied our FSI schemes as efficient solvers for our
image fusion applications in Chapter 4, 5, and 6.

173



Chapter 7 Conclusions and Outlook

Variational Image Fusion. In Chapter 4, we have presented our general variational
image fusion technique. To this end, we have exploited the observation that many
fusion tasks aim for a composite image with a high local contrast. Hence, we based on
important findings in variational contrast enhancement, and designed an image fusion
technique that directly opts for an optimal composite image. This output-driven idea
was the key for our versatile fusion method that compares favourably to specifically
tailored approaches in various application areas. Thorough evaluations demonstrate
the performance of our technique for its three main application areas, namely multi-
spectral imaging, decolourisation, and exposure fusion. Indeed, our general method
produces results of high quality, and even outperforms competing approaches for var-
ious example images. On top of that, all components of our variational model have
an intuitive meaning and in this way, enable the user to individually adjust the out-
put image to their personal preferences. We believe that our technique is generally
suitable for applications that require the fusion of multiple images. It provides com-
posite images that condense the most important information from the input stacks in
a desirable way, and offer important features such a local contrast adaptation.

Deghosting and HDR Imaging. Already small movements of the camera or moving
scene objects during the acquisition of the exposure set might result in severe ghosting
artefacts in the fused composites. To compensate for such motion, we have proposed
two conceptually different approaches in Chapter 5.

First, we have considered a two-step approach that consists of an image align-
ment step followed by a ghost removal technique as postprocessing. Obviously, severe
brightness changes between the differently exposed images of the exposure stack ren-
der the alignment task highly difficult. In a general setting, we have to cope with
any kind of monotonically increasing intensity rescalings. In this context, a feasible
constancy assumption is that the intensity relations within a certain neighbourhood
remain unchanged. In fact, based on this observation, we introduced the complete
rank transform (CRT) that makes maximal use of this assumption. More specifi-
cally, it stores for every pixel a signature vector that encodes the intensity relations
(ranks) in a neighbourhood patch. We embedded those CRT signatures as constancy
assumption into a variational approach for optic flow computation. Our experiments
demonstrated benefits w.r.t. related methods from the literature. Moreover, we il-
lustrated the performance of our optic flow approach for the alignment of exposure
series. In this context, violations of the model assumptions such as highly over- or
under-saturated image regions might lead to inaccurate flow vectors in certain parts
of the image. Unfortunately, already small misalignments may cause severe ghosting
artefacts when fusing the images to an overall well-exposed composite image. Hence,
as a remedy we proposed an additional ghost removal step as postprocessing. To this
end, we based on the concept of a brightness transfer function (BTF) that relates
the brightness values between different frames. We computed those BTFs by means
of image histograms that provide a robustness w.r.t. small scene motion. With the
help of the computed BTFs we performed bidirectional consistency checks to iden-
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tify and to eliminate remaining ghosting artefacts. The proposed approach provides
consistently good results for various data sets as demonstrated by our experiments.

Provided further knowledge about the exposure stack, we presented an alternative
approach to the above two-step method of optic flow-based pre-alignment and subse-
quent ghost removal. In fact, we have proposed the first fully coupled approach that
simultaneously computes an aligned HDR irradiance map as well as dense displace-
ment fields. The introduced feedback in this joint computation of the irradiances and
the optic flow turned out to be highly beneficial. In this way, our approach offers
important features such as an inherent ghost removal and an intuitive weighting of
the intensity values in the HDR reconstruction. Our results demonstrated advan-
tages to an optic flow-based pre-alignment. In fact, our joint approach marks the
state-of-the-art for optic flow computation in the HDR reconstruction setting.

Depth from Focus with Anisotropic Second Order Regularisation. Also in the
context of focal stacking, we made profit from prior information about the image
set. In particular, knowledge about the relative distances of the camera to the focal
planes additionally allowed us to infer depth information about the captured scene.
To this end, we have presented a variational framework for the task of depth from
focus in Chapter 6. In the first step, we determined initial depth maps based on
specific sharpness measures. Next, we smoothed those depth maps with our variational
technique. In particular, we combined robust data fidelity terms with an anisotropic
regularisation strategy to achieve state-of-the-art results. In this way, not only the
fused output images but also the computed depth maps are highly accurate and
provide valuable information for further applications.

Moreover, several approaches have uncovered the need for second order regulari-
sation in the context of depth map computation. This is due to the fact that many
real-world scenes can be well described by (piecewise) planar objects. In this regard,
we have presented the first fully anisotropic coupling model that incorporates direc-
tional information from the evolving all-in-focus image. More specifically, we have
systematically combined anisotropic ideas and higher order regularisation. As a re-
sult, our proposed anisotropic second order coupling model allows to guide jumps and
kinks of the solution in a direction-dependent way. On top of that, with this novel
regularisation technique we improved the quality of our depth from focus approach
even further.

General Conclusions. We have seen how rather intuitive concepts such as box fil-
tering, contrast enhancement, and direction-dependent smoothing can lead to highly
flexible algorithms that provide state-of-the-art results. In this regard, we have de-
signed our models in a transparent variational framework with an established math-
ematical background. In this way, we beneficially coupled individual tasks in joint
models that highly profit from the induced mutual feedback. Overall, we preferred
simple and transparent models with solid mathematical foundations to sophisticated
approaches that are tuned to specific benchmarks. In this way, we uncovered the main
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ingredients and ideas that are most responsible for qualitatively good results.

Moreover, we have seen how to exploit additional prior knowledge about the input
stacks, e.g. the exposure times or the relative distances of the focal planes. In this way,
we could extract further information about the captured scenes such as HDR irradi-
ance or depth values. This shows a rather general principle: Any information about
the imaging process should be considered when designing image analysis methods.
This may require drastic model changes, but ensures an optimal use of the provided
input data. A similar principle is valid for the design of invariant features; cf. Chap-
ter 5. Here, one should aim at a feature that carries as much information as possible
within the desired class of invariance. Obviously, here the meaning of information
differs for each application.

7.2 Outlook

In fact, we have already discussed several modifications and extensions of our tech-
niques in the individual chapters of this thesis. At this point, we want to discuss
possible directions for future work on a more general level.

Joint Fusion Approaches. In this work, we have considered HDR imaging (Chap-
ter 5) and depth from focus (Chapter 6) as two independent research tasks. However,
provided suitable input stacks, it might be also possible to approach both problems
in a joint manner. In this regard, changing the aperture of a camera from frame to
frame creates images that are at the same time differently exposed and differently
focused. Hence, they generally allow both, HDR and depth computation at the same
time. Obviously, this problem setting is harder than the individual problems since
there are several ambiguities. Moreover, changing the aperture effects the intensity
values differently from changing the exposure time. In a similar way, an aperture
change causes focus changes that are more difficult to predict than those caused by
focal plane distance variations. However, first approaches for such a setting show
promising results; see e.g. [HK07, Has08]. Hence, this problem poses an interesting
topic for future work.

In a similar way, it might be possible to consider the task of stereo computation and
depth from focus in a joint ansatz. First approaches that go into such a direction can
be found in [FG06,LSWY10,THS13,THMR13]. Due to their intrinsic advantages and
shortcomings, this might be a fruitful way to increase the quality of depth estimation
in difficult scenarios. One application area for such an approach might be for instance
smartphones that provide two slightly shifted cameras with different focal settings or
light field cameras; see e.g. [Lev06,MM16].

Fusion of Images with Variable Resolution. The fusion tasks considered in this
work aim at fusing images of the same size. Moreover, also the computed flow fields,
HDR irradiance maps, and depth maps are of the same size as the input images.
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Obviously, in some scenarios it might be appropriate to fuse only certain image parts
or to combine images (or related information) that have different resolutions.

In this regard, as a first example application we want to mention image cloning.
Here, the task is to clone parts of one image into another. A popular technique to
approach such a seamless image cloning task are gradient domain methods. Here, the
idea is to modify the image content in the gradient domain, and to later integrate
the resulting gradient field to an image that is free of visible seams; see e.g. [PGB03].
Interestingly, our variational approach from Chapter 4 as well as our second order
coupling model from Chapter 6 share strong similarities to nonlocal gradients and
anisotropic gradient domain methods, respectively. Hence, it would be highly in-
teresting to modify and evaluate our techniques for such an image cloning task and
related image processing applications. A similar idea to gradient domain approaches
is to first manipulate a so-called drift vector field, and to later integrate this field to
a smooth final result; see e.g. [WHBV13]. Also here, such modifications might be
beneficial.

Another popular example for the fusion of images with variable resolution is super-
resolution. Here, the task is to combine several low resolution images to a single
composite with high resolution. Related problems are the upsampling of low resolu-
tion multispectral data by means of a high resolution panchromatic (PAN) image or
the upsampling of a low resolution depth map by means of a guidance image with
higher resolution. For all problems, there exist successful variational approaches, see
e.g. [UPWB10,BCI+06,FRR+13], that might further benefit from ideas presented in
this work.

Closing the loop to joint fusion approaches, also in such settings it could be advan-
tageous to combine several tasks. As an example, let us consider Microsoft’s Kinect
sensor [Mic16]. It provides a visible spectrum image and a near-infrared image with
high resolution. Additionally, the user has access to a low resolution depth map.
Obviously, it seems to be a fruitful idea to upsample this depth map by means of
the high resolution images. In addition, it might be advantageous to combine this
upsampling task with a cross-modal stereo computation between the visible spectrum
and the near-infrared image; see e.g. [CBF11]. This also provides valuable depth
estimates. In such a joint model, both tasks could highly benefit from the induced
mutual feedback, and in this way lead to accurate high resolution depth maps.

Under the guise of image fusion we have contributed with this work to several re-
search fields in image processing and computer vision: efficient numerical schemes,
multispectral imaging, decolourisation, exposure fusion, high dynamic range imaging,
stereo and optic flow computation, ghost removal, depth from focus, and higher or-
der regularisation. Accordingly, we hope that the presented concepts as well trigger
further research into several directions.
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Appendix A

Notation

Before we give a detailed list of the symbols used in this thesis, let us first comment on
our general notation conventions. We denote scalars and vectors in lower-case, where
vectors are additionally written in bold face. Furthermore, we represent matrices by
upper-case and bold face letters. As an example, the i-th entry of a vector a is given
by ai. The entry in the i-th row and j-th column of a matrix A is denoted by aij.
Moreover, we write the channels of colour spaces in a non-italic font style.

a entry of diffusion tensor D
ai coefficient of polynomial function
a arbitrary vector
A symmetric negative semi-definite matrix
b distance between transferred and observed intensity value

(Section 5.A: entry of diffusion tensor D)
b arbitrary vector
B2n+1 box filter of length (2n+ 1)h
B structuring element
B symmetric positive definite matrix
c entry of diffusion tensor D
C place holder for colour channel
C̄ transformed colour channel C
C coupling term
C closed convex set
Cball closed convex unit ball set
Cbox closed convex box set
Csimp closed convex simplex set
C lower triangular matrix with real and positive diagonal entries
d depth map

d̃ initial depth map
d known right hand side
D data term
D` data term on level `
D̄` linearised data term on level `
D range of signature digit
D diffusion tensor
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det determinant
div divergence
div divergence of matrix-valued function that applies div to rows
dv = (dv1, dv2)T optic flow increment
E energy functional
E` energy functional on level `
ek error vector at time level k
e1, e2 unit vector in horizontal and vertical direction
f grey-valued input image
fi,j grey-value at pixel (i, j)
fσ image smoothed with Gaussian of standard deviation σ
f̄ mean value in neighbourhood

f̃ attachment image
f colour-valued input image
f vector representing image patch
F convex function
F integrand of energy functional
g diffusivity function
Gσ Gaussian with standard deviation σ
G smooth strictly maximal monotone map
h grid size in 1D
h1, h2 grid size in horizontal and vertical direction
H cumulative histogram
H Hessian matrix
i index variable
I identity operator
I identity matrix
j index variable
J structure tensor
J Jacobian matrix
k time level or iteration number
K patch size
` warping level

(Chapter 3: strong convexity parameter)
L, a, b lightness channel and colour opponent dimensions of CIE-Lab

colour space
L discrete Laplacian in 1D
L Lipschitz constant
L symmetric negative semi-definite matrix implementing the 1D

Laplacian
m in-focus measure

(Chapter 3: cycle number)
M number of unknowns with M � N
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n number of iterations
(Chapter 2: dimensionality of unknown vector)

n1, n2 number of pixels in horizontal and vertical direction
na number of coefficients
nd̃ number of initial depth maps
nf number of input images
nu number of unknown functions
n outer normal vector on ∂Ω
N number of unknowns
N neighbourhood
N1, N2 neighbourhood in horizontal and vertical direction
N set of natural numbers
O Landau symbol
O zero matrix
p = (p1, p2)T coupling vector field

(Chapter 3: dual variable)
PC projection onto closed convex set C
P positive definite diagonal preconditioning matrix
q index variable
r index of reference image
rB radius of disc-shaped structure element B
r1, r2 eigenvectors of diffusion tensor
R, G, B red, green, and blue channel of RGB colour space
R regularisation term
R` regularisation term on level `
R set of real numbers
s feature vector
S smoothness term
t diffusion time
ti exposure time for image fi
T stopping time of diffusion process
TB2n+1 stopping time corresponding to application of box filter B2n+1

T2 Chebyshev polynomial of the first kind with order 2
T diffusion tensor
tr trace
u grey-valued output image
uk u evaluated at time level k
uGT ground truth solution
uref reference solution
ux1 abbreviation of ∂x1u
u colour-valued output image

(Chapter 2: unknown vector or vector-valued function)
ǔ projected vector u
u∗ (unknown) exact solution
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Un Chebyshev polynomial of the second kind with order n
v = (v1, v2)T optic flow field

(Chapter 2: arbitrary vector)
w weight map
w̃ eroded weight map
x 1D spatial coordinate
x = (x1, x2)T 2D spatial coordinate
X, Y, Z X, Y, and Z channel of CIE-XYZ colour space
Xn, Yn, Zn X, Y, and Z value of reference white point
Y, Cb, Cr luminance, blue-yellow chroma, and red-cyan chroma channel

of YCbCr colour space
z arbitrary scalar
z arbitrary vector
α weight of regularisation term

(Section 5.A: discretisation parameter; cf. αstencil)
αHB α parameter of heavy ball method
αk FSI extrapolation parameter
αstencil α parameter of anisotropic discretisation
β regularisation weight

(Section 5.A: discretisation parameter)
βHB β parameter of heavy ball method
γ weight of contrast term

(Section 5.A: discretisation parameter; cf. γstencil)
γstencil γ parameter of anisotropic discretisation
γ̃ parameter of gamma correction
δ weight of dispersion term part
∆ Laplacian
ε value in [0, 1]
ε parameter of nonlinear function Ψ
ζ signature length
η downsampling factor
θ thresholding parameter
ϑ weight of saturation term
Θ colour transfer function for CIE-XYZ to CIE-Lab conversion
κ parameter of Nesterov’s convex optimisation problem
κ parameter of Nesterov’s strongly convex optimisation problem
λ parameter of nonlinear function
µ parameter of dispersion term
µ1, µ2 eigenvalues of diffusion tensor
ρ standard deviation of a Gaussian
% spectral radius
σ standard deviation of a Gaussian
σ2
n variance of a box filter B2n+1

τ time step size
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τk varying time step sizes of FED scheme
τE-score τ value of E-score evaluation
ϕi→j brightness transfer function from image fi to image fj
Φ camera response function
Φ′ derivative of camera response function Φ
χ(z1<z2) indicator function
Ψ nonlinear function
Ψλ nonlinear function with parameter λ
Ψ′ derivative of nonlinear function Ψ
ω relaxation parameter
Ω rectangular image domain
∗ convolution operator
∇ gradient operator
∂Ω boundary of rectangular image domain Ω
∂x1 first order partial derivative w.r.t. x1

∂x1x2 second order partial derivative w.r.t. x1 and x2

⊥ perpendicular
‖ parallel
b·c floor operator
|Ω| cardinality of set Ω
|z| absolute value of z
|z| Euclidean norm of z
| · |F Frobenius norm
‖ · ‖∞ supremum norm
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Abbreviations

A anisotropic
AAE average angular error
AEB auto exposure bracketing
AEE average endpoint error
BPE bad pixel error
BRDF bidirectional reflectance distribution function
BRIEF binary robust independent elementary features
BTF brightness transfer function
CA coupled anisotropic
CCT complete census transform
cf. confer
CI coupled isotropic
CIFT contrast invariant feature transform
CPG cyclic projected gradient
CRF camera response function
CRT complete rank transform
CT census transform
D dimensional
DFG Deutsche Forschungsgemeinschaft
DRIM dynamic range independent metric
ED explicit diffusion
e.g. exempli gratia (for example)
Eq. equation
et al. et alii or et aliae (and others)
et seqq. et sequentes (and the following)
EV exposure value
F Frobenius
FA first order anisotropic
FED fast explicit diffusion
FI first order isotropic
FSI fast semi-iterative
GPU graphics processor unit
GT ground truth
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HB heavy ball
HDR high dynamic range
HOG histogram of oriented gradients
I isotropic
IC infimal convolution
i.e. id est (that is)
LCIS low curvature image simplifier
LDP local directional patterns
LDR low dynamic range
LIOP local intensity order pattern
MIA mathematical image analysis
MSE mean squared error
MTB median threshold bitmap
NIR near-infrared
OBN ordered Bell number
PAN panchromatic
PDE partial differential equation
PG projected gradient
Ph.D. Doctor of Philosophy
RMSE root mean squared error
RT rank transform
SIFT scale-invariant feature transform
SSIM structural similarity
s.t. subject to
SURF speeded-up robust features
TGV total generalised variation
TV total variation
w.r.t. with respect to
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Own Publications

1. M. Boshtayeva, D. Hafner, and J. Weickert. Focus fusion with anisotropic depth
map smoothing. In A. Bors, E. Hancock, W. Smith, and R. Wilson, editors,
Computer Analysis of Images and Patterns, volume 8048 of Lecture Notes in
Computer Science, pages 67–74. Springer, Berlin, 2013.

2. M. Boshtayeva, D. Hafner, and J. Weickert. A focus fusion framework with
anisotropic depth map smoothing. Pattern Recognition, 48(11):3310–3323,
November 2015. Invited paper.

3. O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: A tool for
accurate and morphologically invariant matching of structures. In T. Burghardt,
D. Damen, W. Mayol-Cuevas, and M. Mirmehdi, editors, Proc. British Machine
Vision Conference, pages 50.1–50.12, Bristol, UK, September 2013. BMVA
Press. Awarded the Maria Petrou Prize for Invariance in Computer Vision.

4. O. Demetz, D. Hafner, and J. Weickert. Morphologically invariant matching of
structures with the complete rank transform. International Journal of Computer
Vision, 113(3):220–232, July 2015. Invited paper.

5. D. Hafner, O. Demetz, and J. Weickert. Why is the census transform good
for robust optic flow computation? In A. Kuijper, T. Pock, K. Bredies, and
H. Bischof, editors, Scale-Space and Variational Methods in Computer Vision,
volume 7893 of Lecture Notes in Computer Science, pages 210–221. Springer,
Berlin, 2013.

6. D. Hafner, O. Demetz, and J. Weickert. Simultaneous HDR and optic flow
computation. In Proc. 22nd International Conference on Pattern Recognition,
pages 2065–2070, Stockholm, Sweden, August 2014.

7. D. Hafner, O. Demetz, J. Weickert, and M. Reißel. Mathematical foundations
and generalisations of the census transform for robust optic flow computation.
Journal of Mathematical Imaging and Vision, 52(1):71–86, May 2015. Invited
paper.

8. D. Hafner, P. Ochs, J. Weickert, M. Reißel, and S. Grewenig. FSI schemes: Fast
semi-iterative solvers for image processing and computer vision. In B. Andres
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and B. Rosenhahn, editors, Pattern Recognition, volume 9796 of Lecture Notes
in Computer Science, pages 91–102. Springer, Berlin, 2016. Awarded the GCPR
2016 Best Paper Award.

9. D. Hafner, C. Schroers, and J. Weickert. Introducing maximal anisotropy into
second order coupling models. In J. Gall, P. Gehler, and B. Leibe, editors,
Pattern Recognition, volume 9358 of Lecture Notes in Computer Science, pages
79–90. Springer, Berlin, 2015.

10. D. Hafner and J. Weickert. Variational exposure fusion with optimal local
contrast. In J.-F. Aujol, M. Nikolova, and N. Papadakis, editors, Scale-Space
and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in
Computer Science, pages 425–436. Springer, Berlin, 2015.

11. D. Hafner and J. Weickert. Variational image fusion with optimal local contrast.
Computer Graphics Forum, 35(1):100–112, February 2016.

12. C. Schroers, D. Hafner, and J. Weickert. Multiview depth parameterisation
with second order regularisation. In J.-F. Aujol, M. Nikolova, and N. Papadakis,
editors, Scale-Space and Variational Methods in Computer Vision, volume 9087
of Lecture Notes in Computer Science, pages 551–562. Springer, Berlin, 2015.
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[PH08] M. Pedone and J. Heikkilä. Constrain propagation for ghost removal in
high dynamic range images. In Proc. 3rd International Conference on
Computer Vision Theory and Applications, pages 36–41, Funchal, Portu-
gal, January 2008.
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