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Abstract

Calcium signaling is an essential component of immune cell function. Immunocompe-

tent cells employ calcium ions as a second messenger to regulate proliferation, migration

and maturation. In addition, intracellular calcium signals are necessary for cytotoxic

lymphocytes (CLs) such as CD8+ T-cells and natural killer cells (NK cells) to eliminate

target cells. For several decades, the doctrine used to be that this elimination is mainly

achieved by forcing a target cell into apoptosis. In recent years, several groups reported

that there is at least one further way of target cell killing. Given the right circumstances,

CLs are also able to kill by a direct lysis of the target cell’s membrane, a process referred

to as ’necrosis’.

Our research group, the Department of Biophysics at Saarland University, directed by

Prof. Dr. Markus Hoth, investigates the Ca2+ dependence of signaling processes in im-

mune cells. We found that calcium ion influx into killer cells is not only necessary for a

successful attack on pathogens and tumor cells, but that extracellular calcium supply can

influence a killer cell’s global killing efficiency.

The aim of this doctoral thesis was to study influx kinetics of Ca2+ ions in active NK

cells at a single-cell level using fluorescence microscopy. The conducted experiments led

to two main conclusions:

I) Not only do NK cells employ both necrosis and apoptosis when killing certain target

cells, but the frequency distributions of both killing types depend highly on the ex-

tracellular Ca2+ concentration ([Ca2+]ext). Low concentrations favor the occurrence

of apoptosis, while an increase in [Ca2+]ext shifts the balance towards necrotic killing.

This shift occurs even after raising Ca2+ ion levels beyond the amount necessary for

necrosis induction.

II) The shape of Ca2+ influx differs, regarding necrotic and apoptotic killing. Necro-

sis induction depends on high sustained rises in [Ca2+]int, while NK cells causing

apoptosis tend to show low and oscillatory Ca2+ signals.

Further experiments were conducted in attempt to reveal the responsible molecular mech-

anisms. Artificially releasing high amounts of Ca2+ ions into the cytosol of killing NK

cells, using a photolabile Ca2+ chelator, suggests that high cytosolic Ca2+ concentrations

are necessary but not sufficient for necrosis induction by NK cells.

The presented results have contributed to shedding light on the Ca2+ dependence of

NK cell function. In his doctoral thesis published in 2016, Christian Backes from our

research group demonstrated that the balance of necrosis to apoptosis induced by NK

cells greatly affects their total killing competence. The observation that global killing
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efficiency of CD8+ T-lymphocytes and NK cells depends on [Ca2+]ext can now in parts

be explained by the likelihood of necrotic and apoptotic killing processes shifting.

Although different Ca2+ influx patterns in active NK cells were previously described

by other groups, no exact quantification of these signals has yet been provided. In addi-

tion to giving such a quantification, this thesis can provide evidence that these different

signal types are clearly linked to distinct outcomes regarding NK cell cytotoxicity in vitro.

NK cells play a pivotal role in tumor surveillance and - in case of already developed

cancer - keeping malignant cell clones in check. Apoptosis and lysis of target cells may

both help achieve a shared aim but will differently affect the anti-tumor immune response.

Hence, different Ca2+ signals in tumor-killing NK cells as well as their likelihood of in-

ducing apoptosis or necrosis may also affect tumor development, progression as well as

the efficacy of immune therapy and adoptive cell transfer. Many recent studies suggest

that tumor cells benefit from necrosis by taking advantage of the resulting microenviron-

ment. If we can deepen our understanding of how different calcium signal types in CLs

come about, we could try to modulate killing behaviour to shape a more desirable cellular

immune response to malignancies.
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Zusammenfassung

Kalziumsignale spielen eine Schlüsselrolle in der Funktion unserer Immunabwehr. Im-

munzellen verwenden diese Signale, um komplexe Prozesse wie Proliferation, Migration

und Reifung zu regulieren. Darüber hinaus benötigen Killerzellen wie CD8+-T-Zellen und

natürliche Killerzellen (NK-Zellen) hohe zytosolische Kalziumspiegel, um Zielzellen ab-

zutöten. Die Doktrin der letzten Jahrzehnte war, dass dieses Abtöten im Wesentlichen

auf einem einzigen Mechanismus basiert: der Aktivierung des programmierten Zelltodes,

der Apoptose der Zielzelle. Seit einiger Zeit mehren sich jedoch die Hinweise, dass es noch

mindestens einen weiteren Mechanismus gibt. Unter gewissen Voraussetzungen können

Killerzellen ihre Opfer auch durch eine direkte Lyse der Zellmembran töten. Dieser Pro-

zess wird gemeinhin als "Nekrose" bezeichnet.

Unter der Leitung von Prof. Dr. Markus Hoth erforscht unsere biophysikalische Arbeits-

gruppe seit Jahren die Bedeutung von Kalziumsignalen für eine Vielzahl von Immunzellen.

Wissenschaftler unserer Abteilung fanden heraus, dass ein Kalziumeinstrom in Killerzellen

nicht nur notwendig für das Abtöten von Bakterien und Tumorzellen ist, sondern dass das

extrazelluläre Kalziumionenangebot auch einen Einfluss auf die absolute Killingeffizienz

ausübt.

Das Ziel der vorliegenden Doktorarbeit war, die Kinetik dieser Kalziumströme in akti-

ven NK-Zellen mittels Fluoreszenzmikroskopie auf Einzelzellebene zu erforschen. Die in

diesem Rahmen durchgeführten Experimente lieferten zwei wichtige Erkenntnisse:

I) Zusätzlich zur Bestätigung, dass NK-Zellen sowohl Apoptose als auch Nekrose in

geeigneten Zielzellen induzieren, stellte sich heraus, dass die statistische Verteilung

beider Killingtypen stark vom extrazellulären Kalziumangebot abhängt. Niedrige

Konzentrationen an Kalziumionen begünstigen das Auftreten von Apoptosen, wäh-

rend steigende Kalziumspiegel zu mehr und mehr Nekrosen führen. Dieser Einfluss

zeigt sich auch noch bei extrazellulären Kalziumkonzentrationen, die weit über dem

für Nekrose notwendigen Maß liegen.

II) NK-Zellen zeigen verschiedene Arten von Kalziumsignalen, je nachdem, welchen Typ

Zytotoxizität (i.e. Nekrose oder Apoptose) sie in ihrer Zielzelle induzieren. Die Lyse

der Zelle bedurfte dabei stets eines hohen und anhaltenden Einstroms von Kalziu-

mionen, während Killerzellen, die Apoptose hervorriefen, niedrigere und oszillierende

Kalziumströme zeigten.

Weitere Experimente zielten darauf ab, die molekularen Mechanismen für diese Unter-

schiede in den Signalen aufzudecken. Indem große Mengen an Kalziumionen mittels eines

photolabilen Chelators künstlich in Killerzellen freigesetzt wurden, konnte gezeigt werden,

dass hohe Kalziumeinströme zwar notwendig, aber sehr wahrscheinlich nicht hinreichend
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für das nekrosebasierte Abtöten sind.

Die vorliegenden Ergebnisse haben dazu beigetragen, die Kalziumabhängigkeit der Funk-

tion von NK-Zellen besser zu verstehen. In seiner 2016 publizierten Doktorarbeit konnte

Christian Backes aus unserer Arbeitsgruppe zeigen, dass die Balance von Nekrose- zu

Apoptoseinduktion einen starken Einfluss auf das globale Killingpotential von NK-Zellen

ausübt. Mit Hilfe der hier gewonnenen Erkenntnis, dass diese Balance vom extrazellulä-

ren Kalziumangebot abhängt, kann die Beeinflussung der Effizienz natürlicher Killerzellen

durch die Verfügbarkeit von Kalziumionen nun in Teilen erklärt werden.

Verschiedenartige Muster von Kalziumströmen in aktiven NK-Zellen wurden in der Ver-

gangenheit bereits von anderen Arbeitsgruppen postuliert, jedoch nicht exakt quantifi-

ziert. Neben einer solchen Quantifizierung kann die vorliegende Arbeit erstmals beweisen,

dass diese Signalmuster deutlich mit den verschiedenen Killingarten assoziiert sind, zu

denen NK-Zellen fähig sind.

Natürliche Killerzellen zählen zu den wichtigsten Effektoren der Tumorüberwachung.

Auch im Falle von bereits entstandenen Tumoren tragen sie essenziell dazu bei, den Tu-

mor in Schach zu halten. Unmittelbar führen Apoptoseinduktion und Lyse zwar zum

gleichen Ergebnis - dem Tod der Tumorzelle -, beide Prozesse beinflussen jedoch die ge-

gen den Tumor gerichtete folgende Immunantwort auf stark unterschiedliche Weise. Es ist

anzunehmen, dass die Frage, wie NK-Zellen Tumorzellen eliminieren und welche Kalzi-

umsignale sie dabei präsentieren, auch einen Einfluss auf die Wirksamkeit von Chemothe-

rapien, immunmodulierenden Therapien und adoptivem Zelltransfer haben könnte. Viele

aktuelle Studien legen nahe, dass Tumorzellen von einem bestimmten immunologischen

Mikromilieu profitieren. Ein solches Milieu scheint insbesondere durch nekrotische Zellen

begünstigt zu werden. Ein tiefer gehendes Verständnis davon, wie verschiedene Kalzi-

umsignale in NK-Zellen zustande kommen, könnte es erlauben, sie pharmakologisch zu

beeinflussen, um das Tötungsverhalten von NK-Zellen zu modifizieren. Auf diese Weise

könnte ein immunologisches Mikromilieu im Tumorgewebe erreicht werden, das bösartige

Zellen schädigt, ohne gleichzeitig die Vermehrung benachbarter Tumorzellen zu stimulie-

ren.
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1 Introduction

1.1 The role of NK cells in innate and adaptive immunity

It is widely accepted that malignant cell transformation occurs randomly but frequently

during cell division. Luckily, our immune system has extensive capabilities to identify and

extinguish these tumors in the making [1]. If surveillance mechanisms fail, cells can gain

replicative immortality [2]. They grow and form cancerous tissues which can eventually

cause life-threatening diseases.

Sooner or later, virtually all cancers manage to develop mechanisms of immune eva-

sion [3], [4]. How they escape our immune system varies among different tumor entities

and has long attracted the attention of many immunologists. One evasive strategy occur-

ing regularly in cancer cells is the downregulation or mutation of major histocompatibility

complex class I (MHC I) [5], a constellation often referred to as ’missing self’. MHC I

proteins are normally expressed on the surface of every nucleated cell in the body where

they present intracellularly processed peptides to passing immune cells [6]. The latter

investigate the molecular identity of these peptide fragments to check for structures of

infectious or tumorous origin. If cells are infected by viruses or have transformed into

a malignant clone, they are likely to present foreign peptides which would immediately

draw the attention of B-cells, CTLs and phagocytes. Therefore, those tumor cells down-

regulating MHC I expression would stay incognito and gain an advantage of growth. NK

cells can complement immune surveillance by recognizing cells with modified or missing

MHC I peptides.

The significance of tumor control carried out by natural killer cells has been highlighted

repeatedly during the past decades. Mice lacking NK cell function suffered from an in-

creased susceptibility to implanted tumor cells [7] and healthy humans were shown to

have an increased risk of developing cancer in case of lower than average in-vitro NK cell

activity [8]. This heightened susceptibility to cancer is not only the result of NK cells

not being able to kill malignant cells but also due to their inability to promote immune

responses. Upon stimulation, certain subtypes of NK cells produce interferon gamma

(IFN-γ), tumor necrosis factor (TNF) and other cytokines, which recruit other immune

cells to the site of attack. This immunoregulatory function is mainly exerted by an NK

cell subpopulation expressing high levels of the surface protein CD56, earning it the name

’CD56bright’ [9], [10]. These CD56bright NK cells usually lack CD16 and are thus incapable

of executing antibody-dependent cellular cytotoxicity (ADCC), [11]. While only 10% of

circulating NK cells belong to this type, they highly outnumber the CD56dim type in the

body since they are the predominant NK cell type in lymphoid and other organs [12].

Compared to their CD56bright siblings, CD56dim type NK cells are considered the main
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cytotoxic form of NK cells. They express different homing receptors allowing them to infil-

trate tissues and release high loads of cytotoxic proteins, which are stored in lytic granules,

onto target cells [13], [14]. Potential target cells or pathogens can be recognized by the liga-

tion of natural cytotoxicity receptors (NCRs) or triggering of Fcγ-receptor/CD16-complex

in an antibody-dependent manner [15].

Unlike B- or T-lymphocytes, NK cells themselves do not possess antigen-specific recep-

tors. Therefore, they are generally considered a part of innate immunity. Recent findings

suggest that NK cells do not simply kill or spare target cells obeying an all-or-none law

but show very nuanced immune responses. They were found to enter an anergic state

in case of chronic receptor stimulation, undergo self-selecting mechanisms to ensure self-

tolerance, and certain subsets of NK cells even transform into memory cells, [16]. Since

these are abilities typically limited to B- and T-cells, these findings have raised the ques-

tion whether NK cells could mark an intersection of innate and adaptive immunity.

1.2 Development of NK cells and subsets

Like every other blood cell, NK cells stem from pluripotent hematopoietic stem cells

residing in the bone marrow. These stem cells differentiate into two classes of progenitor

cells, dividing hematopoiesis into a lymphoid and a myeloic lineage. The latter finally

gives rise to erythrocytes, platelets, monocytes and granulocytes. Lymphoid progenitor

cells in turn evolve into three classes of cells: B-lymphocytes, T-lymphocytes and NK

cells. Every descendant of a hematopoietic lineage has their own molecular ID: a set of

membrane-bound proteins called ’cluster of differentiation’ or ’CD’. By identifying the

composition of CD proteins on its surface, a cell can be allocated to a defined lineage as

well as stage of development. As previously mentioned, early NK cells typically express

CD56 but lack CD3 which is present on all T-cells [17]. Mature NK-cells can be subdivided

with regard to their expression level of CD56 and CD16. Recent findings suggest that

there might be a third major subset of NK cells. Predominantly residing in mucosal

lymphoid tissues, this subtyp expresses the two NCRs NKp46 and NKp44. It produces

high amounts of Interleukin-22 and, unlike any other NK cell, does not depend on IL-15

for survival [18].

After developing in the bone marrow, early NK cells migrate to lymph nodes, spleen

and other secondary lymphoid organs to mature. A small population of mature cells then

enters circulation and scans the blood stream for pathogens. In case of infection, sterile

inflammation or malignant cell transformation, these cells adhere to the vessel wall and

migrate into the damaged tissue to exhibit cytotoxic or immunoregulatory functions [19].

NK cell maturation and survival depends on provision with a variety of cytokines,

the most important being Interleukin-15 [20]. Mice lacking IL-15 or its receptor showed
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abscence of circulating NK cells [21]. A similar condition is present in patients suffering

from SCID-X1, caused by a hereditary defect in the common peptide chain γc of several

IL-receptors. Interleukin-2 [22] and Interleukin-12 [23] are other potent promotors of NK

cell proliferation as well as cytotoxicity. IL-2 was also used during the culture of primary

NK cells used in this thesis in order to expand their life span and enhance cytotoxic po-

tential.

The majority of NK cell receptors promote activation by a cytosolic signaling domain

called ’intracytoplasmatic immunoreceptor tyrosine-based activation motif’ or ITAM (s.

section 1.3.1). This linkage appears to be a common feature of all lymphocytes since

B- and T-cell receptors also induce downstream signaling using ITAMs. Interestingly,

while dysfunction of ITAM-mediated signaling leads to developmental arrest in B- and T-

lymphocytes [24], NK cell evolution seems not to depend similarly on ITAM functionality.

Total NK cell counts were unimpaired in mice deficient for ITAM-bearing molecules [25].

This finding might help explain why, compared to that of other lymphcoytes, NK cell

function tends to be only mildly affected by most congenital immune deficiencies.

In contrast to B- and T-lymphocytes, malignant transformation of NK cells is rare. Most

cases of aggressive NK-cell leukemia are diagnosed in Asia. The disease affects mostly

adolescents and young adults with a slight preponderance of males [26]. The frequent pres-

ence of Epstein-Barr virus-related genome in the tumor cells point towards an involvement

of EBV infection in the carcinogenesis [27]. Prognosis of NK-cell leukemia is usually poor.

1.3 NK cell activation: From IS formation to target cell lysis

1.3.1 Activating and inhibitory NK cell receptors

NK cells possess a variety of either stimulating or inhibitory natural cytotoxicity recep-

tors (NCRs) on their cell surface. Activation is not the result of one ligand binding to

its receptor but an interplay of these receptors finally turning the balance towards stim-

ulation. Activation is promoted by several cell surface receptors, e.g, NKp46, NKp44,

NKp30, NKG2D, CD2, 2B4 and DNAM-I. Numerous ligands for these receptors have

been identified and include viral antigens such as haemagglutinines of influenza virus,

neuraminidases of parainfluenza virus [28] and proteins structurally related to MHC class

I (MHC class I-related molecules or MICs), including the so-called UL-16 binding proteins

(ULBPs) [29], [30]. NKG2D is known to detect ’stress peptides’, self molecules only ex-

pressed by cells undergoing distress and certain tumor cells [31]. Another very important

activating receptor is CD16, which detects the constant part of human IgG molecules. It

enables NK cells to induce antibody-dependent cellular cytotixicity (ADCC). In unstim-

ulated NK cells, CD16 is the only receptor capable of activating the cell on its own, while



16

all other receptors mentioned above first need to synergize [32].

Figure 1 provides a quick overview of the most prominent NCRs as well as their adaptor

molecules. The current state of investigation suggests that more or less every activating

NK cell receptor uses the same polypeptide structure with a high proportion of tyrosine,

called ’immunoreceptor tyrosine-based activation motif’ (ITAM) for downstream signal-

ing. These ITAMs are not part of the NCRs per se but of linker molecules non-covalently

associated with them. Different NCRs can thus be classified by which of these molecules

they are linked to. The three most important ITAM-containing adaptors in humans are

CD3ζ , FcRγ and DAP12. While NKG2C and NKp44 are associated with DAP12, NKp30

as well as CD16 correspond with both CD3ζ and FcRγ [33], [34]. NKG2D appears to

stand out since it comes in two splice variants. The long variant NKG2DL signals using

DAP12, the short variant NKG2DS uses DAP10 [35].

The common pathway of NCR activation by ligand binding is the phosphorylation of

ITAMs’ tyrosine residues by members of the src protein tyrosine kinase (PTK) family.

In turn, this phosphorylation recruits two protein kinases, Syk and Zap-70. Both PTKs

were shown to exhibit redundant functions in human NK cells since either one seems to

be dispensable for NK cell cytotoxicity [36]. Syk and Zap-70 phosphorylate and activate

a variety of downstream signaling molecules. The final common step in NK cell activa-

tion is the production of IP3 and DAG by phospholipase Cγ (PLCγ). How ITAM-based

recruitment of PTKs results in activating PLC is currently unknown. There is, however,

evidence that stimulation by different NCRs can result in distinctively triggering different

isoforms of PLC, PLC 1 and 2 [37]. A possible connection between patterns of NCR

activation and different outcomes of NK cell action are discussed in detail in section 4.4.

Recognizing human MHC class I molecules on target cells dampens NK cell activ-

ity. The receptors responsible for detecting MHC include those belonging to the killer cell

immunoglobulin-like receptor family (KIR) and CD94/NKG2A. In analogy to ITAMs, the

tyrosine-based motifs conveying inhibitory signals in NK cells are referred to as ’ITIMs’.

1.3.2 Second messengers of activation and the ER

A common feature of most, if not all, activating NCRs, is the resulting phosphorylation of

PLCγ. In its phosphorylated state, PLCγ cleaves phosphatidylinositol 4,5-bisphosphate

(PIP2) into diacyl glycerol (DAG) and IP3. IP3 in turn travels to the endoplasmic retic-

ulum where it binds to its receptor, a Ca2+-specific ion channel located in the ER mem-

brane.

In unstimulated cells, free [Ca2+]int is usually kept at values of 100 nM or lower. In-

creases in cytosolic Ca2+ levels are quickly intercepted by the activity of plasma membrane-

located calcium pumps (PMCAs) or the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase



17

Figure 1: Activating and inhibitory NK cell receptors and their adaptor proteins

From: Vivier et al: ’Innate or Adaptive Immunity - The Example of Natural Killer Cells’, Science (331),
2011

(SERCA). Ca2+ concentration is several orders of magnitude higher in the ER compared

to the cytosol [38]. Being the most important intracellular Ca2+ store in humans, the

ER plays a critical role in cellular Ca2+ homoeostasis. Recently, the translocon complex

Sec61, located in the ER membrane, was found to provide an opportunity for Ca2+ to

leak out into the cytosol [39], [40], thus functionally linking ER Ca2+ storage to peptide

transport.

Binding of IP3 to its receptor in the ER membrane leads to Ca2+ rapidly flowing from

the ER into the cytosol, following an electrochemical gradient. Ca2+ store depletion can

also be triggered pharmacologically by applying thapsigargin, a known specific inhibitor

of SERCA [41], [42]. The resulting reduction in Ca2+ export into the ER lumen produces

a gradual leakage of Ca2+ from the ER. This principle can be put to use in order to create
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an artificial trigger for STIM and ORAI activation.

As long as no Ca2+ influx from outside the cell is provided, elevations in [Ca2+]int
usually stay transient because pumps shift excess Ca2+ back into stores or extrude it from

the cytosol. Store depletion can, however, cause an even greater Ca2+ influx through the

plasma membrane. The latter is actually responsible for definitive immune cell trigger-

ing [43].

1.3.3 STIM, ORAI and CRAC

The depletion of ER Ca2+ stores is sensed by a cluster of proteins called STIM [44]. They

are located in the ER membrane, exposing Ca2+-specific binding domains, so called ’EF-

hands’, to the lumen. In its resting state, STIM is saturated with Ca2+ ions and thus

remains inactive. Once the ER Ca2+ storage is depleted, Ca2+ desaturation causes STIM

molecules to autoaggregate. These aggregates in turn activate Ca2+-specific ion chan-

nels located in the plasma membrane. Prior to the activation of STIM, these channels

are evenly distributed across the cell surface. STIM autoaggregation recruits and gathers

these channels in areas of the membrane closely neighbouring the ER membrane. In 2006,

the identity of the channel-forming protein was revealed as ORAI [45], [46]. Since ORAI

conductance depends on Ca2+ ions being previously released from stores, the resulting

Ca2+ current across the plasma membrane was named ’calcium release-activated calcium

current’ or ’CRAC’ [47].

Humans express two different STIMs [48] and 3 different ORAI channels [46], [49]. Out of

all possible combinations of the two types of proteins, the pairing STIM1/ORAI1 appears

to be by far the most important in most immune cells including NK cells [50].

The effects of Ca2+ entry through CRAC channels are diverse and include migration,

proliferation, differential gene expression as well as the release of cytotoxic vesicles by

CTLs. Section 1.3.5 provides a detailed description of the molecular mechanisms and the

Ca2+ dependence of vesicle release. Known transcription factors sensitive to intracellular

calcium signaling by CRAC activity include the nuclear factor of activated T-cells (NFAT)

and NFκB [51], [52]. Figure 2 displays the players involved in the molecular activation

cascade of lymphocytes.

1.3.4 The role of mitochondria at the IS

In order for cytotoxic lymphocytes to interact with their individual target cells their

membranes need to come into close contact. In analogy to neurons forming synapses to

ensure efficient signal transduction, these immune cell contact sites were given the name
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Figure 2: Molecular activation cascade in cytotoxic T-lymphocytes and NK cells
Activation of CLs occurs when their immune receptors - the T-cell receptor (TCR) or stimulatory NK cell
receptors - recognize suitable ligands. PLC is activated by an out-to-in signaling cascade leading to DAG
and IP3 production. IP3 binds to its receptor located in the ER membrane triggering a depletion of ER
luminal Ca2+ stores. This depletion is detected by STIM molecules and followed by an autoaggregation.
STIM aggregates recruit ORAI channels to the nearby parts of the cell’s plasma membrane and activate
them. The result is an inward current of Ca2+ ions. Rising intracellular Ca2+ concentrations mark the
crucial trigger for exocytosis of cytotoxic vesicles and the modification of gene expression. Mitochondria
are transferred to the IS. They take up part of the intruding Ca2+ ions and prevent inactivation of ORAI
channels. Lytic granules (LGs) are hooked to microtubules and transported towards the IS membrane.
Fusion is achieved by the action of SNARE complexes. Perforin molecules released from LGs form pores
in the target cell membrane and allow granzymes to enter the cytosol.
Modified after: ’Calcium, cancer and killing: The role of calcium in killing cancer cells by cytotoxic
T-lymphocytes and natural killer cells"’ by Schwarz E.C. et al, Biochimica et Biophysica Acta (1833)
2013;1603-1611

’immunological synapse’ (IS) [53], [54]. ISs work like a seal, allowing directed release of

cytotoxic proteins onto the target cell whilst sparing innocent bystander cells. In contrast

to neurological synapses, the release site of granules is not predetermined by tissue archi-

tecture but depends on where immune receptors and ligands appear in the highest density

on the killer and target cells’ surfaces. Upon IS formation, lytic granules are transported

towards the IS. Interestingly, IS establishment comes along with a complex rearrangement

of the killer cell’s cytoskeleton and mitochondria. Mitochondrial translocation preceeding



20

NK cell cytotoxicy was first observed by Quintana et al in 2007 [55] and also seen in

T-cells. In 2010, researches from our group could show that in T-lymphocytes shift of

mitochondria towards the IS is necessary for sustained CRAC activity and thus effective

T-cell activation [56]. When relocated into close proximity of the IS, mitochondria can

take up parts of the inflowing Ca2+ ions. This buffering needs to occur to prevent a

Ca2+-dependent inactivation of ORAI channels and permits Ca2+ influx over a prolonged

period of time [57].

Intracellular transport of organelles like mitochondria or lytic granules depends on micro-

tubules serving as a guiding structure. Once an IS is formed, the microtubule organizing

center (MTOC) is relocated towards the site of contact and the actin cytoskeleton of the

cell is rearranged [58]. Next, mitochondria and lytic granules are hooked to microtubules

and transported towards the MTOC in a Ca2+-dependent manner. The motor proteins

responsible for this movement have been identified as kinesin for anterograde transport

and dynein mediating retrograde movement. In 2009 Wang and Schwarz could reveal the

exact mechanism for this Ca2+-dependence of mitochondrial transport in neurons [59].

Subject to a Ca2+-free extracellular environment, CTLs still form immunological synapses.

These synapses are, however, dysfunctional for many reasons, one being that mitochon-

dria can no longer be relocated towards the IS [56].

1.3.5 Cytotoxicity by release of lytic granules

T-cells and NK cells have several harmful proteins at their disposal to force infected or ma-

lignantly transformed cells into cell death. These proteins are either soluble molecules re-

leased into the narrow cleft of the immunological synapse from lytic granules or membrane-

bound death ligands binding their counterpart receptors on a target cell’s surface. This

section explains the molecular details of lytic granule formation, exocytosis and the prop-

erties of two main families of human cytotoxic proteins: perforin and granzymes.

Lytic granules are lysosome-related low-pH vesicles which store perforin and granzymes.

Lysosome-associated membrane protein 1 (LAMP-1) or CD107a is strongly expressed on

the surface of lytic granules [60]. In 2012, Krzewski et al could show that knockdown

of LAMP-1 decreased the killing ability of NK cells by interfering with vesicle transport

as well as perforin sorting into the vesicles, while target cell recognition and amounts of

stored granzymes were unchanged [61]. This finding points towards a LAMP-1 dependent

recruitment of motor proteins to lytic granules. Furthermore perforin and granzymes are

integrated into secretory lysosomes via different transportation mechanisms, allowing for

an individual dysfunction of either one.

The process of lytic granule fusion with the plasma membrane depends on a multi-
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tude of priming, tethering and sensoring proteins and is far from being understood. It

is sure, however, that there are parallels to vesicle fusion in neurons. Important players

in lymphocyte vesicle transport or fusion include Munc 13-4 [62], Syntaxin-11 [63], [64]

and Munc 18-2 [65]. Rettig and colleagues could show that both syntaxin-7 [66] and

syntaxin-11 [67] are required as T-snares in cytotoxic lymphocytes. Furthermore, in T-

cells VAMP8 facilitates vesicle fusion by docking early endosomes to the IS which deliver

Syntaxin-11 [68]. The calcium sensor protein inducing vesicle fusion in CLs is still to

be determined, but there is evidence for synaptotagmin-7 [69]. For a detailed review of

molecular players in vesicle trafficking, comparing neurons and CLs, see [70].

Perforin is a 67 kDa multimeric protein stored in lytic granules. Subject to low pH,

it comes as a monomer, safely contained inside the vesicle. Following release into the

rim of the IS, it oligomerizes in the presence of Ca2+ ions and forms a pore in the target

cell’s plasma membrane. Perforin-1 is the major form expressed in human CTLs and NK

cells and hereditary defects in perforin function account for a severe condition named

hemophagocytic lymphohystiocytosis type 2 [71], [72]. The importance of perforin func-

tionality has been further highlighted by many in and ex vivo analyses reporting impaired

cytotoxicity by NK cells and CTLs in vitro as well as drastically increased vulnerability

to cancerogenesis and metastasis in knockout mice [73].

Perforin consists of three functionally divided domains. Its N-terminal end forms a

membrane attack complex similar to that of the complement protein C9. The middle

domain has molecular resemblance to the human epidermal growth factor (EGF). Finally,

the C-terminal part, more precisely its C2-domain, is responsible for Ca2+-dependent tar-

get membrane binding [74].

Once released, neutral pH and available Ca2+ ions cause perforin molecules to form

oligomers consisting of 19 to 24 proteins. These pores were estimated to have a luminal

diameter of 130-200 Angström [74]. The cytolytic function of perforin is two-fold. It was

shown to serve as an entrance mechanism for granzymes [75] but is also regarded to have

intrinsic lytic potential [76]. Perforin having cytotoxic effects on its own is in line with

results presented in this thesis which show that, depending on extracellular Ca2+ supply,

even the majority of target cells can be killed in an apoptosis-independent fashion. Target

cells were shown to be capable of repairing a certain proportion of perforin pores by using

endosomes and lysosomes as donators of membrane portions [77]. The actual mechanism

with which granzymes enter target cells still needs to be clarified. Some authors postu-

late a delivery mode which depends on clathrin-dependent endocytosis of perforin and

granzymes by the target cell [78].
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Figure 3: Electron microscopy and 3D reconstruction of perforin pores
(A) Negative stain electron microscopy of perforin pores formed on lipid monolayers, (B) Surface and (C)
cutaway views of a cryo-electron microscopy reconstruction of a perforin pore with 20-fold symmetry.
From: ’The structural basis for membrane binding and pore formation by lymphocyte perforin’, Law
R.H.P, Lukoyanova N. et al, Nature 2010, 468;447-451’

1.3.6 Cytotoxicity via death ligands and receptors

Another way of NK cells to inflict death is a family of transmembrane proteins called

’death receptors’ and ’death ligands’ respectively. Human NK cells express at least two

types of death ligands - Fas ligand (FasL) [79], [80] and TRAIL [81], the latter being an

acronym for ’Tumor necrosis factor related apoptosis inducing ligand’. Once these death

ligands bind their specific receptor counterparts on a target cell’s surface, they are able to

induce an intracellular signaling cascade forcing the target cell into apoptosis. In contrast

to the granzyme-B-dependent fashion starting directly from inside the target cell, FasL

and TRAIL cause apoptosis by an out-to-in signaling pathway involving caspase 8. As

recently as 2016, Zhu, Huang and Shi could show that, although noticeably expressed by

both primary human NK cells as well as NK-cell lines, such as NK-92 MI, blockade of

the TRAIL pathway using neutralizing antibodies did not affect granule-independent cy-

totoxicity, indicating that Fas-FasL-interaction is the predominant type of receptor-based

cytotoxic signaling in humans [82].
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While the molecular mechanisms of these death pathways are well-established, little is

known about their contribution to the overall killing power of NK cells compared to per-

forin and granzymes. It seems likely that both modes of apoptosis induction - granzymes

and death ligands - contribute to global NK cell cytotoxicity depending on an NK cell’s

maturation state. In the above-mentioned publication, Zhu et al also demonstrated that

freshly-isolated primary NK cells killed a majority of adherent tumor cells in a vesicle-

independent fashion while the proportion of lytic granule use increased with further in-

cubation or stimulation with IL-2. It is possible that death-receptor mediated killing by

NK cells may have its greatest value during early phases of NK cell maturation when the

cytotoxic vesicle pool has not yet grown up to its full capacity.

1.4 NK cells in immunotherapy and adoptive cell transfer

Two of the famous cancer hallmarks postulated by Hannahan and Weinberg are the

achievement of replicative immortality and the deregulation of tumor cells from cell cycle

control. Tumor cells divide infinitely and more rapidly than most healthy cells. This sim-

ple fact constitutes the efficacy of chemotherapy: When administering potent inhibitors of

cell division, the more rapidly a cell is proliferating, the more severely it will be affected.

Chemotherapy along with surgery and radiation have been the foundation of cancer treat-

ment for decades and still mark the most common therapeutic approaches for basically

all cancer entities today.

Oncologic medicine, however, is in flux. Modern biotechnology has made monoclonal an-

tibodies, recombinant growth factors and the group of so-called ’small molecules’ broadly

available. In addition, next-generation sequencing turned the complete analysis of can-

cerous genome into a feasible, time-economic task. These developments have found their

way into cancer treatment and are currently changing the face of tumor therapy.

Immunotherapy describes the principle of modulating our body’s immune response against

cancer cells. Possible approaches include applying recombinant growth factors, chemokines

or immunomodulating agents, such as thalidomid, to instigate already present immune

cells or help hematopoiesis recover between chemotherapy cycles. Another promising ap-

proach is the administration of whole immune cells to a cancer-bearing host in the hope

of boosting cellular immunity. This approach is called ’adoptive cell transfer’ (ACT) and

has already shown promising results in the treatment of many cancerous diseases. Cells

suitable for ACT include CD8+ T-cells, NK cells and dendritic cells. The cells are iso-

lated from the cancer-bearing host, purified by centrifugation and then expanded in-vitro

using either recombinant growth factors or radiated tumor cell lines as stimulators. An
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interesting twist to this method is the creation of T-cells expressing a cloned TCR which

recognizes tumor-specific antigens in addition to their own antigenic specificity. These

receptors are called ’chimeric antigen receptors’ or CARs and have been used effectively

against lymphoma and leukemia.

NK cells are an attractive goal for adoptive cell transfer since they do not depend on

specific receptors to recognize and kill targets. Both autologous and allogeneic transfers

of NK cells have been conducted in clinical trials [83], [84]. Major challenges remain guar-

anteeing sufficient survival of infused cells, preventing the emergence of tumor tolerance

and bypassing the danger of cytokine storms or overshooting graft-versus-host diseases.

In addition to primary NK cells, NK cell tumor lines have also proven suitable candidates

for ACT. Recently, the FDA approved the NK-cell line NK-92 MI for the treatment of

renal cell carcinoma and advanced malignant melanoma [85], [86]. By creating or ex-

ploiting an already existent specificity against tumor antigens, cell-based therapy may

also contribute to avoiding the severe side-effects of conventional chemotherapy which

often limit the admissible amount of chemotherapeutic drugs. Furthermore, ACT is an

important representative of the emerging concept of ’personalized medicine’, which aims

to tailor medical treatment to every individual patient, based on cancer genome analyses,

investigating the expression of tumor antigens or checking for individual anomalies in drug

metabolism.

If we think of the many upcoming challenges in immune therapy development, enlighten-

ing the molecular details of cytotoxicity in CTLs might not only provide insight into our

immune system but could also help to take one more step towards an effective treatment

for cancer.
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2 Materials and methods

2.1 Cells

2.1.1 Cell lines

2.1.1.1 Jurkat E6.1 The suspension cell line Jurkat E6.1 was used as target cells against

NK or NK-92 cells and purchased from ATCC. The official title of the cell clone used in

this thesis is Jurkat, Clone E6.1, R©ATCC, TIB-152TM. The line is cultured in RPMI-1640

medium containing 10% fetal calf serum (FCS) and P/S.

The Jurkat cell line was first established in the late 1970s from the blood of a 14-year-

old boy suffering from acute T-cell leukemia. It is pseudodiploid, the modal chromosome

set is 46,XY occurring in 74% with a polyploidy rate of 5.3%. The karyotype is 46,XY,-

2,-18,del(2)(p21p23),del(18)(p11.2).

2.1.1.2 K-562 K-562 is a suspension cell line widely used as target cells in assays mea-

suring natural killer cell cytotoxicity. The official title of the cell clone is K-562, R©ATCC,

CCL-243TM. The line is cultured in MDM medium containing FCS at 10% and P/S.

The K-562 cell line derives from the pleural effusion of a 53-year-old female suffering

from chronic myeloic leukemia (CML). The cells were obtained during acute blast crisis

and are of erythroleukemic origin [87]. The stemline chromosome number is triploid with

the 2S component occurring at 4.2%.

2.1.1.3 NK-92 The cell line NK-92 is a lymphoblast cell line originating from a 50-year-

old Caucasian patient suffering from malignant non-hodgkin’s lymphoma. The cells are

cultured in DMEM medium containing 10% FCS and 1% Penicillin/Streptomycin. Cell

growth requires the addition of recombinant Interleukin-2 to the medium at levels of 100-

200 U/ml. Since this cell line is highly sensitive to overgrowth, the culture density was kept

below 1.6 × 106/ml at all times. NK-92 express a variety of surface antigens including

CD45, CD54 and CD56 but are CD16-negative and therefore incapable of antibody-

dependent cytotoxicity (FACS data from our lab technician Cora Hoxha, not published).

The cell line was purchased from ATCC. The exact product name is NK-92 ATCCR©

CRL-2407TM.

2.1.2 Primary cells

2.1.2.1 Negative isolation of primary human NK cells Primary human NK cells were

isolated from peripheral blood mononuclear cells (PBMCs) retained from thrombocyte

donations given at our local blood bank which is run by the Department of Hemostase-

ology. To isolate NK cells from these samples, they are first incubated with a mixture

of mouse IgG antibodies against CD3, CD14, CD36, CDw123, HLA class II DR/DP and
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CD235a to eliminate all non-NK cells in the suspension. NK cells were then negatively

isolated using a Dynabead solution from LifeTechnologies. The resulting primary NK cell

population was cultivated in AIMV medium + FCS at 37◦C and 5% CO2. The cells were

stimulated by addition of 100 U/ml Il-2 to expand their life span. Viability was checked

before every experimental procedure and isolated cells were not used for a period longer

than seven days after isolation.

2.1.2.2 Expansion of primary human NK cells A basic protocol for NK cell expansion

was introduced by Fujisaki and colleagues in 2009 [88]. Based on this method, our group

developed a similar approach to generate large numbers of highly cytotoxic NK cells from

initially low counts of PBMCs.

10 × 106 PBMCs were isolated from blood donations given by donors at the depart-

ment of Hemostasiology. Cells from the leukemia cell line K-562 were irradiated with 120

Gray and the PBMCs were co-cultivated with the irradiated cells in RPMI medium con-

taining Interleukin-2 at 50 I.U. Half of the culture medium was replaced every two days

and irradiated K-562 cells were added to the culture every week. By being selectively

stimulated to grow, NK cell populations increased 100-fold after one week and again by a

factor of 7 after the next. Cytotoxic potential of expanded NK cells was verified using the

time-resolved killing assay [89]. The cells showed high killing rates, the killing kinetics did

not differ significantly between different states of expansion. NK cell expansion, culture

as well as the mentioned killing assays were performed by Cora Hoxha, lab technician at

the Department of Biophysics at Saarland University.

2.2 Fluorescence microscopy

2.2.1 Fluorescent dyes

2.2.1.1 Fura-2

Fura-2 is a synthetic fluorescent dye with a molecular structure similar to the Ca2+ chela-

tor EGTA. It was first introduced by Grynkiewicz and colleagues in 1985 [90] and has

since become a globally-used Ca2+ indicator. In its acetoxymethyl-estered form (Fura-2

AM), the dye is able to cross the plasma membrane of cells. Cleavage of its ester group

by unspecific esterases then prevents the dye from rediffusion, trapping it in the cytosol.

Its KD for Ca2+ binding varies from 135 nM to 224 nM, depending on temperature,

pH and the ionic composition of the medium [90]. Free Fura-2 anions show an absorption

maximum for UV light of roughly 380 nm. Upon binding of Ca2+ cations, this maximum

shifts towards lower wavelengths, while the emission maxima of both free and bound

Fura-2 remain at ± 510 nm. In all experiments conducted in this thesis, the excitation

wavelengths were chosen as 340 nm for Ca2+-bound and 380 nm for free Fura-2. The
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excitation spectra of the free and the bound dye molecules intersect at 360 nm which

allows the quantification of total dye concentration at this wavelength.

Fura-2 is a ratiometric dye, meaning that the actual concentration of free Ca2+-ions can

be calculated from the ratio of the emission intensities when exciting with both 340 nm

and 380 nm UV light. This calculation first requires a calibration in which the minimum

and maximum ratios (Rmin and Rmax) of the two channels are measured in both a Ca2+-

free and a Ca2+-saturated condition respectively. For a given ratio R, the corresponding

concentration of free Ca2+ ions can then be calculated as [90]

[Ca2+] =
R− Rmin

Rmax − R
· β,

β being the quotient of the proportionality factors Sf2 and Sb2 between fluorescence

intensity and the free Ca2+ concentration in both these conditions. As long as the dye is

sufficiently dilute, these factors can be replaced by the corresponding intensites measured

when exciting at 380 nm, yielding

β =
If2
Ib2

Calibration can be performed in cells loaded with Fura-2 AM or in a cell-free solution

using the potassium salt of Fura-2.

2.2.1.2 NP-EGTA and ’caged calcium’

Ortho-Nitrophenyl-EGTA (NP-EGTA) is a photolabile Ca2+ chelator first introduced by

Graham R. C. and colleagues in 1994 [91]. In its resting state it shows a high affinity to

Ca2+ ions with a KD of about 80 nM. Exposure to UV light (approximately 350 nm of

wavelength) cleaves NP-EGTA, producing iminodiacetic acid with has a much lower affin-

ity for Ca2+ (KD ∼ 1 mM). This photolysis leads to the release of considerable amounts

of Ca2+ for a short period of time. In this thesis, NP-EGTA was used to investigate if

necrotic killing by NK cells could be provoked by mimicking its intracellular Ca2+ release

characteristics.

2.2.1.3 MitoTracker

Mitotrackers are fluorescent dyes which accumulate in mitochondria dependent on mem-

brane potential. A commonly used dye is ’MitoTracker Deep Red FM’ with an absorption

maximum at 581 nm and an emission maximum of 644 nm of wavelength.

2.2.1.4 GFP-RFP-FRET pCasper construct

Förster resonance energy transfer or FRET is the direct radiation-free transfer of energy

from one chromophore (also called donor) to another being in close proximity (acceptor,

up to 10 nm). When the donor molecule is excited, it passes a transient state of increased
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energy. Upon returning to its original energetic state, the energy is partly transferred onto

the acceptor molecule via dipole-dipole coupling. This coupling prompts the acceptor to

emit light itself. The FRET efficiency, i.e. the proportion of excitation energy which is

passed via FRET, depends inversely upon the sixth power of the fluorophores’ distance.

This principle is put to use in genetically-engineered reporter proteins such as pCasper3,

which was introduced by Shcherbo and colleagues in 2009 [92]. The donor protein GFP is

connected to the acceptor protein RFP by a short peptide bridge. This bridge is specif-

ically designed as a potential cleavage site of caspase-3. As long as this caspase stays

inactive, the bridge remains intact, allowing FRET between GFP and RFP. Following

apoptosis induction, caspase-3 cleaves the bridge thus separating the two fluorophores

and diminishing FRET. The abrogation of FRET can be detected by an increase in GFP

emission and a simultaneous decrease in FRET intensity. The following table gives an

overview of the fluorescent properties of the pCasper3 fluorophores:

excitation

maximum (nm)

emission

maximum (nm)

tagGFP 482 505

tagRFP 555 584

FRET 482 584

The apoptosis sensor pCasper3 was bought as a plasmid from the company Evrogen.

Christian Backes stably transfected two cell lines with the construct, K-562 and Jurkat

E6.1. The creation of these cell lines is described in this doctoral thesis [93].
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2.2.2 Microscopes

2.2.2.1 Zeiss Cell Observer A wide-field fluorescence microscope from Zeiss, the Cell

Observer allows fluorescence microscopy and bright field illumination of single samples

or in a well-plate using predefined positions and a laser-based auto-focus. The sample

chamber can be incubated to 37◦C and inflated with CO2 to sustain cell viability, growth

and migration. For FRET measurements, the RFP excitation filter was extracted from

the filter cube so that short wavelength light for GFP excitation could pass.

2.2.2.2 BD Pathway 855 BioImager The BioImager is a high-throughput automated flu-

orescence microscope providing environmental control and a pipetting robot. In contrast

to most other high-performance fluorescence microscopes, it has a stationary sample table

and an objective which is freely movable in the x-,y- and z-dimensions. The BioImager

is owned by the group of Prof. Dr. Frank Zufall from the Department of Physiology at

Saarland University.

2.3 Digital analysis of imaging data

2.3.1 ImageJ

ImageJ is an open-source Java-based software widely used for image editing and analy-

sis. It was originally developed by Wayne Rasband at the National Institute of Health

in Bethesda, Maryland and published in 1997. The software provides expansibility by

allowing its users to implement self-written macros and plug-ins which are also traded

openly via exchange platforms. After image acquisition, the single images were imported

into ImageJ and concatenated. The background between cells was subtracted using a

’rolling-ball’ algorithm. The following plug-ins were used for further editing or analysis:

- Time Series Analyzer - a plug-in developed by J. Balaji from the Department of

Neurobiology at UCLA which allows for time-lapse analysis of 2D data. Its ROI manager

provides a tool to define certain fixed areas of interest in a single image or an image

sequence. The intensity values in every single frame are then taken from the particular

ROI and saved in a table. The software version used in this thesis was 2.0, the latest

version is 3.0 and was released in 2014.

- RatioPlus / RatioPlusNaN - The basic plug-in divides the intensity values for every

pair of corresponding pixels in two given images of the same size. It was further modified

by Carsten Kummerow so that all pixels for which the ratio calculation yielded a value

below a user-defined threshhold were assigned the value ’not a number’ and displayed

in black.
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- StackReg and TurboReg - These two plug-ins work together and allow alignment

of a series of slices using an iterative algorithm, meaning that a current image is used

as an anchor to calculate the shift of the following. This plug-in was necessary due

to gradual drift of the well-plate throughout the course of most measurements. This

drift made it impossible to work with only one ROI for every cell since the cell would

gradually move out of the area of interest. To simplify ROI-tracking of cells, a new

plug-in was created with the help of Carsten Kummerow. The plug-in first calculates

the overall amount of drift in any user-defined channel. Secondly, the images in that

channel are aligned so that a stable frame of observation can be obtained. Afterwards,

this exact alignment procedure is performed with every other desired channel so that the

individual channels can be merged into a false-color overlay. Finally, those areas of the

image which are lost due to drifting are cropped similarly in every video. The exact code

of the modified alignment plugin is printed below. Note that the names of the stacks

(’blue2green’, ’blue2red’ and so on) in the code were chosen based on the individual

fluorescent channels used specifically in pCasper measurements. They are merely place

holders and can be substituted by any name to the user’s liking. Comments are marked

with ’//’ and were added to explain the functions of individual sections in the code.

// Def ine input data (GFP, FRET, . . . )

stack1 = "blue2green . t i f " ;

stack2 = "blue2red . t i f " ;

stack3 = "Trans . t i f " ;

stack4 = " green2red . t i f " ;

sou rce = " source " ;

t a r g e t = " ta r g e t " ;

sourceX = 0 ;

sourceY = 0 ;

targetX = 0 ;

targetY = 0 ;

// Read image dimensions

selectWindow ( stack1 ) ;

width = getWidth ( ) ;

h e igh t = getHeight ( ) ;

// Create ar ray s to s t o r e s h i f t in x and y

deltaX=newArray ( n S l i c e s ) ;

deltaX [0 ]=0 ;

deltaY=newArray ( n S l i c e s ) ;

deltaY [0 ]=0 ;

// Create a loop with ’ nS l i c e s ’ runs
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f o r ( i =1; i<nS l i c e s ; i++)

// Create two substack s ’ target ’ and ’ source ’ from the s tack

{

selectWindow ( stack1 ) ;

run ("Make Substack . . . " , " s l i c e s="+i ) ;

rename(" t a r g e t " ) ;

j=i +1;

selectWindow ( stack1 ) ;

run ("Make Substack . . . " , " s l i c e s="+j ) ;

rename(" source " ) ;

// Perform ’TurboReg ’ on ’ source ’ and ’ target ’

run ("TurboReg " , "−a l i gn " + "−window " + source + " "

+ "0 0 " + ( width − 1) + " " + ( he igh t − 1) + " "

+ "−window " + ta rg e t + " "

+ "0 0 " + ( width − 1) + " " + ( he igh t − 1) + " "

+ "− t r a n s l a t i o n "

+ ( width / 2) + " " + ( he igh t / 2) + " "

+ ( width / 2) + " " + ( he igh t / 2) + " "

+ "−showOutput " ) ;

// Determine old and new X and Y

sourceX = getResu l t (" sourceX " , 0 ) ; // F i r s t l i n e o f the t ab l e .

sourceY = getResu l t (" sourceY " , 0 ) ;

targetX = getResu l t (" targetX " , 0 ) ;

targetY = getResu l t (" targetY " , 0 ) ;

// Ca lcu la t e s h i f t between source and t a r g e t us ing old and new X and Y

deltaX [ i ] = deltaX [ i −1] − ( sourceX − targetX ) ;

deltaY [ i ] = deltaY [ i −1] − ( sourceY − targetY ) ;

p r i n t ( deltaX [ i ] ) ;

p r i n t ( deltaY [ i ] ) ;

selectWindow (" source " ) ;

c l o s e ( ) ;

selectWindow (" t a r g e t " ) ;

c l o s e ( ) ;

selectWindow ("Output " ) ;

c l o s e ( ) ;

}

// Save va lue s in new tab l e and so r t them

pr in t ("\\ Clear " ) ;

SortedValuesX = Array . copy ( deltaX )

Array . s o r t ( SortedValuesX ) ;

f o r ( j j = 0 ; j j < deltaX . l ength ; j j++) {
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p r in t ( SortedValuesX [ j j ] ) ; }

maxX = 0 ;

minX = 0 ;

// Determine maximal s h i f t s in X and Y

f o r ( a = 0 ; a < SortedValuesX . l ength ; a++) {

maxX = maxOf( SortedValuesX [ a ] , maxX) ;

}

f o r ( a = 0 ; a < SortedValuesX . l ength ; a++) {

minX = minOf ( SortedValuesX [ a ] , minX ) ;

}

p r i n t (minX ) ;

SortedValuesY = Array . copy ( deltaY )

Array . s o r t ( SortedValuesY ) ;

f o r ( j j = 0 ; j j < deltaY . l ength ; j j++) {

p r i n t ( SortedValuesY [ j j ] ) ; }

minY = 0 ;

maxY = 0 ;

f o r ( a = 0 ; a < SortedValuesY . l ength ; a++) {

minY = minOf ( SortedValuesY [ a ] , minY ) ;

}

//maxY = minx ;

f o r ( a = 0 ; a < SortedValuesY . l ength ; a++) {

maxY = maxOf( SortedValuesY [ a ] , maxY) ;

}

p r i n t (maxY) ;

// Ca lcu la t e parameters f o r the cropp ing r e c t ang l e

OriginX = maxX;

OriginY = maxY;

LengthX = width − abs (minX−maxX) ;

LengthY = he igh t − abs (maxY−minY ) ;

// Align and crop f i r s t channel

selectWindow ( stack1 ) ;

run (" Set Sca l e . . . " , " d i s t an c e=0 known=0 p i x e l=1 un i t=p i x e l " ) ;

f o r ( i =1; i<=nS l i c e s ; i++) {

s e t S l i c e ( i ) ;

run (" Trans late . . . " , "x="+deltaX [ i −1]+" y="+deltaY [ i −1]+"

i n t e r p o l a t i o n=Bicub ic s l i c e " ) ;

}

makeRectangle ( OriginX , OriginY , LengthX , LengthY ) ;
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run ("Crop " ) ;

// Align and crop second channel

selectWindow ( stack2 ) ;

run (" Set Sca l e . . . " , " d i s t an c e=0 known=0 p i x e l=1 un i t=p i x e l " ) ;

f o r ( i =1; i<=nS l i c e s ; i++) {

s e t S l i c e ( i ) ;

run (" Trans late . . . " , "x="+deltaX [ i −1]+" y="+deltaY [ i −1]+"

i n t e r p o l a t i o n=Bicub ic s l i c e " ) ;

}

makeRectangle ( OriginX , OriginY , LengthX , LengthY ) ;

run ("Crop " ) ;

// Align and crop th i r d channel

selectWindow ( stack3 ) ;

run (" Set Sca l e . . . " , " d i s t an c e=0 known=0 p i x e l=1 un i t=p i x e l " ) ;

f o r ( i =1; i<=nS l i c e s ; i++) {

s e t S l i c e ( i ) ;

run (" Trans late . . . " , "x="+deltaX [ i −1]+" y="+deltaY [ i −1]+"

i n t e r p o l a t i o n=Bicub ic s l i c e " ) ;

}

makeRectangle ( OriginX , OriginY , LengthX , LengthY ) ;

run ("Crop " ) ;

// Align and crop fou r th channel

selectWindow ( stack4 ) ;

run (" Set Sca l e . . . " , " d i s t an c e=0 known=0 p i x e l=1 un i t=p i x e l " ) ;

f o r ( i =1; i<=nS l i c e s ; i++) {

s e t S l i c e ( i ) ;

run (" Trans late . . . " , "x="+deltaX [ i −1]+" y="+deltaY [ i −1]+"

i n t e r p o l a t i o n=Bicub ic s l i c e " ) ;

}

makeRectangle ( OriginX , OriginY , LengthX , LengthY ) ;

run ("Crop " ) ;

2.3.2 IGOR Pro

Igor Pro is a data analysis software developed and distributed by WaveMetrics. It provides

a complete programming language and runs on Windows and Mac operating systems. Its

major applications are time series analyses, curve fitting and image processing. The

version used in this thesis is 6.2.2.2.

2.4 Experimental procedures

As long as not stated otherwise, chemicals, solutions and standard laboratory procedures

were used or conducted as follows (for product information see section 2.5):
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• Cells were cultured in AIMV/MDM/RPMI-medium containing FCS at 10% and

Penicillin/Streptomycin at 1%.

• Killer and target cells were suspended in AIMV medium without any FCS or P/S

during experiment preparation and measurements. HEPES was used to buffer the

media with a concentration of 10 mM.

• Centrifugation of NK-, NK-92-, K-562- and Jurkat-cells was performed at 200 g for

5 minutes.

Improved Fura-2 staining protocol in NK-92 cells using probenecid and Pluronic

F-127 (section 3.1)

500,000 NK-92 cells were washed twice in DPBS and then resuspended in the staining

solutions. These solutions contained Fura-2 AM dye at 1 µM, probenecid at 1mM or 2.5

mM and/or Pluronic F-127 at 0.1%. Cells were loaded for 30 minutes at room temper-

ature. After completion of the loading procedure, cells were washed again in DPBS and

transferred to a glass cover-slip which was previously coated with poly-L-ornithine. After

adhesion to the cover slip, the medium was washed away and substituted with Ringer

solution containing 1 mM CaCl2. The exact composition of this solution can be taken

from section 2.5.

Probenecid has low solubility at physiological pH. A stock solution can be created by

diluting a small portion in 1 M NaOH which can then be slowly titrated using HCl. Note

that this solution will have a high osmolarity compared to physiological levels.

A more efficient way to create a stock solution is to dilute a suitable amount of powder

in 1 M NaOH to create a 1 M alkaline solution. The latter can then be diluted 1:1 with an

equal volume of DPBS. The stock should then be thoroughly mixed and slightly heated

until the powder has completely dissolved. The resulting probenecid stock contains the

substance at 500 mM. In 500 ml of a Fura-2 staining solution, the addition of 2.5 µl of

probenecid stock gives a final pH of 7.44.

Pluronic F-127 stock solution contained the substance at 20% solved in DMSO.

Measuring apoptosis and necrosis using the pCasper3 construct (sections 3.2 +

3.3).

300000 Jurkat E6.1pCasper cells were washed in DPBS, suspended in serum-free AIMV

medium and pipetted into wells of a black 96-well-plate by Falcon. The final target

cell density was 600/µl. 875000 negatively isolated primary NK-cells were washed twice

in DPBS, thoroughly re-suspended in DPBS and finally suspended in 100µl of AIMV

medium. 40 µl of NK cell suspension were pipetted in each well on top of the target cells.

The final volume in each well was 240µl, the killer-to-target ratio was ∼ 3:1. Imaging
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was performed using the Cell Observer Setup, including incubation with 37◦C and 5%

CO2. A 20x objective was used. 400 images (3 fluorescent channels, 1 brightfield) were

taken over 2 hours. Videos and the presented image sequences derived from them were

prepared in ImageJ. FRET-ratio and RFP intensities were extrapolated using the Time-

Series-Analyzer Plugin and then plotted in IgorPro.

How extracellular Calcium ion concentration affects the distribution of apot-

posis and necrosis by NK-cells (section 3.3.1)

EGTA or CaCl2 solutions were added to HEPES-buffered AIMV medium to yield twice

the concentration that was desired for the final measurement. This step was taken to

avoid the necessity of exposing killer or target cells to the altered Ca2+ concentrations

before the actual measurement. The buffered media were preincubated at 37◦C and 5%

CO2 for 24 hours. On the day of the measurement, 1,600,000 target Jurkat E6.1 cells were

washed in DPBS and diluted in a total volume of 800 µl. 100 µl of this cell suspension

were pipetted into 7 wells of a black 96-well-plate and incubated at 37◦C and 5% CO2

for one hour. The final target cell concentration was 200,000 cells per well. Expanded

primary NK cells were washed thoroughly in DPBS, resuspended in 320 µl of HEPES-

buffered AIMV medium and 40 µl of this suspension was pipetted into 7 wells of the

96-well-plate containing the preincubated EGTA- and CaCl2-buffered media in adjacent

wells. To start the measurement, 100 µl of these media were pipetted parallelly to all

target cells, yielding the desired calcium dilutions. The Cell Observer was programmed

and the pCasper measurement was initiated. After several cycles, 50 µl of the buffered

media were added to the killer cell suspensions, the cells were thoroughly re-suspended

and then 50 µl of the diluted suspensions were added to the measuring wells to yield a

final killer-to-target ratio of 0.9 to 1. Live-cell imaging was performed over 2 hours at

37◦C and 5% CO2 with a 10x objective. The cycle time was 32 seconds. Images were

later analysed with ImageJ.

How osmolarity affects the distribution of apoptosis and necrosis by NK-cells

(section 3.3.3)

Osmolality of AIMV medium without FCS buffered with 10 mM HEPES was measured

several times using the osmometer listed in section 2.5. The average osmolality was

314 mosmol/l. To first test cell viability at different osmolalities, a dilution series was

generated using distilled water or mannitol. The following concentrations were tested:

281 mosmol/l, 292 mosmol/l, 303 mosmol/l, 314 mosmol/l, 325 mosmol/l, 336 mosmol/l

and 347 mosmol/l. After the cells proved unimpaired after 3 hours in these media, the

lowest and highest osmolalities were chosen for the killing experiments. 420,000 Jurkat
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E6.1 pCasper cells were centrifuged, washed in DPBS and pipetted into 6 wells of a black

96-well-plate at a concentration of 500 /µl, giving 50,000 target cells per well. 600,000

primary human NK cells isolated from PBMCs were washed in DPBS and suspended

in buffered AIMV medium. 10 minutes before the start of the measurement, the media

containing the target cells were diluted with H2O or concentrated with mannitol so that

adding the killer cells would yield the previously tested osmolalities. Killer cells were

added to the target cells at a killer-to-target ratio of 1 to 1 and the measurement was

initiated. The BioImager setup was used with a 10x objective for better overview and

larger cell counts. The cycle time was 52 seconds. Images were analysed using ImageJ.

Correlation of intra- and extracellular calcium concentration during killing by

NK cells (section 3.4.1)

EGTA or CaCl2 solutions were added to HEPES-buffered AIMV medium to yield twice

the final concentration to allow for a 1:1-dilution shortly before the start of the measure-

ment as previously explained. The solutions were preincubated at 37◦C and 5% CO2 over

night. On the day of the measurement, 750,000 NK-92 cells were washed in DPBS and

re-suspended in serum-free AIMV medium. The cells were loaded with Fura-2 AM dye

at a concentration of 1 mM at room temperature for 30 minutes. The loading solution

contained probenecid at 2 mM and Pluronic F-127 at 0.1 %. After 30 minutes, the killer

cells were washed twice in DPBS and suspended in 1000 µl of serum-free AIMV medium

and then 100 µl each were transferred into 8 wells of a black 96-Well-Plate. The plate was

kept at room temperature to slow down dye extrusion and retained from light exposure.

The media portions buffered with EGTA and CaCl2 were transferred to a transparent 96-

well-plate. 480,000 K-562 cells were washed in DPBS and suspended in AIMV medium

at 2,000 cells/µl. 8 portions of 60 mul of this cell suspension were pipetted to 8 wells

of the transparent well plate also containing the buffered AIMV media. Before the start

of the measurement, 100 µl of these media were pipetted to the killer cells to give the

final desired Calcium concentrations. The microscope was programmed and test images

were acquired. After a few test cycles, 30 µl of the media were pipetted to the target cell

suspensions. The target cells were thoroughly re-suspended and 50 µl of these suspensions

were each pipetted to the corresponding killer cell wells. Measurement was performed at

the BioImager setup with a 20x objective. Transmitted light images were recorded as

well as Fura-2 images at 340 and 380 nm excitation wavelength. The cycle time was 59 s.

After 110 to 120 minutes, the measurement was stopped. Images were analysed with

ImageJ, Fura-2 ratio values were extrapolated using the Time-series-analyzer plugin and

the values were transferred to IgorPro for further analysis.
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Detailed analysis of intracellular calcium signals in active NK cells (section

3.4.2)

The experimental approach was similar to that described previously for NK-92 cells. Hu-

man NK cells were positively isolated from PMBCs, cultivated in DMEM medium and

stimulated over 3 days with Interleukin-2 at 1:1,000,000. On the day of the experiment,

700,000 NK cells were washed in DPBS and loaded with Fura-2 -AM at a concentration of

1 mM at room temperature for 30 minutes. The loading solution contained probenecid at

2.5 mM and Pluronic F-127 at 0.1%. The experiment was conducted in HEPES-buffered

AIMV medium without addition of EGTA or CaCl2. After staining, the killer cells were

allowed to sit down on the bottom of a black 96-well-plate at a density of 75,000 cells per

well. Jurkat E6.1 pCasper cells were used as target cells, centrifuged, washed in DPBS

and re-suspended in serum-free AIMV medium. After programming the microscope and

measuring one complete cycle, the target cells were added on top with a killer-to-target

Ratio of 1 to 1. The BioImager Setup was used with a 20x objective. Three wells were

measured in parallel, the cycle time was 32 seconds. Data was transferred to ImageJ,

time series analysis was performed using ImageJ and IgorPro as previously described.

Uncaging calcium ions during killing (section 3.6.2)

1,032,000 expanded primary NK cells were centrifuged, washed twice in DPBS and sus-

pended in 737 µl containing 687 µl of AIMV without FCS and 50 µl of DPBS for initial

suspension. Afterwards, 100 µl of this killer cell suspension were pipetted to 7 wells of a

black 96-well-plate and incubated over two hours at 37◦C and 5% CO2 to allow for the cells

to adhere to the bottom of the plate. Staining of killer cells was done using two separate

loading solutions. Both contained the loading-facilitating agents at the previously noted

concentrations. One half of the killer cells were loaded with NP-EGTA additionally to

Fura-2 (concentrations of dyes in the loading solutions were 4 µM and 2 µM respectively),

the other half only with Fura-2 as a control. Loading was performed for 30 minutes at

room temperature. Afterwards, killer cells were carefully washed twice in DPBS in the

well-plate and sit to rest in AIMV medium.

Target cell preparation was performed by first centrifuging 2,560,000 Jurkat E6.1 pCasper

cells, then washing them once in DPBS containing BSA and then suspended in a total

volume of 320 µl of AIMV medium. Target cells were pipetted to killer cells immediately

before the start of the measurement. Effector-to-target ratio was 0.7 to 1.

Measurement and uncaging were performed at the BioImager setup. Lamp A for Fura-2

and NP-EGTA excitation was run at 100%, lamp B at 20% maximal power for pCasper

measurement. Uncaging was performed according to a self-programmed protocol which

started by once taking Fura-2 baseline values, but continued only with pCasper excitation

for 20 minutes to avoid any previous Ca2+ release from the chelator. After 30 minutes,
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cells in both conditions were flashed with UV light. Fura-2 was measured twice immedi-

ately before and after the flash to verify Ca2+ ion increase in the NP-EGTA group. A

second flash was given ten minutes later. The protocol finished with pCasper measure-

ments over another 80 minutes. Total observation time was 120 minutes. Time resolution

was 18 s between flashes and 32 s separating flashing, Fura-2 excitation and the following

pCasper measurement. Digital analysis ensued in a similar manner as for the experiments

of section 3.5 using the aforementioned software.

2.5 Product information

Laboratory consumables and glassware

Product Company Catalogue number

96-well-plate (black) Corning / Falcon 3340

96-well-plate (transparent) BD Becton Dickinson / Falcon 353296

Disposable pipettes BD Biosciences 357525

Culture flasks BD Biosciences 353108

Technical devices

Gadget company model

Cell counter Beckman Coulter Beckman Coulter Z2

Cell culture hood Erlab Captair flow

Centrifuge Eppendorf Centrifuge

5418/5418R

Incubator Thermo Fisher Scientific Heracell

Osmometer Wescor AC-061

Pipet aid Integra PipetBoy Acu 2

Shaker Heidolph Instruments GmbH &

Co KG

Heidolph Duomax

1030

Weighing scale Kern & Sohn GmbH ALT 160-4 NM

Vortex mixer Scientific industries Inc. Vortex Genie 2
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Chemicals and solutions

Product Company Catalogue number /

specification

AIMV medium Thermo Fisher Scientific / gibco 12055083

BAPTA-AM Thermo Fisher Scientific /

invitrogen

B6769

BSA Thermo Fisher Scientific /

invitrogen

15561020

CaCl2 Merck Millipore 102382

DMSO Sigma-Aldrich / Merck Millipore D8418

Dynabeads R©

UntouchedTM Human NK

Cells Kit

Thermo Fisher Scientific 11349D

DPBS Thermo Fisher Scientific / gibco 14190

FCS Thermo Fisher Scientific / gibco 10270-106

Fura-2 AM Thermo Fisher Scientific /

invitrogen

F1221

Mannitol Sigma-Aldrich / Merck Millipore M9546

HEPES Sigma-Aldrich / Merck Millipore H7523

MitoTracker Deep Red Thermo Fisher Scientific /

invitrogen

M22426

NP-EGTA AM Thermo Fisher Scientific /

invitrogen

N6803

Penicillin / Streptomycin Sigma-Aldrich / Merck Millipore P4333

Pluronic F-127 Sigma-Aldrich / Merck Millipore P2443

Poly-L-ornithine Sigma-Aldrich / Merck Millipore P3655

Probenecid Sigma-Aldrich / Merck Millipore P8761

Ringer solution + 1 mM

CaCl2
self made

155 mM NaCl

4.5 mM KCl

10 mM glucose

5 mM HEPES

2 mM MgCl2
1 mM CaCl2

pH 7.4

RPMI-1640 medium Thermo Fisher Scientific / gibco 21875
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3 Results

3.1 An improved staining protocol for Fura-2-based calcium imaging in NK-

92 cells and primary NK cells

Fura-2 and Fura Red are among the most frequently used dyes suitable for calcium imag-

ing. Section 2.2 provides an overview of the fluorescent properties of Fura-2 as well as

an introduction into the mathematical principle of ratiometric calcium measurement as

suggested by Grynkiewicz and colleagues [90].

For the purpose of measuring Ca2+ concentrations in NK cells during the attack on target

cells expressing the pCasper construct, Fura-2 was chosen over Fura Red to avoid any

cross-talk with the GFP/RFP fluorescence of the sensor protein.

Preliminary Fura-2 staining experiments quickly led to the observation that, while

primary human NK cells showed sufficient uptake of Fura-2 following standard loading

protocols for the dye, the cell line NK-92 could not accumulate sufficient amounts of dye

for accurate Ca2+ measurements. Neither increasing the concentration of the AM-dye in

the loading solution nor varying staining time had beneficial effects on imaging quality.

Many cell types, including immune cells, express organic anion transporters responsi-

ble for active export of multivalent anions [94]. These transporters are an important

clearance mechanism for urate in kidney epithelial cells [95]. Being rather unspecific,

they also accept Fura-2 anions as their substrates, leading to a gradual extrusion of the

dye from the cytosol. The substance probenecid is known to be an effective inhibitor of

organic anion transport [96] and has been used in treating patients with gout to block

urate resorption [97]. Di Virgilio and others showed that it can also reduce both export

and sequestration of anionic dyes like Fura-2 in macrophages [98].

In an attempt to slow down export of the already cleaved AM-dye, NK-92 cells were

loaded according to the same protocol as before, but in a solution which contained

probenecid at 2.5 mM. Interestingly, the drug greatly improved imaging quality, sug-

gesting high activity of organic anion transport in these cells. Probenecid also increased

dye uptake and brightness in primary NK cells (not shown) but the effect was not as

strong compared to the cell line.

Further increase in brightness could be achieved using the substance Pluronic F-127.

It is an organic copolymer consisting of a polyoxypropylene chain substituted with hy-

drophilic chains of polyoxyethylene. Pluronic is commonly used as a dispersing agent in

chemical industry and has experimental applications in pharmaceutics. Its tendency to

form micelles is useful when diluting acetoxymethyl-based dyes such as Fura-2 AM in

hydrophilic fluids. Although the AM-dye was already thoroughly distributed using a vor-
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tex mixer, adding Pluronic F-127 at 0.1% to the staining solution significantly improved

loading quality. The effect of 0.1% disperging agent in the solution was comparable to

that of the addition of 2.5 mM probenecid. Combining both substances in the staining

solution synergistically enhanced Fura-2 accumulation in the cytosol of NK-92 cells, giv-

ing an even brighter fluorescence signal. The separate and combined effects of probenecid

and Pluronic F-127 on Fura-2 staining are shown in figure 4.
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Figure 4: Probenecid and Pluronic F-127 synergistically increase staining efficiency of Fura-
2 in NK-92 cells
Cells were loaded at room temperature for 30 minutes. The composition of the individual staining
solutions can be taken from the captions below the three corresponding false-color images. Blue indicates
low, green average, red high intensity. After loading, the cells were fixed to a coverslip coated with a
layer of poly-L-ornithine and washed in Ringer solution containing 1 mM CaCl2. Fura-2 was excited at
360 nm using a monochromator. Exposure time was 100 ms. An average fluorescence intensity of the
cells in every condition as well as standard deviation is depicted by bars below.

To exclude any direct toxic effects of both probenecid and Pluronic F-127, NK cells were

suspended in AIMV medium for two hours containing both substances at the concentra-
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tions used in the loading solution. Both agents did not affect NK cell viability during

the whole observation time. Drawing from several independent experiments performed

with both primary NKs and NK-92 cells stained with and without the addition of both

substances, it appears safe to say that their addition does not have any detectable effect

on NK cell migration or killing efficiency. Therefore, the two agents were used in all

subsequent Ca2+-imaging experiments.
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3.2 How to detect ongoing apoptosis and necrosis in target cells

Apoptosis and necrosis are associated with typical changes in cell morphology. Activating

caspases is the crucial step in apoptosis induction. It is followed by chromatin condensa-

tion, DNA fragmentation and a constriction of the cell membrane [99]. These processes

are microscopically detectable by an observable shrinkage and involution of the cell. The

latter is achieved by a decoupling of the cytoskeleton from its membrane, forcing it to fold

itself into bulges [100]. The resulting apoptotic bulges are often referred to as ’blebs’.

Necrosis, on the other hand, leads to a visible swelling of the target cell, culminating

in the membrane rupturing. Although this rupture can sometimes be seen using conven-

tional brightfield or infrared illumination, a more certain indicator is the loss of cytosolic

fluorescent dyes into the supernatant.

Several ways to identify a target cell’s dying type have been developed [101], [102], [103].

Assessing only the above-mentioned features visible during brightfield illumination of cells

can be reliable in some cases, but it is likely to miss milder forms of ongoing apoptosis or

necrosis associated with low caspase activity or very discrete membrane damage.

Combining morphological aspects of cell death types with fluorescent indicators greatly

improves sensitivity and specificity in death type detection. A suitable sensor for apop-

tosis induction in target cells is the GFP-RFP-FRET-construct ’Casper3-GR’, whose

properties are explained in section 2.2 [92]. During his doctoral thesis, Christian Backes

transfected two stable cell lines with this construct, allowing for repetitive and reliable

apoptosis measurement in single-cell experiments. The principle of Casper-based apopto-

sis indication is explained in more detail in his thesis [93]. Its basics, however, are once

more outlined in this section since the sensor was regularly used in this doctoral thesis

and the following approach to quantify apoptosis and necrosis was based on its mode of

function.

In viable cells, the peptide sequence DEVD, combining the two fluorescent proteins GFP

and RFP of the pCasper construct, remains intact, allowing the GFP-RFP-FRET. Once

apoptosis is triggered, active caspase 3 will cleave this peptide bridge, thus diminishing

the energy resonance transfer. The subsequent extinction of FRET causes an antiparallel

increase in green fluorescence emission by GFP as well as a decrease of FRET emission.

Division of FRET intensity by GFP intensity yields the so-called ’Donor Ratio’ or ’FRET

Ratio’. This ratio can be taken to calculate an ’Apoptotic Ratio’ (AR), which corresponds

to the extent of ongoing apoptosis.

Since lysis of target cells does not lead to caspase activation, the Casper-3 construct is

specific for apoptosis. It can, however, also be used as an indirect necrosis indicator.
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Apoptosis causes blebbing but does not impair cell membrane integrity per se. The over-

all amount of cytosolic fluorescent protein, corresponding to the red emission of RFP, thus

remains constant over time. When a cell is lysed, there is no increase in green fluorescence

or the AR, but pCasper as well as other cytosolic contents rapidly diffuse out into the

supernatant. Due to the loss of indicator protein, red fluoresence intensity declines after

lysis. Thus, measuring GFP, FRET and RFP will allow detecting both types of target

cell death in parallel. Exemplary functions of AR and RFP intensities over time from

both apoptotic and lytic target cells are shown in figure 5.

Obviously, apoptosis and necrosis show different both morphological and fluorescent
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Figure 5: Killer-cell-induced apoptosis and necrosis in target cells measured with the
Casper-3 sensor
Two different Jurkat E6.1 cells expressing pCasper are killed by primary NK cells through induction of
apoptosis (A) and necrosis (C). Targets cells are marked by orange arrows, primary NK cells by blue
arrows. Apoptosis induction leads to an increase in GFP emission, indicated by a switch from yellow to
green in the false-color image. The apoptotic target cell also shows clear signs of shrinkage and blebbing.
In the lower image sequence, the target cell swells, its membrane bursts open and indicator fluorescence
emission is quickly diminished.
The corresponding rRFP and AR values from the respective target cells are plotted as a function of time
in (B) and (D). Target cells which do not have any contact to an NK cell still show gradual increase in
FRET as well as decrease in RFP intensity due to bleaching. Therefore, these cells were used to calculate
standard AR- and RFP-curves to correct for this bleaching using a slowly exponentially growing and
an exponentially declining function. Afterwards, the intensities taken from the cells being killed were
normalized against these standard curves which is also the reason why both normalized AR (left y-axis)
and normalized RFP (right y-axis) curves start at values of ± 1.

characteristics. It should yet be noted that they are not functionally independent of one

another. If apoptosis is induced by granzymes, perforin pores are required first to grant

access into the cytosol. A detailed discussion of this interdependence of both killing types

as well as the limitations in their detection with pCasper is provided by sections 4.1.1
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and 4.1.2.

3.3 How to mathematically quantify apoptosis and necrosis in target cells

A frequent observation during the presented series of experiments was that pCasper re-

ported apoptosis in target cells which showed little to no morphological changes typically

associated with apoptosis. These cells would often take longer to undergo apoptosis-

related changes in cell morphology and showed a rather slow turnover of pCasper in

comparison to others. Obviously, programmed cell death induced by killer cells is a pro-

cess which can take place with different velocities or degrees, depending on how high

caspase activity accumulates inside the cytosol. The same is true for necrosis: It appears

intuitive that the more perforin is released, the more pores will be formed, thus mem-

brane lysis should occur more rapidly in these cells. In fact, using pCasper in live-cell

imaging, some necrotic target cells lose the sensor protein very quickly, while others show

more of a gradual leakage, often taking minutes or even hours to pale completely. Given

this observation, the question was whether pCasper could not only serve as a qualitative

indicator for death types but also as a means to physically quantify the degree of both

necrosis and apoptosis in every target cell. Putting it simply: ’How much necrosis is going

on, how much apoptosis is going on and how rapid are they?’ Such a quantification could

prove useful since it is likely to be linkable to the extent of granule exocytosis by NK cells

or the individual strength of death receptor signaling.

The following two subsections display a new approach to mathematically quantify

necrosis and apoptosis in target cells using only the fluorescence measurements of pCasper.

This method can be performed for every target cell expressing the sensor protein and the

results can later be correlated with parameters taken from calcium measurements in the

respective killer cell.

3.3.1 Quantifying necrosis - the necrotic index

During the course of observation, every Jurkat E6.1 pCasper cell shows a slow exponential

decrease in RFP fluorescence over time due to photobleaching. In order to yield an

unadulterated RFP signal, a normalization can be performed using Jurkat cells not being

killed nor attacked by any NK cell. Figure 6 shows the average RFP signal in these cells

over 100 minutes of observation. This signal can be approximated by a slowly-declining

exponential function. The result is a standard RFP signal against which the actual target

cells can be normalized by dividing their individual RFP signal. Cells not being attacked

during the course of the experiment would then have a constant relative RFP signal (from

this point on referred to as ’rRFP’) rather than an exponentially declining absolute RFP

function.
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Figure 6: Correction for photobleaching - normalizing RFP intensity
The top row shows an area from the same experiment presented before. Three Jurkat cells are marked in
the center. These cells do not contact any killer cells during the whole observation time (A - C). Picture
D shows the same cells, but this time only the RFP channel. The background was subtracted and an
image was created in which all intensity values below a certain threshhold were given the value ’not a
number’, which is represented by the black area in the background. All spared Jurkat cells were used to
calculate a standard RFP intensity function (E). Afterwards, the three cells marked in D were divided
by this RFP standard, yielding a relative RFP intensity (rRFP) for all three cells a) to c) (F).

If a target cell is exposed to perforin, its membrane will be disrupted leading to a

loss of indicator protein into the supernatant. The speed of loss in red fluorescence - i.e.

the speed of pCasper effusion - will depend on the extent of membrane damage and the

concentration gradient of pCasper between the intra- and extracellular space. Presuming

that the number of perforin pores stays constant over time, the diffusion rate will decline

depending on the amount of protein that is left inside the cytosol. Theoretically, the

relative RFP signal should therefore present an exponential decrease. Figure 7 shows

that rRFP decrement can in fact be approximated quite well using a simple exponential

function. The speed of necrotic cell lysis occuring in a particular cell can then be described

as the time constant of this exponential decrease. If IrRFP equals relative RFP intensity,

then its decline can be described as

IrRFP = I0 · e
−λ·t
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with lambda being the necrotic index:

kn = λ(rRFP )

This parameter is suitable for two reasons: First, it represents the amount of released

perforin, since more perforin will very likely lead to more pores which facilitates protein

diffusion. Therefore, cells undergoing a rapid lysis will have a shorter half life or a higher

λ than others. Secondly, the decay constant is independent of the overall amount of

protein. This comes in handy, regarding the large differences of pCasper expression levels

comparing different target cells. In figure 7, rRFP functions from two necrotic target

cells are compared against a healthy control cell. Lysis occurred more rapidly in the red

cell than in the blue one (on the left), resulting in a higher necrotic index of 0.2 compared

to 0.07 after exponential fit (on the right). The necrotic index kn will be above zero

for every target cell undergoing detectable degrees of lysis. In all cases of rRFP being

constant over time, cells will by definition have a kn of zero.
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Figure 7: Comparison of different necrotic indices
A plots the rRFP values for two representative Jurkat cells being killed by necrotic lysis (red and blue)
and one Jurkat cell which is not being attacked serving as a control (ctrl, black). The time span before
contact formation was cut out. Following perforin release and pore formation, the indicator protein leaves
the cytosol. The corresponding loss of red fluorescence is fitted with an exponential function. The two
fits can be seen in B. Applying the definition of the necrotic index given above, the control cell would
have a kn of 0, the blue one of 0.07 and the red one a kn of 0.20.
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3.3.2 Quantifying apoptosis - the apoptotic index

Apoptosis induced by NK cells is characterized by activation of caspases through granzymes

(s. section 1.4) or cross-linking death ligands. Caspases cleave the peptide bridge be-

tween GFP and RFP thereby extinguishing FRET. Once apoptosis has started, the in-

tensity of GFP emission will increase since there is no more energy transfer to RFP. In

parallel, FRET intensity will decline. The efficiency of resonance energy transfer can be

approximated by the quotient of measured FRET intensity and donor intensity,

n(FRET ) =
I(FRET )

I(donor)
=

I(FRET )

I(GFP )
,

yielding the so called ’FRET-Ratio’. We can define the difference between 1 and the

FRET-Ratio as the ’Apoptotic Ratio’ or ’AR’ because it correlates to the amount of

apoptotic activity inside the cell:

AR = 1−
I(FRET )

I(GFP )

The target set of the AR function will depend on the individual exposure times of GFP

and FRET excitation. With those exposure times chosen uniformly for all experiments,

values ranged between roughly 0.15 (non-apoptotic cells) to 0.9 (apoptotic cells).

The AR can be described by a logistic function. This type of function is often used in

biochemistry to describe the kinetics of cooperative ligand binding to enzymes. If ARmin

is the lower and ARmax the higher limit, then the equation can be written as

AR = ARmin · (1 +
ARmax − 1

1 + (xh

x
)n

)

or

AR = ARmin +
ARmax − ARmin

1 + e−n·(x−x0)
.

n is often referred to as the ’Hill coefficient’. It is a measure of cooperativity in ligand

binding. For all n > 1, a cooperative effect is visible, while n = 1 equals no cooperative

effect. The value of n is visualized by the steepness of the sigmoid curve.

If we attempt to quantify the extent of apoptosis, we need to quantify intracellular

caspase activity. Caspases are enzymes turning over their substrates, one of which is -

among a vast majority of other proteins - pCasper. Hence, if a high number of caspases

is being activated, the AR curve will have a steep increase, and a lower steepness if the

overall caspase activity inside the cell is low. The value n or its common logarithm can

therefore serve as an estimator for apoptosis activity. The apoptotic index ka would then

be defined as

ka = lg(na)
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Defining ka by the common logarithm of n and not by n itself is not a necessity. It is

handy though, since lg(n) will yield values which are of the same size as those for kn.

ka will be positive for all cells showing measurable extent of apoptosis. All cells which

showed no visible extent of sigmoidal AR increase were regarded as ’non-apoptotic’ and

allocated the value zero.

With these simple mathematical tools at hand, we can assign both a necrotic index

kn and an apoptotic index ka to every target cell observed during a killing experiment.

Hence, we yield a pair of values (kn,ka) for a specific cell which will always suit one and

only one of the following constellations:

kn = 0 ∧ ka = 0

→ no necrosis, no apoptosis,

kn > 0 ∧ ka = 0

→ necrosis, but no apoptosis,

kn = 0 ∧ ka > 0

→ no necrosis, but apoptosis and

kn > 0 ∧ ka > 0

→, both necrosis and apoptosis, mixed type.

Figure 8 shows how a video directly representing the AR can be generated from the

GFP and FRET measurements. Figure 9 demonstrates that, as predicted, AR does in

fact increase over time according to a sigmoid function, and that differences in apoptotic

speed translate to differences in ka.

Drawing from several experiments performed, the forth group, i.e. the mixed death

type, is the rarest but also the most complex. While it is reasonable to assume that both

kn and ka are sensitive enough to detect that both types of target cell death are enrolling

in the same cell, the question remains whether their respective extent can be reliably

expressed using the method described in this section. For a detailed discussion of this

problem see section 4.1.2.
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Figure 8: Calculating the apoptotic ratio (AR) for target cells using GFP and FRET
measurements
Row A shows brightfield images of a target Jurkat cell (red arrow) entering apoptosis after being contacted
by an NK cell (blue arrow). Rows B and C show colored images taken from the GFP and the FRET
measurement for the given time points. Both are divided and the result is subtracted from 1 to yield the
Apoptotic Ratio or AR (D). The pseudocolor scale shows that those cells not undergoing apoptosis have
a stable AR. After apoptosis initiation, the target cell’s AR increases quickly and converges maximal
values. AR values can be extrapolated from the video and plotted in IGOR to calculate the apoptotic
index. For further details see Figure 9.
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Figure 9: Comparison of different apoptotic indices
A plots the AR values for two representative Jurkat cells being killed by apoptosis (red and blue) and,
as a control, one Jurkat cell which is not being attacked at all (black, ctrl). The time span before contact
formation was cut out. After cleavage of the peptide bridge, FRET is diminished and the apoptotic Ratio
increases, but with different velocities in cells a) and b). The two Hill fits can be seen in B. Applying the
definition of the apoptotic index given above, the control cell would have a ka of 0, the blue one of 0.79
and the red one a kn of 1.08.
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3.4 Statistical distribution of apoptosis and necrosis by NK cells

Under physiological conditions, NK cells can induce apoptosis as well as necrosis in Jurkat

E6.1 pCasper cells. Interestingly, the distribution of both killing types is not random but

necrosis appears to be the dominant type. Experiments in this subsection show how

the frequency distribution of apoptosis and necrosis induction by NK cells depends on

extracellular Ca2+ supply.

3.4.1 Extracellular free calcium concentration

NK cells and Jurkat E6.1 cells expressing Casper3 were brought together to make contacts

exposed to varying extracellular concentrations of free calcium ions. The concentration

gradient was produced by either buffering standard AIMV medium with different amounts

of the Ca2+ chelator EGTA or adding increasing amounts of CaCl2.

EGTA/CaCl2
added [mM]

measured [Ca2+]ext

[mM]

standard deviation

[mM]

calculated [Ca2+]ext

[mM]

1.00 E 0.004 0.005 0.0029

0.95 E 0.008 0.006 0.0107

0.94 E 0.011 0.007 0.0128

0.93 E 0.014 0.009 0.0150

0.92 E 0.019 0.011 0.0175

0.91 E 0.020 0.011 0.0201

0.90 E 0.025 0.008 0.0231

0.80 E 0.074 0.006 0.0724

0.70 E 0.193 0.013 0.1930

0.60 E 0.268 0.025 0.2652

0.50 E 0.364 0.021 0.3549

0.40 E 0.451 0.033 0.4447

0.30 E 0.508 0.034 0.5344

0.20 E 0.599 0.034 0.6241

0.10 E 0.684 0.033 0.7138

0 (AIMV) 0.783 0.019 0.8036

1.0 Ca 1.730 0.03 1.7009

2.0 Ca 2.600 0.13 2.5733

3.0 Ca 3.930 0.045 3.9833

4.0 Ca 5.420 0.26 5.3933

Calculating the concentrations of free Ca2+ ions in media is not trivial due to varying de-

grees of protein Ca2+ ion binding. Based on calcium electrode measurements performed
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by many colleagues, in particular Eva Schwarz and Kim Friedmann, a calibration curve

for [Ca2+]ext as a function of the amount of EGTA or CaCl2 added to AIMV medium was

calculated. This approximation was done using linear regression for concentrations higher

than 200 µM (R2 = 0.999) and an offset exponential function for lower concentrations.

Measured and calculated concentrations are given in the table above. After 2 hours of

observation, all detectable target cell killings were counted and allocated to either apop-

tosis or necrosis according to the associated changes in pCasper target cell fluorescence.

Target cells were counted as apoptotic if they showed an increase in GFP in combination

with a steady rRFP signal and as necrotic in all cases of rRFP loss. This means, that,

regarding the analysis of this particular experimental setting, mixed-type killings were

counted as necrotic killings. The entity of mixed-type target cell killing is discussed later

t=2h t=2h t=2h t=2h

t=2h

t=2h

t=2h t=2h t=2h

t=2h t=2h t=2h

0.003 mM 0.023 mM 0.072 mM 0.445 mM

0.804 mM 1.701 mM 2.060 mM 2.419 mM

2.855 mM 3.419 mM 3.983 mM 4.547 mM

Figure 10: Calcium shifts the balance of apoptotic and necrotic killing by NK cells - live
cell imaging
The amount of free Ca2+ ions was reduced by addition of EGTA or raised by addition of CaCl2 to create
a wide range dilution series. Pictures show killing of Jurkat E6.1 pCasper cells by NK cells two hours
into the measurement at different Ca2+ concentrations. In case of Ca2+ levels lower than +0.9 mM
EGTA or 0.072 µM (top row), no lysis of Jurkat cells occurred. Instead, apoptotic target cells formed
aggregates with migrating NK cells. The rate of necrotic cell lysis increased steadily with the amount of
Ca2+ available in the medium (middle and bottom row) and reached a plateau.
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in this section.

Figure 10 shows the influence of [Ca2+]ext on NK cell killing behavior: When buffering

[Ca2+]ext to low micromolar levels, necrotic killing completely stopped occurring. This

phenomenon was already described by Christian Backes [93] and was consistently repro-

duced in these experiments. However, apoptotic killing appeared to be unimpaired. Since

the target cells were not lysed, they stuck to the killer cell after apoptosis induction and

formed dense cell aggregates appearing as green bulks. Starting from 72 µM (top row,

third image), these cell aggregates could no longer be observed. Instead, first signs of

necrotic lysis appeared in parallel to apoptotic killings. The proportion of lysed targets

increased continuously as the amount of free Ca2+ ions outside was raised and culmi-

nated at roughly 85% (top and middle row). Further addition of CaCl2 did not have any

additional effect on the distribution of the two killing types (bottom row). The exact

distribution of apoptosis and necrosis for the whole range of Ca2+ concentrations tested

can be seen as a bar chart in figure 11.

The experiment was repeated twice. Primary NK cells from two different donors were
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Figure 11: Calcium shifts the balance of apoptosis and necrosis induction by NK cells -
statistical analysis
Frequency of apoptosis and necrosis of target cells, expressed in %, is plotted against free [Ca2+]ext. For
necrosis to occur, the concentration needed to be above 20 - 30 µM. The interval [30 µM ; 2,400 µM]
marked the dynamic range in which changes in [Ca2+]ext had a large effect on the distribution. Further
addition of Ca2+ favored necrosis over apoptosis. Beyond 2,400 µM, the distribution remained steady
with necrosis being the dominant type (∼ 85%).
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tested, each population had been previously stimulated with IL-2 for two days. Counting

every Ca2+ condition, 3,418 target cell killings were counted altogether. Looking closely

at those target cells being lysed, it was noticeable that a considerable proportion of this

group also showed weak signs of apoptosis. The full extinction of FRET intensity was,

however, not reached in these cases, probably because the cells died from necrosis before

granzymes could reach their maximal activity. Most of these cells presented with an im-

mediate but apparently not fatal swelling of the cell membrane succeeded by a gradual

increase in green fluorescence. This death type might hence be counted as ’secondary

apoptosis’. Expanding observation time to several hours will lead to more and more tar-

get cells showing both death types in reversed order (not shown): Upon IS formation with

an NK cell, some targets reacted by blebbing and an increase in GFP emission, indicating

ongoing apoptosis, but succumbed to secondary membrane lysis afterwards. This event

can analogously be counted as ’secondary necrosis’. An unmistakable allocation which

type came first is not possible relying only on qualitative changes in pCasper fluorescence

because in most cases both processes were initiated in close sequence. Such an allocation

can, however, be attempted by calculating kn and ka for the same cell and determining

half-life constants for both rRFP decrease and AR increase. Since this method depends

on visually fitting both functions as well as determining the time span between the point

of IS formation and the individual half-life, it may be applicable to single cells but would

first need automatization in order to analyze a greater number of cells.

For the time being, both sequences can be categorized as a mixed killing type. In a
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Figure 12: Frequency of mixed-type killing is inversely correlated to extracellular calcium
supply
Frequency of E6.1 pCasper cells showing features of both apoptosis and necrosis when killed by primary
NK cells. First events were observed at [Ca2+]ext of 0.030 mM or higher. Mixed-type killing was most
common at 0.038 mM Ca2+. Afterwards, frequency dropped as [Ca2+]ext increased.
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subsequent experiment, the likelihood of mixed-type killings by NK cells killing Jurkat

E6.1 pCasper cells was investigated using a slightly smaller Ca2+ concentration range

than before. The results are presented in figure 12. This time, the population of lytic

target cells was split into two subgroups, the first containing all purely necrotic target

cells and the second one incorporating all targets featuring both necrosis and apoptosis.

Statistical analysis showed that mixed-type killing occurred most often at a [Ca2+]ext of

380 µM. Further increase in [Ca2+]ext reduced the frequency, indicating that secondary

apoptosis could be turned into primary necrosis if sufficient amounts of Ca2+ were to be

supplied to the killer cells.

The absolute number of target cells killed differed considerably among the different Ca2+

conditions (not shown). Lowest overall killing was registered at 0.003 mM [Ca2+]ext, which

was also the lowest Ca2+ condition tested. Both the frequency of necrosis induction and

the total number of target cells killed increased steadily from 0.003 mM to 0.265 mM.

Interestingly, further increase in [Ca2+]ext did provoke more necrosis but reduced the to-

tal number of successfully killed target cells. As figure 12 demonstrates, this increase in

lytic killing rate was mainly at the cost of mixed-type killing.
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3.4.2 Increasing osmotic stress boosts NK-cell-inflicted target cell lysis

The previous section demonstrated that primary NK cells can modify their killing be-

havior depending on the amount of free Ca2+ at their disposal. Direct membrane lysis

depends on the formation of perforin pores. These pores put an osmotic strain on the

target cell. The mechanism probably responsible for target cell lysis is a consecutive influx

of fluid, which first leads to the cell swelling and - if it fails to withstand the resulting os-

motic pressure - secondly to its membrane rupturing. Judging from the results presented

in section 3.4.1, higher Ca2+ levels seem to favor this process, possibly by prompting

the killer cell to release more perforin-containing vesicles. The following experiments were

designed to study whether an increase in osmotic strain on target cells could also facilitate

direct cell lysis by NK cells.

For this purpose, killer and target cells were exposed to artificially high, normal and

low osmolalities and the occurrence of target cell necrosis, apoptosis and mixed death

types was assessed by single-cell microscopy. The working hypothesis was that target

cells should be lysed more violently when subjected to lower than normal osmolalities.

Standard HEPES-buffered AIMV medium served as a control condition. The osmolality

of this medium was measured with 314 mosmol/l. To create conditions with increasing

osmotic stress, the medium was diluted with distilled water, lowering osmolality by steps

of 11 mosmol/l. The lowest osmolality tested was 281 mosmol/l. On the opposite site

of the spectrum, step-wise increase by 11 mosmol/l using mannitol produced media with

unphysiologically high osmolality. The highest one tested was 347 mosmol/l. The cal-

culated resulting osmolalities were experimentally confirmed with an osmometer prior to

recreation in the final killing experiments.

Since the added solutions did not contain CaCl2, they would inevitably dilute [Ca2+]ext.

In both the lowest and highest condition, the residual [Ca2+]ext was calculated to be

720 mM compared to 800 mM in the undiluted medium. The impact of this dilution on

the distribution of apoptotic and necrotic events can be estimated based on the results

presented in figure 11. At this point of the concentration spectrum, differences in Ca2+

levels as low as 80 µM were thus deemed unlikely to confound the outcome of the exper-

iment.

To exclude any directly toxic effects of these unphysiological osmolalities on the killer

or target cells, Jurkat E6.1 cells and NK cells were separately exposed to the respective

media and rate of spontaneous cell death (apoptosis or lysis) was determined for a period

of two hours with AIMV medium serving as a control. After 2 hours of exposure, the rate

of spontaneous apoptosis or necrosis of Jurkat cells was 4% at 281 mosmol/l, 4% in the

control condition and 5% in hyperosmolalic medium. NK cell viability, assessed visually
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by the absence of necrosis- and apoptosis-related changes in cell morphology, was higher in

all conditions compared to target cells (99.5% in low osmolality, 99% in control and 99%

in high osmolality). There were no significant differences between the three conditions for

both killer and target cells.

The viability of both NK cells and Jurkat E6.1 pCasper cells verified, experimentation

proceeded to analyzing the statistical distribution of killing events using the same osmo-

lalities. Killing events were registered over 2 hours of observation and allocated to the

three previously outlined groups. The experiment was performed three times, using NK

cells from two different donors. The cells had been stimulated with IL-2 for 2 and 3 days

respectively. The results can be taken from figure 13.

Frequency of apoptosis induction differed slightly between the three conditions with
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Figure 13: Low osmolality facilitates immediate target cell lysis by NK cells and reduces
the occurence of mixed-type killings
(A) The likelihood of apoptosis induction by NK cells was slightly lower in the control condition (314
mosmol/l), while apoptosis rates were similar comparing low (281 mosmol/l) with high (347 mosmol/l)
osmolalities. The percentage of primary necrotic killings of all lytic killing events was roughly below
50% in control and high osmolality but increased drastically when the cells were subjected to the low
osmolality (B).

58.9% in low, 45.5% in normal and 55.7% in high osmolality. A more prominent effect

could be observed regarding the occurrence of lytic events. While the proportion of lysis

was not increased by the reduction in osmolality, the ratio of mixed types to primary

necrosis differed significantly among the three groups. While this ratio was roughly 1:1 at

347 and 314 mosmol/l, primary necrosis occurred four times more often than the mixed

type when osmolality was lowered to 281 mosmol/l. This finding indicates that lysis can

not only be prompted on the side of the killer cell by increasing the availability of Ca2+
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ions but also on the side of the target cell by an increase in osmotic pressure.
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3.5 Analysing intracellular calcium signals in active NK cells

3.5.1 Correlation of intra- and extracellular calcium concentration during killing

After IS formation, depletion of intracellular calcium stores and consecutive CRAC ac-

tivity are crucial steps for immunocompetent cells towards eliminating their targets. The

previous section showed how the amount of extracellular free Ca2+ ions can have an effect

on total killing competence as well as on the likelihood of apoptotic and necrotic killing.

The following experiments were aimed to address the mechanism of this dependence. If

NK cell killing behaviour is shaped by outside Ca2+, it is plausible to assume that changes

in [Ca2+]ext will be reflected in height or duration of intracellular Ca2+ signals. The sec-

ond purpose of this series of experiments is linked to the Ca2+ dependence of global killing

efficiency which applied to both CD8+ lymphocytes and NK cells. As mentioned in the

abstract, our research group made the discovery that this dependence is bell-shaped,

meaning that both NK cells and CD8+ lymphocytes kill more target cells at moderate

extracellular Ca2+ concentrations and less when subject to either lower or higher [Ca2+]ext

(manuscript in preparation). This observation raised the question whether [Ca2+]int of

killing NK cells was also bell-shaped. This chapter presents Fura-2-based measurements

and analyses of Ca2+ signals in NK-92 cells killing target cells while both were being

exposed to a variety of different Ca2+ concentrations.

To study intracellular Ca2+ signals in NK cells, cells must be observed using high magni-

fication (20x objectives or higher). This increase in resolution comes at the cost of total

numbers of observable cell-cell contacts. In addition, every time a target cell was being

contacted by more than one killer cell, the killer cells involved were not included into

the analysis since there may be an indeterminate mutual influence on their Ca2+ signals.

The third restriction was that only those NK-92 cells were considered which successfully

killed their target cell. This restriction was not applied when buffering [Ca2+]ext to the

low micromolar range since these conditions prohibit killing of K-562 cells by NK cells in

the first place.

To eliminate any effect of the killing type itself - i.e. apoptosis or necrosis - on the killer

cell’s Ca2+ signal, the cell line K-562 was used as target cells. They lack Fas ligand

and are therefore not susceptible to apoptosis induction by the death receptor pathway.

Employing our group’s killing assay with this pairing of cells, interference with vesicle

acidification by incubation of killer cells with concanamycin A nearly extinguished any

killing of K-562, while Jurkat E6.1 cells were still killed to a lower extent (manuscript in

preparation). This finding confirms that K-562 are mainly killed by NK cells via vesicle

release. Instead of primary NK cells, the highly killing-competent cell line NK-92 was

used in these experiments. They are easy to cultivate and show lively migration and

killing after stimulation with Interleukin-2.
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Figure 14 shows an exemplary contact between an NK-92 cell and a K-562 target cell.

Shortly after the killer cell makes contact, its intracellular calcium levels begin to rise

(color: blue equals low, red equals high). The amount of Ca2+ inside the killer cell

reaches a local maximum, usually within 1 to 2 minutes after IS formation, and then

drops to a plateau. The target cell is lysed shortly after [Ca2+]int has peaked. After

extrapolating the resulting function of [Ca2+]int over time, Ca2+ kinetics can be analyzed

in detail and compared among all killer cells.

Cell preparation, especially centrifugation and adhesion to the bottom of the well plate,

can cause pre-excitation of killer cells. To exclude any adulteration of the Ca2+ signal

measured, a baseline of at least 10 minutes was taken before target cells were added to

the media. Different Ca2+ conditions were again generated by adding EGTA or CaCl2 as
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Figure 14: Measuring intracellular Ca2+ signals in NK-92 cells during killing
(A) This sequence of images shows an NK-92 cell stained with Fura-2 (blue arrow) contacting and killing
a target K-562 cell (orange arrow). Immediately after contact formation, intracellular Ca2+ levels begin
to rise (indicated by false color: blue equals low, red equals high). Two minutes later, [Ca2+]int reaches
a maximum, the target cell is already visibly damaged but not yet completely lysed. After reaching its
peak, [Ca2+]int does not drop back to resting levels but remains elevated for a significant amount of time,
even after the target cell is completely lysed. After about 60 minutes, intracellular Ca2+ levels return
to normal values. This cell could now go on to contact and kill another cell. B shows how intracellular
Ca2+ signals can be extrapolated and then analyzed using ImageJ and IgorPro. By division of the two
Fura-2 fluorescence channels (340 nm and 380 nm), a new video is achieved in which the background
between cells is eliminated. The ratio values are extrapolated using the "‘Time Series Analyzer"’ plugin
for ImageJ and then transferred to IgorPro. C shows the function for Fura-2 ratio plotted against time
for the cell shown in B.

already described in section 3.4. After taking all signals from the killer cells of a single

Ca2+ condition, they were temporally aligned so that the time span before contact for-
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mation was exactly 5 minutes for every cell. The signals were then averaged for all killer

cells and compared with regard to the height of their plateau Ca2+ levels. The latters

were calculated as the mean of all ratio values over one hour after the initial peak. For

control purposes, a condition was created by adding both EGTA and CaCl2 at 1mM to

check for any direct effects of EGTA addition on the Ca2+ signals .
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Figure 15: Kinetics of [Ca2+]int over time for different extracellular Ca2+ concentrations
Average Fura-2 ratios representing [Ca2+]int over time for NK-92 cells killing under different extracellular
Ca2+ conditions ranging from 0.004 mM (black) over moderate concentrations to high levels of [Ca2+]ext
up to 2.6mM (red). After successful target cell elimination, the killer cells’ cytosolic Ca2+ concentrations
decreased and finally remained steady for a significant period of time. The height of these plateaus
seemed to correspond monotonically with the amount of free Ca2+ ions outside the cell.

Figure 15 shows the average kinetics of [Ca2+]int from all killer cells. During the first

five minutes of the experiment, killer cells rested on the bottom of the well plate and

showed stable [Ca2+]int. The measured ratio values were ∼ 0.72 on average for the two

lowest conditions and slightly higher (∼ 0.8) for the rest.

Contact formation occurred after 5 minutes. Intracellular Ca2+ levels reached a peak upon

cell-cell interaction and then dropped towards a plateau. The height of these peaks was

not analyzed in this experiment since time resolution of one value per minute was deemed

insufficient. In contrast, the plateau levels appeared to be quite steady. Final decline

of [Ca2+]int towards original values can be expected after detachment from the target

cell. This drop in intracellular Ca2+ levels was, however, not recorded in all cases since

observation time was limited to 90 minutes and some cell-cell contacts occurred later than

others. When comparing the plateau height of the averaged signals, it was obvious that
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[Ca2+]int rose monotonically with [Ca2+]ext. This rise is visualized by a semi-logarithmic

plot in figure 16. The exact values of [Ca2+]ext used can be taken from figure 15.
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Figure 16: Height of intracellular plateau Ca2+ levels after killing as a function of [Ca2+]ext
This semi-logarithmic plot shows a monotonic increase in plateau height when extracellular Ca2+ supply
is raised.

The experiment was conducted four times. Since NK-92 cells are a cell line, the employed

killer cells in these 4 experiments can be expected to have identical properties in contrast

to primary NK cells whose function will always be donor-dependent.

Regarding the two main questions mentioned in the introductory part of this section,

a first conclusion is that [Ca2+]ext is in fact mirrored by [Ca2+]int during killing. While

this is not too much of a surprise given that a greater driving force for Ca2+ ions can

be expected to produce higher intracellular Ca2+ levels, the monotonous rise of plateau

[Ca2+]int appears to be in conflict with the bell-shaped dependence for global killing. This

finding confirms that the Gaussian shape of this dependence is not created by the killer

cell clamping its intracellular Ca2+ levels to an optimum range which cannot be main-

tained when [Ca2+]ext becomes too low or too high. Especially the descending part of the

bell-shaped function requires a more complex mechanism since [Ca2+]int is sufficient for

exhaustive vesicle release. Our group has found evidence that the two-sidedness of the

Ca2+ dependence is reducible to the fact that vesicle release itself has a bell-shaped Ca2+

dependence in both NK cells and CD8+ lymphocytes (manuscript in preparation).
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3.5.2 Detailed analysis of intracellular calcium signals in active NK cells

Section 3.3 demonstrated that the frequency distribution of apoptosis and necrosis in-

duction is highly dependent on extracellular Ca2+ supply. This finding points towards

Ca2+ being one of the key players in determining which type is to be pursued. After

establishing a fluorescence-based method to distinguish both types of ongoing target cell

death (sections 3.1 and 3.2), the next step was to study intracellular Ca2+ signals in

active NK cells to check for any correlations with the ensuing killing type. Jurkat E6.1

pCasper cells were used as target cells since they are prone to both necrosis and apoptosis

induction by NK cells.

Primary NK cells were stained with Fura-2 and live-cell-imaging of contacts to Jurkat

E6.1 pCasper cells was performed for two hours. Afterwards, the Fura-2 measurements of

those NK cells which were able to kill at least one target cell were transferred into Igor-

Pro and analyzed quantitatively. Again, only those cells were selected for analysis which

presented single-cell contacts to exclude any cooperative effect which could potentially

adulterate the calcium response of every individual cell. pCasper measurements in target

cells were performed in parallel so that Ca2+ signals could later be correlated with the

specific type of target cell death they provoked. A total of 40 cells was measured, 36 of

which could be included into subsequent analysis. Two of the missing four cells moved too

quickly and showed transient overlapping with other NK cells so that tracking could not

be performed. One killer cell managed to kill its target but entered apoptosis immediately

afterwards. The last one showed considerable pre-excitation before contacting its target

cell and was therefore not incorporated. Three wells were measured per run, yielding a

time resolution of 0.53 minutes between two images. Observation time was 2 hours and

limited by bleaching and extrusion of Fura-2. Spontaneous Ca2+ signals of killer cells with

no contact to target cells were also observable but not included in this analysis.

First, pCasper signals from the 36 E6.1 Jurkat cells which were successfully eliminated

were analyzed and necrotic and apoptotic indices were calculated as explained in sec-

tion 3.3. Out of the total amount of 36 target cells, 11 were killed by necrosis without

any signs of apoptotic activity. Their necrotic indices ranged from 0.57 to 1.72. 15 cells

showed apoptosis with no indication of cell membrane damage. Out of this group, the

lowest apoptotic index registered was 0.90 and the highest 2.12. The remaining 10 cells

showed mixed forms of cell death with varying degrees of both types (figure 17).

Except for one target cell out of this group, which had both rather high kn and ka

(1.27, 1.32), cells of the mixed-type group had below-average apoptotic indices, meaning

that if both necrosis and apoptosis were happening in parallel, apoptosis was rather

slow. Surprisingly, in these cases, necrosis was not significantly slower compared to pure
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Figure 17: Target cell populations grouped by necrotic and apoptotic indices
Grouping every successfully killed target cell by its value pairs for kn, ka gives three populations which
are marked by circles. All cells on the dotted horizontal line have a ka of zero and therefore classify
as pure necroses. Fifteen cells on the vertical line entered apoptosis and showed no sign of membrane
damage. These events were hence regarded as purely apoptotic. A total of 10 cells showed characteristics
of both killing types.

necroses. Obviously, lytic activity seemed to limit the speed of apoptosis in the same

target cell but not vice versa. A possible explanation for this observation is discussed in

section 4.1.2.

Apart from quantifying lysis and apoptosis extents, defining a value pair kn, ka for a

target cell could also give objective information about when it could be considered dead.

Of course, both lysis and apoptosis are processes taking minutes to hours, and on first

sight it appears strange if not counter-intuitive to define a single ’time point of death’. It

is possible, however, since rRFP and AR show exponential decrease and sigmoid increase,

both having a distinct half-life constant. We can hence define a time point of death or

PD:

i) for necrosis as the half-life time point of the rRFP curve called PDn

ii) for apoptosis as the half-maximum time point of the AR curve called PDa

Applying this method also provides a tool to discriminate which process, i.e. necrosis or

apoptosis, came first, the two scenarios being:

i) PDn < PDa → Primary necrosis, secondary apoptosis

ii) PDn > PDa → Primary apoptosis, secondary necrosis

In the given experimental series, three out of the ten cells of the mixed population were

identified as secondary necroses, the other seven showed membrane lysis first and then

initiation of apoptosis.
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The second step of evaluation was to look at the killer cells’ Ca2+ signals in more de-

tail. The basic shape of a Ca2+ response in NK cells following target cell recognition was

already described in section 3.5.

Although similar in principle, the 36 Ca2+ responses measured had distinct characteris-
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Figure 18: Key parameters of intracellular calcium signals in active NK cells
An exemplary signal measured inside a killing NK cell is shown to demonstrate which parameters were
taken into analysis. Before making contact to its target cell, the killer cell was in its resting state and
its Fura-2 ratio had the value RR. Shortly after contact formation (C), intracellular Ca2+ levels reached
their peak (P). This target cell was lysed roughly 12 minutes later (PD). The time span from IS formation
to the Ca2+ peak is referred to as pt (peaking time), that from IS formation to target cell death as kt
(killing time).

tics. In order to perform a detailed analysis, it was necessary to define certain parameters

which - despite all differences - were common features of all signals:

- Resting Ratio (RR): the mean of the resting Fura-2 ratio values, i.e. before the killer

cell had contact to any other cell, calculated over a time span of 5 minutes.

- Peak Ratio (PR): the global maximum of the Fura-2 ratio function which was always

reached shortly after IS formation

- Peaking time (pt): the time from contact initiation until PR was reached

- Killing time (kt): the time from contact initiation to the target cell’s individual PDn

or PDa. In case of simultaneous necrosis and apoptosis, the lower of the latter two was

chosen to calculate the kt.

The above-listed parameters are visualized in figure 18 using an exemplary Fura-2 ratio

signal.
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A comparison of all 36 signals quickly showed that there were patterns which seemed

to correlate to the mode of target cell death which followed them. Every signal could

be dissected into two basic elements - Ca2+ spikes and Ca2+ plateaus. Spikes could be

defined as very short and transient elevations in intracellular Ca2+ levels. These elevations

usually lasted one to two minutes and cytosolic calcium levels returned to their previous

state afterwards. Plateaus were rather slow but more sustained rises in Ca2+ lasting up to

30 minutes or longer depending on how long cell-cell-contact was maintained. Both Ca2+

oscillations of similar frequency and Ca2+ plateaus have been described in CTLs [43].

After detailed analysis to what extent an individual Ca2+ response was composed of

spikes and plateaus, it was obvious that all recorded Ca2+ signals fitted into one of the

three following groups:

3.5.2.1 Type A - Oscillatory type This type was composed only of Ca2+ spikes and

lacked any significant plateau-like elevations. Before initiating cell-cell contact, base ratio

values were stable. After IS formation, the NK cell responded with a repetition of Ca2+

spikes while calcium ion levels would always drop to base level in between. After killing the

target cell, spikes were usually no longer detectable or showed greatly reduced amplitude.

3.5.2.2 Type B - Plateau type As opposed to type A, this type was characterized by

one large and sustained Ca2+ influx starting immediately after IS formation. Intracellu-

lar calcium concentration would not return to its original level until the killer cell had

succeeded in killing its target. Even afterwards, Ca2+ levels would stay elevated in every

NK cell showing this signal type throughout the entire measurement.

3.5.2.3 Type C - Mixed type A combination of the previous two in which plateau-like

elevations in intracellular Ca2+ levels would superpose with spikes.

Figure 19 visualizes the characteristics of these three signal types using 3 exemplary

cells for each one.

25% of all killer cells had an A-type Ca2+ response. All of these cells later induced

apoptosis while primary or secondary necrosis was never associated with this type of sig-

nal. The peaking time was the longest, averaging 6.2 minutes. Peaks of type-A signals

were also the overall lowest with a mean Fura-2 ratio of 6.3, which equalled 2.2-fold the

resting ratio value for these cells. NK cells which had an A-type signal took the longest

to successfully kill their targets. The kt was about 37 minutes on average, thus more than

twice as long compared to type C and more than four times as long as for type B. After

target cell apoptosis was initiated, Ca2+ influx terminated and no subsequent spikes nor

plateaus were detectable.
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Figure 19: Three different types of calcium responses shown by active primary NK cells
The three types of recorded Ca2+ signals are displayed. For each signal type, three representative killer
cells are shown in black, red and blue. A - oscillatory type, B - plateau type and C - mixed type. The
time point of IS formation with the target cells (C) is marked with an arrow.

Type-B signals occurred in 22% of NK cell killings. Necrosis of the target cell was ob-

served in every single case, while no apoptosis (primary nor secondary) would follow this
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signal type. The peaking time was quite short in all cases, on average 2.5 minutes. The

peaks were the highest with an average PR of 9.6 (∼ 3-fold RR) . These cells achieved

target cell death most quickly, needing only 7.9 minutes on average. Before Ca2+ influx

was initiated, type-B cells showed slightly higher RR values than the other subtypes. In

contrast to the previous type, Ca2+ levels stayed elevated in all cells even after cell-cell

contact was ceased and the target cell had died. Comparing the average cytosolic Ca2+

levels over a period of 5 minutes before and one hour after contact formation, base levels

had increased by ∼ 14%, indicating that these killer cells may have stayed in a more

activated state compared to those showing oscillations, even after detachment from the

target cell had been completed. Noticeably, these NK cells would also show spikes or new

plateaus without contacting another cell in between.

Type C signals were the most common type, shown by 53% of the entire NK cell pop-

ulation. Interestingly, every type of target cell death could be observed in these cases,

primary apoptosis occurring most often (53%), followed by secondary apoptosis (32%)

and, most rarely, primary necrosis (15%). The average peaking time was 3.4 minutes, the

mean peak height was measured at 8.0, both ranging between those for types A and B.

Target cell killing took roughly 18 minutes, the mean RR value was 2.8 and well compara-

ble to that of the oscillatory type. C-type signals were also accompanied with an increase

in basal Ca2+ levels, measuring 21% on average, which was even higher than for type B.

Figure 20 summarizes these differences in Ca2+ signal parameters for the different signal

types.

To summarize, type A signals strictly correlated with apoptosis. They were not followed

by any lytic activity of the killer cell. Cells presenting this type of signal took longest to

kill their targets and they tended to have rather low peak levels of intracellular free Ca2+.

The opposite was true for type B signals - they were succeeded by necrosis induction

every single time. Nk cells showing this signal type took only a few minutes, sometimes

even less than a minute, to kill their target cell by direct lysis. Intracellular Ca2+ levels

reached very high figures compared to the other types and the target cell was eliminated

2 to 3 times faster than in cases of types A or C. RR values were similar in all three

groups and showed no significant differences. This makes it unlikely that high-peaking

Ca2+ responses as type B signals were caused by pre-excitation.

Similar differences between intracellular Ca2+ patterns associated with apoptosis and

necrosis were already described by Honda and Miyazaki in 1996 [104]. They found dif-

ferences in both height and duration of intracellular Ca2+ signals in NK cells in case of

apoptosis and necrosis induction in target cells similar to the ones found here. They did,

however, not propose the existence of distinct types of Ca2+ signals.
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Figure 20: How the three signal types differ in individual calcium signal parameters
Every parameter displayed was first tested positive for standard distribution using a Kolmogorov-
Smirnoff-test. A, B show discrete but not significant differences between Resting Ratio and the mean
Ratio after activation, calculated over a time span of 5 minutes one hour after the peak, comparing the
three signal types. In contrast, the average Ca2+ peak abbreviated with PR was measured highest for
type B signals, lowest for type A and between the two for type C, as is shown in C. D demonstrates
that target cells are killed most quickly after type B signals, most slowly after type A signals and after
an intermediate time span following type C signals. E and F display the killing time (kt) as a function
of kn and ka. The more rapid the lysis, the more quickly the cell is destroyed. The faster apoptosis is
going on, the longer the target cell needed to enter the apoptosis cascade.

Figure 20 also shows how the kt behaved as a function of the necrotic and apoptotic

index of the corresponding target cell (parts E and F). It appears intuitive that those cells

with a kn above zero took considerably less time to die than those target cells entering

apoptosis. If there was any lysis at all, kt dropped as kn increased, since more rapid

necrosis is likely associated with higher perforin release which deals more damage to the

plasma membrane thus shortening IS conjugation time. When looking at the dependency

of kt on the apoptotic index, it comes as a surprise that it increased monotonically as

ka did. Hence, the longer it took the target cell to enter apoptosis, the more quickly the

resulting apoptosis turned out to be.
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While signal types A and B were quite distinct and showed the largest differences to

one another, the implications of the mixed signal types are less clear. Those signals might

merely be a weaker form of type B signals. Another possibility is that type C Ca2+ signals

are the superposition of both A and B happening in parallel. The question to what extent

types A and C can be regarded as Ca2+ signaling patterns of their own is discussed in

section 4.4.4.

Necrosis occurence clearly depended on a strong influx of calcium ions and this influx

had to last for several minutes. This is likely attributable to the fact that necrosis is

linked to release of perforin from cytotoxic vesicles, a process which is known to be Ca2+-

dependent. Interestingly, when comparing the peak heights for type A and B signals, some

of apoptosis-inducing NK cells had higher Ca2+ peaks than those inducing cytolysis. Ap-

parently, successful vesicle release depends not on the total amount of free calcium ions

in the cytosol but rather on how long the intracellular Ca2+ concentration stays elevated

above a certain threshold. Spikes as short as 1 minute in duration or less did not allow for

necrosis to occur, no matter how high the Ca2+ concentration may have peaked in these

cases. Taking into consideration that higher levels of Ca2+ outside the cell favor necrosis,

one may raise the question if sustained Ca2+ increase may not only be a necessary but

also sufficient condition for vesicle release and subsequent target cell lysis.
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3.6 Is calcium a sufficient condition for necrosis induction by NK cells?

Using a similar approach as described before, primary NK cells and Jurkat E6.1 cells

were used to study the role of Ca2+ boosts for necrosis induction. The aim was to create

a considerable sudden increase in intracellular Ca2+ supply completely independent of

any cytotoxic signaling pathways going on in the cell. If Ca2+ was sufficient to induce

lysis, then releasing high amounts of Ca2+ during target cell engagement could provoke

an active NK cell to induce necrosis or could even turn an apoptotic killing into a necrotic

one.

3.6.1 Releasing calcium ions into the cytosol of NK cells using the photochelator NP-

EGTA

Photolysis of NP-EGTA which has previously been loaded into cells allows for an im-

mediate and large release of Ca2+ ions into the cytosol. To this point, the dye had

mainly been used in neurons [105], glia cells [106], epithelial cells [107] and muscle

cells [108], [109], [110]. This first series of experiments serves as a ’proof of principle’

and demonstrates that NP-EGTA can be used efficiently in primary NK cells. Prelimi-

nary experiments were conducted to study the release kinetics of NP-EGTA in primary

NK cells using different loading regimens as well as varying degrees of UV light exposure

to achieve de-chelation.

Primary NK cells were loaded with the AM form of the photochelator for 30 minutes.

To verify if Ca2+ was released effectively, the cells were also stained with Fura-2. After

incubation with both compounds, the cells were washed several times and then transferred

to the bottom of a black 96-well-plate in AIMV medium containing no serum. Primary

NK cells loaded only with Fura-2 served as a control. Different dye concentrations were

tested, including varying concentration ratios of NP-EGTA to Fura-2. Since both sub-

stances compete for the same ligand, it proved challenging to titrate how much of each dye

could be used to ensure both a high photolytic release as well as sensitive measurement

of free Ca2+ ion concentration at the same time.

Figure 21 visualizes the course of cytosolic Ca2+ ion concentration in primary NK cells

during a representative experiment. At the beginning of the measurement, killer cells in

both groups had comparable resting ratio values. Fura-2 was measured in every condition

during the following minute. At t = 0, the cells in both conditions were flashed with

high intensity UV-light and Fura-2 was measured immediately afterwards. While ratios

in the control condition stayed unchanged, intracellular Ca2+ levels in the chelator group

reached a peak of roughly double to three times their resting value. Afterwards, Ca2+

levels inside the cell gradually dropped over the course of 2 minutes but stayed elevated
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in those cells containing NP-EGTA compared to the control cells having only the Fura.
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Figure 21: Releasing Ca2+ ions into the cytosol of NK cells by photolysis of NP-EGTA
When loaded with NP-EGTA, Ca2+ ions can be released in large quantities into the cytosol of NK cells.
To test release potential of NP-EGTA, NK cells were split into two groups. One was loaded with both
NP-EGTA and Fura-2 (A), the other only with Fura-2 as a control (B). Images display Fura-2 ratio values
as a false-colored image with blue equalling low and red corresponding to high ratios. At t = 0, cells in
both groups were exposed to a short but strong UV light flash. Ca2+ ion levels increased drastically in
the first group and returned back to resting values during the following minutes. Fura-2 ratio values as
a function of time are plotted for both groups in C.

This experiment demonstrates that it is well possible to uncage Ca2+ ions in NK cells

using NP-EGTA and UV light. However, even before the UV flash was initiated, ratio

values of the NP-EGTA-group steadily rose compared to control. This slow increase in the

concentration of intracellular Ca2+ was probably due to the fact that Fura-2 measurement

itself repetitively uncaged a small quantity of ions which accumulated over time. This

effect was reproduced on purpose in a following series of measurements which was aimed to

test whether a continuous, high-frequency Fura-2 measurement instead of one single UV

light flash could supply an alternative release pattern for photolysis. Experiments shown

in section 3.4 suggested that necrosis by NK cells is induced rather after more sustained,
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longer-lasting calcium ion influx than after short Ca2+ spikes. Therefore, a smaller but

more sustained photolysis could prove more suitable to provoke necrosis. Figure 22

shows that this method works in principle. It comes, yet, with two problems:

Firstly, in order to detect any effect on the distribution of necrosis and apoptosis, a parallel

measurement of the pCasper construct in target cells is necessary. Measuring its three

channels - GFP, RFP and FRET - requires at least 20 seconds for two wells (chelator

and control). Having only one lamp available, this limits the possible UV excitation

frequency of the cells to a maximum of 3 releases per minute. Although every Fura-2

measurement is answered by a small uncaging, the frequency is too low in order to create

a cumulative effect. Using this strategy, only a very limited increase in intracellular Ca2+

ion concentration could be achieved, as shown in the figure below.
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Figure 22: Repetitive UV light exposure leads to lower, more sustained uncaging
NK cells were loaded with NP-EGTA and Fura-2. Although no target cells expressing pCasper present,
the pCasper channels were measured as well so that the resulting time resolution for UV light exposure
would resemble that of an actual killing experiment. Here the time span between two consecutive UV
light exposures in one well was 81 seconds. Short and high intensity flashes would alternate with a
standard Fura-2 take every 40 seconds. A total of four wells was measured, limiting the highest possible
uncaging frequency for one well to 20 seconds. The red curve represents the Fura-2 Ratio of those killer
cells containing NP-EGTA. Although these cells had higher Ca2+ levels compared to control cells (black)
throughout the whole experiment, the possible maximum inrease in Ca2+ ion concentration was rather
low compared to that of the single flash which can be seen in figure 21.

Secondly, primary NK cells as well as Jurkat E6.1 cells proved much more resilient to

small but intense UV flashes than to continuous, moderate intensity UV light exposure.

Since lamp power needs to be sufficient to achieve uncaging from NP-EGTA, the cells take

significant damage. To ensure a good cell viability during a live-cell killing experiment,

Fura-2 control measurements should therefore be restricted to a necessary minimum.
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3.6.2 Uncaging calcium in NK cells during killing

Using the BioImager setup, only the single flash protocols proved suitable to create a suffi-

cient uncaging without threatening the killer cells’ viability. This method was then taken

to the test in a killing experiment using a similar approach as described in sections 3.4

and 3.5. Again, Jurkat E6.1 cells expressing pCasper were used as target cells. Primary

NK cells loaded with Fura-2 and NP-EGTA as well as primary NK cells loaded only with

Fura-2 as a control were brought together with the Jurkat cells. After a few minutes,

Fura-2 was measured once in every condition as a baseline ratio value. Afterwards, the

pCasper construct was excited every 30 seconds and a UV light flash was given once ev-

ery 30 minutes in every condition tested. To verify release from the chelator, Fura-2 was

measured once before and after every flash. Afterwards, chelator and control group were

checked for statistical distribution of target cell apoptosis and necrosis.

The results are presented in figure 23. Two wells of cells were tested in both condi-

tions. NK cells of both groups managed to kill a comparable number of E6.1 Jurkat cells

during the one hour measurement. Necrosis of target cells was detected by an exponen-

tial decrease in rRFP, apoptosis by an increase in the apoptotic ratio (AR) as described

before.

The Fura-2 control measurement is displayed in C and verifies that Ca2+ ions were

effectively released in the first condition (red), but not in the control group (black). All

target cell deaths - apoptoses and lyses - were counted and their distribution was an-

alyzed. Plot D shows that necrosis did in fact occur more often in the chelator group

compared to control. To check whether this predominance was in fact due to uncaging,

necrotic target cells were analyzed with regard to when they had shown the first signs

of necrosis-associated membrane damage, indicated by a clear drop of the rRFP signal.

Since the first UV light flash was timed 30 minutes into the experiment, all necroses were

allocated to three groups:

a) First group: Earliest signs of necrosis occurred within the first 30 minutes, hence before

the first uncaging.

b) Second group: Necrosis became visible between 30 and 40 minutes, so during the first

ten minutes after the first flash. These events were of highest interest since they would

likely be correlated to the Ca2+ release in NK cells.

c) Third and last group: Target cell lysis was induced later than 40 minutes into the ex-

periment. Given that free Ca2+ ions are quickly exported after uncaging, necrotic killings

belonging to this group were deemed unlikely to be impacted by the uncaging process.

Although the ratio of both killing types was shifted in favor of necrosis in the chelator

group, plots E and F show that most killings were initiated before the flash was actually

given. This was true for both groups. Furthermore, the proportion of group b necroses
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Figure 23: Uncaging calcium ions in active NK cells during killing
Image sequences A and B show false-color overlays. Killer cells (not coloured) and Jurkat E6.1 pCasper
cells (orange) were observed over 70 minutes. NK cells in A were loaded with NP-EGTA in addition to
Fura-2, those in B had only Fura-2 and served as the control condition. Graph C shows that Ca2+ ions
were indeed released in NK cells loaded with the chelator but not in the control group. Since no continous
Fura-2 measurement was performed, ratio values are plotted as dots. NK cells from the NP-EGTA-group
showed a slight excess of lytic killings compared to control (D). All necrotic killing events were allocated
to three groups a, b and c depending whether they occurred before, immediately after or later than 10
minutes after the first flash. E and F show that most necrotic killings took place before the first Ca2+

ion release. Furthermore, the proportion of necrotic killings which were initiated after the first photolysis
of Ca2+ ions was higher in the control group. Taken together, the experiment could not provide evidence
that lysis of target cells by NK cells could be provoked by Ca2+ ion de-chelation from NP-EGTA.

was higher in the control group than in the chelator group. This observation makes it

very unlikely that the slight predominance of necrosis was traceable to the Ca2+ uncaging

since one would expect more necrosis to happen in the NP-EGTA-group.

To summarize, the uncaging experiments could not prove that Ca2+ ions were sufficient to

provoke lysis by NK cells. Due to the difficulty of the experiment, the yield of analyzable

cells per run is very low. Similar experiments using the same protocol or an improved

version should be repeated for sufficient statistical backup. A detailed discussion of the

results obtained from Ca2+ uncaging is provided by section 4.1.4.
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4 Discussion

The experimental work of this thesis was dedicated to gaining new insight into the cal-

cium dependency of NK cell function. While it has long been known that Ca2+ influx

is key for proper immune cell action, little was known about how extracellular Ca2+ ion

concentration can influence NK cell cytotoxicity. Our group discovered that Ca2+ ion

concentration outside the killer cell can have a dramatic influence on the overall killing

efficiency of a killer cell population. The conducted experiments prove that not only total

killing efficiency but also the proportion of necrotic and apoptotic cytotoxicity depends

strongly on extracellular Ca2+ ion supply. Upon activation, NK cells do not reply by an

all-or-nothing influx of Ca2+ ions but show nuanced response patterns which are clearly

associated with different outcomes of cytotoxic action. Three types of intracellular Ca2+

signals were identified, quantified and compared. Certain signal types could be connected

to consecutive apoptosis or necrosis induction in target cells with very high significance.

If activated NK cells show distinct Ca2+ responses, why do some killer cells prefer to

inflict necrosis and others apoptosis? What are the molecular players determining which

type of killing is to take place? The final section of this thesis provides several models

which could help explain these differences and proposes experiments to put them to the

test. The final part of this section deals with possible biological implications of necro-

sis and apoptosis induction by NK cells in the context of immunogenicity and tumor

surveillance.

4.1 Critical review

4.1.1 Limitations of pCasper-based detection of cell death

The physical functionality of the pCasper apoptosis sensor was explained in detail in

section 2.2.1, its biological value for the discrimination of cell death types in section

3.1. There is currently no data available concerning the overall sensitivity of pCasper. It

seems intuitive that there is a minimum caspase activity necessary for a detectable change

in its fluorescence properties. This activity level is not necessarily identical to that of

caspase-mediated proteolytic cleavage of other proteins which partake in the apoptosis

cascade. Thus, it is possible that apoptosis detection by pCasper comes with a significant

temporal delay. This is all the more true for necrosis detection by pCasper which is

not even an inherent property of the sensor itself but is based on its diffusion through

the damaged target cell membrane. Compared to small molecule cytosolic dyes such as

Calcein or Fura-2, pCasper can be expected to diffuse out of the cell with much lower

velocity due to its high molecular weight. Therefore, low concentrations of perforin pores

might lead to lytic stress on the target cell which could be dectected by these dyes but
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not with the construct.

4.1.2 Interdependence of necrotic and apoptotic index

The aim of the necrotic and apoptotic index definition was twofold. Firstly, it should allow

not only a qualitative but semi-quantitative description of target cell death. Secondly, by

calculating half-life points for rRFP and AR functions for each cell, one should be able to

distinguish the sequence of apoptosis and necrosis when both types happen in parallel in

the same target cell. The frequency distribution of apoptotic to necrotic events in a target

cell population can now be determined applying two methods: The first is based only on

visual assessment of target cell behaviour during microscopy. By combining visible effects

such as cell swelling or blebbing with the qualitative changes in pCasper fluorescence,

cells can be assigned to both types of target cell elimination with already high precision.

Using the second method, the calculation of apoptotic and necrotic indices provides an

objective and reproducible method of allocation. The counted numbers of apoptotic and

necrotic target cell killings based on kn, ka-pairings fitted very well to that gained from

the first method. This finding supports that apoptotic and necrotic indices are reliable

tools at least when it comes to identifying the type of target cell death.

How valid this method is, regarding the quantification of both types with equally high

reliability, is not as clear. If a cell is lysed quickly, more and more sensor protein will be

lost for reporting apoptosis. We can therefore expect that apoptosis detection as well as

the quantification of its speed expressed by the apoptotic ratio will be the more imprecise

the faster a target cell is being lysed. Since only one sensor protein is used to measure

both processes, necrotic and apoptotic ratio are not independent of one another. This

correlation is clearly visualized by figure 18 in section 3.4.2. The higher the kn, the

lower the ka and vice versa. While this effect is, in principle, expected, since ongoing lysis

or apoptosis will always limit the possible degree of the other death type, it is unclear to

what degree the limitation in exact quantification is due to the underlying biology or to

the weakness of the quantification method.

Another problem arises from the fact that correct calculation of both indices requires

individual fitting of AR and rRFP by hand. This process is time-consuming and would

need automatization if intended for high-throughput analysis of imaging data.

4.1.3 Calibration of the Fura-2 ratio function in NK cells

As outlined in section 2.2.1, Fura-2 is a ratiometric Ca2+ dye. Because Ca2+-bound dye

has a different absorption maximum for UV light than unbound dye, one can deduce the

present Ca2+ concentration using the ratio of emission intensities in both channels. For

the calculation of exact Ca2+ concentrations, a calibration of the Fura-2 dye is needed in

which the two extreme values, Rmin and Rmax, are determined in the absence as well as
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the saturating presence of Ca2+ ions [90].

When first attempting this calibration in NK-92 cells triggered with thapsigargin and

ionomycin, the rapid extrusion of Ca2+ ions out of the cytosol turned out to be a recur-

ring problem, making it impossible to measure a true Rmax. This extrusion was not pre-

ventable using Caloxin 1b1, a potent inhibitor of membrane-located Ca2+ ATPases [111],

nor depriving the cells of glucose which should limit ATP supply to Ca2+ pumps.

A similar problem occurred using primary NK cells. A Fura-2 calibration was attempted

following two separate approaches. The first one was to measure Rmin and Rmax once

again using ionomycin and thapsigargin in two wells in a 96-well-plate at the BioIm-

ager microscope. One well contained cells in a medium which had high concentrations of

EGTA, the other high concentrations of calcium chloride. In the second approach, using

the same EGTA and Ca2+ concentrations in two separate wells, the minimum and max-

imum ratio values were measured using Fura-2 potassium salt. Although identical lamp

powers as well as exposure times were chosen for both conditions, Rmax was significantly

higher when using the Fura-2 salt. Thus it remained unclear which pair of values was in

fact adequate. For this reason, a calculation of Ca2+ concentrations based on the Fura-2

ratio was not performed. Rmax was slightly higher in NK cells loaded with probenecid

which delays the extrusion of Fura-2 dye from the cytosol, but the corresponding values

were still lower than the ones derived from the cell-free method. The observed discrep-

ancies in the maximal ratio values derived from the two methods could also be due to

the AM form of the dye being sequestered by mitochondria and other organelles [112].

To circumvent this process, NK cells could be electroporated with the potassium salt of

Fura-2 and calibration results could be compared to those of the cell-free approach.

4.1.4 Photolysis of NP-EGTA in NK cells

Regarding how necrotic killings by NK cells were linked temporally to the applied UV

flashes (section 3.6.2, figure 23), it appears justified to deduct that singular high-

intensity photolysis did not facilitate necrosis induction by NK cells. There was, however,

a higher proportion of necrotic killings in the chelator group compared to control, oc-

curring prior to the first UV flash. Since Fura-2 was only measured twice within the

first 30 minutes, for the first time at the very beginning, and again immediately before

flashing, we can exclude an active uncaging of Ca2+ by UV light during this particular

period of the experiment. It might yet be that Ca2+ ions were released gradually by a

UV light-independent mechanism. Such an unnoticed ’spontaneous uncaging’ could have

led to Ca2+ being transferred to Ca2+ binding proteins, being refilled into Ca2+ stores,

or being extruded from the cytosol. These processes, escaping direct detection by Fura-2
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measurement, could have accounted for the slight preponderance of necrotic killings in

the chelator group during the first 30 minutes of the experiment.

At the moment, it seems more likely that uncaging Ca2+ ions from NP-EGTA in NK

cells, independent of the individual uncaging pattern, did not increase the fraction of

necrotic killings. There are many conceivable reasons for this observation. As already

mentioned in section 3.6.2, the easiest would be that the underlying hypothesis that

Ca2+ ions are sufficient for necrosis induction is invalid. Putting it simply: The experi-

ment worked and invalidated a faulty presumption. Another possible explanation concerns

the function of Ca2+ microdomains. Upon loading with NP-EGTA, the substance should

be evenly distributed in the cyotosol of the killer cell. Hence, photolysis can be expected

to produce a homogeneous Ca2+ release with little to no spatial variance in ion density.

Numerous research groups have provided evidence that for many cellular functions, local-

ized Ca2+ signals, so-called Ca2+ microdomains, are of greater importance than overall

Ca2+ concentrations inside the cell [113], [114]. Experiments in this thesis from section

4.2 underline the importance of Ca2+ microdomain generation particularly for necrosis

induction by NK cells. That in mind, it might also be that Ca2+ release from NP-EGTA

was not suitable to provoke necrosis induction in killer cells, since it affected only global

Ca2+ concentrations.

Regarding the complexity of the experimental setup, further improvement of experi-

mental protocols is necessary for final judgement. Necrosis induction by CLs may still

be solely dependent on sufficient Ca2+ supply but might only be achieved if photolysis

is induced at the right moment. This sensitive period might be located somewhere in

a cascade involving the interplay of receptors and ligands, IS formation, CRAC, vesicle

trafficking and their subsequent release. Uncaging Ca2+ ions at the right time might thus

be a matter of precise timing and higher numbers of repetitions could be necessary to

prove it possible.

An interesting experimental approach would be to shift the experimental setting described

in section 3.6.2 to a low-Ca2+ environment. As discussed in the following section, ex-

tracellular Ca2+ concentrations lower than 20 to 30 µM prohibit target cell killing by

NK cells but not IS formation nor the partial depletion of Ca2+ stores. Uncaging Ca2+

ions under these conditions might serve as a replacement for ORAI-mediated Ca2+ influx

across the plasma membrane and might restore killing competence in killer cells.

4.1.5 Applicability to the in-vivo system

NK cells performed both necrotic and apoptotic killing against Jurkat E6.1 cells in in-vitro

experiments. Since both processes are probably unalike regarding their immunogenicity,
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it would be of great value to investigate their statistical occurrence in living organisms.

Unfortunately, this enterprise is much more complex than it might appear at first sight.

As long as there are no identified biological markers for both, the discrimination between

apoptotic and lytic tumor cell killing still depends on single-cell microscopy. The task

is hence to create an environment in which such microscopy is possible without interfer-

ing with the integrity of the examined tissue. 3D-microscopy could prove an important

step towards this goal. Using our light sheet microscope, Carsten Kummerow, Rouven

Schoppmeyer, Christian Backes and many other colleagues worked together to establish

functioning models for 3D analysis of NK cell migration and killing rates. Killer and

target cells are transferred into a collagen-based matrix which marks an important im-

provement in physiology compared to the flat ground of a well plate. In the long run,

transgenic mice could be created expressing the pCasper apoptosis sensor and killing of

tumor cells in a living mouse could be performed using two-photon microscopy.

4.2 How environmental factors influence killing mode

When observing NK cells killing target cells under a fluorescence microscope, one can

determine the outcome of cell-cell contacts by changes in fluorescence if the target cells

stably expresses an apoptosis sensor. This outcome - i.e. target cell lysis or target cell

apoptosis or both - is the final step in a complex cascade of cytosolic processes. Therefore,

the question why some killer cells induce necrosis and some apoptosis is tough to tackle.

A very simple approach is to first reduce the problem to three key factors which can be

expected to have an influence on NK cell killing behavior: the killer cell, the target cell

and their surrounding environment.

Which type of cytotoxicity a killer cell will induce appears to depend partially on the

pattern of Ca2+ influx upon activation. In contrast to cell lines, primary NK cells are

heterogeneous. They can be expected to have varying expression levels of receptors, sig-

naling molecules or cytotoxic proteins. Some killer cells might simply be more suitable to

produce a certain type of signal than others. On the other hand, target cells might also

tip the scales: Low counts of perforin pores are more easily repaired, hence target cells

might avoid direct lysis in theses cases. A possible influence of NCR ligands expressed on

the surface of a target cell is discussed below. In the long run, target cells might develop

resilience against certain types of cytotoxicity through a change of phenotype. Mutations

of apoptosis-regulating proteins might provide immunity against the proteolytic activ-

ity of granzymes or caspases activated via death receptor signaling. Enzymes present in

the target cell’s cytosol could deactivate granzymes, providing further resistance against

apoptosis induction.
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We learn something important about the influence of environmental factors from the

results in section 3.3. The more Ca2+ ions there are in the supernatant, the more likely

necrosis induction will be. This effect was seen both in negatively-isolated NK cells stim-

ulated with IL-2 as well as in expanded NK cells. Adding sufficient amounts of EGTA

completely eliminated necrosis occurrence. Necrosis by NK cells therefore depends on

a minimum amount of free Ca2+ ions. Perforin is the key player in granule-dependent

necrosis induction by CTLs. During the past decades, numerous research groups have

presented converging evidence for its cytolytic function being absolutely dependent on

the presence of Ca2+ [115], [116], [117], [76]. Hence, there are several possible explana-

tions for the absence of necrotic killing in low-Ca2+ environments, two of which will be

discussed in detail. The first one is that too low concentrations of Ca2+ do not allow

sufficient vesicle release. The second one is that even at low Ca2+ concentrations, vesi-

cles are still released but there is not enough Ca2+ available for perforin to autoaggregate.

To find out what is in fact the limiting factor for necrosis in low-Ca2+ environments,

the threshold concentration was approximated using a narrower gradient than the one

used for the basic experiments from section 3.4. Final Ca2+ concentrations of the sera

were again calculated based on the Ca2+ electrode data referenced in that section. Follow-

ing this approach, the threshhold could be narrowed down to a free Ca2+ concentration

range of 20 and 30 µM. In 2005, Voskoboinik et al tested the calcium and pH dependency

of perforin pore formation. They used purified human perforin to lyse sheep erythro-

cytes [118] and found that a minimum of 20 to 30 µM free Ca2+ ion concentration was

necessary for auto-aggregation (s. figure 24). This threshold fits surprisingly well to the

one found here in the cell-based system. Voskoboinik reported that full perforin activity

would require free [Ca2+]ext of 200 µM or higher. By determining at which concentration

50% of maximal erythrocyte lysis was achieved, they calculated the KD of the perforin C2

domain to be ± 70 µM of free Ca2+ ions. The percentage of necrotic killing by NK cells

was roughly 55% at 72 µM and changed insignificantly to 56% at 265 µM. Combining

these results, it seems plausible that necrosis is limited by auto-aggregation when Ca2+

concentrations are lower than the KD and becomes release-limited as [Ca2+]ext is elevated.

The second step was to test if vesicle release ceases at exactly this Ca2+ concentration, a

result which would point towards a release limitation of perforin function at low [Ca2+]ext.

The difficulty was to reduce only the concentration of cytosolic Ca2+ without lowering

the amount outside the cell. To mimic such a condition, a similar killing experiment

was performed with primary NK cells and Jurkat E6.1 pCasper as target cells, but the

killer cells were previously loaded with the fast-acting Ca2+ chelator BAPTA-AM. Being a
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Figure 24: Calcium dependence of target cell membrane lysis by purified human perforin
from ’Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through
Its C2 Domain’, Voskoboinik et al, The Journal of Biological Chemistry, 2005, 280, 8426-8434

rapid-acting chelator, BAPTA interferes with the generation of Ca2+ microdomains, which

have been demonstrated to be necessary for transmitter release in neurons [119], [120] and

for efficient T-cell activation [113].

Figure 25 shows how loading the NK cells with BAPTA significantly reduced the

frequency of target cell necrosis. The distribution of lysis and apoptosis induction was

even reversed. Furthermore, those killer cells still able to induce target cell lysis took

significantly longer to kill their targets compared to those not loaded with BAPTA.

Apparently, buffering intracellular Ca2+ concentration with BAPTA diminishes release

of perforin. Thus, necrosis frequency is reduced although the amount of free Ca2+ in the

supernatant is unchanged. This result points towards vesicle release being the limiting

factor for necrosis at lower Ca2+ concentrations. A definite answer, however, cannot be

given at this point. A possible experimental approach to provide such an answer could be

a TIRF-based analysis of vesicle release while buffering outside Ca2+ with EGTA below

the necrotic threshold. Another approach could be staining NK cells after killing, using

monoclonal antibodies against CD107a. CD107a or LAMP-1 is located in the membranes

of cytotoxic vesicles [60], [70]. If the cells manage to release vesicles in a low-calcium

environment, LAMP-1 should be detectable on the cell surface afterwards.
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Figure 25: Interfering with calcium microdomain formation in NK cells reduces necrosis
potential and delays killing
A, B Primary NK cells loaded with BAPTA performed necrosis 49 % of the time compared to control cells
(61 %), which is about the standard necrosis frequency in AIMV medium. C Those cells that managed
to induce target cell lysis when loaded with BAPTA needed significantly more time (22.1 minutes) to kill
their targets compared to control (5.1 minutes), ’n’ = necrosis, ’a’ = apoptosis

Looking at the other end of the Ca2+ concentration spectrum, figure 11 from section

3.4.1 shows how the likelihood of necrotic killing rises monotonically with extracellu-

lar Ca2+ ion supply until it reaches a plateau. The highest frequency of necrosis was

measured at about 80 to 85 % and could not be increased regardless of how much Ca2+

chloride was added to the medium. Apparently, there is always a certain proportion of

killings which is not sensible to modifications of the surrounding Ca2+ concentration.

This observation suggests that those remaining 15 to 20 % apoptotic killings could be

performed in a Ca2+-independent way. This assumption could be tested using blocking

monoclonal antibodies against FAS or FAS-ligand. If this small fraction of apoptosis

is induced independently of granzymes, and, given the fact that Fas is the main death

receptor system employed by NK cells, the occurrence of apoptosis should be diminished.

4.3 Different tumor targets require different cytotoxic mechanisms

The measured distribution of apoptotic and necrotic killings is likely to be specific for the

pairing of NK cells with the Jurkat E6.1 target cell line. Hence, the mode of target cell

death will most likely depend on the molecular identity of the target cell. One very ob-

vious example is the aforementioned difference in lytic and apoptotic killing distribution

comparing Jurkat E6.1 and K-562 as targets. NK-92 cells killed K-562 mainly through

direct cell lysis. Parts of this observation are certainly traceable to the fact that this tar-

get cell line lacks Fas-receptor, an important conductor of pro-apoptotic signaling. Since
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we know that death ligands convey extrinsic but not intrinsic apoptosis as granzymes do,

this explanation is valid but not sufficient for the one-sidedness of this distribution. It is

more likely that, compared to Jurkat E6.1, K-562 also have a lower tolerance for perforin

action. This tolerance can be the resultant of a cell’s capability to withstand osmotic

stress and to repair already formed perforin pores. That way, after perforin has been

released, the cells do not live long enough for granzyme activity to become visible. These

factors should be taken into account when analyzing the distribution of different killing

modes shown by NK cells or CD8+ lymphocytes. In 2016, Yanting and colleagues even

reported that both naive and stimulated primary NK cells kill a considerable proportion

of adherent target cell lines solely by death ligands [82].

The respective contributions of death ligands and perforin/granzyme seem to differ not

only depending on the type of tumor target but also on whether NK cells are involved

mainly in local or systemic anti-tumor responses. Drawing from experience gained through

a variety of mouse models, CTLs from perforin-1 knockout mice were unable to effectively

kill certain melanoma and sarcoma cell lines [121], [122] but proved just as efficient in con-

trolling liver metastases of the same melanoma cell line dependent on IL-12 [123], [124]. A

similar ambivalence of perforin function was found in the context of mAb immunotherapy.

While in-vivo elimination of colon, prostate and breast carcinoma cell lines seemed not

to depend on perforin-1 [125], its functionality was necessary for the control of melanoma

cells when immunotherapy with BRAF inhibitors and anti-CD137-Ab was administered.

There is evidence that the contribution of death ligands to total NK cell cytotoxicity is

equally diverse [126].

4.4 How are different NK cell calcium responses generated?

After discovering that NK cells answer activation by different intracellular Ca2+ responses,

the obvious question was how exactly those were generated. What or who determines what

type of Ca2+ signal a killer cell is to induce and, consequently, what type of killing is to

be performed?

An intuitive assumption would be that different cytosolic Ca2+ responses in killer cells

could be generated by different Ca2+ channels. In 2011, Omilusik and colleagues have

provided evidence that voltage-gated Ca2+ channels, especially the subtype Cav1.4, is ex-

pressed in T-cells and may contribute to controlling the maturation of naive T-cells [127].

Whether this subtype or other voltage-gated Ca2+-selective channels are expressed in NK

cells and whether they partake in modulating cytolytic effector functions is currently un-

known. Another group of possible Ca2+ channels is marked by the so-called ’transient

receptor potential’ channel group (TRP channels). Out of the large variety of identified
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TRP channels, subtypes TRPV5 and TRPV6 are regarded as Ca2+-selective [128]. So

far, their contribution to immune cell function is unclear, since they do not appear to be

consistently expressed in immune cells [129], [130]. It thus appears likely that STIM and

ORAI proteins are the major source of Ca2+ influx into lymphocytes [131], [132], [43], . If

we assume that all three signal types A, B and C are generated by Ca2+ entering the cell

through ORAI, then there must be additional factors controlling the shape and extent

of ion inflow through these channels, thereby generating the different signaling shapes.

Information could be encoded in both the degree of cytosolic Ca2+ elevation as well as

its frequency of oscillation. This section enlightens possible mechanisms which could be

responsible for the differences in intracellular Ca2+ signals in killer cells as well as possible

linkers between Ca2+ signal types and ensuing modes of cytotoxic action.

A recurrent feature of A-type calcium signals was that cytosolic Ca2+ concentrations

dropped back to resting levels in between. This characteristic was inherent to that type

of response. Another feature was the low height of the Ca2+ concentration peaks com-

pared to B- and C-type signals. The reduction in Ca2+ peak heights together with the

absence of sustained Ca2+ elevations gave rise to the hypothesis that the A-type Ca2+

response could be the result of Ca2+ store depletion without subsequent ORAI activa-

tion. Current literature provides compelling evidence that vesicle release from NK cells is

blocked in the absence of SOCE [130], [133]. If missing SOCE was in fact responsible for

the oscillatory signal, it could hence explain the lack of necrotic killing associated with

this signal type. In that case, the type A could be regarded as a dysfunctional B-type

response. The question would then be why some killer cells do not show sustained SOCE

upon target cell recognition.

In normal AIMV medium containing ± 800 µM free Ca2+, 22% of cells had A-type

Ca2+ signals. Given the major importance of SOCE for a variety of vital processes in

immune cells, it appears highly unlikely that SOCE should in principle be dysfunctional

in these cells. A more likely explanation is that both STIM and ORAI proteins function

properly but target cell recognition led to missing or abbreviated ORAI conductance.

Since sustained CRAC relies on the concerted action of STIM, ORAI, MTOC relocation,

mitochondria repositioning and other processes, the list of possible interferences is long.

Although unlikely, one should first test basic CRAC functionality in these cells. This

could easily be done by stimulating the cells with thapsigargin in the absence of Ca2+

and then re-supplying it which should lead to considerable Ca2+ ion influx into the cells

by activated ORAI channels. If SOCE is unimpaired in basically the entire killer cell

population following artificial store release as one would expect, then inadequate SOCE

in some killer cells would be connected to the individual target cell.
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4.4.1 NCRs and their ligands

Ca2+ release from the ER is mainly caused by IP3 binding to its receptor. Production of

IP3 in turn depends on the activity of PLCγ. As described in the introduction, the vast

majority of activating NCRs convey intracellular signals by activating the two protein

tyrosine kinases Syc and Zap-70 which activate PLCγ. This step appears to be canon-

ical for lymphocyte activation. It is, however, unclear to what extent each individual

NCR contributes to PLC activation. The triggering of some NCRs might provide only

weak stimuli for PLC. The resulting low IP3 production consequently leads to only small

amounts of Ca2+ released from the ER, which does not invoke full SOCE capacity. If

so, then different intracellular Ca2+ signals in NK cells might be the consequence of an

individual pattern of NCRs being activated upon target cell recognition.

When investigating the contribution of activating NCRs to NK cell cytotoxicity in 2006,

Bryceson et al found that distinct groups of receptors synergized with each other, while

coactivation of other receptors did not boost resting NK cell activity [32]. Using a re-

directed antibody-dependent assay, they studied the influence of different coactivation

patterns on NK cytotoxicity against tumor cells, the extent of NK cell degranulation,

cytokine secretion and intracellular Ca2+ responses upon activation.

Interestingly, coactivation of distinct pairs of NK cell receptors did not only lead to

varying degrees of cytotoxic potential, but induced different intracellular Ca2+ responses

in NK cells similar to the ones presented here. In unstimulated NK cells, only CD16 was

sufficient to induce cytotoxicity. While singular activation of receptors like NKG2D or

2B4 still led to influx, these stimuli were insufficient to provoke target cell lysis on their

own. Upon activation of 2B4 and CD16, the correspondent NK cells showed a large, sus-

tained inflow of Ca2+ ions, while NKG2D induced a lower and oscillatory response pattern

similar to the A-type signal. If these signals were in fact the consequence of a certain

pattern of receptors being cross-linked at the same time, then NKG2D could be associated

with the A-type signal while 2B4 or other receptors could lead to Type B or C signals.

Intriguingly, out of all aforementioned NCRs, NKG2D is the only natural cytotoxicity

receptor employing DAP10 as its ITAM-bearing signaling molecule, possibly making way

for a separate downstream signaling cascade.

The presented Ca2+ signals were measured in a cell system and were not gained from

in-vitro stimulation of NK cells by receptor cross-linking. It seems unlikely that only one

type of NCR would be activated at the time in a cell-based system since one would expect

NCRs as well as their ligands to be evenly distributed across the plasma membrane before

polarization. It might yet be the case that target cells express NCR ligands at different

quantities, making the activation of a certain type of NK cell receptor or combinations
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of them more likely than others. Consequently, the influx pattern and the type of target

cell elimination associated with it would be determined by the molecular composition of

NCRs and their ligands and not by modifications occurring downstream in the killer cell.

An obvious approach to put this hypothesis to the test would be to first try and induce

type A, B and C signals by cross-linking a distinct combination of NCRs with monoclonal

antibodies and an anti-IgG cross-linking mAb. Secondly, the same population of NK cells

could be used in a single-cell experiment against different target cell lines to see whether

the Ca2+ signals measured resemble those induced by antibody engagement. In a second

step, certain NCRs or ligands could be blocked using monoclonal antibodies to check

whether the frequency of types A, B or C changes.

When studying the role of MCU-mediated Ca2+ uptake, Parekh and colleagues stimu-

lated mast cells using leukotriene C4 (LTC4) [134]. They employed sub-maximal concen-

trations of the substance to recreate more physiological levels of stimulation. In contrast

to high concentrations, moderate levels lf LTC4 induced cytosolic Ca2+ oscillations. This

principle might also translate to NK cells: Low to moderate degrees of NCR activation

could translate to low levels of IP3 production. The consecutive weak release of Ca2+

from the ER allows the quick refilling of ER Ca2+ stores, thus abrogating Ca2+ inflow

through ORAI. In contrast, high degrees of NCR stimulation would lead to high levels

of IP3, causing substantial storage emptying. In that case, Ca2+ refill rate would not be

sufficient to stop SOCE through activated ORAI channels. The result would be a high

and sustained rise in intracellular Ca2+ levels as seen in types B and C.

An important addition to the already acquired data would be examining how ADCC in

contrast to NCR activation influences the distribution of Ca2+ signal types in primary NK

cells. CD16 has repeatedly been shown to be a potent activator of NK cell cytotoxicity

and degranulation. If ADCC in NK cells was found to trigger predominantly one type

of Ca2+ signaling pattern, then this finding would be a supporter of the theory that the

compositions of different NK cell receptors are responsible for turning the switch towards

a distinct type of Ca2+ response.

4.4.2 Mitochondria and CRAC

Low or short-lived SOCE in some killer cells might not only be caused by incomplete

storage emptying but also by interference with the resulting Ca2+ influx through ORAI

channels that usually follows store depletion. A variety of cellular processes is known to

regulate SOCE in activated B-, T- and NK cells. In addition to their significance for

cellular energy metabolism and apoptosis control, mitochondria have been demonstrated

to actively partake in shaping cytosolic Ca2+ responses in immune cells [135], [136], [137].
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In 2006, Ariel Quintana, Christian Schwindling and other colleagues investigated the

role of mitochondria translocation in activating immune cells. Our group found that

sustained calcium influx across the plasma membrane of active T-cells through ORAI

channels depends on mitochondria being moved to close proximity of the IS-forming mem-

brane [56], [55]. After travelling to the inside of the immunological synapse, mitochondria

take up parts of the inflowing Ca2+ ions, which prevents Ca2+-dependent ORAI inacti-

vation. It is possible that an A-type Ca2+ pattern is the result of this mechanism being

disturbed. In those cases where mitochondria are not transported closely enough to CRAC

channels or their uptake capacity is reduced, CRAC activity will be limited by intrinsic

channel deactivation. This self-regulatory mechanism would quickly abrogate Ca2+ influx

which could explain the absence of cytosolic Ca2+ plateaus in type A signals.

The main Ca2+ transporting protein in the inner mitochondrial matrix has been identified

as the ’mitochondrial Ca2+ uniporter’ or ’MCU’. According to Parekh et al, this protein

acting properly is necessary for efficient Ca2+ uptake into mitochondria and pharmacolog-

ical blockade leads to rapid decline of cytosolic calcium ion flux [134]. More importantly,

functional uptake of ions into mitochondria allows the cell to refill its Ca2+ stores. By

periodically filling and emptying intracellular stores such as mitochondria and the ER

lumen, cells have been shown to generate Ca2+ oscillations, for example in mast cells, a

type of immune cell related to lymphocytes [138]. These measured oscillations resemble

the type of Ca2+ signal by NK cells associated with apoptotic target cell killing.

To examine the possible role of mitochondria in generating different Ca2+ signals in NK

cells, a first approach could be to perform live-cell analysis of NK cells stained with a

fluorescent mitochondria dye, for example MitoTracker red. Afterwards, the cells are

brought together with Jurkat E6.1 pCasper cells. The mitochondrial localization in re-

gard to the IS can then be compared in those killer cells which induced necrosis versus

those that induced apoptosis. Another suitable experiment would be to measure intra-

cellular Ca2+ levels in killer cells using Fura-2 or Fura-Red and in parallel interfere with

mitochondrial Ca2+ uptake. This interference could be achieved pharmacologically by

incubating the killer cells with Ru-360, a known high-affinity MCU blocker [139], [140],

or by siRNA-based knock-down. Another approach would be to use carbonyl-cyanide p-

trifluoromethoxyphenylhydrazone or FCCP, a protonophore which diminishes the electro-

chemical gradient of the inner mitochondrial membrane, the main driving force for calcium

uptake into mitochondria. Although in principle suitable for this purpose, it should be

employed carefully since the breakdown of inner mitochondrial membrane potential will

also severely affect the killer cell’s energy metabolism.
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No matter the reason for the oscillatory shape of the Ca2+ response, it clearly leads

to successful NK cell killing. Oscillatory Ca2+ signals were shown to have intrinsic sig-

naling quality in a variety of cell types [141], [134] and also in cancer cells [130]. From

this perspective, it is also conceivable that A-type Ca2+ responses in killing NK cells

are not simply the occasional failure to produce high Ca2+ elevations but that they are

distinctively generated to trigger apoptosis induction.

4.4.3 Possible connectors of cytosolic Ca2+ oscillations and apoptosis induction

If we assume that large SOCE is necessary for the release of perforin and granzymes,

then apoptosis is probably induced in a more ORAI-independent way, probably by death-

receptor signaling. Although often offhandedly regarded as being Ca2+-independent, the

question remains how FasL accumulation is achieved at the IS-forming part of the killer

cell membrane. Possible mechanisms include the vesicle-based transport of FasL to the

membrane and the subsequent fusion of these vesicles as well as already present FasL

molecules travelling to the IS by lateral diffusion. In 2011, Schmidt and colleagues em-

ployed TIRF microscopy to provide evidence that, in human T-lymphocytes, FasL as well

as perforin/granzymes are stored and transported in separate vesicles [142]. An obvious

implication would then be that both granules are also trafficked via distinct pathways. If

this applies to NK cells, then A-type signals might be the driving stimulus for FasL vesi-

cles to be transported to the IS but not those vesicles storing perforin and granzyme B.

How these vesicles are then fused with the plasma membrane would still be unanswered.

It is conceivable that the amount of Ca2+ ions necessary for the fusion of FasL-containing

vesicles is lower than that of the perforin/granzyme-vesicles. Low to moderate Ca2+ influx

across the plasma membrane or the mere redistribution of Ca2+ ions between stores might

not be sufficient for the Ca2+-dependence of perforin-vesicles but might allow the fusion

of FasL-vesicles with the membrane. Another explanation would be that, if a killer cell

does not manage to create sustained Ca2+ influx after IS formation, the contact is kept

alive but the target cell cannot be killed at this point because of the cell’s inability to fuse

its vesicle pool with the membrane. Instead, the killer cell accumulates already-present

FasL molecules at the IS by an unkown mechanism which then eliminates the target cell

by apoptosis induction. This hypothesis could explain in parts why sometimes apoptosis

could be induced quite rapidly while other cells took time spans from several minutes to

even hours. Rapid apoptosis can be achieved through granzymes entering the cell which

is only possible if granzyme-vesicle fusion is functional. If not, death ligands must first be

gathered at the right location which takes significantly more time until a strong enough

death signal is induced in the target cell.
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4.4.4 How different are signal types B and C?

These types of Ca2+ signals were the only ones which allowed direct lysis of the target

cell. In contrast to type A, both types were characterized by the occurrence of large,

sustained elevations in cytosolic Ca2+ ions. Taking into account what is known about the

Ca2+ dependence of immune cell function, it seems safe to assume that these elevations

are produced by SOCE which is the necessary condition for the release of lytic granules.

The question is whether type B and C signals are in fact distinct types of cytosolic Ca2+

signals or if C is merely a weaker form of B.

This assumption is backed up by the observation that, while B was followed exclusively

by necrosis induction, C lead to all three types of target cell killings. Current scientific

literature suggests that both perforin and granzymes are stored together in lytic gran-

ules [143]. Since perforin acts more rapidly than granzymes, a higher number of released

vesicles will most likely lead to a quicker cell death. In some cases of very high cytosolic

Ca2+ peaks - measurable as type-B signals - enough vesicles will be released at once so

that the target cell is lysed even before granzymes could activate caspases inside the tar-

get cell’s cytosol. In case of sustained but not as high-peaking Ca2+ influx, fewer vesicles

fuse with the membrane. This will be registered during Ca2+ imaging as a type-C signal.

The target cell is able to withstand the immediate osmotic pressure and endures until

granzymes force it into apoptosis by activating cytosolic caspases.

How high Ca2+ levels will peak inside an individual killer cell will depend on a vari-

ety of factors. Possible candidates are the amounts of STIM and ORAI, their individual

isotypical compositions, the buffering capacities of mitochondria and efflux efficiencies

of Ca2+-specific pumps which work together to clear the cytosol of excess Ca2+ ions, as

well as energy metabolism. Some cells might, by chance, be able to create higher Ca2+

currents than others, explaining the slight differences in height and cell-cell contact time

between types B and C. This model is also in line with the influence of extracellular Ca2+

concentrations on the distribution of killing types. As experiments from section 3.4.1

have demonstrated, the increase in necrosis frequency at higher Ca2+ concentrations is

partly at the cost of mixed type killing. The latter is likely to result from the cytotoxic

effects of both perforin and granzymes balancing out. Perforin pores do considerable, but

not always lethal damage to a cell, granzymes then induce apoptosis, so both processes

take long enough for pCasper to detect them. Increasing the supply of extracellular Ca2+

ions also increases ion influx into the killer cell and boosts vesicle release. These condi-

tions empower more cells to kill by direct membrane lysis which would otherwise have

depended on the combination of perforin and granzyme action to kill their target cells.

Figure 26 provides a detailed summary of all the above-mentioned mechanisms which

could be responsible for shaping Ca2+ responses in NK cells. It should be noted, however,
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Figure 26: How NK cells could generate different calcium response patterns upon target
cell recognition
(A) One NK cell inducing apoptosis, associated with an oscillatory Ca2+ response (B) and one inducing
necrosis (C), showing a B-type signal (D). In A, apoptosis-promoting NCRs (1) lead to low levels of
IP3 production. After receptor activation (3), low amounts of Ca2+ ions (4) are released from the ER.
The extent of consecutive STIM (5) and ORAI (6) activation is weak. No sustained CRAC is generated,
possibly also due to mitochondria (7) not being shifted closely enough to the IS. The majority of cytotoxic
vesicles (8) cannot be released. Instead, the killer cell gathers membrane-bound FasL (11) to the site of
the IS, finally promoting apoptosis in the target cell by activating DISC. In contrast, NK cells showing
B-type Ca2+ responses (C, D) generate sustained SOCE after the activation of pro-necrotic NCRs (2).
Large amounts of vesicles containing granzymes (9) and perforin (10) being released cause direct lysis of
the target cell or rapid apoptosis.
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that not all of the depicted mechanisms would necessarily work together in the same cell.

All Ca2+ signals were taken from single-cell contacts, i.e. only one killer cell killing one

target cell at the time. A valuable addition of data would be to analyze killing behavior

in case of NK cell cooperativity. Can different NK cells boost each other’s cytotoxic po-

tential when attacking the same target cell?

Another interesting observation is that CTLs are able to kill a series of target cells in

a row. This effect can be called ’serial killing’. It is present in basically all killer cells and,

as Christian Backes has presented in his thesis, seems to follow a strict order of killing

types: Almost all NK cells killing in sequence first induced necrosis and then switched

to apoptosis afterwards. Some cells would not be able to inflict direct lysis at all. They

would start with apoptosis and not at any time switch to inducing necrosis. This finding

clearly suggests that NK cells, a priori, have different lytic capabilities. Those cells limited

to apoptosis would probably show Ca2+ signals similar to types A or possibly C, while

those cells being able to release high quantities of vesicles would likely start with types B

and then move on to lower C-type signals. It would be interesting to see whether killer

cells can also switch between types A and B/C respectively. If not, then this would be in

strong support of the theory that both types have functionally distinct underlying cellular

processes. This characteristic could therefore be used to group NK cells not only depend-

ing on cell surface markers but also on the cellular mechanism employed. Especially, in

the case of CD56dim NK cells, it would be possible to distinguish those more inclined to

apoptosis from those more inclined to necrosis.

4.4.5 Outlook

A variety of experiments can be conducted to further unveil the origin of different Ca2+

signals in CTLs. The presented experiments provide sufficient data to assess kinetics and

basic shapes of these signals. Still, time resolution of 30 seconds between data points, as

was achieved here, should be increased to get a more detailed impression of the signal

shapes. High-frequency Fura-2 measurement of Ca2+ signals may also help to verify if

A-type signals resemble the typical known properties of ER store depletion.

Another valuable information that could help to clarify the origin of the difference in

signals would be how the relative distribution of A-, B- and C-type Ca2+ responses differs

when NK cells are exposed to varying extracellular Ca2+ concentrations. By addition of

large amounts of EGTA, SOCE is likely to be prevented in all killer cells since there is sim-

ply no Ca2+ available to enter the cell. If ORAI-mediated Ca2+ influx is the key difference

between type A and B signals, then every killer cell should be restricted to A-type sig-

nals. Repeating these killing experiments using increasing [Ca2+]ext could then be used to
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determine the minimum Ca2+ concentration necessary for B- and C-type signals to occur.

4.5 Apoptosis, necrosis and total killing efficiency

What determines the biological function of NK cells in an organism is not the distribution

of killing types or Ca2+ signal types but their total cytotoxic potential. The task is to

recognize and kill as many pathogens or tumor cells as efficiently as possible. Our newly-

developed killing assay allows time-resolved analysis of killer cell action [89]. Total killing

efficiency was analyzed for NK cells at different Ca2+ concentrations (Xhiao Zhou, Yan

Zhou, manuscript in preparation). Interestingly, the function presents as bell-shaped,

meaning that there is an optimum concentration for economic NK cell action. This

maximum was measured at 1.7 mM free calcium ions. At first, it seems intuitive that

the more necrosis an NK cell is capable of inducing, the more damage it deals to cell

membranes. Furthermore, necrosis kills much faster than apoptosis, as can be seen from

the drastic differences in NK cell contact time. Therefore an NK cell’s overall killing

capacity should increase as its necrosis potential does. Results from section 3.4 show

that at 1.7 mM [Ca2+]ext, when NK cells show the highest killing rates, necrosis is indeed

the dominating type but not at the peak of its relative frequency. This means that, while

necrosis by perforin is a powerful tool, further increasing necrosis potential in NK cells

beyond this point does in fact impair total killing capacity. A maximum killing rate

could hence be achieved by creating a fine-tuned balance between necrosis and apoptosis

induction at moderate levels of [Ca2+]ext. This finding is congruent with results presented

by Christian Backes in his doctoral thesis. He analyzed total killing efficiency by NK

cells and came to the conclusion that NK cells tend to kill less target cells if their lytic

potential is too high [93]. This observation is backed up by results presented in section

3.4.1. When analyzing the total number of killed target cells as a function of [Ca2+]ext, it

turned out highest for a concentration of 0.265 mM (not shown in the plot). Compared

to physiological Ca2+ blood levels of 1.1 to 1.4 mM, this concentration is rather low.

Interestingly, this was exactly the concentration at which necrosis, apoptosis and mixed-

type killing had the smallest differences in proportion (31.1% vs. 44.8% vs. 24.1%). These

results suggest that while high Ca2+ concentrations favor the occurrence of direct target

cell lysis, a fine-tuned equilibrium of all three killing types is probably more effective for

NK cells in the long run. In this doctoral thesis, Christian Backes came to a similar

conclusion. He identified three NK cell populations based on their preferred killing type

and found that those NK cells starting with necrosis and then switching to apoptosis

killed more target cells than those limited to either one [93]. A possible explanation

for this phenomenon was already presented by Markus Hoth and colleagues in 2014.

They suggested that, given that every killer cell has a limited storage pool of cytotoxic
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vesicles, releasing too many vesicles onto one target cell would leave too few for further

contacts [130].

4.6 NK cytotoxicity in the light of calcium homoeostasis

Serum Ca2+ levels are frequently measured in clinical practice. Roughly 50% of the total

amount of Ca2+ ions in blood and tissues is bound by plasma proteins, leaving a free

ion concentration of about 1.15 to 1.35 mmol/l. Data from section 3.4 shows that this

concentration range fits in the middle of that in which Ca2+ concentration has a large

impact on NK cell killing type. The amount of free Ca2+ ions in a tissue is a complex

resultant of the overall amount of Ca2+ in the body and the degree of ion binding by

plasma proteins. Total Ca2+ levels in the serum depend on diet, enteral uptake, release

from bone tissue and renal extrusion. These processes are in turn regulated by the inter-

play of several hormones, the most important being parathyroid hormone, calcitonin and

vitamin D3. Free [Ca2+]ext depends, additionally, on plasma protein levels and pH. Like

that of any other electrolyte in the body, the concentration of Ca2+ ions is closely regu-

lated and usually kept constant. Small variations in Ca2+ levels can cause arrhythmia,

muscle hypotonia, spasms and central nervous system dysfunctions leading to dizziness,

somnolence or seizures. If these regulatory mechanisms fail and hypo- or hypercalcemia

is present in patients, these conditions might also affect killing by CLs. Too low or too

high Ca2+ levels are frequently found in cancer patients. Roughly 30% of all tumor

patients suffer from hypercalcemia [144]. The most common pathomechanisms involve

autonomous production of parathyroid-hormone-related peptide (PTH-rp), Vitamin D3

or the release of Ca2+ from bone tissues, caused by osteolytic bone metastasis. The latter

is especially common in patients with multiple myeloma in which serum calcium levels

are used as a staging criterion. Cancer-related hypocalcemia is less common (10 %),

but also significantly more prevalent than in healthy individuals. The mechanisms are

manifold and include pseudohypocalcemia associated with hypoalbuminemia, chelation

of Ca2+ ions by citrate after blood transfusions, increased phosphate levels due to tumor

lysis syndrome, hemolysis or rhabdomyolysis and many others [145]. Given that fluctua-

tions in free [Ca2+]ext might greatly affect immune cell function, close attention to these

conditions could not only help prevent the above-mentioned complications but influence

immune cell action which is a key factor for tumor control. In 2014, Jörg Bittenbring

and colleagues from the local department of internal medicine published evidence for a

correlation between low vitamin D levels and impaired antibody-dependent cytotoxicity.

Elderly patients who suffered from diffuse large B-cell lymphoma responded significantly

better to treatment with the monoclonal antibody Rituximab when vitamin D levels be-

low 8 ng/ml were substituted. During a three-year follow-up, this improved response

correlated to increased event-free survival, progression-free survival and overall survival
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rates. In patients not treated with Rituximab, vitamin D substitution did not signifi-

cantly improve the outcome [146]. Antibody-dependent cytotoxicity (ADCC) is assumed

to be the major effector mechanism of antibody-based tumor therapy. Since vitamin D is

a strong inductor of gene expression, it is reasonable to assume that immune cells respond

directly to the molecule binding to its nuclear receptor. Another possibility is that vita-

min D levels influenced the patients’ Ca2+ storages. Vitamin D deficiency could allow for

hypocalcemia which could have a detrimental effect on NK cell cytoxocity. Bittenbring

et al did not publish the patients’ calcium levels. It would be interesting to know if low

vitamin levels also translated to mild or severe hypocalcemia in those patients prior to

substitution therapy.

4.7 Apoptotic and necrotic NK cell killing in the context of tumor microen-

vironment and the immune system

Cancerous tissues are not merely a conglomerate of malignantly transformed cells which

keep on growing. They are a composition of cancer cells, stromal cells, endothelial cells,

pericytes, immune cells and other cell types which together create a distinct microenvi-

ronment. This environment is currently the subject of great scientific interest. Tumor

cells were shown to misuse stromal cells such as fibroblasts to produce growth-promoting

cytokines [147], immune cells to supply proangiogenetic peptides to endothelial cells and

to produce enzymes which digest extracellular matrix components, thereby abetting inva-

siveness and metastasis [2]. The biology of tumor microenvironments is vast and cannot

be elucidated in detail at this point. This section focusses on a feature which seems inex-

tricable from tumor microenvironment - the presence of immune cells. Cancer evolution

and immune responses are closely linked and are known to promote each other. Cancers

are recognized by immunocompetent cells as foreign and prompt an immune reaction.

Inversely, chronic inflammation often serves as a breeding ground for tumors as can be

seen in colorectal carcinoma following chronic inflammatory bowel disease, liver cancer

following alcohol abuse and chronic hepatitis or the emergence of Burkitt’s lymphoma

after a smoldering infection with Epstein-Barr virus [148]. Tumors not originating from

chronically inflamed tissues still benefit from immune cells which originally infiltrated the

tumorous tissue to attack but failed. They reside in the tumor and produce cytokines

which are intended to call other immune cells for aid but at the same time serve as growth

promoters to surrounding malignant cells. NK cells as part of innate immunity are key

players in tumor control. Since they have different molecular arms at their disposal to

eliminate tumor cells, it should be discussed which of these arms are likely to be employed

in tumor control and what implications their use could have for the tumor microenviron-

ment as well as our whole immune system. Necrosis is generally considered an unregulated

process of cell destruction. It often occurs when thermic stress, chemical noxa or radiation
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damage tissues. As many other groups have suggested and as this thesis demonstrates,

necrosis is also a way of CTLs to kill target cells by directly disrupting their cell mem-

branes. This disruption leads to the uncontrolled exposure of cytoplasmic cell contents

to the surrounding environment. This process can have two important consequences:

1. Bystanding immune cells can be prompted by necrotic cell debris to produce cy-

tokines, a mechanism to recruit other cells which remove remnants and initiate heal-

ing processes. This recruitment is necessary to maintain our tissue integrity in the

long run and at first glance appears favorable since it might also lead to more im-

munocompetent cells launching a concerted attack against the tumor. That being

true, there is increasing evidence that a pro-inflammatory micromilieu could also pro-

mote tumor growth and metastasis. Interleukin-1 released from necrotic remnants

is a potent inductor of the transcription factor NF-κB [149]. This factor induces

the expression of anti-apoptotic and pro-mitotic regulator proteins in tumors thus

promoting tumor growth [2]. Another potent pro-oncogenic transcription factor is

STAT-3. The two taken together show abnormally high activity in over 50% of all

cancers [150], [151], [152]. Macrophages attracted by the release of Interleukin-1 are

in turn stimulated and activate NF-κB which boosts the production of cytokines

such as Interleukin-1, Interleukin-6 and proteins from the tumor necrosis factor fam-

ily. That way, a vicious circle may occur in which tumor necrosis activates immune

cells and immune cells promote tumor growth.

2. Cells of the adaptive immune system are usually naive towards peptides and struc-

tures which are not exposed on the outside of cells or present in the extracellu-

lar space. If a cell bursts open, its cytoplasmic contents are swept into the su-

pernatant and could stimulate B- and T-lymphocytes to act against autoantigens.

Many autoimmune diseases are characterized by the production of antibodies against

molecules usually kept from the eyes of adaptive immunity, for example ANCAs

(anti-neutrophil cytoplasmic antibodies) in vasculitis, anti-DNA-antibodies in sys-

temic lupus or anti-centromere-antibodies associated with the CREST syndrome, a

subcategory of scleroderma. Tumor necrosis induced by CTLs on a massive scale

could therefore facilitate the occurrence of autoimmune diseases.

Until now, tumor cell apoptosis appears to be favorable. Recent findings have provided

insight into immunological dimensions not only of necrotic death but also of apoptotic

cells. When tumor cells are targeted by certain chemotherapeutic agents such as anthra-

cyclines or oxaliplatin, they were found to undergo apoptosis using a distinct pathway.

This pathway involved the accumulation of the protein calreticulin [153]. The latter nor-

mally resides in the ER membrane and, upon apoptosis induction, was excluded from the
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ER and transported to the plasma membrane in small vesicles. According to Zitvogel et

al, the presence of calreticulin on the cell surface facilitated the subsequent incorporation

of apoptotic remnants by dendritic cells and enhanced the presentation of tumor-derived

antigens. In that case, apoptosis as well as necrosis induction in tumor cells could act as

a boost for anti-tumor responses by CTLs.

Given these considerations, one might be tempted to judge that tumor cell apoptosis

is beneficial and tumor necrosis is harmful. This might be true in some cases but there is

certainly a catch in it.

Unlike direct lysis by osmotic stress, apoptosis will always depend on intact downstream

signaling. This is true for both intrinsic apoptosis conveyed by granzymes as well as

extrinsically induced apoptosis via death receptors. Tumor cells are feared for their high

genetic instability, constantly putting them on the cusp of evading control by immune

cells or tackling by chemotherapy. It is easily conceivable that tumor cells gain immunity

against CTL attacks by expressing modified caspase targets or apoptotic enzymes. These

strategies of evasion would severely disturb the physiological process of apoptotic cell

involution. If CTLs could only kill by apoptosis induction, they would prove appallingly

ineffective against such tumor cells, which could explain in parts why some tumors become

refractory to chemo- or immune cell therapy.

Another potential disadvantage of apoptosis induction against tumor cells was recently

discovered regarding the death receptor pathways. In 2015, von Karstedt and colleagues

investigated the role of TRAIL signaling in tumors harboring mutations in the regulatory

protein KRAS. They found that activation of TRAIL-R in these cells increased tumor pro-

gression, metastasis and shortened survival in mice [154]. Since TRAIL is also involved in

NK cell-mediated cytotoxicy, engagement of TRAIL receptor might even promote tumor

progression. KRAS mutations are common among a variety of tumor entities including

non-small-cell lung cancer (NSCLC) and colorectal carcinoma, two of the most deadly

tumor types in western civilization. A similarly detrimental effect was associated with

the Fas-FasL-system. In cancer cells resistent to FAS-induced apoptosis, activation of

FAS receptor on the tumor cell increased motility and invasiveness. This paradoxic effect

was found to rely again on NF-κB, Caspase 8 and proteins from the ERK family induc-

ing a variety of metastasis-promoting genes [155]. It appears that apoptosis induction

by CTLs via death receptors is beneficial as long as tumor cells are still sensitive to-

wards pro-apoptotic signaling but turns into a self-harming mechanism once tumor cells

have managed to evade apoptotic downstream signaling. The same ambivalence seems to

apply to granzyme-B-mediated apoptotis. On the one hand a potent inductor of apop-

tosis in tumor cells, it might also contribute to extracellular matrix degradation, thus

facilitating invasive and metastatic growth [156], [157]. Furthermore, elevated levels of

soluble granzyme B can be found frequently in patients suffering from chronic inflamma-
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tory diseases [158], pointing towards a possible connection between high employement of

granzymes by CTLs and the occurence of autoimmunity.

At this state, a definite answer - if there even is one - what type of target cell killing

by CTLs is favorable in tumor cell killing cannot be given. Both necrosis and apopto-

sis seem to come with a variety of possibly beneficial as well as harmful consequences.

Another factor which is currently not determined is how high or low free Ca2+ levels are

in a given tumor microenvironment, compared to the rest of the body. This question is

probably of lesser significance when dealing with soluble types of malignancies such as

leukemias or lymphomas, although they also infiltrate lymphoid tissues where they possi-

bly create tumorous micromilieus of their own. Regarding solid tumors, nothing is known

about whether extracellular Ca2+ concentrations differ significantly from healthy tissues

or plasma levels. The answer to this question could be of major importance considering

that Ca2+ ion concentrations can have a great influence on the way CTLs eliminate tumor

cells. Judging from all presented data, if there was a way to pharmacologically influence

NK cell killing behavior, limiting necrosis potential would seem beneficial for two reasons:

Firstly, killer cells with high lysis potential kill a few target cells very fast but less cells

altogether. Secondly, the growth-promoting effects of tumor cell necrosis appear to sur-

mount those of apoptosis. Hence, lowering Ca2+ influx into active NK cells might lead to

a more economic, more healthy immune response against some tumors. This hypothesis is

backed up by recent results from our research group which show that siRNA knockdown

of ORAI1 in NK cells improves global killing efficiency (manuscript in preparation). Pos-

sible agents for the blockade of ORAI are well established [159], [160], [161], [162], [163].

If these substances were to be administered to cancer patients, previous thorough dosage

titration would be required since too strong blockade would likely dampen global cellu-

lar immune function. Be it that an optimal dosage can be found, this approach might

prove doubly effective since CRAC proteins have been identified as passenger genes in

many tumors [164], possibly accelerating growth. Hence, pharmacological weakening of

ORAI activity in both killer and tumor cells might, in the long run, prove as a suitable

supportive immunotherapy for the treatment of malignancies.
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