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Abstract

When discretizing non-linear pricing problems, one ends up with stochastic dynamic programs
which often possess a concave-convex structure. The key challenge in solving these dynamic pro-
grams numerically is the high-order nesting of conditional expectations. In practice, these con-
ditional expectations have to be replaced by some approximation operator, which can be nested
several times without leading to exploding computational costs.

In the first part of this thesis, we provide a posteriori criteria for validating approximate solutions
to such dynamic programs. To this end, we rely on a primal-dual approach, which takes an
approximate solution of the dynamic program as an input and allows the computation of upper
and lower bounds to the true solution. The approach proposed here unifies and extends existing
results and applies regardless of whether a comparison principle holds or not.

The second part of this thesis establishes an iterative improvement approach for upper and lower
bounds in the special case of convex dynamic programs. This approach allows the computation of
tight confidence intervals for the true solution, even if the input upper and lower bounds stem from
a possibly crude approximate solution to the dynamic program.

The applicability of the presented approaches is demonstrated in various numerical examples.

Zusammenfassung

Die Diskretisierung nicht linearer Preisprobleme führt typischerweise zu stochastischen dynamis-
chen Programmen, die eine konkav-konvexe Struktur aufweisen. Möchte man solche dynamischen
Programme numerisch lösen, stellen die hochgradig verschachtelten bedingten Erwartungen die
größte Herausforderung dar. In Anwendungen müssen diese bedingten Erwartungen mit Hilfe eines
geeigneten Operators approximiert werden, der mehrfach angewendet werden kann, ohne zu ex-
plodierenden Rechenkosten zu führen.

Im ersten Teil dieser Arbeit stellen wir Kriterien zur nachträglichen Validierung approximativer
Lösungen solcher dynamischer Programme bereit. Dazu stützen wir uns auf einen primal-dualen
Ansatz, der ausgehend von einer approximativen Lösung des dynamischen Programms die Kon-
struktion oberer und unterer Schranken an die wahre Lösung ermöglicht. Der hier vorgeschlagene
Ansatz vereinheitlicht und verallgemeinert bisher bekannte Resultate und kann ungeachtet der
Existenz eines Vergleichsprinzips genutzt werden.

Der zweite Teil der Arbeit befasst sich mit einem iterativen Ansatz zur Verbesserung oberer und
unterer Schranken im Spezialfall konvexer dynamischer Programme. Dieser Ansatz erlaubt die
Konstruktion enger Konfidenzintervalle an die wahre Lösung, selbst wenn die gegebenen Schranken
auf einer möglicherweise groben approximativen Lösung des dynamischen Programms beruhen.

In verschiedenen numerischen Beispielen demonstrieren wir die Anwendbarkeit der vorgeschlagenen
Ansätze.

ix



x



Introduction

In the wake of the financial crisis, non-linear pricing problems received an increased interest in
both, academia and practice. These nonlinearities arise, e.g., due to early-exercise features, fund-
ing risk (see Bergman (1995); Crépey et al. (2013); Laurent et al. (2014)), counterparty risk (see
e.g. Crépey et al. (2013); Brigo et al. (2013)), model uncertainty (see Guyon and Henry-Labordère
(2011); Alanko and Avellaneda (2013)), collateralization (see Nie and Rutkowski (2016)) or trans-
action costs (see Guyon and Henry-Labordère (2011)). In practice, an option is written on risky
assets and its payoff is given as a deterministic function of the evolution of these assets over a
given time horizon. In order to model the evolution of these risky assets one typically relies on
Markovian processes. As a consequence, the value of an option under non-linear pricing can often
be described as a solution of a non-linear partial differential equation (PDE). In general, these
differential equations do not possess a closed-form solution, so that discretization schemes need to
be applied for the computation of an approximate solution of the PDE and, thus, an approximate
price. As long as the underlying Markovian process is low-dimensional standard tools for approxi-
mately solving PDEs (such as finite-difference schemes) can be applied. For derivatives depending
on multiple risk factors, this is however not the case and PDE-methods quickly turn out to be
infeasible. This phenomenon is well-known as the curse of dimensionality. A standard trick in
mathematical finance to circumvent this problem is to exploit the link between non-linear PDEs
and backward stochastic differential equations (BSDEs) established by Pardoux and Peng (1992).
This allows the application of Monte Carlo methods which are known to be less sensitive to the
dimension of the considered problem. Discretizing the resulting BSDE with respect to time, one
typically ends up with concave-convex stochastic dynamic programs of the form

YJ = ξ,

Yj = Gj(Ej [βj+1Yj+1], Fj(Ej [βj+1Yj+1])) (1)

for j = J − 1, . . . , 0. Here, Ej [·] denotes the conditional expectation with respect to Fj for a
given filtration (Fj)j=0,...,J . Furthermore, the function Gj is concave and increasing in its second
argument, while the function Fj is convex. The terminal condition ξ is assumed to be FJ -measurable
and reflects the payments of the option that arise at maturity. The process β is adapted and allows
us to capture possible dependencies of the value process on its Delta and Gamma, i.e., its first- and
second-order derivative with respect to the space variable.

Although we consider dynamic programs like (1) mainly in the context of non-linear option pricing,
we emphasize that such problems also arise in other applications. Among others, these applications
include multistage sequential decision problems under uncertainty (see e.g. Bertsekas (2005); Powell
(2011)), evaluation of recursive utility functionals as in Kraft and Seifried (2014) or discretization
schemes for fully non-linear second-order parabolic PDEs as discussed in Fahim et al. (2011).

The key challenge in solving dynamic programming equations of this form is the high-order nesting
of conditional expectations, which stems from the recursive structure of the problem. Indeed,
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Figure 1: Example of a nested Monte Carlo simulation with J = 5 and three sample paths.

the value at a given time point depends on the conditional expectation of the value one time step
ahead, which in turn depends on values several time steps ahead. Since we cannot expect in general
that the conditional expectations can be evaluated in closed form (or at least up to a negligible
error), dynamic programs like (1) need to be solved numerically. This can be done by applying the
approximate dynamic programming approach, where the conditional expectations are replaced by
some approximation operator. However, due to the high-order nesting of conditional expectations,
this operator needs to be nested several times without leading to exploding computational costs.
For this reason, a naive plain Monte Carlo approach quickly turns out to be infeasible, even for
a moderate number of time steps J , since it requires the branching of existing trajectories at
every point in time in order to approximate the conditional expectations, see Figure 1. Hence,
more sophisticated approximation operators are required for the computation of an approximate
solution to (1). In recent years, several approaches have been developed and analyzed in the context
of discretization schemes for BSDEs. A non-exhaustive list includes least-squares Monte Carlo (see
Gobet et al. (2005); Bender and Denk (2007)), quantization (see Bally and Pagès (2003)), Malliavin
Monte Carlo (see Bouchard and Touzi (2004)), sparse grid methods (see Zhang et al. (2013)) or
cubature methods on Wiener space as proposed in Crisan and Manolarakis (2012). However, the
error stemming from these approximation operators is hard to assess in numerical implementations.
Consequently, the derivation of a posteriori criteria for the evaluation of the quality of approximate
solutions is desirable.

This thesis consists of two parts. In the first part, we provide a method for the construction of a
confidence interval for Y0 using Monte Carlo methods. Such a posteriori criteria have first been
developed in the context of optimal stopping problems. The aim of these problems is to stop a
reward process S such that the expected reward is maximized. Therefore, following any (possibly
non-optimal) stopping strategy obviously results in a lower bound on the value process. This lower
bound is complemented by an upper bound which has been proposed independently by Haugh
and Kogan (2004) and Rogers (2002). The rationale of their approach is to consider the stopping

2



problem pathwise rather than in conditional expectation, i.e., instead of solving the optimal stop-
ping problem, one maximizes the reward along each path. In order to make this bound tight, the
resulting additional information is penalized by subtracting a martingale increment. Taking the
infimum over the set of martingales, they prove that the value process possesses a representation as
dual minimization problem. Relying on this pair of primal-dual optimization problems, Haugh and
Kogan (2004) and Andersen and Broadie (2004) propose a primal-dual approach for the construc-
tion of upper and lower bounds: in a first step, one approximately solves the dynamic program
associated with this problem, which is given by choosing Gj(z, y) = y, Fj(z) = max{Sj , z}, ξ = SJ ,
and β ≡ 1 for an adapted process (Sj)j=0,...,J in (1). Then, an approximate stopping rule and a
martingale are constructed from this approximate solution. Taking these suboptimal controls as
an input, upper and lower bounds can be constructed from the primal-dual representations.

The information relaxation approach of Haugh and Kogan (2004) and Rogers (2002) was further
generalized by Rogers (2007) and Brown et al. (2010) to stochastic control problems in discrete
time. While Rogers (2007) only considers perfect information relaxation and martingale penalties
as in the optimal stopping problem, Brown et al. (2010) allow for information relaxations to a
varying extent and a broader class of penalties.

Bender et al. (2017) extended the primal-dual approach to the class of monotone and convex
dynamic programs. Starting from a dynamic programming equation, they derive primal and dual
optimization problems with value Y for which optimal controls exist and are given in terms of
the true solution Y . Following Haugh and Kogan (2004) and Andersen and Broadie (2004) in the
numerical implementation, they construct upper and lower bounds by first solving the dynamic
program approximately and use this approximate solution to derive suboptimal controls. Taking
these suboptimal controls as an input, they recursively compute super- and subsolutions to the
dynamic program. Here, a supersolution (respectively subsolution) is an adapted process which
satisfies (1) with ”≥” (respectively ”≤”) instead of ”=”. Assuming a comparison principle, which
ensures that supersolutions lie above subsolutions, Bender et al. (2017) show that the constructed
processes constitute bounds to the solution of the dynamic program.

The first two chapters aim at generalizing the primal-dual approach proposed by Bender et al. (2017)
in various directions. In the first chapter, we generalize their approach to the multi-dimensional
setting and consider systems of convex dynamic programs. Assuming a componentwise comparison
principle, the results of Bender et al. (2017) can be transferred to this new setting in a straightfor-
ward way. Since, in general, super- and subsolutions to (1) need not be ordered and, thus, do not
constitute bounds, we discuss the comparison principle in more detail. In many one-dimensional
applications like the optimal stopping problem or the examples considered in Bender et al. (2017)
this assumption is either not an issue or it can be established by mild truncations of the process β.
However, in the context of systems of dynamic programming equations, we show that the existence
of a componentwise comparison principle requires that each component does not depend on the
space derivative of the other components and that it only depends on the other components in a
monotonically increasing way. Consequently, the comparison principle can be a huge drawback in
this setting and the remainder of the first chapter is dedicated to remove this assumption.

The main result of this chapter is, thus, concerned with the construction of a pair of super- and
subsolutions for which a componentwise comparison principle holds, although it fails to hold in
general. This is achieved by a modification of the recursions for upper and lower bounds proposed
by Bender et al. (2017). The rationale of the construction is to allow that the lower bound enters the
defining recursion for the upper bound and vice versa. Going backwards in time, we check in each
recursion step if a violation of the comparison principle occurs on any given path. If the comparison
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principle is violated, the dependence of each recursion on both bounds applies and ensures the
ordering of the bounds. In this way, we end up with coupled recursions for the construction of
upper and lower bounds, which need to be computed simultaneously. As a consequence, these
bounds cannot be interpreted as stemming from distinct primal and dual optimization problems
in general. The applicability of this approach is then demonstrated in two numerical examples,
namely pricing under collateralization and pricing under uncertain volatility. To this end, we first
provide a general way to implement an algorithm based on this approach in a Markovian framework.
For the construction of an approximate solution, we rely on least-squares Monte Carlo (LSMC).
In particular, we provide a variant of the regression-later approach by Glasserman and Yu (2004)
respectively the martingale basis approach proposed by Bender and Steiner (2012), which is more
flexible concerning its applicability.

Thereafter, we pass in Chapter 2 to concave-convex dynamic programs of the form (1). Assum-
ing this structure has essentially two reasons: first, many functions, which are neither convex or
concave, can be expressed as a composition of suitable convex and concave functions. Indeed, we
show that such a situation arises in the context of pricing under bilateral counterparty risk, i.e.,
in situations where both parties involved in a contract may default prior to maturity. The second
reason is that convex respectively concave structures naturally arise in many maximization respec-
tively minimization problems. Assuming the concave-convex structure, thus allows us to consider
dynamic programming equations arising in stochastic two-player games. In mathematical finance
a well-known example for such stochastic two-player games is the problem of pricing convertible
bonds, see e.g. Beveridge and Joshi (2011).

The aim of this chapter is to transfer the results derived in Chapter 1 to this new setting. In order to
simplify the exposition, we restrict ourselves to the case of a single equation, but emphasize that the
results can be transferred in a straightforward way to systems of concave-convex dynamic programs.
As before, we first derive recursions for the construction of super- and subsolutions in a monotone
setting, i.e., when a comparison principle holds. These are obtained by a suitable composition of
the upper and lower bounds for the respective concave and convex problems. We further provide
sufficient conditions for the comparison principle to hold, but, compared to the convex setting of
Chapter 1, we are not able to give equivalent characterizations. This is essentially due to the
additional concave structure. Finally, we relax the assumption of a comparison principle and
generalize the coupled bounds from Chapter 1 to the concave-convex setting. As in the monotone
case, this construction relies on a suitable composition of the coupled bounds for the respective
concave and convex problem. Finally, we apply our approach in a numerical example concerned
with pricing under bilateral counterparty risk.

The second part of this thesis aims at the derivation of an iterative improvement algorithm for
upper and lower bounds in the convex setting of Chapter 1. We call a supersolution (respectively
subsolution) to a convex dynamic program an improvement if it lies below (respectively above) a
given input supersolution (respectively subsolution). Developing such an improvement approach is
motivated by the observation that the width of a confidence interval for Y0 constructed from the
primal-dual approach derived in the first two chapters strongly depends on the input approximation.
This is due to the derivation of suboptimal controls required for the computation of upper and lower
bounds from an approximate solution to the dynamic programming equation.

When computing an approximate solution using LSMC, the resulting error stems to a large part
from the so-called projection error, which is hard to control. This error occurs by replacing the
projection onto an (in general) infinite-dimensional subspace of L2(Ω, P ) by the projection onto a
finite-dimensional subspace spanned by the basis functions. In order to keep this error moderate,

4



a suitable choice of basis functions is required. Intuitively, a ”good” function basis should capture
both, the terminal condition ξ and the non-linearities modeled by the functions Gj and Fj . As there
is no constructive way to obtain such basis functions, searching for these can be rather cumbersome.

In the context of optimal stopping problems, Kolodko and Schoenmakers (2006) propose an iterative
improvement approach for lower bounds as an alternative to solving the dynamic program using
LSMC. This approach converges to the true solution after finitely many iteration steps and avoids
the choice of basis functions. The rationale of this approach is to start from a family of stopping
times, and to derive new exercise criteria, from which an increasing sequence of lower bounds
is obtained. This kind of policy iteration has first been proposed in the context of stochastic
control problems, see Howard (1960); Puterman (1994). Complementing the approach of Kolodko
and Schoenmakers (2006), Chen and Glasserman (2007) propose an algorithm which iteratively
improves a given upper bound. Taking the martingale part of the Doob decomposition of a given
supersolution as an input for the dual approach of Haugh and Kogan (2004) and Rogers (2002),
they show that the resulting upper bound lies below the given supersolution.

The aim of the third chapter is to generalize the approaches of Kolodko and Schoenmakers (2006)
and Chen and Glasserman (2007) to the class of monotone systems of convex dynamic programs
discussed in Chapter 1. For the construction of such an improvement algorithm we rely on the
recursions for upper and lower bounds derived in the first chapter. Starting from given super- and
subsolutions, the main idea of this construction is to derive controls in terms of the input super- and
subsolutions. Taking the resulting controls as an input for the upper and lower bound recursions,
we end up with an improvement for the given super- and subsolutions. We further demonstrate
that this approach can be iterated in a straightforward way and show that it converges in finitely
many iteration steps. Moreover, we show that the true solution Y to the dynamic program is
the only fixed point of this iteration. Hence, even when starting with possibly crude super- and
subsolutions, this approach does not get stuck in any suboptimal upper and lower bounds.

The results of this thesis are already available in two papers, which are joint work with Christian
Bender and Nikolaus Schweizer:

Christian Bender, Christian Gärtner, and Nikolaus Schweizer. Pathwise Dynamic Pro-
gramming. Mathematics of Operations Research. forthcoming.

Christian Bender, Christian Gärtner, and Nikolaus Schweizer. Iterative Improvement of
Upper and Lower Bounds for Backward SDEs. SIAM Journal of Scientific Computing.
39(2):B442-B466, 2017.

Based on these papers, Chapters 1 and 3 are concerned with systems of convex dynamic programs.
While Chapter 1 provides a more detailed discussion of such systems compared to the corresponding
Section 6 in the first paper, Chapter 3 generalizes the results of the second paper to this multi-
dimensional setting wherever possible.
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Notation

In the following, we introduce some notation, which is frequently used:

Let x ∈ R be a real number. Then, we denote by (x)+ and (x)− the positive respectively negative
part of x, i.e., (x)+ := max{x, 0} and (x)− := max{−x, 0}. Further, we denote by |x| the absolute
value of x.

For a vector y ∈ RD, we denote by ‖y‖ the Euclidean norm of y. We say that y1 ≥ y2 for two

vectors y1, y2 ∈ RD if y
(ν)
1 ≥ y

(ν)
2 for all ν = 1, . . . , D. Moreover, we denote by 1 the vector in

RD consisting of ones and for any matrix A, A> is the matrix transposition of A. For a vector
z ∈ RND, we denote by z[n] the vector in RD consisting of the ((n− 1)D+ 1)-th up to the (nD)-th
entry of z, i.e. z = (z[1], . . . , z[N ]).

Further let (Ω,F , (Fj)j=0,...,J , P ) be a filtered probability space. Then we denote by L∞−(Rm),
m ∈ N, the set of Rm-valued random variables that are in Lp(Ω, P ) for all p ≥ 1. The set of Fj-
measurable random variables that are in L∞−(Rm) is denoted by L∞−j (Rm). In addition, L∞−ad (Rm)

denotes the set of adapted processes Z such that Zj ∈ L∞−j (Rm) for every j = 0, . . . , J .

For a D-dimensional Brownian motion W and a partition 0 = t0 < t1 < . . . < tJ = T of the interval
[0, T ], we denote by ∆Wj+1 := Wtj+1−Wtj , j = 0, . . . , J−1, the increment of the Brownian motion
over the interval [tj , tj+1]. The length of the interval [tj , tj+1] is denoted by ∆j+1. If the partition
is assumed to be equidistant, we simply write ∆ instead of ∆j+1 for all j = 0, . . . , J − 1.

Moreover, N and ϕ denote respectively the cumulative distribution function and the density func-
tion of the standard normal distribution.

Finally, all equalities and inequalities are meant to hold P -a.s, unless otherwise noted.
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Chapter 1

Systems of convex dynamic
programming equations

In this chapter, we consider systems of dynamic programming equations, which arise, e.g., in the
context of multiple stopping problems or as discretization schemes for systems of partial differ-
ential equations. The scope of this chapter is to derive upper and lower bounds to the solution
of such systems. To do this, we generalize the pathwise approach of Bender et al. (2017) to this
multi-dimensional setting. Section 1.1 presents some examples for systems of convex dynamic pro-
gramming equations arising in option pricing. In Section 1.2, we introduce the setting as well as
the required definitions and notations. Section 1.3 is dedicated to the pathwise approach of Bender
et al. (2017). We recall the main ideas of this approach and, at the same time, generalize them to
our multi-dimensional setting. In Section 1.4, we give equivalent characterizations of the compar-
ison principle and explain its restrictiveness by an example. Building on these considerations, we
generalize the approach of Bender et al. (2017) in Section 1.5 in such a way that upper and lower
bounds to the solution of the dynamic program can be derived without relying on the comparison
principle. Section 1.6 provides a first insight in the numerical implementation of the theoretical
results presented before. More precisely, we show how the application of approximation methods
required in the numerical implementation may lead to an additional bias in the upper and lower
bounds. Section 1.7 explains how the theoretical results from Sections 1.3 and 1.5 can be applied
in practice. To this end, we first explain how the bounds can be computed in a general setting.
Finally, we demonstrate the applicability of our approach with two numerical examples, namely
the problem of pricing a European-style option under funding costs and negotiated collateral and
pricing under uncertain volatility.

1.1 Examples

In this chapter, we focus on systems of dynamics programs of the form

Y
(ν)
J = ξ(ν)

Y
(ν)
j = F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
, ν = 1, . . . , N, j = J − 1, . . . , 0, (1.1)

where, Ej [·] denotes the conditional expectation with respect to Fj for a given filtration (Fj)j=0,...,J

and the functions F
(ν)
j are convex. In the following, we present three examples arising in mathe-

matical finance, which motivate the investigation of such systems.
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Example 1.1.1. We first consider the multiple stopping problem. In mathematical finance, this
problem occurs e.g. in the context of swing option pricing problems, see e.g. Carmona and Touzi
(2008) and Bender et al. (2015). In the multiple stopping problem, one is interested in stopping a
reward process S ∈ L∞−ad (R) N -times over a given time horizon such that the expected reward is
maximized. In this example, we consider a discrete time situation, where all exercise rights need to
be executed at different time points and that all remaining rights at maturity need to be executed
simultaneously. Hence, the corresponding value process is given by

Y
(N)
j = esssup

τ∈Sj(N)
Ej

[
N∑
k=1

Sτ (k)

]

for every j = 0, . . . , J and where Sj(N) is the set of stopping vectors τ = (τ (1), . . . , τ (N)) such that
j ≤ τ (1) ≤ . . . ≤ τ (N) ≤ J and τ (k) = τ (k+1) implies τ (k) = J . As it is well-known in the literature,
this pricing problem can be transferred to solving a system of dynamic programming equations. In
our setting, this system is given by

Y
(ν)
j = max

{
Ej

[
Y

(ν)
j+1

]
, Sj + Ej

[
Y

(ν−1)
j+1

]}
, Y

(ν)
J = νSJ ,

for j = 0, . . . , J − 1, ν = 1, . . . , N and with the convention that Y (0) ≡ 0. Here, Y
(ν)
j is the value of

the problem at time index j if ν rights can be executed. For a vector z ∈ RND, denote by z[n] the
vector in RD consisting of the ((n−1)D+1)-th up to the (nD)-th entry of z, i.e. z = (z[1], . . . , z[N ]).

By taking D = 1, the process β ≡ 1, ξ(ν) = νSJ , and F
(ν)
j (z) = max{z[ν], Sj + z[ν−1]}, we then

observe that the multiple stopping problem fits our framework.

Example 1.1.2. As a second example, we consider the problem of pricing under negotiated collater-
alization in the presence of funding costs as discussed in Nie and Rutkowski (2016). Collateralized
contracts differ from ”standard” contracts in the way that the involved parties not only agree on
a payment stream until maturity but also on the collateral posted by both parties. By providing
collateral, both parties can reduce the possible loss resulting from a default of the respective coun-
terparty prior to maturity. In the following, we consider the problem of pricing a contract under
negotiated collateral, i.e. the imposed collateral depends on the valuations of the contract made
by the two parties. More precisely, the party (”hedger”) wishes to perfectly hedge the stream of
payments consisting of the option payoff and the posted collateral under funding costs, while the
counterparty hedges the negative payment stream under funding costs. As hedging under funding
costs is known to be non-linear, both hedges do not cancel each other. Hence, one ends up with
a coupled system of two equations where the coupling is due to the fact that the counterparty’s
hedging strategy influences the hedger’s payment stream due to the negotiated collateral and vice
versa.

We first translate the original backward SDE formulation of the problem in Nie and Rutkowski
(2016) into a parabolic PDE setting. To this end let g : Rd → R be a function of polynomial growth
which represents the payoff of a European-style option written on d risky assets with maturity
T . The dynamics of the risky assets X = (X(1), . . . , X(d)) are given by independent identically
distributed Black-Scholes models

X
(l)
t = x0 exp

{(
RL − 1

2
σ2

)
t+ σW

(l)
t

}
, l = 1, . . . , d,

where RL ≥ 0 is the risk-free lending rate, σ > 0 is the assets volatility, and W = (W (1), . . . ,W (d))
is a d-dimensional Brownian motion. We, moreover, denote by RB the risk-free borrowing rate.
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Hence, we have that RB ≥ RL. Further, we denote by RC the collateralization rate, which is the
interest that the receiver of the collateral has to pay to the provider of the collateral. As in Example
3.2 in Nie and Rutkowski (2016) we consider the case that the collateral is a convex combination
q̄(v(1),−v(2)) = αv(1) + (1 − α)(−v(2)) of the hedger’s price v(1) (i.e., the party’s hedging cost)
and the counterparty’s price −v(2) (i.e, the negative of the counterparty’s hedging cost) for some
α ∈ [0, 1]. Following Proposition 3.3 in Nie and Rutkowski (2016) with zero initial endowment the
system of PDEs then reads as follows:

v
(ν)
t (t, x) +

1

2

d∑
k,l=1

v(ν)
xk,xl

(t, x) = −H(ν)(v(1)(t, x),∇xv(1)(t, x), v(2)(t, x),∇xv(2)(t, x)), ν = 1, 2,

(t, x) ∈ [0, T )× Rd, with terminal conditions

v(ν)(T, x) = (−1)ν−1g

((
x0 exp

{(
RL − 1

2
σ2

)
t+ σx(k)

})
k=1,...,d

)
, x = (x(1), . . . , x(d)) ∈ Rd

and non-linearities given by

H(ν)(v(1)(t, x),∇xv(1)(t, x), v(2)(t, x),∇xv(2)(t, x))

= −RLaν(v(1)(t, x) + v(2)(t, x)) + (−1)νRC(αv(1)(t, x)− (1− α)v(2)(t, x))

+(RB −RL)

(
aν(v(1)(t, x) + v(2)(t, x))− 1

σ
(∇xv(ν)(t, x))>1

)
−
,

where, (a1, a2) = (1 − α, α). With this notation, v(1)(t,Wt) and −v(2)(t,Wt) denote the hedger’s
price and counterparty’s price of the collateralized contract at time t.

This problem is a special case of general systems of semilinear parabolic PDEs of the form

v
(ν)
t (t, x) +

1

2

d∑
k,l=1

(σσ>)k,l(t, x)v(ν)
xk,xl

(t, x) +
d∑

k=1

bk(t, x)v(ν)
xk

(t, x)

= −H(ν)(t, x, v(1)(t, x), σ(t, x)∇xv(1)(t, x), . . . , v(N)(t, x), σ(t, x)∇xv(N)(t, x)), (1.2)

(t, x) ∈ [0, T ) × Rd, ν = 1, . . . , N with terminal conditions v(ν)(T, x) = g(ν)(x). This system
has a unique classical solution, if the coefficients σ : [0, T ] × Rd → Rd×d, b : [0, T ] × Rd → Rd,
H(ν) : [0, T ]× Rd × RN(1+d) → R, and g(ν) : Rd → R satisfy suitable conditions, see e.g. Friedman
(1964). In order to derive a discretization of (1.2), which fits into our framework, we exploit the
link between semilinear parabolic PDEs and backward stochastic differential equations (BSDEs)
(see e.g. Pardoux, 1998). Let v be a classical solution to (1.2). Then, we have that the process
(Ys, Zs)0≤s≤T := (v(s,Xs), σ(s,Xs)∇xv(s,Xs))0≤s≤T is a solution to the BSDE

Ys = g(XT ) +

∫ T

s
H(r,Xr, Yr, Zr) dr −

∫ T

s
Z>r dWr, 0 ≤ s ≤ T. (1.3)

Here, W is a d-dimensional Brownian motion and the process (Xs)0≤s≤T is given by the stochastic
differential equation

Xs = x+

∫ s

0
b(r,Xr) dr +

∫ s

0
σ(r,Xr) dWr, 0 ≤ s ≤ T. (1.4)

Discretizing (1.3) and (1.4), leads to a discretization scheme for (1.2): To this end, let π =
(t0, . . . , tJ) be a partition of [0, T ] and denote by ∆Wi+1 := Wti+1 − Wti the increments of the
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Brownian motion W over time increments of size ∆i+1 = ti+1− ti. Further, let Fj be the σ-algebra
generated by W up to time tj , j = 0, . . . , J . Then, we consider the Euler-type scheme

Xj+1 = Xj + b(tj , Xj)∆j+1 + σ(tj , Xj)∆Wj+1, X0 = x,

Y
(ν)
J = g(ν)(XJ),

Y
(ν)
j = Ej

[
Y

(ν)
j+1

]
+H(ν)

(
tj , Xj , Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
∆j+1,

βj+1 =

(
1,

∆W
(1)
j+1

∆j+1
, . . . ,

∆W
(d)
j+1

∆j+1

)>
, (1.5)

for j = 0, . . . , J − 1 and ν = 1, . . . , N , where Ej [·] denotes the conditional expectation with respect
to Fj . Taking D = d + 1, we observe that this scheme is of the form (1.15) for any function H,
which is convex in the last ND variables, if the coefficients satisfy suitable growth conditions.

Such discretization schemes are well-studied in the BSDE-literature, see e.g. Bouchard and Touzi
(2004), Zhang (2004), Gobet and Labart (2007), and Gobet and Makhlouf (2010). Note that,

convergence rates for the approximation error supν=1,...,N |v(ν)(0, x)−Y (ν)
0 | induced by this kind of

approximation schemes are available. Indeed, Zhang (2004) shows that it converges at order 1/2
in the mesh size of the partition, if the non-linearities H(ν) and the terminal conditions g(ν) satisfy
certain Lipschitz conditions.

Example 1.1.3. We finally consider an example for a dynamic program of the form (1.15) with only
one equation (i.e. N = 1), namely the problem of pricing a European-style option under uncertain
volatility. This problem has first been studied in Avellaneda et al. (1995) and Lyons (1995). Hence,
let Xσ be the value process of a risky asset whose dynamics under the risk-neutral measure and in
discounted units are given by

Xσ
t = x0 exp

{∫ t

0
σudWu −

1

2

∫ t

0
σ2
udu

}
,

where x0 ∈ R, W is a Brownian motion and the volatility σ is a stochastic process which is adapted
to the filtration (Ft)0≤t≤T generated by W . Further, let g : R → R be the payoff of a European
option. Then, the value of this option under uncertain volatility is given by

Y0 = sup
σ
E[g(Xσ

T )], (1.6)

where the supremum is taken over all nonanticipating volatility processes σ, which take values in
[σlow, σup]. By considering the supremum over all processes ranging in this interval, Y0 provides
a worst case price which reflects the volatility uncertainty. In the following, we assume that the
constants satisfy 0 < σlow ≤ σup <∞.

Since (1.6) is a stochastic control problem in continuous time, we can write down the Hamilton-
Jacobi-Bellman equation, which is given by

ut(t, x) + max
σ∈{σlow,σup}

1

2
σ2x2uxx(t, x) = 0, (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R. (1.7)

Note that the PDE (1.7) possesses a classical solution, which satisfies appropriate growth conditions,
under suitable assumptions on the terminal condition g, see Pham (2009).

12



Similar to Example (1.1.2), we want to derive a discretization scheme for (1.6), which is of the form
(1.15), from (1.7). To this end, we fix a constant volatility ρ̂ and consider the transformation

v(t, x) := u

(
t, x0 exp

{
ρ̂x− 1

2
ρ̂2t

})
, x ∈ R,

in the space variable. Then, (1.7) can be rewritten in the following form:

vt(t, x) +
1

2
vxx(t, x) + max

σ∈{σlow,σup}

{
1

2

(
σ2

ρ̂2
− 1

)
(vxx(t, x)− ρ̂vx(t, x))

}
= 0,

(t, x) ∈ [0, T )× R,

v(T, x) = g

(
x0 exp

{
ρ̂x− 1

2
ρ̂2T

})
, x ∈ R. (1.8)

In order to derive an approximate solution of (1.8), we apply an operator splitting scheme. There-
fore, let 0 = t0 < t1 < . . . < tJ = T be an equidistant discretization of the time interval [0, T ] with
mesh size ∆. Building on this discretization, we consider, for fixed J , the system

yJ(x) = g
(
x0e

ρ̂x− 1
2
ρ̂2T
)
, x ∈ R,

ȳjt (t, x) = −1

2
ȳjxx(t, x), (t, x) ∈ [tj , tj+1)× R, (1.9)

ȳj(tj+1, x) = yj+1(x), x ∈ R, (1.10)

yj(x) = ȳj(tj , x) + ∆ max
σ∈{σlow,σup}

{
1

2

(
σ2

ρ̂2
− 1

)(
ȳjxx(tj , x)− ρ̂ȳjx(tj , x)

)}
, x ∈ R, (1.11)

for j = J−1, . . . , 0. Hence, the idea of this approach is to solve the linear subproblem (1.9) – (1.10),
which is a Cauchy problem for the heat equation, of (1.8) on each of the intervals [tj , tj+1] and to
plug the corresponding solution in the non-linearity (1.11). Evaluating yj(x) along the Brownian
paths leads to Yj := yj(Wtj ). A straightforward application of the Feynman-Kac representation for
the solution of (1.9) – (1.10), see e.g. Karatzas and Shreve (1991), on each interval, then yields

ȳj(tj ,Wtj ) = Ej [y
j+1(Wtj+1)] = Ej [Yj+1],

where Ej [·] denotes the conditional expectation with respect to Fj . For the space derivatives ȳjx(t, x)

and ȳjxx(t, x), we obtain by integration by parts that

ȳjx(tj ,Wtj ) = Ej

[
∆Wj+1

∆
Yj+1

]
(1.12)

and

ȳjxx(tj ,Wtj ) = Ej

[(
∆W 2

j+1

∆2
− 1

∆

)
Yj+1

]
, (1.13)

where ∆Wj = Wtj−Wtj−1 . A detailed derivation of (1.12) and (1.13) can be found in the Appendix
A.1. Note that (1.12) and (1.13) are the Malliavin Monte Carlo weights derived in Fournié et al.
(1999).

Finally, we end up with the following discrete-time dynamic programming equation

YJ = g(X ρ̂
T ),

13



Yj = Ej [Yj+1] + ∆ max
σ∈{σlow,σup}

(
1

2

(
σ2

ρ̂2
− 1

)
Ej

[(
∆W 2

j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆

)
Yj+1

])
, (1.14)

where X ρ̂
T denotes the price of the asset at time T under the constant reference volatility ρ̂. Such

type of time-discretization scheme is proposed and analyzed for a general class of fully non-linear
parabolic PDEs by Fahim et al. (2011). In the particular case of the uncertain volatility model,
the scheme was suggested by Guyon and Henry-Labordère (2011) by a slightly different derivation.
They rely on the connection between fully non-linear parabolic PDEs and second order backward
stochastic differential equations, see Cheridito et al. (2007). Choosing

Fj(z) = z(1) + ∆ max
s∈{slow,sup}

sz(2),

where sι = 1
2(σ

2
ι
ρ̂2 − 1) for ι ∈ {up, low}, and

βj =

(
1,

∆W 2
j

∆2
− ρ̂∆Wj

∆
− 1

∆

)>
, j = 1, . . . , J,

we observe that (1.14) is of the form (1.15) with N = 1 and D = 2.

1.2 Setup

Let (Ω,F , (Fj)j=0,...,J , P ) be a complete filtered probability space. Throughout the chapter we
consider systems of convex dynamic programs of the form

Y
(ν)
J = ξ(ν)

Y
(ν)
j = F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
, ν = 1, . . . , N, j = J − 1, . . . , 0, (1.15)

where Ej [·] denotes the conditional expectation with respect to Fj . If this system is one-dimensional,
i.e. if N = 1, we use the shorthand notation Y := Y (1). For our considerations, the following con-
vexity and regularity assumptions are required:

Assumption 1.2.1. (i) For every j = 0, . . . , J − 1 and ν = 1, . . . , N , F
(ν)
j : Ω × RND → R is

measurable and, for every z ∈ RND, the process (j, ω) 7→ F
(ν)
j (ω, z) is adapted.

(ii) The map z 7→ F
(ν)
j (ω, z) is convex in z for every j = 0, . . . , J − 1, ν = 1, . . . , N and ω ∈ Ω.

(iii) For every ν = 1, . . . , N , F (ν) is of polynomial growth in z in the following sense: There exist

a constant q ≥ 0 and a non-negative adapted process (α
(ν)
j )j=0,...,J−1 ∈ L∞−ad (R) such that for

all z ∈ RND and j = 0, . . . , J − 1

∣∣∣F (ν)
j (z)

∣∣∣ ≤ α(ν)
j

(
1 +

N∑
n=1

∥∥∥z[n]
∥∥∥q) , P -a.s..

(iv) The process β = (βj)j=1,...,J is an element of L∞−ad (RD).

(v) For each ν = 1, . . . , N , the terminal conditions ξ(ν) are elements of L∞−J (R).
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From these assumptions, we obtain immediately the following lemma.

Lemma 1.2.2. Under Assumption 1.2.1 the P -almost surely unique solution Y to (1.15) is an
element of L∞−ad (RN ).

Proof. The proof is by backward induction on j = J, . . . , 0. For j = J the assertion is trivially
true as ξ = (ξ(1), . . . , ξ(N)) ∈ L∞−J (RN ) by assumption. Now suppose that the assertion is true

for j + 1. Then, Yj is Fj-measurable, since Ej [βj+1Y
(ν)
j+1] and F

(ν)
j (z) are Fj-measurable for every

ν = 1, . . . , N and z ∈ RND.

For the integrability, we first note, that the case q = 0 is trivial, since this corresponds to the

situation, where the functions F
(ν)
j , and thus the solution Y , are bounded by a sufficiently integrable

process. Hence, we suppose in the following that q > 0. Moreover, we assume without loss of

generality that p ≥ 1 satisfies 2pq ≥ 1. From the polynomial growth condition on F
(ν)
j , we first

observe that

E
[∣∣∣Y (ν)

j

∣∣∣p] 1
p

= E
[∣∣∣F (ν)

j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])∣∣∣p] 1
p

≤ E

[∣∣∣∣∣α(ν)
j

(
1 +

N∑
n=1

∥∥∥Ej [βj+1Y
(n)
j+1

]∥∥∥q)∣∣∣∣∣
p] 1

p

.

Applying Hölder’s inequality and the Minkowski inequality twice then yields

E
[∣∣∣Y (ν)

j

∣∣∣p] 1
p ≤ E

[∣∣∣α(ν)
j

∣∣∣2p] 1
2p

E

∣∣∣∣∣1 +

N∑
n=1

∥∥∥Ej [βj+1Y
(n)
j+1

]∥∥∥q∣∣∣∣∣
2p
 1

2p

≤ E
[∣∣∣α(ν)

j

∣∣∣2p] 1
2p

1 + E

∣∣∣∣∣
N∑
n=1

∥∥∥Ej [βj+1Y
(n)
j+1

]∥∥∥q∣∣∣∣∣
2p
 1

2p


≤ E

[∣∣∣α(ν)
j

∣∣∣2p] 1
2p

(
1 +

N∑
n=1

E

[∥∥∥Ej [βj+1Y
(n)
j+1

]∥∥∥2qp
] 1

2p

)
.

Finally, we obtain by Jensen’s inequality (applied to the convex function y 7→ ‖y‖2pq) that

E
[∣∣∣Y (ν)

j

∣∣∣p] 1
p ≤ E

[∣∣∣α(ν)
j

∣∣∣2p] 1
2p

(
1 +

N∑
n=1

E

[∥∥∥βj+1Y
(n)
j+1

∥∥∥2qp
] 1

2p

)
<∞.

Here, the last inequality is a consequence of the Assumption 1.2.1 and the induction hypothesis.

The aim of this chapter is to construct upper and lower bounds to the solution Y , which can be
computed pathwise. These build on the concept of super- and subsolutions to (1.15).

Definition 1.2.3. A process Y up (resp. Y low) ∈ L∞−ad (RN ) is called supersolution (resp. subsolu-
tion) to the dynamic program (1.15) if Y up

J ≥ YJ (resp. Y low
J ≤ YJ) and for every ν = 1, . . . , N

and j = 0, . . . , J − 1 it holds that

Y
(up,ν)
j ≥ F (ν)

j

(
Ej

[
βj+1Y

(up,1)
j+1

]
, . . . , Ej

[
βj+1Y

(up,N)
j+1

])
P -a.s.,

(and with ”≥” replaced by ”≤” for a subsolution).
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In what follows, the construction of supersolutions builds on the choice of a suitable martingale.
We thus denote in the following byMND the set of martingales M , which satisfy M ∈ L∞−ad (RND).
For a process U ∈ L∞−ad (Rm), we refer to the martingale part of the Doob decomposition of U ,
which is given by

j−1∑
i=0

Ui+1 − Ei[Ui+1], j = 0, . . . , J,

as Doob martingale of U . In particular, we get from Assumption 1.2.1 that the Doob martingale
of the process βŪ is in MD for any Ū ∈ L∞−ad (R).

In contrast to supersolutions, subsolutions are constructed by rewriting (1.15) as a stochastic control
problem using convex duality techniques and taking an admissible control. To this end, recall that

the convex conjugate of F
(ν)
j is, for every ω ∈ Ω, given by

F
(ν,#)
j (ω, u) := sup

z∈RND

(
N∑
n=1

(
u[n]
)>

z[n] − F (ν)
j (ω, z)

)
, (1.16)

with effective domain

D
(j,ω)

F (ν,#) =
{
u ∈ RND

∣∣∣ F (ν,#)
j (ω, u) <∞

}
.

As we will see below, the sets of admissible controls in our problem are given by

AF (ν)

j =

{(
r

(ν)
i

)
i=j,...,J−1

∣∣∣∣ r(ν)
i ∈ L∞−i

(
RND

)
, F

(ν,#)
i

(
r

(ν)
i

)
∈ L∞−(R) for i = j, . . . , J − 1

}
,

where j = 0, . . . , J − 1 and ν = 1, . . . , N . By continuity of F
(ν)
i , we obtain that

F
(ν,#)
i (ri) = sup

z∈QND

(
N∑
n=1

(
r

(ν),[n]
i

)>
z[n] − F (ν)

i (z)

)

is Fi-measurable for every r(ν) ∈ AF (ν)

j and i = j, . . . , J − 1. Moreover, from the integrability

condition on the controls we deduce that F
(ν,#)
i (r

(ν)
i ) <∞, i.e., controls take values in the effective

domain of the convex conjugate of F
(ν)
i . The following lemma shows that the set AF (ν)

j is nonempty
for every j = 0, . . . , J − 1 and ν = 1, . . . , N under the given assumptions.

Lemma 1.2.4. Fix j ∈ {0, . . . , J − 1} and let fj : Ω× Rd → R be a mapping such that, for every
ω ∈ Ω, the map x 7→ fj(ω, x) is convex, and for every x ∈ Rd, the map ω 7→ fj(ω, x) is Fj-
measurable. Moreover, suppose that fj satisfies the following polynomial growth condition: There
are a constant q ≥ 0 and a non-negative random variable αj ∈ L∞−j (R) such that

|fj(x)| ≤ αj(1 + ‖x‖q), P -a.s.,

for every x ∈ Rd. Then, for every Z̄ ∈ L∞−(Rd) there exists a random variable ρ̄j ∈ L∞−(Rd) such

that f#
j (ρ̄j) ∈ L∞−(R) and

fj(Z̄) = ρ̄>j Z̄ − f
#
j (ρ̄j), P -a.s. (1.17)

If, additionally, Z̄ is Fj-measurable, then we can take ρ̄j Fj-measurable.
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Proof. Let Z̄ ∈ L∞−(Rd). Notice first that, since fj is convex and closed, we have f##
j = fj by

Theorem 12.2 in Rockafellar (1970) and thus

fj(Z̄) = sup
u∈Rd

u>Z̄ − f#
j (u) ≥ ρ>Z̄ − f#

j (ρ) (1.18)

holds ω-wise for any random variable ρ. We next show that there exists a random variable ρ̄j for
which (1.18) holds with P -almost sure equality. To this end, we apply Theorem 7.4 in Cheridito
et al. (2015) which yields the existence of a measurable subgradient to fj , i.e., existence of a random
variable ρ̄j such that for all Rd-valued random variables Z

fj
(
Z̄ + Z

)
− fj

(
Z̄
)
≥ ρ̄>j Z, P -a.s. (1.19)

Choosing Z = z − Z̄ for z ∈ Qd in (1.19), we conclude that

ρ̄>j Z̄ − fj
(
Z̄
)
≥ ρ̄>j z − fj (z) . (1.20)

Since (1.20) holds for any z ∈ Qd, we obtain

ρ̄>j Z̄ − fj
(
Z̄
)
≥ sup

z∈Qd
ρ̄>j z − fj (z) = f#

j (ρ̄j), P -a.s., (1.21)

by continuity of fj , which is the converse of (1.18), proving P -almost sure equality for ρ = ρ̄j and
thus (1.17).

We next show that ρ̄j satisfies the required integrability conditions, i.e., ρ̄j ∈ L∞−(Rd) and f#
j (ρ̄j) ∈

L∞−(R). To this end, we first prove that ρ̄>j Z ∈ L∞−(R) for any Z ∈ L∞−(Rd). Due to (1.19)

and the Minkowski inequality and since a ≤ b implies a+ ≤ |b|, it follows for Z ∈ L∞−(Rd) that,
for every p ≥ 1,(

E

[∣∣∣∣(ρ̄>j Z)+

∣∣∣∣p]) 1
p

≤
(
E
[∣∣fj (Z̄ + Z

)∣∣p]) 1
p +

(
E
[∣∣fj (Z̄)∣∣p]) 1

p <∞,

since fj is of polynomial growth with ‘random constant’ αj ∈ L∞−j (R) and Z̄, Z are elements of

L∞−(Rd) by assumption. Applying the same argument to Z̃ = −Z yields

E

[∣∣∣∣(ρ̄>j Z)−
∣∣∣∣p] = E

[∣∣∣∣(ρ̄>j Z̃)+

∣∣∣∣p] <∞,
since (1.19) holds for all random variables Z and Z̃ inherits the integrability of Z. We thus conclude
that

E
[∣∣∣ρ̄>j Z∣∣∣p] <∞ and E [|ρ̄j |p] <∞,

where the second claim follows from the first by taking Z = sgn(ρ̄j) with the sign function applied

componentwise. In order to show that f#
j (ρ̄j) ∈ L∞−(R), we start with (1.17) and apply the

Minkowski inequality to conclude that(
E
[∣∣∣f#

j (ρ̄j)
∣∣∣p]) 1

p ≤
(
E
[∣∣∣ρ̄>j Z̄∣∣∣p]) 1

p
+
(
E
[∣∣fj (Z̄)∣∣p]) 1

p <∞.

Finally, we show that for Fj-measurable random variables Z̄ there exists an Fj-measurable random
variable ρj satisfying (1.17). To this end, let Z̄ ∈ L∞−j (Rd) and let ρ̄j be the possibly not Fj-
measurable random variable for which (1.17) holds and whose existence is already shown. We show
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that ρj = Ej [ρ̄j ] is the asserted random variable. By taking the conditional expectation of (1.21)

and applying Jensen’s inequality to the convex function f#
j , we conclude that

Ej [ρ̄j ]
> Z̄ ≥ fj

(
Z̄
)

+ Ej

[
f#
j (ρ̄j)

]
≥ fj

(
Z̄
)

+ f#
j (Ej [ρ̄j ]) .

In combination with (1.18), we thus end up with

fj(Z̄) = Ej [ρ̄j ]
> Z̄ − f#

j (Ej [ρ̄j ]) = ρ>j Z̄ − f
#
j (ρj)

as claimed. The integrability of ρj ∈ L∞−(Rd) and f#
j (ρj) ∈ L∞−(R) follows by the same argu-

ments applied before.

1.3 The monotone case

In this section, we construct upper and lower bounds to the solution Y to (1.15). To do this, we
rely on the pathwise approach proposed by Bender et al. (2017) in the context of one-dimensional
convex dynamic programs. This approach builds on the construction of super- and subsolutions to
(1.15) and requires an additional monotonicity assumption on the functions F (ν) in the sense that
a comparison principle holds. We begin this section by imposing the comparison principle. Then,
we briefly recall the main ideas of Bender et al. (2017) and generalize them at the same time to
our present setting.

In general, it is not clear that super- and subsolutions are ordered, i.e., it need not hold, that
Y up
j ≥ Yj ≥ Y low

j for all j = 0, . . . , J and, hence, they typically do not constitute bounds. The
following assumption, to which we refer as comparison principle, ensures this.

Assumption 1.3.1. For every supersolution Y up and every subsolution Y low to the dynamic pro-
gram (1.15) it holds that

Y up
j ≥ Y low

j , P -a.s.,

for every j = 0, . . . , J .

The main idea of Bender et al. (2017) in the construction of the upper bound is to drop the
conditional expectations in (1.15) and instead subtract a martingale increment. Hence, let j ∈
{0, . . . , J − 1} be fixed. Then, for a given martingale M ∈ MND, we define the typically non-
adapted process Θup := Θup(M) recursively by

Θ
(up,ν)
J = ξ(ν)

Θ
(up,ν)
i = F

(ν)
i

(
βi+1Θ

(up,1)
i+1 −∆M

[1]
i+1, . . . , βi+1Θ

(up,N)
i+1 −∆M

[N ]
i+1

)
, i = J − 1, . . . , j, ν = 1, . . . , N,

(1.22)

where ∆M
[n]
i+1 := M

[n]
i+1 −M

[n]
i .

Lemma 1.3.2. Suppose Assumptions 1.2.1. Then, for every j ∈ {0, . . . , J} and M ∈ MND, the
process Θup(M) defined by (1.22) satisfies Θup

i (M) ∈ L∞−(RN ) for all i = j, . . . , J .
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The proof of this lemma follows the same lines of reasoning as the one of Lemma 1.2.2, so that we
omit the details here.

Based on the recursion (1.22), we define the adapted process Y up by

Y up
j := Ej

[
Θup
j

]
, j = 0, . . . , J,

which is well-defined by Lemma 1.3.2. Then, Y up is a supersolution to (1.15). To see this, we first
apply Jensen’s inequality and obtain

Y
(up,ν)
j = Ej

[
Θ

(up,ν)
j

]
= Ej

[
F

(ν)
j

(
βj+1Θ

(up,1)
j+1 −∆M

[1]
j+1, . . . , βj+1Θ

(up,N)
j+1 −∆M

[N ]
j+1

)]
≥ F (ν)

j

(
Ej

[
βj+1Θ

(up,1)
j+1 −∆M

[1]
j+1

]
, . . . , Ej

[
βj+1Θ

(up,N)
j+1 −∆M

[N ]
j+1

])
.

From the martingale property of M and the tower property of the conditional expectation, we
finally conclude that

Y
(up,ν)
j ≥ F (ν)

j

(
Ej

[
βj+1Θ

(up,1)
j+1

]
, . . . , Ej

[
βj+1Θ

(up,N)
j+1

])
= F

(ν)
j

(
Ej

[
βj+1Ej+1

[
Θ

(up,1)
j+1

]]
, . . . , Ej

[
βj+1Ej+1

[
Θ

(up,N)
j+1

]])
= F

(ν)
j

(
Ej

[
βj+1Y

(up,1)
j+1

]
, . . . , Ej

[
βj+1Y

(up,N)
j+1

])
for every j = 0, . . . , J−1 and ν = 1, . . . , N showing the supersolution property for the process Y up.

In order to construct a subsolution to (1.15), we rely on duality techniques from convex analysis.
More precisely, we linearize the dynamic programming equation (1.15) in the following way: By

convexity and closedness of F
(ν)
j , we have due to Theorem 12.2 in Rockafellar (1970) that F

(ν,##)
j =

F
(ν)
j for every j = 0, . . . , J − 1, ν = 1, . . . , N and ω ∈ Ω. Hence, for every j = 0, . . . , J − 1,

ν = 1, . . . , N , ω ∈ Ω, and z ∈ RND, it holds that

F
(ν)
j (ω, z) = sup

u∈RND

N∑
n=1

(
u[n]
)>

z[n] − F (ν,#)
j (ω, u), (1.23)

where F
(ν,#)
j denotes the convex conjugate of F

(ν)
j defined in (1.16). From Lemma 1.2.4, we get

existence of an adapted process r(ν,∗) ∈ AF (ν)

0 which solves

N∑
n=1

(
r

(ν,∗),[n]
j

)>
Ej

[
βj+1Y

(n)
j+1

]
− F (ν,#)

j

(
r

(ν,∗)
j

)
= F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
(1.24)

for every j = 0, . . . , J − 1 and ν = 1, . . . , N .

Following Bender et al. (2017), we now fix admissible controls r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , and

define the typically non-adapted process Θlow := Θlow(r(1), . . . , r(N)) by

Θ
(low,ν)
J = ξ(ν),

Θ
(low,ν)
i =

N∑
n=1

(
r

(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1 − F (ν,#)

i

(
r

(ν)
i

)
, i = J − 1, . . . , j, ν = 1, . . . , N, (1.25)

for j ∈ {0, . . . , J − 1}.
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Lemma 1.3.3. Suppose Assumptions 1.2.1. Then, for every j ∈ {0, . . . , J} and any admissible

controls r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , the process Θlow(r(1), . . . , r(N)) defined by (1.25) satisfies

Θlow
i (r(1), . . . , r(N)) ∈ L∞−(RN ) for all i = j, . . . , J .

Proof. Let j ∈ {0, . . . , J − 1} and r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , be fixed from now on and define

Θlow := Θlow(r(1), . . . , r(N)) by (1.25). The proof is by backward on induction on i = j, . . . , J − 1
with the case i = J being trivial, since ξ(ν) ∈ L∞−J (R) by assumption for each ν. Now suppose that
the assertion is true for i+ 1. Then, the Minkowski inequality and the Hölder inequality yield

E
[∣∣∣Θ(low,ν)

i

∣∣∣p] 1
p

= E

[∣∣∣∣∣
N∑
n=1

(
r

(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1 − F (ν,#)

i

(
r

(ν)
i

)∣∣∣∣∣
p] 1

p

≤ E

[∣∣∣∣∣
N∑
n=1

(
r

(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1

∣∣∣∣∣
p] 1

p

+ E
[∣∣∣F (ν,#)

i

(
r

(ν)
i

)∣∣∣p] 1
p

≤
N∑
n=1

E

[∣∣∣∣(r(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1

∣∣∣∣p] 1
p

+ E
[∣∣∣F (ν,#)

i

(
r

(ν)
i

)∣∣∣p] 1
p

≤
N∑
n=1

E

[∣∣∣∣(r(ν),[n]
i

)>
βi+1

∣∣∣∣2p
] 1

2p

E

[∣∣∣Θ(low,n)
i+1

∣∣∣2p] 1
2p

+ E
[∣∣∣F (ν,#)

i

(
r

(ν)
i

)∣∣∣p] 1
p

From the admissibility of the controls r(ν), ν = 1, . . . , N , the integrability assumptions on β, and

the induction hypothesis we obtain that E[|Θ(low,ν)
i |p]

1
p <∞ and the proof is complete.

As in the case of supersolutions, we rely on (1.25) to define a subsolution Y low to (1.15). To this

end, let r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N and let Θlow := Θlow(r(1), . . . , r(N)) be given by (1.25) with
j = 0. Then, we define the adapted process Y low by

Y low
j := Ej

[
Θlow
j

]
, j = 0, . . . , J.

By Lemma 1.3.3, this process is well-defined. From the adaptedness of the controls r(ν), we observe
that

Y
(low,ν)
j = Ej

[
Θ

(low,ν)
j

]
= Ej

[
N∑
n=1

(
r

(ν),[n]
j

)>
βj+1Θ

(low,n)
j+1 − F (ν,#)

j

(
r

(ν)
j

)]

=

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Θ

(low,n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
.

A straightforward application of the tower property of the conditional expectation and (1.23) shows
that

Y
(low,ν)
j =

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Ej+1

[
Θ

(low,n)
j+1

]]
− F (ν,#)

j

(
r

(ν)
j

)
=

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Y

(low,n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
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≤ F (ν)
j

(
Ej

[
βj+1Y

(low,1)
j+1

]
, . . . , Ej

[
βj+1Y

(low,N)
j+1

])
,

for every j = 0, . . . , J − 1 and ν = 1, . . . , N and, thus, Y low is a subsolution to (1.15).

Summarizing, we obtain by the comparison principle that

Ej

[
Θlow
j

(
r(1), . . . , r(N)

)]
≤ Yj ≤ Ej

[
Θup
j (M)

]
for every j = 0, . . . , J , M ∈ MND and all admissible controls r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N . In
particular, we have that

esssup
r(1)∈AF (1)

0 ,...,r(N)∈AF (N)
0

E0

[
Θ

(low,ν)
0

(
r(1), . . . , r(N)

)]
≤ Y (ν)

0 ≤ essinf
M∈MND

E0

[
Θ

(up,ν)
0 (M)

]
(1.26)

for every ν = 1, . . . , N . We emphasize that the essential supremum is taken over all admissible
controls r(1), . . . , r(N), since Θ(low,ν) depends on r(n), n 6= ν, implicitly through the processes
Θ(low,n). The following theorem generalizes (1.26) to arbitrary j ∈ {0, . . . ., J − 1} and establishes,
at the same time, existence of optimal controls and martingales for these inequalities.

Theorem 1.3.4. Suppose Assumptions 1.2.1 and 1.3.1. Then, for every j = 0, . . . , J and ν =
1, . . . , N ,

Y
(ν)
j = essinf

M∈MND

Ej

[
Θ

(up,ν)
j (M)

]
= esssup

r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j

Ej

[
Θ

(low,ν)
j

(
r(1), . . . , r(N)

)]
, P -a.s.

Moreover,

Y
(ν)
j = Θ

(up,ν)
j (M∗) = Ej

[
Θ

(low,ν)
j

(
r(1,∗), . . . , r(N,∗)

)]
P -almost surely, whenever each r(ν,∗) satisfies the duality relation (1.24), i.e.,

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
P -almost surely for every i = j, . . . , J − 1 and each M∗,[ν] is the Doob martingale of βY (ν).

The following example illustrates the construction of the proposed upper and lower bounds in the
context of stopping problems and relates Theorem 1.3.4 to existing results for this kind of problems.

Example 1.3.5. (i) Recall that the system of dynamic programming equations for the multiple
stopping problem considered in Example 1.1.1 is given by

Y
(ν)
j = max

{
Ej

[
Y

(ν)
j+1

]
, Sj + Ej

[
Y

(ν−1)
j+1

]}
, Y

(ν)
J = νSJ ,

for j = 0, . . . , J − 1, ν = 1, . . . , N , and Y (0) ≡ 0. Due to the monotonicity of the maximum,
it is straightforward to show, that this system of dynamic programs satisfies the comparison
principle. Indeed, let Y up and Y low be a super- respectively subsolution to the dynamic
program and suppose that Y up

j+1 ≥ Y low
j+1 holds by induction hypothesis. Then, the monotonicity
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of the maximum and the conditional expectation as well as the super- respectively subsolution
property of Y up and Y low yield

Y
(up,ν)
j ≥ max

{
Ej

[
Y

(up,ν)
j+1

]
, Sj + Ej

[
Y

(up,ν−1)
j+1

]}
≥ max

{
Ej

[
Y

(low,ν)
j+1

]
, Sj + Ej

[
Y

(low,ν−1)
j+1

]}
≥ Y (low,ν)

j

for every ν = 1, . . . , N . Taking a martingale M ∈ MN (since D = 1) and applying (1.22) to
this problem, we obtain that the upper bound Θup is given by

Θ
(up,ν)
J = νSJ

Θ
(up,ν)
j = max

{
Θ

(up,ν)
j+1 −∆M

[ν]
j+1, Sj + Θ

(up,ν−1)
j+1 −∆M

[ν−1]
j+1

}
, j = J − 1, . . . , 0 (1.27)

for ν = 1, . . . , N and with Θ(up,0) ≡ 0. This system of equations can be solved explicitly and
we conclude that

Θ
(up,ν)
j = max

j≤i1≤···≤iν ,
ik=ik+1⇒ ik=J

ν∑
k=1

(
Sik −M

[ν−k+1]
ik

+M
[ν−k+1]
ik−1

)
, i0 := j.

This is indeed the pure martingale dual proposed by Schoenmakers (2012), for which the
numerically more tractable recursion (1.27) is due to Balder et al. (2013). This upper bound
has also been derived by Chandramouli and Haugh (2012) in the more general context of
information relaxation. In the case of single stopping (i.e. N = 1), this dual minimization
problem collapses to the one derived independently by Rogers (2002) and Haugh and Kogan
(2004).

(ii) In the case N = 1, we next explain, how the maximization problem in Theorem 1.3.4 relates

to optimal stopping. By Appendix A.2, we get that the convex conjugate F#
j of the function

Fj(z) = max{Sj , z} is given by

F#
j (u) = (u− 1)Sj

on the effective domain D
(j,ω)

F# = [0, 1]. Hence, for any j ∈ {0, . . . , J} and r ∈ AFj , one obtains
by backward induction, that

Θlow
j (r) = rjΘ

low
j+1(r) + (1− rj)Sj = SJ

J−1∏
i=j

ri +
J−1∑
i=j

(1− ri)Si
i−1∏
k=j

rk. (1.28)

We thus conclude by Theorem 1.3.4, that

Yj = esssup
r∈AFj

Ej [Θ
low
j (r)],

where the set AFj of admissible controls is given by

AFj = {(ri)i=j,...,J−1| ri Fi −measurable, ri ∈ [0, 1]} .

Since the duality relation (1.24) is given by

r∗iEi[Yi+1] + (1− r∗i )Si = max{Si, Ei[Yi+1]}, i = 0, . . . , J − 1,

22



we observe, that the supremum can be restricted to {0, 1}-valued controls. If r ∈ AFj takes
values in {0, 1}, then

τr := inf {j ≤ i ≤ J − 1|ri = 0} ∧ J

is a stopping time in Sj and, by (1.28), Θlow
j (r) = Sτr . Conversely, given any stopping

time τ ∈ Sj , we have that τ = τr for the admissible control r ∈ AFj given by ri = 1{τ 6=i},
i = j, . . . , J − 1. Hence, we obtain that

esssup
r∈AFj

Ej [Θ
low
j (r)] = esssup

τ∈Sj
Ej [Sτ ],

i.e., the primal maximization problem in Theorem 1.3.4 is a reformulation of the original
stopping problem. The multiple stopping case, i.e. N > 1, can be handled analogously.

We now give the proof of Theorem 1.3.4.

Proof of Theorem 1.3.4. Let j ∈ {0, . . . , J − 1} be fixed from now on. Further, let M ∈MND be a

martingale, r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , be admissible controls and let Θup := Θup(M) respectively

Θlow := Θlow(r(1), . . . , r(N)) be given by (1.22) and (1.25). We first show that

Ej

[
Θlow
j

]
≤ Yj ≤ Ej

[
Θup
j

]
holds by the comparison principle. To this end, we define the processes Y up,j and Y low,j by

Y
(up,ν),j
i =

Ei
[
Θ

(up,ν)
i

]
, i ≥ j

F
(ν)
i

(
Ei

[
βi+1Y

(up,1),j
i+1

]
, . . . , Ei

[
βi+1Y

(up,N),j
i+1

])
, i < j

and

Y
(low,ν),j
i =

Ei
[
Θ

(low,ν)
i

]
, i ≥ j

F
(ν)
i

(
Ei

[
βi+1Y

(low,1),j
i+1

]
, . . . , Ei

[
βi+1Y

(low,N),j
i+1

])
, i < j

for every ν = 1, . . . , N . Then, Y up,j and Y low,j are super- and subsolutions to (1.15). Indeed, for
i ≥ j, this follows by the same arguments applied at the beginning of this section. For i < j,
this is an immediate consequence of the definition of Y up,j and Y low,j . Hence, we obtain by the
comparison principle that

Y
(low,ν),j
i ≤ Y (ν)

i ≤ Y (up,ν),j
i

holds for every i = 0, . . . , J and ν = 1, . . . , N . In particular, we have that

Y
(low,ν),j
j ≤ Y (ν)

j ≤ Y (up,ν),j
j

and thus

Ej

[
Θ

(low,ν)
j

]
≤ Y (ν)

j ≤ Ej
[
Θ

(up,ν)
j

]
.

As this chain of inequalities holds for all admissible controls r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , and
martingales M ∈MND, we conclude that

esssup
r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j

Ej

[
Θ

(low,ν)
j

(
r(1), . . . , r(N)

)]
≤ Y (ν)

j ≤ essinf
M∈MND

Ej

[
Θ

(up,ν)
j (M)

]
.

23



It remains to show that

Y
(ν)
j = Θ

(up,ν)
j (M∗) = Ej

[
Θ

(low,ν)
j

(
r(1,∗), . . . , r(N,∗)

)]
P -almost surely for every ν = 1, . . . , N . The proof is by backward induction on i = j, . . . , J . Let
M∗,[ν] be the Doob martingale of βY (ν) and let r(ν,∗) ∈ AF (ν)

j satisfy the duality relation (1.24)
for every ν = 1, . . . , N . The case i = J is trivial, since by definition of Θup,∗ := Θup(M∗) and

Θlow,∗ := Θlow
(
r(1,∗), . . . , r(N,∗)), we have YJ = Θup,∗

J = Θlow,∗
J . Now suppose that the assertion is

true for i+ 1. Then, it follows from the induction hypothesis and the definition of M∗ that

Θ
(up,∗,ν)
i = F

(ν)
i

(
βi+1Θ

(up,∗,1)
i+1 −∆M

∗,[1]
i+1 , . . . , βi+1Θ

(up,∗,N)
i+1 −∆M

∗,[N ]
i+1

)
= F

(ν)
i

(
βi+1Y

(1)
i+1 −∆M

∗,[1]
i+1 , . . . , βi+1Y

(N)
i+1 −∆M

∗,[N ]
i+1

)
= F

(ν)
i

(
βi+1Y

(1)
i+1 −

(
βi+1Y

(1)
i+1 − Ei

[
βi+1Y

(1)
i+1

])
, . . . ,

βi+1Y
(N)
i+1 −

(
βi+1Y

(N)
i+1 − Ei

[
βi+1Y

(N)
i+1

]))
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i

for every ν = 1, . . . , N and thus Yj = Θup,∗
j . For the lower bound, we first observe that

Ei

[
Θ

(low,∗,ν)
i

]
= Ei

[
N∑
n=1

(
r

(ν,∗),[n]
i

)>
βi+1Θ

(low,∗,n)
i+1 − F (ν,#)

i

(
r

(ν,∗)
i

)]

=
N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Θ

(low,∗,n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
.

by the admissibility of r(ν,∗). Then, we obtain by the tower property of the conditional expectation
and the induction hypothesis that

Ei

[
Θ

(low,∗,ν)
i

]
=

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Ei+1

[
Θ

(low,∗,n)
i+1

]]
− F (ν,#)

i

(
r

(ν,∗)
i

)
=

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
.

Exploiting the duality relation (1.24), we conclude that

Ei

[
Θ

(low,∗,ν)
i

]
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i

for every ν = 1, . . . , N and thus Yj = Ej [Θ
low,∗
j ], which completes the proof.

Remark 1.3.6. Note that, we do not require the adaptedness of the martingale M in the proof of
Theorem 1.3.4 but only that Ej [∆Mj+1] = 0 for all j = 0, . . . , J − 1. Thus, for the construction of
upper bounds, we need not restrict ourselves to the setMND of martingales. Indeed, we may take
any V from the set VND of RND-valued processes which satisfy Vj ∈ L∞−(RND) and Ej−1[Vj ] = 0
for every j = 1, . . . , J and replace the martingale increment ∆Mj+1 in the recursion (1.22) for Θup

by the random variable Vj+1.
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Besides its theoretical relevance, Theorem 1.3.4 provides some guidance on the numerical imple-
mentation of the recursions (1.22) and (1.25). If we are given an approximate solution Ỹ to (1.15),
we can obtain approximations M̃ [ν] and r̃(ν) of the Doob martingales M∗,[ν] and the optimal control
r(ν,∗), ν = 1, . . . , N , by replacing the true solution Y by the approximation Ỹ in the definitions.
More precisely, for given ν = 1, . . . , N , we define M̃ [ν] by

M̃
[ν]
j =

j−1∑
i=0

βi+1Ỹ
(ν)
i+1 − Ei

[
βi+1Ỹ

(ν)
i+1

]
, j = 0, . . . , J,

and the process r̃(ν) is given by a (possibly approximate) solution of

N∑
n=1

(
r̃

(ν),[n]
j

)>
Ej

[
βj+1Ỹ

(n)
j+1

]
− F (ν,#)

j

(
r̃

(ν)
j

)
= F

(ν)
j

(
Ej

[
βj+1Ỹ

(1)
j+1

]
, . . . , Ej

[
βj+1Ỹ

(N)
j+1

])
for j = 0, . . . , J − 1. With these approximations at hand, we can go through the recursions
(1.22) and (1.25) path by path and apply a standard Monte Carlo estimator at the initial time
to obtain an upper and lower bound on Y0. Indeed, we obtain by Theorem 1.3.4 that the upper
bound estimator should benefit from a low variance if F0 is trivial (which is typically the case
in numerical applications) and the approximate Doob martingales M̃ [ν] are close to the Doob
martingales M∗,[ν]. Since we do not have this pathwise optimality for the controls r(ν,∗) in the lower
bound, the corresponding estimator typically suffers from a larger variance. This problem is also
discussed in Bender et al. (2017) and Brown and Haugh (2016). In order to avoid this problem,
Bender et al. (2017) propose the modified recursion Θlow := Θlow(r(1), . . . , r(N),M) initiated at

Θ
(low,ν)
J = ξ(ν) and given by

Θ
(low,ν)
j =

N∑
n=1

(
r

(ν),[n]
j

)>
βj+1Θ

(low,n)
j+1 −

N∑
n=1

(
r

(ν),[n]
j

)>
∆M

[n]
j+1 − F

(ν,#)
j

(
r

(ν)
j

)
, (1.29)

for j = J−1, . . . , 0 and ν = 1, . . . , N . This recursion mainly coincides with (1.25) but, additionally,
it takes martingale increments into account. From now on, we consider the recursion (1.29) for
the lower bound and use the shorthand notation Θlow(r(1), . . . , r(N)) := Θlow(r(1), . . . , r(N), 0) to

denote the recursion (1.25). Since we have that Ej [Θ
(low,ν)
j ] = Ej [Θ

(low,ν)
j (r(1), . . . , r(N))] for every

j = 0, . . . , J and ν = 1, . . . , N by backward induction, we observe that these increments play the
role of control variates. A straightforward modification in the proof of Theorem 1.3.4 then shows
that

Yj = Θlow
j

(
r(1,∗), . . . , r(N,∗),M∗

)
P -a.s.

for every j = 0, . . . , J , where, for every ν = 1, . . . , N , r(ν,∗) is given by (1.24) and M∗,[ν] is the Doob
martingale of βY (ν).

1.4 Characterizations of the comparison principle

In the previous section, we observed that the comparison principle plays a key role in the pathwise
approach of Bender et al. (2017) for the construction of upper and lower bounds. The following
theorem states further characterizations of the comparison principle and is the basis for our further
considerations.

Theorem 1.4.1. Under Assumptions 1.2.1 the following assertions are equivalent:
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(a) The comparison principle as stated in Assumption 1.3.1 is satisfied.

(b) For every ν = 1, . . . , N and r(ν) ∈ AF (ν)

0 the following positivity condition is fulfilled: For every
j = 0, . . . , J − 1 and n = 1, . . . , N(

r
(ν),[n]
j

)>
βj+1 ≥ 0, P -a.s.

(c) For every j = 0, . . . , J − 1, ν = 1, . . . , N and any two random variables Y (1), Y (2) ∈ L∞−(RN )
with Y (1) ≥ Y (2) P -a.s., the following monotonicity condition is satisfied:

F
(ν)
j

(
Ej

[
βj+1Y

(1,1)
]
, . . . , Ej

[
βj+1Y

(1,N)
])
≥ F (ν)

j

(
Ej

[
βj+1Y

(2,1)
]
, . . . , Ej

[
βj+1Y

(2,N)
])
,

P -almost surely.

Proof. (b)⇒ (c) : Fix j ∈ {0, . . . , J − 1} and ν ∈ {1, . . . , N}. Further, let Y (1) and Y (2) be two
random variables which are in L∞−(RN ) and satisfy Y (1) ≥ Y (2) P -a.s. From Lemma 1.2.4,

we have existence of a control r(ν) ∈ AF (ν)

0 satisfying

F
(ν)
j

(
Ej

[
βj+1Y

(2,1)
]
, . . . , Ej

[
βj+1Y

(2,N)
])

=

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Y

(2,n)
]
−F (ν,#)

j

(
r

(ν)
j

)
.

Hence, (b) and (1.23) yield

F
(ν)
j

(
Ej

[
βj+1Y

(2,1)
]
, . . . , Ej

[
βj+1Y

(2,N)
])

=
N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Y

(2,n)
]
− F (ν,#)

j

(
r

(ν)
j

)
=

N∑
n=1

Ej

[(
r

(ν),[n]
j

)>
βj+1Y

(2,n)

]
− F (ν,#)

j

(
r

(ν)
j

)
≤

N∑
n=1

Ej

[(
r

(ν),[n]
j

)>
βj+1Y

(1,n)

]
− F (ν,#)

j

(
r

(ν)
j

)
≤ F

(ν)
j

(
Ej

[
βj+1Y

(1,1)
]
, . . . , Ej

[
βj+1Y

(1,N)
])
.

(c)⇒ (a) : Let Y up and Y low be super- respectively subsolutions to (1.15). The proof is by back-
ward induction on j = J, . . . , 0. The assertion is trivially true for j = J , since Y up

J ≥ YJ ≥
Y low
J holds by definition of Y up and Y low. Now suppose that the assertion is true for j + 1,

i.e. Y up
j+1 ≥ Y low

j+1 P -a.s. Then, we conclude by the definition of super- and subsolutions, (c)
and the induction hypothesis that

Y
(up,ν)
j ≥ F (ν)

j

(
Ej

[
βj+1Y

(up,1)
j+1

]
, . . . , Ej

[
βj+1Y

(up,N)
j+1

])
≥ F (ν)

j

(
Ej

[
βj+1Y

(low,1)
j+1

]
, . . . , Ej

[
βj+1Y

(low,N)
j+1

])
≥ Y (low,ν)

j

for every ν = 1, . . . , N and, thus, Y up
j ≥ Y low

j .
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(a)⇒ (b) : We prove the contraposition. Hence, we assume that there exist j0 ∈ {0, . . . , J − 1},
ν0, n0 ∈ {1, . . . , N} and r(ν0) ∈ AF (ν0)

0 such that

P

({(
r

(ν0),[n0]
j0

)>
βj0+1 < 0

})
> 0.

Further, let r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , ν 6= ν0, be admissible controls. Based on these
controls, we define the process Ȳ by

Ȳ
(n0)
j =


Y

(n0)
j , j > j0 + 1

Y
(n0)
j − k1{(r(ν0),[n0]

j0
)>βj0+1<0}, j = j0 + 1∑N

n=1

(
r

(n0),[n]
j

)>
Ej

[
βj+1Ȳ

(n)
j+1

]
− F (n0,#)

j

(
r

(n0)
j

)
, j < j0 + 1,

where k ∈ N will be fixed later on, and by

Ȳ
(ν)
j =

Y
(ν)
j , j ≥ j0 + 1∑N
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Ȳ

(n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
, j < j0 + 1,

for ν 6= n0. Then, the process Ȳ is a subsolution to (1.15). To see this, we consider three
different cases: For j > j0 + 1 this is obvious as Ȳ (ν) coincides with the solution Y (ν) for each
ν. Next, we consider the case, that j < j0 + 1. From (1.23), we conclude that

Ȳ
(ν)
j =

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Ȳ

(n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
≤ F (ν)

j

(
Ej

[
βj+1Ȳ

(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

(N)
j+1

])
for every ν = 1, . . . , N . Finally, we consider the case j = j0 + 1. For ν 6= n0, the proof is
completely analog to the case j > j0 + 1, so that we only consider the case ν = n0 in more
detail. A straightforward application of the definition of Ȳ and Y , shows that

Ȳ
(n0)
j = Y

(n0)
j − k1{(r(ν0),[n0]

j0
)>βj0+1<0}

≤ Y (n0)
j

= F
(n0)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
= F

(n0)
j

(
Ej

[
βj+1Ȳ

(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

(N)
j+1

])
,

and, thus, Ȳ is a subsolution.

Now, let r(ν0,∗) ∈ AF (ν0)

0 be given by the duality relation (1.24), i.e.,

N∑
n=1

(
r

(ν0,∗),[n]
j

)>
Ej

[
βj+1Y

(n)
j+1

]
− F (ν0,#)

j

(
r

(ν0,∗)
j

)
= F

(ν0)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
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for every j = 0, . . . , J − 1. From this and the definition of Ȳ , we conclude that

Ȳ
(ν0)
j0
− Y (ν0)

j0

=

N∑
n=1

(
r

(ν0),[n]
j0

)>
Ej0

[
βj0+1Ȳ

(n)
j0+1

]
− F (ν0,#)

j0

(
r

(ν0)
j0

)
−

N∑
n=1

(
r

(ν0,∗),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]
+ F

(ν0,#)
j0

(
r

(ν0,∗)
j0

)
=

N∑
n=1,
n6=n0

(
r

(ν0),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]

+
(
r

(ν0),[n0]
j0

)>
Ej0

[
βj0+1

(
Y

(n0)
j0+1 − k1{(r(ν0),[n0]

j0
)>βj0+1<0}

)]
− F (ν0,#)

j0

(
r

(ν0)
j0

)
−

N∑
n=1

(
r

(ν0,∗),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]
+ F

(ν0,#)
j0

(
r

(ν0,∗)
j0

)
=

N∑
n=1

(
r

(ν0),[n]
j0

− r(ν0,∗),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]
−kEj0

[(
r

(ν0),[n0]
j0

)>
βj0+11{(r(ν0),[n0]

j0
)>βj0+1<0}

]
− F (ν0,#)

j0

(
r

(ν0)
j

)
+ F

(ν0,#)
j0

(
r

(ν0,∗)
j

)
=

N∑
n=1

(
r

(ν0),[n]
j0

− r(ν0,∗),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]
+ kEj0

[((
r

(ν0),[n0]
j0

)>
βj0+1

)
−

]
−F (ν0,#)

j0

(
r

(ν0)
j

)
+ F

(ν0,#)
j0

(
r

(ν0,∗)
j

)
.

Based on these considerations, we define the set Aj0,ν0,n0,K by

Aj0,ν0,n0,K =

{
Ej0

[((
r

(ν0),[n0]
j0

)>
βj0+1

)
−

]
>

1

K

}

∩

{
N∑
n=1

(
r

(ν0),[n]
j0

− r(ν0,∗),[n]
j0

)>
Ej0

[
βj0+1Y

(n)
j0+1

]
−F (ν0,#)

j0

(
r

(ν0)
j

)
+ F

(ν0,#)
j0

(
r

(ν0,∗)
j

)
> −K

}
.

Taking K ∈ N sufficiently large (which is fixed from now on), we get that P (Aj0,ν0,n0,K) > 0
and therefore, for k > K2,(

Ȳ
(ν0)
j0
− Y (ν0)

j0

)
1Aj0,ν0,n0,K

> −K +
k

K
> 0.

Hence, the comparison principle is violated for the subsolution Ȳ with this choice of k and
the supersolution Y .

The following example further illustrates the restrictiveness of assertion (b), and hence of the
comparison principle.
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Example 1.4.2. We consider the problem of pricing under negotiated collateral introduced in Ex-
ample 1.1.2. Applying the discretization scheme (1.5) proposed there on an equidistant time grid
with increments ∆, we end up with the following system of convex dynamic programs

X
(k)
j+1 = X

(k)
j exp

{(
RL − 1

2
σ2

)
∆ + σ∆W

(k)
j+1

}
, X

(k)
0 = x0, k = 1, . . . , d

Y
(1)
J = −Y (2)

J = h(XJ)

Y
(ν)
j = Ej

[
Y

(ν)
j+1

]
−RLaν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
∆

+(−1)νRC
(
αEj

[
Y

(1)
j+1

]
− (1− α)Ej

[
Y

(2)
j+1

])
∆

+(RB −RL)

(
aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Ej

[
∆Wj+1

∆
Y

(ν)
j+1

])>
1

)
−

∆,

for ν = 1, 2, where W is a d-dimensional Brownian motion, α ∈ [0, 1], (a1, a2) = (1 − α, α),
RB, RC , RL ≥ 0, and 1 is the vector in Rd consisting of ones. Hence, we observe that this dynamic

program fits our framework with N = 2, D = d + 1 and the functions F
(1)
j , F

(2)
j : R2(d+1) → R

given by

F
(ν)
j (z1, z2) = z(1)

ν +H(ν)(z1, z2)∆

for zν = (z
(1)
ν , . . . , z

(d+1)
ν ) ∈ Rd+1. Since the non-linearity H(ν) is piecewise-linear, we conclude by

Appendix A.2 that F
(ν,#)
j = 0 on its effective domain D

(j,·)
F (ν,#) = {u(ν)(R)|R ∈ [RL, RB]}, ν = 1, 2,

where

u(1)(r) =


1− r(1− α)∆−RCα∆

(r−RL)∆
σ · 1

(RC − r)(1− α)∆
0 · 1

 and u(2)(r) =


(RC − r)α∆

0 · 1
1− rα∆−RC(1− α)∆

(r−RL)∆
σ · 1

 .

Consequently, the duality relation (1.24) reads as follows:(
r

(ν,∗),[1]
j

)>
Ej

[
βj+1Y

(1)
j+1

]
+
(
r

(ν,∗),[2]
j

)>
Ej

[
βj+1Y

(2)
j+1

]
= Ej

[
Y

(ν)
j+1

]
−RLaν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
∆ + (−1)νRC

(
αEj

[
Y

(1)
j+1

]
− (1− α)Ej

[
Y

(2)
j+1

])
∆

+ (RB −RL)

(
aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Ej

[
∆Wj+1

∆
Y

(ν)
j+1

])>
1

)
−

∆, ν = 1, 2,

with β as in Example 1.1.2. This equation can be solved explicitly and a solution is given by

r
(ν,∗)
j =

u
(ν)(RL), aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Ej

[
∆Wj+1

∆ Y
(ν)
j+1

])>
1 ≥ 0

u(ν)(RB), aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Ej

[
∆Wj+1

∆ Y
(ν)
j+1

])>
1 < 0.

Let RB > RC , which is typically the case in this example. Taking the admissible control r(1) ≡
u(1)(RB) ∈ AF (1)

0 , we observe that

P

({(
r

(1),[2]
j

)>
βj+1 < 0

})
= P

({
(RC −RB)(1− α)∆ < 0

})
= 1,

for every j = 0, . . . , J − 1, so that (b) in Theorem 1.4.1 is violated. Thus, the comparison principle
fails to hold in this example for this choice of parameters.
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Remark 1.4.3. When applying discretization schemes for PDE-systems as proposed in Example
1.1.2, such problems arise, whenever v(ν) depends on v(n), n 6= ν, in a monotonically decreasing
way or if H(ν) depends on the gradient of v(n) for n 6= ν (even if the Brownian increments are
truncated in a standard way).

1.5 The general case

In the previous section we have seen that the comparison principle can be a huge drawback and we
are now interested in removing it. More precisely, we want to construct a pair (θup, θlow) of upper
and lower bounds such that the comparison principle still holds for the corresponding super- and
subsolutions, although it may fail to hold in general.

The main idea is to couple the recursions (1.22) and (1.25) in a suitable way: To this end, let

j ∈ {0, . . . , J}, M ∈ MND be a martingale and let r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , be admissible

controls. Then, the in general non-adapted processes θup := θup(r(1), . . . , r(N),M) and θlow :=
θlow(r(1), . . . , r(N),M) are given by the following modified pathwise recursions:

θ
(up,ν)
J = θ

(low,ν)
J = ξ(ν)

θ
(up,ν)
i = max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, . . . , βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
θ

(low,ν)
i =

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
r

(ν)
i

)
, i = J − 1, . . . , j, ν = 1, . . . , N.(1.30)

The recursion for θlow demonstrates the idea of this construction most clearly: As we have seen in

Theorem 1.4.1, the sign of the weight (r
(ν),[n]
i )>βi+1 determines whether the comparison principle

holds or not. Therefore, we split up the weight into its positive and negative part. If the weight is
positive, the new recursion step coincides with the recursion (1.29). If, however, the weight becomes

negative and the comparison principle is violated, we replace θ
(low,n)
i+1 by θ

(up,n)
i+1 in this recursion

step. Since we have by induction that θupi+1 is larger than θlowi+1, as we will see in Proposition 1.5.2,

the process θ(low,ν) becomes smaller and, thus, the order of the bounds can be maintained. By a
straightforward modification of the proofs of Lemma 1.2.2 and Lemma 1.3.3, we obtain the following
regularity result for the processes θup and θlow.

Lemma 1.5.1. Suppose Assumption 1.2.1. Then, for every j ∈ {0, . . . , J − 1}, M ∈ MND and

r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , the processes θup(r(1), . . . , r(N),M) and θlow(r(1), . . . , r(N),M) given

by (1.30) satisfy θupi (r(1), . . . , r(N),M) ∈ L∞−(RN ) respectively θlowi (r(1), . . . , r(N),M) ∈ L∞−(RN )
for all i = j, . . . , J .

Although, these recursions are a straightforward generalization of the recursions (1.22) and (1.25), it
is not straightforward to show that the processes Y up and Y low given by Y up

j = Ej [θ
up
j ] and Y low

j =

Ej [θ
low
j ], j = 0, . . . , J , are again super- and subsolutions to (1.15), since the arguments applied in

Section 1.3 do not apply here. Hence, a more careful analysis is required. The following proposition
is the key step in this analysis. On the one hand, it provides an alternative representation for θup,
which turns out to be useful for theoretical considerations. On the other hand, it states that the
pair (θup, θlow) given by (1.30) is ordered.
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Proposition 1.5.2. Suppose Assumptions 1.2.1 and let M ∈MND. Then, for every j = 0, . . . , J ,
ν = 1, . . . , N and r(ν) ∈ AF (ν)

j , we have for all i = j, . . . , J − 1 the P -almost sure identity

θ
(up,ν)
i

(
r(1), . . . , r(N),M

)
= sup

u∈RND
Φ

(ν)
i+1

(
u, θupi+1

(
r(1), . . . , r(N),M

)
, θlowi+1

(
r(1), . . . , r(N),M

)
,∆Mi+1

)
, (1.31)

where Φ
(ν)
J+1(u, ϑ1, ϑ2,m) = ξ(ν) and

Φ
(ν)
i+1(u, ϑ1, ϑ2,m)

=

N∑
n=1

((
u[n]
)>

βi+1

)
+

ϑ
(n)
1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
ϑ

(n)
2 −

N∑
n=1

(
u[n]
)>

m[n] − F (ν,#)
i (u) (1.32)

for i = j, . . . , J − 1 and ν = 1, . . . , N . In particular,

θlowi

(
r(1), . . . , r(N),M

)
≤ θupi

(
r(1), . . . , r(N),M

)
(1.33)

P -almost surely for every i = j, . . . , J .

Remark 1.5.3. (i) In contrast to the recursions proposed in Section 1.3, the modified recursions
(1.30) are coupled in the sense that they cannot be computed separately. We have already
seen that the lower bound recursion decouples to (1.29), if the comparison principle holds.
From (1.31) and (1.32), we, however, observe that this is insufficient for the upper bound to
decouple. Indeed, we require that

P

({(
r(ν),[n]

)>
βj+1 ≥ 0

})
= 1 (1.34)

for every j = 0, . . . , J −1, n = 1, . . . , N and any random variable r(ν) ∈ L∞−(RND) satisfying

F
(ν,#)
j (r(ν)) ∈ L∞−(R), ν = 1, . . . , N . In this case, it is however preferable to apply the

decoupled recursions (1.22) and (1.25) for Θup and Θlow instead of (1.30), since we have
by backward induction that Θup

j (M) ≤ θupj (r(1), . . . , r(N),M) and Θlow
j (r(1), . . . , r(N),M) ≥

θlowj (r(1), . . . , r(N),M) for every j = 0, . . . , J , r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , and M ∈MND.

(ii) Proposition 1.5.2 can also turn out to be useful in numerical applications. If the system of
dynamic programming equations is, e.g., high-dimensional, i.e., N is large, the valuation of

the F
(ν)
j in (1.30) can be burdensome. Since the supremum in (1.31) can be restricted to the

effective domain D
(j,·)
F (ν,#) of F

(ν,#)
j , the evaluation of (1.31) may be preferred to (1.30) in such

situations, if D
(j,·)
F (ν,#) can be parametrized easily.

Proof. First we fix j ∈ {0, . . . , J − 1}, M ∈ MND and controls r(ν) in AF (ν)

j . Then, we define

θup := θup(r(1), . . . , r(N),M) and θlow := θlow(r(1), . . . , r(N),M) by (1.30). To lighten the notation,
we set

Φ
(ν)
i+1(u) = Φ

(ν)
i+1(u, θupi+1(r(1), . . . , r(N),M), θlowi+1(r(1), . . . , r(N),M),∆Mi+1).
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The proof is by backward induction on i = J, . . . , j, with the case i = J being trivial, since

θ
(up,ν)
J = θ

(low,ν)
J = Φ

(ν)
J+1 = ξ(ν) by definition for every ν = 1, . . . , N . Now suppose that θupi+1 ≥ θlowi+1

holds for i+ 1. From (1.23) and since θupi+1 ≥ θlowi+1 by the induction hypothesis, we conclude that

θ
(up,ν)
i = max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, . . . , βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
= max

ι∈{up,low}N

{
sup

u∈RND

N∑
n=1

(
u[n]
)>

βi+1θ
(ιn,n)
i+1 −

N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

}

= max
ι∈{up,low}N

{
sup

u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(ιn,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(ιn,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

}

≤ max
ι∈{up,low}N

{
sup

u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

}

= sup
u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

= sup
u∈RND

Φ
(ν)
i+1(u)

P -almost surely for every ν = 1, . . . , N . In order to obtain the converse inequality, we fix u ∈ RND.
Applying (1.23) yields

Φ
(ν)
i+1(u) =

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

=
N∑
n=1

(
u[n]
)>

βi+1θ
(up,n)
i+1 1{(u[n])>βi+1≥0} +

N∑
n=1

(
u[n]
)>

βi+1θ
(low,n)
i+1 1{(u[n])>βi+1<0}

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

=

N∑
n=1

(
u[n]
)>

βi+1

(
θ

(up,n)
i+1 1{(u[n])>βi+1≥0} + θ

(low,n)
i+1 1{(u[n])>βi+1<0}

)
−

N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

32



≤ F
(ν)
i

(
βi+1

(
θ

(up,1)
i+1 1{(u[1])>βi+1≥0} + θ

(low,1)
i+1 1{(u[1])>βi+1<0}

)
−∆M

[1]
i+1, . . . ,

βi+1

(
θ

(up,N)
i+1 1{(u[N ])>βi+1≥0} + θ

(low,N)
i+1 1{(u[N ])>βi+1<0}

)
−∆M

[N ]
i+1

)
≤ max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, . . . , βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
= θ

(up,ν)
i

for every ω ∈ Ω and ν = 1, . . . , N . Hence, we have

θ
(up,ν)
i = sup

u∈RND
Φ

(ν)
i+1(u)

P -a.s. for every i = j, . . . , J and ν = 1, . . . , N . To complete the proof, it remains to show that
θupi ≥ θlowi . By the induction hypothesis we conclude that

θ
(up,ν)
i = sup

u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

≥ sup
u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

≥
N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
r

(ν),[n]
i

)
= θ

(low,ν)
i

P -a.s. for every ν = 1, . . . , N .

From Proposition 1.5.2 and the monotonicity of the conditional expectation, we conclude that the
processes Y up and Y low are ordered. We next show that Y up and Y low are super- and subsolutions.

Proposition 1.5.4. Under Assumptions 1.2.1 the processes Y up and Y low, which are given by
Y up
j = Ej [θ

up
j (r(1), . . . , r(N),M)] respectively Y low

j = Ej [θ
low
j (r(1), . . . , r(N),M)], j = 0, . . . , J , de-

fine super- and subsolutions to (1.15) for every M ∈MND and r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N .

Proof. Let M ∈ MND, r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , and define θup := θup(r(1), . . . , r(N),M) and
θlow := θlow(r(1), . . . , r(N),M) according to (1.30). Then, we observe by the definition of θup and

Jensen’s inequality applied to the convex functions max and F
(ν)
j that

Y
(up,ν)
j = Ej

[
θ

(up,ν)
j

]
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= Ej

[
max

ι∈{up,low}N
F

(ν)
j

(
βj+1θ

(ι1,1)
j+1 −∆M

[1]
j+1, . . . , βj+1θ

(ιN ,N)
j+1 −∆M

[N ]
j+1

)]
≥ max

ι∈{up,low}N
F

(ν)
j

(
Ej

[
βj+1θ

(ι1,1)
j+1 −∆M

[1]
j+1

]
, . . . , Ej

[
βj+1θ

(ιN ,N)
j+1 −∆M

[N ]
j+1

])
.

Now, the martingale property of M and the tower property of the conditional expectation yield

Y
(up,ν)
j ≥ max

ι∈{up,low}N
F

(ν)
j

(
Ej

[
βj+1θ

(ι1,1)
j+1

]
, . . . , Ej

[
βj+1θ

(ιN ,N)
j+1

])
= max

ι∈{up,low}N
F

(ν)
j

(
Ej

[
βj+1Ej+1

[
θ

(ι1,1)
j+1

]]
, . . . , Ej

[
βj+1Ej+1

[
θ

(ιN ,N)
j+1

]])
.

Using the definition of Y up shows that

Y
(up,ν)
j ≥ max

ι∈{up,low}N
F

(ν)
j

(
Ej

[
βj+1Y

(ι1,1)
j+1

]
, . . . , Ej

[
βj+1Y

(ιN ,N)
j+1

])
≥ F (ν)

j

(
Ej

[
βj+1Y

(up,1)
j+1

]
, . . . , Ej

[
βj+1Y

(up,N)
j+1

])
.

It remains to show that Y low defines a subsolution. We first obtain by the definition of θlow, the
martingale property of M and the admissibility of the controls that

Y
(low,ν)
j = Ej

[
θ

(low,ν)
j

]
= Ej

[
N∑
n=1

((
r

(ν),[n]
j

)>
βj+1

)
+

θ
(low,n)
j+1 −

N∑
n=1

((
r

(ν),[n]
j

)>
βj+1

)
−
θ

(up,n)
j+1

−
N∑
n=1

(
r

(ν),[n]
j

)>
∆M

[n]
j+1 − F

(ν,#)
j

(
r

(ν)
j

)]

=

N∑
n=1

Ej

[((
r

(ν),[n]
j

)>
βj+1

)
+

θ
(low,n)
j+1

]
−

N∑
n=1

Ej

[((
r

(ν),[n]
j

)>
βj+1

)
−
θ

(up,n)
j+1

]
−F (ν,#)

j

(
r

(ν)
j

)
.

In a next step, we exploit the pathwise comparison (1.33) in Proposition 1.5.2 in order to observe
that

Y
(low,ν)
j ≤

N∑
n=1

Ej

[((
r

(ν),[n]
j

)>
βj+1

)
+

θ
(low,n)
j+1

]
−

N∑
n=1

Ej

[((
r

(ν),[n]
j

)>
βj+1

)
−
θ

(low,n)
j+1

]
−F (ν,#)

j

(
r

(ν)
j

)
=

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1θ

(low,n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
.

To complete the proof, we conclude by the tower property of the conditional expectation, the
definition of Y low, and (1.23) that

Y
(low,ν)
j ≤

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Ej+1

[
θ

(low,n)
j+1

]]
− F (ν,#)

j

(
r

(ν)
j

)
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=

N∑
n=1

(
r

(ν),[n]
j

)>
Ej

[
βj+1Y

(low,n)
j+1

]
− F (ν,#)

j

(
r

(ν)
j

)
≤ F

(ν)
j

(
Ej

[
βj+1Y

(low,1)
j+1

]
, . . . , Ej

[
βj+1Y

(low,N)
j+1

])
.

Since j ∈ {0, . . . , J − 1} was arbitrary, we conclude that Y up and Y low are super- respectively
subsolutions to (1.15).

We are now in the position to state the main result of this section, which generalizes Theorem 1.3.4
to the coupled bounds (1.30).

Theorem 1.5.5. For every j = 0, . . . , J and ν = 1, . . . , N ,

Y
(ν)
j = essinf

r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j ,

M∈MND

Ej

[
θ

(up,ν)
j

(
r(1), . . . , r(N),M

)]

= esssup

r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j ,

M∈MND

Ej

[
θ

(low,ν)
j

(
r(1), . . . , r(N),M

)]
, P -a.s.

Moreover,

Y
(ν)
j = θ

(up,ν)
j

(
r(1,∗), . . . , r(N,∗),M∗

)
= θ

(low,ν)
j

(
r(1,∗), . . . , r(N,∗),M∗

)
(1.35)

P -almost surely, whenever each r(ν,∗) satisfies the duality relation (1.24), i.e.,

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
P -almost surely for every i = j, . . . , J − 1 and each M∗,[ν] is the Doob martingale of βY (ν).

Before we turn to the proof of Theorem 1.5.5, we should emphasize the role of the martingale
increment in the recursion (1.30) for θlow. Recall that the martingale increment only acted as a
control variate in the modified recursion (1.29) for Θlow. In this generalized setting, it is, however,
crucial, as the pathwise comparison property stated in Proposition 1.5.2, which plays a key role in
the proof of Theorem 1.5.5, requires the same choice of martingales in the recursions for θup and
θlow.

Proof. Let j ∈ {0, . . . , J−1} be fixed from now on. Further, let M ∈MND be a martingale, r(ν) ∈
AF (ν)

j , ν = 1, . . . , N , be admissible controls and let θup := θup(r(1), . . . , r(N),M) respectively θlow :=

θlow(r(1), . . . , r(N),M) be given by (1.30). Further, we denote by r(ν,∗) ∈ AF (ν)

j , ν = 1, . . . , N ,
optimal controls satisfying the duality relation (1.24). We first show by backward induction on i
that

Ei[θ
low
i ] ≤ Yi ≤ Ei[θupi ] (1.36)

holds P -a.s. for every i = j, . . . , J . The case i = J is trivial, since it holds that θ
(up,ν)
J = θ

(low,ν)
J =

ξ(ν) = Y
(ν)
J for every ν = 1, . . . , N by definition of θup and θlow. Suppose that (1.36) is true for
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i + 1. From the martingale property of M and the tower property of the conditional expectation,
we obtain that

Ei

[
θ

(low,ν)
i

]
= Ei

[
N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
r

(ν)
i

)]

=
N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
+

θ
(low,n)
i+1

]
−

N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
−
θ

(up,n)
i+1

]
−F (ν,#)

i

(
r

(ν)
i

)
=

N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
+

Ei+1

[
θ

(low,n)
i+1

]]

−
N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
−
Ei+1

[
θ

(up,n)
i+1

]]
− F (ν,#)

i

(
r

(ν)
i

)
.

Then, we observe by the induction hypothesis and (1.23) that

Ei

[
θ

(low,ν)
i

]
≤

N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
+

Y
(n)
i+1

]
−

N∑
n=1

Ei

[((
r

(ν),[n]
i

)>
βi+1

)
−
Y

(n)
i+1

]
−F (ν,#)

i

(
r

(ν)
i

)
=

N∑
n=1

(
r

(ν),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν)
i

)
≤ F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i

for every ν = 1, . . . , N , which proves the first inequality in (1.36). By applying the alternative
representation for θup in Proposition 1.5.2 and essentially the same arguments as before, we conclude
that

Ei

[
θ

(up,ν)
i

]
= Ei

[
sup

u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

]

≥ Ei

[
N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
r

(ν,∗),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
r

(ν,∗)
i

)]

=

N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1

]
−

N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1

]
−F (ν,#)

i

(
r

(ν,∗)
i

)
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=

N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
+

Ei+1

[
θ

(up,n)
i+1

]]

−
N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
−
Ei+1

[
θ

(low,n)
i+1

]]
− F (ν,#)

i

(
r

(ν,∗)
i

)
≥

N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
+

Y
(n)
i+1

]
−

N∑
n=1

Ei

[((
r

(ν,∗),[n]
i

)>
βi+1

)
−
Y

(n)
i+1

]
−F (ν,#)

i

(
r

(ν,∗)
i

)
=

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i .

For the second last equality, we additionally used the duality relation (1.24). Since ν ∈ {1, . . . , N}
is arbitrary, we obtain the second inequality in (1.36), and thus

esssup

r(n)∈AF (n)

j , n=1,...,N,

M∈MND

θ
(low,ν)
j

(
r(1), . . . , r(N),M

)
≤ Y (ν)

j

≤ essinf
r(n)∈AF (n)

j , n=1,...,N,

M∈MND

θ
(up,ν)
j

(
r(1), . . . , r(N),M

)

for all ν = 1, . . . , N .

To complete the proof, we show that

Y
(ν)
i = θ

(up,ν)
i

(
r(1,∗), . . . , r(N,∗),M∗

)
= θ

(low,ν)
i

(
r(1,∗), . . . , r(N,∗),M∗

)
holds for every i = j, . . . , J and ν = 1, . . . , N . To this end, let M∗,[ν] be the Doob martingale of
βY (ν). Then, the proof is again by backward induction on i. As before, the case i = J is trivially
true by definition of θup,∗ := θup(r(1,∗), . . . , r(N,∗),M∗) and θlow,∗ := θlow(r(1,∗), . . . , r(N,∗),M∗).
Now, suppose that the assertion is true for i + 1. Then, we conclude by the definition of M∗, the
induction hypothesis, and (1.24) that

θ
(low,∗,ν)
i =

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
+

θ
(low,∗,n)
i+1 −

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
−
θ

(up,∗,n)
i+1

−
N∑
n=1

(
r

(ν,∗),[n]
i

)>
∆M

∗,[n]
i+1 − F

(ν,#)
i

(
r

(ν,∗)
i

)
=

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
+

θ
(low,∗,n)
i+1 −

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
−
θ

(up,∗,n)
i+1

−
N∑
n=1

(
r

(ν,∗),[n]
i

)> (
βi+1Y

(n)
i+1 − Ei

[
βi+1Y

(n)
i+1

])
− F (ν,#)

i

(
r

(ν,∗)
i

)
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=

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
+

Y
(n)
i+1 −

N∑
n=1

((
r

(ν,∗),[n]
i

)>
βi+1

)
−
Y

(n)
i+1

−
N∑
n=1

(
r

(ν,∗),[n]
i

)> (
βi+1Y

(n)
i+1 − Ei

[
βi+1Y

(n)
i+1

])
− F (ν,#)

i

(
r

(ν,∗)
i

)
=

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i

holds for every ν = 1, . . . , N . For the upper bound, the definition of M∗ and the induction
hypothesis yield

θ
(up,∗,ν)
i = max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,∗,1)
i+1 −∆M

∗,[1]
i+1 , . . . , βi+1θ

(ιN ,∗,N)
i+1 −∆M

∗,[N ]
i+1

)
= max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,∗,1)
i+1 −

(
βi+1Y

(1)
i+1 − Ei

[
βi+1Y

(1)
i+1

])
, . . . ,

βi+1θ
(ιN ,∗,N)
i+1 −

(
βi+1Y

(N)
i+1 − Ei

[
βi+1Y

(N)
i+1

]))
= max

ι∈{up,low}N
F

(ν)
i

(
βi+1Y

(1)
i+1 −

(
βi+1Y

(1)
i+1 − Ei

[
βi+1Y

(1)
i+1

])
, . . . ,

βi+1Y
(N)
i+1 −

(
βi+1Y

(N)
i+1 − Ei

[
βi+1Y

(N)
i+1

]))
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
= Y

(ν)
i

for every ν = 1, . . . , N , and, thus, the proof is complete.

1.6 Influence of martingale approximations

The numerical implementation of the bounds proposed above typically requires the approximation
of the optimal martingale M∗. In this section, we want to investigate the influence of such approx-
imations on the upper and lower bounds. This investigation is motivated by the following situation
arising in numerical applications:

There is an RD-valued, D ≥ D, adapted process (Bj)j=1,...,J such that for every j = 1, . . . , J the
first D components of Bj are given by βj and Bj is independent of Fj−1. Moreover, we have an
Rd-dimensional Markovian process X, whose dynamics are given by

Xj = hj(Xj−1, Bj), X0 = x0 ∈ R, (1.37)

for measurable functions hj : Rd × RD → Rd. Furthermore, suppose that we are given an approxi-
mate solution Ỹ to (1.15), which is given by

Ỹj = E[vj(Xj , . . . , XJ)|Xj ], j = 0, . . . , J,

for measurable functions vj .
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Building on this approximate solution, we may take the Doob martingale of βỸ , which is for every
j = 0, . . . , J and ν = 1, . . . , N given by

M̂
[ν]
j =

j−1∑
i=0

βi+1E
[
v

(ν)
i+1(Xi+1, . . . , XJ)

∣∣∣Xi+1

]
− E

[
βi+1v

(ν)
i+1(Xi+1, . . . , XJ)

∣∣∣Xi

]
, (1.38)

as an input for the computation of upper and lower bounds. In general, however, these conditional
expectations are not available in closed form and thus need to be approximated. To this end, we
apply the following subsampling approach:

For every time point j ∈ {0, . . . , J − 1}, we simulate independent copies (Bi(λ
in, j))i≥j+1, λin =

1, . . . ,Λin, of (Bi)i≥j+1 which are independent of FJ . Then, for every j, independent copies
(Xi(λ

in, j))i≥j+1 of (Xi)i≥j+1 given Xj are obtained by evaluating (1.37) along these paths, i.e.

Xj(λ
in, j) = Xj ,

Xi(λ
in, j) = hi(Xi−1(λin, j), Bi(λ

in, j)), i = j + 1, . . . , J.

With these samples at hand, we can replace the conditional expectations in (1.38) for every ν =
1, . . . , N by the conditionally unbiased estimators

Êj

[
v

(ν)
j (Xj , . . . , XJ)

]
:=

1

Λin

Λin∑
λin=1

v
(ν)
j (Xj , Xj+1(λin, j), . . . , XJ(λin, j))

Êj

[
βj+1v

(ν)
j+1(Xj+1, . . . , XJ)

]
:=

1

Λin

Λin∑
λin=1

βj+1(λin, j)v
(ν)
j+1(Xj+1(λin, j), . . . , XJ(λin, j)).

However, the resulting process M̂ is in general not a martingale, as the estimators are computed
along the same set of inner paths, and thus the increments ∆M̂j+1, j = 0, . . . , J−1, are correlated.
In light of Remark 1.3.6, the process M̂ may still be taken as an input to compute upper and lower
bounds, since Ej [∆M̂j+1] = 0 by construction.

The following result, which is the main result of this section, implies that the application of such a
subsampling approach leads to an additional upward respectively downward bias in the upper and
lower bounds.

Theorem 1.6.1. Let j ∈ {0, . . . , J − 1}, r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , and let M ∈MND be a mar-

tingale. Furthermore, let M̂ be a F-measurable stochastic process which satisfies M̂i ∈ L∞−(RND)
and E[M̂i|FJ ] = Mi for every i = 0, . . . , J . Then,

E
[
θupi

(
r(1), . . . , r(N), M̂

)∣∣∣FJ] ≥ E [θupi (r(1), . . . , r(N),M
)∣∣∣FJ] (1.39)

and
E
[
θlowi

(
r(1), . . . , r(N), M̂

)∣∣∣FJ] ≤ E [θlowi (
r(1), . . . , r(N),M

)∣∣∣FJ] (1.40)

P -almost surely for every i = j, . . . , J . In particular, it holds that

E
[
θupi

(
r(1), . . . , r(N), M̂

)∣∣∣Fi] ≥ E [θupi (r(1), . . . , r(N),M
)∣∣∣Fi]

and
E
[
θlowi

(
r(1), . . . , r(N), M̂

)∣∣∣Fi] ≤ E [θlowi (
r(1), . . . , r(N),M

)∣∣∣Fi]
P -almost surely for every i = j, . . . , J .
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The proof of this theorem requires some preparation. For this purpose, we first introduce some
further notation.

We denote by π : {up, low}N → {1, . . . , 2N} a bijection, which assigns a natural number to each
N -tuple ι ∈ {up, low}N . We further denote by π−1 the inverse function of π and by (π−1(k))n the
n-th component of the N -tuple π−1(k), k ∈ {1, . . . , 2N}. Moreover, for each j = 0, . . . , J − 1 and
ν = 1, . . . , N , we choose a partition (Aj,ν,ι)ι∈{up,low}N of Ω such that

Aj,ν,ι ⊂
{
F

(ν)
j

(
βj+1θ

(ι1,1)
j+1 −∆M

[1]
j+1, . . . , βj+1θ

(ιN ,N)
j+1 −∆M

[N ]
j+1

)
≥ F (ν)

j

(
βj+1θ

(κ1,1)
j+1 −∆M

[1]
j+1, . . . , βj+1θ

(κN ,N)
j+1 −∆M

[N ]
j+1

)
∀κ ∈ {up, low}N

}
, (1.41)

where θup := θup(r(1), . . . , r(N),M) and θlow := θlow(r(1), . . . , r(N),M) are given by (1.30) for

admissible controls r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , and a martingale M ∈MND.

We are now in the position to state the following auxiliary proposition, which provides a represen-
tation of the upper bound in terms of (possibly) non-adapted controls.

Proposition 1.6.2. Suppose Assumptions 1.2.1 and let j ∈ {0, . . . , J − 1}. Further, let M ∈
MND and r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , be given and define θup := θup(r(1), . . . , r(N),M) and

θlow := θlow(r(1), . . . , r(N),M) by (1.30). Then, for every i = j, . . . , J − 1 and ν = 1, . . . , N , we
have the P -almost sure identity

θ
(up,ν)
i =

N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
. (1.42)

The random variable ρ
(ν)
i in (1.42) is for every i = j, . . . , J − 1 given by

ρ
(ν)
i =

2N∑
k=1

ρ
(ν),k
i 1Aj,ν,π−1(k)

, (1.43)

where the sets Aj,ν,π−1(k) are given by (1.41) and each ρ
(ν),k
i = ρ

(ν),π(ι)
i solves

F
(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, . . . , βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
=

N∑
n=1

(
ρ

(ν),π(ι),[n]
i

)> (
βi+1θ

(ιn,n)
i+1 −∆M

[n]
i+1

)
− F (ν,#)

i

(
ρ

(ν),π(ι)
i

)
. (1.44)

Proof. Let j ∈ {0, . . . , J − 1} be fixed from now on. Furthermore, we fix M ∈ MND and

r(ν) ∈ AF (ν)

j , ν = 1, . . . , N , and define the processes θup := θup(r(1), . . . , r(N),M) and θlow :=

θlow(r(1), . . . , r(N),M) according to (1.30).

Then, we conclude by Lemma 1.2.4, that for each i = j, . . . , J − 1 and ι ∈ {up, low}N there

exist random variables ρ
(ν),π(ι)
i , which solve (1.44) and satisfy ρ

(ν),π(ι)
i ∈ L∞−(RND) as well as

F
(ν,#)
i (ρ

(ν),π(ι)
i ) ∈ L∞−(R). As a consequence, we obtain from the definition of ρ

(ν)
i , that ρ

(ν)
i ∈
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L∞−(RND) and F
(ν,#)
i (ρ

(ν)
i ) ∈ L∞−(R) for all i = j, . . . , J − 1. Hence, we observe by Proposition

1.5.2 that

θ
(up,ν)
i = sup

u∈RND

N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

≥
N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
.

In order to obtain the converse inequality, we first conclude by the definition of ρ
(ν),π(ι)
i , π, Aj,ν,ι

and ρ
(ν)
i that

θ
(up,ν)
i = max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, . . . , βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
= max

ι∈{up,low}N

{
N∑
n=1

(
ρ

(ν),π(ι),[n]
i

)> (
βi+1θ

(ιn,n)
i+1 −∆M

[n]
i+1

)
− F (ν,#)

i

(
ρ

(ν),π(ι)
i

)}

=
2N∑
k=1

(
N∑
n=1

(
ρ

(ν),k,[n]
i

)> (
βi+1θ

((π−1(k))n,n)
i+1 −∆M

[n]
i+1

)
− F (ν,#)

i

(
ρ

(ν),k
i

))
1Aj,ν,π−1(k)

=
2N∑
k=1

N∑
n=1

(
ρ

(ν),k,[n]
i

)>
βi+1θ

((π−1(k))n,n)
i+1 1Aj,ν,π−1(k)

−
2N∑
k=1

N∑
n=1

(
ρ

(ν),k,[n]
i

)>
∆M

[n]
i+11Aj,ν,π−1(k)

−
2N∑
k=1

F
(ν,#)
i

(
ρ

(ν),k
i

)
1Aj,ν,π−1(k)

=

2N∑
k=1

N∑
n=1

(
ρ

(ν),k,[n]
i

)>
βi+1θ

((π−1(k))n,n)
i+1 1Aj,ν,π−1(k)

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
.

By exploiting the pathwise ordering of θup and θlow established in Proposition 1.5.2 and the defi-

nition of ρ
(ν)
i once more, we finally deduce that

θ
(up,ν)
i =

N∑
n=1

2N∑
k=1

((
ρ

(ν),k,[n]
i

)>
βi+1

)
+

θ
((π−1(k))n,n)
i+1 1Aj,ν,π−1(k)

−
N∑
n=1

2N∑
k=1

((
ρ

(ν),k,[n]
i

)>
βi+1

)
−
θ

((π−1(k))n,n)
i+1 1Aj,ν,π−1(k)

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
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≤
N∑
n=1

2N∑
k=1

((
ρ

(ν),k,[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1 1Aj,ν,π−1(k)

−
N∑
n=1

2N∑
k=1

((
ρ

(ν),k,[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1 1Aj,ν,π−1(k)

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
=

N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν),[n]
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
ρ

(ν)
i

)
,

which completes the proof.

With this proposition at hand, we are now able to prove Theorem 1.6.1.

Proof of Theorem 1.6.1. Let j ∈ {0, . . . , J−1} be fixed from now on. In order to simplify the expo-
sition, we rely on the shorthand notation Ei[·] to denote the conditional expectation with respect to
Fi. Furthermore, we define the processes θι := θι(r(1), . . . , r(N),M) and θ̂ι := θι(r(1), . . . , r(N), M̂),

ι ∈ {up, low}, according to (1.30), where each r(ν) ∈ AF (ν)

j . Due to the monotonicity and the tower
property of the conditional expectation, it is sufficient to show that

EJ

[
θ̂upj

]
≥ θupj respectively EJ

[
θ̂lowj

]
≤ θlowj .

The proof is by backward induction on i = J, . . . , j, with the case i = J being trivial by definition
of the processes. Hence, we assume that the assertion is true for i+ 1. From Proposition 1.6.2, we

get for every ν = 1, . . . , N existence of an FJ -measurable random variable ρ
(ν)
i such that

θ
(up,ν)
i =

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆Mi+1 − F (ν,#)

i

(
ρ

(ν)
i

)
. (1.45)

Furthermore, we emphasize that the proof of the pathwise representation for the upper bound
stated in Proposition 1.5.2 does not rely on the martingale property of the input martingale M .
For this reason, Proposition 1.5.2 also applies for the upper bound θ̂up. Therefore, it follows from
Proposition 1.5.2, the assumptions on M̂ , the induction hypothesis, and (1.45) that

EJ

[
θ̂

(up,ν)
i

]
≥ EJ

[
N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
+

θ̂
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
−
θ̂

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆M̂i+1 − F (ν,#)

i

(
ρ

(ν)
i

)]

=
N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
+

EJ

[
θ̂

(up,n)
i+1

]
−

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
−
EJ

[
θ̂

(low,n)
i+1

]
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−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆Mi+1 − F (ν,#)

i

(
ρ

(ν)
i

)
≥

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
ρ

(ν,[n])
i

)>
βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
ρ

(ν),[n]
i

)>
∆Mi+1 − F (ν,#)

i

(
ρ

(ν)
i

)
= θ

(up,ν)
i

for every ν = 1, . . . , N . Similarly, we obtain for the lower bound, that

EJ

[
θ̂

(low,ν)
i

]
= EJ

[
N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
+

θ̂
(low,n)
i+1 −

N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
−
θ̂

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆M̂i+1 − F (ν,#)

i

(
r

(ν)
i

)]

=
N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
+

EJ

[
θ̂

(low,n)
i+1

]
−

N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
−
EJ

[
θ̂

(up,n)
i+1

]
−

N∑
n=1

(
r

(ν),[n]
i

)>
∆Mi+1 − F (ν,#)

i

(
r

(ν)
i

)
≤

N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
r

(ν,[n])
i

)>
βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆Mi+1 − F (ν,#)

i

(
r

(ν)
i

)
= θ

(low,ν)
i .

1.7 Implementation

In this section, we explain how to implement an algorithm for the computation of the bounds de-
rived in this chapter in a Markovian framework. Hence, we start with a description of the setting
and introduce the required notation. Then, we present two approaches for the construction of
approximate solutions to (1.15) which rely on least-squares Monte Carlo. Building on these ap-
proximate solutions, we explain the construction of approximate controls and martingales required
for the construction of upper and lower bounds. With these inputs at hand, we demonstrate that
the implementation of the recursions (1.30) for θup and θlow is straightforward. Finally, we apply
this algorithm in two numerical examples, namely pricing under negotiated collateral and uncertain
volatility.

Throughout this section, we restrict ourselves to the Markovian framework of Section 1.6, as this
is the practically most relevant situation. To this end, we assume that (Bj)j=1,...,J is an RD-
dimensional adapted process (with D ≥ D), such that the first D components of Bj are given by βj
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and Bj is independent of Fj−1, for every j = 1, . . . , J . X is supposed to be an Rd-valued Markovian
process of the form

Xj = hj(Xj−1, Bj), j = 1, . . . , J, (1.46)

for measurable functions hj : Rd × RD → Rd, starting at X0 = x0 ∈ Rd. Forward equations of this
form for the state process X typically arise as time discretization schemes for stochastic differential

equations. Moreover, for the generator F
(ν)
j of the dynamic program (1.15) we assume existence of

measurable functions f
(ν)
j : Rd × RND → R satisfying F

(ν)
j (·) = f

(ν)
j (Xj , ·), i.e., F

(ν)
j depends on

ω only through the Markovian process X. Then, we consider a Markovian version of the dynamic
program (1.15) in the form

Y
(ν)
J = g(ν)(XJ),

Y
(ν)
j = f

(ν)
j

(
Xj , Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
, j = 0, . . . , J − 1, ν = 1, . . . , N, (1.47)

where g(ν) : Rd → R is measurable for each ν and satisfies E[|g(ν)(XJ)|p] < ∞ for all p ≥ 1. In

this framework, Y
(ν)
j is a deterministic function of Xj , i.e. there exists ȳ

(ν)
j : Rd → R such that

Y
(ν)
j = ȳ

(ν)
j (Xj). In particular, we have that Y

(ν)
0 is a constant. Moreover, in view of (1.46), we

obtain existence of a measurable function y
(ν)
j : Rd × RD → R such that Y

(ν)
j = y

(ν)
j (Xj−1, Bj)

for every j = 1, . . . , J and ν = 1, . . . , N . Denoting by PBj the law of Bj , we can, thus, write

Ej [βj+1Y
(ν)
j+1] = z

[ν]
j (Xj) with

z
[ν]
j (x) =

(∫
RD

b1 y
(ν)
j+1(x, b)PBj+1(db), . . . ,

∫
RD

bD y
(ν)
j+1(x, b)PBj+1(db)

)>
. (1.48)

1.7.1 Computation of approximate solutions and upper and lower bounds

In order to obtain an approximate solution to (1.47), we rely in the following on two variants of
the least-squares Monte Carlo (LSMC) approach. First, we consider the regression-now variant
of LSMC proposed by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) in the
context of Bermudan option pricing. Thereafter, we present a variant which is in the spirit of the
regression-later variant of Glasserman and Yu (2004) and the martingale basis approach proposed
by Bender and Steiner (2012). The main difference between these two approaches lies in the as-
sumptions regarding the basis functions. While the regression-now approach only requires that the
basis functions satisfy suitable integrability conditions, the regression-later approach additionally
assumes that certain conditional expectations of the basis functions are available in closed-form.
As we will explain in more detail below, this additional assumption enables us to avoid the error
stemming from possibly unfavorable regressions involving the process β.

Regression-now vs. regression-later approach

The main idea of the regression-now approach is to approximate the conditional expectations in
(1.47) by an orthogonal projection onto a linear subspace of L2(Ω, P ). This subspace is spanned by

a set of predefined basis functions η
(ν)
j = (η

(ν)
j,1 , . . . , η

(ν)
j,K) such that E[|η(ν)

j (Xj)|2] < ∞. Then, the
orthogonal projection on this set of basis functions is computed via regression, i.e. one computes

Ỹ
(ν)
J = g(ν)(XJ),
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Ỹ
(ν)
j = fj

(
Xj ,Pj

[
βj+1Ỹ

(1)
j+1

]
, . . . ,Pj

[
βj+1Ỹ

(N)
j+1

])
, j = J − 1, . . . , 0, ν = 1, . . . , N

as an approximation to Y
(ν)
j . Here, Pj denotes the empirical regression onto a set of basis functions

for a given set of sample paths. Note that, since the process β is RD-valued, this requires the
computation of ND regressions at every time step j = 0, . . . , J − 1.

In order to formalize this idea, we suppose that approximations ỹ
(ν)
j+1 of ȳ

(ν)
j+1 have already been

computed using LSMC for every ν = 1, . . . , N . Recall that we have by the projection property of
the conditional expectation that

Ej

[
β

(n)
j+1ỹ

(ν)
j+1(Xj+1)

]
= argmin

z̄
E

[∣∣∣z̄(Xj)− β(n)
j+1ỹ

(ν)
j+1(Xj+1)

∣∣∣2] (1.49)

for every n = 1, . . . , D, where the minimum is taken over all measurable functions z̄ : Rd → R
which satisfy E[z̄(Xj)

2] < ∞. This minimization problem is infinite-dimensional. Hence, in a

first step, we choose a set of measurable basis functions η
(ν),n
j = (η

(ν),n
j,1 , . . . , η

(ν),n
j,K )> such that

E[|η(ν),n
j,k (Xj)|p] < ∞ for all p ≥ 1 and each k. Then, we restrict the minimization problem (1.49)

to the linear subspace spanned by these basis functions. In this way, we end up with the finite-
dimensional minimization problem

a
(ν),n
j = argmin

a∈RK
E

[∣∣∣a>η(ν),n
j (Xj)− β(n)

j+1ỹ
(ν)
j+1(Xj+1)

∣∣∣2] . (1.50)

Since this problem is in general still not solvable in closed form, we transfer it to a linear least-squares
problem by replacing the expectation in (1.50) by the empirical mean. To this end, suppose we
are given Λreg independent copies {Bj(λ); j = 1, . . . , J, λ = 1, . . . ,Λreg} of the process (Bj)j=1,...,J .

Then, the coefficients a
(ν),n
j are given by

a
(ν),n
j = argmin

a∈RK

1

Λreg

Λreg∑
λ=1

∣∣∣a>η(ν),n
j (Xj(λ))− β(n)

j+1(λ)ỹ
(ν)
j+1(Xj+1(λ))

∣∣∣2 . (1.51)

It is well-known that a solution to (1.51) exists and is given by

a
(ν),n
j =

1√
Λreg

(
A(K,Λreg, ν, n)>A(K,Λreg, ν, n)

)−1

×A(K,Λreg, ν, n)>


β

(n)
j+1(1)ỹ

(ν)
j+1(Xj+1(1))

...

β
(n)
j+1(Λreg)ỹ

(ν)
j+1(Xj+1(Λreg))

 ,

where

A(K,Λreg, ν, n) :=
1√
Λreg

(
η

(ν),n
j,k (Xj(λ))

)
λ=1,...,Λreg ,
k=1,...,K

.

If the inverse matrix (A(K,Λreg, ν, n)>A(K,Λreg, ν, n))−1 does not exist, we may instead consider
the pseudo-inverse A(K,Λreg, ν, n)+ of A(K,Λreg, ν, n) and obtain

a
(ν),n
j =

1√
Λreg

A(K,Λreg, ν, n)+


β

(n)
j+1(1)ỹ

(ν)
j+1(Xj+1(1))

...

β
(n)
j+1(Λreg)ỹ

(ν)
j+1(Xj+1(Λreg))

 .
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Applying this approach backwards in time for every j = J − 1, . . . , 0, we end up with the following
algorithm for the computation of an approximate solution:

Let (Bj(λ))j=1,...,J , λ = 1, . . . ,Λreg, be independent copies of the process (Bj)j=1,...,J . In what
follows, we refer to these copies as ”regression paths”. Further, denote by β(λ) and X(λ) the

trajectories of β and X along these paths and by η
(ν),n
j = (η

(ν),n
j,1 , . . . , η

(ν),n
j,K )> the basis functions

for the approximation of Ej [β
(n)
j+1Y

(ν)
j+1], n = 1, . . . , D, ν = 1, . . . , N . Then, approximations ỹ

(ν)
j (x)

and z̃
[ν]
j (x), j = 0, . . . , J can be computed recursively by

ỹ
(ν)
J (x) = g(ν)(x),

z̃
[ν],n
J (x) = 0, n = 1, . . . , D,

a
[ν],d
j = argmin

a∈RK

1

Λreg

Λreg∑
λ=1

∣∣∣a>η(ν),n
j (Xj(λ))− β(n)

j+1(λ)ỹ
(ν)
j+1(Xj+1(λ))

∣∣∣2
z̃

[ν],n
j (x) =

(
a

[ν],n
j

)>
η

(ν),n
j (x), n = 1, . . . , D,

ỹ
(ν)
j (x) = fj

(
x, z̃

[1]
j (x), . . . , z̃

[ν]
j (x)

)
, j = J − 1, . . . , 0, ν = 1, . . . , N. (1.52)

The LSMC approach explained above suffers from two error sources, namely the projection error
induced by the choice of basis functions and the simulation error. In order to control the simulation
error, the number of regression paths has to be chosen properly. Especially, in situations where
the process β might have large variance, this can lead to a substantial increase in the number of
required regression paths. This problem is discussed in Bender and Steiner (2012), where they
consider Euler-type approximation schemes for BSDEs. As we have seen in Example 1.1.2, the
process β is in such situations given by

βj+1 =

(
1,

∆W
(1)
j+1

∆j+1
, . . . ,

∆W
(d)
j+1

∆j+1

)
,

where ∆Wj+1 := Wtj+1 − Wtj denotes the increments of a d-dimensional Brownian motion on
a time grid 0 = t0 < . . . < tJ = T with time increments ∆j+1 := tj+1 − tj . If the mesh of
this partition tends to zero, the variance of the process β increases and therefore more regression
paths are required to keep the simulation error small. In order to deal with this problem, Bender
and Steiner (2012) propose a martingale basis variant of LSMC, which is in the spirit of the
regression-later approach presented in Glasserman and Yu (2004) for the Bermudan option pricing
problem. The main idea is to choose basis functions which form martingales and for which the
conditional expectations are available in closed form. This allows them to skip the regressions for

the approximation of Ej [βj+1Y
(ν)
j+1], and thus to avoid the corresponding simulation error. As a

consequence, the number of regression paths can be held at a moderate level, even for fine time
discretizations. These assumptions are restrictive and we consider in the following a variant which
works under milder assumptions, making the approach more flexible.

To this end, let η
(ν)
j = (η

(ν)
j,1 , . . . , η

(ν)
j,K), j = 0, . . . , J be basis functions, where each η

(ν)
j,k : Rd×RD →

R is measurable and satisfies E[|η(ν)
j,k (Xj−1, Bj)|p] <∞ for all p ≥ 1. In contrast to the regression-

now approach explained above, we additionally assume that the expectations

R
(ν)
j,k (x) :=

(∫
RD

b1 η
(ν)
j+1,k(x, b)PBj+1(db), . . . ,

∫
RD

bD η
(ν)
j+1,k(x, b)PBj+1(db)

)>
, (1.53)
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x ∈ Rd, are available in closed form or can be computed numerically up to a negligible error. Two
things should be noted: first, we do not assume that the basis functions form a set of martingales,
which is the key assumption in Glasserman and Yu (2004) and Bender and Steiner (2012). Re-
laxing this assumption increases the applicability of the regression-later approach presented below.
Second, we apply the recursive definition (1.46) of the Markovian process so that, in contrast to
the regression-now approach, the basis functions do not necessarily depend on the current value of
the Markovian process but rather on the value one time-step before and the current value of the
process B. As the following example demonstrates, this provides more flexibility in the choice of
basis functions satisfying the above assumptions.

Example 1.7.1. We assume that the Markovian process X is given by an Euler scheme, i.e.,

Xj = Xj−1 + µj−1(Xj−1)∆j + σj−1(Xj−1)∆Wj , X0 = x0

where ∆Wj := Wtj −Wtj−1 denotes increments of a d′-dimensional Brownian motion with time
increments ∆j = tj− tj−1 for an increasing family of time points 0 = t0 < t1 . . . < tJ . Moreover, we
assume that the coefficient functions µj : Rd → Rd and σj : Rd×d′ → Rd are Lipschitz continuous.
We consider a discretization scheme for BSDEs as discussed in Example 1.1.2 so that

βj = Bj =

(
1,

∆Wj

∆j

)>
,

with D = D = 1 + d′.

(i) (Global polynomials) When applying an LSMC approach, one often relies on polynomials
of the underlying Markovian process X as basis functions. We thus show in the following,
that this kind of basis functions satisfies the above assumptions. To this end, we consider
a polynomial p : Rd → R in Xj+1 as basis function at time j + 1 and denote by w the
vector consisting of the last d′ components of b ∈ R1+d′ , which correspond to the Brownian
increments. Exploiting the definition of the process X, we observe that the basis function
ηj+1 can be expressed in terms of x and w by

ηj+1(x,w) = p(x+ µj(x)∆j+1 + σj(x)w).

Hence, for every x ∈ Rd, ηj(x,w) is a polynomial in w. As a consequence, the conditional
expectation E[ηj+1(x,∆Wj+1)] (corresponding to the first component on the right-hand side
of (1.53)) can be computed in closed form. From the definition of the process (Bj)j=1,...,J , we
further observe that the remaining components of the vector on the right-hand side of (1.53)

are given by ∆−1
j+1E[∆W

(l)
j+1 ηj+1(x,∆Wj+1)], l = 1, . . . , d′. Each component is thus, for fixed

x, again a polynomial in ∆Wj+1, so that E[∆Wj+1 ηj+1(x,∆Wj+1)] is also available in closed
form. In contrast, the conditional expectations E[p(Xj+1)|Xi], i < j, several steps ahead are
in general not available in closed form. This may only be the case in certain situations, e.g.,
when µ and σ are linear and, thus, E[p(Xj+1)|Xj = x] is again a polynomial in x. Therefore
our assumptions on the function basis are less restrictive than the ones imposed by Glasserman
and Yu (2004) and Bender and Steiner (2012).

(ii) (One-step-ahead localization) The following example provides the main motivation for consid-
ering basis functions which can depend on (Xj ,∆Wj+1), although Yj+1 is σ(Xj+1)-measurable.
In the numerical example of Section 3.4.3, we consider a non-linear option pricing problem
with a payoff function on the maximum of a basket of assets. For the basis functions, we rely
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on functions on the largest asset, as these are known to be very successful in such situations in
the context of Bermudan options, see e.g. Andersen and Broadie (2004). For this purpose, we

denote by l
(1)
j the index of the largest component of X at time j. For simplicity, we consider

the case that the basis function is a one-dimensional polynomial p of X
(l

(1)
j+1)

j+1 . In general,

the one-step conditional expectation E[p(X
(l

(1)
j+1)

j+1 )|Xj = x] is however not available in closed
form. In order to circumvent this problem, we check for the maximal component one time
step ahead. Then, we end up with the basis function

ηj+1(x,w) =
d∑
l=1

1{x(l)≥x(m) ∀m=1,...,d}p
(
x(l) + µj(x

(l))∆j+1 + σj(x
(l))w

)
which satisfies (1.53).

Under the given assumptions, we are able to apply the following regression-later variant of the
LSMC approach:

Ỹ
(ν)
J = PJ

[
g(ν)(XJ)

]
,

Ỹ
(ν)
j = Pj

[
fj

(
Xj , Ej

[
βj+1Ỹ

(1)
j+1

]
, . . . , Ej

[
βj+1Ỹ

(N)
j+1

])]
, j = J − 1, . . . , 0, ν = 1, . . . , N.

Note that, in contrast to the regression-now approach, only N regressions are computed in every
time step, since we have inductively that Ỹj+1 is a linear combination of the basis functions for
which the other conditional expectations are available in closed form.

More formally, suppose that an approximation ỹ
(ν)
j+1 is given by a linear combination of the basis

functions η
(ν)
j+1, i.e.

ỹ
(ν)
j+1(x, b) =

K∑
k=1

a
(ν)
j+1,kη

(ν)
j+1,k(x, b) (1.54)

for every ν = 1, . . . , N . Then, we observe by (1.53) that the function z̃
(ν)
j can be expressed in terms

of the coefficients a
(ν)
j+1. Indeed, we have

z̃
(ν)
j (x) = E

[
βj+1ỹ

(ν)
j+1(Xj , Bj+1)

∣∣∣Xj = x
]

=

K∑
k=1

a
(ν)
j+1,kE

[
βj+1η

(ν)
j+1,k(x,Bj+1)

]
=

K∑
k=1

a
(ν)
j+1,kR

(ν)
j,k (x),

so that no regression is required for the computation of z̃(ν). This lead us to the following algorithm
for the computation of ỹ(ν) and z̃(ν): Suppose, we are given a set {Bj(λ); j = 1, . . . , J, λ =
1, . . . ,Λreg} of regression paths and denote, as before, by X(λ) the corresponding trajectories of
the process X. Then, for every j = J − 1, . . . , 1, an approximate solution to the system of dynamic
programs can be constructed by:

a
(ν)
J = argmin

a∈RK

1

Λreg

Λreg∑
λ=1

∣∣∣a>η(ν)
J (XJ−1(λ), BJ(λ))− g(ν)(XJ(λ))

∣∣∣2
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ỹ
(ν)
J (x, b) =

(
a

(ν)
J

)>
η

(ν)
J (x, b),

z̃
[ν]
J (x) = 0,

z̃
[ν]
j (x) =

K∑
k=1

a
(ν)
j+1,kR

(ν)
j,k (x),

a
(ν)
j = argmin

a∈RK

1

Λreg

Λreg∑
λ=1

∣∣∣a>η(ν)
j (Xj−1(λ), Bj(λ))− f (ν)

j

(
Xj(λ), z̃

[1]
j (Xj(λ)), . . . , z̃

[N ]
j (Xj(λ))

)∣∣∣2
ỹ

(ν)
j (x, b) =

(
a

(ν)
j

)>
η

(ν)
j (x, b),

z̃
[ν]
0 (x) =

K∑
k=1

a
(ν)
1,kR

(ν)
0,k(x),

ỹ
(ν)
0 (x, b) = f

(ν)
0

(
x0, z̃

[1]
0 (x0), . . . , z̃

[N ]
0 (x0)

)
, ν = 1, . . . , N. (1.55)

Note that compared to the regression-now approach, this algorithm requires that the terminal
condition g(ν) is regressed on the basis functions as initialization. If however, the function g(ν)

satisfies the above conditions on the basis functions, then we may include g(ν) to the set of basis
functions and no regression is required. We also emphasize, that for j = 0, no regression on the
basis functions is performed to compute ỹ0, as the algorithm terminates and thus no representation
of ỹ0 in terms of basis functions is required at initial time.

Computation of Upper and Lower Bounds

In a next step, we explain how upper and lower bounds can be computed if the input approximate
solution is obtained from the regression-later approach. To this end, we simulate a second set
of independent copies {Bj(λout); j = 1, . . . , J, λout = 1, . . . ,Λout}, called ”outer paths”, which is
additionally independent of the regression paths used to compute the input approximation. The

corresponding trajectories of the process X are denoted by X(λout). Taking the coefficients a
(ν)
j ,

j = 1, . . . , J , ν = 1, . . . , N , from the regression step, we first compute an approximate solution to
(1.47) along these new paths. The resulting approximations are given by ỹ(ν)(X(λout), B(λout))
respectively z̃[ν](X(λout)), ν = 1, . . . , N .

Based on these approximations, we are now able to derive approximations of the optimal controls
r(ν,∗) ∈ AF (ν)

0 , ν = 1, . . . , N . To this end, we first note that optimal controls r(ν,∗)(λout) ∈ AF (ν)

0

along the outer paths λout = 1, . . . ,Λout are given by

N∑
n=1

(
r

(ν,∗),[n]
j (λout)

)>
z

[n]
j (Xj(λ

out))− f (ν,#)
j

(
Xj(λ

out), r
(ν,∗)
j (λout)

)
= f

(ν)
j

(
Xj(λ

out), z
[1]
j (Xj(λ

out)), . . . , z
[N ]
j (Xj(λ

out))
)

(1.56)

for every j = 0, . . . , J−1 and ν = 1, . . . , N . Replacing the functions z
[ν]
j in (1.56) by their respective

approximations, we can compute approximations r̃(ν)(λout) ∈ AF (ν)

0 by solving (approximately) the
equation

N∑
n=1

(
r̃

(ν),[n]
j (λout)

)>
z̃

[n]
j (Xj(λ

out))− f (ν,#)
j

(
Xj(λ

out), r̃
(ν)
j (λout)

)
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= f
(ν)
j

(
Xj(λ

out), z̃
[1]
j (Xj(λ

out)), . . . , z̃
[N ]
j (Xj(λ

out))
)

(1.57)

for every j = 0, . . . , J − 1, ν = 1, . . . , N and λout = 1, . . . ,Λout. If the convex conjugate f
(ν,#)
j

cannot be computed exactly, it can, of course, be replaced by a numerical approximation.

For the approximation of the Doob martingales M∗,[ν], we proceed similarly, and replace the func-
tions yj(x, b) by their approximations ỹj(x, b). Then, we observe that we need to compute incre-
ments of the form

βj+1(λout)ỹ
(ν)
j+1(Xj(λ

out), Bj+1(λout))− E
[
βj+1ỹ

(ν)
j+1(Xj , Bj+1)

∣∣∣Xj = Xj(λ
out)
]

(1.58)

for every j = 0, . . . , J − 1 and λout = 1, . . . ,Λout. Since we have by construction that

z̃
[ν]
j

(
Xj(λ

out)
)

= E
[
βj+1ỹ

(ν)
j+1(Xj , Bj+1)

∣∣∣Xj = Xj(λ
out)
]
,

we observe that the martingales M̃ [ν] are given by

M̃
[ν]
j

(
λout

)
=

j−1∑
i=0

βi+1

(
λout

)
ỹi+1

(
Xi

(
λout

)
, Bi+1

(
λout

))
− z̃[ν]

i

(
Xi

(
λout

))
for every j = 0, . . . , J , ν = 1, . . . , N and any outer path λout.

With these approximations at hand, we can go through the coupled recursion (1.30) for θup(λout) :=
θup(r̃(1)(λout), . . . , r̃(N)(λout), M̃(λout)) and θlow(λout) := θlow(r̃(1)(λout), . . . , r̃(N)(λout), M̃(λout))
given by

θ
(up,ν)
J

(
λout

)
= θ

(low,ν)
J

(
λout

)
= g(ν)

(
XJ(λout)

)
θ

(up,ν)
j

(
λout

)
= max

ι∈{up,low}N
f

(ν)
j

(
Xj

(
λout

)
, βj+1

(
λout

)
θ

(ι1,1)
j+1

(
λout

)
−∆M̃

[1]
j+1

(
λout

)
, . . . ,

βj+1

(
λout

)
θ

(ιN ,N)
j+1

(
λout

)
−∆M̃

[N ]
j+1

(
λout

))
,

θ
(low,ν)
j

(
λout

)
=

N∑
n=1

((
r̃

(ν),[n]
j

(
λout

))>
βj+1

(
λout

))
+

θ
(low,n)
j+1

(
λout

)
−

N∑
n=1

((
r̃

(ν),[n]
j

(
λout

))>
βj+1

(
λout

))
−
θ

(up,n)
j+1

(
λout

)
−

N∑
n=1

(
r̃

(ν),[n]
j

(
λout

))>
∆M̃

[n]
j+1 − f

(ν,#)
j

(
Xj

(
λout

)
, r̃

(ν)
j

(
λout

))
,

for j = J − 1, . . . , 0, ν = 1, . . . , N , along each outer path λout = 1, . . . ,Λout. If θup0 (λout) and
θlow0 (λout) are computed for every λout = 1, . . . ,Λout, we can apply the plain Monte Carlo estimator

Ŷ
(ι,ν)

0 :=
1

Λout

Λout∑
λout=1

θ
(ι,ν)
0 (λout) (1.59)

for every ν = 1, . . . , N and ι ∈ {up, low} to obtain upper and lower bounds. Denoting by σ̂(up,ν)

and σ̂(low,ν) the empirical standard deviations of Ŷ
(up,ν)

0 and Ŷ
(low,ν)

0 which are given by

σ̂(ι,ν) =

 1

Λout(Λout − 1)

Λout∑
λout=1

(
θ

(ι,ν)
0 (λout)− Ŷ (ι,ν)

0

)2

 1
2

(1.60)
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for ι ∈ {up, low}, we obtain asymptotic 95%-confidence intervals for E[θ
(ι,ν)
0 ] by[

Ŷ
(ι,ν)

0 − 1.96σ̂(ι,ν), Ŷ
(ι,ν)

0 + 1.96σ̂(ι,ν)
]
.

Combining these two confidence intervals, leads to the asymptotic 95%-confidence interval[
Ŷ

(low,ν)
0 − 1.96σ̂(low,ν), Ŷ

(up,ν)
0 + 1.96σ̂(up,ν)

]
for Y

(ν)
0 .

Remark 1.7.2. (i) We emphasize that the confidence intervals constructed above are conditional
on the regression paths used to determine the coefficients for our approximation. Therefore,
we have to enlarge the filtration (Fj)j=0,...,J by the regression paths in order to ensure that
our approximate solution is adapted. Denoting by Ξ the random variable used to construct
the input approximation, we pass from Fj to

F0
j := σ (Fj ∪ Ξ) ,

for every j = 0, . . . , J .

(ii) In contrast to the computation of an approximate solution using LSMC, the construction of
upper and lower bounds proceeds pathwise. Hence, the implementation of upper and lower
bounds is amenable to massive parallelization. This especially turns out to be useful under
memory constraints. For a more involved discussion of this topic, we refer to Gobet et al.
(2016).

(iii) In case that the input approximate solution ỹ(x) is computed by the regression-now approach,
the conditional expectation in (1.58) is in general not available in closed form, so that a
subsampling approach is required to approximate it. This is in the spirit of Andersen and
Broadie (2004), who proposed such an approach for the computation of upper bounds in the
context of Bermudan option pricing. To this end, we simulate at every point in time j and
along each outer path B(λout) a set of Λin independent copies (Bj+1(λout, λin))λin=1,...,Λin

of Bj+1, to which we refer as ”inner paths” from now on, see Figure 1.1. Along these inner
paths, we can compute Xj+1(λout, λin) := hj+1(Xj(λ

out), Bj+1(λin)) as well as approximations

ỹ
(ν)
j+1(Xj+1(λout, λin)) and apply the conditionally unbiased estimator

Êj

[
βj+1ỹ

(ν)
j+1(Xj+1)

]
(λout) :=

1

Λin

Λin∑
λin=1

βj+1(λout, λin)ỹ
(ν)
j+1(Xj+1(λout, λin)). (1.61)

Replacing the conditional expectation in (1.58) by the unbiased estimator (1.61), we can
compute an approximation M̃ [ν] of M∗,[ν] by

M̃
[ν]
j (λout) =

j−1∑
i=0

βi+1(λout)ỹ
(ν)
i+1(Xi+1(λout))− Êi

[
βi+1ỹ

(ν)
i+1(Xi+1)

]
(λout), (1.62)

for every j = 0, . . . , J , ν = 1, . . . , N and λout = 1, . . . ,Λout. Note however, that, by Theorem
1.6.1, this subsimulation approach leads to an additional upward respectively downward bias
in the upper and lower bounds.
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Figure 1.1: Illustration of the subsampling approach with J = 30.

(iv) By the law of large numbers, the additional bias from a subsampling approach vanishes when
the number of subsamples tends to infinity. In applications, however, there is a trade-off
between the reduction of the bias and the computational costs. As a consequence, the bias can
still be substantial for a moderate number of samples and the application of variance reduction
techniques is advisable. In their paper, Bender et al. (2017) propose to apply control variates
building on the process β as follows: Suppose that β is of the form βj = (1, β̃j), j = 1, . . . , J ,

for a process β̃ which takes values in RD−1 and for which closed form expressions of E[β̃
(d)
j ] and

E[β̃
(d)
j β̃

(d′)
j ], d, d′ = 1, . . . , D−1, are available. Further, define βj := (E[β̃

(d)
j β̃

(d′)
j ])d,d′=1,...,D−1

and denote by β+
j the corresponding Moore-Penrose pseudoinverse. Moreover, we denote by

ȳ
(ν)
j , q

(ν)
j and z

[ν]
j the deterministic functions for which ȳ

(ν)
j (Xj) = Y

(ν)
j , q

(ν)
j (Xj) = Ej [Y

(ν)
j+1]

and z
[ν]
j (Xj) = Ej [β̃j+1Y

(ν)
j+1] holds and by ỹ

(ν)
j , q̃

(ν)
j and z̃

[ν]
j their respective approximations.

Then, Bender et al. (2017) propose to replace the Monte Carlo estimator (1.61) by

ÊCj [ỹ
(ν)
j+1(Xj+1)](λout) = E[β̃j+1]>β+

j+1z̃
[ν]
j (Xj(λ

out)) +
1

Λin

Λin∑
λin=1

(
ỹ

(ν)
j+1(Xj+1(λout, λin))

−β̃>j+1(λout, λin)β+
j+1z̃

[ν]
j (Xj(λ

out))
)

and

ÊCj [β̃j+1ỹ
(ν)
j+1(Xj+1)](λout) = E[β̃j+1]q̃

(ν)
j+1(Xj(λ

out)) + βj+1β
+
j+1z̃

[ν]
j (Xj(λ

out))

+
1

Λin

Λin∑
λin=1

β̃j+1(λout, λin)
(
ỹ

(ν)
j+1(Xj+1(λout, λin))

−q̃(ν)
j (Xj(λ

out))− β̃>j+1(λout, λin)β+
j+1z̃

[ν]
j (Xj(λ

out))
)
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for every j = 0, . . . , J − 1 and ν = 1, . . . , N .

1.7.2 Numerical examples

We now apply the pathwise dynamic programming approach in two numerical examples, namely
the problem of pricing options under negotiated collateral respectively uncertain volatility.

1.7.2.1 Negotiated collateral

We first consider the problem of pricing under negotiated collateralization in the presence of funding
costs as discussed in Example 1.4.2. To this end, let 0 = t0 < t1 < . . . < tJ = T be an equidistant
partition of the interval [0, T ]. Moreover, recall that we are given a d-dimensional Brownian motion
W and that the dynamics of the risky assets X = (X(1), . . . , X(d)) are given by independent
identically distributed Black-Scholes models, i.e.,

X
(l)
t = x0 exp

{(
RL − 1

2
σ2

)
t+ σW

(l)
t

}
, l = 1, . . . , d,

where RL ≥ 0 is the risk-free lending rate, σ > 0 is the assets volatility. Finally, we denote by g
the payoff of a European option written on the risky assets. Then, by Example 1.4.2, we end up
with the following dynamic program:

X
(l)
j+1 = X

(l)
j exp

{(
RL − 1

2
σ2

)
∆ + σ∆W

(l)
j+1

}
, X

(l)
0 = x0, l = 1, . . . , d

Y
(1)
J = −Y (2)

J = g(XJ)

Z
[ν]
j = Ej

[
∆Wj+1

∆
Y

(ν)
j+1

]
, ν = 1, 2

Y
(1)
j = Ej [Y

(1)
j+1]−RL(1− α)(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])∆−RC(αEj [Y

(1)
j+1]− (1− α)Ej [Y

(2)
j+1])∆

+(RB −RL)

(
(1− α)(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])− 1

σ

(
Z

[1]
j

)>
1

)
−

∆

Y
(2)
j = Ej [Y

(2)
j+1]−RLα(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])∆ +RC(αEj [Y

(1)
j+1]− (1− α)Ej [Y

(2)
j+1])∆

+(RB −RL)

(
α(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])− 1

σ

(
Z

[2]
j

)>
1

)
−

∆, (1.63)

where RB and RC denote the risk-free borrowing rate respectively the collateralization rate and
α ∈ [0, 1]. Note that, in a slight abuse of notation, we here changed from time tj to the time index
j in the notation of the stock price models X(l).

Moreover, recall that the functions F
(1)
j , F

(2)
j : R2(1+d) → R are given by

F
(ν)
j (z1, z2) = z(1)

ν +H(ν)(z1, z2)∆,

for zν = (z
(1)
ν , . . . , z

(1+d)
ν ) ∈ R1+d and that the process B is, as in Example 1.1.2, given by

Bj = βj =

(
1,

∆W
(1)
j

∆
, . . . ,

∆W
(d)
j

∆

)>
, j = 1, . . . , J.
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As we have already seen in Example 1.4.2, the duality relation (1.24) reads

(
r

(ν,∗),[1]
j

)>
Ej

[
βj+1Y

(1)
j+1

]
+
(
r

(ν,∗),[2]
j

)>
Ej

[
βj+1Y

(2)
j+1

]
= Ej

[
Y

(ν)
j+1

]
−RLaν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
∆ + (−1)νRC

(
αEj

[
Y

(1)
j+1

]
− (1− α)Ej

[
Y

(2)
j+1

])
∆

+ (RB −RL)

(
aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Ej

[
∆Wj+1

∆
Y

(ν)
j+1

])>
1

)
−

∆,

for every j = 0, . . . , J − 1 and ν = 1, 2, with solution

r
(ν,∗)
j =

u
(ν)(RL), aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Z

[ν]
j

)>
1 ≥ 0

u(ν)(RB), aν

(
Ej

[
Y

(1)
j+1

]
+ Ej

[
Y

(2)
j+1

])
− 1

σ

(
Z

[ν]
j

)>
1 < 0.

Here, the functions u(ν)(r) are defined by

u(1)(r) =


1− r(1− α)∆−RCα∆

(r−RL)∆
σ · 1

(RC − r)(1− α)∆
0 · 1

 and u(2)(r) =


(RC − r)α∆

0 · 1
1− rα∆−RC(1− α)∆

(r−RL)∆
σ · 1

 .

As a numerical example, we consider the valuation of a European call-spread option on the maxi-
mum of d assets with maturity T and payoff

g(x) =

(
max
l=1,...,d

x(l) −K1

)
+

− 2

(
max
l=1,...,d

x(l) −K2

)
+

.

Except for adding the collateralization scheme (and, hence, the coupling between the hedger’s and
counterparty’s valuation), this is the same numerical example as in Bender et al. (2017) and we
follow their parameter choices

(x0, d, T,K1,K2, σ, R
L, RB, RC , α) = (100, 5, 0.25, 95, 115, 0.2, 0.01, 0.06, 0.02, 0.5)

adding only the values of α and RC . The choice α = 0.5 implies that the posted collateral is given
by the average of the two parties’ value processes Y (1) and −Y (2). Note that, we have RB > RC

in this example, as this is the practically most relevant case. As discussed in Example 1.4.2, we
observe that the system (1.63) fails the componentwise comparison principle with this choice of
parameters and, thus, the coupled bounds (1.30) need to be applied.

To do this, we first compute input approximations with the regression-later approach. We run this
algorithm with Λreg = 1, 000 regression paths. At time j + 1 (where 0 ≤ j ≤ J − 1) we apply the
same 7 basis functions for both components (and thus skip the dependence on ν), namely

ηj+1,1(Xj , Bj+1) = 1,

ηj+1,l+1(Xj , Bj+1) = X
(l)
j+1, l = 1, . . . , 5,

and an approximation to Ej+1[g(XJ)]. Precisely, this basis function is defined in terms of an

optimal L-point quantization
∑L

κ=1 pκ δzκ of a standard normal distribution by
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ηj+1,7(Xj , Bj+1)

=
5∑
l=1

L∑
κ=1

pκ

√
T − tj
T − tj+1

ḡ
(
X

(l)
j e(R

L− 1
2
σ2)(T−tj)+σzκ

√
T−tj

)
e
z2κ
2
−

(
√
T−tjzκ−∆W

(l)
j+1

)2

2(T−tj+1)

×
∏

l′∈{1,...,5}\{l}

N

 1√
T − tj+1

√T − tjzκ +
ln(X

(l)
j )− ln(X

(l′)
j )

σ
−∆W

(l′)
j+1

 ,

where, δz denotes the Dirac-measure in z ∈ R and ḡ : R→ R is given by

ḡ(x) = (x−K1)+ − 2(x−K2)+.

As a trade-off between accuracy and computational time, we choose L = 25, but note that this
basis function converges to Ej+1[g(XJ)], as L tends to infinity. For this choice of basis func-
tions the one-step conditional expectations are available in closed form and can be expressed

as Ej [ηj+1,k(Xj , Bj+1)] =: R
(0)
j,k(Xj) respectively Ej [(∆W

(l)
j+1/∆)ηj+1,k(Xj , Bj+1)] =: R

(l)
j,k(Xj),

l = 1, . . . , 5, for deterministic functions R
(0)
j,k and R

(l)
j,k. Note that, by a slight abuse of notation,

the upper index on the functions R
(l)
j,k does not correspond to the component of the process Y as

introduced in Section 1.7 but to the respective component of the process β, as we do not consider
different basis functions for Y (1) and Y (2). Indeed, for the first six basis functions, we observe that

R
(0)
j,1 (Xj) = 1,

R
(0)
j,l+1(Xj) = eR

L∆X
(l)
j , l = 1, . . . , 5,

respectively

R
(l)
j,1(Xj) = 0,

R
(l)
j,k+1(Xj) =

{
eR

L∆σX
(l)
j , l = k

0, l 6= k

for l, k = 1, . . . , 5. A straightforward computation (for which we provide the details in Appendix
A.3) shows that the respective conditional expectations for the seventh basis function are given by

R
(0)
j,7 (Xj) =

5∑
l=1

L∑
κ=1

pκḡ
(
X

(l)
j e(R

L− 1
2
σ2)(T−tj)+σzκ

√
T−tj

)

×
∏

l′∈{1,...,5}\{l}

N

zκ +
ln(X

(l)
j )− ln(X

(l′)
j )

σ
√
T − tj


and

R
(k)
j,7 (Xj) =

5∑
l=1,
l 6=k

L∑
κ=1

pκḡ
(
X

(l)
j e(R

L− 1
2
σ2)(T−tj)+σzκ

√
T−tj

) 1√
2π
e
− 1

2(T−tj)
(
√
T−tjzκ+

ln(X
(l)
j

)−ln(X
(l′)
j

)

σ
)2

×
∏

l′∈{1,...,5}\{l,k}

N

zκ +
ln(X

(l)
j )− ln(X

(l′)
j )

σ
√
T − tj


55



J 5 10 15 20 25

Ŷ
(up,1)

0 13.8424
(0.0018)

13.8607
(0.0018)

13.8677
(0.0019)

13.8736
(0.0019)

13.8797
(0.0021)

Ŷ
(low,1)

0 13.8409
(0.0017)

13.8568
(0.0018)

13.8610
(0.0019)

13.8639
(0.0019)

13.8673
(0.0019)

−Ŷ (low,2)
0 13.2809

(0.0014)
13.2597
(0.0015)

13.2510
(0.0016)

13.2471
(0.0016)

13.2473
(0.0017)

−Ŷ (up,2)
0 13.2798

(0.0014)
13.2572
(0.0015)

13.2466
(0.0016)

13.2406
(0.0016)

13.2389
(0.0017)

Table 1.1: Upper and lower bounds with Λreg = 103 and Λout = 104 for different time discretizations.
Standard deviations are given in brackets.

+
L∑
κ=1

pκ
zκ√
T − tj

ḡ
(
X

(k)
j e(R

L− 1
2
σ2)(T−tj)+σzκ

√
T−tj

)

×
∏

l′∈{1,...,5}\{k}

N

zκ +
ln(X

(k)
j )− ln(X

(l′)
j )

σ
√
T − tj


Note that the conditional expectation R

(0)
j,7 corresponds to the price of a max-call option at time

tj if the quantization is replaced by the respective integral over R. This observation motivates the
choice of the basis function ηj,7. We also apply these functions in order to initialize the regression
algorithm at

ỸJ = R
(0)
J−1,7(XJ−1) +

5∑
l=1

R
(l)
J−1,7(XJ−1))∆W

(l)
J ,

where the first term approximates the clean price (with zero interest rate) of the payoff at time
tJ−1, while the second one approximates the corresponding Delta hedge on the interval [tJ−1, tJ ].

In order to compute the upper and lower bounds stated in Table 1.1, we simulate Λout = 104 outer

paths and denote by Ŷ
(up,ν)

0 and Ŷ
(low,ν)

0 the Monte Carlo estimators for E[θ
(up,ν)
0 ] and E[θ

(low,ν)
0 ].

Table 1.1 indicates that the quality of the upper and lower bounds is similar for Y (1) and Y (2).
This is as expected since the recursions for Y (2) and Y (1) are rather symmetric. With regard to the

asymptotic 95%-confidence intervals for Y
(1)

0 and Y
(2)

0 , we observe two things: First, the relative
length of these intervals is about 0.15% for all considered time discretizations, and 25 time steps
are quite sufficient in this numerical example. Second, we see that the two parties’ valuations differ
by about 60 cent, corresponding to about 5 percent of the overall value. So our price bounds are
clearly tight enough to distinguish between the two parties’ pricing rules.

1.7.2.2 Uncertain volatility model

In this section, we apply our numerical approach to the uncertain volatility model of Example 1.1.3.
Let 0 = t0 < t1 < . . . < tJ = T be an equidistant partition of the interval [0, T ], where T ∈ R+.
Recall that for an adapted process (σt)t, the price of the risky asset Xσ at time t is given by

Xσ
t = x0 exp

{∫ t

0
σudWu −

1

2

∫ t

0
σ2
udu

}
,
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where W is a Brownian motion. Furthermore, let g be the payoff a European option written on the
risky asset. Then, by Example 1.1.3, we consider the following one-dimensional dynamic program

X ρ̂
j+1 = X ρ̂

j exp

{
ρ̂∆Wj+1 −

1

2
ρ̂2∆

}
, X0 = x0 ∈ R,

YJ = g
(
X ρ̂
J

)
Γj = Ej

[(
∆W 2

j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆

)
Yj+1

]
Yj = Ej [Yj+1] + ∆ max

s∈{slow,sup}
sΓj , (1.64)

for j = J − 1, . . . , 0, where

sι =
1

2

(
σ2
ι

ρ̂2
− 1

)
for ι ∈ {low, up} and the process B is given by

Bj =

(
1,

∆W 2
j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆
,∆Wj

)
, j = 1, . . . , J.

Note that X ρ̂ denotes the value process of the risky asset under the constant volatility ρ̂ and that,
in a slight abuse of notation, we again changed from time tj to the time index j in the notation.
We emphasize that the reference volatility ρ̂ is a choice parameter in the discretization. The basic
idea is to view the uncertain volatility model as a suitable correction of a Black-Scholes model with
volatility ρ̂.

As we have already seen in Example 1.1.3, the function Fj : R2 → R is given by

Fj(z) = z(1) + ∆ max
s∈{slow,sup}

sz(2),

in this example. Depending on the choice of the parameters σlow, σup and ρ̂, this function may fail
the monotonicity condition (c) in Theorem 1.4.1. Indeed, in this setting, this condition boils down
to the requirement that the prefactor

1 + s

(
∆W 2

j+1

∆
− ρ̂∆Wj+1 − 1

)
of Yj+1 in equation (1.64) for Yj is P -almost surely non-negative for both of the feasible values of
s,

s ∈

{
1

2

(
σ2
low

ρ̂2
− 1

)
,
1

2

(
σ2
up

ρ̂2
− 1

)}
.

For s > 1, this requirement is violated for realizations of ∆Wj+1 sufficiently close to zero, while for
s < 0 violations occur for sufficiently negative realizations of the Brownian increment – and this
violation also takes place if one truncates the Brownian increments at±const.

√
∆ with an arbitrarily

large constant. Consequently, we arrive at the necessary condition s ∈ [0, 1] for comparison to hold.
From the possible values for s, we deduce that this condition is equivalent to ρ̂ ∈ [σup/

√
3, σlow].

For σlow = 0.1 and σup = 0.2, the numerical test case in Guyon and Henry-Labordère (2011) and
Alanko and Avellaneda (2013), these two conditions cannot hold simultaneously, ruling out the
possibility of a comparison principle.
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By Appendix A.2, we conclude again that F#
j = 0 on the effective domain D

(j,·)
F# = {1} ×

[slow∆, sup∆], so that the duality relation (1.24) reads as follows:

r
∗,[1]
j Ej [Yj+1] + r

∗,[2]
j Γj = Ej [Yj+1] + ∆ max

s∈{slow,sup}
sΓj , j = 0, . . . , J − 1. (1.65)

A solution to (1.65) is given by

r∗j =

{
(1, sup∆), Γj ≥ 0

(1, slow∆), Γj < 0
(1.66)

for every j = 0, . . . , J − 1.

As a numerical example, we consider a European call-spread option with strikes K1 and K2, i.e.,

g(x) = (x−K1)+ − (x−K2)+,

which is also studied in Guyon and Henry-Labordère (2011), Alanko and Avellaneda (2013), and
Kharroubi et al. (2014). Following their setting, we choose the maturity T = 1, K1 = 90, K2 = 110
and x0 = 100. The reference volatility ρ̂ as well as the volatility bounds σlow and σup are varied in
our numerical experiments.

The input approximation is again computed by the regression-later variant of LSMC. We first
simulate Λreg = 105 regression paths of the process (Bj)j=1,...,J . For the evaluation of (X ρ̂

j )j=0,...,J

along the regression paths, we do not start all paths at x0. Instead, we rather start Λreg/200
trajectories at each of the points 31, . . . , 230. Since X is a geometric Brownian motion under
ρ̂, it can be simulated exactly. Starting the regression paths at multiple points allows to reduce
the instability of regression coefficients arising at early time points. See Rasmussen (2005) for a
discussion of this stability problem and of the method of multiple starting points. For the empirical
regression we choose 163 basis functions. For a given point in time j + 1, the first three basis
functions are given by

ηj+1,1(X ρ̂
j+1) = 1,

ηj+1,2(X ρ̂
j+1) = X ρ̂

j+1,

ηj+1,3(X ρ̂
j+1) = E[g(X ρ̂

J)|X ρ̂
j+1].

The third one is, thus, simply the Black-Scholes price (under ρ̂) of the spread option g. For the
remaining 160 basis functions, we also choose Black-Scholes prices of spread options with respective
strikes K(l), K(l+1) and K(l+2) for l = 1, . . . , 160, where the numbers K(1), . . . ,K(162) increase from
20.5 to 230.5. Precisely, these basis functions are given by

ηj+1,k(X
ρ̂
j+1) = E[(X ρ̂

J −K
(k−3))+|X ρ̂

j+1]− 2E[(X ρ̂
J −K

(k−2))+|X ρ̂
j+1] + E[(X ρ̂

J −K
(k−1))+|X ρ̂

j+1]

for k = 4, . . . , 163, where

E[(X ρ̂
J −K)+|X ρ̂

j+1] = X ρ̂
j+1N

(
d+

(
tJ − tj+1, X

ρ̂
j+1,K

))
−KN

(
d−

(
tJ − tj+1, X

ρ̂
j+1,K

))
.

Here, d+(τ, x,K) and d−(τ, x,K) are given by

d±(τ, x,K) =
1

ρ̂
√
τ

(
log
( x
K

)
± 1

2
ρ̂2τ

)
.
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Note that, in contrast to the previous example, the basis functions only depend on the value of the
risky asset at the given time point using that

ηj+1,k(X
ρ̂
j+1) = ηj+1,k

(
X ρ̂
j exp

{
ρ̂∆Wj+1 −

1

2
ρ̂2∆

})
= η̃j+1,k(X

ρ̂
j , Bj+1).

Under the given assumptions, these basis functions form a set of martingales, for which the condi-

tional expectations are available in closed form. Hence, we have for R
(0)
j,k(X ρ̂

j ) := Ej [ηj+1,k(X
ρ̂
j+1)]

that

R
(0)
j,1 (X ρ̂

j ) = 1, R
(0)
j,2 (X ρ̂

j ) = X ρ̂
j , R

(0)
j,3 (X ρ̂

j ) = E[g(X ρ̂
J)|X ρ̂

j ],

R
(0)
j,k(X ρ̂

j ) = E[(X ρ̂
J −K

(k−3))+|X ρ̂
j ]− 2E[(X ρ̂

J −K
(k−2))+|X ρ̂

j ] + E[(X ρ̂
J −K

(k−1))+|X ρ̂
j ],

for k = 4, . . . , 163. For the one-step conditional expectations R
(1)
j,k(X ρ̂

j ) := Ej [β
(2)
j+1ηj+1,k(X

ρ̂
j+1)],

we conclude by Appendix A.4 that

R
(1)
j,k(x) = E

[(
∆W 2

j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆

)
ηj+1,k(X

ρ̂
j+1)

∣∣∣∣∣X ρ̂
j = x

]
= ρ̂2x2 d

2

dx2
ηj,k(x)

holds. Consequently, these conditional expectations are given by

R
(1)
j,1 (X ρ̂

j ) = R
(1)
j,2 (X ρ̂

j ) = 0,

R
(1)
j,3 (X ρ̂

j ) =
ρ̂X ρ̂

j√
tJ − tj

(
ϕ(d+(tJ − tj , X ρ̂

j ,K1))− ϕ(d+(tJ − tj , X ρ̂
j ,K2))

)
,

R
(1)
j,k(X ρ̂

j ) =
ρ̂X ρ̂

j√
tJ − tj

(
ϕ(d+(tJ − tj , X ρ̂

j ,K
(k−3)))− 2ϕ(d+(tJ − tj , X ρ̂

j ,K
(k−2)))

+ϕ(d+(tJ − tj , X ρ̂
j ,K

(k−1)))
)

for k = 4, . . . , 163, where ϕ denotes the density of a standard normal distribution. Hence, the
one-step conditional expectations of the basis functions ηj+1,k, k ≥ 3, after multiplication with the
second derivative weight β(2) are essentially (differences of) Black-Scholes Gammas at time j. For
the computation of upper and lower bounds, we simulate Λout = 105 outer paths. In contrast to
the regression paths, we now take x0 = 100 for the evaluation of X ρ̂ along each path. As before,
we denote by Ŷ up

0 and Ŷ low
0 the corresponding estimators for E[θup0 ] respectively E[θlow0 ].

We first consider the situation where σlow = 0.1 and σup = 0.2. This example is by now a standard
test case for Monte Carlo implementations of Hamilton-Jacobi-Bellman equations. The option
price in the continuous time limit can be calculated in closed form and equals 11.2046, see Vanden
(2006). Table 1.2 shows the approximated prices Ỹ0 := ỹ0(x0) as well as upper and lower bounds
for ρ̂ = 0.2/

√
3 ≈ 0.1155 depending on the time discretization. This is the smallest choice of ρ̂, for

which the monotonicity condition in Theorem 1.4.1 can only be violated when the absolute values of
the Brownian increments are large. The numerical results suggest convergence from below towards
the continuous-time limit for finer time discretizations. This is intuitive in this example, since finer
time discretizations allow for richer choices of the process (σt)t∈[0,T ] in the maximization problem
(1.6). We notice that the bounds are fairly tight (with, e.g., a relative width of 1.9% for the 95%
confidence interval with J = 21 time discretization points), although the upper bound begins to
deteriorate as Ỹ0 approaches its limiting value. The impact of increasing ρ̂ to 0.15 (as proposed
in Guyon and Henry-Labordère, 2011; Alanko and Avellaneda, 2013) is shown in Table 1.3. The
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J 3 6 9 12 15 18 21 24

Ỹ0 10.8549 11.0494 11.1067 11.1336 11.1490 11.1590 11.1659 11.1713

Ŷ up
0 10.8604

(0.0001)
11.0545
(0.0003)

11.1145
(0.0006)

11.1472
(0.0010)

11.1754
(0.0024)

11.2239
(0.0121)

11.3172
(0.0312)

11.4362
(0.0385)

Ŷ low
0 10.8544

(0.0001)
11.0497
(0.0003)

11.1077
(0.0005)

11.1341
(0.0003)

11.1488
(0.0003)

11.1596
(0.0007)

11.1665
(0.0008)

11.1700
(0.0010)

Table 1.2: Approximated price as well as lower and upper bounds for ρ̂ = 0.1155 for different time
discretizations. Standard deviations are given in brackets

J 5 10 15 20 25 30 35 40

Ỹ0 10.8164 10.9981 11.0677 11.1027 11.1241 11.1383 11.1485 11.1561

Ŷ up
0 10.8184

(0.0001)
11.0041
(0.0001)

11.0740
(0.0002)

11.1124
(0.0004)

11.1561
(0.0160)

11.1786
(0.0019)

11.2601
(0.0129)

11.3691
(0.0143)

Ŷ low
0 10.8164

(0.0001)
10.9982
(0.0001)

11.0678
(0.0001)

11.1022
(0.0001)

11.1230
(0.0002)

11.1365
(0.0002)

11.1444
(0.0008)

11.1507
(0.0006)

Table 1.3: Approximated price as well as lower and upper bounds for ρ̂ = 0.15 for different time
discretizations. Standard deviations are given in brackets

relative width of the 95%-confidence interval is now about 1.3% for up to J = 35 time steps, but
also the convergence to the continuous-time limit appears to be slower with this choice of ρ̂.

Comparing Table 1.3 with the results in Alanko and Avellaneda (2013), we observe that their point
estimates for Y0 at time discretization levels J = 10 and J = 20 do not lie in our confidence intervals
which are given by [10.9985, 11.0043] and [11.1025, 11.1131], indicating that their (regression-now)
least-squares Monte Carlo estimator may still suffer from large variances (although they apply
control variates). The dependence of the time discretization error on the choice of the reference
volatility ρ̂ is further illustrated in Table 1.4, which displays the mean and the standard deviation
of 30 runs of the regression-later algorithm for different choices of ρ̂ and up to 640 time steps. By
and large, convergence is faster for smaller choices of ρ̂, but the algorithm becomes unstable when
the reference volatility is too small.

J 10 20 40 80 160 320 640

ρ̂ = 0.06 84.6503
(45.3588)

1.3012 · 105

(3.6246·105)
8.6315 · 1011

(4.2492·1012)
6.4425 · 1015

(2.0720·1016)
3.1259 · 1011

(1.0129·1012)
5.5578 · 1018

(2.6571·1018)
8.1779 · 1026

(4.1892·1027)

ρ̂ = 0.08 11.6966
(0.0022)

12.0212
(0.4895)

45.3317
(106.5248)

11.5192
(0.2348)

11.3627
(0.0241)

160.9274
(819.6279)

680.9364
(3.5302·103)

ρ̂ = 0.1 11.1546
(0.0002)

11.1832
(0.0001)

11.1946
(0.0001)

11.2002
(0.0001)

11.2030
(0.0001)

11.2050
(0.0001)

11.2061
(0.0001)

ρ̂ = 0.15 10.9981
(0.0002)

11.1030
(0.0001)

11.1563
(0.0002)

11.1833
(0.0002)

11.1969
(0.0002)

11.2036
(0.0002)

11.2070
(0.0002)

ρ̂ = 0.2 10.8006
(0.0003)

10.9766
(0.0003)

11.0846
(0.0002)

11.1484
(0.0002)

11.1837
(0.0003)

11.2023
(0.0002)

11.2116
(0.0002)

ρ̂ = 0.5 9.7087
(0.0001)

9.9649
(0.0002)

10.2326
(0.0003)

10.5020
(0.0008)

10.7548
(0.0012)

10.9627
(0.0015)

11.1103
(0.0018)

Table 1.4: Mean of L = 30 simulations of Ỹ0 for different ρ̂ and discretizations. Standard deviations
are given in brackets.

In order to gain a better understanding of how the performance of the method depends on the
input parameters, we also consider the case σlow = 0.3 and σup = 0.4. Note that, for this choice,
the comparison principle is in force if we choose ρ̂ ∈ [0.4/

√
3, 0.3]. Following Vanden (2006), the

price of the European call-spread option in the continuous-time limit is 9.7906 in this case. We get
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qualitatively the same results as for the previous example, in the sense that convergence is faster
for the smaller reference volatility and that the upper bound estimators begin to deteriorate as the
time partition becomes too fine. However, quantitatively, the numerical results in Table 1.5 and
1.6 are better than in the previous example as the confidence intervals remain tight for finer time
partitions. This is quite likely to be connected to the fact that the ratio between σup and σlow is
smaller in this second example.

J 3 6 9 12 15 18 21 24 27 30

Ỹ0 9.6169 9.7163 9.7435 9.7568 9.7642 9.7690 9.7721 9.7744 9.7761 9.7775

Ŷ up
0 9.6179

(0.0002)
9.7192
(0.0002)

9.7487
(0.0006)

9.7643
(0.0012)

9.7744
(0.0014)

9.7999
(0.0069)

9.8183
(0.0152)

9.8262
(0.0170)

9.8724
(0.0306)

9.8703
(0.0274)

Ŷ low
0 9.6105

(0.0002)
9.7167
(0.0002)

9.7434
(0.0003)

9.7556
(0.0008)

9.7645
(0.0003)

9.7695
(0.0007)

9.7718
(0.0003)

9.7750
(0.0006)

9.7761
(0.0006)

9.7775
(0.0002)

Table 1.5: Approximated price as well as lower and upper bounds for ρ̂ = 0.23095 for different time
discretizations. Standard deviations are given in brackets

J 10 20 30 40 50 60 70 80

Ỹ0 9.6064 9.6922 9.7244 9.7410 9.7509 9.7578 9.7625 9.7660

Ŷ up
0 9.6066

(0.0001)
9.6929
(0.0001)

9.7265
(0.0001)

9.7452
(0.0002)

9.7602
(0.0004)

9.7774
(0.0012)

9.8133
(0.0030)

9.9123
(0.0077)

Ŷ low
0 9.6062

(0.0001)
9.6917
(0.0001)

9.7239
(0.0001)

9.7403
(0.0001)

9.7504
(0.0001)

9.7570
(0.0001)

9.7614
(0.0001)

9.7648
(0.0001)

Table 1.6: Approximated price as well as lower and upper bounds for ρ̂ = 0.35 for different time
discretizations. Standard deviations are given in brackets

Finally, we demonstrate the advantage of the regression-later approach over the regression-now
variant of LSMC in this example. To this end, we compute the respective approximations of the
process (Γj)j=0,...,J for varying time steps and different choices of the parameters σlow, σup and ρ̂.
We run the regression with the basis functions described above and Λreg = 105 regression paths
for the regression-later algorithm and Λreg = 107 paths for the regression-now approach. The
resulting approximations are compared with the closed-form expression for Γ derived in Vanden
(2006) for the continuous-time problem. The approximations as well as the true process are plotted
as functions on the real line for three different time points and are presented in Figures 1.2 to 1.7.
We emphasize that the scales on the y-axis of the plots differ for the different time points.

We first consider the case where J = 30, σlow = 0.3, σup = 0.4 and ρ̂ = 0.23095. The resulting
approximations are demonstrated in Figures 1.2 to 1.4 for the time points t ∈ {0.1, 0.5, 0.9}. We
observe that the regression-now approach provides a less suitable approximation of the true Γt for
all time points, as it is much more oscillating. Recalling that the approximate optimal control
depends on the sign of Γ̃t, these oscillations make it more difficult to find a good approximation
of the optimal control and the Doob martingale. This, in turn, results in worse bounds compared
to those presented above. Going backwards in time, we observe that the approximation becomes
worse. This is due to the propagation of the simulation error induced by this approach in every
time step. Hence, for the regression-now approach even more than 107 regression paths would be
required to reduce this error and, consequently, to obtain a better approximation, see also Bender
and Steiner (2012) for an overview of this topic. In contrast, the regression-later approach provides
a good approximation for all time points with only 105 regression paths, demonstrating the variance
reduction effect of this approach.
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Figure 1.2: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.3, σup = 0.4 and ρ̂ = 0.23095
at timepoint t = 0.1.

For the sake of completeness, we also consider the situation when σlow = 0.1, σup = 0.2 and
ρ̂ = 0.1155 with J = 21 time steps. The resulting approximations for the time points t ∈
{2/21, 11/21, 19/21} are presented in Figures 1.5 to 1.7. All in all, the observations are similar
to the first case, i.e. while the regression-later approach provides a good approximation for all time
points, the approximation stemming from the regression-now approach suffers from the simulation
error. However, the approximations from the regression-now approach appear to become worse for
this choice of the parameters as the effect of oscillation is more pronounced.
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Figure 1.3: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.3, σup = 0.4 and ρ̂ = 0.23095
at timepoint t = 0.5.
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Figure 1.4: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.3, σup = 0.4 and ρ̂ = 0.23095
at timepoint t = 0.9.
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Figure 1.5: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.1, σup = 0.2 and ρ̂ = 0.1155
at timepoint t = 2/21.
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Figure 1.6: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.1, σup = 0.2 and ρ̂ = 0.1155
at timepoint t = 11/21.
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Figure 1.7: Plots of Γ̃t obtained from the regression-now (left) and the regression-later approach
(right) as well as of the true Γt derived in Vanden (2006) for σlow = 0.1, σup = 0.2 and ρ̂ = 0.1155
at timepoint t = 19/21.
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Chapter 2

Concave-convex stochastic dynamic
programs

In this chapter, we provide a further generalization of the results in Chapter 1 by passing from the
convex to a concave-convex structure. This allows us to consider a wider class of applications. It
turns out that the constructions of upper and lower bounds are robust in the sense that the results
from Chapter 1 can be transferred in a straightforward way to this new framework. Hence, we
proceed similar to Chapter 1 by first assuming that a comparison principle holds and then, in a
second step, we relax this assumption and consider the general situation. Section 2.1 introduces
the assumptions and notations which are required to capture the additional concave part of the
dynamic programming equation. Similar to the first chapter, we assume in Section 2.2 that a
comparison principle holds and show that upper and lower bounds for concave-convex dynamic
programs can be derived by a suitable composition of the bounds for the respective concave and
convex problems. In Section 2.3, we show that, in some cases, the solution of the dynamic program
is related to a stochastic two-player zero-sum game. Finally, we apply the information relaxation
approach of Brown et al. (2010) to this game and show that we end up with the bounds proposed
in Section 2.2 if a special class of penalties is considered. In Section 2.4 the comparison principle
is relaxed. We first provide a version of Theorem 1.4.1 which states sufficient conditions for the
comparison principle to hold. Then, we show that the main ideas and results from Section 1.5 can
be transferred immediately to this new setting. In Section 2.5, we consider the problem of pricing
a swap under default risk as a numerical example.

2.1 Setup

Throughout this section, we consider the following concave-convex dynamic programming equation

YJ = ξ,

Yj = Gj(Ej [βj+1Yj+1], Fj(Ej [βj+1Yj+1])), j = J − 1, . . . , 0 (2.1)

on a complete filtered probability space (Ω,F , (Fj)j=0,...J , P ) in discrete time. As before, we denote
by Ej [·] the conditional expectation with respect to Fj . In what follows, we rely on the following
assumptions:

Assumption 2.1.1. (i) The functions Fj, j = 0, . . . , J − 1, the process β and the terminal
condition ξ satisfy the Assumptions 1.2.1 (i),(ii),(iv) and (v) with N = 1.
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(ii) For every j = 0, . . . , J−1, Gj : Ω×RD×R→ R is measurable and, for every (z, y) ∈ RD×R,
the process (j, ω) 7→ Gj(ω, z, y) is adapted.

(iii) The map (z, y) 7→ Gj(ω, z, y) is concave in (z, y) and non-decreasing in y for every j =
0, . . . , J − 1 and ω ∈ Ω.

(iv) G and F are of polynomial growth in (z, y) in the following sense: There exist a constant q ≥ 0
and a non-negative adapted process (αj) such that for all (z, y) ∈ RD+1 and j = 0, . . . , J − 1

|Gj(z, y)|+ |Fj(z)| ≤ αj(1 + ‖z‖q + |y|q), P -a.s.,

and αj ∈ L∞−j (R).

Lemma 2.1.2. Under Assumption 2.1.1 the P -almost surely unique solution Y to (2.1) is an
element of L∞−ad (R).

We skip the proof of this lemma as it follows by essentially the same lines of reasoning applied in
the proof of Lemma 1.2.2.

Example 2.1.3. (i) As a first example, we focus on the Bermudan option pricing problem but
with the additional twist that both, the holder and the issuer, of the option have the right
to exercise the option prior to maturity. This kind of options are sometimes referred to as
Israeli options and arise, e.g., in the context of convertible bonds. Depending on which party
exercises the option first, the holder of the option receives either the amount Lj if he exercises
first or Hj if the issuer cancels the option first. If both decide to exercise their right at the
same time, the holder receives the amount Hj . Here, the processes (Lj)j=0,...,J and (Hj)j=0,...,J

are adapted to a filtration (Fj)j=0,...,J and satisfy 0 ≤ Lj ≤ Hj for all j = 0, . . . , J − 1 and
LJ = HJ . Since the issuer has to pay the larger amount Hj it is his intention to minimize the
expected payoff of the option while the holder of the option tries to maximize it. Hence, the
value of the option is given by

Y0 = esssup
τ∈S0

essinf
σ∈S0

E

[
J∑
i=0

Li1{τ=i<σ} +Hi1{σ=i≤τ}

]

= essinf
σ∈S0

esssup
τ∈S0

E

[
J∑
i=0

Li1{τ=i<σ} +Hi1{σ=i≤τ}

]
, (2.2)

where S0 denotes the set of stopping times with values in {0, . . . , J}. As it is shown e.g. in
Neveu (1975), the value of the option can be represented by the dynamic program

YJ = LJ

Yj = min {Hj ,max {Lj , Ej [Yj+1]}} , (2.3)

where Ej [·] denotes the conditional expectation with respect to Fj . Choosing Gj(z, y) =
min{Hj , y} and Fj(z) = max{Lj , z}, we observe that (2.3) is of the form (2.1) with D = 1
and β ≡ 1.

(ii) We consider the problem of pricing under credit risk, which is a well-known example in the
financial literature, see e.g. Brigo et al. (2013) or Crépey et al. (2014). To this end, suppose
that two parties, to which we refer as investor and counterparty, trade several derivatives,
which all have the same maturity T . Since this is a non-linear pricing problem, the hedging
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prices for this basket of options is different for the investor and his counterparty. Hence, we
focus in the following on the investor’s view and denote by ξ the possibly negative payoff of
this basket which the investor receives at maturity. The random variable ξ is assumed to be
measurable with respect to the market’s reference filtration (Ft)0≤t≤T . In what follows, we
consider the situation of bilateral counterparty risk, so that both parties may default. For
simplicity, we rule out the possibility of simultaneous default, so that it is either the investor or
the counterparty party that defaults. As an additional difficulty, we also include the funding
costs for the investor in our problem. From equations (2.14) and (3.8) in Crépey et al. (2013),
which correspond to a CSA recovery scheme with no collateralization, we obtain that the
value of this basket is given by the backward stochastic differential equation

Yt = Et

[
ξ −

∫ T

t
f(s, Ys) ds

]
, (2.4)

where f : [0, T ]× R→ R is defined by

f(s, y) = (rs + γs(1− 2ps)(1− r) + λ̄)y − (γs(1− 3ps)(1− r) + λ̄− λ)y+. (2.5)

Here the adapted stochastic process r describes the risk-less short rate and γt is the rate
at which default of either side occurs at time t. Further, we denote by pt the conditional
probability that it is the counterparty who defaults, if default occurs at time t. Accordingly,
1−pt is the conditional probability that the investor defaults, since we ruled out the possibility
of simultaneous default. Moreover, r is associated with partial recovery and we assume for
simplicity that the free parameters ρ, ρ̄ and r in Crépey et al. (2013) satisfy r = ρ = ρ̄. Finally,
the constants λ and λ̄ reflect the costs of external lending and borrowing.

Discretizing (2.4) over an equidistant time grid 0 = t0 < t1 < . . . < tJ = T with increment ∆
we end up with the dynamic programming equation

YJ = ξ

Yj = (1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ))Ej [Yj+1]

+∆(γtj (1− r)(1− 3ptj ) + λ− λ)Ej [Yj+1]+, j = J − 1, . . . , 0, (2.6)

which is of the form (2.1) with D = 1 and β ≡ 1. Indeed, denote by

gj = 1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ)

and
hj = ∆(γtj (1− r)(1− 3ptj ) + λ− λ)

the factors in the first and second summand of (2.6) and let Gj(z, y) : R2 → R and Fj(z) :
R→ R be given by

Gj(z, y) = gjz + (hj)+y − (hj)−z+,

respectively
Fj(z) = z+.

Then, the functions Gj(z, y) and Fj(z) are concave respectively convex and the recursion (2.6)
can be expressed in terms of Gj and Fj , i.e.

Yj = Gj(Ej [Yj+1], Fj(Ej [Yj+1])), j = 0, . . . , J − 1. (2.7)

Note that, depending on the choice of the parameters and stochastic processes, hj may change
its sign, so that the dynamic program (2.6) can be both, convex and concave. Hence, the
convex structure of Chapter 1 is insufficient to capture this pricing problem and the concave-
convex structure (2.7) is required.
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For our further considerations, we require an analogue to the set AFj := AF (1)

j introduced in Section
1.2 for the function Gj . Therefore, we recall that the concave conjugate of Gj is, for every ω ∈ Ω,
given by

G#
j

(
ω, v(1), v(0)

)
:= inf

(z,y)∈RD+1

((
v(1)
)>

z + v(0)y −Gj(ω, z, y)

)
, (2.8)

with effective domain

D
(j,ω)

G# =
{(

v(1), v(0)
)
∈ RD+1

∣∣∣G#
j

(
ω, v(1), v(0)

)
> −∞

}
.

Note that, similar to the convex case, we can apply Theorem 12.2 in Rockafellar (1970), since Gj
is concave and closed, and thus obtain G##

j = Gj for every j = 0, . . . , J − 1 and ω ∈ Ω. Hence, for

every j = 0, . . . , J − 1, ω ∈ Ω and (z, y) ∈ RD+1 it holds that

Gj(ω, z, y) = inf
(v(1),v(0))∈RD+1

(
v(1)
)>

z + v(0)y −G#
j

(
ω, v(1), v(0)

)
. (2.9)

Then, we denote the set of admissible controls for the function G by

AGj =

{(
ρ

(1)
i , ρ

(0)
i

)
i=j,...,J−1

∣∣∣∣ (ρ(1)
i , ρ

(0)
i

)
∈ L∞−i

(
RD+1

)
,

G#
i

(
ρ

(1)
i , ρ

(0)
i

)
∈ L∞−(R), i = j, . . . , J − 1

}
for every j = 0, . . . , J − 1. Applying exactly the same arguments as in Section 1.3, we obtain that

G#
i (ρ

(1)
i , ρ

(0)
i ) is Fi-measurable and G#

i (ρ
(1)
i , ρ

(0)
i ) > −∞ for all admissible controls (ρ(1), ρ(0)) ∈ AGj

and i = j, . . . , J − 1. Moreover, we have that ρ
(0)
i ≥ 0 P -a.s. as the map (z, y) 7→ Gi(z, y) is non-

decreasing by assumption for all i = j, . . . , J − 1.

2.2 The monotone case

As in Chapter 1, we first suppose that a comparison principle holds:

Assumption 2.2.1. For every supersolution Y up and every subsolution Y low to the dynamic pro-
gram (2.1) it holds that

Y up
j ≥ Y low

j , P -a.s.,

for every j = 0, . . . , J .

The main idea in the construction of upper and lower bounds to (2.1) is to consider convex and
concave dynamic programs separately and to combine the respective bounds in a suitable way.
Hence, the upper bound recursion builds on a linearization of the concave function Gj using Fenchel
duality and subtracting a martingale increment in the convex function Fj . For the lower bound
recursion, we proceed the other way round, i.e. we linearize the convex part in (2.1) and subtract
a martingale increment in the concave part. This leads us to the following recursions:

Let j ∈ {0, . . . , J−1}. Then, for a given martingale M ∈MD and admissible controls (ρ(1), ρ(0)) ∈
AGj respectively r ∈ AFj , we define the typically non-adapted processes Θup := Θup(ρ(1), ρ(0),M)

and Θlow := Θlow(r,M) by

Θup
J = Θlow

J = ξ
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Θup
i =

(
ρ

(1)
i

)>
βi+1Θup

i+1 −
(
ρ

(1)
i

)>
∆Mi+1 + ρ

(0)
i Fi

(
βi+1Θup

i+1 −∆Mi+1

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
,

Θlow
i = Gi

(
βi+1Θlow

i+1 −∆Mi+1, r
>
i βi+1Θlow

i+1 − r>i ∆Mi+1 − F#
i (ri)

)
(2.10)

for i = J − 1, . . . , j.

Lemma 2.2.2. Suppose Assumption 2.1.1. Then, for every j ∈ {0, . . . , J − 1}, M ∈ MD,
(ρ(1), ρ(0)) ∈ AGj , and r ∈ AFj , the processes Θup(ρ(1), ρ(0),M) and Θlow(r,M) given by (2.10)

satisfy Θup
i (ρ(1), ρ(0),M) ∈ L∞−(R) respectively Θlow

i (r,M) ∈ L∞−(R) for all i = j, . . . , J .

As the proof of this result follows by a straightforward modification of the proofs of Lemma 1.2.2
and Lemma 1.3.3, we omit the details.

Taking admissible controls (ρ(1), ρ(0)) ∈ AG0 and r ∈ AF0 as well as a martingale M ∈ MD, we can
define the processes Y up and Y low by Y up

j := Ej [Θ
up
j (ρ(1), ρ(0),M)] and Y low

j := Ej [Θ
low
j (r,M)],

j = 0, . . . , J . As in Section 1.3, these processes define super- and subsolutions to (2.1). We first
show, that Y up is a supersolution. To this end, we apply Jensen’s inequality in combination with

the non-negativity of ρ
(0)
j to obtain

Y up
j = Ej

[
Θup
j

]
= Ej

[(
ρ

(1)
j

)>
βj+1Θup

j+1 −
(
ρ

(1)
j

)>
∆Mj+1 + ρ

(0)
j Fj

(
βj+1Θup

j+1 −∆Mj+1

)
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)]
≥
(
ρ

(1)
j

)>
Ej

[
βj+1Θup

j+1 −∆Mj+1

]
+ ρ

(0)
j Fj

(
Ej

[
βj+1Θup

j+1 −∆Mj+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
.

Now, we conclude by the martingale property of M and the tower property of the conditional
expectation that

Y up
j ≥

(
ρ

(1)
j

)>
Ej

[
βj+1Θup

j+1

]
+ ρ

(0)
j Fj

(
Ej

[
βj+1Θup

j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
=
(
ρ

(1)
j

)>
Ej

[
βj+1Ej+1

[
Θup
j+1

]]
+ ρ

(0)
j Fj

(
Ej

[
βj+1Ej+1

[
Θup
j+1

]])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
.

Finally, the definition of Y up and (2.9) yield

Y up
j ≥

(
ρ

(1)
j

)>
Ej

[
βj+1Y

up
j+1

]
+ ρ

(0)
j Fj

(
Ej

[
βj+1Y

up
j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥ Gj

(
Ej

[
βj+1Y

up
j+1

]
, Fj

(
Ej

[
βj+1Y

up
j+1

]))
for every j = 0, . . . , J − 1, from which follows that Y up is indeed a supersolution. Following
essentially the same line of reasoning, except that we apply (1.23) instead of (2.9), we conclude
that

Y low
j = Ej

[
Θlow
j

]
= Ej

[
Gj

(
βj+1Θlow

j+1 −∆Mj+1, r
>
j βj+1Θlow

j+1 − r>j ∆Mj+1 − F#
j (rj)

)]
≤ Gj

(
Ej

[
βj+1Θlow

j+1 −∆Mj+1

]
, r>j Ej

[
βj+1Θlow

j+1 −∆Mj+1

]
− F#

j (rj)
)

= Gj

(
Ej

[
βj+1Θlow

j+1

]
, r>j Ej

[
βj+1Θlow

j+1

]
− F#

j (rj)
)

= Gj

(
Ej

[
βj+1Ej+1

[
Θlow
j+1

]]
, r>j Ej

[
βj+1Ej+1

[
Θlow
j+1

]]
− F#

j (rj)
)
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= Gj

(
Ej

[
βj+1Y

low
j+1

]
, r>j Ej

[
βj+1Y

low
j+1

]
− F#

j (rj)
)

≤ Gj
(
Ej

[
βj+1Y

low
j+1

]
, Fj

(
Ej

[
βj+1Y

low
j+1

]))
.

for every j = 0, . . . , J − 1, showing that Y low is a subsolution.

From the comparison principle we now conclude that

Ej

[
Θlow
j (r,M)

]
≤ Yj ≤ Ej

[
Θup
j

(
ρ(1), ρ(0),M

)]
holds for every j = 0, . . . , J , M ∈ MD and admissible controls (ρ(1), ρ(0)) ∈ AG0 and r ∈ AF0 . In
particular, it follows, similar to Section 1.3, that

esssup
r∈AF0 , M∈MD

E0

[
Θlow

0 (r,M)
]
≤ Y0 ≤ essinf

(ρ(1),ρ(0))∈AG0 , M∈MD

E0

[
Θup

0

(
ρ(1), ρ(0),M

)]
.

We now provide the analogue of Theorem 1.3.4 for this concave-convex setting.

Theorem 2.2.3. Suppose Assumptions 2.1.1 and 1.3.1. Then, for every j = 0, . . . , J ,

Yj = essinf
(ρ(1),ρ(0))∈AGj , M∈MD

Ej

[
Θup
j

(
ρ(1), ρ(0),M

)]
= esssup

r∈AFj , M∈MD

Ej

[
Θlow
j (r,M)

]
, P -a.s.

Moreover,

Yj = Θup
j

(
ρ(1,∗), ρ(0,∗),M∗

)
= Θlow

j (r∗,M∗) (2.11)

P -almost surely, for every (ρ(1,∗), ρ(0,∗)) ∈ AGj and r∗ ∈ AFj satisfying the duality relations

(
ρ

(1,∗)
i

)>
Ei [βi+1Yi+1] + ρ

(0,∗)
i Fi (Ei[βi+1Yi+1])−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
= Gi (Ei [βi+1Yi+1] , Fi(Ei[βi+1Yi+1])) (2.12)

and

(r∗i )
>Ei [βi+1Yi+1]− F#

i (r∗i ) = Fi (Ei [βi+1Yi+1]) (2.13)

P -almost surely for every i = j, . . . , J − 1, and with M∗ being the Doob martingale of βY .

We emphasize that the main difference between Theorem 2.2.3 and its convex analogue, Theorem
1.3.4, is the pathwise equality (2.11) for both bounds if optimal controls and an optimal martingale
are applied. Recall that in the convex setting of Section 1.3, pathwise equality for the lower bound
could only be achieved by the modified recursion (1.29), while for the initial lower bound (1.25)
equality only holds after taking conditional expectations. In contrast, it is yet impossible to drop
any of the martingale increments in (2.10), since then equality would not even hold after taking
conditional expectations. This is due to the fact, that either the convex or the concave part of (2.1)
is linearized using Fenchel duality, but not the whole dynamic program.
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Proof. The overall strategy is similar to the proof of Theorem 1.3.4. We first show that for given
j ∈ {0, . . . , J − 1} the chain of inequalities

Ei

[
Θlow
i (r,M)

]
≤ Yi ≤ Ei

[
Θup
i

(
ρ(1), ρ(0),M

)]
, i = j, . . . , J

holds for all admissible controls and martingales by constructing suitable super- and subsolutions
and applying the comparison principle. Finally, we show that pathwise equality holds, if optimal
controls and an optimal martingale are taken as an input.

Let j ∈ {0, . . . , J − 1} be fixed, M ∈ MD, (ρ(1), ρ(0)) ∈ AGj and r ∈ AFj . Further, we define the

processes Θup := Θup(ρ(1), ρ(0),M) and Θlow := Θlow(r,M) according to (2.10). Building on Θup

and Θlow, we define the two processes Y up,j and Y low,j by

Y up,j
i =

{
Ei [Θup

i ] , i ≥ j
Gi

(
Ei

[
βi+1Y

up,j
i+1

]
, Fi

(
Ei

[
βi+1Y

up,j
i+1

]))
, i < j

and

Y low,j
i =

{
Ei
[
Θlow
i

]
, i ≥ j

Gi

(
Ei

[
βi+1Y

low,j
i+1

]
, Fi

(
Ei

[
βi+1Y

low,j
i+1

]))
, i < j.

Then, Y up,j and Y low,j are super- and subsolutions to (1.15). Indeed, for i ≥ j, this follows by
the same arguments applied at the beginning of this section. For i < j, this is an immediate
consequence of the definition of Y up,j and Y low,j .

As an immediate consequence of the comparison principle, we obtain that

Ei

[
Θlow
i

]
≤ Yi ≤ Ei [Θup

i ] , i = j, . . . , J.

Since this chain of inequalities holds for arbitrary choices of admissible controls and martingales,
we have

esssup
r∈AFj , M∈MD

Ej

[
Θlow
j (r,M)

]
≤ Yj ≤ essinf

(ρ(1),ρ(0))∈AGj , M∈MD

Ej

[
Θup
j

(
ρ(1), ρ(0),M

)]
.

Finally, we show that these inequalities turn into equalities for (ρ(1,∗), ρ(0,∗)) ∈ AGj , r∗ ∈ AFj given
by (2.12) respectively (2.13) and with M∗ being the Doob martingale of βY . To this end, let
Θup,∗ := Θup(ρ(1,∗), ρ(0,∗),M∗) and Θlow,∗ := Θlow(r∗,M∗). Then, the proof is again by backward
induction on i. As before, the case i = J is trivial by definition. Suppose that the assertion is true
for i+ 1. From the induction hypothesis, the definition of M∗, and the duality relation (2.13), we
obtain that

Θlow,∗
i = Gi

(
βi+1Θlow,∗

i+1 −∆M∗i+1, (r
∗
i )
> βi+1Θlow,∗

i+1 − (r∗i )
>∆M∗i+1 − F

#
i (r∗i )

)
= Gi

(
βi+1Yi+1 −∆M∗i+1, (r

∗
i )
> βi+1Yi+1 − (r∗i )

>∆M∗i+1 − F
#
i (r∗i )

)
= Gi

(
βi+1Yi+1 − (βi+1Yi+1 − Ei [βi+1Yi+1]) ,

(r∗i )
> βi+1Yi+1 − (r∗i )

> (βi+1Yi+1 − Ei [βi+1Yi+1])− F#
i (r∗i )

)
= Gi

(
Ei [βi+1Yi+1] , (r∗i )

>Ei [βi+1Yi+1]− F#
i (r∗i )

)
= Gi (Ei [βi+1Yi+1] , Fi(Ei[βi+1Yi+1])) = Yi
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holds P -a.s. To complete the proof we apply essentially the same arguments to the upper bound,
except that the duality relation (2.12) is required instead of (2.13):

Θup,∗
i =

(
ρ

(1,∗)
i

)>
βi+1Θup,∗

i+1 −
(
ρ

(1,∗)
i

)>
∆M∗i+1 + ρ

(0,∗)
i Fi

(
βi+1Θup,∗

i+1 −∆M∗i+1

)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
=

(
ρ

(1,∗)
i

)>
βi+1Yi+1 −

(
ρ

(1,∗)
i

)>
∆M∗i+1 + ρ

(0,∗)
i Fi

(
βi+1Yi+1 −∆M∗i+1

)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
=

(
ρ

(1,∗)
i

)>
βi+1Yi+1 −

(
ρ

(1,∗)
i

)>
(βi+1Yi+1 − Ei [βi+1Yi+1])

+ρ
(0,∗)
i Fi (βi+1Yi+1 − (βi+1Yi+1 − Ei [βi+1Yi+1]))−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
=

(
ρ

(1,∗)
i

)>
Ei [βi+1Yi+1] + ρ

(0,∗)
i Fi (Ei [βi+1Yi+1])−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
= Gi (Ei [βi+1Yi+1] , Fi(Ei[βi+1Yi+1]))

= Yi.

2.3 Relation to the information relaxation approach

The scope of this section is to relate our upper and lower bound recursions (2.10) to the information
relaxation approach in the context of stochastic two-player games. To do this, we first show
that the recursions (2.10) can be expressed as pathwise minimization respectively maximization
problems. Building on these representations, we prove that the solution Y to (2.1) is the value of
a stochastic two-player game. Applying the information relaxation approach to this game shows
that the resulting bounds coincide with our upper and lower bound recursions for a certain class of
penalties.

We first observe that

Yj = inf
(v(1),v(0))∈RD+1

(
v(1)
)>

Ej [βj+1Yj+1] + v(0)

(
sup
u∈RD

u>Ej [βj+1Yj+1]− F#
j (u)

)
−G#

j

(
v(1), v(0)

)
for every j = 0, . . . , J − 1 by Lemma 1.2.4. As the function (z, y) 7→ Gj(z, y) is non-decreasing in
y, we know that v(0) is non-negative, and therefore we obtain that

Yj = inf
(v(1),v(0))∈RD+1

sup
u∈RD

(
v(1)
)>

Ej [βj+1Yj+1] + v(0)u>Ej [βj+1Yj+1]− v(0)F#
j (u)

−G#
j

(
v(1), v(0)

)
= inf

(v(1),v(0))∈RD+1
sup
u∈RD

(
v(1) + v(0)u

)>
Ej [βj+1Yj+1]− v(0)F#

j (u)

−G#
j

(
v(1), v(0)

)
, (2.14)

which formally looks like a dynamic programming equation for a two-player game with Fj+1-
measurable random weight (v(1) + v(0)u)>βj+1. In order to show that (2.14) is indeed the dynamic
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programming equation of a two-player zero-sum game, the following positivity assumption is re-
quired.

Assumption 2.3.1. For every j = 0, . . . , J − 1, ω ∈ Ω, (v(1), v(0)) ∈ D(j,ω)

G# , and u ∈ D(j,ω)

F# , we
assume that (

v(1) + v(0)u
)>

βj+1(ω) ≥ 0. (2.15)

The following theorem states that the solution Y to the concave-convex dynamic program (2.1)
might be interpreted as the value of certain two-player stochastic games.

Theorem 2.3.2. Suppose Assumptions 2.1.1 and 2.3.1. Then, the solution Y to (2.1) satisfies

Y0 = essinf
(ρ(1),ρ(0))∈AG0

esssup
r∈AF0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

= esssup
r∈AF0

essinf
(ρ(1),ρ(0))∈AG0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

,

where

wj

(
ω, v(1), v(0), u

)
=

j−1∏
i=0

(
v

(1)
i + v

(0)
i ui

)>
βi+1(ω) (2.16)

for every j = 0, . . . , J .

From a financial point of view, the weight wj(ρ
(1), ρ(0), r) may be interpreted as a discrete-time

price deflator or as an approximation of a continuous-time price deflator given in terms of a stochas-
tic exponential which can incorporate both, discounting in the real-world sense and a change of
measure. Then, the first term in

E0

wJ (ρ(1), ρ(0), r
)
ξ −

J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)

corresponds to the fair price of an option with payoff ξ in the price system determined by the
deflator wJ(ρ(1), ρ(0), r), which is to be chosen by the two players. The choice may come with an
additional running reward or cost which is formulated via the convex conjugates of F and G in the
second term of the above expression. With this interpretation, Y0 is the equilibrium price for an
option with payoff ξ, on which the two players agree.

The key step in the proof of Theorem 2.3.2 are the following alternative representations of the
recursions (2.10) as pathwise maximization respectively minimization problems.

Proposition 2.3.3. Suppose Assumptions 2.1.1 and 2.3.1. Further, let M ∈MD and (ρ(1), ρ(0)) ∈
AG0 as well as r ∈ AF0 be admissible controls and define the processes Θup(ρ(1), ρ(0),M) and
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Θlow(r,M) by (2.10). Then, Θup
0 (ρ(1), ρ(0),M) and Θlow

0 (r,M) can be expressed by the pathwise
maximization and minimization problems

Θup
0

(
ρ(1), ρ(0),M

)
= sup

(uj)∈RD, j=0,...,J−1

(
wJ

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) + (ρ
(1)
j + ρ

(0)
j uj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
))

(2.17)

and

Θlow
0 (r,M) = inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ

−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

, (2.18)

where wj(v
(1), v(0), u) is for every j = 0, . . . , J given by (2.16).

Proof. Let M ∈ MD, (ρ(1), ρ(0)) ∈ AG0 and r ∈ AF0 be fixed from now on. Then, we define
the processes Θup(ρ(1), ρ(0),M) and Θlow(r,M) according to (2.10). Additionally, we define two
processes Θ̃up := Θ̃up(ρ(1), ρ(0),M) and Θ̃low := Θ̃low(r,M) by

Θ̃up
j = sup

(ui)∈RD, i=j,...,J−1

(
wj,J

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
i=j

wj,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
))

(2.19)

and

Θ̃low
j = inf

(v
(1)
i ,v

(0)
i )∈RD+1, i=j,...,J−1

(
wj,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j

wj,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

, (2.20)

for j = 0, . . . , J . Here, the weight wj,i(v
(1), v(0), u) is given by

wj,i

(
v(1), v(0), u

)
=

i−1∏
k=j

(
v

(1)
k + v

(0)
k uk

)>
βk+1.

From this definition, we obtain immediately the following simple identity

wj,i

(
v(1), v(0), u

)
=
(
v

(1)
j + v

(0)
j uj

)>
βj+1wj+1,i

(
v(1), v(0), u

)
. (2.21)

We first show that Θup
0 = Θ̃up

0 . To this end, we first observe by the definition of Θ̃up that Θ̃up
J =

ξ = Θup
J . Applying (2.21), we obtain for every j = 0, . . . , J − 1 that

Θ̃up
j = sup

(ui)∈RD, i=j,...,J−1

(
wj,J

(
ρ(1), ρ(0), u

)
ξ
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−
J−1∑
i=j+1

wj,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
)

−wj,j
(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) + (ρ
(1)
j + ρ

(0)
j uj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
))

= sup
(ui)∈RD, i=j,...,J−1

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1

(
wj+1,J

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
))

−ρ(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1 −G#

j

(
ρ

(1)
j , ρ

(0)
j

))

= sup
uj∈RD

sup
(ui)∈RD, i=j+1,...,J−1

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1

(
wj+1,J

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
))

−ρ(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1 −G#

j

(
ρ

(1)
j , ρ

(0)
j

))
.

In a next step, we want to interchange the inner supremum with the factor (ρ
(1)
j + ρ

(0)
j uj)

>βj+1.

To achieve this, we need to restrict the outer supremum to the effective domain D
(j,·)
F# , so that we

can apply the positivity assumption (2.15). Since we have by definition that F#
j (u) = +∞ for all

u ∈ RD \ D(j,·)
F# , the expression to be maximized would take the value −∞, which cannot be the

supremum. Hence, the restriction to the effective domain maintains the equality and we obtain

Θ̃up
j = sup

uj∈D
(j,·)
F#

sup
(ui)∈RD, i=j+1,...,J−1

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1

(
wj+1,J

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
))

−ρ(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1 −G#

j

(
ρ

(1)
j , ρ

(0)
j

))

= sup
uj∈D

(j,·)
F#

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1

(
sup

(ui)∈RD, i=j+1,...,J−1

wj+1,J

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
ρ(1), ρ(0), u

)(
ρ

(0)
i F#

i (ui) + (ρ
(1)
i + ρ

(0)
i ui)

>∆Mi+1 +G#
i (ρ

(1)
i , ρ

(0)
i )
))

−ρ(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1 −G#

j

(
ρ

(1)
j , ρ

(0)
j

))
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= sup
uj∈D

(j,·)
F#

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1Θ̃up

j+1 − ρ
(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1

−G#
j

(
ρ

(1)
j , ρ

(0)
j

))
,

where the last equality follows from the definition of Θ̃up. By the same argument as before, we

replace the supremum over D
(j,·)
F# by the supremum over RD and apply the non-negativity of ρ

(0)
j

as well as (1.23) to observe that

Θ̃up
j = sup

uj∈RD

((
ρ

(1)
j + ρ

(0)
j uj

)>
βj+1Θ̃up

j+1 − ρ
(0)
j F#

j (uj)−
(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1

−G#
j

(
ρ

(1)
j , ρ

(0)
j

))
=

(
ρ

(1)
j

)> (
βj+1Θ̃up

j+1 −∆Mj+1

)
+ ρ

(0)
j

(
sup
uj∈RD

u>j

(
βj+1Θ̃up

j+1 −∆Mj+1

)
− F#

j (uj)

)
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
=

(
ρ

(1)
j

)> (
βj+1Θ̃up

j+1 −∆Mj+1

)
+ ρ

(0)
j Fj

(
βj+1Θ̃up

j+1 −∆Mj+1

)
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
.

Hence the recursions for Θup(ρ(1), ρ(0),M) and Θ̃up coincide, showing that Θup
j (ρ(1), ρ(0),M) = Θ̃up

j

for all j = 0, . . . , J and therefore

Θup
0 (ρ(1), ρ(0),M) = sup

(uj)∈RD, j=0,...,J−1

(
wJ

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) + (ρ
(1)
j + ρ

(0)
j uj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
))

.

Finally, we show that Θlow
0 = Θ̃low

0 by essentially the same line of reasoning. By definition of Θ̃low,
we have that Θ̃low

J = ξ = Θlow
J . Then, an application of (2.21) yields

Θ̃low
j = inf

(v
(1)
i ,v

(0)
i )∈RD+1, i=j,...,J−1

(
wj,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j+1

wj,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
)

−wj,j
(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

= inf
(v

(1)
i ,v

(0)
i )∈RD+1, i=j,...,J−1

((
v

(1)
j + v

(0)
j rj

)>
βj+1

(
wj+1,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ui)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

−v(0)
j F#

j (rj)−
(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1 −G#

j

(
v

(1)
j , v

(0)
j

))
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= inf
(v

(1)
j ,v

(0)
j )∈RD+1

inf
(v

(1)
i ,v

(0)
i )∈RD+1, i=j+1,...,J−1

((
v

(1)
j + v

(0)
j rj

)>
βj+1

(
wj+1,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

−v(0)
j F#

j (rj)−
(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1 −G#

j

(
v

(1)
j , v

(0)
j

))
for every j = 0, . . . , J−1. By a similar argument as above, the outer infimum can be taken restricted

to such (v
(1)
j , v

(0)
j ) ∈ RD+1 which belong to D

(j,·)
G# . Then, (2.15) implies that the inner infimum can

be interchanged with the non-negative factor (v
(1)
j +v

(0)
j rj)

>βj+1, which yields in combination with

the definition of Θ̃low that

Θ̃low
j = inf

(v
(1)
j ,v

(0)
j )∈D(j,·)

G#

inf
(v

(1)
i ,v

(0)
i )∈RD+1, i=j+1,...,J−1

((
v

(1)
j + v

(0)
j rj

)>
βj+1

(
wj+1,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

−v(0)
j F#

j (rj)−
(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1 −G#

j

(
v

(1)
j , v

(0)
j

))

= inf
(v

(1)
j ,v

(0)
j )∈D(j,·)

G#

((
v

(1)
j + v

(0)
j rj

)>
βj+1

(
inf

(v
(1)
i ,v

(0)
i )∈RD+1, i=j+1,...,J−1

wj+1,J

(
v(1), v(0), r

)
ξ

−
J−1∑
i=j+1

wj+1,i

(
v(1), v(0), r

)(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

−v(0)
j F#

j (rj)−
(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1 −G#

j

(
v

(1)
j , v

(0)
j

))

= inf
(v

(1)
j ,v

(0)
j )∈D(j,·)

G#

((
v

(1)
j + v

(0)
j rj

)>
βj+1Θ̃low

j+1 − v
(0)
j F#

j (rj)−
(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1

−G#
j

(
v

(1)
j , v

(0)
j

))
.

Passing to the infimum over RD+1 and applying (2.9), we observe that Θlow(r,M) and Θ̃low can
be expressed by the same recursion from which Θlow

j (r,M) = Θ̃low
j follows for all j = 0, . . . , J .

Therefore,

Θlow
0 (r,M) = inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ

−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

.

Building on Proposition 2.3.3, we are now in the position to state the proof of Theorem 2.3.2.
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Proof of Theorem 2.3.2. From Theorem 2.2.3 and Proposition 2.3.3, we observe that

Y0 = esssup
r∈AF0 , M∈MD

E0

[
Θlow

0 (r,M)
]

= esssup
r∈AF0 , M∈MD

E0

[
inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ

−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))]

≤ esssup
r∈AF0 , M∈MD

essinf
(ρ(1),ρ(0))∈AG0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) + (ρ
(1)
j + ρ

(0)
j rj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
)]
.

Now, the tower property and the admissibility of the controls in combination with the martingale
property of M yield

Y0 ≤ esssup
r∈AF0 , M∈MD

essinf
(ρ(1),ρ(0))∈AG0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) + (ρ
(1)
j + ρ

(0)
j rj)

>Ej [∆Mj+1] +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

= esssup
r∈AF0

essinf
(ρ(1),ρ(0))∈AG0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

≤ essinf
(ρ(1),ρ(0))∈AG0

esssup
r∈AF0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]
.

Repeating the previous argument and applying Proposition 2.3.3 as well as Theorem 2.2.3 once
more, we obtain

Y0 ≤ essinf
(ρ(1),ρ(0))∈AG0

esssup
r∈AF0

E0

[
wJ

(
ρ(1), ρ(0), r

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), r

)(
ρ

(0)
j F#

j (rj) + (ρ
(1)
j + ρ

(0)
j rj)

>Ej [∆Mj+1] +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

≤ essinf
(ρ(1),ρ(0))∈AG0 , M∈MD

E0

[
sup

(uj)∈RD, j=0,...,J−1

(
wJ

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) + (ρ
(1)
j + ρ

(0)
j uj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
))]
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= essinf
(ρ(1),ρ(0))∈AG0 , M∈MD

E0

[
Θup

0 (ρ(1), ρ(0),M)
]

= Y0,

so that all inequalities turn into equalities, which completes the proof.

The remainder of this section is dedicated to working out the connection between our recur-
sions (2.10) and the information relaxation duals proposed by Brown et al. (2010) for this kind
of stochastic two-player games. To this end, we first define the set P of all dual-feasible penal-
ties. A dual-feasible penalty p is a mapping p : Ω × R(D+1)×J × RD×J → R ∪ {+∞}, such that
E0[p(ρ(1), ρ(0), r)] ≤ 0 holds for all admissible controls (ρ(1), ρ(0)) ∈ AG0 and r ∈ AF0 .

As we have shown in Theorem 2.3.2, Y0 is the value of the following max-min-problem:

Y0 = esssup
r∈AF0

essinf
(ρ(1),ρ(0))∈AG0

E0

[
wJ(ρ(1), ρ(0), r)ξ

−
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

.

If we now suppose that player 1 fixes a control (ρ(1), ρ(0)) ∈ AG0 , we observe that

Y0 ≤ esssup
r∈AF0

E0

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
) . (2.22)

Applying Theorem 2.1 in Brown et al. (2010), i.e. the information relaxation dual with strong
duality, we obtain that the right-hand side of (2.22) can be rewritten as

essinf
p∈P

E0

[
sup

(uj)∈RD,j=0,...,J−1

(
wJ(ρ(1), ρ(0), u)ξ

−
J−1∑
j=0

wj(ρ
(1), ρ(0), u)

(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− p(ρ(1), ρ(0), u)

 .
Hence, Player 2 is allowed to consider the pathwise optimization problem, but at the same time the
choice of anticipating controls is penalized by the mapping p. There is a penalty p∗, which achieves
the infimum and forces that the optimal control for player 2 is adapted.

In a next step, we restrict ourselves to a certain class of penalties, to which we refer as martingale
penalties in the following. To this end, let M ∈ MD be a martingale and define the penalty
pM,ρ : Ω× RD×J → R ∪ {+∞} by

pM,ρ(u) =

J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(1)
j + ρ

(0)
j uj

)>
∆Mj+1,

where (ρ(1), ρ(0)) ∈ AG0 is the fixed control of player 1. Then, pM,ρ is a dual-feasible penalty, since,
for adapted controls r ∈ AF0 ,

E0[pM,ρ(r)] =

J−1∑
j=0

E0

[
wj

(
ρ(1), ρ(0), r

)(
ρ

(1)
j + ρ

(0)
j rj

)>
Ej [∆Mj+1]

]
= 0
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by the martingale property of M and the tower property of the conditional expectation. From
Proposition 2.3.3, it now follows that

Θup
0 (ρ(1), ρ(0),M) = sup

(uj)∈RD,
j=0,...,J−1

(
wJ

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− pM,ρ(u)

)

and, thus, by Theorem 2.2.3

Y0 = essinf
(ρ(1),ρ(0))∈AGj , M∈MD

E0

[
sup

(uj)∈RD, j=0,...,J−1

(
wJ

(
ρ(1), ρ(0), u

)
ξ

−
J−1∑
j=0

wj

(
ρ(1), ρ(0), u

)(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− pM,ρ(u)

)]
. (2.23)

Hence, under the positivity condition (2.15), the upper bound E0[Θup
0 (ρ(1), ρ(0),M)] can be inter-

preted in such a way that, first, player 1 fixes her strategy (ρ(1), ρ(0)) and the penalty by the choice
of the martingale M , while, then, player 2 is allowed to maximize the penalized problem pathwise.

In order to derive a similar interpretation for the lower bound, we suppose that player 2 fixes her
control. Then, we obtain again by the information relaxation dual with strong duality that

Y0 ≥ sup
p∈P

E0

[
inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ

−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) +G#
j (v

(1)
j , v

(0)
j )
)

+ p
(
v(1), v(0), r

))]
, (2.24)

where now player 1 is allowed to minimize the penalized problem pathwise. Choosing the dual-
feasible penalty pM,r : Ω× R(D+1)×J → R ∪ {+∞} given by

pM,r

(
v(1), v(0)

)
=

J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(1)
j + v

(0)
j rj

)>
∆Mj+1,

for a martingale M ∈MD, and applying Proposition 2.3.3 we end up with

Θlow
0 (r,M) = inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ

−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) +G#
j (v

(1)
j , v

(0)
j )
)
− pM,r

(
v(1), v(0)

))
. (2.25)

From Theorem 2.2.3, we conclude that

Y0 = sup
r∈AFj , M∈MD

E0

[
inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ

(
v(1), v(0), r

)
ξ
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−
J−1∑
j=0

wj

(
v(1), v(0), r

)(
v

(0)
j F#

j (rj) +G#
j (v

(1)
j , v

(0)
j )
)
− pM,r

(
v(1), v(0)

))]
, (2.26)

showing that a similar interpretation holds for the lower bound. Compared to the upper bound, the
situation is now vice versa, as player 2 fixes a strategy and the penalty (by choosing the martingale)
and player 1 may optimize the penalized problem path by path.

In this way, we end up with the information relaxation dual of Brown et al. (2010) for each player
given that the other player has fixed a control. Moreover, we emphasize that the above approach is
analogous to the recent information relaxation approach by Haugh and Wang (2015) for two-player
games in a classical Markovian framework which dates back to Shapley (1953).

Remark 2.3.4. We also showed by (2.23) and (2.26) that strong duality still applies when the min-
imization respectively maximization is restricted from P to the corresponding subsets {pM,ρ|M ∈
MD, (ρ(1), ρ(0)) ∈ AG0 } and {pM,r|M ∈ MD, r ∈ AF0 }. This can turn out to be useful in numer-
ical implementations. Indeed, as discussed, e.g., in Section 4.2 of Brown and Smith (2011) and in
Section 2.3 of Haugh and Lim (2012), choosing a dual-feasible penalty from P can make it more
difficult to solve the pathwise optimization problems in (2.23) and (2.26). This, however, is the
key step in the information relaxation approach. In contrast, the implementation of the approach
presented in Section 2.2 is straightforward: After a (D-dimensional) martingale M is chosen, we
can solve the pathwise maximization respectively minimization problem in (2.23) and (2.26) for the
penalties pM,ρ and pM,r by computing the pathwise recursions for Θup

0 (ρ(1), ρ(0),M) and Θlow
0 (r,M)

in Theorem 2.2.3.

2.4 The general case

Similar to Section 1.5, we now consider the case when the comparison principle fails to hold. As we
will see below, the main idea in the construction of coupled upper and lower bounds from Section
1.5 does not transfer immediately to the concave-convex framework. This is due to the following
analogue of Theorem 1.4.1 in this setting.

Proposition 2.4.1. Suppose Assumption 2.1.1, and consider the following assertions:

(a) The comparison principle as stated in Assumption 2.2.1 holds.

(b) For every (ρ(1), ρ(0)) ∈ AG0 and r ∈ AF0 the following positivity condition is fulfilled: For every
j = 0, . . . , J − 1 (

ρ
(1)
j + ρ

(0)
j rj

)>
βj+1 ≥ 0, P -a.s.

(c) For every j = 0, . . . , J−1 and any two random variables Y (1), Y (2) ∈ L∞−(R) with Y (1) ≥ Y (2)

P -a.s., the following monotonicity condition is satisfied:

Gj

(
Ej

[
βj+1Y

(1)
]
, Fj

(
Ej

[
βj+1Y

(1)
]))
≥ Gj

(
Ej

[
βj+1Y

(2)
]
, Fj

(
Ej

[
βj+1Y

(2)
]))

, P -a.s.

Then, (b)⇒ (c)⇒ (a).

Proof. (b) ⇒ (c): Fix j ∈ {0, . . . , J − 1} and let Y (1) and Y (2) be random variables which are in
L∞−(R) and satisfy Y (1) ≥ Y (2). By Lemma 1.2.4, there are r ∈ AF0 and (ρ(1), ρ(0)) ∈ AG0
such that

Fj

(
Ej

[
βj+1Y

(2)
])

= r>j Ej

[
βj+1Y

(2)
]
− F#

j (rj)
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and

Gj

(
Ej

[
βj+1Y

(1)
]
, Fj

(
Ej

[
βj+1Y

(1)
]))

=
(
ρ

(1)
j

)>
Ej

[
βj+1Y

(1)
]

+ ρ
(0)
j Fj

(
Ej

[
βj+1Y

(1)
])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
,

P -almost surely. Hence, by (2.9), (b) and (1.23) we obtain

Gj

(
Ej

[
βj+1Y

(2)
]
, Fj

(
Ej

[
βj+1Y

(2)
]))

≤
(
ρ

(1)
j

)>
Ej

[
βj+1Y

(2)
]

+ ρ
(0)
j Fj

(
Ej

[
βj+1Y

(2)
])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
= Ej

[(
ρ

(1)
j + ρ

(0)
j rj

)>
βj+1Y

(2) − ρ(0)
j F#

j (rj)−G#
j

(
ρ

(1)
j , ρ

(0)
j

)]
≤ Ej

[(
ρ

(1)
j + ρ

(0)
j rj

)>
βj+1Y

(1) − ρ(0)
j F#

j (rj)−G#
j

(
ρ

(1)
j , ρ

(0)
j

)]
≤

(
ρ

(1)
j

)>
Ej

[
βj+1Y

(1)
]

+ ρ
(0)
j Fj

(
Ej

[
βj+1Y

(1)
])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
= Gj

(
Ej

[
βj+1Y

(1)
]
, Fj

(
Ej

[
βj+1Y

(1)
]))

.

(c) ⇒ (a): We prove this implication by backward induction. Let Y up and Y low respectively
be super- and subsolutions of (2.1). Then, the assertion is trivially true for j = J , since
Y low
J ≤ YJ ≤ Y up

J by definition of super- and subsolutions. Now assume, that the assertion
is true for j + 1. It follows by (c), the induction hypothesis and the definition of a sub- and
supersolution that

Y up
j ≥ Gj

(
Ej

[
βj+1Y

up
j+1

]
, Fj

(
Ej

[
βj+1Y

up
j+1

]))
≥ Gj

(
Ej

[
βj+1Y

low
j+1

]
, Fj

(
Ej

[
βj+1Y

low
j+1

]))
≥ Y low

j .

Compared to Theorem 1.4.1, Proposition 2.4.1 does not provide equivalent characterizations but
sufficient conditions for the comparison principle to hold. Recalling that the coupled recursions
(1.30) in Section 1.5 relied on the equivalence of the comparison principle and the positivity state-
ment (b) in Theorem 1.4.1, we observe that upper and lower bounds cannot be constructed in the
same way in the current setting. As in Section 2.2, the rationale of the following construction is,
thus, to consider the concave and the convex part of the dynamic programming equation (2.1)
separately. This allows us to rely on the equivalent characterizations of the comparison principle in
Theorem 1.4.1 and to apply the coupled bounds for the concave respectively convex part. Finally,
a straightforward composition of these bounds leads to the following recursion:

Let j ∈ {0, . . . , J−1} and admissible controls (ρ(1), ρ(0)) ∈ AGj , r ∈ AFj and a martingale M ∈MD

be given. Then, we define the in general non-adapted processes θupi = θupi (ρ(1), ρ(0), r,M) and
θlowi = θlowi (ρ(1), ρ(0), r,M), i = j, . . . , J , via the pathwise dynamic program

θupJ = θlowJ = ξ,
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θupi =

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
θlowi = min

ι∈{up,low}
Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
, (2.27)

for i = J − 1, . . . , j. This leads to the following regularity result for which we omit the details of
the straightforward proof.

Lemma 2.4.2. Suppose Assumption 2.1.1. Then, for every j ∈ {0, . . . , J − 1}, M ∈ MD,
(ρ(1), ρ(0)) ∈ AGj , and r ∈ AFj , the processes θup(ρ(1), ρ(0), r,M) and θlow(ρ(1), ρ(0), r,M) which are

given by (2.27) satisfy θupi (ρ(1), ρ(0), r,M) ∈ L∞−(R) respectively θlowi (ρ(1), ρ(0), r,M) ∈ L∞−(R)
for all i = j, . . . , J .

Therefore, we next have to show that the processes Y up and Y low defined by Y up
j := Ej [θ

up
j ] and

Y low
j := Ej [θ

low
j ], j = 0, . . . , J , are super- and subsolutions to (2.1), which satisfy the comparison

principle. To do this, we require a generalization of Proposition 1.5.2 which provides representations
of the recursions (2.27) and states that θup and θlow are ordered.

Proposition 2.4.3. Suppose Assumption 2.1.1 and let M ∈ MD. Then, for every j = 0, . . . , J ,(
ρ(1), ρ(0)

)
∈ AGj , and r ∈ AFj , we have for all i = j, . . . , J the P -almost sure identities

θupi

(
ρ(1), ρ(0), r,M

)
= sup

u∈RD
Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θupi+1(ρ(1), ρ(0), r,M), θlowi+1(ρ(1), ρ(0), r,M),∆Mi+1

)
and

θlowi

(
ρ(1), ρ(0), r,M

)
= inf

(v(1),v(0))∈RD+1
Φi+1

(
v(1), v(0), ri, θ

low
i+1(ρ(1), ρ(0), r,M), θupi+1(ρ(1), ρ(0), r,M),∆Mi+1

)
,

where ΦJ+1(v(1), v(0), u, ϑ1, ϑ2,m) = ξ and

Φi+1

(
v(1), v(0), u, ϑ1, ϑ2,m

)
=

((
v(1)
)>

βi+1

)
+

ϑ1 −
((

v(1)
)>

βi+1

)
−
ϑ2 −

(
v(1)
)>

m

+v(0)

((
u>βi+1

)
+
ϑ1 −

(
u>βi+1

)
−
ϑ2 − u>m− F#

i (u)

)
−G#

i

(
v(1), v(0)

)
for i = j, . . . , J − 1. In particular,

θlowi

(
ρ(1), ρ(0), r,M

)
≤ θupi

(
ρ(1), ρ(0), r,M

)
(2.28)

for every i = j, . . . , J .
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Proof. First we fix j ∈ {0, . . . , J − 1}, M ∈ MD and controls
(
ρ(1), ρ(0)

)
and r in AGj respectively

AFj and define θup and θlow by (2.27). To lighten the notation, we set

Φlow
i+1

(
v(1), v(0), ri

)
= Φi+1

(
v(1), v(0), ri, θ

low
i+1(ρ(1), ρ(0), r,M), θupi+1(ρ(1), ρ(0), r,M),∆Mi+1

)
for i = j, . . . , J and define Φup

i+1 accordingly (interchanging the roles of θup and θlow). We show the

assertion by backward induction on i = J, . . . , j with the case i = J being trivial since θupJ = θlowJ =
ΦJ+1 = ξ by definition. Now suppose that the assertion is true for i+1. For any (v(1), v(0)) ∈ RD+1

we obtain, by (2.9), the following upper bound for θlowi :

Φlow
i+1

(
v(1), v(0), ri

)
=

(
v(1)
)> (

βi+1

(
θlowi+11{(v(1))>βi+1≥0} + θupi+11{(v(1))>βi+1<0}

)
−∆Mi+1

)
+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
≥ Gi

(
βi+1

(
θlowi+11{(v(1))>βi+1≥0} + θupi+11{(v(1))>βi+1<0}

)
−∆Mi+1,(

r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
≥ min

ι∈{up,low}
Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
= θlowi .

We emphasize that this chain of inequalities holds for every ω ∈ Ω. Hence,

inf
(v(1),v(0))∈RD+1

Φlow
i+1

(
v(1), v(0), ri

)
≥ θlowi

for every ω ∈ Ω. To conclude the argument for θlowi , it remains to show that the converse inequality
holds P -almost surely. Thanks to (2.9), we get

Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
= inf

(v(1),v(0))∈RD+1

(
v(1)
)> (

βi+1θ
ι
i+1 −∆Mi+1

)
+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
.

Together with θupi+1 ≥ θlowi+1 P -a.s. (by the induction hypothesis) we obtain

θlowi = min
ι∈{up,low}

Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
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= min
ι∈{up,low}

{
inf

(v(1),v(0))∈RD+1

(
v(1)
)>

βi+1θ
ι
i+1 −

(
v(1)
)>

∆Mi+1

+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)}

≥ inf
(v(1),v(0))∈RD+1

((
v(1)
)>

βi+1

)
+

θlowi+1 −
((

v(1)
)>

βi+1

)
−
θupi+1 −

(
v(1)
)>

∆Mi+1

+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
= inf

(v(1),v(0))∈RD+1
Φlow
i+1

(
v(1), v(0), ri

)
, P -a.s.

We next turn to θupi where the overall strategy of proof is similar. Recall first that the monotonicity
of G in the y-component implies existence of a set Ω̄ρ (depending on ρ(0)) of full P -measure such

that ρ
(0)
k (ω) ≥ 0 for every ω ∈ Ω̄ρ and k = j, . . . , J − 1. By (1.23) we find that, for any u ∈ RD,

Φup
i+1(ρ

(0)
i , ρ

(1)
i , u) is a lower bound for θupi on Ω̄ρ:

Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
=

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≤

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i Fi

(
βi+1

(
θupi+11{u>βi+1≥0} + θlowi+11{u>βi+1<0}

)
−∆Mi+1

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≤

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
= θupi .

Hence,

sup
u∈RD

Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
≤ θupi

on Ω̄ρ, and, thus, P -almost surely. To complete the proof of the proposition, we show the converse

inequality. As θupi+1 ≥ θlowi+1 and ρ
(0)
i ≥ 0 P -a.s., we conclude, by (1.23),

θupi =

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
=

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}

{
sup
u∈RD

(
u>βi+1θ

ι
i+1 − u>∆Mi+1 − F#

i (u)
)}
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
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≤
((

ρ
(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i sup

u∈RD

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
= sup

u∈RD
Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
, P -a.s.

As Φi+1

(
v(1), v(0), u, ϑ1, ϑ2,m

)
is increasing in ϑ1 and decreasing in ϑ2, we finally get

θupi = sup
u∈RD

Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θupi+1, θ

low
i+1,∆Mi+1

)
≥ sup

u∈RD
Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θlowi+1, θ

up
i+1,∆Mi+1

)
≥ inf

(v(1),v(0))∈RD+1
Φi+1

(
v(1), v(0), ri, θ

low
i+1, θ

up
i+1,∆Mi+1

)
= θlowi , P -a.s.,

as θupi+1 ≥ θlowi+1 P -a.s. by the induction hypothesis.

Building on this proposition, we are now in the position to show that Y up and Y low are super- and
subsolutions which constitute bounds to the solution Y to (2.1).

Proposition 2.4.4. Suppose Assumption 2.1.1. Then, the processes Y up and Y low, which are given
by Y up

j = Ej [θ
up
j (ρ(1), ρ(0), r,M)] and Y low

j = Ej [θ
low
j (ρ(1), ρ(0), r,M)], j = 0, . . . , J are, respectively,

super- and subsolutions to (2.1) for every (ρ(1), ρ(0)) ∈ AG0 , r ∈ AF0 , and M ∈MD.

Proof. Let (ρ(1), ρ(0)) ∈ AG0 , r ∈ AF0 , and M ∈ MD. Moreover, let the processes θup :=
θup(ρ(1), ρ(0), r,M) and θlow := θlow(ρ(1), ρ(0), r,M) be given by (2.27) and define Y up and Y low

by Y up
j = Ej [θ

up
j ] and Y low

j = Ej [θ
low
j ], j = 0, . . . , J . From the definition of θup and the martingale

property of M , we then observe that

Y up
j = Ej

[
θupj

]
= Ej

[((
ρ

(1)
j

)>
βj+1

)
+

θupj+1 −
((

ρ
(1)
j

)>
βj+1

)
−
θlowj+1 −

(
ρ

(1)
j

)>
∆Mj+1

+ ρ
(0)
j max

ι∈{up,low}
Fj(βj+1θ

ι
j+1 −∆Mj+1)−G#

j

(
ρ

(1)
j , ρ

(0)
j

)]
= Ej

[((
ρ

(1)
j

)>
βj+1

)
+

θupj+1 −
((

ρ
(1)
j

)>
βj+1

)
−
θlowj+1

]
+ρ

(0)
j Ej

[
max

ι∈{up,low}
Fj(βj+1θ

ι
j+1 −∆Mj+1)

]
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
holds. Since ρ

(0)
j ≥ 0 P -almost surely, we obtain by Jensen’s inequality, applied to the convex

functions max and Fj , that

Y up
j ≥ Ej

[((
ρ

(1)
j

)>
βj+1

)
+

θupj+1 −
((

ρ
(1)
j

)>
βj+1

)
−
θlowj+1

]
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+ρ
(0)
j max

ι∈{up,low}
Fj(Ej

[
βj+1θ

ι
j+1 −∆Mj+1

]
)−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
.

Applying the martingale property of M once more as well as the pathwise comparison (2.28) in
Proposition 2.4.1 yields

Y up
j ≥ Ej

[((
ρ

(1)
j

)>
βj+1

)
+

θupj+1 −
((

ρ
(1)
j

)>
βj+1

)
−
θupj+1

]
+ρ

(0)
j max

ι∈{up,low}
Fj
(
Ej
[
βj+1θ

ι
j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
=

(
ρ

(1)
j

)>
Ej

[
βj+1θ

up
j+1

]
+ ρ

(0)
j max

ι∈{up,low}
Fj
(
Ej
[
βj+1θ

ι
j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
.

By the tower property of the conditional expectation, the non-negativity of ρ
(0)
j and (2.9), we

conclude that

Y up
j ≥

(
ρ

(1)
j

)>
Ej

[
βj+1Y

up
j+1

]
+ ρ

(0)
j max

ι∈{up,low}
Fj
(
Ej
[
βj+1Y

ι
j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥

(
ρ

(1)
j

)>
Ej

[
βj+1Y

up
j+1

]
+ ρ

(0)
j Fj

(
Ej

[
βj+1Y

up
j+1

])
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥ Gj

(
Ej

[
βj+1Y

up
j+1

]
, Fj

(
Ej

[
βj+1Y

up
j+1

]))
holds for every j = 0, . . . , J − 1, showing that Y up is a supersolution to (2.1). For Y low we follow
essentially the same line of reasoning. We first apply Jensen’s inequality to the concave functions
min and Gj and the martingale property of M to obtain

Y low
j = Ej

[
θlowj

]
= Ej

[
min

ι∈{up,low}
Gj

(
βj+1θ

ι
j+1 −∆Mj+1,(

r>j βj+1

)
+
θlowj+1 −

(
r>j βj+1

)
−
θupj+1 − r

>
j ∆Mj+1 − F#

j (rj)
)]

≤ min
ι∈{up,low}

Gj

(
Ej
[
βj+1θ

ι
j+1 −∆Mj+1

]
,

Ej

[(
r>j βj+1

)
+
θlowj+1 −

(
r>j βj+1

)
−
θupj+1 − r

>
j ∆Mj+1 − F#

j (rj)

])
= min

ι∈{up,low}
Gj

(
Ej
[
βj+1θ

ι
j+1

]
, Ej

[(
r>j βj+1

)
+
θlowj+1 −

(
r>j βj+1

)
−
θupj+1

]
− F#

j (rj)

)
.

Since the mapping y 7→ Gj(z, y) is non-decreasing, it follows from the pathwise comparison (2.28)
and the tower property of the conditional expectation that

Y low
j ≤ min

ι∈{up,low}
Gj

(
Ej
[
βj+1θ

ι
j+1

]
, r>j Ej

[
βj+1θ

low
j+1

]
− F#

j (rj)
)

= min
ι∈{up,low}

Gj

(
Ej
[
βj+1Y

ι
j+1

]
, r>j Ej

[
βj+1Y

low
j+1

]
− F#

j (rj)
)
.

Finally, we observe by (1.23) and the monotonicity assumption on Gj(z, y) in the y-variable, that

Y low
j ≤ min

ι∈{up,low}
Gj

(
Ej
[
βj+1Y

ι
j+1

]
, Fj

(
Ej

[
βj+1Y

low
j+1

]))
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≤ Gj

(
Ej

[
βj+1Y

low
j+1

]
, Fj

(
Ej

[
βj+1Y

low
j+1

]))
,

which completes the proof.

Finally, we provide the generalization of Theorem 2.2.3 to this non-monotone setting.

Theorem 2.4.5. Suppose Assumption 2.1.1. Then, for every j = 0, . . . , J ,

Yj = essinf
(ρ(1),ρ(0))∈AGj , r∈AFj ,M∈MD

Ej [θ
up
j (ρ(1), ρ(0), r,M)]

= esssup
(ρ(1),ρ(0))∈AGj , r∈AFj , M∈MD

Ej [θ
low
j (ρ(1), ρ(0), r,M)], P -a.s.

Moreover,

Yj = θupj (ρ(1,∗), ρ(0,∗), r∗,M∗) = θlowj (ρ(1,∗), ρ(0,∗), r∗,M∗) (2.29)

P -almost surely, for every (ρ(1,∗), ρ(0,∗)) ∈ AGj and r∗ ∈ AFj satisfying the duality relations (2.12)
and (2.13) P -almost surely for every i = j, . . . , J − 1, and with M∗ being the Doob martingale of
βY .

Proof. Let j ∈ {0, . . . , J − 1} be fixed from now on. We first show that Ei[θ
low
i ] ≤ Yi ≤ Ei[θ

up
i ]

for i = j, . . . , J . We prove this by backward induction on i. To this end, we fix M ∈ MD and
controls

(
ρ(1), ρ(0)

)
and r in AGj respectively AFj , as well as ”optimizers”

(
ρ(1,∗), ρ(0,∗)) and r∗ in

AGj respectively AFj which satisfy the duality relations (2.12) and (2.13). By definition of θup and

θlow the assertion is trivially true for i = J . Suppose that the assertion is true for i+ 1. Recalling
Proposition 2.4.3 and applying the tower property of the conditional expectation, we get

Ei

[
θlowi

]
= Ei

[
inf

(v(1),v(0))∈RD+1

((
v(1)
)>

βi+1

)
+

θlowi+1 −
((

v(1)
)>

βi+1

)
−
θupi+1

−
(
v(1)
)>

∆Mi+1 + v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1

−F#
i (ri)

)
−G#

i

(
v(1), v(0)

)]

≤ Ei

[((
ρ

(1,∗)
i

)>
βi+1

)
+

Ei+1

[
θlowi+1

]
−
((

ρ
(1,∗)
i

)>
βi+1

)
−
Ei+1

[
θupi+1

]
−
(
ρ

(1,∗)
i

)>
∆Mi+1 + ρ

(0,∗)
i

((
r>i βi+1

)
+
Ei+1

[
θlowi+1

]
−
(
r>i βi+1

)
−
Ei+1

[
θupi+1

]
−r>i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)]
.

Finally, the martingale property of M and the induction hypothesis yield

Ei

[
θlowi

]
≤ Ei

[(
ρ

(1,∗)
i

)>
βi+1Yi+1 + ρ

(0,∗)
i

(
r>i βi+1Yi+1 − F#

i (ri)
)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)]
≤ Gi (Ei [βi+1Yi+1] , Fi (Ei [βi+1Yi+1]))

= Yi.
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Here, the last inequality is an immediate consequence of (2.9), the non-negativity of ρ
(0,∗)
i and the

duality relation (2.12). Applying an analogous argument, we obtain that Ei[θ
up
i ] ≥ Yi. Indeed,

Ei[θ
up
i ] = Ei

[((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i sup

u∈RD

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)]
≥ Ei

[((
ρ

(1)
i

)>
βi+1

)
+

Ei+1

[
θupi+1

]
−
((

ρ
(1)
i

)>
βi+1

)
−
Ei+1

[
θlowi+1

]
−
(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i

((
(r∗i )

> βi+1

)
+
Ei+1

[
θupi+1

]
−
(

(r∗i )
> βi+1

)
−
Ei+1

[
θlowi+1

]
− (r∗i )

>∆Mi+1

−F#
i (r∗i )

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)]
≥

(
ρ

(1)
i

)>
Ei [βi+1Yi+1] + ρ

(0)
i

(
(r∗i )

>Ei [βi+1Yi+1]− F#
i (r∗i )

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
=

(
ρ

(1)
i

)>
Ei [βi+1Yi+1] + ρ

(0)
i Fi (Ei [βi+1Yi+1])−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≥ Gi (Ei [βi+1Yi+1] , Fi (Ei [βi+1Yi+1]))

= Yi.

making now use of the non-negativity of ρ
(0)
i , the duality relation (2.13), and (2.9). This establishes

Ei[θ
low
i ] ≤ Yi ≤ Ei[θupi ], for i = j, . . . , J .

To complete the proof, it remains to show that pathwise equality holds for the Doob martingale M∗

and the optimal controls (ρ(1,∗), ρ(0,∗)) and r∗. Therefore, let θup,∗ := θup(ρ(1,∗), ρ(0,∗), r∗,M∗) and
θlow,∗ := θlow(ρ(1,∗), ρ(0,∗), r∗,M∗) be given by (2.27). The proof is again by backward induction on
i = J, . . . , j, with the case i = J being trivial by definition. Now suppose that the assertion is true
for i+1. For the lower bound θlow,∗, we first observe by the induction hypothesis and the definition
of M∗ that

θlow,∗i = min
ι∈{up,low}

Gi

(
βi+1θ

ι,∗
i+1 −∆M∗i+1,

(
(r∗i )

> βi+1

)
+
θlow,∗i+1 −

(
(r∗i )

> βi+1

)
−
θup,∗i+1

− (r∗i )
>∆M∗i+1 − F

#
i (r∗i )

)
= min

ι∈{up,low}
Gi

(
βi+1Yi+1 − (βi+1Yi+1 − Ei[βi+1Yi+1]),(

(r∗i )
> βi+1

)
+
Yi+1 −

(
(r∗i )

> βi+1

)
−
Yi+1 − (r∗i )

> (βi+1Yi+1 − Ei[βi+1Yi+1])

−F#
i (r∗i )

)
= Gi

(
Ei[βi+1Yi+1], (r∗i )

>Ei[βi+1Yi+1]− F#
i (r∗i )

)
.

From the duality relation (2.13) it follows that

θlow,∗i = Gi (Ei[βi+1Yi+1]), Fi (Ei[βi+1Yi+1])) = Yi.
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Similarly, it holds for the upper bound that

θup,∗i =

((
ρ

(1,∗)
i

)>
βi+1

)
+

θup,∗i+1 −
((

ρ
(1,∗)
i

)>
βi+1

)
−
θlow,∗i+1 −

(
ρ

(1,∗)
i

)>
∆M∗i+1

+ρ
(0,∗)
i max

ι∈{up,low}
Fi(βi+1θ

ι,∗
i+1 −∆M∗i+1)−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
=

((
ρ

(1,∗)
i

)>
βi+1

)
+

Yi+1 −
((

ρ
(1,∗)
i

)>
βi+1

)
−
Yi+1 −

(
ρ

(1,∗)
i

)>
(βi+1Yi+1 − Ei[βi+1Yi+1])

+ρ
(0,∗)
i max

ι∈{up,low}
Fi(βi+1Yi+1 − (βi+1Yi+1 − Ei[βi+1Yi+1]))−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
=

(
ρ

(1,∗)
i

)>
Ei[βi+1Yi+1] + ρ

(0,∗)
i Fi(Ei[βi+1Yi+1])−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
by the induction hypothesis and the definition of the Doob martingale M∗. Applying the duality
relation (2.12), we finally conclude that

θup,∗i = Gi (Ei[βi+1Yi+1]), Fi (Ei[βi+1Yi+1])) = Yi,

and thus (2.29) is established.

Remark 2.4.6. In this chapter, we discussed the construction of super- and subsolutions to one-
dimensional concave-convex dynamic programming equations. Similar to Chapter 1, we could also
consider systems of concave-convex dynamic programs of the form

Y
(ν)
J = ξ(ν)

Y
(ν)
j = G

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

]
, F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

]))
(2.30)

for j = J − 1, . . . , 0 and ν = 1, . . . , N , where the functions G
(ν)
j and F

(ν)
j satisfy the Assumptions

2.1.1 with D replaced by ND. While the sets of admissible controls AF (ν)

j for the functions F
(ν)
j

coincide for every j = 0, . . . , J − 1 with those introduced in Chapter 1, the corresponding sets for

the functions G
(ν)
j are given by

AG(ν)

j =

{(
ρ

(ν)
i , ρ

(ν),0
i

)
i=j,...,J−1

∣∣∣∣ (ρ(ν)
i , ρ

(ν),0
i

)
∈ L∞−i (RND+1),

G
(ν,#)
i

(
ρ

(ν)
i , ρ

(ν),0
i

)
∈ L∞−(R) ∀i = j, . . . , J − 1

}
, j = 0, . . . , J − 1.

Then, the preceding results of this chapter can be transferred to the multi-dimensional situation in
a straightforward way. In particular, the coupled recursions (2.27) are generalized in the following
way:

θ
(up,ν)
J = θ

(low,ν)
J = ξ(ν),

θ
(up,ν)
j =

N∑
n=1

((
ρ

(ν),[n]
j

)>
βj+1

)
+

θ
(up,n)
j+1 −

N∑
n=1

((
ρ

(ν),[n]
j

)>
βj+1

)
−
θ

(low,n)
j+1

+ρ
(ν),0
j max

ι∈{up,low}N

{
F

(ν)
j

(
βj+1θ

(ι1,1)
j+1 −∆M

[1]
j+1, . . . , βj+1θ

(ιN ,N)
j+1 −∆M

[N ]
j+1

)}
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−
N∑
n=1

(
ρ

(ν),[n]
j

)>
∆M

[n]
j+1 −G

(ν,#)
j

(
ρ

(ν)
j , ρ

(ν),0
j

)
,

θ
(low,ν)
j = min

ι∈{up,low}N

{
G

(ν)
j

(
βj+1θ

(ι1,1)
j+1 −∆M

[1]
j+1, . . . , βj+1θ

(ιN ,N)
j+1 −∆M

[N ]
j+1,

N∑
n=1

((
r

(ν),[n]
j

)>
βj+1

)
+

θ
(low,n)
j+1 −

N∑
n=1

((
r

(ν),[n]
j

)>
βj+1

)
−
θ

(up,n)
j+1

−
N∑
n=1

(
r

(ν),[n]
j

)>
∆M

[n]
j+1 − F

(ν,#)
j

(
r

(ν)
j

))}
, j = J − 1, . . . , 0, ν = 1, . . . , N,

where (ρ(ν), ρ(ν),0) ∈ AG(ν)

0 , r ∈ AF (ν)

0 , ν = 1, . . . , N , and M ∈ MND. We emphasize that further
generalizations like e.g. different processes β(ν), ν = 1, . . . , N , may also be easily incorporated.

2.5 Numerical example

In Example 2.1.3 (ii), we introduced the problem of pricing a payoff at maturity under bilateral
counterparty risk as proposed in Crépey et al. (2013). In this section, we slightly generalize this
example by introducing intermediate payments which arise at predetermined points in time. This
generalization allows us to consider the problem of pricing a swap contract under bilateral coun-
terparty risk as a numerical example. The rationale of a swap derivative is that an investor and
a counterparty agree to exchange payments at given time points, where one party pays a fixed a
leg and, in return, receives a variable leg from the other. Due to the variable leg, the signs of the
payments are random so that a consistent pricing approach should reflect the default risk of both
parties.

To this end, let 0 = t0 < t1 < . . . < tJ = T be an equidistant partition of [0, T ] with time increments
∆. Then, we have seen in Example 2.1.3 (ii), that this problem is captured by the concave-convex
dynamic program

YJ = CtJ ,

Yj = (1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ))Ej [Yj+1]

+∆(γtj (1− r)(1− 3ptj ) + λ− λ)Ej [Yj+1]+ + Ctj . (2.31)

Recall, that the process (rt)t∈[0,T ] denotes the risk-less short rate, and that γt reflects the rate at
which default of either side occurs at time t. Moreover, pt is the conditional probability that the
counterparty defaults, if default occurs at time t. Finally, the parameters r, λ and λ are associated
with the recovery rate respectively the costs for external lending and borrowing. Note that the
dynamic program (2.31) involves, compared to Example 2.1.3 (ii), the additional term Ctj , which
reflects intermediate payments at fixed time points t0, . . . , tJ .

Following Example 2.1.3 (ii), the dynamic program (2.31) can be represented by the functions
Gj : R2 → R and Fj : R→ R defined by

Gj(z, y) = gj z + (hj)+ y − (hj)− z+ + Ctj and Fj(z) = z+,

where, as before,

gj = 1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ)
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and
hj = ∆(γtj (1− r)(1− 3ptj ) + λ− λ).

Here, we slightly modified the function Gj compared to Example 2.1.3 (ii) to capture the payment
stream (Ctj )j=0,...,J . Note that β ≡ 1 in this example and therefore a sufficient condition for the
comparison principle to hold is that the function Gj is increasing in z, cp. Proposition 2.4.1 (c).
This, however, depends on the choice of the stochastic processes γ, p and r, so that the comparison
principle is not a generic property of the dynamic program (2.31).

From Appendix A.2, we further conclude that G#
j (v1, v2) = −Ctj and F#

j ≡ 0 on their effective

domains D
(j,·)
G# = [gj − (hj)−, gj ]×{(hj)+} respectively D

(j,·)
F# = [0, 1]. We emphasize that the result

in Appendix A.2 still applies for the function Gj by first passing to the convex function −Gj and
then using the relation

−((−Gj)#(−v1,−v2)) = G#
j (v1, v2)

for (−v1,−v2) ∈ D(j,·)
(−G)# . We thus obtain that the duality relations (2.12) and (2.13) read as

ρ
(1,∗)
j Ej [Yj+1] + ρ

(0,∗)
j (Ej [Yj+1])+ + Ctj = gjEj [Yj+1] + (hj)+(Ej [Yj+1])+ − (hj)−(Ej [Yj+1])+ + Ctj

and
r∗jEj [Yj+1] = (Ej [Yj+1])+

for j = 0, . . . , J − 1. For these equations, solutions are given by(
ρ

(1,∗)
j , ρ

(0,∗)
j

)
=

{
(gj − (hj)−, (hj)+), Ej [Yj+1] ≥ 0

(gj , (hj)+), Ej [Yj+1] < 0

respectively

r∗j =

{
1, Ej [Yj+1] ≥ 0

0, Ej [Yj+1] < 0.

In our numerical example, the payment stream Ctj is given by a swap with notional N , fixed rate
R and an equidistant sequence of tenor dates T = {T0, . . . , TK} ⊆ {t0, . . . tJ}. Denote by δ the
length of the time interval between Ti and Ti+1 and by P (Ti−1, Ti) the Ti−1-price of a zero-bond
with maturity Ti. Then, the payment process Ctj is given by

CTi = N ·
(

1

P (Ti−1, Ti)
− (1 +Rδ)

)
for Ti ∈ T \ {T0} and Ctj = 0 otherwise, see Brigo and Mercurio (2006), Chapter 1.

For r and γ, we implement the model of Brigo and Pallavicini (2007), assuming that the risk-
neutral dynamics of r is given by a two-factor Gaussian short rate model, a reparametrization
of the two-factor Hull-White model, while γ is a Cox-Ingersoll-Ross process. For the conditional
default probabilities pt we assume pt = 0 ∧ p̃t ∨ 1 where p̃ is an Ornstein-Uhlenbeck process. In
continuous time, this corresponds to the system of stochastic differential equations

dxt = −κxxtdt+ σxdW
x
t ,

dyt = −κyytdt+ σydW
y
t ,

dγt = κγ(µγ − γt)dt+ σγ
√
γtdW

γ
t ,

dp̃t = κp(µp − p̃t)dt+ σpdW
p
t
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with rt = r0+xt+yt, x0 = y0 = 0. Here, W x, W y and W γ are Brownian motions with instantaneous

correlations ρxy, ρxγ and ρyγ . In addition, we assume that W p
t = ργpW

γ
t +

√
1− ρ2

γpWt where the

Brownian motion W is independent of (W x,W y,W γ). We choose the filtration generated by the
four Brownian motions as the reference filtration.

For the dynamics of x, y and p̃, exact time discretizations are available in closed form and are given
by

xj = xj−1e
−κx∆ + σx

√
1− e−2κx∆

2κx∆
∆W x

j , x0 = 0,

yj = yj−1e
−κy∆ + σy

√
1− e−2κy∆

2κy∆
∆W y

j , y0 = 0,

p̃j = p̃j−1e
−κp∆ + µp

(
1− e−κp∆

)
+ σp

√
1− e−2κp∆

2κp∆
∆W p

j , p̃0 = p0,

see e.g. Section 3.3 in Glasserman (2004). Note that we passed, at the same time, to the shorthand
notation Uj := Utj for U ∈ {x, y, p̃}. We discretize γ by (γ̃j)+, where γ̃j := γ̃tj denotes the fully
truncated scheme of Lord et al. (2010), i.e.

γ̃j = γ̃j−1 − κγ∆ ((γ̃j−1)+ − µγ) + σγ

√
(γ̃j−1)+∆W γ

j , γ̃0 = γ0.

The bond prices P (t, s) are given as an explicit function of xt and yt in this model, namely by

P (t, s) = exp

{
−r0(s− t)− 1− e−κx(s−t)

κx
xt −

1− e−κy(s−t)

κy
yt +

1

2
V (t, s)

}
, t, s ∈ [0, T ], t < s.

Here, the deterministic function V is defined by

V (t, s) =
σ2
x

κ2
x

(
s− t+

2

κx
e−κx(s−t) − 1

2κx
e−2κx(s−t) − 3

2κx

)
+
σ2
y

κ2
y

(
s− t+

2

κy
e−κy(s−t) − 1

2κy
e−2κy(s−t) − 3

2κy

)
+2ρxy

σxσy
κxκy

(
s− t+

e−κx(s−t) − 1

κx
+
e−κy(s−t) − 1

κy
− e−(κx+κy)(s−t) − 1

κx + κy

)
,

see Section 4.2 of Brigo and Mercurio (2006). This implies that the swap’s “clean price”, i.e., the
price in the absence of counterparty risk, is given in closed form as well:

St = P (t, Tτ(t))CTτ(t)
+N ·

K∑
i=τ(t)+1

(P (t, Ti−1)− (1 +Rδ)P (t, Ti)) ,

see Section 1.5 of Brigo and Mercurio (2006). Here, τ(t) ∈ {1, . . . ,K} denotes the index of the first
tenor date after t (with τ(t) = t if t is a tenor date).

We consider 60 half-yearly payments over a horizon of T = 30 years, i.e., δ = 0.5. J is always
chosen as an integer multiple of 60 so that δ is an integer multiple of ∆ = T/J . For the model
parameters, we choose

(r0, κx, σx, κy, σy) = (0.03, 0.0558, 0.0093, 0.5493, 0.0138),
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(γ0, µγ , κγ , σγ , p0, µp, κp, σp) = (0.0165, 0.026, 0.4, 0.14, 0.5, 0.5, 0.8, 0.2),

(ρxy, ρxγ , ρyγ , r, λ, λ,N) = (−0.7, 0.05, −0.7, 0.4, 0.015, 0.045, 1).

We thus largely follow Brigo and Pallavicini (2007) for the parametrization of r and γ but leave
out their calibration to initial market data and choose slightly different correlations to avoid the
extreme cases of a perfect correlation or independence of r and γ. The remaining parameters J , R
and ργp are varied in the numerical experiments below.

We initialize the regression at ỸJ = StJ = CtJ and choose, at each time step 1 ≤ j ≤ J − 1, the
four basis functions

ηj,1(Xj) = 1, ηj,2(Xj) = γ̃j , ηj,3(Xj) = γ̃j · p̃j , ηj,4(Xj) = Stj ,

where the process (Xj)j=0,...,J defined by Xj := (xj , yj , γ̃j , p̃j , xT (j), yT (j)) denotes the underlying
discrete-time Markov process. Here, T (j) denotes the largest tenor date which is strictly smaller
than tj . Note that we require to include the random variables xT (j) and yT (j) in order to obtain
a Markovian framework, as the payment C of the swap at the next tenor date following T (j)
is a deterministic function of xT (j) and yT (j). As in the numerical examples before, the one-step

conditional expectations R
(0)
j−1,k(Xj) := Ej−1[ηj,k(Xj)] of these basis functions are available in closed

form. Straightforward computations yield

Rj−1,1(Xj−1) = 1,

Rj−1,2(Xj−1) = γ̃j−1 − κγ∆ ((γ̃j−1)+ − µγ) ,

Rj−1,3(Xj−1) = (γ̃j−1 − κγ∆((γ̃j−1)+ − µγ))
(
p̃j−1e

−κp∆ + µp(1− e−κp∆)
)

+σγσpργp

√
(γ̃j−1)+∆

√
1− e−2κp∆

2κp
,

Rj−1,4(Xj−1) = Ej−1

[
P (tj , Tτ(j))

]
CTτ(j)

+N
K∑

i=τ(j)+1

(Ej−1 [P (tj , Ti−1)]− (1 +Rδ)Ej−1 [P (tj , Ti)]) .

In Appendix B.1, we provide the closed-form expressions for Ej−1 [P (tj , Ti)] as well as a detailed
derivation of these conditional expectations. For the computation of the approximate solution, we
simulate Λreg regression paths of the process (Bj)j=1,...,J , which is given by

Bj =
(

1,∆W x
j ,∆W

y
j ,∆W

γ
j ,∆W

p
j

)>
and apply the regression-later approach. In this example, we vary the number of regression paths
so that we can assess the impact on the upper and lower bounds. In order to compute upper and
lower bounds, we take Λout = 5 · 105 outer paths and denote, as before, by Ŷ up

0 and Ŷ low
0 the

resulting empirical means as Monte Carlo estimators of E[θup0 ] and E[θlow0 ].

Table 2.1 displays upper and lower bound estimators with their standard deviations for different step
sizes of the time discretization, for two choices of the number of regression paths, Λreg ∈ {105, 106},
and for different correlations between γ and p. Here, R is chosen as the fair swap rate in the absence
of default risk, i.e., it is chosen such that the swap’s clean price at j = 0 is zero. The four choices of
J correspond to a quarterly, monthly, bi-weekly, and weekly time discretization, respectively. In all
cases, the width of the resulting confidence interval is about 0.6% of the value. We note that the
regression estimates Ỹ0 (which we do not report here) are more stable for 106 paths in the case of
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J Clean Price ργp = 0.8 ργp = 0 ργp = −0.8

120
(Λreg=105)

0 21.30
(0.02)

21.36
(0.02)

24.89
(0.02)

24.95
(0.02)

28.30
(0.02)

28.38
(0.02)

120
(Λreg=106)

0 21.32
(0.02)

21.37
(0.02)

24.89
(0.02)

24.95
(0.02)

28.30
(0.02)

28.39
(0.02)

360
(Λreg=105)

0 21.26
(0.02)

21.31
(0.02)

24.84
(0.02)

24.91
(0.02)

28.25
(0.02)

28.34
(0.02)

360
(Λreg=106)

0 21.28
(0.02)

21.33
(0.02)

24.86
(0.02)

24.92
(0.02)

28.26
(0.02)

28.35
(0.02)

720
(Λreg=105)

0 21.25
(0.02)

21.30
(0.02)

24.83
(0.02)

24.90
(0.02)

28.24
(0.02)

28.33
(0.02)

720
(Λreg=106)

0 21.23
(0.02)

21.28
(0.02)

24.81
(0.02)

24.88
(0.02)

28.23
(0.02)

28.32
(0.02)

1440
(Λreg=105)

0 21.25
(0.02)

21.30
(0.02)

24.83
(0.02)

24.90
(0.02)

28.23
(0.02)

28.32
(0.02)

1440
(Λreg=106)

0 21.23
(0.02)

21.28
(0.02)

24.81
(0.02)

24.87
(0.02)

28.20
(0.02)

28.29
(0.02)

Table 2.1: Lower and upper bound estimators for varying values of ργp, J and Λreg with R = 275.12
basis points (b.p.), Λout = 5 · 105. Prices and standard deviations (in brackets) are given in b.p.

weekly and bi-weekly time discretizations. Nonetheless, the resulting upper and lower confidence
bounds do not vary significantly for the two choices of regression paths. Moreover, the differences in
the bounds can all be explained by the standard deviations. These results indicate that a monthly
time discretization (i.e., 360 discretization steps) and 105 regression are sufficient to accurately price
this long-dated swap under bilateral default risk. The effect of varying the correlation parameter
of γ and p also has the expected direction. Roughly, if ργp is positive then larger values of the
overall default rate go together with larger conditional default risk of the counterparty and smaller
conditional default risk of the party, making the product less valuable to the party. While this
effect is not as pronounced as the overall deviation from the clean price, the bounds are easily tight
enough to differentiate between the three cases.

We next compare our numerical results with the ”generic method” of Section 5 in Bender et al.
(2017). While the latter paper focuses on convex non-linearities, it also suggests a generic local
approximation of Lipschitz non-linearities by convex non-linearities, which can be applied for the
problem of bilateral default risk (after suitable truncations). Based on the same input approxi-
mations as above (computed by the regression-later approach with Λreg = 105 regression paths),
this algorithm produced a 95%-confidence interval of [−0.3874, 1.0966] for the case J = 360 and
ργp = 0. The length of this confidence interval is several magnitudes wider than the one computed
from Table 2.1, and it cannot even significantly distinguish between the clean price and the price
under default risk. These results demonstrate the importance of exploiting the concave-convex
structure for pricing under bilateral default risk.

Finally, Table 2.2 displays the adjusted fair swap rates accounting for counterparty risk and funding
for the three values of ργp, i.e., the values of R which set the adjusted price to zero in the three
different correlation scenarios. To identify these rates, we fix a set of outer and regression paths
and define µ(R) as the midpoint of the confidence interval we obtain when running the algorithm
with these paths and rate R for the fixed leg of the swap. We apply a standard bisection method
to find the zero of µ(R). The confidence intervals for the prices in Table 2.2 are then obtained by
validating these swap rates with a new set of outer paths. We observe that switching from a clean
valuation to the adjusted valuation with ρ = 0.8 increases the fair swap rate by 16 basis points
(from 275 to 291). Changing ρ from 0.8 to −0.8 leads to a further increase by 5 basis points.
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ργp Adjusted Fair Swap Rate Clean Price Bounds

0.8 290.82 −31.53 −0.02
(0.02)

0.05
(0.02)

0 293.65 −37.22 −0.01
(0.02)

0.08
(0.02)

−0.8 296.39 −42.71 −0.06
(0.02)

0.04
(0.02)

Table 2.2: Adjusted fair swap rates and lower and upper bound estimators for varying values of ργp
with Λreg = 105, Λout = 5 · 105 and J = 360. Rates, prices and standard deviations (in brackets)
are given in b.p.
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Chapter 3

Iterative improvement of upper and
lower bounds for convex dynamic
programs

As we have seen in the previous chapters, the quality of upper and lower bounds in numerical
applications strongly depends on the quality of the input approximation. Hence, the key challenge in
constructing tight upper and lower bounds to the solution of a dynamic program of the form (1.15) or
(2.1), is to compute a suitable approximate solution to these dynamic programs. Depending on the
considered problem, this can be rather cumbersome. In this chapter, we, thus, present an iterative
improvement algorithm for systems of convex dynamic programs which builds on the pathwise
approach presented in Section 1.3 and allows us to obtain tight upper and lower bounds even if
the approximate solution is rather crude. In Section 3.1 we first explain how a given supersolution
can be improved by using the pathwise approach of Section 1.3 for the construction of upper
bounds. Section 3.2 is structured similarly and transfers the results of Section 3.1 to the context
of subsolutions. Building on these results, we discuss in Section 3.3 an improvement approach for
families of super- and subsolutions, if the dynamic program is one-dimensional. Following this,
we show that this approach generalizes the improvement approach of Kolodko and Schoenmakers
(2006) proposed in the context of Bermudan option pricing. In Section 3.4, we explain how the
improvement algorithms presented in the preceding sections can be applied numerically. Finally,
we demonstrate the applicability of this approach in the context of pricing under funding cost.

3.1 Improvement of supersolutions

The aim of this section is to construct an improvement of a given supersolution to the system of
convex dynamic programs (1.15) given by

Y
(ν)
J = ξ(ν)

Y
(ν)
j = F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
, ν = 1, . . . , N, j = J − 1, . . . , 0.

Intuitively, such an improvement should satisfy two things: first, it should again be a supersolution
to (1.15) and second, it should lie below the given supersolution at all points in time. The following
definition formalizes this intuition.
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Definition 3.1.1. Let Ȳ be a supersolution (respectively subsolution) to (1.15). A process Y impr ∈
L∞−ad (RN ) is called an improvement of Ȳ , if Y impr is a supersolution (respectively subsolution) to
(1.15) and it holds that

Y impr
j ≤ Ȳj

P -almost surely for every j = 0, . . . , J (and with ”≤” replaced by ”≥” for a subsolution).

For our considerations, we have to restrict ourselves to the monotonic situation of Section 1.3,
where we assumed that a comparison principle holds. To establish the comparison principle, we

make the following monotonicity assumption on the functions F
(ν)
j :

Assumption 3.1.2. For every j = 0, . . . , J − 1, ν = 1, . . . , N and any two random variables
Y (1), Y (2) ∈ L∞−(RN ) with Y (1) ≥ Y (2) P -a.s., the following monotonicity condition is satisfied:

F
(ν)
j

(
βj+1Y

(1,1), . . . , βj+1Y
(1,N)

)
≥ F (ν)

j

(
βj+1Y

(2,1), . . . , βj+1Y
(2,N)

)
, P -a.s. (3.1)

We briefly explain why Assumption 3.1.2 ensures the existence of the comparison principle. Sup-
pose for the moment, that the underlying filtration (Fj)j=0,...,J is replaced by the full information
filtration (Gj)j=0,...,J , where Gj = F for all j = 0, . . . , J . Then, Theorem 1.4.1 still holds true
for this enlarged filtration due to our measurability assumptions. In particular, we observe that
Assumption 3.1.2 coincides with the monotonicity statement (c) in Theorem 1.4.1. This implies
that

P

({(
r̄(ν),[n]

)>
βj+1 ≥ 0

})
= 1 (3.2)

for all j = 0, . . . , J − 1, ν, n ∈ {1, . . . , N} and every random variable r̄(ν) ∈ L∞−(RND) satisfying

F
(ν,#)
j (r̄(ν)) ∈ L∞−(R) for each j. From this, we conclude that the positivity condition especially

holds true for the admissible controls r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , as they are obviously adapted
to the filtration (Gj)j=0,...,J . Applying Theorem 1.4.1 again for the initial filtration (Fj)j=0,...,J

establishes the comparison principle.

Let Ȳ be a supersolution to (1.15) and recall that the recursion (1.22) for Θup := Θup(M) is given
by

Θ
(up,ν)
J = ξ(ν)

Θ
(up,ν)
j = F

(ν)
j

(
βj+1Θ

(up,1)
j+1 −∆M

[1]
j+1, . . . , βj+1Θ

(up,N)
j+1 −∆M

[N ]
j+1

)
, (3.3)

for j = J − 1, . . . , 0, ν = 1, . . . , N , and any martingale M ∈ MND. The main idea of the
improvement approach is now to choose a suitable martingale M̄ ∈MND such that

Yj ≤ Ej
[
Θup
j

(
M̄
)]
≤ Ȳj (3.4)

P -almost surely for every j = 0, . . . , J . In the context of Bermudan option pricing, Chen and
Glasserman (2007) showed that taking the Doob martingale of a given supersolution as an input
leads to an improved upper bound. This idea can be generalized to our setting: Denote by M̄ [n],
n = 1, . . . , N , the Doob martingale of βȲ (n). Then, the following Theorem states that the process
(Ej [Θ

up
j (M̄)])j=0,...,J defined by (3.3) is an improvement for Ȳ . Moreover, it shows that this ap-

proach only gets stuck, if the supersolution Ȳ , which we want to improve, already coincides with
the true solution.
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Theorem 3.1.3. Suppose Assumptions 1.2.1 and 3.1.2. Let j ∈ {0, . . . , J − 1} and let Ȳ be a
supersolution to (1.15). Further, let M̄ [ν] ∈ MD be the Doob martingale of the process βȲ (ν) for
every ν = 1, . . . , N . Then, the process Θup(M̄) defined by (3.3) satisfies

Y
(ν)
i ≤ Ei

[
Θ

(up,ν)
i

(
M̄
)]
≤ F (ν)

i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
≤ Ȳ (ν)

i , (3.5)

P -almost surely for all i = 0, . . . , J and ν = 1, . . . , N . Moreover, if Ȳi = Yi for all i = j + 1, . . . , J ,
then

Θup
j (M̄) = Yj (3.6)

P -almost surely.

Proof. First of all, we recall that the process (Ei[Θ
up
i (M)])i=0,...,J is a supersolution to the system of

convex dynamic programs (1.15) for every martingale M ∈MND according to Section 1.3. Hence,
the first inequality in (3.5) holds by the comparison principle. Furthermore, the last inequality in
(3.5) holds by the supersolution property of Ȳ . Therefore, it only remains to show that

Ei

[
Θ

(up,ν)
i (M̄)

]
≤ F (ν)

i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
(3.7)

holds for every i = 0, . . . , J − 1 and ν = 1, . . . , N . To this end, let M̄ [ν] ∈ MD be the Doob
martingale of βȲ (ν) for every ν = 1, . . . , N and define Θup := Θup(M̄) by (3.3). In order to prove
(3.7), we show the assertion

Θup
i ≤ Ȳi

via backward induction on i = J, . . . , 0. Since we have by definition that Θ
(up,ν)
J = ξ(ν) ≤ Ȳ

(ν)
J ,

the case i = J is again trivial and we suppose that the assertion is true for i + 1, i.e., we have
Θup
i+1 ≤ Ȳi+1 P -almost surely. Then, we have by Lemma 1.2.4 that

Θ
(up,ν)
i =

N∑
n=1

(
r(ν),[n]

)>
βi+1Θ

(up,n)
i+1 −

N∑
n=1

(
r(ν),[n]

)>
∆M̄i+1 − F (ν,#)

i

(
r(ν)
)

for a random variable r(ν) ∈ L∞−(RND) satisfying F
(ν,#)
i (r) ∈ L∞−(R). Since (r(ν),[n])>βi+1 ≥ 0

P -almost surely by (3.2), we conclude by the induction hypothesis, the definition of M̄ , and (1.23)
that

Θ
(up,ν)
i =

N∑
n=1

(
r(ν),[n]

)>
βi+1Θ

(up,n)
i+1 −

N∑
n=1

(
r(ν),[n]

)>
∆M̄i+1 − F (ν,#)

i

(
r(ν)
)

≤
N∑
n=1

(
r(ν),[n]

)>
βi+1Ȳ

(n)
i+1 −

N∑
n=1

(
r(ν),[n]

)> (
βi+1Ȳ

(n)
i+1 − Ei

[
βi+1Ȳ

(n)
i+1

])
− F (ν,#)

i

(
r(ν)
)

=
N∑
n=1

(
r(ν),[n]

)>
Ei

[
βi+1Ȳ

(n)
i+1

]
− F (ν,#)

i

(
r(ν)
)

≤ F (ν)
i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
≤ Ȳ (ν)

i . (3.8)

Here the last inequality is due to the supersolution property of Ȳ . Now, the asserted inequality
(3.7) follows from (3.8) by the monotonicity of the conditional expectation.
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Finally, it remains to show (3.6), i.e.
Θup
j = Yj

if Ȳi = Yi for all i = j + 1, . . . , J , where j ∈ {0, . . . , J − 1} is fixed from now on. Since Ȳi = Yi for
all i = j + 1, . . . , J , we conclude by the definition of M̄ that

M̄
[ν]
i+1 − M̄

[ν]
i = βi+1Ȳ

[ν]
i+1 − Ei

[
βi+1Ȳ

[ν]
i+1

]
= βi+1Y

[ν]
i+1 − Ei

[
βi+1Y

[ν]
i+1

]
for every i = j, . . . , J − 1 and ν = 1, . . . , N . By exploiting that Θup

i = Yi for every i = j + 1, . . . , J
by (3.5), we thus obtain that

Θ
(up,ν)
j = F

(ν)
j

(
βj+1Θ

(up,1)
j+1 −∆M̄

(1)
j+1, . . . , βj+1Θ

(up,N)
j+1 −∆M̄

(N)
j+1

)
= F

(ν)
j

(
βj+1Y

(1)
j+1 −

(
βj+1Y

(1)
j+1 − Ej

[
βj+1Y

(1)
j+1

])
, . . . ,

βj+1Θ
(up,N)
j+1 −

(
βj+1Y

(N)
j+1 − Ej

[
βj+1Y

(N)
j+1

]))
= F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
= Y

(ν)
j ,

which completes the proof.

When starting with an arbitrary supersolution, we typically do not obtain the solution Y by ap-
plying the approach described in Theorem 3.1.3 once. This is typically the case in numerical
applications where the ”input supersolution” Ȳ is computed by the algorithm explained in Sec-
tion 1.7 and thus may stem from a possibly crude approximate solution to (1.15). Hence, we now
show that the above construction can be iterated in a straightforward way such that a decreasing
sequence of supersolutions is obtained.

To this end, let Ȳ be a supersolution and define Θup,0 := Ȳ . Then, we define the k-th iteration
according to (3.3) by

Θup,k := Θup
(
Mk
)
, k ≥ 1, (3.9)

where each Mk = (M [1],k, . . . ,M [N ],k) is given by

M
[ν],k
j =

j−1∑
i=0

βi+1Ei+1

[
Θ

(up,ν),k−1
i+1

]
− Ei

[
βi+1Θ

(up,ν),k−1
i+1

]
, j = 0, . . . , J, ν = 1, . . . , N. (3.10)

Applying Theorem 3.1.3 repeatedly, we observe that this iteration decreasingly converges in at most
J + 1 steps as stated in the following corollary.

Corollary 3.1.4. For every k ≥ 1 and j = 0, . . . , J ,

Ej

[
Θup,k
j

]
≤ Ej

[
Θup,k−1
j

]
P -a.s. (3.11)

Moreover, for every i ≥ j,
Θup,J−j+1
i = Yi, P -a.s. (3.12)

Hence, the upper bound iteration terminates after at most J + 1 steps.
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Proof. First note that inequality (3.11) is an immediate consequence of Theorem 3.1.3 and the
definition of Θup,k, k ≥ 0. Hence, it only remains to show that (3.12) holds. The proof is by

backward induction on j, with the case j = J being trivial, because Θ
(up,ν),1
J = ξ(ν) = Y

(ν)
J by

definition for every ν = 1, . . . , N . Now suppose, that the assertion is true for j ∈ {1, . . . , J}. Then,
we have by induction hypothesis that

Θ
up,J−(j−1)+1
i = Θup,J−j+1

i = Yi

P -a.s. for every i = j, . . . , J . From Theorem 3.1.3 we thus conclude that

Θ
up,J−(j−1)+1
j−1 = Θup

j−1

(
MJ−(j−1)+1

)
= Yj−1 P -a.s.,

where MJ−(j−1)+1 is given by (3.10).

Remark 3.1.5. Note that convergence of the above algorithm in at most J steps can be achieved
by a slight modification. Let Ȳ be an arbitrary supersolution and define Θup,0 by

Θ
(up,ν),0
j =

{
ξ(ν), j = J

Ȳ
(ν)
j , j < J

for every ν = 1, . . . , N . Then, the process Θup,0 is again a supersolution. This is obvious for
j < J − 1 by definition of Θup,0. For j = J − 1, we obtain that

Θ
(up,ν),0
J−1 = Ȳ

(ν)
J−1

≥ F (ν)
J−1

(
EJ−1

[
βJ Ȳ

(1)
J

]
, . . . , EJ−1

[
βJ Ȳ

(N)
J

])
≥ F (ν)

J−1

(
EJ−1

[
βJξ

(1)
]
, . . . , EJ−1

[
βJξ

(N)
J

])
= F

(ν)
J−1

(
EJ−1

[
βJΘ

(up,1),0
J

]
, . . . , EJ−1

[
βJΘ

(up,N),0
J

])
for every ν = 1, . . . , N by the supersolution property of Ȳ and the monotonicity condition (3.1).
Since the terminal value of Θ(up,ν),0 now coincides with the true terminal value ξ(ν), we are able
to reduce the number of iteration steps by one. In particular, the iteration converges in at most J
steps, if the input supersolution is computed by the pathwise approach of Section 1.3.

3.2 Improvement of subsolutions

After considering the improvement approach for supersolutions, we now explain how the recursion
for lower bounds presented in Section 1.3 can be used to improve arbitrary subsolutions to (1.15).
To this end, let Ȳ be an arbitrary subsolution to (1.15). In order to construct an improvement of
Ȳ , we rely on the modified recursion (1.29) for the lower bound Θlow := Θlow(r(1), . . . , r(N),M),
which is given by

Θ
(low,ν)
J = ξ(ν)

Θ
(low,ν)
j =

N∑
n=1

(
r

(ν),[n]
j

)>
βj+1Θ

(low,n)
j+1 −

N∑
n=1

(
r

(ν),[n]
j

)>
∆M

[n]
j+1 − F

(ν,#)
j

(
r

(ν)
j

)
, (3.13)

for j = J − 1, . . . , 0, ν = 1, . . . , N , admissible controls r(ν) ∈ AF (ν)

0 , and M ∈MND.
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Similar to the case of supersolutions, we want to find suitable controls r̄(ν) ∈ AF (ν)

0 such that

Ȳj ≤ Ej
[
Θlow
j

(
r̄(1), . . . , r̄(N),M

)]
≤ Yj (3.14)

holds P -almost surely for all j = 0, . . . , J and M ∈ MND. In order to find such a candidate, we
first note that the subsolution property of Ȳ establishes the inequality

Ȳ
(ν)
j ≤ F (ν)

j

(
Ej

[
βj+1Ȳ

(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

(N)
j+1

])
for every j = 0, . . . , J − 1 and ν = 1, . . . , N . By Lemma 1.2.4, we know that there exist controls
r̄(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , such that the right hand side of this inequality can be rewritten as

F
(ν)
j

(
Ej

[
βj+1Ȳ

(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

(N)
j+1

])
=

N∑
n=1

(
r̄

(ν),[n]
j

)>
Ej

[
βj+1Ȳ

(n)
j+1

]
− F (ν,#)

j

(
r̄

(ν)
j

)
for every j = 0, . . . , J − 1. Hence, solutions to these equations serve naturally as potential can-
didates to establish the chain of inequalities (3.14). Note that this approach differs from existing
policy improvement approaches like the Howard improvement. In contrast to these approaches,
our approach takes an arbitrary subsolution, which need not stem from a control, as an input and
constructs a control from which an improved subsolution is derived.

The above consideration is confirmed by the following theorem, which is the main result of this
section.

Theorem 3.2.1. Suppose Assumptions 1.2.1 and 3.1.2. Let j ∈ {0, . . . , J − 1}, let Ȳ be a subso-
lution to (1.15) and denote by M̄ [ν] ∈ MD the Doob martingale of βȲ (ν) for every ν = 1, . . . , N .

Further let r̄(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , be admissible controls that solve

N∑
n=1

(
r̄

(ν),[n]
i

)>
Ei

[
βi+1Ȳ

(n)
i+1

]
− F (ν,#)

i

(
r̄

(ν)
i

)
= F

(ν)
i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
(3.15)

P -almost surely for every i = 0, . . . , J −1 and ν = 1, . . . , N . Then, for any M ∈MND, the process
Θlow(r̄(1), . . . , r̄(N),M) defined by (3.13) satisfies

Y
(ν)
i ≥ Ei

[
Θ

(low,ν)
i

(
r̄(1), . . . , r̄(N),M

)]
≥ F (ν)

i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
≥ Ȳ (ν)

i ,

(3.16)

P -almost surely for all i = 0, . . . , J−1 and ν = 1, . . . , N . Moreover, if Ȳi = Yi for all i = j+1, . . . , J ,
then

Ej

[
Θlow
j

(
r̄(1), . . . , r̄(N),M

)]
= Θlow

j

(
r̄(1), . . . , r̄(N), M̄

)
= Yj (3.17)

P -almost surely.

Remark 3.2.2. (i) As in the context of supersolutions, (3.17) states that this improvement ap-
proach only gets stuck, if the input subsolution Ȳ already coincides with the true solution.

(ii) By the chain of inequalities (3.16), we have that an improvement is obtained by taking any
martingale M ∈MND. Indeed as observed in Section 1.3, the martingale increment only acts
as a control variate in this approach.
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Proof. As we have seen in Section 1.3, the process (Ei[Θ
low
i (r(1), . . . , r(N),M)])i=0,...,J defines a

subsolution to (1.15) for any admissible controls r(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , and M ∈ MND,
so that the first inequality in (3.16) is already shown. Moreover, the last inequality in (3.16) is

immediate, as Ȳ is assumed to be a subsolution. Now, let r̄(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , be given by
(3.15) and denote by M̄ [ν] the Doob martingale of βȲ (ν) for every ν = 1, . . . , N . Then, we define
the process Θlow := Θlow(r̄(1), . . . , r̄(N), M̄) according to (3.13). In order to prove the remaining
inequality, we proceed as in the proof of Theorem 3.1.3 and show the assertion

Θ
(low,ν)
i ≥ Ȳ (ν)

i (3.18)

for every ν = 1, . . . , N by backward induction on i = J, . . . , 0. The case i = J is trivial, since we

have Θ
(low,ν)
J = ξ(ν) ≥ Ȳ (ν)

J for every ν = 1, . . . , N by definition. Now suppose that the assertion is
true for i+ 1, i.e., Θlow

i+1 ≥ Ȳi+1 P -almost surely. Then, the definition of M̄ [n], n = 1, . . . , N yields

Θ
(low,ν)
i =

N∑
n=1

(
r̄

(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1 −

N∑
n=1

(
r̄

(ν),[n]
i

)>
∆M̄

[n]
i+1 − F

(ν,#)
i

(
r̄

(ν)
i

)
=

N∑
n=1

(
r̄

(ν),[n]
i

)>
βi+1Θ

(low,n)
i+1 −

N∑
n=1

(
r̄

(ν),[n]
i

)> (
βi+1Ȳ

(n)
i+1 − Ei

[
βi+1Ȳ

(n)
i+1

])
− F (ν,#)

i

(
r̄

(ν)
i

)
=

N∑
n=1

(
r̄

(ν),[n]
i

)>
βi+1

(
Θ

(low,n)
i+1 − Ȳ (n)

i+1

)
+

N∑
n=1

(
r̄

(ν),[n]
i

)>
Ei

[
βi+1Ȳ

(n)
i+1

]
− F (ν,#)

i

(
r̄

(ν)
i

)
.

Since Θ
(low,n)
i+1 ≥ Ȳ

(n)
i+1 for all n = 1, . . . , N by induction hypothesis and (r̄

(ν),[n]
i )>βi+1 ≥ 0 for each

n by (3.2), we conclude that

Θ
(low,ν)
i ≥

N∑
n=1

(
r̄

(ν),[n]
i

)>
Ei

[
βi+1Ȳ

(n)
i+1

]
− F (ν,#)

i

(
r̄

(ν)
i

)
.

Finally, it follows from (3.15) and the subsolution property of Ȳ that

Θ
(low,ν)
i ≥ F (ν)

i

(
Ei

[
βi+1Ȳ

(1)
i+1

]
, . . . , Ei

[
βi+1Ȳ

(N)
i+1

])
(3.19)

≥ Ȳ (ν)
i ,

and, thus, (3.18) is established. Recalling that Ei[Θ
low
i (r(1), . . . , r(N),M)] does not depend on the

choice of M , (3.16) now follows from (3.19) and the monotonicity of the conditional expectation.

To complete the proof, we fix j ∈ {0, . . . , J − 1} and assume that Ȳi = Yi for all i = j + 1, . . . , J .
Then, we observe that (3.15) is equivalent to

N∑
n=1

(
r̄

(ν),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r̄

(ν)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, . . . , Ei

[
βi+1Y

(N)
i+1

])
for every i = j, . . . , J − 1, i.e. r̄i satisfies the optimality condition (1.24) for all i = j, . . . , J − 1.
Moreover, we conclude, similar to the proof of Theorem 3.1.3, that

M̄
[ν]
i+1 − M̄

[ν]
i = βi+1Y

(ν)
i+1 − Ei

[
βi+1Y

(ν)
i+1

]
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for all ν = 1, . . . , N and i = j, . . . , J − 1. Hence, we obtain that

Θ
(low,ν)
j =

N∑
n=1

(
r̄

(ν),[n]
j

)>
βj+1Θ

(low,n)
j+1 −

N∑
n=1

(
r̄

(ν),[n]
j

)>
∆M̄

[n]
j+1 − F

(ν,#)
j

(
r̄

(ν)
j

)
=

N∑
n=1

(
r̄

(ν),[n]
j

)>
βj+1Y

(n)
j+1 −

N∑
n=1

(
r̄

(ν),[n]
j

)> (
βj+1Y

(n)
j+1 − Ej

[
βj+1Y

(n)
j+1

])
− F (ν,#)

j

(
r̄

(ν)
j

)
=

N∑
n=1

(
r̄

(ν),[n]
j

)>
Ej

[
βj+1Y

(n)
j+1

]
− F (ν,#)

j

(
r̄

(ν)
j

)
= F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, . . . , Ej

[
βj+1Y

(N)
j+1

])
= Y

(ν)
j ,

since Θlow
i = Yi for every i = j + 1, . . . , J by (3.16).

As in Section 3.1, this improvement can be iterated several times. For a given subsolution Ȳ define
Θlow,0 := Ȳ and define Θlow,k according to (3.13) by

Θlow,k := Θlow
(
r(1),k, . . . , r(N),k,Mk

)
, k ≥ 1, (3.20)

where the processes r(ν),k ∈ AF (ν)

0 are for every j = 0, . . . , J − 1 and ν = 1, . . . , N given by

N∑
n=1

(
r

(ν),[n],k
j

)>
Ej

[
βj+1Θ

(low,n),k−1
j+1

]
− F (ν,#)

j

(
r

(ν),k
j

)
= F

(ν)
j

(
Ej

[
βj+1Θ

(low,1),k−1
j+1

]
, . . . , Ej

[
βj+1Θ

(low,1),k−1
j+1

])
, (3.21)

and Mk ∈ MND is arbitrary. Then, iterative application of Theorem 3.2.1 yields the following
corollary.

Corollary 3.2.3. For every k ≥ 1 and j = 0, . . . , J ,

Ej

[
Θlow,k
j

]
≥ Ej

[
Θlow,k−1
j

]
, P -a.s. (3.22)

Moreover,

Ei

[
Θlow,J−j+1
i

]
= Yi P -a.s., (3.23)

whenever i ≥ j. In the last equation, the conditional expectation on the left-hand side can be

removed, when M [ν],k is taken as the Doob martingale of the process (βjEj [Θ
(low,ν),k−1
j ])j=0,...,J for

each ν = 1, . . . , N and k ≥ 1 .

Proof. Let Mk ∈ MND, k ≥ 1, be arbitrary martingales. Then, we first note that the inequality
(3.22) is an immediate consequence of Theorem 3.2.1 and the definition of Θlow,k, k ≥ 0. Hence, it
only remains to show (3.23). The proof is by backward induction on j, with the case j = J being

trivial, because Θ
(low,ν),1
J = ξ(ν) = Y

(ν)
J by definition. Now suppose, that the assertion is true for

j ∈ {1, . . . , J}, i.e.

Ei

[
Θlow,J−j+1
i

]
= Yi

106



for all i ≥ j. Then, we have by induction hypothesis that

Θ
low,J−(j−1)+1
i = Θlow,J−j+1

i = Yi

P -a.s. for every i = j, . . . , J . From Theorem 3.2.1 we thus conclude that

Ej−1

[
Θ
low,J−(j−1)+1
j−1

]
= Ej−1

[
Θlow
j−1

(
r(1),J−(j−1)+1, . . . , r(N),J−(j−1)+1,MJ−(j−1)+1

)]
= Θlow

j−1

(
r(1),J−(j−1)+1, . . . , r(N),J−(j−1)+1, M̄J−(j−1)+1

)
= Yj−1 P -a.s.,

where each r(ν),J−(j−1)+1 ∈ AF (ν)

0 , ν = 1, . . . , N , is given by (3.21) and M̄J−(j−1)+1,[ν] is the Doob

martingale of (βiEi[Θ
low,J−(j−1)+1
i ])i=0,...,J .

Remark 3.2.4. As in the context of supersolutions, convergence of the above algorithm in at most
J steps can be achieved. Let Ȳ be an arbitrary subsolution and define Θlow,0 by

Θ
(low,ν),0
j =

{
ξ(ν), j = J

Ȳ
(ν)
j , j < J

for every ν = 1, . . . , N . Applying the same arguments as in Remark 3.1.5, we observe that Θlow,0 is
still a subsolution. Consequently, convergence in at most J steps can be achieved for subsolutions
stemming from the pathwise approach of Section 1.3.

3.3 Improving families of super- and subsolutions

In Section 3.4 below, we explain that the numerical costs of algorithms based on (3.9) and (3.20)
tend to grow exponentially in the number of iterations k. For this reason, a moderate number of
iterations must suffice in practical implementations. In the case of one-dimensional convex dynamic
programs, we can address this issue by improving whole families of super- and subsolutions instead
of just one. Therefore, we suppose throughout this section that N = 1 and (1.15) reduces to

YJ = ξ,

Yj = Fj (Ej [βj+1Yj+1]) , j = J − 1, . . . , 0. (3.24)

As before, we first consider the case of supersolutions. To this end, let (Ȳ {l})l∈I be a family of
supersolutions, where I is a finite index set. Further, we denote by K(j), j = 1, . . . , J , a non-
decreasing sequence of subsets of I, i.e. it holds that K(j) ⊆ K(j + 1). Then, we consider the
predictable, I-valued process

l∗(j) = inf
{
l ∈ K(j)

∣∣∣ ∀ι ∈ K(j) Fj−1

(
Ej−1

[
βj Ȳ

{l}
j

])
≤ Fj−1

(
Ej−1

[
βj Ȳ

{ι}
j

])}
(3.25)

for every j = 1, . . . , J . This means that, at every time point j = 1, . . . , J , we only consider those
supersolutions which are represented in the subset K(j) and the random variable l∗(j) returns
an index l ∈ K(j) at which the evaluation of Fj−1 is minimized. Considering the sets K(j)
makes the approach more flexible, but, obviously, the simplest choice is to take K(j) = I for all
j = 1, . . . , J . This additional flexibility turns out to be useful in situations where I is large, and
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thus the computational costs in order to determine the process l∗ are high. More sophisticated
choices of K(j) then allow to reduce these costs.

Building on l∗, we define the process Ȳ by

Ȳj =

{
Ȳ
{l∗(j)}
j , j > 0

F0

(
E0

[
β1Ȳ1

])
, j = 0

(3.26)

for every j = 0, . . . , J . Indeed, this process is a supersolution to (3.24), which allows us to improve
the supersolutions (Ȳ {l})l∈I simultaneously. To examine the supersolution property of Ȳ , we first
observe that the case j = 0 is trivial, since we have Ȳ0 = F0(E0[β1Ȳ1]) by definition. For the case
j > 0, we get by the supersolution property of Ȳ {l} for every l ∈ I that

Ȳj =
∑
l∈K(j)

Ȳ
{l}
j 1{l∗(j)=l}

≥
∑
l∈K(j)

Fj

(
Ej

[
βj+1Ȳ

{l}
j+1

])
1{l∗(j)=l}.

Since K(j) ⊆ K(j + 1) for all j = 1, . . . , J − 1 it follows that

Ȳj ≥
∑
l∈K(j)

Fj

(
Ej

[
βj+1Ȳ

{l∗(j+1)}
j+1

])
1{l∗(j)=l}

= Fj
(
Ej
[
βj+1Ȳj+1

])
P -almost surely, showing that Ȳ is a supersolution. Hence, Theorem 3.1.3 can be applied to the
process Ȳ and implies, for Θup = Θup(M̄),

Ej

[
Θup
j

]
≤ Fj

(
Ej
[
βj+1Ȳj+1

])
= min

l∈K(j+1)
Fj

(
Ej

[
βj+1Ȳ

{l}
j+1

])
≤ min

l∈K(j+1)
Ȳ
{l}
j

P -almost surely for all j = 0, . . . , J − 1, where M̄ denotes the Doob martingale of βȲ . Thus, if
K(j) = I for all j = 1, . . . , J , we achieve a simultaneous improvement of all supersolutions (Ȳ {l})l∈I
by improving Ȳ .

Finally, we turn to the case of subsolutions, where the overall strategy is similar. Hence, let (Ȳ {l})l∈I
be a family of subsolutions, where I is still a finite set. Then, we consider the predictable, I-valued
process

l∗(j) = inf
{
l ∈ K(j)

∣∣∣ ∀ι ∈ K(j) Fj−1

(
Ej−1

[
βj Ȳ

{l}
j

])
≥ Fj−1

(
Ej−1

[
βj Ȳ

{ι}
j

])}
(3.27)

for every j = 1, . . . , J , where K(j) is again a non-decreasing family of subsets of I. Note that,
compared to (3.25), the inequality is now the other way round, since we would like to construct a
subsolution, which lies above the given subsolutions (Ȳ {l})l∈I P -almost surely. Then, the process
Ȳ defined by

Ȳj =

{
Ȳ

(l∗(j))
j , j > 0

F0

(
E0

[
β1Ȳ1

])
, j = 0

is, by similar arguments as before, a subsolution to (3.24). The case j = 0 is again trivial since
Ȳ0 = F0(E0[β1Ȳ1]) by definition. For j > 0, we apply the subsolution property of the processes
Ȳ {l}, l ∈ I, and K(j) ⊆ K(j + 1) to obtain

Ȳj =
∑
l∈K(j)

Ȳ
{l}
j 1{l∗(j)=l}
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≤
∑
l∈K(j)

Fj

(
Ej

[
βj+1Ȳ

{l}
j+1

])
1{l∗(j)=l}

≤
∑
l∈K(j)

Fj

(
Ej

[
βj+1Ȳ

{l∗(j+1)}
j+1

])
1{l∗(j)=l}

= Fj
(
Ej
[
βj+1Ȳj+1

])
,

from which we conclude that Ȳ is a subsolution. Thus, by Theorem 3.2.1,

Ej

[
Θlow
j (r̄,M)

]
≥ Fj

(
Ej
[
βj+1Ȳj+1

])
= max

l∈K(j+1)
Fj

(
Ej

[
βj+1Ȳ

{l}
j+1

])
≥ max

l∈K(j+1)
Ȳ
{l}
j (3.28)

P -a.s. for every j = 0, . . . , J − 1, where r̄ is for every j = 0, . . . , J − 1 given by (3.15) and
M ∈MD. Hence, in the caseK(j) = I for j = 1, . . . , J , improving Ȳ results again in a simultaneous
improvement of all subsolutions (Ȳ {l})l∈I .

In the following example, we present a generic way to construct a family of subsolutions from a
given admissible control and show that, in the special case of optimal stopping problems, the policy
improvement approach of Kolodko and Schoenmakers (2006) can be recovered from our approach.

Example 3.3.1. (i) Suppose that we are given an input policy r ∈ AF0 . Then, we may choose a
reference policy r̂ ∈ AF0 and define a family of policies (r{l})l=0,...,J−1 by

r
{l}
j =

{
r̂j , j < l

rj , j ≥ l
(3.29)

for j = 0, . . . , J−1. From the definition of r{l}, we immediately obtain that r{l} ∈ AF0 for each
l. Building on this family of policies, we can define a family of subsolutions (Ȳ {l})l=0,...,J−1

by

Ȳ
{l}
j = Ej

[
Θlow
j

(
r{l}
)]
, j = 0, . . . , J.

Now let the sets (K(j))j=1,...,J be given by

K(j) = {0, . . . ,min{j + κ− 1, J}}

for some κ ≥ 1. Then, we observe from the monotonicity assumption on Fj and the definition
of (Ȳ {l})l=0,...,J−1, that the improvement condition (3.15) can be rewritten as

r̄>j Ej

[
βj+1Θlow

j+1

(
r{l
∗(j+1)}

)]
− F#

j (r̄j) = max
l=j+1,...,(j+κ)∧J

Fj

(
Ej

[
βj+1Θlow

j+1

(
r{l}
)])

(3.30)

for every j = 0, . . . , J − 1. Note that the maximum over the set K(j + 1) can be restricted
to the subset {j + 1, . . . , (j + κ) ∧ J} in (3.30), as Θlow

j+1(r{l}) = Θlow
j+1(r) for all l ≤ j + 1 by

definition of the family (r{l})l=0,...,J−1. By applying (3.28) to this setting, we observe that

Ej

[
Θlow
j (r̄)

]
≥ max

l=0,...,(j+κ)∧J
Fj

(
Ej

[
βj+1Θlow

j+1

(
r{l}
)])

= max
l=j+1,...,(j+κ)∧J

Fj

(
Ej

[
βj+1Θlow

j+1

(
r{l}
)])

,

where the last equality follows by the same argument as before.
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(ii) We now apply the construction from part (i) to the optimal stopping case. To this end,
suppose that we are given a family (τ{l})l=0,...,J of stopping times such that

τ{l} ≥ l and
(
τ{l} > l ⇒ τ{l} = τ{l+1}

)
(3.31)

for every l = 0, . . . , J . Following Kolodko and Schoenmakers (2006), we call a family of
stopping times satisfying (3.31) consistent. As explained in Example 1.3.5 (ii), we can derive
an admissible control r ∈ AF0 from this stopping family by setting rj = 1{τ{j} 6=j} for every
j = 0, . . . , J − 1. We further choose the reference policy r̂ ≡ 1, which corresponds to not
stopping the process until terminal time. Then, we may derive from part (i) and Example
1.3.5 (ii) that

Ej [Sτ̄{j} ] ≥ max
l=j+1,...,(j+κ)∧J

max{Sj , Ej [Sτ{l} ]}, j = 0, . . . , J − 1,

where the family (τ̄{j})j=0,...,J of stopping times is given by

τ̄{j} = inf

{
i ≥ j

∣∣∣∣Si ≥ max
l=i+1,...,(i+κ)∧J

Ei[Sτ{l} ]

}
for j = 0, . . . , J . In this derivation we use that

τr{l} = inf
{
j ≥ 0

∣∣∣r{l}j = 0
}

= τ{l}

by consistency of (τ{l})l=0,...,J and that

Sj ≥ Ej
[
Θlow
j+1

(
r{l
∗(j+1)}

)]
⇔ Sj ≥ max

{
Sj , Ej

[
Θlow
j+1

(
r{l
∗(j+1)}

)]}
⇔ Sj ≥ max

l=j+1,...,(j+κ)∧J
max

{
Sj , Ej

[
Θlow
j+1

(
r{l}
)]}

⇔ Sj ≥ max
l=j+1,...,(j+κ)∧J

Ej

[
Θlow
j+1

(
r{l}
)]

by the definition of l∗. Hence, we recover the policy improvement result in Theorem 3.1 of
Kolodko and Schoenmakers (2006) as a special case of our approach.

Remark 3.3.2. The approaches presented above cannot be generalized to the multi-dimensional
setting of Sections 3.1 and 3.2 in a straightforward way. This is mainly due to the fact that in the
case of systems of convex dynamic programs the processes l∗ and l∗ given by (3.25) respectively
(3.27) additionally depend on the dimension parameter ν. Indeed, generalizing e.g. the definition
of l∗ to the multi-dimensional setting leads to

l∗(j, ν) =
{
l ∈ K(j)

∣∣∣F (ν)
j−1

(
Ej−1

[
βj Ȳ

{l},(1)
j

]
, . . . , Ej−1

[
βj Ȳ

{l},(N)
j

])
≥ F (ν)

j−1

(
Ej−1

[
βj Ȳ

{ι},(1)
j

]
, . . . , Ej−1

[
βj Ȳ

{ι},(N)
j

])
∀ι ∈ K(j)

}
,

for every j = 1, . . . , J and ν = 1, . . . , N , where (Ȳ {l})l∈I is a family of subsolutions to (1.15). Now,
the process given by

Ȳ
(ν)
j = Ȳ

(l∗(j,ν))
j 1{j>0} + F

(ν)
0

(
E0

[
β1Ȳ

(1)
1

]
, . . . , E0

[
β1Ȳ

(N)
1

])
1{j=0}, j = 0, . . . , J,
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is not a subsolution to (1.15). To see this, we first note that

Ȳ
(ν)
j =

∑
l∈K(j)

Ȳ
{l},(ν)
j 1{l∗(j,ν)=l}

≤
∑
l∈K(j)

F
(ν)
j

(
Ej

[
βj+1Ȳ

{l},(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

{l},(N)
j+1

])
1{l∗(j,ν)=l}

≤
∑
l∈K(j)

F
(ν)
j

(
Ej

[
βj+1Ȳ

{l∗(j+1,ν)},(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

{l∗(j+1,ν)},(N)
j+1

])
1{l∗(j,ν)=l}

for any j = 1, . . . , J − 1 and ν = 1, . . . , N . In contrast to the one-dimensional case, we now have in
general that

F
(ν)
j

(
Ej

[
βj+1Ȳ

{l∗(j+1,ν)},(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

{l∗(j+1,ν)},(N)
j+1

])
� F

(ν)
j

(
Ej

[
βj+1Ȳ

{l∗(j+1,1)},(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

{l∗(j+1,N)},(N)
j+1

])
= F

(ν)
j

(
Ej

[
βj+1Ȳ

(1)
j+1

]
, . . . , Ej

[
βj+1Ȳ

(N)
j+1

])
and, thus, Ȳ is not a subsolution.

3.4 Implementation

In this section, we explain how to implement algorithms based on the iterative improvement ap-
proaches of Sections 3.1 and 3.2 in the Markovian setting of Section 1.7. This algorithm proceeds
in essentially two steps: in a first step input super- and subsolutions are constructed from the
algorithm proposed in Chapter 1. Then, in a second step, improved super- and subsolutions are
constructed iteratively. The key challenge in the second step is to compute the conditional expec-
tations which are required for the construction of the controls in (3.21) and the Doob martingales
in (3.10). For the approximation of these conditional expectations, we rely on a plain Monte Carlo
implementation as applied in Kolodko and Schoenmakers (2006). In contrast to a naive plain
Monte Carlo implementation for the solution of dynamic programs, this construction does not lead
to computational costs which grow exponentially in the number of time steps but rather in the
number of iterations. Our numerical example below demonstrates that two improvement steps are
feasible if the input super- and subsolutions are constructed from the regression-later approach.
We further provide an alternative to the regression-later approach for the construction of approx-
imate solutions, called the martingale minimization approach, if the dynamic program has only
one equation. The rationale of this approach is to choose a set of martingales from which a linear
combination is constructed such that the resulting upper bound becomes minimal. Finally, we
apply the improvement approach to the problem of pricing under funding cost.

3.4.1 Martingale minimization approach

Throughout this section, we assume that N = 1, i.e. we consider convex dynamic programs of the
form

YJ = g(XJ),

Yj = fj (Xj , Ej [βj+1Yj+1]) , j = 0, . . . , J − 1,
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where X is a time-discrete Markov process. Recall that the process X is of the form

Xj = hj(Xj−1, Bj), X0 = x0 ∈ Rd,

with measurable functions hj : Rd × RD → Rd and an RD-valued process (Bj)j=1,...,J , for which
the first D components of Bj are given by βj and such that Bj is independent of Fj−1 for every
j = 1, . . . , J . In the LSMC approaches presented in Section 1.7, the idea is to compute coefficients
(aj)j=1,...,J by an empirical regression so that an approximate solution to the dynamic program is
given by a linear combination of chosen basis functions, i.e.

ỹj+1(x, b) =
K∑
k=1

aj+1,kηj+1,k(x, b), j = 0, . . . , J − 1.

As we have seen in the previous numerical examples and as discussed in Bender et al. (2017), the
construction of meaningful upper bounds from such approximate solutions to the dynamic program
is harder than for the lower bounds. The martingale minimization approach tackles this problem
directly by computing the coefficients (aj)j=1,...,J differently. The idea of this approach is to choose
a set of martingales and to find a linear combination of these, such that the resulting upper bound
is minimized. As a consequence the resulting coefficients are global in the sense that they do not
depend on time. This is in the spirit of Desai et al. (2012) and Belomestny (2013), who proposed
such an approach in the context of Bermudan option pricing.

To be more precisely, let basis functions ηj = (ηj,1, . . . , ηj,K), j = 1, . . . , J , be given, which satisfy
the assumptions of the regression-later approach, i.e., they are sufficiently integrable and the one-
step conditional expectations Rj−1 are available in closed form. From these basis functions, we can
construct a set of martingales M{k}, k = 1, . . . ,K, by

M
{k}
j =

j−1∑
i=0

βi+1ηi+1,k(Xi, Bi+1)−Ri,k(Xi).

Starting from these martingales, we define the martingale Ma by

Ma
j =

K∑
k=1

akM
{k}
j , (3.32)

for coefficients a = (a1, . . . , aK) ∈ RK . The key step in the martingale minimization approach
is now to find coefficients a∗ such that E[Θup

0 (Ma)] becomes minimal. Following the approach
analyzed in Belomestny (2013), the coefficients a∗ are given by

a∗ = argmin
a∈RK

E [Θup
0 (Ma)] + γ

√
Var (Θup

0 (Ma)) (3.33)

for fixed γ ≥ 0. Note that (3.33) involves a standard deviation penalty whose impact can be
controlled by choosing γ. The idea behind this penalty is, that the resulting upper bound should
not only be minimized but that it should also have low variance, since we know that Var(Θup

0 (M∗))
vanishes for the martingale M∗ due to the pathwise optimality.

Since in general neither E[Θup
0 (Ma)] nor Var(Θup

0 (Ma)) are available in closed form, we have to
replace them by their empirical counterparts in order to obtain an implementable algorithm. There-
fore, we simulate Λmini independent copies {Bj(λmini), j = 1, . . . , J, λmini = 1, . . . ,Λmini} of the
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process B to which we refer as minimization paths. Denoting by M{k}(λmini) the evaluation of
the martingales M{k} for each k along these paths and computing Θup(Ma(λmini)) recursively by
(1.22), we replace the optimization problem (3.33) by

a∗ = argmin
a∈RK

Ê [Θup
0 (Ma)] + γ

√√√√ 1

Λmini − 1

Λmini∑
λmini=1

(
Θup

0 (Ma(λmini))− Ê [Θup
0 (Ma)]

)2
, (3.34)

where

Ê [Θup
0 (Ma)] =

1

Λmini

Λmini∑
λmini=1

Θup
0

(
Ma(λmini)

)
. (3.35)

Then, an approximate solution ỹ to the dynamic program is obtained by

ỹj(x, b) =
K∑
k=1

a∗kηj,k(x, b), j = 1, . . . , J.

Remark 3.4.1. (i) The minimization approach requires the choice of the parameter γ. In our
numerical results presented in Section 3.4.3, we apply a “training and testing” approach to
tune this parameter. To this end, we choose a set {γ1, . . . , γL}, L ∈ N, of parameters. For
each γl, l = 1, . . . , L, we compute a vector of coefficients a∗γl ∈ R

K according to (3.34) along
the minimization paths Λmini. If vectors a∗γ1

, . . . , a∗γL are computed, we sample a new set
of Λtest test paths (independent copies of B which are also independent of the minimization
paths). The parameter γ is obtained by taking the γl such that a∗γl minimizes the expression
in (3.35) along the test paths over the set {a∗γ1

, . . . , a∗γL}. We note that in our numerical
test case the method’s practical performance is not particularly sensitive to the choice of γ
and actually chooses γ = 0 in the above “training and testing” approach in the majority of
test runs. Yet in principle, it may happen that along an “unfavorable” set of minimization
paths, the optimal parameter vector without penalization takes rather large absolute values,
minimizing (3.35) by creating a small number of very negative Θup

0 -paths. When re-computing
(3.35) along an independent set of test paths, the resulting martingale does not perform well
in general. Choosing a positive γ in (3.34) may counteract such overfitting effects. In that
sense, our approach can be viewed as a safety precaution, adding another layer of flexibility
to the algorithm.

(ii) The approach presented above does not apply in the multi-dimensional setting considered
in the previous sections. This is essentially due to the fact that the process Θup becomes
RN -valued and the minimization in (3.34) is not well-defined anymore. In order to circum-
vent this problem, one could think of replacing the expectation and the variance of Θup by

R(E[Θ
(up,1)
0 ], . . . , E[Θ

(up,N)
0 ]) for a function R : RN → R, which is monotonically increasing

in each variable.

3.4.2 Iterative improvement algorithm

Suppose that controls r̃(ν) ∈ AF (ν)

0 , ν = 1, . . . , N , and a martingale M̃ ∈ MND, which can
be evaluated in closed form along a given path B, are given, cp. the constructions in 1.7 or
3.4.1 in the one-dimensional case. Denote by Y low,0

j = Ej [Θ
low(r̃(1), . . . , r̃(N), M̃)] and Y up,0

j =

Ej [Θ
up(M̃)] the corresponding input sub- and supersolutions. In order to compute the first itera-

tions Θup,1 in (3.9) and Θlow,1 in (3.20), we require approximations of the conditional expectations
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Ej [βj+1Θ
(low,ν)
j+1 (r̃(1), . . . , r̃(N), M̃)], Ej [βj+1Θ

(up,ν)
j+1 (M̃)], and Ej+1[Θup

j+1(M̃)] for each ν = 1, . . . , N .
In the following, we focus on the supersolution case, but note that the improvement for subsolutions
can be implemented analogously.

For the approximation of the conditional expectations, we apply a plain Monte Carlo approach.
To this end, we first sample Λout independent copies B(λout), λout = 1, . . .Λout, of B. Moreover,
for every time step j and outer path B(λout), we apply a subsampling approach and generate a
new sample of independent copies (Bi(λ

mid, j))i≥j+1, λmid = 1, . . .Λmid, of (Bi)i≥j+1. We denote
by B(λout, λmid, j) the path given by (B1(λout), . . . , Bj(λ

out), Bj+1(λmid, j), . . . , BJ(λmid, j)), which
switches from a given outer path to the corresponding middle path at time j + 1. Similarly to the
notation introduced before, we write β(λout, λmid, j) and Θup,0(λout, λmid, j) for the trajectories
of β and Θup(M̃) along the path B(λout, λmid, j). Along each outer path, we approximate the
martingale M1 in (3.10) with increment

M
[ν],1
j+1 −M

[ν],1
j = βj+1Ej+1

[
Θ

(up,ν),0
j+1

]
− Ej

[
βj+1Θ

(up,ν),0
j+1

]
, j = 0, . . . , J − 1, ν = 1, . . . , N,

by the plain Monte Carlo estimator

M̃
[ν],1
j+1 (λout)− M̃ [ν],1

j (λout) = βj+1(λout)Êj+1

[
Θ

(up,ν),0
j+1

]
(λout)− Êj

[
βj+1Θ

(up,ν),0
j+1

]
(λout),

where

Êj

[
Θ

(up,ν),0
j

]
(λout) :=

1

Λmid

Λmid∑
λmid=1

Θ
(up,ν),0
j (λout, λmid, j)

Êj

[
βj+1Θ

(up,ν),0
j+1

]
(λout) :=

1

Λmid

Λmid∑
λmid=1

βj+1(λout, λmid, j)Θ
(up,ν),0
j+1 (λout, λmid, j) (3.36)

for every ν = 1, . . . , N . We now write Θup,1(λout) for the realization of Θup(M̃1) along the λout-
th outer path. From the estimators (1.59) and (1.60), we can compute a new upper confidence
bound for Y0 based on (Θup,1(λout))λout=1,...,Λout . Since M̃1 converges to M1 (along each outer

path) as the number of middle paths converges to infinity, and since E0[Θup(M1)] ≤ E0[Θup(M̃)]
by Theorem 3.1.3, the corresponding upper bound is typically tighter than the one constructed
from (Θup,0(λout))λout=1,...,Λout , when the number of middle paths is sufficiently large.

In case that a second iteration step shall be computed (e.g., because the once improved confidence
interval is still not tight enough), the overall procedure is similar. The only difference is that we
cannot assume the input process M̃1 to be available in closed form along a given path. Its evalu-
ation actually requires one layer of nested simulation as described above. The next iteration step
yet requires to evaluate M̃1 along middle paths and not along outer paths. As a consequence, we
have to sample a third layer of Λin ”inner paths” for which we omit the details of the straight-
forward implementation. However, we emphasize that a similar procedure is already required in
the first iteration step, when the input martingale M̃ is not available in closed form (e.g., when
the approximate solution to the dynamic program is computed by the regression-now variant of
LSMC).

As discussed in Section 1.7, subsampling leads to an additional upward bias in the upper bound,
which can be reduced by increasing the number of middle paths (in the first iteration step) and
inner paths (in the second iteration step). Since this, in turn, increases the computational cost, the
number of middle and inner paths should be kept at a moderate level. We thus suggest to apply
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control variates in the plain Monte Carlo estimation (3.36) of the martingale increments. These

can, e.g., be based on the closed form expression for Ej [Θ
up
j+1(M̃)] and Ej [βj+1Θ

(up,ν)
j+1 (M̃)] or, like

in our actual implementation, as described in Remark 1.7.2 (iv).

Finally, we emphasize that this procedure can be further iterated but that each iteration step
requires an additional layer of subsimulations leading to higher computational costs. Hence, at
some point, it might be a better idea to put more effort in the construction of a better input
approximation than performing an additional iteration step if the confidence interval is still not tight
enough. This consideration is confirmed by our numerical example below, where we demonstrate
that two iteration steps are feasible and that improving the input approximation can increase the
quality of the resulting 95%-confidence interval substantially.

3.4.3 Numerical example

We now apply the improvement approach to the problem of pricing a European option under
funding constraints, i.e., under different interest rates for borrowing and lending. In the finance
literature, this problem goes back to Bergman (1995). The model is also a prominent example in
the literature on backward stochastic differential equations starting with El Karoui et al. (1997)
and a well-established numerical test case, see Gobet et al. (2005); Lemor et al. (2006); Bender and
Steiner (2012); Bender et al. (2017).

There are two riskless interest rates RL < RB ∈ R for lending respectively borrowing and d risky
assets given by geometric Brownian motions X(1), . . . , X(d) with dynamics

X
(l)
t = x

(l)
0 exp

{(
µ− 1

2

d∑
n=1

σ2
l,n

)
t+

d∑
n=1

σl,nW
(n)
t

}
, l = 1, . . . , d,

at t ∈ [0, T ]. Here, x
(l)
0 , µ ∈ R, σ is an invertible d× d-matrix with entries in R and W (1), . . . ,W (d)

are independent Brownian motions. We consider the problem of pricing a European option on

the assets X(1), . . . , X(d) with maturity T and payoff g(X
(1)
T , . . . , X

(d)
T ). Following El Karoui et al.

(1997), the value Y of the option is then given by the BSDE

Yt = g
(
X

(1)
T , . . . , X

(d)
T

)
+

∫ T

t
f(s, Ys, Zs) dt−

∫ T

t
Z>s dWs, t ∈ [0, T ], (3.37)

where
f(t, y, z) = −RLy −

(
µ−RL

)
z>σ−11 +

(
RB −RL

) (
y − z>σ−11

)
−
.

Discretizing BSDE (3.37) over an equidistant partition 0 = t0 < t1 < . . . < tJ = T of [0, T ] with
increments ∆ as explained in Example 1.1.2, we end up with the following convex dynamic program:

X
(l)
j = x

(l)
0 exp

{(
µ− 1

2

d∑
n=1

σ2
l,n

)
∆ +

d∑
n=1

σl,n∆W
(n)
j

}
, l = 1, . . . , d,

YJ = g
(
X

(1)
J , . . . , X

(d)
J

)
Zj = Ej

[
[∆Wj+1]c

∆
Yj+1

]
,

Yj =
(
1−RL∆

)
Ej [Yj+1]−

(
µ−RL

)
Z>j σ

−11∆ +
(
RB −RL

)
∆
(
Ej [Yj+1]− Z>j σ−11

)
−
,

(3.38)
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where Ej [·] denotes the conditional expectation with respect to the filtration generated by the
Brownian motion W up to time tj . As before, we passed at same time to the shorthand notation
Xj := Xtj . Moreover, [·]c denotes a componentwise truncation at ±c for a constant c > 0. This
truncation is required to ensure that the monotonicity assumption (3.1) holds. We emphasize, how-
ever, that the corresponding truncation error becomes small for sufficiently small time increments
∆. The term Z>j σ

−11 in (3.38) represents the overall position in the risky assets in the hedging

portfolio at time tj . Therefore, Ej [Yj+1]−Z>j σ−11 is an approximation of the position in the bank
account at time tj . The sign of this expression determines which interest rate is applicable.

Taking the function Fj : Rd+1 → R given by

Fj(z) = (1−RL∆)z(1) − (µ−RL)
(
z(−1)

)>
σ−11∆ +

(
RB −RL

)
∆

(
z(1) −

(
z(−1)

)>
σ−11

)
−
,

with z = (z(1), z(−1)) = (z(1), . . . , z(d+1)), N = 1, D = d+ 1, and

Bj =

(
1,

[∆Wj ]c
∆

,∆Wj

)
j = 1, . . . , J,

we observe that (3.38) is of the form (1.15). From the definition of Fj , we obtain by Appendix A.2

that F#
j ≡ 0 on its effective domain D

(j,·)
F# = {u(R)|R ∈ [RL, RB]}, with u : R→ Rd+1 given by

u(1)(s) = (1− s∆) and u(l+1)(s) = −(µ− s)∆
d∑

n=1

(
σ−1

)
l,n
, l = 1, . . . , d,

Hence, the duality relation (1.24) reads

r
(1,∗)
j Ej [Yj+1] +

d+1∑
n=2

r
(n,∗)
j Z

(n−1)
j

= (1−RL∆)Ej [Yj+1]− (µ−RL)Z>j σ
−11∆ +

(
RB −RL

)
∆
(
Ej [Yj+1]− Z>j σ−11

)
−
.

A solution to this equation is given by

r∗j =

{
u(RL), Ej [Yj+1] ≥ Z>j σ−11

u(RB), Ej [Yj+1] < Z>j σ
−11.

For our numerical experiments, we consider the example discussed in Bender et al. (2017), but add
a non-trivial correlation structure to the problem. This example is a multi-dimensional version of
an example going back to Gobet et al. (2005). We compute upper and lower bounds on the price
of a European call-spread option with strikes K1 and K2 on the maximum of d = 5 assets, i.e.,

g
(
x(1), . . . , x(5)

)
=

(
max
l=1,...,5

x(n) −K1

)
+

− 2

(
max
l=1,...,5

x(n) −K2

)
+

, x ∈ R5.

The maturity T is set to three months, i.e. T = 0.25, and the strikes are K1 = 95 and K2 = 115.
The interest rates RL and RB are 1% and 6%. For the geometric Brownian motions X(1), . . . , X(5)

we take x
(l)
0 = 100, l = 1, . . . , 5, as starting value and choose the drift µ to be 0.05. In contrast
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to Bender et al. (2017), we do not assume that X(1), . . . , X(5) are independent and consider the
diffusion matrix σ given by

σ = σ̃ ·


1 0 0 0 0

ρ
√

1− ρ2 0 0 0

ρ 0
√

1− ρ2 0 0

ρ 0 0
√

1− ρ2 0

ρ 0 0 0
√

1− ρ2

 ,

where σ̃ = 0.2. In our numerical experiments below, the correlation parameter ρ is varied between
−0.3 and 0.3 and the time discretization J takes values in {20, 30, 40}. With this choice of pa-
rameters, we observe that the monotonicity condition (3.1) is satisfied with a truncation level of
c = 0.77 at the roughest time discretization level J = 20. Truncating the Brownian increments
with standard deviation

√
∆ ≈ 0.112 at 0.77 is the same as truncating a standard normal random

variable at 6.88, corresponding to truncating a probability mass of 3 · 10−12 in both tails.

Generic minimization algorithm

For the construction of the input approximation, we first run the martingale minimization algorithm
with the single and completely generic basis function ηj,1(x, b) := 1, i.e., we initially approximate

Yj by a constant and the Z
(l)
j by zero, l = 1, . . . , 5. Then, in the minimization approach presented

in Section 3.4.1 we have a single 6-dimensional martingale M{1} given by M̃
{1},(0)
j+1 − M̃{1},(0)

j = 0
and

M̃
{1},(l)
j+1 − M̃{1},(l)j = β

(l)
j+1 − Ej

[
β

(l)
j+1

]
=

[
∆W

(n)
j+1

]
c

∆

for l = 1, . . . , 5. In order to compute the R-valued coefficient a∗, and, hence, the constant approx-
imation ỹj(x, b) = a∗ to yj , we implement the ”training and testing” approach of Remark 3.4.1
with Λmini = Λtest = 1000 paths and {γ1, . . . , γ21} = {0, 0.025, . . . , 0.5}. We find that a∗, as an
approximation of Y0, ranges between 16 and 17.5 for our different choices of J and ρ, and as a∗ > 0,
the input subsolution Y low,0 is constructed from the constant control u(RL). For the computation
of upper and lower bounds with up to two iterative improvements, we take Λout = 1000 outer paths,
Λmid = 200 middle paths and Λin = 50 inner paths. The resulting estimators for the upper and
lower bounds from the k-th improvement are denoted by Ŷ up,k,a

0 and Ŷ low,k,a
0 . For comparison, we

also state the upper bound estimator Ŷ up,0,0
0 which is computed by choosing a = 0, i.e., by setting

all martingale increments to zero.

Table 3.1 presents upper and lower bounds for two different choices of ρ, namely ρ = 0.3 and
ρ = −0.3.

We first observe that the upper bound is very sensitive with respect to the input martingale. Even
optimizing a very crude constant approximation for Y has a huge impact, and, e.g., leads to a half
as large upper bound for J = 40 time steps in the negative correlation case compared to the upper
bound Ŷ up,0,0

0 computed from the zero martingale. Nonetheless, the relative width of the 95%
confidence interval based on the optimal constant approximation is still more than 16% for 40 time
steps in the positive correlation case and even larger in the negative correlation case. Improving
upper and lower confidence bound once, shrinks the 95% confidence interval to a quite acceptable
relative width of less than 3.5% in the positive correlation case, while a second iterative improvement
of the upper bound leads to a relative width of less than 1.5%. The negative correlation apparently
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ρ 0.3 −0.3

J 20 30 40 20 30 40

Ŷ up,0,0
0 18.7084

(0.2193)
20.9437
(0.2369)

21.9248
(0.2746)

26.0757
(0.2624)

30.3401
(0.2996)

33.9942
(0.3659)

Ŷ up,0,a∗

0 14.1415
(0.1366)

14.7452
(0.1316)

14.8168
(0.1361)

15.8132
(0.1001)

16.2220
(0.0979)

16.6361
(0.0986)

Ŷ up,1,a∗

0 13.1298
(0.0126)

13.2443
(0.0139)

13.3392
(0.0151)

14.5053
(0.0120)

14.7067
(0.0129)

14.9055
(0.0152)

Ŷ up,2,a∗

0 13.0608
(0.0132)

13.0564
(0.0140)

13.1203
(0.0142)

14.2127
(0.0096)

14.2593
(0.0101)

14.3247
(0.0104)

Ŷ low,0,a∗

0 12.5648
(0.0228)

12.6002
(0.0273)

12.5813
(0.0303)

13.7964
(0.0271)

13.7688
(0.0324)

13.7555
(0.0387)

Ŷ low,1,a∗

0 12.9757
(0.0133)

12.9827
(0.0159)

12.9545
(0.0185)

14.0569
(0.0162)

14.0400
(0.0190)

13.9903
(0.0268)

Table 3.1: Upper and lower bounds based on the generic minimization algorithm for different time
discretizations. Standard deviations are given in brackets.

makes the problem harder to solve numerically. But, still, after two iteration steps for the upper
bound and one iteration step for the lower bound, we end up with a 95% confidence interval of a
relative width of less than 3%. We also observe a significant decrease in the empirical standard
deviations of the upper bound estimators through the improvement steps, as expected since the
martingales approach the pathwise optimal Doob martingale of βY .

Taking into account that no problem-specific information was used to construct the above confidence
intervals in a five-dimensional problem with non-smooth coefficients and non-trivial correlation
structure, the numerical results are convincing. We note, however, that the second iteration step
increases the computational costs by a factor of Λin · (J/3) (e.g., a factor of 667 in our setting for
J = 40 time steps) compared to a single improvement step. Thus, we next explore to what extent
the results can be improved by putting more effort into the construction of the input approximation.

Non-generic minimization and LSMC algorithms

Following ideas of Andersen and Broadie (2004) for the pricing of Bermudan options on the max-
imum of several assets, we now incorporate information about option prices on the largest and
second-largest asset into the function basis. To this end, we define the two adapted processes l(1)

and l(2) by

l
(1)
j := inf

{
l0 ∈ {1, . . . , 5}

∣∣∣X(l0)
j ≥ X(l)

j ∀l = 1, . . . , 5
}

l
(2)
j := inf

{
l0 ∈ {1, . . . , 5} \

{
l
(1)
j

} ∣∣∣X(l0)
j ≥ X(l)

j ∀l ∈ {1, . . . , 5} \
{
l
(1)
j

}}
for j = 0, . . . , J . Hence, l

(1)
j and l

(2)
j indicate the largest respectively second-largest asset at time

tj . In particular, they can be viewed as functions of Xj . Based on this, we define the following
functions which serve as a basis for our approximations of Y :

ηj,1(Xj−1, Xj) := 1, ηj,ι+1(Xj−1, Xj) :=

5∑
l=1

X
(l)
j 1{l(ι)j−1=l}, ι = 1, 2,

ηj,ι+3(Xj−1, Xj) :=
5∑
l=1

E

[(
X

(l)
J −K1

)
+
− 2

(
X

(l)
J −K2

)
+

∣∣∣∣X(l)
j

]
1{l(ι)j−1=l}, ι = 1, 2,
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ηj,6(Xj−1, Xj) :=

5∑
l=1

E

[(
X

(l)
J −K2

)
+

∣∣∣∣X(l)
j

]
1{l(1)

j−1=l}.

Here, we write, for simplicity and in slight abuse of notation, the basis functions as functions of
(Xj−1, Xj) instead of (Xj−1, Bj), cp. Example 1.7.1. Note that, e.g., the fourth basis function
represents the price of the corresponding call spread option at time tj on the asset which is the
largest one at time tj−1. Shifting the time index in the indicator by one time step (compared to the
more intuitive function basis in Andersen and Broadie (2004) which is based on the largest asset
at time tj) turned out to be inessential in this numerical example, but ensures that the one-step
conditional expectations Rj−1,k(Xj−1) in (1.53) are available in closed form (when neglecting the
truncations of the Brownian increments for the closed form computations). Indeed, we have for

R
(0)
j−1,k(Xj−1) := Ej−1[ηj,k(Xj−1, Xj)] that

R
(0)
j−1,1(Xj−1) = 1, R

(0)
j−1,ι+1(Xj−1) =

5∑
l=1

eµ∆X
(l)
j−11{l(ι)j−1=l}, ι = 1, 2,

R
(0)
j−1,ι+3(Xj−1) =

5∑
l=1

E

[(
X

(l)
J −K1

)
+
− 2

(
X

(l)
J −K2

)
+

∣∣∣∣X(l)
j−1

]
1{l(ι)j−1=l}, ι = 1, 2,

R
(0)
j−1,6(Xj−1) =

5∑
l=1

E

[(
X

(l)
J −K2

)
+

∣∣∣∣X(l)
j−1

]
1{l(1)

j−1=l}.

For the conditional expectations R
(l)
j−1,k(Xj−1) := Ej−1[(∆W

(l)
j /∆)ηj,k(Xj−1, Xj)], we first note

that for each n, l ∈ {1, . . . , d}

E

[
∆W

(l)
j

∆
h
(
X

(n)
J

)∣∣∣∣∣X(n)
j−1 = x(n)

]
= x(n)σn,l

∂

∂x(d)
E
[
h
(
X

(n)
J

) ∣∣∣X(n)
j−1 = x(n)

]
(3.39)

for functions h : R→ R satisfying suitable growth conditions. This identity is straightforward and
we provide the details in Appendix A.4. Then, we obtain that

R
(l)
j−1,1(Xj−1) = 0, R

(l)
j−1,ι+1(Xj−1) =

5∑
n=1

σn,kX
(n)
j−1e

µ∆
1{l(ι)j−1=n}, ι = 1, 2,

R
(l)
j−1,ι+3(Xj−1) =

5∑
n=1

σn,kX
(n)
j−1 ·

(
N (d+(tJ − tj , X(n)

j−1,K1))

−2N (d+(tJ − tj , X(n)
j−1,K2))

)
1{l(ι)j−1=n}, ι = 1, 2,

R
(l)
j−1,6(Xj−1) =

5∑
n=1

σn,kX
(n)
j−1N (d+(tJ − tj , X(n)

j−1,K2))1{l(1)
j−1=n}.

Hence we rely essentially on Black-Scholes prices and Black-Scholes deltas of European options at
time tj−1 on the asset which is the (second) largest at time tj−1. Note that we, again, dropped the

truncation of the Brownian increments ∆Wj in the computation of R
(l)
j−1,k as the truncation error

is negligible for this choice of basis functions ηj,k, cp. Appendix C.1.

With these basis functions, we construct input approximations from both, the regression-later
and the minimization approach. For the martingale minimization algorithm, we run as before

119



Λmini = Λtest = 1000 paths and take the penalization parameter from the set {γ1, . . . , γ21} =
{0, 0.025, . . . , 0.5}. The regression-later approach is applied with Λreg = 100.000 regression paths.
Tables 3.2 and 3.3 below display the corresponding upper and lower bound estimators as well
as iterative improvements up to the second order, based on these two input approximations. As
before, we denote by Ŷ up,k

0 and Ŷ low,k
0 the upper respectively lower bound resulting from the k-th

improvement.

ρ 0.3 −0.3

J 20 30 40 20 30 40

Ŷ up,0,mini
0 13.2790

(0.0676)
13.6548
(0.0721)

13.6082
(0.0748)

14.7490
(0.0654)

14.9249
(0.0678)

14.9845
(0.0585)

Ŷ up,1,mini
0 13.0343

(0.0067)
13.0548
(0.0062)

13.0736
(0.0074)

14.2254
(0.0066)

14.2828
(0.0065)

14.3574
(0.0069)

Ŷ up,2,mini
0 13.0455

(0.0067)
13.0635
(0.0071)

13.0646
(0.0072)

14.1659
(0.0059)

14.2023
(0.0059)

14.2234
(0.0055)

Ŷ low,0,mini
0 12.9829

(0.0084)
12.9750
(0.0080)

12.9871
(0.0093)

14.0692
(0.0098)

14.0616
(0.0100)

14.0820
(0.0120)

Ŷ low,1,mini
0 13.0078

(0.0071)
13.0136
(0.0065)

13.0052
(0.0081)

14.1118
(0.0074)

14.1005
(0.0080)

14.1022
(0.0093)

Table 3.2: Upper and lower bounds based on the non-generic minimization algorithm for different
time discretizations and RB = 0.06. Standard deviations are given in brackets.

ρ 0.3 −0.3

J 20 30 40 20 30 40

Ŷ up,0,reg
0 13.1765

(0.0673)
13.5839
(0.0701)

13.5552
(0.0757)

14.7160
(0.0714)

14.8928
(0.0768)

15.0624
(0.0740)

Ŷ up,1,reg
0 13.0271

(0.0058)
13.0503
(0.0057)

13.0675
(0.0057)

14.2127
(0.0060)

14.2732
(0.0061)

14.3315
(0.0066)

Ŷ up,2,reg
0 13.0510

(0.0064)
13.0714
(0.0065)

13.0874
(0.0070)

14.1817
(0.0060)

14.2157
(0.0058)

14.2501
(0.0063)

Ŷ low,0,reg
0 12.9873

(0.0073)
13.0009
(0.0067)

12.9945
(0.0084)

14.0566
(0.0100)

14.0367
(0.0108)

14.0658
(0.0128)

Ŷ low,1,reg
0 13.0087

(0.0070)
13.0149
(0.0065)

13.0089
(0.0080)

14.1119
(0.0073)

14.1009
(0.0079)

14.1140
(0.0091)

Table 3.3: Upper and lower bounds based on the regression-later approach for different time dis-
cretizations and RB = 0.06. Standard deviations are given in brackets.

By and large, we find that the quality of the upper bound estimators Ŷ up,0,mini
0 and Ŷ up,0,reg

0 ,
computed from the two different methods to obtain the coefficients for the input approximation,
is almost identical. They typically vary by less than two empirical standard deviations. The same
holds true for the lower bounds Ŷ low,0,mini

0 and Ŷ low,0,reg
0 . We also observe that, compared to the

generic implementation, the input lower bounds Ŷ low,0,mini
0 and Ŷ low,0,reg

0 are of the same quality

as the generic lower bounds in Table 3.1 Ŷ low,1,a∗

0 after one iterative improvement. Similarly, one

improvement step of the upper bound in both non-generic cases Ŷ up,1,mini
0 and Ŷ up,1,reg

0 is compa-

rable with two improvement steps in the generic setting Ŷ up,2,a∗

0 . Recalling the large computational
costs for the second improvement step, we observe that incorporating soft problem information
into the function basis (here, the indicator function on the largest and second-largest asset one
time step before) can significantly help to pin down the non-linear option price Y0 into a rather
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tight confidence interval after one iteration step only (and, hence, at moderate costs). For the sake
of completeness, we also report the numerical results after performing a second iteration step for
the upper bounds in the non-generic case. While in the case of negative correlation, we obtain a
further improvement and end up with a confidence interval of a relative width of less than 1.2 % for
J = 40 time steps, the situation for the positive correlation case is different. Here, the theoretical
improvement of the upper bound is offset by the additional upward bias due to the small number of
inner paths. In this case, however, the relative width of the 95% confidence interval is about 0.75%
already after one iteration step, and, thus, any further improvement seems to be unnecessary for
the option pricing problem under consideration.

We finally check the performance of our algorithm when the influence of the non-linearity is further
increased. To this end, we change the borrowing rate from RB = 0.06 to RB = 0.21, resulting in an
increase of the Lipschitz constant by a factor of 4. While an interest rate of 21% may be viewed as
unrealistic, we note that a large value of RB penalizes borrowing and the superhedging price under
the no-borrowing constraint is known to arise in the limit RB →∞.

ρ 0.3 −0.3

J 20 30 40 20 30 40

Ŷ up,0,mini
0 15.1756

(0.0629)
15.4021
(0.0659)

15.6797
(0.0827)

16.6270
(0.0661)

17.0378
(0.0873)

17.2585
(0.0888)

Ŷ up,1,mini
0 14.3803

(0.0066)
14.6102
(0.0066)

14.8575
(0.0073)

15.9797
(0.0071)

16.3250
(0.0067)

16.6146
(0.0076)

Ŷ up,2,mini
0 14.0527

(0.0049)
14.2220
(0.0047)

14.3928
(0.0050)

15.5550
(0.0066)

16.0712
(0.0097)

16.6958
(0.0159)

Ŷ low,0,mini
0 13.7119

(0.0273)
13.7081
(0.0288)

13.6582
(0.0415)

14.3663
(0.0508)

14.4026
(0.0596)

14.2957
(0.0706)

Ŷ low,1,mini
0 13.8733

(0.0139)
13.8560
(0.0160)

13.8620
(0.0205)

14.6236
(0.0394)

14.5642
(0.0464)

14.4738
(0.0593)

Table 3.4: Upper and lower bounds based on the non-generic minimization algorithm for different
time discretizations and RB = 0.21. Standard deviations are given in brackets.

ρ 0.3 −0.3

J 20 30 40 20 30 40

Ŷ up,0,reg
0 15.3014

(0.1212)
16.3805
(0.1762)

17.0170
(0.2460)

19.6349
(0.3717)

23.4699
(0.6203)

26.8002
(0.7822)

Ŷ up,1,reg
0 14.3939

(0.0113)
14.7545
(0.0135)

15.1279
(0.0175)

16.7786
(0.0289)

18.5106
(0.0462)

20.7646
(0.0700)

Ŷ up,2,reg
0 14.1012

(0.0069)
14.2952
(0.0072)

14.4788
(0.0088)

15.7018
(0.0115)

16.6096
(0.0177)

17.9005
(0.0282)

Ŷ low,0,reg
0 13.8339

(0.0166)
13.8350
(0.0179)

13.8730
(0.0214)

14.6735
(0.0409)

14.6399
(0.0505)

14.7351
(0.0502)

Ŷ low,1,reg
0 13.8745

(0.0142)
13.8756
(0.0168)

13.8892
(0.0195)

14.6257
(0.0386)

14.6864
(0.0433)

14.6676
(0.0509)

Table 3.5: Upper and lower bounds based on the regression-later approach for different time dis-
cretizations and RB = 0.21. Standard deviations are given in brackets.

Tables 3.4 and 3.5 illustrate the numerical results for this parameter choice. Except for the borrow-
ing rate, all other parameters and the choice of basis functions remain unchanged. We observe that
in this more challenging test case, the input upper bounds of the minimization algorithm are supe-
rior to those computed from the regression approach, and vice versa for the lower bounds for both
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choices of ρ. However, after one improvement step, the lower bounds based on the minimization
approach are within two empirical standard deviations compared to the one step improvements of
the regression lower bounds, while the upper bounds of the minimization approach are still signif-
icantly below the regression upper bounds after two improvement steps for ρ = 0.3. The overall
performance of the improvement algorithm is (in spite of the larger Lipschitz constant) still very
acceptable for ρ = 0.3 and both input types. Indeed, the relative width of the 95% confidence
interval is about 4% for 40 time steps in the minimization approach and of about 4.5% in the
regression approach.

In the case of negative correlation, the results are however not fully satisfactory. Although the effect
of the improvement algorithm is clearly visible, the relative width of the corresponding confidence
intervals is significantly larger, even after two improvements of the upper bounds. For J = 30
time steps, the relative widths are about 10% for the minimization approach and even 12% for the
regression approach. Combining the once improved regression lower bound and the twice improved
minimization upper bound, the relative width of the 95% confidence interval [14.60, 16.09] can be
reduced to about 9%. This clearly indicates that a better input approximation is required for this
problem.
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Appendix A

Appendix to Chapter 1

A.1 Derivation of the Malliavin Monte Carlo weights in Example
1.1.3

In this appendix, we provide a detailed derivation of the discretized Malliavin Monte Carlo weights
proposed in the context of the uncertain volatility model. In contrast to Fournié et al. (1999),
we rely on re-writing the conditional expectation as integrals on R with respect to the Gaussian
density. Then, a straightforward application of the integration by parts formula leads to the asserted
representation.

To this end, we briefly recall the setting of Example 1.1.3. Let 0 = t0 < t1 < . . . < tJ = T be a
partition of [0, T ] and W be a Brownian motion. Further, the price of the risky asset X ρ̂ under
risk-neutral dynamics and in discounted units at time tj is given by

X ρ̂
j = X ρ̂

j−1 exp

{
ρ̂∆Wj+1 −

1

2
ρ̂2∆

}
, x0 ∈ R,

for a given constant volatility ρ̂ > 0 and ∆Wj+1 := Wtj+1−Wtj . Then, the value process (Yj)j=0,...,J

of a European option with maturity T and payoff g(X ρ̂
J) is given by Yj = yj(Wtj ), where the

deterministic function yj is given by the recursive scheme

yJ(x) = g
(
x0e

ρ̂x− 1
2
ρ̂2T
)
, x ∈ R,

ȳjt (t, x) = −1

2
ȳjxx(t, x), (t, x) ∈ [tj , tj+1)× R,

ȳj(tj+1, x) = yj+1(x), x ∈ R,

yj(x) = ȳj(tj , x) + ∆ max
σ∈{σlow,σup}

{
1

2

(
σ2

ρ̂2
− 1

)(
ȳjxx(tj , x)− ρ̂ȳjx(tj , x)

)}
, x ∈ R.

As stated in Example 1.1.3, the partial derivatives yjx(tj , ·) and yjxx(tj , ·) may be represented via
the Malliavin Monte Carlo weights

ȳjx(tj ,Wtj ) = Ej

[
∆Wj+1

∆
Yj+1

]
, ȳjxx(tj ,Wtj ) = Ej

[(
∆W 2

j+1

∆2
− 1

∆

)
Yj+1

]
.

To see this, we first note that under the given assumptions, differentiation and integration can be
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interchanged:

ȳjx(tj , x) =
d

dx
E
[
Yj+1|Wtj = x

]
=

d

dx
E
[
yj+1(Wtj+1)|Wtj = x

]
=

d

dx
E
[
yj+1(Wtj + (Wtj+1 −Wtj ))|Wtj = x

]
=

d

dx

∫ ∞
−∞

yj+1(x+
√

∆u) · 1√
2π
e−

1
2
u2
du

=

∫ ∞
−∞

d

dx
yj+1(x+

√
∆u) · 1√

2π
e−

1
2
u2
du.

Replacing the derivative of yj+1 with respect to x by the derivative with respect to u and integrating
by parts, shows the first assertion:

ȳjx(tj , x) =

∫ ∞
−∞

1√
∆

d

du

(
yj+1(x+

√
∆u)

)
· 1√

2π
e−

1
2
u2
du

=
1√

2π∆

([
yj+1(x+

√
∆u) · e−

1
2
u2
]∞
−∞

+

∫ ∞
−∞

uyj+1(x+
√

∆u) · e−
1
2
u2
du

)
=

∫ ∞
−∞

u√
∆
yj+1(x+

√
∆u) · 1√

2π
e−

1
2
u2
du

= E

[
∆Wj+1

∆
yj+1(Wtj+1)

∣∣∣∣Wtj = x

]
= E

[
∆Wj+1

∆
Yj+1

∣∣∣∣Wtj = x

]
.

Following the same line of reasoning and integrating by parts twice, yields the second claim:

ȳjxx(tj , x) =
d2

dx2
E
[
Yj+1|Wtj = x

]
=

d2

dx2
E
[
yj+1(Wtj+1)|Wtj = x

]
=

d2

dx2
E
[
yj+1(Wtj + (Wtj+1 −Wtj ))|Wtj = x

]
=

d2

dx2

∫ ∞
−∞

yj+1(x+
√

∆u) · 1√
2π
e−

1
2
u2
du

=

∫ ∞
−∞

d2

dx2
yj+1(x+

√
∆u) · 1√

2π
e−

1
2
u2
du

=
1√

2π∆

∫ ∞
−∞

(
d2

du2
yj+1(x+

√
∆u)

)
· 1√

2π
e−

1
2
u2
du

=
1√

2π∆

([(
d

du
yj+1(x+

√
∆u)

)
· 1√

2π
e−

1
2
u2

]∞
−∞

+

∫ ∞
−∞

(
d

du
yj+1(x+

√
∆u)

)
· ue−

1
2
u2
du

)
=

1√
2π∆

∫ ∞
−∞

(
d

du
yj+1(x+

√
∆u)

)
· ue−

1
2
u2
du

124



=
1√

2π∆

([
yj+1(x+

√
∆u) · ue−

1
2
u2
]∞
−∞
−
∫ ∞
−∞

yj+1(x+
√

∆u) · (1− u2)e−
1
2
u2
du

)
=

∫ ∞
−∞

u2 − 1

∆
yj+1(x+

√
∆u) · 1√

2π
e−

1
2
u2
du

= E

[(
∆W 2

j+1

∆2
− 1

∆

)
yj+1(Wtj+1)

∣∣∣∣∣Wtj = x

]

= E

[(
∆W 2

j+1

∆2
− 1

∆

)
Yj+1

∣∣∣∣∣Wtj = x

]
.

A.2 Convex conjugate for a class of piecewise-linear functions

In this appendix, we derive the convex conjugate for functions f : Rd → R given by

f(x) =
d∑

k=1

a(k)x(k) + c1 +

(
d∑

k=1

b(k)x(k) + c2

)
+

for vectors a, b ∈ Rd with b(d) 6= 0 and coefficients c1, c2 ∈ R. Note that we assume b(d) 6= 0 in
order to exclude the trivial case where f is linear. Considering this general type of piecewise linear
functions allows us to capture the numerical examples presented in this thesis. From straightforward
manipulations and the definition of (·)+, it follows that

f#(u) = sup
x∈Rd

d∑
k=1

u(k)x(k) − f(x)

= sup
x∈Rd

d∑
k=1

(
u(k) − a(k)

)
x(k) − c1 −

(
d∑

k=1

b(k)x(k) + c2

)
+

= −c1 + sup
x∈Rd

(
min

{
d∑

k=1

(
u(k) − a(k)

)
x(k),

d∑
k=1

(
u(k) −

(
a(k) + b(k)

))
x(k) − c2

})

= −c1 −
u(d) − a(d)

b(d)
c2

+ sup
x∈Rd

(
min

{
d∑

k=1

(
u(k) − a(k)

)
x(k) +

u(d) − a(d)

b(d)
c2,

d∑
k=1

(
u(k) −

(
a(k) + b(k)

))
x(k) − c2 +

u(d) − a(d)

b(d)
c2

})

= −c1 −
u(d) − a(d)

b(d)
c2

+ sup
x∈Rd

(
min

{
d−1∑
k=1

(
u(k) − a(k)

)
x(k) +

(
u(d) − a(d)

)(
x(d) +

c2

b(d)

)
,

d−1∑
k=1

(
u(k) −

(
a(k) + b(k)

))
x(k) +

(
u(d) −

(
a(d) + b(d)

))(
x(d) +

c2

b(d)

)})
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=

{
−c1 − u(d)−a(d)

b(d)
c2, u ∈ conv {a, a+ b}

+∞, else,

where conv denotes the convex hull. Hence, the effective domain of f# is given by

Df# = conv {a, a+ b} .

A.3 Conditional expectations for basis functions in Section 1.7.2.1

In this appendix, we provide the details for the computation of the conditional expectations involv-
ing the payoff function in the numerical example of Section 1.7.2.1.

To this end, let 0 = t0 < t1 < . . . < tJ = T be an equidistant partition of the interval [0, T ]
with increments ∆. Furthermore, let W = (W (1), . . . ,W (d)) be a d-dimensional Brownian motion
and denote by Fj the σ-algebra generated by W up to tj . We denote by X = (X(1), . . . , X(d))
d independent identically distributed geometric Brownian motions, whose dynamics on the grid
{t0, . . . , tJ} are given by

X
(k)
j = x0 exp

{(
RL − 1

2
σ2

)
tj + σW

(k)
tj

}
, k = 1, . . . , d,

with drift RL ≥ 0 and volatility σ > 0. Here, we again use the shorthand notation X
(k)
j := X

(k)
tj

.
Moreover, we define the process (Bj)j=1,...,J by

Bj =

(
1,

∆Wj

∆

)>
, j = 1, . . . , J.

In the following, we compute the conditional expectations

Ej [fl(Xj , Bj+1)] and Ej

[
∆Wj+1

∆
fl(Xj , Bj+1)

]
, (A.1)

where

fl(Xj , Bj+1) =

√
T − tj
T − tj+1

∫
R
h̄
(
X

(l)
j e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2
−

(
√
T−tjz−∆W

(l)
j+1

)2

2(T−tj+1)

×
∏

l′∈{1,...,d}\{l}

N

√ T − tj
T − tj+1

z +
ln(X

(l)
j )− ln(X

(l′)
j )

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1


× 1√

2π
e−

1
2
z2
dz. (A.2)

Here, h̄ : R → R is a function which is of polynomial growth and N denotes the cumulative
distribution function of the standard normal distribution.

In order to simplify the computation of (A.1), we first prove the following lemma.

Lemma A.3.1. Let γ ∈ R and let U be standard normally distributed random variable. Further-
more, denote by N the cumulative distribution function of a standard normal distribution. Then,
it holds:
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(i) E

[
exp

{
−1

2

(
γ −

√
∆

T−tj+1
U
)2
}]

=
√

T−tj+1

T−tj exp
{
−1

2
T−tj+1

T−tj γ
2
}

.

(ii) E
[
N
(
γ −

√
∆

T−tj+1
U
)]

= N
(√

T−tj+1

T−tj γ
)

.

Proof. We first show (i). By straightforward calculations, we obtain that:

E

exp

−1

2

(
γ −

√
∆

T − tj+1
U

)2



=

∫
R

1√
2π
e−

1
2
u2

exp

−1

2

(
γ −

√
∆

T − tj+1
u

)2
 du

=

∫
R

1√
2π

exp

{
−1

2

(
γ2 − 2γ

√
∆

T − tj+1
u+

(
∆

T − tj+1
+ 1

)
u2

)}
du

=

∫
R

1√
2π

exp

{
−1

2

(
γ2 − 2γ

√
∆

T − tj+1
u+

T − tj
T − tj+1

u2

)}
du

=

∫
R

1√
2π

exp

{
−1

2

(
γ2 − 2γ

√
∆

T − tj

√
T − tj
T − tj+1

u+
T − tj
T − tj+1

u2

)}
du

=

∫
R

1√
2π

exp

−1

2

(√
∆

T − tj
γ −

√
T − tj
T − tj+1

u

)2

− 1

2

(
1− ∆

T − tj

)
γ2

 du

=

∫
R

1√
2π

exp

−1

2

T − tj
T − tj+1

(√
∆(T − tj+1)

(T − tj)2
γ − u

)2
 exp

{
−1

2

T − tj+1

T − tj
γ2

}
du

=

√
T − tj+1

T − tj
exp

{
−1

2

T − tj+1

T − tj
γ2

}

·
∫
R

1√
2π

T−tj+1

T−tj

exp

−1

2

T − tj
T − tj+1

(√
∆(T − tj+1)

(T − tj)2
γ − u

)2
 du

=

√
T − tj+1

T − tj
exp

{
−1

2

T − tj+1

T − tj
γ2

}
.

For the second claim, we first note that

E

[
N

(
γ −

√
∆

T − tj+1
U

)]

=

∫
R

(∫ γ−
√

∆
T−tj+1

u

−∞

1√
2π
e−

1
2
v2
dv

)
· 1√

2π
e−

1
2
u2
du

=

∫
R

∫ γ

−∞

1√
2π

exp

−1

2

(
y −

√
∆

T − tj+1
u

)2
 dy

 · 1√
2π
e−

1
2
u2
du
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=

∫ γ

−∞

1√
2π

∫
R

1√
2π

exp

−1

2

(
y −

√
∆

T − tj+1
u

)2

− 1

2
u2

 du

 dy,

due to the substitution v = y −
√

∆
T−tj+1

u and Fubini’s theorem. By (i) and the substitution

z =
√

T−tj+1

T−tj y, we obtain

E

[
N

(
γ −

√
∆

T − tj+1
U

)]
=

∫ γ

−∞

1√
2π

√
T − tj+1

T − tj
exp

{
−1

2

T − tj+1

T − tj
y2

}
dy,

=

∫ √
T−tj+1
T−tj

γ

−∞

1√
2π

exp

{
−1

2
z2

}
dz,

= N

(√
T − tj+1

T − tj
γ

)
.

With this lemma at hand, we now turn to the calculation of the conditional expectations in (A.1).
First note that by Fubini’s theorem and the independence of the components of the Brownian
motion W

E [fl(Xj , Bj+1)|Xj = x]

= E [fl(x,Bj+1)]

= E

√ T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2
−

(
√
T−tjz−∆W

(l)
j+1

)2

2(T−tj+1) · 1√
2π
e−

1
2
z2

×
∏

l′∈{1,...,d}\{l}

N

√ T − tj
T − tj+1

z +
ln(X

(l)
j )− ln(X

(l′)
j )

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz


=

√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2 E

e− (
√
T−tjz−∆W

(l)
j+1

)2

2(T−tj+1)


×

∏
l′∈{1,...,d}\{l}

E

N
√ T − tj

T − tj+1
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 · 1√
2π
e−

1
2
z2
dz

=

√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×E

exp

−1

2

(√
T − tj
T − tj+1

z −
∆W

(l)
j+1

T − tj+1

)2


×
∏

l′∈{1,...,d}\{l}

E

N
√ T − tj

T − tj+1
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 · 1√
2π
e−

1
2
z2
dz

for every x ∈ Rd. Applying Lemma A.3.1, we end up with
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E [fl(Xj , Bj+1)|Xj = x]

=

√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×

√T − tj+1

T − tj
exp

−1

2

T − tj+1

T − tj

(√
T − tj
T − tj+1

z

)2



×
∏

l′∈{1,...,d}\{l}

N

(√
T − tj+1

T − tj

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(l′))

σ
√
T − tj+1

))
· 1√

2π
e−

1
2
z2
dz

=

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

) ∏
l′∈{1,...,d}\{l}

N

(
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj

)
· 1√

2π
e−

1
2
z2
dz.

Finally, we compute Ej [
∆W

(k)
j+1

∆ fl(Xj , Bj+1)]. To do this, we distinguish two different cases, namely
k 6= l and k = l and apply the identity

Ej

[
∆W

(k)
j+1

∆
fl(Xj , Bj+1)

]
=

d

dh
Ej [fl(Xj , Bj+1 + hed+1+k)]

∣∣∣∣
h=0

, (A.3)

where en denotes the n-th canonical vector in R2d+1. Note that (A.3) follows by a similar compu-
tation than the one in Appendix A.1.

We first consider the case k 6= l. Then, we get by (A.3) and the same arguments as above, that

E

[
∆W

(k)
j+1

∆
fl(Xj , Bj+1)

∣∣∣∣∣Xj = x

]

=
d

dh
E [fl(Xj , Bj+1 + hed+1+k)|Xj = x]

∣∣∣∣
h=0

=
d

dh
E [fl(x,Bj+1 + hed+1+k)]

∣∣∣∣
h=0

=
d

dh
E

√ T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2
−

(
√
T−tjz−∆W

(l)
j+1

)2

2(T−tj+1)

× 1√
2π
e−

1
2
z2 · N

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(k))

σ
√
T − tj+1

−
(∆W

(k)
j+1 + h)√
T − tj+1

)

×
∏

l′∈{1,...,d}\{l,k}

N

√ T − tj
T − tj+1

z +
ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz

∣∣∣∣∣∣
h=0

=
d

dh

(√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2 E

e− (
√
T−tjz−∆W

(l)
j+1

)2

2(T−tj+1)


× 1√

2π
e−

1
2
z2 · E

[
N

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(k))

σ
√
T − tj+1

−
(∆W

(k)
j+1 + h)√
T − tj+1

)]
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×
∏

l′∈{1,...,d}\{l,k}

E

N
√ T − tj

T − tj+1
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz)
∣∣∣∣∣∣
h=0

=
d

dh

(√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×E

exp

−1

2

(√
T − tj
T − tj+1

z −
∆W

(l)
j+1

T − tj+1

)2


× 1√
2π
e−

1
2
z2 · E

[
N

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(k))

σ
√
T − tj+1

−
(∆W

(k)
j+1 + h)√
T − tj+1

)]

×
∏

l′∈{1,...,d}\{l,k}

E

N
√ T − tj

T − tj+1
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz)
∣∣∣∣∣∣
h=0

.

From Lemma A.3.1 we conclude, as before, that

E

[
∆W

(k)
j+1

∆
fl(Xj , Bj+1)

∣∣∣∣∣Xj = x

]

=
d

dh

(√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×

√T − tj+1

T − tj
exp

−1

2

T − tj+1

T − tj

(√
T − tj
T − tj+1

z

)2



×N

(√
T − tj+1

T − tj

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(k))

σ
√
T − tj+1

− h√
T − tj+1

))

×
∏

l′∈{1,...,d}\{l,k}

N

(√
T − tj+1

T − tj

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(l′))

σ
√
T − tj+1

))
· 1√

2π
e−

1
2
z2
dz

)∣∣∣∣∣∣
h=0

=
d

dh

(∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
N

(
z +

ln(x(l))− ln(x(k))

σ
√
T − tj

− h√
T − tj

)

×
∏

l′∈{1,...,d}\{l,k}

N

(
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj

)
· 1√

2π
e−

1
2
z2
dz

)∣∣∣∣∣∣
h=0

= − 1√
T − tj

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

) 1√
2π

exp

−1

2

(
z +

ln(x(l))− ln(x(k))

σ
√
T − tj

)2


×
∏

l′∈{1,...,d}\{l,k}

N

(
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj

)
· 1√

2π
e−

1
2
z2
dz.

For k = l, we follow the same argumentation and end up with

E

[
∆W

(l)
j+1

∆
fl(Xj , Bj+1)

∣∣∣∣∣Xj = x

]
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=
d

dh
E [fl(Xj , Bj+1 + hed+1+l)|Xj = x]

∣∣∣∣
h=0

=
d

dh
E

√ T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2
−

(
√
T−tjz−(∆W

(l)
j+1

+h))2

2(T−tj+1) · 1√
2π
e−

1
2
z2

×
∏

l′∈{1,...,d}\{l}

N

√ T − tj
T − tj+1

z +
ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz

∣∣∣∣∣∣
h=0

=
d

dh

(√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×E

e− (
√
T−tjz−(∆W

(l)
j+1

+h))2

2(T−tj+1)

 · 1√
2π
e−

1
2
z2

×
∏

l′∈{1,...,d}\{l}

E

N
√ T − tj

T − tj+1
z +

ln(x(l))− ln(x(l′))

σ
√
T − tj+1

−
∆W

(l′)
j+1√

T − tj+1

 dz)
∣∣∣∣∣∣
h=0

=
d

dh

(√
T − tj
T − tj+1

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

×

√T − tj+1

T − tj
exp

−1

2

T − tj+1

T − tj

(√
T − tj
T − tj+1

z − h

T − tj+1

)2



×
∏

l′∈{1,...,d}\{l}

N

(√
T − tj+1

T − tj

(√
T − tj
T − tj+1

z +
ln(x(l))− ln(x(l′))

σ(
√
T − tj+1)

))
· 1√

2π
e−

1
2
z2
dz

)∣∣∣∣∣∣
h=0

=
d

dh

(∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

)
e
z2

2

× exp

−1

2

T − tj+1

T − tj

(√
T − tj
T − tj+1

z − h

T − tj+1

)2


×
∏

l′∈{1,...,d}\{l}

N

(
z +

ln(x(l))− ln(x(l′))

σ(
√
T − tj)

)
· 1√

2π
e−

1
2
z2
dz

)∣∣∣∣∣∣
h=0

=

∫
R
h̄
(
x(l)e(R

L− 1
2
σ2)(T−tj)+σz

√
T−tj

) z√
T − tj

∏
l′∈{1,...,d}\{l}

N

(
z +

ln(x(l))− ln(x(l′))

σ(
√
T − tj)

)

× 1√
2π
e−

1
2
z2
dz

A.4 Closed-form representations for conditional expectations

In the numerical examples presented in this thesis, we require the computation of conditional
expectations of basis functions which depend on geometric Brownian motions. In this appendix,
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we provide a straightforward generalization of Example 3.1 in Bender and Steiner (2012) and show
that these conditional expectations can essentially be expressed by the first- and second-order
derivatives of the basis functions.

Let 0 = t0 < t1 < . . . < tJ = T be a partition of [0, T ] and define ∆j+1 := tj+1 − tj for
j = 0, . . . , J − 1. Further, let W be a d-dimensional Brownian motion and define the d-dimensional
process X on the grid {t0, . . . tJ} by

X
(n)
j = x

(n)
0 exp

{(
µ− 1

2

d∑
l=1

σ2
n,l

)
tj +

d∑
l=1

σn,lW
(l)
tj

}
, n = 1, . . . , d,

where x
(1)
0 , . . . , x

(d)
0 , µ ∈ R+ and σ is an invertible d × d-matrix with entries in R. Then, we show

that

E

[
∆W

(k)
j+1

∆j+1
h
(
X

(n)
J

)∣∣∣∣∣Xj = x

]
= x(n)σn,k

∂

∂x(n)
E
[
h
(
X

(n)
J

)∣∣∣Xj = x
]

and

E

(∆W
(k)
j+1

∆j+1

)2

− σn,k
∆W

(k)
j+1

∆j+1
− 1

∆j+1

h
(
X

(n)
J

)∣∣∣∣∣∣Xj = x


=
(
x(n)

)2
σ2
n,k

∂2

∂(x(n))2
E
[
h
(
X

(n)
J

)∣∣∣Xj = x
]

holds for all n, k = 1, . . . , d and all functions h : R→ R satisfying appropriate growth and differen-
tiability conditions.

In order to simplify the following computations, we introduce some further notation. We denote
by u(−l) the Rd−1-dimensional vector (u(1), . . . , ul−1, ul+1, . . . , u(d)). Additionally, we define the
function h̃n : R→ R for every n = 1, . . . , d by

h̃n(x) = h

(
x exp

{(
µ− 1

2

d∑
l=1

σ2
n,l

)
(tJ − tj+1) +

d∑
l=1

σn,l

(
W̃

(l)
tJ
− W̃ (l)

tj+1

)})
.

Moreover, the function f : Rd → R is given by

f(u) = exp

{(
µ− 1

2

d∑
l=1

σ2
n,l

)
∆j+1 +

√
∆j+1

d∑
l=1

σn,lu
(l)

}
.

Then, a straightforward computation, involving Fubini’s Theorem and integration by parts, yields

x(n)σn,k
∂

∂x(n)
E
[
h
(
X

(n)
J

)∣∣∣Xj = x
]

= x(n)σn,k
∂

∂x(n)
E
[
h̃n

(
X

(n)
j+1

)∣∣∣Xj = x
]

= x(n)σn,k
∂

∂x(n)

∫
Rd
h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

= x(n)σn,k

∫
Rd

∂

∂x(n)
h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))
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= x(n)σn,k

∫
Rd
f(u)h̃′n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

=
1√

∆j+1

∫
Rd

∂

∂u(k)
h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

=
1√

∆j+1

∫
Rd−1

d∏
l=1,l 6=k

(
1√
2π
e−

1
2

(u(l))2

)

×

(∫
R

(
∂

∂u(k)
h̃n

(
x(n)f(u)

))
· 1√

2π
e−

1
2

(u(k))2
du(k)

)
du(−k)

=
1√

∆j+1

∫
Rd−1

d∏
l=1,l 6=k

(
1√
2π
e−

1
2

(u(l))2

)(∫
R
h̃n

(
x(n)f(u)

)
· u

(k)

√
2π
e−

1
2

(u(k))2
du(k)

)
du(−k)

=

∫
Rd

u(k)√
∆j+1

h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

= E

[
∆W

(k)
j+1

∆j+1
h̃n

(
X

(n)
j+1

)∣∣∣∣∣X(n)
j = x(n)

]

= E

[
∆W

(k)
j+1

∆j+1
h
(
X

(n)
J

)∣∣∣∣∣X(n)
j = x(n)

]
.

For the proof of the second claim, we first observe that(
x(n)

)2
σ2
n,k

∂2

∂(x(n))2
E
[
h
(
X

(n)
J

)∣∣∣Xj = x
]

=
(
x(n)

)2
σ2
n,k

∂2

∂(x(n))2
E
[
h̃n

(
X

(n)
j+1

)∣∣∣Xj = x
]

=
(
x(n)

)2
σ2
n,k

∂2

∂(x(n))2

∫
Rd
h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

=
(
x(n)

)2
σ2
n,k

∫
Rd

∂2

∂(x(n))2
h̃n

(
x(n)f(u)

) d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

=
(
x(n)

)2
σ2
n,k

∫
Rd
h̃′′n

(
x(n)f(u)

)
f(u)2

d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d)).

From the definition of h̃n and f , we obtain that(
x(n)

)2
σ2
n,k∆j+1f(u)2h̃′′n

(
x(n)f(u)

)
=

∂2

∂(u(k))2
h̃n

(
x(n)f(u)

)
− σn,k

√
∆j+1

∂

∂(u(k))
h̃n

(
x(n)f(u)

)
.

By exploiting this identity, Fubini’s theorem, and integration by parts, we conclude that(
x(n)

)2
σ2
n,k

∂2

∂(x(n))2
E
[
h
(
X

(n)
J

)∣∣∣Xj = x
]
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=
1

∆j+1

∫
Rd

(
∂2

∂(u(k))2
h̃n

(
x(n)f(u)

)
− σn,k

√
∆j+1

∂

∂(u(k))
h̃n

(
x(n)f(u)

))
×

d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

=
1

∆j+1

∫
Rd−1

d∏
l=1,l 6=k

(
1√
2π
e−

1
2

(u(l))2

)(∫
R

(
∂2

∂(u(k))2
h̃n

(
x(n)f(u)

)
−σn,k

√
∆j+1

∂

∂(u(k))
h̃n

(
x(n)f(u)

)) 1√
2π
e−

1
2

(u(k))2
du(k)

)
du(−k)

=
1

∆j+1

∫
Rd−1

d∏
l=1,l 6=k

(
1√
2π
e−

1
2

(u(l))2

)

×
(∫

R

((
u(k)

)2
− σn,k

√
∆j+1u

(k) − 1

)
h̃n

(
x(n)f(u)

) 1√
2π
e−

1
2

(u(k))2
du(k)

)
du(−k)

=

∫
Rd

((
u(k)

)2
∆j+1

− σn,k
u(k)√
∆j+1

− 1

∆j+1

)
h̃n

(
x(n)f(u)

)
×

d∏
l=1

(
1√
2π
e−

1
2

(u(l))2

)
d(u(1), . . . , u(d))

= E

(∆W
(k)
j+1

∆j+1

)2

− σn,k
∆W

(k)
j+1

∆j+1
− 1

∆j+1

 h̃n

(
X

(n)
j+1

)∣∣∣∣∣∣Xj = x


= E

(∆W
(k)
j+1

∆j+1

)2

− σn,k
∆W

(k)
j+1

∆j+1
− 1

∆j+1

h
(
X

(n)
J

)∣∣∣∣∣∣Xj = x

 .
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Appendix B

Appendix to Chapter 2

B.1 Conditional expectations for basis functions in Section 2.5

In this appendix, we derive the conditional expectations of the basis functions used in Section
2.5. To this end, recall that the stochastic processes (xt, yt, γt, p̃t)t∈[0,T ] are given by the stochastic
differential equations

dxt = −κxxtdt+ σxdW
x
t ,

dyt = −κyytdt+ σydW
y
t

dγt = κγ(µγ − γt)dt+ σγ
√
γtdW

γ
t ,

dp̃t = κp(µp − p̃t)dt+ σpdW
p
t

for real constants κx, κy, σx, σy, κγ , µγ , σγ , κp, µp, σp. Here, W x, W y and W γ are Brownian
motions with instantaneous correlations ρxy, ρxγ and ρyγ . Moreover, we have that W p

t = ργpW
γ
t +√

1− ρ2
γpWt where the Brownian motion W is independent of (W x,W y,W γ). Further, let 0 =

t0 < t1 < . . . < tJ = T be an equidistant partition with time increments ∆ and denote by
T = {T1, . . . , TK} ⊆ {t0, . . . , tJ} the set of tenor dates. The tenor dates all have the same distance
which is denoted by δ. For the processes γ and p̃, we apply the following discretization scheme

γ̃j = γ̃j−1 − κγ∆((γ̃j−1)+ − µγ) + σγ

√
(γ̃j−1)+∆W γ

j ,

p̃j = p̃j−1e
−κp∆ + µp(1− e−κp∆) + σp

√
1− e−2κp∆

2κp∆
∆W p

j ,

where we use the shorthand notation Uj := Utj for U ∈ {γ̃, p̃}. Then, we observe by a straightfor-
ward computation that the conditional expectation Ej−1[γ̃j ] is given by

Ej−1[γ̃j ] = Ej−1

[
γ̃j−1 − κγ∆((γ̃j−1)+ − µγ) + σγ

√
(γ̃j−1)+∆W γ

j

]
= γ̃j−1 − κγ∆((γ̃j−1)+ − µγ) + σγ

√
(γ̃j−1)+Ej−1

[
∆W γ

j

]
= γ̃j−1 − κγ∆((γ̃j−1)+ − µγ)
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for every j = 1, . . . , J . In order to compute Ej−1[γ̃j p̃j ], we exploit the definition of W p and obtain
that

Ej−1[γ̃j p̃j ] = Ej−1

[(
γ̃j−1 − κγ∆((γ̃j−1)+ − µγ) + σγ

√
(γ̃j−1)+∆W γ

j

)
(
p̃j−1e

−κp∆ + µp(1− e−κp∆) + σp

√
1− e−2κp∆

2κp∆
∆W p

j

)]
= (γ̃j−1 − κγ∆((γ̃j−1)+ − µγ))

(
p̃j−1e

−κp∆ + µp(1− e−κp∆)
)

+ (γ̃j−1 − κγ∆((γ̃j−1)+ − µγ))σp

√
1− e−2κp∆

2κp∆
Ej−1

[
∆W p

j

]
+
(
p̃j−1e

−κp∆ + µp(1− e−κp∆)
)
σγ

√
(γ̃j−1)+Ej−1

[
∆W γ

j

]
+σγ

√
(γ̃j−1)+σp

√
1− e−2κp∆

2κp∆
Ej−1

[
∆W γ

j ∆W p
j

]
= (γ̃j−1 − κγ∆((γ̃j−1)+ − µγ))

(
p̃j−1e

−κp∆ + µp(1− e−κp∆)
)

+σγσpργp

√
(γ̃j−1)+∆

√
1− e−2κp∆

2κp
.

It thus remains to compute the expected value of the clean swap price, which is given by

Stj = P (tj , Tτ(j))CTτ(j)
+N ·

K∑
i=τ(j)+1

(P (tj , Ti−1)− (1 +Rδ)P (tj , Ti)) ,

where τ(j) denotes the index of the first tenor date weakly after tj and P (t, s) is for t, s ∈ [0, T ],
t < s, given by

P (t, s) = exp

{
−r0(s− t)− 1− e−κx(s−t)

κx
xt −

1− e−κy(s−t)

κy
yt +

1

2
V (t, s)

}
.

Here, the deterministic function V is defined by

V (t, s) =
σ2
x

κ2
x

(
s− t+

2

κx
e−κx(s−t) − 1

2κx
e−2κx(s−t) − 3

2κx

)
+
σ2
y

κ2
y

(
s− t+

2

κy
e−κy(s−t) − 1

2κy
e−2κy(s−t) − 3

2κy

)
+2ρxy

σxσy
κxκy

(
s− t+

e−κx(s−t) − 1

κx
+
e−κy(s−t) − 1

κy
− e−(κx+κy)(s−t) − 1

κx + κy

)
,

see Chapter 4.2 in Brigo and Mercurio (2006). Hence, in order to derive a closed form expression
for Ej−1[Stj ] it is sufficient to compute Ej−1[P (tj , Ti)] for tenor dates Ti ≥ tj , since

Ej−1[Stj ] = Ej−1

[
P (tj , Tτ(j))

]
CTτ(j)

+N ·
K∑

i=τ(j)+1

(Ej−1 [P (tj , Ti−1)]− (1 +Rδ)Ej−1 [P (tj , Ti)])
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by the FTτ(j)−1
-measurability of CTτ(j)

. By definition of P (t, s), the computation of this conditional
expectation boils down to the computation of

E[exp{αxs + βys}|Ft]

for any t, s ∈ [0, T ] with t < s and arbitrary α, β ∈ R.

Hence, let t, s ∈ [0, T ], t < s, and α, β ∈ R be fixed from now on. Then, it is well-known, that,
given Ft, the random variable αxs+βys is normally distributed, see e.g. Section 3.3 in Glasserman
(2004). Applying the martingale property of the stochastic integrals, we observe that the mean is
given by

E[αxs + βys|Ft] = E

[
α

(
xte
−κx(s−t) + σx

∫ s

t
e−κx(s−u) dW x

u

)∣∣∣∣Ft]
+E

[
β

(
yte
−κy(s−t) + σy

∫ s

t
e−κy(s−u) dW y

u

)∣∣∣∣Ft]
= αxte

−κx(s−t) + σxαE

[∫ s

t
e−κx(s−u) dW x

u

∣∣∣∣Ft]
+βyte

−κy(s−t) + σyβE

[∫ s

t
e−κy(s−u) dW y

u

∣∣∣∣Ft]
= αxte

−κx(s−t) + βyte
−κy(s−t).

For the variance, a straightforward application of the Itô-isometry shows that

Var(αxs + βys|Ft)

= α2E
[

(xs − E[xs|Ft])2
∣∣∣Ft]+ β2E

[
(ys − E[ys|Ft])2

∣∣∣Ft]
+2αβE[(xs − E[xs|Ft])(ys − E[ys|Ft])|Ft]

= α2E

[(
xte
−κx(s−t) + σx

∫ s

t
e−κx(s−u) dW x

u − xte−κx(s−t)
)2
∣∣∣∣∣Ft
]

+β2E

[(
yte
−κy(s−t) + σy

∫ s

t
e−κy(s−u) dW y

u − yte−κy(s−t)
)2
∣∣∣∣∣Ft
]

+2αβE

[(
xte
−κx(s−t) + σx

∫ s

t
e−κx(s−u) dW x

u − xte−κx(s−t)
)

(
yte
−κy(s−t) + σy

∫ s

t
e−κy(s−u) dW y

u − yte−κy(s−t)
)∣∣∣∣Ft]

= α2E

[(
σx

∫ s

t
e−κx(s−u) dW x

u

)2
∣∣∣∣∣Ft
]

+ β2E

[(
σy

∫ s

t
e−κy(s−u) dW y

u

)2
∣∣∣∣∣Ft
]

+2αβE

[(
σx

∫ s

t
e−κx(s−u) dW x

u

)(
σy

∫ s

t
e−κy(s−u) dW y

u

)∣∣∣∣Ft]
= α2σ2

x

∫ s

t
e−2κx(s−u) du+ β2σ2

y

∫ s

t
e−2κy(s−u) du+ 2αβσxσyρxy

∫ s

t
e−(κx+κy)(s−u) du

=
α2σ2

x

2κx

(
1− e−2κx(s−t)

)
+
β2σ2

y

2κy

(
1− e−2κy(s−t)

)
+

2αβσxσyρxy
κx + κy

(
1− e−(κx+κy)(s−t)

)
.

Hence, we conclude that

E [ exp {αxs + βys}| Ft] = exp

{
mxy(t, s) +

1

2
σ2
xy(t, s)

}
,
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where mxy(t, s) := E[αxs + βys|Ft] and σxy(t, s) := Var(αxs + βys|Ft). From this identity, we
finally obtain that

Ej−1[P (tj , Ti)] = exp

{
−r0(Ti − tj)−

(
mxy(tj−1, tj) +

1

2
σ2
xy(tj−1, tj)

)
+

1

2
V (tj , Ti)

}
,

for every tj ∈ {t0, . . . , tJ−1} and Ti ∈ T with Ti ≥ tj , where mxy(tj−1, tj) and σ2
xy(tj−1, tj) are

given as above with

α =
1− e−κx(tj−tj−1)

κx
and β =

1− e−κy(tj−tj−1)

κy
.
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Appendix C

Appendix to Chapter 3

C.1 Estimation of the truncation error

In the following, we discuss the truncation error which arises in Section 3.4.3 when computing the
conditional expectations of the basis functions. More precisely, we show that this error is negligible
if the functions satisfy certain growth conditions and the mesh of a given partition is small enough.

To this end, let W be a d′-dimensional Brownian motion and h : Rd×Rd′ → R be a function which
grows at most exponentially in its second argument. Moreover, let 0 = t0 < t1 < . . . < tJ = T be
a partition of [0, T ] and denote by ∆j+1 the distance between the discretization points tj and tj+1.
Further, we denote by ∆Wj+1 := Wtj+1 −Wtj the increment of the Brownian motion between the
time points tj and tj+1 and by [∆Wj+1]c its componentwise truncation at ±c for c ≥ 0. Then, we
show that∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

≤
(

18

πc2

) 1
4

∆
− 3

4
j+1d

′ · e−
c2

4∆j+1E
[
h(x,∆Wj+1)2

]
(C.1)

for every x ∈ Rd, where ‖ · ‖ denotes the Euclidean norm on Rd′ . To see this, we require the
following tail estimate for standard normally distributed random variables U :

P ({U ≥ c}) ≤ 1

c
√

2π
e−

1
2
c2 . (C.2)

This follows simply by exploiting that u
c ≥ 1 for all u ∈ [c,∞):

P ({U ≥ c}) =

∫ ∞
c

1√
2π
e−

1
2
u2
du ≤

∫ ∞
c

u

c

1√
2π
e−

1
2
u2
du =

1

c
√

2π
e−

1
2
c2 .

For the proof of (C.1), we first note that by Jensen’s inequality (applied to the convex function
x 7→ ‖x‖2) as well as Hölder’s inequality∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

=
1

∆2
j+1

∥∥E [(∆Wj+1 − [∆Wj+1]c
)
h(x,∆Wj+1)

]∥∥2
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≤ 1

∆2
j+1

E
[∥∥(∆Wj+1 − [∆Wj+1]c

)
h(x,∆Wj+1)

∥∥2
]

≤ 1

∆2
j+1

(
E
[∥∥∆Wj+1 − [∆Wj+1]c

∥∥2
] 1

2
E
[
h(x,∆Wj+1)2

] 1
2

)2

holds. In the next step, the definition of the Euclidean norm on Rd′ and the fact that the components
of W are identically distributed yield∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

≤ 1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
E
[∥∥∆Wj+1 − [∆Wj+1]c

∥∥2
]

=
1

∆2
j+1

E
[
h(x,∆Wj+1)2

] d′∑
n=1

E

[(
∆W

(n)
j+1 −

[
∆W

(n)
j+1

]
c

)2
]

=
1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ · E

[(
∆W

(1)
j+1 −

[
∆W

(1)
j+1

]
c

)2
]
.

Since 1− 1A = 1AC for every A ∈ F , we observe by Hölder’s inequality that∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

≤ 1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ · E

[(
∆W

(1)
j+1 −∆W

(1)
j+11{∆W (1)

j+1∈[−c,c]}

)2
]

=
1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ · E

[(
∆W

(1)
j+11{∆W (1)

j+1 /∈[−c,c]}

)2
]

=
1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ ·

E [(∆W
(1)
j+11{∆W (1)

j+1 /∈[−c,c]}

)2
] 1

2

2

≤ 1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ ·

(
E

[(
∆W

(1)
j+1

)4
] 1

4

)2
E [(1{∆W (1)

j+1 /∈[−c,c]}

)4
] 1

4

2

=
1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ · E

[(
∆W

(1)
j+1

)4
] 1

2

E

[
1{∆W (1)

j+1 /∈[−c,c]}

] 1
2

.

Exploiting the symmetry of the density function of the normal distribution, we conclude that∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

≤ 1

∆2
j+1

E
[
h(x,∆Wj+1)2

]
d′ ·
√

3∆2
j+1P

({
∆W

(1)
j+1 /∈ [−c, c]

}) 1
2

=

√
3

∆j+1
E
[
h(x,∆Wj+1)2

]
d′ ·
(
P
({

∆W
(1)
j+1 < −c

})
+ P

({
∆W

(1)
j+1 > c

})) 1
2

=

√
3

∆j+1
E
[
h(x,∆Wj+1)2

]
d′ ·
(

2P
({

∆W
(1)
j+1 > c

})) 1
2
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=

√
6

∆j+1
E
[
h(x,∆Wj+1)2

]
d′ · P

({
∆W

(1)
j+1 > c

}) 1
2
.

Finally, the assertion (C.1) follows from (C.2) and standard calculations:∥∥∥∥E [∆Wj+1

∆j+1
h(x,∆Wj+1)

]
− E

[
[∆Wj+1]c

∆j+1
h(x,∆Wj+1)

]∥∥∥∥2

≤
√

6

∆j+1
E
[
h(x,∆Wj+1)2

]
d′ ·

 1
c√

∆j+1
·
√

2π
e
− 1

2
·
(

c√
∆j+1

)2
 1

2

=

√
6

∆j+1
E
[
h(x,∆Wj+1)2

]
d′ ·

(√
∆j+1√
2πc2

e
− c2

2∆j+1

) 1
2

=

√
6

∆j+1
·
(

∆j+1

2πc2

) 1
4

E
[
h(x,∆Wj+1)2

]
d′ · e−

c2

4∆j+1

=

(
18

πc2

) 1
4

∆
− 3

4
j+1d

′ · e−
c2

4∆j+1E
[
h(x,∆Wj+1)2

]
.
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I. Kharroubi, N. Langrené, and H. Pham. A numerical algorithm for fully nonlinear HJB equations:
an approach by control randomization. Monte Carlo Methods and Applications, 20(2):145–165,
2014.

A. Kolodko and J. Schoenmakers. Iterative construction of the optimal Bermudan stopping time.
Finance and Stochastics, 10(1):27–49, 2006.

H. Kraft and F. T. Seifried. Stochastic differential utility as the continuous-time limit of recursive
utility. Journal of Economic Theory, 151:528–550, 2014.

149



J.-P. Laurent, P. Amzelek, and J. Bonnaud. An overview of the valuation of collateralized derivative
contracts. Review of Derivatives Research, 17(3):261–286, 2014.

J.-P. Lemor, E. Gobet, and X. Warin. Rate of convergence of an empirical regression method for
solving generalized backward stochastic differential equations. Bernoulli, 12(5):889–916, 2006.

F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: A simple least-squares
approach. The Review of Financial Studies, 14(1):113–147, 2001.

R. Lord, R. Koekkoek, and D. van Dijk. A comparison of biased simulation schemes for stochastic
volatility models. Quantitative Finance, 10(2):177–194, 2010.

T. J. Lyons. Uncertain volatility and the risk-free synthesis of derivatives. Applied Mathematical
Finance, 2(2):117–133, 1995.

J. Neveu. Discrete-parameter martingales. North-Holland Publishing Co.; American Elsevier Pub-
lishing Co., revised edition, 1975.

T. Nie and M. Rutkowski. A BSDE approach to fair bilateral pricing under endogenous collate-
ralization. Finance and Stochastics, 20(4):855–900, 2016.
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