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Zusammenfassung

Das Web hat sich zu einem komplexen Netz aus hochinteraktiven Seiten und
Anwendungen entwickelt, welches wir täglich zu kommerziellen und sozialen
Zwecken einsetzen. Dementsprechend ist die Sicherheit von Webanwendungen
von höchster Relevanz. Das automatisierte Auffinden von Sicherheitslücken ist
ein anspruchsvolles, aber wichtiges Forschungsgebiet mit dem Ziel, Entwickler
zu unterstützen und das Web sicherer zu machen.

In dieser Arbeit nutzen wir statische Analysemethoden, um automatisiert
Lücken in JavaScript- und PHP-Programmen zu entdecken. JavaScript ist
clientseitig die wichtigste Sprache des Webs, während PHP auf der Serverseite
am weitesten verbreitet ist.

Im ersten Teil nutzen wir eine Reihe von Programmtransformationen und
Informationsflussanalyse, um den JavaScript Helios Wahl-Client zu untersuchen.
Helios ist ein modernes Wahlsystem, welches auf konzeptueller Ebene eingehend
analysiert wurde und dessen Implementierung als sehr sicher gilt. Wir enthüllen
zwei schwere und bis dato unentdeckte Sicherheitslücken.

Im zweiten Teil präsentieren wir ein Framework, das es Entwicklern er-
möglicht, PHP Code auf frei modellierbare Schwachstellen zu untersuchen. Zu
diesem Zweck konstruieren wir sogenannte Code-Property-Graphen und im-
portieren diese anschließend in eine Graphdatenbank. Schwachstellen können
nun als geeignete Datenbankanfragen formuliert werden. Wir zeigen, wie wir
herkömmliche Schwachstellen modellieren können und evaluieren unser Frame-
work in einer groß angelegten Studie, in der wir hunderte Sicherheitslücken
identifizieren.
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Abstract

The Web today is a complex universe of pages and applications teeming with
interactive content that we use for commercial and social purposes. Accordingly,
the security of Web applications has become a concern of utmost importance.
Devising automated methods to help developers to spot security flaws and
thereby make the Web safer is a challenging but vital area of research.

In this thesis, we leverage static analysis methods to automatically discover
vulnerabilities in programs written in JavaScript or PHP. While JavaScript is
the number one language fueling the client-side logic of virtually every Web
application, PHP is the most widespread language on the server side.

In the first part, we use a series of program transformations and information
flow analysis to examine the JavaScript Helios voting client. Helios is a state-
of-the-art voting system that has been exhaustively analyzed by the security
community on a conceptual level and whose implementation is claimed to be
highly secure. We expose two severe and so far undiscovered vulnerabilities.

In the second part, we present a framework allowing developers to analyze
PHP code for vulnerabilities that can be freely modeled. To do so, we build so-
called code property graphs for PHP and import them into a graph database.
Vulnerabilities can then be modeled as appropriate database queries. We
show how to model common vulnerabilities and evaluate our framework in a
large-scale study, spotting hundreds of vulnerabilities.
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Chapter 1

Introduction

During the last two and a half decades, the Internet has experienced a
tremendous growth and evolved at an astounding rate. With the creation

of the World Wide Web in the early nineties, it started out as an Internet of
content of sorts, a medium mostly used for publishing content such as static
websites containing bits and pieces of information. Yet in only a few years,
it evolved to an Internet of services that offered a variety of online utilities,
such as online banking, online shops, and other commercial services, as well
as productivity and collaboration tools that triggered a paradigm shift in the
way that people could communicate and work together. With the advent of
smartphones and widely available mobile broadband access, this development
experienced yet another boost and culminated in the Internet of people as we
know it today: A thriving organism where billions of people all around the
globe share their everyday lives in social media. The evolution is ongoing, with
the Internet of things being the next revolution underway.

Accordingly, the number of Internet users has increased rapidly: Today,
around 3.6 billion people have Internet access, amounting to almost half of
the world’s population [ILS 2017]. There are 1.86 billion active users on
Facebook [FB 2017]. Worldwide business to consumer sales via the Internet
reached $1.7 trillion U.S. dollars in 2015, and are estimated to reach $2.35
trillion by 2018 [HF 2017]. The number of websites has virtually exploded and
grown almost exponentially, with around 1.8 billion websites as of February
2017, where the threshold of 1 billion websites was reached for the first time
in September 2014 (see Figure 1.1).

As such, security on the Internet has become a concern of the utmost
importance in a relatively short period of time. Indeed, 56% of all web traffic
is generated by bots, impersonators, hacking tools, scrapers and spammers,
and an estimated 37,000 websites are hacked every day [HF 2017]. Yet the
Internet was not originally designed with security in mind: Protocols such
as HTTP, IP, or BGP are utterly insecure. While they have been enhanced
with cryptographic extensions, yielding protocols such as HTTPS, IPsec, and
S-BGP, not all of these extensions have yet been widely adopted (and doing
so is often challenging due to technical and economic issues). Even where
they have indeed been adopted—such as in the case of HTTPS, which is the
de facto standard for security-critical services such as online banking—attacks
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Figure 1.1: Number of Internet users and websites between 1995 and 2017.
Data compiled from Netcraft [Netcraft 2017] & Internet Live Stats [ILS 2017].

on the protocols themselves are not the only viable means for attackers to
compromise the security of applications.

Indeed, a plethora of attack vectors against web applications exists: Apart
from breaching the cryptography underlying a given application, an attacker
may target a victim’s privacy (say, observe their traffic to unearth confidential
data), use social engineering tactics (e.g., using scams or phishing emails which
are abundant on the Internet), or abuse an application’s implementation to
gain partial or even full control over it. In fact, these attack vectors are
typically more promising from an attacker’s perspective: With the exception
of cryptography which stands on a firm and thoroughly understood theoretical
background, our understanding of the foundations of these other aspects of
security remains somewhat more vague and informal.

Contributions. The present thesis is concerned with investigating the se-
curity of the implementation of web applications. Indeed, recent breaches
in cryptographic applications long deemed secure, such as the prominent
Heartbleed bug in the implementation of the OpenSSL cryptography library,
or Apple’s goto fail bug in its own SSL/TLS implementation, impressively
demonstrate the need to devise methods to aid developers in spotting vulnera-
bilities at the implementation level early on and help to validate the security
of implementations.

Over the past twenty-five years, countless technologies used in the de-
velopment of web applications have emerged (whether they were originally
developed for other purposes or not), such as HTML, CSS, Perl, Java EE, Ruby
on Rails, Python with Django, etc.; the list goes on. Two of the most prominent
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languages that have established themselves as core technologies in the devel-
opment of web applications are JavaScript and PHP: While JavaScript is the
most widely used language to implement client-side logic by a far stretch, PHP
has a similar significance for server-side code. For this reason, we will focus
on devising methods to automatically discover vulnerabilities in applications
written in either of these languages.

Static program analysis is the analysis of program code without executing
the program in question. Instead, appropriate structures are created to repre-
sent a program’s source code (or possibly its object code) and these structures
are analyzed for patterns relevant to an application at hand. Static program
analysis stands in contrast to dynamic program analysis, which executes a
program (possibly symbolically) to observe its behavior. Dynamic program
analysis is prominently used in software testing, such as for unit and integration
tests. However, measures must be taken to reach an adequate code coverage
and observe a satisfying percentage of a program’s possible behavior. Static
analysis techniques typically do not suffer from this problem and are more
efficient since they do not require running a program for each input. Yet static
analysis lacks access to runtime information and is consequently significantly
less precise than dynamic analysis. Given the highly dynamic nature of PHP
and JavaScript (which we elaborate on later), dynamic analysis may therefore
appear to be the more natural approach to analyze applications written in these
languages. However, particularly given the increasing amount and complexity
of web applications, dynamic analysis techniques to discover vulnerabilities do
not scale well, are expensive, and may miss some vulnerabilities that would
become apparent more easily with static analysis techniques.

For this reason, we leverage static analysis to automatically highlight
possible security vulnerabilities in source code in the most widespread languages
for developing web applications on the client and on the server side, namely,
JavaScript and PHP.

In the first part of the thesis, we consider JavaScript. More specifically, we
analyze the implementation of the Helios voting client [Adida 2008]. Helios is
a state-of-the-art, web-based, open-audit voting system that is continuously
being deployed for real-life elections. While it has been exhaustively analyzed
by the security community on a conceptual level, the JavaScript implementa-
tion of its client has not received the same scrutiny. Yet the original paper
specifically details various technical measures that have been taken to make
the implementation of the client highly secure. To analyze the JavaScript
code that makes up the client, we must overcome various technical challenges,
such as JavaScript’s dynamic nature, its intermingling with the HTML DOM,
or the use of highly complex third-party libraries. We use a series of code
transformations, construct appropriate program representations and perform
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an automated information flow analysis. Thereby, we expose two severe and so
far undiscovered security vulnerabilities that lead to voters’ votes being sent
over the network in plaintext, and enable attackers to control the voting client
executed in a victim’s browser.

In the second part, we turn our attention to PHP. We present an inter-
procedural analysis technique based on the recently proposed concept of code
property graphs [Yamaguchi et al. 2014]. These graphs incorporate a program’s
syntax, control flow, control dependencies and data dependencies in a single
structure. This structure lends itself well to being stored in a graph database:
Graph databases are an emerging technology that store data as graphs in-
stead of tables, as traditional relational database systems do. We present a
framework that automatically generates code property graphs for entire PHP
projects and stores them as a graph database. Then, using appropriate queries
that model vulnerability-related patterns, we are able to automatically identify
various types of vulnerabilities. In addition to being very efficient, one of the
core strengths of this approach is its high degree of flexibility: All a developer
or analyst needs to do to model other types of vulnerabilities (e.g., very specific
ones) is to write appropriate queries for the graph database. We proceed to
model the most common types of vulnerabilities that occur in PHP code as
queries to the graph database. Then, we leverage our framework and our
queries to perform the largest security-centered study of PHP applications to
date, scanning a total of 1,854 popular open-source projects comprising almost
80 million lines of code, and uncovering hundreds of vulnerabilities of various
types in the process.

These contributions, as well as related work, will be discussed in more
detail in their respective chapters.

Outline. The outline of this thesis is as follows. In Chapter 2, we review
common types of vulnerabilities in web applications which are relevant for
both JavaScript and PHP code (as well as other web development languages).
In Chapter 3, we discuss various forms of program representations that we
later leverage to perform our analysis. In Chapter 4, we report on our analysis
of the JavaScript Helios voting client. In Chapter 5, we present our framework
for automated discovery of vulnerabilities in PHP code and our large-scale
study. Finally, Chapter 6 concludes.
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Web Application Vulnerabilities

Contents
2.1 General Overview . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Vulnerabilities Threatening the Server . . . . . . . . . . 8

2.2.1 SQL Injections . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Command Injections . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Code Injections . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Arbitrary File Accesses . . . . . . . . . . . . . . . . . . . . 13

2.3 Vulnerabilities Threatening the Client . . . . . . . . . . 15

2.3.1 Cross-Site Scripting (XSS) . . . . . . . . . . . . . . . . . . 16

2.3.2 Session Fixation . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Sensitive Data Exposure . . . . . . . . . . . . . . . . . . . 20

2.4 Characteristics of Vulnerable Code . . . . . . . . . . . . 22

As we discussed in the introduction, breaches of security in web applications
have become an attractive and worthwhile target for attackers. Since we

focus on security breaches concerning the implementation of web applications
in this thesis, in this chapter we present and discuss the most common vulner-
ability classes in web application code, take a closer look at those instances
which are covered by the work in this thesis, and review mitigation techniques.
Subsequently, we identify common patterns in these vulnerabilities that enable
us to implement techniques to assist in their automated discovery.

The vulnerabilities presented in this chapter are accompanied by illustrating
examples. These examples are chosen in such a way that they are as simple
as possible for the sake of presentation, but nevertheless realistic in the sense
that these very code snippets might be used by actual developers in a given
context. All examples are written in either PHP or JavaScript, as these are
the two programming languages considered in this thesis.

We first present a general overview of the most prevalent classes of vul-
nerabilities in web applications in Section 2.1. We then look at the concrete
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instances of these classes of vulnerabilities in the following two sections, discern-
ing between attacks targeting the server (Section 2.2) and attacks targeting the
client (Section 2.3). For instance, attacks on the server may aim to corrupt the
server’s database or execute malicious code on the server. A typical example
of an attack targeting the client is one that attempts to steal a user’s creden-
tials. We discuss recurring patterns in vulnerabilities and draw conclusions
in Section 2.4.

2.1 General Overview

With the increasing complexity of web applications and the continuously
growing number of languages and libraries available to implement them comes
a plethora of vulnerabilities threatening both servers and clients. In this section,
we briefly summarize the most common types of vulnerabilities as classified
by the Open Web Application Security Project,1 a non-profit organization
with the aim of improving the security of software on the Web. Amongst
other knowledge-based documentation, they provide a ranking of the top ten
web application security flaws, representing a broad consensus of the most
critical classes of web application vulnerabilities: The most recent ranking
was published in 2013 [OWASP Top Ten 2013]. The purpose of this section is
twofold. The first is to familiarize the reader with the most common classes of
web application vulnerabilities before we move on to concrete instances and
examples of vulnerabilities in the next sections. The second is to emphasize
that the techniques presented in this thesis are not limited to the discovery
of very specific types of vulnerabilities, but indeed enable the discovery of a
broad range of severe security issues: As we will see in Chapters 4 and 5, we
were able to discover instances of the top four classes of vulnerabilities in this
ranking, as well as instances of the sixth class (the fifth class concerns security
misconfigurations of servers which are unrelated to program code). We now
briefly recapitulate these vulnerability classes, as described by OWASP. Italic
letters denote a citation from the OWASP Top Ten [OWASP Top Ten 2013]:

1. Injection. “Injection flaws, such as SQL, OS, and LDAP injection occur
when untrusted data is sent to an interpreter as part of a command or
query. The attacker’s hostile data can trick the interpreter into executing
unintended commands or accessing data without proper authorization.”

Injection flaws are by far the most common type of vulnerability: In Sec-
tions 2.2.1, 2.2.2 and 2.2.3, we discuss SQL injections, command injections

1http://owasp.org

http://owasp.org
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and code injections, respectively. In Chapter 5, we present a framework for
detecting vulnerabilities in PHP code and use it to detect these three instances
of injection-type vulnerabilities. Moreover, as we will see, the detection process
can be customized as needed and in principle allows to detect any type of
injection flaw.

2. Broken Authentication and Session Management. “Application func-
tions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys,
or session tokens, or to exploit other implementation flaws to assume
other users’ identities.”

The PHP framework that we present in Chapter 5 allows us to detect flaws
wherein an attacker may impersonate a victim by hijacking their session, too.
More specifically, we will see how to detect so-called session fixation flaws,
which we discuss in more detail in Section 2.3.2.

3. Cross-Site Scripting (XSS). “XSS flaws occur whenever an application
takes untrusted data and sends it to a web browser without proper valida-
tion or escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the
user to malicious sites.”

Cross-site scripting vulnerabilities are among the most widespread vulnera-
bilities on the Web, and we discuss them in more detail in Section 2.3.1. As
we demonstrate in Chapter 5, our PHP framework can detect such vulnera-
bilities: In a large-scale experimental study, we see that the number of XSS
vulnerabilities that we find exceeds that of all other types of vulnerabilities by
far. This confirms the common belief that cross-site scripting vulnerabilities
are nowadays the most pervasive threat to web applications. Additionally, we
also demonstrate how to detect such vulnerabilities in JavaScript applications
in Chapter 4.

4. Insecure Direct Object References. “A direct object reference occurs
when a developer exposes a reference to an internal implementation object,
such as a file, directory, or database key. Without an access control check
or other protection, attackers can manipulate these references to access
unauthorized data.”

Path traversal attacks, which we present in Section 2.2.4, are a prominent
example of this vulnerability class, wherein an attacker may manipulate file
objects generated within the server-side code because the path used to instan-
tiate that object depends on attacker-controllable input. In Chapter 5, we
show how our PHP framework may be used to detect this kind of attack, too.
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5. Sensitive Data Exposure. “Many web applications do not properly pro-
tect sensitive data, such as credit cards, tax IDs, and authentication
credentials. Attackers may steal or modify such weakly protected data to
conduct credit card fraud, identity theft, or other crimes. Sensitive data
deserves extra protection such as encryption at rest or in transit, as well
as special precautions when exchanged with the browser.”

We discuss this type of vulnerability in more detail in Section 2.3.3. Subse-
quently, in Chapter 4, we discuss a semi-automated method to detect such
leaks in JavaScript applications. We then apply this method in a case study on
Helios, a popular e-voting application deemed highly secure and implemented
explicitly in such a way that it requires no network interaction while a voter is
casting their vote. As a result, we find that it may, in some cases, actually
send out the voter’s choices over the network unencrypted.

2.2 Vulnerabilities Threatening the Server

In this section and the next, we present the specific types of vulnerabilities
covered in this thesis. The illustrative code examples in this section are all
given in the PHP language. Note that even though PHP is a server-side
language and JavaScript is most commonly used as a client-side language, a
vulnerability that is found in PHP code does not necessarily result in an attack
targeting the server, but may equally result in an attack targeting the client,
and vice versa for JavaScript. For instance, a vulnerability in PHP code that
allows an attacker to print arbitrary characters in a page visited by a victim
may very well be used to execute arbitrary code in the client’s browser, i.e.,
affect the client, as we will see in Section 2.3. Similarly, a vulnerability in
JavaScript code can result in an attack on the server: This is obviously the case
when JavaScript code is executed by the server itself, such as with frameworks
like Node.js.2 But even when JavaScript code is executed on the client side,
an attack may target the server, e.g., if the target is a site administrator who
has been granted special access privileges to the server’s database.

For server-side attacks, a multitude of vulnerabilities has to be considered.
In the following, we present the vulnerabilities relevant to our case studies which
we present in Chapters 4 and 5. These vulnerabilities represent popular and
widespread instances of the classes of vulnerabilities discussed in Section 2.1.
In addition, we also discuss some specific mitigation techniques which ensure
(when used properly) that a potentially critical use of data within a program
cannot be exploited.

2https://nodejs.org

https://nodejs.org
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<?php
function foo() {

$x = $_GET["id"];

if(isset($x)) {
$sql = "SELECT * FROM users

WHERE id = ’$x’";
return query($sql);

}
}
?>

Figure 2.1: Classical SQL vulnerability in PHP.

2.2.1 SQL Injections

Web applications often rely on a database back end to read and write persistent
data. This data may contain sensitive information like passwords, credit card
numbers, and so forth. Hence, it constitutes an attractive target for attacks.
Besides stealing information, an attacker may also wish to corrupt the database
or compromise the web server, say, change another user’s password or drop a
table in the database.

SQL Injection Attacks are a widespread and well-known type of privilege
escalation attack [Halfond et al. 2006] which allow an attacker to gain elevated
access to a database used by a web application. Since SQL queries are often
generated dynamically depending on user input, an attacker may be able to
submit their own SQL syntax as input and thus inject it into an SQL query
performed by the web application, thereby modifying the original SQL query
intended by the programmer.

A trivial example of an SQL injection vulnerability in PHP is shown
in Figure 2.1. The GET parameter $_GET["id"] is a user input that is assigned
to the variable $x and flows into an SQL query without being checked or
sanitized. Therefore, an attacker can submit an input such as ’ OR 1=1; --
to have the application return the entire table of users, which, depending on the
context, may unintentionally leak information (the -- starts a comment so
as to mask the rest of the original SQL query). If the SQL database back end
supports batched statements, the attacker may even be able to easily execute
arbitrary statements, using an input such as, say, ’; DROP TABLE users; -- .
But even if the database back end does not support batched statements, once
an attacker has found a way to modify a given query, achieving their desired
goal is more often than not a simple routine task.

A common mitigation technique consists in applying custom or built-in
sanitization functions like mysql_real_escape_string (in the case of PHP) to
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<?php
function foo() {

$x = mysql_real_escape_string($_GET["id"]);

if(isset($x)) {
$sql = "SELECT * FROM users

WHERE id = $x";
return query($sql);

}
}
?>

Figure 2.2: Modified example of the SQL vulnerability in Figure 2.1.

escape special characters that have a syntactical effect on the SQL query, such
as single and double quotes or backslashes. However, this kind of sanitization
does not constitute an ideal defense in all situations. Consider the modified
example in Figure 2.2: Although a sanitization function is applied, the query
is not safe, because the query does not use quotes to enclose the variable $x.
As long as the input is an integer as expected, this will work fine, however, an
attacker can still modify the query by using, for example, 0 OR 1=1 as input.

Prepared statements are generally regarded as the safest way to prevent SQL
injections. However, even prepared statements only protect against first-order
SQL injection vulnerabilities such as the ones in the previous two examples.
They do not protect against second-order SQL injection vulnerabilities, wherein
an attacker may have stored some malicious input in the database, say, as part
of a username. If that value is later retrieved and used in another SQL query
within the web application, the application may still be vulnerable.

Summing up, even though SQL injections are rather popular and well-
known to most developers, it is still necessary for developers to pay close
attention to them while writing an application, and since database queries are
a common task in web applications, mistakes resulting in security flaws are
not uncommon.

2.2.2 Command Injections

Web applications that run on a host machine may want to spawn external
processes for a variety of reasons. Use cases range from simple tasks, such
as extracting an archive or resizing an image, to more complex tasks, e.g.,
monitoring and controlling a set of processes running on the host machine.
For this purpose, PHP offers several tools to execute commands on the system
shell, like shell_exec, passthru, popen, system and the backtick operator
(all of these only exhibit minor technical differences).
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<?php
$search = $_GET[’search’];
$command = "find /var/www/userfiles/ -regex ".$search;
echo shell_exec($command);
?>

Figure 2.3: Example of a command injection vulnerability.

If a web application uses user-supplied input to dynamically generate a
shell command for the underlying operating system, an attacker may be able
to exploit this fact to modify the intended behavior of the command or even to
execute commands of their choosing altogether by injecting input that has a
syntactical effect when inserted in the original command. The attacker-injected
command is then executed with the privileges of the vulnerable application.
In the case of a Unix server for example, PHP applications are commonly run
by the virtual user www-data, which typically has extensive privileges in the
file system hierarchy pertaining to web applications running on a given server.

Consider the example in Figure 2.3, which allows users to find files whose
names match a given pattern in a certain directory. The input is not sanitized,
therefore, an attacker could provide, for instance, the input .; rm * to close
the find command and instead execute a command to delete all files in the
current directory.

This type of attack is usually protected against by validating the input
first or running some type of sanitization routine. PHP offers the function
escapeshellcmd, which ensures that an attacker cannot trick the shell into
executing another command by escaping characters that can be used to do so,
such as ; , & , | , etc. This, however, must also be used with caution: Even
if the code snippet in Figure 2.3 used escapeshellcmd to sanitize the variable
$command before passing it to the shell, it would still be vulnerable. For
instance, an attacker could provide the input .* -delete as a search string
to instruct the find command itself to delete any files matching the regular
expression .* in the search directory, without the need to invoke another
command. Therefore, PHP also provides the function escapeshellarg which
ensures that a given input can only be used as a single argument by surrounding
it with single quotes and escaping any single quotes within the input. Which
of the two built-in escaping functions should be used depends on the context,
and requires developers to be fully aware of such little quirks and focus on
avoiding security threats while writing the application.



12 Chapter 2. Web Application Vulnerabilities

<html>
<body>

<form method="GET">
<input type="text" name="formula" value="<?php echo $_GET[’formula’]; ?> ">
<input type="submit" value="=">
<?php if( isset($_GET[’formula’])) eval( "echo ".$_GET[’formula’].";"); ?>

</form>
</body>

</html>

Figure 2.4: Example of a code injection vulnerability.

2.2.3 Code Injections

Many languages, including PHP and JavaScript, provide constructs to evaluate
strings as code at runtime. The prime example is the function eval, which
exists both in PHP and JavaScript. Sometimes using eval is convenient for the
developer (in the case of JavaScript for example, typical use cases considered
as acceptable include fallback JSON parsing, and asynchronous content and
library loading [Richards et al. 2011]); in others, the use of eval results from
poor understanding of the language and its features.

Regardless of the use case, using eval is precarious from a security per-
spective. Indeed, since code run within eval is executed in the current scope
of the program as if it were normal code, it is able to reach deeply into the
program state and make arbitrary changes. For instance, it may add, modify
or remove fields or methods from existing objects, overload existing operators
or functions, redefine custom or built-in classes, load additional libraries, and
so forth. Hence, if text passed as an argument to eval includes code that an
attacker can supply or influence in a critical way without it being properly
checked or sanitized, the attacker may be able to force the application to
execute code of their choosing. In addition to being a security risk, invocations
of eval are also a hindrance to static analysis, as we will discuss in Chapter 4.

Consider the example in Figure 2.4 which shows a simple implementation of
a calculator in PHP. A user may enter an arbitrary formula (e.g., 1+1 ), click on
= and get the result printed on the screen. While eval is certainly convenient
for the programmer here (the actual PHP code computing the submitted
formula is a one-liner), this code is also vulnerable to a code injection attack.
Indeed, it enables an attacker to submit arbitrary PHP code which will be
executed by the PHP interpreter on the server side.

There are variants of eval which are equally dangerous. For instance,
JavaScript has a number of technically similar facilities such as setTimeout,
setInterval, and Function. In the case of PHP, the constructs include
and require (and their variants include_once and require_once) cause the
PHP interpreter to read and interpret the contents of the passed file at the
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point where they are included and in the scope of the current program. If
an attacker can influence the value passed to these language constructs, a
vulnerability arises that may be exploited in different ways. For instance:

1. The attacker may be able to place a malicious PHP file on the server.
Consider for example a forum software that allows to upload avatars.
Note that the PHP interpreter does not place any restrictions on included
filenames, i.e., a filename with a .jpg ending instead of a .php ending is
perfectly acceptable.

2. The attacker may know the location of a file already on the server that
they can misuse for their purposes, say, an administrative PHP script
that is not usually publicly accessible.

3. In certain setups, the PHP interpreter even allows remote file inclusion
over HTTP(S) [PHP Group 2017c], such that even remote URLs may
be used as arguments, resulting in the possibility to load and execute
remote code.

This kind of attack is often referred to as a file inclusion attack, but it is only
a special case of a code injection attack.

Finally, as the necessary payload depends on the exact nature of the flawed
code, there is no general sanitizer which may be used to thwart all these attacks
in either PHP or JavaScript (or any other language as far as the author of this
thesis is aware); the kind of acceptable input varies depending on the use case
and must be manually checked or sanitized by the developer. In summary,
great care has to be taken by developers when using eval and its variants,
and misusing it may lead to a plethora of vulnerabilities.

2.2.4 Arbitrary File Accesses

Web applications read and store files on the server frequently. This is not
limited to some configuration files or logs. In the interactive Internet that we
live in today, people exchange files such as images, videos, or music all the
time, which may be processed by web applications in a wide range of use cases.

Therefore, it is not rare for web applications to give users a certain amount
of control over the files that they want to handle. Consider for example an
interactive photo album, where a user may upload and download their own
photos, edit or delete them, read meta-information contained in the pictures,
etc. The web application may process user input to generate the path for
accessing a certain file (say, to retrieve a photo based on a timestamp). If this
application does not check or sanitize the user input sensibly, attackers may
be able to make the web application unintentionally access sensitive files.

A common scenario in PHP is that an application opens a file by passing
a string such as $prefix."/".$input to a call to fopen, where $prefix is a
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<?php
$logfile = $_GET[’logfile’];
$handle = fopen( "/var/www/logfiles/".$logfile, "r");
$contents = fread( $handle, 4096);
echo $contents;
?>

Figure 2.5: Example of a path traversal vulnerability.

fixed path and $input is a file name specified by the user (the dot denotes string
concatenation). However, when this is done naively, an attacker can specify
input containing characters that have a special meaning for the filesystem. On
Unix-like operating systems, for instance, the sequence ../ can be used to
traverse the directory hierarchy upwards. An attacker may hence provide an
input prefixed with a repetition of this sequence so as to traverse directories
backwards as far as needed and access any file on the file system. For this
reason, this technique is called path traversal. The attacker is, of course, limited
by the access control of the operating system, but not by the application. Note
that the path traversal technique also lends itself well for file inclusion attacks,
which we saw in the previous section.

The example in Figure 2.5 illustrates the basic idea. In this program, a
user may specify the name of a logfile, which is then read from the directory
/var/www/logfiles and printed. An attacker could simply submit the input
string ../config.php to have the application read and print the contents
of the file /var/www/config.php , which may contain sensitive information
such as database passwords.

In scenarios where a suffix is appended to the user input in addition to
being prepended by a prefix, this kind of vulnerability becomes more difficult,
but not impossible, to exploit. In some combinations of operating system, web
server software and PHP version, null bytes ( %00 in the query string) can be
used to terminate the string and mask the suffix. Another possibility in older
PHP versions was to suffix the filename with the character / followed by a
long repetition of the character sequence ./ . The PHP interpreter treated
files like directories and therefore ignored this suffix, but at the same time,
was prevented from reading the actual intended suffix, because filenames were
also truncated to a certain maximum length.

This kind of vulnerability is often defended against by using regular expres-
sions, which aim to remove, e.g., dots from the input. A canonical way is to
use the built-in function basename, which strips the directory part of a given
path and leaves behind only the filename itself. This prevents the above attack.
Yet it still allows for attacks that aim to read sensitive files which are in the
same directory as the files which users are allowed to read (or nested deeper
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within the directory hierarchy). This can only be warded against by using
appropriate filesystem permissions and using a carefully planned filesystem
structure, all of which put additional burdens on developers.

2.3 Vulnerabilities Threatening the Client

In this section, we take a look at some prominent attacks targeting the client.
Such attacks aim to exploit users of a web application. For instance, an attacker
may be interested in stealing a user’s credentials, in hijacking their session, or
in making their browser behave in a certain unexpected and undesirable way.

Here, we only focus on attacks that target clients by exploiting insecure
application code, but other vectors of attacks exist that are abundant on the
Internet. To give a few prominent examples, phishing attacks attempt to make
a victim believe that they are interacting with a trustworthy agent—when
they are actually interacting with the attacker—so as to make the victim
disclose sensitive information. Clickjacking attacks attempt to make the user
perform unwanted actions on an authentic page (say, a shop or a banking site)
by loading this page as a transparent layer on top of a seemingly innocuous
page. When users try to interact with this supposedly harmless page, they are
actually interacting with the authentic page and perform undesirable actions
without their knowledge. Another well-known example is that of cross-site
request forgeries. These are performed by malicious websites which cause a
victim’s browser to send unwanted requests to a trusted website where the
user is currently authenticated. Since the victim’s browser is authenticated
on that website, the attacker can thereby cause it to perform actions on the
victim’s behalf. CSRF attacks are easily defended against by using tokens,
i.e., a trusted website should not allow single requests to actually perform an
action, but instead should send, upon a first request, a random token to the
user’s browser. An action initiated by a (second) request should be allowed
only if the user’s browser sends this token back along with the request. This
defense thwarts CSRF attacks completely, unless, as we will discuss in the
next section, a cross-site scripting vulnerability is additionally present on a
trusted website.

We now discuss three kinds of vulnerabilities directly caused by insecure
server-side code: The first is the above-mentioned cross-site scripting, one
of the most widespread types of vulnerabilities in web applications. The
second is session fixation, a less common, but relevant type of vulnerability
which allows an attacker to hijack a victim’s session. The third is sensitive
data exposure caused by insufficient transport layer protection, another fairly
common vulnerability involving a passive network attacker.
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2.3.1 Cross-Site Scripting (XSS)

Client-side executable code, such as JavaScript, gives developers of web ap-
plications the possibility to make their applications faster, more interactive
and allows them to shift parts of the business logic to the client, thereby
substantially reducing traffic and requirements for computational power on
the server. However, client-side executable code also brings with it additional
security risks. Since JavaScript allows to read and manipulate the DOM of a
web page, it is an effective way for an attacker to control a victim’s browser
in the context of a vulnerable application. Fortunately, doing so is not as
simple as writing a malicious page which loads a trusted website in an invisible
frame and reads or manipulates its DOM: This is prevented by the same-origin
policy, a central security concept for web applications implemented by all major
browsers. Under this policy, a browser does not permit a script contained in a
web page to access the DOM of another web page if the two pages do not have
the same origin. Here, origin is defined as the triplet of protocol, hostname,
and port number (e.g., (http, example.com, 80)). Hence, to achieve their
goal, an attacker typically aims to inject a malicious script into the page sent
to a victim from a trusted application. In this way, the same-origin policy
is circumvented, as the malicious script looks as if it originated from the
trusted website. This type of attack is known as cross-site scripting (XSS).
Attackers may leverage this attack in a variety of ways. Apart from the
well-known attacks which target the theft of session cookies [Kirda et al. 2006],
cross-site scripting vulnerabilities even enable attackers to extract plaintext
passwords [Stock & Johns 2014].

It is very easy for developers to make programming mistakes that lead
to cross-site scripting vulnerabilities. Consider for example the code snippet
in Figure 2.6, which shows a simple user message displayed by a search engine.
The search parameter provided by the user is echoed in the output without
any kind of sanitization. Therefore, an attacker can create a link such as

http://example.com/search.php
?search=<script>alert(’XSS’);</script>

and lure the victim into visiting that link. The result is that the script
will be embedded into the output and evaluated by the victim’s browser.
As the payload is reflected in the output, this kind of cross-site scripting
vulnerability is called a reflected XSS flaw. A second kind is that of per-
sistent XSS vulnerabilities, where an attacker is able to cause a server to
inadvertently store malicious code and display it on normal pages visited
by victims: Consider for instance an online forum where users are allowed
to post messages containing HTML code. This type of vulnerability is typi-
cally even more devastating, as more victims can be affected more easily and
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<?php
$search = $_GET[’search’];
echo "Your search for <em>$search</em> returned the following results:";

// process and display results
?>

Figure 2.6: Example of a reflected cross-site scripting vulnerability.

<html>
<head>

<script language="javascript">
function getQueryVar( key) {

// ... return GET parameter with given key from query string ...
}
function compute() {

formula = getQueryVar( "formula");
document.getElementById( "formula").value = formula;
document.getElementById( "result").innerText = eval( formula);

}
</script>

</head>
<body onload="compute()">

<form method="GET">
<input id="formula" name="formula" type="text">
<input type="submit" value="=">
<span id="result"></span>

</form>
</body>

</html>

Figure 2.7: Example of a DOM-based cross-site scripting vulnerability.

without further action by the attacker. The third and final type is that of
DOM-based XSS vulnerabilities. As opposed to the two first types, these do
not exploit server-side code flaws at all, and in fact can even be performed
against static web pages. For illustration, consider again our example of a
calculator (see Section 2.2.3), but this time implemented on the client side,
in Figure 2.7. A JavaScript obtains a given formula from a GET parameter,
then evaluates it and displays the result (note that there is no native method
for extracting GET parameters in JavaScript, but a plethora of custom imple-
mentations exist). Here, an attacker can make a victim visit a URL akin to
http://example.com/calculator.html?formula=alert(’XSS’); to make
the victim’s browser evaluate a JavaScript of their choice. For simplicity, this
example makes it particularly easy for an attacker, but even when the input is
not evaluated on the client side using eval, but simply echoed somewhere in
the DOM, an attacker can often execute arbitrary scripts on the client side
by surrounding the input with <script> tags, whence the name DOM-based
XSS attack.
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Summing up, cross-site scripting vulnerabilities are a powerful tool for
attackers to circumvent the same-origin policy and trick a victim’s client into
evaluating malicious scripts in the context of a web application. They may
also be used to perform other kinds of attacks, e.g., cross-site request forgeries
are possible in the presence of an XSS vulnerability even when tokens are
used as CSRF protection, since the attacker can use the XSS vulnerability
to learn these tokens. Generally, XSS attacks allow an attacker to simulate
an arbitrary interaction between an affected client and a web server, even
without the knowledge of the client. What is more, programming mistakes
that lead to these vulnerabilities are easily made and quickly overseen, as it
already suffices for a developer to insert untrusted data in certain locations,
either in the server- or in the client-side code. PHP ships built-in sanitizers for
different use cases, such as htmlspecialchars, htmlentities, or strip_tags,
to mitigate this problem, while JavaScript does not come with any built-in
sanitizers at all. It is therefore essential for developers to be well-aware of
cross-site scripting vulnerabilities and pay close attention while developing the
application. Accordingly, human error is frequent and XSS vulnerabilities are
common and widespread.

2.3.2 Session Fixation

HTTP is a stateless protocol. Therefore, cookies are used to identify a particular
client of a web application across several requests. Typically, upon a first
request, a new session identifier is generated by the server and stored internally.
This session identifier is sent to the client, who stores it as a cookie, and sends
it to the web application with each further request, allowing the server to
identify the client. Note that this does not imply that the client needs to be
authenticated to the web application in any way. Consider for example an online
shop where a given user has an account, but is not currently authenticated.
The user may still use the shop and put articles into their cart across several
requests. Once they are done shopping, the client may decide to actually
authenticate to the online shop to order the items in their cart. At this point,
the session identifier that has been used by the user while shopping is internally
mapped to the given user account and considered as authenticated by the
server. Thus, a session identifier may correspond to an authenticated or an
unauthenticated session, and this status (i.e., authenticated or unauthenticated)
can change when a client logs in or out.

For an attacker, learning the session identifier of an honest client authenti-
cated to a web application is clearly an interesting objective, as it allows them
to impersonate that client and act on their behalf. Broadly speaking, there
are three ways for an attacker to achieve that goal: (1) They may be able to
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<?php
if( isset( $_GET[ ’PHPSESSID’]))

session_id( $_GET[ ’PHPSESSID’]);

session_start();

// do something
?>

Figure 2.8: Example of a session fixation vulnerability.

predict session identifiers in some way, e.g., because the random generator used
by the web application is not secure; (2) they may capture a session identifier
used by a client, e.g., they may exploit a browser vulnerability on the client
side, or a network attacker may eavesdrop on an unencrypted communication;
and (3) finally, they can attempt to fixate the session identifier, that is, trick a
victim into using a particular session identifier chosen by the attacker, wait
for the victim to authenticate with that session identifier, and then use that
session identifier to impersonate the victim via-à-vis the web application. The
last approach is one that may be caused by insecure code and the one we want
to discuss in in this section.

Fixating session identifiers is particularly easy for an attacker when a
web application is written in such a way that clients may not only send
their session identifiers to the web application as cookies, but also (or even
exclusively) as GET or POST parameters. This is a bad idea from a security
standpoint, yet it is a practice commonly observed. Consider for instance the
code snippet in Figure 2.8. The application checks whether a GET parameter
called PHPSESSID was passed, and if so, internally sets the session identifier to
the passed value. Then, it starts the session (which means here that a global
array $_SESSION is populated with user data stored by the server for the given
session identifier, and that a Set-Cookie: field is sent in the HTTP header
of the response to the client to cause it to store the session identifier as a
cookie). Now, all an attacker has to do is trick a victim into clicking a link such
as http://example.com/index.php?PHPSESSID=abad1dea to the above page.
This will cause the victim’s session identifier to be set to abad1dea, which the
attacker knows. If the victim now authenticates to the web application, the
attacker will have the session identifier of an authenticated user and therefore
will be able to impersonate the user.

In earlier PHP versions (i.e., prior to PHP 7), the kind of behavior de-
picted in Figure 2.8 was actually the default behavior upon simply calling
session_start(): If no session identifier was defined by a cookie, this built-in
method would then try to find one in the GET or POST parameters. Fortu-
nately, this is not any longer the case. Note that, even if only session identifiers
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via cookies are accepted by an application, this does not utterly thwart session
fixation attacks. For instance, if a call such as set_cookie($name,$value)
is used somewhere in the code and the attacker can control both the name
and the value of the cookie via GET or POST parameters, they can use it
to implement a session fixation attack in a place completely unexpected by
the developer, by exploiting this call to set a session identifier cookie in the
victim’s browser. Additionally, even if an application is implemented in such a
way that it only accepts session identifiers that it generated itself, this does not
help against session fixation attacks at all: The attacker may simply connect
to the web application themselves, obtain a valid session identifier and use it
for their purposes.

A reliable approach to securely defend against session fixation attacks is
to regenerate a new session identifier upon each new request by a client (and
internally remap all associated user data with the new session identifier). While
this is easy to do when developing a new application, integrating this feature
into an already existing complex application can be very cumbersome. For this
case, some alternate, more involved approaches have been proposed [Johns
et al. 2011]. Session fixation attacks should not be underestimated, as they
have a critical impact on the security of an application, but are much less
known than, for example, the rather popular SQL injection attacks, and thus
receive significantly less attention [Johns et al. 2011].

2.3.3 Sensitive Data Exposure

In this last section on web application vulnerabilities, we discuss a vulnerability
that is technically slightly different from the ones previously discussed. While
the vulnerabilities discussed earlier in this chapter assume an attacker who
either directly sends input to a server, or else causes an innocuous client to
send a given input to a server (e.g., by having them click on a link), the
vulnerability type presented in this section assumes a passive network attacker,
i.e., an attacker that is able to passively listen in on messages being exchanged
over a network, but does not actively send any kind of message to any network
party on their own. Such attackers are not limited to powerful entities such
as governments’ intelligence services. In fact, freely available tools such as
Wireshark3 exist that allow even technically non-savvy users to log all messages
sent over a local network, such as, say, at a company or at a university.

Since messages in HTTP are sent in plaintext, this protocol is not suitable to
exchange sensitive data, such as passwords, credit card numbers, etc. Consider
for instance the code snippet in Figure 2.9. It is a JavaScript function that

3https://www.wireshark.org

https://www.wireshark.org
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function login() {
var url = "http://example.com/login";
var username = document.getElementById( "username").value;
var password = document.getElementById( "password").value;
var params = "user="+username+"&pass="+password;
var request = new XMLHttpRequest();

request.onload = function() {
if (request.status >= 200 && request.status < 400) {

// process successful answer
}
else {

// process server error
}

};

request.onerror = function() {
// process connection error

};

request.open( "POST", url);
request.setRequestHeader( "Content-type", "application/x-www-form-urlencoded");
request.send( params);

}

Figure 2.9: Example of sensitive data exposure.

sends a login request to a server using XMLHttpRequest, with a username and
a password provided by a user. The problem is that the URL the login data
is sent to is an HTTP resource, and, hence, the submitted data is sent in
plaintext. Therefore, it exposes the username and the password to anyone
listening on the network, allowing an attacker to impersonate victims who use
this application to authenticate.

The appropriate countermeasure is encryption. Sensitive data should only
be sent over the network in an encrypted way, either using a secure protocol
such as HTTPS, or by manually encrypting the sensitive data using a strong
encryption scheme before sending it over a public network. In practice, however,
this is not always trivial. For instance, while the vulnerability is obvious in
the above example, in many cases the URL would not be hardcoded, but
relative to the current domain, that is, the second line would simply read
var url = "/login";. In this case, the code is fine as long as it is run in an
HTTPS context, but not in an HTTP context. If this software is distributed
to hundreds or thousands of users who deploy it on their own servers, not all
of them may be aware of this problem. Even if they are aware of the problem,
they may lack the technical knowledge, the time or the money to obtain a valid
SSL/TLS certificate. As a result, many of them may make the application
accessible via HTTP. Accordingly, forums, blogs, and other online communities
with unencrypted login forms are commonly found on the web. Adding to this
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problem is the fact that most users only have one or two passwords that they
re-use on various sites. Then, when they authenticate without encryption to
some web application, an attacker may compromise their identities for other,
normally well-secured, web applications as well.

2.4 Characteristics of Vulnerable Code

In this chapter, we discussed several security flaws in web application code that
lead to attacks threatening either servers or clients. In order to build automated
tools that help in identifying these flaws, we firstly need to identify the key
properties that characterize them. These properties should be formulated
abstractly enough to encompass all of the above flaws, but concretely enough
so that when piece of code exhibits these properties, a vulnerability is likely.

Looking at the flaws presented in this section, we notice that they are all
caused by the propagation of data of some kind through the program. More
concretely, in all cases but the sensitive data exposure discussed in the last
section, the attacker controls some data input to the program. This input then
flows to a security-critical function call without being properly validated or
sanitized. That is, we identify the following three re-occurring characteristics:

1. Attacker-controllable source. The source of the data, i.e., the input
to the program, can be controlled by the attacker. Either an attacker
sends input directly to a server (e.g., SQL injection, arbitrary file ac-
cesses), or causes a victim to send the attacker’s input to the server (e.g.,
reflected cross-site scripting, session fixation).

2. Insufficient validation or sanitization. The web application does
not validate that the input has an expected format, nor sanitizes the input
in such a way that it cannot be harmful, or does so only insufficiently.
As is typical for security flaws, the key problem is that developers tend
to develop applications such that for some expected input, something
expected happens; yet in order to write secure applications, they must
ensure that for any unexpected input, nothing unexpected happens.

3. Sensitive sink. Finally, data originating in the attacker-controllable
source propagates to a sensitive sink, i.e., a security-critical operation
of some kind, such as an SQL query or a system shell call which the
attacker leverages to conduct a successful attack.

In the case of the sensitive data exposure discussed in the last section, the
vulnerability is equally characterized by an undesirable propagation of data
through the program. However, in this case, the situation is reversed: It is
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Figure 2.10: Undesirable propagation of data through a program.

the source of the data that is sensitive, and this sensitive data flows, without
an appropriate means of protection, to a sink that the attacker can observe.
In other words, the characteristics that we identified for the other cases are
mirrored:

1. Sensitive source. The data in question is only known to the application
itself and possibly to the honest client using the application, such as a
key or a password. This data should not be exposed to outside observers.

2. Insufficient protection. The data is not protected properly, e.g., by
means of encryption. In certain cases, a certain amount of leakage may
be considered as acceptable. For instance, a password checker inherently
leaks the information whether a given password is correct or not. (Some
works are concerned with quantifying the amount of leaked information
in the communication between two processes [e.g., Backes et al. 2009]).

3. Attacker-readable sink. Lastly, the sensitive data propagates to an
attacker-readable output. This may be a public network, for example,
but may also be an unintentional bit of information buried within an
output intended for the attacker.

This duality of undesirable data propagation in a program was first observed
by Biba [Biba 1977]. In terms of programming language theory, we say that
a flow from low (i.e., untrusted) data to high (i.e., sensitive) data without
a proper means of endorsement (i.e., validation or sanitization) corresponds
to a breach of integrity of the application. Dually, a flow from high data
to low data without proper declassification (such as encryption) of the data
corresponds to a breach of confidentiality [Sabelfeld & Myers 2003, Askarov &
Myers 2010]. Figure 2.10 depicts the idea of undesirable data flow though a
program: Ideally, high data should only propagate to high data, and low data
to low data. Whenever there is a flow from low data to high data or vice versa,
endorsement (resp. declassification) of the data is needed, or a vulnerability
may result.
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We will explore techniques to identify vulnerabilities that compromise the
integrity or the confidentiality of a web application. We focus on JavaScript
on the client side and PHP on the server side. Nevertheless, the techniques
described here can be applied to other languages as well. In the next chapter, we
will first review some technical background on various kinds of representations
of application code which these techniques are based on and which will be
required in the remainder of this thesis.
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Meaningful program analysis geared towards vulnerability discovery re-
quires suitable representations of the code to be analyzed as a foundation.

Clearly, any such analysis can only be as good as its view on the application
code permits. We should therefore strive to devise program representations
that are both comprehensive and as complete as possible. Fortunately, we need
not start from scratch, as a variety of avenues to model application code with
different purposes have been explored in the past. Most of these are rooted
in the design and construction of compilers. A standard textbook on the
principles and techniques used in compiler design is the Dragon Book (called
thus because of its memorable cover design) by Aho et al. [Aho et al. 2006].
For a deeper understanding of the structures presented in this chapter, we
refer the reader to this work.

Firstly, we shall discuss how to model a program’s syntactical structure
in Section 3.1. This is the canonical place to start, as all the other views
that we discuss thereafter are eventually computed from the abstract syntax
trees presented in that section. In addition, some types of vulnerabilities
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may be discovered at a purely syntactical level, as we will see. Next, to
understand the propagation of either sensitive or attacker-controllable data
throughout a program, two views are particularly useful. First, control flow
graphs, which we discuss in Section 3.2, model the possible execution orders of
statements in a program as well as the conditions under which a given path is
taken. Second, program dependence graphs, presented in Section 3.3, expose
dependencies between statements and predicates as well as data dependencies
between statements and enable us to explore the flow of data in a program.
Finally, both control flow graphs and program dependence graphs are defined
at a function level only. Therefore, while they constitute powerful tools for
reasoning about control and data flow, they only enable us to do so at a (local)
procedural level. As the vast majority of programs are composed of hundreds
of functions and vulnerabilities arising from unexpected propagation of data
typically span across several function calls, we discuss call graphs in Section 3.4
to remedy this problem and enable interprocedural analysis for vulnerability
discovery.

Throughout this chapter, we will use the PHP code in Figure 3.1 as a
running example. We saw this very code when discussing SQL injections
in Section 2.2.1. While chosen to be as simple as possible for the sake of
presentation, it nevertheless illustrates the underlying ideas of all the structures
presented in this chapter. It presents a function foo that reads a GET
parameter id and assigns it to a local variable $x (line 4). If this parameter is
set (line 6), a string containing an SQL query is constructed (lines 7-8) and
this string is passed to another function query (line 9), responsible for sending
queries to the database back end.

1 <?php
2 function foo() {
3

4 $x = $_GET["id"];
5

6 if(isset($x)) {
7 $sql = "SELECT * FROM users
8 WHERE id = ’$x’";
9 query($sql);
10 }
11 }
12 ?>

Figure 3.1: Code of the running example.
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3.1 Syntactical Representations

In this section, we discuss two syntactical representations of code: First, parse
trees are trees constructed by a parser from the source code of an application
and reflect the exact structure of the source code. Second, abstract syntax
trees are derived from parse trees. They contain all semantically relevant
information about the source code, but abstract away from syntactical details.

3.1.1 Parse Trees

The syntax of a programming language is usually specified as a grammar, most
commonly a context-free grammar. Such a grammar naturally describes the
hierarchical structure of all the language constructs of the language and can
be used to derive any valid program. A context-free grammar is defined by
the following four components [Aho et al. 2006]:

1. A set of terminal symbols. These are the elementary symbols defined by
the grammar, such as keywords, punctuation symbols, or strings.

2. A set of non-terminal symbols. Non-terminal symbols describe a set
of sequences of non-terminal and terminal symbols. Eventually, any
non-terminal symbol can be converted into a sequence consisting only of
terminal symbols.

3. A set of production rules. Each production rule consists of a left side, an
arrow, and a right side. The left side consists of exactly one non-terminal
symbol (this is a distinguishing characteristic of a context-free grammar).
The right side describes one or more sequences of non-terminal and
terminal symbols that the left side can be rewritten into.

4. A start symbol, which is one of the non-terminal symbols.

To derive a program, a grammar starts with the start symbol and repeatedly
applies production rules for each non-terminal until a string consisting only of
terminal symbols is obtained. The set of all derivable strings constitutes the
language defined by the grammar.

As an example, Figure 3.2 shows a subset of the actual PHP grammar. This
subset is chosen in such a way that the production rules shown illustrate how
to derive the PHP code of our running example. For the sake of presentation,
the subset of the PHP grammar given in Figure 3.2 elides some details (such
as the optional possibilities of adding documentation comments or return type
hints when declaring functions) and simplifies some intricacies of the language,
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FUNC → function STRING ( PARAM_LIST ) { STMT_LIST }
PARAM_LIST → NON_EMPTY_PARAM_LIST | ε
NON_EMPTY_PARAM_LIST → PARAM | NON_EMPTY_PARAM_LIST, PARAM
PARAM → . . .
STMT_LIST → STMT_LIST STMT | ε
STMT → EXPR; | { STMT_LIST } | IF_STMT | . . .
IF_STMT → IF_STMT_WITHOUT_ELSE

| IF_STMT_WITHOUT_ELSE else STMT
IF_STMT_WITHOUT_ELSE → if ( EXPR ) STMT

| IF_STMT_WITHOUT_ELSE elseif ( EXPR ) STMT
FUNC_CALL → NAME ( ARGUMENT_LIST ) | . . .
NAME → . . .
ARGUMENT_LIST → NON_EMPTY_ARGUMENT_LIST | ε
NON_EMPTY_ARGUMENT_LIST → ARGUMENT | NON_EMPTY_ARGUMENT_LIST, ARGUMENT
ARGUMENT → . . .
EXPR → VAR | VAR = EXPR | FUNC_CALL | . . .
VAR → $STRING | $STRING[EXPR] | . . .

Figure 3.2: Simplified subset of the PHP grammar.

FUNC

PARAM_LIST(STRINGfunction ) { STMT_LIST }

foo ε STMT_LIST STMT

STMT_LIST STMT IF_STMT

ε EXPR ; IF_STMT_WITHOUT_ELSE

VAR = EXPR if ( EXPR ) STMT

$ STRING VAR FUNC_CALL { STMT_LIST }

x $ ... [ ... ] ... ( ... ) ...
...

Figure 3.3: Parse tree of the running example.
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but is faithful otherwise.1 We use the symbol | to separate different sequences
of symbols that a single non-terminal may be rewritten into. The sequence of
zero terminals, called the empty string, is designated by ε.

The inverse process of taking a sequence of terminal symbols and determine
whether and how it can be derived from the start symbol of the grammar is
called parsing. Parsing constitutes one of the most fundamental problems in
compiler design. The first step of a compiler’s front end (after running the
tokenizer) is to parse the tokenizer’s output. For a syntactically valid program,
a parse tree can be generated by creating a node for each encountered symbol
and connect it to the node representing the non-terminal symbol that produced
it. Formally, a parse tree is defined as follows [Aho et al. 2006]:

1. The root node corresponds to the start symbol.

2. Each interior node corresponds to a non-terminal symbol.

3. Each leaf node corresponds to a terminal symbol.

4. If an interior node corresponds to non-terminal symbol S and this node
has children corresponding to symbols S1 through Sn (in that order, from
the leftmost child to the rightmost child), then the grammar contains a
production rule S → S1 . . . Sn.

Parse trees are sometimes called concrete syntax trees to distinguish them
from the abstract syntax trees which we discuss in the next section. Figure 3.3
shows (a part of) the parse tree of our running example according to the
grammar given in Figure 3.2. Here, the leaf nodes (corresponding to terminal
symbols) are colored yellow and the interior nodes (corresponding to non-
terminal symbols) are colored blue. For clarity of presentation, the terminal
symbols are colored such that they match the highlighting in Figure 3.1. We
do not show the complete parse tree for reasons of space and because doing so
would not add any new information.

While this representation of code certainly makes it easier to recognize
patterns that may correspond to vulnerabilities than working on pure text, the
parse tree’s verbosity and clumsiness make this task cumbersome. In the next
section, we therefore discuss abstract syntax trees which are a more succinct
and elegant representation that significantly eases this task.

3.1.2 Abstract Syntax Trees

At first sight, abstract syntax trees (ASTs) resemble the parse trees discussed in
the previous section. However, as opposed to parse trees, instead of reflecting

1The full PHP grammar is specified in a Bison/Yacc file within the source code of the
PHP framework [PHP Group 2017a].
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FUNC
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Figure 3.4: Abstract syntax tree of the running example.

the parsed code to the letter, they constitute an abstraction of a program’s
syntax in the sense that they abstract away from details of formulation and
idiosyncrasies of a language and retain only the structural elements that make
up the code. ASTs can be obtained from parse trees by walking the parse tree
and recursively applying appropriate translation rules [Aho et al. 2006].

Figure 3.4 shows the complete AST of our running example. Barring a few
technicalities (e.g., flags on the function node that reflect modifiers such as
public or private), this is the very syntax tree of our running example as
generated by the internal parser of the actual PHP interpreter.2

When comparing the parse tree from the previous section with the ab-
stract syntax tree in this section, we notice several differences. First, in an

2This is still in a beta stage. See the corresponding PHP RFC for abstract syntax
trees [PHP Group 2014].
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abstract syntax tree, interior nodes represent programming constructs instead
of non-terminals. For instance, the first assignment in our running example
($x = $_GET["id"]) was a statement node in the parse tree and the assignment
operator itself was a child of that statement (and a leaf node). By contrast, in
the abstract syntax tree, there is a distinguished assignment node: In effect,
the assignment operator has been moved up in the hierarchy. Second, language
keywords and punctuation symbols have been abstracted away. Third, some
nodes have been collapsed into a single node. For instance, nodes representing
a list of statements, labeled STMT_LIST both in the parse tree and the abstract
syntax tree, can have an arbitrary number of children in the AST, each repre-
senting a statement in the list, instead of using a nested structure as is the
case in the parse tree. This holds for any node in Figure 3.4 that has outgoing
edges labeled with digits (and for the node PARAM_LIST too, which happens to
have no children here), including the node IF_STMT which can have one or more
children of type IF_ELEM, each corresponding to a single if/elseif/else block
in a given if-statement. All other nodes have a fixed number of children. The
exact number depends on the type of node. For instance, a FUNC node always
has exactly three children representing its parameter list, its body, and its
return type, respectively. Here, the return type is unspecified and hence the
node representing the return type is a NULL node, yet it is present for structural
integrity. Lastly, nodes may have properties. In our example, the FUNC node
has a property defining its name. Which node-defining characteristics are
represented as a property on the node and which characteristics are represented
as children of the node depends on the used definition of the abstract syntax
tree, which is in turn dictated by the practical needs in a given context. As
a rule of thumb, however, properties are typically used for simple, primitive
characteristics such as a function’s name.

Note that edges are not commonly labeled in ASTs. We have done so
in Figure 3.4 for clarity of presentation. However, a child node’s role is uniquely
defined by its index under its parent node, hence there is no need for edge
labels.

Abstract syntax trees may be implemented slightly differently by different
parsers, even for the same language. However, the idea is always to abstract
away from the concrete syntax and retain only the structural information. As
such, ASTs are an intermediate representation of code: A compiler may have
different front ends for several languages that all generate the same type of AST,
and the compiler’s back end needs only know how to translate this AST to a
given machine code. Similarly, in the context of vulnerability detection, we can
use ASTs to detect patterns that correspond to vulnerabilities independently
of the language, as long as two languages can be compiled into the same type
of AST and give rise to the same vulnerability patterns.
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1 <?php
2 if( hash( ’sha1’, $_GET[’pwd’]) == stored_hash)
3 login();
4 ?>

Figure 3.5: Magic hash vulnerability.

Even though ASTs do not contain semantic information such as control or
data flow, some types of vulnerabilities may be detected at a purely syntactical
level. As an illustration, consider the PHP code in Figure 3.5. It illustrates
the problem of magic hashes [Hansen 2015]: When the == operator is used
instead of the === operator, PHP attempts to perform some type conversions
depending on the value of the compared variables. In our example, if the
stored hash happens to start with the characters 0e (both of which are valid
hexadecimal characters), PHP will assume that it should convert the string
to a number by somehow casting the rest of the string into a number, then
taking 0 to the power of this number, yielding the final result 0. Hence, all an
attacker needs to do to exploit this code is find a password that has a SHA1
hash starting with 0e (which happens with a probability of 1/162 = 1/28, i.e., it
is very easy to find). This password can then be used as a master password
for all users who have a password that happens to hash to a value starting
with 0e too.

This kind of vulnerability can easily be detected at a syntactic level. We
simply search the AST for the following pattern:

• There is a node representing the == operator.

• One of the two children of this node must be a node representing a call
to the function hash.

• The second child of the argument list child node of this function call
node must be an array access to an attacker-controllable variable such
as $_GET or $_POST.

Depending on the context, these conditions do not absolutely guarantee that
there is a vulnerability, but if a match is found, a vulnerability is not unlikely.
Some other types of vulnerabilities, such as integer overflows, can also be found
at a purely syntactical level [Yamaguchi et al. 2014].

In practice, however, most types of vulnerabilities require a deeper under-
standing of the control and data flow of the given program. In particular, it is
usually necessary to be able to reason about the flow of attacker-controlled
data. Therefore, we introduce additional structures in the next sections that
model control flow and data dependencies in a program.
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3.2 Modeling Control Flow

In this section, we discuss structures that reflect properties of the control
flow of an application. First, we look at control flow graphs, which model
the control flow itself. Subsequently, we discuss the notions of dominance
and post-dominance and present dominator and post-dominator trees, which
express slightly more intricate properties derived from the control flow graph.

3.2.1 Control Flow Graphs

Abstract syntax trees emphasize the syntactical structure of a program, but
they cannot directly be used to reason about the program’s control flow, i.e.,
the order in which statements are executed: This type of reasoning requires
semantic information about the constructs of a given programming language.
The idea of using a directed graph to express control flow relationships in a
program so as to enable control flow analysis was pioneered by Turing award
winner Frances Allen in 1970 [Allen 1970]. This type of graph is known as the
control flow graph (CFG).

In an imperative programming language, the statements of a procedure
or function are executed sequentially. Boolean expressions are used in the
guard of if, while, and similar statements to alter the flow of control based
on conditions evaluated at runtime. We refer to such boolean expressions as
predicates. A control flow graph defines a node for each statement and predicate
of a function. The edges of the graph reflect the interplay of the statements
and predicates, i.e., the order in which they are evaluated. Labels on the edges
indicate the conditions that result in a given control flow: Edges originating in
statements are labeled with ε to denote unconditional control flow, and edges
originating in predicates are labeled with true or false to indicate conditional
control flow. A control flow graph is defined per function, and artificial ENTRY

and EXIT nodes are defined by the graph to indicate the entry and exit points
of that function.

Figure 3.6 shows the control flow graph of the function foo from our running
example. The arrow from the ENTRY node to the assignment $x = $_GET["id"]
indicates that this statement is executed first. Next, the predicate isset($x)
is evaluated. If it evaluates to true, control is transferred to the first statement
of the if-statement’s body. Otherwise, the end of the function is reached, as
denoted by the arrow to the EXIT node.

Control flow graphs can be easily extended to account for more advanced
programming constructs. For instance, one can introduce edges labeled excep-
tion to model the flow of control inside try/catch statements. CFGs can be
directly computed from ASTs by defining appropriate rules for each type of
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ENTRY

$x = $_GET["id"]

isset($x)

$sql = "SELECT * FROM users
WHERE id = ’$x’"

query($sql)

EXIT

ε

ε

true

ε

ε

false

Figure 3.6: Control flow graph of the running example.

construct that the language provides and then applying the following two-step
algorithm [Yamaguchi 2015]:

1. First, edges are computed for structured control flow statements such as
if, while or for statements, using a recursive tree-walking algorithm
that implements appropriate rules for all types of nodes of the abstract
syntax tree.

2. Subsequently, the graph is corrected to take into account unstructured
control flow statements such as break, continue or goto. This is now
easily possible since the entry and exit points of loops have been computed
in the previous step, and the rule for nodes denoting label statements
in the previous step can also store the labels and their corresponding
nodes to handle goto statements in this step.

Control flow graphs can be used to identify control flows that may lead
to certain vulnerabilities. For instance, consider the example in Figure 3.7.
Here, a user can send a message that is appended to a guestbook file on the
server, unless the message is too long. Unfortunately, if the message is too
long, the file resource is not properly closed. In any case, a lengthy process is
called later on. Here, an attacker can perform a denial-of-service attack by
calling the script many times in parallel with long messages, causing the server
to open many file resources until its limit is reached. Although this example
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1 <?php
2 $handle = fopen( "guestbook.txt", "a");
3

4 if( strlen( $_GET["message"]) > 10000) {
5 echo "Your message is too long!";
6 }
7 else {
8 fwrite( $handle, $_GET["message"]);
9 fclose( $handle);
10 }
11

12 lengthy_process();
13 ?>

Figure 3.7: Denial-of-service vulnerability.

is somewhat contrived, in more complex applications, a situation where a
resource is not properly closed before a long process is called is realistic.

This vulnerability can be expressed by the following pattern in the control
flow graph:

• There is a call to fopen.

• There is a path from the call to fopen to the EXIT node that does not
contain a call to fclose.

Ideally, from the attacker’s perspective, the path should also contain a predicate
that uses an attacker-controlled variable, such as $_GET["message"] in our
example, as the attacker needs to be able to cause the program to actually
take the vulnerable path. However, this is not a necessity in general, as a
program may possibly take the vulnerable path without any input.

Control flow graphs allow us to reason about certain kinds of control
flow type vulnerabilities such as the one in Figure 3.7. However, detecting
this vulnerability requires us to inspect all paths from fopen to EXIT so as
to find one that does not contain fclose. This kind of inspection can be
prohibitively expensive for complex applications where it is necessary to
take into account loops as well as a multitude of nested levels of control
flow branchings (leading to an exponential growth of the number of possible
paths). Thus, a representation better suited for efficiently detecting this type
of vulnerability would be convenient. To this end, we discuss the notions of
dominance and post-dominance in the next section. In addition, computing
post-dominance relationships is also a prerequisite for calculating more involved
program representations, as we discuss in Section 3.3.
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3.2.2 Dominator and Post-dominator Trees

Automated discovery of vulnerabilities in program code often involves de-
termining whether some statement is executed before or after some other
statement on all possible execution paths through a program. For instance,
it is interesting to determine whether a validation or sanitization function
is always called on some attacker-controlled input before that input is used
in a sensible operation to avoid injection-type attacks (see Chapter 2), or,
conversely, whether a resource is always freed after having been allocated as in
the example of Section 3.2.1.

The notions of dominance and post-dominance express exactly this kind
of dependence for control-flow graphs: We say that a node d of the control
flow graph dominates another node s iff every path from ENTRY to s contains
d. Conversely, we say that a node p post-dominates a node s iff every path
from s to EXIT contains p. Note that by definition, a node always dominates
and post-dominates itself. The notion of dominance was first introduced by
Prosser [Prosser 1959] as a unification of both definitions.

We can express dominance and post-dominance in tree structures by ex-
tending these definitions to the notions of immediate dominance and post-
dominance [Lowry & Medlock 1969], respectively. We say that for two nodes
d and s such that d 6= s, d is an immediate dominator of s iff:

1. d dominates s; and

2. there exists no node n different from d and s such that d dominates n
and n dominates s.

In the dominator tree, each node’s children are the nodes that it immediately
dominates. Every node except ENTRY has exactly one immediate domina-
tor [Lowry & Medlock 1969], and hence, the tree is uniquely defined. The
notions of immediate post-dominance and the resulting post-dominator tree
are defined analogously [Ferrante et al. 1987].

Figure 3.8 and Figure 3.9 show the dominator tree and the post-dominator
tree of our running example, respectively. We can see that isset($x) im-
mediately dominates both the assign statement of $sql and the EXIT node,
since both statements are immediately preceded by this predicate on any
program path. The statement query($sql), on the other hand, does not
dominate any other node, since the EXIT node is not necessarily preceded by
that statement. In the post-dominator tree, we see that the EXIT node immedi-
ately post-dominates both query($sql) and isset($x), as any program path
executes either of these nodes immediately before reaching the EXIT node. The
assignment statement of $sql does not post-dominate any other statement,
since it does not necessary follow the predicate isset($x).
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ENTRY

$x = $_GET["id"]

isset($x)

$sql = "SELECT * FROM users
WHERE id = ’$x’"

EXIT

query($sql)

Figure 3.8: Dominator tree of the running example.

EXIT

query($sql) isset($x)

$sql = "SELECT * FROM users
WHERE id = ’$x’" $x = $_GET["id"]

ENTRY

Figure 3.9: Post-dominator tree of the running example.
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Various algorithms have been proposed to compute dominators [Allen &
Cocke 1972, Purdom & Moore 1972, Aho et al. 2006, Lengauer & Tarjan 1979,
Cooper et al. 2006] (note that the citation of the book by Aho et al. refers to
the second edition, but the first edition was published in 1977). The algorithm
by Lengauer and Tarjan has an asymptotic complexity of O(m · log(n)), where
m is the number of edges and n is the number of vertices, but it is highly
involved. A much simpler algorithm which is presented by Aho et al. and goes
back to work by Allen and Cooke on data-flow analysis is shown in Figure 3.10.

// The ENTRY node dominates only itself.
Dom(ENTRY) = {ENTRY}
// Set all nodes as dominators for all other nodes.
for each v in V \ {ENTRY}

Dom(v) = V

// Iteratively remove nodes that are not dominators.
// preds(v) is the set of predecessors of v in the control flow graph.
while changes to any Dom(v) occur

for each v in V \ {ENTRY}

Dom(v) =

( ⋂
p∈preds(v)

Dom(p)

)
∪ {v}

Figure 3.10: Algorithm for computing dominators in a CFG [Aho et al. 2006].

In fact, this is an instance of a classic data-flow analysis algorithm, of
which we shall see another instance in Section 3.3.2. This algorithm has an
asymptotic running time of O(n2), however, Cooper et al. show that using
carefully chosen data structures, it can actually outperform the algorithm by
Lengauer and Tarjan in practice.

The dominator tree can be used to determine whether a given statement,
such as a validation or a sanitization function, is always executed before
some other statement that corresponds to a sensitive operation, by checking
whether the sensitive statement is dominated by the validation or sanitization
function. The post-dominator tree of a control flow graph corresponds to the
dominator tree of the reversed control flow graph, therefore, its computation is
straightforward too. It can be used to check whether some statement is always
executed after another, for instance to check for vulnerabilities resulting from
failure to free resources such as the vulnerability discussed in Section 3.2.1.
In addition, the post-dominator tree also plays a key role to compute control
dependencies, as we will see. While post-dominator trees are useful to detect
certain types of vulnerabilities, the vast majority of vulnerabilities requires us
to be able to reason about the propagation of attacker-controlled data in a
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program. In the next section, we discuss a program representation that allows
us to expose statement dependencies, in particular statement dependencies
caused by data flows.

3.3 Statement Dependencies for Intraprocedu-
ral Analysis

In this section, we discuss program dependence graphs (PDGs), a powerful tool
for reasoning about the flow of attacker-controlled data. This type of graph was
first introduced by Ferrante et al. [Ferrante et al. 1987] with the original intent
to make compiler optimization more efficient (many of the typical optimizations
done by compilers operate more efficiently on the PDG than on the CFG) but
is also useful in other contexts such as program slicing [Weiser 1981] and, in
our case, for automated vulnerability detection.

As for the control graph, the nodes of the PDG are the statements and
predicates of a program. It makes explicit the essential control flow and data
flow relationships of a program. To this end, it contains two types of edges
exposing control dependence and data dependence, respectively. We briefly
discuss these two types of dependencies in the next two sections.

3.3.1 Control Dependencies

Control flow graphs express the control flow relationships in a program, how-
ever, they also contain a potentially unnecessary sequencing of operations.
For instance, if our running example in Figure 3.1 contained an additional
statement at the beginning to store another GET parameter to be used in
a subsequent query—say, some search term—it would not make any differ-
ence which statement is executed first, i.e., whether the code started with
$x = $_GET[’id’]; $y = $_GET[’search’]; or with the assignments in re-
versed order as in $y = $_GET[’search’]; $x = $_GET[’id’];; the state-
ments do not depend on each other.

A control dependence arises between a predicate and a statement when
the execution of the statement depends on the result of the evaluation of
the predicate. For instance, in our running example, the evaluation of the
statement query($sql) depends on the evaluation of the predicate isset($x).
The control dependence edges of a PDG expose this type of relationship and
are labeled with either true or false to express the value that the predicate must
evaluate to for the dependent statement to be executed. As an example, the
control dependence edges for our running example are depicted as dash-dotted
edges in Figure 3.12.
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Formally, we define control dependence as follows. Let v and w be two
distinct nodes in a control flow graph. We say that w is control dependent on
v iff:

1. There exists a path from v to w in the CFG such that all nodes on the
path (excluding v) are post-dominated by w; and

2. v is not post-dominated by w.

The reasoning is as follows. If w is control-dependent on v, then v has two exits,
one which leads to the statement w to be executed, and one which does not.
All statements on the path between v and w (except v) are post-dominated by
w (note that if w immediately follows v on that path, the condition is fulfilled,
since w post-dominates itself). However, v is not post-dominated by w, since
it has an exit that does not lead to w being executed.

Control dependencies can be computed efficiently by computing the domi-
nance frontier of each node in the reversed control flow graph [Cytron et al.
1989]. The dominance frontier of a node v is the set of nodes such that the
following holds. For every node d in the dominance frontier of v, we have
that d 6= v and there exists a path from v to EXIT though d such that d is
the first node not dominated by v. Computing the dominance frontier of
a node requires both the control flow graph and the dominator tree. Since
we need to compute the dominance frontier of every node in the reversed
control flow graph and the dominator tree of the reversed control flow graph
corresponds to the post-dominator tree of the control flow graph, computing
control dependence edges in effect requires calculating the control flow graph
and the post-dominator tree.

3.3.2 Data Dependencies

Besides control dependencies, another dependence between statements enforc-
ing a sequential evaluation exists that is not related to control flow. Consider
our running example in Figure 3.1. The assignment of the variable $sql is
not control dependent on the assignment of the variable $x. However, the
definition of $x must necessarily be executed first, since the value of $x is used
in the definition of $sql.

A dependence between statements caused by the fact that one of the
two statements defines the value of a variable subsequently used in the other
statement is called a data dependence. In our example, the call to query($sql)
is data dependent on the definition of $sql, which is in turn data dependent
on the definition of $x. Additionally, the predicate isset($x) is also data
dependent on the definition of $x. The data dependence edges in a PDG expose
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this relationship. These edges are labeled with the name of the variable being
defined in the source statement and used in the target statement. Figure 3.12
presents the data dependencies for our running example as dashed edges.

Calculating the data dependence edges requires solving a classical data-flow
analysis problem called reaching definitions [Aho et al. 2006]. A definition of
a variable x is generated by a statement that may assign a new value to x.
We say that a definition d of x reaches a statement or predicate s if there is a
path from the statement generating d to s such that no other definition of x
intervenes along that path. If, for a given path from a statement generating
a definition d of variable x to s, there is another definition d′ of x, we say
that the definition d′ kills the definition d, and in this case d does not reach
s along that path (but d may still reach s along another path). Hence, the
set of reaching definitions for a given statement or predicate s is the set of
definitions that may last have defined one of the variables available to s. In
the PDG, we create a data dependence edge from a statement generating a
definition d of x to another statement s iff d reaches s and s uses x.

Computing the reaching definitions for a program essentially involves
calculating, for each statement and predicate, the set of definitions it generates
and the set of definitions it kills, and propagating this information along the
control flow graph. As in the dragon book [Aho et al. 2006], let gens be the
set of definitions generated by a statement, and kills the set of definitions
killed by that statement. For example, if a statement s generates a definition
d of a variable x, then gens = {d} and kills is the set of all other definitions
of x in the program. Computing these sets for each statement first requires
computing, for each statement in a program, which variables it defines. Since
we also need to know which variables a statement uses so as to create the
data dependence edges later on, we begin by running a use/def analysis on
the program to determine, for each statement and predicate, which variables
it uses and which variables it defines. That is, we run a recursive algorithm
that is aware of the semantics of the particular language being analyzed and
that is thus able to determine the used and defined variables of all statements
and predicates. Using this information, it is straightforward to compute the
sets gens and kills for all statements and predicates s of the program. Then,
the reaching definitions problem can be solved using the algorithm by Aho
et al. [Aho et al. 2006] depicted in Figure 3.11. It outputs, for each node v
of the control flow graph, the sets In(v) and Out(v) containing the reaching
definitions immediately before and immediately after node v.

In essence, the algorithm starts by conservatively initializing the sets of
reaching definitions for all statements and predicates as empty, then iteratively
propagates reaching definitions along the control flow graph until no more
changes occur. Ultimately, for any node v, the set In(v) is the set of reaching



42 Chapter 3. Program Representations

// The ENTRY node does not generate any definitions.
Out(ENTRY) = ∅
// Initialize all other Out(v) as empty too.
for each v in V \ {ENTRY}

Out(v) = ∅
// Iteratively add reaching definitions until a fixpoint is reached.
// preds(v) is the set of predecessors of v in the control flow graph.
while changes to any Out(v) occur

for each v in V \ {ENTRY}

In(v) =

( ⋃
p∈preds(v)

Out(p)

)
Out(v) = genv ∪ (In(v) \ killv)

Figure 3.11: Algorithm for computing reaching definitions [Aho et al. 2006].

definitions of v. As can be seen, this algorithm is quite similar to the one for
computing dominators presented in Figure 3.10. In fact, both are instances of
the classical data-flow analysis schema which constitutes an abstraction of this
type of algorithm. At its heart, any such data-flow analysis algorithm always
propagates some kind of desired information along a control flow graph (either
forwards or backwards) until a fixpoint is reached. We saw its instantiations
to compute dominators and to compute reaching definitions, but it can also
be used, as another example, to perform a live-variable analysis (to determine
whether a variable could still be used starting from a given point in a control
flow graph; a useful information for register allocation) as well as many other
types of analyses. We refer the reader to the work by Aho et al. for the abstract
algorithm and a deeper discussion on the subject.

3.3.3 Program Dependence Graphs

As we stated earlier, program dependence graphs were originally introduced
by Ferrante et al. [Ferrante et al. 1987] in the context of compiler optimization.
Their nodes are the same as the nodes of the control flow graph (save for the
ENTRY and EXIT nodes) and their edges are the control and data dependence
edges discussed in Section 3.3.1 and Section 3.3.2, respectively. Together, these
edges represent the necessary sequencing of operations, i.e., the necessary
dependencies between statements, exposing potential parallelism in a program.
That is, the set of all dependencies can be seen as a partial ordering of the
statements and predicates in a program. Preserving this ordering also preserves
the semantics of the program [Ferrante et al. 1987].

Figure 3.12 shows the program dependence graph of our example, where the
dash-dotted edges labeled with C represent control dependencies and the dashed
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$x = $_GET["id"]

isset($x)

$sql = "SELECT * FROM users
WHERE id = ’$x’" query($sql)

Dx

Ctrue Ctrue

Dx

Dsql

Figure 3.12: Program dependence graph of the running example.

edges labeled with D represent data dependencies. The subscript indicates
the value that a predicate must evaluate to for the dependent statement to be
evaluated, respectively the variable that induces the data dependency.

Program dependence graphs are also extremely useful to statically analyze
the data flow in a program for vulnerability discovery. In particular, the data
dependence edges enable us to efficiently analyze the propagation of attacker-
controlled data. Consider our running example, which contains a classical
SQL injection vulnerability. Starting at the source of the attacker-controlled
data ($_GET["id"]), we can follow the data dependency forward to the assign
statement of the variable $sql and from there to the call query($sql), which
is a sensitive sink. Reciprocally, we can also start from the sensitive sink and
follow the data dependence edges backwards to the source of the attacker-
controlled data. Since no sanitization of data is used on this path, this data
flow can be automatically determined to be suspicious.

3.4 Call Graphs for Interprocedural Analysis

While dominator trees, control flow and program dependence graphs give us a
powerful means to reason about vulnerabilities as discussed in the previous
sections, all of these representations are only defined at a function level
and, consequently, only allow us to reason intraprocedurally. As we saw in
this and the last chapter, these types of representations are often sufficient
for vulnerabilities that arise from simple programming mistakes, such as
carelessness in syntactical formulation, failure to free resources, various injection
vulnerabilities, and so forth. Yet in practice, programs are composed of
hundreds or even thousands of functions. Accordingly, we can realistically
expect that many vulnerabilities are hidden more subtly in the program code
because vulnerable data flows span across multiple function calls. Therefore,
it is highly desirable to have a means to follow the propagation of data across
function borders.
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Call graphs [Ryder 1979] are a type of control flow graph that model calling
relationships between the functions of a program. Each node corresponds
to a particular function, and a directed edge from function A to function
B indicates that A may call B. We can easily transfer this idea to other
types of graphs and extend them accordingly, such as control flow or program
dependence graphs, by connecting nodes that correspond to call statements to
the function definition nodes of the called functions. This is trivial when the
function does not take parameters; however, in the presence of parameters, we
need to be careful when modeling the arising dependencies between arguments
on the caller site and parameters on the callee site. Since the exact details
of how we achieve this differ in our analysis of JavaScript in Chapter 4 and
our framework for PHP programs in Chapter 5 according to the respective
program representations that we use, we defer a detailed discussion of this
subject to the respective chapters.

Here, we briefly explain the general idea. Figure 3.13 shows a combined
control flow and program dependence graph of our running example. In
addition, we added the control flow graph of the called function query, which we
model as a trivial wrapper function for the PHP built-in function mysql_query.
The call of the function query in function foo is connected to the definition
of function foo with a call edge. Generally speaking, such a graph exposing
data flow within functions and call relationships between all functions of a
program enables an interprocedural analysis: In the example of Figure 3.13,
it is now visible that the attacker-controlled source $_GET["id"] in function
foo flows to the sensitive sink mysql_query in function query. We use similar
types of graphs to detect vulnerable interprocedural data flows in the following
chapters.

3.5 Discussion

In this chapter, we have seen various types of program representations. Abstract
syntax trees allow us to focus on the syntactical structure of a program while
abstracting away from its particular details of formulation and idiosyncrasies
of the language it is written in. Control flow graphs model the order in which
statements and predicates of a program are executed and what conditions lead
to a particular path being taken through a program. Dominator and post-
dominator trees express which statements or predicates are always executed
before or after one another on all possible paths through the control flow graph,
while program dependence graphs expose the necessary control and data
dependencies between statements and predicates, i.e., they impose a partial
ordering on statements and predicates that must be preserved for the semantics
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foo query

ENTRY ENTRY

$x = $_GET["id"] mysql_query($sql)

isset($x) EXIT

$sql = "SELECT * FROM users
WHERE id = ’$x’"

query($sql)

EXIT

ε ε

ε Dx ε

Dx

true

Ctrue

ε Dsql

ε

Ctrue

false

Figure 3.13: Interprocedural control flow, control dependencies and data
dependencies of the running example. Dotted arrows indicate control flow,
dash-dotted arrows indicate control dependencies and dashed arrows indicate
data dependencies. Solid arrows connect function definition nodes to their
respective entry nodes, and the loosely dotted arrow represents a call edge.
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of a program to remain the same. Program dependence graphs in particular
allow us to reason about the flow of sensitive or attacker-controlled data
through a program. Finally, call graphs allow us to reason interprocedurally.

As we have seen, all of these structures can be used, in one way or another,
to express patterns that correspond to potential vulnerabilities in programs.
In Chapters 4 and 5, we will use these structures to implement automatic
vulnerability detection for the two currently most widely-deployed languages
for web applications: JavaScript and PHP. Chapter 4 will discuss a case
study for a popular and particularly security-critical web application written
in JavaScript. Chapter 5 presents a framework for automatic detection of
vulnerabilities in PHP code and a large-scale study that demonstrates its
effectiveness.
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JavaScript is, by far and large, the most widespread programming language
for client-side web applications [W3Techs 2017a]. Today, virtually every

website uses JavaScript, and every major browser supports it natively. It is a
high-level, dynamic, and untyped programming language that unites object-
oriented, imperative and functional programming paradigms. JavaScript was
not designed during years of careful planning. On the contrary, its original
prototype was written in only ten days by Brendan Eich at Netscape Commu-
nications in 1995, at a time where a number of emerging technologies fought
for market domination and timing as well as the availability of a prototype
were crucial factors. While its syntax and large parts of its standard library
are reminiscent of Java, this is mostly due to the fact that Netscape Communi-
cations collaborated with Sun Microsystems at the same time to integrate Java
applications into its browser (known as applets), and wanted their scripting
language to use a similar syntax. In reality, however, JavaScript is more
influenced by other programming languages, in particular the prototype-based
object-oriented language Self and the functional language Scheme [Ecma 2007].
Even though JavaScript was submitted for standardization to Ecma Interna-
tional in 1996, ultimately resulting in the ECMAScript language specification,
different browsers implemented various dialects of JavaScript and in part their
JavaScript interpreters behaved differently for more than a decade. Third-
party libraries such as jQuery [jQuery 2005] and library plugins attempted to
remedy these problems by providing additional APIs for DOM traversal and
manipulation on top of native JavaScript and enjoyed widespread adoption.
While the situation has recently improved and standardized APIs have been
adopted by all major browsers, these libraries are still heavily used.

Overall, an automated security analysis of JavaScript code is a difficult
and challenging task. Because of JavaScript’s highly dynamic nature, most
approaches in the literature tend to opt for dynamic analysis [e.g., Curtsinger
et al. 2011, Hedin & Sabelfeld 2012, Hedin et al. 2016]. While dynamic analysis
can be much more precise since it has access to runtime information, it cannot
simulate every possible input to trigger every possible behavior and is therefore
inherently incomplete. Static analysis of JavaScript has received significantly
less attention so far (we discuss related work at the end of this chapter). Yet
from a scientific point of view, given the steadily rising number of security-
critical client-side web applications, it is an equally worthwhile avenue to
investigate. In addition, static analysis has the potential to be integrated into
IDEs so as to support developers in avoiding security-critical mistakes even
before the release of an application.

Electronic voting. A prime example of a security-critical web application is
that of electronic voting. Electronic voting protocols have received tremendous
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attention by the scientific community in the last few years. Their appeal and
their increased acceptance even for real-life elections are fueled by their ability
to offer efficient, sound tallying while at the same time providing users the
convenience of voting remotely. One of the most widely deployed electronic
voting protocols is Helios [Adida 2008, Adida et al. 2009]: a state-of-the-art,
web-based, open-audit voting system that has seen real-life deployment in a
variety of different settings. Among others, it has been used for the election of
the university president at the Université de Louvain [Adida et al. 2009], for
student elections in Louvain [Bulens et al. 2011] and Princeton [Adida 2013,
Princeton USG 2013], as well as for the election of the IACR committee, the
International Association for Cryptologic Research [IACR 2010].

From a security perspective, remote electronic voting protocols such as He-
lios typically exhibit a highly complex design that uses advanced cryptographic
primitives such as homomorphic encryptions, mixnets, and zero-knowledge
proofs, that involves many interactions between different parties, and that in-
tends to achieve a wide range of sophisticated security properties. Consequently,
securely designing such protocols constitutes a highly challenging and intrigu-
ing task. The high complexity of their designs as well as the sophistication of
their intended security properties impose significant challenges for rigorously
assessing the security of these protocols. A multitude of approaches have been
recently proposed to automatically ascertain central security properties for
electronic voting, such as vote privacy or vote verifiability. In particular, the
security of the Helios protocol has been thoroughly investigated (see related
work) and its security rigorously proven for many of its intended security
properties. As of now, Helios constitutes one of the most widely examined
voting protocols in scientific literature.

However, virtually all existing approaches for confirming the security of
voting protocols focus on identifying conceptual (logical) or algorithmic (crypto-
graphic) attacks against the protocol considered, i.e., they consider a protocol’s
symbolic abstraction or algorithmic description, and are therefore agnostic to
security violations that arise in the actually deployed implementation. However,
history has shown that even security protocols long deemed and even formally
proven secure can exhibit severe implementation-level vulnerabilities: Earlier
in this thesis, we already mentioned particularly illustrative examples such as
the Heartbleed bug in the OpenSSL cryptography library and Apple’s goto fail
bug in its own implementation of SSL/TLS. An implementation-level analysis
is thus of the utmost importance for every security protocol that should see
widespread real-life deployment while intending to offer strong security guar-
antees. Electronic voting protocols, with their strong dependency on societal
acceptance, clearly cannot afford severe implementation-level vulnerabilities,
and thus naturally call for corresponding analyses.
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Contributions. From the above, a security analysis of an electronic voting
application written in JavaScript appears interesting from two different per-
spectives: Statically analyzing a real-world JavaScript application on the one
hand; and formulating and analyzing desired security properties of electronic
voting protocols on an implementation level on the other hand.

In this chapter, we investigate techniques to tackle the highly challenging
task of a static analysis of a real-world security-critical JavaScript application
by performing an analysis of the expected security properties of the Helios
voting client at the implementation level. To this end, we provide code
transformations and static analysis to track potentially harmful information
flows that undermine the confidentiality and integrity properties in a JavaScript
implementation. The transformations involve the replacement of specific
features, whose presence makes reliable static analysis impossible. By replacing
these features with functionally equivalent code, we enable existing static
analysis techniques and are able to faithfully model the information flow
within a complex JavaScript program by a static dependency graph. By
phrasing integrity and privacy properties as an information flow problem,
we can use graph slicing to significantly reduce the number of nodes under
consideration from roughly 7 million to a handful of potentially threatening
flows, of which two can be leveraged into real-world exploits. This approach
describes a general means to enable and conduct a security reification through
static analysis in real-world JavaScript programs.

We demonstrate the feasibility and usefulness of our approach by reporting
on the presence of two vulnerabilities in the JavaScript Helios voting booth
client, that, despite years of manual and conceptual analysis, have not yet
been revealed:

1. a cross-site scripting (XSS) attack resulting in arbitrary script execution;
and

2. an undocumented feature, which causes the client to send unencrypted
plaintext votes without the prior consent of or notification to the user.

The aforementioned code transformations yield two independent benefits. First,
they make the voting client amenable to static analysis. Second, they yield an
implicitly hardened version of the Helios voting client that uses fewer external
dependencies and thus exhibits a reduced attack surface. This hardened version
is publicly and freely available:

https://github.com/malteskoruppa/heliosbooth

For the sake of exposition and reproducibility of the individual steps, this
version intentionally does not yet integrate the fixes to the vulnerabilities

https://github.com/malteskoruppa/heliosbooth
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that we report on. We stress that, while our analysis was performed on the
transformed code, the vulnerabilities that were found are equally present in the
original code. Indeed, we will see escalated exploits performed on the original
client according to the insights gained from our analysis.

Outline. The remainder of this chapter is organized as follows. In Section 4.1,
we discuss the challenges of analyzing a real-world JavaScript application such
as the Helios voting client. In Section 4.2, we briefly review the Helios protocol
and take a closer look at the implementation of the voting client. We then
describe our approach to overcome these challenges and perform static analysis
in Section 4.3. We report on our findings and explain how to escalate them
to actual exploits in Section 4.4. Then, we discuss things learned from our
approach in Section 4.5. Finally, we present related work in Section 4.6 and
summarize this chapter in Section 4.7.

4.1 Challenges in the Analysis of the JavaScript
Helios Client

In this section, we present the most notable challenges that we encountered
while performing a static analysis of the JavaScript Helios voting client.

4.1.1 Reification of security properties

Existing approaches that verify security properties for Helios focus on the
security protocol on a symbolic or algorithmic level. Thus, they are agnostic
to security violations that happen on the application layer. Reification is the
process of verifying that the protocol’s security properties are preserved in the
actual realization. However, the complexity of the components to realize the
Helios protocol in practice grows far beyond the scope of the original protocol
analysis. The symbolic primitives are too coarse-grained to capture the minute
details of the JavaScript language semantics. Hence, it does not suffice to
simply re-hash the symbolic and algorithmic definitions and to apply them to
this setting. In addition, clearly not all properties of a protocol can be suitably
verified by checking the implementation of only one of the protocol agents (i.e.,
the client in this case).

Therefore, we must re-interpret security properties related to the client
and appropriate for the implementation level in such a way that they suitably
portray the original properties’ purpose: A breach of confidentiality and the
associated loss of privacy is perceived as communication of secret data (e.g., a
vote), without proper encryption. Alternatively, by compromising the client
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system’s integrity, an attacker can force the client to behave in an unintended
manner. We will later phrase these issues as information flow problems. Note
that confidentiality is a property already contained within the protocol’s
security properties, whereas integrity is an entirely new problem specific to
the realization of the protocol.

To analyze the security of the implementation with respect to the mentioned
properties, we leverage static analysis techniques to derive semantics-preserving
abstractions of the program as described in Chapter 3. These representations
can then be used to analyze the (in-)security of the program according to the
aforementioned properties. That is, we can automatically search potential
breaches of confidentiality or integrity for each possible execution path in the
source code, and report suspicious paths. These paths can then be manually
inspected and possibly be escalated into full-blown vulnerabilities.

4.1.2 JavaScript is highly dynamic

JavaScript uses higher-order functions and closures, extensive type coercion
rules, and a flexible prototype-based object model where objects can be changed
at runtime by adding or removing fields and methods. These dynamic and
abstract features encumber static analysis. On top of these language features,
ECMAScript contains a standard library that contains hundreds of functions
and objects that need to be modeled, with new ones being integrated frequently
as the language is being continuously developed and improved.

Moreover, as discussed in Section 2.2.3, the function eval and its variants
allow to dynamically interpret strings as program code. Reasoning about
such code requires a-priori knowledge of the strings that can appear and their
analysis is therefore not generally amenable to static analysis. Hence, highly
dynamic features like eval need to be removed or their effects conservatively
approximated. One may also assume that any attacker-controlled data that
flows into an eval may constitute a breach of integrity. In practice, however,
this may lead to a high number of false positives. Fortunately, the core Helios
client does not make use of eval. Third-party libraries used by Helios, however,
do. We consider the difficulties arising in this context in Section 4.1.4.

In summary, JavaScript’s dynamic features present a tremendous challenge
to static analysis techniques, which leverage the semantically fixed parts of a
program to make guarantees about the program’s runtime behavior.

4.1.3 HTML DOM and browser API

JavaScript programs are usually executed in a rich environment. Web appli-
cations execute in a browser environment that interacts with the Document
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1 <script>
2 var src = "foo.png";
3 </script>
4 <img src="bar.png" onclick="alert(src)"/>

Figure 4.1: HTML DOM structure interfering with the expected variable
resolution outcome.

Object Model (DOM) representing the page’s HTML, as well as sophisticated
libraries such as jQuery [jQuery 2005]. Unfortunately, some of those interfaces,
such as the DOM, are not implemented in JavaScript but in C++, which
prevents fully automatic analysis. Typical client-side programs are thus spec-
ified in a combination of scripting, specification and low-level programming
languages. A specification of all of these components is required to obtain a
semantically faithful analysis result.

Execution in JavaScript is event-driven; hence the analysis must also
model the event system, which includes the dynamic registration of event
handlers, event bubbling and capturing (recursive triggering of events in nested
DOM components) and event-specific object properties. Additionally, all event
handlers are callback functions, i.e., they are queued when a specific event
triggers. This leads to asynchronous execution, resulting in fragmented code
and unstructured execution paths that static analysis must somehow resolve.

The HTML document structure also interferes when resolving variable
names defined in HTML attributes. If an event handler is triggered, the
scope chain includes all DOM objects in the lookup path from the HTML
element containing the trigger up to the root of the document. Consequently,
JavaScript and HTML are deeply entangled for static analysis. Consider the
example in Figure 4.1: The onclick-event handler references the variable src.
However, it is not the variable src previously defined in the script tag, but
the src variable in the img tag. Thus, the onclick action will trigger an alert
containing the string bar.png rather than the string foo.png. Furthermore,
the HTML API features a number of non-trivial and non-obvious interactions.
For example, setting the onclick property of an HTML element at runtime
causes a string to be interpreted as event handler code.

4.1.4 Included libraries

To compound the problems described above, applications are often based on
libraries that ease common tasks, such as navigating the DOM or sending and
receiving network messages via Ajax, or help developers mitigate incompatibil-
ity problems between browsers, as described earlier. Among others, the Helios
voting client uses jQuery [jQuery 2005] and Underscore [Ashkenas 2009] to
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perform a variety of practical tasks in the most compatible way possible. In
addition, it used class.js [Resig 2008], which simulates classical object-oriented
programming paradigms including class inheritance.

From a static analysis perspective, these libraries—while convenient for
a programmer—complicate the analysis process severely. By providing their
own abstraction on top of very abstract features such as event handling and
DOM objects, a high degree of context- and flow-sensitivity is required in order
to produce helpful results. jQuery in particular provides the $ (or jQuery)
function that has completely different semantics based on its argument, which
can be anything ranging from an HTML string to a DOM element.

4.1.5 Problem summary

In conclusion, we face theoretical as well as practical problems in the analysis
of a complex real-world JavaScript application like the Helios voting client.
On the one hand, we need to model our security concerns (confidentiality and
integrity) such that they can be checked by static analysis. On the other hand,
we need to be able to execute the static analysis on the JavaScript source code
in a sound manner. The analysis itself needs to handle problematic components
of Helios, such as frequent requests to jQuery and to the DOM API. To that
end, we perform the flow analysis on a refactored, but functionally equivalent1

version of the Helios client. We then leverage WALA, which is able to represent
the client’s HTML structure as JavaScript code, such that a thorough static
analysis can be performed for the whole program. To satisfy the statically
irresolvable dynamic features, we replace them with functionally equivalent
functions that do not rely on dynamic input. In the case of Helios, this
conversion is fully possible without sacrificing expressiveness or performance,
and without altering the functionality of the protocol. In particular, the Helios
source code itself does not make use of the eval function.

4.2 The Helios Voting System

The Helios voting system [Adida 2008, Adida et al. 2009] is a popular web-
based, open-audit e-voting system that has been amply studied in the literature,
both in symbolic and computational models (see Section 4.6). It is available in
well-documented open source form [Adida 2009]. In addition, a public server
is running on http://heliosvoting.org to allow interested users to test the
system and create and run their own election. Since its original publication
in 2008 and following experience obtained in practical deployments as well as

1We elaborate on the exact nature of these changes in Section 4.3.1.

http://heliosvoting.org
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insights due to the scrutiny of researchers, it has continuously been revised
and improved. We focus on the latest version, also known as Helios 3.1.

The server-side code is mostly implemented in Python (using the Django
framework), while the client-side code (which runs in the user’s browser) is
written in HTML and JavaScript. Our analysis focuses exclusively on the
client-side code implementing the voting booth. To provide some context, we
shortly review the Helios protocol in Section 4.2.1, then take a closer look at
the client in Section 4.2.2.

4.2.1 A short review of the Helios protocol

In Helios, any registered user may create a new election. In the initial setup
phase, the user who created the election, considered as the administrator, can
set up the ballot and other election data, and specify a list of eligible voters.
A key pair is automatically generated by the Helios server, or a set of trustees,
for each new election.

Once the administrator is ready, they can freeze the election and move on
to the submission phase, in which eligible voters may submit ballots. On a
high level, the submission phase, depicted in Figure 4.2, is very simple:

1. A voter requests a specific election from the Helios server.

2. The Helios server sends back the browser voting application, called the
voting booth, as well as the corresponding election data.

3. The voter uses the voting booth to record their answers and to encrypt
them. They may then choose to audit the encryption, or to seal their
ballot (discarding randomness and plaintexts) and send the encryption to
the server. If the voter chooses to audit the encryption, the voting booth
will show them the randomness that was used (enabling them to verify
the encryption with an external verification program) and re-encrypt the
ballot with a new randomness.

4. Only once the voter chooses to seal and submit their ballot, the voting
server requests them to authenticate.

5. The voter authenticates and thereby confirms their wish to cast their
ballot. The voting server records their encrypted ballot along with their
identity (or an alias) on a public bulletin board.

The ballot is encrypted using Exponential ElGamal, a variant of ElGamal
(see [Adida et al. 2009, Cortier & Smyth 2011] for details). In the tallying phase,
an encrypted tally is computed from all published ballots using homomorphic
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Voting booth
• answer questions
• encrypt ballot
• seal or audit

encrypted ballot

Election UUID

Voting booth, election data

Encrypted ballot

Authentication request

V , authentication token

Figure 4.2: High-level overview of the submission phase.

properties of the encryption scheme (see [Cramer et al. 1997, Adida et al.
2009]) which is then jointly and verifiably decrypted by the trustees. This
procedure can be publicly audited by anyone.

In Helios 3.x, authentication in the submission phase is typically achieved
via third-party web services such as Google, Facebook or Twitter, and corre-
sponding authentication frameworks such as OAuth [OAuth 2006], although a
classical username/password authentication to the Helios server is also con-
figurable. We refer the reader to [Adida et al. 2009, Smyth & Pironti 2013]
for some interesting discussions and deeper insights into the authentication
mechanisms deployed by Helios.

4.2.2 The Helios voting booth

The most complex element during the submission phase—and the one which
we focus on in this chapter—is the voting booth. Its behavior is depicted
in Figure 4.3:

1. First, the voting booth requests the election data (i.e., the questions and
possible answers, etc.) from the Helios server according to the current
election id.

2. The voting booth guides the voter through the questions and records
their answers.

3. Once the voter is satisfied with their ballot, they may use a Proceed
button that triggers a JavaScript function to encrypt their ballot and
generate non-interactive zero-knowledge proofs of correct encryption.
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Figure 4.3: User interaction and implementation of the voting booth.

4. A fingerprint of the encrypted ballot is computed. The voter is shown
their answers as well as the fingerprint. They may now choose to either
audit their ballot or seal and submit their ballot to the server.

5. If the voter chooses to audit their ballot, the voting booth reveals
the entire encrypted ballot along with the plaintext answers and any
randomness that was used. The voter can now copy this information
and use an external application to re-perform the encryption and verify
that the fingerprint displayed earlier matches. Auditing the encrypted
ballot will also cause the voting booth to re-encrypt the ballot with new
randomness. The voter returns to item 4 with the new encrypted ballot.

6. If the voter chooses to seal their ballot, all plaintexts and randomness
are discarded, and the encrypted ballot is submitted to the voting server.

The idea to use an auditable encrypting device in Helios is inspired by
Benaloh’s Simple Verifiable Voting protocol [Benaloh 2006] with the intent of
increasing the voters’ confidence in the encrypting device. Since the voting
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booth does not know at encryption time whether the ballot will be submitted or
audited, any cheating attempts will be noticed by a random auditing process
with high probability. Consequently, it is also important to separate the
ballot encryption process and the ballot casting process [Benaloh 2007]: The
encrypting device should not have any information about who is using it to
eliminate targeted cheating. Additionally, the possibility to inspect the voting
booth even without being an eligible voter improves auditability.

The possibility to audit the voting booth reflects Helios’s concern to guar-
antee vote integrity on every level of the voting process. In all, Helios makes
integrity of the vote its prime concern: Voters can audit the voting booth, the
correct recording of their encrypted ballot on the bulletin board, and finally
the tallying and decryption process. At the same time, Helios also takes great
care to ensure vote privacy. To this end, the voting booth is written as a
single-page web application: After initially pre-loading the election data and
page templates, the voting booth makes no further network requests until
the ballot is sealed and submitted to the voting server. JavaScript functions
implement the entire functionality of the voting booth and take care of updat-
ing the rendered HTML user interface during the interaction with the voter.
On a side note, we add that the reason for the booth to re-encrypt a ballot
once it has been audited constitutes a small attempt to thwart coercion and
thereby also protect vote privacy: If the voter does not know the randomness
of their vote, they cannot prove how they voted. (Of course, such measures
are barely any help against coercion, and Helios emphasizes that it is intended
for low-coercion elections).

Our aim is to verify that the voting booth fulfills the expected security
requirements and that neither its integrity nor its privacy can be compromised.
We stress that the threat model here is not a corrupt voter (who could use
another application in the first place), but rather a (passive or active) attacker
trying to exploit vulnerabilities in the actual voting booth implementation
interacting with an honest voter in order to learn, or even surreptitiously
modify, a voter’s vote.

To this end, we analyze the behavior of the actual voting booth’s imple-
mentation using automated tools in order to discover potential flaws that are
too complex to be easily spotted by a manual code review. Unfolding the
inner workings of the booth shows that it contains by far the most complex
interaction during the entire vote casting process, as can be seen in Figure 4.3,
which depicts the voter interaction with the voting booth, what JavaScript
functions are called upon various actions, and how the page templates are
updated. When a voter requests the voting booth for a particular election from
the Helios server (see Figure 4.2), the voting booth application is first sent
to the voter and parsed by the voter’s browser. Upon initializing, the voting
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booth then requests the election data and the HTML templates to be displayed
during the different phases of the ballot preparation process in the background.
When this data has finished loading, the internal JavaScript scope is updated
and the voting booth displays the first question. The voter is now guided
through the ballot preparation process, as explained earlier. The only network
requests that are made are either to post an audited ballot to the auditing
center, or to submit an encrypted ballot. As it will be of interest later, we note
that Helios implements an independent ballot verification program also written
in JavaScript to realize the auditing center. The link to it is dynamically
generated (in particular, it includes a GET parameter that specifies the election
id) when a user clicks on the button to audit their ballot. Additionally, the
analysis of this code is complicated by the fact that it depends on a multitude
of complex dependencies and third-party libraries, such as jQuery, which pose
a significant challenge as we discussed in Section 4.1.

In the next section, we discuss how we tackle the analysis of such a complex
JavaScript application.

4.3 Implementation-level Analysis

As mentioned previously, we focus on the client-side code implementing the
voting booth for our vulnerability analysis. The phases of our analysis are
outlined in Figure 4.4 and demonstrate our approach to tackle the challenges
discussed in Section 4.1:

1. First, we present code transformations that resolve the majority of the
problems caused by included libraries (see Section 4.1.4).

2. We then process the results of our transformations with WALA to
provide a unified program representation and a number of analyses
tackling problems caused by the JavaScript and HTML components (see
Section 4.1.2 and Section 4.1.3).

3. Finally, we formulate the reification process (see Section 4.1.1) as a graph
slicing and information flow problem and apply it to the slices. Our
findings as well as the applicability of our findings to the original code
will be discussed in Section 4.4.

WALA (the IBM T.J.WAtson Libraries for Analysis) [IBM 2006] is a
Java library originally designed to provide static analysis capabilities for
Java bytecode. Released under an open source license in 2006, it has since
been used in several research projects as well as further analysis tools, such
as JOANA [Hammer & Snelting 2009] or Andromeda [Tripp et al. 2013].
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Figure 4.4: Overview of our approach.

Most of the WALA API internally leverages the WALA IR (intermediate
representation) instead of source code, which is represented in SSA (static
single assignment) form [Cytron et al. 1989]. The intermediate representation
implemented by WALA is general enough to represent and thus to analyze
other languages as well. To demonstrate the applicability of WALA to other
languages, the authors implemented a front end for JavaScript code using the
Rhino parser [Mozilla 1998]. Among other analyses, WALA supports analysis
of class hierarchies and type systems (more relevant to Java), mature call graph
construction and pointer analysis (for JavaScript, using variants of Andersen’s
analysis [Andersen 1994]), interprocedural data flow analysis using an RHS
solver [Reps et al. 1995] (with extensions, e.g., to handle exceptions), and
context-sensitive tabulation-based program slicing [Weiser 1979].

WALA is well-suited for our analysis because it features a unified model
for programs consisting of HTML and JavaScript; it uses a well-structured
intermediate representation for static analysis and supports a wide range of
different approaches to static analysis, most notably program slicing using
system dependence graphs, which makes all possible information flows explicit.

In the next sections, we elaborate on the individual steps of our approach
as shown in Figure 4.4.

4.3.1 Code transformations

The implementation of the Helios voting booth heavily relies on the third-
party libraries jQuery [jQuery 2005], Underscore [Ashkenas 2009] and an
implementation of class inheritance for JavaScript [Resig 2008]. Due to the
highly reflective nature of these libraries, it is extremely hard to perform
automated static analysis on the Helios voting booth’s code. Their sheer size
is another problem: The uncompressed version of jQuery 1.2.2 (as used by
Helios) amounts to 100 kilobytes (its compressed version 60 kilobytes), as
compared to about 50 kilobytes for the Helios voting booth itself (excluding
smaller dependencies).
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While jQuery and other libraries make developing web applications easier,
they typically prevent automated static analysis, as current tools, including
WALA, can only cope with some of the dynamic features that are present in
these libraries, and even for these only in a very limited way (this is subject
to active research as discussed in Section 4.6). To enable static analysis,
we hence refactor the Helios implementation so as to use native JavaScript
equivalents. These code transformations yield a client that is independent
of the aforementioned libraries and potential security bugs induced by the
libraries. The changes are canonical and could even be refactored automatically.
The modified code is functionally identical to the original code, i.e., the voting
booth works in exactly the same way.

In this section, we briefly describe these code transformations, so that the
interested reader may ensure that they soundly model the behavior of the
original code. The complete list of transformations is described in Appendix A.
In addition, the modified code is publicly available:

https://github.com/malteskoruppa/heliosbooth

We organize this section according to the different libraries whose function-
ality we emulate. We begin with core jQuery functionality and jQuery plugins,
then discuss the simpler Underscore library, and finally look into JavaScript
class inheritance.

4.3.1.1 jQuery

The jQuery library for JavaScript provides facilities for accessing and updating
the DOM, handling events or writing Ajax applications, in a convenient and
portable manner. One of its key benefits is that it avoids the need for developers
to deal with JavaScript DOM API idiosyncrasies across browsers, and allows
them to write concise and legible code. However, newer standards for the
browser, like the DOM API, CSS and HTML5, provide equivalent functionality
for most of jQuery’s APIs, which yields a straightforward refactoring. Examples
for accessing DOM nodes by ID or class and other minor refactorings can be
found in Appendix A.1.

Among the core jQuery functions used by Helios are those for performing
asynchronous HTTP requests. Namely, Helios uses the .get(), .getJSON()
and .post() methods (all of which are wrapper functions for jQuery’s .ajax()
method that sets up a JavaScript XMLHttpRequest object). These functions
are particularly interesting for our analysis, since they constitute information
sinks that may potentially lead to confidential information being sent over
the network, as discussed later. The JavaScript code in Figure 4.5 uses
jQuery to perform an asynchronous HTTP request to the URL url, and if the

https://github.com/malteskoruppa/heliosbooth
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1 $.get( url,
2 function( response) {
3 /* process answer */
4 });

Figure 4.5: Using jQuery to perform an asynchronous HTTP request.

1 var request = new XMLHttpRequest();
2 request.open( "GET", url, true);
3 request.onload =
4 function() {
5 if( request.status >= 200 && request.status < 400) {
6 var response = request.responseText;
7 /* process answer */
8 }
9 };
10 request.send();

Figure 4.6: Using XMLHttpRequest to perform an asynchronous HTTP request.

server successfully sends an answer, calls the given success handler function
to process it. The same functionality contains somewhat more boilerplate in
pure JavaScript using XMLHttpRequest, as shown in Figure 4.6.

The code for jQuery’s .getJSON() and .post() functions is analogous.
The main differences are that the former additionally parses the response data
as a JSON string and hands the resulting JavaScript object to the success
handler function, while the latter performs a POST instead of a GET request.
The POST method is used to submit data to the server, and jQuery encodes
the submitted data as a URL query string using an internal function .param().
This encoding is expected by the Helios server, so we also model it for our
refactorings. The corresponding transformations are detailed in Appendix A.2.

4.3.1.2 jQuery plugins

Several plugins extend jQuery’s core functionality, of which Helios uses:

1. the jQuery JSON plugin [Harris 2008];

2. the query object [Mitchelmore 2009]; and

3. the jTemplates template engine [Gloc 2007].

The jQuery JSON plugin provides (de-)serialization functionality, as shown
in Figure 4.7. The deserialization function .secureEvalJSON() calls Java-
Script’s eval to convert a JSON string to a JavaScript object, but attempts to
prevent malicious script injection by filtering the given string first. However,
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1 // serialization
2 $.toJSON( obj);
3 // deserialization
4 $.secureEvalJSON( jsonString);

Figure 4.7: (De-)serialization using jQuery’s JSON plugin.

1 // serialization
2 JSON.stringify( obj);
3 // deserialization
4 JSON.parse( jsonString);

Figure 4.8: (De-)serialization using JavaScript’s native JSON object.

this is obsolete as this plugin only simulates the native functionality of the
JSON object implemented in modern browsers, as shown in Figure 4.8.

Helios also uses the query object plugin, with functions for reading and
manipulating the URL query string. It is only used by Helios to read query
string GET parameters. There is no native JavaScript equivalent, but it is
easy to write one using a regular expression, as we show in Appendix A.3.

Lastly, Helios uses a template engine written as a jQuery plugin. Templates
are small bits of HTML intermixed with logic written in a template language
that allows dynamically generating HTML content. For instance, consider
the following page element, displayed while the Helios voting booth is being
loaded:

1 <div id="header">
2 Loading election booth...
3 </div>

This element displays a default loading message. Once the voting booth
has finished loading all the data it needs to operate offline, this element should
be replaced with some other text. To this end, first Helios binds the page
element to a template:

1 $( "#header").setTemplateURL( "header.html");

This call will load the resource header.html in the background; no further
network requests will be needed. Note that the contents of this resource do
not replace the previous contents of the page element just yet. The resource
is simply loaded and internally bound to the page element #header. The
document header.html is an HTML template that may contain placeholders,
and even bits of logic, using a templating language defined by the template
plugin itself. This obviously hampers static analysis considerably, since we
now have to approximate the effects of another custom language defined by a
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specific plugin. As a simple example, the following code is contained in the
document header.html:

1 <h1 id="election_name">{$T.election.name}</h1>
2 <p>Voting booth</p>

Once the election booth with all the required data has been loaded, the
JavaScript code can render the template into the corresponding page element
that it previously bound the template to:

1 $( "#header").processTemplate(
2 { "election" : election_object}
3 );

The template engine will preprocess the template and replace any place-
holders with the given data. Additionally, templates may contain small bits of
logic that use this data, such as {#if ...}...{#/if} to render certain bits of
HTML only under certain conditions, or {#foreach ... as ...}...{#/for}
to render a certain bit of HTML several times (e.g., to generate a checkbox
for each possible answer to a question). Finally, the original content of the
#header element is replaced with the processed template.

For static analysis, this functionality was one of the greater challenges.
Clearly, in static analysis we cannot consider network requests that load
portions of a page dynamically. But even if we store the original template
together with the main code, this does not resolve all the problems. Indeed,
this content contains bits of logic in a custom templating language that is
dynamically evaluated at runtime, making it almost impossible to assess the
effects of this function call to the HTML DOM statically.

The original Helios paper [Adida 2008] emphasized the usage of templates
as a great feature to avoid the otherwise tempting intermixing of HTML and
JavaScript. However, intermixing HTML and JavaScript is exactly what this
plugin does behind the scenes, so while its use eases a manual code review
(if one trusts the template engine), it is problematic for an automated static
analysis. To overcome this problem, we re-implemented the templates in pure
JavaScript, avoiding intermixing any HTML. This was the most complex code
transformation, but turned out to be best for static analysis. In the above
example, to emulate the behavior of the header template, we would replace
the #header page element in the page with the code shown in Figure 4.9. This
places both the original content of the header element and the (unprocessed)
template statically into the correct portion of the HTML DOM. Thus, we do
not require the call to .setTemplateURL() any longer. Further, we replace
the call to .processTemplate() with a call to the custom function shown
in Figure 4.10, which simulates the template processing of the original template
using pure JavaScript.
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1 <div id="header">
2 <div id="header_unprocessed">
3 Loading election booth...
4 </div>
5 <div id="header_processed" style="display: none;">
6 <h1 id="election_name"></h1>
7 <p>Voting booth</p>
8 </div>
9 </div>

Figure 4.9: Page element to simulate the effects of the template plugin.

1 function processTemplate_header() {
2 // process template
3 document.getElementById( "election_name").textContent = election_object.name;
4 // make it visible
5 document.getElementById( "header_unprocessed").style.display = "none";
6 document.getElementById( "header_processed").style.display = "";
7 }

Figure 4.10: JavaScript function to simulate the effects of the template plugin.

The functions for other templates, such as the question template that
displays a question, are similar, but quickly grow more complex as the logic con-
tained in those plugins becomes more involved and more DOM manipulations
have to be made with JavaScript. We detail them in Appendix A.4.

4.3.1.3 Other libraries

Helios leverages two more libraries to ease development. However, all of
the features used can easily be replaced by equivalent JavaScript code. The
refactorings elaborated in Appendix A.5 rid our static analysis of the highly
complex Underscore library, which offers a multitude of functions in about
30 kilobytes. The other library, which allows class-style inheritance instead of
JavaScript’s prototype-based inheritance, is only used as syntactic sugar to
define objects. Helios does not leverage inheritance at all, so refactoring was
not difficult, and we detail it in Appendix A.6.

4.3.2 A unified model for HTML and JavaScript compo-
nents

As noted previously, the intermixing of JavaScript and HTML is commonplace,
but unduly hinders static analysis. In order to faithfully process and analyze
all aspects of such programs, WALA integrates the HTML components into
a unified JavaScript model. Intuitively, the DOM is represented as nested
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1 <html>
2 <body>
3 <script>
4 function foo() {
5 alert( "Hello World!");
6 }
7 </script>
8 <a onclick="foo()">Click me</a>
9 </body>
10 </html>

Figure 4.11: Simple JavaScript program with intermixed HTML.

functions, which can be referenced from anywhere within the program using
function calls.

As an example, Figure 4.11 shows a simple JavaScript program with
intermixed HTML and Figure 4.12 depicts the resulting pure JavaScript
analysis model. The model consists of three parts, which are encapsulated
by the window.__MAIN__ function. First, top-level JavaScript code (i.e., code
not contained in functions, but on the uppermost layer) is added. In the
illustrative example, this is only the definition and body of the function foo,
but not the JavaScript code contained within the <a> node. As a second step,
WALA rebuilds the DOM structure as a JavaScript model: The DOM tree
structure is modeled by nested functions. The function make_node0 represents
the outermost <html> element, containing the <body> node in form of the
function make_node1. Within this function are both the <script> and <a>
nodes represented as make_node2 and make_node3, respectively. However,
only make_node3 contains the code triggered by onclick (as in the original
HTML tag) in a function this.onclick. The code within the <script> tag,
as mentioned previously, has been moved to the top-level node. The third and
final component of the model is user interaction. WALA represents this as
an infinite loop that continuously simulates all possible user interactions. In
our example, these interactions are loading the site and clicking the button of
node three.

This representation models an entire page consisting of intermixed JavaScript
and HTML as a single large JavaScript program, thereby allowing us to cir-
cumvent the problems discussed in Section 4.1.3. In addition, data flows that
may occur when a user clicks a certain sequence of buttons, thereby triggering
associated JavaScript functions, are also modeled.
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1 window.__MAIN__ = function __WINDOW_MAIN__() {
2 // top-level JavaScript
3 function foo() {
4 alert( "Hello World!");
5 }
6 // build the DOM
7 function make_node0( parent) {
8 // construct <html> element
9 // using JavaScript DOM methods
10 function make_node1( parent) {
11 // construct <body> node
12 function make_node2( parent) {
13 // construct <script> node
14 };
15 function make_node3( parent) {
16 // construct <a> node
17 this.onclick = function a_onclick( ev) { foo() };
18 };
19 };
20 };
21 // model user interaction
22 while( true){
23 window.onload();
24 node3.onclick();
25 }
26 }
27 window.__MAIN__();

Figure 4.12: JavaScript model resulting from the code in Figure 4.11.

4.3.3 Intermediate representation

After conversion into a pure JavaScript program, WALA uses Rhino [Mozilla
1998] to parse the JavaScript program, creating an intermediate representation
(IR). The IR represents a method’s instructions in a Java bytecode-like, static
single assignment (SSA) form that eliminates stack abstraction and instead
maps variables to symbolic registers. As is typical in compilers, the IR organizes
instructions in a control-flow graph (see Section 3.2.1).

Figure 4.13 contains a running JavaScript example for this section and
following sections, and Figure 4.14 illustrates the conversion of the functions
foo and iszero to the WALA IR.2 First, as can be seen in Figure 4.14,
variable assignments and function calls are broken up into individual statements.
Intermediate results, e.g., return values from calls or arguments, are stored
in symbolic registers named v<number>. The call to iszero is realized by the
invoke command, with a as a parameter. Note that WALA distinguishes
between two types of function calls for technical reasons: dispatch is primarily
used to handle method calls, i.e., calls to functions directly associated with an

2For the sake of exposition, the IR omits some details that are necessary to resolve the
internal variables and the function names to the correct object, but is otherwise faithful.
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1 var foo =
2 function() {
3 a = 3;
4 b = iszero( a);
5 };
6

7 var iszero =
8 function( z) {
9 return z == 0;
10 };

Figure 4.13: Code of the running example.

1 a = 3;
2 v3 = invoke iszero a;
3 b = v3;

1 v3 = binaryop(eq) v1, 0;
2 ret v3;

Figure 4.14: WALA IR of the running example.

object, such as B.bar(), whereas invoke resolves non-method calls such as
bar(). The function iszero is not associated with an object, consequently
invoke is used.

We can set up various structures and maps from IR constructs to informa-
tion that is relevant to specific analysis forms. Our main interest here lies in
the so-called system dependence graph, which can be analyzed for illegitimate
data processing using information flow control theory. We discuss system
dependence graphs in the next section.

4.3.4 System dependence graphs

As a next step, WALA converts the IR to another program representation
more suited to information flow analysis: the system dependence graph (SDG).
SDGs are used to conservatively approximate all possible information flow
within a program. As was true for the program dependence graph discussed
in Section 3.3.3, a system dependence graph of a program P is a directed
graph where the nodes represent P ’s statements and predicates, and the
edges represent the dependencies between them [Horwitz et al. 1990]. In fact,
the system dependence graph can be seen as an extension of the program
dependence graph allowing for interprocedural analysis: It is partitioned into
program dependence graphs that model the control and data dependencies
within single functions and procedures of the complete program. The PDGs
are connected at call sites, consisting of a call node c (i.e., a node containing an
invoke or dispatch statement) that is connected with the entry node e of the
called function. Parameter passing and result returning, as well as side effects
of the called function, are modeled via formal parameter and return nodes
and edges. For passed parameters, there exists an appropriate formal node at
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foo

a = 3 v3 = invoke iszero a b = v3

PARAM_CALLER RET_CALLER

iszero

v3 = binop(eq) v1 0 RET_CALLEEPARAM_CALLEE

v1

Figure 4.15: SDG of the two functions of the running example.

caller and callee sites, called PARAM_CALLER and PARAM_CALLEE, respectively.
Likewise, there exist RETURN_CALLER and RETURN_CALLEE nodes for return
value passing. The PARAM_CALLER nodes (referred to as formal-out nodes) are
control dependent on the calling statement c, whereas the PARAM_CALLEE nodes
(called formal-in nodes) are control dependent on the function entry node
e. Likewise for the return nodes. This parameter passing model guarantees
that all inter-procedural effects of a function are propagated via call sites. A
machine-checked proof [Wasserrab & Lohner 2010] shows that the SDG is a
conservative approximation to the real data and control flows in a program,
i.e., it contains all actual flows.

Figure 4.15 shows the SDG of our running example. The formal-in and
formal-out nodes are constructed as described above. Consistently with Chap-
ter 3, dash-dotted arrows depict control dependencies, dashed arrows represent
data dependencies, and loosely dotted arrows represent function calls.

4.3.5 Slicing

Slicing [Reps et al. 1994] is used to find all nodes that can be reached in the
SDG from a specific seed node. The most important benefit of this method is
to restrict the size of the graph to be analyzed as fast as possible.

Assume that in the example in Figure 4.15, we are interested in which
statements can influence the value that is passed as a parameter to the
function iszero at a specific call site. We therefore compute a backwards slice,
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foo

a = 3 v3 = invoke iszero a b = v3

PARAM_CALLER RET_CALLER

iszero

v3 = binop(eq) v1 0 RET_CALLEEPARAM_CALLEE

v1

Figure 4.16: Backwards slice of v1 of the running example.

shown in Figure 4.16. The slice contains only nodes that can be reached by
traversing dependencies backwards, be they control, call or data dependencies:
In Figure 4.16, nodes contained in the slice are colored blue, while nodes not
contained in the slice are transparent. Beginning from v1, the data dependency
can be followed backwards to PARAM_CALLEE, from where it passes out of iszero
back into the calling function to the PARAM_CALLER node. Subsequently, we
reach the node a = 3. By also including the control dependencies (indirect flow)
we can also include iszero (from PARAM_CALLEE), v3 = invoke iszero a
(from iszero and PARAM_CALLER), and foo.

4.3.6 Confidentiality and integrity analysis using infor-
mation flow

Before we present the actual analysis for integrity and confidentiality on
graph slices, we briefly summarize standard information-flow terminology.
Conventionally, information flow analysis distinguishes between explicit and
implicit flows. Explicit flows correspond to directly copying information, e.g.,
via a variable assignment such as l = h;, in which the value of a secret (or
high) variable h is passed to a public (or low) variable l. Implicit flows appear
when the control flow of the program, i.e., the sequence of statements that are
executed, is dependent on high variables. Consider, for example, the program
if (h) l=1; else l=0;, wherein the content of the low variable l will be
set to either 1 or 0, directly corresponding to the value of h.
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Numerically, the full SDG of the Helios client consists of roughly 7 million
nodes and is therefore impossible to analyze manually. By phrasing the security
issues in terms of an information flow problem, we can compute appropriate
slices, which only contain at most 6000 nodes. This number is further reduced
since we only need to consider paths between a high and a low statement,
which leaves us with only a handful of different paths containing less than 40
nodes.

4.3.6.1 Confidentiality

In terms of information flow, we can state our confidentiality problem as a
declassification problem: Sending high, confidential data over a low, public
channel without declassifying first by means of encryption constitutes a com-
promise in confidentiality (see Section 3.5). In the SDG, we observe a breach
of confidentiality as a path from a high input source (e.g., a secret vote) to a
low output (e.g., an XMLHttpRequest) without a declassification mechanism
that declassifies data in-between.

Figure 4.17 shows parts of a slice resulting from slicing backwards from an
XMLHttpRequest.send() function call in the SDG of our transformed Helios
voting booth. The node dispatch send v50 represents a call to the method
send with the variable stored in v50 as an argument. v50 is computed from
the previous statement invoke v52 v4. Following the data dependencies
backwards, one eventually crosses from the callee ajax_post into the call-
ing function request_ballot_encryption. In this function, one eventually
reaches the statement v46 = getfield answers while following the data de-
pendencies backwards. This statement retrieves the highly confidential votes.
Since there is no declassification contained in this data dependency path, we
have to consider this execution path as potentially dangerous. In Figure 4.17,
the blue dashed arrows highlight the suspicious path along the data dependence
edges. As in Figure 4.15, dash-dotted arrows depict control dependencies and
loosely dotted arrows represent function calls.

Note that we left the definition of declassification ambiguous: There is no
automatic decision procedure to decide whether a function is an appropriate
means of declassification. Therefore we manually analyze the resulting paths
for problematic flows whenever declassification is absent.

4.3.6.2 Integrity

Public, low input is passed to the JavaScript Helios voting client using GET
parameters, whose values are specified in the URL. Usually, these parameters
have to be endorsed (e.g., via a sanitization function) and handled with
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request_ballot_encryption

v46 = getfield answers dispatch stringify v46 invoke ajax_post 25

PARAM_CALLER

ajax_post

PARAM_CALLEE

v4

invoke v52 v4 dispatch send v50

Figure 4.17: Relevant parts of a backward slice that highlights a suspicious
path with XMLHttpRequest.send() as the seed.

great care. A breach of integrity can be observed when sanitization is absent
(see Section 3.5). In terms of information flow we can phrase this problem as a
forward flow from calls that retrieve GET parameter values, eventually leading
to a high variable without passing through an endorsement function first.

As was the case with declassification, there is no automatic way to ascertain
that a function is an appropriate means of endorsement. Therefore we, again,
require human insight to confirm whether the functions called on a path are
sufficient.

4.4 Vulnerabilities

Using the methodology described in the previous section, our automatic
analysis was able to identify two flaws in the Helios client-side source code:
one breach of integrity, and one breach of confidentiality. We verified that the
corresponding information flows can be exploited in practice in the live version
of Helios by successfully deploying corresponding exploits in a mock election,
both for our transformed version of the voting booth and the original one.
The breach of confidentiality results in a browser-independent vulnerability
leading to arbitrary script execution, whereas the breach of confidentiality is
only evident in a subset of browsers. We discuss the vulnerability originating
from the breach of integrity first.
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4.4.1 Arbitrary script execution

The first security flaw we discovered is a cross-site scripting attack. We notified
the authors of Helios of this vulnerability and they acknowledged that it is a
severe problem that they intend to fix; at the time of submission of this thesis,
this flaw is still present. As we discussed in Chapter 2, cross-site scripting is
considered one of the most critical and most prevalent security vulnerabilities
in web applications. It occurs when poorly validated user input is executed
by the browser’s interpreter. In this case, we are looking at a DOM-based
cross-site scripting exploit, that is, the browser itself is caused to insert a script
into the DOM that it then executes.

4.4.1.1 Base XSS exploit

In this case, the DOM-based XSS vulnerability arises from a specially crafted
GET parameter. Indeed, the Helios voting booth is generally loaded via a
URL such as:

http://heliosvoting.org/booth/vote.html
?election_url=/helios/elections/<UUID>

where <UUID> is the election-specific identifier which has the form of a hash.
This URL contains a GET parameter election_url accessible from the client-
side JavaScript code.3

The client parses this parameter election_url in order to load election
data, election metadata, and additional entropy from the server, as can be seen
in the code snippet extracted from the original Helios client in Figure 4.18.
With a properly formatted parameter election_url, the URLs used in these
requests invoke the Helios server API to return JSON objects containing data
to initialize the voting booth. Unfortunately, the parameter election_url is
not sanitized on the client side. Therefore, an attacker can use it to point it
towards an external resource, e.g., an attacker-controlled server, using a URL
such as:

http://heliosvoting.org/booth/vote.html
?election_url=http://attacker.evil/get-corrupt-data

In addition, the attacker sets up a server http://attacker.evil to return
JSON strings of the format expected by the Helios client, but with corrupted
contents, allowing the attacker to inject their own election data.

3The parameter is usually URL-encoded, but we present it here in URL-decoded form
for the sake of readability.
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1 var election_url = $.query.get("election_url");
2 // ...
3 $.get(election_url,
4 function(resp) {
5 /* set up election data */
6 });
7 $.getJSON(election_url + "/meta",
8 function(resp) {
9 /* set up election metadata */
10 });
11 $.get(election_url + "/get-rand",
12 function(resp) {
13 /* add server randomness to entropy */
14 });

Figure 4.18: XSS vulnerability in the original Helios voting client.

4.4.1.2 Circumventing the same-origin policy

The DOM-based XSS vulnerability described above will not in fact work when
done naively, as the browser’s same-origin policy prevents accessing external
resources. In practice, the requests will be sent and the handler functions
called, but the response variable resp will have the value undefined. However,
this can be circumvented. Indeed, nowadays web applications are so complex
and often composed of multiple scripts that they may intentionally want to
dynamically include scripts from other locations. This can be achieved using
the cross-origin resource sharing (CORS) mechanism. Using this mechanism,
web servers may allow requests from other domains to access (some of) their
resources. In the case of the attack presented in this section, it is actually the
malicious content that wants to be accessed. Hence, the attacker can abuse
the CORS mechanism to inject their script into the voting booth as follows.
The attacker needs to set up their malicious server to allow requests from
other origins to access the corrupted JSON data by sending a specially crafted
HTTP header along with this data. For illustration, Figure 4.19 shows such a
header allowing the resource sent in the HTTP body (i.e., the corrupted JSON
data) to be accessed by scripts from any origin (for this particular attack,
allowing the resource to be accessed only from the domain where the Helios
voting booth resides would equally work). The corrupted JSON data will then
be successfully passed to and processed by the corresponding handler functions
in the JavaScript Helios voting client.

Using this approach, the attacker can manipulate the election data con-
tained in returned JSON strings, with severe consequences: The attacker can
compromise the integrity of the vote by intentionally mislabeling the answers
(e.g., switching the displayed order of names) in a vote, deceiving the user into
voting for the wrong candidate. Likewise, the attacker can violate vote privacy
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1 HTTP/1.1 200 OK
2 Access-Control-Allow-Origin: *
3 Access-Control-Allow-Headers: X-Requested-With,

Origin, Content-Type, Accept↪→
4 Content-Type: application/json

Figure 4.19: CORS header to circumvent the same-origin policy for our exploit.

by substituting their own encryption key for the authentic encryption key used
to encrypt the final ballot submitted over the network.

Notably, the attack even compromises the ballot auditing process described
in Section 4.2.2. This is due to the fact that the link generated by the voting
booth contains the same GET parameter as the URL of the voting booth, and
the ballot auditing code contains the same code snippet to load election data
as the voting booth itself. In other words, the ballot auditing code contains
the very same vulnerability and is equally duped by the corrupted JSON data.

Still, while the attacker can alter JSON object-specific values to their liking,
they are still unable to execute arbitrary code, i.e., to completely control the
voting booth.

4.4.1.3 Arbitrary script execution

It turns out that the attack can be escalated even further in the original Helios
voting client (but not in our transformed client) by setting up an external
server that sends JavaScript code instead of the expected JSON object. This
leads to the script being loaded and executed by the Helios voting booth client.

This behavior is a consequence of how jQuery evaluates the $.getJSON
function when it is called with an external URL as its first argument: It tries
to circumvent the same-origin policy by itself. Instead of issuing a regular
XMLHttpRequest for the resource (as our modified code does, see Section 4.3.1),
jQuery creates a <script> tag inside the DOM’s header and sets its src
attribute to the remote URL. Since remote scripts included in this manner
are intentionally exempt from the same-origin policy, this causes the browser
to load and execute the retrieved content regardless of its origin. Normally,
$.getJSON would expect to retrieve a JSON object, which does not hold
executable content. By sending a JavaScript instead of a JSON object from
the remote server, the attacker gains the ability to execute arbitrary code.
Thus, the attacker gains complete control over the client and may, for example,
hijack a voter’s session, or log a voter’s every activity in the voting booth, and
so forth.
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1 $.post(BOOTH.election_url + "/encrypt-ballot",
2 { ’answers’: $.toJSON(BOOTH.ballot.answers) },
3 function(result) {
4 /* process encrypted ballot */
5 });

Figure 4.20: Sensitive data exposure in the original Helios voting client.

4.4.2 Leaking the vote

The second flaw uncovered by our analysis is a program path that leads to an
unencrypted ballot being openly sent over the network. Specifically, when the
voting booth’s DOM is loaded, the Helios client promptly confirms whether
the client supports web workers (scripts running in background threads). Web
workers are used in Helios to perform encryption of a voter’s choice and
generation of zero-knowledge proofs.4 Surprisingly, if the browser does not
support web workers, the Helios voting client simply requests the server to
encrypt the ballot, and sends it the plaintext ballot, as can be seen in the code
snippet presented in Figure 4.20.

Clearly, this code was included on purpose, yet it comes as a complete
surprise, as the voting booth does perform a network request while interacting
with the voter, contradicting the premise of a single-page web application and
the claim of the original paper [Adida 2008]. Sending the plaintext ballot
violates all assumptions. It could be argued that when using a secured HTTPS
connection, a passive attacker cannot read the secret ballot. However:

1. This means that an additional layer of encryption on top of Helios’s
own encryption is needed to guarantee privacy. This contradicts the
claim of the original paper [Adida 2008], where the Helios protocol alone
guarantees privacy.

2. The installation instructions of Helios from the original GitHub reposi-
tory lead to the Helios client connecting via HTTP by default. While it is
possible to run the Helios server-side code on top of an SSL/TLS termina-
tor, additional knowledge and expertise is required. The documentation
neither explains this procedure nor even mentions its necessity.

3. Even when using HTTPS, the key pair for the SSL/TLS encryption
differs from the custom key pair that is generated by Helios for each new

4If the browser does not support web workers, it is difficult to do this efficiently. Earlier
versions of Helios used a technology known as LiveConnect to implement interaction between
JavaScript and the browser’s Java Runtime Environment [Adida 2008], yet this technology
is being faded out and not commonly supported by modern browsers, so that support for
this feature has since been removed from Helios.
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election. In particular, the election public key may have been jointly
computed by a set of trustees (such that no single entity knows its private
part), while an administrator may well have access to the server’s private
HTTPS key. In addition, the server’s key pair may change less frequently
than the custom per-election key pairs.

In summary, running the Helios client in browsers that do not support
web workers leads to a clear violation of vote privacy. Such browsers include
Internet Explorer 9 and earlier, as well as all available versions of Opera
Mini [Deveria 2017]. Depending on the actual statistics used, the combined
worldwide percentage of people using affected browsers is between 12% and
36%.5 A secure way to deal with these browsers would be to simply disallow
them completely and prompt the voter to select a different browser. At the
very least, this unexpected behavior should be clearly documented and plainly
pointed out to election administrators. Currently, neither is the case.

When we notified the Helios authors of this vulnerability, they stated that
they were not concerned, since in Helios, some inherent trust is placed in
the server anyway. While they acknowledged that the claim of a single-page
web application from the first paper is no longer true, they argued that the
alternative of not supporting outdated browsers is unacceptable for practical
real-world elections (since elections must be fair). They also pointed out
that, even though the election server may indeed see plaintext ballots during
the election process due to this behavior, there is no single-owner long-term
storage of plaintext ballots. In summary, their point of view is that the need
for usability and the support of a wide range of versions of all major browsers
outweighs the threat to vote privacy.

4.5 Discussion and Takeaways

Although our analysis was performed on a modified version of the Helios client,
the attacks also apply to the original client: We confirmed these vulnerabilities
in an unmodified Helios client. The converse does not hold in general: We saw
in Section 4.4.1 how an attack that allowed arbitrary modification of a set of
variables can be amplified to arbitrary script execution. This was possible due
to jQuery’s internal behavior, and does not apply to the transformed code.

Therefore, our analysis of the transformed code is sound in the sense
that any illegal information flow found can also be reproduced in the original
code. However, it is not complete, as there may be harmful flows that it
does not uncover. While our analysis of the transformed code is useful to

5Statistics taken from http://gs.statcounter.com and http://netmarketshare.com.

http://gs.statcounter.com
http://netmarketshare.com
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uncover previously unknown vulnerabilities, a positive result stating that no
vulnerabilities were found in the transformed code can only be applied to the
original code modulo jQuery (and any other third-party libraries), as these
libraries themselves may contain vulnerabilities that may lead to exploits that
our transformed code is inherently immune to.

The original Helios paper [Adida 2008] expected auditors to closely in-
vestigate the client-side JavaScript code, and that using the jQuery library
would make it easier to understand and analyze the implementation due to its
abstraction layer on top of low-level JavaScript functionalities, which makes
the code more concise and easier to follow. However, as actual auditors of the
code, we point out that this is not necessarily the case.

From a developer’s perspective, modern browsers are more compatible
than ever: Standardized and well-documented APIs for DOM traversal and
manipulation, event handling or server communication have been adopted by
all major browsers, decreasing the demand for jQuery [Schwartz & Bloom
2014]. While it might be argued that using jQuery eases support for older web
browsers such as Internet Explorer 9 or earlier, we saw in Section 4.4.2 that
supporting such browsers induces other challenges and potential vulnerabilities
that cannot be solved by jQuery. Therefore the need to support old browsers
in a voting client, which clearly cannot afford severe implementation-level
vulnerabilities, is questionable.

From an analyst’s perspective, automated analysis becomes much harder
in the presence of libraries. Manual analysis modulo jQuery may be slightly
easier, but implies putting blind trust in the security and behavior of a
third-party library. As we have seen, this trust is not necessarily justified.
Generally speaking, any potential vulnerabilities in a third-party library may
inadvertently lead to vulnerabilities in the code they are employed in.

We conclude that a web application that does not rely on jQuery is easier
to inspect and trust. Most of the functionality provided by jQuery can be
implemented in native JavaScript code that runs in all modern browsers. The
same applies, albeit to a slightly lesser degree, for the Underscore library
and the implementation of class inheritance in JavaScript. As a side effect,
we significantly reduced the code complexity when removing these libraries:
With all uncompressed libraries included, the original version of the Helios
client code amounts to almost 500 KB and over 9000 LOC in total. Without
these libraries, the client has less than 250 KB and under 4000 LOC. Keeping
dependencies low is a good idea both for security reasons and conciseness of
the entire codebase. Note that the code transformations that we implemented
to simulate the functionality of third-party libraries used by Helios can easily
be exported into an external lightweight library, allowing our analysis to be
easily reproduced in future versions of Helios.
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We note that at the time of publication of the Helios paper, compati-
bility between browsers was a greater issue and that these libraries made
a lot more sense. With the rapid development of browsers, performance of
modern JavaScript engines and the availability of standardized, cross-platform
JavaScript APIs, the client codebase could easily be reduced to less than half
its size, easing code review processes and increasing trust in its implementation.

Clearly, our approach has limitations. In particular, the provided code
transformations had to be applied manually. Although most of them could
be automated, doing so for the plethora of existing libraries and APIs so as
to generalize the approach to the majority of web applications is a daunting
task. With the increasing compatibility between browsers and the continuous
development of ECMAScript and its standard library, the need for third-party
libraries and their use may decrease. Side effects of the standard library may
be approximated, easing analysis of JavaScript applications in the future.

Finally, we point out that the vulnerabilities we found can easily be fixed.
The confidentiality problem (Section 4.4.2) is a purposefully built (though
questionable) feature that can be removed. For the integrity problem (Sec-
tion 4.4.1), it suffices to sanitize the parameter obtained from the URL query
string to ensure that it has the expected form. We stress the fact that although
these attacks are simple, no manual code review has unveiled them so far,
which highlights the benefits of an automated analysis.

4.6 Related Work

4.6.1 Conceptual Attacks on Helios

A multitude of approaches have been recently proposed to automatically as-
certain central security properties for electronic voting [e.g., Backes et al.
2008, Delaune et al. 2009]. The analysis of Helios in particular has received
tremendous attention from the scientific community. Note that none of the
attacks mentioned in this section is related to the vulnerabilities we uncovered;
instead, they target Helios on a conceptual level. Several publications inves-
tigate privacy of ballots in Helios. In particular, the related notion of vote
independence has given rise to considerable debate: Vote independence means
that by seeing a voter’s encrypted ballot, another voter should not be able to
cast a meaningfully related ballot.

Cortier and Smyth show that Helios does not satisfy vote independence and
exploit this fact in order to compromise vote privacy [Cortier & Smyth 2011].
They discuss a countermeasure known as ballot weeding, and show that their re-
vised scheme offers vote privacy in a symbolic model. Bernhard et al. define vote
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privacy in a computational model and prove that this revised version of Helios
fulfills their definition, though only under non-standard assumptions [Bernhard
et al. 2011]. Following along that line of work, Bernhard et al. study pitfalls of
the Fiat-Shamir heuristic for non-interactive zero-knowledge proofs, which are
used in Helios, and show that a stronger variant of the heuristic leads to ballot
independence in Helios at lesser computational costs [Bernhard et al. 2012b]
than the aforementioned revised version of Helios. Later, Smyth investigates
an attack on vote privacy related to the one presented earlier by Cortier and
Smyth [Smyth 2012], and contrasts the two aforementioned solutions. A differ-
ent look at vote independence is put forth by Desmedt and Chaidos [Desmedt
& Chaidos 2012]: The authors argue that the ability to create related ballots
may in fact be desirable, since it enables voters to copy ballots from voters
whom they trust without forcing these trusted voters to reveal their choice.
They show that ballot copying is always feasible in Helios when the voter
who casts the original ballot and the voter who copies cooperate, using a
ballot blinding technique. Finally, Bernhard et al. define a measure for vote
privacy in e-voting protocols and illustrate its usefulness by using Helios as an
example [Bernhard et al. 2012a].

Helios puts an even greater concern on verifiability (both individual and
universal) than on privacy, and thus, the extent to which Helios fulfills this ex-
pectation has also been thoroughly investigated in the literature. Kremer et al.
put forth a formal definition of verifiability in a symbolic model and use it to
analyze the Helios protocol [Kremer et al. 2010]. A more fine-grained model
to assess the verifiability of e-voting protocols such as Helios is presented by
Küsters et al. [Küsters et al. 2012]. They show that Helios is vulnerable to
so-called clash attacks, wherein malicious administrators could surreptitiously
replace a voter’s ballot, and discuss countermeasures. Bernhard et al. show how
the pitfalls of the Fiat-Shamir heuristic mentioned earlier may be exploited by
colluding election administrators to break universal verifiability in Helios [Bern-
hard et al. 2012b]. Finally, Cortier et al. define the notions of weak and strong
verifiability—corresponding to varying degrees of trust assumptions—in a
computational model [Cortier et al. 2014]. They provide a generic way to
transform weakly verifiable election schemes into strongly verifiable ones, apply
their methodology to the variant of Helios by Bernhard et al. mentioned above,
and show that the resulting scheme is strongly verifiable.

Sturton et al. implement a verifiably secure voting machine [Sturton et al.
2009]. In contrast to our work, their focus lies on direct-recording electronic
voting machines, while the Helios voting client runs in a browser within
an uncontrolled environment. Moreover, they design their system with the
intent of making it amenable to verification from the start, while we verify an
already deployed real-life system. Variants of Helios have been proposed, e.g.,
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using mixnets instead of homomorphic tallying [Bulens et al. 2011], or using a
threshold encryption scheme where only a subset of the trustees may proceed to
tallying [Cortier et al. 2013]. Besides these, some usability studies [Karayumak
et al. 2011a, Karayumak et al. 2011b] have been performed on Helios and
improvements thereof.

4.6.2 Practical Attacks on Helios

Actual attacks against the implementation of Helios have not been reported
prior to this work, respectively the corresponding conference publication [Backes
et al. 2016]. Instead of exposing flaws in the implementation of Helios itself,
related work has demonstrated exploits in incidental components using Helios
as a case study. Estehghari and Desmedt show how vulnerabilities in Adobe
Reader can be exploited in order to install a malicious browser rootkit that
subverts the integrity of a user’s vote in Helios [Estehghari & Desmedt 2010].
Their attack does not identify a vulnerability in Helios; it is only used as a case
study. Similarly, Smyth and Pironti highlight logical web application flaws
that arise from using TLS in an insecure manner, and also use Helios as a case
study in order to show how this can be exploited to surreptitiously cast votes
on behalf of honest voters [Smyth & Pironti 2013].

4.6.3 Static Analysis of JavaScript

During the last decade, there has been extensive research into information flow
violations, which can break the integrity or confidentiality of programs. The
notion of noninterference was introduced by Goguen and Meseguer [Goguen
& Meseguer 1984]. Intuitively, every statement is assigned a security level;
noninterference between two security levels means that no statement of the
first security level may influence a statement of the second security level. Early
approaches to analyze information flow violations focused predominantly on
proving noninterference using type systems: Volpano et al. present a type-based
algorithm that certifies noninterference for both implicit and explicit paths
with respect to standard programming language semantics [Volpano et al.
1996]. Myers’ Java Information Flow (Jif) framework [Myers 1999] enables
tracking of information flow using annotations in the Java source code, while
Shankar presents a taint analysis for C programs using a constraint-based
type-inference engine [Shankar et al. 2001]. However, type-based approaches
tend to be excessively complex and conservative.

Snelting et al. [Snelting et al. 2006] are the first to connect the notion of
noninterference with program dependence graphs by showing that, intuitively,
if a statement s1 is in the backwards slice of a statement s2, then the security
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level of s1 interferes with the security level of s2. Hammer et al. leverage
this observation to implement an algorithm to check noninterference for Java
programs [Hammer et al. 2006].

Indeed, despite the obvious dangers posed by vulnerable client-side code,
research on static analysis has primarily focused on other languages more
suited for server-side programming, most notably Java [e.g., Tripp et al. 2009].
In contrast, static analysis of JavaScript code is scarce, which may be due to
the numerous challenges induced by the language’s dynamic nature and other
obstacles, as discussed in Section 4.1. One of the earliest works in this area
was presented by Vogt et al., who perform a dynamic taint analysis inside
the browser to prevent XSS attacks, but use a simple static pass through the
tainted scope to improve their results [Vogt et al. 2007]. In the same vein,
Chugh et al. propose a staged approach [Chugh et al. 2009]: First, a static
analysis is applied to as much of the code as possible, then residual analysis is
performed when the code is dynamically loaded. Guha et al. use static analysis
techniques to extract a model of expected client behavior from JavaScript
programs as seen from the server and use it to build an intrusion-prevention
proxy for the server [Guha et al. 2009].

Guarnieri and Livshits use their tool Gatekeeper to detect security problems
according to different security policies in JavaScript widgets using static
pointer analysis [Guarnieri & Livshits 2009]. In 2011, Guarnieri et al. present
their tool Actarus, which enables purely static taint analysis for JavaScript
code [Guarnieri et al. 2011]. While sound, their analysis has not been shown
to scale to large applications. In a follow-up paper, Tripp et al. present
Andromeda [Tripp et al. 2013] and improve scalability by computing data flow
propagations and potentially vulnerable information flows on demand rather
than to eagerly compute a complete data flow solution. Unfortunately, none
of these tools is openly available.

Jensen et al. model the HTML DOM and browser API [Jensen et al.
2011] as an extension of earlier work on type analysis [Jensen et al. 2009].
Richards et al. [Richards et al. 2011] dispel common myths on the use of eval
in a large-scale study. In turn, Jensen et al. show how eval can, in certain
cases, be safely removed to aid static analysis [Jensen et al. 2012].

For JavaScript, research has been more intensively pursued in the area of
dynamic analysis. As discussed earlier, dynamic analysis is more precise than
static analysis, but it typically cannot cover all possible program paths and
thus cannot be used to reason about all information flows [Sabelfeld & Myers
2003]. Since dynamic analysis is not the focus of this thesis, we refer the reader
to works primarily concerned with dynamic JavaScript analysis [e.g., Askarov
& Sabelfeld 2009, Meyerovich & Livshits 2010, Curtsinger et al. 2011, Hedin &
Sabelfeld 2012, Hedin et al. 2016] for a deeper insight into this line of work.
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4.7 Summary

We performed the first implementation-level analysis of the Helios JavaScript
voting client. This analysis is relevant from two different perspectives.

First, Helios constitutes one of the most widely deployed and analyzed
remote electronic voting protocols. Although its security properties have
been an active subject of research, this research focused on a conceptual
level, implicitly assuming that the implementation accurately reflects the
protocol’s intentions. We have shown that this is not necessarily the case and
uncovered two severe flaws which, despite thorough investigations, a cautious
implementation, and the vulnerabilities’ simplicity, had remained unnoticed
thus far. Considering highly sensitive systems such as remote electronic voting
schemes—which may constitute a highly attractive target for extraordinarily
resourceful adversaries—it is essential to analyze such systems not only on a
conceptual, but also on a concrete implementation level. Our methodology
addressed the gap between real-world and statically analyzable code, and we
expect approaches in the same vein can be applied in a variety of related
settings, finding vulnerabilities in client implementations that were overlooked
during manual audits and conceptual or algorithmic investigations.

Second, we showed how to overcome the intricate technical challenges
associated with analyzing a real-world JavaScript web application with a
complex set of dependencies. This kind of research is highly relevant in
a world where the number of web applications increases continuously and
security is a growing and serious concern. We provided code transformations,
replacing functionality that cannot be analyzed using current static analysis
methods with functionally equivalent code. Using state-of-the-art tools of
static analysis, we then reduced a highly complex system dependence graph
consisting of 7 million nodes to a handful of potentially harmful flows that
may compromise both privacy and integrity of the analyzed application. We
then faithfully modeled all information flows of the program as a system
dependence graph. Slicing reduced this 7 million node graph to a handful
of potentially harmful information flows. Further inspection revealed that
these flows correspond to actual vulnerabilities: a major XSS vulnerability,
which was escalated to arbitrary script execution, and a minor flaw that led to
leaking the plaintext ballot.

JavaScript is one of the core web technologies to devise client-side appli-
cations. On the server side, albeit the use of JavaScript is possible using
frameworks such as Node.js, other languages dominate. One of the most popu-
lar languages for developing server-side web applications is PHP. In the next
chapter, we present a new framework specifically designed to allow scanning
PHP applications for vulnerabilities.





Chapter 5

A Framework for Static PHP
Code Analysis

Contents
5.1 Code Property Graphs . . . . . . . . . . . . . . . . . . . 89

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Conceptual Overview . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Graph Traversals . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.3 Modeling Vulnerabilities . . . . . . . . . . . . . . . . . . . 98

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Discussion and Limitations . . . . . . . . . . . . . . . . . 114

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6.1 Discovery of Vulnerabilities in PHP Code . . . . . . . . . 116

5.6.2 Flaw Detection Using Query Languages and Graphs . . . 118

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

The most popular and widely deployed server-side language for web appli-
cations is undoubtedly PHP. Today, it powers more than 80% of the top

ten million websites [W3Techs 2017b], including some of the Web’s busiest
platforms such as Facebook, Wikipedia, Flickr, or Wordpress, and contributes
to almost 140,000 open-source projects on GitHub [Zapponi 2017]. Yet from
a security standpoint, the language is poorly designed: It typically yields a
large attack surface (e.g., every PHP script on a server can potentially be used
as an entry point by an attacker) and bears inconsistently designed functions
with often surprising side effects [Munroe 2012], all of which a programmer
must be aware of and keep in mind while developing a PHP application.
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To better understand the design of PHP, it is interesting to have a brief
look at its history. Not unlike JavaScript, the design of the PHP language
was not laid out after careful consideration and planning. On the contrary,
originally it was not even a programming language. Between 1993 and 1994,
when the world of web development was still young, Rasmus Lerdorf was
developing dynamic back ends for various websites, mostly using C. Since this
meant recompiling the entire web server whenever he made changes, he decided
to add a standard library of very common web functions that he frequently
needed to the web server. Additionally, he also enriched the web server with
a simple state machine that had but two states: in-HTML mode and in-tag
mode. The web server used this state machine to process templates: When it
hit the end of a tag, it would lookup the string that it found inside the tag
and call the matching C function in the library. Ultimately, the web server
would substitute the output of the function for the tag. As Lerdorf shared his
framework, various people and web companies kept asking him to add more
functions to suit their needs to the library, and he obliged. Eventually, partly
due to differing wishes of his users, partly to the advent of different browsers
which made it necessary to serve different HTML code depending on a client,
Lerdorf added logical tags to the macro language. Thus, control flow came into
being in PHP, and a full-fledged programming language ultimately evolved
from it. As Lerdorf put it himself,

“I don’t know how to stop it, there was never any intent to write a
programming language [...] I have absolutely no idea how to write
a programming language, I just kept adding the next logical step
along the way.”

— Rasmus Lerdorf [Lerdorf 2003]

The first version of PHP was released in December of 1994. As more
people started helping in the development of PHP, its standard library grew
increasingly complex. This may explain, to a degree, why PHP today bears a
patchwork of fixes and inconsistently designed functions. In addition, the PHP
language appears to be well-suited for beginners and hobby programmers in
web development, whose programming knowledge typically comprises HTML,
CSS, and JavaScript. When they want to, say, connect their application to a
database, they may not desire to make an extensive paradigm shift towards
server-side web development technologies such as Java EE, JSP, Ruby on Rails,
Python/Django, and so forth. PHP addresses this requirement with its shallow
learning curve and ease of use.

As a result of both its confusing and inconsistent APIs and a lack of
expertise of some of its users, PHP applications are particularly prone to
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programming mistakes that may lead to web application vulnerabilities such as
SQL injections and cross-site scripting. Combined with its prevalence on the
Web, PHP therefore constitutes a prime target for automated security analyses
to assist developers in avoiding critical mistakes and consequently improve the
overall security of applications on the Web. Indeed, a considerable amount of
research has been dedicated to identifying vulnerable information flows for PHP
code in a machine-assisted manner [Jovanovic et al. 2006, Jovanovic et al. 2010,
Dahse & Holz 2014a, Dahse & Holz 2014b]. All these approaches successfully
identify different types of PHP vulnerabilities in web applications. However,
all of these approaches have only been evaluated in a controlled environment
of about half a dozen projects. Therefore it is unclear how scalable they are
and how well they perform in much less controlled environments of very large
sets of arbitrary PHP projects. (See Section 5.6 on related work for details).
In addition, these approaches are hardly customizable, in the sense that they
cannot be configured to look for various different kinds of vulnerabilities.

The research question of how to detect PHP application vulnerabilities at
large scale in an efficient manner, whilst maintaining an acceptable precision
and the ability to customize the detection process as needed, has received
significantly less attention so far. Yet it is a problem that is crucial to cope
with, given the rapidly increasing number of web applications. In this chapter,
we present a framework that addresses this problem.

Contributions. We propose a highly scalable and flexible approach for ana-
lyzing PHP applications that may consist of millions of lines of code. To this
end, we leverage the recently proposed concept of code property graphs [Yam-
aguchi et al. 2014]: These graphs constitute a canonical representation of code
incorporating a program’s syntax, control flow, control dependencies, and data
dependencies in a single graph structure, which we further enrich with call
edges to allow for interprocedural analysis. These graphs are then stored in a
graph database that lays the foundation for efficient and easily programmable
graph traversals amenable to identifying flaws in program code. We show that
this approach is well-suited to discover vulnerabilities in high-level, dynamic
scripting languages such as PHP at a large scale. In addition, it is highly
flexible: The bulk work of generating code property graphs and importing them
into a database is done in a fully automated manner. Subsequently, an analyst
can write traversals to query the database as desired so as to find various kinds
of vulnerabilities: For instance, one may look to detect common code patterns
or look for specific flows from given types of attacker-controller sources to
given security-critical function calls that are not appropriately sanitized; what
sources, sinks, and sanitizers are to be considered may be easily specified and
adapted as needed.
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We show how to model typical web application vulnerabilities using such
graph traversals that can be efficiently run by the database back end and
evaluate our approach on a set of 1,854 open-source PHP projects on GitHub.
The three main contributions of this chapter are the following:

• Introduction of PHP code property graphs. We are the first to employ
the concept of code property graphs for a high-level, dynamic scripting
language such as PHP. We implement code property graphs for PHP
using static analysis techniques and additionally augment them with call
edges to allow for interprocedural analysis. These graphs are stored in
a graph database that can subsequently be used for complex queries.
The generation of these graphs is fully automated, that is, all that
users have to do to implement their own interprocedural analyses is to
write such queries. We make our implementation publicly available to
facilitate independent research. To the best of our knowledge, this is the
first open-source framework that allows to analyze PHP code in a fully
customizable way, i.e., depending on an analyst’s requirements.

• Modeling web application vulnerabilities. We show that code property
graphs can be used to find typical web application vulnerabilities by mod-
eling such flaws as graph traversals, i.e., fully programmable algorithms
that travel along the graph to find specific patterns. These patterns
are undesired flows from attacker-controlled input to security-critical
function calls without appropriate sanitization routines. We detail such
patterns precisely for attacks targeting both server and client, such as
SQL injections, command injections, code injections, arbitrary file ac-
cesses, cross-site scripting and session fixation. These graph traversals
demonstrate the feasibility of our technique. In addition, more traversals
may easily be written by PHP application developers and analysts to
detect other kinds of vulnerabilities or patterns in program code.

• Large-scale evaluation. To evaluate the efficacy of our approach, we report
on a large-scale analysis of 1,854 popular PHP projects on GitHub totaling
almost 80 million lines of code. In our analysis, we find that our approach
scales well to the size of the analyzed code. In total, we find 78 SQL
injection vulnerabilities, 6 command injection vulnerabilities, 105 code
injection vulnerabilities, 6 vulnerabilities allowing an attacker to access
arbitrary files on the server, and one session fixation vulnerability. XSS
vulnerabilities are very common and our tool generated a considerable
number of reports in our large-scale evaluation for this class of attack.
Inspecting only a small sample (under 2%) of these reports, we find 26

XSS vulnerabilities.
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Outline. The remainder of this chapter is organized as follows: In Section 5.1,
we recapitulate the concept of code property graphs and briefly discuss how
we augment them with call edges to allow for interprocedural analysis. In
Section 5.2, we present a conceptual overview of our approach, follow up
with the necessary techniques to represent and query PHP code property
graphs in a graph database, and discuss how typical classes of vulnerabilities
can be modeled using traversals. Subsequently, Section 5.3 presents the
implementation of our approach, while Section 5.4 presents the evaluation
of our large-scale study. Following this, Section 5.5 discusses our technique,
Section 5.6 presents related work, and Section 5.7 summarizes this chapter.

5.1 Code Property Graphs

Our work builds on the concept of code property graphs, a joint represen-
tation of a program’s syntax, control flow, and data flow, first introduced
by Yamaguchi et al. [Yamaguchi et al. 2014, Yamaguchi 2015] to discover
vulnerabilities in C code. The key idea of this approach is to merge classic
program representations (see Chapter 3) into a so-called code property graph.
More precisely, in the original paper, syntactical properties of the code are
inferred from abstract syntax trees, control flow from the control flow graph,
and data flow from program dependence graphs. By combining these struc-
tures into a single graph structure, we obtain a single global view enriched
with information describing this code, called the code property graph. This
joint representation is well-suited to mine program code for patterns linked
to vulnerabilities, whether these vulnerabilities are due to purely syntactical
mistakes, arise from vulnerable control or data flows, or a combination of these
(see Chapter 3 for a discussion on vulnerability types). However, it does not
yet allow us to reason about vulnerabilities that arise from control or data
flows across function calls. Therefore, we also merge call graphs into the final
structure so as to enable interprocedural analysis.

For illustration, recall the running example from Chapter 3, which we
extend with the definition of the called function query as shown in Figure 5.1.
The resulting code property graph of the entire system composed of the two
functions foo and query is depicted in Figure 5.2. For the sake of illustration,
this example suffers from a trivial SQL injection vulnerability. Using the
techniques presented in this chapter, this vulnerability can be easily found.

As can be seen in Figure 5.2, the nodes of the code property graph are
the same as the nodes of the abstract syntax tree (see Section 3.1.2), with
the sole exception that the ENTRY and EXIT nodes known from the control
flow graph (see Section 3.2.1) have been added to the code property graph.
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1 <?php
2 function foo() {
3

4 $x = $_GET["id"];
5

6 if(isset($x)) {
7 $sql = "SELECT * FROM users
8 WHERE id = ’$x’";
9 query($sql);
10 }
11 }
12 ?>

1 <?php
2 function query( $sql) {
3

4 mysql_query($sql);
5 }
6 ?>

Figure 5.1: Example PHP code for the code property graph in Figure 5.2.

These two nodes, as well as the AST nodes that correspond to statements
or predicates, are simultaneously the nodes of the control flow graph, and
are highlighted in blue in Figure 5.2. Control flow is indicated by dotted
arrows labeled with ε, true or false as discussed in Section 3.2.1. Our actual
implementation has some additional constructs for handling foreach loops
(that is, it has control flow edges labeled with next and complete) as well as
for handling exceptions (for exceptions, statements within a try block are
connected with a control flow edge labeled exception to the first statement of
the corresponding catch block). Since the nodes of the program dependence
graph are the same as the nodes of the control flow graph (except for the ENTRY

and EXIT nodes), they can also be connected with control and data dependence
edges: Consistently with Chapter 3, control dependence edges are dash-dotted,
and data dependence edges are dashed in Figure 5.2. In addition, control
dependence edges are annotated with Ctrue and Cfalse, and data dependence
edges are annotated with variable names, as discussed in Section 3.3.3. Notably,
we also consider the PARAM node for the parameter sql of the function query as
a node of the control flow and program dependence graphs. This is due to the
fact that a parameter can be seen, in a sense, as a statement which declares a
variable: Note that there is a data dependence edge from the PARAM node to the
CALL node of function mysql_query. This edge is essential for interprocedural
analysis, as we will see in Section 5.2.3.4. Lastly, a loosely dotted arrow from
the call node in function foo is connected to the function declaration node of
function query: This is a call edge. Using call edges allows us to map calls
to the called functions, and ultimately arguments to parameters, which is of
paramount importance for an interprocedural analysis. Using call edges from
callers to callees, as well as data dependence edges from parameters to the
statements that use them, we can trace vulnerable information flow across
functions, as we discuss in Section 5.2.3.4.

We now proceed to explain our methodology for discovering vulnerabilities
in PHP code using these interprocedural code property graphs.
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Figure 5.2: Interprocedural code property graph of the example in Figure 5.1.
Nodes of the control flow and program dependence graphs are colored in blue,
all other nodes are yellow. Solid arrows denote parental relationship of the
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5.2 Methodology

In this section, we present the methodology of our work. We first give a concep-
tual overview of our approach, discussing the representation and generation of
code property graphs from PHP code. Subsequently, we discuss the viability of
code property graphs for the purpose of finding web application vulnerabilities
and introduce the notion of graph traversals. We then follow up with details
on how different types of web application vulnerabilities can be modeled.

5.2.1 Conceptual Overview

Property graphs are a common graph structure featured by many popular
graph databases such as Neo4J, OrientDB or Titan. A property graph (V,E)

is a directed graph consisting of a set V of vertices (equivalently nodes) and a
set E of edges. Every node and edge has a unique identifier and a (possibly
empty) set of properties defined by a map from keys to values. In addition,
nodes and edges may have one or more labels, denoting the type of the node
or of the relationship.

Each of the structures presented in Chapter 3 captures a unique view on
the underlying code. We define code property graphs as a combination of
abstract syntax trees, control flow graphs, program dependence graphs and
call graphs as detailed in Section 5.1. In particular, this definition extends
the original definition [Yamaguchi et al. 2014] by incorporating call graphs
to enable interprocedural analysis. Formally, a code property graph (V,E)

is a property graph where the set of nodes V comprises the nodes of the
abstract syntax tree as well as artificial ENTRY and EXIT nodes for each function.
The set of edges E is the union of the set of edges of the abstract syntax
tree, the control flow graph, the program dependence graph and the call
graph. Nodes and edges are labeled and have a set of properties describing all
relevant information as appropriate (we detail the relevant properties in the
next sections).

The first step of our analysis is to prepare code property graphs for PHP
code. This involves parsing the code and generating ASTs, then CFGs, then
PDGs and finally call graphs. Next, the property graph is imported into a
graph database. Subsequently, vulnerabilities can be described as patterns
formulated as queries to the graph database. Sending these queries to the
graph database outputs a set of suspicious paths which an analyst may then
inspect. In this section, we describe the process of the generation of the code
property graph in more detail, before we turn our attention to the graph
database queries in the next section.
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5.2.1.1 Parsing and Generation of Abstract Syntax Trees

Abstract syntax trees constitute the first step in our graph generation process.
In order to model the code of an entire PHP project with syntax trees, we start
by recursively scanning the directory for any PHP files. For each identified
file, PHP’s own internal parser [PHP Group 2014] is used to generate an AST
representing the file’s PHP code. The parse process is robust in the sense that
no other resources besides this file are needed. In particular, if a PHP file
imports other PHP files (i.e., using include or require), then the imported
files are not needed to generate the AST of the file being parsed. Hence, even
when only parts of the source code are known, our analysis can be performed
only on these known parts (as opposed to a compiler or interpreter which
requires the entire source code to build a binary or run a program).

Each node of the AST generated by the parser is a node of the property
graph that we aim to generate: It is labeled as an AST node and has a set
of properties. The first of these properties is a particular AST node type:
For instance, there is a type for representing assignments, for function call
expressions, for function declarations, etc. In all, there is a total of 103 different
node types. For the sake of completeness, these are listed in Appendix B.1.
Another property is a set of flags, e.g., to specify modifiers of a method
declaration node. Further properties include a line number denoting the
location of the corresponding code, and—in the case of leaf nodes—a property
denoting the constant value of a particular node (such as the contents of a
hardcoded string), as well as a few other technical properties that we omit
here for simplicity. Edges of the AST bear the label PARENT_OF.

Additionally, a file node is created for the parsed file and connected to its
AST’s root node, and directory nodes are created and connected to each other
and to file nodes in such a way that the resulting graph mirrors the project’s
filesystem hierarchy. File and directory nodes are labeled as Filesystem
nodes with a a property storing their path and a flag to distinguish files and
directories. Edges are labeled as DIRECTORY_OF when the source node is a
directory, and as FILE_OF to connect a file node to a file’s AST root node.

Finally, note that control flow graphs and program dependence graphs,
which we want to generate next, are defined per function only (see Chapter 3).
Yet PHP is a scripting language and commonly contains top-level code, i.e.,
there may be code in a PHP file that is not wrapped in a function, but executed
directly by the PHP interpreter when loading the file. In order to be able to
construct CFGs and PDGs for this code as well, we create an artificial top-level
function AST node for each file during AST generation, holding that file’s
top-level code. This top-level function node constitutes the root node of any
PHP file’s syntax tree.
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Similarly, since PHP is object-oriented, some code may be declared on the
top-level scope of a given class (normally, this code contains field and method
declarations). Such code belongs neither to the top-level code of a file, nor
to any other explicitly declared function. Therefore, we also create artificial
function nodes for classes to contain such code.

5.2.1.2 Control Flow Graphs

The next step before generating control flow graphs is to extract the individual
function subtrees from the abstract syntax trees of the parsed files. Function
subtrees in these ASTs may exist side by side, or may be nested within each
other: For instance, a file’s artificial top-level function may contain a particular
function declaration, which in turn may contain a closure declaration, etc.
We thus built a function extractor that extracts the appropriate subtrees for
control flow graph and program dependence graph generation and is able to
cope with nested functions: Whenever a function subtree contains another
function subtree, the function extractor returns a subtree for each of the two
functions: The subtree of the outer function contains the inner function’s root
node, but not its body. The inner function contains both its root node and
its body. In the end, all PHP code is contained in a function, suitable for
CFG and PDG generation. These subtrees are then individually processed
by the CFG and PDG generating routines. Essentially, CFGs and PDGs are
generated for all types of functions, and nested functions are properly handled.

To generate a control flow graph from an abstract syntax tree of a function,
we first identify those AST nodes that are also CFG nodes, i.e., nodes that
represent statements or predicates (see Figure 5.2). Control flow graphs can
then be calculated from the AST by providing semantic information about all
program statements that allow a programmer to alter control flow. Calculation
is performed by defining translation rules from elementary abstract syntax
trees to corresponding control flow graphs, and applying these to construct
a preliminary control flow graph for a function. This preliminary control
flow graph is subsequently corrected to account for unstructured control flow
statements (see Section 3.2.1 for details). In addition, control flow graph
generation also generates artificial ENTRY and EXIT nodes for each function and
incorporates them in the code property graph as illustrated in Figure 5.2.
These nodes are labeled as Artificial nodes and have a set of properties,
such as a flag to distinguish ENTRY and EXIT nodes, the node id of the function
node that they belong to, the function name and a few other (rather technical)
properties. Edges of the CFG bear the label FLOWS_TO and have a property to
indicate the condition of the flow.
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5.2.1.3 Program Dependence Graphs

As explained in Section 3.3, program dependence graphs can be generated
with the help of the control flow graph. For control dependencies, the post-
dominator tree must be computed from the control flow graph first. This can
be done generically without providing any additional semantic information, as
shown in Section 3.3.1. Data dependencies are slightly more involved, as they
require us to run a use/def analysis on the individual nodes of the control flow
graph to determine, for each statement or predicate, which variables are used
and which variables are (re-)defined. This clearly requires additional semantic
information. As a simple example, we know that the variable on the left of
an assignment node is defined in the assign statement, whereas all variables
on the right of the assignment node are used in the assign statement. Once
this information has been calculated for each CFG node, that information
is propagated backwards along the control flow edges to solve the reaching
definitions problem, as detailed in Section 3.3.2. Its solution gives rise to
the data dependence edges of the program dependence graph. The generated
edges bear the labels CONTROLS for control dependencies and REACHES for data
dependencies, with properties to indicate the condition of a control dependence,
respectively the name of the variable in the case of a data dependence.

5.2.1.4 Call Graphs

The final step in our graph generation process is the generation of call graphs.
This must be done at the end since we need to first store all function nodes
to be able to map all call nodes appropriately. More precisely, at the time of
generation of the abstract syntax trees, we keep track of all call nodes that
we encounter, as well as of all function declaration nodes. Once we finish
the parsing process for all files of a particular project (and we can thus be
confident that we have collected all function declaration nodes), those call
nodes are connected to the corresponding function declaration nodes with
call edges (labeled CALLS). We naturally resolve namespaces (namespace X),
imports (use X) and aliases (use X as Y) at parse time. Function names
are resolved within the scope of a given project, i.e., we do not need to
analyze include or require statements, which are often only determined
at runtime; instead, all functions declared within the scope of a project are
known during call graph generation. Note that there are four types of calls
in PHP: function calls (foo()), static method calls (A::foo()), constructor
calls (new A()), and dynamic method calls ($a->foo()). The first three types
are mapped unambiguously. For the last type, we only connect a call node to
the corresponding method declaration if the called method’s name is unique
within the project, or if the object reference is $this (as in $this->foo()),
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since these references can be resolved statically without ambiguities. If several
methods with the same name are known from different classes and a reference
different from $this is used, we do not construct a call edge, as that would
require a highly involved type inference process for PHP that is out of the
scope of this project (and indeed, since PHP is a dynamically typed language
and because of its ability for reflection, it is not even possible to statically
infer every object’s type). However, looking at the empirical study conducted
on 1,854 projects that we present in Section 5.4, we can report that this
approach allowed us to correctly map 78.9% of all dynamic method call nodes.
Furthermore, out of a total of 13,720,545 call nodes, there were 30.6% function
calls, 54.2% dynamic method calls, 6.4% constructor calls, and 8.8% static
method calls. This means that 88.6% of all call nodes were successfully mapped
in total.

5.2.1.5 Combined Code Property Graph

The final graph represents the entire codebase including the project’s structure,
syntax, control flow, and data dependencies as well as interprocedural calls. It
is composed of AST, Filesystem, and Artificial nodes (where the majority
of nodes are AST nodes, while filesystem nodes represent files and directories,
and artificial nodes are used for entry and exit nodes of functions). Some of the
AST nodes (namely, those AST nodes representing statements or predicates)
are simultaneously CFG and PDG nodes. Additionally, the code property
graph has seven types of edges: directory edges, file edges, syntax tree edges,
control flow edges, control dependence edges, data dependence edges, and call
edges. This graph is the foundation of our analysis.

5.2.2 Graph Traversals

Code property graphs can be used in a variety of ways to identify vulnerabilities
in applications. For instance, they may be used to identify common code
patterns known to contain vulnerabilities on a syntactical level, while abstract-
ing from formatting details or variable names; to identify control-flow type
vulnerabilities, such as failure to release locks; or to identify taint-style type
vulnerabilities, such as attacker-controlled input that flows into security-critical
function calls, etc.; see Chapter 3 for a detailed discussion.

Graph databases are optimized to contain heavily connected data in the
form of graphs and to efficiently process graph-related queries. As such, they
are an ideal candidate to contain our code property graphs. Then, finding
vulnerabilities is only a matter of writing meaningful database queries that
identify particular patterns and control/data flows an analyst is interested in.
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Such database queries are written as graph traversals, i.e., fully programmable
algorithms that travel along the graph to collect, compute, and output desired
information as specified by an analyst. Graph databases make it easy to
implement such traversals by providing a specialized graph traversal API.

Apart from logic bugs, most of the vulnerabilities which occur in web appli-
cations can be abstracted as information-flow problems violating confidentiality
or integrity of the application, as we discussed in Section 3.5. A breach of
confidentiality occurs when secret information, e.g., database credentials, leaks
to a public channel, and hence to an attacker. In contrast, attacks on integrity
are data flows from an untrusted, attacker-controllable source, such as an
HTTP request, to a security-critical sink. To illustrate the use of code property
graphs to identify vulnerabilities, we focus on information-flow vulnerabilities
threatening the integrity of applications. Given a specific application for
which we can determine what data should be kept secret, finding breaches of
confidentiality is equally possible with this technique. However, for doing so
at scale, the core problem is that it is hard or even impossible to define in
general what data of an application should be considered confidential and must
therefore be protected. Thus, to find information-flow vulnerabilities violating
confidentiality would require us to take a closer look at each application and
identify confidential data—such as we did in Chapter 4, where we considered
the variable containing the votes cast by a voter in the Helios voting client as
confidential: This required a manual inspection of the source code to identify
the confidential variable. In contrast, it is generally much easier to determine
what data originates from an untrusted source and to identify several types of
generally security-critical sinks. We discuss these sources and security-critical
function calls in the context of PHP code in Section 5.2.3. Since we are inter-
ested in performing a large-scale analysis, we concentrate on threats targeting
the integrity of an application.

Before we proceed to more complex traversals to find information flows, we
implement utility traversals that are aware of our particular graph structure
as well as the information it contains and define typical travel paths that often
occur in this type of graph. These utility traversals are used as a base for more
complex traversals. For instance, we define utility traversals to travel from an
AST node to its enclosing statement, its enclosing function, or its enclosing
file, traversals to travel back or forth along the control or the data flow, and so
forth. We refer the reader to the work by Yamaguchi et al. [Yamaguchi et al.
2014] for a more detailed discussion of utility traversals.
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5.2.3 Modeling Vulnerabilities

As discussed before, although our methodology can be applied to detect
confidentiality breaches, we cannot do this for large-scale analyses, due to the
inherent lack of a notion of secret data. Hence, we focus on threats to the
integrity of an application. Even though we are conducting an analysis of
server-side PHP code, we are not limited to the discovery of vulnerabilities
resulting in attacks which target the server side (e.g., SQL injections or
command injections). For example, cross-site scripting and session fixation can
be caused by insecure server-side code, but clearly target clients. Our analysis
allows us to detect both attacks, i.e. attacks targeting the server and attacks
targeting the client. In the remainder of this section, we first discuss sources
which are directly controllable by an attacker. Subsequently, we follow up with
discussions of attacks targeting the server and attacks targeting the client, all
of which we aim to discover in our large-scale case study in Section 5.4. We
finish by describing the process of detecting illicit flows.

5.2.3.1 Attacker-Controllable Input

In the context of a web application, all data which is directly controllable by an
attacker must be transferred in an HTTP request. For the more specific case
of PHP, this data is contained in multiple global associative arrays. Among
these, the most important ones are [PHP Group 2017b]:

• $_GET: This array contains all GET parameters, i.e., a key/value repre-
sentation of parameters passed in the URL. Although the name might
suggest otherwise, this array is also present in POST requests, containing
the URL parameters.

• $_POST: All data which is sent in the body of a POST request is contained
in this array. Similarly to $_GET, this array contains decoded key/value
pairs, which were sent in the POST body.

• $_COOKIE: Here, PHP stores the parsed cookie data contained in the
request. This data is sent to the server in the Cookie header.

• $_REQUEST: This array contains the combination of all the above. The
behavior in cases of collisions can be configured, such that, e.g., $_GET
is given precedence over $_COOKIE.

• $_SERVER: This array contains different server-related values, e.g., the
server’s IP address. More interestingly, all headers transferred by the
client are accessible via this array, e.g., the user agent. For our analysis,
we consider accesses to this array for which the key starts with HTTP_,
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since this is the default prefix for parsed HTTP request headers, as well
as accesses for which the key equals QUERY_STRING, which contains the
query string used to access the page.

• $_FILES: Since PHP is a web programming language, it naturally accepts
file uploads. This array contains information on and content of uploaded
files. Since, e.g., MIME type and file name are attacker-controllable, we
also consider this as a source for our analysis.

We also consider some legacy variables to account for PHP code written for
older versions of the PHP interpreter. The exact sources that we consider for
each vulnerability type we are interested in are listed in Appendix B.2.

The values of all of these variables can be controlled or at least influenced
by an attacker. In the case of GET and POST parameters, an attacker may
even cause an innocuous victim to call a PHP application with an input of
their choice (e.g., using forged links), while the attacker can usually only
modify their own cookies. Yet all of them can be used by an attacker to
call an application with unexpected input, allowing them to trigger contained
vulnerabilities.

5.2.3.2 Attacks Targeting the Server

For server-side attacks, a multitude of vulnerability classes has to be consid-
ered. In the following, we recall each of the classes that we are interested in
from Chapter 2. More importantly, we detail, for the specific case of PHP, the
corresponding security-critical function calls that may induce a vulnerability
when used improperly. We also detail specific sanitizers which ensure (when
used properly) that a flow cannot be exploited. The full list of sanitizers that
we consider in the context of each vulnerability can be found in Appendix B.2.

SQL Injections (cf. Section 2.2.1) are vulnerabilities in which an at-
tacker exploits a flaw in the application to inject SQL commands of their
choosing. While, depending on the database, the exact syntax is slightly dif-
ferent, the general concept is the same for all database engines. Here, we look
for three major sinks, namely mysql_query, pg_query, and sqlite_query.
For each of these, specific sanitizers exist in PHP, such as for instance
mysql_real_escape_string, pg_escape_string or sqlite_escape_string.

Command Injection (cf. Section 2.2.2) is a type of attack in which
the goal is to execute commands on the shell. More specifically, PHP offers
different ways of running an external program: A programmer may use popen
to execute a program and pass arguments to it, or they can use shell_exec,
passthru, or backtick operators to invoke a shell command. PHP provides
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the functions escapeshellcmd and escapeshellarg, which can be used to
sanitize commands and arguments, respectively.

Code Injection (cf. Section 2.2.3) attacks occur when an adversary is
able to force the application to execute PHP code of their choosing. Due to
its dynamic nature, PHP allows the evaluation of code at runtime using the
language construct eval. In cases where user input is used in an untrusted
manner in invocations of eval, this can be exploited to execute arbitrary PHP
code. As the necessary payload depends on the exact nature of the flawed code,
there is no general sanitizer which may be used to thwart all these attacks.

In addition, PHP applications might be susceptible to file inclusion attacks.
In these, if an attacker can control the values passed to include or require,
which read and interpret the passed file, PHP code of their choosing can also be
executed. If the PHP interpreter is configured accordingly, even remote URLs
may be used as arguments, resulting in the possibility to load and execute
remote code. However, even when the PHP interpreter is configured to evaluate
local files only, vulnerabilities may arise: For instance, if a server is shared by
several users, a malicious user might create a local PHP file with malicious
content, make it world-readable and exploit another user’s application to read
and execute that file. Another scenario would be that a PHP file already exists
that, when included in the wrong environment, results in a vulnerability.

Arbitrary File Reads/Writes (cf. Section 2.2.4) can result when some
unchecked, attacker-controllable input flows to a call to fopen. Based on the
applications and the access mode used in this call, an attacker can therefore
either read or write arbitrary files. In particular, an attacker may use .. in
their input to traverse upwards in the directory tree to read or write files
unexpected by the developer. These vulnerabilities are often defended against
by using regular expressions, which aim to remove, e.g., dots from the input.

5.2.3.3 Attacks Targeting the Client

Apart from the previously discussed attacks which target the server, we review
two additional classes of flaws which affect the client, discussed in detail
in Chapter 2. More specifically, these are cross-site scripting and session
fixation. We now outline the corresponding security-critical function calls for
the specific case of PHP.

For these types of vulnerabilities, cookies are not a critical source. This
is due to the fact that an attacker cannot modify the cookies of their victim
(without having exploited the XSS in the first place). Rather, they can forge
HTML documents which force the victim’s browser to send GET or POST
requests to the flawed application. In Appendix B.2, we list the exact sources
and sanitizers that we deem appropriate in the context of each vulnerability.
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Cross-Site Scripting (XSS) (cf. Section 2.3.1) is an attack in which the
attacker is able to inject JavaScript code in an application. More precisely, the
goal is to have this JavaScript code execute in the browser of a desired victim.
Since JavaScript has full access to the document currently rendered, this allows
the attacker to control the victim’s browser in the context of the vulnerable
application. In the specific case of PHP, a reflected cross-site scripting attack
may occur when input from the client is reflected back in the response using the
calls echo or print. For these attacks, PHP also ships built-in sanitizers. We
consider these, such as htmlspecialchars, htmlentities, or strip_tags, as
valid sanitizers in our analysis.

Session Fixation (cf. Section 2.3.2) is the last vulnerability we consider.
The attack here is a little less straightforward compared to those previously
discussed. In essence, an attacker obtains a valid session identifier for a website
(e.g., they browse to the website and use the one assigned to them), then tricks
their victim into using that session identifier. By default, PHP uses cookies
to manage sessions. Hence, if there is a flaw which allows overwriting the
session cookie in the victim’s browser, this can be exploited by the adversary.
To successfully impersonate their victim, the attacker forcibly sets the session
cookie of their victim to their own. If the victim now logs in to the application,
the attacker also gains the same privileges. To find such vulnerabilities, we
analyze all data flows into the PHP function call setcookie. As there is no
generic way to protect against this attack, we cannot model a specific sanitizer
to filter benign flows.

5.2.3.4 Detection Process

After having discussed the various types of flaws we consider, we now outline
the graph traversals used to find flaws in applications. To optimize efficiency,
we in fact perform two consecutive queries for each class of vulnerabilities that
we are interested in.

Indexing critical function calls. The first query returns a list of identifiers
of all AST nodes that correspond to a given security-critical function call. For
instance, it finds all nodes that correspond to call expressions to the function
mysql_query. The reason for doing so is that we may then work with this
index for the next, much more complex traversal, which attempts to find flows
to these nodes from attacker-controllable inputs, instead of having to touch
every single node in the graph. As an example, Figure 5.3 shows the Cypher
query (see Section 5.3) that we use to identify all nodes representing echo and
print statements. (It is straightforward, since echo and print are language
constructs in PHP, i.e., they have a designated node type). If done right, such
an index can be generated by the graph database back end in a highly efficient
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MATCH (node:AST)
USING INDEX node:AST(type)
WHERE node.type IN ["AST_ECHO", "AST_PRINT"]
RETURN node.id;

Figure 5.3: Sample indexing query in Cypher.

manner, as we will see in Section 5.4. The Cypher queries for all security-critical
function calls we are interested in can be found in Appendix B.2.

Identifying critical data flows. The second query is more complex. Its main
idea is depicted in Figure 5.4. Its purpose is to find critical data flows that
end in a node corresponding to a security-critical function call.

For each node in the index generated by the previous traversal, the function
init is called, a recursive function whose purpose is to find such data flows
even across function borders. It first calls the function visit, which starts from
the given node and travels backwards along the data dependence edges defined
by the PDG using the utility traversal sources; it only travels backwards those
data dependence edges for variables which are not appropriately sanitized in
a given statement. It does so in a loop until it either finds a low source, i.e.,
an attacker-controllable input, or a function parameter. Clearly, there may
be many paths that meet these conditions; they are all handled in parallel, as
each of the utility traversals used within the function visit can be thought
of as a pipe which takes a set of nodes as input and outputs another set of
nodes. The loop emits only nodes which either correspond to a low source or
a function parameter. Finally, for each of the nodes emitted from the loop,
the step path outputs the paths that caused these nodes to be emitted. Each
of these paths corresponds to a flow from either a parameter or a low source
to the node given as argument to the function. Note that since we travel
backwards, the head of each path is actually the node given as argument, while
the last element of each path is a parameter or low source.

Back in the function init, the list of returned paths is inspected. Those
paths whose last element is not a parameter (but a low source) are added
to the final list of reported flows. For those paths whose last element is
indeed a parameter, we perform an interprocedural jump in the function
jumpToCallSiteArgs: We travel back along all call edges of the function
defining this parameter to the corresponding call expression nodes, map the
parameter to the corresponding argument in that call expression, then recur-
sively apply the overall traversal to continue traveling back along the data
dependence edges from that argument for each call expression that we traveled
to. After the recursion, the returned paths are connected to the found paths
in the called function. For the sake of presentation, the simplified code in
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def init( Vertex node) {

finalflows = [];

varnames = getUsedVariables( node); // get USEs in node
flows = visit( node, varnames); // get list of flows

for( path in flows) {

if( path.last().type == TYPE_PARAM) {

callSiteArgs = jumpToCallSiteArgs( path.last());

callingFuncFlows = [];
for( Vertex arg in callSiteArgs) {

callingFuncFlows.addAll( init( arg)); // recursion
}
// connect the paths
for( List callingFuncFlow : callingFuncFlows) {

finalflows.add( path + callingFuncFlow);
}

}
else {

finalflows.add( path);
}

}

return finalflows;
}

def visit( Vertex sink, List varnames) {

sink
.statements() // traverse up to CFG node
.as(’datadeploop’)

.sources( varnames)

.sideEffect{ varnames = getUnsanitizedVars( it) }

.sideEffect{ foundsrc = containsLowSource( it) }
.loop(’datadeploop’){ !foundsrc && it.type != TYPE_PARAM }
.path()

}

def jumpToCallSiteArgs( Vertex param) {

param
.sideEffect{ paramNum = it.childnum }
.function() // traverse to enclosing function
.functionToCallers() // traverse to callers
.callToArgumentList() // traverse to argument list
.children().filter{ it.childnum == paramNum }

}

Figure 5.4: (Simplified) path-finding traversal in Gremlin.
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<?php
function foo() {

$a = $_GET[’a’];
$b = $_GET[’b’];
bar( $a, $b);

}

function bar( $a, $b) {
$c = $_GET[’c’];
echo $a.$c;

}
?>

Figure 5.5: PHP code illustrating the graph traversal for XSS vulnerabilities.

Figure 5.4 glosses over some technicalities, such as ensuring termination in the
context of circular data dependencies or recursive function calls, or tackling
corner cases such as sanitizers used directly within a security-critical function
call, but conveys the general idea. The interested reader may find the complete
function in Appendix B.2.

The end result output by the path-finding traversal is a set of interproce-
dural data dependence paths (i.e., a set of lists of nodes) starting from a node
dependent on an attacker-controllable source and ending in a security-critical
function call, with no appropriate sanitizer being used along the way. These
flows correspond to potential vulnerabilities and can then be investigated by
a human expert in order to either confirm that there is a vulnerability, or
determine that the flow cannot actually be exploited in practice.

As an example, consider the PHP code in Figure 5.5. Starting from the
echo statement, the traversal travels the data dependence edges backwards
both to the assignment of $c and to the parameter $a of function bar. The
assignment of $c uses a low source without an appropriate sanitizer, hence
this flow is reported. In the case of the parameter $a, the traversal travels to
the call expression of function bar in function foo and from there to argument
$a, then recursively calls itself starting from that argument. Since $a likewise
originates from a low source without sanitization, this flow is reported too.
Note that even though variable $b also originates from a low source and is
passed as an argument to function bar, the parameter $b does not flow into
the echo statement and hence, no flow is reported in this case.
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5.3 Implementation

To generate ASTs for PHP code, we leverage a PHP extension1 which exposes
the PHP ASTs internally generated by the PHP 7 interpreter as part of the
compilation process to PHP userland. Our parser utility generates ASTs
for PHP files, then exports those ASTs to a CSV format. As described
in Section 5.2.1, it also scans a directory for PHP files and generates file and
directory nodes reflecting a project’s structure. Using PHP’s own internal
parser to generate ASTs, instead of, say, writing an ANTLR grammar ourselves,
means that AST generation is well-tested and reliable. Additionally, we
inherently support the new PHP 7 version including all language features. At
the same time, parsing PHP code written in older PHP versions works as well.
Some PHP features have been removed in the course of time, and executing
old PHP code with a new interpreter may cause runtime errors—however,
such code can still be parsed, and the non-existence of a given function (for
example) in a newer PHP version does not impede our analysis.

For our database back end, we leverage Neo4J, a popular open-source graph
database written in Java. The CSV format output by our parser utility can be
directly imported into a Neo4J database using a fast batch importer for huge
datasets shipped with Neo4J. This allows us to efficiently access and traverse
the graph and to take advantage of the server’s advanced caching features for
increased performance.

In order to generate CFG, PDG, and call edges, we implemented a fork
of Joern [Yamaguchi et al. 2014], which builds similar code property graphs
for C. We extended Joern with the ability to import the CSV files output by
our PHP parser and map the ASTs that they describe to the internal Joern
representation of ASTs, extending or modifying that representation where
necessary. We then extended the CFG and PDG generating code in order to
handle PHP ASTs. Next, we implemented the ability to generate call graphs
in Joern. Finally, we added an export functionality that outputs the generated
CFG, PDG, and call edges in CSV format. These edges can thus be imported
into the Neo4J database simultaneously with the CSV files output by our
parser.

The flow-finding graph traversals described in Section 5.2.3.4 are written
in the graph traversal language Gremlin,2 which builds on top of Groovy,
a JVM language. In addition to Gremlin, Neo4J also supports Cypher, an
SQL-like query language for graph databases which is geared towards simpler
queries, but is also more efficient for such simple queries. We use Cypher for
the indexing query of security-critical function calls described in the previous

1https://github.com/nikic/php-ast
2http://tinkerpop.incubator.apache.org

https://github.com/nikic/php-ast
http://tinkerpop.incubator.apache.org
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section. Both Gremlin and Cypher scripts are sent to the Neo4J server’s
REST API endpoint and the queries’ results are processed using a thin Python
wrapper.

Our tool is free open-source software and has been integrated into the
Joern framework, available at:

https://github.com/octopus-platform/joern

5.4 Evaluation

In this section, we evaluate our implemented approach. We first present the
dataset used and follow up with a discussion of the findings targeting both
server and client.

5.4.1 Dataset

Our aim was to evaluate the efficacy of our approach on a large set of projects
in a fully automated manner, i.e., without any kind of preselection by a human.
We used the GitHub API in order to randomly crawl for projects that are
written in PHP and have a rating of at least 100 stars to ensure that the
projects we analyze enjoy a certain level of interest from the community.

As a result, we obtained a set consisting of 1,854 projects. We then
applied our tool to build code property graphs for each of these projects, and
imported all of these code property graphs into a single graph database that
we subsequently ran our analysis on.

As a final step before the actual analysis, we proceeded to create an index
of AST node types in the graph database. An index is a redundant copy
of information in the database with the purpose of making the retrieval of
that information more efficient. Concretely, it means that we instructed the
database back end to create an index that maps each of the 103 different AST
node types to a list of all node identifiers that have the given type. We can
thus efficiently retrieve all AST nodes of any given type. This approach makes
the identification of nodes that correspond to security-critical function calls
(i.e., the first query as explained in Section 5.2.3.4) more efficient by several
orders of magnitude.

On such a large scale, it is interesting to see how well our implementation
behaves in terms of space and time. We performed our entire analysis on a
machine with 32 physical 2.60 GHz Intel Xeon CPUs with hyperthreading and
768 GB of RAM. The time measurements for graph generation and the final
size of the database are given in Table 5.1.

https://github.com/octopus-platform/joern
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Statistics on database generation
AST generation 40m 30s
CFG, PDG, and call edge generation 5h 10m 33s
Graph database import 52m 11s
AST node type indexing 3h 1m 32s
Database size (before indexing) 56 GB
Database size (after indexing) 66 GB

Table 5.1: Statistics on database generation.

Upon inspection of the crawled dataset, we judged that it would be sensible
to distinguish two subsets of projects with respect to our analysis:
• C: Among the crawled 1,854 projects, we found that 4 were explicitly
vulnerable software for educational purposes, or web shells. In this set,
we expect a large number of unsanitized flows, as these projects contain
such flows on purpose. Therefore, this set of projects can be seen as a
sanity check for our approach to find unsanitized flows: If it works well,
we should see a large number of reports. We show that this is indeed
the case.
• P: This is the set of the remaining 1,850 projects. Here we expect
a proportionally smaller set of unsanitized flows, as such flows may
correspond to actually exploitable vulnerabilities.

In Table 5.2, we present statistics concerning the size of the projects and
the resulting code property graphs in the two sets P and C. All in all, the
total number of lines of code that we analyze amounts to almost 80 million,
with the smallest project consisting of only 22 lines of code, and the largest
consisting of 2,985,451 lines of code. The complete list of projects can be found
in Appendix B.3. To the best of our knowledge, this is the largest collection of
PHP code that has been scanned for vulnerabilities in a single study.

The resulting code property graphs consist of over 300 million nodes, with
about 26 million CFG edges, 15 million PDG edges, and 4 million call edges.
The number of AST edges plus the number of files equals the number of AST
nodes, since each file’s AST is a tree. Evidently, there are many more AST
edges than CFG or PDG edges, since control flow and data dependence edges
only connect AST nodes that correspond to statements or predicates.

Concerning the time needed by the various traversals as reported in the
remainder of this section, we note that on the one hand, a large number of
CPUs is not necessarily of much help, since a traversal is hard to parallelize
automatically for the graph database server. The presence of a large memory,
on the other hand, enables the entire graph database to live in memory; we
expect this to yield a great performance increase, although we have no direct
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P C
# of projects 1,850 4
# of PHP files 428,796 952
# of LOC 77,722,822 356,400
# of AST nodes 303,105,896 1,955,706
# of AST edges 302,677,100 1,954,754
# of CFG edges 25,447,193 197,656
# of PDG edges 14,459,519 187,785
# of call edges 3,661,709 25,747

Table 5.2: Dataset and graph sizes.

time measurements to compare to, as we did not run all our traversals a second
time with a purposefully small heap only to force I/O operations.

5.4.2 Findings

In this section, we present the findings of our analysis. As detailed in Sec-
tion 5.2.3, our approach aims to find vulnerabilities which can be used to attack
either server or client, and we discuss these in Sections 5.4.2.1 and 5.4.2.2,
respectively. For every type of security-critical function call, we consider
different sets of sanitizers as valid (see Section 5.2.3). However, for all of them,
we consider the PHP functions crypt, md5, and sha1 as a sufficient transfor-
mation of attacker-controlled input to safely embed it into a security-critical
function call. Additionally, we accept preg_replace as a sanitizer; this is
fairly generous, yet since we evaluate our approach on a very large dataset,
we want to focus on very general types of flows. (In contrast, when using our
framework for a specific project, it could be fine-tuned to find very specific
flows, e.g., we could consider preg_replace as a sanitizer only in combination
with a given set of regular expressions).

5.4.2.1 Attacks Targeting the Server

SQL Injection. For SQL injections, we ran our analysis separately
for each of the security-critical function calls mysql_query, pg_query, and
sqlite_query. The large majority of our findings was related to calls to
mysql_query. Our findings for mysql_query and pg_query are summarized
in Tables 5.3 and 5.4. In the case of sqlite_query, our tool discovered 202

calls in total, but none of these were dependent on attacker-controllable inputs,
hence we omit a more detailed discussion for this function.
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P C
Indexing query 1m 19s
Pathfinder traversal 34m 32s
mysql_query calls 3,098 963
Sinks (Flows) 322 (2,023) 171 (244)
Vulnerabilities 74 -

Table 5.3: Evaluation for mysql_query.

P C
Indexing query 1m 16s
Pathfinder traversal 3m 42s
pg_query calls 326 55
Sinks (Flows) 6 (6) 5 (7)
Vulnerabilities 4 -

Table 5.4: Evaluation for pg_query.

Tables 5.3 and 5.4 show the time needed for the indexing query to find all
function calls to mysql_query and pg_query, respectively, and for the traver-
sals to find flows from attacker-controllable inputs to these calls. Furthermore,
they show the total number of function calls found in both the sets P and C,
i.e., the number of nodes output by the indexing query. Then, they show the
total number of sinks, i.e., the size of the subset of these function calls which
do indeed depend on attacker-controllable input without using an appropriate
sanitization routine. The number in parentheses denotes the total number of
flows, that is, the number of paths reported by the pathfinder traversal which
have one of these sinks as an endpoint. Finally, the tables show the number
of vulnerabilities: We investigated all reports from our tool and counted the
number of actually exploitable vulnerabilities. Here, a vulnerability is defined
as a sink for which there exists at least one exploitable flow. Thus, the number
of vulnerabilities should be compared to the number of reported sinks, as
multiple exploitable flows into the same sink are only counted as a single
vulnerability. We do not report on vulnerabilities in C due to the fact that
these projects are intentionally vulnerable. However, we analyzed these reports
and confirmed that they do indeed point to exploitable flows in most cases.
In those cases where the flows are not exploitable, input is checked against a
whitelist or regular expression, or sanitized using custom routines.

As a result of our manual inspection, we found that 74 out of 322 sinks for
mysql_query were indeed exploitable by an attacker, which yields a good hit
rate of 22.9%. For pg_query, we performed even better: We found that 4 out
of 6 sinks were indeed vulnerable.
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P C
Indexing query 2m 28s
Pathfinder traversal 13m 14s
shell_exec / popen calls and backtick operators 1,598 270
Sinks (Flows) 19 (47) 64 (1,483)
Vulnerabilities 6 -

Table 5.5: Evaluation for shell_exec, popen, and the backtick operator.

Among the flows that we deemed non-critical, we found that many could be
attributed to trusted areas of web applications, i.e., areas that only a trusted,
authenticated user, such as an administrator or moderator, can access in the
first place. Such flows may still result in exploitable vulnerabilities if, for
instance, an attacker manages to get an authenticated administrator to click
on some forged link. For our purposes, however, we make the assumption that
such an area is inaccessible, and hence, focus on the remaining flows instead.

A smaller subset of the flows that we considered non-critical was found in
install, migrate, or update scripts which are usually deleted after the process
in question is finished (or made inaccessible in some other way). However,
if a user is supposed to take such measures manually, and forgets to do so,
these flows may—unsurprisingly—also result in exploitable vulnerabilities. Our
interest, however, lies more in readily exploitable flaws, so these flaws are not
within our scope.

Lastly, several flows were non-critical for a variety of reasons. For instance,
programmers globally sanitize arrays such as $_GET or $_POST before using
their values at all. We also observed that many programmers sanitized input by
using ad-hoc sanitizers, such as matching them against a whitelist, or casting
them to an integer. An analyst interested in a specific project could add such
sanitizers to the list of acceptable sanitizers to improve the results.

Command Injection. The results of our traversals for finding command
injections are summarized in Table 5.5.

Here it is nice to observe that the ratio of sinks to the total number of
calls is much higher in the set C (i.e., 64/270 = 0.24) than it is in the set P
(19/1598 = 0.012). Indeed, for web shells in particular, unsanitized flows from
input to shell commands are to be expected. This observation confirms that
our approach works well to find such flows. In P, we are left with only 19

sinks (originating from 47 flows), of which we confirmed 6 to be vulnerable,
yielding a hit rate of 6/19 = 0.32, i.e., 32%. For the others, we find that these
flows use the low input as part of a shell command and cast it to an integer or
check that it is an integer before executing the command, or check it against a
whitelist.
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P C
Indexing query 3s
Pathfinder traversal 48m 41s
eval statements 5,111 255
Sinks (Flows) 19 (2,404) 115 (147)
Vulnerabilities 5 -

Table 5.6: Evaluation for eval.

P C
Indexing query 5s
Pathfinder traversal 1d 2h 5m 41s
include, include_once, require, require_once
statements

199,169 1,792

Sinks (Flows) 455 (1,292) 50 (100)
Vulnerabilities 100 -

Table 5.7: Evaluation for include / require.

Code Injection. A large class of vulnerabilities are code injections. Since
this can occur by either having control over a string passed to eval or over the
URL passed to include or require, we focus on both of these classes in our
analysis. We summarize our findings in Tables 5.6 and 5.7. We first discuss
the results for eval, then turn to include and require.

For eval, as was true for command injection, it is nice to observe yet again
that the ratio of sinks to total number of statements is significantly higher in
C (115/255 = 0.6) than it is in P (19/5111 = 0.004). As expected, code injection is
much more common in web shells or intentionally vulnerable software than in
other projects, confirming once more that our approach works well to find such
flows. The indexing query is very efficient in this case (3 seconds), which can be
explained by the fact that eval is actually a PHP construct that corresponds
to a distinguished AST node type: Hence, the database only needs to return all
nodes of that particular type, whereas in the case of mysql_query for example,
the database needs to check a constellation of several AST nodes in order to
identify the calls to this function.

There is no universal sanitizer for the eval construct. When evaluating
input from low sources, allowable input very much depends on the context.
Upon inspection, we find that many flows are not vulnerable because an
attacker-controllable source first flows into a database request, and then the
result of that database request is passed into eval. In other cases, whitelists
or casts to ints are used. We do, however, find 5 sinks where an attacker can
inject code, i.e., exploitable code injection flaws. This yields a hit rate of
5/19 = 0.26.



112 Chapter 5. A Framework for Static PHP Code Analysis

P C
Indexing query 1m 18s
Pathfinder traversal 1h 47m 35s
fopen calls 11,288 949
Sinks (Flows) 265 (667) 357 (1,121)
Vulnerabilities 6 -

Table 5.8: Evaluation for fopen.

Lastly, we also investigated the reason for there being so many flows with
so few sinks in the case of eval: In one of the projects, an eval is frequently
performed on the results of various processed parts of several database requests.
These database queries often use several variables from low sources (properly
sanitized). The various combinations of the different sources, the different
database requests and the processed parts of the results account for the high
number of flows, which eventually flow into only a handful of sinks.

In the case of the PHP language constructs include / require, there is no
universal standard on how to sanitize input variables either. Accordingly, we
do find 100 vulnerabilities where an attacker is indeed able to inject strings of
their choosing into a filename included by an include or require statement.
However, in the vast majority of these cases, the attacker can only control a
part of the string. A fixed prefix hardly hurts an attacker since they may use
the string .. to navigate the directory hierarchy, but a fixed suffix is harder
to circumvent: It requires an attacker to be able to upload a file to the server
or remote file inclusion to be enabled, as discussed in Section 2.2.3. This is a
limitation of the type of attack per se, rather than of our approach.

Arbitrary File Reads/Writes. For vulnerabilities potentially resulting
in file content leaks or corruptions, we look at the function call fopen, used to
access files. We report on our findings in Table 5.8.

Yet again and as expected, we observe that the ratio of sinks to calls is
greater in C (357/949 = 0.38) than in the set P (265/11288 = 0.023): Arbitrary
files are much more commonly opened from low input on purpose in C.

As was the case for include / require, there is no standard sanitizer in
this case. Upon inspecting the flows, we again find whitelists, database requests
or casts to integers that prevent us from exploiting the flow. Even when an
attacker does indeed have some influence on the opened file—unintended by
the programmer—this does not necessarily induce a vulnerability: In many
cases, the file is opened and processed internally only, without being leaked and
with no harm to the program. This explains why we find only 6 vulnerabilities
out of a total of 265 sinks.



5.4. Evaluation 113

P C
Indexing query 25s
Pathfinder traversal 5d 7h 57m 8s
echo statements and print expressions 946,170 36,077
Sinks (Flows) 15,972 (45,298) 2,788 (5,550)
Sample 726 (852) -
Vulnerabilities 26 -

Table 5.9: Evaluation for echo / print.

5.4.2.2 Attacks Targeting the Client

Cross-Site Scripting (XSS). After having discussed attacks which target
the server, we now turn to flaws which allow an attack against the client. The
results for cross-site scripting are shown in Table 5.9.

At first glance it may seem astounding that there are so many instances of
echo and print nodes in our graph. This, however, is to be expected if we
think about the nature of PHP: PHP is a web-based language that focuses on
producing HTML output. We also note that, when HTML code is intermixed
with PHP code, i.e., when there is code outside of <?php ... ?> tags, it
is treated like an argument for an echo statement by the PHP AST parser.
Additionally, the inline echo tags <?= $var; ?> also produce echo nodes in the
AST. Finally, passing several arguments to echo as in echo exrp1, expr2;
produces a distinct echo node for each argument. The time taken by the
pathfinder traversal is quite high. Indeed, the running time of this traversal
grows linearly in the number of nodes it has to process. It averages to 4

minutes and 9 seconds for each of the 1,854 projects.
Since echoing input from the user is a common scenario in PHP, several

standard sanitizers exist: We consider htmlspecialchars, htmlentities, and
strip_tags. Still, we can observe here that the number of remaining flows
in P is very high (45,298). However, it must also be noted that they result
from a set of 1,850 projects, thus averaging to only about 24 flows per project.
Hence, inspecting the flows when analyzing a single project appears perfectly
feasible; it is clear that the number of flows grows linearly in the number of
projects. Yet in our large-scale study, we cannot inspect all of the reports in a
reasonable amount of time. Therefore, we sampled 1,000 flows at random, 852
of which fell into the set P and ended in 726 distinct sinks spread across 116
different projects.

Upon inspection of the sample, we find many uncritical paths that use
sanitizers in the form of whitelists or casts to integers. In other cases, even
though HTML and JavaScript code could be injected, the PHP script explicitly
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P C
Indexing query 1m 17s
Pathfinder traversal 8m 28s
setcookie calls 1,403 403
Sinks (Flows) 158 (507) 63 (95)
Vulnerabilities 1 -

Table 5.10: Evaluation for setcookie.

sets the content type of the response, e.g., to application/json. This way,
browsers are forced to disable their content sniffing and interpret the result as
JSON [Zalewski 2011]. In such cases, the HTML parser and the JavaScript
engine are not invoked; hence, such a flow cannot be exploited.

Still, we do find 26 exploitable XSS vulnerabilities in 16 different projects,
e.g., in the popular software LimeSurvey.3 By projecting the ratio of 16
vulnerable projects to the reported 116 projects (13.7%), we expect that about
255 of the 1,850 projects are vulnerable to XSS attacks, which validates the fact
that XSS vulnerabilities are the most common application-level vulnerability
on the Web [WhiteHat 2015]. Hence, the fact that we obtain a high number of
flows must also be attributed to the fact that we analyze a very large number
of projects and that such vulnerabilities are, indeed, very common. These facts
should be kept in mind when considering the large number of reported flows.

Session Fixation. As we discussed in Section 5.2.3, session fixation
attacks can be conducted when an attacker can arbitrarily set a cookie for
their victim. Therefore, to find such vulnerabilities, we focused on function
calls to setcookie, the results of which are shown in Table 5.10.

There is no standard sanitizer for setcookie. Upon inspecting the flows,
we find only one vulnerability among the 158 sinks. This is mainly due to the
following fact: In many of these cases, an attacker is indeed able to control the
value of the cookie. However, for an exploitable session fixation vulnerability,
the attacker needs to control both the name and the value of the cookie, an
opportunity which turns out not to be very common.

5.5 Discussion and Limitations

The main goal of our evaluation was to evaluate the efficacy and applicability
of our approach to a large amount of PHP projects without hand-selecting
these projects first, i.e., in a fully automated manner (the entire process of
crawling for projects, parsing them, generating code property graphs, importing

3We reported this and other bugs to the developers. The vulnerability in LimeSurvey
has since been acknowledged and fixed.
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them into a graph database and running our traversals requires scant human
interaction). To the best of our knowledge, such a large-scale analysis of PHP
projects has not been performed before. The final inspection of the reported
flows cannot be automated; it requires contextual information and human
intelligence to decide whether some flow does indeed lead to an exploitable
vulnerability in practice.

In the end, our approach performed better for some types of vulnerabilities
than for others. In the case of code injection, we obtained a good hit rate
of about 25%, whereas in the case of cross-site scripting, only about 4% of
the reported data flows were indeed exploitable. Considering that PHP is
a highly dynamic scripting language and the analysis was performed on a
large scale, we believe that these numbers are still within reason. As far as
efficiency is concerned, the combined computing time was a little under a week
for the 1,854 projects. However, the lion’s share of the time (over 5 days) was
consumed by the traversal looking for cross-site scripting vulnerabilities. This
is explained by the fact that flows from low sources to echo statements are
very common in PHP. All in all, our approach appears to scale well, and it
could be further improved by parallelizing the traversals.

We have considered the most widespread and relevant types of vulnera-
bilities (cf. Chapter 2), but we envision our tool could be used to find more
specific types of flaws that we did not consider here, such as magic hashes
(see Section 3.1.2). In this case, all code matching the syntactical property
of the result of a hash function (hash, md5, . . . ) being compared to another
value with the == operator could be easily queried from a code property graph
database and coupled with other conditions, e.g., that the hashed value de-
pends on a public input, using similar techniques as the ones presented in this
chapter. The strength of our approach lies in the expressiveness and flexibility
of graph traversals, i.e., users of our framework can use it as needed in the
context of a given application.

Clearly, there are also flows which are impossible to discover using static
analysis. For instance, we cannot reconstruct the control or data flow yielded by
PHP code evaluated within an eval construct. Another interesting example
is PHP’s capability for reflection. Consider for example the code snippet
$a = source(); $b = $$a; sink($b);: Here, the variable passed into the
sink is the variable whose name is the same as the value of the variable $a.
Since the value of $a cannot be determined statically, but depends on runtime
input, this scenario can only be covered by dynamic analysis. To tackle this
case with static analysis, we have two options: we can either over-approximate
or under-approximate, i.e., we can either assume that any variable which is
present in the current context could flow into the sink, or assume that no other
variable was written by an adversary. On the one hand, over-approximating will
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result in a higher number of false positives, i.e., flows will be detected that turn
out not to be harmful in practice. On the other hand, under-approximating
will result in a higher number of false negatives, meaning that some vulnerable
flows will remain undetected. Here, we decided to under-approximate so as to
reduce false positives.

Global variables also represent a hard problem: If, during analysis, the
input to a security-critical function can be traced back to a global variable,
then it is not clear whether this global variable should be considered as tainted,
since that depends on what other functions which manipulate the same variable
may have executed earlier, or which files manipulating this variable may have
included the file containing the code currently analyzed, but this information
is usually only available at runtime, i.e., it is statically unknown.

Although we evaluated our tool once on a single crawl of a large amount
of GitHub projects, we envision that it could be useful in other scenarios. In
particular, it can potentially be useful to companies with large and fast-evolving
codebases when run recurrently in order to find newly introduced security
holes quickly. Clearly, such a use case could be interesting for Wordpress
platforms or online shops. Here, the flexibility and customizability of our tool
are particularly effective.

5.6 Related Work

We review the two most closely-related areas of previous research, i.e., the
discovery of vulnerabilities in PHP code, and flaw detection based on query
languages and graphs.

5.6.1 Discovery of Vulnerabilities in PHP Code

The detection of security vulnerabilities in PHP code has been in the focus of
research for over ten years. One of the first works to address the issue of static
analysis in the context of PHP was produced by Huang et al. [Huang et al.
2004a], who presented a lattice-based algorithm derived from type systems
and typestate to propagate taint information. Subsequently, they presented
another technique based on bounded model checking [Huang et al. 2004b]
and compared it to their first technique. A significant fraction of PHP files
were rejected due to the applied parser (about 8% in their experiments). In
contrast, by using PHP’s own internal parser, we are inherently able to parse
any valid PHP file and will even be able to parse PHP files in the future as
new language features are added. If such a language feature alters control flow
or re-defines variables, we will be able to parse it, but we will have to slightly
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correct control flow graph and/or program dependence graph generation to
avoid introducing imprecisions.

In 2006, Xie and Aiken [Xie & Aiken 2006] addressed the problem of
statically identifying SQL injection vulnerabilities in PHP applications. At the
same time, Jovanovic et al. presented Pixy [Jovanovic et al. 2006], a tool for
static taint analysis in PHP. Their focus was specifically on cross-site scripting
bugs in PHP applications. In total, they analyzed six different open-source
PHP projects. In these, they rediscovered 36 known vulnerabilities (with 27
false positives) as well as an additional 15 previously unknown flaws with 16
false positives. Wasserman and Su presented two works focused on statically
finding both SQL injections and cross-site scripting [Wassermann & Su 2007,
Wassermann & Su 2008]. Additional work in this area has been conducted
on the correctness of sanitization routines [Balzarotti et al. 2008, Yu et al.
2010]. As a follow-up on their work Pixy, Jovanovic et al. extended their
approach to also cover SQL injections [Jovanovic et al. 2010]. While all these
tools were pioneers in the domain of automated discovery of vulnerabilities in
PHP applications, they focused on very specific types of flaws only, namely,
cross-site scripting and SQL injections. In this work, we cover a much wider
array of different kinds of vulnerabilities.

Most recently, Dahse and Holz [Dahse & Holz 2014a] presented RIPS,
which covers a similar range of vulnerabilities as we do in this work. RIPS
builds control flow graphs and then creates block and function summaries by
simulating the data flow for each basic block, which allows to conduct a precise
taint analysis. In doing so, the authors discovered previously unknown flaws
in osCommerce, HotCRP, and phpBB2. Compared to our work, they only
evaluated their tool on a handful of selected applications, but did not conduct
a large-scale analysis. Since RIPS uses a type of symbolic execution to build
block and function summaries, it is unclear how well it would scale to large
quantities of code. Instead of symbolic execution, we efficiently build program
dependence graphs to conduct taint analysis; to the best of our knowledge, we
are the first to actually build program dependence graphs for PHP. Moreover,
RIPS lacks the flexibility and the programmability of our graph traversals: It is
able to detect a hard-coded, pre-defined set of vulnerabilities. In contrast, our
tool is a framework which allows developers to program their own traversals.
It can be used to model various types of vulnerabilities, in a generic way (as
we demonstrate in this work) or geared towards a specific application.

Dahse and Holz followed up on their work by detecting second-order
vulnerabilities, e.g., persistent cross-site scripting, identifying more than 150
vulnerabilities in six different applications [Dahse & Holz 2014b]. Follow-up
work inspired by them was presented in 2015, when Olivo et al. [Olivo et al.
2015] discussed a static analysis of second-order denial-of-service vulnerabilities.
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They analyzed six applications, which partially overlap with the ones analyzed
by previous work, and found 37 vulnerabilities, accompanied by 18 false
positives. These works can be considered as orthogonal to ours.

In summary, while there has been a significant amount of research on the
subject of static analysis for PHP, these works focused on a small set of (the
same) applications. In contrast, our work is not aimed towards analyzing
a single application in great detail. Instead, our goal was to implement an
approach which would scale well to scanning large quantities of code and
would be flexible enough to add support for additional vulnerability types
with minimal effort. Unfortunately, a direct comparison of results between our
tool and other tools is difficult, due to the fact that we do not usually have
access to the implemented prototypes on the one hand, and the limited detail
of the reports on the other. This difficulty has also been noticed by other
authors [Jovanovic et al. 2010, Dahse & Holz 2014a]. Usually, only the number
of detected vulnerabilities is reported, but not the vulnerabilities as such. Even
comparing the numbers is not straightforward, as there is no universally agreed-
upon standard on how vulnerabilities should be counted. For instance, when
there exist several vulnerable data flows into the same security-critical function
call, it is not clear whether each flow should be counted as a vulnerability,
or whether it should count as a single vulnerability, or anything in-between
(e.g., depending on the similarity of the different flows). In this work, we
explained precisely how we counted vulnerabilities, and we make our tool
publicly available on GitHub both for researchers and developers.

5.6.2 Flaw Detection Using Query Languages and Graphs

Our work uses queries for graph databases to describe vulnerable program
paths, an approach closely related to defect detection via query languages, as
well as static program analysis using graph-based program representations.

The concept of using query languages to detect security and other bugs
has been considered by several researchers in the past [Paul & Prakash 1994,
Hallem et al. 2002, Lam et al. 2005, Martin et al. 2005, Goldsmith et al.
2005]. In particular, Martin et al. [Martin et al. 2005] proposed the Program
Query Language (PQL), an intermediary representation of programs. With
this representation, they are able to identify violations of design rules, to
discover functional flaws and security vulnerabilities in a program. Livshits
and Lam [Livshits & Lam 2005] used PQL to describe typical instances of SQL
injections and cross-site scripting in Java programs, and successfully identified
29 flaws in nine popular open-source applications.

Graph-based program analysis has a long history, ranging back to the sem-
inal work by Reps [Reps 1998] on program analysis via graph reachability, and
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the introduction of the program dependence graph by Ferrante et al. [Ferrante
et al. 1987]. Following along this line of research, Kinloch and Munro [Kinloch
& Munro 1994] present the Combined C Graph, a data structure specifically
designed to aid in graph-based defect discovery, while Yamaguchi et al. [Yam-
aguchi et al. 2014] present the code property graph for vulnerability discovery.
Their work, which inspired the work presented in this chapter, first employed
a graph representation of code properties to detect vulnerabilities in C code.
The work presented here notably extends their work by first demonstrating
that similar techniques can be employed to identify vulnerabilities in high-level,
dynamic scripting languages, making it applicable for the identification of
vulnerabilities in web applications, and second by adding call graphs, allowing
for interprocedural analysis.

Their idea was picked up by Alrabaee et al. [Alrabaee et al. 2015], who use
a graph representation to detect code reuse. Their specific goal in this is to ease
the task of reverse engineers when analyzing unknown binaries. The concept
of using program dependence graphs is also used by Johnson et al. [Johnson
et al. 2015], who built their tool PIDGIN for Java. Specifically, they create
the graphs and run queries on them, in order to check security guarantees of
programs, enforce security during development, and create policies based on
known flaws. Besides this more specific use in finding flaws, several works have
looked at PDGs for information-flow control, such as [Hammer 2009, Graf
2010, Snelting et al. 2014].

5.7 Summary

Given the pervasive presence of PHP as a web programming language, our
aim was to develop a flexible and scalable analysis tool to detect and report
potential vulnerabilities in a large set of web applications. To this end, we built
code property graphs, i.e., a combination of syntax trees, control flow graphs,
program dependence graphs, and call graphs for PHP, and demonstrated
that they work well to identify vulnerabilities in high-level, dynamic scripting
languages. This implies that the approach is well suited for the analysis of a
large number of web applications.

We modeled several typical kinds of vulnerabilities arising from exploitable
flows in PHP applications as traversals on these graphs. We crawled 1,854
popular PHP projects on GitHub, built code property graphs representing
those projects, and showed the efficacy and scalability of our approach by
running our flow-finding traversals on this large dataset. We were able to
observe that the number of reported flows in a small selected subset of these
projects, consisting of purposefully vulnerable software, was tremendously



120 Chapter 5. A Framework for Static PHP Code Analysis

higher than in the other projects, thus confirming that our approach works
well to detect such flows. Additionally, we also discovered well over a hundred
unintended vulnerabilities in the other projects.

We demonstrated that it is possible to find vulnerabilities in PHP appli-
cations on a large scale in a reasonable amount of time. Our code property
graphs lay the foundation to build many more sophisticated traversals to find
other classes of vulnerabilities by writing appropriate graph traversals, be they
generic or specific to an application. The framework presented in this chapter
is publicly available to give that possibility to researchers and developers alike.
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Conclusion

Today, we naturally use web applications on a daily basis: JavaScript
fuels the client-side logic of almost every website, and PHP is the most

prevalent server-side programming language. Moreover, the number of web
applications is constantly growing. Since human error in the development of
applications can never be wholly avoided, providing developers and security
experts with viable means to efficiently and effectively analyze web applications
in a machine-assisted manner is a vital area of research.

Static analysis techniques have been investigated by scientific literature for
a long time, and they have been successfully employed to analyze (in a security
context) a number of languages that lend themselves well to static methods,
such as Java or C [e.g., Hammer 2009, Yamaguchi 2015]. Yet static analysis
techniques have not been thoroughly studied in the context of more dynamic
languages extensively used in web applications such as those investigated in
this thesis; the body of literature concerned with dynamic analysis techniques
(as opposed to static ones), particularly in the case of JavaScript, is more
voluminous. While dynamic analysis techniques have a number of advantages,
particularly access to runtime information accompanied by a higher precision
in detecting vulnerabilities, they also exhibit disadvantages. In particular,
they are less efficient since they require that the program be actually run (or
executed symbolically) at the same time, and covering all paths through a
program is a hard problem. Hence, while static analysis suffers from a higher
number of false positives, it is a more lightweight and scalable technique that
can find vulnerabilities which may remain overseen by dynamic analysis.

In this thesis, we investigated the effectiveness of static analysis for two
of the core languages for web applications, namely, JavaScript and PHP. As
can be expected, using static analysis for such dynamic languages is a highly
challenging task.

For JavaScript, the fact that the language is highly dynamic is not the only
hurdle: The rich environment in which JavaScript code is typically executed and
the commonplace heavy usage of highly complex third-party libraries encumber
static analysis significantly. In Chapter 4, we overcame these challenges by
applying a series of program transformations and leveraging WALA to build a
unified model of the HTML DOM and JavaScript contained in a website as
a single large JavaScript program. Using backwards slicing on the program
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dependence graph of this program, we were able to identify two previously
unknown and severe vulnerabilities in the popular Helios voting client, which,
despite having been the focus of years of thorough study and investigation in
scientific literature, had remained unnoticed thus far.

In Chapter 5, we built a framework for analyzing PHP applications by
leveraging the recently proposed concept of code property graphs. These
graphs constitute a joint representation of a program that incorporate relevant
information for performing vulnerability discovery, namely, its syntax, its
control flow, and its control and data dependencies. The clear separation
between the generation of these graphs on the one hand and the analysis run
on these graphs on the other makes it easy for developers and analysts to
use our framework to perform their own analyses. Indeed, the generation of
these graphs is fully automated: Our framework takes a PHP project as input
and outputs a graph database suitable to be loaded into the popular graph
database system Neo4J (other graph database back ends can be easily supported
by implementing appropriate output modules). Vulnerabilities can then be
modeled as graph traversals using standard graph database query languages
such as Cypher or Gremlin. We modeled the most common vulnerabilities
in PHP applications using these languages and used these models to run the
largest case study (to the best of our knowledge) of vulnerability discovery in
PHP applications to this day. We found several hundred vulnerabilities and
demonstrated the feasibility and effectiveness or our approach.

Both these contributions show that static analysis aimed at vulnerability
discovery in web applications written in highly dynamic languages is feasible.
However, there are also inherent limitations that are hard or even impossible
to overcome with static analysis techniques. Most prominently, constructs
such as eval and variants which allow to dynamically evaluate the contents of
strings as code cannot be reliably approximated in the general case. For our
case studies, the Helios voting client itself fortunately did not make use of these
constructs. Although third-party libraries used by Helios did use it, we were
able to get rid of these libraries using a series of code transformations. While
this allowed us to emulate the libraries accurately enough for our analysis, it
required human work and insight to implement the transformations. Albeit the
code transformations can be automated once the replacement APIs have been
written, writing them in the first place must be done manually, and doing so for
the large number of existing libraries seems like a daunting task. As far as our
PHP framework is concerned, as we discussed, we chose to under-approximate,
that is, we only treat the variables which directly flow into an eval as used by
that expression, and we do not treat eval expressions as defining any variables.
This approach reflects our desire to keep the number of false positives as low
as possible, but also implies that we may miss critical information flows. For



123

our large scale study, we additionally explicitly considered any input that flows
into eval and its variants as suspicious and investigated the corresponding
reports manually. The fact that code evaluated in eval expressions cannot be
reliably approximated also means that a developer could purposefully hide a
vulnerability from our analysis, e.g., by writing a backdoor as text and then
evaluating it dynamically under certain circumstances.

An interesting avenue of research to cope with such issues inherent to
static analysis may be the combination of static and dynamic analysis tech-
niques. In particular for JavaScript, where a considerable existing body of
work investigates dynamic analysis techniques for the purpose of vulnerability
discovery, it may be possible to get the best of both worlds, i.e., efficiency and
precision: One could use static analysis to perform a lightweight analysis first
to discover suspicious paths, then use dynamic analysis techniques to improve
the precision of the results by focusing on these paths. However, doing so is
certainly a non-trivial problem that will require further research and deeper
insights.

In summary, research in vulnerability discovery for web applications is
clearly an important field, as these applications have gained a tremendous
importance in our everyday lives over the past two decades; and this trend
continues. Yet it is a hard problem, particularly considering the nature of the
languages that have been widely adopted to write such applications in practice.
While JavaScript and PHP have many features that make them comfortable
and easy to use for application developers, they are notably difficult to analyze
using automated techniques. Still, such techniques are needed in order to help
developers and security experts cope with with the increasing amount and
complexity of code circulating on the Web. In this thesis, we demonstrated
that such analysis is feasible and practicable. We look forward to future work
in the area, which provides ample room for further fascinating and meaningful
research.





Appendix A

Refactoring JavaScript Libraries
for the Helios Voting Booth

A.1 Canonical Refactorings

Elements in a document are accessed via a call to jQuery’s $() function. For
example, one can access an element with id foo, or a set of elements with class
bar, like so:

1 $(’#foo’);
2 $(’.bar’);

Each of these calls creates a jQuery wrapper object that is associated with the
matching element(s), and provides a myriad of functions to manipulate these
elements. Calls to these functions are typically chained after the initial call
to $(). JavaScript provides native equivalents that return native JavaScript
objects:

1 document.getElementById(’foo’);
2 document.getElementsByClassName(’bar’);

Since these native JavaScript objects do not have the same functions as the
jQuery objects, we need to fix these calls as well. In the following, $(elem)
refers to some jQuery object, and elem refers to a native object.

For instance, Helios uses some jQuery functions to manipulate the visibility
of elements, manipulate an element’s class list or its attributes, retrieve or
manipulate an element’s inner HTML code, or select (highlight) it in the
browser:

1 $(elem).show();
2 $(elem).hide();
3 $(elem).addClass(’someclass’);
4 $(elem).removeClass(’someclass’);
5 $(elem).attr(’somename’, ’somevalue’);
6 $(elem).html(’some html code’);
7 $(elem).select();
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All of these have native equivalents, so replacing these calls is straightforward:

1 elem.style.display=’’;
2 elem.style.display=’none’;
3 elem.classList.add(’someclass’);
4 elem.classList.remove(’someclass’);
5 elem.setAttribute(’somename’, ’somevalue’);
6 elem.innerHTML = ’some html code’;
7 elem.select();

A jQuery object may be associated with a set of elements, and in this case a
chained function (usually) implicitly affects all matching elements. In native
JavaScript, we have to use an explicit iteration.

jQuery also implements an event handler that is triggered as soon as a
page’s DOM is fully constructed (but before, e.g., images are fully loaded).
The code inside the following function corresponds to the Helios client’s entry
point:

1 $(document).ready(
2 function() {
3 // code executed once the DOM is ready
4 });

Luckily, modern browsers implement a native equivalent:

1 document.addEventListener(’DOMContentLoaded’,
2 function() {
3 // code executed once the DOM is ready
4 });

Another jQuery trick used by Helios is to escape an HTML string as follows:

1 return $(’<div/>’).text(’<i>Hi!</i>’).html();
2 // Outputs: &lt;i&gt;Hi!&lt;/i&gt;

This creates a dummy element, then uses jQuery’s .text() function to set that
element’s text contents (meaning that HTML is escaped), and finally retrieves
the resulting element’s contents. There are various ways to HTML-escape a
string in JavaScript, but to faithfully model the behavior of the Helios client,
the following code comes closest:

1 var dummyDiv = document.createElement(’div’),
2 dummyText = document.createTextNode(’<i>Hi!</i>’);
3 dummyDiv.appendChild( dummyText);
4 return dummyDiv.innerHTML;
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Indeed, jQuery’s .text()method internally uses the native createTextNode()
function to create a text node, whose contents are implicitly escaped by the
browser.

jQuery can not only create wrapper objects on top of new HTML elements
as in the last example, but even on top of plain JavaScript objects, such as
arrays. Helios uses this feature to enable some of jQuery’s utility functions,
e.g., an iterator:

1 $([’1’,’2’,’3’]).each(
2 function( index, value) {
3 // function executed once per array element
4 }

Since ECMAScript 5, the Array prototype implements its own native iterator:

1 [’1’,’2’,’3’].forEach(
2 function( value, index) {
3 // function executed once per array element
4 });

Another utility provided by jQuery is to search for an element in an array, and
return the index of the last matching element:

1 var index = $(arr).index(value);

Note that in more recent jQuery versions, .index() returns the first matching
element instead, but jQuery 1.2.2, used by Helios, returns the last one. While
there is no native JavaScript equivalent for this function, its behavior is trivial
to re-implement:

1 function arr_index( arr, value) {
2 var res = -1;
3 for( var i = 0; i < arr.length; i++) {
4 if( arr[i] == value)
5 res = i;
6 }
7 return res;
8 }
9 var index = arr_index( arr, value);

A.2 Modeling jQuery Ajax Functions

A.2.1 $.get

jQuery’s $.get function sends a GET request to a specified URL and calls a
success handler function upon success.
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Original code:

1 $.get( url,
2 function( response) {
3 /* process answer */
4 });

Transformed code:

1 var request = new XMLHttpRequest();
2 request.open( ’GET’, url, true);
3 request.onload =
4 function() {
5 if( request.status >= 200 && request.status < 400) {
6 var response = request.responseText;
7 /* process answer */
8 }
9 };
10 request.send();

A.2.2 $.getJSON

jQuery’s $.getJSON function sends a GET request to a specified URL. Upon
success, it parses the answer as a JSON string and calls a success handler
function.
Original code:

1 $.getJSON( url,
2 function( response) {
3 /* process answer */
4 });

Transformed code:

1 var request = new XMLHttpRequest();
2 request.open( ’GET’, url, true);
3 request.onload =
4 function() {
5 if( request.status >= 200 && request.status < 400) {
6 var response = JSON.parse(request.responseText);
7 /* process answer */
8 }
9 };
10 request.send();
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A.2.3 $.post

jQuery’s $.post function sends a POST request to a specified URL, along
with some data to be processed by the server. The data to be submitted is
encoded as a URL query string by jQuery using its internal $.param function,
which we consequently included to obtain a faithful model. Upon success, a
success handler function is called.
Original code:

1 $.post( url, data,
2 function( response) {
3 /* process answer */
4 });

Transformed code:

1 function serialize_to_query_string(data) {
2 var s = [];
3 if( data.constructor == Array)
4 data.forEach( function( value, index) {
5 s.push( encodeURIComponent( index) + "=" +

encodeURIComponent( value) );↪→

6 });
7 else
8 for( var j in data)
9 if( data[j] && data[j].constructor == Array)
10 data[j].forEach( function( value, index) {
11 s.push( encodeURIComponent( j) + "=" +

encodeURIComponent( value));↪→

12 });
13 else
14 s.push( encodeURIComponent( j) + "=" +

encodeURIComponent( data[j]));↪→

15 return s.join("&").replace( /%20/g, "+");
16 }
17

18 var request = new XMLHttpRequest();
19 request.open( ’POST’, url, true);
20 request.setRequestHeader( ’Content-Type’,

’application/x-www-form-urlencoded; charset=UTF-8’);↪→

21 request.onload =
22 function() {
23 if( request.status >= 200 && request.status < 400) {
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24 var response = request.responseText;
25 /* process answer */
26 }
27 };
28 request.send( serialize_to_query_string(data));

A.3 Query Object Plugin

Given a URL

http://example.com/?apples=1&bananas=2

the following jQuery call will return the string ’2’:

1 $.query.get(’bananas’);

There is no native JavaScript equivalent, but it is easy to write one using a
regular expression:

1 function getParameterByName( name) {
2 var match = RegExp(’[?&]’ + name +

’=([^&]*)’).exec(location.search);↪→

3 return match ? decodeURIComponent(match[1].replace(/\+/g,’ ’))
: "";↪→

4 }
5 getParameterByName(’bananas’);

A.4 Modeling the jQuery Templating Plugin

Various templates are used in the Helios voting booth, as explained in Sec-
tion 4.3.1.2. These templates implement their own logic which is interpreted
by the template plugin. We translate these templates to pure HTML and
JavaScript as follows.

A.4.1 The Header Template
Original template code:

1 <h1 id="election_name">{$T.election.name}</h1>
2 <p>&nbsp;</p>

Modified template code:

1 <h1 id="election_name"></h1>
2 <p>&nbsp;</p>
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Custom header template processing function:
1 function processTemplate_header() {
2 // process template
3 document.getElementById(’election_name’).textContent = BOOTH.election.name;
4 }

A.4.2 The Question Template
Original template code:

1 <form onsubmit="return false;" class="prettyform" id="answer_form">
2 <input type="hidden" name="question_num" value="{$T.question_num}" />
3

4 <p>
5 <br />
6 <b>{$T.question.question}</b>
7 <br />
8 <span style="font-size: 0.6em;">#{$T.question_num + 1} of {$T.last_question_num + 1} &mdash;
9 vote for
10 {#if $T.question.min && $T.question.min > 0}
11 {#if $T.question.max}
12 {$T.question.min} to {$T.question.max}
13 {#else}
14 at least {$T.question.min}
15 {#/if}
16 {#else}
17 {#if $T.question.max}
18 {#if $T.question.max > 1}up to {#/if}{$T.question.max}
19 {#else}
20 as many as you approve of
21 {#/if}
22 {#/if}
23 </span>
24 </p>
25

26 {#foreach $T.question.answers as answer}
27 <div id="answer_label_{$T.question_num}_{$T.answer_ordering[$T.answer$index]}"><input

type="checkbox" class="ballot_answer"
id="answer_{$T.question_num}_{$T.answer_ordering[$T.answer$index]}"
name="answer_{$T.question_num}_{$T.answer_ordering[$T.answer$index]}" value="yes"
onclick="BOOTH.click_checkbox({$T.question_num}, {$T.answer_ordering[$T.answer$index]},
this.checked);" /> {$T.question.answers[$T.answer_ordering[$T.answer$index]]}

↪→
↪→
↪→
↪→
↪→

28

29 {#if $T.question.answer_urls && $T.question.answer_urls[$T.answer_ordering[$T.answer$index]]
&& $T.question.answer_urls[$T.answer_ordering[$T.answer$index]] != ""}↪→

30 &nbsp;&nbsp;
31 <span style="font-size: 12pt;">
32 [<a target="_blank"

href="{$T.question.answer_urls[$T.answer_ordering[$T.answer$index]]}">more info</a>]↪→
33 </span>
34 {#/if}
35 </div>
36 {#/for}
37

38 <div id="warning_box" style="color: green; text-align:center; font-size: 0.8em;
padding-top:10px; padding-bottom: 10px; height:50px;">↪→

39 </div>
40

41

42 {#if $T.show_reviewall}
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43 <div style="float: right;">
44 <input type="button" onclick="BOOTH.validate_and_confirm({$T.question_num});"

value="Proceed" />↪→
45 </div>
46 {#/if}
47

48 {#if $T.question_num != 0}
49 <input type="button" onclick="BOOTH.previous({$T.question_num})" value="Previous" />
50 &nbsp;
51 {#/if}
52

53 {#if $T.question_num < $T.last_question_num}
54 <input type="button" onclick="BOOTH.next({$T.question_num})" value="Next" />
55 &nbsp;
56 {#/if}
57

58 <br clear="both" />
59

60 </form>

Modified template code:

1 <form onsubmit="return false;" class="prettyform" id="answer_form">
2 <input id="question_num" type="hidden" name="question_num" value="" />
3

4 <p>
5 <br />
6 <b id="question_question"></b>
7 <br />
8 <span id="question_subtext" style="font-size: 0.6em;">
9 </span>
10 </p>
11

12 <div id="answer_labels">
13 </div>
14

15 <div id="warning_box" style="color: green; text-align:center; font-size: 0.8em;
padding-top:10px; padding-bottom: 10px; height:50px;">↪→

16 </div>
17

18 <div id="question_proceed_div" style="float: right; display: none;">
19 <input id="question_proceed_button" type="button" value="Proceed" />
20 </div>
21

22 <input id="question_previous_button" type="button" value="Previous" style="display: none;"
/>↪→

23 &nbsp;
24

25 <input id="question_next_button" type="button" value="Next" style="display: none;" />
26 &nbsp;
27

28 <br clear="both" />
29

30 </form>

Custom question template processing function:

1 function processTemplate_question(question_num) {
2 // process template
3 document.getElementById(’question_num’).value = question_num;
4 document.getElementById(’question_question’).textContent =

BOOTH.election.questions[question_num].question;↪→
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5

6 var subtext = (question_num + 1) + " of " + BOOTH.election.questions.length + " &mdash;
vote for ";↪→

7 if( BOOTH.election.questions[question_num].min &&
BOOTH.election.questions[question_num].min > 0) {↪→

8 if( BOOTH.election.questions[question_num].max) {
9 subtext += BOOTH.election.questions[question_num].min + " to " +

BOOTH.election.questions[question_num].max;↪→
10 }
11 else {
12 subtext += "at least " + BOOTH.election.questions[question_num].min;
13 }
14 }
15 else {
16 if( BOOTH.election.questions[question_num].max) {
17 if( BOOTH.election.questions[question_num].max > 1) {
18 subtext += "up to ";
19 }
20 subtext += BOOTH.election.questions[question_num].max;
21 }
22 else {
23 subtext += "as many as you approve of";
24 }
25 }
26 document.getElementById(’question_subtext’).innerHTML = subtext;
27

28 document.getElementById( ’answer_labels’).innerHTML = "";
29 BOOTH.election.questions[question_num].answers.forEach( function( value, index) {
30 var div = document.createElement(’div’);
31 div.id = "answer_label_" + question_num + "_" +

BOOTH.election.question_answer_orderings[question_num][index];↪→
32

33 var input = document.createElement(’input’);
34 input.type = "checkbox";
35 input.classList.add("ballot_answer");
36 input.id = "answer_" + question_num + "_" +

BOOTH.election.question_answer_orderings[question_num][index];↪→
37 input.name = "answer_" + question_num + "_" +

BOOTH.election.question_answer_orderings[question_num][index];↪→
38 input.value = "yes";
39 input.onclick = function() { BOOTH.click_checkbox( question_num,

BOOTH.election.question_answer_orderings[question_num][index], this.checked); };↪→
40

41 var answer = document.createTextNode( BOOTH.election.questions[question_num]
.answers[BOOTH.election.question_answer_orderings[question_num][index]]);↪→

42

43 div.appendChild( input);
44 div.appendChild( answer);
45

46 if( BOOTH.election.questions[question_num].answer_urls &&
47 BOOTH.election.questions[question_num]

.answer_urls[BOOTH.election.question_answer_orderings[question_num][index]] &&↪→
48 BOOTH.election.questions[question_num]

.answer_urls[BOOTH.election.question_answer_orderings[question_num][index]] != "") {↪→
49 var nbsp = document.createTextNode(" ");
50 var span = document.createElement(’span’);
51 span.style.fontSize = "12pt";
52 var lbrack = document.createTextNode("[");
53 var a = document.createElement(’a’);
54 a.target = "_blank";
55 a.href = BOOTH.election.questions[question_num]

.answer_urls[BOOTH.election.question_answer_orderings[question_num][index]];↪→
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56 a.textContent = "more info";
57 var rbrack = document.createTextNode("]");
58 span.appendChild( lbrack);
59 span.appendChild( a);
60 span.appendChild( rbrack);
61 div.appendChild( nbsp);
62 div.appendChild( span);
63 }
64

65 document.getElementById( ’answer_labels’).appendChild( div);
66 });
67

68 if( BOOTH.all_questions_seen) {
69 document.getElementById(’question_proceed_div’).style.display = "";
70 document.getElementById(’question_proceed_button’).onclick = function() {

BOOTH.validate_and_confirm( question_num); };↪→
71 }
72

73 if( question_num != 0) {
74 document.getElementById(’question_previous_button’).style.display = "";
75 document.getElementById(’question_previous_button’).onclick = function() {

BOOTH.previous( question_num); };↪→
76 }
77 else {
78 document.getElementById(’question_previous_button’).style.display = "none";
79 }
80

81 if( question_num < BOOTH.election.questions.length - 1) {
82 document.getElementById(’question_next_button’).style.display = "";
83 document.getElementById(’question_next_button’).onclick = function() { BOOTH.next(

question_num); };↪→
84 }
85 else {
86 document.getElementById(’question_next_button’).style.display = "none";
87 }
88 }

A.4.3 The Seal Template
Original template code:

1 {#if $T.election_metadata.use_advanced_audit_features}
2 <div style="float: right; background: lightyellow; margin-left: 20px; padding: 0px 10px 10px

10px; border: 1px solid #ddd; width:200px;">↪→
3 <h4><a onclick="$(’#auditbody’).slideToggle(250);" href="#">Audit</a> <span style="font-size:

0.8em; color: #444">[optional]</span></h4>↪→
4 <div id="auditbody" style="display:none;">
5 <p>
6 If you choose, you can audit your ballot and reveal how your choices were encrypted.
7 </p>
8 <p>
9 You will then be guided to re-encrypt your choices for final casting.
10 </p>
11 <input type="button" value="Verify Encryption" onclick="BOOTH.audit_ballot();"

class="pretty" />↪→
12 </p>
13 </div>
14 </div>
15 {#/if}
16
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17 <h3>Review your Ballot</h3>
18

19

20 <div style="padding: 10px; margin-bottom: 10px; background-color: #eee; border: 1px #ddd
solid; max-width: 340px;">↪→

21 {#foreach $T.questions as question}
22

23 <b>Question #{$T.question$index + 1}: {$T.question.short_name}</b><br>
24 {#if $T.choices[$T.question$index].length == 0}
25 <div style="margin-left: 15px;">&#x2610; <i>No choice selected</i></div>
26 {#/if}
27 {#foreach $T.choices[$T.question$index] as choice}
28 <div style="margin-left: 15px;">&#x2713; {$T.choice}</div>
29 {#/for}
30 {#if $T.choices[$T.question$index].length < $T.question.max}
31 [you under-voted: you may select up to {$T.question.max}]
32 {#/if}
33 [<a onclick="BOOTH.show_question({$T.question$index}); return false;" href="#">edit

responses</a>]↪→
34 {#if !$T.question$last}<br><br>{#/if}
35 {#/for}
36 </div>
37

38

39 <p><p>Your ballot tracker is <b><tt style="font-size:
11pt;">{$T.encrypted_vote_hash}</tt></b>, and you can <a onclick="BOOTH.show_receipt();
return false;" href="#">print</a> it.<br /><br /></p>

↪→
↪→

40

41 <p>
42 Once you click "Submit", the unencrypted version of your ballot will be destroyed, and only

the encrypted version will remain. The encrypted version will be submitted to the
Helios server.</p>

↪→
↪→

43

44 <button id="proceed_button" onclick="BOOTH.cast_ballot();">Submit this Vote!</button><br />
45 <div id="loading_div"><img src="loading.gif" id="proceed_loading_img" /></div>
46

47

48

49 <form method="POST" action="{$T.cast_url}" id="send_ballot_form" class="prettyform">
50 <input type="hidden" name="election_uuid" value="{$T.election_uuid}" />
51 <input type="hidden" name="election_hash" value="{$T.election_hash}" />
52 <textarea name="encrypted_vote" style="display: none;">
53 {$T.encrypted_vote_json}
54 </textarea>
55 </form>

Modified template code:

1 <div id="auditbox" style="float: right; background: lightyellow; margin-left: 20px; padding:
0px 10px 10px 10px; border: 1px solid #ddd; width:200px; display: none;">↪→

2 <h4><a onclick="document.getElementById(’auditbody’).style.display=’’;" href="#">Audit</a>
<span style="font-size: 0.8em; color: #444">[optional]</span></h4>↪→

3 <div id="auditbody" style="display:none;">
4 <p>
5 If you choose, you can audit your ballot and reveal how your choices were encrypted.
6 </p>
7 <p>
8 You will then be guided to re-encrypt your choices for final casting.
9 </p>
10 <input type="button" value="Verify Encryption" onclick="BOOTH.audit_ballot();"

class="pretty" />↪→
11 </p>
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12 </div>
13 </div>
14

15 <h3>Review your Ballot</h3>
16

17

18 <div id="reviewbox" style="padding: 10px; margin-bottom: 10px; background-color: #eee;
border: 1px #ddd solid; max-width: 340px;">↪→

19 </div>
20

21

22 <p><p>Your ballot tracker is <b><tt id="seal_div_vote_hash" style="font-size:
11pt;"></tt></b>, and you can <a onclick="BOOTH.show_receipt(); return false;"
href="#">print</a> it.<br /><br /></p>

↪→
↪→

23

24 <p>
25 Once you click "Submit", the unencrypted version of your ballot will be destroyed, and only

the encrypted version will remain. The encrypted version will be submitted to the
Helios server.</p>

↪→
↪→

26

27 <button id="proceed_button" onclick="BOOTH.cast_ballot();">Submit this Vote!</button><br />
28 <div id="loading_div"><img src="loading.gif" id="proceed_loading_img" /></div>
29

30

31

32 <form method="POST" action="" id="send_ballot_form" class="prettyform">
33 <input type="hidden" id="send_ballot_form_election_uuid" name="election_uuid" value="" />
34 <input type="hidden" id="send_ballot_form_election_hash" name="election_hash" value="" />
35 <textarea id="send_ballot_form_encrypted_vote" name="encrypted_vote" style="display: none;">
36 </textarea>
37 </form>

Custom seal template processing function:

1 function processTemplate_seal() {
2 // process template
3 if( BOOTH.election_metadata.use_advanced_audit_features) {
4 document.getElementById(’auditbox’).style.display = "";
5 }
6

7 document.getElementById( ’reviewbox’).innerHTML = "";
8 BOOTH.election.questions.forEach( function( question, qindex) {
9 var b = document.createElement(’b’);
10 b.textContent = "Question #" + (qindex + 1) + ": " + question.short_name;
11 document.getElementById( ’reviewbox’).appendChild( b);
12 document.getElementById( ’reviewbox’).appendChild( document.createElement(’br’));
13

14 var choices = BALLOT.pretty_choices(BOOTH.election, BOOTH.ballot);
15 if( choices[qindex].length == 0) {
16 var div = document.createElement(’div’);
17 div.style.marginLeft = "15px";
18 var text = document.createTextNode("\u2610 ");
19 var i = document.createElement(’i’);
20 i.textContent = "No choice selected";
21 div.appendChild( text);
22 div.appendChild( i);
23 document.getElementById( ’reviewbox’).appendChild( div);
24 }
25 choices[qindex].forEach( function( choice, cindex) {
26 var div = document.createElement(’div’);
27 div.style.marginLeft = "15px";
28 var text = document.createTextNode("\u2713 " + choice);
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29 div.appendChild( text);
30 document.getElementById( ’reviewbox’).appendChild( div);
31 });
32 if( choices[qindex].length < question.max) {
33 var text = document.createTextNode( "[you under-voted: you may select up to " +

question.max + "]");↪→
34 document.getElementById( ’reviewbox’).appendChild( text);
35 }
36

37 var lbrack = document.createTextNode("[");
38 var a = document.createElement(’a’);
39 a.href = "#";
40 a.onclick = function() { BOOTH.show_question(qindex); return false; };
41 a.textContent = "edit responses";
42 var rbrack = document.createTextNode("]");
43 document.getElementById( ’reviewbox’).appendChild( lbrack);
44 document.getElementById( ’reviewbox’).appendChild( a);
45 document.getElementById( ’reviewbox’).appendChild( rbrack);
46

47 // not last iteration?
48 if( qindex < BOOTH.election.questions.length - 1) {
49 document.getElementById( ’reviewbox’).appendChild( document.createElement(’br’));
50 document.getElementById( ’reviewbox’).appendChild( document.createElement(’br’));
51 }
52 });
53

54 document.getElementById(’seal_div_vote_hash’).textContent = BOOTH.encrypted_ballot_hash;
55 document.getElementById(’send_ballot_form’).action = BOOTH.election.cast_url;
56 document.getElementById(’send_ballot_form_election_uuid’).value = BOOTH.election.uuid;
57 document.getElementById(’send_ballot_form_election_hash’).value = BOOTH.election_hash;
58 document.getElementById(’send_ballot_form_encrypted_vote’).value =

BOOTH.encrypted_vote_json;↪→
59 }

A.4.4 The Audit Template
Original template code:

1 <h3>Your audited ballot</h3>
2

3 <p>
4 <b><u>IMPORTANT</u></b>: this ballot, now that it has been audited, <em>will not be

tallied</em>.<br />↪→
5 To cast a ballot, you must click the "Back to Voting" button below, re-encrypt it, and

choose "cast" instead of "audit."↪→
6 </p>
7

8 <p>
9 <b>Why?</b> Helios prevents you from auditing and casting the same ballot to provide you

with some protection against coercion.↪→
10 </p>
11

12 <p>
13 <b>Now what?</b> <a onclick="$(’#audit_trail’).select(); return false;" href="#">Select your

ballot audit info</a>, copy it to your clipboard, then use the <a target="_blank"
href="single-ballot-verify.html?election_url={$T.election_url}">ballot verifier</a> to
verify it.<br />

↪→
↪→
↪→

14 Once you are satisfied, click the "back to voting" button to re-encrypt and cast your
ballot.↪→

15 </p>
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16

17 <form action="#">
18 <textarea name="audit_trail" id="audit_trail" cols="80" rows="10" wrap="soft">
19 {$T.audit_trail}
20 </textarea>
21 <br /><br />
22 Before going back to voting,<br />
23 you can post this audited ballot to the Helios tracking center so that others might

double-check the verification of this ballot.↪→
24 <br /><br />
25 <b>Even if you post your audited ballot, you must go back to voting and choose "cast" if you

want your vote to count.</b>↪→
26 <br /><br />
27 <input type="button" value="back to voting"

onclick="BOOTH.reset_ciphertexts();BOOTH.seal_ballot();" class="pretty" />↪→
28 &nbsp; &nbsp;&nbsp;
29 <input type="button" value="post audited ballot to tracking center"

onclick="$(this).attr(’disabled’, ’disabled’);BOOTH.post_audited_ballot();"
id="post_audited_ballot_button" class="pretty" style="font-size:0.8em;"/>

↪→
↪→

30

31 </form>

Modified template code:

1 <h3>Your audited ballot</h3>
2

3 <p>
4 <b><u>IMPORTANT</u></b>: this ballot, now that it has been audited, <em>will not be

tallied</em>.<br />↪→
5 To cast a ballot, you must click the "Back to Voting" button below, re-encrypt it, and

choose "cast" instead of "audit."↪→
6 </p>
7

8 <p>
9 <b>Why?</b> Helios prevents you from auditing and casting the same ballot to provide you

with some protection against coercion.↪→
10 </p>
11

12 <p>
13 <b>Now what?</b> <a onclick="document.getElementById(’audit_trail’).select(); return false;"

href="#">Select your ballot audit info</a>, copy it to your clipboard, then use the <a
id="single_ballot_verify" target="_blank" href="">ballot verifier</a> to verify it.<br
/>

↪→
↪→
↪→

14 Once you are satisfied, click the "back to voting" button to re-encrypt and cast your
ballot.↪→

15 </p>
16

17 <form action="#">
18 <textarea name="audit_trail" id="audit_trail" cols="80" rows="10" wrap="soft">
19 </textarea>
20 <br /><br />
21 Before going back to voting,<br />
22 you can post this audited ballot to the Helios tracking center so that others might

double-check the verification of this ballot.↪→
23 <br /><br />
24 <b>Even if you post your audited ballot, you must go back to voting and choose "cast" if you

want your vote to count.</b>↪→
25 <br /><br />
26 <input type="button" value="back to voting"

onclick="BOOTH.reset_ciphertexts();BOOTH.seal_ballot();" class="pretty" />↪→
27 &nbsp; &nbsp;&nbsp;
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28 <input type="button" value="post audited ballot to tracking center"
onclick="this.setAttribute(’disabled’, ’disabled’);BOOTH.post_audited_ballot();"
id="post_audited_ballot_button" class="pretty" style="font-size:0.8em;"/>

↪→
↪→

29

30 </form>

Custom audit template processing function:
1 function processTemplate_audit() {
2 // process template
3 document.getElementById(’single_ballot_verify’).href =

"single-ballot-verify.html?election_url=" + BOOTH.election_url;↪→
4 document.getElementById(’audit_trail’).value = BOOTH.audit_trail;
5

6 // re-enable button in case it was disabled earlier; before, this
7 // was sort of implicit when the jQuery template got re-processed,
8 // since this completely re-generated the contents of #seal_div
9 document.getElementById(’post_audited_ballot_button’).removeAttribute(’disabled’);
10 }

A.4.5 The Footer Template
Original template code:

1 <span style="float:right; padding-right:20px;">
2 <a target="_new" href="mailto:{$T.election_metadata.help_email}

?subject=help%20with%20election%20{$T.election.name}
&body=I%20need%20help%20with%20election%20{$T.election.uuid}">help!</a>

↪→
↪→

3 </span>
4 {#if $T.election.BOGUS_P}
5 The public key for this election is not yet ready. This election is in preview mode only.
6 {#else}
7 Election Fingerprint: <span id="election_hash"

style="font-weight:bold;">{$T.election.hash}</span>↪→
8 {#/if}

Modified template code:
1 <span style="float:right; padding-right:20px;">
2 <a id="footer_email" target="_new" href="">help!</a>
3 </span>
4 <div id="footer_BOGUS_P" style="display: none;">
5 The public key for this election is not yet ready. This election is in preview mode only.
6 </div>
7 <div id="footer_NOT_BOGUS_P" style="display: none;">
8 Election Fingerprint: <span id="election_hash" style="font-weight:bold;"></span>
9 </div>

Custom footer template processing function:
1 function processTemplate_footer() {
2 // process template
3 document.getElementById(’footer_email’).setAttribute(’href’, "mailto:" +

BOOTH.election_metadata.help_email + "?subject=help%20with%20election%20" +
BOOTH.election.name + "&body=I%20need%20help%20with%20election%20" +
BOOTH.election.uuid);

↪→
↪→
↪→

4 if( BOOTH.election.BOGUS_P) {
5 document.getElementById(’footer_BOGUS_P’).style.display = "";
6 }
7 else {
8 document.getElementById(’election_hash’).textContent = BOOTH.election.hash;
9 document.getElementById(’footer_NOT_BOGUS_P’).style.display = "";
10 }
11 }
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A.5 Underscore

Underscore is a utility library for JavaScript that provides, for example, some
tools to manipulate JavaScript arrays or objects, of which Helios uses a few.
Fortunately, they are easy to rewrite in native JavaScript code.

For instance, Helios uses yet another iterator for arrays, a map function, a
function that decides whether a given array contains a specified element, and
a function to enumerate all names of an object’s properties:

1 _(arr).each( function(value, index) { /* code */ });
2 _(arr).map( function(value, index) { /* code */ });
3 _(arr).include( v);
4 _.keys(obj);

All of these have native equivalents:

1 arr.forEach( function(value, index) { /* code */ });
2 arr.map( function(value, index) { /* code */ });
3 arr.indexOf(v) != -1;
4 Object.keys(obj);

Another feature used by Helios is the removal of all null elements of an
array:

1 var results = _.reject( arr, _.isNull);

This is easily done in native JavaScript:

1 var results = [];
2 arr.forEach( function(value) {
3 if( value !== null) {
4 results[results.length] = value;
5 }
6 });

Lastly, a function that extends one object with all the properties of another
object, resulting in a union of the two objects, is used by Helios:

1 _.extend(obj, obj2);

It is again straightforward to do this in native JavaScript:

1 function underscore_extend(obj1, obj2){
2 for(var key in obj2)
3 if(obj2.hasOwnProperty(key))
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4 obj1[key] = obj2[key];
5 return obj1;
6 };
7 underscore_extend(obj, obj2);

These simple modifications allow us to get rid of the Underscore library, a
highly complex library with a multitude of functions, approximately 30 kilo-
bytes in size, for our static analysis.

A.6 Class Inheritance

Finally, Helios uses John Resig’s implementation of class inheritance,1 which
implements a technique to create classical objects with constructors and
simulates classical inheritance in JavaScript. This library declares an object
Class that can be used like so to declare a “class” Person:

1 var Person =
2 Class.extend({
3 init:
4 function( isDancing) {
5 this.dancing = isDancing;
6 },
7 dance:
8 function() {
9 return this.dancing;
10 }
11 });
12

13 var p = new Person( true);
14 var p2 = new Person( false);
15

16 p.dance(); // Outputs: true
17 p2.dance(); // Outputs: false

Here, the function init is a special function that is being used as a constructor:
It is called when a new object Person is created via the new keyword. The
library also implements class inheritance (i.e., we could use Person.extend in
the above code to declare a new class that “inherits” from Person). However,
the Helios client does not use these inheritance capabilities. Therefore, since
Helios exclusively uses this library to declare class-like objects, we can easily

1http://ejohn.org/blog/simple-javascript-inheritance

http://ejohn.org/blog/simple-javascript-inheritance
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do the same thing in pure JavaScript. Indeed, in JavaScript, functions are
already first-class objects, so the following code achieves the same thing as the
above:

1 var Person =
2 function( isDancing) {
3 this.dance =
4 function() {
5 return this.dancing;
6 }
7

8 this.dancing = isDancing;
9 };
10

11 var p = new Person( true);
12 var p2 = new Person( false);
13

14 p.dance(); // Outputs: true
15 p2.dance(); // Outputs: false

We need to move the “constructor” of the object (i.e., the code that was
declared in the special init function) to the end of the function declaration,
since it may want to invoke some of its internally declared functions.



Appendix B

PHP Code Property Graphs:
Definitions and Queries

B.1 AST Node Types

Here, we list all AST node types used to represent the entire PHP language.
There are two types of nodes: nodes with a fixed number of children, and
nodes with an arbitrary number of children. The majority of nodes has a fixed
number of children. For these, each child has a specific role, which we also
specify here. Some nodes can have an arbitrary number of children. These are
typically list-type nodes, such as the AST node representing a statement list.
See Section 3.1.2 for a more detailed discussion.

B.1.1 Nodes with a fixed number of children

Nodes with exactly 0 children (leaf nodes). These are the leaf nodes
of the AST. These use properties to reflect the final content, e.g., a node of
type integer has a property to hold the concrete integer.

Node Children Description Example
NULL - Used when an interior node

with a fixed number of chil-
dren does not require a given
child.

-

integer - Integer. 42
double - Double. 3.14
string - String (also used to hold

identifiers, such as the name
of a called function).

"Hello
World"

MAGIC_CONST - Magic constant name. __FILE__
TYPE - PHP type hint such as a pa-

rameter type or a function
return type.

function
foo( array
$bar) :
callable {}
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Nodes with exactly 1 child.

Node Children Description Example
TOPLEVEL 1. stmts Special node to hold

the top-level code of
a file or of a class.

-

NAME 1. name Used to identify
names in PHP
code that may be
qualified, such as for
example the name of
a class that a class
declaration extends.

class Foo extends
\B\Bar {}

CLOSURE_VAR 1. name Special node holding
a variable that oc-
curs within the use
language construct.

function() use
($foo) {};

VAR 1. name Variable. $foo

CONST 1. name Constant. FOO

UNPACK 1. expr Unpack operator
(also known as
the splat operator)
useful in conjunc-
tion with variadic
functions.

foo(
...$traversable)

UNARY_PLUS 1. expr Unary plus. +$x

UNARY_MINUS 1. expr Unary minus. -$x

CAST 1. expr Cast expression. (string)42

EMPTY 1. expr empty language con-
struct.

empty($foo)

ISSET 1. var isset language con-
struct.

isset($foo)

SILENCE 1. expr Silence operator. @foo()
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Node Children Description Example
SHELL_EXEC 1. expr Shell command exe-

cution expression.
‘ls‘

CLONE 1. expr clone language con-
struct.

clone($foo)

EXIT 1. expr exit language con-
struct.

exit($foo);

PRINT 1. expr Print expression. print($foo)

INCLUDE_OR_EVAL 1. expr Include or eval ex-
pression.

include ’foo.php’
or eval("$evil")

UNARY_OP 1. expr Unary operations. !$foo

PRE_INC 1. var Pre-increment opera-
tion.

++$i

PRE_DEC 1. var Pre-decrement oper-
ation.

--$i

POST_INC 1. var Post-increment oper-
ation.

$i++

POST_DEC 1. var Post-decrement oper-
ation.

$i--

YIELD_FROM 1. expr yield from expres-
sion (to delegate
work to other
generators).

yield from foo()

GLOBAL 1. var global statement. global $bar;

UNSET 1. var unset statement. unset($foo);

RETURN 1. expr Return statement. return 42;

LABEL 1. name Label declaration. here:

REF 1. var Variable reference. &$foo

HALT_COMPILER 1.
offset

__halt_compiler
statement.

__halt_compiler();

ECHO 1. expr Echo statement. echo $foo;
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Node Children Description Example
THROW 1. expr Throw statement. throw new

Exception();
GOTO 1. label Goto statement. goto here;

BREAK 1. depth Break statement. break 2;

CONTINUE 1. depth Continue statement. continue 3;

Nodes with exactly 2 children.

Node Children Description Example
DIM 1. expr

2. dim
Array indexing ex-
pression.

$foo[42]

PROP 1. expr
2. prop

Property access ex-
pression.

$foo->bar

STATIC_PROP 1. class
2. prop

Static property ac-
cess expression.

Foo::$bar

CALL 1. expr
2. args

Call expression. foo($bar)

CLASS_CONST 1. class
2. const

Class constant access
expression.

Foo::BAR

ASSIGN 1. var
2. expr

Assignment expres-
sion.

$foo = 42

ASSIGN_REF 1. var
2. expr

Assignment by refer-
ence expression.

$foo =& $bar

ASSIGN_OP 1. var
2. expr

Assignment expres-
sion with operation.

$foo += 42

BINARY_OP 1. left
2. right

Binary operation ex-
pression.

$x + $y
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Node Children Description Example
GREATER 1. left

2. right
Greater than ex-
pression.

$x > $y

GREATER_EQUAL 1. left
2. right

Greater than or
equal to expression.

$x >= $y

AND 1. left
2. right

Boolean and ex-
pression.

$x && $y

OR 1. left
2. right

Boolean or expres-
sion.

$x || $y

ARRAY_ELEM 1. value
2. key

Individual ele-
ments of an array
expression.

array("somekey"
=> 42)

NEW 1. class
2. args

new expression. new Foo($bar)

INSTANCEOF 1. expr
2. class

instanceof ex-
pression.

$foo instanceof
Bar

YIELD 1. value
2. key

yield expression. yield $somekey =>
bar()

COALESCE 1. left
2. right

Coalesce expres-
sion.

$foo ?? "bar"

STATIC 1. var
2. default

Static variable dec-
laration statement.

static $foo = 42;

WHILE 1. cond
2. stmts

While loop. while(true) {};

DO_WHILE 1. stmts
2. cond

Do-while loop. do {}
while(true);

IF_ELEM 1. cond
2. stmts

Individual
if/elseif/else
block of an if-
statement.

if($foo) {}
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Node Children Description Example
SWITCH 1. cond

2. stmts
Switch-
statement.

switch ($i)
{}

SWITCH_CASE 1. cond
2. switchlist

Case of a switch-
statement.

case "foo":

DECLARE 1. declares
2. stmts

declare state-
ment.

declare
(ticks=1)
{}

PROP_ELEM 1. name
2. default

Element of a
property declara-
tion list.

public $foo,
$bar = 42;

CONST_ELEM 1. name
2. value

Element of a con-
stant declaration
list.

const FOO =
"", BAR = 42;

USE_TRAIT 1. traits
2. adaptations

Trait use state-
ment.

use Foo {}

TRAIT_PRECEDENCE 1. method
2. insteadof

Trait precedence
statement.

use Foo, Bar
{ Bar::baz
insteadof
Foo; }

METHOD_REFERENCE 1. class
2. method

Method reference
in a trait use
statement.

use Foo {
Foo::bar as
protected; }

NAMESPACE 1. name
2. stmts

Namespace state-
ment.

namespace Foo
{}

USE_ELEM 1. name
2. alias

Element of a use
statement.

use Foo as
Bar, Baz as
Qux;

TRAIT_ALIAS 1. method
2. alias

Trait alias state-
ment.

use Foo {
Foo::bar as
protected
baz; }

GROUP_USE 1. prefix
2. uses

Group use state-
ment.

use Foo\{Bar
as B, Baz as
C};
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Nodes with exactly 3 children.

Node Children Description Example
CLASS 1. extends

2. implements
3. stmts

Class declaration. class Foo
extends Bar
implements Baz
{}

METHOD_CALL 1. expr
2. method
3. args

Method call ex-
pression.

$foo->bar($baz)

STATIC_CALL 1. class
2. method
3. args

Static method call
expression.

Foo::bar($baz)

CONDITIONAL 1. cond
2. trueexpr
3. falseexpr

Ternary condi-
tional operator.

$cond ? "foo"
: "bar"

TRY 1. trystmts
2. catchlist
3. finalstmts

Try statement. try {}
catch(Ex $e)
{} finally {}

CATCH 1. exception
2. var
3. stmts

Catch statement. catch(Ex $e)
{}

PARAM 1. type
2. name
3. default

Function parame-
ter.

function
foo(int $bar =
42) {}

Nodes with exactly 4 children.

Node Children Description Example
FUNC 1. params

2. uses
3. stmts
4. returntype

Function declara-
tion.

function foo()
: int {}
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Node Children Description Example
CLOSURE 1. params

2. uses
3. stmts
4. returntype

Closure declara-
tion.

function() use
($foo) : int
{};

METHOD 1. params
2. uses
3. stmts
4. returntype

Method declara-
tion.

class Foo {
function foo()
: int {} }

FOR 1. init
2. cond
3. loop
4. stmts

For-loop. for ($i = 0;
$i < 3; $i++)
{}

FOREACH 1. expr
2. value
3. key
4. stmts

Foreach-loop. foreach ($foo
as $key =>
$val) {}

B.1.2 Nodes with an arbitrary number of children

As previously mentioned, some nodes have a list character and can have an
arbitrary number of children. These are the following.
Node Children Description Example
ARG_LIST At least 0. List of arguments. foo($bar,

$baz)
LIST At least 1. list language con-

struct.
list($a, $b) =
array(3, 42)

ARRAY At least 0. array language
construct.

array(3, 42)

ENCAPS_LIST At least 1. Used for strings
with encapsulated
variables.

"Hello $foo"

EXPR_LIST At least 1. Holds a list of ex-
pressions.

for ($i = 0,
$j = 0; $i <
3; $i++) {}
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Node Children Description Example
STMT_LIST At least 0. Holds a list (i.e.,

a block) of state-
ments.

{}

IF At least 1. Holds a number of
if/elseif/else
blocks.

if($foo) {}
elseif($bar)
{} else {}

SWITCH_LIST At least 0. Holds a number of
switch blocks.

switch ($i)
{ case "foo":
case "bar":
break; }

CATCH_LIST At least 0. Holds a number of
catch blocks.

try {}
catch(Foo $f)
{} catch(Bar
$b) {}

PARAM_LIST At least 0. List of function pa-
rameters.

function
foo($bar,
$baz) {}

CLOSURE_USES At least 1. List of variables to
import into a clo-
sure.

function() use
($foo,$bar)
{};

PROP_DECL At least 1. List of property
declarations.

public $foo,
$bar = 42;

CONST_DECL At least 1. List of constant
declarations.

const FOO =
"", BAR = 42;

CLASS_CONST_DECL At least 1. List of class con-
stant declarations.

class Baz {
const FOO =
"", BAR = 42;
}

NAME_LIST At least 1. Holds a list of
names, such as a
list of interfaces a
class implements.

class Foo
implements
Bar, Baz {}

TRAIT_ADAPTATIONS At least 1. Holds a list of trait
use and trait prece-
dence statements.

use Foo, Bar
{ Bar::baz
insteadof Foo;
Foo::qux as
protected; }

USE At least 1. Holds a number of
use elements.

use Foo as
Bar, Baz as
Qux;
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B.2 Graph Traversals

B.2.1 Indexing queries

As described in Section 5.2.3.4, the first step in our detection process is the
indexing of security-critical function calls. We first create an index which maps
each AST node type to the set of AST node ids with the given type. This
makes all subsequent queries to index AST nodes with a given type and a
given set of properties significantly more efficient:

1 CREATE INDEX ON :AST(type);

In the following, we list all Cypher queries to detect security-critical function
calls pertaining to different classes of vulnerabilities.

SQL Injections. We identify calls to the built-in functions mysql_query,
pg_query, and sqlite_query. We do so in three different queries, as different
sanitizers apply and we therefore run three distinct analyses.

1 MATCH
(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_CALL’
4 AND expr.type = ’AST_NAME’
5 AND name.code = ’mysql_query’
6 RETURN node.id;

1 MATCH
(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_CALL’
4 AND expr.type = ’AST_NAME’
5 AND name.code = ’pg_query’
6 RETURN node.id;

1 MATCH
(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_CALL’
4 AND expr.type = ’AST_NAME’
5 AND name.code = ’sqlite_query’
6 RETURN node.id;
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Command Injection. Shell commands can be executed using either the
backtick operator or the PHP function calls shell_exec and popen. We collect
all corresponding nodes using the following query.

1 MATCH (node:AST)
2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_SHELL_EXEC’
4 RETURN node.id
5 UNION
6 MATCH

(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

7 USING INDEX node:AST(type)
8 WHERE node.type = ’AST_CALL’
9 AND expr.type = ’AST_NAME’
10 AND name.code IN [’shell_exec’,’popen’]
11 RETURN node.id;

Code Injection. Code can be injected either directly if an attacker can
control the argument passed to the PHP construct eval, or indirectly if an
attacker can control the argument passed to include, require, include_once,
or require_once. We use the following queries to identify these two types of
constructs, respectively.

1 MATCH (node:AST)
2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_INCLUDE_OR_EVAL’
4 AND ’EXEC_EVAL’ IN node.flags
5 RETURN node.id;

1 MATCH (node:AST)
2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_INCLUDE_OR_EVAL’
4 AND NOT ’EXEC_EVAL’ IN node.flags
5 RETURN node.id;

Arbitrary File Reads/Writes. This type of vulnerability may occur if an
attacker can control input passed to the function fopen. We identify these
calls using the following query.

1 MATCH
(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

2 USING INDEX node:AST(type)
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3 WHERE node.type = ’AST_CALL’
4 AND expr.type = ’AST_NAME’
5 AND name.code = ’fopen’
6 RETURN node.id;

Cross-Site Scripting (XSS). Reflecting user input (or, more generally,
outputting anything) in PHP normally involves using either the echo or print
language constructs, both of which have a dedicated node type. Note that text
outside of <?php ... ?> tags in a PHP file is simply interpreted as a string
passed to echo by the parser.

1 MATCH (node:AST)
2 USING INDEX node:AST(type)
3 WHERE node.type IN [’AST_ECHO’, ’AST_PRINT’]
4 RETURN node.id;

Session Fixation. We identify calls to the PHP function setcookie using
the following query.

1 MATCH
(node:AST)-[:PARENT_OF]->(expr:AST)-[:PARENT_OF]->(name:AST)↪→

2 USING INDEX node:AST(type)
3 WHERE node.type = ’AST_CALL’
4 AND expr.type = ’AST_NAME’
5 AND name.code = ’setcookie’
6 RETURN node.id;

B.2.2 Vulnerability-detection queries

The general methodology for finding suspicious data flows has been explained
in Section 5.2.3.4. In essence, the function for identifying vulnerable data flows
remains the same independently of the particular vulnerability we are looking
for. What changes is the definition of what we consider a security-critical
function call (i.e., the sink) and what we consider an appropriate sanitizer for
the sink in question. The advantage of our framework is that these definitions—
and in fact, the whole traversal—can be rewritten or implemented from scratch
depending on the analysis needs in a given context. In this section, we give
the sources, sinks, and sanitizers which we used for our evaluation presented
in Section 5.4, as well as the complete implementation of the function sketched
in Section 5.2.3.4.
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Sources. We consider additional sources than those mentioned in Sec-
tion 5.2.3 for compatibility reasons (older versions of PHP used different
variables). The complete definition of sources for vulnerabilities potentially
resulting in server-side attacks is as follows.

1 def isLowSource( Neo4j2Vertex it) {
2

3 if( it.type == TYPE_VAR) {
4 return getVarName(it) in [
5 // modern variables (>= PHP 4.1)
6 "_GET", "_POST", "_COOKIE", "_REQUEST", "_FILES",
7 // variants used up to PHP 4.1, deprecated since PHP 4.2
8 "HTTP_GET_VARS", "HTTP_POST_VARS", "HTTP_COOKIE_VARS", "HTTP_POST_FILES",
9 // deprecated since PHP 5.6, removed as of PHP 7.0
10 "HTTP_RAW_POST_DATA",
11 // really old (prior to PHP 4.1) variables that were available as global variables
12 // in addition to being available as keys in $HTTP_SERVER_VARS (and later, $_SERVER)
13 "HTTP_ACCEPT", "HTTP_ACCEPT_CHARSET", "HTTP_ACCEPT_ENCODING", "HTTP_ACCEPT_LANGUAGE",
14 "HTTP_CONNECTION", "HTTP_HOST", "HTTP_REFERER", "HTTP_USER_AGENT",
15 "REQUEST_URI", "QUERY_STRING"];
16 }
17 else if( it.type == TYPE_DIM) {
18 Neo4j2Vertex var = getDimVar(it);
19 return (var.type == TYPE_VAR &&
20 getVarName(var) in ["_SERVER", "HTTP_SERVER_VARS"] &&
21 getDimKey(it).code ==~ /HTTP_.*|REQUEST_URI|QUERY_STRING/);
22 }
23

24 return false;
25 }

The definition for vulnerabilities resulting in client-side attacks is almost
identical, except that we do not consider cookies a viable attack avenue, as
discussed in Section 5.2.3.

1 def isLowSource( Neo4j2Vertex it) {
2

3 if( it.type == TYPE_VAR) {
4 return getVarName(it) in [
5 // modern variables (>= PHP 4.1)
6 "_GET", "_POST", "_REQUEST", "_FILES",
7 // variants used up to PHP 4.1, deprecated since PHP 4.2
8 "HTTP_GET_VARS", "HTTP_POST_VARS", "HTTP_POST_FILES",
9 // deprecated since PHP 5.6, removed as of PHP 7.0
10 "HTTP_RAW_POST_DATA",
11 // really old (prior to PHP 4.1) variables that were available as global variables
12 // in addition to being available as keys in $HTTP_SERVER_VARS (and later, $_SERVER)
13 "HTTP_ACCEPT", "HTTP_ACCEPT_CHARSET", "HTTP_ACCEPT_ENCODING", "HTTP_ACCEPT_LANGUAGE",
14 "HTTP_CONNECTION", "HTTP_HOST", "HTTP_REFERER", "HTTP_USER_AGENT",
15 "REQUEST_URI", "QUERY_STRING"];
16 }
17 else if( it.type == TYPE_DIM) {
18 Neo4j2Vertex var = getDimVar(it);
19 return (var.type == TYPE_VAR &&
20 getVarName(var) in ["_SERVER", "HTTP_SERVER_VARS"] &&
21 getDimKey(it).code ==~ /HTTP_.*|REQUEST_URI|QUERY_STRING/);
22 }
23

24 return false;
25 }
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Sinks and sanitizers. The definition of a valid sanitizer depends on the sink
in question. We therefore present the exact sanitizers considered appropriate for
each security-critical function call that we analyze in our evaluation presented
in Section 5.4.

For mysql_query:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["mysql_real_escape_string", "mysql_escape_string",

"addslashes", "crypt", "md5", "sha1"]);↪→
4 }

For pg_query:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["pg_escape_string", "addslashes", "crypt", "md5",

"sha1"]);↪→
4 }

For sqlite_query:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["sqlite_escape_string", "addslashes", "crypt", "md5",

"sha1"]);↪→
4 }

For shell_exec, the backtick operator and popen:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["escapeshellarg", "escapeshellcmd", "crypt", "md5",

"sha1"]);↪→
4 }

For eval:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["crypt", "md5", "sha1"]);
4 }

For include, require, include_once and require_once:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["crypt", "md5", "sha1"]);
4 }

For fopen:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["crypt", "md5", "sha1"]);
4 }
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For echo and print:

1 def isSanitizer( Neo4j2Vertex it) {
2 if( it.type == TYPE_CALL) {
3 String calledFunc = getCalledFuncName(it);
4 if( calledFunc in ["htmlentities", "strip_tags", "crypt", "md5", "sha1"]) {
5 return true;
6 }
7 else if( calledFunc == "htmlspecialchars") {
8 // make sure ENT_QUOTES is given within the second argument
9 if( getArgCount( it) >= 2) {
10 Neo4j2Vertex secondArg = it.ithArguments(1).next();
11 return secondArg.match{ it.type == TYPE_CONST && getConstName(it) == "ENT_QUOTES"

}.count() > 0;↪→
12 }
13 }
14 }
15

16 return false;
17 }

For setcookie:

1 def isSanitizer( Neo4j2Vertex it) {
2 return (it.type == TYPE_CALL &&
3 getCalledFuncName(it) in ["crypt", "md5", "sha1"]);
4 }

Identifying critical data flows. For the sake of completeness, we present
the complete traversal which we sketched and explained a simplified version of
in Section 5.2.3.4. It tackles some technicalities, but its fundamental idea is
exactly the same.

1 def init( Vertex node) {
2

3 List finalflows = outputPaths( interprocSearchFrom( node, 0));
4 return finalflows;
5 }
6

7 /**
8 Takes a sink and performs an interprocedural backwards data
9 dependence analysis from that sink. A sink can be any AST node.
10

11 Returns an array list of paths.
12 In other words, returns an array list of array lists of vertices.
13 */
14 def interprocSearchFrom( Neo4j2Vertex sink, int recdepth) {
15 List finalflows = new ArrayList();
16

17 // consider at most maxdepth "function jumps"
18 if( recdepth > maxdepth) {
19 // return empty list
20 return [];
21 }
22

23 else if( containsSanitizer( sink)) {
24 // return empty list
25 return [];
26 }
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27

28 else if( containsLowSource( sink)) {
29 // no need to traverse, we have a low source -- return the single-element "list" of a

single-element "path"↪→
30 return [[sink]];
31 }
32

33 else {
34

35 // no low source and no sanitizer -- we traverse back along data dependence edges
36

37 // for the given sink, we first find the variables it uses,
38 // because we will only want to travel back the data dependence
39 // edges for these variables
40 List<String> varnames = getVarNamesForSink(sink).toList();
41 List flows = visit(sink, varnames).toList();
42

43 int i = 0;
44 for( List path in flows) {
45

46 // for the paths that begin in a parameter, we recurse
47 if( path.size() > 0 && path.last().type == TYPE_PARAM) {
48 ArrayList callSiteArgs = jumpToCallSiteArgs(path.last()).toList();
49 List callingFuncPaths = new ArrayList();
50 for( Neo4j2Vertex arg in callSiteArgs) {
51 callingFuncPaths.addAll( interprocSearchFrom(arg, recdepth + 1)); // recursion!
52 }
53 // add all combined paths from calling functions to flows that we found (if any) to

sinks↪→
54 for( List callingFuncPath : callingFuncPaths) {
55 finalflows.add( path + callingFuncPath);
56 }
57 }
58 else {
59 // if it’s not a parameter, it must have been a low source,
60 // because those are the only two things that visit() emits---add it
61 finalflows.add( path);
62 }
63 }
64 }
65

66 return finalflows;
67 }
68

69 /**
70 For a given sink, finds all variables used within that sink and
71 returns their names as a Gremlin Groovy pipeline.
72 */
73 def getVarNamesForSink( Neo4j2Vertex sink) {
74 sink
75 .match{ it.type == TYPE_VAR }
76 .varToName()
77 }
78

79 /**
80 * Traverses a function backwards along the data dependence edges from
81 * a given node to be considered as a sink.
82 */
83 def visit( Neo4j2Vertex sink, List<String> varnames) {
84 sink
85 // traverse to enclosing CFG node;
86 .statements()
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87 // define a set that will contain "traversed nodes" from this statement
88 .sideEffect{ seen_nodes = []; firstiteration = true; }
89

90 .as(’loopbegin’)
91

92 // only iterate over source nodes we have not seen yet
93 .filter{ !(it in seen_nodes) }
94 // save current node as seen
95 .sideEffect{ seen_nodes << it }
96

97 // traverse data dependence edges backwards
98 // in the very first iteration, we only travel back those
99 // data dependence edges specified in the list of varnames used in this sink
100 .ifThenElse{ firstiteration }
101 {
102 it
103 .inE(DATA_FLOW_EDGE).filter{ it.var in varnames }.outV()
104 }
105 { it.sources() }
106 .sideEffect{ firstiteration = false; }
107

108 // eliminate those source statements that contain sanitizers
109 .filter{ !containsSanitizer(it) }
110

111 // check whether we found a low source and save that to a boolean
112 .sideEffect{ foundlowsource = containsLowSource(it) }
113

114 // loop until:
115 // - it.object becomes null (no more sources),
116 // - or we have iterated more than thirty times,
117 // - or we already found a low source anyway (-> condition for looping: !foundlowsource)
118 // - or we found a parameter
119 // emit only statements that contain low source variables (foundlowsource) or that are

parameters↪→
120 .loop(’loopbegin’){ it.object != null && it.loops <= 30 && !foundlowsource &&

it.object.type != TYPE_PARAM }{ foundlowsource || it.object.type == TYPE_PARAM }↪→
121

122 // finally, return the found paths
123 .path.dedup
124 }
125

126 def jumpToCallSiteArgs( Neo4j2Vertex param) {
127 param
128 .sideEffect{ paramNum = it.childnum }
129 // traverse to enclosing function
130 .functions()
131 // traverse to callers
132 .functionToCallers()
133 // get the paramNum’th argument
134 .callToArgumentList()
135 .children().filter{ it.childnum == paramNum }
136 }
137

138 // decides whether a node’s subtree contains a sanitizer
139 def containsSanitizer( it) {
140 return it.match{ isSanitizer(it) }.count() > 0;
141 }
142

143 // decides whether a node’s subtree contains a low source
144 def containsLowSource( it) {
145 return it.match{ isLowSource(it) }.count() > 0;
146 }



160
Appendix B. PHP Code Property Graphs: Definitions and

Queries

B.3 List of scanned projects

In this section we give the complete list of the 1,854 projects that we used
for our large-scale evaluation in Section 5.4. All of these can be found at
https://github.com/<PROJECT>.

The set C of 4 pieces of explicitly vulnerable software or web shells is the
following:

Audi-1/sqli-labs
pfsense/pfsense

RandomStorm/DVWA
tennc/webshell

The set P of the remaining 1,850 projects that we scanned for vulnerabilities
is the following.

10up/wp_mock
12meses12katas/Enero-String-Calculator
12meses12katas/Marzo-FizzBuzz
1up-lab/OneupUploaderBundle
2b3ez/FileManager4TinyMCE
320press/wordpress-bootstrap
320press/wordpress-foundation
a1phanumeric/PHP-MySQL-Class
a2lix/TranslationFormBundle
aarondunn/bugkick
aaronpk/Google-Voice-PHP-API
abenzer/represent-map
Abhoryo/APYDataGridBundle
abraham/twitteroauth
Abstrct/Schemaverse
ACCORD5/TrellisDesk
achingbrain/php5-akismet
adamfisk/LittleProxy
adamgriffiths/ag-auth
adldap/adLDAP
adoy/PHP-OAuth2
adriengibrat/torrent-rw
advocaite/Travianx
afragen/github-updater
afreiday/php-waveform-png
afterlogic/webmail-lite
ahmadnassri/restful-zend-framework
akalongman/sublimetext-codeformatter
akanehara/ginq
akDeveloper/Aktive-Merchant
akeneo/pim-community-dev
akrabat/zf2-tutorial
AKSW/OntoWiki
akuzemchak/laracon-todo-api
alanhogan/lessnmore
alchemy-fr/Zippy
alexbilbie/MongoQB
AliasIO/Swiftlet
alistairstead/MageTool
alixaxel/ArrestDB
allegro/php-protobuf
alleyinteractive/wordpress-fieldmanager
alliswell/Less
AlloVince/eva-engine
AlloVince/EvaThumber
alloyphp/alloy
allynbauer/statuspanic
alxlit/coffeescript-php
amal/AzaThread
amazonwebservices/aws-sdk-for-php
amnuts/opcache-gui
ampache/ampache
amphp/artax
amphp/thread
anahitasocial/anahita
Anahkiasen/flatten
Anahkiasen/polyglot

Anahkiasen/underscore-php
anandkunal/ToroPHP
anantgarg/Qwench
anchepiece/statuspanic
anchorcms/anchor-cms
andacata/HybridIgniter
andraskende/cakephp-shopping-cart
andres-montanez/Magallanes
andrespagella/Making-Isometric-Real-time-Games
andrewbiggart/latest-tweets-php-o-auth
Andrewsville/PHP-Token-Reflection
angelleye/paypal-php-library
angeloskath/php-nlp-tools
Annotum/Annotum
antecedent/patchwork
anthonyshort/Scaffold
antimattr/GoogleBundle
antonraharja/playSMS
AntonTerekhov/OrientDB-PHP
AOEpeople/Aoe_Profiler
AOEpeople/Aoe_Scheduler
Aoiujz/ThinkSDK
ApiGen/ApiGen
apotropaic/parse.com-php-library
appleseedproj/appleseed
appserver-io/appserver
aramk/crayon-syntax-highlighter
Arara/Process
ariok/codeigniter-boilerplate
aristath/bootstrap-admin
arnaud-lb/MtHaml
arshaw/phpti
artdarek/oauth-4-laravel
aschroder/Magento-SMTP-Pro-Email-Extension
asimlqt/php-google-spreadsheet-client
asm89/Rx.PHP
asm89/twig-cache-extension
astorm/Pulsestorm
Athari/YaLinqo
atk4/atk4
Atlantic18/DoctrineExtensions
atoum/atoum
atrauzzi/laravel-doctrine
atrilla/nlptools
auraphp/Aura.Di
auraphp/Aura.Marshal
auraphp/Aura.Router
auraphp/Aura.Sql
Austinb/GameQ
authy/authy-php
Automattic/babble
Automattic/batcache
Automattic/camptix
Automattic/Co-Authors-Plus
Automattic/custom-metadata
Automattic/developer
Automattic/Edit-Flow
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Automattic/_s
Automattic/vip-scanner
Automattic/WP-Job-Manager
avalanche123/AvalancheImagineBundle
avalanche123/Imagine
avstudnitz/AvS_FastSimpleImport
Awilum/monstra-cms
aws/aws-sdk-php
aws/aws-sdk-php-laravel
Azure/azure-sdk-for-php
badphp/dispatch
bainternet/PHP-Hooks
bainternet/Tax-Meta-Class
banks/kohana-email
barbushin/dater
barbushin/php-imap
BarrelStrength/Craft-Master
barryvdh/laravel-dompdf
barryvdh/laravel-elfinder
barryvdh/laravel-ide-helper
barryvdh/laravel-migration-generator
barryvdh/laravel-vendor-cleanup
basho/riak-php-client
bastianallgeier/gantti
bastianallgeier/kirby
bastianallgeier/kirbycms
bastianallgeier/kirbycms-extensions
bastianallgeier/kirbycms-panel
bcit-ci/CodeIgniter
bcosca/fatfree
bearsunday/BEAR.Sunday
beberlei/AcmePizzaBundle
beberlei/assert
beberlei/DoctrineExtensions
beberlei/litecqrs-php
beberlei/metrics
beberlei/zf-doctrine
Behat/Behat
Behatch/contexts
Behat/CommonContexts
Behat/MinkExtension
Behat/Symfony2Extension
benbalter/wordpress-to-jekyll-exporter
benedmunds/codeigniter-cache
benedmunds/CodeIgniter-Ion-Auth
BenExile/Dropbox
benkeen/generatedata
bergie/dnode-php
bergie/phpflo
bernardphp/bernard
berta-cms/berta
BeSimple/BeSimpleI18nRoutingBundle
bfintal/bfi_thumb
bilalq/Tranquillity-Editor
billerickson/Core-Functionality
billerickson/display-posts-shortcode
BIOSTALL/CodeIgniter-Google-Maps-V3-API-Library
bjankord/Categorizr
bjyoungblood/BjyAuthorize
BKWLD/croppa
blind-coder/rcmcarddav
bllim/laravel4-datatables-package
blongden/hal
blt04/doctrine2-nestedset
bmidget/kohana-formo
bobthecow/Faker
bobthecow/mustache.php
bobthecow/psysh
bobthecow/Ruler
boldperspective/Whiteboard-Framework
bolt/bolt
booruguru/UserPie
bootsz/wp-advanced-search
borisrepl/boris
bortuzar/PHP-Mysql---Apple-Push-Notification-Server
box/bart
boxbilling/boxbilling
box-project/box2
braincrafted/bootstrap-bundle
braintree/braintree_php
bramus/router
brandonsavage/Upload
brandonwamboldt/utilphp
briancray/phpA-B

briancray/PHP-URL-Shortener
brianhaveri/Underscore.php
brianium/paratest
brianlmoon/GearmanManager
briannesbitt/Carbon
briannesbitt/Slim-ContextSensitiveLoginLogout
browscap/browscap
browscap/browscap-php
brunogaspar/laravel-starter-kit
bshaffer/oauth2-demo-php
bshaffer/oauth2-server-php
bstrahija/assets-ci
bstrahija/l4-site-tutorial
btroia/basis-data-export
bueltge/WordPress-Admin-Style
buggedcom/phpvideotoolkit-v2
burzum/cakephp-file-storage
burzum/cakephp-imagine-plugin
c9s/CLIFramework
CaerCam/WPMedium
cakebaker/openid-component
CakeDC/migrations
CakeDC/search
CakeDC/tags
CakeDC/TinyMCE
CakeDC/users
CakeDC/utils
cakephp/api_generator
cakephp/cakephp
cakephp/cakephp-codesniffer
cakephp/datasources
cakephp/debug_kit
cakephp/localized
calvinfroedge/codeigniter-payments
calvinfroedge/PHP-Payments
campaignmonitor/createsend-php
canni/YiiMongoDbSuite
canton7/fuelphp-casset
caouecs/Laravel-lang
CaptainRedmuff/UIColor-Crayola
captn3m0/ifttt-webhook
cartalyst/sentry
cashmusic/platform
catfan/Medoo
cboden/Ratchet-examples
cbschuld/Browser.php
ccampbell/chromephp
ccoenraets/angular-cellar
ccoenraets/backbone-directory
ccoenraets/offline-sync
ccoenraets/wine-cellar-php
cdhowie/Bitcoin-mining-proxy
cdukes/bones-for-genesis-2-0
ceesvanegmond/minify
centurion-project/Centurion
Cerdic/CSSTidy
chanmix51/Pomm
charlesportwoodii/CiiMS
charliesome/Fructose
chekun/DiliCMS
cheshirecats/CuriousWall
CHH/pipe
chibimagic/WebDriver-PHP
chnm/anthologize
chobie/php-sundown
chregu/GoogleAuthenticator.php
chrisboulton/php-diff
chrisboulton/php-resque
chrisboulton/php-resque-scheduler
chriskacerguis/codeigniter-restserver
chriskite/phactory
chriso/klein.php
chrissimpkins/tweetledee
christiaan/InlineStyle
christian-putzke/Roundcube-CardDAV
christianreber/kirbycms-knowledge-base
christophervalles/Zend-Framework-Skeleton
chyrp/chyrp
ci-bonfire/Bonfire
Cilex/Cilex
Circa75/dropplets
citelao/Spotify-for-Alfred
citricsquid/httpstatus.es
civicrm/civicrm-core
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ClassPreloader/ClassPreloader
claudehohl/Stikked
claviska/SimpleImage
claviska/simple-php-captcha
clevertech/YiiBoilerplate
clue/graph
clue/graph-composer
clue/phar-composer
cmall/LocalHomePage
cmoore4/phalcon-rest
CobreGratis/boletophp
cobub/razor
cocur/slugify
Codeception/Codeception
codeguy/Slim-Extras
CodeMeme/Phingistrano
CoderKungfu/php-queue
CodeScaleInc/ffmpeg-php
CodeSleeve/asset-pipeline
Codiad/Codiad
codin/dime
codin/roar
coen-hyde/Shanty-Mongo
coinbase/coinbase-php
colinmollenhour/Cm_Cache_Backend_Redis
colinmollenhour/Cm_Diehard
colinmollenhour/Cm_RedisSession
colinmollenhour/credis
colinmollenhour/magento-lite
colinmollenhour/magento-mongo
colinmollenhour/mongodb-php-odm
collegeman/coreylib
colshrapnel/safemysql
composer/composer
composer/installers
composer/packagist
composer/satis
concrete5/concrete5-legacy
consolibyte/quickbooks-php
contao/core
cosenary/Instagram-PHP-API
cosenary/Simple-PHP-Cache
Courseware/buddypress-courseware
CpanelInc/xmlapi-php
cpliakas/git-wrapper
craue/CraueFormFlowBundle
creocoder/yii2-nested-sets
crew-cr/Crew
Crinsane/LaravelShoppingcart
crisu83/yii-app
crisu83/yii-auth
crisu83/yiistrap
crodas/ActiveMongo
crodas/Haanga
crodas/LanguageDetector
croogo/croogo
crowdfavorite/wp-capsule
crowdfavorite/wp-post-formats
crowdfavorite/wp-social
csscomb/csscomb
csscomb/csscomb-for-sublime
cviebrock/eloquent-sluggable
cweiske/phorkie
Cybernox/AmazonWebServicesBundle
dallasgutauckis/parcelabler
daneden/Basehold.it
danielbachhuber/dictator
danielboendergaard/laravel-3-ide-helper
danielmewes/php-rql
dannyvankooten/AltoRouter
dannyvankooten/PHP-Router
danslo/ApiImport
dapphp/securimage
dasmurphy/tinytinyrss-fever-plugin
Datawalke/Coordino
datawrapper/datawrapper
DaveChild/Text-Statistics
davedevelopment/phpmig
davejamesmiller/laravel-breadcrumbs
davemo/end-to-end-with-angularjs
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