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Zusammenfassung 

Das Gonadotropin-freisetzendes Hormon (GnRH) ist der Hauptregler der 

Fortpflanzungsphysiologie bei Wirbeltieren. GnRH wird von einer kleinen 

Untergruppe von Hypothalamus Neuronen freigesezt. In die Hypophyse es auf 

gonadotrope zellen wirkt, die selektiv den Gonadotropin freisetzenden 

Hormonrezeptor (GnRHR) exprimieren. Das GnRHR-Signal in den gonadotrope 

zellen ist dann entscheidend für die Gonadenfunktion und damit die Fruchtbarkeit. 

Darüber hinaus haben klassische Studien an Ratten gezeigt, dass GnRH das weibliche 

Sexualverhalten fördert, da es direkt im Gehirn wirkt. Insbesondere verstärken 

GnRH-Infusionen im dorsalen periaqueduktalen Grau (PAG) die weibliche sexuelle 

Empfänglichkeit. Zuvor wurde in unserem Labor ein Mausmodell erzeugt, dass die 

zuverlässige Visualisierung der neuronalen Ziele von GnRH über Cre-abhängige 

Expressionen von τGFP in GnRHR-exprimierenden Zellen erlaubt. GnRHR 

Neuronen sind weit verbreitet in Bereichen des Gehirns der männlichen Maus, die an 

geschlechtsspezifischem Verhalten beteilgt sind, einschließlich des PAG. Darüber 

hinaus konnte GnRH eine Erhöhung des intrazellularen Kalzium induzieren und die 

Frequenz der Aktionspotentiale in GnRHR-Neuronen modulieren. Die Rolle von 

GnRHR-Neuronen im Verhalten blieb jedoch unerforscht. Durch die Verwendung des 

gleichen binären gentischen Ansatzes, hatte ich zunächst das Ziel, das GnRHR 

Netzwerk in dem PAG des weiblichen Gehirns der Maus bei gleichaltrigen Gruppen 

zu beschreiben. Ich fand eine breite Verteilung der GnRHR Neuronen spezifisch in 

der dorsalen und den seitlichen Teilen des PAG, jedoch nicht in dem ventrolateralen 

PAG. Darüber hinaus nimmt die Anzahl der GnRH Neuronen mit dem Alter zu, was 

auf eine späte Errichtung des GnRHR-Netzes in das PAG hindeutet. Des weiteren 

versuchte ich die genetische Ablation von GnRHR Neuronen im dorsalen PAG. Um 

dies zu tun, injizierte ich ein Adeno-assoziierten Virus im PAG, der die cre-abhängige 

Expression einer konstitutiv aktiven Form von Caspase-3 vermittelt. Auf diese Weise 

konnte ich den programmierten Zelltod in den PAG-GnRHR-Neuronen induzieren. 

Überraschenderweiße beeinflusste die Ablation die weibliche sexuelle 

Empfänglichkeit nicht. Darüber hinaus habe ich die Aktivität der GnRH Neurone in 

Bezug auf das weibliche Sexualverhalten mit dem Marker c-fos untersucht. Ich fand 

eine stark hochregulierte c-fos Aktivität im PAG, jedoch nicht in GnRHR Neuronen. 
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In einer parallelen Studie untersuchte ich die Rolle des metabotropen Rezeptors 5 

(mGluR5) beim Einstzen der Pubertät. Die neuroendokrinen Mechanismen, die den 

Beginn der Pubertät regulieren, werden weitgehend erforscht, sind aber immer noch 

unzureichend verstanden. Beweis dafür zeigte die Rolle von Glutamat bei der 

Regulation von GnRH-Neuronen. Weibliche Mäuse, denen das metabotrope Rezeptor 

5 (mGluR5) Gen fehlte, zeigten einen verzögerte Pubertät und eine verminderte 

Fertilität. Zur Analyse der Gonadotropinfunktion in Abwesenheit von mGluR5 

analysierte ich die Serumprofile der gesamten Hypophysenhormone. Ich fand 

reduzierte Mengen von Follikel-stimulierenden Hormones, jedoch blieb die Menge 

von luteinisierenden Hormones gleich. Beim Hormonspiegel von Schilddrüsen-

stimulierenden Hormones bei weiblichen Mäusen, denen das mGluR5-Gen fehlte, 

konnte ich jedoch einen Anstieg feststellen. Diese Ergebnisse könnten neue 

Einsichten in die Mechanismen liefern, die die Fruchtbarkeit regulieren und helfen 

kann dazu beitragen, neue Therapien für Pubertätsstörungen zu entwickeln. 

  



 

 VI 

Abstract 
 

The gonadotropin-releasing hormone (GnRH) is the main regulator of reproductive 

physiology in vertebrates. GnRH is released by a small subset of hypothalamic 

neurons. In the pituitary gland it acts on gonadotropes, which selectively express the 

Gonadotropin-releasing hormone receptor (GnRHR). The GnRHR signal in 

gonadotrope cells is then crucial for gonadal function and thus fertility. Furthermore, 

classical studies in rats indicated that GnRH strongly facilitates female sexual 

behavior, by acting directly in the brain. In particular, GnRH infusions within the 

dorsal periaqueductal gray (PAG) augmented female sexual receptivity. Previously 

our lab has generated a mouse model that allowed for the reliable visualization of the 

neural targets of GnRH, via Cre-dependent expression of τGFP in GnRHR-expressing 

cells. GnRHR neurons are widely present in the male mouse brain in areas involved in 

sex-specific behaviors, including the PAG. Furthermore, GnRH could elicit calcium 

responses and modulate firing activity in GnRHR neurons. However, the role of 

GnRHR neurons in behavior remained unexplored. By using the same binary genetic 

approach, I first aimed to describe the GnRHR network in the PAG of the female 

mouse in age-matched groups. I found a wide distribution of GnRHR neurons 

specifically in the dorsal and lateral parts of the PAG, but not in the ventrolateral 

PAG. Furthermore, the number of GnRHR neurons increased during age, suggesting a 

late establishment of the GnRHR network within the PAG. Secondly, I aimed to 

genetically ablate GnRHR neurons in the dorsal PAG. In order to do that, I injected in 

the dorsal PAG an adeno-associated virus that mediates cre-dependent expression of a 

constitutively active form of caspase-3. In this way, I could induce programmed cell 

death only in PAG-GnRHR neurons. Surprisingly, ablation did not affect female 

sexual receptivity. Moreover, I investigated GnRHR neural activity following female 

sexual behavior by using the marker c-fos. I found a strong c-fos up-regulation in the 

PAG, but not in GnRHR neurons. 

 

In a parallel study I have explored the role of metabotropic glutamate receptor 5 

(mGluR5) in the initiation of puberty. The neuroendocrine mechanisms that regulate 

the initiation of puberty have been largely explored but still poorly understood. 

Evidence revealed a role of glutamate in the regulation of GnRH neurons. Female 
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mice lacking the metabotropic receptor 5 (mGluR5) gene exhibited delayed puberty 

and reduced fertility. To analyze gonadotropin function in the absence of mGluR5 I 

analyzed the whole pituitary hormone serum profiles. I found reduced levels of 

follicle stimulating hormone but not luteinizing hormone, together with higher 

thyroid-stimulating hormone levels in female mice lacking the mGluR5 gene. These 

results could provide new insights into the mechanisms that can regulate fertility and 

help to develop new therapies for puberty disorders. 
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1 Introduction 

1.1 The reproductive axis 
 

Reproduction in vertebrates depends on the coordinated action of three components: 

the hypothalamus, the pituitary gland and the gonads, that together form the 

hypothalamus-pituitary-gonadal (hpg) axis. The hpg axis is essential for many aspects 

of reproductive function during the life span of an organism, such as gonadal 

development, the onset of puberty and the maintenance of fertility in the adult (Sisk 

and Foster, 2004). The hpg axis is organized hieratically under strict control of the 

central nervous system especially by a small subset of hypothalamic neurons scattered 

throughout the preoptic area (POA) which synthesize and release from their nerve 

terminals in the median eminescence (ME) the gonadotropin hormone-releasing 

hormone (GnRH) in a pulsatile manner. The GnRH peptide then reaches (through the 

hypophyseal portal vasculature) the anterior pituitary where it regulates the synthesis 

and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from 

gonadotrope cells, which express the GnRH receptor (GnRHR). LH and FSH in turn 

are released in the circulation and regulate gonadal function, such as follicle 

maturation and ovulation in females, and production of sperm in males. LH and FSH 

also affect steroid hormones production from gonads, which are released into the 

bloodstream providing feedbacks at the level of the brain and the pituitary (fig.1.1). 

1.1.1 GnRH is the key molecule in the reproductive axis function 
 

The genetic evidence of GnRH function came from the hypogonadic (hpg) mouse 

which has a loss-of-function mutation in the GnRH gene. Injections of GnRH or 

transplantation of hypothalamic portions containing GnRH neurons restored 

gonadotropin secretion and rescued the hypogonadic phenotype, demonstrating the 

hypothalamic origin of the central control by GnRH in the maturation of gonads and 

their proper function (Charlton, 2004). GnRH (pGlu-Hys-Trp-Ser-Tyr-Gly-Leu-Arg-

Pro-Gly-NH2) is a short peptide originally encoded as a pre-prohormone of 92 

aminoacids (Maggi et al., 2016). The peptide was initially isolated from porcine and 

ovine hypothalamic extracts (Baba et al., 1971; Schally et al., 1971), but can be found 

in all vertebrates from the lamprey to humans (Kavanaugh et al., 2008). In humans, the 
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GnRH gene (GNRH1) is located on the short arm of chromosome 8 (Maggi et al., 

2016). A variety of additional GnRH isoforms exists among different species 

(Kavanaugh et al., 2008). For example, in humans and monkeys GnRH-II is also 

present and encoded by a different gene and interestingly, belongs to a distinct 

neuronal population with respect to GnRH-I (Maggi et al., 2016), although with 

unclear functions. In fish models such as zebrafish (Danio rerio) or medaka (Oriza 

latipes) GnRH-III is also present in addition to GnRH-I and GnRH-II, and neurons 

expressing this variants display anatomical segregation (Okuyama et al., 2014). In 

Figure 1.1 Representation of the hpg axis showing patterns of GnRH neurosecretion and 
gonadotropins (LH and FSH) pulsatile release in before and after puberty. Multiple 
permissive cues converge on the GnRH resulting in the modulation of steroid hormones 
feedbacks from the gonads on physiology and behavior. From Sisk and Foster, 2004. 
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mice however, only the GnRH-I gene is present, therefore in this manuscript "GnRH" 

refers to GnRH-I. 

1.1.1.1 GnRH neurons distribution 

 

There are about 800 GnRH neurons in the adult mouse brain (Wu et al., 1997) and 

these are mainly distributed in the preoptic area (POA) of the hypothalamus, but are 

also present in a continuum along their migratory pathway (Merchenthaler et al., 

1984).  Neurons are found anterior to the POA in the diagonal band of Broca and in the 

medial septum (MS), and a small number of neuronal somata in the olfactory bulb 

(OB). Towards the median eminescence, few GnRH neurons are found in the anterior 

hypothalamic area (AHA) (Herbison, 2015). 

1.1.1.2 GnRH projections inside and outside the reproductive axis 
 

GnRH neurons exert their role in regulating fertility by projecting to the median 

eminescence (ME) (Parkash et al., 2015). GnRH terminals are in close apposition with 

blood vessels within the median eminescence and tanycytes, a specialized population 

of glial cells at the level of the third ventricle (Parkash et al., 2015). GnRH neurons 

exhibit unusual neurite morphology, sharing features of both axonal and dendritic 

projections (Herde et al., 2013). Surprisingly, retrograde tracing studies report only the 

50% to 70 % of GnRH neurons to be “hypophysiotropic”, i.e. project into the 

hypophyseal portal vasculature (Campos and Herbison, 2014). The organum 

vasculosum of the lamina terminalis (OVLT) is rich in GnRH processes (Herde et al., 

2011), and GnRH-immunoreactive long-distance processes are also found in several 

areas of the rat brain, such as the hippocampus, the amygdala, the stria terminalis and 

in the midbrain in the posterior commissure and the periaqueductal gray 

(Merchenthaler et al., 1984). These data raises the possibility that GnRH has several 

other targets other than gonadotropes, and may modulate neural activity. 
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1.1.2 Control of ovulation in rodents and humans by the reproductive axis 
 
In female mammals, gametes (oocytes) and steroid hormones production from the 

ovaries are cyclically regulated by gonadotropins (Walmer et al., 1992). Each oocyte is 

surrounded by a cellular structure, the ovarian follicle. FSH signaling acts on follicular 

cells to promote follicle maturation. The growing follicle starts to secrete estradiol into 

the circulating system (Fortune, 2003). The increase in estradiol concentration in the 

bloodstream reaches a peak, and is followed by a preovulatory LH surge, timed with 

ovulation (Bingel, 1974; Smith et al., 1975). The estrus cycle is conserved regarding 

hormonal profiles but, whereas in humans is 28 days long, in mice lasts 4-5 days 

(fig.1.2) (Staley and Scharfman, 2005). Estrus in mice and rats is also strictly linked to 

the 24 hours light-dark cycle (fig.1.2), suggesting gonadotropin regulation from the 

internal circadian clock (Chu et al., 2013). Four stages can be identified in mice and 

rats, according to changes in the vaginal cytology: proestrus, estrus, metestrus (or 

diestrus 1) and diestrus (Caligioni, 2009; Hubscher et al., 2005). Estradiol gradually 

rises during diestrus and reaches the peak in the morning of proestrus (Smith et al., 

1975), whereas the surge in LH occurs on the afternoon of proestrus (fig.1.2) (Bingel, 

1974; Smith et al., 1975). 

Figure 1.2 Fluctuations of circulating estradiol, progesterone, and gonadotropins (LH and 
FSH) during the different estrus cycle stages in rodents (a) and humans (b). From Staley and 
Scharfman, 2005. 
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1.1.2.1 The GnRH pulse generator 
 

Pulsatile profile of LH in the circulating system was first analyzed in rhesus monkeys 

and later in several other species of mammals, including rats and mice (Campos and 

Herbison, 2014; Maeda et al., 2010). LH pulses are coordinated with pulsatility of 

GnRH in the hypothalamus (Ordog and Knobil, 1995), which is regulated by bursts of 

the GnRH neuron (Campos and Herbison, 2014). A rapid and sharp raise in LH serum 

concentration can be triggered by GnRH neurons stimulation in vivo (Campos and 

Herbison, 2014). However, endogenous pulse generation is indirectly mediated by 

estradiol (Ordog and Knobil, 1995; Radovick et al., 2012). Global ERα KO, but not 

ERβ KO mice exhibit increased pituitary expression of the LHβ gene, similarly to 

OVX females (Couse et al., 2003). It is thought that estradiol feedback is mediated 

mainly by two distinct populations of ERα-expressing hypothalamic neurons upstream 

to GnRH neurons (Kumar et al., 2015; Smith et al., 2006). The major upstream 

regulator of GnRH release so far described is kisspeptin, a neuropeptide that in mice is 

produced mainly by neurons in two distinct hypothalamic neurons, the arcuate nucleus 

(Arc) and the antero-ventral periventricular nucleus (AVPV) (Clarkson et al., 2009). 

Inactivating mutations in the gene encoding for kisspeptin or its receptor GPR54 lead 

to hypogonadotropic hypogonadism and infertility both in humans and mice 

(d'Anglemont de Tassigny et al., 2007; de Roux et al., 2003; Seminara et al., 2003; 

Topaloglu et al., 2012). Kisspeptin signaling is also critical for the timing of puberty 

(Seminara et al., 2003). Conditional knockout of ERα in kisspeptin neurons 

dramatically advanced puberty onset in mice, due to disregulated increase of LH at 

prepubertal age (Mayer et al., 2010), indicating that a negative estradiol feedback acts 

on kisspeptin neurons population to actively restrain LH release. 

1.1.3 Hormonal control of reproductive behavior 
 

Male and female sexually-related behaviors are strongly influenced by the direct action 

of gonadal steroid hormones within the central nervous system (Ferrero and Liberles, 

2013). The seminal work of Donald Pfaff provided substantial description of the neural 

circuits underlying the hormonal control of behavior by studying the female sexual 

response, the lordosis behavior (fig1.3). The lordosis reflex is a posture in response to 

the male mounting behavior in which the female remains still with the back arched to 
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ensure penetration from the male, thus to maximize impregnation (Hardy and Debold, 

1971). However, a female shows lordosis to a male mounting only at appropriate levels 

of estradiol and progesterone; in cycling females lordosis appears during the 

periovulatory period together with “proceptive” behaviors towards the male (Pfaus et 

al., 2003), when estradiol and progesterone reach their peak concentration in the 

bloodstream; as expected, in rats, OVX females don´t exhibit sexual behavior unless 

they are primed with estradiol and progesterone (Pfaff and Sakuma, 1979b), 

implicating a coordinatory role by sexual hormones between the reproductive axis and 

behavior (fig.1.1). Estradiol action on lordosis is driven mainly by the ERα isoform, 

Figure 1.3 Modular control of sexual behavior. Diagram showing the model of activation of 
lordosis behavior in female rats. Estradiol acts both on VMH and PAG to switch the sensory 
cues from the stimuli on the flanks to a lordosis response and suppresses defensive rejections. 
From Knobil and Neill´s Physiology of reproduction, 4th edition. 
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since ERα KO female mice exhibit strong deficits in sexual receptivity (Ogawa et al., 

1998), whereas ERβ KO female mice are normal (Ogawa et al., 1999). In the 

hypothalamus, the ventromedial hypothalamus (VMH) exhibits dense ERα expression 

(Lee et al., 2014) and is thought to be the main mediator of the estradiol control on 

lordosis behavior. Lesions in the VMH impaired lordosis responsiveness under 

estradiol and progesterone priming (Mathews and Edwards, 1977; Pfaff and Sakuma, 

1979a) whereas electrical stimulation of the VMH enhanced the estradiol effect on 

lordosis in female rats in an estrogen dose-dependent manner (Pfaff and Sakuma, 

1979b). Progress in genetic targeting allowed selective functional characterization and 

the identification of the estradiol-responsive neurons within the VMH. Unilateral 

optogenetic stimulation of the Esr1+ (ERα gene) neuron subpopulation in the 

ventrolateral part of the VMH (VMHvl) in male mice is sufficient to elicit rapid 

aggression or mating in a scalable manner, suggesting an estradiol-mediated neural 

switch within the VMHvl through ERα (Lee et al., 2014). Expression silencing of ERα 

in the VMH induces decrease in VMH-specific PR expression and is sufficient to 

abolish lordosis behavior in females, together with increase in rejections (Musatov et 

al., 2006). Progesterone appears to be required for full sexual behavior expression 

(Pfaus et al., 2003). Recently, genetic identification of progesterone receptor (PR) 

neurons in mice revealed sexual dimorphism in neural targets of progesterone within 

the VMHvl and a requirement for sexual behavior in both males and females in sexual 

behavior, whereas ablation of VMHvl PR neurons disrupts also aggression in males 

(Yang et al., 2013). The VMH is very well known to send extensive projections to the 

dorsal periaqueductal gray (dPAG) in the midbrain, as shown by anterograde tracing 

studies by Swanson´s group in the rat (Canteras et al., 1994). Both the VMHvl and the 

dorsomedial aspect (VMHdm) send projections mainly to the dPAG (Canteras et al., 

1994). VMH is known to process other information such as fear: social fear and 

predator fear are distinctly coordinated by VMHdm and VMHvl, respectively. 

However, they are both impaired by electrical attenuation of the dorsal PAG (Silva et 

al., 2013), suggesting both anatomical and functional overlap at the level of the PAG. 

1.1.3.1 The central hub for sexual behavior: the periaqueductal gray 
 

The periaqueductal gray (PAG) plays a pivotal role in the integration of painful 

stimuli, by influencing pain perception (Bandler and Shipley, 1994). PAG is also 
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known to receive fear information from both the hypothalamus and amygdala (Kim et 

al., 2013; Silva et al., 2013). PAG is organized in four columns that extend 

longitudinally, along the rostrocaudal axis, surrounding the whole aqueduct until its 

end (Bandler and Shipley, 1994; Beitz and Shepard, 1985). During the estrus cycle, 

progesterone strongly influences pain responsiveness in rats, correlated with altered 

neural activity (Devall and Lovick, 2010) and selective GABA subunit expression 

within the PAG (Lovick and Devall, 2009). In female rats, electrical stimulation of the 

PAG at different coordinates enhances the effect of estradiol on lordosis in a dose-

dependent manner (Sakuma and Pfaff, 1979). The sites where lordosis is facilitated 

match the localization of the projections from the VMH, mainly in the dorsal, 

dorsolateral and lateral PAG, however with no precise localization (Canteras et al., 

1994; Morrell and Pfaff, 1982; Sakuma and Pfaff, 1979). At certain intensities, such 

stimulations can produce aversive responses (escape reactions) usually at most lateral 

parts of the PAG (Sakuma and Pfaff, 1979). As reported by Pfaff, lordosis facilitation 

requires long stimulations that cannot be fulfilled by the inputs from VMH alone 

(Sakuma and Pfaff, 1979). Surprisingly, VMH lesions did not affect electrical PAG 

stimulations, indicating that PAG can act independently of the ventral hypothalamic 

inputs on the estradiol-mediated induction of sexual receptivity (Sakuma and Pfaff, 

1979). Ascending somatosensory cues from the medulla also affected PAG neural 

activity (Sakuma and Pfaff, 1980a), suggesting convergence of hormonal and sensory 

cues within the PAG (Sakuma and Pfaff, 1980a, b), with the PAG being the major 

integration site for sexual receptivity. Other studies report the presence of a lordosis-

inhibiting system mediated by POA and lateral septum (LS) projections to the 

ventrolateral PAG (Arendash and Gorski, 1983; Floody and DeBold, 2004). 

Retrograde tracing revealed the caudal LPAG neurons to be connected with 

gigantocellular neurons in the medulla that project to the lordosis producing muscles 

(Daniels et al., 1999). Notably, c-fos is significantly up-regulated in medulla-projecting 

LPAG neurons following sexual behavior in rats (Yamada and Kawata, 2014). 

Nevertheless, PAG neurons express ERα (Loyd and Murphy, 2008), suggesting that 

estradiol action may act at the level of the PAG as well. 
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1.1.4 GnRH integrates vomeronasal inputs with the neural substrates that 

drive female sexual behavior 

1.1.4.1 Pheromonal control of reproductive physiology and behavior 
 
In mammals, the neuroendocrine status is strongly influenced by pheromone detection. 

A striking example of modulation of reproductive physiology by pheromones is the 

Bruce effect, first observed in laboratory rodents and recently confirmed in wild 

primates (Boehm, 2006; Roberts et al., 2012), in which pregnancy is blocked and the 

estrus cycle restored in a female exposed to urine of an unfamiliar male. In mice, 

exposure of grouped juvenile females to male urine advanced puberty (Lombardi and 

Vandenbergh, 1977), or could induce estrus in grouped females (Bronson and Whitten, 

1968). The relative pheromones that mediate these effects belong to different class of 

molecules, such as heptanone found in female urine, α-pharnesene that induces estrus 

in male urine (Jemiolo et al., 1986; Novotny et al., 1986; Novotny et al., 1999) or 

major histocompatibility complex I (MHC I) protein ligands (Leinders-Zufall et al., 

2004; Leinders-Zufall et al., 2014). The responsible of these effects is the vomeronasal 

organ (VNO), an olfactory subsystem within the nose. The VNO detection is also 

important in the modulation of reproductive behavior. In mice, surgical removal or 

Figure 1.4 Genetic tracing of GnRH neurons. A: Trangenic construct carrying the 
mammalian GnRH promoter upstream to the Barley Lectin (BL) gene, Internal Ribosome 
Entry Site (IRES) and Green Fluorescent Protein (GFP). B: BL is transferred from active 
synapses and travels along neurons both retrogradely to presynaptic neurons or anterogradely, 
to postsynaptic neurons. From Boehm et al, 2005. 
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gene knockout of vomeronasal signal transduction genes (such as TRPC2 -/-) abolishes 

female sexual behavior (Dulac and Kimchi, 2007; Saito and Moltz, 1986). The male 

pheromone ESP1 as well can induce lordosis in female mice through a specific 

vomeronasal receptor (Haga et al., 2010), whereas the juvenile-specific ESP22 inhibits 

sexual behavior (Ferrero et al., 2013).  

Previous studies hypothesized that vomeronasal system is functionally connected to the 

reproductive axis through GnRH neurons (Meredith, 1998). The visualization of 

selective GnRH neurons connectivity (Boehm et al., 2005) was allowed by a mouse 

model in which the expression of the transneuronal tracer barley lectin (BL) is 

restricted to GnRH neurons (fig.1.4). BL was found to be transferred from GnRH 

neurons to neurons in several brain areas. In particular, input neurons to GnRH 

neurons were identified in VMH and exhibited strong sexual dimorphism. BL neurons 

were also found in medial amygdala (MeA) and PMCO and show c-fos responses to α-

pharnesene exposure in females, indicating direct information to GnRH neurons from 

pheromonal cues. These results together indicate that GnRH neurons receive 

information from several brain areas, including areas that process olfactory and 

pheromonal information and areas responsible for driving sexual behavior. 

1.1.4.2 GnRH as a modulatory neurotransmitter in female sexual behavior. 

Cooperation or necessity? 

 
GnRH was found to stimulate male and female sexual behavior in many species (Boyd 

and Moore, 1985). In rodents, has been proposed that GnRH participates in modulation 

of behavior by acting on the neural substrates of sexual behavior. Initial studies in rats 

report a direct involvement of GnRH in promoting sexual receptivity in females. 

Ovariectomized (OVX) and hypophysectomized females treated with sub-threshold 

doses of estradiol (i.e., not sufficient to elicit receptivity) showed enhanced lordosis 

behavior when co-treated with GnRH (Pfaff, 1973). A parallel study (Moss and 

McCann, 1973) showed that systemic LH and FSH failed to elicit a lordosis response 

in ovariectomized female rats. Together, these findings implicate that the enhancing 

effect of GnRH is not due to any increase in LH and/or FSH, nor -indeed- to any 

feedback from the ovarian hormones. 
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Consistent with this, Sakuma and Pfaff (Sakuma and Pfaff, 1980c) showed that 

bilateral injections of GnRH directly in the periaqueductal gray -but not in the superior 

colliculus- of OVX female rats primed with estradiol induced a potent, fast and long-

lasting raise in the lordosis reflex comparable to PAG electrical stimulations (Sakuma 

and Pfaff, 1979) (fig.1.5. A and C). Moreover, female sexual response disappeared 

following injection of a GnRH antagonist (fig.1.5.B). Further evidences from different 

labs supported this idea. Lordosis responses in female rats were abolished upon 

surgical VNO removal (Saito and Moltz, 1986). Subcutaneous administration of 

estradiol and progesterone partially restored lordosis in VNO-ablated rats, but only 

subcutaneous estradiol together with GnRH fully restored lordosis to the level of 

controls, when treated with sub-threshold estradiol (Saito and Moltz, 1986). The 

authors suggested interplay of estradiol and GnRH in the modulation of the neural 

substrates in VMH and PAG, to induce the lordosis response at maximal levels. GnRH 

administered intracerebroventricularly (icv) relieved sexual behavior deficits 

following VNO removal (Meredith and Howard, 1992), suggesting the 

cerebrospinal fluid as a vehicle for the modulatory role of GnRH in female sexual 

behavior. Consistent with this, GnRH was detected in ewes cerebrospinal fluid at 

Figure 1.5 Female sexual behavior before and after GnRH (A) or anti GnRH globulin (B)  
infusion in the dorsal PAG of the rat. White circles in (C) show ineffective GnRH infusions 
in the superior colliculus (SC). From Sakuma and Pfaff, 1980. 
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concentrations comparable to the hypophyseal portal blood (Caraty and Skinner, 2008; 

Skinner et al., 1997), showing both pulsatile and surge profiles coherently with 

reproductive status. Ward and Charlton (Ward and Charlton, 1981) conducted 

behavioral experiments in hpg female mice. hpg females show a loss of sexual 

receptivity when primed with estradiol alone, similarly to OVX females. When primed 

with estradiol and progesterone, lordosis quotient was recovered in hpg mice, however, 

with a prominent delay (in the order of weeks) with respect to wild type OVX females. 

Systemic GnRH injections (together with estradiol and progesterone priming) fully 

restored behavioral deficits at the level of wild type OVX, estrogen and progesterone 

primed. These results suggest that GnRH is required to fully restore sexual 

responsiveness in female mice. However, a reactivation of the hpg axis by 

subcutaneous GnRH cannot be ruled out in this experiment. Together, these results 

establish that despite the permissive role of genomic estradiol in unleashing the sexual 

responsiveness, the local GnRH action in the dorsal PAG represents the most potent 

stimulus that brings the lordosis response to maximal levels. However, the question 

whether the endogenous GnRH is necessary for efficient sexual responsiveness is still 

opened. To date, techniques so far used to dissect the behavioral GnRH lacked of 

genetic specificity. Despite intense work, the neural circuits of sexual behavior that 

sense GnRH remained unknown. 
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1.2 The GnRH receptor (GnRHR)  

 
Gonadotropin releasing hormone receptor (GnRHR) is the downstream effector of 

GnRH. It is specifically expressed on the surface of gonadotrope cells and has ben 

found to be expressed in the brain and other tissues (Maggi et al., 2016). “Loss of 

function” mutations within the human GnRHR gene were identified in patients 

affected with normosmotic (normal sense of smell) hypogonadotropic hypogonadism 

or Kallmann syndrome (de Roux et al., 1997). The GnRHR protein (fig.1.6) belongs to 

the seven transmembrane G-protein coupled receptor family (GPCRs). Its structure is 

unique because despite canonical GPCRs, it lacks the intracellular C-terminal domain, 

leading to a slower desensitization and internalization rates (Maggi et al., 2016). GnRH 

binds and activates GnRHR through the N-terminal domain and triggers the G-protein 

Gαq/11 signal cascade. The Gαq/11 intracellular signal activates the phopholipase C 

which triggers the increase in diacylglycerol (DAG) and inositol 1,4,5, diphosphate 

(IP3). IP3 then induces mobilization of internal calcium stores and DAG the activation 

of the protein kinase C (PKC). During adulthood, GnRHR mRNA is up regulated prior 

ovulation and returns to basal levels in diestrus (Bauer-Dantoin et al., 1993), however 

its regulation seems to be independent from the action of ERα and ERβ (Couse et al., 

2003). GnRHR onset of expression is defined early in development by the 

transcriptional regulator SF-1 (Parker et al., 2002). Transgenic mice which express the 

human placental alkaline phosphatase reporter gene (hPLAP) under the control of a 3,3 

kb fragment from the rat GnRHR promoter showed hPLAP expression in pituitary and 

also in several brain areas, such as hippocampus, the lateral septum (Granger et al., 

2004). However, due to differences between rat and mouse, authors could not exclude 

ectopic and aberrancies in rat GnRHR promoter expression (Granger et al., 2004). 

Indeed, most studies on GnRHR function involved either immortalized tumor-derived 

cell line (αT3-1 and LβT2 cell lines) (Maggi et al., 2016), or transgenic heterologous 

expression, far from being close to physiological conditions. Genetic targeting of the 

GnRHR gene with an IRES-Cre cassette allowed unambiguous visualization and 

characterization of GnRHR cells (Wen et al., 2008). 
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1.2.1 The GnRHR-IRES-Cre mouse 

 
In order to study the expression of the allelic GnRHR, the GnRHR-IRES-Cre (GRIC) 

mouse line was generated previously in our lab (Wen et al., 2008). The endogenous 

GnRHR gene was targeted at the end of the last exon (gene targeting approach), 

ensuring that expression of the bacterial Cre recombinase is dependent only the 

regulation and activity of the endogenous GnRHR promoter and moreover, on the 

actual GnRHR protein synthesis (Candlish et al., 2015). The internal ribosome entry 

site (IRES) between the GnRHR and Cre recombinase sequence ensures bicistronic 

mRNA expression, so the GnRHR and the Cre will be synthesized as two separate 

proteins. GRIC mice were crossed with ROSA26-YFP mice to attain fluorescent 

visualization of genetically defined gonadotropes (fig.1.7.A). ROSA26-YFP mice bear 

a targeted insertion of the YFP downstream a loxP-flanked transcriptional stop signal 

in the ubiquitously expressed ROSA26 locus within the mouse genome (Soriano, 

1999). Cre-dependent excision of the stop signal allows faithful YFP expression 

(dependent on the constitutively active ROSA promoter), independent from the highly 

fluctuating GnRHR expression. Fluorescent visualization allowed to selectively 

characterize gonadotropes within the highly heterogeneous pituitary gland. YFP+ 

signal in GRIC/R26-YFP mice is restricted in the anterior pituitary (fig.1.7.B). 

Figure 1.6  Diagram of the rat GnRHR protein (Kaiser et al., 1992). 
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Indeed, 99,98% of YFP+ were LH/FSH+, confirming the gonadotrope identity of 

YFP+ cells (Wen et al., 2008). Importantly, almost all YFP+ gonadotropes (23/25 

cells) showed increase in intracellular Ca2+ after GnRH application, indicating the 

presence of a functional GnRHR (Wen et al., 2008). Improved fluorescence  was 

obtained in our lab with the generation of the conditional eR26-τGFP line (Wen et al., 

2011). The eR26 (enhanced ROSA26) is a ROSA locus targeted with a CAGS cassette, 

which contains the chicken β-actin promoter and the cytomegalovirus (CMV) enhancer 

(Okabe et al., 1997), to achieve enhanced expression of the downstream τGFP. τGFP is 

a green fluorescent protein (GFP) fused with the microtubule-associated protein tau 

(τ), which targets the GFP to microtubules (Rodriguez et al., 1999). The GRIC/eR26-

τGFP line allowed the visualization of substantial morphological and spatial plasticity 

Figure 1.7 Binary genetic approach to visualize GnRHR cells. A: Coexpression of  GnRHR-
restricted Cre and cre-depenent ROSA26-YFP leads to cre-mediated recombination of  the 
loxP-flanked transctiptional stop signal upstream to the YFP ORF, leading to YFP expression 
in GnRHR cells, enabling visualization B:  Fluorescent YFP labeling (green) is restricted in 
gonadotropes, highlighted by LH and FSH immunoreactivity (red). From Wen et al., 2008. 
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during critical reproductive stages in the whole pituitary gonadotrope population as 

well as at single cell level, suggesting adaptations in response to hormonal changes 

(Alim et al., 2012). Fluorescent labeling of gonadotropes allowed also Fluorescent 

Activated Cell Sorting (FACS) and the whole trascriptome sequencing of male and 

females gonadotrope cells was revealed. It was found extensive remodeling in 

gonadotrope expression profiles during several reproductive stages (Qiao et al., 2016), 

together with a massive body of information about gonadotrope genetics.  

1.2.1.1 GnRHR neurons are present in the periaqueductal gray of the male 

mouse and in other mesencephalic regions 
 
The GRIC/R26-YFP+ mouse model enabled the identification of the long-time 

hypothesized neuronal targets of GnRH in the periaqueductal gray. In our lab has been 

characterized the brain of GRIC/R26-YFP males and observed YFP+ neurons mainly 

in the DM/DLPAG and LPAG, matching with the previously identified location where 

GnRH was effective in eliciting lordosis in female rats (fig.1.8.A). Also VMH contains 

GnRHR neurons, proposing the ventromedial nucleus of the hypothalamus for an 

additional modulatory site of GnRH concerning sexual receptivity. Surprisingly, YFP+ 

neurons are also found in the superior colliculus (fig.1.8.B-C)(Wen et al., 2011), where 

GnRH was ineffective in lordosis facilitation (Sakuma and Pfaff, 1980c). 

1.2.1.2 Additional GnRH target areas revealed by fluorescent visualization 

of GnRHR neurons 
 

YFP+ neurons were identified in areas that process main olfactory inputs, such as the 

pyriform cortex (Pyr) and the anterior cortical amigdala (CoA). Also MeA and PMCO 

were found YFP+ neurons, suggesting regulation by GnRH signaling of vomeronasal 

information. Scattered YFP+ neurons were found in hypothalamic areas, such as 

arcuate nucleus (Arc), periventricular nucleus (Pe). POA also contains YFP+ neurons, 

which are in close vicinity to GnRH neurons, however none of the GnRH neurons are 

YFP+, suggesting no autocrine feedbacks on GnRH neurons (Wen et al., 2011). 
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1.2.1.3 Neuronal GnRHR signaling enabled by reliable fluorescent 

visualization of GnRHR neurons revealed neural code modulation 

in synchrony with the estrus cycle by GnRH.  
 
The employment of the GRIC/eR26-τGFP mouse line allowed bright visualization of 

GnRHR neurons in brain slices. It was found that GnRH elicited Ca2+ responses in 

GnRHR  neurons in the PAG (fig 1.8.D), Pe and in the Arc (Wen et al., 2011). 

Electrophysiological recordings of GnRHR neurons in the Pe revealed spontaneous 

activity (Schauer et al., 2015). Clusters analysis and principal component analysis 

(PCA) revealed that GnRHR neurons exhibit distinct patterns of firing activity defined 

by the different estrus cycle stages. During metestrus GnRHR neurons were mainly 

bursting (92%), whereas in proestrus 63% of the measured GnRHR neurons was 

observed in a tonic pattern. Bursting neurons decreased over proestrus and GnRH 

application was found sufficient to trigger a switch from a burst firing to a tonic firing 

in GnRHR neurons, and cetrorelix, a GnRHR antagonist, reversed the GnRHR tonic  

firing back to a burst firing (Schauer et al., 2015). Together, these data indicate that 

τGFP neurons express functional GnRHRs on neuronal membranes in the adult brain, 

Figure 1.8  GnRHR neurons visualization in the PAG and midbrain of the GRIC/eR26-YFP 
male A: sections showing the dorsal and ventrolateral columns of the PAG. B: GnRHR 
neurons are widely distributed in the midbrain at different coordinates. C: GnRHR are 
clustered in the superior colliculus and the dorsal part of the PAG.D: Normalized area under 
the curve (AUC ) showing Ca2+ responses following GnRH application independent on action 
potentials. TTX: tetrodotoxin. Modified from Wen et al., 2011. 



Introduction | 

 18 

and that they modulate the neural activity in response to GnRH, coherently with 

ovulation. GnRHR neurons somata and their projections (highlighted by the τGFP 

reporter) in the Pe revealed close contacts both with GnRH terminals and capillaries, 

suggesting multiple sources of the peptide GnRH. These findings not only further 

support a role of GnRH involved as a neuromodulatory transmitter, but also uncovered 

the neurons in the PAG that are modulated by GnRH, together with other areas 

involved in processing social information. 

1.3 Novel genetic tools to study neural correlates in behaving 

mammals 
 
In the recent years, the establishment of the cre/loxP system in mouse models led to the 

explosion of not only cre-dependent genetic tools for fluorescent labeling, but also to 

perturb cellular and neuronal function, together with the development of novel 

strategies for genetic delivery in vivo.  

1.3.1 Recombinant adeno-associated viruses 
 

Recombinant adeno-associated viruses (r-AAVs) are widely used as vectors for genetic 

delivery in vivo. AAVs can efficiently infect neuronal cells therefore are suitable for 

stereotaxic delivery in the brain. An aspect in the employment of AAVs is their 

capability of being both directly and retrogradely up taken by neurons and transported 

along axons to the nucleus, allowing retrograde tracing from projection areas (Campos 

and Herbison, 2014; Low et al., 2013). Several AAVs were designed so far to deliver 

cre-dependent gene expression and can be employed in the vast array of cre mouse 

lines (Tsai et al., 2009). Among hundreds of serotypes, the variants 2/2 and 2/5 of the 

serotype 2 are the most widely used and characterized AAVs as they efficiently 

transfects neurons, therefore are largely employed as vectors for several genetic tools, 

such as optogenetic tools (Yizhar et al., 2011). Notably, serotype 2/5 (abbreviated as 

AAV5) has been successfully employed in mice, with a wider spread in the brain tissue 

respect to serotype 2/2 (AAV2) (Yizhar et al., 2011). The AAV5-flex-taCasp3-TEVp 

viral construct can trigger apoptosis of cre expressing cells, and was successfully 

employed for the ablation of progesterone receptor neurons in the ventromedial 

hypothalamus (VMHvl) in vivo (Yang et al., 2013). This AAV contains the genetic 

information for an engineered form procaspase 3 protein, whose cleavage into the 
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active form caspase 3 induces apoptosis in the host cell. In physiological conditions, 

the procaspase 3 proteins contains the cleavage site for upstream caspases, that drives 

the active form of caspase 3 (taCasp3).  This engineered version of procaspase 3 lacks 

the caspase cleavage site to avoid endogenously driven activation, but has a cleavage 

site for the heterologous enzyme tobacco etch virus (TEVp). A peptide-encoding 

sequence (T2A) between the two ORFs, ensures bicistronic expression of pro-taCasp3 

and TEVp (Yang et al., 2013). The bicistronic sequence is flanked by a combination of 

mutated and wild type loxP sites similar to the DiO strategy, named as "flip-excision", 

FLEX, in order to drive the protein expression only in cre-expressing cells (Atasoy et 

al., 2008). 

1.4 Scientific aims and strategies 
  
Aim 1: Characterization of GnRHR neurons in the female brain 
 

Previous studies suggest that GnRH is necessary in promoting female reproductive 

behavior by acting directly in the PAG. Genetic targeting of the GnRHR gene in mice 

neurons allowed both the visualization and the manipulation of GnRHR cells. 

Consistent with this, I aimed to analyze in vivo the role of GnRH signaling in female 

sexual behavior by selective ablation of GnRHR neurons and subsequently 

characterize the behavior. To do this, I first elaborated a map of GRIC/eR26-τGFP 

neurons in the PAG of the female. Secondly, I stereotaxically delivered a cre-

dependent AAV encoding for procaspase, to trigger programmed cell death in GnRHR 

neurons locally in the dorsal PAG of GRIC/eR26-τGFP female mice according to the 

obtained mapping results, without affecting gonadotropes in the pituitary, nor the 

endogenous GnRH. In parallel I analyzed whether GnRHR neurons are activated 

during female sexual intercourse, by analyzing the expression of c-fos, the primary 

early gene whose activation is dependent on neural activity. 

 

Aim 2: Studying the role of mGluR5 in reproductive physiology 

 

In collaboration with Dr. Ioana Inta I analyzed the pituitary hormone profile of female 

mice lacking the mGluR5 gene. Puberty disorders and infertility were identified in 

female mice lacking the mGluR5 gene. To understand whether these effects are due to 

a deregulated gonadotropin release, I performed simultaneous analysis of pituitary 
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hormones in serum of wt, heterozygous and homozygous knockout for the mGluR5 

gene.  
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2 Materials and Methods 

2.1 Role of GnRHR neurons in female sexual behavior 

2.1.1 Antibodies, solutions and reagents 
Table 2.1 Primary antibodies list 

Name Company Catalogue No. Dilution 

Rabbit anti-GFP IgG Life technologies A11122 1:1000 

Chicken anti-GFP Igγ Aves Labs GFP-1020 1:1000 

Rabbit anti-c-fos IgG Santa Cruz 
Biotechnology sc-52 1:300 

Goat anti-c-fos IgG Santa Cruz 
Biotechnology sc-52-G 1:300 

Rabbit anti-GnRH IgG ThermoFischer 
Scientific PA1-121 1:800 

Rabbit anti-Erα IgG Millipore 06-935 1:1000 

Rabbit anti-nNOS IgG ThermoFischer 
Scientific 61-7000 1:300 

Rabbit anti-Tph2 IgG Abcam ab111828 1:500 

Rabbit anti-mCherry (home made), 0,3 
mg/ml 

provided by Prof V. 
Flokerzi, UkS - 1:200 

 

Table 2.2 Secondary antibodies list 

Name Company Catalogue No. Dilution 

Donkey anti-rabbit 488-conjugated IgG 
Fab Fragment Jackson Labs 711-547-003 1:500 

Donkey anti-rabbit 488-conjugated IgG 
F(ab')2 Fragment Jackson Labs 711-546-152 1:500 
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Donkey anti-rabbit Cy3-conjugated IgG 
Fab Fragment Jackson Labs 711-167-003 1:500 

Donkey anti-rabbit Cy5-conjugated IgG 
Fab Fragment Jackson Labs 711-177-003 1:500 

Donkey anti-goat Cy3-conjugated IgG 
Fab Fragment Jackson Labs 705-167-003 1:500 

Donkey anti-chicken 488-conjugated IgG 
F(ab')2 Fragment Jackson Labs 703-546-155 1:500 

 
Table 2.3 Blocking 

Name Company Catalogue No. 

Normal donkey serum Jackson Labs 017-000-121 

 

Table 2.4 General solutions 

Name Composition 

Blocking solution 5% normal donkey serum 

 
0,3% Triton x-100 

 
0,02% Sodium Azide 

 
PBS 1X 

Antibody solution 0,5% λ-carrageenan 

 
0,02% Sodium Azide 

 
1x PBS 

PBS 1X (0,01M) 10 mM Na2HPO4 

 
1,37 mM NaCl 

 
2 mM KH2PO4 

 
2,7 mM KCl 

ACSF 25mM NaHCO3 

 
1,25 mM NaH2PO4 

 
0,8 mM MgCl 6x H2O 

 
5 mM Glucose 

 
124 mM NaCl 

 
8 mM KCl 
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1mM CaCl2 2xH20 

PFA 4% 4% PFA 

 
1x PBS 

 
Table 2.5 Reagents list 

Name Company Catalogue No. 

Methylene Blue 0,05 % w/v, in H2O Sigma-Aldrich 319112-100ML 

bisBenzimide H 33258 Sigma-Aldrich B-1155 

λ-carrageenan Sigma-Aldrich 22049-F 

Sodium Azide Sigma-Aldrich S2002 

Progesterone Abcam ab141252 

β-Estradiol Sigma-Aldrich E8875 

Cholesterol Sigma-Aldrich C8667 

Na2HPO4 VWR 28029.292 

NaCl VWR 27810.364 

KCl Grüssing Z12008 

KH2PO4 Sigma-Aldrich P5655 

NaHCO3 Sigma-Aldrich S-6297 

NaH2PO4 Sigma-Aldrich S7907 

MgCl 6XH2O Sigma-Aldrich M2393 

Glucose Sigma-Aldrich G-5146 

CaCl Sigma-Aldrich C-5080 

Sucrose AppliChem 131621.1211 

PFA Sigma-Aldrich P-6148 

Triton X-100 AppliChem A4975,1000 

Sesame Oil Sigma-Aldrich S3547 

NaOH Grüssing Z12155 
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2.1.2 Mice 
 
In order to visualize and to be able to manipulate in vivo GnRHR-expressing neurons, 

in the present study were used adult (10-14 weeks old) and sexually naive 

GRIC/eR26-τGFP females. GRIC/eR26-τGFP females were obtained by crossing 

GnRHR-IRES-Cre (GRIC) homozygous mice (Wen et al., 2008) with eR26-τGFP 

homozygous mice (Wen et al., 2011). Mice were kept under at standard light/dark 

cycle (12:12-h; lights-on at 07:00 h; lights-off at 19:00 h) with food and water ad 

libitum. For behavioral studies, mice were kept at inverted light/dark cycle for at least 

three weeks (12:12-h; lights-on at 22:00 h; lights-off at 10:00 h) before the 

experiments. Mouse experiments were carried out in accordance with the German 

Animal Welfare Act, European Communities Council Directive 2010/63/EU, and the 

institutional ethical and animal welfare guidelines of the University of Saarland. All 

the surgical procedures, including perfusion and organ collection were approved by 

the Animal Protection Committee of the University of Saarland. 

2.1.3 Mouse genotyping 
 

Genomic DNA was obtained from ear biopsies. Ear biopsies were lysed in 100 µl ear 

lysis buffer (Table 2.6) added with Proteinase-K, overnight at 55°C on shaker (MHR 

23, Ditabis). Mice were genotyped by PCR (Polymerase Chain Reaction). The PCR 

mix is listed in the table below. PCR is then performed with a thermal cycler (T100, 

Biorad). PCRs for Cre-recombinase, enhanced ROSA26 locus (which insertion of the 

targeted τGFP construct) and wild type ROSA26 locus were performed all in one tube 

(multiplex, see tables 2.7 and 2.8). PCR for the GnRHR-IRES-Cre was performed in a 

separate reaction (tables 2.7-2.8). 

 
Table 2.6 Ear lysis buffer 

Reagent Concentration 

Tris (pH 8.0) 50 mM 

NaCl 100 mM 

NP40 0,20% 

Tween 20 0,20% 

EDTA (pH 8.0) 1 mM 
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Table 2.7 PCR Mix 

Cre+eR26+R26 multiplex PCR mix µL 

dH20 (MilliQ) 4 

MyTaq™ HS Red Mix 6,25 

R26 (common) Forward 0,25 

eR26 Reverse 0,25 

Wild type R26 Reverse 0,25 

Cre  Forward 0,25 

Cre Reverse 0,25 

DNA 1 

Total 12,5 

  
GnRHR-IHRES-Cre (GRIC) PCR mix µL 

MilliQ 4,5 

MyTaq™ HS Red Mix 6,25 

GnRHR-IHRES-Cre (common) Forward 0,15 

GnRHR Wild Type Reverse 0,3 

GnRHR Knock-IN Reverse 0,3 

DNA 1 

Total 12,5 
 
Table 2.8 List of primers 

Primer Sequence 

R26 (common) Forward GGA AGC ACT TGC TCT CCC AAA G 

eR26 Reverse  GGG CGT ACT TGG CAT ATG ATA CAC 

Wild type R26 Reverse CTT TAA GCC TGC CCA GAA GAC TC 

Cre Forward GCG GTC TGG CAG TAA AAA CTA TC 

Cre Reverse GTG AAA CAG CAT TGC TGT CAC TT 

GRIC (common) For. TGA CAG TCG CAT TCG CTA CC 

GRIC K.I. Rev. AAC TCG CGC CCT GGA AG 

GRIC wt Rev. GAA GGT CTT CTG AAG CTC TAA CAA C 
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Table 2.9 PCR reaction 

Genes PCR cycle PCR Product 
Cre, 

eR26, 
R26 wt 

 
 
 
 

GRIC, 
GnRHR 

wt 
	

Cre: 102 bp 
eR26: 495 bp 

R26 wt: 256 bp 
 
 

 
 
GRIC K.I.: 539 bp 

 
GnRHR wt: 349 

bp 

2.1.4 Surgery 

2.1.4.1 Ovariectomy (OVX) 
 

Ovariectomy was performed to all females used for behavioral analysis in order to 

prevent pregnancy and especially to avoid variability due to hormonal changes during 

the different stages of the estrus cycle. Mice were anesthetized with Isofurane (Forene, 

AbbVie, Deutschland) and kept under continuous isofurane with a mouse stereotaxic 

mask (Stoelting, Cat. No. 51625M), on top of a heating pad at 37°C. Intra-peritoneal 

(i.p.) injection of a 5 mg/kg saline solution of Carprofen (Rimadyl 50 mg/ml, Pfizer) 

was performed to relief post-operative inflammation and pain; eye gel (Gent-ophtal, 

Dr. Winzer Pharma GmbH) was applied to prevent eye drying during anesthesia. On 

each side, the area rostrally the iliac crest was shaved and washed with disinfectant, 

then a small incision was made on the skin. A little dissection was made on the tissue 

underneath until the abdominal cavity is reached. The ovary was pulled out gently 

with forceps and a ligation is made at the level of uterine horns with absorbable suture 

thread (Vicryl, VCP391H). The ovary was cut and the remaining tissue was put back 

inside the abdominal cavity. The internal and external wounds were closed with three 

suture points with absorbable suture thread (Vicryl, VCP391H). Another incision 

medially on the neck was made and a 5-mm-long silastic capsule (inner diameter: 1.57 

mm; outer diameter: 2.41 mm) containing crystalline 17β-estradiol (E2, E8875, Sigma) 

diluted 1:1 with cholesterol (C8667, Sigma) was inserted subcutaneously. The wound 

was closed with absorbable suture thread (Vicryl, VCP391H). After surgery the mouse 
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was put back in a clean home cage on top of a 37°C heater. 24 hours after surgery the 

mouse was injected again intra- i.p with a 5 mg/kg saline solution of Carprofen 

(Rimadyl 50 mg/ml, Pfizer). Recovery form surgery was 14 days at least.  

2.1.4.2 Viruses 
 

In this study, AAV5-EF1a-DiO-hChR2(H134R)-mCherry-WPRE-pA (titer: 5,2 x 1012, 

UNC Vector Core) was stereotaxically injected into the dorsal PAG in order to 

visualize acute GnRHR expression and AAV5-flex-taCasp3-TEVp: (titer 5,3 x 1012, 

UNC Vector Core) to induce acute genetic ablation of GnRHR expressing neurons. 

The AAV5-EF1a-DiO-hChR2(H134R)-mCherry-WPRE-pA encodes for the 

Channelrhodopsin2 (H134R), fused with mCherry. The ChR2-mcherry is a Double 

floxed  inverted Open reading frame (DiO), consisting in a combination of mutated 

and wild type loxP sites (Cardin et al., 2009). Cre-recombination brings the ORF in 

the sense orientation, allowing the expression under the EF1a promoter. Once 

expressed, the ChR2-mCherry fusion protein will target to the neuron membrane (due 

to the ChR2 moiety) highlighting cell bodies and projections in Cre-expressing 

neurons. 

2.1.4.3 Stereotaxic injections 
 

The mouse is placed on a stereotaxic device (Stoelting Co.) on top of an heating pad at 

37°C, and maintained under continuous Isofurane (Forene, AbbVie, Deutschland); 

intra-peritoneal (i.p.) injection of a 5 mg/kg saline solution of Carprofen (Rimadyl 50 

mg/ml, Pfizer) is performed to relief post-operative inflammation and pain; eye gel 

(Gent-ophtal, Dr. Winzer Pharma GmbH) is applied to prevent eye drying during 

anesthesia. Once correctly placed, the mouse is shaved on the head. Then, the skin is 

sterilized with disinfectant and gently opened with a scalpel and the skull exposed. 

The skull surface is washed with low percentage (3%) H2O2 to remove connective 

tissue and to highlight the skull junctions then washed with saline solution (0,9% 

NaCl) to stop H2O2 reaction. According to the "mouse atlas in stereotaxic coordinates" 

(Paxinos), two small bilaterally symmetrical holes are drilled with a dentist drill (MH-

170, Foredrom) and bilateral injections are performed with an Hamilton Microliter 

syringe (#62 RN) with a 34 gauge needle (NDL ga34/20mm or 10mm/pst4, Hamilton) 
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into the dorsal part of the periaqueductal gray (PAG, Antero-posterior coordinate: -4,9 

mm from Bregma; Lateral coordinate= ±0,4 mm from Bregma; Dorso-ventral 

coordinate; 2,1 mm from Bregma); when the needle reached the correct position, is left 

in place for 3 minutes, AAV5-flex-taCasp3-TEVp (1 µl/side), AAV5-5EF1a-DiO-

hChR2(H134R)-mCherry-WPRE (0,2 µl/side), ACSF or Methylene Blue 0,05% 

solution (1 µl/side)  was injected at the rate of 100 nl/min (10 minutes) for each side 

by mean of the Quintessential Stereotaxic Injector (Stoelting, Cat. No. 33311). The 

injected volumes were determined according to previous reports (Lohman et al., 2005; 

Yang et al., 2013). At the end of the injection the needle is left in place for an 

additional time of 5 minutes. The needle then is retracted slowly and the skin closed 

with absorbable suture thread (Vicryl, VCP391H). The mouse is removed from the 

stereotaxic apparatus and placed in a clean home cage on top of a 37°C heater. 24 

hours after surgery the mouse is injected again i.p. with a 5 mg/kg saline solution of 

Carprofen (Rimadyl 50 mg/ml, Pfizer). Recovery form surgery is from 7 to 10 days. 

2.1.5 Mouse tissue preparation 
 

Mice were anesthetized with a solution of 100 mg/kg of ketamine (Ketavet, Zoetis) 

and 20 mg/kg of xylazine (Rompun 2%, Bayer) xylazine  in PBS. After anesthesia 

mice were transcardially perfused with 15 ml of PBS at room temperature followed by 

25-35 ml of ice-cold 4% PFA in PBS. Brains were harvested and soaked in ice-cold 

4% PFA for 2 hours. Brains were then transferred in 30% sucrose solution in PBS for 

48 hours for cryo-protection, then freezed in tissue embedding medium (Leica) in 

disposable plastic tissue embedding molds (Peel-a-way, Cat#:18646A) and stored at -

80°C until use. 14 or 25 µm sections were achieved from the frozen tissues in series of 

5 (to allow parallel staining procedures) with a cryostat (CM3050 S, Leica) at a 

temperature of -16/-18°C, and collected on glass slides (Superfrost Plus, 

Langenbrinck). Sections were stored at -80°C until used. 

2.1.6 Behavior 

2.1.6.1 Female sexual behavior assessment 
 

All behavioral tests were performed during the dark phase (from 13:00 to 19:00). 3-4 

hours prior the behavioral session, OVX females were injected subcutaneously (s.c.) 
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with 500 µg Progesterone (P-0130, Sigma) dissolved in sesame oil (5 mg/ml solution, 

S3547, Sigma), as described (Brock et al., 2011; DiBenedictis et al., 2012). Behavioral 

sessions were conducted in Plexiglas chambers (35 cm long x 25 cm high x 19 wide 

cm), provided by Prof. Julie Bakker. First, sexual experienced males were transferred 

from their cages to the chamber for 30 minutes for habituation. Subsequently, females 

were transferred from the cage to the chamber and were let with the males for 30 

minutes (for the “c-fos” experiment) or for 10 minutes (for the “ablation” experiment). 

The males used for the behavior were trained to mount wild type OVX + E2, 

Progesterone-injected wild type females for 1-2 encounters, 30 minutes each. Only 

males that performed >20 mounts in 30 minutes during the training session were used 

for the experimental sessions. During sessions male mounting, intromissions, 

ejaculations and female lordosis and rejective behavior events were scored. At the end 

of the session, both males and females were returned to their cages. Lordosis was 

defined as a firm posture of the female with the back slightly arched, the paws all on 

the ground while the head can be elevated at various extents, with no defensive 

reactions while the male was approaching for mounting. Mounting was defined as the 

male using its forepaws to clamp the female flanks from the back for copulating. 

Intromission was scored when the male was repetitively thrusting his pelvis towards 

the female ano-genital area for more than 6 s (Haga et al., 2010). Ejaculation was 

scored when a male stopped intromitting and remained still onto the female for several 

seconds. Rejective behavior was defined as a defense or escape reaction when the male 

was approaching for mounting. The lordosis quotient was calculated as: 

 

Lordosis events  * 100 

Mounting eventsdgf gf 

 

and used as an index of sexual receptivity (Sakuma and Pfaff, 1979). Additional 

parameters were eventually quantified to better characterize sexual receptivity, such as 

total time spent in lordosis, single lordosis event duration, latency to mount, latency to 

lordosis.  

2.1.6.2 c-fos expression following sexual behavior 
 

GRIC/eR26-τGFP littermate females were ovariectomized, estrogen-primed at 10 
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weeks old (as described above) and tested at 14 weeks old.  In the day of the session 

females were introduced in the behavioral chamber for 30 minutes with a previously 

introduced sexually experienced male (lordosis group) or clean bedding (control 

group). Only females that showed clear signs of sexual receptivity (for example, 

successful male intromissions) and clear lordosis behavior were used for c-fos 

immunohistochemistry experiments.  After 90 minutes females were anesthetized then 

perfused and the brains collected, as reported elsewhere for behavioral studies 

involving c-fos protein expression (Boehm et al., 2005; Halem et al., 2001). 

2.1.6.3 Female sexual receptivity following GnRHR neurons ablation in 

the dorsal PAG 

 

GRIC/eR26-τGFP littermate females were ovariectomized at 14-15 weeks old and 

stereotaxically injected at 17-18 weeks old with AAV5-flex-taCasp3-TEVp (1 µl/side) 

or ACSF in the dorsal PAG. Animals were tested after 21 days after the injection, for 2 

sessions 10 minutes each, one every four days, similarly to previously reported 

experimental protocols (Bakker et al., 2002). Behavior was recorded with IR video-

camera and scored as described above. At 23 weeks old females were perfused and 

brains were collected to quantify ablation efficiency. 

2.1.7 Immunohistochemistry protocols 

 
Slides were kept at room temperature for 20 minutes before the staining, then washed 

with PBS 10 minutes for three times at room temperature, incubated for 20 minutes in 

cold methanol at room temperature to quench endogenous auto-fluorescence, washed 

again three times with PBS 10 minutes at room temperature and incubated in normal 

donkey serum blocking for 1 hour at room temperature. The sections were then 

directly incubated in primary antibody solution overnight (ON) at 4°C.  The next day 

sections were washed again 10 minutes for three times in fresh PBS at room 

temperature and incubated for 2 hours at room temperature in 1:500 secondary 

antibody solution. Sections were then washed three times 5 minutes each at room 

temperature with PBS, incubated in 5 µg/ml nuclear labeling solution for 5 minutes at 

room temperature, then washed again three times 5 minutes each at room temperature 

with PBS and finally mounted with FluoroMount-G mounting medium and glass 
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coverslips (Langenbrinck). All double labelings are performed “sequentially”, i.e. the 

staining for each antigen was performed one after another and not at the same time, 

according to Jackson Labs guidelines (www.jacksonimmuno.com). The blocking step 

was repeated before each primary ON incubation in order to limit the background. 

2.1.8 Imaging 

 

Stained sections were imaged with a Axio Imager epi-fluorescence microscope (Zeiss) 

through the AxioVision software (version 4.8.3, Zeiss). Images were quantified and 

processed with ImageJ, Adobe Photoshop and Adobe Illustrator CS6.  

2.1.9 Statistical analysis 

 

All data are displayed as means S.E.M. Different experimental groups were compared 

using one-tailed student's t test, with Prism 5 (GraphPad software). Differences were 

considered significant with p values < 0,05. 

2.2 Role of mGluR5 in puberty initiation 
 

This project was in collaboration with Dr. Ioana Inta and Prof. Dr. med. Markus 

Bettendorf from the Division of Paediatric Endocrinology and Diabetes, University 

Children's Hospital Heidelberg and Prof. Dr. Peter Gass from the Department of 

Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty 

Mannheim. Mice housing, handling, treatment, sacrifice, blood collection and plasma 

preparation were performed Drs. Ioana Inta at the University of Mannheim. I then 

performed the hormonal analysis in our lab at the Homburg Uniklinikum, University 

of Saarland. 

2.2.1 Pituitary hormones measurements 

 
Wild type (wt), mGluR5 KO heterozygous (+/-) and homozygous (-/-) knockout (KO) 

littermate females from the mGluR5 gene KO mouse strain (Lu et al., 1997) were 

used. Blood from P30, P32 and P34 wild type (wt), heterozygous (+/-) and 

homozygous (-/-) knockout (KO) mGluR5 female mice was collected after deep 

anesthesia. Blood samples were centrifuged at 5000 rpm for 10 minutes at 4°C, serum 
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was collected and stored at -80°C until use. From 10 µl of serum, gonadotropins (LH, 

FSH), adrenocorticotrophic hormone (ACTH), growth hormone (GH), prolactin and 

thyrotrophic hormone (TSH) were simultaneously quantified with an xMAP 

technology multiplex assay (Luminex). This assay is a fluorescent immuno-based 

system using antibody-coated magnetic beads, allowing multiple antigens detection 

within one well, using minimal amounts of serum. Measurements were performed 

with the MAGPIX instrument (Luminex) using the Milliplex MAP Mouse Pituitary 

Magnetic Bead Panel Kit (MPTMAG-49K, Merck Millipore). The assay limits of 

detection (minimum detectable concentrations -MinDC- provided with the kit) were 

1,9 pg/ml for LH, 9,5 pg/ml for FSH, 1,7 pg/ml for ACTH, 1,7 pg/ml for GH, 46,2 

pg/ml for prolactin, 1,9 pg/ml for TSH. The inter and intra-assay coefficients of 

variation % (CV%) were < 16,4 % and < 6%, respectively. The inter assay coefficient 

was calculated from the mean of the CVs % of the two quality controls (one at low 

concentration and one at high concentration) across 7 different assays. The intra assay 

was calculated as the mean between the CVs of the reportable results within one plate. 

The inter assay and intra assay reported from Millipore for this plate for ON 

incubation across 8 assays were <20% and <15%. Results at the end of an assay were 

processed with the Analyst software (Merck Millipore). Standard curves were 

generated by the Analyst software (Merck Millipore) with 7 serial 1:4 dilutions 

starting from the “standard” sample (provided with the kit), by fitting them with a 

logarithmic five parameters curve. R2 values for each curve are comprised between 1 

and 0,998. Each samples was run in duplicates in each assay, a signal output in 

median fluorescence intensity (MFI) was background-subtracted and converted in 

pg/ml. The final value used for subsequent statistical analysis was the mean of the two 

duplicates. A CV % value is reported for each sample by the Analyst software (Merck 

Millipore). Samples with a CV % higher than 15% were not included in the analysis. 

Data below the minimum or above the maximum detection range were theoretically 

estimated by the standard curve fitting. All data are shown as means ± S.E.M. 

Different experimental groups were compared with two-tailed student's t test, using 

Prism 5 software (GraphPad software). Differences were considered significant with p 

values <0,05. 
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3 Results 

3.1 Role of GnRHR neurons in female sexual behavior 
 

3.1.1 Characterization of τGFP neurons in the PAG of GRIC/eR26-τGFP 

female mice. 

 

The GRIC/eR26-τGFP mouse model offered a unique opportunity to dissect the 

endogenous GnRH signaling, by directly manipulating downstream GnRH-target 

neurons in the brain in vivo. I therefore aimed to ablate specifically GnRHR neurons 

that reside in the PAG of a female mouse, and evaluate female sexual behavior. In 

order to do this, I first elaborated a detailed map of GnRHR-expressing neurons in the 

PAG of the female adult mouse from the GnRHR-IRES-Cre/eROSA26-τGFP 

(GRIC/eR26-τGFP) reporter line. It was previously found in our lab that GnRHR 

neurons are scattered in the PAG of an adult (12 weeks old) male (Wen et al., 2011). 

However, detailed information is still missing about the distribution in the PAG of a 

female. However, GnRHR neurons were not detected in the brain before postnatal 

day 16 (P16) (Wen et al., 2011), suggesting an adult onset of GnRHR expression in 

the brain. Consistent with this, I hypothesized a variability in the distribution at 

different ages in the adult brain. Two ages to analyze were then considered: 10 weeks 

old and 19 weeks old. 

3.1.1.1 Post-pubertal, adult, age-dependent increase of τGFP-expressing 

neurons in the PAG of GRIC/eR26-τGFP female mice. 

 

In order to quantify τGFP neurons in the PAG, 14 µm sections were collected from 

bregma -5,20 mm to bregma -2,54 mm, which are the coordinates that span the PAG 

according to Paxinos Atlas. Brains (within a single experiment) were then aligned 

using clear hallmarks that could define a certain distance from the bregma, such as, 

caudally, the facial nerve root (7n) at -5,68 mm, the onset of superficial gray of 

superior colliculus (SuG) at bregma -4,84 mm, and rostrally the invagination of the 

dorsal third ventricle (D3V) in the diencephalon to form the aqueduct, at bregma -2,3 

mm. A bregma value was assigned to each section, taking eventually into account the 

dorso-ventral displacement. Among all the brains, sections with the most similar 
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bregma value were aligned, and a mean bregma value was calculated. For each 

experimental group, the number of τGFP neurons for each bregma position, the total 

number and mean number of neurons per section were calculated. The pontine "region 

ventral to the IV ventricle" comprises regions at the borders of the more ventral part of 

the PAG, facing the aqueduct: from bregma -5,34 mm to -4,96 mm the latero-dorsal 

tegmentum (LDTg) and the central tegmentum (CTg), the locus coeruleus (LC) and 

medially the internal dorsal raphe (DR) extends below the ventral wall of the IV 

ventricle. From bregma -4,84 mm to -4,24 mm the subdivisions of the dorsal raphe 

Figure 3.1 Sagittal view of the midbrain and pons of the adult mouse brain adapted from the 
Mouse Brain Atlas (Paxinos). Aq: Aqueduct. PDTg: posterodorsal tegmentum. DTgC: dorsal 
tegmentum, central part. DTgP: dorsal tegmentum, posterior part. DRV: dorsal raphe, ventral 
part DRI: dorsal raphe, internal part. DRD: dorsal raphe, dorsal part. 3N: oculomotor nerve or 
its root EW: Edinger-Wetsfal nucleus. SuG: superficial gray, superior colliculus. SC: superior 
colliculus. DCIC: dorsal cortex, inferior colliculus. cic: commissure inferior colliculus. pc: 
posterior commissure. 
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nucleus (DR) and raphe cap (RC). From -4,24 mm to -3,64 mm the supraoculomotor 

central gray and cap (Su3, Su3C) and the Edinger-Westafal nucleus (EW). From -4,24 

mm to -2,54 at the end of the PAG the EW and Darkschewitsch nucleus (Dk). Dorsal 

to the PAG: the inferior colliculus subdivisions (DCIC, CIC ECIC) until -4,16 mm, the 

superior colliculus subdivisions (SC) from -4,84 mm to -2,92 mm, the optic tectum 

(OT) and part of the deep mesencephalic nucleus (DpMe) from -2,92 to -2,54 mm 

were displayed together as "colliculus" (fig.3.1). 

Surprisingly, I found a limited number of neurons along the whole PAG at 10 weeks 

old of age (179±19,14; fig.3.2.A, left column). In 19 weeks old females the total 

number of τGFP neurons was increased >2 fold in the whole PAG (385±44,84; 

fig.3.2.A. **: p<0,01). To determine whether this effect was replicated elsewhere in 

the brain, I have counted τGFP neurons also in the regions nearby the PAG. Similarly, 

τGFP neurons increased significantly in the colliculus of 19 weeks old females (10 

wo: 248,3±35,8 vs 19 wo: 481±60,35; fig. 3.2.B. *: p<0,05). Conversely, no change in 

neuron number was observed in the areas that form borders with PAG and the IV 

ventricle (10 wo: 105±11,53 vs 19 wo: 119,3±22,36; fig.3.2.C p=0,2997). Analysis 

performed for each bregma position confirmed that any change in number of neurons 

occurs in the ventral part of the IV ventricle at any bregma coordinate (fig.3.2.G), 

whereas a significant increase can observed in the posterior part of the PAG (positions 

-4,93, -4,84 and -4,75 mm, fig.3.2.E, *: p<0,05) and more anteriorly (-3,74 to -3,26 

mm, fig.3.2.E), although a trend of higher number of τGFP neurons was observed 

homogenously along the whole length of the PAG. Similarly, τGFP neurons increased 

significantly at the onset of superior colliculus (from -4,84 mm, fig.3.2.F), until its end 

(-3,16 mm in these data). Significant increase was observed also within the deep 

mesencephalic nucleus (DpMe, around -3,01 mm in these data). Analysis was 

extended more in detail for the PAG subdivisions (fig.3.3), respectively dorsomedial 

periaqueductal gray (DMPAG), dorsolateral and lateral periaqueductal gray 

(DL/LPAG), and ventrolateral periaqueductal gray (VLPAG). τGFP neurons 

significantly increased in the DMPAG and the DL/LPAG of 19 weeks old GRIC/eR26 

τGFP females with respect 10 weeks old (fig.3.3.A and B) by ≈ 2,5 fold (10 wo: 

43,67±4,41 vs 19 wo: 109,7±7,881; ***: p<0,001) and >2 fold (10 wo: 85,67±13,35 vs 

19 wo: 184,7±37,57; *: p<0,05), respectively. 
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Figure 3.2 Comparison of the number of τGFP neurons in the midbrain of 10 and 19 weeks 
old females from the GRIC/eR26-τGFP line. A: periaqueductal gray (PAG) total number of 
neurons and neurons per section. B: Colliculus total number of neurons and neurons per 
section. C: IV ventricle nuclei total number of neurons and neurons per section. D: alignment 
legend. E-F-G: statistical comparison for each bregma position. Columns represent mean 
±S.E.M. Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. 
 

Conversely, VLPAG of younger and older females were similar to each other (10 wo: 

16±4,73 vs 19 wo: 25±3,79; p=0,1057, fig. 3.3.C). Among the three subdivisions, 

VLPAG appeared much less populated than DMPAG and DL/LPAG in both ages  

(10 and 19 weeks old), along the whole length (as shown in fig.3.3.D, E and F). The 

PAG/Superior colliculus area of 10 weeks old and 19 weeks old female brain is 

visualized in figure 3.4. This data show that distribution of τGFP neurons is relatively 

poor among the areas analyzed at 10 weeks old, with a major density in the superior 

colliculus and, relatively to the PAG subdivisions, in the DMPAG and DL/LPAG. 

Overall, comparison with older females revealed that an age-dependent increase of 

GnRHR-expressing neurons is occurring during adulthood in females within a 

relatively short time during the life-span of a female mouse, restricted to some nuclei 

and only in DMPAG and DL/LPAG subdivisions of the PAG, but not in the VLPAG. 



Results | 

 37 

 
Figure 3.3 Comparison of the number of τGFP neurons within the PAG columns of 10 and 
19 weeks old females from the GRIC/eR26-τGFP line. Columns represent mean ±S.E.M. 
DMPAG: dorsomedial periaqueductal gray. DL/LPAG: dorsolateral and lateral 
periaqueductal gray. VLPAG: ventrolateral periaqueductal gray. Student's t test: *: p<0,05; 
**: p<0,01; ***: p<0,001. 
 

 
Figure 3.4 Representative 14 µm sections showing the PAG and superior colliculus 10 and 
19 weeks old GRIC/eR26-τGFP females. SC: superior colliculus. Aq: aqueduct. PAG: 
periaqueductal gray. 
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Figure 3.5 14 µm sections of the midbrain of an adult (12 weeks old) GRIC/eR26-τGFP 
female. Aq: aqueduct. LC: locus ceruleus. DTg: dorsal tegmentum. LDTg: laterodorsal 
tegmentum. DMPAG: dorsomedial periaqueductal gray. DLPAG: dorsolateral periaqueductal 
gray. LPAG: lateral periaqueductal gray. VLPAG: ventrolateral periaqueductal gray. DRC: 
dorsal raphe cap. DR: dorsal raphe. Su3: supraoculomotor central gray. D3V: dorsal 3rd 
ventricle. 
 

3.1.1.1.1 τGFP  neurons form a "stereotyped" map in the PAG and the 

midbrain of GRIC/eR26-τGFP female mice along the rostro-caudal 

axis. 

 
Figure 3.5 shows the complete map of τGFP neurons along the PAG of an adult 

GRIC/eR26-τGFP female mouse. Especially in the more caudal moiety of the PAG, 

τGFP neurons appear clustered in the DMPAG and LPAG, whereas in the inferior 
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colliculus distribution is very low (in fig.3.5 see -5,02 and -4,96 mm). τGFP 

projections are densely distributed, forming a network that shapes the borders of 

periaqueductal gray (-5,02 mm to -4,84). Going rostrally, the distribution appears 

more scattered. Concomitantly, τGFP neurons appear to be more densely distributed 

as superior colliculus is expanding dorsally (starting at -4,84). Ventrally, the 

tegmental nucleus (LDTg and DT) is densely populated until its end at bregma -4,96 

mm. As dorsal raphe enlarges and takes over the tegmentum, less τGFP neurons can 

be observed (-4,84 mm). 

3.1.1.2 Phenotyping of τGFP neurons in the PAG of GRIC/eR26-τGFP 

female mice 

3.1.1.2.1 GnRH fibers are absent from the posterior PAG 

 
There is a great debate on how GnRH reaches its GnRHR target neurons (Schauer et 

al., 2015). I then asked whether GnRH formed direct contacts with the τGFP neurons 

or fibers that were observed in the hindbrain, into the more posterior parts of the 

PAG. Sections from GRIC/eR26-τGFP of the posterior part of the PAG were co-

labeled for GnRH with a rabbit polyclonal antibody and for τGFP with chicken 

polyclonal antibody. As shown in figure 3.6, no detectable GnRH signal (red) was 

present in the posterior PAG, nor in the inferior colliculus and other nuclei present in 

the section of the midbrain, whereas τGFP neurons and projections were widely 

present (green). 

 
Figure 3.6 14 µm section showing the PAG of adult (12 weeks old) GRIC/eR26-τGFP 
female stained against τGFP (green) and GnRH (red). Scalebar: 100 µm. 

3.1.1.2.2 Parallel regulatory role of ERα and GnRHR within the PAG 

 

GnRH signal in the PAG is thought to enhance the estradiol modulatory effect onto a 

population of estradiol-sensitive neurons in the ventromedial hypothalamus to 
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promote female sexual receptivity (Saito and Moltz, 1986; Sakuma and Pfaff, 1980b, 

c), mainly through the ERα (Ogawa et al., 1999). However, ERα is also widely 

expressed in neurons in the PAG, (Loyd and Murphy, 2008), suggesting direct 

interaction at the level of the PAG. Next step was to assess whether GnRHR neurons 

in the PAG were regulated by estradiol, so I next examined if GnRHR neurons co-

express ERα. Recently in our lab no ERα was detected in hypothalamic GnRHR 

neurons (Schauer et al., 2015). As shown in figure 3.7, although τGFP neurons 

(green) distribution strongly matched patterns of ERα nuclei in the LPAG, almost 

none of the τGFP neurons was ERα immunoreactive (the neuron shown in figure 3.7 

is the sole detected in the section). These results showed that GnRHR neurons in the 

PAG do not coexpress ERα, showing no obvious evidence of a reciprocal regulation 

nor any direct interaction between neuronal GnRH signaling and genomic estradiol 

signaling in normal conditions within PAG GnRHR neurons. However, they may act 

in parallel to modulate the PAG neural network. 

 
Figure 3.7 14 µm section showing the PAG of adult (12 weeks old) GRIC/eR26-τGFP 
female stained against τGFP (green) and ERα (red). One τGFP neuron is showing an ERα+ 
nucleus (white arrow). Scalebar: 100 µm 

3.1.1.2.3 Non-overlapping neuronal populations within the PAG 

 

nNOS neurons form a network clustered in the laterodorsal tegmentum (LDTg), 

highly matching the distribution of GnRHR neurons below the ventral wall of the IV 

ventricle (Gotti et al., 2005). By opposite, GnRHR neurons are poorly present in the 

nearby dorsal raphe (DR), mainly characterized by serotoninergic neurons (Clark et 

al., 2008). Since it was observed that GnRHR are specifically segregated in the lateral 

tegmentum rather than the dorsal raphe (DR) in the mesencephalic nuclei interfacing 

the IV ventricle, I examined more in detail how τGFP neurons are localized with 

respect to DR and LDTg. So, GRIC/eR26-τGFP sections were labeled for the 

neuronal nitric oxide synthase (nNOS) or for the second isoform of the tryptophan 

hydrolase (Tph2), the enzyme of the first step in serotonin (5-HT) biosynthesis and a 
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widely used marker for serotoninergic neurons (Clark et al., 2008), and for τGFP.  

Figure 3.8 shows that nNOS labeled intensively the LDTg (red). Although τGFP 

neurons (green) and nNOS neurons were in close vicinity to each other in LDTg, co-

localization was rarely observed between the two populations, indicating indeed that 

GnRHR-specific τGFP neurons constitute a distinct population from nNOS neurons 

in the same nuclei. Interestingly, a difference in size could be noticed as well, with 

τGFP having smaller perikarya than nNOS+ neurons. 

 
Figure 3.8 14 µm section showing the PAG of adult (12 weeks old) GRIC/eR26-τGFP 
female stained against τGFP (green) and nNOS (red). Scalebar: 100 µm. 
 

Tph2 immunohistochemistry highlighted the DR, as shown in fig.3.9. As expected, 

DR was poor of τGFP neuronal somata. 

 
Figure 3.9 14 µm section showing the PAG of adult (12 weeks old) GRIC/eR26-τGFP 
female stained against τGFP (green) and Tph2 (red). Scalebar: 100 µm. 
 

3.1.2 Manipulation in vivo of GnRHR-expressing neurons in the PAG of 

female mice. 

3.1.2.1 GnRHR is acutely expressed in the dorsal periaqueductal gray 

neurons of the female. 

 
In order to ablate GnRHR neurons in the dorsal PAG, the PAG was stereotaxically 

targeted at the rostrocaudal bregma coordinate -4,96 mm, were PAG is highly 

populated of GnRHR neurons, at the border between the DM- and the DLPAG. 
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According to the mapping results, age was strongly considered. Prior to the ablation 

experiment, in order to assess acute expression of GnRHR in the dorsal PAG of the 

adult female in vivo, an adult GnRHR-IRES-Cre female (17 wo) was stereotaxically 

injected with a cre-dependent mCherry AAV vector, then sacrificed 4 weeks after 

injection. The distribution of mCherry fibers and neurons could be observed in the 

dorsal midbrain (fig.3.10). mCherry fibers were scattered within the DM-, DL- and 

LPAG, starting at most posterior coordinates (bregma: - 5,02 mm, fig.3.10), although 

fewer neurons than expected were observed at this bregma position. More anteriorly, 

figure 3.10 shows a wide distribution of mCherry neurons and projection in the dorsal 

moiety of the PAG. Notably, the VLPAG completely lacked of mCherry labeling, 

indicating no spreading of the virus on the dorso-ventral axis. Labeling of the 

superior colliculus was also present at the level of the medial part of deep granular 

layer (DpG), in close contact with the DMPAG; by opposite, the inferior colliculus 

lacked mCherry neurons and projections. Dense network of projections and neurons 

spread through the DMPAG, DL/LPAG and DpG from bregma -4,84 mm to -4,16 

mm (fig. 3.10), whereas in the more anterior bregma coordinates (-4,04 mm to -3,52 

mm) mCherry neurons clustered in the DMPAG, to gradually decrease and being 

restricted dorsally in the DpG and the commissure of the superior colliculus (csc). 

Summarizing, cre-dependent AAV efficiently infected neurons in the midbrain and 

drives GnRHR-dependent expression of ChR2-(H134R)-mCherry fusion protein. 

These results confirmed acute GnRHR expression in PAG neurons from 17 to 21 

weeks of age, indicating that the PAG and the surrounding superior colliculus are 

GnRH-sensitive in the adult female brain. 

3.1.2.2  Genetic ablation of GnRHR-expressing neurons in the dorsal 

PAG.  
 

To achieve temporal control of genetically defined GnRHR neurons ablation 

followed by sexual behavior assessment, adult sexually naive, OVX and estradiol-

primed GRIC/eR26-τGFP females were injected stereotaxically with a cre-dependent 

AAV vector encoding for the procaspase 3, or with ACSF. After 3 weeks from the 

injection, females were tested for sexual behavior. Following behavior, females were 

sacrificed and τGFP neurons were quantified. In figure 3.11.A is shown the injection 

placement performed with methylene blue injection in one female, as control. The 
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injection site is shown at the left panel of figure 3.11.A, at bregma -4,96 mm. As 

shown, dye spreads in both dorsal PAG and colliculus between bregma -5,20 mm and 

-4,48 mm (coordinates that span the four panels of fig.3.11.A), being more intense 

around -4,96 mm to -4,84 mm (second and third panel of fig. 3.11.A), showing that 

injection correctly reached the dorsal PAG. In Cas3-injected GRIC/eR26-τGFP 

females, ablation was observed mostly in the DMPAG (fig.3.11.C). A significant 

reduction in the number of τGFP neurons was observed in the DMPAG from bregma 

-4,77 mm to -4,41 mm, being more drastic at -4,56 mm (from 16,33±0,88 in ACSF to 

3±0,58 in AAV-Cas3; ***: p<0,001; fig.3.11.C) and -4,49 mm (11,67±1,2 in ACSF 

vs 3±1 in AAV-Cas3; **: p<0,01; fig.3.11.C), in AAV-Cas3 injected females. In 

DL/LPAG a significant reduction was observed only in bregma -4,85 mm (19±2,5 in 

ACSF vs 9±2,08 in AAV-Cas3; *: p<0,05; fig.3.11.D) and -4,28 mm (22±0,577 in 

ACSF vs 12,67±2,96 in AAV-Cas3; *: p<0,05; fig.3.11.D), whereas no change was 

observed in VLPAG (Fig.3.11.E). Ablation efficiency was calculated within the 

DMPAG (expressed as: % τGFP neurons counted in the AAV-Cas3 group out of the 

mean of the controls. Fig.3.11.F-I) within the interval of major reduction (highlighted 

with dark blue line in figure 3.11.F). A significant 68% reduction (**: p<0,01) was 

observed from bregma -4,77 to -4,41 mm (360 µm), whereas from bregma 4,93 mm 

to -4,41 mm (520 µm) GnRHR neurons were reduced by 60 % (**: p<0,01). Non-

significant reduction (27%) of τGFP neurons was observed in the whole length of the 

DMPAG (fig.3.11. p=0,1125). Summarizing, acute, focal ablation in the posterior 

part of dorsal PAG caused a 68% reduction in the number of GnRHR neurons mostly 

in the DMPAG between bregma -4,77 mm to bregma -4,41 mm. 
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Figure 3.10 25 µm sections from a GRIC female injected with 0,2µl/side of AAv5-ChR2-
mCherry in the dorsal PAG and stained anti-mCherry show cre-dependent distribution in the 
PAG and superior colliculus (white arrows). Scalebars: 200 µm. 

3.1.2.2.1 Acute ablation of GnRHR-expressing neurons in the dorsal PAG has 

no effect on sexual behavior in OVX females primed with estradiol 

and progesterone. 

 
Behavioral analysis of females which undergone GnRHR neurons ablation in the 

PAG together with ACSF controls is reported in figure 3.12. The number of 

mounting events was higher in the ACSF group in the first session, although only 

nearly significant (16±3,2 in ACSF vs 9,67±1,67; p=0,077). Similarly, ACSF group 

showed more rejection events with a nearly significant difference (13,67±2,186 in 
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ASCF vs 7,33±2,03 in AAV-Cas3; p=0,0504), perhaps mirroring the higher 

mounting activity from the males towards the females. Lordosis events seemed highly 

variable between the two groups. The lordosis quotient (LQ%) however, revealed that 

lordosis behavior is fully retained in AAV-Cas3 injected females (S.I: 18,93±14,67% 

in ACSF vs 20,5±20,5% in AAV-Cas3; p=0,47; S.II: 58,33±30,05% in ACSF vs 

54,33±27,42 in AAV-Cas3; p=0,46), showing also increased receptivity between the 

first to the second session, similarly to ACSF controls. Notably the 2/3 of the females 

displayed sexual behavior at the second session in both groups, showing that the total 

number of receptive females was identical. The measurements of the total time spent 

in lordosis (S.I: 40,6±40 s in ACSF vs 42±42 s in AAV-Cas3; S.II: 79±47,7 s in 

ACSF vs 78,66±42,97 s in AAV-Cas3) and the lordosis duration per event (S.I: 4±3,5 

s in ACSF vs 5,25±5,25 s in AAV-Cas3; S.II: 6,6±3,47 s in ACSF vs 9,1±5,09 s in 

AAV-Cas3), highlights that lordosis duration was undistinguishable from controls 

following GnRHR neurons ablation. Female receptivity results were corroborated by 

the number of intromissions by the male, which also were very similar in the two 

groups; ACSF and AAV-Cas3 injected females both displayed the same number of 

intromissions by the male both in the first and the second session (S.I: 1,66±1,66 s in 

ACSF vs 2,66±2,66 s in AAV-Cas3; S.II: 5,33±3,528 s in ACSF vs 5±3,06 s in 

AAV-Cas3), reflecting efficient lordosis execution. Male latency to mount was 

tendentially higher in Cas3 group in the first session (S.I: 55±3,2 s in ACSF vs 

157,7±68,55 s in AAV-Cas3; p=0,1), but the time before showing lordosis (latency to 

lordosis) did not differ (S.I: 411,7±138,3 s in ACSF vs 447,3±152,7 s in AAV-Cas3; 

p=0,4; S.II: 300,3±154,5 s in ACSF vs 401,3±151,9 s in AAV-Cas3; p=0,3). In 

summary, results show that a 68% reduction of GnRHR neurons within the dorsal 

PAG between bregma -4,77 mm and bregma -4,41 mm did not interfere with 

estradiol and progesterone mediated induction of female sexual behavior. 
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Figure 3.11 GnRHR neurons ablation in the dorsal PAG. A: Methylene blue injection in the 
dorsal PAG shows that injection procedure efficiently targets the dorsal PAG according to 
the atlas, although the injected "bolus" (in blue) spills over the superior colliculus. B-E: 
comparison of τGFP neurons between ACSF and AAV-Cas3 injected n the PAG 
subdivisions. Each bregma position represents a single 14 µm section for each experimental 
group. F-H; percent reduction of τGFP neurons in the DMPAG, within the three different 
intervals highlighted in C with three distinct colors. I: Ablation efficiency in the DMPAG. 
Colors of the columns match the intervals in C. Columns represent mean ±S.E.M apart from I 
(mean of percent values only). DMPAG: dorsomedial periaqueductal gray. DL/LPAG: 
dorsolateral and lateral periaqueductal gray. VLPAG: ventrolateral periaqueductal gray. 
Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. 
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Figure 3.12 Behavioral phenotype following GnRHR neurons ablation in the dorsal PAG of 
females, displayed as mean ±S.E.M.  
 

3.1.3 Assessing neural correlates of female sexual behavior: c-fos 

expression in the PAG of female mice following sexual behavior 

 
Acute ablation of a portion of GnRHR-expressing neurons within the DMPAG did 

not affect female sexual receptivity in our experiment. Up regulation of c-fos in the 

lateral PAG following lordosis was reported in rats (Yamada and Kawata, 2014), 

suggesting activation of the lateral PAG during female receptivity. However, 

information is missing about the other PAG subdivisions. I therefore aimed to 

reproduce this experiment in wild type female mice and mapped the c-fos+ nuclei 

distribution within the midbrain. A total of four wild type OVX females (estrogen-

primed) were primed with progesterone and then placed in the behavioral arena with 

clean bedding (controls) or with a sexually experienced male (lordosis). The females 
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in the lordosis group displayed a percent lordosis quotient of 85% and 72,22% 

respectively. As showed in table 3.1 and figure 3.13, c-fos signal was clearly 

increased in the PAG of females that displayed sexual behavior with respect to 

bedding controls. Higher number of c-fos+ nuclei was evident only in the caudal half 

of the PAG, whereas from bregma -3,88 mm to more anterior coordinates the two 

groups appeared equal. Increase was also evident in the superior colliculus, whereas 

no difference was evident within the nuclei ventral to the IV ventricle. Table.3.2 

shows that c-fos was up regulated in all the columnar subdivisions: DMPAG, 

DL/LPAG and VLPAG. Summarizing, it was found a simultaneous c-fos activation 

in the caudal half of the DMPAG, DL/LPAG and VLPAG. 
Table 3.1. number of c-fos+ nuclei following lordosis 

  PAG Colliculus IV Ventricle Nuclei 
Bregma (mm) Bedding Lordosis Bedding Lordosis Bedding Lordosis 

-4,965 41 13 95 127 56 56 142 186 118 19 113 109 

-4,821 35 18 214 178 81 68 262 195 117 2 16 65 

-4,501 20 83 101 176 38 81 193 165 19 13 30 24 

-4,18 27 14 158 141 66 5 226 24 3 0 24 17 

-4,1 27 19 105 46 42 25 172 30 2 0 33 7 

-4,02 23 21 100 99 35 15 99 108 0 2 32 65 

-3,84 11 101 92 81 7 108 142 107 4 65 54 46 

-3,76 50 72 103 46 35 54 130 41 14 108 39 17 

-3,68 34 113 101 25 51 98 73 31 18 89 24 17 

-3,6 49 51 52 39 39 84 66 59 4 93 49 57 

-3,46 65 77 28 31 15 89 25 86 11 43 19 61 

-3,33 27 61 22 48 11 110 33 103 0 37 0 63 

-3,25 19 38 24 18 20 52 17 30 2 24 5 58 

-2,92 6 18 9 13 40 48 20 26 0 0 8 0 

-2,84 17 22 6 8 31 38 14 22 0 0 4 0 

Total 451 721 1210 1076 567 931 1614 1213 312 495 450 606 

Mean 586   1143   749   1414   404   528   

St.Dev. 191   94,8   257   284   129   110   

S.E.M. 135   67   182   201   91,2   78   
 

Table 3.2 number of c-fos+ nuclei following lordosis within PAG subdivisions 

               DMPAG           DL/LPAG            VLPAG 
Bregma (mm)   Bedding  Lordosis  Bedding   Lordosis Bedding  Lordosis 

-4,965 12 2 10 36 12 4 43 91 17 7 42 67 
-4,821 7 6 41 29 16 12 122 117 12 0 51 32 
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-4,501 3 17 9 30 15 58 64 100 2 8 28 46 
-4,18 8 8 35 23 15 6 64 48 4 0 59 70 
-4,1 7 8 14 3 20 11 67 22 0 0 24 21 
-4,02 1 10 25 13 18 11 52 56 4 0 23 30 

-3,84 3 31 21 16 8 70 71 65         

-3,76 2 17 21 6 48 55 82 40         

-3,68 6 30 14 5 28 83 87 20         

-3,6 16 9 4 14 33 42 48 25         

-3,46 17 16 6 14 48 61 22 17         

-3,33 0 0 0 0 0 0 0 0         

-3,25 0 0 0 0 0 0 0 0         

-2,92                         

-2,84                         

Total 82 154 200 189 261 413 722 601 39 15 227 266 

Mean 118   195   337   662   27   247   

St.Dev. 50,9   7,78   107   85,6   17   27,6   

S.E.M. 36   5,5   76   60,5   12   19,5   
 

3.1.3.1 c-fos expression in the PAG of GRIC/eR26-τGFP females 

following sexual behavior 

 
To determine whether GnRHR neurons within the PAG take part to the neural 

correlates of lordosis within the PAG in mice, I quantified and statistically analyzed 

c-fos immunoreactive nuclei in the PAG of females from bregma -4,96 mm to 

bregma -3,88 mm. GRIC/eR26-τGFP females that encountered the males showed 

lordosis quotients percent of: 72% (18 lordosis events out of 25 total mounts), 59,6 % 

(17 lordosis events out of 29 total mounts) and 62,5 % (20 lordosis events out of 32 

total mounts). The number of intromissions by the male were: 15 (out of 29 total 

mounts), 10 (out of 25 total mounts) and 15 (out of 32 total mounts), respectively, 

indicating clear receptivity of the females. Number of c-fos+ nuclei significantly 

increased by ≈ 1,9 fold in the PAG of females displaying lordosis behavior (811±82,5 

in controls vs 1546±210,9 in lordosis; *: p<0,05; fig.3.14.A), notably between -4,88 

mm to 4,4 mm (fig.3.14.E). Significant increase (by ≈ 3 fold) was observed in the 

overall colliculus, although evident only in the superior colliculus (419,3±90,69 in 

controls vs 1310±101,4 in lordosis; fig.3.14.B and F; **: p<0,01) and by ≈ 1,5 fold in 

the areas ventral to the IV ventricle (257±37,61 in controls vs 424±17,69 in lordosis; 
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fig.3.14.C and G; **: p<0,01). Detailed analysis revealed significant increase in c-

fos+ nuclei in each PAG subdivision: by ≈ 2 fold in DMPAG (115±25,24 in controls 

vs 254,7±18,5 in lordosis; fig. 3.15.A; **: p<0,01), ≈ 1,8 fold in DL/LPAG 

(497,7±23,38 in controls vs 886,7±171,5 in lordosis; fig. 3.11.A fig.3.15.B; *: 

p<0,05) and ≈ 2 fold in VLPAG (198,3±34,72 in controls vs 404,3±27,83 in lordosis; 

fig.3.14.C; **: p<0,01). c-fos increased significantly in all the PAG subdivisions 

(fig.3.14.A-BC). Analysis for each bregma position revealed increase in number of c-

fos+ nuclei was restricted in the most posterior moiety of both the DMPAG and 

DL/LPAG (Fig.3.15.D and E), from bregma -4,93 to -4,80 mm, and from bregma 

Figure 3.13 Up regulation of c-fos following sexual behavior in females. Representative 14 
µm sections stained for rabbit anti c-fos and donkey anti-rabbit-488 (showed in pseudo-color 
red) in controls females (exposed to bedding) or lordosis females (exposed to a male showing 
lordosis). Aq: aqueduct. DMPAG: dorsomedial periaqueductal gray. DLPAG: dorsolateral 
periaqueductal gray. LPAG: lateral periaqueductal gray. VLPAG: ventrolateral 
periaqueductal gray. Scalebars: 200 µm (top images) and 100 µm (bottom images). 
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Figure 3.14 Statistical comparison of c-fos+ nuclei within the midbrain in controls females 
(exposed to bedding) or lordosis females (exposed to a male and showing lordosis). Columns 
represent mean ±S.E.M. Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. PAG: 
dorsomedial periaqueductal gray. 

 
Figure 3.15 Statistical comparison of c-fos+ nuclei within the PAG subdivisions in controls 
females (exposed to bedding) or lordosis females (exposed to a male and showing lordosis). 
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Columns represent mean ±S.E.M. Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. 
DMPAG: dorsomedial periaqueductal gray. DL/LPAG: dorsolateral and lateral 
periaqueductal gray. VLPAG: ventrolateral periaqueductal gray. 
 
-4,64 to -4,4 mm. Moreover the graphs of figures 3.15.D and E, confirmed 

simultaneous activation at the same bregma coordinate. 

3.1.3.2 Assessment of PAG-GnRHR neurons activity during female 

sexual behavior 

 

Parallel to c-fos analysis, the number of τGFP neurons that co-expressed c-fos was 

quantified. The percent of τGFP/c-fos+ co-expressing neurons out of the total of 

τGFP neurons was significantly increased in all the PAG subdivisions (Fig.3.16.D-F; 

*: p<0,05; **: p<0,01), and nearly significant in the colliculus (Fig.3.16.B; 

p=0,0563), but not ventrally to the IV ventricle (Fig.3.16.C; p=0,3195). However, the 

percent value and the neat number of τGFP neurons co-expressed c-fos following 

sexual behavior were very small: as shown in fig.3.16.F, the region with the higher 

percent of c-fos-expressing τGFP neurons was represented by the VLPAG showing a 

mean of ≈ 11 ± 2 % of the whole τGFP following lordosis, corresponding to a mean 

number of 3 ± 1 neurons. 

 
Figure 3.16  Statistical comparison between controls (exposed to bedding) or lordosis 
(exposed to a male and showing lordosis) GRIC/eR26-τGFP females of τGFP neurons which 
co-express c-fos within the midbrain and PAG subdivisions. Columns represent mean 
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±S.E.M. Student's t test : *: p<0,05; **: p<0,01; ***: p<0,001. PAG: periaqueductal gray. 
DMPAG: dorsomedial periaqueductal gray. DL/LPAG: dorsolateral and lateral 
periaqueductal gray. VLPAG: ventrolateral periaqueductal gray. 
 

 
Figure 3.17 Representative 14 µm sections showing the PAG of controls (exposed to 
bedding) or lordosis (exposed to a male and showing lordosis) GRIC/eR26-τGFP females. 
Scalebars: 50 µm. 
 
Notably, DMPAG and DL/LPAG strongly up-regulated c-fos expression following 

sexual behavior and exhibited higher distribution of τGFP neurons (compared to 

VLPAG), although the percent of τGFP neurons that co-expressed c-fos was even 

lower than VLPAG, i.e. ≈ 7 ± 2 % in the DMPAG and ≈ 5 ± 1 % in the DL/LPAG. 

Figure 3.17 further shows nearby τGFP neurons and c-fos+ nuclei in the PAG, 

although not colocalizing. 

3.1.3.3 Correlation between sexual receptivity and activity-dependent c-

fos increase in the PAG 
 

To find out whether there was a link between the amount of receptivity and the 

increase in c-fos expression in the PAG, I plotted the single lordosis quotient values 

and the amount of c-fos (calculated as the percent of c-fos+ nuclei respect to the 

mean of c-fos+ nuclei in bedding-exposed controls) in the different brain areas as X 

and Y coordinates (fig.3.18). Unexpectedly, I observed that the higher the receptivity 

was, the less was the amount of c-fos+ nuclei present in the DMPAG and DL/LPAG. 

As shown in figure 3.18, the individual that showed a lordosis quotient of 58,6 % (the 
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lower value, left), displayed a c-fos increase by ≈ 240 % respect to the mean of the 

controls at the level of the DL/LPAG area, whereas the individual which showed a 

lordosis quotient of 62,5 % displayed a 176 % increase in c-fos. The higher value of 

lordosis quotient percent, 72 %, corresponded to an increase of only the ≈ 120 % 

respect to controls, close to the controls baseline (100%). The DMPAG showed the 

same trend. The distribution in c-fos in the VLPAG did not seem to follow the level 

of receptivity. Summarizing, I found that the c-fos increased in DMPAG and 

DL/LPAG inversely correlated with the level of sexual receptivity in females. This 

correlation study suggests that in less receptive females c-fos up-regulation may be 

consequent of some other behavior. 

 
Figure 3.18 Graphs showing plots of the single lordosis quotients % and respective rise of c-
fos+ nuclei for each female exposed to a male (lordosis group). DMPAG and DL/LPAG 
show a trend for inverse correlation (black arrows). PAG: periaqueductal gray. DMPAG: 
dorsomedial periaqueductal gray. DL/LPAG: dorsolateral and lateral periaqueductal gray. 
VLPAG: ventrolateral periaqueductal gray. 
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3.2 The role of mGluR5 in the initiation of puberty and 

reproductive function 
 
In collaboration with Dr. Ioana Inta, it was analyzed the role of mGluR5 in the 

initiation of puberty and reproductive function. Vaginal opening (VO), an external 

hallmark of puberty onset (Mayer et al., 2010), uterine weight, estrus cyclicity and 

reproductive capacity were assessed in mGluR5 knockout females. Homozygous (-/-) 

mGluR5 KO females, but not mGluR5 heterozygous (+/-) KO mice exhibited marked 

delay in the time of vaginal opening (VO) and limited ovarian growth in peripubertal 

age. Adult mGluR5 -/- KO females exhibited impaired estrus cycle and loss of 

fertility, whereas mGluR5 +/- KO exhibited only a reduction in the litter size 

(unpublished data, from Dr. Ioana Inta). Together, these observations indicate 

defective maturation of the female reproductive axis and transition to adulthood in 

homozygous mGluR5 KO females. 

3.2.1  Circulating pituitary hormone levels in adult female mice lacking 

the mGluR5 gene 

 

A functional reproductive axis depends on highly regulated secretion of LH and FSH 

(Sisk and Foster, 2004). I therefore asked whether the reproductive phenotype of 

mGluR5 mutants was due to an altered LH and FSH secretion. In order to do this, I 

examined serum LH and FSH levels at three different time points, respectively at 

P30, P32 and P34 in wt, mGluR5 +/- and mGluR5 -/- female mice littermates, i.e. 

when reproductive age is already established in wild type females (Mayer et al., 

2010). In order to have a complete profiling of the pituitary secretory function in the 

absence of the mGluR5 gene, I concomitantly measured the other pituitary hormones 

ACTH, prolactin, TSH and GH. 

 

Serum levels of LH (fig.3.19.A) were not significantly altered in mGluR5 +/- (P30: 

82,79 ± 12,97 pg/ml p=0,26. P32: 77,68 ± 16,75 pg/ml; p=0,7605. P34: 112,4 ± 

20,35; p=0,447) and mGluR5 -/- (P30: 62,29 ± 7,4 pg/ml; p=0,56. P32:  83,68 ± 

11,43 pg/ml; p=0,43. P34: 81,68 ± 14,12 pg/ml; p=0,65) with respect to wt (P30: 

71,51 ± 10,52 pg/ml. P32: 71,39 ± 9,373 pg/ml. P34: 91,79 ± 16,24 pg/ml) from P30 

to P34 (fig.3.19.A). FSH (fig.3.19.B) was also similar in mGluR5 +/- (P30: 226,7 ± 



Results | 

 56 

36,85 pg/ml; p=0,17. P32: 195,9 ± 17,16 pg/ml; p=0,52) and mGluR5 -/- (P30: 175,3 

± 15,55 pg/ml; p=0,93. P32: 204,6 ± 32,05 pg/ml; p=0,5) with respect to wt (P30: 

173,2 ± 15,78 pg/ml. P32: 178,2 ± 20,74 pg/ml) in P30 and P32. Conversely, FSH 

levels dropped to a significant ≈ 50% reduction in mGluR5 -/- at P34 (134,9 ± 11,08 

pg/ml) when compared to wt female mice (232,1 ± 26,38 pg/ml; **: p<0,01).  

 

FSH serum concentration appeared significantly reduced between P32 and P34 in the 

-/- group as well (*: p<0,05). In contrast, mGluR5 +/- serum FSH concentration at 

P34 (297 ± 91,41 pg/ml; p=0,5) was very similar to wt. Summarizing, I found an age-

related reduction in serum FSH concentration at P34 in female mice with 

homozygous mutation.  

 

By opposite, TSH was increased significantly at P30 (104,9 ± 16,04 pg/ml; *: 

p<0,05) and P34 (153,7 ± 27,63 pg/ml; p<0,05) in mGluR5 -/- and nearly significant 

at P32 (173,7 ± 39,95; p=0,0503) respect to wild type females (P30: 56,86 ± 10,42 

pg/ml; P32: 80,88 ± 12,08 pg/ml; P34: 78,55 ± 16,69 pg/ml ; fig.3.20.A).  

 

Homozygous mGluR5 KO mutation did not affect GH serum concentration (P30: 

p=0,6; P32: p=0,37; P34: p=0,34), although heterozygous mGluR5 KO female 

displayed significant increase at P34 (mGluR5 -/-: 6870 ± 1477 pg/ml vs wt: 3173 ± 

722,6 pg/ml; *: p<0,05; fig. 3.20.B).  

 

ACTH was poorly present in serum, as the max concentration was < 25 pg/ml, as 

reported in figure 3.21.A. However, ACTH dropped significantly in wt from P30 

(15,41 ± 1,593 pg/ml) to P32 (6,415 ± 1,754 pg/ml; **: p<0,01), but was not altered 

in mGluR5 mutants. Only at P34, mGluR5 +/- females had tendentially lower serum 

ACTH levels than wild type females (p=0,077). Prolactin was not affected as well in 

mGluR5 mutants (fig.3.21.B). 
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Figure 3.19 Serum levels of gonadotropins in pg/ml in wild type (wt), mGluR5 -/- KO and 
mGluR5 +/- KO female mice.  at 30, 32 and 34 days old of age. A: luteinizing hormone (LH). 
B: follicle-stimulating hormone (FSH). Groups are displayed as scattered plots representing 
each sample and mean ± S.E.M. Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. LH: 
P30: n=13 wt, n=11 +/-, n=7 -/-. P32: n=6 wt, n=7 +/-, n=7 -/-. P34: n=9 wt, n=10 +/-, n=8 -/-
. FSH: P30: n=13 wt, n=11 +/-, n=7 -/-. P32: n=6 wt, n=7 +/-, n=6 -/-. P34: n=9 wt, n=9 +/-, 
n=8 -/-. 
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Figure 3.20 Serum levels of A: thyroid-stimulating hormone (TSH) and B: growth hormone 
(GH) in pg/ml. in wild type (wt), mGluR5 +/- and mGluR5 -/- females of 30, 32 and 34 days 
old. Groups are displayed as scattered plots representing each sample and mean ± S.E.M. 
Student's t test : *: p<0,05; **: p<0,01; ***: p<0,001. TSH: P30: n=13 wt, n=11 +/-, n=7 -/-. 
P32: n=6 wt, n=7 +/-, n=6 -/-. P34: n=7 wt, n=10 +/-, n=8 -/-. GH: P30: n=13 wt, n=11 +/-, 
n=7 -/-. P32: n=6 wt, n=7 +/-, n=6 -/-. P34: n=9 wt, n=10 +/-, n=8 -/-. 
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Figure 3.21  Serum levels of adrenocorticotropic hormone (ACTH) and prolactin (PRL) in 
pg/ml. in wild type (wt), mGluR5 +/- and mGluR5 -/- females of 30, 32 and 34 days old. 
Groups are displayed as scattered plots representing each sample and mean ± S.E.M. 
Student's t test: *: p<0,05; **: p<0,01; ***: p<0,001. ACTH: P30: n=13 wt, n=11 +/-, n=7 -/-. 
P32: n=6 wt, n=7 +/-, n=6 -/-. P34: n=9 wt, n=10 +/-, n=8 -/-. PRL: P30: n=13 wt, n=11 +/-, 
n=7 -/-. P32: n=6 wt, n=7 +/-, n=6 -/-. P34: n=9 wt, n=10 +/-, n=8 -/-.  
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4 Discussion  

4.1 Characterization of the GnRHR network within the PAG of the 

female  

 
In this study it was employed for the first time a genetically defined approach to 

study the GnRH network in the central nervous system, in order to investigate the 

postulates implicating that GnRH plays a determinant function in sexual receptivity. 

The traditional model establishes that the hormonal feedback from the gonads, driven 

by the GnRH-dependent gonadotropins release, is responsible for the neural 

modulation of sexual behavior (Ferrero and Liberles, 2013; Pfaff and Sakuma, 1979a; 

Pfaus et al., 2003; Yang et al., 2013). Several studies also proposed a direct, together 

with the indirect, role of GnRH as a neuromodulator in sexual behavior, selectively in 

the PAG (Meredith, 1998; Meredith and Howard, 1992; Saito and Moltz, 1986; 

Sakuma and Pfaff, 1980c), introducing GnRH as a main integrator of sexual 

communication by tuning behavioral responses with reproduction. However, these 

classical models were largely incomplete, due to technical limitations at different 

levels. For example, brain lesions and electrical stimulations employed in these 

studies indiscriminately targeted the whole pool of neuronal populations, leading to 

an imprecise functional mapping. Moreover, GnRH administrations prevented the 

characterization of the endogenous GnRH. Previous attempts to identify the neural 

targets of GnRH by characterizing the GnRHR expression in the brain were 

hampered by aberrant expression of the transgenic constructs employed (Granger et 

al., 2004). 

 

The GnRHR-IRES-Cre/eR26-τGFP and GnRHR-IRES-Cre/R26-YFP mouse lines 

enabled the reliable visualization of GnRHR cells, unveiling the neural targets of 

GnRH in addition to gonadotropes in the pituitary. Previous work on these mouse 

lines already showed direct neural modulation by GnRH in synchrony with the estrus 

cycle (Schauer et al., 2015). This binary genetic approach offered the possibility to 

manipulate the GnRHR network in vivo with genetic, temporal and spatial definition 

and without interfering with the hpg axis. 
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In the present study I used a combinatorial approach to functionally describe the 

GnRHR network within the periaqueductal gray of the female mouse: I first 

visualized the GnRHR-IRES-Cre/eR26-τGFP female midbrain then by cre-dependent 

AAV delivery into the PAG I visualized adult GnRHR expression, then induced 

GnRHR neuron ablation. In this way, I could affect the PAG network in the adult 

female and study the effect on sexual behavior. 

4.1.1 Age-dependent increase of GnRHR neurons in the female midbrain 

 

I characterized the distribution of GnRHR neurons in the PAG by visualizing τGFP 

neurons in the adult, intact GnRHR-IRES-Cre/eR26-τGFP female mouse. This 

allowed me to identify regions with higher GnRHR neuron density, in order to 

achieve more efficient manipulation. GnRHR neurons in the midbrain of the 10 wo 

female were present in the DM, DL/LPAG and superior colliculus mainly, whereas in 

the VLPAG and inferior colliculus GnRHR neurons were poorly distributed. This 

pattern of distribution is similar to previously described distribution in the midbrain 

of the male GnRHR-IRES-Cre/eR26-τGFP mouse (Wen et al., 2011). Other than 

scattered, GnRHR neurons in the midbrain have stereotyped, well-defined patterns of 

distribution that are similar in males and females.  

 

Unexpectedly, older 19 wo females showed higher distribution, suggesting an age-

dependent increase in GnRHR neurons within the midbrain, which occurs in the 

adulthood within a relatively short period of time. This effect was observed in the 

superior colliculus and, within the PAG, only in DMPAG, DL/LPAG, but not in the 

VLPAG, i.e. the areas containing more GnRHR neurons within the midbrain in 

younger females. Compared to the embryonic onset of GnRH expression and 

functional peptide (Wray et al., 1989; Wu et al., 1997) and pituitary GnRHR 

expression (Wen et al., 2010), the neuronal GnRHR onset is dramatically delayed at 

postnatal day 16. This late onset in the appearing of GnRHR expression in neurons in 

the adult could be caused by a neuron-specific restraining mechanism to achieve 

GnRH sensitivity only in the adult, probably through tissue-specific regulation. 

Heterologous expression studies reported that cis-elements within the GnRHR 

promoter (Granger et al., 2004) could direct brain GnRHR expression, probably 

through Steroidogenic factor 1 (SF-1) or the LIM-homeodomain factor Lhx5 which 
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are important in shaping the development of the VMH and hippocampus, respectively 

(Ikeda et al., 1995; Zhao et al., 1999), as well as and for GnRHR promoter activity in 

the pituitary (Granger et al., 2004). However, the early role of these transcriptional 

factors cannot solely explain the adult onset of GnRHR expression.  

 

Which factors could then contribute to the increase in sensitivity to GnRH? These 

observations indicates that prominent increase occurs within the reproductive age of 

the females, suggesting that the estrus cycle could set the priming to GnRH 

sensitivity.  In the pituitary gland, the GnRHR mRNA is up regulated upon ovulation, 

in the morning of the proestrus (Bauer-Dantoin et al., 1993), and is strongly down 

regulated in OVX females, although with mechanisms independent from the classical 

estradiol pathways (Couse et al., 2003).  

 

Should be considered that the current observations are based on τGFP visualization, 

which does not follow fluctuations in GnRHR expression. Whereas τGFP neurons 

increase, it could be the case that GnRHR expression is cyclically suppressed, leading 

not to an overall increased GnRH sensitivity, but an "alternated" GnRH sensitivity 

within the PAG. 

 

Similar phenomena of adult onset were also identified concerning pheromone 

detection. Interestingly, recent evidence indicates that the production of some 

members of a family of sexually relevant peptide-derived pheromones is strikingly 

related to age, having "juvenile" specific (such ESP22) and adult specific (ESP24) 

pheromones (Ferrero et al., 2013). The juvenile pheromone ESP22 indeed, has an 

inhibitory effect of adult males towards juvenile mice. Retaining this logical view, it 

is likely the process that primes the brain for sex could also be restrained until 

fertility is established by an evolutionary selected mechanism. 

4.1.2 Absence of GnRH fibers from the PAG of the mouse 
 
Previous studies identified long-distance GnRH projections in the PAG of the female 

rat (Merchenthaler et al., 1984).  In mice, however, GnRH fibers don't reach the 

midbrain but are limited to the amygdala, thalamus, BNST and hypothalamus 

(Boehm et al., 2005).  I examined GnRH signal in the PAG of the GnRHR-IRES-
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Cre/eR26-τGFP female, to assess whether GnRH directly contacts GnRHR neurons 

in the PAG. As expected, GnRH fibers were completely absent from the PAG at a 

coordinate of a high density of GnRHR-dependent τGFP somata and fibers, 

confirming that in female mice GnRH neurons don't make long-distance projections 

to the midbrain, nor directly contact GnRHR neurons at their somata or projections at 

the level of the PAG. 

 

This result supports the hypothesis that GnRH could be sensed through the 

vasculature or the cerebrospinal fluid. Previous studies in ewes showed that GnRH 

pulse propagates from the hypophyseal portal vasculature in the cerebrospinal fluid, 

with a time lapse in between within minutes (Caraty and Skinner, 2008). However, 

recent characterization of hypothalamic GnRHR neurons in GnRHR-IRES-Cre/eR26-

τGFP showed that GnRHR neuron fibers form both close appositions with blood 

capillaries and GnRH fibers (Schauer et al., 2015). Whether GnRH could be sensed 

through the cerebrospinal fluid, would be through a “volume transmission” to all the 

GnRHR expressing neurons present in the brain (Caraty and Skinner, 2008). 

However, τGFP does not reflect the exact localization of the functional GnRHR 

protein; given this, is not possible however to exclude that PAG GnRHR neurons 

form long distance projections towards GnRH terminals-containing areas, where the 

functional receptor could putatively be localized. 

4.1.3 The neuronal GnRHR as a parallel GnRH feedback within the 

PAG 
 

The peak in estradiol prior to ovulation primes the brain for sexual arousal through 

ERα neurons within the VMH. Concomitantly, feedbacks mediated by estradiol 

triggers GnRH release that in turn potentiates lordosis behavior, acting on the 

periaqueductal gray. These two events mediated by estradiol may act synergistically 

to switch neuronal circuits towards a sexual arousal state, as hypothesized before 

(Saito and Moltz, 1986). The presence of ERα neurons in the PAG suggests an 

additional level of regulation by estradiol (Loyd and Murphy, 2008). The 

visualization of GnRHR neurons in the female midbrain by genetic τGFP labeling in 

the GnRHR-IRES-Cre/eR26-τGFP led me to investigate how the ERα and GnRHR 

patterns are related to each other. To do this, I visualized co-expression of τGFP and 
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ERα in the PAG of a GnRHR-IRES-Cre/eR26-τGFP female. GnRHR neurons and 

ERα cells are clustered within the same neural circuit but they are not co-expressed 

within the same neuron. This result showed for the first time that estradiol and GnRH 

could act in parallel at the periaqueductal gray to modulate PAG neural activity, and 

that genomic estradiol and GnRHR can be independently regulated. Given this, ERα 

is unlikely a candidate that drives the shaping of the GnRHR network in the adult 

female. This is also consistent with the phenotype of global ERαKO mice, in which 

pituitary GnRHR gene expression is unaffected (Couse et al., 2003).  

 

An important role in sexual arousal is played by the nitric oxide (NO), synthesized by 

neurons that express the neuronal isoform nitric oxide synthase (nNOS) enzyme 

(Mani et al., 1994). These neurons are found clustered in the LDTg, a nuclei at the 

ventral surface of the IV ventricle, which is involved in the modulation of sexual 

behavior in female and male rats (Shimura and Shimokochi, 1990; Yamanouchi and 

Arai, 1985). GnRHR neurons form an independent network in the LDTg and CTg but 

are poorly expressed in the nearby DR. Together, these data show that GnRHR 

neurons are preferentially present within sexually-relevant neural circuits and exhibit 

a parallel anatomical organization with respect to nNOS neurons. 

4.1.4 Is GnRH in the PAG necessary to the induction of female sexual 

receptivity? 

 
The PAG plays a major role in modulating hormone-dependent sexual receptivity in 

females (Sakuma and Pfaff, 1979). Furthermore, GnRH injections in the dorsal PAG 

could positively modulate lordosis in OVX estradiol-primed female rats, whether anti 

GnRH globulin, a GnRH antagonist, disrupts sexual receptivity (Sakuma and Pfaff, 

1980c). Studies on mice were inconclusive whether GnRH is necessary to lordosis, 

due to employment of a mouse model presenting a global loss of GnRH. I then aimed 

to test whether a selective loss of GnRH sensitivity within the dorsal PAG could 

affect lordosis, by ablating the local GnRHR neurons. I did not employed GnRH 

administration in order to understand the role of endogenous GnRH. Preliminary data 

revealed broad mCherry expression in the dorsal PAG neurons of the adult GnRHR-

IRES-Cre female, indicating that those neurons do express significant levels of the 

GnRHR gene. Ovaries removal (OVX) resulted the best strategy to reliably induce 
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sexual receptivity in rodents, by dissociating it from the estrus cycle. OVX disrupts 

the estradiol and progesterone feedbacks and required replacement of continuous 

estradiol and acute progesterone to induce receptivity. This procedure did not affect 

the distribution of GnRHR neurons in controls, showing a robust GnRHR network. 

 

Comparison between lordosis responses and rejective responses in controls revealed a 

mutually exclusive relationship, consistently with previous findings that show 

lordosis arising from an ERα-dependent suppression of rejective behavior towards the 

male (Musatov et al., 2006). Ablation of GnRHR neurons in the dorsal PAG did not 

affect lordosis behavior, either receptivity in general, as shown by the multiple 

intromissions from the males observed. Rather, GnRHR-ablated display strong 

lordosis behavior. Given that dorsal PAG is central in the sexual response in rats, and 

rapid response was elicited with focal GnRH injections, it was expected that a focal 

ablation of GnRHR neurons could produce a change in the lordosis response.  

 

However, I could not find any genetic evidence in the support on this model. It seems 

more likely that GnRH in the brain could have a facilitating rather than crucial, 

permissive role in female receptivity. 

4.1.5 Activity patterns in the PAG following female sexual behavior, but 

not in GnRHR neurons 

 

The genetically-defined method used in this study to dissect the GnRH network failed 

to support the classic postulates of an essential role of GnRH in sexual behavior in 

vivo. I used then a strategy based on fluorescent visualization of neural activity to 

assess if GnRHR neurons in the PAG participate to sexual behavior. The early gene 

c-fos expression was found to be dependent on high neural activity (Dragunow and 

Faull, 1989), and became a reliable probe of neural activity following behavioral 

performances in animal models (Cruz et al., 2013). Although DMPAG and LPAG 

simultaneously activate during sexual behavior, the GnRHR neurons present in those 

area didn´t up regulate c-fos expression during female sexual behavior, indicating no 

considerable underlying neural activity. Nearby cells instead, strongly up-regulated c-

fos. Moreover, c-fos up-regulation negatively correlates with sexual receptivity only 

in DMPAG and DL/LPAG subdivisions, collectively the dorsal PAG. This 
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correlation study suggests that in less receptive females c-fos up-regulation may be 

consequent of some other behavior. Nevertheless, GnRHR ablation neurons was 

mostly in the DMPAG, and correlated with a tendentially reduced rejective behavior. 

Rejections are mutually exclusive respect to lordosis, and an ERα-dependent neural 

switch within the VMH positively modulates behavior towards receptivity rather then 

rejections in females (Musatov et al., 2006). In males, ERα neurons in the VMHvl 

could both coordinate aggression and mounting behavior (Lee et al., 2014). The 

VMHvl-dorsal PAG pathway has also been implicated in processing fear of 

conspecifics (Silva et al., 2013), indicating multiple overlapping behavioral outcomes 

arising from the same pathways. 

 

The genetic evidence that GnRH neurons are wired to vomeronasal pathways 

(Boehm, 2006) suggests the involvement of GnRH in the behavioral response to 

individual recognition, in addition to an endocrine response. Although GnRH was 

found not to have a role in mediating sexual preference (Dudley and Moss, 1985), in 

fishes a segregated subpopulation of neurons expressing GnRH-III facilitates 

copulation by mediating partner familiarization (Okuyama et al., 2014). Consistent 

with this, GnRH could have an earlier role in the processing of the recognition of the 

male, being than released prior to sexual behavior activation, promoting receptivity 

by the suppressing of the rejective responses. GnRH could provide further regulatory 

priming towards a behavioral selection among the vast repertoire within the neural 

circuits that modulate instinctual behavioral responses necessary for social 

interactions. 

4.2 mGluR5, a novel molecule in puberty onset 
 

mGluR5 -/- KO female mice exhibit severe infertility phenotype whereas mGluR5 +/- 

KO mutants exhibit only a slight reduction in litter size. Moreover, mGluR5 -/- KO 

exhibit delayed vaginal opening and first estrus as well as a reduced ovarian growth 

together with an impairment of the estrus cycle. Pituitary hormones analysis revealed 

a selective reduction in FSH and no changes in LH serum levels in the peripubertal 

age only in mGluR5 -/- KO mutants, however with a concomitant increase in TSH. 

This phenotype strongly suggests impairment in the onset and progression of puberty 

by a reduced release in FSH. Importantly, this phenotype requires an homozygous 
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loss of function of the mGluR5 gene, since +/- mGluR5 KO females show unaltered 

maturation of the hpg axis, although with a reduction in litter size. It is ignored 

whether deregulated TSH could be due to the global loss of mGluR5 (therefore 

involving all tissues), or to a specific interaction between FSH and TSH. This can be 

addressed only by conditional mGluR5 KO. 

Puberty consists in the activation of the hpg axis and the entering in the reproductive 

age (Sisk and Foster, 2004). Although the main candidate for the central regulation of 

puberty onset is kisspeptin and its receptor GPR54, it was shown that female with 

chronic genetic ablation of kisspeptin neurons are fertile, suggesting a compensatory 

mechanism (Mayer and Boehm, 2011). Glutamate inputs to GnRH neurons were 

reported as well as the expression of NMDA receptors on GnRH neurons (Iremonger 

et al., 2010). Importantly, studies on the metabotropic glutamate receptor 1 (mGluR1) 

revealed a role in regulating GnRH neurons excitability (Chu and Moenter, 2005) and 

identified two distinct GnRH neurons subpopulation based on the selective 

responsiveness to kisspeptin or to a mGluR1 agonist (Dumalska et al., 2008). This 

model proposed a parallel feedback onto GnRH neurons by kisspeptin and glutamate. 

However, so far there was no evidence of a role of metabotropic glutamate receptors 

in the regulation of puberty. In particular, mGluR5 could lead to a preferential 

regulation of the synthesis and/or secretion of FSH instead of LH. 

 

Together with Dr.Ioana Inta, we first described an involvement of a metabotropic 

glutamate receptor subtype in the regulatory mechanisms of puberty and fertility. 

Further experiments will aim to delineate the effects of glutamate exerted by 

mGluR5. Phenotype and hormonal levels will be also analyzed in females mice 

lacking the NMDA receptor NR2A subunit (NR2A KO) will be performed, in order 

to examine the role of NMDA receptor in puberty and fertility. 

 

These findings could contribute to the growing information in the genetics of puberty 

and the mechanisms that regulate fertility (Boehm et al., 2015), and could help to 

develop new effective treatments for puberty disorders. 
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4.3 Future experiments 

4.3.1 Further investigation of the brain GnRHR system 
 
The present study provides new insights in the knowledge of the GnRHR network in 

the brain. First, it revealed an adult-restricted establishment of GnRH responsive 

neurons in midbrain areas. Next experiments will provide complete information about 

the whole female brain, to investigate whether this phenomenon is extended to the 

rest of the brain or is restricted only to a subset of nuclei. Moreover, is unknown 

whether a post-pubertal increase of GnRHR neurons occurs also in males. Next 

experiments will aim to address these questions in age-matched mice. 

 

As previously shown, ovariectomy induces a decrease in the GnRHR gene expression 

in the pituitary. Reliable visualization of the GnRHR expression in neurons will allow 

understanding whether the feedback from the ovaries is required for the shaping of 

the GnRHR network, by analyzing the GnRHR neurons map in OVX females at 

different ages. 

 

Combining different strategies to either ablate or examine activation of GnRHR 

neurons revealed that GnRHR neurons do not participate in the induction of sexual 

behavior in females. These findings brought into question an entire field of research 

that states GnRH as a main trigger of lordosis execution. Further experiments are 

needed to elucidate the functional role of GnRH in the brain. 

 

Subsequent examinations need to address an involvement of GnRHR neurons in 

processing odor information, by using the activity marker c-fos. Moreover, it will be 

tested the ability of systemic GnRH injections to trigger GnRHR neurons activation 

or to facilitate lordosis in females where GnRHR neurons in the dorsal PAG were 

previously ablated. Moreover, cre-dependent optogenetic tools will be stereotaxically 

delivered into the dorsal PAG of GnRHR-IRES-Cre and/or GnRHR-IRES-Cre/eR26-

τGFP females to stimulate or inhibit GnRHR neurons during sexual intercourse using 

light.
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5 Summary 
 
To determine whether GnRH signaling is needed in the PAG to the display in 

lordosis in mice, I visualized and specifically ablated the GnRHR neurons in the 

dorsal PAG of GnRHR-IRES-Cre/eR26-τGFP females. Females with GnRHR 

neurons ablation within the dorsal PAG exhibit a strong lordosis behavior 

undistinguishable from controls, indicating that neurons downstream to GnRH in the 

dorsal PAG are not required for lordosis behavior. Moreover, up regulation of neural 

activity within the PAG evidenced by c-fos analysis following sexual behavior did 

not involve fluorescently labeled GnRHR neurons. These results are in sharp contrast 

with the established paradigm that proposes GnRH as a central molecule in the 

modulation of sexual receptivity, as a neurotransmitter. 

 

Characterization of the GnRHR network in the PAG of the female mouse revealed a 

post pubertal, adult age-dependent establishment of a GnRHR network within the 

midbrain. GnRHR neurons form a non-overlapping neural network together with 

hormone-related neuronal populations, such as ERα and nNOS neurons, suggesting 

parallel permissive hormonal cues within these neural circuits. However, the role of 

GnRHR neurons in the brain remains unknown and requires further characterization.  

The GnRHR-IRES-Cre/eR26-τGFP model revealed to be extremely useful for 

characterization at different reproductive stages within the pituitary. In the present 

study has been successfully employed for the characterization in the brain in vivo. 

The use of cre-driven genetic tools will allow the further characterization of the 

function of GnRHR neurons in reproductive behavior. 

 

The combination of a genetic knockout strategy and a method to measure 

simultaneously the whole pool of pituitarian hormones allowed me to identify an 

exact time point in which the mGluR5 is involved in the regulation of FSH release, 

but not of LH, that correlates with delayed puberty and impaired fertility. The next 

step will aim to clarify the level of the hpg axis in which the mGluR5 is involved. 

However, the generation of a conditional knock out mouse strain for the mGluR5 

gene is necessary the specificity of the mGluR5-mediated effect on the release of 

FSH. Nevertheless, simultaneous hormonal measurement protocol is an extremely 

useful tool that provides full information about pituitary hormone fluctuations, thus  
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allowing improved description and correlation between the distinct hormonal 

systems.  
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