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Abstract 

Mammalian reproduction is controlled by precise secretion of gonadotropin-releasing hormone 

(GnRH) through the hypothalamus-pituitary-gonadal (HPG) axis. GnRH-secreting neurons in the 

preoptic area of hypothalamus release GnRH into the hypophyseal portal vasculature, which 

subsequently binds to GnRHR on gonadotrope cells in the anterior pituitary gland to regulate the 

release of gonadotropins. Studies showed that GnRHR neurons not only exist in the anterior 

pituitary but also are distributed in multiple brain areas involved in regulating the mammalian’s 

reproductive physiology and behavior. However, the physiological character of GnRHR neurons 

in the specific brain area is still ambiguous. By crossbreeding GnRHR-IRES-Cre (GRIC) mice to 

eRosa26-τGFP reporter mice, GnRHR neurons can be visualized in live brain slices with τGFP. 

To link the firing activity of GnRHR neurons with female reproductive cyclicity, the spontaneous 

firing of GnRHR neurons in the periventricular hypothalamus (Pe) is first investigated on brain 

slices from adult female mice. Using loose-patch recording, I find that GnRHR neurons in Pe 

alternate their action potential firing patterns in concert with the female reproductive cycle and 

change firing activity from tonic to burst during the preovulatory period, especially in the presence 

of network blockers. GnRH stimulation can induce this tonic-to-burst firing conversion of GnRHR 

neurons. Bath application of an antagonist of GnRHR, cetrorelix, directly on brain slices 

demonstrates that the endogenous GnRH is the main source for converting the mode of action 

potential firing during the preovulatory period. Using immunohistochemistry and electron 

microscope, the source of the endogenous GnRH for GnRHR neurons is explored. We observed 

that GnRHR neurons possess close appositions to Pe capillaries, and the endothelial cells of 

capillaries in Pe contain many caveolae-like structures, suggesting a less constrained blood-brain 

barrier (BBB) there. Therefore, GnRHR neurons in Pe might be susceptible to systemic injection 

with cetrorelix which is widely used in the clinical treatment. I observed that subcutaneous 

injection of the cetrorelix can block the HPG axis as manifested by an increase in the number of 

preovulatory follicles concomitant with a significant inhibition of follicle rupture and more corpora 

lutea formation. Cetrorelix-treatment can modulate Pe GnRHR neurons to fire more tonically and 

to mimic spike firing activity as early proestrus, especially with the higher dose treatment. Next to 

Pe, arcuate nucleus (Arc) is another important brain area in the hypothalamus, which is involved 

in regulating olfactory-encoded behavior in mammals. Using loose-patch recording, I found that 
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the intrinsic firing activity of Arc GnRHR neurons does not depend on the reproductive cycle, and 

GnRHR neurons there receive modulation from network. To further investigate the relationship 

between intracellular Ca2+ and firing activity of GnRHR neuron, a new protocol combined loose-

patch and calcium imaging recording is developed. A correlation between the action potential burst 

activity of GnRHR neuron with an increase in calcium signal is identified. Furthermore, GnRH 

can simultaneously induce the increase of firing activity and the intracellular Ca2+ of GnRHR 

neuron in Arc, which suggests that the change of intracellular Ca2+ is involved in GnRH-GnRHR 

signaling pathway. This GnRH-induced response may depend on the action-potential-driven influx 

of calcium. All these studies establish a series of methods and provide key information to begin 

understanding physiological properties of GnRHR neurons. 
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Zusammenfassung 

Die Reproduktion von Säugetieren wird durch die präzise Freisetzungen des Gonadotropin-

freisetzenden Hormons (engl.: gonadotropin-releasing hormone; GnRH) durch die Hypothalamus-

Hypophyse-Gonaden Achse (engl.: hypothalamus-pituitary-gonadal axis; HPG) gesteuert. GnRH-

freisetzende Neurone in dem präoptischen Areal des Hypothalamus sekretieren GnRH in die 

Hypophysenpfortader, welches anschließend an den zugehörigen GnRH-Rezeptor (GnRHR) auf 

gonadotropen Zellen der anterioren Hypophyse bindet und die Freisetzung der Gonadotropine 

reguliert. Durch Studien konnte die Lokalisation der GnRHR-Neurone nicht nur in der anterioren 

Hypophyse, sondern auch in verschieden Hirnarealen nachgewiesen werden. Ihre Funktion 

umfasst die Kontrolle der Reproduktion und das Verhalten in Säugetieren. Allerdings ist die 

physiologische Rolle von GnRHR-Neuronen in diesen Gehirnarealen noch unklar. Durch 

Kreuzung von GnRHR-IRES-Cre (GRIC) Mäusen mit eRosa26-τGFP Reporter-Mäusen wird eine 

Visualisierung von GnRHR-Neurone durch τGFP Expression in lebenden Hirnschnitten möglich. 

Um Zusammenhänge zwischen dem Aktivitätsverhalten von GnRHR-Neuronen und dem 

weiblichen Reproduktionszyklus zu untersuchen wurde die Spontanaktivität von GnRHR-

Neuronen des periventrikulären Hypothalamus (Pe) in akuten Hirnschnitten adulter weiblicher 

Mäuse analysiert. Unter Einsatz der loose-patch Methode konnte ich zeigen, dass GnRHR-

Neurone des Pe ihr Aktionspotential-Muster in Übereinstimmung mit dem weiblichen 

Reproduktionszyklus modifizieren und ihre Spontanaktivität in der präovulären Phase von tonisch 

zu gebündelt/bursting ändern. Verdeutlich wird dies durch Blockierung des synaptische Netzwerks. 

Auch eine Stimulation von GnRHR-Neuronen mit GnRH bewirkt diese Umstellung der 

Aktionspotentialaktivität von tonisch zu bursting. Badperfusionen von akuten Hirnschnitten mit 

dem GnRHR-Antagonisten Cetrorelix verdeutlichen, dass endogenes GnRH die Hauptursache für 

die Veränderung der Spontanaktivität in der präovulären Phase darstellt. Die Quelle des endogenen 

GnRH wurde durch Immunhistochemie und Elektronenmikroskopie näher bestimmt. Wir stellten 

fest, dass GnRHR-Neurone im Pe über engen Kontakt zu Blutkapillaren verfügen und, dass die 

Endothelzellen der Kapillaren im Pe viele Caveolae-ähnliche Strukturen zeigen, was eine 

schwächere Blut-Hirn-Schranke (engl.: blood-brain barrier; BBB) vermuten lässt. Eine 

Empfänglichkeit der GnRHR-Neurone des Pe für systemische Applikationen von Cetrorelix, wie 

sie in der klinischen Anwendung weit verbreitet sind, kann somit vermutet werden. Ich konnte 
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zeigen, dass subkutane Injektionen von Cetrorelix die HPG Achse aushebeln können. Evidenzen 

hierfür sind eine erhöhte Anzahl präovulären Follikeln, begleitet von einer signifikanten 

Einschränkung des Follikelsprungs und eine vermehrte Bildung von Gelbkörpern. Eine 

Behandlung mit Cetrorelix kann die Spontanaktivität von Pe GnRHR-Neuronen in Dosis-

abhängiger Weise zu mehr tonischer Aktivität verändern und somit die  Aktionspotentialsequenz 

des frühen Proestrus imitieren. Neben dem Pe ist der nucleus arcuatus (Arc) ein weiterer wichtiger 

Bereich des Hypothalamus, der an der Regulation von olfaktorisch codierten Verhalten in 

Säugetieren beteiligt ist. Mit der loose-patch Methode konnte ich zeigen, dass die Spontanaktivität 

der Arc GnRHR-Neurone nicht vom Reproduktionszyklus abhängt, sondern von ihrem 

synaptischen Netzwerk moduliert wird. Um den Zusammenhang zwischen intrazellulärem 

Kalzium und der Spontanaktivität weiter zu untersuchen wurde ein neuer Versuchsaufbau 

entworfen, indem die loose-patch Methode mit calcium imaging kombiniert wurde. Eine 

Abhängigkeit  der Burst-Aktivität der Aktionspotentiale und einem Anstieg des intrazellulären 

Kalziums konnte gezeigt werden. Des Weiteren kann GnRH in Arc GnRHR-Neuronen gleichzeitig 

die Aktionspotentialfrequenz und die intrazelluläre Kalziumkonzentration erhöhen. Dies lässt 

vermuten, dass die Veränderung des intrazellulären Kalziums in der GnRH-GnRHR-

Signalkaskade eine bedeutende Rolle spielt. Diese GnRH-induzierte Reaktion könnte von einem 

Aktionspotential-bedingten Kalziumeinstrom abhängig sein. All diese Studien etablieren eine 

Reihe von Methoden und liefern ausschlaggebende Informationen um die physiologischen 

Eigenschaften von GnRHR-Neuronen besser verstehen zu lernen. 
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Chapter 1 

Introduction  

The Gonadotropin-releasing hormone (GnRH) is the primary regulator of the mammalian sexual 

development and reproductive function in both male and female via hypothalamic-pituitary-

gonadal (HPG) axis. In addition to this classical HPG axis, GnRH is also involved in regulating the 

signal and neurons in the brain through the GnRH receptor (GnRHR), which is not well understood. 

The reproductive physiology between female and male mouse is different. This thesis will focus 

on female mice. 

1.1  Reproductive physiology of female mouse 

1.1.1 The Hypothalamic-Pituitary-Gonadal (HPG) axis 

Mammalian reproduction depends on the appropriate secretion of gonadotropin-releasing hormone 

(GnRH) from the brain. A few thousands of GnRH neurons are observed in the ventral preoptic 

area of the brain, with a small number scattered throughout the hypothalamus (Silverman et al., 

1988; Merchenthaler et al., 1989). GnRH neurons project their axons to the external zone of the 

median eminence and release GnRH into the hypophyseal portal system (Figure 1.1) (Clarke and 

Cummins, 1982; Fink and Jamieson, 1976; Sarkar et al., 1976; Gore, 2002). The release of GnRH 

occurs in pulses, which substantially increases in magnitude and frequency before ovulation (Sisk 

et al., 2001; Knobil and Neill, 2006). To retain fertility, secreted GnRH binds to its receptor in the 

anterior pituitary to control the release of gonadotropins, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). Both of these gonadotropins circulate in the bloodstream to act upon 

the ovaries to stimulate the secretion of sex steroid hormone, which subsequently regulates the 

oocyte maturation and ovulation during the female estrous cycle (Gore, 2002; Knobil and Neill, 

2006). Importantly the precise release of GnRH in the brain is regulated by diverse signals 

including metabolic status, season, stress state, immune status, olfactory stimuli, etc.. Gonadal 

steroid hormones perform the most important effects on the GnRH neuronal function, because they 

provide positive and negative feedback regulations at both levels of the pituitary and the 

hypothalamus to modulate the synthesis and release of GnRH (Figure 1.1) (Radovick et al., 2012; 

Knobil and Neill, 2006; Kalra, 1983; Liu and Yen, 1983).  
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Figure 1.1 Hypothalamic-Pituitary-Gonadal (HPG) axis in female mice. GnRH neurons in the hypothalamus 

synthesize GnRH and released it into the hypophyseal portal system. The secreted GnRH binds to its receptor in 

the anterior pituitary to stimulate the release of gonadotropins, luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH), to the circulatory system. Both gonadotropins act upon the ovaries to stimulate the secretion of 

sex steroid hormone. Gonadal steroid hormone provide feedback to the pituitary and hypothalamus to modulate 

the release of GnRH and gonadotropins. 

 

 

1.1.2 The estrous cycle in female mouse 

GnRH regulates the change of reproductive hormones and physiology in the female mouse through 

HPG axis. The consequence of the change in reproductive hormones occurs through the ovarian 

cycle, called estrous cycle. The duration of the estrous cycle is approximately 4-5 days. The cycle 

can be divided into metestrus, diestrus, proestrus, and estrus (Figure 1.2). The first hormone 

involved in the estrous cycle is follicle-stimulating hormone (FSH), secreted by the anterior 

pituitary gland. FSH stimulates the follicles in ovaries to develop into the tertiary/preovulatory 

follicle, especially affecting granulosa cells which produce estradiol. The period, during which the 

preovulatory follicles develop, is named proestrus. One theory is that the increase of estradiol 

induces a preovulatory GnRH surge through a positive feedback loop. The preovulatory GnRH 

surge progresses during the afternoon of proestrus; therefore, the proestrus is divided into the early 

proestrus (PE) and late proestrus (PL) (Figure 1.2) (Sisk et al., 2001). The increase of GnRH 

stimulates the gonadotrope cells in the anterior pituitary to release more luteinizing hormone (LH).  

In the following period, a surge of LH secreted from the anterior pituitary triggers the ovulation. 

This period is called estrus. After ovulation, the follicles transform into the corpus luteum, 

producing estrogen and progesterone. These hormones change the endometrium lining for 
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implantation. The early luteal phase is metestrus, during which progesterone is the dominant 

hormone. The following phase is diestrus. If there is no nidation, the corpus luteum shrinks, leading 

to the decrease of progesterone. At the end of the luteal phase, FSH is secreted again and the next 

estrous cycle starts. (Croy et al., 2013; Knobil and Neill, 2006) 

 

 

Figure 1.2 The reproductive hormone and physiological changes during the female estrous cycle. The 

estrous cycle in the female mouse is approximately 4-5 days, which is divided into metestrus, diestrus, proestrus 

(early, late) and estrus. GnRH is released in small pulses and substantially increases in magnitude and frequency 

before the ovulation. GnRH surge occurs in the late proestrus. FSH, LH, estrogen, and progesterone fluctuate 

during the estrous cycle. The follicles in ovaries are stimulated by FSH to develop into the tertiary/preovulatory 

follicle. A surge of luteinizing hormone (LH) initiate ovulation and the rest part of follicle become corpus luteum 

secreting progesterone. The weight and lining of the uterus also change during the estrous cycle. FSH, follicle-

stimulating hormone; LH, luteinizing hormone; O, ovary; OV, oviduct; U, uterus; C, cervix. Illustration 

combining data from laboratories hormonal level in the rat blood sample or from microdialysis of the rat median 

eminence (Butcher et al., 1974; Sisk et al., 2001a). The pictures of uteri are adapted and modified from (Croy et 

al., 2013).  
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1.2  GnRH 

1.2.1 Types and structure of GnRH 

Gonadotropin-releasing hormone (GnRH) is a pivotal hormone, driving sexual maturation and 

reproductive cyclicity. It was first isolated from pig hypothalamus (Baba et al., 1971; Matsuo et al., 

1971; Schally et al., 1971) and subsequently observed in the brain of all vertebrates (Gore, 2002). 

Nomenclature Committee differentiated GnRH into three types, advocated by the laboratory of 

Russell Fernald (Fernald and White, 1999). The hypophysiotropic GnRH, mainly found in the 

preoptic area of the anterior hypothalamus, is named as GnRH-I regulating pituitary gonadotropin 

(Gore, 2002). Another population of GnRH observed primarily in the midbrain is called GnRH-II. 

GnRH-II decapeptide molecule differs at several amino acids from the GnRH-I (Millar, 2003). The 

third type of GnRH referred as GnRH-III, is identified primarily in olfactory and forebrain regions, 

as found in several organisms including fish, amphibians, and mammals (Kah et al., 2004; 

Ramakrishnappa et al., 2005). GnRH in this thesis, if not specifically indicated, refers to GnRH-I.  

GnRH molecular is a decapeptide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly.NH2), 

which is highly conserved across species indicating that these features are important for receptor 

binding and activation (Seeburg and Adelman in 1984) (Figure 1.3).  The molecule GnRH is bent 

around the achiral glycine in position six and bind to the GnRH pituitary receptor in the folded 

conformation. Both of the NH2 and COOH termini are involved in the receptor binding, whereas 

only the NH2 ending can activate the GnRHR. (Millar, 2005; Millar and Newton, 2013).  

 

Figure 1.3 Schematic representation of mammalian GnRH in the folded conformation. GnRH is bent around 

the achiral glycine in position six and bind to the GnRH pituitary receptor in the folded conformation.  Substitution 

with D-amino acids in this position stabilizes the folded conformation, increases binding affinity and decreases 

metabolic clearance. This feature is incorporated in all agonist and antagonist analogs. The amino (red) and 

carboxyl (green) termini are involved in receptor binding. The amino terminus alone is involved in receptor 

activation. The substitutions in this region produce antagonists. Adapted from (Millar and Newton, 2013)   
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1.2.2 GnRH-secreting neurons 

Gonadotropin-releasing hormone (GnRH)-secreting neurons (GnRH neurons) originate from the 

nasal placode and migrate to the anterior hypothalamus during embryonic development 

(Schwanzel-Fukuda and Pfaff, 1989; Urbanski, 2012). Interestingly, in sexually mature animals 

GnRH neurons remain connected with the olfactory system (Boehm et al., 2005; Yoon et al., 2005), 

which process a variety of sensory signals (Del Punta et al., 2002; Haga et al., 2010; Leinders-

Zufall et al., 2000, 2004, 2009) and influence numerous behaviors such as reproduction (Insel and 

Fernald, 2004; Tirindelli et al., 2009). However, the neural circuits and individual neurons 

underlying olfactory-induced modulation of the reproductive axis have not been identified. In 

rodent species, the majority of GnRH neurons (~800 neurons) are found in the ventral preoptic area 

of the brain, with a smaller number scattered throughout the hypothalamus (Clarke, 1987). With 

the development of genetic transneuronal tracing technique, GnRH neurons are found to 

communicate with an extraordinary complex neuronal network. These neurons integrate 

information from all major hypothalamic subdivisions and also from specific areas of the brain 

stem, like limbic system, basal ganglia, motor and sensory cortex (Boehm et al., 2005). As a part 

of HPG axis, GnRH neurons project to the external (secretory) zone of the median eminence, where 

terminals are shown in proximity to the primary capillary bed of hypophyseal portal system (Page 

and Dovey-Hartman, 1984). In addition, GnRH neurons send axons to the organum vasculosum of 

the lamina terminalis (Rothfeld and Gross, 1985). Sarkar et al. measured the level of GnRH in 

plasma from anesthetized rats and demonstrated a preovulatory surge in GnRH, suggesting that this 

is the origin of the preovulatory surge in LH secretion (Sarkar et al., in 1976). GnRH neurons have 

inherent phasic rhythm and release GnRH in discrete pulses (Suter et al., 2000). Studies showed 

that the frequency and amplitude of GnRH stimulation provide signals for differential regulation 

of LH and FSH secretion (Haisenleder et al., 1990; Kaiser et al., 1997; Savoy-Moore and Swartz, 

1987; Wildt et al., 1981). At higher GnRH pulse frequency (one pulse every 30 minutes) LH 

secretion increases more than FSH secretion, whereas at lower GnRH pulse frequencies (one pulse 

every 120 minutes) FSH secretion is favored (Kaiser et al., 1997). During the female reproductive 

cycle, GnRH is released in small mini-pulses, and its amplitude and frequency are substantially 

increased during the late proestrus to induce ovulation (Levine et al., 1982; Wildt et al., 1981) 

(Figure 1.2).  
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1.3 GnRHR 

1.3.1 Types and structure of GnRHR 

GnRH is secreted in a pulsatile manner from the hypothalamus and released into median eminence. 

The GnRH travels down with blood stream to anterior pituitary and binds to its receptors with high 

affinity on pituitary gonadotropes to stimulate the release of LH and FSH. The amino acid sequence 

of the GnRHR was first cloned from the pituitary αT3 gonadotrope cell line (Tsutsumi et al., 1992). 

Three GnRHR types have been reported. Type I and II GnRHRs can be detected in most vertebrates, 

whereas type III occurs mainly in non-mammalians. In rodents, only GnRHR type I is functionally 

expressed (Millar, 2005). If not indicated, in this thesis GnRHR refers to GnRHR type I. GnRHR 

is a member of the rhodopsin-like G-protein-coupled receptor (GPCR) superfamily, containing 

seven transmembrane domains (TMDs) and an extracellular amino-terminus. However, the 

GnRHR lacks a typical intracellular C-terminus (Tsutsumi et al., 1992; Sealfon et al., 1997) (Figure 

1.4). In general, the intracellular loops (ICLs) and the carboxyl-terminal intracellular tail are 

thought to engage the G protein. Mammalian GnRHR is unique due to lacking a carboxyl-terminal 

tail. In this regard, the carboxyl-terminal of ICL3 and a region in ICL2 are supposed to couple to 

G-protein (Millar and Pawson, 2004).      

 

Figure 1.4 Two-dimensional representation of the GnRHR. The GnRHR consists of 328 amino acids and 7-

transmembrane (TM) α-helical domains (boxed) which are connected by the three extracellular loops (ECLs) 

and the three intracellular loops (ICLs). The carboxyl-terminus is completely absent. Adapted from (Millar et 

al., 2004). 
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1.3.2 The distribution of GnRHR neurons in mouse brain 

GnRHR mRNA and GnRH binding sites have been identified in multiple brain areas (Badr and 

Pelletier, 1987; Jennes et al., 1997). Wen et al., 2008 developed a new genetic mouse model to 

identify GnRHR neurons in the brain. By crossbreeding GnRHR-IRES-Cre (GRIC) mice to 

ROSA26-CAGS-tauGFP (eRosa26-τGFP) reporter mice, GnRHR neurons can be visualized in live 

brain slices using the fluorescent τGFP, a green fluorescent protein (Wen et al., 2011). GnRHR 

neurons are observed in numerous brain areas implicated in sexual behavior and processing 

olfactory information to the hypothalamus. As an extremely important brain area involved in the 

mediation of endocrine, autonomic and behavioral functions, hypothalamus also express abundant 

of GnRHR neurons for example in the periventricular hypothalamus (Pe), dorsal medial 

hypothalamus (DM), and arcuate nucleus (Arc) (Figure 1.5). Here we focus on the physiological 

function of GnRHR neurons in Pe and Arc.  

 

Figure 1.5 GnRHR neurons occur in different brain areas. A: Immunostaining of a GRIC/R26-YFP mouse 

brain slice shows GnRHR expression in different brain areas. B: Magnified image (white square) of the 

thalamus. C, E, and G, Individual GnRHR neurons displaying robust τGFP fluorescence (arrows) are easily 

visible in 250 µm thick coronal brain slices from the Pe (C), the Arc (E), and the DM (G). Scale bars is 20 µm. 

The schematic diagrams in D, F, and H indicate the imaged area (red box) shown in C, E, and G, respectively. 

3V: third ventricle. The numbers in lower left corner indicate the distance (mm) from bregma. Adapted from 

(Wen et al., 2011). 
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Periventricular hypothalamus (Pe) is a thin layer of neurons located in the wall of the third 

ventricular (3V) in the rostral, intermediate, and caudal hypothalamus (Figure 1.5 C-H).  Studies 

found that Pe does not have an effective blood-brain barrier (Ueno et al., 2000). Due to this special 

location of Pe, GnRHR neurons are potentially susceptible to various endogenous GnRH sources, 

such as GnRH-secreting fibers, third ventricular cerebrospinal fluid, or the cerebrovascular system. 

Therefore, it is interesting to investigate how the endogenous GnRH regulates the GnRHR neurons 

in this region.  

Arcuate nucleus (Arc), next to Pe, is located in the ventral hypothalamus and extends along 

the base of the 3rd ventricle in close apposition to the median eminence (Figure 1.5 G-H). The 

neurons in Arc receive afferents from (and send efferents to) numerous brain regions. The Arc 

plays an important role in the regulation of hormone secretion from the pituitary gland (Bluet-Pajot 

et al., 1998; Crowley, 2015; Voogt et al., 2001; Yeo, 2013), energy metabolism (Cone et al., 2001; 

Kim et al., 2014; Sainsbury and Zhang, 2010), cardiovascular regulation (Sapru, 2013) and so on. 

In arcuate nucleus, there are two important groups of neuroendocrine neurons with nerve endings 

in the median eminence. One population are dopaminergic neurons, called tuberoinfundibular 

dopamine (TIDA), which regulate the secretion of prolactin and in turn control the production of 

milk. TIDA neurons release dopamine into the median eminence and transport it to the anterior 

pituitary gland to inhibit prolactin secretion (Crowley, 2015; Voogt et al., 2001). 

Immunohistochemical staining coupled with confocal microscopy studies showed that GnRH 

neurons communicate directly with TIDA neurons in the adult female (Mitchell et al., 2003). 

However, the evidence of expression of GnRHR on TIDA neuron is still ambiguous and what 

functions GnRHR play in Arc are not clear. 

1.3.3 The intracellular pathway mediated by GnRHR 

G-protein-coupled receptors (GPCRS) are a large class of integral membrane protein receptors, 

which are divided into class A Rhodopsin-related receptors, class B Secretin and Adhesion-related 

receptors, and class C Glutamate-related receptors. GnRHR is a member of class A GPCR, 

Rhodopsin-related receptors (Millar and Pawson, 2004; Reinhart et al., 1992; Tsutsumi et al., 1992). 

Most studies of the GnRHR-activating intracellular pathway are mainly based on the function of 

type I GnRHR in pituitary gonadotropes. It is proposed that GnRHR in pituitary gonadotropes 

interacts mainly with Gαq/11, which subsequently activates phospholipase C (PLC) (Grosse et al., 
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2000; Hsieh and Martin, 1992; Naor et al., 1986) (Figure 1.6). The activation of PLC hydrolyzes 

phosphatidylinositol 4,5-bisphophate (PIP2) into the second messenger inositol 1, 4, 5-tris-

phosphate (IP3) and diacylglycerol (DAG) (Neves et al., 2002). DAG could induce external Ca2+ 

influx via Ca2+ permeable membrane channels, for example, via transient receptor potential (TRP) 

channels (Numata et al., 2011). Meanwhile, the increased intracellular IP3 activates IP3 receptor 

(IP3R), leading to Ca2+ release from endoplasmic reticulum (ER) into the cytosol. The increase of 

Ca2+ near ER may also activate ryanodine receptor (RyR) which transport Ca2+ from ER to the 

cytoplasm (Berridge, 1998). To replenish the level of calcium in the ER, the sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps the elevated cytosolic Ca2+ back to the ER (Periasamy 

and Kalyanasundaram, 2007). However, some studies reported that GnRHR may interact with other 

G-proteins like Gαi, Gαs to mediate the various biological actions (Hawes et al., 1993; Liu et al., 

2002; Stanislaus et al., 1998). 

 

Figure 1.6 Proposed intracellular signal pathway in hypothalamic GnRHR neurons. GnRHR interacts with 

Gαq/11, which subsequently activates phospholipase C (PLC). The activation of PLC hydrolyzes the 

phosphatidylinositol 4,5-bisphophate (PIP2) into the second messenger inositol 1, 4, 5-tris-phosphate (IP3) and 

diacylglycerol (DAG). DAG could induce external Ca2+ influx via Ca2+ permeable ion selective membrane 

channels, for example, transient receptor potential (TRP) channel. The subsequent depolarization could trigger 

the opening of voltage-gated calcium channel (CaV). The increased intracellular IP3 activates IP3 receptor (IP3R), 

leading to Ca2+ release from endoplasmic reticulum (ER) into the cytosol. The increase of Ca2+ near ER may 

activate ryanodine receptor (RyR) which transport Ca2+ from ER to the cytoplasm. The sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) move the elevated cytosolic Ca2+ back and refill the Ca2+ in the ER. 
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The rise in intracellular Ca2+ has many important functions for neurons. One main function 

of the increase of intracellular Ca2+ is to trigger the neurotransmitter release (Südhof, 2012). The 

action potential can open the voltage-dependent Ca2+ in the plasma membrane, allowing Ca2+ to 

enter the presynaptic active zone, which subsequently triggers the neurotransmitter release. 

Another function is that Ca2+ can lead to a modulation of neuronal excitability by altering 

membrane potential (Berridge, 1998). For example, burst firing is a common firing pattern for 

neuroendocrine neurons (Chu et al., 2012; Grace and Bunney, 1984; Lyons et al., 2010). When the 

burst firing starts, the neuron is depolarized which could lead the action-potential-driven Ca2+ 

influx. During the burst, the concentration of intracellular Ca2+ is building up which depolarizes 

the neuron to produce more action potential. With the continuous firing, the low voltage-activated 

calcium channels inactivated and calcium-dependent potassium channels activated which 

repolarize the neuron to the initial potential (Jahnsen and Llinás, 1984). At this point, the burst 

terminates, and the intracellular Ca2+ concentration begins to decay slowly. The neuron then slowly 

depolarized and lead to a new burst (Grinnell, 1988). Moreover, the intracellular Ca2+ also take part 

in regulating multiple intracellular signaling pathways. In general, understanding the relationship 

of intracellular Ca2+ and neuronal firing patterns might help further to study the physiological 

function of the specific neurons. 

1.4 The agonist and antagonist of GnRHR in clinical applications 

Currently, a substantial number of the agonists and antagonists of GnRHR have been developed 

for therapeutic use in treating a wide range of hormone-dependent diseases, such as endometriosis, 

uterine fibroids,  benign prostatic hyperplasia, and prostate cancer, as well as in vitro fertilization 

protocols (Cook and Sheridan, 2000; De Falco et al., 2006; Küpker et al., 2002; Sakai et al., 2015a; 

Shrestha et al., 2015). Mutations of the GnRHR have been observed in hypogonadotropic 

hypogonadism, a disorder characterized by delayed sexual development and inappropriately low 

or non-pulsatile release of gonadotropins (Layman, 2007). Therefore, pulsatile injection of GnRH 

or its analogs has been used in patients with hypogonadotropic hypogonadism to induce puberty 

(Delemarre et al., 2008). It successfully induces follicular development or sperm production 

(Fraietta et al., 2013; Han and Bouloux, 2010; Raivio et al., 2007). In addition, the agonists and 

antagonists of GnRH are also essential components of in vitro fertilization (IVF) protocols (Bodri 

et al., 2006; La Marca and Sunkara, 2014; Lambalk et al., 2006; Lee et al., 2008). For example, 

cetrorelix is a classic antagonist at the GnRH pituitary receptor and used for the prevention from 
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the premature luteinizing hormone surge in controlled ovarian stimulation cycles. One protocol for 

IVF uses the working principle of the HPG axis for regulating oocyte maturation and ovulation by 

combining a bolus of GnRH agonist during prolonged co-treatment with a GnRH antagonist (Kol 

and Humaidan, 2013). During the treatment of GnRHR antagonist, follicles develop into mature 

tertiary follicles and stop just before ovulation. The GnRH agonist displaces the antagonist in the 

pituitary, and thereby re-activates the GnRHR, resulting in a gonadotropin surge. Subsequently, 

ovulation is induced and oocytes are collected for the IVF. Depending on the usage of a GnRH 

agonist versus antagonist analog, GnRH analog IVF protocols are classified as GnRH agonist or 

GnRH antagonist protocols to facilitate infertility treatments (Reissmann et al., 2000; Duijkers et 

al., 1998; Shrestha et al., 2015). Furthermore, in hormone-dependent diseases, like endometriosis, 

uterine fibroids, polycystic ovarian syndrome, the agonists and antagonists of GnRHR are also 

widely used (De Falco et al., 2006; Küpker et al., 2002; Nugent et al., 2000). Several reproductive 

related cancers are identified expressing GnRHR, including prostate cancer, and breast cancer. 

Studies revealed that the activation of GnRHR exhibits inhibitory effects on these cancer cells via 

anti-proliferation, anti-metastasis and anti-angiogenesis (Cheung et al., 2013; Kim et al., 2006; 

Sakai et al., 2015b). However, due to the physiological function of GnRHR neurons in the brain is 

still ambiguous, the influence of these treatments on the GnRHR neurons and brain function could 

induce adverse effects. During my thesis project, I had the opportunity to begin investigating if 

GnRHR in the brain can be affected by pharmacological treatment used in an IVF protocol. 

1.5 Aims 

Substantial studies about GnRHR are based on pituitary GnRHR-expressing neurons or cultured 

GnRHR cell lines. Little information is available regarding the physiological function of GnRHR 

neurons in the brain. The agonist and antagonist of GnRHR are widely used to treat clinical 

pathologies without sufficient understanding of their influence on brain function. Thus, it is urgent 

to investigate the physiological characteristics and the potential role of GnRHR neurons in the brain. 

The following objectives will be addressed: 

(1) Determine how the spontaneous firing activity of GnRHR neurons in Pe change during the 

female reproductive cycle as a fundamental step in understanding their physiological 

characteristics. Examine GnRH itself could be responsible to modulate in the spike activity 

of GnRHR neurons on brain slices. Identify the mechanism of the mode of GnRHR 
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neuronal activity regulated by the endogenous GnRH on brain slices during the female 

estrous cycle, using antagonist of GnRHR, cetrorelix.  

(2) Examine the potential source of GnRH for GnRHR neurons in Pe, such as GnRH-secreting 

neuronal fibers, third ventricular cerebrospinal fluid or the cerebrovascular system. 

Assuming Pe has a less constrained blood-brain barrier, identify that the in vivo treatment 

with cetrorelix into female mice can effectively block the HPG axis as in reproductive 

therapies. Determine whether the in vivo treatment with cetrorelix affect the firing activity 

of GnRHR neurons in Pe.  

(3) Examine the spontaneous firing activity of GnRHR neurons in Arc during the female 

reproductive estrous cycle and how GnRH and network modulate the GnRHR neurons in 

Arc. Establish the method to measure calcium signal and neuron firing activity 

simultaneously and determine the relationship between the calcium signal and GnRHR 

neurons firing activity. Observe how the calcium signal responds to GnRH stimulation as a 

first step in understanding the intracellular pathway of GnRHR in Arc.  

These studies will reveal detailed information of GnRHR neurons and provide new insights 

into their physiological function in the brain. This work is highly relevant to clinical treatments and 

generates important new knowledge for the potential side effects of the clinical application of the 

agonist and antagonist of GnRHR.  
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Chapter 2 

Materials and methods 

2.1 Materials 

2.1.1 Chemicals and antibodies 

 

Chemicals 

 

Agar-Agar 

 

Carl Roth GmbH Co.KG 

2-Aminoethyldiphenylborinate, 2-APB (ab120124) 

 

Abcam 

N, N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid 

(BES) BioXtra, for molecular biology, ≥99.5% (T) 

 

Sigma-Aldrich Corp. 

Bicuculine methiodid (14343) 

 

Sigma-Aldrivch Corp. 

Cetrorelix acetate (C5249) 

 

Sigma-Aldrich Corp. 

Calcium chloride x2H2O, CaCl2×2H2O 

 

Gruessing GmbH 

CGP 52432 (ab120330) 

 

Abcam 

2-Chloro-2-(trifluoromethyl)-difluoromethylether, 

Isoflurane 

 

Baxter International Inc. 

CNQX disodium salt (ab120044) 

 

Abcam 

D-AP5 (ab120003) 

 

Abcam 

D(+)-Glucose monohydrate for microbiology 

 

Merck KGaA 

Dimethyl Sulfoxide (DMSO) 

 

Fisher Scientific Inc. 

Disodium hydrogen phosphate, Na2HPO4 

 

Gruessing GmbH 

Eosin G-solution 0,5% aqueous 

 

Carl Roth 

Fura-2/AM, cell permanent 

 

Invitrogen AG 

Gonadotropin-releasing hormone (GnRH),  

(Luteinizing Hormone-releasing Hormone, L7134) 

Sigma-Aldrich Corp. 
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25% glutaraldehyde 

 

Sigma-Aldrich Corp. 

Hämalaunlösung sauer nach Mayer 

 

Carl Roth 

LY341495 sodium salt (ab120400) Abcam 

  

Magnesium sulfate, ReagentPlus®, ≥99.5%, MgSO4 

 

Sigma-Aldrich Corp. 

Magnesium chloride, anhydrous, assay ≥98%, MgCl2 

 

Merck KGaA 

2-Methylbutane, ReagentPlus®, ≥99% 

 

Sigma-Aldrich Corp. 

N-(2-hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid) 

(HEPES) 

 

Sigma-Aldrich Corp. 

Normal horse serum, S2000 

 

Vector Labs 

Paraformaldehyde reagent grade, crystalline 

 

Sigma-Aldrich Corp. 

Pluronic® F-127, BioReagent, suitable for cell culture 

 

Sigma-Aldrich Corp. 

Potassium chloride for analysis EMSURE® ACS, Reag. 

Ph Eur, KCl 

 

Merck KGaA 

Potassium dihydrogen phosphate, KH2PO4 

 

Gruessing GmbH 

Sodium chloride AnalaR NORMAPUR 

 

VWR International 

Sodium hydrogen carbonates for analysis EMSURE® 

ACS, Reag. Ph Eur, NaHCO3 

 

Merck KGaA 

Sodium hydroxide, assay ≥99%, NaOH 

 

Gruessing GmbH 

1-Stearoyl-2-arachidonoyl-sn-glycerol, SAG (S-6389) 

 

Sigma-Aldrich Corp. 

D (+)-Sucrose  

 

PanReac Applichem 

Tissue-Tek™ CRYO-OCT Compound 

 

Fisher Scientific 

Triton X-100 

 

Carl Roth 

 

Antibodies 

 

Primary antibodies: 
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Chicken monoclonal anti-GFP antibody (ab13970) 1:1000 

 

Abcam 

Rat monoclonal anti-CD31 antibody (ab56299) 1:750 

 

Abcam 

Rabbit polyclonal anti-GnRH antibody (20075) 1:800 Immunostar 

  

Secondary antibodies: 

 

Alexa-Fluor 488 goat-anti-chicken (A-11039) 1:1000 

 

Invitrogen 

Alexa-Fluor 488 donkey-anti-rat (A-21208) 1:1000 

 

Invitrogen 

Alexa-Fluor 633 donkey-anti-rat (20137) 1:1000 

 

Biotium 

Alexa-Fluor 633 goat-anti-rabbit (A-21070) 1:1000 Invitrogen 

 

2.1.2 Solutions and buffers 

Extracellular solution (S1) (oxygenated with 95% O2 / 5% CO2) 

NaCl 120 mM，NaHCO3 25 mM，KCl 5 mM，BES 5 mM，CaCl2×2H2O 1 mM，

MgSO4 1 mM, Glucose 10 mM, adjust osmolarity to 300 mOs/L. 

Extracellular solution (S2) 

NaCl 145 mM, KCl 5 mM, CaCl2×2H2O 1 mM, MgCl2 1 mM, HEPES 10 mM, titrated 

with NaOH to pH 7.3 and adjust osmolarity to 300 mOs/L. 

High potassium solution 

NaCl 90 mM, KCl 60 mM, CaCl2×2H2O 1 mM, MgCl2 1 mM, HEPES 10 mM, titrated 

with NaOH to pH 7.3 and adjust osmolarity to 300 mOs/L. 

Synaptic blocker cocktail solution  

LY341495 sodium salt 10 µM, CGP 52432 1 µM, CNQX disodium salt 10 µM, D-AP5 

50 µM, Bicuculine methiodid 10 µM, diluted in S1 solution. 

Agarose (4%) solution 100 ml 

4 g low gelling agarose is dissolved in 100 mL double distilled water, and heat the solution 

until 100 °C and cooling it to room temperature. 

20% Pluronic F127 solution 100 µL 
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0.02 g Pluronic F127 in 100 µL DMSO, sonicate 2 min until Pluronic is dissolved  

Fura-2/AM loading solution 

1 vial of Fura-2/AM 50 µg, 2 µL 20% Pluronic F127, 18 µL DMSO, 3900 µL synaptic 

blocking solution, final loading concentration of 12 µM Fura-2 AM, 0.0001% Pluronic F-

127, and 0.4% DMSO 

GnRH stimulation solution 

25 mL oxygenated extracellular solution (S1), 0.1% BSA, concentration-dependent GnRH 

(0.1 nM; 0.3 nM; 0.5 nM; 1 nM; 3 nM; 10 nM) 

4% PFA 1 L 

40 g paraformaldehyde, 1×PBS 1 L, heat the solution and add 1 N NaOH drop from a 

pipette until the solution clears. Cooling the solution and titrated with HCl to pH 7.2 and 

adjust the volume to 1 L with 1x PBS. 

Blocking solution 

0.5% Triton X-100, 4% Normal horse serum, diluted in 1×PBS 

10×Phosphate buffered saline solution (10×PBS) 1 L 

NaCl 1.37 µM, KCl 27 mM, Na2HPO4 100 mM, KH2PO4 20 mM, titrated with NaOH to 

pH 7.4 and adjust the volume to 1 L with distilled H2O. 

1×Phosphate buffered saline solution (1×PBS) 1 L 

NaCl 137 mM, Na2HPO4 10 mM, KCl 2.7 mM, KH2PO4 2 mM, titrated with NaOH to 

pH 7.4 and adjust the volume to 1 L with distilled H2O. 

2.5% glutaraldehyde+2% PFA fixation solution 50mL 

25% glutaraldehyde 5 mL, 4% PFA 25 mL, 1×PBS 20 mL.  

 

2.1.3 Consumables 

6-well Cell Culture Plates 

 

Becton Dickinson AG 

Capillary Glass, TW100-F4 

 

World Precision Instruments  
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Capillary Glass, 8250, Filament,1.50/0.86, 75 mm 

 

A-M Systems Inc. 

Disposable Pasteur Pipettes 

 

Kimble Chase LLC 

Filter Holder Swinnex®, 25 mm 

 

EMD Millipore 

Glassware, made of Borosilicate 3.3 

 

VWR International 

Heat-shrinking tubing, DERAY Set-2000 

 

DSG-Canusa GmbH 

Infusion Set with micro adjustment 

 

Becton Dickinson AG 

Liquid Blocker Pen, Super PAP 

 

Ted Pella Inc. 

Membrane Filter 0.2 µm, Supor®200 PES, 47 mm 

 

Pall Corporation 

Membrane Filter 0.2 µm, HT Tuffryn®HPS, 25 mm 

 

Pall Corporation 

Microscope slides 

 

VWR International 

Pipette Tip 20 µL, 200 µL, 1 mL 

 

Sarstedt AG 

Safe-seal micro tube 0.5 mL,1.5 mL, 2 mL 

 

Sarstedt AG 

Single Edge Carbon Steel Razorblade 

 

Electron Microscopy Sciences 

Sterile Syringe 1 mL,10 mL, 50 mL, 60 mL Luer-Lok 

 

Becton Dickinson AG 

Super glue, Loctite 406TM 

 

Henkel AG 

Transfer pipette 3.5 mL Sarstedt AG 

 

 

2.1.4 Equipment 

 

Ca2+ Imaging and patch clamp setup 

 

Vibration Isolation Table VH3048W-OPT 

 

Newport Corporation 

Upright Microscope Olympus BX-51WI 

 

Olympus GmbH 

Imaging Station cell^R Olympus GmbH 

  

Fluorescence filter 340/26  Olympus GmbH 
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Fluorescence filter 387/11 

 

Olympus GmbH 

Fluorescence filter 470/40 X 266670 Olympus GmbH 

  

Fluorescence filter XF1067 560AF55 91752 

 

Omega Optical 

Digital CCD Camera ORCA-R2 

 

Hamamatsu Photonics 

Workstation:  

              Luigs & Neumann Feinmechanik und  

              2 Micromanipulators Mini 25 

              Shifting Table 380FM-2P 

              Platform LN Bridge 500 

              Remote Control Keypad SM-7 

              Control Box SM-7 

 

Elektrotechnik GmbH                   

EPC 10 USB Double Patch Clamp Amplifier 

 

HEKA   Elektronik GmbH 

Low-pass Bessel Filter (LPF-8) 

 

Warner Instruments LLC 

Audio Monitor AM10, Grass Technologies 

 

Astro-Med GmbH 

Digital Storage Oscilloscope VC-6523 

 

Hitachi Ltd. 

Picospritzer®II 

 

Parker Hannifin Corp. 

PM-6 platform for Series 20 chambers 

 

Warner Instruments LLC 

Large Rectangular Open Bath Chamber RC-27 

 

Warner Instruments LLC 

Platinum-iridium harp, 1.5 mm spacing 

 

Own construction 

Vibration Vacuum Pump SP302SA-V Schwarzer Precision GmbH & 

Co. Kg 

 

General 

 

O2/CO2 Incubator, CB210-UL 

 

Binder GmbH  

Double spatulas, spoon shape 

 

Bochem Instrumente GmbH  

Filter Funnel with Clamp DS0315 

 

Thermo Fisher Scientific Inc. 

Gastight Microliter Syringe #1710 Hamilton Bonaduz AG 

  

Gravity flow controller Becton Dickinson AG 
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Hazardous material workplace Basic AP 014590 

 

Denios AG 

Large Rectangular Open Bath Chamber (RC-27) 

 

Warner Instruments LLC 

Light Microscope 

 

Ernst Leitz Wetzlar 

LSM 710 confocal microscope 

 

Zeiss 

Radiance Confocal Laser Scanning System 

 

Carl Zeiss AG, former Bio-Rad 

Medical Forceps, Dumont 7b 

 

Fine Science Tools Inc. 

Microforge MF-830 

 

Narishige International 

Microgrinder EG-400 

 

Narishige International 

Microm™ HM 525 Cryostat 

 

Thermo Scientific 

Multi-pipette Puller PMP-107 

 

Microdata Instrument Inc. 

Micro spoon spatulas, spoon shape 

 

Bochem Instrumente GmbH 

Microwave Midea MWGED 9025 E 

 

Midea Europe GmbH 

Modular Syringe Holder 10 mL, Add-on Bracket 

 

Warner Instruments LLC 

Modular Syringe Holder 60 mL, Base Mount 

 

Warner Instruments LLC 

Osmometer OM-815 

 

Vogel GmbH & Co. KG 

Perfusion Mini Manifold, 8 to 1 ports 

 

Warner Instruments LLC 

pH Meter PHM240 

 

Radiometer Analytical 

Precision Balance 572 

 

Kern & Sohn GmbH 

Single Channel Pipettes   

(0.5-10 µL/20-200 µL/100-1000 µL) 

 

VWR International 

Spring Scissors, 7 mm and 3 mm Blades 

 

Fine Science Tools Inc. 

Stopcocks with Luer Connections 

 

Cole-Parmer 

Ultrapure Water System Direct-Q 5 

 

EMD Millipore 

Ultrasonic Bath Aquasonic 50T VWR International 
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Vertical Glass Microelectrode Puller PP-830 Narishige International 

  

Vacuum pump Air Admiral®diaphragm 

 

Cole-Parmer 

Vibrating-Blade Microtome HM 650V with Cooling 

Device CU65 

 

Thermo Fisher Scientific Inc. 

Vibratome Pelco 101 

 

Technical Products International 

 

Vortex Genie 2 

 

Scientific Industries Inc. 

Wagner Scissors 

 

Fine Science Tools Inc. 

Water Bath TW 20 

 

JULABO Labortechnik GmbH 

2.1.5 Software 

Xcellence rt 

 

Olympus GmbH 

Patchmaster 

 

HEKA Elektronik GmbH 

NeuroExplorer 

 

Nex Technologies 

IGOR Pro 

 

WaveMetrix Inc. 

SPSS Statistics 

 

IBM Corp 

NCSS Statistical Software 

 

NCSS, LLC 

GraphPad PRISM 

 

GraphPad Software Inc 

Microsoft office 

 

Microsoft Corp. 

ImageJ 

 

Wayne Rasband, NIH 

Photoshop CS6 

 

Adobe Systems Inc. 

CorelDraw x7 

 

Corel Corp. 

Origin 8.6 

 

OriginLab 
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2.2 Methods 

2.2.1 Animals 

Animal care and experimental procedures were carried out by the guidelines established 

by the animal welfare committee of the Saarland University, School of Medicine. All mice 

were kept under standard light/dark cycle (12:12; lights-on at 0700 hours; lights-off at 1900 

hours) with food and water ad libitum. GnRHR-IRES-Cre (GRIC) mice (Wen et al., 2008) 

were bred to ROSA26-τGFP reporter mice (Wen et al., 2011) to express τGFP in GnRHR 

neurons. Mice were kept in a mixed (129/SvJ and C57BL/6J) background. All mice used 

were 2 to 4 months old females. 

2.2.2 Assessment of reproductive stages 

Cytological analysis of vaginal smear was used to determine the estrous cycle phases in 

the mouse as described (Caligioni, 2009). Briefly, vaginal secretion was collected with a 

fire -polished glass Pasteur pipette filled with 10 L 1x phosphate buffer saline (PBS) by 

placing the tip at the external genital opening and flushing gently three to five times with 

the PBS solution. Vaginal fluid was placed on glass slides. The unstained material was then 

taken for analysis under the light microscope with a 10x objective. The estrous cycle stage 

was determined according to the proportion among the three cell types observed in the 

vaginal smear: epithelial cells, cornified cells, and leukocytes. Metestrous smear is 

characterized by a mix of cell types with a predominance of leukocytes and a few nucleated  

Metestrus Diestrus Proestrus Estrus 

    

 

 

 

 

Figure 2.1 Vaginal cytology representing each stage of estrous from mice. (A) metestrus, characterized 

with leukocytes, nucleated or cornified epithelial cells; (B) diestrus, with a predominance of leukocytes; (C) 

proestrus, with individually nucleated epithelial cells; (D) estrus, with predominantly of clustered cornified 

epithelial cells. 

C A 
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epithelial and/or cornified squamous epithelial cells which have no visible nucleus, 

granular cytoplasm and irregular shape (Figure 2.1A). In diestrus, a predominance of 

leukocytes can be observed (Figure 2.1B). In proestrus, there is a predominance of 

nucleated epithelial cells which may appear in clusters or individually (Figure 2.1C). Estrus 

consists predominantly of clustered cornified squamous epithelial cells (Figure 2.1D). 

2.2.3 Brain slice preparation 

All acute coronal brain tissue slices were freshly prepared from female GRIC/eR26-τGFP 

mice as described (Schauer and Leinders-Zufall, 2012). The animals were anesthetized 

with isoflurane and decapitated before 1200 hours in the case of metestrus, diestrus, estrus 

and early proestrus. Late proestrous mice were sacrificed after 1500 hours. The brains were 

quickly removed and immediately submerged in the ice-cold S1 solution, oxygenated with 

95% O2 and 5% CO2. For loose-patch recording, coronal brain slices (275 μm) were cut 

from the horizontal plane using a vibratome (Microm HM 650 V, Walldorf, Germany). For 

periventricular hypothalamus (Pe), brain slices were obtained and analyzed between 

bregma +0.26 and –1.94 mm (Paxinos and Franklin, 2004). However, the most rostral area 

(four sections between bregma +0.26 and –0.1 mm), as well as the more caudal region (four 

sections between bregma –1.58 and –1.94 mm), contained between zero and five GnRHR 

neurons somata per brain slice (~two somata/slice). Most GnRHR neurons were found in 

the medial region (~16 somata/slice). Their primary location has been documented between 

-0.22 to –1.46 mm (10-30 somata/slice), and this medial periventricular area was thereby 

subdivided into nine separate sections according to the method described by Paxinos and 

Franklin, (2004). For arcuate nucleus (Arc), brain slices between bregma –1.22 and –2.80 

mm were obtained and analyzed (Paxinos and Franklin, 2004). Before the start of an 

experiment, slices were maintained in oxygenated S1 solution at 31.5 °C for 30 min and 

subsequently at room temperature (20-22 °C) until transferred to the recording chamber. 

For calcium imaging recording, 100 μm-thick coronal brain slices were cut. 

2.2.4 Loose-patch recording 

Loose-patch recordings from individual GnRHR neurons were obtained in acute brain 

slices (275 µm). Brain structures were identified using a mouse brain atlas (Paxinos and 

Franklin, 2004). For the visualization, an Olympus BX51WI fixed stage microscope 
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equipped with infrared-optimized differential interference contrast (IRDIC) optics was 

used. Slices were continuously superfused with the oxygenated S1 solution or synaptic 

blocker solution (~3 mL/min; gravity flow) at room temperature (Figure 2.2C). Patch 

pipettes (1.50 mm OD / 0.86 mm ID; Science Products, Hofheim, Germany) were pulled 

on a PC-10  

          A                                              C 

     

              B 

Figure 2.2 Puff and bath application systems. A. The schematic figure is showing the different 

concentrations of GnRH stimuli.  Neuron attached to a patch pipette were stimulated by puff application 

of GnRH through a multi-barrel pipette. P, patch pipette; S, stimulation multi-barrel pipette. B. An 

example of a multi-barrel pipette for puff application of GnRH. C. Schematic figure of gravity driven 

multi-channel perfusion system. 

 

vertical micropipette puller (Narishige Instruments, Tokyo, Japan) and fire-polished using 

a MF-830 Microforge (Narishige Instruments). Pipettes were filled with the S2 solution 

and showed resistances ranged from 5–7 MΩ. The τGFP-tagged GnRHR neurons were 

visualized using 470 nm wavelength light emitted from a 150W Xenon short arc lamp 

through fluorescence filter ET470/40 (Olympus GmbH). Action potential-driven 

capacitive currents from identified GnRHR neurons were recorded extracellularly with seal 

resistance 20-90 MΩ connected to a computerized EPC-10 patch clamp amplifier (HEKA 

Elektronik, Lambrecht/Pfalz, Germany). The pipette potential in the loose-patch 

configuration was kept at 0mV. Consecutive current traces were acquired at a sampling 

rate of 10 kHz and low-pass filtered (analog 3- and 4-pole Bessel filters in series) with an 

effective corner frequency (-3 dB) of 3.0 kHz. Different concentrations of GnRH stimuli 

were applied by puff application for 1 s with an inter-stimulus-interval of 9 min through a 
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multi-barrel pipette system (Figure 2.2A and B). Bath solution S1 and alternative stimuli 

were applied using a gravity-driven multichannel perfusion system (Figure 2.2C). The 

spikes were analyzed off-line using IGOR Pro software with custom-written macros 

(WaveMetrics) and NeuroExplorer (Nex Technologies). 

2.2.5 Analysis of spike data 

2.2.5.1 Analysis of spike firing patterns 

Four independent parameters were chosen to characterize and classify the different firing 

patterns of GnRHR neuron. The mean spike frequency (mf) was used as the first parameter. 

The second parameter, the coefficient of ISI variation (CVISI), was calculated using the 

method of Robin et al.(2009), in which the standard deviation (SD) of the interspike 

interval (ISI) was divided by the mean ISI value. CVISI can describe the regularity of the 

firing spikes. To represent the bursting behavior of GnRHR neuron, an interspike interval 

(ISI) threshold for burst detection was first determined based on the method published by 

Selinger et al. (2007). A quantitative approach was developed to describe the distribution 

of ISIs in terms of plotting histograms of the logarithm of the interspike interval. This 

approach provides a method for automatically classifying spikes into bursts, which does 

not depend on assumptions about the burst parameters. Using this burst detection method, 

the third and fourth parameters can be determined by calculating the percentage of spikes 

in bursts (PSiB) and the mean number of spikes in a burst (MSiB), respectively. With these 

four parameters, mf, CVISI, PSiB, and MSiB, a hierarchical cluster analysis was combined 

with a principal component (PCA) analysis to detect coherent patterns between the spike 

activities of the GnRHR neurons. All of the four parameters were used for the analysis of 

the spontaneous activity of GnRHR neuron and for identification of the change in firing 

pattern after bath application of GnRH or the gonadotropin-releasing hormone antagonist 

cetrorelix. 

2.2.5.2 Short-term and long-term enhancement in spike activity after 1s puff GnRH 

stimulation 

To determine the changes in mean spike frequency of spontaneously active neurons after 

GnRH stimulation, the mean spike frequency ratio was calculated as the fraction of the 

mean frequency during the first 10 s after stimulation (t0 + 10 s) and the frequency of action 
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potentials during the 10 s before stimulation (t0 – 10 s). The parameter t0 indicates the start 

of the stimulation. The first-spike latency is defined as the time from the onset of the 

stimulus (t0) to the time of the occurrence of the first action potential (Pawlas et al., 2010).  

The long-term enhancement of spike activity was calculated by the variance of the 

instantaneous spike frequency (VARiF) over three periods, one period before stimulation 

and two periods after GnRH stimulation (total recording time: 180 s). 

2.2.6 Immunohistochemistry 

Female mice in early proestrus stage were anesthetized using isoflurane and decapitated 

before 1000 hours. The brains were quickly dissected and immediately submerged in the 

ice-cold S1 solution. The intact mice brains were then fixed in 1×PBS containing 4% (w/v) 

paraformaldehyde (PFA) for 2 h at 4 °C. After fixation, the brains were washed three times 

in PBS and cut into 100 µm coronal slices using a vibratome (Pelco 101, Technical 

Products International, USA), before blocking and antibody administration. Primary 

antibodies were: anti-GFP (AB13970, 1:1000, chicken monoclonal; Abcam) (Leinders-

Zufall et al., 2014), anti-CD31 (AB56299,1:750, rat monoclonal; Abcam) (Schmidt and 

von Hochstetter, 1995), and anti-GnRH (20075,1:800, rabbit polyclonal; Immunostar) 

(Ward et al., 2009). Secondary antibodies were: Alexa-Fluor 488 goat-anti-chicken (A-

11039, 1:1000, Invitrogen), Alexa-Fluor 633 goat-anti-rabbit (A-21070, 1:1000; 

Invitrogen), Alexa-Fluor 488 donkey-anti-rat (A-21208, 1:1000; Invitrogen), and Alexa-

Fluor 633 donkey-anti-rat (20137, 1:1000; Biotium). Procedures were performed at room 

temperature (21 °C), except for incubation in primary antibodies (4 °C). Tissue was 

incubated for 48 h with primary antibodies diluted in blocking solution, washed 3 times 

with PBS, and subsequently incubated with secondary antibodies in PBS for 90 min. 

Primary antibody controls indicated the specificity of the primary antibody binding. 

Confocal fluorescence images were acquired on either a BX51WI attached to a Radiance 

Confocal Laser Scanning System (Carl Zeiss AG, former Bio-Rad) or a LSM 710 confocal 

microscope (Zeiss). Image stacks are presented as maximum intensity projections, 

assembled and minimally adjusted in brightness using Adobe Photoshop CS6 (Adobe 

Systems, San Jose, CA). Contact points between soma or axon of GnRHR neuron and 

blood vessel were counted.  
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2.2.7 Electron microscopy 

Two female mice in early proestrus stage were anesthetized with isoflurane and decapitated. 

The brains were quickly removed and immediately submerged in 2.5% glutaraldehyde + 

2% PFA fixation solution for 2 h at room temperature. After fixation, the brain areas 

containing Pe were cut into 1mm3 cubes and kept in PBS. Tissue was processed for electron 

microscopy as previously described by Schoch et al. (2006). Ultrathin sections were 

analyzed using a tecnai Biotwin 12 digital electron microscope by Prof. Franks Schmitz 

(Department of Anatomy, School of Medicine, Saarland University). 

2.2.8 In vivo cetrorelix systemic injection 

Before the application phase, female mice were monitored using cytological estrous cycle 

detection over at least two normal estrous cycles. Mice were habituated to handling and 

injected with 0.9% NaCl daily to reduce the stress caused by the injection. During the 

application phase, all mice subsequently received daily subcutaneous injections of 0.9 % 

sodium chloride (SHAM), 10 μg or 50 μg cetrorelix dissolved in 0.9 % sodium chloride in 

the morning over 9 consecutive days, starting at either diestrus or metestrus. Independent 

of the treatment group, the females’ estrous cycle was determined using vaginal smears. 

On day 9 of the treatment, all mice were weighted and anesthetized using isoflurane 

followed by decapitation. The brains were quickly removed for loose-patch recording of 

GnRHR neurons as described in methods 2.2.3 and 2.2.4. The uteri were dissected and 

weighted to calculate the ratio of uterus to body mass. Ovaries were extracted for 

hematoxylin and eosin staining. A control group of female mice did not receive any 

treatment, to determine their uterus weight and status of their ovaries at early proestrus. 

2.2.9 Hematoxylin and Eosin staining 

The ovaries from 22 female mice from in vivo cetrorelix experiments were carefully 

dissected and fixed in PBS containing 4% paraformaldehyde overnight at 4°C, before 

incubation in PBS containing 30% sucrose, also overnight at 4 °C. Fixed ovaries were 

embedded in O.C.T. (Tissue-Tek), snap-frozen in a 2-methylbutane bath at -80 °C cut into 

16 μm slices using a Microm™ HM 525 Cryostat (Thermo Scientific). Cryosections were 

thaw-mounted onto glass slides and stained with hematoxylin and eosin (H-E) by standard 
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procedure (Fischer et al., 2008). Briefly, sections were immersed in hematoxylin solution 

for 1 min, rinsed, immersed in eosin for 1-2 min, rinsed, dehydrated using an ascending 

alcohol solution, cleared with xylene, and sealed by a coverslip. The number of 

tertiary/preovulatory follicles and corpora lutea were counted in every section (Myers et 

al., 2004). 

2.2.10 Calcium imaging recording on brain slices 

The changing of intracellular calcium on GnRHR neurons was monitored with Fura-2 AM 

(Molecular Probes, Invitrogen), a membrane-permeant ratiometric fluorescence indicator. 

To obtain better loading with the Ca2+ dye Fura-2 AM, coronal brain slices of 100μm 

thickness from female mice were prepared, as described in method 2.2.3 brain slice 

preparation. After cutting 100μm-thick brain slices on a vibratome in S1 solution, brain 

slices were maintained immediately in oxygenated synaptic blocker solution + 10µM TTX 

at 31.5 °C for 30 min. 50 µg Fura-2 AM were dissolved in 18 µL DMSO and 2 µL 20% 

Pluronic F-127 (Molecular Probes). Synaptic blocker solution + 10µM TTX then was 

added to obtain a final volume of 1 mL and sonicated briefly. After the incubation of the 

brain slices at 31.5 °C, all brain slices were transferred into one well of a 6-well cell culture 

plate with 3 mL synaptic blocker solution + 10µM TTX at room temperature. 1 mL of fura-

2 loading solution was added directly onto the brain slices to give a relatively high initial 

concentration of 49.9 µM Fura-2 AM, 0.04% Pluronic F-127, and 1% DMSO. The 

concentration decreased as the Fura-2 AM diffused away from the site of application, 

resulting a final concentration of 12 µM Fura-2 AM, 0.0001% Pluronic F-127, and 0.4% 

DMSO. After incubation in the Fura-2 AM loading solution for 60 min at room temperature, 

all the slices were transferred into the synaptic blocker solution to wash at least 30 min 

before starting the experiments. 

Only the GnRHR neurons, which showed a intact physiologic morphology and 

were loaded by fura-2, were chosen to record calcium signals. The calcium signals were 

acquired using Imaging Station cell^R attached to an upright Microscope Olympus BX-

51WI (Olympus GmbH, Germany). Each GnRHR neuron was imaged individually, with 

the optical section adjusted to show the cell body. Excitation wavelengths of 340 nm and 

380 nm were emitted from a 150W Xenon short arc lamp using fluorescence filters 340/26 
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and 387/11 (Olympus GmbH, Germany) respectively. Images with 50ms exposure time at 

37.5% light intensity using Xcellence rt software (Olympus GmbH, Germany) were 

captured with a digital CCD camera (Hamamatsu Photonics). High-resolution time series 

image pairs were acquired by collecting 672 × 512 pixels fluorescence image pairs at a rate 

of 4 Hz.  

For off-line analysis, all the image series were analyzed using ImageJ (Wayne 

Rasband, NIH). The somata of fura-2 loaded τGFP-tagged neurons were marked in the 

respective image series as regions of interest (ROI), and the mean values of the 

fluorescence intensity of ROIs were saved for every time point of the image series. 

Measurements of Ca2+ dependent signal changes were determined as the ratio between the 

baseline fluorescence intensity at 340 nm and 380 nm excitation wavelengths,  

380

340

F

F
Ratio     , 

Where F340 is the measured baseline fluorescence intensity at 340 nm and F380 at 380nm. 

Additional analysis and calculation were performed using Igor Pro software (Wavemetrics). 

To quantify the change in the complex Ca2+ elevations, the area under the Ca2+ fluorescence 

curve (AUC) was calculated (60s before and 60s after the start of the stimulus; total time: 

120s). The mean of the baseline before the stimulus start was calculated (F0). All 

fluorescence values were normalized by this mean (ΔF/F0).  

𝐴𝑈𝐶 =  ∫ 𝑓(𝑡)𝑑𝑡 ≈  ∑
1

2

𝑡
𝑖=0

𝑡

0
(𝑡𝑖+1 −  𝑡𝑖)[(𝑓(𝑡𝑖+1) − 𝑓(𝑡0)) +  (𝑓(𝑡𝑖) − 𝑓(𝑡0))] , 

f(t) represents the function of the measured intensity of the area of interest. f(t0) represents 

the function of the calculated mean of the baseline. A response was defined as a baseline 

deflection after the onset of stimulation that exceeded twice the s.d. of the mean of the 

baseline noise. 

2.2.11 Simultaneous loose-patch and calcium imaging recording 

The simultaneous loose-patch and calcium imaging recording method used in this study 

was followed protocols in method 2.2.4 loose-patch recording and method 2.2.10 calcium 

imaging recording on brain slices closely. To record the action potential-driven capacitive 
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currents from GnRHR neurons, the brain slices were incubated only in synaptic blocker 

solution without 10µM TTX. The GnRHR neurons, which showed a intact physiologic 

morphology and were loaded by fura-2, were chosen to realize simultaneous loose-patch 

and calcium imaging recording. First, loose-patch recording was performed as described 

in 2.2.4 until spontaneous spikes were observed. After 10 min, when the GnRHR neurons 

reached a stable level of firing, the calcium signals were measured as described in 2.2.10. 

The recording of loose-patch data on the Patchmaster software (HEKA Elektronik GmbH) 

was triggered by a start signal from the calcium imaging software Xcellence rt to make 

sure the simultaneous recording of loose-patch data and calcium imaging data. 

2.2.12 Statistics 

Student’s t-test was used for measuring the significance of the difference between two 

distributions. One-way or two-way ANOVA were used to compare multiple groups 

compared. Tukey’s multiple comparison tests (Tukey) or Fisher’s least significant 

difference (LSD) were used as a post hoc comparison of the ANOVA. The analysis was 

done using GraphPad PRISM (GraphPad Software Inc., San Diego, USA) or SPSS (IBM 

Corporation, New York, USA). P-values < 0.05 were reported as statistical significance. 

Data are reported as means ± SEM. 
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Chapter 3 

Hypothalamic gonadotropin-releasing hormone (GnRH) 

receptor neurons fire in synchrony with the female 

reproductive cycle 

 

Abstract 

Gonadotropin-releasing hormone (GnRH) is a master hormone in controlling mammalian 

reproduction via the hypothalamic-pituitary-gonadal (HPG) axis and regulates 

gonadotrope cells in the anterior pituitary gland through GnRH receptor (GnRHR). Besides 

in the pituitary, GnRHR is also identified in many brain areas. It is still unclear how GnRH 

regulates its potential target cells in the brain. A genetic mouse strain, in which GnRHR 

neurons express a fluorescent marker τGFP, allows us to identify and visualize these 

neurons in the mouse brain. Using loose-patch recording, the firing activity of GnRHR 

neurons are investigated in the periventricular hypothalamic nucleus (Pe) from adult female 

mice. Interestingly, GnRHR neurons in Pe alternate their action potential firing pattern in 

synchrony with the female estrous cycle and show pronounced burst firing during the 

preovulatory period, especially in the presence of network blocker. Subsequently, I 

demonstrate that GnRH stimulation is sufficient to trigger GnRHR neurons to convert their 

firing pattern from tonic to burst firing which can be reversed by a potent GnRHR 

antagonist, cetrorelix. Furthermore, using bath application of cetrorelix directly on mouse 

brain slices, it is revealed that endogenous GnRH triggers burst firing activity of GnRHR 

neurons in Pe during late proestrus and estrus. Taken together, GnRHR neurons appear to 

switch their action potential activity due to the presence of endogenous GnRH during 

preovulatory period. The cyclic change in spike pattern behavior may reflect a modification 

in female reproductive performance.  
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3.1 Introduction 

Gonadotropin-releasing hormone (GnRH) is an essential hormone responsible for 

mammalian reproductive physiology and behavior via the hypothalamic-pituitary-gonadal 

(HPG) axis. GnRH-secreting neurons (GnRH neurons) in the preoptic area of the 

hypothalamus which project axons to the median eminence and release GnRH into the 

vascular system, ensuring the central control of reproduction via the HPG axis (Gore, 2002). 

In the female reproductive cycle, GnRH is released in small mini-pulses. Its amplitude and 

frequency are substantially increased during the late proestrus to induce ovulation  (Sisk et 

al., 2001; Knobil and Neill, 2006). To retain fertility, secreted GnRH binds to its receptor 

on pituitary gland cells to stimulate the release of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH), thus regulating oocyte maturation and ovulation in both 

rodents and humans. Besides the classical HPG axis, GnRH-target neurons (GnRHR 

neurons) are documented in multiple brain areas (Badr and Pelletier, 1987; Jennes et al., 

1997; Wen et al., 2011). Furthermore, GnRH is suggested to regulate reproductive 

physiology and behavior independently of gonadotropin release (Dyer and Dyball, 1974; 

Moss, 1977; Moss and Foreman, 1976; Moss and McCann, 1973; Pfaff, 1973). However, 

it is not well understood how GnRH modulates the reproductive physiology of the brain 

through their target neurons because their scattered distribution impedes locating these 

neurons precisely. In this regard, Wen et al., 2008 developed a new genetic mouse model 

to identify GnRHR neurons in the brain. By crossbreeding GnRHR-IRES-Cre (GRIC) mice 

to ROSA26-CAGS-tauGFP (eRosa26-τGFP) reporter mice, GnRHR neurons can express 

a fluorescent marker τGFP, allowing us to identify these neurons independently of the 

hormonal status of the animal (Wen et al., 2008, 2011). GnRHR neurons were observed in 

many brain areas. By investigating the calcium signals on these neurons from different 

brain areas, Wen et al., 2011 found that the duration and shape of the GnRH-induced 

calcium responses were similar within the same area but different between brain areas. 

These suggest that GnRH signaling may differentially influence brain functions, which in 

turn affect reproductive success. GnRHR neurons are found in the periventricular 

hypothalamic nucleus (Pe), which is a thin region forming a wall around the third ventricle 

(3V) in the rostral, intermediate, and caudal hypothalamus. Due to this special location, 
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GnRHR neurons in Pe are potentially susceptible to various endogenous GnRH sources, 

such as GnRH-secreting fibers, third ventricular cerebrospinal fluid, or the cerebrovascular 

system. If GnRH level is elevated in the plasma during the preovulatory period (Sisk et al., 

2001) and can reach its target neurons in the brain via the vascular or 3V system, the 

activity of GnRHR neurons in Pe should be linked to female reproductive cycle. 

Using loose-patch recording, the firing activity of GnRHR neurons from Pe are 

investigated in brain slices from adult female mice. Surprisingly, I observed that GnRHR 

neurons alternate their action potential firing patterns in concert with the female 

reproductive cycle and change firing patterns from tonic to bursting during the 

preovulatory period, especially in the presence of network blocker. Puff application of 

GnRH typically produces a short-lived biphasic response followed by longer-latency and 

long-lasting changes in action potential activity. All of these responses are concentration 

dependent. GnRHR neurons are exquisitely sensitive to subnanomolar GnRH 

concentrations, with K1/2 values around 0.5nM. The results from a bath application of 

cetrorelix, a GnRHR antagonist, directly on mouse brain slices indicate that GnRH 

stimulation is the main source of converting the mode of action potential firing during the 

preovulatory period. These properties enable GnRHR neurons to switch their firing modes 

depending on fluctuations of GnRH level during the estrous cycle and thus play an 

important functional role in female reproductive performance.  

3.2 Results 

3.2.1 Cyclic transformation of GnRHR neuron firing activity in synchrony with the 

estrous cycle 

The spontaneous activities of GnRHR neurons in Pe are investigated in female mice brain. 

By breeding GRIC mice to eRosa26-τGFP reporter mice resulting a GRIC/eR26-τGFP 

mouse, all of the female mice exhibit regular estrous cyclicity (4.5 ± 0.2 days) (Figure 

3.1A). GnRHR neurons in the GRIC/eR26-τGFP mouse brain can be visualized by 

expressing τGFP using a combination of fluorescence and infra-red differential 

interference contrast (IR-DIC) illumination (Wen et al., 2011) (Figure 3.1B). Since 

endogenous GnRH secretion fluctuates during the female reproductive cycle,  the  
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Figure 3.1 Different spontaneous spike activity patterns of GnRHR neuron during the female 

reproductive cycle. A: Representative plot of the estrous cycle from four GRIC/eR26-τGFP mice 

(indicated with different line colors). The females display a normal cycle length of 4.5 ± 0.2 days (n = 6). 

M, metestrus; D, diestrus; P, proestrus; E, estrus. B: Overlay of a fluorescence image on top of an infrared-

differential interference contrast (IR-DIC) micrograph of a brain tissue slice identifying a GnRHR neuron 

in the Pe, which is located next to the third ventricle (3V). The soma of the GnRHR neuron is clearly 

visible in the IR-DIC image (lower left) and expresses tau green fluorescent protein (τGFP) (lower right) 

after Cre-mediated excision of a transcriptional stop sequence dependent on the activation of the GnRHR 

promoter. P, patch electrode. C: Example recordings of trains of extracellularly recorded, action-potential-

driven capacitive currents of 10 different GnRHR neurons (two different neurons per reproductive stage). 

The pipette potential was 0 mV. Neuronal activity during proestrus was recorded in brain slices obtained 

either in the morning [early proestrus, PE (800 – 1200 hours)] or afternoon [late proestrus, PL: (1500 – 

1800 hours)].(Schauer, Tong et al., 2015) 
 

spontaneous activity of GnRHR neurons in Pe is measured at different stages of estrous 

cycle (metestrus, diestrus, proestrus, and estrus) using extracellular loose-patch recordings 

(Leinders-Zufall et al., 2007) (Figure 3.1B). GnRHR neurons (n = 94), located in the Pe 

from 54 gonadally intact GRIC/eR26-τGFP females, exhibit spontaneous spike activity 

recorded as action-potential-driven capacitive currents (Figure 3.1C). During metestrus, 

diestrus, and estrus, GnRHR neurons show burst firing patterns, which refer to the periods 

of time with a high action potential firing rate separated by periods of lower activity. As 

the preovulation GnRH surge progresses during the afternoon of proestrus (Sisk et al., 

2001), the activities of GnRHR neurons in brain slices are recorded either in the morning 

(early proestrus, PE: 800 – 1200 hours) or afternoon (late proestrus, PL: 1500 – 1800 hours) 

(see Chapter 1.1.2). Notably, in proestrus, neurons reveal diverse firing patterns. Regular 

tonic firing occurs mainly during early proestrus; however, in late proestrus primarily 

bursting neurons occur (Figure 3.1C). In general, GnRHR neurons change their firing 
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activity in synchrony with the estrous cycle, especially in proestrus with its change in 

GnRH plasma concentration. 

 

 

Figure 3.2 The change of mean frequency and mean burst duration of GnRHR neurons during the 

female reproductive cycle. A: The plots show the firing frequency of neurons is not correlated with their 

seal resistance in each estrous stages. (Pearson’s r: M: r = -0.028, P = 0.89; D: r = -0.067, P = 0.71; PE: r 

= -0.092, P = 0.55; PL: r = 0.053, P = 0.85; E: r = 0.072, P = 0.71). B: The mean spike frequency of 
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GnRHR neurons changes during the estrous cycle (ANOVA: F4,89= 6.137, P < 0.001), peaking at early 

proestrus. M: 1.3 ± 0.2 Hz; D: 2.5 ± 0.6 Hz; PE: 4.0 ± 0.5 Hz; PL: 2.2 ± 0.5 Hz; E: 1.2 ± 0.3 Hz). Tukey: 

*** P < 0.001, ** P < 0.01. The number of neurons recorded is shown in brackets above each bar. C: The 

mean burst duration of GnRHR neurons depends on the reproductive cycle (ANOVA: F4,89= 3.962; p < 

0.01), with a pronounce peak during the early phase of proestrus. M: 19.8 ± 13.4 s; D: 29.8 ± 12.4 s; PE: 

85.9 ± 15.5 s; PL: 21.4 ± 13.7 s; E: 27.0± 15.6 s; Tukey: * P < 0.05. The number of neurons recorded is 

shown in brackets. Figure B and C are from Schauer, Tong et al., 2015. 

 

To characterize the different firing patterns during estrous cycle, several parameters 

are calculated as described in Chapter 2.2.5. Firing frequency is not correlated with the seal 

resistance, and there is no indication of a relationship between them during the various 

stages of the cycle (Pearson’s r: M: r = -0.028, P = 0.89; D: r = -0.067, P = 0.71; PE: r = -

0.092, P = 0.55; PL: r = 0.053, P = 0.85; E: r = 0.072, P = 0.71) (Figure 3.2A). The plot of 

mean spike frequency reveals a cyclicity in action potential firing during the different 

reproductive stages which increase from 1 Hz during metestrus and estrus up to 4.0 Hz 

during PE (Figure 3.2B). Due to the long quiet periods between bursts, the mean spike 

frequency is relatively low in the burst firing neuron. Therefore, high mean spike frequency 

values, as seen during PE, could point to a higher presence of tonically firing neurons in 

this stage. As the action potential firing patterns differ substantially, a quantitative 

approach is developed to characterize and sort the firing patterns in an unbiased manner. 

First, an interspike interval (ISI) threshold for burst detection is calculated basing on the 

methods published by Selinger et al., 2007. The determined burst detection threshold, 1.3s 

in Pe neuron is used to calculate another parameter, the mean burst duration. Theoretically, 

tonically firing neurons should have one long burst that lasts the entire recording time due 

to their low ISI value and will lack the characteristic quiet periods of burst firing. Hence, a 

high mean burst duration indicates a more tonically firing neuron, while a low mean burst 

duration indicates the presence of primary burst firing neuron. Short bursts of action 

potential activity are detected in all stages of the reproductive cycle, except PE (Figure 

3.2C), suggesting that potential hormonal input such as GnRH influences the firing pattern 

of these neurons. 

The percentage of spikes in bursts (PSiB) together with the coefficient of ISI 

variation (CVISI) are used to classify the firing patterns into the tonic, bursting and irregular. 

The interspike interval (ISI) is computed to establish the coefficient of ISI variation (CVISI;  
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Figure 3.3 Alternation between tonic and bursting spike activity of GnRHR neurons during the 

reproductive cycle. A: Distribution of GnRHR neurons plotted in a two-dimensional space using the 

PSiB and CVISI values of each recorded GnRHR neuron (n = 94). Depending on the threshold values 

(dashed lines) determined from the cluster analysis (see text), the neurons were categorized as firing 

tonically (blue), in a burst pattern (yellow) or irregularly (black). B and C: The values of the CVISI (B) 

and the PSiB (C) depending on the spike activity classification of the GnRHR neurons (ANOVA: F2,91 = 

25.82; P < 0.001 and F2,91 = 120.8; P < 0.001, respectively). B: Neurons firing in bursts are 

distinguishable from both tonic and irregular firing neurons due to their high CVISI value (tonic: 0.49 ± 

0.03; bursting: 2.44 ± 0.22; irregular: 1.44 ± 0.14). C: GnRHR neurons with irregular spike activity can 

be distinguished based on their significantly different PSiB values (tonic 99.88 ± 0.08 %; bursting 95.07 

± 0.66 %; irregular 48.72 ± 8.72 %). D: Plot of the distribution of all GnRHR neurons (n= 94) firing 

either tonically (blue) or in a burst (yellow) by reproductive stages. E and F: Values of the CVISI (E) and 

the PSiB (F), depending on the spike activity classification of the GnRHR neurons in the presence of 

synaptic blockers (ANOVA: F2,51 = 19.04; P < 0.0001 and F2,51 =120.2; P < 0.0001, respectively). E: 

Neurons firing in bursts are distinguishable from tonically firing neurons because of their high CVISI 

values (tonic: 0.50 ± 004; bursting: 2.43 ± 0.27; irregular:1.17 ± 0.15). F: GnRHR neurons with irregular 

spike activity can be distinguished based on their significantly different PSiB values (tonic: 99.92 ± 

0.05%; bursting 96.59 ± 0.92%; irregular: 51.54 ± 9.83%). G: Plot of the distribution of all GnRHR 

neurons (n = 54) firing either tonically (blue) or in a burst (yellow) by reproductive stage, in the presence 

of synaptic blockers. M: metestrus, D: diestrus, PE: early proestrus, PL: late proestrus, E: estrus. Tukey: 

*** P < 0.0001, * P < 0.05. The number of neurons is plotted in brackets above each bar. (Schauer, Tong  

et al., 2015) 
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see Methods chapter 2.2.5) which can describe the regularity of firing pattern. The smaller 

CVISI is, the more tonically firing is. Using principle component analysis (PCA) combined 

with hierarchical cluster analysis, the criteria (CVISI: 0.8; PSiB: 80%) were determined by 

my collaborators Dr. Hugues Petitjean, Dr. Christian Schauer and myself (Schauer et al., 

2015). Tonically firing neurons are recognized by a CVISI < 0.8, and both of bursting and 

irregularly firing neurons have a CVISI > 0.8. Subsequently, bursting and irregularly firing 

neurons are distinguished by a PSiB > 80 % and a PSiB < 80%, respectively (Figure 3.3A). 

Using the classification criteria, 33 % of the GnRHR neurons could be identified as firing 

tonically, 55 % as firing in a burst pattern and only 12 % as irregularly firing (Figure 3.3A-

C). Irregularly firing neurons (n = 11) rarely occur at any stage during the reproductive cycle; 

therefore, I excluded all the irregularly firing neurons from further analysis. Interestingly, 

the distribution of tonic and bursting GnRHR neurons alternates during the female 

reproductive cycle (Figure 3.3D). Tonically firing GnRHR neurons are virtually absent 

during metestrus (1 out of 13 neurons) and increase steadily to a maximal value of 63 % (20 

out of 32 neurons) during PE, but drop dramatically back to an occasional tonic GnRHR 

neuron measured during PL (1 out of 5 neurons) or estrus (2 out of 15 neurons). A similar 

but inverse cyclicity of bursting GnRHR neurons is found, with most being observed during 

metestrus (12 out of 13 neurons, 92 %) and decline over the following stages to a low of 12 

out of 32 cells (37 %) to dramatically increase again on the day of estrus (13 out of 15 cells, 

87 %).  

To exclude synaptic input onto GnRHR neurons as the cause for the change in the 

amount of tonic versus bursting firing neurons during the reproductive cycle, I repeated the 

experiments in the presence of synaptic blockers (Figure 3.3E-G). The percentages of tonic, 

bursting and irregular firing neurons are similar as that in the absence of synaptic blocker 

(39% tonic, 55% bursting, 6% irregular) (Figure 3.3E-F). Comparing the parameters (e.g. 

CVISI, PSiB, and mean spike frequency) in the presence to the absence of synaptic blocker 

in each firing patterns, no significant difference is observed (P = 0.16 - 0.87). The 

distribution of tonic and bursting GnRHR neurons during the female reproductive cycle is 

considerably reorganized (Figure 3.3G). During the preovulatory period, the number of 

bursting GnRHR neurons dramatically increase in PL and no tonic firing neurons could be 

detected at this stage. Thus, the network dampens the occurrence of burst firing GnRHR 
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neurons during the preovulatory period. On the contrary, in metestrus, the percentage of 

tonic vs. bursting neuron indicates that the network enhances the presence of bursting firing 

neurons (Figure 3.3G). These results suggest that state- (or hormone)-dependent network 

pathways influence the neural activity of GnRHR neurons in this hypothalamic regions. 

Taken all together, these results demonstrate a cyclic transformation of GnRHR 

neuron activity in synchrony with the estrous cycle, particular during the proestrous stage, 

where pronounced changes in GnRH concentration are observed in the median eminence 

of rodents (Sisk et al., 2001). 

3.2.2 A switch in action potential burst activity in Pe GnRHR neurons triggered by 

GnRH 

A transformation from tonic to bursting firing of GnRHR neuron occurs particularly during 

the proestrous stage when the upsurge of GnRH takes place; therefore, I address the 

question if GnRH itself could be responsible for this conversion in the spike activity of 

GnRHR neurons. To test whether GnRH can directly affect the τGFP-tagged neurons, the 

GnRH-induced responses are recorded in the presence of synaptic blockers during PE 

(Figure 3.4A, B). Without interfering with the composition of the cytoplasm by using the 

loose-patch recording technique, GnRH increases the spike frequency within the first 10s 

following GnRH stimulation, from 5.0 ± 1.3 to 6.8 ± 1.3 Hz (P < 0.05; Figure 3.4A, B). 

The presence of synaptic blocker isolates the GnRHR neurons from the neural network to 

a great extent; therefore, the increase of the firing frequency demonstrates that GnRH can 

directly affect the τGFP-labelled neurons and that GnRHR neurons have to express 

functional GnRHR. This conclusion is further substantiated by the experiments described 

below. For further experiments, we refrain from using synaptic blockers to avoid 

inadvertently impairing the fundamental neural mechanisms which influence the activity 

of GnRHR neurons by disrupting neurotransmission. Without synaptic blockers, we imitate 

a more natural environment. During PE, GnRHR neurons fire tonically in the absence of a 

synaptic blocker cocktail with a mean spike frequency of 0.47 ± 0.04 Hz (n = 20) which is 

the same as in the presence of synaptic blockers (0.53 ± 0.09 Hz, n = 7; t(25) =0.79, P = 

0.43). Through puff application of different concentration of GnRH, GnRHR neurons 

respond to the stimulation with a rise in spike frequency within a certain concentration 
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Figure 3.4 Increase of firing frequency in the first 10s after 1s GnRH puff stimulation A: Example 

of an individual GnRHR neuron responding to a 1-s pulse of 0.5nM GnRH with an increase in extracellular 

recorded action-potential-driven, capacitive currents in the presence of a cocktail of the synaptic blocker 

(pipette potential: 0mV). B: GnRH increased the spike frequency in all GnRHR neurons tested, compared 

to control stimulation (gray dots connected by dashed lines). Control, 5.0 ± 1.3 Hz (n = 4); GnRH, 6.8 ± 

1.3 Hz (n = 4). Paired t-test: t(3) =3.59 * P < 0.05. C: Raster plot and corresponding perievent histograms 

(bin size 1 s) of extracellularly recorded, action-potential-driven, capacitive currents to 1-s pulses of either 

control or GnRH in the absence of synaptic blockers (pipette potential: 0 mV).  D: The mean spike 

frequency increased with increasing GnRH concentration, giving a K1/2 value of 0.62 ± 0.13 nM and Hill 

coefficient of 1.2 ± 0.3. ANOVA: F4,74 = 2.15, P < 0.01. E: The first-spike latency decreases with 

increasing GnRH concentration, having a K1/2 value of 0.61 ± 0.43 nM and a Hill coefficient of -1.9 ± 1.7. 

ANOVA: F4,47 = 2.64, P < 0.05. The number of recordings is plotted in brackets above each bar. (Schauer, 

Tong et al., 2015) 
 

range. Dose response curve shows that a higher GnRH concentration elicits a higher 

increase in mean spike frequency, with a K1/2 value of 0.62 ± 0.13 nM (Figure 3.4D; 

ANOVA: F4,74 = 2.15, P < 0.01). The first spike latency, the timing of the first spike 

following GnRH stimulation, is examined to determine whether any spatio-temporal 

pattern for GnRH-induced change occurs in the initial action potential sequence (Chase 

and Young, 2007; Pawlas et al., 2010). Independent of the noise caused by spontaneous 

action potential activity, a dose-dependent change of the first-spike latency is observed 

(Figure 3.4E). With the increase in GnRH concentration, the latency decreases from a value 
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of 340 ms at 0.1nM to ~60 ms at 10nM GnRH. This indicates that a hormonal modulation 

of behaviors likely relies on neural firing over extended periods.  

In addition to the short-lived responses, 1-s GnRH stimulation could also induce a 

long-lasting change in spike activity on GnRHR neurons persisting for 1-2 min at saturating 

10nM GnRH (Figure 3.5A). To use our analysis tools for distinguishing the tonic and burst 

firing patterns, at least 3.5 min recordings are required, which go beyond the changes 

 

Figure 3.5 A long-lasting change in the action potential activity of GnRHR neurons induced by 1s 

GnRH puff stimulation. A: Example recording of an extracellularly recorded, action-potential-driven 

capacitive current of a tonic GnRHR neuron from an early proestrous female mouse stimulated with a 1-

s pulse of 1 nM GnRH, revealing a dramatic change in the spike firing of the GnRHR neurons occurring 

~10 s following stimulation (pipette potential 0 mV). B: The cumulative variance in instantaneous spike 

frequency (VARiF) of the GnRHR neuron shown in A is plotted versus time. The GnRH-induced change 

in VARiF can be visualized by the shift in the cumulative VARiF slope, allowing the determination of 

the latency and duration of this long-lasting conversion in spike activity. The original recording is 

positioned above the cumulative VARiF plot. C and D: Dose dependency of the latency (C) and duration 

(D) of the long-lasting conversion in spike activity. Both values rise with increasing GnRH concentration, 

giving K1/2 values and Hill coefficients of 0.48 ± 0.11 nM, 1.5 ± 0.4 (latency, mean ± SD); and 0.46 ± 

0.17 nM, 1.6 ± 0.7 (duration, mean ± SD), respectively. ANOVA: latency, F3,36= 36.35, P < 0.0001; 

duration, F3,36= 11.24, P < 0.0001. All dose-response curves are fits of the Hill equation in combination 

with an iterative Levenberg–Marquardt nonlinear, least-squares fitting routine (Chi-square test: P = 

0.99). The number of recordings is plotted in brackets above each bar. (Schauer, Tong et al., 2015) 
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induced by a 1-s pulse. As the variance of the interspike interval is another essential feature 

to describe the spike patterns, the cumulative variance of instantaneous spike frequency 

(VARiF) is calculated and analyzed by my collaborator Dr. Hugues Petitjean and myself 

(Figure 3.5B). Except 0.1 nM, GnRH do not alter the firing pattern (VARiF control, 0.23 

± 0.11, n = 21; 0.1nM GnRH, 0.19 ± 0.10, n = 9; t-test P = 0.27), from 0.3 nM up to 10 nM 

GnRH, both the duration and latency in spike activity conversion increase significantly 

(Figure 3.5C and D) (duration: 0.3 nM: 10.6 ± 1.1 s, n = 16; 10 nM: 29.9 ± 1.8 s, n = 4; 

latency: 0.3nM: 27.2 ± 5.9 s, n = 16, 10 nM: 77.7 ± 18.5 s, n = 4; Tukey: P < 0.01). Both 

dose-dependent properties are subsequently fitted with a Hill equation, giving K1/2 values 

(mean ± SD) of 0.46 ± 0.17 and 0.48 ± 0.11 nM for the duration and latency of the long-

lasting conversion in spike activity, respectively. Remarkably, all K1/2 values are in 

proximity to each other and also to the values published for GnRHR in cultured pituitary 

and immortalized gonadotrope-like cells (Barran et al., 2005; Hazum and Conn, 1981; Lu 

et al., 2005). This indicates that the observed modulations in spike activity occur due to 

activation of the receptor itself. All of these findings suggest that GnRH can act as a strong 

modulator of the firing activity of GnRHR neurons. The long-lasting change in VARiF 

following a short pulse of GnRH could be the first indication of the initiation of action 

potential plasticity, leading to the transformation from a tonic to a burst or irregular firing 

pattern.  

To explore the possibility that GnRHR neurons could alter their firing pattern for a 

prolonged period due to sustained GnRH stimulation, I assess the change of firing pattern 

of tonic GnRHR neurons from early proestrous female by bath application with 10 nM 

GnRH for 10 min up to 1½ h (Figure 3.6A-D). All of these recordings, the mean firing 

frequency and the two parameters of spike code classification (CVISI and PSiB) are 

evaluated every 220 s (Figure 3.6B-D). All tonically firing GnRHR neurons have a basic 

CVISI < 0.8 and a PSiB of 99.8 ± 0.21 (n = 6). After 10 min GnRH perfusion, the mean 

spike frequency decreases and the characteristic parameter CVISI increases without 

significant change of PSiB (77.1 ± 33.2, n = 6; t-test: P = 0.17). All of the initially tonic 

firing GnRHR neurons are thus reclassified as bursters. Therefore, GnRH stimulation is 

sufficient to trigger GnRHR neurons to switch their mode of activity from tonic to burst 

firing. 
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Figure 3.6 A transformation from tonic to bursting firing pattern induced by bath application of 

GnRH. A: Extracellularly recorded, action-potential-driven capacitive current traces of a GnRHR neuron 

from an early proestrous female taken at various times after starting a bath perfusion of 10 nM GnRH. The 

burst detection pattern is illustrated below the original recording using an automated unbiased process (see 

MATERIAL AND METHODS). The pipette potential was 0 mV. B: GnRH-induced change in the spike 

activity from the example shown in (A). Percentage of spikes in burst (PSiB) and the coefficient of 

variation of the interspike interval (CVISI) values of the spike activity were determined every 4 min and 

plotted in a two-dimensional space (see also Figure 3.3 and the main text). Contingent on threshold values 

for CVISI and PSiB (dashed lines), the neuron can be categorized as firing tonically (blue), and this changes 

to a burst pattern (yellow) during GnRH stimulation. C and D: Bar histogram of the mean spike frequency 

(C) [pre: 3.5 ± 0.3 Hz; post: 1.4 ± 1.1 Hz; paired t-test: t(5)=4.69, ** P < 0.01] and the CVISI (D)  [pre: 

0.55 ± 0.24; post: 1.9 ± 0.8 Hz; paired t-test: t(5)=4.38, ** P < 0.01] 4 min before the start (pre) and during 

the final 4 min of the GnRH treatment (post) of GnRHR neurons. The number of recordings is plotted in 

brackets above each bar. (Schauer, Tong et al., 2015) 

 

3.2.3 The mode of GnRHR neuronal activity is converted by endogenous GnRH 

If GnRH stimulation can trigger tonically firing GnRHR neurons to fire in bursts, the 

neuronal activity of bursting GnRHR neurons during the reproductive cycle might be 

reversed by blocking the GnRHR. To test this, I treated GnRHR neurons with a competitive 

GnRHR antagonist cetrorelix (Reissmann et al., 2000). First, I tested the effectiveness of 

cetrorelix to reverse the GnRH-induced burst firing in GnRHR neurons. As expected, 

cetrorelix treatment could reverse the GnRH-induced burst firing of GnRHR neurons to 

tonically firing again (Figure 3.7A-D). As previously observed, under GnRH stimulation 

tonically firing neurons reduce the mean spike frequency and increase the CVISI, causing 

the reclassification of the neurons as bursters. A subsequent cetrorelix treatment converts 

the firing pattern back to its original values labeling the neurons once more as tonically 

firing. This suggests that the spontaneous burst firing of GnRHR neurons during estrus, 

metestrus, and diestrus (Figure 3.7) could be triggered by the presence of GnRH.  
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Figure 3.7 The transformation in action potential activity of GnRHR neurons is reversed by 

cetrorelix. A: Extracellularly recorded, action-potential-driven capacitive current traces of a GnRHR 

neuron from a female mouse in early proestrus taken at various times after starting a bath perfusion of 

10nM GnRH, followed by 10 µM of cetrorelix, a GnRHR antagonist. The burst detection pattern is 

depicted below the original recording using an automated unbiased process (see MATERIAL AND 

METHODS). The pipette potential was 0 mV. B: The plot of PSiB versus CVISI (determined every 4 min) 

illustrates the transformation of spike activity in the GnRHR neuron shown in (A). Contingent on threshold 

values for CVISI and PSiB (gray dashed lines), the neuron can be categorized as firing tonically (blue) or 

in burst pattern (yellow). Thus, GnRH stimulation converts the tonically firing neuron into a burster (solid 

arrow), an effect that is reversed by cetrorelix (dashed arrow). C and D: Bar histogram of the mean spike 

frequency (C) and the CV ISI (D) 4 min before treatment (pre) and during the final 4 min of the GnRH and 

cetrorelix perfusion of the GnRHR neurons, respectively. Mean spike frequency: pre, 5.4 ± 1.8 Hz; GnRH, 

2.6 ± 1.7 Hz; cetrorelix, 5.2 ± 1.7 Hz (ANOVA: F2,8= 6.82; P =0.051); CVISI: pre, 0.34 ± 0.07 Hz; GnRH, 

1.1 ± 0.16 Hz; cetrorelix, 0.32 ± 0.13 Hz (ANOVA: F2,8 = 1.186; P < 0.01; Tukey’s test ** P < 0.01). The 

number of recordings is plotted in brackets above each bar. (Schauer, Tong et al., 2015) 

 

If spontaneous burst firing depends on endogenous release of GnRH, then by inhibition of 

GnRHR with cetrorelix, GnRHR neurons should shift from burst to tonic firing. To test 

this, the spike firing activity of GnRHR neurons during the various stages of the estrous 

cycle are examined before (control) and after cetrorelix   treatment on brain slices (Figure 

3.8A-D). Idle GnRHR activity, as predicted for tonically firing neurons during PE, is not 

expected to be affected by the antagonist.  Yet, the cetrorelix treatment reduces the CVISI 

value even further. This indicates that either the low, pulsatile endogenous GnRH release 

may have activated GnRHR, or GnRHR, a G protein-coupled receptor (GPCR), exhibits 

agonist-independent activity that can be prevented by the antagonist. The cetrorelix 

exposure during late proestrus and estrus abolishes the burst firing pattern, basically 

neutralizing GnRH-induced activity. According to the calculation of CVISI, GnRHR 

neurons in these two stages can be reclassified as tonically firing (Figure 3.8D). In 

comparison with late proestrus and estrus, the data collected during metestrus and diestrus 
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significantly modify the action potential firing (Figure 3.8D) but do not reduce the CVISI 

values below the threshold for reclassifying the neurons as tonically firing. The GnRHR 

activity during these two stages of the reproductive cycle may not be the sole driver, 

inducing the burst activity. Nonetheless, during late proestrus and estrus, our results 

indicate that endogenous GnRH release acting on the GnRHR should be the main trigger 

for burst firing in these neurons. 

 

 

Figure 3.8 Cetrorelix abolish the endogenous GnRH effect. A - D, Cetrorelix inhibits action potential 

burst activity. A: Extracellularly recorded, action-potential-driven capacitive current traces of GnRHR 

neuron before (control) and after 10 min cetrorelix (10 µM) in female mice at various reproductive stages. 

B - D, Bar histogram of the mean spike frequency (B), change in CVISI of individual neurons (C) 

(Wilcoxon: * P < 0.05) and CVISI summary as bar histogram (D) (ANOVA: F9,50= 3.958; P < 0.001, least 

significant difference: * P < 0.5, ** P < 0.01) before (control, white bars/symbols) and after cetrorelix 

treatment (gray bars/symbols) for the various reproductive stages (metestrus, M; diestrus, D; early 

proestrus, PE; late proestrus, PL; estrus, E). The number of recordings is plotted in brackets above each 

bar. (Schauer, Tong et al., 2015) 

 



   Chapter 3  

53 

 

3.3 Discussion 

Mammalian reproduction is highly dependent upon the precise secretion of GnRH from 

the brain. Via HPG axis, GnRH acts on gonadotrope cells through GnRHR in the anterior 

pituitary gland. In addition, GnRHR has been reported to be expressed in many brain areas 

(Badr and Pelletier, 1987; Jennes et al., 1997; Wen et al., 2011), but it has not been 

understood how GnRH modulates these GnRHR neurons in the brain and thus brain 

function. My experiments indicate that the spontaneous firing activity of τGFP-labelled 

GnRHR neurons from Pe of female mice alternate their action potential firing pattern in 

synchrony with the estrous cycle. These neurons switch their mode of activity from tonic 

to burst firing depending on the presence of GnRH. The switching of firing activity can be 

reversed by an antagonist of GnRH, cetrorelix. Furthermore, our results demonstrate that 

the endogenous GnRH during late proestrus and estrus is the main trigger for burst firing.  

Cyclic transformation of GnRHR neuron activity is in synchrony with the 

estrous cycle. The spontaneous firing activity of GnRHR neuron in different estrous stages 

shows that these neurons mainly fire tonically in early proestrus and fire in the burst during 

the other stages. Considering that GnRH surge occurs between the early proestrus and late 

proestrus, the burst firing behavior in late proestrus could be induced by the increased 

endogenous release of GnRH (Sisk et al., 2001). Furthermore, to exclude the influence of 

GnRHR neuron from synaptic input, we record the spontaneous firing activity of GnRHR 

neurons in the presence of synaptic blockers during the estrous cycle. In the late proestrus, 

all of the GnRHR neurons fire in burst, but in metestrus and diestrus, the percentage of 

burst firing neuron is decreased (Figure 3.3D, G). The redistribution of tonic and burst 

neurons indicate that during the preovulatory period the network dampens the occurrence 

of burst firing GnRHR neurons, but in metestrus and diestrus the network enhances the 

presence of burst firing neurons. These suggest that GnRHR neurons in Pe are also 

modulated by the state- (or hormone)-dependent network pathways. It is well known that 

the estradiol level rises during the estrous cycle, peaking during proestrus (Butcher et al., 

1974). The positive feedback effect of estrogen is the mechanism to drive the preovulatory 

surge in GnRH and LH secretion in the female causing ovulation (Knobil and Neill, 2006). 

The increase in the number of tonically firing GnRHR neurons correlates with the change 
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of estradiol levels during the estrous cycle. Therefore, it is reasonable to consider that 

estradiol may regulate GnRHR neurons firing tonically. The direct effect of estradiol-

generated tonicity of GnRHR neuron firing could result from the prevention of intrinsic 

cascades known to induce oscillatory spike behavior (Bal et al., 1995; Chu et al., 2010). 

Another possible indirect effect of estradiol could be the modulation of the local network 

activity (Christian and Moenter, 2007; Velísková and Velísek, 2007). Estrogen receptor 

ERα expression is not detected in GnRHR neurons of the Pe (Kumar et al., 2015), which 

is against genomic estrogen effects in these cells. Estradiol is well known as an initiator of 

burst activity. Therefore, it might act on adjacent cells that do express ERα to modulate 

GnRHR neurons. In addition, progesterone is another steroid hormone associated with 

modulating GnRH secretion (Bashour and Wray, 2012) which could also be involved in 

regulating GnRHR neuron firing activity. Both estrogen and progesterone might be needed 

to switch GnRHR neuron firing tonically during proestrus, thus preparing them to respond 

the heightened activity of the GnRH/LH pulse generator. Future experiments are required 

to identify the change in firing activity of GnRHR neuron during the female reproductive 

cycle using stimulation of estradiol or progesterone with or without synaptic blocker 

presence. 

GnRH stimulation triggers the burst firing activity of GnRHR neurons in Pe. 

By blocking the network with synaptic blocker cocktail, puffing application of GnRH 

induces the increase of the firing frequency of GnRHR neuron, which demonstrates that 

GnRHR neurons express functional GnRHR. The whole-cell patch recordings by my 

collaborator Thomas Blum confirms the finding that GnRHR neurons show a rise in spike 

frequency and an extended elevation of the membrane potential after GnRH stimulation, 

indicating that GnRH activates a depolarizing conductance (Schauer et al., 2015). The first 

spike latency is a time delay that a neuron takes to respond a particular stimulus. Thus it 

consists of the temporal information of the response (Chase and Young, 2007; Pawlas et 

al., 2010). The first-spike latency of GnRH-induced responses significantly decrease from 

340 to 60 ms with increasing GnRH concentration. Some other metabotropic receptor-

coupled signal transduction cascades show latencies ranging from 7 ms in 

phototransduction (Cobbs and Pugh, 1987; Hestrin and Korenbrot, 1990) up to 150-300 ms 

in olfaction (Firestein et al., 1990; Leinders-Zufall et al., 1998). The difference in response 
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latency reflects the speed of the signaling cascade linking the GPCR to its effector proteins 

and ion channels that ultimately modify the membrane potential. However, the mechanism 

by which GnRH modulates and triggers the action potential pattern in a concentration-

dependent manner is not known. It is well known that GnRHR is a G-protein coupled 

receptor (Tsutsumi et al., 1992) and studies showed that GnRH acts via Gq/11-coupled 

GnRHR to activate phospholipase C (PLC) resulting in the mobilization of Ca2+, but the 

involvement of other G-proteins, like Gαi, Gαs, have also been proposed (Cohen-Tannoudji 

et al., 2012; Naor and Huhtaniemi, 2013). Interestingly, using Ca2+ imaging, Wen et al., 

2011 also observed two types of somatic Ca2+ transients in Pe GnRHR neurons having a 

25s delay between the responses at saturating GnRH. In my study, puffing application of 

GnRH directly on GnRHR neuron not only induce a relative faster first response, but also 

induce a delay secondary response, triggering the transformation of firing activity from 

tonic to burst. The latency of the GnRH-induced long-lasting secondary response is in a 

similar range (Figure 3.5), indicating a role for Ca2+ in adjusting the action potential activity 

pattern in these neurons. Future experiments are needed to clarify the involvement of the 

intracellular pathways in regulating Pe GnRHR neuron activity.  

Endogenous GnRH regulating GnRHR neurons act as the main trigger for 

burst firing during female reproductive cycle. Burst firing neurons during the 

preovulatory period that have been prestimulated with GnRH can be reversed to tonically 

firing again in the presence of the antagonist. This suggests that the activity of GnRHR 

itself triggers the transformation in action potential firing in Pe neurons. Moreover, 

cetrorelix significantly inhibits the activity in GnRHR neurons during metestrus and 

diestrus but could not cause the complete shift to tonic firing, which could be due to the 

involvement of other hormones or synaptic input from adjacent neuron. Studies have 

reported that GnRH has a half-life about 2-6 min (Pimstone et al., 1977); therefore, 

endogenous GnRH might not be sufficient to induce the different action potential pattern 

as observed in the recording obtained in acute slice preparation. However, if GnRH-

secreting fiber is still active even after cutting from their cell body, they may continuously 

release GnRH into the vascular system or 3V. On the other hand, the GnRH half-time could 

depend on the degradation and clearance of GnRH. Human patients with liver or renal 

dysfunction have GnRH half-life times up to 20 min (Pimstone et al., 1977). 
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Currently, my data support a modulation of GnRHR neurons in Pe by the hormone-

dependent network during metestrus, diestrus, and early proestrus, followed by a switch in 

action potential activity from tonic to burst firing initiated by endogenous GnRH release 

during the late phase of proestrus and estrus. However, GnRHR neurons located in other 

brain areas may not necessarily depend on GnRH linked to the reproductive cycle and 

could be influenced by variations in gonadal steroids or other hormones. Future 

experiments need to clarify which of the intrinsic membrane properties, ion channels and 

second messenger pathways, as well as hormonal signals, like estrogen and progesterone, 

are involved in determining the action potential output mode, which may help understand 

the information processing that takes place in this circuit.  
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Chapter 4 

Modulation of GnRHR neuron activity in the 

periventricular hypothalamus after systemic cetrorelix 

treatment  

 

Abstract 

The GnRH/GnRHR signaling pathway plays an important role in the hypothalamic-

pituitary-gonadal (HPG) axis regulating the physiological reproductive function in 

mammalians; however, many of its functions in the brain are not yet clarified. In the 

previous chapter, we found that GnRHR neurons in Pe alternate their action potential firing 

pattern in synchrony with the estrous cycle and show pronounced burst firing during the 

preovulatory period when various reproductive hormone levels including GnRH are 

increased. GnRH stimulation is sufficient to trigger GnRHR neurons to convert their mode 

of activity from tonic to burst firing. These data suggest that endogenous GnRH could act 

on GnRHR neurons and triggers burst firing. Due to GnRH could profoundly affect spike 

firing activity of GnRHR neurons, I propose that endogenous GnRH during the female 

reproductive cycle modulates the neuronal activity of Pe GnRHR neurons. To strengthen 

this idea, I first examined what type of input could provide GnRH to the GnRHR neurons. 

Using immunohistochemistry, I observed that GnRHR neurons possess close appositions 

to Pe capillaries, but GnRH-secreting fibers are never found in close proximity to any GFP-

tagged Pe neurons. The results from electron microscope observation show that the 

endothelial cells of capillaries in Pe contain many caveolae-like structures, suggesting a 

less constrained blood-brain barrier (BBB). Considering a less constrained BBB in Pe, 

GnRHR neuronal activity in the brain may be susceptible to systemic treatment with 

GnRHR antagonist. I find that subcutaneous injection of the GnRHR antagonist cetrorelix 

can effectively block the HPG axis as shown by an increase in the number of tertiary 

follicles concomitant with a significant inhibition of follicle rupture and corpora lutea 
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formation. Furthermore, GnRHR neuron firing activity is also susceptible to systemic 

treatment with 10 µg and 50 µg cetrorelix. Preeminently 50 µg cetrorelix treatment can 

modulate GnRHR neuron activity and cause Pe neurons to fire more tonically and to mimic 

spike firing similar as early proestrus. In this part of my study, I demonstrate that GnRHR 

agonists and antagonists can act on GnRHR neurons that are not part of the classical HPG 

axis; therefore my data may have important clinical implications since agonists and 

antagonists of GnRH are widely used in clinical treatments. 

 

4.1 Introduction 

Mammalian reproduction relies on an appropriate secretion of GnRH via the hypothalamic-

pituitary-gonadal (HPG) axis. GnRH-secreting neurons located in the ventral preoptic area 

project to the median eminence and release pulses of GnRH into the hypophyseal portal 

system (Clarke et al., 1978; Fink and Jamieson, 1976; Gore, 2002). The pulsatile release 

of GnRH increases in magnitude and frequency during the preovulatory period. Secreted 

GnRH travels down in the hypophyseal portal system and binds to the receptors in the 

anterior pituitary to stimulate the release of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). In female mice, both of these two gonadotropins circulate in 

the blood and stimulate the secretion of estrogen and progesterone in the ovaries, 

subsequently regulating the oocyte maturation and ovulation during the female estrus cycle  

(Knobil and Neill, 2006; Sisk et al., 2001).  

Based on the advances in understanding of this classical HPG axis, agonists and 

antagonists of GnRH receptor are widely used in clinical treatments, for example in 

assisted reproductive technologies (ART), like in vitro fertilization (IVF) and 

intracytoplasmic sperm injection (ICSI). Cetrorelix, one antagonist of GnRHR, is a 

decapeptide with a modified GnRH sequence. It is well known for leading to an immediate 

inhibition of gonadotropins by blocking GnRHR in the pituitary. In ART, cetrorelix is used 

for the prevention of the premature luteinizing hormone surge in controlling ovarian 

stimulation cycles to make sure enough oocytes can be collected for IVF (Reissmann et al., 

2000; Duijkers et al., 1998; Shrestha et al., 2015). In addition, several reproductive-related 
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cancers are identified expressing GnRHR, and studies find that the activation of GnRHR 

shows inhibitory effects on these cancer cells (e.g. prostate, breast, ovarian and endometrial 

cancers) (Limonta et al., 2012). As is now more established (Badr and Pelletier, 1987a; 

Jennes et al., 1997a; Wen et al., 2011) GnRHR is not only expressed in the pituitary or 

cancer cells but also expressed in multiple brain areas. Thus, GnRH agonist/antagonist 

actions may not be restricted to the pituitary (Badr and Pelletier, 1987; Jennes et al., 1997) 

and could potentially have undesirable side effects by acting on GnRHR-expressing 

neurons in the brain.  

In this chapter, we investigate the potential source of GnRH, such as GnRH-

secreting neuronal fibers, third ventricular cerebrospinal fluid or the cerebrovascular 

system (Caraty and Skinner, 2008; Cottrell and Ferguson, 2004; Skinner et al., 1997). By 

immunostaining, we demonstrate that GnRHR neurons possess close appositions to Pe 

capillaries. In addition, in the electromicroscopy study, we find that the endothelial cells in 

Pe blood vessels contain many caveolae-like structures. These suggest a less constrained 

blood-brain barrier (BBB) in Pe. The previous chapter shows that GnRHR neurons in Pe 

alternate their action potential firing pattern in synchrony with the estrus cycle and display 

predominant burst firing during the preovulatory period. In vitro bath application of 

cetrorelix is sufficient to reverse GnRHR neuron firing activity from bursting firing to tonic. 

Together with the anatomical information, I hypothesize that cetrorelix may cross the BBB 

and regulate the firing activity of GnRHR neurons in Pe by systemic injection. Interestingly, 

we find that systemic injection of cetrorelix can effectively block the HPG axis and 

GnRHR neuronal activity. Thus, my results could point to a potential side effect of 

cetrorelix treatment in clinical patients.  

4.2 Results  

4.2.1 GnRHR neurons possess close appositions to Pe capillaries 

GnRH modulates the firing activity of GnRH neurons in Pe during the reproductive cycle 

(see Chapter 3). To investigate the source of GnRH, I first examined the direct contact 

points between GnRH-secreting fibers and GnRHR neuron. The relationship between 

GFP-tagged GnRHR neurons and GnRH-secreting fibers are analyzed by the immune-  
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Figure 4.1 The distribution of GnRHR neurons in Pe from rostral to caudal. Periventricular 

hypothalamus Pe is located between bregma +0.26 and –1.94 mm based on the brain atlas from Paxinos 

and Franklin, 2004. Most GnRHR neurons in Pe are found in the medial region between -0.22 to –1.46 

mm (~16 somata/slice). The most rostral area (four sections between bregma +0.26 and –0.1 mm), as well 

as the more caudal region (four sections between bregma –1.58 and –1.94 mm), contain between zero and 

five GnRHR neurons somata per brain slice (~two somata/slice).  

histochemistry (Figure 4.2). As described in Methods chapter 2.2.3, I analyzed in the 

beginning brain slices between bregma +0.26 and -1.94 mm which are approximately the 

boundaries of the periventricular nucleus (Paxinos and Franklin, 2004). The distribution of 

the GFP-tagged GnRHR neurons in Pe shows that the more rostral area (four sections 

between bregma 0.26 and -0.1 mm), as well as the more caudal region (four sections 

between bregma -1.58 and -1.94 mm), contain between zero and five somata per brain 

slices (~ two somata/slice). Most GnRHR neurons are found in the medial region between 

bregma -0.22 and -0.46 mm (~16 somata/slice) (Figure 4.1). Therefore, I evaluated 26 

GnRHR neurons in 6 coronal brain slices of the medial region of Pe (Bregma -0.22 to -

1.26 mm) from 3 early proestrous female mice. No potential contact points (appositions, < 

0.3 µm) are detected between GnRH-secreting fibers and GnRHR neurons (Figure 4.2A). 

In contrast, appositions between GnRH fibers and GnRHR neurons are easily identified in 

the arcuate nucleus (Arc) (Figure 4.2B). Still, even if I could not detect any contact between 

GnRH-secreting fibers and GnRHR neurons, communication between these neurons 

cannot be entirely excluded, since both neurons possess fibers with extensive length as has 

been shown previously for GnRH-secreting neurons (Boehm et al., 2005) and now also for 

GnRHR neurons (Figure 4.2)(Schauer, Tong et al., 2015).  
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Figure 4.2 Multiple close appositions between GnRHR neurons and capillaries. A: Confocal image of 

a coronal brain slice (Bregma -0.82) showing a green fluorescent (GFP)-positive GnRHR-expressing 

neurons (green) and GnRH-expressing fibers (red) in the periventricular hypothalamic nucleus (Pe). No 

potential contact points (appositions) between these structures were observed (n = 26, 3 female mice). The 

dashed line indicates the border between the Pe and the third ventricle (3V). B: GnRHR neurons of the 

arcuate nucleus (Bregma -1.58) possess various appositions (< 0.3 µm) per identified GnRHR neuron (n 

= 5, 3 female mice). Inset: higher magnification of the apposition indicated by the white box. Arrows: 

appositions identified using transverse confocal sectioning. C: Confocal images of a coronal brain slice 

showing GFP-positive GnRHR expressing neurons (green) and Pe capillaries (red). Top left: Overview 

and higher magnification of a coronal brain slice showing the location of the periventricular (Pe) and 

arcuate nucleus (Arc) of the hypothalamus next to the 3V. Optical xyz-sections (right lower corner of C) 

were merged to obtain a high-resolution xy-image with a thickness of 20 µm. The location and perimeter 

of the 3V are indicated in gray. Transverse confocal sections (top: xz or left: yz) allowed the examination 

of appositions (white boxes) between GnRHR neurons and Pe capillaries. D: Regions indicated by the 

numbered white boxes in C at higher magnification (xz-plane) show the close apposition of GnRHR fibers 

(1, 3) and a soma (2) to the Pe capillaries. E: Number of appositions between capillaries and GFP-marked 

soma or extensions per GnRHR neuron. Appositions of the GFP-tagged extension were counted only when 

the soma of the GnRHR neuron could be identified and was located within the Pe. (Schauer, Tong et al., 

2015) 

 

In HPG axis, GnRH is released at the median eminence and travels down in the 

blood stream to the anterior pituitary, where the venous drainage carries the hormones into 

general circulation (Wislocki, 1937, 1938). Capillary connections between the median 

eminence and the Pe have been proposed to serve as the basis for a short-loop feedback of 

hormones (Page, 1982; Page et al., 1978). Our data also show that GnRHR neuron activity 

in Pe follows the occurrence of a plasma GnRH surge. Since blood vessels could serve as 

a GnRH source, we examine the potential contact points between GFP-tagged GnRHR 

neurons and CD31-marked capillaries up to a depth of approximately 25 µm in 10 coronal 

slices from 4 female mice (Figure 4.2C-E). We find a total of 49 GnRHR neurons within 
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52×106 µm3 Pe area, revealing the existence of 1 GnRHR neuron per 106 µm Pe. 

Surprisingly, the majority of GnRHR neurons (43 out of 49) show that somata and/or 

extensions have multiple appositions to the capillaries (110 counted contact sites, Figure 

4.2C). The magnifications illustrate that GnRHR neurons are position next to blood 

capillaries (< 0.3 µm) with either their somata (26 out of 110 sites; 24%) or their extensions 

(84 out of 110 sites; 76%) (Figure 4.2D). On average, we observed one soma and two 

GnRHR extensions per GnRHR neuron in < 0.3 µm distance from a capillary (Figure 4.2E). 

Appositions of GFP-tagged extension were only counted if they could be traced back to an 

existing soma.  

 

 

Figure 4.3 Electron micrographs of different capillary types in the hypothalamus. Both the classical 

continuous non-fenestrated brain capillary (A) and capillaries in which endothelial cells contain numerous 

vesicular structures that look like caveolae (B, D) were detected in the periventricular area. Similar to 

those seen in the median eminence (C, E), these capillaries have a widened, translucent perivascular space. 

Fenestrated capillaries (C, E) were found only in the area of the median eminence. The black boxes in B 

and C are magnified in D and E, respectively. (Schauer, Tong et al., 2015) 

 

Since GnRHR neurons possess close appositions to Pe capillaries, it will be 

interesting to investigate the anatomic structures that could mediate the communication 

between GnRHR neurons and blood stream. Prof. Frank Schmitz (Department of Anatomy, 

School of Medicine, Saarland University) observed different types of capillaries in Pe using 

the electron microscope (Figure 4.3). The majority of capillary walls in the brain are 

classical continuous non-fenestrated brain capillary with the continuous endothelial cells 
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connected by tight junctions and a continuous basement membrane (Figure 4.3A). It forms 

a physical barrier against the passage of various substances. Interestingly, in addition to 

classical capillaries, capillaries with endothelial cells containing many caveolae-like 

structures are found in the periventricular area (Stan, 2005) (Figure 4.3B, D). These 

findings strengthen my proposal of a less constraint BBB in this region of the CNS. The 

classical fenestrated capillaries with discontinuous BBB as present in the median eminence 

are not observed in Pe (Figure 4.3C, E). Communication between neurons and capillaries 

does not necessarily indicate open access from the blood to the brain but suggest that some 

components could travel more easily across this barrier. Besides the source from the 

capillaries and GnRH-secreting fibers, the third ventricle is possible another source from 

which the GnRH can diffuse to the GnRHR neuron in Pe  (Rodríguez et al., 2010). 

4.2.2 Subcutaneous injection of cetrorelix affects reproductive cycle of female mice 

Considering a less constrained BBB in Pe, GnRHR neuronal activity in the brain may be 

susceptible to systemic treatment with GnRHR antagonists, like cetrorelix. The latter is 

known to block GnRH/GnRHR signaling at the level of the gonadotropes in the anterior 

pituitary and is frequently used in reproductive techniques and hormone-dependent 

diseases. Systemic injection of cetrorelix can directly block the GnRHR in the anterior 

pituitary and thus no FSH and LH are released into the circulation. Consequently, no 

estrogen is produced to initiate the positive feedback necessary to stimulate GnRH and thus 

LH release to induce ovulation. Therefore, I predict that the reproductive cycle will linger 

in a phase before ovulation and have ovaries showing a lot of tertiary follicles. To test 

whether systemic subcutaneous cetrorelix treatment (Figure 4.4A) is capable of influencing 

GnRH/GnRHR signaling of Pe neurons, we daily inject 0.9% sodium chloride (SHAM, n 

= 7), 10 µg (n = 5) or 50 µg (n = 5) of cetrorelix per mouse for continuous 9 days and start 

all groups at either metestrus or diestrus (t = 0) (Figure 4.4B). Before and during the 

treatment, the estrous cycle stages are determined using vaginal cytology (Caligioni, 2009). 

All SHAM mice show continuous normal estrous cycle and reach metestrus on day 9 in all 

but one case. Interestingly, both 10 µg and 50 µg cetrorelix-treated females display 

impaired reproductive cycles, remaining longer in proestrus (Figure 4.4B). This suggests 
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that systemic cetrorelix subcutaneous injection can effectively influence the reproductive 

cycle of the female mouse.  

A           B 

 

 

Figure 4.4 Influence of subcutaneous injection of cetrorelix on the vaginal cytology of the female 

mice. A: Schematic picture showing subcutaneous injection. B: Plot of the estrous cycle of GRIC/eR26-

τGFP mice (at least 5 females per treatment) demonstrating a normal 4 - 5 day cycle length prior to the 

start of the subcutaneous application (t = 0) of either 10 µg or 50 µg cetrorelix for 9 days. SHAM-treated 

females continued their normal reproductive cycles, in contrast to cetrorelix-treatment groups that stayed 

mostly in preovulation stage. (Schauer, Tong et al., 2015) 

 

4.2.3 Cetrorelix inhibits the HPG axis 

To demonstrate that cetrorelix can induce an effective arrest of the HPG axis function, we 

determine the ratio of uterus to body mass (Evans et al., 1941) in SHAM (n=7), 10 µg (n=5) 

or 50 µg cetrorelix-treated (n=5) and proestrous females (n=8) because it is known that the 

weight of uterus changes in synchrony with the female reproductive cycle reflecting the 

preparation for an eventual pregnancy (Croy et al., 2013). Most mice in the SHAM group 

end in metestrus having relative small uteri. With cetrorelix-treatment, the relative uterus 

weight is significantly increased to the SHAM females in metestrus, but is 

indistinguishable from untreated proestrous females (Figure 4.5). Cetrorelix-treated 

females stay mainly in proestrus as has been previously reported by inhibiting GnRHR in 

the pituitary (Duijkers et al., 1998; Reissmann et al., 2000). Cetrorelix treatment keeps 

females in a reproductive stage that prepares for ovulation followed by embryo 

implantation (nidation). All ova need to be developed before the LH surge occurs, and the 

uterine lining needs to prepare for nidation. This latter phenomenon increases the uterine 

weight (Figure 4.5).  
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Figure 4.5 Uterus to body mass ratio in SHAM, 10µg, 50µg cetrorelix-treated and proestrous 

females. Uterus weight increased following cetrorelix treatment compared to the SHAM group but was 

indistinguishable from females in early proestrus (SHAM: 0.0033 ± 0.00001 g; 10µg cetrorelix 0.0103 ± 

0.0020 g; 50 µg cetrorelix 0.0081 ± 0.0013 g; proestrus females 0.0075 ± 0.0008 g. ANOVA: F3,16= 4.754; 

p < 0.01, Tukey: * p < 0.5, ** p < 0.01. The number of mice is plotted in brackets above each bar. (Schauer, 

Tong et al., 2015) 

 

 

 

 A B C  

   
 

Figure 4.6 Quantification of tertiary/preovulatory follicles and corpora lutea in SHAM, 10µg or 50µg 

cetrorelix-treated and proestrous females. A: Effect of cetrorelix on morphological appearance of mouse 

ovary. Sections taken from SHAM- and 50 µg cetrorelix-treated mice. B: Cetrorelix-treatment group (10 

µg cetrorelix group: 4.08 ± 0.58/ovary; 50 µg cetrorelix group: 5.00 ± 0.86/ovary) and proestrus group (5.4 

± 0.76/ovary) have more tertiary/preovulatory follicles than the SHAM group (0.5 ± 0.22/ovary). ANOVA: 

F3,39= 10.70; p < 0.0001, Tukey: ** p < 0.01, *** p < 0.001. C: The number of corporea lutea in SHAM 

group (2.5 ± 0.34/ovary) is significant higher than that in cetrorelix-treatment group (10 µg cetrorelix group: 

0.33 ± 0.19/ovary; 50 µg cetrorelix group: 0.55 ± 0.25/ovary). ANOVA: F3,39= 31.99; p < 0.0001, Tukey: * 

p < 0.05, ** p < 0.01,  *** p < 0.001.The number of ovaries is plotted in brackets above each bar. (Schauer, 

Tong et al., 2015) 
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To establish that cetrorelix females do not ovulate which is another indication for 

an effective blockage of the HPG axis, I examined the amount of tertiary/preovulatory 

follicles and corpora lutea in ovaries. In SHAM group the ovaries have relatively more 

corporea lutea and fewer tertiary/preovulatory follicles, which is consistent with the typical 

ovaries in metestrus (Figure 4.6A) (Croy et al., 2013). However, ovaries of cetrorelix-

treated mice as well as females in early proestrous reveal high numbers of tertiary and 

preovulatory follicles compared to the SHAM-treated group (Figure 4.6B). Simultaneously, 

cetrorelix treatment also reduces the presence of corpora lutea when compared to SHAM-

treated and early proestrous females (Figure 4.6C). Confirming previous results in mice 

and humans (Bittner et al., 2011;Duijkers et al., 1998; Reissmann et al., 2000), thus 

treatment with 10 µg and 50 µg cetrorelix can effectively block the HPG axis as indicated 

by the increase in the number of tertiary/preovulatory follicles and reduction in the 

presence of corpora lutea (LSD: p=0.73 and 0.94, respectively). 

4.2.4 Systemic cetrorelix treatment prevents the switch in burst firing of GnRHR 

neurons during preovulatory period 

Studies have shown that systemic injection of cetrorelix can penetrate the BBB marginally 

at doses of approximately 1-10 µg (Schwahn et al., 2000, Telegdy et al., 2009). However, 

it is unclear whether higher dose, like 50 µg cetrorelix, can cross BBB and have a stronger 

influence on GnRHR neurons in the brain. Therefore, using loose-patch recording and 

checking the same parameters to characterize the firing activity as described in Methods 

chapter 2.2.5.1, the spontaneous activity of GnRHR neurons in Pe are measured and 

analyzed from SHAM- and cetrorelix-treated females. Interestingly, we find that the mean 

spike firing frequency of GnRH neurons is increased in the cetrorelix-treatment groups 

compared to the SHAM females (Figure 4.7A). In addition, 50 µg cetrorelix application 

cause a significant change in spike firing having a CVISI < 0.8, and these neurons can be 

classified as tonically firing (Figure 4.7B; LSD: p < 0.001). The distribution of tonic and 

bursting GnRHR neurons in the SHAM and the two cetrorelix-treated groups indicate that 

the amount of tonically firing neurons rise with increasing cetrorelix concentration. In 50 

µg cetrorelix-treated group, the distribution is as similar as in early proestrus (Figure 4.7C). 

10 µg cetrorelix treatment seems to be below the threshold for appreciable modulation of 
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Pe neuron activity (Figure 4.7B; LSD: p = 0.18), although a significant effect of cetrorelix 

could be detected at the level of the ovaries (Figure 4.6). From these observations, we can 

conclude that systemic application of 50 µg cetrorelix influences the GnRHR neuron 

activity and thus brain function. 

     
 A B C                                   

 

  
 

 

 

Figure 4.7 Influence of systemic cetrorelix injection on GnRHR neuron firing activity. A-B: Bar 

histogram of the mean spike frequency and the CVISI  of GnRHR neurons during SHAM, 10 µg and 50 

µg cetrorelix applications. A: The mean spike firing frequency of GnRH neurons increased in the 

cetrorelix-treatment groups (10 µg cetrorelix group: 3.12 Hz, n = 16; 50 µg cetrorelix group: 3.18 Hz, n = 

14) compared to the SHAM females (1.69 Hz ± 0.29, n = 14) (ANOVA: F2,41= 3.037; p = 0.06). B: CVISI 

in 50 µg cetrorelix-treatment group (0.82 ± 0.13) is smaller than in SHAM-and 10 µg cetrorelix-treatment 

group (SHAM group: 1.89 ± 0.15; 10 µg cetrorelix group: 1.5 ± 0.28; ANOVA: F2,41= 6.556; p < 0.01, 

Tukey: * p < 0.05, *** p < 0.001). The number of neurons is plotted in brackets above each bar. C: Plot 

of the distribution of all GnRHR neurons firing either tonically (blue symbols) or in bursts (yellow symbols) 

(SHAM: n = 14; 10 µg cetrorelix: n = 16; 50 µg cetrorelix: n = 14). (Schauer, Tong et al., 2015) 

 

4.3 Discussion 

Systemic injection of cetrorelix can effectively block the HPG axis and influence the firing 

activity of GnRHR neurons in Pe, likely through a less constrained BBB, especially with 

higher concentration 50 µg. The fact that agonists and antagonists of GnRH are widely 

used in clinical treatments, my findings may have important clinical implications. 

GnRHR neurons in Pe may sense the change of GnRH level through a less 

constrained BBB. In the previous chapter, we find that with the change of endogenous 

GnRH level, GnRHR neuron firing synchronizes with the female estrous cycle; therefore, 

we investigate the source of GnRH focusing on three structures: GnRH-secreting fibers, 
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blood vessels, and third ventricle. Immunohistochemistry studies show that GnRH-

secreting fibers are never observed in close proximity to any GFP-tagged Pe neurons in 

contrast to the arcuate hypothalamic nucleus (Arc) (Figure 4.2A, B), suggesting GnRHR 

neuron may not sense the GnRH from the GnRH-secreting fibers. However, both GnRH-

secreting and GnRHR neuron fibers possess branches of extensive length. Therefore, 

synaptic input from GnRH-secreting neurons onto Pe GnRHR neurons cannot be excluded. 

It is known that GnRH is secreted near the pituitary portal vasculature and travels in the 

blood stream from the median eminence to the pars anterior, where the venous drainage 

will carry the hormones into the general circulation (Wislocki, 1937, 1938). The existence 

of capillary connections between the median eminence and the Pe has been proposed to 

serve as the basis for a short-loop feedback of hormones (Page, 1982; Page et al., 1978). 

By immunostaining of CD-31 marked blood vessel and τGFP-labeled GnRHR neuron, we 

observed that GnRHR neurons possess close appositions to Pe capillaries. Results from 

electron microscope show that endothelial cells in Pe capillaries contain many caveolae-

like structures. It has been reported that the endothelial caveolae are involved in capillary 

permeability by its participation in the process of transcytosis (Stan, 2002). The caveolae-

like structure on Pe capillaries may offer an anatomical structure to make the GnRHR 

neuron sense the GnRH level change in the blood stream. In addition to the capillaries, the 

third ventricle could be another source of GnRH (Rodríguez et al., 2010; Barrera et al., 

1992). Many studies have shown that GnRH is present in mammalian cerebrospinal fluid 

(CFS) (Gazal et al., 1998; Skinner and Caraty, 2002; Skinner et al., 1997; Yoshioka et al., 

2001). Like hypophyseal portal-GnRH, this CSF-GnRH displays both a pulsatile and a 

surge profile (Yoshioka et al., 2001); therefore, GnRH in CSF may affect the Pe GnRHR 

neurons during the female estrous cycle.  

Systemic injection of cetrorelix can effectively block the HPG axis. Cetrorelix 

treatment, a well-established GnRHR antagonist, efficiently inhibits gonadotropin release 

by blocking GnRHR in the pituitary, thereby also reducing the rate of ovulation (Duijkers 

et al., 1998; Reissmann et al., 2000; Bittner et al., 2011). As introduced in Chapter 1.1.1 

and 1.1.2, HPG axis regulates the reproductive changes during estrous cycle. GnRH from 

the hypothalamus reaches the anterior pituitary and stimulates the release of LH and FSH. 

Under the influence of FSH the follicles in ovaries mature and will develop into 
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tertiary/preovulatory follicles during proestrus. In the estrus period, the preovulatory 

follicles are ruptured and transform into corpora lutea. The increase of LH is caused by a 

preovulatory surge of GnRH during the late proestrus (Croy et al., 2013; Knobil and Neill, 

2006). In cetrorelix-treated female mice, as the GnRHR in anterior pituitary is blocked by 

continuous injection of cetrorelix, the GnRH surge is absence during the late proestrus. 

Thus, there is no increase of LH to induce the ovulation. This is in agreement with my 

observation that subcutaneous cetrorelix injection leads to an increase in the number of 

tertiary/preovulatory follicles concomitant with a significant inhibition of follicle rupture 

and corpora lutea formation. These indicate that HPG axis is effectively blocked and thus 

lead a suppression of LH secretion and inhibition of ovulation.  

Systemic injection of cetrorelix can modulate the firing activity of GnRHR 

neurons in Pe, especially with a higher dose of 50 µg. The current understanding of 

GnRH agonist/antagonist actions is mainly restricted to the pituitary; however, the 

potentially undesirable side effects by acting on GnRHR-expressing neurons in multiple 

brain areas are still not clear. Many peptides, including GnRH, have been reported to cross 

the blood-brain barrier (BBB) (Banks, 2009; Barrera et al., 1991), but this is still 

controversial. Cetrorelix is reported to penetrate the BBB only marginally at previously 

tested doses of approximately 1-10 µg (Schwahn et al., 2000; Telegdy et al., 2009). 

Theoretically, higher cetrorelix concentrations might be able to pass the BBB. My data 

demonstrate that subcutaneous 50 µg cetrorelix treatment can affect GnRHR neuron 

activity in the brain. These findings support the proposal that therapeutic drugs similar to 

cetrorelix may gain access to the brain to modulate GnRHR neuron activity there and thus 

brain function. Investigations on Alzheimer’s disease (AD) have shown that the 

dysregulation of the HPG axis at menopause and andropause are implicated in the 

neuropathological processes underlying AD (Meethal et al., 2005; Nuruddin et al., 2014). 

Furthermore, it was shown that GnRHR agonist therapy decelerated aging animals (Zhang 

et al., 2013) and reduced the risk of developing AD in prostate cancer patients (D’Amico 

et al., 2010). In an animal behavior study, Telegdy et al. (2009) observed that cetrorelix 

can elicit anxiolytic and anti-depressive behavior in mice by administration cetrorelix into 

the lateral brain ventricle, suggesting that systemic injection cetrorelix can influence the 

animal behavior. However, how GnRH antagonist and agonist are involved in neuronal 
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degenerative disease and how they modulate animal behavior are not clear. Detailed 

analysis of the functional activity of GnRHR neurons in various brain regions will be 

essential for a complete understanding of the central control of animal behavior by the 

mammalian brain. In my studies, I show that the neuron firing activity in Pe is modulated 

by in vivo cetrorelix treatment. This establishes the methods and a basis for investigating 

the function of GnRHR neurons in different brain areas and their involvement in animal 

behavior regulation.  
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Chapter 5  

GnRH modulates firing activity of GnRHR neurons in 

arcuate nucleus through calcium-dependent pathway  

 

Abstract 

The arcuate nucleus (Arc) is a cluster of neurons in the hypothalamus, which plays an 

important role in appetite regulation and reproduction. In mice, this hypothalamic region 

can be influenced by olfactory cues affecting pregnancy (Bruce effect). Studies have shown 

that gonadotropin-releasing hormone receptor (GnRHR) neurons are found in Arc, but the 

physiological function of these neurons are not clear. In this chapter, the spontaneous firing 

activity of Arc GnRHR neurons is first determined using loose-patch recording during the 

female reproductive cycle. I find that GnRHR neurons show a higher firing frequency in 

late proestrus, however the spike firing in Arc neurons can be abolished in the presence of 

synaptic blocker. This suggests that the action potential firing activity of Arc GnRHR 

neurons does not depend on the reproductive cycle but on network properties. Under the 

synaptic blocker, GnRH stimulation can increase the firing activity of GnRHR neuron, 

indicating that GnRHR neurons contain functional GnRHR and receive modulation from 

both GnRH and network. By developing a new protocol to simultaneously measure the 

firing activity and intracellular calcium fluctuation, I observed that the action potential 

burst activity of GnRHR neuron is correlated with the increase in calcium signal. GnRH 

can simultaneously induce the increase of firing activity and intracellular calcium of 

GnRHR neuron in Arc, suggesting that the change of intracellular calcium is involved in 

GnRH-GnRHR signaling pathway. In the presence of tetrodotoxin (TTX) and synaptic 

blockers, GnRH does not induce the increase of cytoplasmic calcium, indicating that the 

GnRH-induced response may depend on the action-potential-driven influx of calcium. 

These studies establish a series of methods and provide indications for the future studies 

of the intracellular signaling pathway in Arc GnRHR neurons.   
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5.1 Introduction 

In rodents, socially relevant chemosensory signals exert profound effects on reproductive 

physiology and sexual behavior. It is known that odor and pheromone ligands are detected 

respectively by the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) 

in the nasal cavity of rodents. Both organs project fibers to the main olfactory bulb (MOB) 

and accessory olfactory bulb (AOB), respectively, which subsequently send the 

information to varies brain areas to ultimately influence the social behavior and the 

endocrine status of the individual (Tirindelli et al., 2009). For example, when female mice 

are exposed to the scent of an unfamiliar male, their pregnancy is interrupted and the female 

returns to estrous cycle. This phenomenon is named the Bruce effect since it was 

discovered by biologist Hilda Margaret Bruce in 1959 (Bruce, 1959). Yet, how the 

olfactory system impinges onto different output neurons in the brain that are mediating this 

effects remains largely unknown. Evidence showed that olfactory cues can modulate the 

pregnancy by influencing the prolactin level (Bellringer et al., 1980). This special kind of 

behavior in mice depends on the lactotroph axis (Brennan and Zufall, 2006; Leinders-

Zufall et al., 2004). In this axis, tuberoinfundibular dopamine (TIDA) neurons in arcuate 

nucleus (Arc) project to the median eminence, in which they secrete dopamine into the 

pituitary portal system to inhibit pituitary prolactin (PRL) release. Significant lower 

activation of dopaminergic neurons in the Arc of the hypothalamus was observed in female 

mice exposed to familiar versus unfamiliar male bedding using immediate early gene 

expression combined with immunocytochemistry (Matthews et al., 2013). The familiar 

male's odor keeps dopamine levels low and thus prolactin levels high, which stimulates 

progesterone and thus the build-up of the uterine lining to enable nidation. In contrast, the 

unfamiliar male’s odor raises the dopamine levels and therefore reduces prolactin levels. 

This explains why the corpus luteum is not stimulated. The latter causes a drop in 

progesterone and thus a disruption in the uterine lining and pregnancy failure. However, 

the link between odor detection and dopaminergic neurons in Arc influencing the prolactin 

level is still unclear. Boehm et al. used a genetic transneuronal tracer and suggested that 

both the accessory and the main olfactory system relay information to GnRH neurons 

(Boehm et al., 2005). GnRH-target neurons referred as GnRHR neurons, have been 

reported to be broadly distributed in many brain areas, including the Arc (Wen et al., 2011). 
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In addition, studies showed that GnRH neurons communicate directly with TIDA neurons 

in the adult female by immunohistochemical staining coupled with confocal microscopy 

(Mitchell et al., 2003). Therefore, I speculate that GnRHR neurons in the Arc may be the 

missing link between odor detection and dopaminergic neurons affecting the prolactin 

levels. If the GnRHR neurons in Arc are TIDA neurons, their activity should be similar to 

the firing pattern described for these neurons that can influence prolactin. Furthermore, the 

increase in burst activity of GnRHR neuron might play a role in modulating dopamine 

release from these cells.    

As the first step, the spontaneous spike activity patterns of GnRHR neurons are 

measured using the loose-patch recording. The result reveals that GnRHR neurons exhibit 

higher firing frequency in late proestrus, which can be abolished in the presence of synaptic 

blocker. This implies that the intrinsic firing activity of these neurons in Arc does not 

depend on the reproductive cycle. Puff application of 0.5nM GnRH can increase the firing 

activity of GnRHR neuron. Thus, these neurons in Arc contain functional GnRHR and 

receive both modulations from both GnRH and network. By developing a new protocol to 

simultaneously measure intracellular Ca2+ signal and firing activity, the relationship 

between intracellular Ca2+ fluctuation and firing activity is investigated. The results show 

that the action potential burst activity of GnRHR neuron is correlated with an increase in 

Ca2+ signal. GnRH stimulation can induce the simultaneous increase of intracellular Ca2+ 

and firing activity in GnRHR neurons in Arc. The increase of cytoplasmic Ca2+ cannot be 

observed in the presence of tetrodotoxin (TTX) that blocks the action-potential-driven 

external Ca2+ influx, indicating that the GnRH-induced increase of Ca2+ results from an 

influx of Ca2+. All of these results build up a series of methods and provide indications for 

the future studies of the intracellular signaling pathway in Arc GnRHR neurons. 

5.2 Results 

5.2.1 The intrinsic spike activity of GnRHR neurons in the Arc does not depend on 

the reproductive cycle. 

Using GRIC/eR26-τGFP female mice, GnRHR neurons in Arc can be visualized by a 

combination of fluorescence and IR-DIC illumination (Wen et al., 2011)  (Figure 5.1A, B). 
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The spontaneous firing activity of GnRHR neurons (n=53) in Arc is investigated during 

female mouse cyclicity and recorded as action-potential-driven capacitive currents using 

loose-patch from 19 gonadally intact female mice. The activity of GnRHR neurons in Arc 

are recorded either in the morning (early proestrus, PE: 800 – 1200 hours) or afternoon (late 

proestrus, PL: 1500 – 1800 hours) due to the preovulation GnRH surge (Sisk et al., 2001). 

All of these GnRHR neurons in Arc show a relatively lower spontaneous firing activity in 

metestrus, diestrus, early proestrus, and estrus, but a higher firing frequency in late 

proestrus (Figure 5.1C). However, a question rises as to whether the increase of firing 

frequency in the late proestrus is directly caused by GnRH surge or by the fast-acting 

 
Figure 5.1 The spontaneous spike activity of GnRHR neurons in Arc during the female reproductive 

cycle with and without the synaptic blocker. A: Arcuate nucleus (red) is mediobasal hypothalamus 

located at the bottom of the third ventricle (3V) next to Pe. B: Overlay of a fluorescence image on the top 

of an infrared-differential interference contrast (IR-DIC) micrograph of a brain tissue slice identifying a 

GnRHR neuron in the Arc. The soma of the GnRHR neuron is clearly visible in the IR-DIC image (upper 

right) and expresses tau green fluorescent protein (τGFP) (lower right) after cre-mediated excision of a 

transcriptional stop sequence, depending on the activation of the GnRHR promoter. P, patch electrode. C: 

Example recordings of trains of extracellularly recorded in the absence of synaptic blocker, action-

potential-driven capacitive currents of 10 different GnRHR neurons (two different neurons per 

reproductive stage). D: Example recordings of trains of extracellularly recorded in the presence of synaptic 

blocker, action-potential-driven capacitive currents of 10 different GnRHR neurons (two different neurons 

per reproductive stage).The pipette potential was 0 mV. Neuronal activity during proestrus was recorded 

in brain slices obtained either in the morning [early proestrus, PE (800 – 1200 hours)] or afternoon [late 

proestrus, PL: (1500 – 1800 hours) 

https://en.wikipedia.org/wiki/Hypothalamus
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neurotransmitters from the network. To answer this question, female mice brain slices (n 

= 36) from 26 gonadally intact female mice are incubated in synaptic blockers cocktail at 

least 15 min before experiments. Using loose-patch recording, the firing activity of GnRHR 

neurons (n = 48) in Arc from these brain slices are measured. In the presence of synaptic 

blocker, GnRHR neurons during late proestrus exhibit a lower firing activity, which is 

similar to the other estrous stage (Figure 5.1D). To represent the change in the firing 

frequency during the female reproductive cycle, the mean spike frequency is calculated in 

each estrous stage (Figure 5.2). The results show that in the absence of synaptic blocker 

the firing frequency of GnRHR neurons significantly increases up to 3.5 Hz during PL 

compared with other stages, at which the frequency is smaller than 1 Hz (P < 0.05; Figure 

5.2A). However, in the presence of synaptic blocker, the increase of firing activity in late 

proestrus is abolished and displays a relative lower firing frequency (1.5 ± 0.8 Hz) similar 

to that in the other estrous stages (Figure 5.2B). These suggest that the fast-acting 

neurotransmitters are involved in regulating the firing activity of GnRHR neurons in Arc, 

especially during the late proestrus. The intrinsic spike activity of GnRHR neurons in the 

Arc does not depend on the reproductive cycle. 

 

Figure 5.2 The increase of firing frequency during late proestrus is abolished in the presence of 

synaptic blocker. A: The mean spike frequency of GnRHR neurons in Arc changes during the estrous 

cycle without synaptic blocker (ANOVA: F5,53= 6.19, P < 0.0001), peaking at late proestrus. M, metestrus: 

0.8 ± 0.3 Hz; D, diestrus: 0.3 ± 0.08 Hz; PE, early proestrus: 0.8 ± 0.2 Hz; PL, late proestrus: 3.5 ± 1.6 Hz; 

E, estrus: 0.7 ± 0.2 Hz). Tukey: * P < 0.05. Each recorded neuron is shown as the grey circle. B: The mean 

spike frequency of GnRHR neurons in Arc changes during the estrous cycle in the presence of synaptic 

blocker (ANOVA: F5,48= 0.47, P > 0.05). M: 1.2 ± 0.5 Hz; D: 0.6 ± 0.3 Hz; PE: 1.1 ± 0.5 Hz; PL: 1.5 ± 0.8 

Hz; E: 0.7 ± 0.2 Hz). Each recorded neuron is shown as the grey circle. 
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5.2.2 GnRH is sufficient to increase the firing rate in Arc GnRHR neurons  

To establish whether GnRH can regulate the firing activity of GnRHR neuron, GnRH-

induced responses are recorded in the presence of synaptic blocker. I find that GnRHR 

neurons in Arc can respond to GnRH stimulation. All of the brain slices are incubated in 

synaptic blockers at least 15 min before experiments. Puff application of 0.5nM GnRH 

directly on GnRHR neurons (n = 6) in Arc can induce immediate responses (Figure 5.3A). 

GnRHR neurons increase the spike frequency within the first 60s following GnRH 

stimulation, from 0.54 ± 0.16 Hz to 1.24 ± 0.58 Hz (Figure 5.3B). Our results demonstrate 

that GnRH can directly affect τGFP-labeled GnRHR neurons in Arc and increase their 

firing activity. This suggests that these neurons contain functional GnRHR and receive 

regulation from both GnRH and network.  

 
Figure 5.3 GnRH induces the increase of firing activity in Arc GnRHR neurons. A: Examples of three 

individual GnRHR neurons responding to 1s-pulse of 0.5nM GnRH with an increase in extracellular 

recorded action-potential-driven capacitive currents in the presence of a cocktail of synaptic blockers 

(pipette potential, 0mV). B: GnRH increases the spike frequency in the 60s after the stimulation in all 

tested GnRHR neurons, compared with the control stimulation (gray circles connected by dashed lines). 

Control, 0.54 ± 0.16 Hz (n = 6); GnRH, 1.24 ± 0.58 Hz (n = 6). Paired t-test t(5) =1.632, P =0.16. 
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5.2.3 Action potential burst activity is paired with an increase in calcium signal. 

Calcium plays a major role in neurons to induce neurotransmitter release and thus regulate 

neuronal physiological function (Neher and Sakaba, 2008). Understanding of the basic 

mechanisms of Ca2+ oscillations and fluctuations in neurons has remained obscure. I start 

to examine the connection between the firing pattern and the intracellular Ca2+ signal, 

which may help further understand the physiological properties of GnRHR neuron in Arc. 

To correlate Ca2+ fluctuations with spike firing behavior, I developed a new protocol to 

simultaneously measure the electrical activity (loose-patch) and intracellular Ca2+ changes 

by a calcium dye fura-2 (calcium imaging) in the same Arc neuron without further 

interrupting its environment (Figure 5). In the presence of synaptic blockers, all the τGFP-

labeled GnRHR neurons in Arc exhibit a simultaneous change in the spontaneous firing 

activity together with intracellular calcium signaling (Figure 5.4B). Figure 5.4C-F exhibit 

the relationship between burst firing activity and calcium signal. For a quantitative analysis, 

parameters such as the start time of burst (t1), the end time of burst (t2), the duration of 

burst (Δt), and the number of spikes in the burst (NSiB) are used to characterize the burst 

(Figure 5.4C). The time-to-peak of the calcium signal (tcp) and the amplitude of calcium 

peak signal (Acp) are used to quantify the calcium signal (Figure 5.4C). Figure 5.4 D shows 

the start time of the burst (t1) plot against the time-to-peak of the calcium signal (tcp) after 

each burst. The data can be well fitted by a linear function, 

t1=a* tcp +b, 

where the yielded constants are a = 1, b = 3.27 ± 0.38 s.  This suggests that the burst firing 

activity and the increase of calcium signal are linearly correlated (r = 1, P < 0.0001). The 

calcium peak signal always occurs at 3.27± 0.38s after each burst. This delay indicates that 

it should be caused by a second messenger pathway causing either the activation of ion 

channels, calcium stores or both. Figure 5.4E and F show the duration of the burst (Δt) and 

the number of spikes in the burst (NSiB) plot against the amplitude of calcium peak signal 

(Acp), respectively. Both of the data can be fitted by an exponential function, 

y = y0 + 𝐴 exp {
−(𝑥 − 𝑥0)

𝜏
}, 
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Figure 5.4 The simultaneous change in spontaneous spike activity and intracellular calcium activity 

of GnRHR neuron in Arc.  A: Identification of a GnRHR-τGFP neuron and simultaneous acquisition of 

the fura-2 fluorescence in the Arc on coronal mouse brain slices. B: Three examples of extracellular 

recorded action-potential-driven, capacitive currents (black) (pipette potential, 0mV) and simultaneously 

intracellular calcium signal (red) in the presence of the synaptic blockers. C: Parameters to describe the 

action potential burst activity and the calcium signal peak. t1: the start time of burst; t2: the end time of 

burst; Δt: duration of the burst; tcp: time-to-peak of the calcium signal; Acp: Amplitude of calcium peak 

signal.  D: The start time of the burst (t1) is plotted versus the time-to-peak of the calcium signal (tcp).  The 

plot is fitted by linear function (black line). r = 1, P < 0.0001. E: The duration of the burst (Δt) is plotted 

versus the Amplitude of calcium peak signal (Acp), which is fitted by an exponential function (black line), 

r = 0.66. F: The number of spikes in the burst (NSiB) is plotted versus the Amplitude of calcium peak 

signal (Acp), which is fitted by an exponential function (black line) r = 0.67. 
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where y0 = 0.029 ± 0.004, A = -0.010 ± 0.003, τ =8.18 ± 6.86, x0 = 0.629 s (r = 0.45) are 

fitted constants for the duration of the burst (Δt) (Figure 5.4 E); and y0 = 0.028 ± 0.002, A 

= -0.010 ± 0.002, τ =1.74 ± 0.89, x0 = 3 (r = 0.44) for the number of spikes in the burst 

(NSiB) (Figure 5.4 F). These data indicate that the action potential burst event in the Arc 

GnRHR neuron can induce Ca2+ fluctuation responses reaching a saturation at either long 

bursts (>6 s) or at >20 spikes.  

5.2.4 GnRH induce the simultaneous increase of intracellular calcium and firing 

activity in GnRHR neurons in Arc. 

The previous results suggest that GnRHR neurons in Arc contain functional GnRHR and 

can increase firing activity under GnRH stimulation in the presence of synaptic blockers. 

If the calcium involves the intracellular pathway to respond to GnRH stimulation, then the 

intracellular calcium should simultaneously rise with the increase of firing frequency. 

Therefore, using simultaneously loose-patch recording and calcium imaging technique, I 

repeated the previous experiment and applied 0.5nM GnRH directly on GnRHR neurons 

in the presence of synaptic blockers (n = 5) (Figure 5.5A, B). Compared to the control 

stimulation, the firing frequency after GnRH stimulation increases from 0.84 ± 0.33 Hz to 

1.36 ± 0.53 Hz (n = 6, P = 0.06) (Figure 5.5 C). Simultaneously, the intracellular calcium 

signal, quantified as the area under the curve (AUC), significantly increases 2.05 ± 0.23fold 

(n = 6, P < 0.05) (Figure 5.5 D) with the firing frequency. This indicates that GnRH 

stimulation not only increases the firing rate of the Arc neuron, but also induces a change 

in the intracellular calcium concentration via a GnRH-GnRHR signaling pathway.  

5.2.5 Action-potential-driven Ca2+ influx might involve in GnRH-induced response on 

GnRHR neuron.  

From above results, I find that the spontaneous intracellular calcium signal of GnRHR 

neurons changes in synchrony with firing activity, and the GnRH stimulation can induce 

an increase of both firing frequency and intracellular calcium signal. A question needs to 

be answered: what is the origin of the increase of intracellular Ca2+ after GnRH stimulation.  

It can result from either the internal calcium store release, the external calcium influx, or 

both. The extracellular Ca2+ could influx through the Cav family and/or TRP superfamily 
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Figure 5.5 GnRH can simultaneously induce an increase of intracellular calcium and firing activity 

in GnRHR neuron in Arc. A: Examples of three individual GnRHR neurons responding to control 

stimulation without change of firing activity (black) and intracellular calcium (red) in the presence of a 

cocktail of synaptic blockers. B: Three GnRHR neurons as control responding to 1s-pulse of 0.5nM GnRH 

with a simultaneous increase in firing frequency, recorded action-potential-driven capacitive currents 

(pipette potential, 0mV), and intracellular calcium signal. C:The mean spike frequency increases following 

0.5nM GnRH stimulation, compared with the mean spike frequency in control (gray circles connected by 

dashed lines; the mean value indicated as a black line). Control, 0.84 ± 0.33 Hz (n = 6); 0.5nM GnRH, 

1.36 ± 0.53 Hz (n = 6). Paired t-test t(5) =2.34, P = 0.06. D: The normalized area under the curve (AUC) 

of calcium imaging increases following 0.5nM GnRH stimulation, compared with the normalized AUC in 

control. Control, 0.95 ± 0.3 (n = 6); 0.5nM GnRH, 2.05 ± 0.23 (n = 6). Paired t-test t(5) =3.31, * P < 0.05). 
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(Kunert-Keil et al., 2006; Van Goor et al., 2000). In a first step, the action-potential-driven 

external Ca2+ influx through Cav family was hampered by treating the brain slices with 

tetrodotoxin (TTX, 10 µM) and preventing depolarization from synaptic input using the 

synaptic blocker cocktail (see chapter 2.1.2). Under these circumstances, voltage-gated 

sodium channels were blocked and the spontaneous fluctuation of intracellular calcium 

signal disappeared together with the spontaneous firing activity (Figure 5.6 A). Puff 

application of 0.5nM GnRH could not induce the rise in intracellular calcium signal 

compared to the control without TTX treatment (Figure 5.6 A, B). However, the 60mM 

KCl stimulation induced a significant increase of intracellular calcium up to 45.52 ± 

13.61fold (Figure 5.6 B). These results imply that (1) external Ca2+ influx through voltage-

 
Figure 5.6 In the presence of TTX and synaptic blockers, GnRHR neurons in Arc cannot respond 

to GnRH stimulation. A: One example to show that 1s 0.5nM GnRH stimulation cannot induce the 

increase of intracellular calcium signal (red) in the presence of TTX and synaptic blocker. B: Bar histogram 

of the normalized area under the curve (AUC) show that 0.5nM GnRH stimulation cannot induce the 

increase of intracellular calcium compared with control. 60mM KCl stimulation significantly increases the 

intracellular calcium. Control, 1.07 ± 0.49 (n = 6); 0.5nM GnRH, 1.03 ± 0.34 (n = 6), 60mM KCl, 45.52 

± 13.61. (LSD ** P < 0.01).  
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dependent Ca2+ channels are the cause for the calcium signals underlying the burst firing 

pattern, and (2) GnRH-induced calcium responses are mainly due to changes induced to 

voltage-dependent Ca2+ channels. At this moment it is not yet clear what type of GnRHR 

neuron I recorded from, since the population of GnRHR neurons appear to be heterogenous 

as indicated by their more tonic to burst firing pattern (Figure 5.1C, D) and the knowledge 

that Arc neurons could belong to the group of dopaminergic (TIDA) neurons, POMC 

neurons or one of the many GABAergic interneurons. The TIDA neurons are known for 

the burst firing pattern, but due to the use of TTX and no other markers, the identity of the 

neurons can only be determined using posthoc immunocytochemistry which should be 

done in the follow-up experiments. 

5.3 Discussion 

The arcuate nucleus (Arc) is an important neuroendocrine brain area next to Pe and  

involved in regulation of energy metabolism (Cone et al., 2001; Kim et al., 2014; Sainsbury 

and Zhang, 2010), cardiovascular system (Sapru, 2013), and reproductive system (Crowley, 

2015; Lehman et al., 2010; Voogt et al., 2001; Yeo, 2013). It also plays an important role 

in the neural circuitry underlying olfactory-encoded behavior in mammals. GnRHR 

neurons are identified in Arc (Badr and Pelletier, 1987; Wen et al., 2011), but the function 

of these neurons is unclear. In this chapter the firing activity and calcium signal of GnRHR 

neurons in Arc are investigated. I find that the intrinsic spike activity of GnRHR neurons 

in the Arc is not dependent on the reproductive cycle but that these neurons can be 

modulated by GnRH and the network. The network seems to be able to significantly rise 

the mean firing frequency during late proestrus, suggesting that some neurons are 

modulated in the network by the reproductive cycle. By simultaneously measuring firing 

activity and intracellular Ca2+ signals, I find that the action potential burst activity of 

GnRHR neuron is paired with an increase in intracellular calcium concentration. GnRH 

stimulation can simultaneously induce the increase of firing frequency in the GnRHR 

neuron and their intracellular calcium, which may originate from Ca2+ influx through 

voltage-dependent calcium channels.  

GnRHR neurons in the Arc are regulated by both GnRH and network. 

GnRHR neurons in Arc increase their spontaneous firing frequency in late proestrus, while 
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they show a lower firing frequency in other estrous stages. However, in the presence of 

synaptic blocker that blocks the most fast-acting neurotransmitters, the high firing 

frequency of GnRHR neuron in Arc during the late proestrus is attenuated. These neurons 

display the similar firing frequency as those in the other estrous stages. In this light, the 

intrinsic spike activity of GnRHR neurons in the Arc is independent of the reproductive 

cycle and the network is involved in regulating their firing behavior. One candidate of the 

fast-acting neurotransmitter is glutamate, an excitatory amino acid, which may increase the 

firing activity of GnRHR neurons in Arc during the late proestrus. There is evidence that 

excitatory neurotransmitter glutamate is prominently involved in puberty onset and the 

preovulatory gonadotropin surge in female rat (Brann and Mahesh, 1991; Eyigor and 

Jennes, 2000). In addition, studies showed that strong immunoreactivity for glutamate 

exists in Arc and immunoreactive glutamate axons are in synaptic contact with dendrites 

and cell bodies in this region (Brann and Mahesh, 1995; van den Pol, 1991; van den Pol et 

al., 1990). All of these suggest that the glutamate neurotransmitter may involve in 

regulating the firing activity of Arc GnRHR neurons. However, the future experiment is 

needed to confirm that glutamate could modulate the firing activity of GnRHR neurons in 

Arc. Moreover, as the discussed in Chapter 2, some other reproductive hormones could 

also regulate firing activity of GnRHR neurons in Arc, for example, estradiol and 

progesterone. Confocal microscopic studies by Michell et al. suggested that GnRH neurons 

send inputs to dopaminergic neurons in Arc containing estrogen receptor α (ERα) (Mitchell 

et al., 2003). Except the ERα, evidence have shown that most TIDA neurons express the 

prolactin receptor (Prlr) (Kokay and Grattan, 2005; Lerant and Freeman, 1998) and can 

respond to increased prolactin (Brown et al., 2012, 2016). I infer that if dopaminergic 

neurons in Arc express GnRHR, then the GnRHR neurons in Arc could be modulated by 

estradiol or prolactin or both. Direct evidence that dopaminergic neurons in Arc express 

GnRHR is needed. In addition, studies reported that approximately 90% kisspeptin neurons 

in Arc express ERα (Kumar et al., 2015). Kisspeptin neurons are believed to play an 

important role in regulation female reproductive system and regulate the activity of GnRH 

neurons (Tassigny and Colledge, 2010). However, there is no direct evidence to support 

that kisspeptin neuron connects with GnRHR neurons in Arc. Kisspeptin neurons in Arc, 

regulated by estradiol, might modulate GnRHR neurons through the adjacent network. The 
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future experiment is required to clarify whether GnRHR neurons in Arc are regulated by 

other reproductive hormones with or without synaptic blocker presence.  

GnRHR neurons showing burst firing activity exhibit simultaneous a rise in 

intracellular calcium. To enable me to examine a link between burst firing activity and 

changes in intracellular calcium, a protocol combining loose-patch and calcium imaging 

recording on brain slices was developed. I observed that the intracellular Ca2+ of Arc 

GnRHR neuron is changing simultaneously with their firing activity. By analyzing the 

parameters of firing activity and calcium signals, a correlation between them is identified. 

At the start of the burst, the intracellular calcium signal starts rising. The peak of the 

calcium signal occurs at the end of the burst and decays immediately thereafter. One 

possible explanation is that at the beginning of the burst the neuron is depolarized, which 

could lead to Ca2+ entry through low voltage-activated calcium channels (Cain and Snutch, 

2013). With the small influx of Ca2+, the membrane potential is further depolarized to 

activate the voltage-dependent sodium channel and high voltage-activated calcium 

channels allowing more Ca2+ entry and generation of action potentials (Cain and Snutch, 

2010; Xu and Clancy, 2008). The concentration of intracellular Ca2+ is building up. 

Neurons continuously firing until the low voltage-activated calcium channels are 

inactivated and calcium-dependent potassium channels are activated, which makes the 

neurons return to the initial potential (Jahnsen and Llinás, 1984). The burst terminates and 

the intracellular Ca2+ concentration begins to decay slowly (Grinnell, 1988). To start a new 

burst of action potentials, neurons need to overcome a set point (threshold potential). The 

identity of this depolarizing conductance is at this moment elusive. However, the details 

about which and how the ion channels regulating the burst firing activity need further 

investigation by whole-cell recording. Burst firing is a character of many neuroendocrine 

cells and is an efficient firing pattern to release neurotransmitters or hormones (Chu et al., 

2012; Lyons et al., 2010; Morozova et al., 2016). Lyons et al. demonstrated that TIDA 

neurons in Arc discharge rhythmically in a robust oscillation (Lyons et al., 2010). Since 

GnRHR neurons in Arc exhibit burst firing, it is reasonable to consider that GnRHR 

neurons may represent TIDA neurons. This could be confirmed by immunostaining using 

tyrosine hydroxylase antibodies (Lyons et al., 2012). 
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GnRH modulates firing activity of Arc GnRHR neuron through a calcium-

dependent pathway. A short application (1s pulse) of 0.5 nM GnRH can increase the 

firing frequency of GnRHR neuron and the intracellular Ca2+, indicating that the increase 

of the intracellular Ca2+ is part of the response to the GnRH stimulation. GnRHR is a 

Rhodopsin related G-protein-coupled receptor (Millar and Pawson, 2004; Reinhart et al., 

1992; Tsutsumi et al., 1992). Most studies of GnRH-GnRHR intracellular pathway are 

based on the function of type I GnRHR receptor in pituitary gonadotropes. It was proposed 

that GnRHR in pituitary gonadotropes interacts mainly with Gαq/11, which subsequently 

activates phospholipase C (PLC) (Grosse et al., 2000; Hsieh and Martin, 1992; Naor et al., 

1986). In our case, in the absence of TTX and presence of synaptic blocker cocktails, the 

increase of firing activity and intracellular calcium under GnRH stimulation is observed. 

This indicates that a voltage-dependent Ca2+ influx, most likely candidates are CaV 

channels, might be involved in the GnRH-induced response. However, the link between 

GPCRs and the activation of CaV channels is missing. In the classical PLC pathway, the 

activation of PLC hydrolyzes phosphatidylinositol 4,5-bisphophate (PIP2) into the second 

messenger inositol 1, 4, 5-tris-phosphate (IP3) and diacylglycerol (DAG) (Neves et al., 

2002). DAG could induce external Ca2+ influx, for example, via transient receptor potential 

(TRP) channels (Numata et al., 2011). Meanwhile, the intracellular IP3 leads to the release 

of Ca2+ from the endoplasmic reticulum (ER) into the cytosol. Future experiments are 

needed to distinguish the source of the increase of intracellular calcium under GnRH 

stimulation, from internal or external. This can be identified using thapsigargin, a Ca2+-

ATPase inhibitor, to empty the ER Ca2+ store or the low-Ca2+ extracellular solution. 

Furthermore, in the presence of TTX and synaptic blocker cocktails, which blocks voltage-

dependent sodium channels and the fast-synaptic input, often the main source of a 

depolarization, prevents from an increase in calcium in these Arc GnRHR neurons. How 

the membrane potential changes remains unclear. It needs further investigation using 

whole-cell clamp technique under the same experiment circumstance to test whether a slow 

depolarizing conductance is involved in starting the burst firing. TRP channels have lately 

been indicated as potential targets for GPCRs (Flockerzi and Nilius, 2007). Using different 

TRP channel blockers could help identify which and how the TRP channels are involved 

in the GnRH-induced response.  
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This chapter establishes a series of methods and triggers interesting questions to be 

investigated. Future experiments are needed to identify whether GnRHR neurons in Arc 

are TIDA neurons. Furthermore, it is worth investigating which channels are involved in 

GnRH-GnRHR signaling pathway and modulate the firing activity of GnRHR neurons, 

which would help better to understand the cellular mechanism linking GnRHR activitation 

to an increase in the firing pattern and rise in the calcium signal. 
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Chapter 6 

Summary  

Gonadotropin-releasing hormone (GnRH) is a master hormone in regulating the 

mammalian reproductive physiology though the hypothalamus-pituitary-gonadal (HPG) 

axis (Gore, 2002; Knobil and Neill, 2006). GnRH-target neuron, GnRHR neurons, not only 

exist in anterior pituitary, but also are distributed in multiple brain areas which are 

associated with different functions, for example reproductive behavior, odor and 

pheromone processing, and various social behaviors (Badr and Pelletier, 1987; Jennes et 

al., 1997; Wen et al., 2008, 2011). The physiological function of GnRHR neurons in the 

brain is still unclear. Due to the development of a new mouse model by the Boehm 

laboratory, GnRHR neurons can be visualized in live brain slices by the co-expression of 

τGFP, a green fluorescent protein (Wen et al., 2011). In this latter study, they found that 

GnRHR neurons respond in a nucleus specific manner to the GnRH stimulation using 

calcium imaging. In the present work, I investigate more specifically GnRHR neuron 

during the female reproductive cycle in the periventricular hypothalamus (Pe) and arcuate 

nucleus (Arc).  

6.1 GnRHR neurons exhibit different firing activity in different brain area 

GnRHR neurons in Pe alternate their action potential firing patterns in concert with the 

female reproductive cycle and change firing activity from tonic to burst during the 

preovulatory period, which is even more pronounced in the presence of synaptic blockers. 

GnRHR neurons in the Arc show also a change in firing frequency in late proestrus, which 

does not include a change from tonic to burst firing pattern, but a total increase in the mean 

firing frequency. This change in firing frequency is however abolished in the presence of 

synaptic blockers. These results suggest that the intrinsic firing activity of GnRHR neurons 

are different in the two brain areas. Both GnRHR neurons seem to be modulated by a state- 

(or hormone)-dependent network pathways as apparent by the increase of burst firing 

GnRHR neuron under synaptic blocker during the preovulatory period in Pe (Figure 3.3 D, 

G) and the synaptic blockers that abolish the high firing frequency during late proestrus in 
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Arc (Figure 5.2). Several reproductive hormones fluctuate during the female reproductive 

cycle, for example: estradiol and progesterone, which might be involved in regulating 

GnRHR neuron firing activity, (Butcher et al., 1974; Bashour and Wray, 2012; Knobil and 

Neill, 2006). These hormones could regulate GnRHR neuron through directly interaction 

with their receptors on GnRHR neurons or through regulation of local network. In Pe, the 

number of tonically firing GnRHR neurons increase during early proestrus, which 

correlates with the change of estradiol levels during the estrous cycle. Therefore, it is 

reasonable to consider that estradiol may regulate GnRHR neurons firing tonically. 

Nevertheless, estrogen receptor ERα expression is not detected in GnRHR neurons of the 

Pe (Kumar et al., 2015). Estradiol might act on adjacent cells that do express ERα to 

modulate GnRHR neurons, which needs further experiment to clarify. By contrast to Pe, it 

was shown that GnRH neurons send inputs to dopaminergic neurons in Arc containing 

estrogen receptor α (ERα) (Mitchell et al., 2003). If these dopaminergic neurons in Arc 

also express GnRHR, then the GnRHR neurons in Arc could be directly modulated by 

estradiol. This conjecture need to be tested by further studies to clarify whether GnRHR 

neuron in Arc expresses tyrosine-hydroxylase using immunostaining and how estrodial 

modulates the firing activity of GnRHR neurons in Arc.  

6.2 Endogenous GnRH modulates the spike code activity of GnRHR neurons in both 

Pe and Arc 

The action potential pattern of both Pe and Arc GnRHR neurons are affected by GnRH 

stimulation, but in a different manner. GnRHR neurons in Pe alternate their action potential 

firing patterns from tonic to burst during the preovulatory period, and it is known that 

pulsatile GnRH release increases in frequency and amplitude in the preovulatory period 

(Sisk et al., 2001). Consequently, I proposed that the changing firing activity of GnRHR 

neuron in Pe from tonic to burst is due to the GnRH stimulation. Puff application of GnRH 

produces a biphasic short-lived response followed by longer-latency and long-lasting 

changes in action potential activity. This is consistent with Wen et al. (2011) study where 

two types of somatic Ca2+ transients in Pe GnRHR neurons were observed having a 25s 

delay between the responses at saturating GnRH. Bath application of GnRH directly on 

brain slices triggers the conversion of the mode of activity of GnRHR neurons from tonic 



     Chapter 6 

99 
 

to burst firing, which can be reversed by an antagonist of GnRHR, cetrorelix. Furthermore, 

bath application of cetrorelix on GnRHR neurons in different estrous stages reiterates that 

the endogenous GnRH stimulation is likely to be the main source for converting the mode 

of action potential firing during the preovulatory period. These properties enable GnRHR 

neurons to switch their firing modes depending on fluctuations in GnRH level during the 

estrous cycle, thus suggesting important functional roles in female reproductive 

performance. In contrast to the Pe, GnRHR neurons in Arc are very heterogenous in their 

spiking pattern on any day of the reproductive cycle. These neurons vary between irregular, 

tonic, and burst firing. Yet, stimulation with GnRH still changes the firing pattern, mainly 

increasing the mean spike firing rate. The underlying change of the increase in spike 

frequency is an increase in calcium. The diverse calcium signals between Pe and Arc that 

I found are in agreement with the previous finding of Wen et al. (2011).  

6.3 GnRHR neurons in different brain area receive different source of GnRH 

The sources of GnRH focusing on three structures are investigated using 

immunohistochemistry: GnRH-secreting fibers, blood vessels, and third ventricle. I 

observed that GnRHR neurons possess close appositions to Pe capillaries (appositions, < 

0.3 µm), but GnRH-secreting fibers are never found in the proximity to any GFP-tagged 

Pe neurons. Due to the extensive length of the fibers of both GnRH-secreting and GnRHR 

neurons in the Pe, synaptic input from GnRH-secreting neurons onto Pe GnRHR neurons 

cannot be excluded. Electron microscope observations, performed in collaboration with 

Prof. Frank Schmitz’ laboratory, show that the endothelial cells of capillaries in Pe contain 

many caveolae-like structures, suggesting a less constrained blood-brain barrier (BBB). In 

addition, the dependence of the action potential activity on the estrous cycle suggests that 

GnRH released into the blood might be the main source to modify the firing activity of 

these Pe neurons. In contrast to Pe, Arc exhibits different anatomical structure. The 

appositions between GnRH fibers and GnRHR neurons are easily identified (Figure 4.2B), 

suggesting GnRHR neurons in Arc might directly sense the GnRH from the GnRH-

secreting fibers. GnRH-secreting fibers can also release glutamate (Kiss et al., 2003) 

suggesting that the previously mentioned glutamate influence is likely modulated by the 
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GnRH release on the GnRHR neurons in the Arc. My results indicate that GnRHR neurons 

in different brain areas are regulated by the different sources of GnRH. 

6.4 Systemic injection of cetrorelix, an antagonist of GnRHR, can influence the firing 

activity of GnRHR neurons in the brain 

Cetrorelix, a well-established GnRHR antagonist, is widely used to treat clinical patients 

in a wide range of hormone-dependent diseases such as precocious puberty, cancer, as well 

as in vitro fertilization protocols (Delemarre et al., 2008; Layman, 2007; Shrestha et al., 

2015). It can efficiently inhibit gonadotropin release by blocking GnRHR in the pituitary, 

thereby reducing the rate of ovulation (Duijkers et al., 1998; Reissmann et al., 2000; Bittner 

et al., 2011). However, potential adverse effects of cetrorelix on GnRHR neurons in the 

brain is still a matter of debate. Considering a less constrained BBB in Pe, GnRHR neuronal 

activity in the brain may be susceptible to the systemic treatment with cetrorelix. As 

expected, subcutaneous injection of the GnRHR antagonist cetrorelix can effectively block 

the HPG axis, as manifested by an increase in the number of tertiary follicles concomitant 

with a significant inhibition of follicle rupture and more corpora lutea formation (chapter 

4.2.3). Furthermore, GnRHR neuron firing activity is susceptible to the systemic treatment 

with 10 µg and 50 µg cetrorelix. Especially a 50 µg cetrorelix treatment can modulate the 

GnRHR neuron activity and induce Pe neurons to fire more tonically and to mimic spike 

firing activity in early proestrus. From all these data I demonstrate that the antagonist of 

GnRHR can act on GnRHR neurons in the brain which are not a part of the classical HPG 

axis; therefore, supporting the scenario that previously dismissed therapeutic drugs may 

gain access to the brain and modulate neuronal activity as observed with the GnRHR 

neurons in the Pe.  

6.5 GnRH-induced action potential burst activity induces a calcium increase via 

voltage-dependent ion channels in Arc GnRHR neurons 

To investigate the GnRH-GnRHR intracellular signaling pathway, an increase of the 

intracellular Ca2+ and firing frequency is observed using puff application of GnRH on Arc 

GnRHR neuron in the presence of the synaptic blocker cocktail. This indicates that the 

increase of the intracellular Ca2+ is part of the response to the GnRH stimulation. Studies 



     Chapter 6 

101 
 

have shown that GnRHR is a Rhodopsin related G-protein-coupled receptor (Millar and 

Pawson, 2004; Reinhart et al., 1992; Tsutsumi et al., 1992). It was proposed that GnRHR 

might interact with Gαq/11, which subsequently activates phospholipase C (PLC) pathway 

(Grosse et al., 2000; Hsieh and Martin, 1992; Naor et al., 1986). The activation of PLC 

hydrolyzes phosphatidylinositol 4,5-bisphophate (PIP2) into the second messenger inositol 

1, 4, 5-tris-phosphate (IP3) and diacylglycerol (DAG). The IP3 can lead to the release of 

Ca2+ from endoplasmic reticulum (ER) into the cytosol while the DAG could induce 

external Ca2+ influx (Neves et al., 2002), for example, via transient receptor potential (TRP) 

channels (Numata et al., 2011). Therefore, in our case, the GnRH-induced increase of 

cytoplasmic Ca2+ might come from the ER Ca2+ store release or from the external Ca2+ 

influx, for example, from voltage-dependent Ca2+ channel or TRP channel. Thapsigargin 

is a Ca2+-ATPase inhibitor. Future experiment may test the GnRH-induced response after 

thapsigargin emptying the internal ER Ca2+ store or after bath application of the low-Ca2+ 

extracellular solution to distinguish the source of increased intracellular Ca2+. Furthermore, 

in the presence of TTX and synaptic blocker cocktails, which blocks voltage-dependent 

sodium channels and the fast-synaptic input, often the main source of a depolarization, 

prevents from an increase in calcium in these Arc GnRHR neurons. This indicates the 

action-potential-driven Ca2+ influx might be involved in the GnRH-GnRHR intracellular 

signaling pathway. In further experiments, how the change of the membrane potential 

under GnRH stimulation needs to be investigated using whole-cell clamp technique and to 

test which channel is taking part in the GnRH-induced change of the membrane potential. 

It was suggested that TRP channels is a potential target for GPCRs (Flockerzi and Nilius, 

2007). Using different TRP channel blockers will help understand the role of TRP channels 

in the GnRH-induced response.  
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