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Abstract

Proof assistants are becoming widespread for formalization of theories both in computer science
and mathematics. They provide rich logics with powerful type systems and machine-checked
proofs which increase the confidence in the correctness in complicated and detailed proofs.
However, they incur a significant overhead compared to pen-and-paper proofs.

This thesis describes work on bridging the gap between high-order proof assistants and first-
order automated theorem provers by extending the capabilities of the automated theorem provers
to provide features usually found in proof assistants.

My first contribution is the development and implementation of a first-order superposition
calculus with a polymorphic type system that supports type classes and the accompanying refuta-
tional completeness proof for that calculus. The inclusion of the type system into the superposition
calculus and solvers completely removes the type encoding overhead when encoding problems
from many proof assistants.

My second contribution is the development of SupInd, an extension of the typed superposition
calculus that supports data types and structural induction over those data types. It includes
heuristics that guide the induction and conjecture strengthening techniques, which can be applied
independently of the underlying calculus.

I have implemented the contributions in a tool called Pirate. The evaluations of both contribu-
tions show promising results.
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Zusammenfassung

Beweisassistenten werden zunehmend in der Formalisierung von Theorien, sowohl in der In-
formatik als auch in der Mathematik, genutzt. Ihre vielseitigen Logiken mit ausdrucksstarken
Typsystemen ermöglichen maschinenkontrollierte Beweise. Dies erhöht die Vertrauenswürdigkeit
von komplizierten und detaillierten Beweisen. Im Gegensatz zu Papierbeweisen ist ihr Gebrauch
jedoch aufwendiger.

Diese Dissertation beschreibt Fortschritte darin, den Abstand zwischen Beweisassistenten
höherer Stufe und automatischen Beweissystemen erster Stufe zu schließen, indem automatische
Beweissysteme so erweitert werden, dass sie die Möglichkeiten die Beweisassistenten bieten
auch bereit stellen.

Der erste Beitrag ist die Erweiterung des Superpositionskalküls erster Stufe um ein poly-
morphes Typsystem, das Typklassen unterstützt. Die Erweiterung beinhaltet einen Beweis der
Widerlegungsvollständigkeit. Das Typsystem als Teil des Superpositionskalkül ermöglicht die
Übertragung von Problemen aus Beweisassistenten ohne den sonst üblichen Mehraufwand durch
Typenenkodierung.

Der zweite Beitrag ist die Entwicklung von SupInd, einer Erweiterung von Superposition,
die Datentypen und strukturelle Induktion über diese Datentypen ermöglicht. SupInd beinhaltet
Heuristiken, die die Induktion lenken und Annahmenverstärkungstechniken, die auch unabhängig
des Kalküls benutzt werden können.

Die Beiträge wurden im Tool Pirate umgesetzt, die Evaluationen zeigen vielversprechende
Ergebnisse.
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1. Introduction

This thesis describes work on bridging the gap between high-order proof assistants and first-order
automated theorem provers by extending the capabilities of automated theorem provers to provide
features generally found in proof assistants.

1.1. Motivation

Proof assistants are becoming widespread for formalization of theories both in computer science
and mathematics. They provide rich logics with powerful type systems and machine-checked
proofs which increase the confidence in the correctness in complicated and detailed proofs.
However, despite their rising popularity, proof assistants can have a significant overhead compared
to theorem proving with pen-and-paper and require significant interaction of the user of such an
proof assistant.

Automated theorem provers on the other hand provide push-button automation to theorem
proving that requires no user interaction. Their main disadvantage is that the most successful of
them can only prove theorems in (untyped) first-order logic without many of the conveniences
and features that proof assistants provide. As part of the preparatory phase of the Graduate School
of Computer Science, I extended SPASS to support a monomorphic type system [9]. SMT-solvers
and superposition provers like Vampire also support monomorphic type systems [21, 23, 39, 50].

Proof assistants can harness the power of automated theorem provers by encoding their rich
structure into the first-order logic that automated theorem provers can process [2, 11]. This
process has two main phases. First, higher-order features are encoded into first-order constructors.
After the removal of higher-order features, the proof assistant’s type system has to be encoded
into a type system that the automated theorem prover supports.

This has several drawbacks. For one, it is generally acknowledged that encodings add ex-
tra structure into the problem which then complicates the tasks for the automated theorem
provers [20]. This can drastically reduce their success rate. Even worse, not all encodings lead to
proofs that can be reconstructed in a proof assistant [11]. For example, the simple definition of
reverse over the data type of list over natural numbers can be defined as the following, where @
is the list append written in infix notation and [. . . ] denotes the singleton list:

data type N -list : nil | cons(N ,N -list)

rev(nil) = nil

rev(cons(XN ,XSN -list)) = rev(XSN -list)@[XN ]

When encoding this to untyped first-order logic (via the so called type guards encoding) two
predicates (pN and pN -list), must be introduced to encode if a term is of the natural numbers or
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a list. Additionally, axioms must be added to specify which terms are of the type the predicate
corresponds to. The two simple equations encoded into untyped first-order logic then become the
following formulas:

pN -list(nil)

pN (X) ∧ pN -list(XS )⇒ pN -list(cons(X,XS ))

rev(nil) = nil

pN (X) ∧ pN -list(XS )⇒ rev(cons(X,XS )) = rev(XS )@[X]

pN (X) ∧ pN -list(XS )⇒ pN -list(rev(X,XS ))

This encoding also loses information. In a proof assistant, the two equations that define the list
reverse (rev) are implicitly oriented from left to right, i.e. in the order of rev’s computation. This
information about orientation is lost by the translation into untyped fist-order logic. Even worse,
the recursive equation turns into a clause with three literals, making simplification via simple
equational rewriting impossible. Furthermore, the information that N -list is a data type is also
lost. Even by adding further formulas, that information can only be partially encoded, because
induction (an essential property of data types) cannot be finitely first-order axiomatized.

The challenge posed by the significant overhead that encodings involve is further strengthened
by the fact that automated theorem provers are designed to find theorems, but have trouble
showing that sets of axioms are satisfiable. Whereas proof assistants generally have a vast set
of axioms where only a small (a priori unknown) subset is relevant to proving a theorem. Thus,
any proof obligation passed to an automated theorem prover will contain hundreds of irrelevant
axioms and a handful of necessary ones. Ideally, we want to pass as many axioms as possible
to the automated theorem provers, because it is hard to determine which axioms are irrelevant.
The fewer encodings an automated theorem prover has to handle, the more likely it is that it does
explore the relevant axioms, thereby finding a proof.

As mentioned, a further difference between automated theorem provers and proof assistance is
the support of data types and induction over them. For example, the property that the reverse of
the reverse of a list is the equal to the original list

rev(rev(XS )) = XS

is not a first-order consequence of the defining equations of rev but it is an inductive consequence.
Since induction cannot be finitely axiomatized, support of induction inside the automated theorem
provers is useful for any integration into a proof assistant.

1.2. Contributions

This thesis describes work on two main contributions toward bridging the gap between proof
assistants and automated theorem provers.

The first contribution of this thesis is the development and implementation of a first-order
superposition calculus with a polymorphic type system that supports type classes and the ac-
companying refutational completeness proof for that calculus. The inclusion of the type system
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into the superposition calculus removes the type encoding overhead when encoding problems
from proof assistants such as the high-order logic proof assistant family (HOL) to this version of
superposition (the encoding overhead for higher-order features remain). The HOL family is com-
prised of, among others, Isabelle/HOL, HOL4, HOL Light and ProofProver–HOL [25, 28, 49].
Furthermore, I proved that superposition extended with the polymorphic type system that supports
type classes is still refutationally complete. The evaluation of my implementation — Pirate —
shows that the polymorphic calculus is superior to the usage of type encodings. The evaluation
also shows that the polymorphic calculus it is competitive with it the simpler monomorphic type
system, even though it is more expressive than the monomorphic encoding.

My second contribution is the development of the SupInd calculus, an extension of typed su-
perposition that allows for recursive data types and structural induction over those data types.
SupInd features a novel heuristic that guides the application of induction to promising positions
while employing a technique that mitigates the result of irrelevant induction steps. I have also
developed two new conjecture strengthening heuristics (and adapted an existing one) that can
be applied independently of the underlying SupInd calculus. I also present an optimized variant
of SupInd that avoids (some) unnecessary inferences and is capable of detecting and removing
invalid conjectures and propositions. I have implemented SupInd in a specialized version of
Pirate with promising evaluation results on two standard benchmark sets.

1.3. Structure of This Thesis

The structure of this thesis is as follows:

• Chapter 2 introduces the necessary background on first-order logic as well as the superpo-
sition calculus, which underlies many successful automated theorem provers.

• Chapter 3 describes the polymorphic first-order logic, including syntax with unification,
typing rules, semantics and the necessary transformations using clausification and Skolem-
ization. It also contains the proof that superposition is refutationally complete for that
polymorphic logic.

• Chapter 4 describes SupInd, an extension of superposition to handle structural induction
and conjecture strengthening techniques. It also includes the discussion on the developed
heuristics and strengthening techniques.

• Chapter 5 summarizes my results and outlines future research opportunities.

Even though induction extends on the type system chapter, chapters 3 and 4 can be read in any
order. The evaluations and related work is presented at the end of each chapter.
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2. Preliminaries

The rest of this thesis requires knowledge of first-order logic and superposition [5], which will be
introduced in this chapter. The first-order logic introduced in this chapter is the standard, untyped
version of first-order logic. It is implemented by many automated theorem provers. The text of
this introductory section is heavily based on Weidenbach’s script of the automated reasoning
lecture given at Saarland University [38] with some adaptions from Bachmair and Ganzinger [5].

First, I will present the untyped first-order logic language with build-in equations (Sect. 2.1)
and then the superposition calculus, including the necessary machinery and the refutational
completeness proof (Sect. 2.2). The refutational completeness proof for superposition will then
be extended to the typed case in chapter 3 and further with (structural) induction in chapter 4.

2.1. Untyped First-Order Logic

In this section, I formally describe the syntax and semantics of untyped, equational first-order
logic. I will not provide the rules for predicates in our logic as both their rules are similar to those
of functions and it is generally known that predicates can be expressed as functions combined
with a special truth value.

2.1.1. Syntax

The syntax determines the allowed expressions and how they are built. It consists of the signature
that declares the used symbols and their properties and the rules how to form terms, clauses and
formulas and the syntactic operations of substitution and unification.

Definition 2.1.1.1 (Signature). A signature fixes a set of non-logical symbols used to construct
the terms and formulas. A signature Σ for untyped, equational first-order is the set SF , where

• SF is a set of function symbols f with arity ≥ 0, written as arity( f ) = m;

• SP is a set of predicate symbols p with arity ≥ 0, written as arity(p) = m;

From the symbols in the definitions of the signature terms can be build.

Definition 2.1.1.2 (Terms). Let Σ be a signature and X be a given at most countably infinite set
of term variables. Then all untyped terms TΣ(X ) are recursively defined as follows:

1. Every term variable in X is a term.

2. For all function symbols f ∈ SF with arity( f ) = m if t1,. . . ,tm are terms then f (t1,. . . ,tm)
is also a term.
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A term is ground if it contains no variables. A function (symbol) is a constant if it has no
arguments, for terms only consisting of a constant I also use f instead of f (). I will use s, t for
terms, f for function symbols and u, v for term variables.

A position p in a term t is a list of natural numbers [p1, . . . , pn] and is defined as pos([p1, . . . , pn],
f (t1, . . . , tm)) = pos([p2, . . . , pn], tp1) and pos([], t) = t. I write t[s]p to denote that the term s is
placed at position p in another term t.

Definition 2.1.1.3 (Formulas). Let Σ be a signature. Then all untyped formulas FΣ(X ) are
recursively defined as follows:

1. ⊥
2. >
3. p(t1, . . . , tm) if p ∈ SP , t1, . . . , tm ∈ TΣ(X ) and arity(p) = m
4. s≈ t if s, t ∈ TΣ(X )
5. ¬φ if φ ∈ FΣ(X )
6. φ ∧ ψ if φ,ψ ∈ FΣ(X )
7. φ ∨ ψ if φ,ψ ∈ FΣ(X )
8. φ→ ψ if φ,ψ ∈ FΣ(X )
9. φ↔ ψ if φ,ψ ∈ FΣ(X )

10. ∀u. φ if φ ∈ FΣ(X )
11. ∃u. φ if φ ∈ FΣ(X )

Let Q be either ∀ or ∃. Then for a (sub)formula Qu. φ the variable u is bound within φ. A
formula where all variables are bound, i.e. have a corresponding quantifier, is called closed. The
formulas constructed by 1–4 are atomic formulas. Atomic formulas and their negations (¬) are
literals.

Definition 2.1.1.4 (Clauses). A clause is a disjunction of one or more literals without any
quantifiers. I consider all variables of a clause to be implicitly universally quantified.

The clause consisting only of ⊥ is called the empty clause. Formulas and clauses are ground if
they contain no variables. I will use φ, ψ for formulas, C, D for clauses and N for clause sets.

Substitutions Here, I introduce substitutions for variables, terms and clauses.

Definition 2.1.1.5 (Variable Substitutions). A substitution is a mapping from variables (X ) to
terms (TΣ(X )).

I will use σ, θ for substitutions and write them as σ= {u1 7→ t1, . . . }, where all ui are pairwise
distinct, and define them to be:

σ(v) =
{

ti if v = ui

v otherwise

I also write vσ for σ(v). A substitution σ is updated to return t for u by

σ[u 7→ t](v) =
{

t if v = u
σ(v) otherwise

6



Definition 2.1.1.6 (Term Substitutions). Substitutions are extended to non-variable terms by

f (t1, . . . , tm)σ= f (t1σ, . . . , tmσ)

Definition 2.1.1.7 (Clause Substitutions). Substitutions are similarly extended to clauses by

1. ⊥σ=⊥
2. >σ=>
3. p(t1, . . . , tm)σ= p(t1σ, . . . , tmσ)
4. (s≈ t)σ= sσ≈ tσ
5. (¬(s≈ t))σ= ¬(sσ≈ tσ )
6. (φ ∨ ψ)σ= (φσ ∨ ψσ)

I do not need substitutions for formulas so I only define them for clauses.

Unification Unification describes the obligation to find a substitution σ such that for two terms
s and t it holds that sσ= tσ . A substitution σ1 is a more general unifier than the substitution
σ2 if there exists a substitution σ3 such that for all terms t: tσ2 = tσ1σ3. A substitution is the
most general unifier (mgu) if for all σ2 there exists a substitution σ3 such that for all terms t:
tσ2 = tσ1σ3. It is well known that if two (untyped first-order) terms are unifiable, then they have
a unique most general unifier (up to renaming of the variables).

2.1.2. Semantics

The semantics gives meaning to the constructs that can be build with a given syntax. It consists
of the structure and the interpretations. I will also define the notion of satisfiability here.

Definition 2.1.2.1 (Structure). A Σ-structure is a tuple (U, IF , IP), where

• U 6= /0 is the universe, a non-empty set

• IF is the set of functions f I : Um→U for each function symbol f ∈ S F , with arity( f ) = m

• IP is the set of predicates pI : Um → {0, 1} for each predicate symbol p ∈ S P, with
arity(p) = m

I will use e for elements of U.

Interpretations The meaning of a variable is given by a valuation. A variable valuation (V)
is a mapping X → U and is always relative to a Σ-structure. I leave this relation implicit. A
valuation V is updated to return e for u by

V[u 7→ e](v) =
{

e if v = u
V(v) else

7



Definition 2.1.2.2 (Interpretations of Terms). Valuations are extended to interpretations of
terms (TΣ(X )→ U) by the following

IV(u) = V(u)
IV( f (t1, . . . , tm)) = f I(IV(t1), . . . , IV(tm))

where f I ∈ IF is the function corresponding to the function symbol f ∈ SF and m its arity (and
equivalently for pI ∈ IP).

An interpretation IV is term-generated, if for every e ∈ U there exists a ground term t ∈ TΣ( /0)
such that e = IV(t).

Definition 2.1.2.3 (Interpretations of Formulas). Based on the interpretations of terms, the
interpretation of formulas is given by the following

IV(⊥) = 0
IV(>) = 1
IV(p(t1, . . . , tm)) = pI(IV(t1), . . . , IV(tm))
IV(s≈ t) = 1⇔IV(s) = IV(t)
IV(¬φ) = 1− IV(φ)
IV(φ ∧ ψ) = min(IV(φ),IV(ψ))
IV(φ ∨ ψ) = max(IV(φ),IV(ψ))
IV(φ→ ψ) = max(1− IV(φ),IV(ψ))
IV(φ↔ ψ) = 1⇔IV(φ) = IV(ψ)
IV(∀x.φ) = min

e∈U
(IV[x 7→e](φ))

IV(∃x.φ) = max
e∈U

(IV[x 7→e](φ))

A formula φ is valid in the interpretation IV (IV is a model of φ) if IV � φ⇔IV(φ) = 1. A
formula φ entails a formula ψ (φ � ψ) if for all interpretations IV it holds that IV � φ implies
IV � ψ. A formula φ is satisfiable if and only if there exists an interpretation IV such that IV � φ.
If there exists no such interpretation the formula is unsatisfiable. I call an interpretation a model
of a clause (formula) set N if and only if all clauses (formulas) of that set are true under that
interpretation.

2.1.3. Clausification and Skolemization

Superposition is defined on implicitly universally quantified clauses. Thus, in order to apply
superposition to arbitrary formulas existential quantification must be removed and the formulas
must be transformed to clauses.

A formula is in prenex normal form if all quantifiers are at the top of a quantifier-free formula,
i.e. the formula has the form Q1u1. . . .Qnun. φ where each Qi is either ∃ or ∀ and φ is quantifier-
free. Any formula can be translated (=⇒P) to an equivalent formula in prenex normal form.
Skolemization replaces the existential quantifiers by a choice function (often called Skolem
function), which computes the existential quantifier. The choice of what the existential quantifier
chooses depends only on the quantifiers above it or alternatively on the all free variables below it.
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Those variables turn into the arguments of the Skolem function. I apply Skolemization first to
the top most existential quantifier of a formula in prenex normal form. This existential quantifier
only depends on the universal quantifiers above it. The Skolem transformation (=⇒S ) then is

∀u1 . . .∀um. ∃u.φ=⇒S ∀u1 . . .∀um. φ{u 7→ f (u1, . . . , um)}

where n ≥ 0 and f is a fresh (Skolem) function symbol of arity m that is not present in the
signature (SF ). The transformation also adds the function symbol f to the signature. The
resulting formula of the Skolem transformation is not equivalent to the original formula, because
the signature has changed. It is guaranteed that the original formula is satisfiable in the original
signature if and only if the formula produced by the Skolem transformation is satisfiable in the
extended signature. Clause normal form transformation (⇒CNF) translates a prenex normal
formula without existential quantifiers into an equivalent set of clauses. The set of clauses is
then interpreted as an n-ary conjunction. I will not focus on clausification but note that any
set of formulas can be transformed in an equisatisfiable set of clauses by transforming each
formula via performing prenex normal form transformation followed by exhaustive application
of Skolemization and then applying clause normal form transformation.

2.2. Superposition

Superposition [5] is one of the most successful calculi for untyped equational first-order logic.
It is refutationally complete for first-order logic and a decision procedure for various first-order
logic fragments. Superposition is usually untyped, but there are variants which support (monadic)
sorts, e.g. the version underlying SPASS [67]. Because of it success in automatically solving
first-order problems, superposition-based theorem provers are important backend tools to attempts
to automate higher-order proof assistants, e.g. for tools such as Sledgehammer [10]. The one
guiding theme of this research is to make superposition more suitable for such a integration.

2.2.1. Literal and Clause Orderings

The superposition calculus is parameterized by orderings on terms, literals and clauses [5]. They
are used to decrease the necessary search space by restricting the inferences to the largest literals
and terms.

Definition 2.2.1.1 (Admissible Literal Ordering). Following Bachmair and Ganzinger’s defi-
nition [5], an ordering on literals � is admissible if

1. it is total on ground literals,

2. its restriction to terms is a reduction ordering and

3. closed under substitutions: for all literals L and L′ and all substitutions σ it holds that
L� L′ implies Lσ� L′σ

4. for all literals L and L′ it holds that L� L′ if

a) max(L)�max(L′) where max is the maximal term of a literal or
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b) max(L) = max(L′) where L is negative and L′ is positive

I call a literal L in a clause C′ ∨ L maximal if there is a substitution σ such that Lσ� L′ for all
literals L′ in C′. I call a literal L in a clause C′ ∨ L strictly maximal if there is a substitution σ
such that Lσ� L′ for all literals L′ in C′.

Definition 2.2.1.2 (Admissible Clause Ordering). Again, following Bachmair and Ganzinger
definition [5], an ordering on clauses � is admissible if

1. it is well-founded,

2. irreflexive and

3. closed under substitutions: for all clauses C and C′ and all substitutions σ it holds that
C �C′ implies Cσ�C′σ

4. for all clauses C and C′ it holds that C �C′ if

a) max(C)�max(C′) where max is the maximal literal of a clause.

2.2.2. Term Orderings

Term orderings are used to restrict the direction of superposition inferences to replacing terms
only with other terms that are not larger. The term orderings that are used are usually lifted to
an ordering on literals by assigning the literal s≈ t the multiset {s, t} and the literal s 6≈ t (also
written as ¬s≈ t) the multiset {s, s, t, t}. Then the multiset extension of the term ordering is used
for the literal ordering. Similarly, clauses are ordered by considering them as multisets of literals
and using the multiset extension of the literal ordering. Clause and literal ordering lifted in this
way from reduction orderings are admissible [5].

Reduction Orderings

A reduction ordering (as defined by Baader and Nipkow [3, p. 102]) is a well-founded rewrite
ordering. A total reduction ordering is also a simplification ordering, i.e. subterms are smaller
than superterms. A (total) reduction ordering thus is a (total) well-founded strict ordering � and
is

1. (total: for all s1, s2,
s1 � s2 ∨ s2 � s1 ∨ s1 = s2)

2. irreflexive: for all s1,
¬(s1 � s1)

3. transitive: for all s1, s2, s3,
s1 � s2 ∧ s2 � s3 =⇒ s1 � s3

4. compatible with Σ-operations: for all t1, . . . , tm, s1, s2 ∈ TΣ(X ) and all m ≥ 0 and all
function symbols f of arity m,
s1 � s2 implies f (t1, . . . , s1, . . . , tm)� f (t1, . . . , s2, . . . , tm)

10



5. closed under substitutions: for all s1, s2 ∈ TΣ(X ) and all substitutions σ,
s1 � s2 implies s1σ� s2σ

Simplification Orderings

A simplification ordering is a reduction ordering that has the subterm property, i.e. all subterms
are smaller than their superterms.

Knuth-Bendix Ordering The Knuth-Bendix Ordering (KBO) [37] is a widely used simplifi-
cation ordering, especially in superposition-based automated theorem provers. I present the KBO
adapted from Baader and Nipkow [3, p. 124].

Let |t|u denotes how often the variable u occurs in the term t. Let >f be a strict ordering on the
function symbols and let w be a weight function with the following properties:

1. There exists w0 ∈R+\{0} such that for all variables u, w(u) = w0 for all constant symbols
f , w( f )≥ w0

2. If f is a unary function symbol with weight w( f ) = 0, then f is the greatest element with
respect to >f

The weight function w is extended to terms by w( f (t1, . . . , tn)) = w( f )+w(t1)+ · · ·+w(tn).
I define s �KBO t to hold if and only if:

1. For all term variables u: |s|u ≥ |t|u and w(s) > w(t), or

2. For all term variables u: |s|u ≥ |t|u and w(s) = w(t), and one of the following:

a) There exists a unary function symbol f , a variable u and a positive integer n such that
s = f n(u) and t = u

b) There exist functions symbols f , g such that f >f g and
s = f (s1, . . . , sn f ) and t = g(t1, . . . , tng)

c) There exists a function symbol f and an index i, 1 ≤ i ≤ n, such that
s = f (s1, . . . , sn), t = f (t1, . . . , tn) and s1 = t1, . . . , si−1 = ti−1 and si �KBO ti

For untyped first-order superposition reduction orderings that are total on ground terms are
sufficient. The Knuth-Bendix Ordering is widely used for automated theorem proving, because
it is well-behaved, i.e. no matter the chosen parameters, syntactically smaller terms tend to be
smaller than (significantly) larger terms.

2.2.3. The Superposition Calculus

The superposition calculus is designed to establish whether a set of first-order clauses is unsatisfi-
able. It is refutationally complete, that is, it terminates if the clause set is unsatisfiable, but the
calculus may or may not terminate if it is satisfiable. The superposition calculus I present here
consist of four inference rules. The calculus operates on a set of clauses and exhaustively applies
the inferences until either no inferences are applicable or the empty clause has been derived.
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Superposition requires clause-, literal- and term orderings and a selection functions. The
selection function, selects a (possibly empty) subset of literals of each clause. Selection overrides
the maximality restrictions of the side conditions of the superposition calculus’ inferences.

In order to use superposition to prove that a conjecture formula is a consequence of a set of
axiom formulas, the conjecture formula must be negated and the negated formula must be added
to the axiom set. As described above, the extended set is then transformed to an equisatisfiable
set of clauses. If the clause set unsatisfiable, then the conjecture formula follows from the axiom
formulas, because its negation is unsatisfiable together with the axioms. If no further inference can
be applied and the empty clause has not been derived, the clause set is satisfiable. Each inference
has one or two clauses as premise and produce a new clause, which is smaller according to the
clause ordering. The calculus allows redundancy elimination, the removal of clauses that are
implied by smaller clauses. I present the inference rules and side condition of the superposition
calculus adapted from Bachmair and Ganzinger [5].

Positive Superposition
only if conditions 2–8 hold

D′ ∨ t ≈ t′ C′ ∨ s[s2]p ≈ s′

(D′ ∨C′ ∨ s[t′]p ≈ s′)σ
(PSup)

Equality Factoring
only if conditions 1–3 and 10 hold

C′ ∨ s≈ s′ ∨ t ≈ t′

(C′ ∨ t ≈ s′ ∨ t′ 6≈ s′)σ
(EF)

Negative Superposition
only if conditions 2–6 and 9 hold

D′ ∨ t ≈ t′ C′ ∨ s[s2]p 6≈ s′

(D′ ∨C′ ∨ s[t′]p 6≈ s′)σ
(NSup)

Equality Resolution
only if conditions 9 and 11 hold

C′ ∨ s 6≈ s′

C′σ
(ER)

Let ≺ be a fixed reduction order that is total on ground terms. I refer to s[s2]p also as s.

1. σ is the mgu of s and t 2. sσ 6� s′σ 3. tσ 6� t′σ 4. s2 is not a term variable

5. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ, nothing selected 6. σ is the mgu of t and s2

7. (s≈ s′)σ is strictly maximal in (C′ ∨ s≈ s′)σ, nothing selected 8. tσ≈ t′σ 6� sσ≈ s′σ

9. ((s 6≈ s′)σ is maximal in (C′ ∨ s 6≈ s′)σ, nothing selected) ∨ s 6≈ s′ selected

10. (t ≈ t′)σ is maximal in (C′ ∨ s≈ s′ ∨ t ≈ t′)σ, nothing selected 11. σ is the mgu of s and s′

Redundancy Redundancy elimination is a critical feature of the superposition calculus. A
clause C is redundant with respect to a clause set N if it is implied by clauses in N that are smaller
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than C (according to the clause ordering). Redundancy elimination enables many simplifications
such as rewriting, subsumption and others without sacrificing refutational completeness. I will
denote the (possibly infinite) set of clauses that is redundant with respect to a clause set N by
Red(N). Note that Red(N) may contain clauses not contained in N, i.e. Red(N) is not necessarily
a subset of N. A clause set N is saturated with respect to redundancy if any clause that can be
derived from N with one of the four inference rules is an element of N∪Red(N).

2.2.4. Refutational Completeness

In this section I will show the proof that if a clause set is unsatisfiable, then the empty clause will
be derived, i.e. the proof that the calculus is refutationally complete. The completeness proofs for
first-order logic are based on the refutational completeness of the ground case, then extending it
to the non-ground case by lifting and model construction. Again, I heavily base the description on
the script of the automated reasoning lecture given at Saarland University [38]. The proofs given
here are based on a simplification of Waldmann’s refutational completeness proof [65, 66] itself
an extension of Nieuwenhuis refutational completeness proof for constrained superposition [46]
and Bachmair and Ganzinger’s refutational completeness proof [5]. I will not introduce the
constraints of constrained superposition, but use the same proof layout as Waldmann, i.e. a single
induction proof for model construction.

For the remaining section, I need to talk about ground instances of clauses and clause sets so I
define the following notation for them. Let C be a clause. Then GΣ(C) is the set of all ground
instances of that clause. Let N be a set of clauses. Then GΣ(N) is the set of all ground instances
of all clauses in N.

Construction of Ground Candidate Interpretations

The construction of candidate interpretations of saturated sets and the corresponding lemmas
follow the description of Bachmair and Ganzinger [5] and Weidenbach [38]:

Let N be a set of clauses not containing the empty clause. Using induction on the clause
ordering �c, the sets of rewrite rules EC and RC for all C ∈GΣ(N) are defined as follows:
Assume that ED has already been defined for all D ∈GΣ(N) with D≺c C. Then RC =

⋃
D≺cC ED.

The set EC contains the rewrite rule s→ t, if

1. C = C′ ∨ s≈ t,
2. s≈ t is strictly maximal in C,
3. s� t,
4. C is false in RC ,
5. C′ is false in RC ∪{s→ t},
6. s is irreducible with respect to RC and
7. no negative literal is selected in C′.

In this case, C is called productive. Otherwise EC = /0. Finally, R∞ =
⋃

D∈GΣ(N) ED.

Lemma 2.2.4.1. If EC = {s→ t} and ED = {u→ v}, then s� u if and only if C �c D.

Lemma 2.2.4.2. The rewrite systems RC and R∞ are convergent (i.e. confluent and terminating).
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Proof. Obviously, s � t for all rules s→ t in RC and R∞. Furthermore, it is easy to check that
there are no critical pairs between any two rules: Assume that there are rules u→ v in ED and
s→ t in EC such that u is a subterm of s. As � is a reduction ordering that is total on ground
terms, I get u ≺ s and therefore D ≺c C and ED ⊆ RC . But then s would be reducible by RC ,
contradicting condition (6).

Corollary 2.2.4.3. If D ∈GΣ(N) is true in RD, then D is true in R∞ and RC for all C �c D.

Corollary 2.2.4.4. If D = D′ ∨ u≈ v is productive, then D′ is false and D is true in R∞ and RC

for all C �c D.

Lifting to Variables

with the main differences that I extracted Lemma 2.2.4.5 from Lemma 2.2.4.8, which it was
previously part of. This makes the proofs in the typed cases simpler, because Lemma 2.2.4.8 can
remain unmodified. The lemma can remain unmodified, because all its assumptions are extracted
into individual lemmas. Then only the lemmas for the assumptions, need to be shown again for
the typed case.

For the refutational completeness proof to succeed, two main assumptions must hold for
variables. First, variable instances must be closed under rewriting with RCθ, i.e. it must be
possible to instantiate a variable to all terms that its instances can be rewritten to. Second,
inferences from ground-substituted clauses must be instances of inferences of the non-ground
clauses. These properties are expressed in the following three lemmas. With the help of these
three lemmas, the remaining proof of the Model Construction Lemma is independent of how
variables are actually defined, i.e. if they are untyped or restricted by types.

Lemma 2.2.4.5 (Variable instances are closed under rewriting with RCθ).
Let C ∈ N and θ be a substitution such that Cθ ∈GΣ(C) and u be a variable occurring in C. If
uθ→RCθ t then there exists a θ′ such that uθ′ = t and Cθ′ ∈GΣ(C).

Lemma 2.2.4.6 (Lifting Lemma for the equality resolution and equality factoring inferences [38]).

Let C be a clause and let θ be a substitution such that Cθ is ground. Then every equality
resolution (or equality factoring) inference of Cθ is an instance of an equality resolution (or
equality factoring) inference from C.

Lemma 2.2.4.7 (Lifting Lemma for the superposition inferences [38]).
Let C = C′ ∨ s≈ s′ and D = D′ ∨ t ≈ t′ be two clauses without common variables and let θ be a
substitution such that Cθ and Dθ are ground. If there is a superposition inference between Cθ and
Dθ where sθ and some subterm of tθ are overlapped and sθ does not occur in tθ at or below a
variable position of t, then the inference is an instance of a superposition inference from C and D.

Model Construction

The model construction shows that any saturated (with respect to redundancy) set of clauses that
does not contain the empty clause has a term-generated model.
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Theorem 2.2.4.8 (Model Construction [38]).
Let N be a set of clauses that is saturated up to redundancy and does not contain the empty clause.
Then for every ground clause Cθ ∈GΣ(N) it holds that:

1. ECθ = /0 if and only if Cθ is true in RCθ.

2. If Cθ is redundant with respect to GΣ(N), then it is true in RCθ.

3. Cθ is true in R∞ and in RD for every D ∈GΣ(N) with D�C Cθ

Proof. The following proof of the theorem does not consider selection. It uses case distinction
and induction on the clause ordering �C and assume that 1–3 are already satisfied for all clauses
in GΣ(N) that are smaller than Cθ. Note that the “if” part of condition 1 is obvious from the
construction and that condition 3 follows immediately from condition 1 and Corollaries 2.2.4.3
and 2.2.4.4. So it remains to show condition 2 and the “only if” part of condition 1.

1. Cθ is redundant with respect to GΣ(N).
If Cθ is redundant with respect to GΣ(N), then it follows from clauses in GΣ(N) that are
smaller than Cθ. By condition 3 of the induction hypothesis, these clauses are true in RCθ.
Hence Cθ is true in RCθ.

2. xθ is reducible by RCθ.
Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say xθ→RCθ

t. Since variables are closed under rewriting with RCθ (Lemma 2.2.4.5), there exists a
substitution θ′ such that xθ′ = t and yθ′ = yθ for every variable y 6= x. The clause Cθ′

is smaller than Cθ. By condition 3 of the induction hypothesis, it is true in RCθ. By
congruence, every literal of Cθ is true in RCθ if and only if the corresponding literal of Cθ′

is true in RCθ; hence Cθ is true in RCθ.

3. Cθ contains a maximal negative literal.
Suppose that Cθ does not fall into Case 1 or 2 and that Cθ=C′θ ∨ sθ 6≈ s′θ, where sθ 6≈ s′θ
is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ and we are
done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ s′θ. Without loss of generality,
assume that sθ � s′θ.

a) sθ = s′θ.
If sθ = s′θ, then there is an equality resolution inference

C′θ ∨ sθ 6≈ s′θ
C′θ

As shown in the Lifting Lemma (Lemma 2.2.4.6), this is an instance of an equality
resolution inference

C′ ∨ s 6≈ s′

C′σ

where C = C′ ∨ s 6≈ s′ is contained in N and σ is the most general unifier of s and s′.
Since Cθ is not redundant with respect to GΣ(N), C is not redundant with respect to
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N. As N is saturated up to redundancy, the conclusion C′σ of the inference from C is
contained in N or is redundant with respect to N. Therefore, C′θ is either contained
in GΣ(N) and smaller than Cθ, or it follows from clauses in GΣ(N) that are smaller
than itself (and therefore smaller than Cθ). By the induction hypothesis, clauses in
GΣ(N) that are smaller than Cθ are true in RCθ, thus C′θ and Cθ are true in RCθ.

b) sθ � s′θ.
Without loss of generality assume that C and D are variable disjoint; so the same
substitution θ can be used. If sθ ↓RCθ s′θ and sθ � s′θ, then sθ must be reducible
by some rule in some EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ→ t′θ}.
Since Dθ is productive, D′θ is false in RCθ. Besides, by condition 2 of the induction
hypothesis, Dθ is not redundant with respect to GΣ(N), so D is not redundant with
respect to N. Note that tθ cannot occur in sθ at or below a variable position of s since
otherwise Cθ would be subject to Case 2 above. Thus, the left superposition inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ[tθ] 6≈ s′θ
D′θ ∨C′θ ∨ sθ[t′θ] 6≈ s′θ

can be applied. From the Lifting Lemma (Lemma 2.2.4.7) it follows that this is
a ground instance of a left superposition inference from D and C. By saturation
up to redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ,
or it follows from clauses in GΣ(N) that are smaller than itself and therefore are
smaller than Cθ. By the induction hypothesis, these clauses are true in RCθ, thus
D′θ ∨ C′θ ∨ sθ[t′θ]≈ s′θ is true in RCθ. Since D′θ and sθ[t′θ]≈ s′θ are false in RCθ,
both C′θ and Cθ must be true.

4. Cθ does not contain a maximal negative literal.
Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C′θ ∨ sθ ≈ s′θ,
where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ→ s′θ} or C′θ is true in RCθ or
sθ = s′θ, then there is nothing to show. It remains to show what happens in the case when
ECθ = /0 and C′θ is false in RCθ. Without loss of generality assume that sθ � s′θ.

a) sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.
If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. Thus, there is a equality
factoring inference

C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
C′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

From the Lifting Lemma (Lemma 2.2.4.6) it follows that this inference is a ground
instance of an inference from C. The conclusion is smaller since the negative literal
contains the smaller term and the positive literal stays unchanged. Thus, by the
induction hypothesis we known that the conclusion is true in RCθ. C′′θ must be false
(or Cθ would be true) and t′θ = s′θ implies that t′θ 6≈ s′θ and thus C′′θ ∨ t′θ 6≈ s′θ
must be also false. For the conclusion to be true, tθ≈ t′θ must be true in RCθ and thus
sθ ≈ s′θ (and therefore Cθ) must be true.

16



b) sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.
Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ→ t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
same way as in Case 3b: We know that tθ does not occurred in sθ at or below a
variable position of s, because then Cθ would be subject to Case 2 above. Thus, the
right superposition inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ[tθ]≈ s′θ
D′θ ∨C′θ ∨ sθ[t′θ]≈ s′θ

applies. From the Lifting Lemma (Lemma 2.2.4.7) it follows that this is a ground
instance of a superposition inference from D and C. Since tθ � t′θ (otherwise there
would be no rewrite rule) we know that sθ[t′θ]≈ s′θ is smaller then sθ[tθ]≈ s′θ. Since
sθ[tθ]≈ s′θ is strictly maximal, we also know that it is larger than all literals in C′θ.
It is also larger than all literals in D′θ. and thus the conclusion is smaller than Cθ. By
saturation up to redundancy and the induction hypothesis we know that the conclusion
is true in RCθ. Since D′θ and C′θ are false in RCθ, sθ[t′θ]≈ s′θ must be true in RCθ.
On the other hand, tθ ≈ t′θ is true in RCθ, so by congruence, sθ[tθ]≈ s′θ and Cθ are
true in RCθ.

c) sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.
Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then it
must be one of three possibilities:

i. Cθ can be true in RCθ.
ii. ECθ = {sθ→ s′θ}.

iii. C′θ can be true in RCθ∪{sθ→ s′θ}.
In the first two cases there is nothing to show. Let us therefore assume that Cθ
is false in RCθ and C′θ is true in RCθ ∪ {sθ → s′θ}. Then C′θ = C′′θ ∨ tθ ≈ t′θ,
where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and false in RCθ. In other
words, tθ ↓RCθ∪sθ→s′θ t′θ, but not tθ ↓RCθ t′θ. Consequently, there is a rewrite proof
of tθ→∗ u←∗ t′θ by RCθ ∪{sθ→ s′θ} in which the rule sθ→ s′θ is used at least
once. Without loss of generality, assume that tθ � t′θ. Since sθ ≈ s′θ �L tθ ≈ t′θ and
sθ � s′θ I can conclude that sθ � tθ � t′θ. Then there is only one possibility how
the rule sθ→ s′θ can be used in the rewrite proof: sθ = tθ must hold and the rewrite
proof must have the form tθ→ s′θ→∗ u←∗ t′θ, where the first step uses sθ→ s′θ
and all other steps use rules from RCθ. Consequently, s′θ ≈ t′θ is true in RCθ. Then
there is an equality factoring inference

C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
C′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

From the Lifting Lemma (Lemma 2.2.4.6) we know that it is a ground instance of
an equality factoring inference of C. The conclusion is smaller because sθ � tθ � t′θ
and sθ � s′θ. The conclusion of the ground inference is true in RCθ since the clause

17



set it saturated up to redundancy and because of the induction hypothesis. Since the
literal t′θ ≈ s′θ must be false in RCθ, the rest of the clause must be true in RCθ, and
therefore Cθ must be true in RCθ.

Refutational Completeness

Now, the actual refutational completeness theorems for superposition remain. Refutational
completeness exists in two flavors. The first flavor is static refutational completeness, which
means that a saturated clause set has a model if and only if it does not contain the empty clause.
The second flavor is dynamic refutational completeness, which means that for any unsatisfiable
clause set, under some fairness restrictions, any sequence of inference steps eventually derives
the empty clause. Again, I follow the presentation from Weidenbach [38].

The Static View
For the static view on completeness, the model constructed by the model construction has to be
lifted from the ground clauses to the non-ground clauses. Then static refutational completeness is
a consequence of the Model Construction Lemma.

Lemma 2.2.4.9 (Model Lifting [38]).
Let N be a set of (universally quantified) Σ-clauses and let I be a term-generated Σ-interpretation.
Then I is a model of GΣ(N) then it is a model of N.

Theorem 2.2.4.10 (Herbrand [38]).
A countable set N of first-order clauses is satisfiable if and only if it has a term-generated model.

Proof. ⇐ If it has a term-generated model it is satisfiable
⇒ Let N be satisfiable and thus N 6�⊥.
N 6�⊥ ⇒ ⊥ 6∈ Sup∗(N) Superposition is sound

⇒ ⊥ 6∈GΣ(Sup∗(N))
⇒ GΣ(Sup∗(N))I � GΣ(Sup∗(N)) (Lemma 2.2.4.8 with 2.2.4.5, 2.2.4.6 and 2.2.4.7)
⇒ GΣ(Sup∗(N))I � Sup∗(N) (Lemma 2.2.4.9)
⇒ GΣ(Sup∗(N))I � N (N ⊆ Sup∗(N))

Theorem 2.2.4.11 (Static Refutational Completeness [38]).
Let N be a set of clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N, then obviously N does not have a model. If ⊥ 6∈ N, then the interpretation R∞

is a model of all ground instances in of N according to Part 3. of the Model Construction Lemma.
As R∞ is term-generated, it is a model of GΣ(N). Thus, by Herbrand’s Theorem it is also a model
of N (Theorem 2.2.4.10).
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The Dynamic View
For the dynamic view on completeness, fairness needs to be defined in such a way that the limit
of any fair run is saturated (up to redundancy). Then dynamic refutational completeness can be
shown using fairness and static refutational completeness.

An inference is enabled with respect to a clause set N if all its premises are contained in N and
its result is not contained in N or Red(N). A run of the superposition calculus is a sequence of
clause sets N0 ` N1 ` N2 ` · · · , such that Ni � Ni+1 and all clauses in Ni\Ni+1 are redundant with
respect to Ni+1. Each step takes the previous clause set adds any number of clauses that follow
from that clause set and removes any number of clauses that follow from smaller clauses of the
new clause set. A run is fair if for all i and inferences sup that are enabled at Ni there exists a j
with j > i such that the inference sup is not enabled in N j.

Lemma 2.2.4.12 (Limit is saturated [38]).
If a run is fair, then its limit is saturated up to redundancy.

Proof. If the limit is not saturated up to redundancy, there must be an inference that can still be
applied. Thus both its premises must be in N∗ but the result is not in N∗ and is not redundant with
respect to N∗. Such an inference must be enabled in N∗ and thus must be enabled in all j that are
j≥ i for some i. By definition such a run cannot be fair.

Lemma 2.2.4.13 (Redundant Clauses [38]).
Let C be a clause that is redundant with respect to a clause set N and let I be an interpretation
such that I � N then I � C.

Theorem 2.2.4.14 (Dynamic Refutational Completeness [38]).
Let N0 ` N1 ` N2 . . . be a fair run and N∗ its limit. Then N0 has a model if and only if ⊥ 6∈ N∗.

Proof. ⇒ Obvious.
⇐ The run is fair and therefore N∗ is saturated up to redundancy (Lemma 2.2.4.12). If⊥ 6∈ N∗ and
since we know that N∗ is saturated up to redundancy, it has to have a model (Theorem 2.2.4.11).
Every clause in N0 is an element of N∗ or is redundant with respect to N∗ and thus the model of
N∗ is also a model of N0 (Lemma 2.2.4.13).
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3. Typed Superposition

In this chapter I present how to extend the superposition calculus with a polymorphic type system
that supports type classes. The type system is designed to be a first-order version of the type
system used by the interactive and higher-order logic proof assistant Isabelle/HOL [49]. In
particular, this typed version of superposition enables translations of proof obligations from
Isabelle without any type-encoding related overhead. Encoding of other features, such as higher-
order features like higher-order quantification (the superposition calculus is still first-order),
partial applications and lambdas is still required.

To achieve this, I first define a first-order logic extended with such a type system (Sect. 3.1).
Afterwards, I show how to adapt the superposition calculus and its machinery to this typed setting.
The main changes to superposition that are required to include a type system are contained within
unification (Sect. 3.1.3), Skolemization (Sect. 3.1.5) and the orderings (Sect. 3.2). The inference
rules of the superposition calculus itself remains largely unchanged (Sect. 3.3).

To restrict the search space, I have made the decision to not consider combinations of type
classes that do not contain any ground types, i.e. to consider those combinations of type classes to
be invalid. This has the benefit of limiting the reasoning to the relevant parts of the type classes
(and their combinations). A side effect is that type-Skolemization for those combinations of type
classes (without ground types) is either impossible or not satisfiability preserving (Sect. 3.1.5).

An evaluation of an implementation of the presented typed superposition calculus against
type-encodings used by Isabelle and a monomorphic type system provides evidence to the type
systems usefulness (Sect. 3.4). The benchmark problems used for the evaluation are generated
by Sledgehammer [10] from Isabelle formalizations. The formalizations that I used are either
included in Isabelle or from the Archive of Formal Proofs (AFP, www.isa-afp.org).

Furthermore, I show refutational completeness of the superposition calculus extended with
the type system by lifting untyped ground superposition via intermediate type-symbol and
monomorphic first-order languages to the polymorphic type system presented below (Sect. 3.5).

Finally, I discuss related work (Sect. 3.6).

3.1. Polymorphic First-Order Logic with Type Classes

In this section, I define the first-order language that includes the polymorphic type system
extended with type classes. The language features terms consisting of variables and functions
with complex types. These complex types allow type terms consisting of type constructors and
type variables. The type variables are further restricted by (sets of) type classes to only range
over a certain subset of all available types.

As before, in the untyped first-order logic (presented in section 2.1.1), I first define the
syntax (Sect. 3.1.1). In contrast to the untyped first-order setting, I also have to define typing
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rules that determine if terms are well-typed. The description of the typing rules is therefore
presented directly after the syntax (Sect. 3.1.2). Following this, I present unification for the typed
terms (Sect. 3.1.3). In that section, I also introduce an alternative representation of the typed
terms that makes unifications easier and faster to compute. Then, I define the semantics of the
typed language and finally show the typed clausification (Sect. 3.1.4) and discuss clausification
and Skolemization (Sect. 3.1.5).

3.1.1. Syntax

I now present the syntax of the polymorphic language with type classes. First, I present the
signature followed by the types, terms and formulas. In contrast to the untyped case more
information must be encoded in the signature to express the type of each symbol. Terms also
must be able to express the types. There is also additional structures to represent type terms, type
classes and type-class constraints, which restrict type variables.

Definition 3.1.1.1 (Signature). A signature for a polymorphic first-order language with type
classes is a tuple Σ = (SF , SP , S T , SK, T C, T , F , P) where

SF is the set of function symbols,
SP is the set of predicate symbols,
S T is the set of type constructor symbols,
SK is the set of type class symbols,
T C is the set of subclass declarations,
T is the set of type declarations,
F is the set of function declarations and
P is the set of predicate declarations.

Every symbol has a fixed arity. There must be exactly one declaration per function and predicate
symbol.

Before I formally define T , F and P I need the definitions of (possibly not well-formed)
type-class constraints, type terms, terms and formulas. Section 3.1.2 then introduces rules that
determine if they are well-formed. In particular, those rules prevent formulas with non-prenex
type quantifiers and ill-typed terms.

Notation I use f for function symbols, p for predicate symbols, t, s for terms, φ, ψ for
formulas, u, v for term variables, α for type variables, σ, θ for substitutions, τ for type terms, κ
for type constructors, k for type classes, K for sets of type classes (i.e. type-class constraints), n
for type arity and m for term arity. As before, I write t[s]p to denote that the term s is placed at
position p in another term t. If not explicitly mentioned otherwise, variables means both type
and term variables.

Subclass Declarations The subclass declarations are defined as follows:

T C is a finite set of elements k1 ⊆ k2 ∈ T C, which are subclass declarations, i.e. k1 is a subclass
of k2. The structure of T C must form a directed acyclic graph (DAG).
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Let ⊆∗T C be the reflexive, transitive closure of the subclass declarations k1 ⊆ k2 ∈ T C.

Definition 3.1.1.2 (Type-class constraint). A type-class constraint K ⊆ SK is a set of type-class
symbols.

Each type class represents a set of types and the type-class constraint represents the intersection
of all the type sets of its type classes. For a type constraints K, I also write K = k1 & . . . & kn

instead of the set representation K = {k1, . . . , kn}. I assume in the remaining chapter, that the
type-class constraints are minimal, i.e. that they contain no type class that has a subclass in the
type-class constraint. A type class is automatically fulfilled if one of its subclasses is and can
therefore be removed if a subclass is present.

Definition 3.1.1.3 (Type terms). Let Xτ be a given countably infinite set of type variables. All
possibly not well-formed type terms are recursively defined as:

• Every type variable in Xτ is a type term

• For all κ ∈ S T , if τ1, . . . , τn are type terms, then κ(τ1, . . . , τn) is a type term.

Type terms that do not contain a type variable are monomorphic.

Definition 3.1.1.4 (Terms). Let Xt be a given countably infinite set of term variables. All
possibly not well-formed terms are recursively defined as:

• Every term variable in Xt is a term

• For all f ∈ SF if τ1, . . . , τn are type terms and t1, . . . , tm are terms, then f [τ1, . . . , τn](t1, . . . , tm)
is also a term.

Terms that do not contain a term variable are ground and those that do not contain a type
variable are monomorphic. Terms that have the form f [τ1, . . . , τn](t1, . . . , tm) are function terms.

Definition 3.1.1.5 (Formulas). All possibly not well-formed formulas are recursively defined
as:

1. ⊥ is a formula

2. > is a formula

3. For all p∈ SP if τ1, . . . , τn are type terms and t1, . . . , tm are terms, then p[τ1, . . . , τn](t1, . . . , tm)
is a formula.

4. If t1, t2 are terms, then t1 ≈ t2 is a formula.

5. If φ1, φ2 are formulas, then φ1 ∧ φ2, φ1 ∨ φ2, φ1⇒ φ2, φ1⇔ φ2 and ¬φ1 are also formulas.

6. If φ is a formula, u a term variable and τ a type term, then ∀u:τ. φ and ∃u:τ. φ are also
formulas. Within φ the term variable u is bound and of type τ (unless it is bound again in
subformulas of φ. Then it is not bound in those subformulas, but the u of the subformula is
bound).
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7. If φ is a formula, α a type variable and K a type-class constraint, then ∀τα:K. φ and ∃τα:K. φ
are also formulas. Within φ the type variable α is bound and of type-class constraint K
(unless it is bound again in subformulas of φ, then it is not bound in those subformulas, but
the α of the subformula is bound).

Note that the quantifiers in 6 range over term variables and the quantifiers in 7 ranges over
type variables. In formulas, type quantifiers never occur below other formula symbols (except
other type quantifiers). The formulas 1–4 are considered atomic formulas. Atomic formulas and
their negations (¬) are literals. A closed formula is a formula in which every variable is bound
by a quantifier. I only consider closed formulas. Without loss of generality, I assume that every
variable has a unique name. In closed formulas with unique variable names, there is always a
unique binding quantifier for each variable and thus it is always known which type a term variable
has and which type-class constraint a type variable has.

Definition 3.1.1.6 (Clause). A clause is a disjunction of literals. All variables of a clause are
implicitly universally quantified and thus implicitly given their type and type-class constraint.

The clause consisting of no literals is called ⊥ or the empty clause. A clause can be written as
a formula (then with explicit quantification). Thus, if I have definitions or proofs for formulas,
I do not duplicate them for clauses. Formulas and clauses are (term) ground if they contain no
(term) variables.

Now that I have defined possibly not well-formed (type) terms and formulas, I can properly
define the remaining elements of the signature. They are:

T is a finite set of elements ∀τ α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k ∈ T , which are type
declarations. The “: k” part is optional. If omitted, the type constructor κ does not belong to
any type class and there must be exactly one declaration for κ. For every type constructor κ
in S T there must be at least one declaration.

F is a finite set of elements f : ∀τ α1:K1, . . . , αn:Kn. τ1, . . . , τm→ τ ∈ F which are function
declarations. The type variables α1, . . . , αn must be the only type variables occurring
in the type terms τ1, . . . , τm and τ. I use f [τ′1, . . . , τ

′
n](t1, . . . , tm), to write a function

term, denoting the appropriate instantiations of the αi by the corresponding type argument
τ′i. The type terms of the declaration can then be recovered by applying the substitution
{αi 7→ τ′1, . . . , αn 7→ τ′n} to the τ1, . . . , τm and the τ.

P is the finite set of elements p : ∀τ α1:K1, . . . , αn:Kn. τ1, . . . , τm ∈ P , which are predicate
declarations. The type variables α1, . . . , αn must be the only type variables occurring in the
type terms τ1, . . . , τm and τ. Similar to functions I write p[τ′1, . . . , τ

′
n](t1, . . . , tm), denoting

the appropriate instantiations.

A type class constraint K is more general than a type class constraint K′ (K′ ≤T C K) if and
only if for all k ∈ K there is a k′ ∈ K′ such that k′ ⊆∗T C k.

Definition 3.1.1.7 (Standard Coregularity, adapted from [26, 56]).
The set of type declarations T is coregular’ if for all ∀τ α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k ∈ T
and ∀τ α1:K′1, . . . , αn:K′n. κ(αi, . . . , αm) : k′ ∈ T such that k′ ⊆∗T C k, it holds that K′i ≤T C Ki for
all i.
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Coregularity ensures that there are most general unifiers for order-sorted algebras [48, 56].
Since T does not require a type declaration for all combinations of type constructors and type
classes, coregularity has to take that into account by also considering the type declarations that
the type classes ‘inherit’ (via the subclass relation) from their subclasses.

Definition 3.1.1.8 (Coregularity, further adapted from [26, 56]).
The set of type declarations T is coregular if for all ∀τ α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k ∈ T
and ∀τ α1:K′1, . . . , αn:K′n. κ(αi, . . . , αm) : k′ ∈ T such that k′ ⊆∗T C k, it holds that K′i ≤T C Ki for all
i. Furthermore, for all type classes k and type constructors κ, there exists a type class k′⊆∗T C k with
∀τ α1:K′1, . . . , αn:K′n. κ(αi, . . . , αm) : k′ ∈ T such that for all k′′ ⊆∗T C k with ∀τ α1:K′′1 , . . . , αn:K′′n .
κ(αi, . . . , αm) : k′′ ∈ T such that K′′i ≤T C K′i for all i.

Note, if a type class k has a type declaration for a type constructor κ, the new constraint is
fulfilled if the original coregularity was fulfilled, because then k is the k′ we look for. The new
constraint adds the check for the subclass from which the type class ‘inherits’ its type declaration.

I require that T is coregular. Isabelle’s constructive type classes are also coregular [26, 48].

3.1.2. Typing Rules

So far, I have only defined formulas, terms and type terms with no restriction as to whether they
are well-typed. The main objective of the typing rules is to ensure that declared and used types of
terms match with the declarations and quantors, to prevent that a type quantifier occurs below a
term quantifier and to define which type classes a type-term belongs to. I now define the typing
rules for formulas, terms and type terms.

Let γTC represent a typing context, where T is a mapping from term variables to types and C is
a mapping from type variables to a set of type classes (type-class constraint). All well-typedness
assertions are implicitly relative to a given signature. Without loss of generality, I assume that
all variables are named uniquely. I further assume that oB, o are boolean pseudo types which do
not match any type in the signature. I use these two boolean types to fix the quantifier for types
(∀τ, ∃τ) to appear only on the very top position in formulas, so that formulas of the type oB can
only be extended by further type quantifiers.

I will give the typing rules in form of inference rules, which follow the following structure:
The elements below the bar of the rules are what we want to show (the conclusion). The elements
above the bar are the assumptions and have to be proven.

A closed formula φ is well-typed if and only if one can, starting from γ /0
/0 ` φ : o, apply the

inference rules until all assumptions are empty or follow directly from the signature (i.e. the
assumptions are checks if a declaration is an element of the corresponding set in the signature).

Formulas The typing rules for formulas have two main objectives. First, to ensure that the type
quantifiers (∀τ, ∃τ) are always at the top of the formulas to prevent a type quantifier to be below a
term quantifier. Secondly, that the arguments of predicates match the predicate’s definition and
are well-typed, and that the type of both terms of an equality is the same.
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Definition 3.1.2.1 (Formula Typing Rules). The typing rules for formulas are as follows:

γTC ` s : τ γTC ` t : τ

γTC ` s≈ t : oB
(≈)

γTC ` φ1 : oB γTC ` φ2 : oB
γTC ` φ1 # φ2 : oB

(#∈{∧,∨,⇒,⇔})
γTC ` φ : oB
γTC ` ¬φ : oB

(¬)

p : ∀α1:K1, . . . , αn:Kn. τ1, . . . , τm ∈ P γTC ` t1 : τ1σ . . . γTC ` tn : τnσ

γTC ` p[α1σ, . . . , αnσ](t1, . . . , tn) : oB
(pred)

and for all i : 1..m. C ` αiσ : Ki

γ
T [u7→τ]
C ` φ : oB

γTC ` #u : τ. φ : oB
(#∈{∀,∃})

γTC ` φ : oB
γTC ` φ : o

(top)
γTC[α 7→K] ` φ : o

γTC ` #α : K. φ : o
(#∈{∀τ,∃τ})

Terms The typing rules for the terms ensure that the declared and used types of variables
match their binding quantors and that functions arguments’ type match the declaration and are
well-typed.

For given term variable mapping T and type variable mapping C, the following rules determine
if a term t is of type τ. Note that all terms of a closed formula share the same mappings T
and C. Furthermore, a (well-typed) function term’s type is uniquely determined by its function
declaration and its type arguments.

Definition 3.1.2.2 (Term Typing Rules). The typing rules for terms are as follows:

γTC ` u : T (u)
(term var)

f : ∀α1:K1, . . . , αn:Kn. τ1, . . . , τm→ τ ∈ F γTC ` t1 : τ1σ . . . γTC ` tm : τmσ

γTC ` f [α1σ, . . . , αnσ](t1, . . . , tm) : τσ
(fun)

and for all i from 1 to n it holds that C ` αiσ : Ki

Type Terms The typing rules for type terms infer if a type is a member of a type-class
constraint.

For a given type variable mapping C, the following rules determine if a type term τ is a member
of a set of type classes K. Note that all type terms of a closed formula share the same mapping C.
The T mentioned in the κ rule, is not a mapping but the type declaration set of the signature.

Definition 3.1.2.3 (Type-Term Typing Rules). The typing rules for type terms are as follows:

C ` τ : /0
(empty)

k ∈ C(α)
C ` α : {k}

(type var)

where τ is not a variable

∀α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k ∈ T C ` α1σ : K1 . . . C ` αnσ : Kn

C ` κ(αiσ, . . . , αmσ) : {k}
(κ)

k1 ⊆ k2 ∈ T C C ` τ : {k1}
C ` τ : {k2}

(subclass)
C ` τ : {k1} · · · C ` τ : {kN}

C ` τ : {k1, . . . , kN}
(combine)

where N > 1 and τ is not a variable
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Non-Overlapping Typing Rules I am now presenting a slight variation on the rules that show
that they can be implemented in such a way that always only one typing rule applies. To achieve
this, the top typing rule is delayed and the subclass typing rule is integrated in the other type-term
typing rules. First, I show that this is sufficient to have non-overlapping typing rules. Obviously,
the typing rules of formulas (terms, type terms) can only be applied to formulas (terms, type
terms). Thus, it is sufficient to separately show the typing rules for formulas, terms and type
terms to be non-overlapping.

Lemma 3.1.2.4. After removing the top rule, all remaining typing rules for formulas (Def. 3.1.2.1)
are non-overlapping.

Proof. The conclusion of the formula typing rules can be of one of the following forms:

1. s≈ t : oB,

2. φ1 # φ2 : oB with # ∈ {∧, ∨, ⇒,⇔}

3. ¬φ : oB

4. p[τ1, . . . , τn](t1, . . . , tm) : oB.

5. #u : τ, φ : oB with # ∈ {∀, ∃}

6. #u : τ, φ : o with # ∈ {∀τ, ∃τ}

Clearly, the structure of these forms is different and they are thus non-overlapping. They also
map one-to-one with the typing rules (Def. 3.1.2.1), when not considering the top rule.

Lemma 3.1.2.5. All typing rules for terms (Def. 3.1.2.2) are non-overlapping.

Proof. The conclusion of the term typing rules can be of one of the following forms:

1. u : τ or

2. f [τ1, . . . , τn](t1, . . . , tm) : τ.

Again, these forms are non-overlapping and exhaustive and map one-to-one with the typing
rules.

Lemma 3.1.2.6. After removing the subclass typing rule, all remaining typing rules for type
terms (Def. 3.1.2.3) are non-overlapping.

Proof. The conclusion of the type-term typing rules can be of one of the following forms:

1. τ : /0,

2. α : {k},

3. κ(αiσ, . . . , αmσ) : {k} or

4. τ : {k1, . . . , kN} with N > 1.
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The forms for the type terms are also non-overlapping and exhaustive and map one-to-one with
the typing rules, when not considering the subclass rule. Note, in case 4, N is larger than 1,
because N = 1 is handled by case 2 for type variables and case 3 for type constructors.

We have shown that, except the top and subclass rules, all typing rules are non-overlapping.
Therefore, I now focus on the top and subclass rules.

Top Rule The top rule for formulas only overlaps with the rule for typed quantifiers. It can be
delayed until the typed quantifiers have been processed.

Lemma 3.1.2.7. Without loss of generality, the top rule should only be applied if no other rule is
applicable.

Proof Sketch. The top rule is only applicable on conclusions of the form φ : o. The only other
applicable rule is the one for type quantifiers, which is applicable only if φ has a type quantifier
at the top. Applying the top rule on a φ that has a type quantifier at the top is senseless, because
none of the other typing rules is applicable to type quantifiers. Thus, only after exhaustively
applying the rule handling type quantifiers, should the top rule be applied.

Subclass Rule To get rid of the overlap between the type var and subclass typing rule and
the overlap between the κ and the subclass typing rule they can be combined. The result of the
combination of the type var′ and κ typing rules with the subclass typing rule resulting in the
following typing rules (and the unchanged empty and combine typing rules)

k′ ⊆∗T C k k′ ∈ C(α)
C ` α : {k}

(type var′)

k′ ⊆∗T C k ∀α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k′ ∈ T C ` α1σ : K1 . . . C ` αnσ : Kn

C ` κ(αiσ, . . . , αmσ) : {k}
(κ′)

Termination The typing rules terminate, because the recursive premises are always smaller
than the conclusion.

Lemma 3.1.2.8. All typing rules assumptions are either non-recursive or assumption on strict
subformulas, subterms, subtype-terms or subsets of the type-class constraints of the conclusion.

Determining the type of a term is straight-forward. Either a term is a variable (with annotated
type) or a function term, then we can look up its definition and instantiate the definition with the
type arguments of the function symbol. We can then check if the term is well-typed by using the
above typing rules.

Well-typedness has to be checked only initially, because all operations that are necessary for
superposition are well-typedness preserving. From now on, I will only consider well-typed
formulas (and clauses) and their terms and type terms.
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Notation

After the well-typedness check I annotate all terms with the mappings T and C (but never
explicitly write them anywhere). After the CNF transformation (Section 3.1.5), only universal
quantifier at the top of the formulas remain. Therefore, I can omit all quantifiers and annotate term
variables (u) with their type (τ, given by T ) and type variables with their type-class constraint
(αK , given by C). I use the same notation (tτ) to make the type τ of a term t explicit and τK to
make the type-class constraint (K) of type terms explicit (τ). If the type(-class constraint) is not
relevant, I sometimes leave this implicit.

3.1.3. Unification

I now present unification of the polymorphic first-order language with type classes. First I
introduce a preprocessing step making unification easier to compute; then I present substitution
followed by unification.

Alternative Term Representation The syntax presented above is the input syntax we want
to expose to other tools, e.g. Isabelle/HOL. But in that syntax the type of a term f [α1σ, . . . ,

αnσ](t1, . . . , tm) is not immediately obvious. In the input syntax, the type of a term must be
computed form the type arguments and its declaration f : ∀α1:K1, . . . , αn:Kn. τ1, . . . , τm→ τ∈F
(to be τσ). This is unfortunate, because unification is ubiquitous in superposition and for
unification we regularly need the type of a term. To simplify unification, I introduce an alternative
term representation, that includes the term’s type. Additionally, I remove those type arguments that
are implicit from the other arguments and thus are not necessary. The alternative representation
removes the need to recompute the type of a term each time it is used in unification.

I will first define the alternative representation, then substitutions and then show how to convert
the initial term representation to the alternative term representation.

Definition 3.1.3.1 (Alternative Term Representation). Let Xt be a given countably infinite set
of term variables. The alternative representation of a term is defined as:

• Every term variable in Xt is a term

• For all f ∈ SF if t1, . . . , tm are terms and τr, τ1, . . . , τn are type terms then
f 〈τr, τ1, . . . , τn〉(t1, . . . , tm) is also a term.

From here on I will mainly use the alternative term representation. Therefore, term will stand
only for the alternative term representation, except if explicitly mentioned otherwise.

Substitutions

Here I introduce substitutions for variables, type variables, type terms and terms.

Definition 3.1.3.2 (Variable Substitutions). A substitution is a mapping from (type) variables
to (type) terms.
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As before, I use σ, θ for substitutions and write them as σ= {uτ1
1 7→ t1, . . . , α

K1
1 7→ τ1, . . .},

where all uis and all αis are pairwise distinct; τi must be the same type as the type of ti and τi

must be of the type-class constraint Ki. I define variable substitutions to be:

σ(uτ) =
{

ti if uτ = uτi
i

u otherwise

A substitution σ is updated to return t for u by

σ[u 7→ t](v) =
{

t if v = u
σ(v) otherwise

(correspondingly for α1 7→ τ1 instead of u1 7→ t1). I also write ασ for σ(α).

Definition 3.1.3.3 (Type Term Substitutions). Substitutions are extended to type terms as
follows:

κ(τ1, . . . , τn)σ ::= κ(τ1σ, . . . , τnσ)

Definition 3.1.3.4 (Term Substitutions). Substitutions are extended to terms as follows:

uτσ ::= σ(uτσ)
f 〈τ1, . . . , τn〉(t1, . . . , tm)σ ::= f 〈τ1σ, . . . , τnσ〉(t1σ, . . . , tmσ)

The definitions ensure that the application consists of two steps if σ’s domain consists of both
type and term variables. Let στ be the part of σ whose domain consists of type variables and σt

be the remaining part whose domain consists of term variables, then tσ= (tστ)σt.
A substitution is well-typed if for all its term variable mappings uτi

i 7→ ti that τi is equal to the
type of ti (i.e. checking with the typing rules that ti : τi) and for all its type variables mappings
αKi

i 7→ τi that τi is a member of Ki, i.e. checking with the typing rules that τi : K. I call a
substitution σ grounding for a given term t if tσ contains no variables; a unifier of the terms t1
and t2 if t1σ≈ t2σ; more general than σ2 if for all terms t there exists σ1 such that tσσ1 ≈ tσ2;
most general if for all terms t and forall σ2 there exists σ1 such that tσσ1 ≈ tσ2.

Converting to the Alternative Term Representation To avoid recomputing the type of a
term for each unification, I have introduced the alternative term representation. Here I define how
to convert the original term representation into the alternative term representation, based only on
the information available in the declaration.

Furthermore, for function and predicate terms, some of the type arguments can contain
redundant information that can be discarded to obtain a more compact representation. In particular,
those type arguments that already occur in a type of an argument of the function can be omitted
without any loss of information. Only those type arguments that do not occur in any argument’s
type must be handled separately. In the original representation of terms, unification requires
a lookup of the full type in the declarations in F (and P) and an instantiation of the declared
type, when performing (sub)unification tasks. The alternative representation includes only the
information on the necessary type arguments and does not require the lookup of any type in the
declarations. Functions and predicates are represented only by their return type, the necessary

30



‘true’ type argument terms and their argument terms. This negates the need to look up any of the
declarations. I only show the transformation for terms but use the same transformation also for
predicates. For predicates the return type (τr) can be omitted, because it is always the boolean
return type for predicates. In detail:

f [τ1, . . . , τn](t1, . . . , tm)

is represented by
f 〈τr, τi1 , . . . , τip〉(t1, . . . , tm)

and let ∀τα1:K1, . . . , αn:Kn. τ
′
1, . . . , τ

′
m → τ′ ∈ F be f ’s declaration. Furthermore, let the

substitution σ be such that for all j from 1 to n it holds that α jσ= τ j and for all j from 1 to m it
holds that the type of t j is τ′j. Then τr is defined to be τ′σ. Let αi1 , . . . , αip be a subsequence of
α1, . . . , αn of those αi that do not occur in τ′1, . . . , τ

′
m or τ′. The τi1 , . . . , τip is αi1σ, . . . , αipσ the

instantiation of those type argument variables. Clearly, both representations, together with F and
P , provide the same information and thus can be transformed back and forth. The advantage of
the second form is that it requires no lookup and no substitution of declarations in F (and P) to
perform unification between variables and functions. Except for keeping the actual return type
around, it is also more compact, because only instantiation of type variables that are not already
present in the arguments’ type terms or in the return type term are recorded.

Unification Let t1, t2 be two terms or type terms. Then unification of these two terms is the
task to derive a substitution σ such that t1σ= t2σ. The unification rules work on a tuple (E; S ),
where E are the equations that are still to be unified and S are the equations that are already
processed. I use .

= for not yet unified equations and = for equations that are already processed.
The initial state for unifying t1 and t2 is ({t1

.
= t2}; /0). If E is empty, the unification is complete

and then S contains the unifier, since it only contains variable to (type) term mappings. The
unification has failed if any equation in E cannot be removed by applying one of the unification
rules. In that case no unification is possible. I define the rules in such a way that there is no
overlap between them, this simplifies the proofs below.

The first rules are the rules removing term or type identities:

1 Identity (t .= t, E; S) ⇒ (E; S)
2 τ-Identity (τ

.
= τ, E; S) ⇒ (E; S)

The fun- & pred(-Decompose), Orient and Eliminate rules are the typed analogues to the unifica-
tion rules used in untyped first-order logic. Note that preprocessing has simplified unification for
functions and predicates. The remaining rules are only applied if the (τ-)Identity rules are not
applicable. First I present the κ-, fun- and pred-Decompose rules:

3 κ (κ(τ1l , . . . , τnl)
.
= κ(τ1r , . . . , τnr), E; S) ⇒

(τl1
.
= τr1 , . . . , τln

.
= τrn ,E; S)

4 fun ( f 〈τl1 , . . . , τln〉(tl1 , . . . , tlm)
.
= f 〈τr1 , . . . , τrn〉(tr1 , . . . , trm), E; S) ⇒

(τl1
.
= τr1 , . . . , tl1

.
= tr1 , . . . , E; S)

5 pred (p〈τl1 , . . . , τln〉(tl1 , . . . , tlm)
.
= p〈τr1 , . . . ; τrn〉(tr1 , . . . , trm), E; S) ⇒

(τl1
.
= τr1 , . . . , tl1

.
= tr1 , . . . , E; S)
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For unification of terms I additionally need the Orient and Eliminate rules. Let vars(t) be the set
of all (type) variables that are t or subterms of t.

6 Orient (t .= u,E; S ) ⇒ (u .
= t,E; S ) t is not a variable

7 Eliminate (uτu .
= tτt ,E; S ) ⇒ (τu

.
= τt,Eθ; uτu = tτt ,S θ) u 6∈ vars(t) and θ = {uτu 7→ tτt}

For unification of type terms I need the τ-Orient and the Eliminate rules for type variables
(α-Eliminate) and non-variable type terms (τ-Eliminate). Those depend on the restricting type
terms to fulfill type-class constraints.

A substitution σ is the most general substitution (mgsτ,K) of a type term τ and type-class
constraint K if for all σ2 exists a σ3 such that if τσ2 is a member of K (according to T C and T )
then τσ2 = τσσ3. This has no effect on ground type terms and only restricts the type variables’
type classes constraint, since restricting a type variable is more general than instantiating it. I.e.
a mgs is a mapping from type variables to type variables (with potentially stricter type class
constraints).

8 τ-Orient (τ
.
= αK ,E; S ) ⇒ (αK .

= τ,E; S) τ is not a variable
9 α-Eliminate (αK .

= τ,E; S ) ⇒ (Eθ; αK = τσ,τ= τσ,S θ)
τ ∈ vars(τ), σ is mgsτ,K and θ = σ[αK 7→ τσ,τ 7→ τσ]

10 τ-Eliminate (αK .
= τ,E; S ) ⇒ (Eθ; αK = τσ,S θ)

α 6∈ vars(τ), τ 6∈ vars(τ), σ is mgsτ,K and θ = σ[αK 7→ τσ]

As with untyped first-order unification, an efficient implementation can be archived by using
unification contexts instead of substituting E and S . Furthermore, in an actual implementation,
rules to detect failures can be easily added to speed up the detection of impossible unifications.

Computing the mgsτ,K A mgsτ,K is a substition θ from type variables to type variables (with
potentially stricter type class constraints) such that τθ fulfills all type classes of K. Let the union
mgsτ,K ∪mgs′τ′,K′ of two such substitutions mgsτ,K = {αK1

1 7→ α
K′1
1 , . . .} and mgsτ′,K′ = {α

K1
1 7→

α
K′′1
1 , . . .} be {αK1

1 7→ α
K′1∪K′′1
1 , . . .}.

The mgsτ,K (if it exists) can be recursively computed by the following case distinction on τ:

τ= αKα then mgsτ,K maps αKα 7→ αK∪Kα if K∪Kα is populated (i.e. contains a
ground type).

τ= κ(τ1, . . . , τn) For each k ∈ K, there is either a type declaration for κ and k with the most
general type constraints (compared to all subclasses) or there is a subclass κ
and k′ that has the most general type constraints (compared to all subclasses).
This is ensured by coregularity (Def. 3.1.1.8).
Let ∀ . . .α j : K j . . . κ(. . . ,α j at argument position i, . . .) : k ∈ T be the
corresponding type declaration, then mgsτ,{k} is recursively defined by
mgsτ1,K1

∪ . . . ∪mgsτn,Kn
, where τi are the arguments of κ and Ki are the Ki

corresponding to the type variable at the ith position in the type declaration.
Then mgsτ,K is

⋃
k∈K mgsτ,{k}.
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Correctness and Uniqueness of Unification I now show that the presented unification
computes unifiers (Theorem 3.1.3.11) and that the most general unifier is unique (Theorem
3.1.3.12).

First we have to show that S , the second part of the unification tuple, always contains a
substitution (Lemma 3.1.3.6). This requires us to show that S ’s variables do not occur in E
(Lemma 3.1.3.5). Then we show that the mgsτ,K is most general and unique (Lemma 3.1.3.7).
Further properties that we require are that unification terminates (Lemma 3.1.3.8), that at each
point in the unification process exactly one unification rule is applicable to an given equation
(Lemma 3.1.3.9) and crucially that each unification step preserves the unifiers (Lemma 3.1.3.10).
From those lemmas, I can finally conclude that the polymorphic first-order language with type
classes has a most general unifier which is unique up to renaming of the (type) variables.

I start by showing that the variables occurring in S do not occur in E, the first part of the
unification tuple.

Lemma 3.1.3.5 (S ’s variables not in E).
Let (E; S )⇒ (E′; S ′) be one unification step. If E does not contain any variable that occurs in
the left-hand side of an equation of S , then E′ does not contain any variable that occurs in the
left-hand side of S ′.

Proof. By induction over the unification rules.
The (τ-)Identity, κ-, fun- and pred-Decompose and (α-)Orient rules do not change S at all,

i.e. S = S ′. The (τ-)Identity rules removes an equation from E to derive E′ and thus cannot add
additional variables to E′ that were not present in E. The κ-, fun- and pred-Decompose remove
an equation, with the same top level symbol on both sides, from E and add equations between the
arguments to E′. Since the variables of the arguments are also contained in the removed equation,
no new variables are introduced into E′. The (α-)Orient rules remove an equation from E and add
it with the two sides of the equations swapped to E′, clearly no new variables can be introduced
this way.

The Eliminate rule introduces a new left-hand side variable u in S ′ but instantiates all of u’s
occurrences in E′. It also instantiates u in the remainder of S ′, but by induction hypothesis u does
not occur on the left hand side of the substitution represented by S .

The α-Eliminate rule introduces two new left-hand side type variables α and τ in S ′ but
instantiates all of their occurrences in E′ to a type fresh variable. Note, that the substitution σ
possibly instantiates variables occurring in τ to make the type-class constraint K of α and the
type-class constraint of τ match. The α-Eliminate rule also instantiates the α, τ and the type
variables from the substitution σ in the remainder of S ′ but by induction hypothesis they do not
occur on the left hand side of the substitution represented by S .

The τ-Eliminate is analog to the α-Eliminate, except that τ does not become a left-hand side in
S ′.

To be a unifier, the computed mapping S must be a substitution, because a unifier is a
substitution that makes two terms syntactically equal.

Lemma 3.1.3.6 (S contains a substitution).
Let t1, t2 be two terms and (t1

.
= t2; /0)⇒∗ (E; S ) be a series of unification steps then S only

contains variable to (type) term mappings.
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Proof. By induction over the unification rules.
The (τ-)Identity, κ-, fun- and pred-Decompose and (α-)Orient rule do not change S at all.
The Eliminate and α- and τ-Eliminate rules introduce a new equations in S . The left hand

side of those equations are variables. Those variables can never be instantiated because after the
application of the rule they do not occur in E anymore (Lemma 3.1.3.5).

For the unification algorithm to work, the unification of the type-class (constraints) has to be
most general and unique, up to renaming of the variables.

Lemma 3.1.3.7. mgsτ,K is most general and unique (up to renaming).

Proof. Proof by induction over τ.

• Let τ be αKα then mgsτ,K is of the most general type-class constraint Ku unifying Kα and
K, i.e. Ku = Kα∪K. Either Ku is not populated, meaning that there is no type constructor
κ which has declarations (in T and T C) for all k ∈ Ku or the mgsτ,K is α′ : Ku, which is
unique and most general (up to renaming).

• Let τ be κ(τ1, . . . , τn). For each type class k ∈ K coregularity requires that there exists
a type declaration ∀ . . .α j : K j . . . κ(. . . ,α j at argument position i, . . .) : k′ ∈ T that is more
general than the type declaration of all subclasses (k′ is k if there is a type declaration for κ
and k). The recursive requirements mgsτi,K j

are either empty or unique and most general
by the induction hypothesis and so is the union of the requirements.

The unification algorithm must terminate and at each step only one rule may be applicable.

Lemma 3.1.3.8 (Unification Terminates).
Applying unification on ({t1

.
= t2}; /0) always terminates.

Proof. Applying unification decreases the lexicographic ordering on the pair of number of distinct
variables and number of symbols occurring in E below a .

= obligation. This is not true for the
Orient rule, but it can only be applied at most once for each .

= obligation.

Knowing that only one unification rule is applicable per equation simplifies the following
proofs and thus we show that property now.

Lemma 3.1.3.9 (At any point in the unification only one unification rule is applicable per
equation).
If (t .

= s,E′; S ) and t unifiable with s, then exactly one rule of the unification algorithm is
applicable on t .= s.

Proof. Unification is only possible between predicates, between terms or between types. There
is only the pred-Decompose rule for predicates, thus only that rule can apply.

Suppose that both t and s are terms. If t = s then, per definition, only the Identity rule is
applicable. Otherwise, if t 6= s then there are four cases: either t and s have a function symbol at
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the top, one of them is a variable and the other is not, or both of them are a variable:
• Let t = f 〈τ1, . . . , τn〉(t1, . . . , tm) and s = g〈τs1 , . . . , τsn〉(s1, . . . , sm) both with function

symbols at the top. Then they are only unifiable if the top function symbols ( f = g) and the
type terms and terms are unifiable. In this case, only the fun-Decompose rule is applicable.

• Let t = f 〈τ1, . . . , τn〉(t1, . . . , tm) have a function symbol at the top and s = u be a variable.
In this case, only the Orient rule is applicable.

• Let t = u be a variable and s = g〈τ1, . . . , τn〉(s1, . . . , sm) have a function symbol at the top.
Then they are unifiable only if s does not contain t. In this case, only the Eliminate rule is
applicable.

• Let t = ut and s = us both be variables. In this case, only the Eliminate rule is applicable.
Suppose that both t and s are type terms. If t = s then only the τ-Identity rule is applicable.

Otherwise, if t 6= s then there are four cases either t and s have a type symbol at the top, one of
them is a variable and the other is not, or both of them are a variable:
• Let t = κt(τt1 , . . . , τtn) and s = κs(τs1 , . . . , τsn) both have type symbols at the top. Then

they are only unifiable if the top type symbols (κt = κs) are unifiable. In this case, only the
κ-Decompose rule is applicable.

• Let t = κl(τ1, . . . , τn) have a type symbol at the top and s = α be a type variable. In this
case, only the τ-Orient rule is applicable.

• Let t = α be a variable and s = κr(τ1, . . . , τn) have a type symbol at the top. Then they are
unifiable only if s does not contain t. In this case, only the τ-Eliminate rule is applicable.

• Let t = αt and α= us both be type variables. In this case only the α-Eliminate rule can be
applicable.

To show that the unification algorithm computes the most general unifier, I show that if for
each step of the unification algorithm no unifier is lost, then the most general unifier must be an
instance (renaming) of the resulting substitution.

Lemma 3.1.3.10 (Unification Preserves Unifiers).
Let (E; S )⇒ (E′; S ′) be one step of the unification algorithm. Then if θ is a unifier for (E; S )
then there is also a unifier θ2 of (E′; S ′) such that for the substitution σ contained in S ′ it holds
that θ = σθ2.

Proof. Let t .= s be an arbitrary unification obligation in E. Let Er be E without t .= s. Then the
proof is by induction over the rules of the unification algorithm

• (τ-)Identity, then t = s and E′ = Er and S ′ = S . Clearly, if θ is a unifier for (E; S ) then it
is also a unifier for (E′; S ′).

• κ-Decompose, then t = κ(τ1, . . . , τn) and s = κ(τs1 , . . . , τsn) and E′ is τ1
.
= τs1 , . . . , τm

.
=

τsm ,Er and S ′ = S . Clearly, if θ is a unifier for (E; S ) then tθ = sθ and thus it is also a
unifier for the subtypes τiθ = τsiθ. Therefore, θ is also a unifier for (E′; S ′).
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• fun-Decompose, then t = f 〈τ1, . . . , τm〉(t1, . . . , tm) and s = f 〈τs1 , . . . , τsm〉(s1, . . . , sm) and
E′ is τ1

.
= τs1 , . . . , τm

.
= τsm , t1

.
= s1, . . . , tm

.
= sm,Er and S ′ = S . Clearly, if θ is a unifier

for (E; S ) then tθ = sθ and thus it is also a unifier for the types τiθ = τsiθ and for the
subterms tiθ = siθ. Therefore, θ is also a unifier for (E′; S ′).

• pred-Decompose, then t = p〈τ1, . . . , τm〉(t1, . . . , tm) and s = p〈τs1 , . . . , τsm〉(s1, . . . , sm)
and E′ is τ1

.
= τs1 , . . . , τm

.
= τsm , t1

.
= s1, . . . , tm

.
= sm,Er and S ′ = S . Clearly, if θ is a

unifier for (E; S ) then tθ = sθ and thus it is also a unifier for the types τiθ = τsiθ and for
the subterms tiθ = siθ. It is therefore also a unifier for (E′; S ′).

• Orient rule, then t = f 〈τ1, . . . , τm〉(t1, . . . , tm), s = u, E′ is s .
= t,Er and S ′ = S . Clearly,

if θ is a unifier of (t .= s,Er; S ) it is also a unifier of (t .= s,Er; S )

• Eliminate rule, then t is a variable (u) and of type τt, u is not a subterm of s, s is of type
τs, E′ is τt

.
= τs, Er{u 7→ s} and S ′ is S {u 7→ s}. Clearly, if θ is a unifier of (E; S ) then

uθ= sθ and thus their types are equal (τtθ= τsθ). Furthermore, θ can be split into θ= θ1θ2
such that uθ1 = s, i.e. θ1 = {u 7→ s}, which is the substitution used to derive E′ and S ′.
Then θ2 is a unifier of (E′; S ′).

• τ-Orient rule, then t = κ(τ1, . . . , τm), s = α, E′ is s .
= t,Er and S ′ = S . Clearly, if θ is a

unifier of (t .= s,Er; S ) it is also a unifier of (t .= s,Er; S )

• α-Eliminate rule, then t = αt, s = αs, σ is the mgs of s and t, E′ is Erσ and S is S ′σ. If θ
is a unifier for (E; S ) then tθ = sθ and t and s are (at least) instantiated according to their
mgs (possibly further), therefore, θ can be split into θ = θ1θ2 such that θ1 is the mgs of s
and t, which is the substitution used to derive E′ and S ′. Clearly, θ2 is a unifier of (E′; S ′).

• τ-Eliminate rule, then t = α, s = κ(τ1, . . . , τm), σ is the mgs of s and t, E′ is Erσ and S is
S ′σ. If θ is a unifier for (E; S ), then tθ= sθ and t and s are (at least) instantiated according
to their mgs (possibly further), therefore, θ can be split into θ = θ1θ2 such that θ1 is the
mgs of s and t, which is the substitution used to derive E′ and S ′. Clearly, θ2 is a unifier of
(E′; S ′).

Now I can combine the previous lemmas to show that a most general unifier is computed and
that it is unique up to renaming of the variables.

Theorem 3.1.3.11 (Unification Preserves Unifier).
If there is a unifier θ of t and s then ({t .= s}; /0)⇒∗ ( /0, S ) and θ is an instance of the unifier
contained in S .

Proof. Suppose there is a unifier and unification does not result in a ( /0, S ) that contains that
unifier. Since the unification algorithm always terminates (Lemma 3.1.3.8) there are the following
possibilities:

1. ({t .= s}; /0)⇒∗ (E, S ) and E 6= /0, or
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2. ({t .= s}; /0)⇒∗ ( /0, S ) and S does not contain the most general unifier.

In the first case, Lemma 3.1.3.9 guarantees that there is a unification rule that is applicable if E is
unifiable. E must be unifiable if there is a most general unifier, but then (E, S ) cannot be the end
result of the unification algorithm. In the second case, no unifier (in particular the most general
unifier) is lost by a step of the unification algorithm (Lemma 3.1.3.10). Lemma 3.1.3.6 guarantees
that S always contains a substitution. Therefore, the unifier is an instance of the unifier contained
in S .

Theorem 3.1.3.12 (The Most General Unifier is Unique).
The most general unifier of two terms t and s is unique up to renaming of variables.

Proof. Follows from Lemma 3.1.3.11, because all most general unifiers are instances of the
unifier θ contained in S .

3.1.4. Semantics

So far, I have presented the syntax, the typing rules and the unification algorithm for the poly-
morphic first-order language. Here I give the semantics. In contrast to the semantic for untyped
first-order language, the universe now has to be partitioned into domains. Domains are disjoint
subsets of the universe. Those domains then represent the interpretation of the types. Terms
are interpreted as elements of the universe. The interpretation of a term must be an element of
the domain that corresponds to the type of the term. Type classes and type-class constraints are
interpreted as a subset of the set of domains for which their type-class declarations are fulfilled.
The domains which are fulfilled by a type class are defined by a fixpoint over the type-class
declarations in T and T C.

Definition 3.1.4.1 (Structure). Given a signature Σ for polymorphic first-order language with
type classes, the corresponding Σ-structure is a tuple Σ = (U , D, IT , IF , IP) where

U is a non-empty countable set of elements, the universe.
D a non-empty set of non-empty disjoint subsets of U . It represents the set of the types

(domains).
IT is the set of type constructors (κI) which map domains to a domain (Dn→D).
IF is the set of functions ( f I) which maps a cartesian product of domains and elements to an

element (Dn×Um→U).
IP is the set of predicates (pI) which map a cartesian product of domains and elements to true

or false (Dn×Um→{0, 1}).

Note that the set D is countable, because there are only countable many non-empty disjoint
subsets of a countable set (there are only countable many disjoint subsets of size one) and the
universe UT is countable.

Interpretation A variable valuation is a mapping from variables to elements of the universe
relative to a given Σ-structure. In general, I will not explicitly mention the Σ-structure but leave
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this relation implicit. I use θ to map type variables to domains (Xτ→D) and ξ to map term
variables to elements (Xt→U).

Interpretations (Iθ,ξ) of type terms and terms are in general parameterized by both the type
variable (θ) and the term variable (ξ) mapping. If I omit one or both mappings, they are assumed
to be the empty mapping. For example, the interpretation of type terms only requires the mapping
for type variables (θ) and therefore omit the term variable mapping.

Definition 3.1.4.2 (Interpretation of Type Terms). The interpretation of a type term is as
follows:

Iθ(α) = θ(α)
Iθ(κ(τ1, . . . , τn)) = κI(Iθ(τ1), . . . , Iθ(τn))

where κI ∈ IT is the type constructor corresponding to the type symbol κ ∈ S T . Additionally,
each ground term must evaluate to a different d ∈ D.

I also use the symbol I for valuations of terms. Term valuations are parameterized by two
valuations, one for type variables (θ) and one for term variable (ξ).

Definition 3.1.4.3 (Interpretation of Terms). The interpretation of a term is as follows:

Iθ,ξ(u) = ξ(u)
Iθ,ξ( f 〈τi, . . . , τn〉(t1, . . . , tm)) = f I〈Iθ(τ1), . . . , Iθ(τn)〉(Iθ,ξ(t1), . . . , Iθ,ξ(tm)))

where f I ∈ IF is the function corresponding to the function symbol f ∈ SF . Additionally,
f I〈Iθ(τ1), . . . , Iθ(τn)〉(Iθ,ξ(t1), . . . , Iθ,ξ(tm)) must evaluate to an element of Iθ(τr), where τr is
the type assigned to f 〈τi, . . . , τn〉(t1, . . . , tm) by the typing rules (Def. 3.1.2.2).

The interpretation for type-class constraints (K) need no parameters and also results in a set of
domains that type-class constraint represents.

Definition 3.1.4.4 (Interpretation of Type-Class Constraints). The interpretation of a type-
class constraint is as follows:

1. I(K) =D if K = /0

2. I(K) =
⋂

k∈K I(k) if K 6= /0

Note that I(K) may be empty. This is the case when there is no ground type that is an
element of all type-classes in K. The interpretation of a type class is a fixpoint defined by the
interpretations of the types and the type class declarations. The fixpoint results in a set of domains
that the type class represents.

Definition 3.1.4.5 (Interpretation of Type Classes). The set of domains that form the interpre-
tation of a type class k is defined by the least fixpoint of the type-class constraint interpretation
and the following two rules, i.e. I(k) is defined as the least fixpoint of:

1. For all declarations ∀τ α1:K1, . . . , αn:Kn. τ:k ∈ T and all grounding substitution σ of τ it
holds that ( ∧

1≤i≤n

I(αiσ) ∈ I(Ki)

)
⇒I(τσ) ∈ I(k)
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2. For all declarations k1 ⊆ k ∈ T C and all ground type terms τ, I require that if a type is an
element of a type class, then it is also element of its superclass:

I(τ) ∈ I(k1)⇒I(τ) ∈ I(k)

Finally, interpretations of formulas, like interpretations of terms, need two parameters, one for
type variables (θ) and one for term variable (ξ). They are adapted by the quantifications occurring
in the formulas. Let false be represented by 0 and true be represented by 1 and let max, min the
corresponding functions for maximum and minimum. The interpretation of formulas is defined
by

Definition 3.1.4.6 (Interpretation of Formulas). The interpretation of a formula is as follows:

Iθ,ξ(p〈ταi , . . . , αn〉(t1, . . . , tm)) = pI [Iθ(τα1), . . . , Iθ(ταn)](Iθ,ξ(t1), . . . , Iθ,ξ(tm))
Iθ,ξ(⊥) = 0
Iθ,ξ(>) = 1
Iθ,ξ(s≈ t) = 1⇔Iθ,ξ(s) = Iθ,ξ(t)
Iθ,ξ(¬φ) = 1−Iθ,ξ(φ)
Iθ,ξ(φ ∧ ψ) = min(Iθ,ξ(φ), Iθ,ξ(ψ))
Iθ,ξ(φ ∨ ψ) = max(Iθ,ξ(φ), Iθ,ξ(ψ))
Iθ,ξ(φ→ ψ) = max(1−Iθ,ξ(φ), Iθ,ξ(ψ))
Iθ,ξ(φ↔ ψ) = 1⇔Iθ,ξ(φ) = Iθ,ξ(ψ)
Iθ,ξ(∀u : τ. φ) = min

e∈Iθ(τ)
(Iθ,ξ[u→e](φ))

Iθ,ξ(∃u : τ. φ) = max
e∈Iθ(τ)

(Iθ,ξ[u→e](φ))

Iθ,ξ(∀τ α : K. φ) = min
d∈I(K)

(Iθ[α→d],ξ(φ))

Iθ,ξ(∃τ α : K. φ) = max
d∈I(K)

(Iθ[α→d],ξ(φ))

where pI ∈ IP is the function corresponding to the function symbol p ∈ SP .

Properties of the Semantics

To show that the rules of definition 3.1.4.5 have a least fixpoint, I use Tarski’s fixpoint theorem.
Therefore, I first present his definition of complete lattice, increasing function and then Tarski’s
fixpoint theorem [62]:

Definition 3.1.4.7 (Complete Lattice [62]). A complete lattice is a system 〈A, ≤〉 such that A
is a non-empty set and ≤ a partial order on elements of A such that for each B⊆ A there is a least
upper bound of B and a least lower bound of B.

Definition 3.1.4.8 (Increasing Function [62]). A function f , A 7→ A, is increasing if for any
two elements a, b ∈ A it holds that a≤ b implies f (a)≤ f (b).

Theorem 3.1.4.9 (Tarski’s Lattice-Theoretical Fixpoint Theorem [62]).
Let 〈A, ≤〉 be a complete lattice, f be an increasing function A 7→ A and P be the set of all
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fixpoints of f . Then the set P is not empty and the system 〈P, ≤〉 is a complete lattice, in
particular f has a least fixpoint and a greatest fixpoint.

I now use Tarski’s fixpoint theorem to show the existence of a least fixpoint defining I(k).

Lemma 3.1.4.10 (The Least Fixpoint Exists).
The defining rules of I(k) have a least fixpoint.

Proof. Let the set A be the set of all subsets of D. Let ≤ be a partial order, such that for a, b ∈ A
it holds that a≤ b if there are more domains in b than in a. The upper bound of a subset B of A is
the union of the sets in B and the lower bound is the intersection of the sets in B. Then clearly
〈A, ≤〉 is a complete lattice. The function f , A 7→ A, is (implicitly) given by the fixpoint rules, by
mapping the current interpretation (I(k)) to a new extended set of domains as long as one of the
rules is applicable. Thus, we have to show both rules (Def. 3.1.4.5) increasing:

1. Rule one adds the type definitions to their corresponding type classes, thereby increasing
the number of elements.

2. Rule two adds the subclass definitions to the corresponding superclasses, thereby increasing
the number of elements.

Since the interpretation of the type classes also includes the interpretation rules of the type-class
constraints (Def. 3.1.4.4), we have to show both of those rules increasing:

1. Rule one does not change at all, thus it fulfills the requirements of increasing the number
of elements.

2. Rule either stays the same or adds new elements if a I(k) grows such that the whole
intersection contains a new domain, thus it is also increasing.

Thus, by Theorem 3.1.4.9 the least fixpoint exists.

Now I show that the judgment of the typing rules matches the semantic I have just defined.

Lemma 3.1.4.11 (Typing Matches Type Constraint Semantics).
For each type term τ and type-class constraint K, if the judgment τ : K holds, according to the
typing rules, then I(τ) ∈ I(K).

Proof. Proof by induction over the typing rules for ground type terms.

1. empty, i.e. τ : /0. All type terms are of the empty type-class constraint, and its interpretation
is D.

2. type var, i.e. α : {k}. Then by the definition of the type var typing rule α has the type-class
constraint K such that k ∈ K. The interpretation of α is I(α) = θ(α) and θ(α) is bound by
the semantic of the type quantification of α to a domain d ∈ I(K).

3. κ, i.e. τ : {k} and there is a declaration (∀α1:K1, . . . , αn:Kn. κ(αi, . . . , αm) : k ∈ T ) and from
the induction hypothesis we know that for the premises the lemma holds (i.e. I(αiσ : Ki) ∈
I(Ki)). Then by rule one of the type class interpretation, the interpretation of τ is part of
the interpretation of k, i.e. I(τ) ∈ I(K).
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4. subclass, i.e. τ : {k} and k1 ⊆ k and by the second rule of the type class interpretation, the
interpretation of τ is contained in the interpretation of k.

5. combine, i.e. τ : K and K has at least two elements. From the induction hypothesis we
know that for each ki ∈ K that τ : {ki}. Then for each ki ∈ K that I(τ) ∈ I(ki) and thus
I(τ) ∈

⋂
ki∈K I(ki) and thus I(τ) ∈ I(K).

Furthermore, I show that for each interpretation of a type class k if there is a domain d in that
type class k then there is a type term τ such that the interpretation of τ is d.

Lemma 3.1.4.12 (Type Class Are Type Term Generated).
Let k be a type class, if d ∈ I(k) then there is a ground type term τ such that τ : {k} holds,
according to the typing rules and I(τ) = d.

Proof. If d ∈ I(k) then it was introduced by one of the (least) fixpoint rules of the type class
semantics. Therefore, the proof is by induction on the fixpoint rules of the type class semantics.

1. If d was introduced by the first rule then there is a ground type term τσ such that I(τσ) = d.

2. If d was introduced by the second rule then there is a ground type term τ such that I(τ) = d.

From this it then follows that the semantic of type-class constraints matches the judgment of
the typing rules.

Lemma 3.1.4.13 (Type-Class Constraint Semantics Matches Typing).
Let K 6= /0 be a type-class constraint, if d ∈ I(K) then there is a ground term τ such that τ : K
holds, according to the typing rules and I(τ) = d.

Proof. By definition of the semantics of type-class constraints I(K) =
⋂

k∈K I(k). For each
k ∈ K and d ∈ I(k) there exists a ground type term τ : {k} (Lemma 3.1.4.12). Since, by the
definition of type term interpretations, different ground type terms evaluate to a different (disjoint)
domains, we have one ground type term τ for each domain d ∈ I(K) such that for all k ∈ K that
τ : {k}. Thus from the combine typing rule it follows that τ : K.

Finally, I can prove that the interpretation of a type-class constraint is the union of the inter-
pretations of the type-class constraint’s ground type terms. We require this property later, in the
refutational completeness proof, in particular in the lifting step from the monomorphic to the
polymorphic first-order logic with type classes.

Corollary 3.1.4.14 (Type-Class Constraint Interpretations are the Union of Ground Type Term
Interpretations).
The interpretation of a type-class constraint K 6= /0 is the union of the interpretations of its ground
type terms: I(K) = {I(τ) | τ : K and τ is ground}.

Proof. Follows from Lemmas 3.1.4.13 and 3.1.4.11.
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3.1.5. Clausification and Skolemization

The semantics of the boolean connectives for typed formulas is not different from the semantics
in the untyped case. Thus, the prenex normal form and clause normal form translations are
performed as before (Section 2.1.3), with the only difference that there are two separate sets of
quantifiers - the type and term quantifier. Skolemization, however, must be adapted to the typed
setting.

Type Skolemization

In principle, before clausification, all type quantifications with empty type-class constraint
would need to be removed (⇒Eτ). This is because I restricted the search space to only consider
combinations of type classes that do contain a ground type.

∀τα:K. φ⇒Eτ > if there is no ground type that fulfills K

∃τα:K. φ⇒Eτ ⊥ if there is no ground type that fulfills K

However, in our target use case, the translation of proof obligations from a higher-order proof
assistant to a first-order automated theorem prover, it is impractical to translate all facts and
axioms known to the proof assistant. Consider, for example, the case where we want to show a
property holds for all members of a type-class constraint (e.g. the negated conjecture ∃τα:K.¬φ)
and the perfect matching axiom (e.g. ∀τα:K.φ). But, because no ground type was included both
the conjecture and the axiom would be removed. In fact, including a ground type would only need
to be done to populate the type classes, but could not possibly be helpful in the actual reasoning
process. Adding all necessary ground types would require the proof assistant to analyze each
proof obligation and accompanying facts, without any reasonable gain. To avoid this, I assume
that all type-class constraints in the initial axioms and conjecture are supposed to be populated,
i.e. I keep the formulas even though Skolemization may then produce Skolem type constructors
for previously unpopulated type classes. This removes the need for the proof assistant to spend
effort to specify ground types. While this makes Skolemization not satisfiability preserving (by
potentially introducing new ground types in type classes with no ground types), I feel this is a
reasonable compromise. Especially, since it is anyways not reasonable for the proof assistant to
pass the complete type hierarchy and all axioms to the automated theorem prover.

Definition 3.1.5.1 (Type Skolemization). The Skolem transformation for types (⇒S τ) is:

∀τα1:K1, . . . , ∀ταn:Kn. ∃τα:Kα. φ

⇒S τ

∀τα1:K1, . . . , ∀ταn:Kn. φ{α 7→ κ(α1, . . . , αn)}

where n ≥ 0 and κ is a type-constructor symbol of arity n that is not present in the signature
(S T ). The transformation also adds the type-constructor symbol κ to the signature (S T ) and adds
for each k in α’s type-class constraint Kα a ∀τ α1:K1, . . . , αn:Kn. κ(α1, . . . , αn) : k type-class
declaration (to T ).
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Term Skolemization

The Skolemization for polymorphic terms is similar to the untyped one, except that the appropriate
declarations need to be added.

Definition 3.1.5.2 (Term Skolemization). The Skolem transformation for terms (⇒S ) adapted
to our polymorphic setting is:

∀τα1:K1, . . . , ∀ταn:Kn. ∀u1:τ1, . . . , ∀um:τm. ∃u : τ.φ
⇒S

∀τα1:K1, . . . , ∀ταn:Kn. ∀u1:τ1, . . . , ∀um:τm. φ{u 7→ f 〈α1, . . . , αn〉(u1, . . . , um)}

where m≥ 0, n≥ 0 and f is a function symbol of type arity n and term arity m that is not present
in the signature (SF ). The transformation also adds the function symbol f to the signature (SF )
and adds the adequate (∀τ α1:K1, . . . , αn:Kn.τ1, . . . , τm→ τ) function declaration (to F).

While I chose the type Skolemization to be not satisfiability preserving, the term Skolemization
is satisfiability preserving.

Lemma 3.1.5.3. A formula φ is satisfiable with respect to a signature Σ if and only if the formula
produced by the Skolem transformation φ⇒S φ

′ is satisfiable in the extended signature.

Proof. Suppose the lemma does not hold. Then there must be set of values for α1, . . . , αn and
u1, . . . , um, where the existential quantifier is satisfiable, but there is no interpretation in the
extended signature such that φ′ is satisfiable. This means that there is an interpretation I such that
θ= {α1 7→ d1, . . . , αn 7→ dn} and ξ = {u1 7→ e1, . . . , um 7→ em} for some domains d1, . . . , dn and
some elements e1, . . . , em and Iθ,ξ(∃u : τ. φ) is true and thus max

e∈Iθ(τ)
(Iθ,ξ[u 7→ e](φ)) is true for some

e∈Iθ(τ), but there is no interpretation I ′ such that I ′θ,ξ(φ{u 7→ f 〈α1, . . . , αn〉(u1, . . . , um)}) is sat-
isfiable in the extended signature. Clearly, there is one interpretation I ′′ where f I〈d1, . . . , dn〉(e1,

. . . , em) = e and thus there must be a I ′′θ,ξ(φ{u 7→ f 〈α1, . . . , αn〉(u1, . . . , um)}) that is true.

3.2. Orderings

In this section I introduce a typed version of the Knuth-Bendix Ordering, an ordering which is
often used by superposition-based automated theorem provers. Orderings are useful, because
superposition only requires inferences that fulfill certain ordering constraints. Thus superposition
requires an ordering as a parameter. The untyped superposition calculus requires that the ordering
is a reduction ordering, which is total on ground terms. The typed superposition calculus, on the
other hand, requires a simplification ordering which is total on ground terms.

The commonly used orderings are simplification ordering, therefore requiring a simplification
ordering instead of a reduction ordering is not a major restriction. Nonetheless, I will first
discuss why the change is required (Sect. 3.2.1). Afterwards, I introduce the Typed Knuth-Bendix
Ordering (Sect. 3.2.2).
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3.2.1. Simplification Ordering Required

While it is generally known that a total reduction ordering is a simplification ordering in the
untyped case, in the type case a total reduction ordering is not necessarily a simplification
order. The untyped refutational completeness proof of superposition assumes the fact that a total
reduction ordering is a simplification ordering. The fact is used to show that the rewrite systems
that are constructed in the candidate interpretation construction are convergent.

First, I sketch why an untyped total reduction ordering is a simplifications ordering, then I
show why replacing the reduction ordering by a simplification ordering solves the problem.

Lemma 3.2.1.1 (An untyped total reduction ordering is a simplification order).
If the signature is untyped, a reduction ordering that is total is a simplification ordering, i.e.
subterms are smaller than superterms.

Proof Sketch. Suppose there is a subterm that is larger than a superterm. Then we can indefinitely
add the context of the subterm to the superterm gaining further smaller terms (because of totality
and compatibility with Σ-operations). This cannot be well-founded and thus a total reduction
ordering must have the subterm property.

Unfortunately, a total typed reduction ordering is not necessarily a simplification ordering, because
the type of the superterm and subterm can be different and thus they might not share any common
context at all. To guarantee completeness in a typed setting my superposition calculus requires
a reduction ordering that is a simplification ordering on ground terms instead of a reduction
ordering that is total on ground terms. With this change, the rewriting systems (RC and R∞)
generated by Candidate Interpretation Construction (Sect. 2.2.4) are still confluent and Lemma
2.2.4.2 can be restated as:

Lemma 3.2.1.2.
The rewrite systems RC and R∞ are convergent.

Proof. Obviously, s � t for all rules s→ t in RC and R∞. Furthermore, it is easy to check that
there are no critical pairs between any two rules: Assume that there are rules u→ v in ED and
s→ t in EC , such that u is a subterm of s. As � is, on ground terms, a total simplification
order, we get u≺ s and therefore D≺C C and ED ⊆ RC . But then s would be reducible by RC ,
contradicting condition (6) of the Candidate Interpretation Construction.

To derive a (ground) typed simplification ordering, it does not seem possible to relax any of the
properties of simplification orderings (with the exception that only well-typed substitutions are
relevant). In particular, it is not possible to restrict the subterm property to terms of the same type,
because then terms could become reducible after they were considered in the model construction.
This would make the presented proof of the model construction fail.

3.2.2. A Polymorphically Typed Knuth-Bendix Ordering

The most commonly used orderings by superposition provers are the Knuth-Bendix Ordering
(KBO) [3, Page 124] and the Lexicographic Path Ordering (LPO [3, Page 118]). Since our goal is
a complete superposition prover, including all machinery, we present an extension of KBO which
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is designed for our polymorphic language. We extend the standard KBO for terms by introducing
a nested KBO for types and show that the adapted version is a simplification order which is total
on ground terms. Type classes do not have to be considered separately, since distinct variables
must be incomparable and the same variable can only have one type-class constraint.

The main goal of the Typed Knuth-Bendix Ordering, besides having a typed ordering, is to
behave as much as possible like the untyped versions, i.e. for the types to have as little impact on
the orderings as possible. The motivation for this goal is to keep the configurable simplification
heuristics that we developed [9] (in work not included in this dissertation) easily adaptable to the
typed setting.

Let wf be a function that maps function symbols to positive numbers, let wκ be a function that
maps type-constructor symbols to positive numbers and w their extension to (type) terms (where
the weight of terms may or may not include the weight of their types), let >κ be a strict ordering
on type constructor symbols, >f be a strict ordering on function symbols and >c be the transitive
closure of the subclass declarations (T C). With the following restrictions, we will call any weight
function that fulfills these restriction admissible:

1. There exists w0 ∈ R+\{0} such that for all term variables u, w(u) = w0 for all term
constants f , w( f )≥ w0

2. There exists w1 ∈ R+\{0} such that for all type variables α, w(α) = w1 for all type
constants κ, w(κ)≥ w1

3. If κ is a unary type constructor symbol with weight w(κ) = 0, then κ is the greatest element
with respect to >κ

4. If f is a unary function symbol with weight w( f ) = 0, then f is the greatest element with
respect to >f

The type ordering is a KBO defined on type terms. We define τs �τ τt to hold if and only if:
For all type variable α : C. |τs|α:C ≥ |τt|α:C and

1. w(τs) > w(τt), or
2. w(τs) = w(τt), and one of the following:

a) There exists a unary type constructor symbol κ, a variable α and a positive integer n
such that τs = κn(α) and τt = α

b) There exist type constructor symbols κ f , κg such that κ f >κ κg and
τs = κ f (τs1 , . . . , τsn) and τt = κg(τt1 , . . . , τtn)

c) There exists a type constructor symbol κ f and an index i, 1 ≤ i ≤ n, such that
τs = κ f (s1, . . . , sn), τt = κ f (τt1 , . . . , τtn) and τs1 = τt1 , . . . , τsi−1 = τti−1 and τsi �τ τti

Let =Term to be equality but only considering non-type (sub)terms. Then s�KBO t holds if and
only if:

For all term variables u: |s|u ≥ |t|u and

1. w(s) > w(t), or
2. w(s) = w(t), and one of the following:

a) There exists a unary function symbol f , a variable u and a positive integer n such that
s = ( f 〈τ1, . . . , τm〉)n(u) and t = u
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b) There exist functions symbols f , g such that f >f g and
s = f 〈τs1 , . . . , τsm〉(s1, . . . , sn) and t = g〈τt1 , . . . , τtm〉(t1, . . . , tn)

c) There exists a function symbol f and an index i, 1≤ i≤ n, such that s= f 〈τs1 , . . . , τsm〉(s1, . . . , sn),
t = f 〈τt1 , . . . , τtm〉(t1, . . . , tn) and
s1 =Term t1, . . . , si−1 =Term ti−1 and si �KBO ti

and s�TKBO t to hold if and only if:

1. s�KBO t, or
2. s =Term t, and there exists a function symbol f such that s = f 〈τs1 , . . . , τsm〉(s1, . . . , sn)

and t = f 〈τt1 , . . . , τtm〉(t1, . . . , tn)) and

a) an index i, 1 ≤ i ≤ m such that τs1 = τt1 , . . . , τsi−1 �τ τti−1 and τs1 �τ τti , or
b) for all index i, 1 ≤ i ≤ m τsi = τti and an there exists an index j, 1 ≤ j ≤ n, such that

s1 = t1, . . . , s j−1 = t j−1 and s j �TKBO t j

It is obvious that �τ and �KBO are simplification orderings, because they are essentially restating
KBO once for type terms and once of typed terms where the types are ignored. I now show that
their combination into the Typed Knuth Bendix Ordering �TKBO results in a simplification order.
The Typed Knuth Bendix Ordering tries to emulate KBO as much as possible, only resorting to
using the types to break ties.

Here I show that the Typed Knuth Bendix Ordering is a simplification ordering by first showing
that it is a reduction ordering and then showing the simplification ordering.

Lemma 3.2.2.1 (Typed Knuth-Bendix Ordering is a Reduction Ordering).
Let wf be an admissible weight function for >f then the Typed Knuth-Bendix Ordering (�TKBO)
induced by >κ and �τ is a reduction ordering which is total on ground terms.

Proof. The usual proof (see [3, Page 112]) by using simplification orderings is not sufficient.
It fails because the requirement is on a combination of subterms, but we cannot use all these
subterms, because we cannot guarantee well-typedness. To show that �TKBO is a reduction
ordering, we have to show all properties of a reduction ordering (Section 2.2.2):

1. It has to be total on ground terms s1, s2: s1 �TKBO s2 ∨ s2 �TKBO s1 ∨ s1 = s2

If s1 6= s2 then we have two cases. Either s1 6=Term s2, then we use TKBO case 1 and use
the ordering �KBO, which is total on ground terms, to order s1 and s2. The other case is
s1 =Term s2 but s1 6= s2, then there is a position at which a type of s1 and the corresponding
type of s2 are different and thus �TKBO case 2b applies until such a position is reached.
Then �TKBO case 2a uses �τ, which is total on ground type terms.

2. It has to be irreflexive for all terms s: ¬(s�T KBO s)

We argue by induction over s. The case where s is a variable is trivial, since there is no
rule in �TKBO, �KBO or �τ to make any variable larger than a variable, thus they cannot
be reflexive. In the case where s is function term (s = f 〈τs1 , . . . , τsm〉(t1, . . . , tn)). For
�TKBO case 1 we know that �KBO is irreflexive and are done. In �TKBO case 2a we know
that �τ is irreflexive and are done. Finally for �TKBO case 2b we can apply the induction
hypothesis and are done.
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3. It has to be transitive for all s1, s2, s3: (s1 �TKBO s2 ∧ s2 �TKBO s3) =⇒ (s1 �TKBO s3)

From s1 �TKBO s2 and s2 �TKBO s3 we know that |s1|u ≥ |s2|u ≥ |s3|u and thus the variable
conditions for �KBO are fulfilled. We also know that w(s1)≥ w(s2)≥ w(s3). If any of the
inequalities is strict, then w(s1) > w(s3) and thus s1 �T KBO s3 must hold (�TKBO case 1).
Thus the case w(s1) = w(s3) remains. Now either s1 6=Term s3 or s1 =Term s3. If s1 6=Term s3
then s1 =Term s2 and s2 6=Term s3, s1 6=Term s2 and s2 =Term s3 or s1 6=Term s2 and s2 6=Term s3.
In all three of these cases, transitivity of �KBO suffices to show transitivity of �TKBO.

Let τ(t) ::= τ1, . . . , τlast be the sequence of types of a term t by listing them from left
to right and let τ(t)i be the ith element of that sequence. If s1 =Term s3 and s2 =Term s3
then there are positions i1 and i2 such that τ(s1)i1 �τ τ(s2)i1 and τ(s2)i2 �τ τ(s3)i2 and
for all j1 < i1 and j2 < i2 it holds that τ(s1) j1 = τ(s2) j1 and τ(s2) j2 = τ(s3) j2 . Then either
i1 < i2 and τ(s1)i1 �τ τ(s2)i1 = τ(s3)i1 and thus s1 �TKBO s3. Or i1 = i2 and τ(s1)i1 �τ
τ(s2)i1 �τ τ(s3)i1 and thus s1 �TKBO s3. Or i1 > i2 and τ(s1)i2 = τ(s2)i2 �τ τ(s3)i2 and thus
s1 �TKBO s3.

4. It has to be compatible with Σ-operations for all s1, s2 ∈ T(Σ,V) and all m ≥ 0 and all
function symbols f of arity m, s1�TKBO s2 implies f 〈τ1, . . . , τm〉(t1, . . . , s1, . . . , tm)�TKBO

f 〈τ1, . . . , τm〉(t1, . . . , s2, . . . , tm)

Either s1 6=Term s2 or s1 6= s2. If s1 6=Term s2 then f (t1, . . . , s1, . . . , tm) 6=Term f (t1, . . . , s2, . . . , tm)
and thus the compatibility follows from the compatibility of �KBO. If s1 =Term s2 then
f (t1, . . . , s1, . . . , tm)=Term f (t1, . . . , s2, . . . , tm). Also τ( f 〈τ1, . . . , τm〉(t1, . . . , s1, . . . , tm)) and
τ( f 〈τ1, . . . , τm〉(t1, . . . , s2, . . . , tm)) are identical except (possibly) for the subsequences
τ(s1) respectively τ(s2) and therefore s1�TKBO s2 implies f 〈τ1, . . . , τm〉(t1, . . . , s1, . . . , tm)
�TKBO f 〈τ1, . . . , τm〉(t1, . . . , s2, . . . , tm).

5. It has to be closed under substitutions for all s1, s2 ∈ T(Σ,V) and all substitutions σ
s1 �TKBO s2 implies s1σ�TKBO s2σ

Either s1 6=Term s2 or s1 =Term s2. If s1 6=Term s2 then closed under substitutions follows
from the fact that �KBO is closed under substitutions and that s1σ�KBO s2σ implies that
s1σ 6=Term s2σ. If s1 =Term s2 then there is a position i such that τ(s1)i �τ τ(s2)i and for
all j < i it holds that τ(s1) j = τ(s2) j. Then closed under substitutions for �τ means that
τ(s1)iσ�τ τ(s2)iσ and for all j< i it holds that τ(s1) jσ= τ(s2) jσ. Therefore, and because
=Term is also closed under substitutions it holds that τ(s1σ)i �τ τ(s2σ)i and for all j < i it
holds that τ(s1σ) j = τ(s2σ) j. Thus s1σ�KBO s2σ holds.

Now, the only property that remains to be shown is the subterm property, then the Typed
Knuth-Bendix Ordering is also a simplification ordering.

Lemma 3.2.2.2 (Typed Knuth-Bendix Ordering is a Simplification Ordering).
Let wf be an admissible weight function for >f then the Typed Knuth-Bendix Ordering (�T KBO)
induced by >κ and �τ is a simplification ordering which is total on ground terms.

Proof. A simplification ordering is a reduction ordering with the subterm property.
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1. The ordering is a reduction ordering (Lemma 3.2.2.1)

2. If s[t] and s 6= t then s�T KBO t.

If t is a proper subterm of s then s 6=Term t. Since the subterm property holds for �KBO it
holds for �TKBO.

3.3. The Superposition Calculus

I now present the superposition calculus for the polymorphic first-order language with type
classes.

Positive Superposition
only if conditions 2–8 hold

D′ ∨ t ≈ t′ C′ ∨ s[s2]p ≈ s′

(D′ ∨C′ ∨ s[t′]p ≈ s′)σ
(PSup)

Equality Factoring
only if conditions 1–3 and 10 hold

C′ ∨ s≈ s′ ∨ t ≈ t′

(C′ ∨ t ≈ s′ ∨ t′ 6≈ s′)σ
(EF)

Negative Superposition
only if conditions 2–6 and 9 hold

D′ ∨ t ≈ t′ C′ ∨ s[s2]p 6≈ s′

(D′ ∨C′ ∨ s[t′]p 6≈ s′)σ
(NSup)

Equality Resolution
only if conditions 9 and 11 hold

C′ ∨ s 6≈ s′

C′σ
(ER)

Let ≺ be a fixed simplification order that is total on ground terms. I refer to s[s2]p also as s.

1. σ is the mgu of s and t 2. sσ 6� s′σ 3. tσ 6� t′σ 4. s2 is not a term variable

5. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ, nothing selected 6. σ is the mgu of t and s2

7. (s≈ s′)σ is strictly maximal in (C′ ∨ s≈ s′)σ, nothing selected 8. tσ≈ t′σ 6� sσ≈ s′σ

9. ((s 6≈ s′)σ is maximal in (C′ ∨ s 6≈ s′)σ, nothing selected) ∨ s 6≈ s′ selected

10. (t ≈ t′)σ is maximal in (C′ ∨ s≈ s′ ∨ t ≈ t′)σ, nothing selected 11. σ is the mgu of s and s′

As we can see, the side conditions and the inference rules themselves are identical to the
untyped case (Sect. 2.2.3). In fact, the polymorphic language was designed such that only the
machinery of superposition has to be adapted, not the inference rules themselves. What has
changed is the definition of clauses, terms and their notation []p to access a subterm and the
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(most general) unification. The restriction on the orderings is changed from reduction ordering to
simplification ordering.

In the completeness proof below, we show that superposition calculus is still refutationally
complete (Section 3.5). We will use the same inference rules and introduce intermediate languages
to lift completeness from ground superposition, via the intermediate languages, to the polymorphic
language.

3.4. Implementation and Evaluation

In this section, I provide evidence that the native implementation of type systems into the super-
position calculus is superior to (efficient) type-encodings into untyped first-order logic. I further
show that native support for the polymorphism extended with type classes is competitive with
monomorphisation [11], an incomplete but very efficient native encoding. For problems with
thousands of axioms, the polymorphic type system (with type classes) outperforms monomorphi-
sation.

3.4.1. The Pirate Implementation

I have implemented the polymorphic calculus with type classes in a tool called Pirate. Pirate
is written in (about 25,000 lines of) Scala. The CNF transformation implemented by Pirate is
rather naive. The only improvement implemented is polarity-based replacement of equivalences.
Furthermore, Pirate does not support splitting, but it supports many common redundancy elimina-
tion rules [67], such as Subsumption, Rewriting, Merging Replacement Resolution, Assignment
Equation Deletion, Condensation and Tautology removal. Its main indexing is based on Path
Indexing [60], while Subsumption uses a variant of Feature Vector Indexing [57]. Pirate uses a
global hash-based term sharing that guarantees that every term has at most one object represent-
ing it (during the complete runtime). It uses a worked-off/usable main-loop with given-clause
selection heuristics and ordering computation similar to our extension of SPASS [9]. It has
full proof search documentation, i.e. for all clauses Pirate records which inference or reduction
introduced or removed them. Pirate has an independent proof checking subsystem, that translates
a proof consisting of inferences or reduction rules to a simpler proof that uses only typed-check
instantiations and the inferences of the superposition calculus without computing unifiers (i.e.
only on syntactically equal terms). The unifiers are separated from inferences to check that all
(type) substitutions of a proof are well-typed and withhin the type class constraints.

3.4.2. Setup

I have evaluated my prototype on problems generated by Sledgehammer [10] from Isabelle/HOL
theories. Each problem corresponds to one user action within a proof. The theories are of areas
as diverse as the fundamental theorem of algebra, the completeness of Hoare logic and the type
soundness of a subset of Java. I used the 1249 problems generated from seven of those Isabelle
theory files1 and tested them on seven different type encodings, each with nine different number

1I evaluated on Arrow Order, FFT, FTA, Hoare, TypeSafe, StrongNorm and NS Shared [10].
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of facts per problem2. A fact is either an Isabelle definition or theorem, they are selected and their
importance is ranked by Sledgehammer. I used a time limit of 1 hour on one HyperThread of a
cluster of 2xIntel Xeon E5620 using a JVM heap size of 6 GB. For the comparison, I used the
following type encodings:

Type Classes Using native polymorphism with type classes.

Poly Native Using native polymorphism with a predicate-based type class encoding.

Monomorph An incomplete encoding of polymorphism with type classes by picking
relevant monomorphic instances [15]. Native monomorphism is currently
the most efficient type encoding used in Isabelle [9, pp. 11-12].

Poly Tags Encodes polymorphism with type classes into untyped first-order logic
with the help of special typing function symbols.

Light Poly Tags Encodes polymorphism with type classes into untyped first-order logic
with a reduced number of special typing function symbols due to mono-
tonicity analysis of the occurring types.

Poly Guards Encodes polymorphism into untyped first-order logic with the help of
special typing predicate symbols.

Light Poly Guards Encodes polymorphism with type classes into untyped first-order logic
with a reduced number of special typing predicate symbols due to mono-
tonicity analysis of the occurring types.

The encodings are performed by Sledgehammer and more details on them can be found in [11].
For the Type Classes encoding, 6 to 9 problems (0.5%-0.7%) have a subclass structure and
corresponding type declarations that are not coregular. It is my impression that this is because
some intermediate type classes are missing. This means that for the not coregular part of these
problems Pirate is not refutational complete. Pirate still processes the problems by computing
unification as if the problem is coregular (thereby losing most general unification for those type
classes). This approach is sound, because the unifiers are still unifiers just not most general.

3.4.3. Evaluation

In the evaluation we first look at the success rate, which shows that the type class encoding
is highly successful. For larger fact sizes the type class encoding beats all other encodings,
including the monomorphic encoding. Most likely, the reason for this is the duplication of facts
that the monomorphic encoding requires. In general, it also requires fewer inferences than the

216, 32, 64, 128, 256, 512, 1024, 2048 and 4096 facts before translation. Note that Sledgehammer can not reliably
generate more than 4096 facts (see also comment to Figure 3.2)
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Figure 3.1.: Success rate and scalability of each type encoding

monomorphic encoding, even when its success rate is higher. The native encoding (type classes
and monomorphic) are the encodings with the highest success rate. They also have the highest
success rate without performing any inferences, i.e. by using just the simplification rules. We will
also see that, while Pirate is less tuned than SPASS (e.g. it has no build in decision procedures),
its success rate is between 74% to 118% of SPASS’s success rate. In the following we will look
closer at these and similar results of the evaluation.

Success Rate and Scalability of the Type Encodings

Figure 3.1 shows the success rate and scalability of the tested encodings. The horizontal axis
denotes the number of facts in logarithmic scale and the vertical axis the percentage of problems
proved in a single run of up to one hour.

The native monomorphic and the native type class encodings are clearly superior to the
encodings into untyped first-order logic. From 16 until 512 facts, the monomorphic encoding has
the highest success rate and the type class encoding the second highest success rate. From 1024
to 4096 facts, the type class encoding has the highest success rate and the monomorphic encoding
the second highest success rate — except for 4096 facts, where the poly native encoding is the
second best and the monomorphic encoding only third. The encoding into untyped first-order
logic with the highest success rate for 16, 128 and 256 facts is the light poly tags encoding; for
the other fact sizes it is the light poly guards encoding.

The number of facts determines the success rate. With few facts, many problems do not have
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Number of Facts Type Classes Monomorphic Type Classes versus Monomorphic
16 30 32 92% ( −2)
32 50 62 80% ( −12)
64 73 120 61% ( −47)

128 140 223 63% ( −83)
256 271 388 70% (−117)
512 535 685 78% (−150)

1024 1064 1289 83% (−225)
2048 2112 2584 82% (−472)
4096 4083 4979 82% (−896)

Figure 3.2.: Average number of initial formulas: Type Classes versus Monomorphic

all (for the proof) necessary facts available, but those that have all necessary facts are then easier
to solve. With hundreds and thousands of facts, the encodings have so many facts available
that the success rate starts to decline. This is most likely because the search space becomes too
large because of the large number of potentially irrelevant (for a successful proof) facts. The
most successful fact set size for poly native, light poly tags and poly guards is 256 facts; for
monomorphic, poly tags and light poly guards it is 512 facts, while the type class encoding
performs best for both 256 and 512 facts.

The cause for the different success rates of the various type encoding is difficult to determine
for each individual problem. Already slight differences in the clause set (caused by the differences
of the encodings) result in different exploration of the search space. It is generally known that any
difference has the possibility of dramatic changes in runtime. Nonetheless, the higher success
rate of the monomorphic encoding can be traced (at least in part) to a simpler problem structure.
The monomorphic encoding only uses some (heuristically picked) ground instances of the types
the type class and poly native encoding have to consider. One quantifiable indication of this is the
number of saturations that can be found for 16 facts. The monomorphic encoding can saturate
26% of the problems, significantly more than the type class encoding (17% saturated) and the
poly native encoding (14% saturated).

The downside of the simpler structure of monomorphic problems is that it duplicates facts
(for each ground type instance the fact is either duplicated or excluded). So a formula in the
type class or poly native encoding can become several formulas in the monomorphic encoding,
one for each picked type instance. Figure 3.2 shows the number of initial formulas for both the
monomorphic and type class encoding. For 4096 facts, an initial monomorphic problem has an
average of 900 formulas more than the corresponding type class problem, while for 16 facts the
average difference is just 2 formulas. The addition of a handful of duplicates has in practice
a low impact, because the solver can still process them efficiently. Adding several hundred of
duplicates on the other hand can significantly slow down the solver. In fact, 90% (= 293 proofs)
of type class proofs for 4096 facts are found with picking (less than) 900 clauses for performing
inferences — and each formula can result in multiple clauses. In comparison, 90% (= 276 proofs)
of the monomorphic proofs for 4096 facts are found with picking (less than) 1400 clauses and
293 proofs are found with picking (less than) 2500 clauses for performing inferences.

Note that Sledgehammer cannot generate more than 4096 facts reliably. This can already be
seen at 4096 facts, where the average number of formulas for the type class encoding is already
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below target (with generating only 4083 formulas). Even though there should be more than 4096
formulas due to the helper formulas of encoding higher-order features (as seen in all other fact
sizes, where there are more formulas than facts).
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Figure 3.3.: Average number of main loop iterations per proof

The average number of clauses picked for performing inferences with (for each encoding and
fact size) is given in figure 3.3. It shows that the monomorphic encoding requires more inferences
than the type class encoding. This is even the case when it proves fewer problems (i.e. see the
results from 1024 to 4096 facts). The type class encoding generally also requires fewer inferences
than the encodings into untyped first-order logic. The exceptions are only at fact sizes where the
encodings into untyped first-order logic have lower success rate. The lower success rate is from 3
percentage points (poly tags at 256 to 1024 facts and light poly guards at 2048 facts) up to 23
percentage points (poly guards at 4096 facts).

Variance Inbetween Fact Sizes

Figure 3.4 shows, for each type encoding, the percentage of problems that can be proven by at
least N different fact sizes. Experiments with SPASS shows similar results (SPASS does not
support the poly native and type classes encodings though). The type class encoding has the
most problems that can be solved by all fact sizes. All encodings have a number of problems
that can be proven only by few of the fact sizes. Around twice as many problems can be proven
by one or more fact sizes compared to the number of problems proven by all fact sizes. The
reasons include that the smaller fact sizes tend to not include all necessary facts, in particular for
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Figure 3.4.: Stability of the type encodings

16 facts, hundreds of saturation can be found. Whereas larger fact sizes overwhelm the solver by
increasing the search space and making proofs found in smaller problems harder to find.

Proofs Using Only Simplifications

Figure 3.5 shows, for each type encoding, the percentage of problems that can be proven only with
simplifications (i.e. without performing any inferences). Interestingly, there is a clear partition in
three parts. The least successful encoding is the poly guards encoding with a success rate below
5%. The monomorphic and the type classes encoding have the highest success rate. Their success
rate is between 11% (16 facts) and 14% (from 1024 facts on). Inbetween are all other encodings
with a success rate between 8% (poly tags at 16 facts) and 11% (poly native at 4096 facts). A
possible reason for the difference between the native encodings and the encodings into untyped
logic is that all non-native encodings have to encode the type classes. The type class encoding
provides native support while the monomorphic encoding removes them by just considering some
type instances.

Time Until Successful Proof

Here, I compare the type class encodings average time until it find proofs with the light poly
guards encoding and then with the monomorphic encoding.

There are multiple possible ways to reasonably measure the average time. My goal is to avoid
penalizing the encoding that is more successful, because (in general) harder proofs require more
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Figure 3.5.: Provable by Simplifications Only

16 64 128 256 512 1024 2048 4096
Type Classes versus Light Poly Guards
Both Proved 319 421 471 483 476 464 454 430
Max Proofs 325 440 493 511 516 503 490 472

Type Classes versus Monomorphic
Both Proved 338 454 499 511 508 487 476 436
Max Proofs 339 461 512 539 539 525 508 476

Figure 3.6.: Number of proofs used for comparison of average proof time

time. We can expect that encodings with higher success rate also prove more of the harder
problems and thus take longer. I chose two ways to compare the average time, which are both
suitable for comparison and additionally invariant to the length of the timeout: First, the average
time until a proof was found for those problems where both encodings find a proof (marked
as Both Proved). The second is the average time to find the N fastest proofs, where N is the
number of proofs the worse of the two encodings finds (marked as Max Proofs). It is possible that
the N fastest proofs of the two encodings are from different problems. Note that a comparison
using those averages should only be done within one fact size and figure, because the averages of
different fact sizes are based on a different number of potentially different problems. Figure 3.6
presents the number of problems used at each fact size for both averages. Figure 3.7 shows the
two average times for the type class and light poly guards encoding. Except for the Both Proved
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Figure 3.7.: Average time until proof: Type Classes versus Light Poly Guards
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average for 16 facts the type class encoding is always faster than the light poly guards encoding.
It also consistently solves more problems.

Figure 3.8 shows the two average times for the type class and monomorphic encoding. For
smaller fact sizes (up to 128 facts), the monomorphic encoding is faster and solves more problems.
For larger fact sizes, the type class encoding is faster and solves more problems (from 1024 facts).
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Figure 3.9.: Success rate SPASS versus Pirate

Comparison between Pirate and SPASS

For reference, I have compared the performance of our prototype with the performance of the
SPASS version 3.8ds which we specifically optimized for Isabelle/HOL [9] (marked Isabelle) and
the same SPASS version with default settings (marked defaults). The SPASS binary was created
using profile guided whole program optimizations on similar Isabelle problems.

I used the monomorphic and the poly guards type encoding for the comparison of SPASS and
Pirate. The monomorphic encoding is the only native encoding SPASS supports while the poly
guards encoding is Pirate’s lowest performing (i.e. most difficult) type encoding. Additionally,
SPASS has special support for the poly guards’ predicates in form of its support for sorts. The
main difficulty of the poly guards encoding is rewriting, because the guards added to previously
unconditional equations make unconditional rewriting impossible.

The success rates of Pirate and SPASS on the two encodings are shown in Figure 3.9. Pirate
and SPASS’s Isabelle setting show similar scalability, but Pirate has a lower success rate. Pirate’s
monomorphic success rate is between 83% (1024 facts) and 90% (4096 facts) of SPASS’s Isabelle
setting, while Pirate’s poly guards success rate is between 74% (512 facts) and 86% (16 facts)

57



of SPASS’s Isabelle setting. Pirate’s monomorphic success rate is between 86% (16 and 128
facts) and 112% (2048 facts) of SPASS’s default setting, while Pirate’s poly guards success rate
is between 87% (16 facts) and 118% (512 and 4096 facts) of SPASS’s default setting.

I believe that the main causes of the difference between SPASS and Pirate is, that Pirate’s
CNF transformation is naive, SPASS’s reductions are more powerful and its algorithms better
tuned. Furthermore, SPASS is circa one order of magnitude faster, which is might be caused by
a combination of the above and the fact that SPASS is written in hand-tuned C, while Pirate is
written in Scala and runs on the Java Virtual Machine.

The evaluation results are available under
http://people.mpi-inf.mpg.de/~dwand/thesis/

3.5. Refutational Completeness

The refutational completeness proof for polymorphic superposition with type classes is a compo-
sition of four liftings, four encodings and five (variants of) first-order languages. Each lifting step
starts from a first-order language for which we know that superposition is refutationally complete
and uses that to prove completeness for the first-order language with an extended type system.
The lifting steps require the more expressive language to be encoded into the language we lift
from. The encoding step must preserve satisfiability.

The initial language is the standard first-order language with no types, in particular its ground
version for which superposition is known to be refutationally complete (Sect. 2). It is represented
by the bottom-most box in Figure 3.10. The first step then lifts completeness from superposition
for ground untyped first-order to ground first-order with type symbols, represented by the second
box from the bottom (Sect. 3.5.1). The second lifting then further extends completeness to the
middle box of the figure — non-ground first-order with type symbols (Sect. 3.5.2). Thirdly,
completeness of non-ground first-order with type-symbols is lifted to monomorphic first-order
represented by the forth box from the bottom — a non-ground first-order language with type
terms but no type variables (Sect. 3.5.3). Finally, the completeness for monomorphic first-order
is lifted to polymorphic first-order with type classes, represented by the top box (Sect. 3.5.4).

The proof obligations for each step are as follows. First, an encoding from the more expressive
to the previous logic has to be presented. That encoding has to be satisfiability preserving. To
complete each step, we also have to lift the inferences to the more expressive logic. To proof the
Model Construction Lemma (Lemma 2.2.4.8) using the Candidate Interpretation Construction
(Section 2.2.4) it suffices to show the Lifting Lemmas for each inference of the superposition
calculus (Lemma 2.2.4.6 and Lemma 2.2.4.7) as well as showing variables closed under rewriting
in the Candidate Interpretation Construction (Lemma 2.2.4.5). Once these three lemmas are
proven, the Model Construction Lemma follows and therefore static refutational completeness
(Lemma 2.2.4.11) does too. For the intermediate lifting, we will not show dynamic refutational
completeness, which is only required to run or meaningfully implement superposition. We will
show dynamic refutational completeness for the last lifting to the polymorphic language with
type classes.

The superposition calculus works on clauses. I have already shown that clausification and
Skolemization are possible and can be used to transform formulas of the presented polymorphic
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language into clauses. Therefore, I define the intermediate languages only for clauses and not for
formulas. Furthermore, to obtain a more compact presentation, I omit predicates. The rules for
predicates are also very similar to those of functions. In fact, in a typed setting, predicates could
be encoded as functions of a boolean type.

no types  
ground terms

type symbols  
ground terms

type symbols  
non-ground terms

monomorphic types  
non-ground terms

polymorphic types  
non-ground terms

liftencode

liftencode

liftencode

liftencode

Figure 3.10.: Completeness proof

In Section 3.5.1 I will first present the syntax and se-
mantics of the type-symbol first-order language and then its
completeness proof for ground terms. This is followed by the
completeness proof for non-ground terms (Sect. 3.5.2). Then,
I present the syntax and semantics of the monomorphic first-
order language and its proof (Sect. 3.5.3). Finally, I present
the refutational completeness proof for the already presented
polymorphic language with type classes (Sect. 3.5.4).

3.5.1. Lifting
to Type Symbols without Term Variables

Here, I present the first typed first-order intermediate lan-
guage. The language has terms with variables and a type
system of type symbols which is in some respects similar to
type constants in the polymorphic language. The type sym-
bols are essentially sorts of a many-sorted system, but more
general type declarations for function symbols are allowed.
In particular, overloaded return types are possible in the type-
symbol language. The language is not quite an instance of
the polymorphic language presented above, because the type
declaration of functions are more general than an instance
derived by restricting the complex polymorphic type terms
to be just type constants. I chose this route, because I be-
lieve it leads to a simpler presentation and most of the proofs
than trying to achieve the same with an instance would have.
When showing refutational completeness, I will first show

the ground case and untyped ground case to be equivalent and then lift the type-symbol ground
case to variables with type-symbols. Complex ground type terms present in the polymorphic cal-
culus can be represented by a fresh type-symbol. We will use this in our lifting from type-symbols
to monomorphic first-order logic.

Syntax

The syntax of our type-symbol language is the first step away from untyped first-order logic. For
the ground case, the type-symbol language and the untyped language are essentially the same and
we will show this below. In contrast to the polymorphic language, we define well-typedness and
the terms and clauses simultaneously, since the type-symbol case is simpler. We therefore only
define well-typed type-symbol terms and clauses.
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Definition 3.5.1.1 (Type-Symbol Signature). The signature ΣT for type-symbol first-order logic
is the tuple (S T

F , S T
T , FT ) where

• S T
F is a countable set of function symbols f with arity ≥ 0, written as arity( f ) = m;

• S T
T is a countable set of type symbols. We will use κ for type symbols in this section;

• FT is a set of tuples ( f , κ1, . . . , κm→ κ, κa1 , . . . , κan) where f is a function symbol contained
in S T

F with arity m≥ 0, symbol-arity n≥ 0 and where κ is the type symbol that represent
the range and κ1, . . . , κm are the type symbols for the respective arguments domain. For each
pair of function symbol f and type symbol κ at most one tuple may exist. Each instance of
an overloaded function symbol represents its own function.

Conceptually, κ1, . . . , κm→ κ, κa1 , . . . , κan is a single label τ with two associated functions.
One function that maps each τ to a κ that gives its domain and one function that maps
each τ to the list of κ1, . . . , κm the argument domains. I leave these functions implicit but
sometimes write τ instead of κ1, . . . , κm→ κ, κa1 , . . . , κan .

If a function symbol f has an arity of 0 then we call f a constant symbol.

Definition 3.5.1.2 (Type-Symbol Terms). Let ΣT be a signature and X be a given countably
infinite set of term variables. We split X for each type symbol κ in S T

T in disjoint subsets and
write Xκ for each countably infinite subset. Then all type-symbol terms T T

Σ
(X ) and their type

symbol τ(. . .) are recursively defined as follows:

1. For all sets of variables Xκ each variable u∈Xκ is a term. We define u’s type to be τ(u) = κ.

2. For all tuples ( f , κ1, . . . , κm→ κ, κa1 , . . . , κan) ∈ FT , the arity of f is m and the symbol-
arity of f is n. If t1, . . . , tm are terms and for all i with 1 ≤ i ≤ m. τ(ti) = κi then
f 〈κ1, . . . , κm → κ, κa1 , . . . , κan〉(t1, . . . , tm) is also a term and its type τ( f 〈κ1, . . . , κm →
κ, κa1 , . . . , κan〉(t1, . . . , tm)) is κ.

A term is ground if it contains no variables. We write uκ to denote that the variable u is from the
set Xκ and thus of a variable of the type symbol κ. Furthermore, we have no explicit quantifiers
and all variables are implicitly universally quantified. Without loss of generality we also assume
that all variables are named uniquely.

Definition 3.5.1.3 (Type-Symbol Literals). Let ΣT be a signature. Then literals are defined as

1. ⊥

2. >

3. s≈ t if s, t ∈ T T
Σ
(X ) and τ(s) = τ(t)

4. s 6≈ t if s, t ∈ T T
Σ
(X ) and τ(s) = τ(t)

The equality predicate is a built-in overloaded (for each τ) predicate. We require both its
left-hand and right-hand side terms to be of the same type, i.e. τ(s) = τ(t). We call literals
constructed by rules 1-3 atoms.
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Definition 3.5.1.4 (Type-Symbol Clauses). We define clauses to be multisets of literals.

We use A for atoms, L for literals and C, D, φ for clauses. A clause is ground if it contains no
variables.

Substitutions Here I introduce substitutions for type-symbol variables, terms and literals.

Definition 3.5.1.5 ((Variable Substitutions). A substitution is a mapping from variables (X ) to
terms (T T

Σ
(X )).

We write them as σ= {u1 7→ t1, . . . , un 7→ tn}, where all ui are pairwise distinct and the type
of the variable and terms are the same: τ(ui) = τ(ti). We define them to be:

σ(v) =
{

ti if v = ui

v otherwise

We also write uσ for σ(u). A substitution σ is updated to return t for u (where τ(t) = τ(u)) by

σ[u 7→ t](v) =
{

t if v = u
σ(v) otherwise

Definition 3.5.1.6 ((Term Substitutions). Substitutions are extended to non-variable terms by

f 〈κ1, . . . , κm→ κ, κa1 , . . . , κan〉(t1, . . . , tm)σ⇒ f 〈κ1, . . . , κm→ κ, κa1 , . . . , κan〉(t1σ, . . . , tmσ)

Definition 3.5.1.7 ((Literal Substitutions). Substitutions are similarly extended to literals by

1. ⊥σ⇒⊥

2. >σ⇒>

3. (s≈ t)σ⇒ sσ≈ tσ

4. (s 6≈ t)σ⇒ sσ 6≈ tσ

For clauses the substitution is applied to each literal of the clause and for clause sets to each
clause of the set.

Unification Superposition requires unification and in particular the existence of a unique most
general unifier (up to renaming). Therefore, I define unification of type-symbol terms and show
that it computes a unique most general unifier.

Let t1, t2 be two terms, then unification is the task to derive a substitution σ such that t1σ= t2σ.
The unification rules work on a tuple (E; S ), where E are the equations that are still to be unified
and S are the equations that are already solved. We use .

= for not yet unified equations and =
for equations that are already solved. We start the unification of two terms t1, t2 with the tuple
({t1

.
= t2}; /0) and apply the following unification rules. If E is empty, the unification is complete

and then S contains the unifier, since it only contains variable to term mappings. The unification
has failed if any equation in E cannot be removed by applying one of the unification rules. In that
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case, no unification is possible. I define the rules in such a way that there is no overlap between
them, this simplifies the proofs below. In particular, the side condition of the Decompose rule is
only needed to prevent an overlap with the Identity rule.
—————————————————————————————————————–

Identity (t .= t,E′; S ) ⇒ (E′; S )
Decompose ( f 〈τ〉(t1, . . . , tm)

.
= f 〈τ〉(s1, . . . , sm),E′; S ) ⇒ (t1

.
= s1, . . . , tm

.
= sm,E′; S )

if f 〈τ〉(t1, . . . , tm) 6= f 〈τ〉(s1, . . . , sm)
Orient (t .= u,E′; S ) ⇒ (u .

= t,E′; S )
if u is a variable but t is not

Eliminate (u .
= t,E′; S ) ⇒ (E′{u 7→ t}; u = t,(S {u 7→ t}))

if τ(u) = τ(t) and u 6∈ vars(t)
In an actual implementation, the failure rules could also be considered, but since the type-symbol
language is just an intermediate language, I am only interested in the existence of a unique most
general unifier. Note in particular that the overall unification fails if we have an obligation of the
form f 〈τ〉(. . .) .= f 〈τ′〉(. . .) in E and τ 6= τ′.

Correctness and Uniqueness of Unification I now proof that this unification algorithm
computes a unique most general unifier (up to renaming) and thus that such a unifier exists. To
that end, I first show that S contains only variable to term mappings, i.e. that it actually contains a
substitution. Then I show that the algorithm computes a unifier and always terminates. I continue
by showing that no unifier is lost by any step of the algorithm and then conclude that it computes
a most general unifier and that this most general unifier is unique.

Lemma 3.5.1.8 (S ’s Variables not in E).
Let (E; S )⇒ (E′; S ′) be one unification step, if E does not contain any variable that occurs in
the left hand side of an equation of S then E′ does not contain any variable that occurs in the left
hand side of an equation of S ′.

Proof. By induction over the unification rules. The Identity, Decompose and Orient rules do not
change S and S ′ at all and do not change the variable occurring in E and E′. The Eliminate rule
introduces a new left-hand side variable u in S ′ but instantiates all of u’s occurrences in E′. It
also instantiates u in the remainder of S ′, but by induction hypothesis u does not occur on the left
hand side of the substitution represented by S .

Now, I show that the computed mapping S is a substitution, because a unifier is a substitution
that makes two terms syntactically equal.

Lemma 3.5.1.9 (S contains a substitution).
Let t1, t2 be two terms, then (t1

.
= t2; /0)⇒∗ (E; S ) is a series of unification steps then S only

contains variable to term mappings.

Proof. By induction over the unification rules. The Identity, Decompose and Orient rule do not
change S at all. The Eliminate rule introduces a new left hand side variable u to S ′ which cannot
be instantiated, because it does not occur in E anymore (Lemma 3.5.1.8).

Next, I show the algorithm is deterministic for each .
=, i.e. for each unification obligation in E

exactly one unification rule is applicable.
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Lemma 3.5.1.10 (Type-Symbol Unification Computes a Unifier).
If (t .

= s,E′; S ) and t unifiable with s, then exactly one rule of the unification algorithm is
applicable on t .= s.

Proof. Suppose that t = s, then only the Identity rule is applicable.
Suppose that t 6= s then we have four cases either t and s have a function symbol at the top, one
of them is a variable and the other is not, or both of them are a variable:

• Let t = f 〈τt〉(t1, . . . , tm) and s = g〈τs〉(s1, . . . , sm) both have function symbols at the top.
Then they are only unifiable if the top function symbols ( f = g) and their type definitions
(τt = τs) are identical. In this case only the Decompose rule is applicable.

• Let t = f 〈τt〉(t1, . . . , tm) have a function symbol at the top and s = u be a variable. In this
case only the Orient rule is applicable.

• Let t = u be a variable and s = g〈τs〉(s1, . . . , sm) have a function symbol at the top. Then
they are unifiable only if s does not contain t and they are of the same type. In this case
only the Eliminate rule is applicable.

• Let t = ut and s = us both be variables. In this case only the Eliminate rule is applicable,
because t 6= s and they are unifiable only it they are of the same type.

The unification algorithm must also terminate in order to be reasonable.

Lemma 3.5.1.11 (Type-Symbol Unification Terminates).
Applying unification on ({t1

.
= t2}; /0) always terminates.

Proof. Applying unification decreases the lexicographic ordering on the pair of the number of
distinct variables and the number of symbols occurring in E below a .

= obligation. This is not
true for the Orient rule, but we can only apply it at most once for each .

= obligation.

To show that the unification algorithm computes the most general unifier, I show that for each
step of the unification algorithm no unifier is lost. Then, the most general unifier must be an
instance (renaming) of the resulting substitution.

Lemma 3.5.1.12 (Type-Symbol Unification Preserves Unifiers).
Let (E; S )⇒ (E′, S ′) be one step of the unification algorithm, then if θ is a unifier for (E, S ) it
is also a unifier for (E′, S ′).

Proof. Let t .= s be an arbitrary unification obligation in E. Let Er be E without t .= s. Sup-
pose t = s, then the Identity rule is applicable and E′ = Er and S ′ = S . Clearly, if θ is a unifier
for (E, S ), then it is also a unifier for (E′, S ′). Suppose t 6= s, then it is one of the following cases:
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• Let t = f 〈τ〉(t1, . . . , tm) and s = f 〈τ〉(s1, . . . , sm), then the Decompose rule is applicable and
E′ = t1

.
= s1, . . . , tm

.
= sm,Er and S ′ = S . Clearly, if θ is a unifier for (E, S ) then tθ = sθ

and thus it is also a unifier for the subterms tiθ = siθ. It is therefore also a unifier for
(E′, S ′).

• Let t = f 〈τt〉(t1, . . . , tm) and s = u. Then the Orient rule uses commutativity of equality to
reorient the unification obligation. Clearly, θ is still a unifier.

• Let t = u and s = g〈τs〉(s1, . . . , sm). If θ is a unifier for (E, S ), then tθ = sθ. Therefore,
θ remains a unifier if we replace t by s. After application of the Eliminate rule, E′ is
Er{t 7→ s} and S ′ is t = s,(S {t 7→ s}). Because we only instantiate t to s and move the
uninstantiated obligation t .= s to S ′, θ remains a unifier.

• Let t = ut and s = us. If θ is a unifier for (E, S ), then tθ = sθ. Therefore, θ remains a
unifier if we replace t by s. After application of the Eliminate rule E′ is Er{t 7→ s} and
S ′ is t = s,(S {t 7→ s}). Because we only instantiate t to s and move the uninstantiated
obligation t .= s to S ′, θ remains a unifier.

Now I can combine the previous lemma to show that a most general unifier is computed and
that it is unique up to renaming of the variables.

Lemma 3.5.1.13 (Type-Symbol Unification Computes a Most General Unifier).
If there is a most general unifier θ of t and s, then ({t .= s}; /0)⇒∗ ( /0, S ) and θ is an instance of
the unifier contained in S .

Proof. Suppose there is a most general unifier and ( /0, S ) does not contain it. Since we know that
the unification algorithm always terminates (Lemma 3.5.1.11) we have the following possibilities:
Either (1.) ({t .= s}; /0)⇒∗ (E, S ) and E 6= /0 or (2.) ({t .= s}; /0)⇒∗ ( /0, S ) and S does not
contain the most general unifier. In the first case, Lemma 3.5.1.10 guarantees that there is a
unification rule that is applicable if E is unifiable. E must be unifiable if there is a most general
unifier, but then (E, S ) cannot be the end result of the unification algorithm. In the second case
we know that no unifier (in particular the most general unifier) is lost by a step of the unification
algorithm (Lemma 3.5.1.12). Therefore, the most general unifier is an instance of the unifier
contained in S .

Finally, I can conclude that there is a unique (up to renaming) most general unifier for any two
type-symbol terms.

Lemma 3.5.1.14 (The Most General Unifier is Unique).
The most general unifier of two type-symbol terms t and s is unique up to renaming of variables.

Proof. Follows from Lemma 3.5.1.13, because all most general unifiers are instances of the
unifier σ contained in S .
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Semantics

Here, I define the semantics of the type-symbol language. In untyped first-order logic we have
no concept of types or type symbols and their domains. In the type-symbol case we have type
symbols which are part of the syntax and each type symbol is interpreted to represent a domain, a
subset of the overall universe.

Definition 3.5.1.15 (Structure). A ΣT -structure is a tuple (UT , DT , IT
T , IT

F ), where

UT is a non-empty countable set of elements, the universe.

DT a non-empty set of non-empty disjoint subsets of U . For each type symbol κ ∈ S T
T there is

a domain Dκ ∈ DT that corresponds to it.

IT
T is the set of interpretation function for the type symbols that maps them to their do-

mains (DT ).

IT
F is the set of interpretation function for the function symbols. For each function symbol

f ∈ S T
F with a declaration ( f , κ1, . . . , κm → κ, κa1 , . . . , κan) ∈ FT , there is a function

f Iκ1,...,κm→κ, κa1 , ..., κan
∈ IT
F such that the function’s argument domain is IT (κ1)×·· ·×IT (κm)

and its range is IT (κ).

The universe and functions are similar to untyped first-order logic. Unlike untyped first-order,
the universe of the type-symbol language must be split into the domains the type symbols
represent. Those subsets are represented by DT . Note that the set DT is still countable, because
there are only countable many non-empty disjoint subsets of a countable set (there are only
countable many disjoint subsets of size one) and the universe U is countable. The type symbols
must also be mapped to those domains by IT

T .

Interpretation Here we define the interpretations of the type symbol language.

Definition 3.5.1.16 (Type Symbol Interpretation). The interpretation (S T
T → 2U ) of type sym-

bols is defined by
IT (κ) = Dκ

where Dκ ∈ D represents the domain of elements of that type symbol.

A variable valuation (V) is a mapping from X → U such that the result of the variable
valuation V(uκ) is always a member of the domain IV(κ) of the variable’s type symbol κ. A
variable valuation is always relative to a given ΣT -structure, but we leave this relation implicit.

Definition 3.5.1.17 (Term Interpretation). The interpretation (TΣ( /0)→U ) of terms is defined
by

IT
V (u) = V(u)
IT
V ( f 〈τ〉(t1, . . . , tm)) = f Iτ (IV(t1), . . . ,IV(tm))

where f Iτ ∈ IT
F is the function corresponding to the function symbol f ∈ S T

F with type definition
τ. All results of f Iτ must be elements of IT

T (τ( f 〈τ〉(t1, . . . , tm))).
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Definition 3.5.1.18 (Literal Interpretation). The Interpretation of literals is defined by

IT
V (⊥) = 0
IT
V (>) = 1
IT
V (s≈ t) = 1⇔IT

V (s) = IT
V (t)

IT
V (s 6≈ t) = 1⇔IT

V (s) 6= IT
V (t)

The interpretation of a clause is true if the interpretation of any of its literals is true. The
interpretation of a set of clauses is true if the interpretation for all the clauses the clause set
contains is true. Let max be true if and only if at least one of its arguments is true, and min be
true if and only if all of its arguments are true. Let vars(φ) be the set of all variables occurring
in a clause φ. We extend interpretations to clauses by computing the set of variables and then
universally quantifying over them.

Definition 3.5.1.19 (Clause Interpretation). The interpretation of clauses is defined by

IV( /0, φ) = max
L∈φ

(IV(L))

IV({uκ}]V, φ) = min
e∈IT (κ)

(IV[u7→e](V, φ))

I(φ) = I{}(vars(φ), φ))

Refutational Completeness - Ground Case

We know that untyped ground superposition is complete, therefore we relate ground type-symbol
superposition to it. The differences between untyped and ground type-symbol superposition are
the type-symbol declarations and type symbols. We now present a series of translations that
translate ground type-symbol first-order logic to ground first-order logic and back. We then use
them to prove the ground type-symbol superposition refutationally complete.

First, we translate pairs of type-symbol function symbols and their annotated type definitions
(τ) to their untyped function symbol equivalent. The translation s maps each combination of
function and its type definition to a new, fresh function symbol for the untyped ground case. By
construction s is a bijection.

Then, the translation tv translates the terms between ground type-symbol and untyped. Using
the translation s, the terms are transformed by mapping the type-symbol function and type symbol
pairs to the single untyped function symbol:

tv( f 〈τ〉(t1, . . . , tm)) = s( f , τ)(tv(t1), . . . , tv(tm))

We denote the reverse translation by tv−1:

tv−1(s( f , τ)(t1, . . . , tm) = f 〈τ〉(tv−1(t1), . . . , tv−1(tm))

Well-typedness is preserved by superposition, because equations can only be between terms where
the top type symbol is equal (Lemma 3.5.1.20). The translation ts2ut translates type-symbol
clauses and clause sets to untyped clauses and clause sets by translating all terms that occur in
them. The untyped ordering ≺′ for the untyped terms and clauses is induced by the type-symbol
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ordering≺ for the type-symbol terms and clauses before translation is used. The untyped ordering
holds for t ≺′ s if and only if tv−1(t)≺ tv−1(s). The selection of the type-symbol clauses is used
for the translated untyped clauses.

We will now prove type-symbol and ground superposition to be equivalent by showing that,
after translation, each inference in the one system is mirrored by an inference in the other system.
We also need to show that ≺′ is a simplification ordering. To this end we first show that we can
replace a subterm of a term t by a subterm of equal type without changing the type of the term t.

Lemma 3.5.1.20 (Type Judgement).
For all terms t[s] where s is t or a subterm of t it holds that τ(s) = τ(s′) =⇒ τ(t[s]) = τ(t[s′]).

Proof. The proof is by induction over t.

• If t is s and is replaced by s′ the lemma is trivial (i.e. if t is a variable or constant).

• If t is of the form f 〈κ1, . . . , κm→ κ, κa1 , . . . , κan〉(t1, . . . , tm) and one of its subterms ti is
replaced by t′i and that subterm is still of τ(ti) = τ(t′i) = κi then by definition of terms (2) it
holds that τ(t) = κ.

We expect the inverse of the translation tv applied to the to result of an application of tv to
result in the same term, thus the translation tv must be a bijection.

Lemma 3.5.1.21 (Bijection of tv).
For all ground type-symbol terms t it holds that tv−1(tv(t)) = t.

Proof. The proof is by induction over t.

• If t is a constant, then f 〈τ〉() is mapped to s( f , τ)() by tv which is mapped to f 〈τ〉() by
tv−1, which is the initial t.

• If t is not a constant, then it is of the form f 〈τ〉(t1, . . . , tm). The mapping of the top level
function and type symbol pair is preserved in the same way as it is for constants. The
mapping of the arguments terms t1, . . . , tm results in the same terms by the induction
hypothesis.

In order for ≺′ to be total, we need that terms that are not equal before the translation tv−1 are
not equal afterwards.

Corollary 3.5.1.22 (Terms Stay Distinct).
For all untyped ground terms t and s it holds that if t 6= s then tv−1(t) 6= tv−1(s).

Proof. Follows from Lemma 3.5.1.21.

For the untyped superposition calculus to work, it needs a reduction ordering as a parameter.
Therefore, I have to show that the translated ordering is still one. Since the ordering is in fact also
a simplification ordering, I show that ≺′ is in fact a simplification ordering.
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Lemma 3.5.1.23 (≺′ is a Simplification Ordering ).
If ≺ is a simplification ordering for type-symbol first-order logic, the derived ordering ≺′ for
untyped first-order logic is also a simplification ordering.

Proof. Suppose the lemma does not hold, then ≺′ is either not total, not irreflexive, not transitive
or not compatible with Σ-operations or does not have the subterm property. We do not have to
consider closedness under substitutions for the ground case. In the following, let s′1, s′2 and s′3 be
three untyped ground terms and let s1 be tv−1(s′1), s2 be tv−1(s′2) and s3 be tv−1(s′3).

1. If ≺′ is not total, then there must be an s′1 and an s′2 such that s′1 6= s′2 and neither s′1 ≺′ s′2
nor s′2 ≺′ s′1. From Corollary 3.5.1.22 we know that s1 6= s2. By applying the definition
of ≺′, we get that neither s1 ≺ s2 nor s2 ≺ s1 can then hold. But then ≺ cannot be a
simplification ordering.

2. If ≺′ is not irreflexive, then there must be an s′1 such that s′1 ≺′ s′1. By applying the
definition of ≺′ we get that then there must also be an s1 such that s1 ≺ s1. But then ≺
cannot be a simplification ordering.

3. If ≺′ is not transitive, then there must be an s′1, an s′2 and s′3 such that s′1 ≺′ s′2 and s′2 ≺′ s′3
but not s′1 ≺′ s′3. By applying the definition of ≺′ we get that then there must also be an
s1, an s2 and s3 such that s1 ≺ s2 and s2 ≺ s3 but not s1 ≺ s3. But then ≺ cannot be a
simplification ordering.

4. If≺′ is not compatible with Σ-operations, then there must be an s′1 and an s′2 such that s′1 ≺′
s′2 does not imply f (t1, . . . , s′1, . . . , tm) ≺′ f (t1, . . . , s′2, . . . , tm). By applying the definition
of ≺′ there must be an s1 and s2 such that s1 ≺ s2 does not imply f (t1, . . . , s1, . . . , tm) ≺
f (t1, . . . , s2, . . . , tm). But then ≺ cannot be a simplification ordering.

5. Closedness under substitutions is not applicable since there are no substitutions in the
ground case

6. If ≺′ does not have the subterm property, then there must be an s′1 and an s′2 such that s′2 is
a proper subterm of s′1 but it does not hold that s′2 ≺′ s′1. By applying the definition of ≺′
there must be an s1 and s2 such that it does not hold that s2 ≺ s1. But then ≺ cannot be a
simplification ordering.

To show that both the untyped and the type-symbol are bisimulations of each other, I show that
each of their inferences can simulate the corresponding inference of the other calculus. I start
with the Equality Resolution and the Equality Factoring inferences and then show the Negative
Superposition and the Positive Superposition inferences.

Lemma 3.5.1.24 (Bisimulation Lemma for the Equality Resolution and Equality Factoring
Inferences). Let C be a ground type-symbol clause and ts2ut(C) the translated clause in untyped
ground first-order logic. Then there is an equality resolution (or equality factoring) inference of
ts2ut(C) if and only if there is an equality resolution (or equality factoring) inference from C.
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Proof. Suppose there is a ts2ut(C) so that there is an equality resolution inference for ts2ut(C)
such that the inference result is not a result of the equality resolution inference from C (or vice
versa). Then there must be at least one side condition of the equality resolution inference that is
fulfilled for ts2ut(C) but not for C (or vice versa). The side conditions for the equality resolution
inference (Sect. 3.3), simplified for the ground case by removing the unifier, are:

1. s = s′.

2. a) (s 6≈ s′) is maximal in (C′ ∨ s≈ s′) and no literal is selected or
b) s 6≈ s′ is the selected literal.

We now show why each side condition must also be fulfilled for C if it is fulfilled for ts2ut(C)
and fulfilled for ts2ut(C) if it is fulfilled for C.

1. In the ground case there are no unifiers. Since the translations are bijective, the equality is
preserved by the translation.

2. a) (s 6≈ s′) is maximal in (C′ ∨ s≈ s′) if and only if it is maximal in the translated clause,
because translated literals are compared by translating them back to type-symbol and
comparing them there.

b) s 6≈ s′ is the selected literal either in both or in neither because the same selection of
literals is used for ts2ut(C) and C.

Thus, if the equality resolution inference is possible for ts2ut(C) if and only if it the inference is
possible with C.

Suppose there is a ground ts2ut(C) so that there is an equality factoring inference for ts2ut(C)
such that the inference result is not a result of the equality factoring inference from C. Then there
must be at least one side condition of the equality factoring inference that is fulfilled for ts2ut(C)
but not for C. The side conditions for the equality factoring inference (Sect. 3.3), simplified by
removing the unifier which do not occur in the ground case, are:

1. s = t

2. t ≈ t′ maximal in C′ ∨ s≈ s′ ∨ t ≈ t′ and no literal is selected.

3. s′ 6� s′ and t 6� t′

We now show why each side condition must also be fulfilled for C if it is fulfilled for ts2ut(C)
(and vice versa).

1. As before in the ground case, there are no unifiers. Since the translations are bijective the
equality is preserved by the translation.

2. The orderings and selection are the same, because the ordering of C is used for ts2ut(C).

3. The orderings are the same, because the ordering of C is used for ts2ut(C).

Thus if the equality factoring inference is possible for ts2ut(C), it is also possible for the type-
symbol inference with C.
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Lemma 3.5.1.25 (Bisimulation Lemma for the Superposition Inferences).
Let C = C′ ∨ s ≈ s′ and D = D′ ∨ t ≈ t′ be two ground type-symbol clauses. There is a
superposition inference between ts2ut(C) and ts2ut(D) where ts2ut(s) and some subterm of
ts2ut(t) if and only if there is a superposition inference between C and D.

Proof. Suppose there is a ts2ut(C) and ts2ut(D) so that there is a positive superposition inference
for ts2ut(C) and ts2ut(D) such that the inference result is not a result of the positive superposition
inference from C and D (or vice versa). Then there must be at least one side condition of the
positive superposition inference that is fulfilled for ts2ut(C) and ts2ut(D) but not for C and D
(or vice versa). The side conditions for the positive superposition inference (Sect. 3.3), simplified
by removing the unifier, are:

1. s 6� s′ and t 6� t′

2. Not applicable (There are no variables in the ground case.)

3. t = s2

4. (t ≈ t′) is strictly maximal in (D′ ∨ t ≈ t′) and no literal is selected

5. (s≈ s′) is strictly maximal in (C′ ∨ s≈ s′) and no literal is selected

We now show why each side condition must also be fulfilled for C and D if it is fulfilled for
ts2ut(C) and ts2ut(D) (and vice versa).

1. s 6� s′ and t 6� t′ hold for both, because the orderings of the translated and original terms is
the same.

2. -

3. The translation preserves all equalities.

4. The orderings and selection are the same, because the ordering of D is used for ts2ut(D).

5. The orderings and selection are the same, because the ordering of C is used for ts2ut(C).

Thus, the positive superposition inference is possible for Cθ and Dθ if and only if it is also
possible for the type-symbol inference with C and D.

Suppose there is a ground ts2ut(C) and ts2ut(D) so that there is a negative superposition
inference for ts2ut(C) and ts2ut(D) such that the inference result is not a result of the negative
superposition inference from C and D (or vice versa). Then there must be at least one side
condition of the negative superposition inference that is fulfilled for ts2ut(C) and ts2ut(D) but
not for C and D (or vice versa). The side conditions for the negative superposition inference
(Sect. 3.3), simplified by removing the unifier, are:

1. s 6� s′ and t 6� t′

2. Not applicable (There are no variables in the ground case.)

3. t = s2

70



4. t ≈ t′ is strictly maximal in D′ ∨ t ≈ t′ and no literal is selected

5. a) s 6≈ s′ is maximal in C′ ∨ s 6≈ s′ and no literal is selected or
b) s 6≈ s′ is selected

We now show why each side condition must also be fulfilled for C and D if it is fulfilled for
ts2ut(C) and ts2ut(D) (and vice versa). The side conditions and proofs 1. to 4. are identical to
the side conditions and proofs of positive superposition inference.

5. a) s 6≈ s′ is maximal in both since the same ordering is used for translated and original
literals.

b) If s 6≈ s′ is selected in ts2ut(C) it is also selected in C, since the selection is the same
for both clauses.

Thus, the negative superposition inference is possible for ts2ut(C) and ts2ut(D) if and only if it
is also possible for the non-ground inference with C and D.

We have now shown that after translation type-symbol and ground superposition are bisim-
ulating each other. It remains to show that the clause sets before and after translation are
equisatisfiable.

Lemma 3.5.1.26 (Type-Symbol Satisfiable Implies Untyped Satisfiable).
Let (UT , IT

F , D) be a ground type-symbol structure, then there is an untyped structure (U , IF)
such that for all type-symbol ground terms t it holds that IT (t) = I(tv(t)).

Proof. Let U = UT and IF = IT
F and let for each untyped function symbol fs( f T ,κ) the correspond-

ing function be f Iκ . Then the remaining proof is by induction over t. If t is a constant f T 〈κ〉(),
then its translation is s( f T , κ)() and both their interpretations are f Iκ (). If t is not a constant, then
it is of the form f T 〈τ〉(t1, . . . , tm) and its translation is s( f T , τ)(tv(t1), . . . , tv(tm)). The interpreta-
tion of t is f Iτ (IT (t1), . . . ,IT (tm)) and of its translation is f Iτ (I(tv(t1)), . . . ,I(tv(t1))). From the
induction hypothesis it follows that for all i with 1≤ i≤ m it holds that I(ti) = I(tv(ti)). Thus,
their interpretations are equal.

Lemma 3.5.1.27 (Untyped and Type-Symbol Interpretations are Equisatisfiable).
Let N be a clause set of ground type-symbol first-order logic it is satisfiable if and only if the
translated clause set N′ in untyped first-order logic is satisfiable.

Proof. ⇒ The proof is by induction over the interpretation rules from Section 3.5.1 and Section
2.1.2. The interpretation rules for ground clause sets, clauses and literals are identical. From
Lemma 3.5.1.26 we know that there is a untyped structure so that the interpretation of the
translated term is the same as the original interpretation.
⇐ The direction from an untyped to a type-symbol model is slightly more complicated. This

is because in the untyped setting there is no separation of the domains D of the type-symbol
setting. Let (U ,IF) be the untyped structure. For each type symbol κ in S T

T all elements e ∈ U
become new elements eκ of the domain of κ, i.e. eκ ∈ IT (κ). The new universe UT then is the
union of all domains and DT is the set of all domains. The functions fτ ∈ IT

F are constructed by
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combining s( f , τ) ∈ IF and ( f , κ, κ1, . . . , κm) ∈ FT such that f Iτ (e
κ1
1 , . . . ,e

κm
m ) = eκ if and only if

s( f , τ)I(e1, . . . ,em) = e. Where e,e1, . . . ,em ∈ U and eκ,eκ1
1 , . . . ,e

κm
m are from the respective IT (κi).

Again, the proof is by induction over the interpretation rules and again the interpretation
rules for ground clause sets, clauses and literals are identical. It is therefore necessary to show
that I(t) = I(s) implies IT (tv−1(t)) = IT (tv−1(s)) for all untyped ground terms t and s. We
know that type-symbol equations must be of the same type-symbol κ on the left hand and right
hand side, which guarantees that their interpretations both are elements of IT (κ). We have
constructed the type-symbol interpretation by duplicating each untyped element for each type-
symbol κ. Let iso be a mapping that maps for all κ all eκ back to the e of the untyped model.
Then τ(tv−1(t)) = τ(tv−1(s)), I(t) = iso(IT (tv−1(t))) and I(s) = iso(IT (tv−1(s))) imply that
I(t) = I(s) implies IT (tv−1(t)) = IT (tv−1(s)).

It remains to show that for all untyped ground terms t it holds that I(t) = iso(IT (tv−1(t))). The
proof is by induction over t. If t is a constant s( f T , κ)() then its translation to ground type-symbol
is f T 〈κ〉() and if I(s( f T , κ)()) = e then IT ( f T 〈κ〉()) = eκ by construction of our type-symbol
model. Clearly e = iso(eκ). If t is not a constant, then it is of the form s( f T , κ1, . . . , κm →
κ)(t1, . . . , tm) and its translation is f T 〈κ1, . . . , κm→ κ〉(tv−1(t1), . . . , tv−1(tm)). The untyped inter-
pretation is f I(I(t1), . . . ,I(tm)) = e and while by induction hypothesis f Iκ1,...,κm→κ(I

T (tv−1(t1)),
. . . ,IT (tv−1(tm))) is the type-symbol one. I(ti) = iso(IT (tv−1(ti))) for all argument terms.
Thus, by construction of f Iκ1,...,κm→κ the type-symbol interpretation is f Iκ1,...,κm→κ(I

T (tv−1(t1)), . . . ,
IT (tv−1(tm))) = eκ. It follows that e = iso(eκ).

Since I showed the translation to be satisfiability preserving and I showed the type-symbol
superposition calculus and the translated untyped one to be bisimulations of each other I have
shown completeness for ground type-symbol superposition. As the ground type-symbol language
is an intermediate language in the overall proof, I will not show dynamic refutational completeness
for it.

Theorem 3.5.1.28 (Static Refutational Completeness).
Superposition is refutationally complete for the ground version of type-symbol first-order logic.

Proof. We have shown that our translations preserve satisfiability (Lemma 3.5.1.27) and we have
shown that the ground type-symbol superposition calculus and the translated ground untyped
superposition calculus are bisimulations of each other (Lemma 3.5.1.24 and Lemma 3.5.1.25).
Therefore the completeness of the ground untyped version of superposition (Lemma 2.2.4.11) is
lifted to the ground type-symbol version of superposition.

3.5.2. Lifting to Type Symbols with Term Variables

The syntax and semantics for the type-symbol language with variables are already given in the
previous section (Sect. 3.5.1). There, completeness was shown for the ground type-symbol case.

Refutational Completeness

I will now lift ground type-symbol first-order logic, proved refutationally complete in the previous
section, to non-ground type-symbol first-order logic. In this lifting step the encoding is the
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replacement of a non-ground clause by a set of ground clauses, just as in the lifting in the untyped
proof.

As a first step to justify the restriction of superposition to not superpose into variables, I have
to show that variables are closed under rewriting.

Lemma 3.5.2.1 (Variables are Closed Under Rewriting).
Let C ∈ N and θ be a substitution such that Cθ ∈GΣ(C) and x be a variable occurring in C then:
If xθ→ t is some rewrite step, then there exists a θ′ such that xθ′ = t and yθ′ = yθ for every
variable y 6= x and furthermore Cθ′ ∈GΣ(C).

Proof. From the definition of literals it follows that only terms of the same type symbol can be
equal. Rewriting is only possible by replacing terms by other terms of the same type symbol,
which does not change the overall type of a term (Lemma 3.5.1.20). Since a variable can be
instantiated to any term of the type symbol it is assigned to, the lemma holds.

To lift the completeness from the ground type-symbol case to the type-symbol case with
variables, the inferences need to be lifted. I first lift the Equality Resolution and the Equality Fac-
toring inferences and then the Positive Superposition and the Negative Superposition inferences
into non-variable positions.

Lemma 3.5.2.2 (Lifting Lemma for the Equality Resolution and Equality Factoring Inferences).
Let C be a clause and let θ be a substitution such that Cθ is ground type-symbol first-order logic.
Then every equality resolution (or equality factoring) inference of Cθ is an instance of an equality
resolution (or equality factoring) inference from C.

Proof. Suppose there is a ground Cθ so that there is an equality resolution inference for Cθ such
that the inference result is not a result of the equality resolution inference from C. Then there
must be at least one side condition of the equality resolution inference that is fulfilled for Cθ but
not for C. The side conditions for the equality resolution inference (Sect. 3.3) are:

1. sσ= s′σ, where σ is the most general unifier of s and s′.

2. a) (s 6≈ s′)σ maximal in (C′ ∨ s 6≈ s′)σ and no literal is selected or
b) s 6≈ s′ is the selected literal.

I now show why each side condition must also be fulfilled for C if it is fulfilled for Cθ.

1. If the ground inference is applicable for Cθ, then sθ must be equal to s′θ. By the existence
and uniqueness of the most general unifier, there must be a most general unifier θg of s and
s′ such that θ = θgθ

′. But then this side condition is also fulfilled for C.

2. a) If (s≈ s′)θ is maximal in (C′ ∨ s≈ s′)θ and nothing is selected then there is no literal
L in C′ such that Lθ� (s≈ s′)θ. A literal is maximal with respect to a set of literals if
there is a ground instance that is not smaller than any other literals in that instantiated
set. Therefore, the uninstantiated literal is also maximal.

b) If s 6≈ s′ is selected in Cθ it is also selected in C.
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Thus, if the equality resolution inference is possible for Cθ it is also possible for the non-ground
inference with C.

Suppose there is a ground Cθ so that there is an equality factoring inference for Cθ such that
the inference result is not a result of the equality factoring inference from C. Then there must be
at least one side condition of the equality factoring inference that is fulfilled for Cθ but not for C.
The side conditions for the equality factoring inference (Sect. 3.3) are:

1. sσ= tσ, where σ is the most general unifier of s and t.

2. (t ≈ t′)σ maximal in (C′ ∨ s≈ s′ ∨ t ≈ t′)σ and no literal is selected.

3. sσ 6� s′σ and tσ 6� t′σ

I now show why each side condition must also be fulfilled for C if it is fulfilled for Cθ.

1. If the ground inference is applicable for Cθ, then sθ must be equal to tθ. By the existence
and uniqueness of the most general unifier, there must be a most general unifier θg of s and
t such that θ = θgθ

′. But then this side condition is also be fulfilled for C.

2. Since (t ≈ t′)θ is maximal in (C′ ∨ s≈ s′ ∨ t ≈ t′)θ and no literal is selected, there is no
literal L in C′ such that Lθ� (t ≈ t′)θ. Therefore, the uninstantiated literal is also maximal.

3. Since the ordering is total on ground terms, I know that sθ � s′θ and tθ � t′θ. The ordering
is also closed under substitutions and thus s 6� s′ and t 6� t′.

Thus, if the equality factoring inference is possible for Cθ it is also possible for the non-ground
inference with C.

Lemma 3.5.2.3 (Lifting Lemma for the Superposition Inferences).
Let C = C′ ∨ s ≈ s′ and D = D′ ∨ t ≈ t′ be two clauses without common variables and let θ
be a substitution such that Cθ and Dθ are ground type-symbol first-order logic. If there is a
superposition inference between Cθ and Dθ where sθ and some subterm of tθ are overlapped and
sθ does not occur in tθ at or below a variable position of t, then the inference is an instance of a
superposition inference from C and D.

Proof. Suppose there is a ground Cθ and Dθ so that there is a positive superposition inference
for Cθ and Dθ such that the inference result is not a result of the positive superposition inference
from C and D. Then there must be at least one side condition of the positive superposition
inference that is fulfilled for Cθ and Dθ but not for C and D. The side conditions for the positive
superposition inference (Sect. 3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ

2. s2 is not a term variable

3. tσ= s2σ and σ is the most general unifier of s and s2

4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected
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5. (s≈ s′)σ is strictly maximal in (C′ ∨ s≈ s′)σ and no literal is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for Cθ and
Dθ.

1. Since the ordering is total on ground terms, I know that sθ � s′θ and tθ � t′θ. The ordering
is also closed under substitutions and thus s 6� s′ and t 6� t′.

2. That the inference is not at or below a variable position is part of the assumptions of the
lemma.

3. If the ground inference is applicable for Cθ, then tθ must be equal to s2θ. By the existence
and uniqueness of the most general unifier, there must be a most general unifier θg of t and
s2 such that θ = θgθ

′. But then this side condition is also be fulfilled for C and D.

4. If (t ≈ t′)θ is strictly maximal in (D′ ∨ t ≈ t′)θ and no literal is selected then there is no
literal L in D′ such that Lθ� (t≈ t′)θ. Therefore, the uninstantiated literal is also maximal.

Thus if the positive superposition inference is possible for Cθ and Dθ it is also possible for the
non-ground inference with C and D.

Suppose there is a ground Cθ and Dθ so that there is a negative superposition inference for Cθ
and Dθ such that the inference result is not a result of the negative superposition inference from C
and D. Then there must be at least one side condition of the negative superposition inference that
is fulfilled for Cθ and Dθ but not for C and D. The side conditions for the negative superposition
inference (Sect. 3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ

2. s2 is not a term variable

3. tσ= s2σ and σ is the most general unifier of s and s2

4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected

5. a) (s 6≈ s′)σ is maximal in (C′ ∨ s≈ s′)σ and no literal is selected or
b) s 6≈ s′ is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for Cθ and
Dθ. The side conditions and proofs 1. to 4. are identical to the side conditions and proofs of
positive superposition inference.

5. a) If (s≈ s′)θ maximal in (C′ ∨ s′ ≈ s′)θ and nothing is selected then there is no literal L
in C′ such that Lθ� (s≈ t)θ. Therefore, there is also no L in D such that L� (t≈ t′),
otherwise the ordering would not be closed under substitutions.

b) If s 6≈ s′ is selected in Cθ it is also selected in C.

Thus, if the negative superposition inference is possible for Cθ and Dθ it is also possible for the
non-ground inference with C and D.
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The lifting lemma for superposition only holds for superposition into non-variable position.
Therefore, I also have to show that superposition into the variable positions is irrelevant.

Lemma 3.5.2.4 (Lifting Lemma for the Superposition Inferences Into Variables).
Let D = D′ ∨ t ≈ t′ and C = C′ ∨ s≈ s′ be two clauses without common variables and let θ be a
substitution such that Cθ and Dθ are ground clauses of type-symbol first-order logic. If there is a
superposition inference from D′θ ∨ tθ ≈ t′θ into C′θ ∨ (s[s2]p)θ ≈ s′θ (i.e. such that tθ = s2θ is
rewritten to t′θ) and (s2θ) occurs at or below a variable position in s, then the inference result is
identical to a ground instance of D or redundant.

Proof. Let u be the variable of C under which s2θ occurs, i.e. s2θ is a subterm of uθ, i.e.
uθ[s2θ]p′ . Since variables are closed under rewriting (Lemma 3.5.2.1), u can also be instantiated
to take the rewriting of s2θ to t′θ into account. Let θ′ be the corresponding substitution, i.e.
θ′ = θ[u 7→ (uθ[t′θ]p′)].

The resulting clause of the superposition inference is R = D′θ ∨C′θ ∨ (s[t′]p)θ ≈ s′θ. If D′ is
empty and u occurs only once in C, then the resulting clause R is Cθ′ and thus it is identical to
a ground instance of D. If D′ is not empty or u occurs more than once in C, then clearly each
occurrence of uθ in R can be rewritten to uθ′ by conditional rewriting with Dθ. The result of this
rewrite step is either a ground instance Cθ′ of C (if D′ is empty) or is redundant with respect to
that ground instance Cθ′.

I now show that the fact that variables are closed under rewriting and that the lifting lemmas
hold which is sufficient for lifting a proof of the ground type-symbol case to the non-ground
type-symbol case.

Lemma 3.5.2.5 (Lifting).
Let N be a set of type-symbol clauses. Then ⊥ ∈ Sup∗(GΣ(N)) implies ⊥ ∈ Sup∗(N).

Proof. Each ground Equality Resolution inference and each ground Equality Factoring inference
can be replayed in the non-ground case (Lemma 3.5.2.2). Each ground Superposition inference,
that is not into a variable position, can be replayed in the non-ground case (Lemma 3.5.2.3).
Furthermore, each result of a ground Superposition inference, into a variable position, is redundant
(Lemma 3.5.2.4). Because of these lifting lemmas (Lemma 3.5.2.2, 3.5.2.3 and 3.5.2.4), each
step of the ground type-symbol proof (in Sup∗(GΣ(N))) is mirrored in the type-symbol clause
set (Sup∗(N)).

Furthermore, I prove that any model of the ground type-symbol case can be lifted to a model
of the non-ground type-symbol case.

Lemma 3.5.2.6 (Model Lifting).
Let N be a countable set of type-symbol clauses and let I be an interpretation. Then I � GΣ(N)
implies that there is an interpretation I ′ such that I ′ � N.

Proof. Let the structure (UT , DT , IT
T , IT

F ) be the structure of the interpretation of GΣ(N). Let
DT

v be DT such that for each d ∈DT and each e ∈ d there is a ground term t in GΣ(N) such that e
is the interpretation of t. For each d ∈ DT and let dv be the union of all e ∈ d such that there is
a ground term t in GΣ(N) such that e is the interpretation of t. Let DT

v be the union of all such
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dv and let UT
v be the union of all such dv. Clearly, if the ds are pair-wise disjoint, then the dvs

are also pair-wise disjoint. It also holds that I ′ � GΣ(N) with the structure (UT
v , DT

v , IT
T , IT

F ),
because we only removed elements of the universe that are not used in the interpretation. When
using the structure (UT

v , DT
v , IT

T , IT
F ), there is no difference between the interpretation of a

type-symbol κ and the union of the interpretations of all ground instances of that type, because all
elements that do not have a corresponding ground term were removed. Therefore, I � GΣ(N)
implies I ′ � N.

I also show that a set of type-symbol clauses is satisfiable if and only if the corresponding
ground type-symbol clauses are satisfiable.

Lemma 3.5.2.7 (Type-Symbol and Ground Type-Symbol are Equisatisfiable).
A countable set N of Σ-clauses is satisfiable if and only if its monomorphic version GΣ(N) is
satisfiable.

Proof. By case distinction whether GΣ(N) is satisfiable.

• Suppose GΣ(N) does not have a model, then⊥∈ Sup∗(GΣ(N)). By lifting (Lemma 3.5.2.5)
we have ⊥ ∈ Sup∗(N) and thus N does not have a model.

• Suppose GΣ(N) has a model, then there is an interpretation I such that I � GΣ(N). By
model lifting (Lemma 3.5.2.6) we also have I � N.

Lifting the proofs and models from the ground type-symbol case to the non-ground one is
sufficient to show that refutational completeness of superposition for the type-symbol language
follows. Again, because the type-symbol language is an intermediate language in the overall
proof, I will not show dynamic refutational completeness for it.

Theorem 3.5.2.8 (Static Refutational Completeness).
Superposition is refutationally complete for type-symbol first-order logic.

Proof. I have shown that a countable set N of type-symbol clauses is satisfiable if and only if its
ground version GΣ(N) is satisfiable (Lemma 3.5.2.7). Furthermore, I have shown that a proof in
the monomorphic version is lifted to the polymorphic version (Lemma 3.5.2.5). Therefore, the
completeness of the ground type-symbol version of superposition (Lemma 3.5.1.28) is lifted to
the type-symbol version of superposition.

3.5.3. Lifting to Monomorphism

Here, I proof refutational completeness of a monomorphic first-order language. Like the type-
symbol language, the monomorphic language allows terms with variables. But now instead of
type symbols, I allow complex type terms like in the polymorphic language with type classes, but
without the type variables, type classes and type-class constraints. I will reuse the polymorphic
language with type classes (Section 3.1), but restrict the syntax to disallow type variables in terms
and clauses. By removing the type variables, I also remove the type classes (and constraints). As
in the previous two completeness proofs, I will omit predicates and only consider clauses instead
of formulas.
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Syntax

I reuse the polymorphic signature and syntax (Section 3.1.1), but disallow the use of type variables
in the type terms occurring in clauses and formulas. This is done by removing the first rule in the
definition of type terms (Def. 3.1.1.3). Thus, type variables can only be used in the declarations.

Signature Even though I reuse the original signature (Def. 3.1.1.1), only a part of it is necessary.
After well-typedness of the initial clause set is established, the unnecessary part of the signature
can be removed. The relevant part of the signature for the monomorphic first-order language
without type variables is a tuple ΣM = (SF , S T , F) where SF is the set of function symbols, S T
is the set of type constructor symbols and F declares the arity and the argument and return types.

The other elements are not required, after the initial well-typedness check for the terms
that occur in clauses. The predicate symbols (SP ) and predicate type declarations (P) are not
necessary, since I omit predicates for the completeness proof. The type class symbols (SK) and
subclass class declarations (T C) are not necessary, since I disallow type variables and thus type
classes. The type declarations (T ) are not necessary, since the clause set only contains ground
types and does not introduce new ground type terms.

Semantics

I reuse the polymorphic semantics without changes (Sect. 3.1.4). The definition of a structure is
given in Definition 3.1.4.1. Due to the restricted syntax, the rules concerning type variables (first
rule of Def. 3.1.4.2), type classes (Def. 3.1.4.5) and type-class constraints (Def. 3.1.4.4) cannot
apply.

Refutational Completeness

I have already shown that type-symbol superposition is refutationally complete (Theorem 3.5.2.8),
therefore I translate the monomorphic language to it for the refutational completeness proof.
The proof is similar to the lifting from ground untyped first-order logic to ground type-symbol
first-order logic. The main differences between the type-symbol language and the monomorphic
language is, that the type-symbol one only has type symbols whereas the monomorphic one has
complex type terms (both have no type variables).

I now present the translations between monomorphic and type-symbol first-order language.
The translation ty maps pairs of function symbols and a list of ground type terms to distinct type
symbols, i.e. ty( f , τ1, . . . , τn) = κ such that ty( f , τ1, . . . , τn) = ty( fr, τr1 , . . . , τrn) if and only if
f = fr and for all i it holds that τi = τri . The translation ty is bijective by construction.

First, I need to introduce notation to refer to the type of a function term and its translation. I
define τ( f , τr) to be ty(τr). Let furthermore κ be a type symbol and σ′ be such that τ= τ fσ′ then
I define τ−1( f , κ) to be α1σ

′, . . . ,αnσ
′.

The translation tv translates the monomorphic terms to type symbol terms. For the translation I
annotate the term variables in the subscript with their corresponding type term respectively type
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symbol.

tv(uτ) ⇒ uty(τ)
tv( f 〈τr, τ1, . . . , τn〉(t1, . . . , tm)) ⇒ f 〈ty′, ty(τ1), . . . , ty(τn)〉(tv(t1), . . . , tv(tm))

where ty′ is defined as
ty′ = ty(τ(t1)), . . . , ty(τ(tm))→ ty(τr)

Then the translation tv−1 is the reverse translation.

tv−1(uκ) ⇒ uty−1(κ)

tv−1( f 〈κ1, . . . , κm→ κ, κa1 , . . . , κan〉(t1, . . . , tm)) ⇒ f 〈τ′〉(tv−1(t1), . . . , tv−1(tm))

where τ′ is defined as
τ′ = ty−1(κ), ty−1(κa1), . . . , ty−1(κan)

For the ordering ≺′ of the translated terms and clauses, the ordering ≺ of the terms and clauses
before translation is used. Formally: t≺′ s if and only if tv−1(t)≺ tv−1(s). Finally, the translation
m2ts translates monomorphic clauses to type-symbol clauses by translating all monomorphic
terms in them to type-symbol terms. The selection of the clauses is used for the translated clauses.

The type-symbol signature uses the function symbols of the monomorphic signature (SF ), the
set of type symbols is the (S T ) translation by t of all possible ground type term instances allowed
by the monomorphic signature. The function type declarations (F) are all possible ground type
term instances of the type variables of each function symbols monomorphic signature’s type
declaration.

I first show that the translation tv is a bijection, that inequalities and unifiers are preserved and
that the ≺′ ordering is a simplification order. Then I show the lifting lemmas as bisimulations of
the type-symbol and monomorphic inferences.

Lemma 3.5.3.1 (Bijection of tv).
For all monomorphic terms t it holds that tv−1(tv(t)) = t.

Proof. By induction over t.

• If t is a variable uτ then tv−1(tv(uτ))⇒ tv−1(uty(τ))⇒ uty−1(ty(τ)). Since ty−1(ty(τ)) = τ

by construction, the property holds for variables.

• If t is a term of the structure f 〈τr, τ1, . . . , τn〉(t1, . . . , tm) then
tv−1(tv( f 〈τr, τ1, . . . , τn〉(t1, . . . , tm)))⇒
tv−1( f 〈ty(τ(t1)), . . . , ty(τ(tm))→ ty(τr), ty(τ1), . . . , ty(τn)〉(tv(t1), . . . , tv(tm)))⇒
f 〈ty−1(ty(τr)), ty−1(ty(τ1)), . . . , ty−1(ty(τn))〉(tv−1(tv(t1)), . . . , tv−1(tv(tm)))
which is by induction hypothesis (tv−1(tv(ti)) = ti)
f 〈ty−1(ty(τr)), ty−1(ty(τ1)), . . . , ty−1(ty(τn))〉(t1, . . . , tm)
by the fact that ty is bijective by construction
f 〈τr, τ1, . . . , τn〉(t1, . . . , tm)
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In order for ≺′ to be total on ground terms, we need that (ground) terms which are not equal
before the translation tv−1 are not equal afterwards.

Lemma 3.5.3.2 (Terms Stay Distinct).
For all type-symbol terms t and s it holds that if t 6= s then tv−1(t) 6= tv−1(s).

Proof. By induction over t and s. If both t and s are distinct variables before translation, then
both are distinct variables after translation. If t (s) is a variable and s (t) a non-variable term, then
tv−1(t) (tv−1(s)) is still a variable and tv−1(s) (tv−1(t)) still a non-variable term. If both t and s
are non-variable terms then either

• Their top function symbol is different. It is not changed and therefore it is still different
after translation.

• Their top function symbol is equal, but the return type is different. Then τ( f , τ1, . . . , τn) is
different and thus they have a different type symbol after translation.

• A subterm is different, then by induction hypothesis those subterms are different after
translation.

In the bisimulation lemmas below we require that terms that are unifiable before the translation
tv are also unifiable after. Therefore, I show this fact now.

Lemma 3.5.3.3 (Unifiers are Preserved by Translation).
The translation tv preserves unifier: tv(t{u1 7→ s1, . . .}) = tv(t){tv(u1) 7→ tv(s1), . . .}.

Proof. The translation tv(u) of a variable u is still a variable, so {tv(u1) 7→ tv(s1), . . .} is still a
substitution. The remaining proof is by induction on the rules of tv.

• Clearly, the variable case holds: tv(u{u 7→ s, . . .}) = tv(u){tv(u) 7→ tv(s), . . .}.

• For the function case, tv( f 〈τ1, . . . , τn〉(t1, . . . , tm){u1 7→ s1, . . .})
.
=

f 〈τ( f , τ1, . . . , τn)〉(tv(t1), . . . , tv(tm)){tv(u1) 7→ tv(s1), . . .}. Since f is a function symbol
and τ1, . . . , τn are ground, they are unaffected by substitutions. Thus, the equality depends
only on the subterms ti. From the induction hypothesis we know for each ti that tv(ti{u1 7→
s1, . . .}) = tv(ti){tv(u1) 7→ tv(s1), . . .}.

For the type-symbol superposition calculus to work it needs as a parameter a simplification
ordering, therefore, I have to show that the translated ordering is still one.

Lemma 3.5.3.4 (≺′ is a Simplification Ordering).
If ≺ is a simplification ordering for monomorphic first-order logic, the derived ordering ≺′ for
type-symbol first-order logic is also a simplification ordering.
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Proof. Suppose the lemma does not hold, then ≺′ is either not ground total, not irreflexive, not
transitive, not compatible with Σ-operations or not closed under substitutions. In the following,
let s′1, s′2 and s′3 be three type-symbol ground terms and s1 be tv−1(s′1), s2 be tv−1(s′2) and s3 be
tv−1(s′3) be their monomorphic translation.

1. If ≺′ is not ground total, then there must be a ground s′1 and a ground s′2 such that s′1 6= s′2
and neither s′1 ≺′ s′2 nor s′2 ≺′ s′1. From Lemma 3.5.3.2 I know that s1 6= s2 and I know that
s1 and s2 are ground. By applying the definition of ≺′ I get that neither s1 ≺ s2 nor s2 ≺ s1
can then hold. But then ≺ cannot be a simplification ordering.

2. If ≺′ is not irreflexive then there must be an s′1 such that s′1 ≺′ s′1. By applying the
definition of ≺′ I get that there must also be an s1 such that s1 ≺ s1. But then ≺ cannot be
a simplification ordering.

3. If ≺′ is not transitive then there must be an s′1, an s′2 and s′3 such that s′1 ≺′ s′2 and s′2 ≺′ s′3
but not s′1 ≺′ s′3. By applying the definition of ≺′ I get that there must also be an s1, an s2
and s3 such that s1 ≺ s2 and s2 ≺ s3 but not s1 ≺ s3. But then ≺ cannot be a simplification
ordering.

4. If ≺′ is not compatible with Σ-operations then there must be an s′1 and an s′2 such that s′1 ≺′
s′2 does not imply f (t1, . . . , s′1, . . . , tm) ≺′ f (t1, . . . , s′2, . . . , tm). By applying the definition
of ≺′ there must be an s1 and s2 such that s1 ≺ s2 does not imply f (t1, . . . , s1, . . . , tm) ≺
f (t1, . . . , s2, . . . , tm). But then ≺ cannot be a simplification ordering.

5. If ≺′ is not closed under substitutions then there must be a σ′ = {u1 7→ t′1, . . . ,un 7→ t′n}, s′1
and s′2 such that s′1 ≺′ s′2 does not imply s′1σ

′ ≺′ s′2σ
′. Let σ be {u1 7→ tv−1(t′1), . . . ,un 7→

tv−1(t′n)}, since ui and t′i are of the same type symbol, this is well-typed as well. Then there
must be an s1 and s2 such that s1 ≺ s2 does not imply s1σ≺ s2σ. But then ≺ cannot be a
simplification ordering.

6. If ≺′ does not have the subterm property, then there must be an s′1 and an s′2 such that s′2 is
a proper subterm of s′1 but it does not hold that s′2 ≺′ s′1. By applying the definition of ≺′
there must be an s1 and s2 such that it does not hold that s2 ≺ s1. But then ≺ cannot be
simplification ordering.

To show that both the monomorphic superposition calculus and the type-symbol superposition
calculus are bisimulations of each other, I show that each of their inferences can simulate the
corresponding inference of the other calculus. I start with the Equality Resolution and the Equality
Factoring inferences and then show the Negative Superposition and the Positive Superposition
inferences.

Lemma 3.5.3.5 (Bisimulation Lemma for the Equality Resolution and Equality Factoring In-
ferences). Let C be a monomorphic clause and m2ts(C) the translated clause in type-symbol
first-order logic. Then there is an equality resolution (or equality factoring) inference of m2ts(C)
if and only if there is an equality resolution (or equality factoring) inference from C.
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Proof. Suppose there is an m2ts(C) so that there is an equality resolution inference for m2ts(C),
such that the inference result is not a result of the equality resolution inference from C (or vice
versa). Then there must be at least one side condition of the equality resolution inference that is
fulfilled for m2ts(C), but not for C (or vice versa). The side conditions for the equality resolution
inference (Sect. 3.3) are:

1. σ mgu of s and s′

2. a) (s 6≈ s′)σ is maximal in (C′ ∨ s≈ s′)σ and no literal is selected or
b) s 6≈ s′ is the selected literal.

I now show why each side condition must also be fulfilled for C if it is fulfilled for m2ts(C) and
fulfilled for m2ts(C) if it is fulfilled for C.

1. The translation preserves the most general unifier (Lemma 3.5.3.3).

2. a) (s 6≈ s′) is maximal in (C′ ∨ s≈ s′) if and only if it is maximal in the translated clause,
because translated literals are compared by translating them back to type-symbol and
comparing them there.

b) s 6≈ s′ is the selected literal either in both or in neither because the same selection of
literals is used for m2ts(C) and C.

Thus, the equality resolution inference is possible for m2ts(C) if and only if the type-symbol
inference is possible with C.

Suppose there is a ground m2ts(C) so that there is an equality factoring inference for m2ts(C),
such that the inference result is not a result of the equality factoring inference from C. Then there
must be at least one side condition of the equality factoring inference that is fulfilled for m2ts(C),
but not for C. The side conditions for the equality factoring inference (Sect. 3.3) are:

1. sσ= s′σ, where σ is the most general unifier of s and s′.

2. (s≈ t)σ maximal in (C′ ∨ s′ ≈ t′ ∨ s≈ t)σ and no literal is selected.

3. s′σ 6� t′σ and sσ 6� tσ

I now show why each side condition must also be fulfilled for C if it is fulfilled for m2ts(C) (and
vice versa).

1. The translation preserves the most general unifier (Lemma 3.5.3.3).

2. The orderings and selection are the same, because the ordering of C is used for m2ts(C).

3. The orderings are the same, because the ordering of C is used for m2ts(C).

Thus, the equality factoring inference is possible for m2ts(C) if and only if the type-symbol
inference is possible with C.

Lemma 3.5.3.6 (Bisimulation Lemma for the Superposition Inferences).
Let C = C′ ∨ s≈ s′ and D = D′ ∨ t ≈ t′ be two monomorphic clauses. There is a superposition
inference between m2ts(C) and m2ts(D) where m2ts(s) and some subterm of m2ts(t) if and only
if there is a superposition inference between C and D.
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Proof. Suppose there is an m2ts(C) and m2ts(D) so that there is a positive superposition in-
ference for m2ts(C) and m2ts(D) such that the inference result is not a result of the positive
superposition inference from C and D (or vice versa). Then there must be at least one side
condition of the positive superposition inference that is fulfilled for m2ts(C) and m2ts(D) but
not for C and D (or vice versa). The side conditions for the positive superposition inference
(Sect. 3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ

2. s2 is not a term variable

3. σ mgu of s and s2

4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected

5. (s≈ s′)σ is strictly maximal in (C′ ∨ s≈ s′)σ and no literal is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for m2ts(C)
and m2ts(D) (and vice versa)

1. sσ 6� s′σ and tσ 6� t′σ hold for both, because the orderings of the translated and original
terms is the same.

2. The translation preserves term variables, it never exchanges them to or from non-variable
terms.

3. The translation preserves the most general unifier (Lemma 3.5.3.3).

4. The orderings and selection are the same, because the ordering of D is used for m2ts(D).

5. The orderings and selection are the same, because the ordering of C is used for m2ts(C).

Thus, the positive superposition inference is possible for C and D if and only if it is also possible
for the type-symbol inference with m2ts(C) and m2ts(D).

Suppose there is a ground m2ts(C) and m2ts(D) so that there is a negative superposition
inference for m2ts(C) and m2ts(D) such that the inference result is not a result of the negative
superposition inference from C and D (or vice versa). Then there must be at least one side
condition of the negative superposition inference that is fulfilled for m2ts(C) and m2ts(D) but
not for C and D (or vice versa). The side conditions for the negative superposition inference
(Sect. 3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ

2. s2 is not a term variable

3. σ mgu of s and s2

4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected

5. a) (s 6≈ s′)σ is maximal in (C′ ∨ s≈ s′)σ and no literal is selected or
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b) s 6≈ s′ is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for m2ts(C)
and m2ts(D) (and vice versa). The side conditions and proofs 1. to 4. are identical to the side
conditions and proofs of positive superposition inference.

5. a) (s 6≈ s′)σ is maximal in both, since the same ordering is used for translated and
original literals.

b) If s 6≈ s′ is selected in m2ts(C) it is also selected in C, since the selection is the same
for both clauses.

Thus, the negative superposition inference is possible for m2ts(C) and m2ts(D) if and only if it
is also possible for the non-ground inference with C and D.

Lemma 3.5.3.7 (Inference Results are Bisimular).
Let R be the result of a monomorphic inference, then m2ts(R) is the result of the corresponding
translated inference.

Proof. The translation is bijective. From the bisimulation lemmas I now that there is always a
corresponding inference for the translated and type-symbol clauses. Equality Resolution just
removes a literal, so the remaining literals are by construction the translations of each other.
Equality Factoring rearranges terms within two (in)equalities, since both the translated and the
monomorphic inference rearrange the same terms, the result is still a translation of the other result.
The Superposition inferences also rearrange terms, but within terms, still the same argument as
for Equality Factoring applies.

Before concluding refutational completeness for monomorphic first-order logic, I show that
the encoding from monomorphic to type-symbol is satisfiability preserving. To this end I first
show that a monomorphic interpretation can be translated to the type-symbol one and then the
other direction. I do this by first creating a bijection between models for monomorphic and the
translated type-symbol sets.

Let (U , D, IT , IF ) be a monomorphic structure, then tvI(U , D, IT , IF ) is a corresponding
type-symbol structure for the problem translated with tv. It is defined as

tvI(U , D, IT , IF ) = (U , D, IT
T , IT

F )

where IT
T mappings are defined by

IT
T (κ) = IT (ty−1(κ))

IT
F is function interpretations are defined by

f Iτ (e1, . . . , em) = f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(e1, . . . , em)

where τ= κ1, . . . , κm→ κ, κa1 , . . . , κan and τr = ty−1(κ), τ1 = ty−1(κa1), . . . , τn = ty−1(κan)
To show monomorphic and the translated type-symbol clause sets to be equisatisfiable, I first

show that the terms (with the same/translated context) evaluate identical. Then I show that the
clause sets are equisatisfiable. First, I start with the translation of terms from monomorphic to
type symbol.
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Lemma 3.5.3.8 (Monomorphic to Type Symbol Structure - Terms).
Let I be a monomorphic interpretation with the monomorphic structure (U , D, IT , IF ) of
a monomorphic clause set N. For any monomorphic variable valuation V , let a type-symbol
variable valuation be defined as VT (uty(τ)) = V(uτ). Then for the type-symbol interpretation IT

with the type-symbol structure (UT , DT , IT
T , IT

F ) = tvI(U , D, IT , IF ) and any monomorphic
variable valuation V such that VT (uty(τ)) = V(uτ), it holds that for all monomorphic terms t,
IV(t) = IT

VT (tv(t)).

Proof. By induction over t.

• In the case that t is a variable uτ.
Then tv(uτ) = uty(τ) and therefore IT

VT (tv(t)) = IT
VT (uty(τ)). By the semantics of type-

symbol language, it follows that IT
VT (uty(τ)) = VT (uty(τ)). By the definition of tvI , we have

IT
T (κ) = IT (ty−1(κ)) and because ty is a bijection we have IT

T (ty(τ)) = IT (τ). Therefore,
VT (uty(τ))=V(uτ) confirms to the interpretations. By the monomorphic semantics V(uτ)=
IV(uτ).

• In the case that t is a function term f 〈τr, τ1, . . . , τn〉(t1, . . . , tm).
Then tv( f 〈τr, τ1, . . . , τn〉(t1, . . . , tm) = f 〈τ〉(tv(t1), . . . , tv(tm)) and therefore IT

VT (tv(t)) =
IT
VT ( f 〈τ〉(tv(t1), . . . , tv(tm))). By the type-symbol semantics it follows that
IT
VT ( f 〈τ〉(tv(t1), . . . , tv(tm))) = f Iτ (IT

VT (tv(t1)), . . . , IT
VT (tv(tm))). By induction hypoth-

esis, we know that for each i it holds that IT
VT (tv(ti)) = IV(ti) and thus it holds that

f Iτ (IT
VT (tv(t1)), . . . , IT

VT (tv(tm))) = f Iτ (IV(t1), . . . , IV(tm)). By the definition of tv, we
know that there is a bijection between τ and 〈τr, τ1, . . . , τn〉. From the definition of tvI , we
know that f Iτ (IV(t1), . . . , IV(tm)) = f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(IV(t1), . . . , IV(tm)),
Therefore and from the monomorphic semantics, it follows that f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉
(IV(t1), . . . , IV(tm)) = IV( f 〈τr, τ1, . . . , τn〉(t1, . . . , tm)).

Now, I continue with the translation of terms from type symbol to monomorphic.

Lemma 3.5.3.9 (Type Symbol to Monomorphic Structure - Terms).
Let IT be a type-symbol interpretation with the type-symbol structure (UT , DT , IT

T , IT
F ) of a

type-symbol clause set N′ generated by the translation m2ts from a monomorphic clause set N.
For any type-symbol variable valuation VT , let a monomorphic variable valuation be defined as
V(uty−1(κ)) = VT (uκ). Then, for any type-symbol variable valuation and for the monomorphic
interpretation I with the monomorphic structure (U , D, IT , IF ) = tv−1

I (UT , DT , IT
T , IT

F ), it
holds that for all type-symbol terms t, IV(tv−1(t)) = IT

VT (t).

Proof. By induction over t.

• In the case that t is a variable uκ.
Then tv−1(uκ) = uty−1(κ) and therefore, IV(tv−1(t)) = IV(uty−1(κ)). By the monomorphic
semantics it follows that IV(uty−1(κ)) = V(uty−1(κ)). By the definition of tvI we have
IT
T (κ) = IT (ty−1(κ)). Therefore, V(uty−1(τ)) = VT (uκ) confirms to the interpretations. By

the type-symbol semantics VT (uκ) = IT
VT (uκ).
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• In the case that t is a function term f 〈τ〉(t1, . . . , tm).
Then by construction of tv it holds that tv−1( f 〈τ〉(t1, . . . , tm) = f 〈τr, τ1, . . . , τn〉(tv−1(t1),
. . . , tv−1(tm)) and therefore IV(tv−1(t)) = IV( f 〈τr, τ1, . . . , τn〉(tv−1(t1), . . . , tv−1(tm))).
By the monomorphic semantics it follows that IV( f 〈τr, τ1, . . . , τn〉(tv−1(t1), . . . , tv−1(tm)))
= f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(IV(tv−1(t1)), . . . , IV(tv−1(tm))). By induction hypoth-
esis we know that for each i it holds that IV(tv−1(ti)) = IT

VT (ti) and thus it holds that
f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(IV(tv−1(t1)), . . . , IV(tv−1(tm))) =
f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(IT

VT (t1), . . . , IT
VT (tm)). From the construction of tvI , we

know that f I〈I /0(τr), I /0(τ1), . . . , I /0(τn)〉(IV(t1), . . . , IV(tm)) = f Iτ (IV(t1), . . . , IV(tm)),
because from the construction of tv we know that there is a bijection between τ and
〈τr, τ1, . . . , τn〉. Therefore and from the type-symbol semantics, it follows that f Iτ 〈τ〉
(IT
VT (t1), . . . , IVT (tm)) = IT

VT ( f 〈τ〉(t1, . . . , tm)).

After showing the lemmas for the terms, I can now show the respective clause sets to be
equisatisfiable. Again, I start with the direction from monomorphic to type symbol.

Lemma 3.5.3.10 (Monomorphic to Type Symbol Structure).
Let I be a monomorphic interpretation with the monomorphic structure (U , D, IT , IF ) of a
monomorphic clause set N. For any monomorphic variable valuation V , let a type-symbol variable
valuation be defined as VT (uty(τ)) = V(uτ). Then, for any monomorphic variable valuation and
for the type-symbol interpretation IT with the type-symbol structure (UT , DT , IT

T , IT
F ) =

tvI(U , D, IT , IF ), it holds that for all monomorphic clauses C ∈ N, IV(C) = IT
VT (m2ts(C)).

Proof. By induction over the interpretation rules for the monomorphic clause C.

• The case C = t ≈ s follows from Lemma 3.5.3.8.

• In the case C = ¬φ. Then IT
VT (m2ts(¬φ)) = IT

VT (¬m2ts(φ)). By induction hypothe-
sis (and because the definition of the interpretation of ¬ are identical), it follows that
IT
VT (¬m2ts(φ)) = IV(¬φ).

• In the case C = φl ∨ φr. Then IT
VT (m2ts(φl ∨ φr)) = IT

VT (m2ts(φl) ∨ m2ts(φr)). By
induction hypothesis (and because the definition of the interpretation of ∨ are identical), it
follows that IT

VT (m2ts(φl) ∨ m2ts(φr)) = IV(φl ∨ φr).

• In the case C = ∀u : τ. φ. Then IT
VT (m2ts(∀u : τ. φ))= IT

VT (∀u : ty(τ).m2ts(φ)). And by the
type-symbol interpretation rules IT

VT (∀u : ty(τ). m2ts(φ)) = min
e∈IT (ty(τ))

(IT
VT [u7→e](m2ts(φ))).

Because ty is bijective and by construction of tvI , it holds that IT (ty(τ))= IT (τ) and in par-
ticular VT (uty(τ)) = V(uτ) for each valuation of u. Thus, it holds that

min
e∈IT (ty(τ))

(IT
VT [u7→e](m2ts(φ))) = min

e∈I(τ)
(IT
V[u7→e](m2ts(φ))). Furthermore, by the induction

hypothesis we have IT
V[u7→e](m2ts(φ)) = IV[u7→e](φ) and thus min

e∈I(τ)
(IT
V[u7→e](m2ts(φ))) =

min
e∈I(τ)

(IV[u7→e](φ)). By the monomorphic interpretation rules we have that

min
e∈I(τ)

(IV[u7→e](φ)) = ∀u : τ. φ.
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And continue with the inverse direction from type symbol to monomorphic.

Lemma 3.5.3.11 (Type Symbol to Monomorphic Structure).
Let IT be a type-symbol interpretation with the type-symbol structure (UT , DT , IT

T , IT
F ) of

a clause set generated by the translation m2ts. For any type-symbol variable valuation VT ,
let a monomorphic variable valuation be defined as V(uty−1(κ)) = VT (uκ). Then for any type-
symbol variable valuation and for the monomorphic interpretation I with the type-symbol
structure (U , D, IT , IF ) = tv−1

I (UT , DT , IT
T , IT

F ), it holds that for all type-symbol clauses C,
IV(m2ts−1(C)) = IT

VT (C).

Proof. By induction over the interpretation rules for the type-symbol clause C.

• The case C = t ≈ s follows from Lemma 3.5.3.9.

• In the case C = ¬φ. Then IV(m2ts−1(¬φ)) = IV(¬m2ts−1(φ)). By induction hypoth-
esis (and because the definition of the interpretation of ¬ are identical), it follows that
IV(¬m2ts−1(φ)) = IT

VT (¬φ).

• In the case C = φl ∨ φr. Then IV(m2ts−1(φl ∨ φr)) = IV(m2ts−1(φl) ∨ m2ts−1(φr)). By
induction hypothesis (and because the definition of the interpretation of ∨ are identical), it
follows that IV(m2ts−1(φl) ∨ m2ts−1(φr)) = IT

VT (φl ∨ φr).

• In the case C = ∀u : κ. φ. Then IV(m2ts−1(∀u : κ. φ)) = IV(∀u : ty−1(κ). m2ts−1(φ)). And
by the monomorphic interpretation rules IV(∀u : ty−1(κ). m2ts−1(φ)) =

min
e∈I(ty−1(κ))

(IV[u7→e](m2ts−1(φ))). Because ty is bijective and by construction of tvI it holds

that I(ty−1(κ)) = IT (κ) and in particular VT (uκ) = V(uty−1(κ)) for each valuation of u.
Thus, it holds that min

e∈I(ty−1(κ))
(IV[u7→e](m2ts−1(φ))) = min

e∈IT (κ)
(IV[u7→e](m2ts−1(φ))).

Furthermore, by the induction hypothesis we have IV[u7→e](m2ts−1(φ)) = IT
VT [u7→e](φ) and

thus min
e∈IT (κ)

(IV[u7→e](m2ts−1(φ))) = min
e∈IT (κ)

(IT
VT [u7→e](φ)). By the type-symbol interpreta-

tion rules we have that min
e∈IT (κ)

(IV[u7→e](φ)) = ∀u : κ. φ.

By showing both directions, I can conclude that the translation is satisfiability preserving.

Lemma 3.5.3.12 (Monomorphic to Type Symbol Translation Satisfiabilty Preserving).
Let N be a clause set of monomorphic first-order logic it is satisfiable if and only if the translated
clause set N′ in type-symbol first-order logic is satisfiable.

Proof. The interpretation rules for clause sets are identical. Furthermore, with the translation
tvI , a monomorphic interpretation can be translated into a type-symbol one and with tv−1

I , a
type-symbol interpretation can be translated into a monomorphic one in such a way that for the
original and the translated clauses satisfiability is preserved (Lemma 3.5.3.10 and 3.5.3.11).
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Because I showed the translation to be satisfiability preserving and I showed the type-symbol
superposition calculus and the translated one to be bisimulations of each other, I have shown
completeness for monomorphic superposition.

Theorem 3.5.3.13 (Static Refutational Completeness).
Superposition is refutationally complete for monomorphic first-order logic.

Proof. I have shown that the translations preserves satisfiability (Lemma 3.5.3.12) and I have
shown that the monomorphic superposition and the translated type-symbol superposition are
bisimulations of each other (Lemma 3.5.3.5 and Lemma 3.5.3.6). Therefore, the completeness of
the type-symbol version of superposition (Lemma 3.5.2.8) is lifted to the monomorphic version
of superposition.

3.5.4. Lifting to Polymorphism

Here, I present the finial step of the soundness and completeness proof. I lift the monomorphic
language to the initially described polymorphic language with type classes. As in the previous
completeness proofs, I will omit predicates and only consider clauses instead of formulas.

Refutational Completeness

I will now lift monomorphic first-order logic, proved refutationally complete in the previous
section, to the polymorphic first-order logic with type classes. First, I show that the typing is
local, i.e. if an argument term is replaced by different term of the same type the overall type
of the term does not change. Then, I lift the inferences and show that the monomorphic and
polymorphic versions are equisatisfiable.

Lemma 3.5.4.1 (Type Judgement).
For all terms t[s] where s is t or a subterm of t it holds that τ(s) = τ(s′) =⇒ τ(t[s]) = τ(t[s′]).

Proof. The proof is by induction of t. If t is s and replaced by s′ the lemma is trivial (i.e. if t
is a variable or constant). If t is of the form f 〈τ1, . . . , τn〉(t1, . . . , tm) and one of its subterms ti is
replaced by t′i and that subterm is still of the same type, i.e. τ(ti) = τ(t′i), then by the typing rule
for function (fun, Def. 3.1.2.2) it holds that τ(t[s]) = τ(t[t′i]).

An important property of first-order logic is that variables are closed under rewriting, i.e. if an
instance of a variable can be rewritten to some term t then, that term t is also an instance of the
variable. This property is useful for superposition, because it allows to eliminate superposition
inferences below variable positions.

Lemma 3.5.4.2 (Variables are Closed Under Rewriting with RCθ).
Let C ∈ N and θ be a substitution such that Cθ ∈GΣ(C) and x be a variable occurring in C then:
If xθ→RCθ t then there exists a θ′ such that xθ′ = t and yθ′ = yθ for every variable y 6= x and
furthermore Cθ′ ∈GΣ(C).
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Proof. From the definition of literals it follows that only terms of the same type symbol can be
equal. RCθ is formed from equations where left hand and right hand side are of the same type
symbol and replacing subterms by other terms of the same type symbol does not change the
overall type of a term (Lemma 3.5.4.1). Since a variable can be instantiated to any term of the
type it is assigned to, the lemma holds.

I also need to lift the inferences from the monomorphic case to the polymorphic one. First, for
the Equality Resolution and the Equality Factoring inferences and for the Positive Superposition
and the Negative Superposition inferences.

Lemma 3.5.4.3 (Lifting Lemma for the Equality Resolution and Equality Factoring Inferences).
Let C be a clause and let θ be a substitution of only type variables such that Cθ contains no type
variables. Then every equality resolution (or equality factoring) inference of Cθ is an instance of
an equality resolution (or equality factoring) inference from C.

Proof. Suppose there is a Cθ so that there is an equality resolution inference for Cθ such that the
inference result is not a result of the equality resolution inference from C. Then there must be at
least one side condition of the equality resolution inference that is fulfilled for Cθ, but not for C.
The side conditions for the equality resolution inference (Sect. 3.3) are:

1. sσ= s′σ, where σ is the most general unifier of s and s′.
2. a) (s 6≈ s′)σ maximal in (C′ ∨ s≈ s′)σ and no literal is selected or

b) s 6≈ s′ is the selected literal.

I now show why each side condition must also be fulfilled for C if it is fulfilled for Cθ.

1. If the inference is applicable for Cθ, then sθ must be equal to s′θ. By the existence and
uniqueness of the most general unifier (Lemma 3.1.3.12), there must be a most general
unifier θg of s and s′ such that θ = θgθ

′. But then this side condition is also fulfilled for C.
2. a) If (s ≈ s′)θ is maximal in (C′ ∨ s ≈ s′)θ and nothing is selected, then there is no

literal L in C′ such that Lθ � (s≈ s′)θ. Therefore, the uninstantiated literal is also
maximal.

b) If s 6≈ s′ is selected in Cθ it is also selected in C.

Thus, if the equality resolution inference is possible for Cθ, it is also possible for the inference
with C.

Suppose there is a ground Cθ so that there is a equality factoring inference for Cθ such that the
inference result is not a result of the equality factoring inference from C. Then there must be at
least one side condition of the equality factoring inference that is fulfilled for Cθ, but not for C.
The side conditions for the equality factoring inference (Sect. 3.3) are:

1. sσ= s′σ, where σ is the most general unifier of s and s′.
2. (s≈ t)σ maximal in (C′ ∨ s′ ≈ t′ ∨ s≈ t)σ and no literal is selected.
3. s′σ 6� t′σ and sσ 6� tσ

I now show why each side condition must also be fulfilled for C if it is fulfilled for Cθ.
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1. If the inference is applicable for Cθ, then sθ must be equal to s′θ. By the existence and
uniqueness of the most general unifier, there must be a most general unifier θg of s and s′

such that θ = θgθ
′. But then this side condition is also be fulfilled for C.

2. Since (s≈ t)θ is maximal in (C′ ∨ s′ ≈ t′ ∨ s≈ t)θ and no literal is selected, there is no
literal L in C′ such that Lθ � (s≈ t)θ. Therefore, the uninstantiated literal is also maximal.
No literal is selected in C if none is selected in Cθ, thus this side condition is also fulfilled
for C.

3. To be fulfilled s′σ 6� t′σ, s′θ and t′θ can either be incomparable, equal or less. If they
are incomparable, then with substitution stability s′ and t′ must also be incomparable. If
they are equal, then s′ and t′ are either also equal or they are incomparable, otherwise
substitution stability cannot hold. In the case where s′θ is less, then t′θ, s′ must either be
less than t′ or incomparable, again otherwise substitution stability cannot hold. The same
argument holds for sσ 6� tσ.

Thus, if the equality factoring inference is possible for Cθ it is also possible for the non-ground
inference with C.

Lemma 3.5.4.4 (Lifting Lemma for the Superposition Inferences).
Let C = C′ ∨ s≈ s′ and D = D′ ∨ t ≈ t′ be two clauses without common variables and let θ be a
substitution of only type variables such that Cθ and Dθ contain no type variables. If there is a
superposition inference between Cθ and Dθ where sθ and some subterm of tθ are overlapped and
sθ does not occur in tθ at or below a term variable position of t, then the inference is an instance
of a superposition inference from C and D.

Proof. Suppose there is a Cθ and Dθ so that there is a positive superposition inference for Cθ
and Dθ such that the inference result is not a result of the positive superposition inference from C
and D. Then there must be at least one side condition of the positive superposition inference that
is fulfilled for Cθ and Dθ, but not for C and D. The side conditions for the positive superposition
inference (Sect. 3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ
2. s2 is not a term variable
3. sσ= s2σ and σ is the most general unifier of s and s2
4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected
5. (s≈ s′)σ is strictly maximal in (C′ ∨ s≈ s′)σ and no literal is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for Cθ and
Dθ.

1. To be fulfilled, sσ 6� s′σ, sθ and s′θ can either be incomparable, equal or less. If they
are incomparable, then with substitution stability s and s′ must also be incomparable. If
they are equal, then s and s′ are either also equal or they are incomparable, otherwise
substitution stability cannot hold. In the case where sθ is less, then s′θ, s must either be
less than s′ or incomparable, again otherwise substitution stability cannot hold. The same
argument holds for tσ 6� t′σ.
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2. That the inference is not at or below a variable position is part of the assumptions of the
lemma.

3. If the ground inference is applicable for Cθ, then sθ must be equal to s2θ. By the existence
and uniqueness of the most general unifier, there must be a most general unifier θg of s and
s2 such that θ = θgθ

′. But then this side condition is also be fulfilled for C and D.
4. If (t ≈ t′)θ is strictly maximal in (D′ ∨ t ≈ t′)θ and no literal is selected, then there is

no literal L in D′ such that Lθ � (t ≈ t′)θ. Therefore, there is also no L in D such that
L� (t ≈ t′), otherwise the ordering would not be closed under substitutions and (t ≈ t′)θ
could not be strictly maximal. Thus, t ≈ t′ is strictly maximal and no literal is selected.

5. If (s≈ s′)θ is maximal in (C′ ∨ s′ ≈ s′)θ and nothing is selected, then there is no literal L
in C′ such that Lθ� (s≈ t)θ, because the ordering is closed under substitutions. Therefore,
there is also no L in D such that L� (t ≈ t′), otherwise the ordering would not be closed
under substitutions.

Thus, if the positive superposition inference is possible for Cθ and Dθ it is also possible for the
non-ground inference with C and D.

Suppose there is a Cθ and Dθ so that there is a negative superposition inference for Cθ and Dθ
such that the inference result is not a result of the negative superposition inference from C and
D. Then there must be at least one side condition of the negative superposition inference that is
fulfilled for Cθ and Dθ but not for C and D. The side conditions for the negative superposition
inference (3.3) are:

1. sσ 6� s′σ and tσ 6� t′σ
2. s2 is not a term variable
3. sσ= s2σ and σ is the most general unifier of s and s2
4. (t ≈ t′)σ is strictly maximal in (D′ ∨ t ≈ t′)σ and no literal is selected
5. a) (s 6≈ s′)σ is maximal in (C′ ∨ s≈ s′)σ and no literal is selected or

b) s 6≈ s′ is selected

I now show why each side condition must also be fulfilled for C and D if it is fulfilled for Cθ and
Dθ. The side conditions and proofs 1. to 4. are identical to the side conditions and proofs of
positive superposition inference.

5. a) If (s ≈ s′)θ maximal in (C′ ∨ s′ ≈ s′)θ and nothing is selected, then there is no
literal L in C′ such that Lθ � (s ≈ t)θ. Therefore, there is also no L in D such that
L� (t ≈ t′), otherwise the ordering would not be closed under substitutions.

b) If s 6≈ s′ is selected in Cθ it is also selected in C.

Thus, if the negative superposition inference is possible for Cθ and Dθ it is also possible for the
non-ground inference with C and D.

Let N be a set of clauses, then Gτ
Σ
(N) is defined as the union of all type-ground (monomorphic)

instances of all clauses of N. I have also shown that a set of polymorphic clauses with type
variables is satisfiable if and only if its monomorphic instances are satisfiable. First, by lifting
refutations from the monomorphic to the polymorphic (plus type classes) setting. Then, by lifting
models from the monomorphic to the polymorphic (plus type classes) setting.
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Lemma 3.5.4.5 (Lifting).
Let N be a set of clauses. Then ⊥ ∈ Sup∗(Gτ

Σ
(N)) implies ⊥ ∈ Sup∗(N).

Proof. Because of the lifting lemmas (Lemma 3.5.4.3 and 3.5.4.4), each step of the monomorphic
proof (in Sup∗(Gτ

Σ
(N))) is mirrored in the polymorphic clause set (Sup∗(N)).

Lemma 3.5.4.6 (Model Lifting).
Let N be a countable set of clauses. Then I � Gτ

Σ
(N) implies I � N.

Proof. The lemma holds if it holds for the individual clauses C ∈ N. The proof is by induction
over the number of type variables I show I � Gτ

Σ
(C) implies I � C.

• If C does not contain any type variables, then C ∈Gτ
Σ
(C) and thus I � C.

• Otherwise, let α be a type variable occurring in C, i.e. C = ∀τ α : K. C′ and let K 6= /0.
Because I � Gτ

Σ
(C) and by induction hypothesis we know that I � C′{α 7→ τ} for all

ground instances τ of α. From Corollary 3.1.4.14, we know that I(K) = {I(τ) | τ :
K and τ is ground}, i.e. the interpretation of a type-class constraint is exactly the union
of the interpretations of the ground type terms that are in that type-class constraint. Thus
min

d∈I(K)
(I /0[α→d], /0(C

′)) = 1 and therefore I � C.

• Finally, let α be a type variable occurring in C, i.e. C = ∀τ α : K. C′ and let K = /0. Because
I � Gτ

Σ
(C) and by induction hypothesis we know that I � C′{α 7→ τ} for all ground

instances τ of α, which are all possible ground terms (because K = /0). If there is a domain
d ∈ D such that the is no ground type term τ such that I /0(τ) = d, then the interpretation is
still a model with the set of domains replaced by D′ =D\{d}. With D′, the interpretation
of the ground instances of α is an interpretation of all its domains and thus I � C.

Because both the refutations and the models can be lifted from the monomorphic to the
polymorphic (plus type classes) setting, I can conclude that both the monomorphic and the
polymorphic setting are equisatisfiable.

Lemma 3.5.4.7 (Polymorph and Monomorph are Equisatisfiable).
A countable set N of Σ-clauses is satisfiable if and only if its monomorphic version Gτ

Σ
(N) is

satisfiable.

Proof. By case distinction if Gτ
Σ
(N) is satisfiable.

• Suppose Gτ
Σ
(N) does not have a model, then⊥∈ Sup∗(Gτ

Σ
(N)). By lifting (Lemma 3.5.4.5)

we have ⊥ ∈ Sup∗(N) and thus N does not have a model.

• Suppose Gτ
Σ
(N) has a model, then there is an interpretation I such that I � Gτ

Σ
(N). By

model lifting (Lemma 3.5.4.6) we also have I � N.
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I have now shown that the polymorphic first-order language with type classes can be encoded into
the monomorphic one by exhaustively instantiating the type variables. I have also shown that this
preserves satisfiability. Therefore, the static completeness already shown for the monomorphic
case can be lifted to the polymorphic case with type classes.

Theorem 3.5.4.8 (Static Refutational Completeness).
Superposition is refutationally complete for polymorphic first-order logic with type variables.

Proof. I have shown that a countable set N of Σ-clauses is satisfiable if and only if its monomor-
phic version Gτ

Σ
(N) is satisfiable (Lemma 3.5.4.7). Furthermore, I have shown that a proof in

the monomorphic version is lifted to the polymorphic version (Lemma 3.5.4.5). Therefore, the
completeness of the monomorphic version of superposition (Lemma 3.5.3.13) is lifted to the
polymorphic (with type classes) version of superposition.

In the previous lifting steps I stopped with static refutational completeness, because they
were intermediate steps. The refutational completeness of superposition for the polymorphic
first-order language with type classes is the final step. Therefore, I also show that dynamic
refutational completeness holds. The difference is that static refutational completeness states
that any saturated set of clauses that does not contain the empty clause is satisfiable, whereas
dynamic completeness states that for any (fair) sequence of inferences that the initial clause set is
satisfiable if and only if all intermediate clause sets do not contain the empty clause.

Lemma 2.2.4.12, which states that a fair run has a saturated limit, also holds for the superposi-
tion calculus for polymorphic first-order logic with type classes.

Lemma 3.5.4.9 (Limit is saturated).
If a run is fair, then its limit is saturated up to redundancy.

Proof. If the limit is not saturated up to redundancy, there must be an inference that can still be
applied. Thus, both its premises must be in N∗, but the result is not in N∗ and is not redundant
with respect to N∗. Such an inference must be enabled in N∗ and thus must be enabled in all j
that are j≥ i for some i. By definition, such a run cannot be fair.

An important property of first-order logic is compactness, i.e. a clause set is unsatisfiable if and
only if a finite subset of that clause set is unsatisfiable. In particular, the property implies that all
proofs are finite. This property also holds for my polymorphic first-order logic with type classes.

Lemma 3.5.4.10 (Compactness).
Let N be a set of polymorphic first-order logic first-order formulas with type classes. Then N is
unsatisfiable if and only if some finite subset of N is unsatisfiable.

Proof. ⇐ If a finite subset is unsatisfiable the whole set is unsatisfiable. ⇒ Let N be unsatisfiable.
Then Sup∗(N) is also unsatisfiable and by refutational completeness I have⊥∈ Sup∗(N). Because
of the well-foundness constraint of the orderings the proof of ⊥ (its inference derivation tree) is
of finite size. Then the finite subset of N is the set of assumptions of the finite proof of ⊥.

Finally, I can show that the superposition calculus for the polymorphic first-order language
with type classes is refutationally complete also in the dynamic view. This is important because
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the static view does not lend itself to an implementation, while the dynamic view guarantees that
any fair run (i.e. fair execution of an implementation) on an unsatisfiable clause set results in the
discovery of the empty clause.

Theorem 3.5.4.11 (Dynamic Refutational Completeness).
Let N0 ` N1 ` N2 . . . be a fair run and N∗ its limit. Then N0 has a model if and only if ⊥ 6∈ N∗.

Proof. ⇒ Obvious.
⇐ The run is fair and therefore N∗ is saturated up to redundancy (Lemma 3.5.4.9). If ⊥ 6∈ N∗ and
since we know that N∗ is saturated up to redundancy it has to have a model (Theorem 3.5.4.8).
Every clause in N0 is an element of N∗ or is redundant with respect to N∗ and thus the model of
N∗ is also a model of N0.

I have now shown static and dynamic completeness of superposition for the presented poly-
morphic language with type classes.

3.6. Related Work

The resolution calculus, invented by Robinson [52], first introduced saturation-based theorem
proving. Resolution is refutationally complete for first-order logic, i.e. from any unsatisfiable
set of clauses it can (eventually) derive the empty clause. Resolution has no build-in equality
reasoning, but equality can be axiomatized. Reasoning with an axiomatization of equality can
result in significant overhead. To overcome the overhead introduced by axiomatizating equality,
Robinson and Wos introduced paramodulation [51]. An import goal for them was to increase
“convergence” by reducing “unnecessary ‘noise’ in the proof-search space” by deriving no “side-
effect” clauses which for example stem from the axiomatization of equality and reasoning with that
axiomatization. The initial unrestricted paramodulation calculus fell short of this goal. Knuth and
Bendix [36] showed that confluence of terminating rewrite systems (i.e. equational logic) can be
tested by normalization via critical pairs. Lankford [40] restricted rewriting and critical pairs with
the use of reduction orderings such that only larger sides of equations had to be considered. Hsiang
and Rusinowitch introduced ordered paramodulation [32] a restriction of paramodulation where
only maximal literals of clauses need to be considered for inferences. Bachmair and Ganzinger [4]
introduced (strict) superposition, a restriction of ordered paramodulation in combination with
insights from ordered rewriting that does not require inferences into smaller sides of equations.3

They showed refutational completeness for first-order logic with equality by adding the equality
factoring inference to the superposition calculus. Furthermore, they introduced the notion of
(saturation up to) redundancy. Bachmair and Ganzinger [6] give a comprehensive overview of
superposition, its variants and origins.

I differentiate between types and sorts, even though they have similar origins and the same
goal of separating different domains. If domain membership is (easily) decidable, I will consider
the separation of domains to be types. If domain membership is more difficult, e.g. defined via
first-order predicates, I will consider the separation of domains to be sorts. Extreme examples
of sorts allow arbitrary first-order formulas as sorts, e.g. those presented by Hailperin [27].

3Note that this is an approximation of only requiring them in larger sides.
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Sorted first-order calculi and their completeness have been investigated dating back even to
Herbrand [30]. Incidentally, according to Schmidt [55], Herbrand’s completeness proof for
his many-sorted calculus was incorrect. Schmidt then gave a monomorphic (many-sorted)
calculus. Schmidt-Schauss [56] showed refutational completeness of an order-sorted calculus
with resolution, factoring and unrestricted paramodulation. The order-sorted first-order logic
is a many-sorted first-order logic extended with a subsort relation, such that each term is of a
particular sort. Weidenbach [67] presented a general sort-system for superposition.

Programming languages generally favor types over sorts. An example is ML, for which
Milner [45] introduced the concept of (parametric) polymorphism. Parametric polymorphism
captures that one function can handle arguments of different types in the same way. Wadler and
Blott [63] introduced type classes in Haskell, to allow functions to be defined in different ways
for different types (i.e. overloading also called ad-hoc polymorphism). The type classes guarantee
that certain functions are defined on each type that is contained in the type class. In general, type
classes can declare not only functions but also additional properties these functions must have.
Waldmann [64] shows that concepts of overloading and parametricity were not always treated
sufficiently different in the literature of order-sorted systems. ML’s polymorphism is now called
ML-style polymorphism or, more formally, rank-1 polymorphism without phantom type variables
but with let-polymorphism and an equality type class. Phantom type variables are type-variable
arguments of predicates and functions that do not occur in any argument’s type or in the return
type. Rank-0 Polymorphism is monomorphism, rank-1 polymorphism allows outermost type
quantification and rank-n+1 allows up to n nested occurrences of type quantifications in left-hand
sides of the function type constructor.

Isabelle/HOL [49] is a proof assistant based on higher-order logic and functional programming.
Isabelle is written mainly in ML and its type system is based on rank-1 polymorphism without
phantom type variables. Nipkow [47] extended the polymorphism used in Isabelle/HOL by
introducing order-sorted polymorphism. The extension allows types to be restricted by sorts,
which allow subsorts. Haftmann and Wenzel [26] introduced constructive type classes, which
combine the logic aspect of order-sorted polymorphism with the operative aspect of Haskell’s type
classes. In particular, this means that polymorphism with constructive type classes falls into my
definition of type system (and not sort system). It is also the variant supported by my formalization.
Isabelle is mostly based on declarative style, where functions and type classes are declared and
not axiomatized. This enables Isabelle to enforce the type system to ensure that functions are
used as declared and that properties of type classes are fulfilled. My formalization is based on
first-order logic extended with a type system. This means its input is a set of first-order formulas
(axioms). Integration of the type system into the calculus allows the use of the type system
and thus removes the burden to axiomatize the restriction the type system provides. Isabelle’s
declarative functions nonetheless turn into first-order formulas, i.e. (conditional) equations.

The formalization of this chapter supports rank-1 polymorphism (including phantom type vari-
ables) extended with type classes. Interestingly enough, phantom type arguments for predicates
are useful in the translation (of type classes) from Isabelle/HOL, even though they are not used in
Isabelle/HOL. Pirate therefore implements phantom type arguments for predicates.

The origins of monomorphic type systems in automated theorem prover implementations can
be found in Otter [44]. While Otter has no type system as such, it has support for multiple
equality predicates. It is commonly known that using a different equality predicate for each type
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allows sound type erasure (in the absence of overloaded symbols). SNARK [61], which like
Otter handles first-order logic with equality (via resolution and paramodulation), also supports
unary-predicates as sorts and subsorts. This is similar to superposition-based SPASS, which also
supports special handling of sorts. Most automated provers that support theories also support
some form of monomorphic types. This is in particular the case for SMT solvers, which must
separate the Int and Real domains from the remainder of the problem. Both Vampire [39] and our
previous work on SPASS [9] support first-order logic with native monomorphic types. The native
types are more efficient than an encoding into many-sorted sorts, which are an instance of the
sorts available in SPASS.

There are also a few automated theorem provers that support stronger type systems. The
SMT solver Alt-Ergo [13] implements ML-style polymorphism. An evaluation shows that its
implementation of polymorphism does not scale well, i.e. while it is better than other encodings
at 50 facts. with 500 facts its native implementation falls behind efficient encodings [11]. For
500 facts the success rate for polymorphism also falls behind the success rate for monomorphism.
The superposition-based prover Zipperposition [58] implements rank-1 polymorphism, but no
type classes. LEO-II [8] implements high-order logic with a prefix-polymorphism. It restricts
polymorphism, because “full polymorphism adds many non-trivial choice points to the already
challenging search space of LEO-II”, which is caused by its higher-order setting. LEO-III’s
LeoPARD data structures [68] implement polymorphism without type constructors (except for
function types). SMT solvers like Alt-Ergo are necessarily incomplete for first-order logic.
LEO-II and LEO-III are also incomplete for first-order logic. As far as I am aware there is no
refutational completeness proof for Zipperposition or its calculus.

In contrast to automated theorem provers, most proof assistants have a rich type system but
generally require user interaction. The HOL family, e.g. HOL Light [28] and Isabelle/HOL,
supports ML-style polymorphism. Proof assistants not only have rich type systems, but generally
also a richer logic. The HOL family is based on higher order logic, instead of the first-order
logic of many automated theorem provers. Proof assistants like Agda, Coq, Lean and Matita
implement dependent types. Coq extends those with type classes which are implemented on top
of the dependent types.

Translation tools from and to different logics or from verification problems to logics also
have to deal with differences in type systems. Some of them introduce their own intermediate
languages. Sledgehammer [10] uses a variety of encodings to get from Isabelle/HOL’s higher-
order polymorphic type system with type classes to one supported by an automated prover. For
first-order provers it has to remove higher-order features like higher-order quantifications and
lambdas. Type encodings generally use predicates (type guards) or additional term arguments
(type tags) to encode type systems into less expressive ones. Using monotonicty analysis, many
of the type guards or type tags can be omitted [11]. Boogie 2 [43] features its own intermediate
language, which supports higher-ranked polymorphism. It translates its rich type language to
untyped logic, with type guards and type tags, so that SMT solvers can handle it. Dafny [41]
features its own imperative intermediate language, which supports polymorphism via generic
classes. Dafny encodes its language into Boogie’s to profit from automation provided by SMT
solvers. Why3 [14, 15] has a ML-style polymorphic first-order language extended with algebraic
data types and inductive predicates. It can encode the polymorphic language to monomorphic
and untyped first-order logic in order to provided automation by using a variety of SMT and
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superposition-based tools. Its language is very close to the one we introduce here and in chapter 4.
HOL(y)Hammer [34] encodes from HOL Light’s polymorphic higher-order logic to first-order in
order to profit from automation by SMT and superposition-based tools. It mainly uses encodings
that are similar to those available in Sledgehammer. There is also recent work to encode
dependently-typed systems into less expressive type systems, e.g. to encode F? to (monomorphic)
SMT solvers [31]. Furthermore, there is ongoing work on building Sledgehammer-style tools for
Coq [19].

The main standardized exchange formats for automated theorem provers are the TPTP syntax
family and the SMT-LIB syntax. The TPTP syntax family defines a syntax which includes support
for rank-1 polymorphic first-order and higher-order logic [12]. It does not support type classes
and the ordering information of equations supported by our input syntax [9]. The SMT-LIB
2.5 standard [7] defines a monomorphic first-order logic which can have polymorphic theory
declarations.
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4. Induction

4.1. Introduction

Proving conjectures of functions over recursive data types is challenging, because it almost
always requires proofs by induction. Automating such inductive proofs by structural induction
raises four main issues. A proof procedure for non-inductive conjectures, in particular for the
induction cases, is needed. This proof procedure must be extendable with induction. For a
given conjecture a suitable instance of the induction schema must be selected. This suffices for
easily automated conjectures. However, inductive proofs often require additional lemmas, which
themselves require an inductive proof. Therefore, to automatically complete an inductive proof
auxiliary propositions must be guessed. Since the guessed propositions can be non-theorems, a
reliable way to purge unprovable propositions is useful.

My first contribution is the design of an automated inductive theorem prover that proposes
solutions to all four challenges. Starting from the refutationally complete superposition calculus
for polymorphic first-order logic with equality and type classes (Ch. 3), I introduce the SupInd
calculus, an extension of superposition with structural induction over data types (Sect. 4.2). Just
like superposition, SupInd requires first-order formulas to be transformed to first-order clauses
and conjectures are proven by refuting their negation, i.e. by showing the negated conjecture
together with the axioms is unsatisfiable. To this end, the conjecture is negated, Skolemized and
clausified and the axioms are Skolemized and clausified. The resulting clause sets, one for the
negated conjecture and one for the axioms, together with the (initially empty) set of induction
hypotheses clauses form a triple, which I call a simple state. I keep the clause sets separate
because each induction step requires the negated conjecture and the induction hypotheses to be
separate. Each induction step requires proving several induction cases, where every induction
case has to be shown. Successful automating inductive proofs requires to introduce additional
helpful propositions and in SupInd I distinguish one particular case of such propositions: those
propositions that imply a previous simple state. Such a proposition is an alternative way to
prove that simple state and I call it a strengthening of that simple state. To be able to express
nested induction and nested strengthenings I need a tree-like structure to express cases where the
refutation of one subtree is sufficient and cases where all subtrees are to be refuted. I capture this
by the notation of a state, which is either a simple state, an or-state or an and-state. A simple state
is proven if its clause sets contain the empty clause, an or-state is proven if one of its substates is
proven and an and-state is proven if all its substates are proven. SupInd’s inferences operate on
states. The approach preserves completeness for pure first-order logic (i.e. without data types)
while supporting guessing and proving propositions, in particular strengthenings, and nested
induction proofs of arbitrary depth.

In this chapter, function symbols start with lowercase letters (e.g. the Skolem function xs and
the function minus) and universally quantified variables with uppercase letters (e.g. X and Ys).
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One challenge in automating induction is to find a good instance of the induction schemata,
i.e. finding a good (sub)term to which to apply induction. In the refutational setting of SupInd,
finding a good instance of the structural induction schemata is reduced to finding a good Skolem
function (of the conjecture) to apply induction to. SupInd’s structural induction rule then
generates a new state with the necessary induction cases from the combination of simple state and
Skolem function. Instead of guessing which Skolem function is a good choice or exhaustively
applying induction to all Skolem functions, I propose a heuristic that lets a prover determine
which Skolem function should be chosen next (Sect. 4.3). Consider the negated conjecture for the
associativity of addition over the natural numbers (N), constructed by 0 and the successor function
s: x+(y+ z) 6≈ (x+ y)+ z, where addition is defined by 0 +Y ≈ Y and s(X)+Y ≈ s(X +Y).
Since + is defined in terms of its first argument, selecting induction over y or z does not
immediately yield a refutation, but selecting x does. Often, the base cases are already an
indication of which Skolem should be preferred. This insight yields a technique where all
potential induction positions can be tested for being preferable by solving a single first-order
clause set and analyzing the resulting (unsatisfiablity) proof. Furthermore, even if there is no
such proof, i.e. if this clause set is (first-order) satisfiable, then, the base cases of induction of any
of the Skolem functions are in general also (first-order) satisfiable without additional inductive
lemmas. Therefore in this case, a successful proof needs search for additional propositions instead
of further nested inductions.

Induction proofs often require additional lemmas which themselves can be proven by induction.
Strengthening the conjecture is one way to discover such lemmas (Sect. 4.4). A standard technique
to strengthen a conjecture is generalization, which replaces complex subterms of the conjecture
by fresh variables. In SupInd, because of the refutational setting, generalization replaces complex
subterms in the negated conjecture by fresh Skolem constants (Sect. 4.4.1). For example, let
len be the length and rev be the reverse of a list, − and ≤ be the familiar operations over N,
all specified axiomatically (in first-order logic). Let the conjecture be len(Xs) ≈ len(Ys)→
len(rev(Xs))− len(Ys)≤ len(Ys) and the negated Skolemized conjecture, on which the SupInd
calculus operates, be

len(xs)≈ len(ys) ∧ len(rev(xs))− len(ys) 6≤ len(ys)

Generalization strengthens this by replacing len(ys) by a fresh Skolem y to

len(xs)≈ y ∧ len(rev(xs))− y 6≤ y

Induction on y results in a stronger induction hypothesis than induction over ys would have.
Therefore, if the strengthened proposition holds, it tends to be easier to prove. Performing
generalization on, for example, len(xs) would yield a proposition that does not hold, because
the dependency with len(rev(xs)) is lost. This is where my next contribution, extending general-
ization to exploit term dependencies, comes into play (Sect. 4.4.2). Generalization introduces a
strengthened proposition by replacing subterms by a fresh Skolem constant for each syntactically
different subterm that is replaced. The underlying idea of term-dependency preserving general-
ization is that multiple (syntactically different) subterms can be replaced by the same Skolem
constant if those subterms can be shown to be equal. Thus where standard generalization com-
putes a single proposition that implies the conjecture, term-dependency preserving generalization
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computes multiple propositions that together imply the conjecture. Term-dependency preserving
generalization refines this idea by picking at least two super-terms of the same Skolem function
(occurring in the negated conjecture) and then computes a generalization that is stronger than
the standard generalization, by assuming that those super-terms are equal. The new propositions
are then the stronger generalization and the proposition that those super-terms are in fact equal.
Alone the stronger generalization might not imply the previous simple state, but together with the
additional (equality) proposition it implies the previous simple state. For the example conjecture,
term-dependency preserving generalization guesses the following two propositions:

(1) rev(Xs)≈ Xs (2) len(rev(Xs))≈ len(Xs)

Both imply that len(xs) equals len(rev(xs)) and thus justify the term-dependency preserving
generalization of the negated conjecture to

x ≈ y ∧ x − y 6≤ y

For SupInd to prove the initial conjecture directly by term-dependency preserving generalization,
the generalized conjecture and either proposition (1) or proposition (2) must be proven, because
one of the propositions must hold to justify the generalization step. Property (2) can be automati-
cally proven by induction and first-order reasoning, without guessing further propositions. While
SupInd can disprove property (1) by finding a counter example (the the two-element-list case)
after three subsequent induction steps by reducing the negated conjecture to the axioms (Sect. 4.5).

The solver always simplifies as much as it can. After simplification the negated conjecture
becomes

x−x 6≤ x

Unfortunately even this conjecture cannot be proven, yet. This is because after induction
over x, in the case where x ≈ s(x′), the defining equations for subtraction (−), in particular
s(X)− s(Y)≈ X−Y , act as a “constructor sink”. Because subtraction only occurs on the left-
hand side, the successor constructors (s) disappear on the left-hand side of the ≤ predicate
but not on the right-hand side. Hence, with each nested induction step, the negated conjecture
accumulates a successor constructor (s) on the right-hand side of the ≤ predicate:

x′−x′ 6≤ s(x′) After one induction
0−0 6≤ s(0) Base case (x′ = 0), trivial

s(x′′)− s(x′′) 6≤ s(s(x′′)) Step case (x′ = s(x′′))
x′′−x′′ 6≤ s(s(x′′)) Step case (simplified)

...

The induction hypothesis never matches the conjecture and a proof cannot be found without
additional lemmas. My final contribution copes with constructor sinks by deriving a strengthened
conjecture and side-conditions that do not contain the constructor sink term but imply the original
conjecture (Sect. 4.4.3). The technique can be applied to any data type and conjecture, as long
as a bound can be derived and all values up to that bound fulfill the conjecture. The underlying
principle is the following: Let t be a term of the natural number data type and let u be an upper
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bound for t. A term u is an upper bound for t if all values of t are structurally smaller than those
for u (Sect. 4.4.3). Then if P(u) and P(s(X)) =⇒ P(X) hold so must P(t).

I call terms representing such upper bounds cap terms. Argument positions of function symbols
that are cap term positions are discovered with the help of a syntactic criterion from the defining
equations of every function symbol. In the example, the result of subtraction (−) must be
(structurally) smaller or equal to its first argument and thus the first argument is a cap subterm.
Applying this knowledge in the example yields two cases, the constructor-sink term replaced by
its cap subterm (x−x replaced by x in x−x 6≤ x):

x 6≤ x

and the proposition that if the constructor-sink term holds with some bound, it holds for all n that
are smaller, i.e. the proposition s(N)≤ X =⇒ N ≤ X and its negation:

s(n)≤ x ∧ n 6≤ x

With the presented techniques the initial conjecture can be automatically proven. Both induction
cases can be refuted by nested induction and first-order reasoning alone. The strengthenings
of the conjectures and the required property (len(rev(Xs))≈ len(Xs)) for the term-dependency
preserving generalization are (easily) provable using SupInd.

I have implemented my contributions in a tool called Pirate and evaluated it on the CLAM [33]
and the IsaPlanner [22] benchmark suites (Sect. 4.7).

4.2. Superposition for Induction

Well-founded induction states that a property holds for all elements e, assuming that the property
holds for all elements that are smaller (with respect to a well-founded relation) than e. Well-
founded induction is called (strong) structural induction, when the well-founded relation is
defined using the proper subterm relation. SupInd uses (strong) structural induction on algebraic
data types such as lists (when represented as empty list (nil) and cons function (cons)) and the
natural numbers (when represented as zero (0 ) and successor function (s)).

4.2.1. Typed First-Order Logic and Algebraic Data Types

The basis of the SupInd calculus is a polymorphic first-order language with type classes and
data-type declarations. A type is an algebraic data type if it has a set of constructor function
symbols that generate the elements of that type.

Syntax

A signature of the polymorphic first-order language with type classes and data types is a signature
for the polymorphic first-order language with type classes (Sect. 3.1.1) extended by a set of
data-type declarations DT , declaring the data types.

Definition 4.2.1.1 (Signature). A signature for a polymorphic first-order language with type
classes and data types is a tuple Σ = (SF , SP , S T , SK, T C, T , F , P , DT ) where
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SF is the set of function symbols,
SP is the set of predicate symbols,
S T is the set of type constructor symbols and
SK is the set of type class symbols,
T C is the set of subclass declarations,
T is the set of type declarations,
F is the set of function declarations and
P is the set of predicate declarations.

They are defined just like for the polymorphic first-order language with type classes (Sect. 3.1.1).
And where

DT is the set of data type declarations. Each element (τ, f1[τ11 , . . . , τm1 ], . . . , fn[τ1n , . . . , τmn ])
∈ DT is a data type declaration of the type term τ. Each such type term τ is called a data
type, which is constructed by the function symbols f1, . . . , fn, which are called constructors.
For each fi it must hold that the type variables present in the type terms τ1, . . . , τmi are also
present in τ. Furthermore, for each fi it must hold that fi : ∀τ α1, . . . , αmi . τ

′
1, . . . , τ

′
m→

τ fi ∈ F and that τ fiσi is equal to τ if σi is {α1 7→ τ1i , . . . , αmi 7→ τmi}. A constructor must
not be unifiable with other constructors (of any data type).

A data-type’s type-symbol must still be declared in ST and its type declaration in T . A
constructor is recursive if it has an argument that is of the data type (or an instance of that data
type) the constructor belongs to. A set of data types is mutually recursive if each data type has
for each other data type at least one constructors with arguments of that data type.

Semantics

Definition 4.2.1.2 (Structure). Given a signature Σ for polymorphic first-order language with
type classes and data types the corresponding Σ-structure is a tuple Σ = (U , D, IT , IF , IP)
where

U is a non-empty countable set of elements, the universe.
D a non-empty set of non-empty disjoint subsets of U . It represents the set of the types

(domains). For each type we require that it is non-empty.
IT is the set of type constructors (κI) which map domains to a domain (Dn→D).
IF is the set of functions ( f I) which maps a cross product of domains and elements to an

element (Dn×Um→U).
IP is the set of predicates (pI) which map a cross product of domains and elements to true or

false (Dn×Um→{0, 1}).

This is the same as the structure for the polymorphic first-order language with type classes (Sect. 3.1.4)
with additional requirement on D and IF (Def. 4.2.1.3). I.e. the semantics of types has to be
adapted so that a data type’s interpretation is generated by its constructors.

A data type is a type with an interpretation that is generated by its constructors. The simplest
case is a data type without any constructors that have non data type arguments. One such example
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are the natural numbers (τN), constructed by 0 and the successor function s . In the simplest
case, the simple restriction on the interpretation of the data type (I(τN)) is that, considering only
(term-)ground terms constructed from the constructors (0 and s), every element (d ∈ I(τN)) of
the interpretation of the data type must be the interpretation of exactly one such (term-)ground
term.

In our setting, constructors with non data type arguments are allowed. Otherwise list, con-
structed by nil and cons , would not be possible, because one argument of cons is not necessarily
a data type. This complicates the restriction, because multiple (term-)ground terms of a non data
type can have the same interpretation. Thus, the simple restriction is not possible and a restriction
that takes the interpretation of the non data type arguments into account is necessary.

Our definition that extends to data types with constructors that have non data type arguments is
given by the following property that must hold for every interpretation:

Definition 4.2.1.3 (Semantic Restriction of Data Types). For each data type declaration
(τ, f1[τ11 , . . . , τm1 ], . . . , fn[τ1n , . . . , τmn ]) ∈DT , for each instance τθ of τ and for each d ∈ I(τθ)
there exists at least one (term-)ground term t of type τθ such that I(t) = d. Furthermore,
for all (term-)ground terms t = f 〈τ1, . . . , τn〉(t1, . . . , tm) and s = f ′〈τ′1, . . . , τ′n′〉(s1, . . . , sm′)
such that t, s are of type τθ, I(t) = d and I(s) = d, it holds that f = f ′, that f is a con-
structor of the data type declaration of τ, that I(τ1) = I(τ′1), . . . , I(τn) = I(τ′n) and that
I(t1) = I(s1), . . . , I(tm) = I(sm).

The Semantic Restriction of Data Types Is Not Finitely Expressible in First-Order

This restriction cannot be expressed by a finite first-order axiomatization. Its goal is to uniquely
characterize the interpretation of the data type to exactly the set that is generated by the data
type’s constructor terms such that the constructor terms are distinct. The distinct part can be
axiomatized in first-order logic:

Definition 4.2.1.4 (Distinct). Terms with different constructors as top symbols are not equal:

fi〈τ1, . . . , τm1〉(t1, . . . , tn1) 6≈ f j〈τ′1, . . . , τ′m2
〉(s1, . . . , sn2) if i 6= j

Definition 4.2.1.5 (Injective). Terms with the same constructor top symbol and type arguments
are only equal if all their term arguments are equal:

fi〈τ1, . . . , τm〉(t1, . . . , tn)≈ fi〈τ1, . . . , τm〉(s1, . . . , sn) =⇒ (s1 ≈ t1 ∧ . . . ∧ sn ≈ tn)

The ‘no-junk’ part, i.e. that there is no element of the type’s interpretation that does not have
a corresponding constructor term, cannot be finitely axiomatized in first-order logic. It follows
from the Induction principle:

Definition 4.2.1.6 (Induction). A property (over a data type) holds if for all elements e (of that
data type) the assumption that the property holds for all elements that are smaller (according to
the well-founded relation, i.e. for structural induction the proper subterm relation) then e implies
that the property holds for e:

I(∀X : τ. φ) if
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for all d ∈ I(τ) it holds that for all e ∈ I≺d(τ), I{X 7→e}(φ) implies I{X 7→d}(φ)

and τ is a data type, td is the constructor term such that d = I(td) and I≺d(τ) is the set of all
interpretations of proper constructor subterms of td

The (semantic) induction principle can also be expressed by an induction schema, which can
be axiomatized in first-order logic by countably many axioms. This is captured by the following
schema:

Definition 4.2.1.7 (Induction Schema). Let φ be an arbitrary first-order formula and X be a
variable such that its type τ is a data type and such that X occurs in φ. Then the following is the
induction schema for data types in first-order logic:

(Case1 ∧ ·· · ∧ Casen) =⇒ φ[X]

where there is an induction Casei for each constructor fi of τ defined as:

∀X1, . . . , Xm. (IH1 ∧ ·· · ∧ IHm) =⇒ φ[ fi(X1, . . . , Xm)]

where each Xi is a fresh (schema) variable and all IHi are omitted (i.e. >) if the type of the
corresponding Xi is not τ. If the type of the corresponding Xi is τ, then IHi is defined as:

forall terms X′i (of type τ) smaller or equal (by the subterm relation) than Xi it holds that φ[X′i ]

Because of the refutational setting, when we turn the induction schema into an SupInd inference,
it is applied to Skolem functions. In SupInd, the individual cases of induction are therefore negated
and then refuted: I.e. the Casei turn into showing unsatisfiablity (together with the axioms and
previous induction hypotheses) of

¬(∀X1, . . . , Xm. (IH1 ∧ ·· · ∧ IHm) =⇒ φ[ fi(X1, . . . , Xm)])

respectively, after Skolemization (i.e. replacing each variable Xi by its Skolemization ski), showing
unsatisfiablity (together with the axioms and previous induction hypotheses) of

IH1 ∧ ·· · ∧ IHm ∧ ¬φ[ fi(sk1, . . . , skm)]

4.2.2. The SupInd Calculus

Proving a (first-order) conjecture is equivalent to showing its negation to be unsatisfiable. Super-
position requires that the axioms and the negated conjecture are Skolemized and clausified. In
the refutational setting, universal quantification of a conjecture turns into an existential one in the
negated conjecture. The existential quantification is then represented by Skolem functions.

One of the main strengths of superposition is redundancy elimination. Superposition can
remove clauses if they are reducible to smaller ones. A set of clauses N is reducible to a set of
clauses N′ if N is entailed by N′ and all clause in N′ are smaller than the ones in N (according
to a clause and a term ordering). The smaller clauses could, for example, be introduced by
rewriting or by inferences. Superposition supports any simplification that can be phrased in terms
of redundancy elimination. Superposition (and in turn SupInd) perform simplification during
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the proof search. To profit from simplifications performed on the conjecture, the induction cases
and their hypothesis are directly generated from the (simplified) negated conjecture’s clauses,
instead of using the initial conjecture’s clauses. The evaluation (Sect. 4.7) shows that Pirate can
solve 6 more problems (+9%) than the next closed tool (HipSpec), when using no strengthening
techniques. I believe that the use of the simplified negated conjecture is the main reason for this.

Therefore, the calculus must keep track of the (negated) conjecture and induction hypotheses
by splitting the clauses superposition operates on into three parts: the (negated) conjecture clauses
(NC), the induction hypotheses clauses (NIH), and the axioms and all inference result clauses
(NA). The SupInd calculus’ inferences rules work on states. A triple (NA, NIH , NC) corresponds
to a simple state of our calculus. A simple state is unsatisfiable if one of its clause sets contains
the empty clause. Complex states represent a split into two cases. A complex state is unsatisfiable
if either both substates are unsatisfiable (&) or if one of the two substates (|) is unsatisfiable.
Complex states are introduced by induction steps. The initial state is the simple state (NA, /0, NC)
where NA are the initial axiom clauses and the NC the initial negated conjecture clauses.

state ::= (NA, NIH , NC)
∣∣ state & state

∣∣ state | state

A simple state (NA, NIH , NC) is a first-order consequence of another simple state (N′A, N′IH , N′C)
if NA∪NIH ∪NC is a first-order consequence of N′A∪N′IH ∪N′C . A simple state (NA, NIH , NC) is
entailed (implied) by a simple state (N′A, N′IH , N′C) if NA∪NIH∪NC is entailed by N′A∪N′IH∪N′C .
I use the symbol & for the states where both substates must be unsatisfiable for the &-state to be
unsatisfiable, because that state represents the conjunction of the conjectures of the two substates
(i.e. both cases have to be refuted/proven). Similarly, I use the symbol | for the states where one
of the two substates must be unsatisfiable, because that state represents the disjunction of the
conjectures of the two substates (i.e. only one case has to be refuted/proven).

The SupInd calculus consists of inference rules that can be applied to any state or substate
which fulfills their premise and side conditions, creating a new state which replaces the premises
by the inference rule’s conclusion. We will now formally define all inference rules and their
side conditions followed by a short description of the inference rules. The rules themselves are
presented as inferences, where the upper part is the premise (sub)state and the lower part is a state
that replaces the premise.

Superposition Let n ∈ {1,2} and for all i≤ n let Ci ∈ NA∪NIH ∪NC .

(NA, NIH , NC)

(NA∪{C′}, NIH , NC)
INF if

C1 · · · Cn

C′
is a superposition inference

Redundancy Elimination
Let N, N′ be sets of clauses such that N is reducible to N′ with respect to NA∪NIH ∪NC .

(NA]N, NIH , NC)

(NA∪N′, NIH , NC)
REDA

(NA, NIH ]N, NC)

(NA, NIH ∪N′, NC)
REDIH

(NA, NIH , NC ]N)

(NA, NIH , NC ∪N′)
REDC
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Derive Facts Let N be an arbitrary set of clauses, let cnf (¬N) be the clause normal form of
the negation of N and let SupInd∗ be any finite chain of applications of SupInd’s rules.

(NA, NIH , NC)

(NA, NIH , NC) | (NA∪N, NIH , NC)
DERIVE if N is a consequence of NA∪NIH ∪NC

Unsatisfiability Propagation
Let S be an arbitrary state and let ⊥ ∈ NAl ∪NIHl ∪NCl and ⊥ ∈ NAr ∪NIHr ∪NCr .

(NAl , NIHl , NCl) & (NAr , NIHr , NCr)

({⊥}, {⊥}, {⊥}) &
(NAl , NIHl , NIHl) | S
({⊥}, {⊥}, {⊥})

|l
S | (NAr , NIHr , NIHr)

({⊥}, {⊥}, {⊥})
|r

Structural Induction
Let sk be occurring in NC , let sk be a Skolem constant of a data type and let f1, . . . , fn be the data
type’s constructors.

(NA, NIH , NC)

(NA, NIH , NC) | (Casef1 & · · · & Casefn)
IND

where Casefi is defined as

(NA, NIH ∪hypsfi , NC)[sk 7→ fi(sk1, . . . , skm)]

sk1, . . . , skm are fresh Skolem constants and the new induction hypotheses (hypsfi) are defined as⋃
skj is of sk’s type

(cnf (¬NC) ∪ NIH)[sk 7→ skj]

where cnf (¬NC) is the clause normal form of the negation of NC (the negated conjecture), where
the implicit universal quantifiers are placed directly below the negation and where sk must be
treated as a constant, i.e. not be replaced by a variable. The other Skolems can be treated as
implicit existential quantifications directly below the negation. In Pirate there is an option for
both behaviors.

For a simpler presentation, the Structural Induction rule is defined for Skolem constants. To
generalize it to Skolem functions, we must add the arguments of the initial Skolem function (sk)
to each freshly created Skolem function.

The inferences of the standard superposition calculus are lifted by SupInd’s Superposition rule
to be inferences on simple states in such a way that inference results are always added to the
axiom set NA. Superposition’s redundancy is lifted by the Redundancy Elimination rule such that
simplified clauses are added to the set their main premise came from.

With induction it is often necessary to guess and prove auxiliary lemmas that would not be
derived by first-order inferences, i.e. lemmas with proofs that require induction. Therefore, we
allow to add arbitrary clause sets with the Derive Facts rule if they can be shown to follow (by
possibly nested induction and first-order reasoning) from the axioms, induction hypotheses and
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conjecture. The Propagation rules simplifies complex states by collapsing complex states where
the premises already have the required unsatisfiablity results. Finally the Structural Induction rules
generates the appropriate induction cases with the induction hypotheses, that would otherwise
require an induction schema. Because the conjecture was negated and Skolemized, the Structural
Induction rule applies to Skolem functions instead of universally quantified variables. Induction
preserves the premise’s simple state in order to guarantee refutational completeness of each
simple state for the purely first-order fragment (i.e. without data-type declarations). In the
presence of nested inductions it is not obvious if it is possible to (efficiently) preserve refutational
completeness for the purely first-order fragment without preserving the premise’s simple state.

Soundness

The rules of the SupInd calculus are sound.

Lemma 4.2.2.1 (The Superposition Rule is Sound).
The result of the Superposition rule is implied by its premise.

Proof. The superposition calculus is sound, therefore the inferred clause (C′) is a consequence of
the premises (C1 and C2) of the superposition inference. Since the premises (C1 and C2) are also
part of the simple state premise ((NA, NIH , NC)) of the Superposition rule, the resulting simple
state ((NA∪{C′}, NIH , NC)) is a first order consequence of the premise.

Lemma 4.2.2.2 (The Redundancy Elimination Rules are Sound).
The result of the Redundancy Elimination rules are implied by their premise.

Proof. The Redundancy Elimination rule REDA replace a subset N of the axiom clause set (NA)
by a clause set N′ such that N′ implies N (with respect to the remaining clauses of the simple
set, NA ∪NIH ∪NC). Since the clause set N′ implies the clause set N, the clause set NA ∪N′

implies the clause set NA∪N. Thus, the resulting simple state of the inference rule is a first-order
consequence of the premise.

The proof for the two other Redundancy Elimination rules is analogous.

Lemma 4.2.2.3 (The Derive Facts Rule is Sound).
The result of the Derive Facts rule is implied by its premise.

Proof. By the definition of the Derive Facts rule, the clause set N is a consequence of the
clause set NA∪NIH ∪NC . Thus, NA∪NIH ∪NC is satisfiable if and only if NA∪N∪NIH ∪NC is
satisfiable. Therefore, the simple state’s axiom set can be extended by N to the resulting simple
state (NA∪N, NIH , NC).

Lemma 4.2.2.4 (The Unsatisfiability Propagation Rule for & is Sound).
The result of the Unsatisfiability Propagation rule for & is implied by its premises.

Proof. By definition of the &-state, it is unsatisfiable if both its premises are unsatisfiable. If
the empty clause is contained in one of the clause sets of a simple state, that simple state is
unsatisfiable. Therefore, if both premise simple state contain the empty clause the &-state can be
simplified to an unsatisfiable simple state.
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Lemma 4.2.2.5 (The Unsatisfiability Propagation Rules for | are Sound).
The result of the Unsatisfiability Propagation rules for | is implied by its premises.

Proof. By definition of the |-state, it is unsatisfiable if at least one of its premises is unsatisfiable.
If the empty clause is contained in one of the clause sets of a simple state, that simple state is
unsatisfiable. Therefore, if the left or the right premise is a simple state that contains the empty
clause, then the |-state can be simplified to an unsatisfiable simple state.

Lemma 4.2.2.6 (The Structural Induction Rule is Sound).
The result of the Structural Induction Rule is implied by its premise.

Proof. A |-state is implied by a simple state if both its left and right hand side are implied by the
simple state.

The simple state on the left-hand side of the resulting |-state is the unchanged premise and thus
implied by the premise.

The induction principle justifies the splitting of the conjecture in a case (Casei) for each data-
type constructor ( fi). All cases have to be shown, i.e. for each case the negated conjecture has
to be shown unsatisfiable. Thus, the replacement of sk by fi(sk1, . . . , skm) in the creation of the
cases ((NA, NIH ∪hypsfi , NC)[sk 7→ fi(sk1, . . . , skm)]) is justified by the induction principle (and
the negation of the conjecture). The previous induction hypotheses can be treated as axioms, and
all axioms can be kept. Thus, it remains to show that the newly introduced induction hypotheses
(hypsfi) are justified.

The induction principle justifies an induction hypothesis for each argument of the same type.
Therefore, for each argument sk j of fi(sk1, . . . , skm) that is of the same type as fi(sk1, . . . , skm)
and an induction hypothesis is added. Since NC is the negated conjecture, to derive the induction
hypothesis NC is negated. This justifies the

⋃
skj is of sk’s type (cnf (¬NC))[sk 7→ skj] part of the

induction hypothesis. Because I use strong induction, the induction hypothesis hold for all
structurally smaller terms. Therefore, the previous induction hypotheses also hold for all terms
structurally smaller terms (than sk), i.e. all arguments of fi. So while the induction hypothesis
clauses for the skj are not yet present, they are justified by previous induction steps. Thus, the⋃

skj is of sk’s type NIH[sk 7→ skj] part of the induction is permissible.

Refutational Completeness for the First-Order Fragment

Assuming fairness (as defined below), SupInd guarantees that for any simple state that is first-order
unsatisfiable it will eventually derive the empty clause.

The purely first-order fragment of polymorphic first-order language with type classes and data
types is the part without the data-type declarations (DT ). A run of the SupInd calculus is a
sequence of states N0 ` N1 ` N2 ` · · · such that Ni+1 follows by an application of a SupInd rule
to Ni. Let � be a well-founded ordering on states. A state N is redundant with respect to a state
N′ if N � N′ and there exists a run such that N ` · · · ` N′. A SupInd rule is enabled with respect
to a state N if all its premises are contained in N and its result is not redundant. A run is fair if
for each i and SupInd rule inf that is enabled at Ni, there exists a j with j > i such that inf is not
enabled in N j.
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Theorem 4.2.2.7 (Dynamic Refutational Completeness for Purely First-Order Logic).
Let N0 ` N1 ` N2 ` · · · be a SupInd run that is fair for SupInd’s Superposition rule and N∗ be its
limit. Then each simple state (NA, NIH , NC) in N∗ has a purely first-order model if and only if it
does not contain the empty clause, i.e. ⊥ 6∈ NA∪NIH ∪NC .

Proof. The goal is to show that a SupInd run that is fair for SupInd’s Superposition rule is a fair
run for superposition on the union of each simple state’s clause sets.

The Derive Facts and the Structural Induction inference rules of SupInd preserve a copy of
the simple state that they are applied to. Thus, they do not interfere with first-order reasoning,
because it can continue on the preserved copy.

The Unsatisfiability Propagation inference rule removes states (and their simple substates)
when they are no longer required for the overall proof. Since the states are removed they cannot
be part of N∗.

The Redundancy Elimination rules, perform only changes in the clause sets of the simple state
that would also be allowed in superposition on the union of the clause sets. The Superposition rule
applies all inferences of the superposition calculus, that the dynamic refutational completeness
for polymorphic first-order language with type classes requires for the union of the clause sets of
the simple state (Theorem 3.5.4.11). Thus, purely first-order dynamic refutational completeness
for the simple state holds.

Refutational Completeness

Assuming fairness (as defined below) SupInd guarantees that for any simple state that is unsatisfi-
able when combined with the countable set of instances of the structural induction schema, it will
eventually derive the empty clause.

The induction principle of a data type cannot be expressed in first-order logic, because it is
quantified over all properties. Therefore, it has to be an inference rule in the SupInd calculus,
instead of being stated as an axiom. But for a fixed first-order property, the induction principle
can be stated in first-order logic. As explained before, this is done with the help of an induction
schema (Def. 4.2.1.7). Furthermore, a given (countable) first-order signature only allows count-
ably many properties, i.e. it is possible to enumerate all possible properties (and their induction
principles). They are enumerable, because they have a syntactic representation as first-order
formulas and that representation is enumerable.

Let NInd be the set of clauses resulting from all such properties, i.e. the clauses resulting from
all instances of the induction schema for all possible properties.

Static refutational completeness of superposition (saturated sets without ⊥ have a model,
Lemma 3.5.4.8) and compactness of first-order logic (proofs are finite, Lemma 3.5.4.10) extend
to countable signatures and countable clause sets. In practice, static refutational completeness
of infinite saturated sets is not useful, because we can not handle infinite sets of clauses in a
solver. By integrating induction into SupInd’s calculus, the countable set of instances of the
induction schema can be finitely represented and thus be handled in practice. I call a clause set
N inductively unsatisfiable if N ∪NInd is unsatisfiable. Dynamic refutational completeness for
SupInd holds, i.e. for any inductively unsatisfiable simple state there is a sequence of SupInd
inference steps that leads to the simple state being refuted.
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Theorem 4.2.2.8 (Dynamic Refutational Completeness).
Let NInd be the clause set corresponding to the countable set of (first-order) structural induction
principles for the declared data types. Let N0 be a simple state containing only finitely many
clauses and N0 ` N1 ` N2 ` · · · be a SupInd run that is fair for all of SupInd rules (except possibly
Redundancy Elimination) and let N∗ be its limit. Then NInd ∪N0 has a model if and only if N∗ is
not a simple state containing the empty clause.

Proof. If N∗ does not have a model (i.e. is a simple state containing the empty clause), then
obviously NInd ∪N0 cannot have a model. If NInd ∪N0 does not have a model, then compactness
ensures that there is a finite superposition proof using finitely many clauses from NInd. Those
clauses are present in N∗, because a fair run of SupInd introduces them eventually. Suppose they
are not, then the run would not be fair, because the corresponding Derive Facts rule(s) would have
to be enabled forever (because N∗ is the limit). Thus, N∗ contains the empty clause if NInd ∪N0
does not have a model.

4.3. A Strategy for Applying Structural Induction

As we have seen, SupInd is refutationally complete with respect to the countable set of first-order
instances of the induction schema, i.e. for a conjecture N such that N ∪NInd is unsatisfiable
SupInd will eventually derive the empty clause. In practice, refutational completeness must be
augmented by heuristics that guide the proof search into practically relevant parts. Otherwise
prolific inferences, e.g. the Derive Facts rule, make exploring the search space unrealistic and
thus finding a refutation unfeasible. In the this section I describe a heuristic to determine how to
automatically chose the next Skolem function, of a simple state, to apply induction on (Sect. 4.3.1)
and a technique to recover from choosing Skolem functions that turn out to be irrelevant for the
current partial proof (Sect. 4.3.2).

The restriction of the induction inference to Skolem functions is possible, because induction
over arbitrary terms is covered by the Derive Facts inference introducing the corresponding
lemmas. Since many inductive proofs require additional lemmas, techniques to determine the
lemmas which should be derived next are especially important and are described in the next
section (Sect. 4.4).

4.3.1. Which Skolem Function to Apply Induction On

One of the main challenges of inference-based automated theorem proving is to choose the next
inference to perform. Always picking the right inference would eliminate the need to explore
most of the search space. This is even more so a challenge for automating induction with prolific
inference rules like the Structural Induction rule and the Derive Facts rule. In particular, we
would like to automatically determine where to apply the induction inference next.

Let us return to the associativity property of addition (+) on the natural numbers (N), con-
structed by 0 and the successor function s and the initial state (NA, NIH , NC) where

NA = {0 +Y ≈ Y , s(X)+Y ≈ s(X+Y)} NIH = /0 NC = {x+(y+ z) 6≈ (x+y)+ z}
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and addition is recursively defined by NA. In the introduction (Sect. 4.1), we observed that
selecting induction over y and z requires further inductive reasoning, but induction over x
immediately yields first-order refutations. Nonetheless, it is hard to come up with a comprehensive
set of rules that capture which Skolems are preferable for all possible cases, e.g. that some
recursively defined argument positions are preferable. This is especially difficult for more
complex settings with many function symbols and many axioms.

Instead of a complex and fixed rule set, we use the insight that, in practice, base cases (e.g.
for N: 0 ) often require only purely first-order reasoning. In particular, no nested inductions
are possible in the base cases, if the base-case constructors’ arguments are not of a data type.
While auxiliary lemmas might still be necessary (Sect. 4.4), this section focuses on applying
the Structural Induction rule. For example, in the case of nil and 0 no nested inductions are
possible, but an nat-pair data type would have an argument of data type (nat) for its (base-case)
constructor. Furthermore, finding a proof for the base cases is an obvious prerequisite to proving
all induction cases.

To use this idea, one could try all base cases of all Skolem functions and then choose one of
the Skolem functions that has first-order proofs for (most of) its base cases. Unfortunately, this
approach requires all base cases for all Skolem functions to be tried. In addition, no information
can be gained if (nested) inductions on multiple Skolem functions are necessary.

To solve this issue, I create an intermediate clause set, which simultaneously over-approximates
all base cases of all Skolem functions of the original simple state. In particular, if one combination
of base cases has a proof, then so does the over-approximated clause set. Refuting the over-
approximated clause set gives us some base cases that are provable. Thus, an induction on
those Skolem functions is (at least for the base cases) relevant for the proof. Creating an over-
approximation enables testing the suitability of all Skolem functions occurring in the conjecture
by a single proof attempt.

Creating an Over-Approximation of the Base Cases To create the over-approximated
clause set, all Skolem functions are treated as if they were base-case constructors. This allows the
heuristic to be applied also in cases with multiple base-case constructors. The starting point of
the intermediate clause set is the union of the clause sets (NA, NIH , NC) of the simple state. This
clause set is then extended by adding a new axiom for each triple of an original axiom (i.e. each
clause occurring in NA), a Skolem function (occurring in the negated conjecture NC) and a base
case constructor (occurring in the axiom). The new axiom is created by replacing the base-case
constructor terms occurring in the original axiom by the Skolem functions (of the same type).

Replacing the Skolem functions by the base case constructors (and not vice-versa) enables the
use of this heuristic also in the presence of multiple base-case constructors. For example, from
the original axioms (1) 0 +Y ≈ Y and (2) s(X)+Y ≈ s(X +Y) only (1) contains a base-case
constructor (i.e. the constructor 0 ). Axiom clause (1) is then over-approximated for the base-
cases by adding the new clause (3) for the combination with 0 and x, the new clause (4) for the
combination with 0 and y and the new clause (5) for the combination with 0 and z. This results
in the following clause set (NA):
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(1) 0 +Y ≈ Y (3) x+Y ≈ Y
(2) s(X)+Y ≈ s(X+Y) (4) y+Y ≈ Y
(NC) x+(y+ z) 6≈ (x+y)+ z (5) z+Y ≈ Y

If the clause set is shown unsatisfiable, we analyze the resulting proof to find out which Skolem
functions are preferable. The generated clause set can allow multiple different proofs, which
possibly use different axioms or have different dependencies. After finding the first proof, it is
possible to continue the proof search to get alternative proofs (e.g. up to a time limit). In Pirate I
only consider the first proof, to avoid wasting time that might be better spent elsewhere.

Let us consider an example proof of the negated conjecture using the generated clauses:

(NC) x+(y+ z) 6≈ (x+y)+ z The Negated Conjecture
(a) x+ z 6≈ (x+y)+ z using (4) and (NC)
(b) z 6≈ (x+y)+ z using (3) and (a)
(c) z 6≈ y + z using (3) and (b)
(d) z 6≈ z using (4) and (c)
(e) ⊥ using (d)

A first-order reasoning step (e.g. (b)) depends on another step (e.g. (a)) if step (b) uses a clause
whose derivation involves step (a).

The new axiom (5) for z is not used in the proof and hence z is not considered for induction.
The axioms (3) and (4) for x and y are both used in the proof. We consider the dependencies
between the steps and prefer those Skolem functions where the application of the respective
clause does not depend on another clause of a different Skolem function. All inferences belonging
to y depend on the inferences of x. Thus, x is selected for induction. In case we have multiple
preferred Skolem functions, I try to determine if one of those functions alone is sufficient for the
(base-case) proof, by running another proof attempt which excludes the axioms of the other of the
possibly-preferred Skolem functions. One Induction step on x yields a proof. Here we show the
corresponding state (omitting the content of the NA set, which is the same for all simple states):

|-state

initial state

NA, NIH = /0, NC = {x+(y+ z) 6≈ (x+y)+ z}

&-state

state for case 0

NA, NIH = /0, NC = {0+(y+ z) 6≈ (0 +y)+ z}
state for case s

NA, NIH = {x’+(Y +Z)≈ (x’+Y)+Z}, NC = {s(x’)+(y+ z) 6≈ (s(x’)+y)+ z}
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The first-order refutations for the base case (0 ) and the step case (s) are as follows:

(0a) 0+(y+ z) 6≈ (0 +y)+ z
(0b) y+ z 6≈ (0 +y)+ z by (2)
(0c) y+ z 6≈ y+ z by (2)
(0d) ⊥

(sa) s(x’)+(y+ z) 6≈ (s(x’)+y)+ z
(sb) s(x’+(y+ z)) 6≈ (s(x’)+y)+ z by (1)
(sc) s(x’+(y+ z)) 6≈ (s(x’+y))+ z by (1)
(sd) s(x’+(y+ z)) 6≈ s((x’+y)+ z) by (1)
(se) s((x’+y)+ z) 6≈ s((x’+y)+ z) by NIH

(sf) ⊥

In Pirate we always use this heuristic to determine the next Skolem function. In the case of a
time out we randomly select a Skolem function.

Guarantees of the Heuristic In general, we have to apply superposition on the generated
clause set with a (time) limit, because we cannot guarantee that the clause set is first-order
unsatisfiable. Nonetheless, if one of the base cases is first-order unsatisfiable, then so is the
generated clause set. Furthermore, if the clause set is first-order satisfiable then we know that
the (nested) induction’s base cases are first-order satisfiable, too. Thus, we know that (nested)
induction is futile without discovering additional lemmas.

One of the main applications of automating structural induction is proving properties of
functional programs. In particular proving properties of primitive recursive functions. In essence,
primitive recursive functions are those functions that are defined using exhaustive case distinction
over data-type constructors. Furthermore, the defining equations (i.e. the axioms) are universally
quantified, which implies the absence of Skolem functions. Thus, in this setting and with a
suitable (term) ordering the axioms are (ground) confluent.

If the axioms are (ground) confluent and if we further assume that no base-case constructor
has an argument of a data type, then superposition on the clause set generated by the heuristics
terminates. This holds even if each base case on its own is satisfiable, i.e. even if all base cases
would requires further nested inductions. Moreover, in this particular case the generated clause
set is satisfiable only if the conjecture is not a theorem. This is particularly useful, because it can
be used to discard propositions for auxiliary lemmas that are not valid.

In the more general cases, i.e. in the presence of base-case constructors with data type argu-
ments, we can guarantee that if is some combination of base cases is first-order unsatisfiable, the
generated clause set is also first-order unsatisfiable.

4.3.2. Extension to Step-Case Proofs

In the presented refutational completeness proofs for SupInd, fairness requires that eventually
all applications of the induction inference rule are applied to each simple state (i.e. induction on
all Skolems). It is possible to restrict the Structural Induction inference rule so that it is applied
only once per simple state, i.e. that it is not applied again to the unchanged simple states that are
results of the induction rule (which are only kept to ensure first-order completeness).

Applying the inference only once, i.e. to one Skolem function, results in a exploration of the
search space similar to depth-first search. Applying it exhaustively results in a breadth-first like
exploration. Both variants are equally expressive if an additional fairness property is observed:
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For all induction cases, every Skolem function is eventually selected for performing induction in
some nested induction step.

I expect the heuristic presented above to generally choose good Skolem functions. Nonetheless,
each Skolem function that was selected and turns out to be irrelevant causes longer proofs. If
such an irrelevant Skolem function is selected for the induction inference, the proof is duplicated
(and must therefore be refound) for each of its induction cases. For example, choosing z (in the
proof of the associativity conjecture above) before choosing x leads to a proof that is at least
twice the size, because it duplicates the successful proof by induction over x for the two cases of
induction over z. For an efficient solver, we need a solution that removes or at least reduces the
costs of irrelevantly selected Skolem functions. This allows us to always apply the induction rule
once per simple state, reducing the search space that needs to be explored.

A solution originates from the tight integration of induction and superposition, which allows
us to (immediately) inspect and analyze the (partial) proof for each proven (nested) induction
case. This analysis determines which induction steps are necessary and which can be omitted. In
general, the proof analysis is (substantially) more efficient than the proof search that results in the
proof. The analysis works in two phases. First the proof is minimized by removing unnecessary
first-order reasoning steps. An example of a common cause of superfluous first-order reasoning
steps is (greedy) rewriting. Then the proof is minimized by removing unnecessary inductive
reasoning steps. Let t be a constructor term and z be a Skolem function such that both occur in
the proof and t was introduced as a case of the induction inference on z. The analysis checks for
each such t if the proof is still correct if t is replaced by z.

Let us return to the current example conjecture, the associativity property. Assume we have
already performed two inductions, first on z and then on x and we have discovered a proof for the
case where z= s(z’) and x= s(x’):

(sa) s(x’)+(y+ s(z’)) 6≈ (s(x’)+y)+ s(z’)
(sb) s(x’+(y+ s(z’))) 6≈ (s(x’)+y)+ s(z’) by (1)
(sc) s(x’+(y+ s(z’))) 6≈ (s(x’+y))+ s(z’) by (1)
(sd) s(x’+(y+ s(z’))) 6≈ s((x’+y)+ s(z’)) by (1)
(se) s((x’+y)+ s(z’)) 6≈ s((x’+y)+ s(z’)) by NIH

(sf) ⊥

Then we can check if one of the induction steps was superfluous:

Induction on z not relevant? Induction on x not relevant?
Replay with s(z’) 7→ z Replay with s(x’) 7→ x

(sa′) s(x’)+(y+ z) 6≈ (s(x’)+y)+ z
(sb′) s(x’+(y+ z)) 6≈ (s(x’)+y)+ z by (1)
(sc′) s(x’+(y+ z)) 6≈ (s(x’+y))+ z by (1)
(sd′) s(x’+(y+ z)) 6≈ s((x’+y)+ z) by (1)
(se′) s((x’+y)+ z) 6≈ s((x’+y)+ z) by NIH

(sf′) ⊥

(sa′) x+(y+ s(z’)) 6≈ (x+y)+ s(z’)
(sb′) ? 6≈ (x+y)+ s(z’)

The replay of the proof is always successful if the term t introduced by induction (here s(z’))
only occurs in the instantiated part of the rules used in first-order reasoning. The possibly relevant
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induction steps are those that do not only occur in the instantiated part and can be discovered by
one iteration over the proof.

The combination of the base-case heuristic and the step-case proof analysis allows us to guide
the proof search to those Skolem Functions that have more useful base cases and efficiently
recover from situations where futile induction steps were performed.

4.4. Conjecture Strengthening

A further challenge for automated induction is that many valid conjectures cannot be proven
directly by induction, but they follow from lemmas that are provable by induction. Therefore,
heuristics to propose such lemmas are essential. A systematic (but necessarily incomplete)
approach to introduce new lemmas is to strengthen the conjecture. The strengthened conjecture is
proposed as a new lemma, which can then be used to prove the conjecture. Lemmas introduced
by strengthening always imply the original conjecture. Thus, it is ensured that a successful proof
of them is useful, which in turn justifies spending time to prove them.

I show how to integrate generalization, a standard strengthening technique, into SupInd
(Sect. 4.4.1). Standard Generalization picks a complex term in the conjecture and replaces all
its occurrences by a fresh variable. In the refutational setting of SupInd generalization picks a
complex term in the negated conjecture and replaces its occurrences by a fresh Skolem constant.
Generalization operates syntactically and thus it is dependent on the syntactic representation of
the conjecture, which, for example, can already be altered by applying rewriting in a different
direction. Thus, I also consider if alternative representation (derived from the axioms) of the
conjecture are more suitable for generalization.

A shortcoming of generalization is that it ignores dependencies between the generalized
term and the remaining conjecture. Term-dependency preserving generalization uses those
dependencies to derive side-conditions that lead to better strengthenings (Sect. 4.4.2).

Finally, I describe a new technique, bounded strengthening, to generate helpful propositions,
that remove constructor-sink functions (Sect. 4.4.3). Constructor sink-functions are hard for
induction, because they often make it impossible to apply the induction hypotheses.

All strengthening techniques are derived from and restrictions of the Derive Facts inference
rule, such that unsatisfiablity of the the new (strengthened) state implies unsatisfiablity of the
original state. Therefore, I extend SupInd with (specializations of) a strengthening inference rule,
which extends the current state instead of requiring a new state with its own search, which the
Derive Facts rule requires (to show that the newly derived proposition is a consequence).

Conjecture Strengthening Let S be a simple state and S ′ be a state such that if S ′ is
inductively unsatisfiable, then S is also inductively unsatisfiable.

S
S | S ′ STRENGTHEN
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Conjecture Strengthening Is a Derived Rule The Conjecture Strengthening rule can be
derived from the SupInd calculus presented earlier. If there is a proof using the SupInd and
the Conjecture Strengthening rules, then there is proof using only the SupInd rules. Suppose
the proof contains a refutation of S (i.e. the left-hand side of the |-node introduced), then the
strengthening step can be simply removed. Suppose the proof does not contains a refutation
of S , then it contains a refutation of S ′. S ′ is only inductively unsatisfiable if S is inductively
unsatisfiable, because of the definition of the Conjecture Strengthening rule. Thus, S ′ is an
consequence of S . Therefore, by the Derive Facts rule the clauses in S ′ can be added to S and
thus the proof for S ′ can be used for the extended S .

Completeness For refutational completeness (nested) strengthenings are not sufficient, be-
cause without an unrestricted Derive Facts inference not all possibly useful propositions are
generated. An enumeration based on an unrestricted Derive Facts inference can be interleaved,
i.e. performed only once in a while, with the in practice more useful strengthening techniques to
retain completeness.

There are approaches to enumerating all propositions for the equational case. For example Hip-
Spec/QuickSpec [17] uses a depth-limited testing-based generation of equations. The approach
works by building equivalence classes of terms using testing and seems to be useful in practice.
However, how to extend this approach to work in a clausal setting (e.g. conditional equations), is
still an open question.

Nonetheless, I expect that restricting enumeration to strong strengthening techniques is superior
for a large number of practical applications, because those strengthening techniques, while
generating a wide range of propositions, only generate propositions whose proof is relevant to the
proof of the current (sub)conjectures.

4.4.1. Generalization in SupInd

The intuition behind generalization [16, 22, 59] is that by replacing a complex term of the
conjecture by a fresh Skolem constant, the corresponding induction hypotheses become more
powerful. It is particular useful on conjectures containing the same (complex) term multiple
times.

Superposition (and in turn SupInd) uses a powerful reduction mechanism to simplify all
clauses. This means in particular that all negated conjecture clauses are simplified and that the
non-simplified clauses are removed from the simple state. Unfortunately, for many (negated)
conjectures some non-simplified clauses are a better basis for generalization, than the simplified
versions present in the simple state. This is an important point often overlooked for generaliza-
tion and is especially important for SupInd because of the powerful reduction mechanism of
superposition (which is necessary for efficient first-order reasoning).

Consider the conjecture rev(rev(Xs))≈Xs from the IsaPlanner benchmark [22] and the axioms
NA = 

(1) app(nil ,Ys)≈ Ys


(2) app(cons(X,Ys1),Ys2) ≈ cons(X,(app(Ys1,Ys2)))
(3) rev(nil)≈ nil
(4) rev(cons(X,Ys)) ≈ app(rev(Ys),cons(X,nil))
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and the negated conjecture:
rev(rev(ys)) 6≈ ys

After applying the induction inference once, the base-case ys = nil is trivially proven and the
simplified negated conjecture for the step-case ys= cons(x, xs) is

NC = { (5) rev(app(rev(xs),cons(x,nil))) 6≈ cons(x,xs) }

together with the induction hypothesis

NIH = { (6) rev(rev(xs))≈ xs }

Unfortunately, we are unable to use the induction hypothesis, because there is no (first-order
reasoning) way to eliminate the app between the two occurrences of rev . With a suitable ordering,
no further clauses are inferred at all, which means this simple state is not first-order refutable.
Applying generalization to the only clause (5) of the negated conjecture does not progress towards
a proof. Nonetheless, there are consequences of the clauses (1) to (6) that contain the same
complex subterm several times (at different positions). Thus, they would be suitable candidates
for generalization. The following clauses are consequences of the clauses (1) to (6):

(a) rev(app(rev(xs),cons(x,nil))) 6≈ cons(x,xs)
(b) rev(app(rev(xs),cons(x,nil))) 6≈ cons(x,app(nil ,xs))
(c) rev(app(rev(xs),cons(x,nil))) 6≈ cons(x,app(rev(nil),xs))
(d) rev(app(rev(xs),cons(x,nil))) 6≈ app(cons(x, rev(nil)),xs)
(e) rev(app(rev(xs),cons(x,nil))) 6≈ app(rev(cons(x,nil)),xs)
(f) rev(app(rev(xs),cons(x,nil))) 6≈ app(cons(x,nil),xs)
(g) rev(app(rev(xs),cons(x,nil))) 6≈ cons(x, rev(rev(xs)))

Clauses (e), (f) and (g) contain a term multiple times and can be generalized. But clauses (a) to
(g) are redundant with respect to clauses (1) to (6) and thus are never introduced by first-order
reasoning. The following clauses are generalizations of the clauses (e), (f) and (g):

(e′) rev(app(rev(xs),xs3)) 6≈ app(rev(xs),xs3)
generalizing term cons(x,nil) to xs3

(f′) rev(app(rev(xs),xs4)) 6≈ app(xs,xs4)
generalizing term cons(x,nil) to xs4

(g′) rev(app(xs5,cons(x,nil))) 6≈ cons(x, rev(xs5))
generalizing term rev(xs) to xs5

Clauses (e′) and (f′) are the negation of non-theorems and are eventually removed (Sect. 4.5).
Clause (g′) is the negation of a theorem (rev(app(Xs,cons(x,nil)))≈ cons(x, rev(Xs)) and can be
automatically refuted (proven). The generalization (g’) is a strengthening of the negated conjecture
(clause (5)), therefore refuting the generalization (g’) also refutes the negated conjecture (clause
(5)). Since clause (5) represents the negated conjecture of the step case of the initial conjecture
(rev(rev(XS )) ≈ XS ) and the proof of the base case is trivial, the initial conjecture can be
automatically shown.
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We have just seen that for generalization to be useful, it must also be applied to clauses
that would normally not be present in a simple state’s negated conjecture. To be able to find
generalizations, we introduce an inference rule (NEWEQ), which applies the axioms, specifying
the defined functions, in the inverse direction to that used for superposition and rewriting,
generating additional candidates on which generalization can be performed:

C′ ∨ s′ # s[u]
C′ ∨ s′ # s[t′]

NEWEQ if t ≈ t′ ∈ NA∪NIH ∪NC

where # ∈ {≈, 6≈}, u = tσ, t′σ 6≺ tσ and ≺ is the reduction ordering of the superposition calculus.
Since the rule NEWEQ potentially generates an infinite number of clauses, it is applied only a

fixed number of times per (sub)term. In Pirate we generate all combinations where it is applied at
most once per subterm. With this limit, clauses (a) to (g) are all the clauses that are generated
by NEWEQ from the negated conjecture (clause 5). NEWEQ is not added to the calculus, but
only used within generalization to generate additional candidates. The process is as follows: First
candidates are generated by applying NEWEQ rule to some combination of terms in the conjecture.
The Generalization rule then introduces new simple states for each term that occurs multiple
times in one of the candidates. The new state’s conjectures are created by replacing the term that
occurs multiple times by a fresh Skolem constant. The following inference rule is a special case
of the Strengthening rule and can therefore be used to extend SupInd by generalization:

Generalization Let N be a clause set constructed by applying NEWEQ to NC , let t be term
that occurs in N. Let sk be a fresh Skolem constant and A be NA∪NIH ∪NC .

(NA, NIH , NC)

(NA, NIH , NC) | (A, /0, N[t 7→ sk])
GEN

In Pirate we apply the Generalization rule exhaustively to the original state each time we
apply the Structural Induction inference rule. We apply it to all terms that occur in the negated
conjecture (NC) or at least twice in a NEWEQ-extension (N) of the negated conjecture (NC) of
the simple state that the induction rule was applied on.

4.4.2. Term-Dependency Preserving Generalization

Despite its usefulness, generalization does not consider dependencies between different terms.
Let P be an arbitrary predicate, len the length and rev the reverse of a list and the conjecture be
P(len(Xs))→ P(len(rev(Xs))) and thus let the negated conjecture be

P(len(xs)) ∧ ¬P(len(rev(xs)))

Generalization could replace len(xs) to x1 deriving the generalized negated conjecture:

P(x1) ∧ ¬P(len(rev(xs)))

or rev(xs) to x2, len(rev(xs)) to x3 or some combination. However, in all combinations the
connection between len(xs) and len(rev(xs)) is lost. Losing such a connection typically means

119



deriving a non-theorem. The problem here is how to generate a generalization that does not lose
any connections between different occurrences of the same Skolem function.

The solution is to prove that some contexts of the different occurrences of the Skolem function
are equal. In the example the different contexts of the only Skolem function xs are:

xs len(xs) rev(xs) len(rev(xs))

The only well-typed combinations are xs with rev(xs) and len(xs) with len(rev(xs)), deriving the
following two propositions:

(1) rev(Xs)≈ Xs (2) len(rev(Xs))≈ len(Xs)

Both justify the generalization of the original negated conjecture to

P(x) ∧ ¬P(x)

The resulting generalization is trivial to prove. That it is solvable at all is due to the fact that the
dependency between both occurrences of xs is preserved by the freshly introduced generalization
Skolem constant x. To ensure that the generalization implies the original conjecture, one of the
side-condition propositions must be proven. While proposition (1) is not a theorem, proposition
(2) can be shown by induction and first-order reasoning. I show how to detect and remove
non-theorems from SupInd’s search in Sect. 4.5.

In general, a combination of side-condition propositions can be used together to rewrite multiple
terms of the negated conjecture to generate the term-dependency preserving generalization.
Several of such side-condition combinations can derive the same term-dependency preserving
generalization and thus a proof of the generalization and one of the combinations of side-
conditions is sufficient. Parts of the conjecture that are not rewritten in order to derive the
generalization, can be kept also for the side conditions. As an example consider the (non-negated)
conjecture:

Q ∨ P(t1, t2)

This conjecture can be generalized to

Q ∨ P(X, X)

as long as both the following side conditions hold:

Q ∨ t1 ≈ s Q ∨ t2 ≈ s

From Q ∨ t1 ≈ s and Q ∨ t2 ≈ s we can derive Q ∨ t1 ≈ t2, which together with Q ∨ P(X, X)
implies Q ∨ P(t1, t2).

For SupInd we have to consider the negated conjecture, where the same approach is possible.
The negated conjecture which we have to refute that corresponds to the conjecture Q ∨ P(t1, t2)
is

¬Q ∧ ¬P(t1, t2)

This negated conjecture can be generalized to

¬Q ∧ ¬P(X, X)
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as long as both the following (non-negated) side conditions hold:

Q ∨ t1 ≈ s Q ∨ t2 ≈ s

where the corresponding negated conjecture for the side conditions are

¬Q ∧ t1 6≈ s ¬Q ∧ t2 6≈ s

This approach is captured by the following inference rule that infers one term-dependency preserv-
ing generalization using different combinations of side-condition propositions. All are combined
into one state that tracks their dependencies. Term-Dependency Preserving Generalization is
special case of the Strengthening rule.

Term-Dependency Preserving Generalization Let Nl and Nr be clause sets such Nl]Nr =
NC . Let N be a set of clauses constructed by applying NewEq to Nr. Let t1, . . . , tn be terms
that occur in N and contain Skolem functions. Let sk be a fresh Skolem constant and let A be
NA∪NIH ∪NC .

(NA, NIH , NC)

(NA, NIH , NC) | ((A, /0, Nl∪N[t1 7→ sk, . . . , tn 7→ sk]) & (SideC1 | · · · | SideCm))
DEPGEN

Each set of side conditions SideCi is defined as

(A, /0, Nl∪ s1l 6≈ s1r) & · · · & (A, /0, Nl∪ sol 6≈ sor)

such that t1, . . . , tn are equal after rewriting with instances of the equations s1l ≈ s1r , . . . , sol ≈ sor .

In Pirate we apply the Term-Dependency Preserving Generalization rule whenever we apply
Generalization. In Pirate Term-Dependency Preserving Generalization is implemented separately
of (but dependent on) Generalization for historical reasons. For all Skolem functions (skt)
occurring in the conjecture we find potential terms (t1, . . . , tn) such that they are the first or
second superterms (of the same data type as skt) of some occurrence of skt.

4.4.3. Strengthening Conjectures with Bounds

Generalization and term-dependency preserving generalization are heuristics and thus alone not
sufficient to prove every type of conjecture. In particular, they are less useful in cases where
functions occur whose return value is always a subterm of one of its argument values. Examples of
such functions are the minimum and subtraction of natural numbers and the unconditional drop
for lists (drop removes the N first elements from a list). I call those functions constructor-sink
functions, because they remove constructors from terms they are applied to. Constructor-sink
functions generally lead to conjectures where the induction hypothesis cannot be applied and are
thus hard to prove without further (inductive) lemmas. As an example, consider such a constructor-
sink function, the unconditional drop for lists, the conjecture len(drop(N, Xs)) ≤ len(Xs), the
corresponding negated conjecture:

len(drop(n, xs)) 6≤ len(xs)
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and the axioms defining the functions drop and len, and the predicate ≤:

drop(0, Xs) ≈ Xs 0 ≤ Y
drop(N, nil) ≈ nil s(X) 6≤ 0
drop(s(N), cons(X, Xs)) ≈ drop(N, Xs) s(X)≤ s(Y) ↔ X ≤ Y
len(nil) ≈ 0 len(cons(X, Xs)) ≈ s(len(Xs))

When performing induction on n and xs the induction cases where n is 0 or xs is nil are trivially
proven. Consider the negated conjectures for the induction step cases on both n and xs, i.e. where
n= s(n′), xs= cons(x′, xs′) and n′ = s(n′′), xs′ = cons(x′′, xs′′) and so on:

len(drop(n, xs)) 6≤ len(xs)

len(drop(n′, xs′)) 6≤ s(len(xs′))

len(drop(n′′, xs′′)) 6≤ s(s(len(xs′′)))

...

and the corresponding induction hypotheses:

len(drop(n′, xs′))≤ len(xs′)

len(drop(n′′, xs′′))≤ len(xs′′)

...

Every (combined) induction step on n and xs leads to another constructor (s) accumulating in a
non-generalizable position on the right-hand side of the ≤ predicate. The nested inductions are
futile because the constructor-sink function prevents the application of the induction hypothesis
by removing the constructors from left-hand side of the conjecture.

My solution to this problem is to replace (in the negated conjecture) the term containing the
constructor-sink function with a term that is less hostile to induction, while ensuring that the
resulting conjecture implies the original one.

To find such a term, consider one distinctive feature that many constructor-sink functions
share: In all models, the constructor term representing (i.e. that is equal to the interpretation of)
the term with a construct-sink function as top-level symbol is a (non-strict) subterm of at least
one of the constructor terms representing the argument terms. In the example, the constructor
term representing drop(n, xs) will always be a subterm of the constructor term representing xs.
Below we will show a syntactic criterion to automatically determine such “cap subterms” of
constructor-sink functions. The first part of my solution is to replace drop(n, xs) in the negated
conjecture by its cap xs. This results in the new conjecture

(1) len(Xs)≤ len(Xs)

and its negation, which while seemingly obvious still requires induction on xs:

len(xs) 6≤ len(xs)
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Alone, the new conjecture (1) does not imply the original one, because the constructor term
representing drop(n, xs) could be a proper subterm of the constructor term representing xs.
I rectify this by additionally showing that if the conjecture holds for some constructor term
representing drop(n, xs), it holds for all its immediate constructor subterms and thus for all
its constructor subterms. This is done by showing that replacing drop(n, xs) in the negated
conjecture for each step-case constructor (in the case of lists by cons(y, ys)) implies replacing
drop(n, xs) by each of the step-constructors immediate subterms of the same type (in the case of
cons(y, ys) by ys).

This leads to the new side-condition conjecture

(2) len(cons(Y, Ys))≤ len(cons(X, Xs)) =⇒ len(Ys)≤ len(cons(X, Xs))

and its negated conjecture:

len(ys’) 6≤ len(xs) ∧ len(cons(y, ys’))≤ len(xs)

Together the new conjectures (1) and (2) imply the original conjecture. Both conjecture (1) and
conjecture (2) are provable by one induction inference and first-order reasoning. The conjectures
are easier, mainly because the constructor-sink function was removed.

I now properly define the ideas that were presented in the above example.

Constructor Normal Form A term of the form f (t1, . . . , tn) of type τ is in constructor normal
form if and only if τ is a data type, f is a constructor of that data type and all ti that are of type τ
are in constructor normal form. By the restricted semantics of data types, it follows that for every
term t of a data type τ and each interpretation I there is exactly one term t′ in constructor normal
form such that I(t) = I(t′). I call such a t′ the constructor normal form of t.

Cap Subterm A cap subterm is a proper subterm s of a term t such that the constructor normal
form of t is a (non-strict) subterm of the constructor normal form of s. A cap argument position
of a function symbol f is an argument position i of f such that for every term f (t1, . . . , tm) and
every interpretation it is guaranteed that ti is a cap subterm of f (t1, . . . , tm).

Exhaustive Recursion To determine a syntactic criterion for cap argument positions, it is
necessary to find sets of axioms that specify one function symbol, so that all models have to
obey that specification. In principle, we want universally quantified axioms about such a function
symbol f , i.e. axioms of the form f (X1, . . . ,Xn)≈ t. For data types we know that all elements of
a data type are build by constructors (i.e. ‘no-junk’) thus we can also use all axioms of the form
f (X1, . . . ,nil , . . . , Xn) and f (X1, . . . ,cons(Y,Ys), . . . , Xn) as long as each position is exhaustively
specified (e.g. by a complete pattern matching on all constructors of a data type).

I restrict the definitions to top-level constructor symbols for each argument. An extension to
arbitrary depth and number of constructor symbol is straight forward, but adds no further insights
while significantly complicating the presentation.

Let F be a set of conditional equations Ci ∨ f (t1i , . . . , tni)≈ tri where each Ci is a (possibly
empty) disjunction of literals and each t ji is either a universally quantified variable or a term
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consisting only of a top-level constructor symbol with universally quantified variables as argu-
ments. I further assume that for the purpose of this section, corresponding variables in different
conditional equations are actually the same variable, e.g. that N in the defining equations of
gcd (its defining equations are given below) always denotes the same variable. I also assume,
that the t ji are distinct. If the t ji are not distinct, we can make them distinct and add equality
constraints to the corresponding condition Ci. Furthermore, for each t ji that is not a variable let
τi be its data type and for each constructor f j of τi there must be a at least one t ji that is equal
to f j(X1, . . . , Xm). Let J f j be the union of all Ci such that t ji is equal to f j(X1, . . . , Xm) then it
must holds that ¬(C1 ∨ ·· · ∨Cw) is unsatisfiable (where each Ck ∈ J f j). If that is the case then
the function symbol f is called exhaustively recursive.

The constructor-sink functions drop, minus and subtraction all are exhaustively recursive. So
is the greatest common divisor of two numbers gcd , if the conditions N ≈ M (from equation 1),
N < M (equation 2) and M < N (equation 3) are exhaustive, i.e. if ¬(N ≈ M ∨ N < M ∨ M < N)
can be shown to be unsatisfiable:

(gcd equation 1) gcd(N, M)≈ N if N ≈ M

(gcd equation 2) gcd(N, M)≈ gcd(M, N) if N < M

(gcd equation 3) gcd(N, M)≈ gcd(N−M, M) if M < N

A Syntactic Criterion for Cap Argument Positions Let f be a exhaustively-recursive
function symbol whose defining set of equations (ignoring potential side-conditions Ci) can be
partitioned into two sets, the recursive equations and the non-recursive equations.

1. f (t1, . . . , tn)≈ tr (non-recursive, i.e. tr does not have f as top symbol)

2. f (t1, . . . , tn)≈ f (r1, . . . , rn) (recursive)

A term tc is a constructor subterm (c-subterm) of a term t if tc is syntactically equal to t or if
t = fi(t1, . . . , tn), t is of the data type τ, fi is a constructor of τ, for some i it holds that ti is of the
same type as t (i.e. τ) and tc is a c-subterm of ti. For all models and terms tc and t it holds that if
tc is a c-subterm of t then tc’s constructor normal form is a (non-strict) subterm of t’s constructor
normal form.

Each of the defining equations of f can be mapped to a set of argument positions where the
right-hand side is a c-subterm of an argument of the left-hand side or to a set of positions, where
the argument of the right-hand side is a c-subterm of the corresponding argument on the left-hand
side: To derive a simple syntactic criterion for cap argument positions, I first map the equations
to a set of argument positions. Then the intersection of those sets contains the argument positions
that are cap argument positions. The mapping distinguishes between the both forms of equations
that we consider:

1. f (t1, . . . , tn)≈ tr 7→ {i | tr is a c-subterm of ti} (non-recursive)

2. f (t1, . . . , tn)≈ f (r1, . . . , rn) 7→ {i | ri is a c-subterm of ti} (recursive)
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The intersection of these sets contains only cap argument positions of f . This is because only
positions that remove constructors, from top-most argument term at the position, are in the sets
created by the mapping. I.e. only positions where (in the non-recursive case) the result (tr) is a
c-subterm of the argument position or (in the recursive case) the same position, in the recursive
call, is a c-subterm.

The computation of cap argument positions can be strengthened by allowing permutations in
the recursive definitions, within those argument positions that are cap argument positions. This is
achieved by first assuming the intersection of argument positions of the non-recursive equations
are cap argument positions. Then, iteratively, argument positions are removed that do not preserve
c-subterms under permutation in the recursive equations. The cap argument positions are those
that are still in the set when a fixpoint is reached:

1. CAP0 ::= intersection of all f (t1, . . . , tn)≈ tr 7→
{i | tr is a c-subterm of ti} (non-recursive)

k. CAPk ::= intersection of CAPk−1 and the intersection of all f (t1, . . . , tn)≈ f (r1, . . . ,rn) 7→
{i | i ∈ CAPk−1 ∧ ∃ j. ri is a c-subterm of t j} (recursive)

This can be further strengthened by not requiring c-subterms but also allowing cap subterms.
This means replacing the conditions “tr is a c-subterm of ti” by “tr is a c-subterm of ti or tr has a
cap subterm that is a c-subterm of ti” and “ri is a c-subterm of t j” by “ri is a c-subterm of t j or ri

has a cap subterm that is a c-subterm of t j”. Furthermore, for increased prevision, the equality
constraints of the conditions Ci of each defining equation can be taken into account when testing
if terms are c-subterms of each other.

This syntactic criterion is not complete, i.e. it does not detect all cap argument positions,
but it is sufficient for many practically interesting cases. In particular, it is sufficient for all
constructor-sink functions mentioned so far. For example for subtraction (−):

1. 0−M ≈ 0 7→ {1} because 0 is a c-subterm of 01.
N−0≈ N 7→ {1} because N is a c-subterm of N and not a c-subterm of 0.

2. s(N′)− s(M′)≈ N′−M′ 7→ {1} because 2 6∈ CAP1 and N′ is a c-subterm of s(N′).

3. Fixpoint reached for subtraction (−): {1}

The fixpoint results is correct, because position 1 is indeed a cap argument position for subtraction
(−). The cap-argument position computation for the greatest common divisor gcd(N, M) is as
follows:

1. gcd(N, M)≈ N 7→ {1, 2} when considering the side condition that N ≈ M

2. gcd(N, M)≈ gcd(M, N) 7→ {1, 2} because N c-subterm of N and M c-subterm of M
gcd(N, M)≈ gcd(N−M, M) 7→ {1, 2} because N−M has the cap subterm N which is a
c-subterm of N and M is a c-subterm of M

1Because 0 is a constant and the only base-case constructor, it can be considered as a c-subterm of M, in that case
0−M ≈ 0 7→ {1, 2}. CAP1 would still be {1} because of the other non-recursive equation
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3. Fixpoint reached for gcd(N, M): {1, 2}

Indeed, both argument positions are cap-argument positions for the greatest common divisor (gcd).

The Bound Strengthening Inference As an initial preprocessing step, all exhaustively
recursive functions of the initial axiom set and their cap argument positions are determined by
the syntactic criterion introduced above.

The Bound Strengthening inference itself then checks if the conjecture of a simple state contains
a term t1 that has a cap subterm t2. Then it creates several new simple states. The first simple state
is generated by replacing t1 by its cap subterm t2. The remaining simple “Inverse Step” states
are then generated to guarantee that the new simple state implies the original one. Because t2
is a cap subterm of t1, we know that the constructor term corresponding to the interpretation of
t1 is a subterm of the constructor term corresponding to the interpretation of t2. Therefore, the
simple “Inverse Step” states must ensure that removing (top-level) constructors from the position
t2 occurs in the conjecture is possible. This ensures that all constructor terms from the base-cases
up to the cap subterm t2 fulfill the original conjecture.

The following inference rule extends SupInd to support strengthenings by using known upper-
bounds and (several) inverse induction steps. It is a special case of the Strengthening rule.

Bound Strengthening Let t1 be a term of a data type, let t2 be a cap subterm, let κ1, . . . , κn

be the data type’s constructors and let A be NA∪NIH ∪NC .

(NA, NIH , NC)

(NA, NIH , NC) | ((A, /0, NC[t1 7→ t2]) & Stepκ1
& · · · & Stepκn

)
BOUND

Let a be the arity of κi. Then Stepκi
is defined as

Stepκi,1 & · · · & Stepκi,a

where Stepκi, j is defined as ({⊥},{⊥},{⊥}) if argument j of κi is not of the same type as κi.
Otherwise, it is the inverse induction step for argument j of constructor κi and defined as

(A, /0, cnf (¬NC[t1 7→ κi(sk1, . . . , skm)])∪NC[t1 7→ sk j])

where sk1, . . . , skm are fresh Skolem constants and cnf (¬NC[t1 7→ κi(sk1, . . . , skm)]) computes
the clause normal form of the negation of NC[t1 7→ κi(sk1, . . . , skm)].

In Pirate we apply the Bound Strengthening rule exhaustively to the original simple state each
time we apply the Structural Induction inference rule. We apply it to all terms of the simple
state’s NC that have an cap subterm.

Lemma 4.4.3.1 (The Bound Strengthening Rule is Sound).
If the result of the bound strengthening rule (NA, NIH , NC) | ((A, /0, NC[t1 7→ t2]) & Stepκ1

& · · · & Stepκn
)

is unsatisfiable, then the original state (NA, NIH , NC) is also unsatisfiable.

Proof. A |-state is unsatisfiable if one of its substates is unsatisfiable. If the left substate is
unsatisfiable, then obviously the original state is also unsatisfiable, because they are identical.
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It remains to show that if the right substate of the |-state is unsatisfiable, then the original
state is unsatisfiable. Suppose ((A, /0, NC[t1 7→ t2]) & Stepκ1

& · · · & Stepκn
) is unsatisfiable but

(NA, NIH , NC) is not. The negated conjecture of each Stepκi, j, for each constructor κi and each j
which is an argument position of t1 of the same data type, is

cnf (¬NC[t1 7→ κi(sk1, . . . , skm)])∪NC[t1 7→ sk j]

Without changing the satisfiability, we can remove the clause normal transformation and use ∧ to
signify ∪, because the clause set represents a conjunction of the clauses it contains

¬NC[t1 7→ κi(sk1, . . . , skm)] ∧ NC[t1 7→ sk j]

The corresponding non-negated conjecture for each Stepκi, j is

NC[t1 7→ κi(X1, . . . , Xm)] =⇒ NC[t1 7→ X j]

Each of these Stepκi, j follows from NA∪NIH ∪NC and thus must also hold in every interpretation
of (NA, NIH , NC). Therefore, ((A, /0, NC[t1 7→ t2]) must be unsatisfiable and (NA, NIH , NC)
must not be unsatisfiable for ((A, /0, NC[t1 7→ t2]) & Stepκ1

& · · · & Stepκn
) to be unsatisfiable

but (NA, NIH , NC) not to be unsatisfiable. The only possible way for all Stepκi, j to hold and
((A, /0, NC[t1 7→ t2]) to be unsatisfiable is therefore if the constructor normal form of t2 is not a
(non-strict) subterm of the constructor normal form of t1. Because t2 is a c-subterm of t1, this is
not possible.

4.5. An Optimized Variant of SupInd

In this section, I describe two additions to SupInd, that make an implementation more efficient.
First, I introduce a global axiom clause set (Sect. 4.5.1) and then show how to detect and remove
invalid propositions (Sect. 4.5.2)

4.5.1. A Shared Global Axiom Clause Set

In the SupInd calculus presented so far the initial axiom set is duplicated for each simple
state. This is wasteful and unnecessary, because inferences within that clause set are repeatedly
performed in each simple state. An alternative is to introduce a global axiom clause set (NGA) that
extends every simple state’s clause sets so that inferences between the axioms are only performed
once. The inferences of the superposition calculus (lifted to SupInd) must then also be applied
to NGA and the result of those inferences must be added back to NGA. SupInd’s Superposition
inference is therefore replaced by the following two inference rules.

The new status of an SupInd proof state is represented by the pair (NGA, S ), where NGA is the
global axiom clause set and S is state. The pair representing the proof state is unsatisfiable if the
global axiom clause set NGA contains the empty clause or the state S is unsatisfiable. Simple states
are still the triples (NA, NIH , NC), where NA now contains results of local first-order reasoning
instead of the global axioms and their reasoning. Let NA be the initial axioms and NC be the
initial negated conjecture then the initial proof state is (NA, ( /0, /0, NC)). The only inference rule
that directly alters the global axioms clause set is the superposition rule for that clause set.
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Optimized Conjecture Superposition for Global Axioms
Let NGA be a clause set, S be a state and C1,C2 ∈ NGA.

(NGA, S )
(NGA∪{C′}, S )

INFGA if
C1 C2

C′ or
C1

C′ is a superposition inference

For a simpler and more uniform presentation, I still present the remaining inference rules as if
they operate only on a state and leave the global axiom clause set implicit, if necessary I refer to
it as NGA. The Superposition inference rule of SupInd must be replaced by superposition rules
that take the global axiom clause set into account. First, the Conjecture Superposition inference
rule, that performs the inferences between all clause sets and the clause sets for the the axioms
(NA) and negated conjecture (NC). The inference results of this inference go to the axiom clause
set NA. The clause sets for axioms and the negated conjecture are still separate to achieve smaller
induction hypotheses in the Structural Induction inference.

Optimized Conjecture Superposition
Let n ∈ {1,2}, let C1 ∈ NA∪NC and let C2 ∈ NGA∪NA∪NIH ∪NC .

(NA, NIH , NC)

(NA∪{C′}, NIH , NC)
INFC if

C1 C2

C′ ,
C2 C1

C′ or
C1

C′ is a superposition inference

And then the inference rule that does inferences within the induction hypotheses clause set
(NIH) with help of the global axiom clause set (NGA), where the inference results can stay in the
induction hypotheses clause set.

Optimized Induction Hypotheses Superposition
Let n ∈ {1,2}, let C1 ∈ NIH and let C2 ∈ NGA∪NIH .

(NA, NIH , NC)

(NA, NIH ∪{C′}, NC)
INFIH if

C1 C2

C′ ,
C2 C1

C′ or
C1

C′ is a superposition inference

The rules ensure that inferences are only applied with clauses from the simple state’s clauses or
with a clause from the simple state and a clause from the a global axiom clause set. An additional
benefit of splitting the Superposition rule this way is that less inferences within NIH must be
repeated, after an induction inference. Inference results from (global) axioms and the induction
hypotheses are preserved (and adapted) in NIH by the induction inference.

The Redundancy Elimination rule must also be changed to take NGA into account and is
therefore replaced by
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Optimized Redundancy Elimination
Let N, N′ be sets of clauses such that N is reducible to N′ with respect to NGA∪NIH ∪N′.

(NA]N, NIH , NC)

(NA∪N′, NIH , NC)
RED′A

(NA, NIH ]N, NC)

(NA, NIH ∪N′, NC)
RED′IH

(NA, NIH , NC ]N)

(NA, NIH , NC ∪N′)
RED′C

With these changes, the duplication of inferences between the global axioms can be avoided,
because they are only performed once in the global axiom clause set.

4.5.2. Purging Invalid Propositions

Detecting invalid propositions is useful to reduce the search space by removing the corresponding
simple states. It also helps end-users to detect erroneous conjectures. For example Pirate can
automatically detect that one problem (problem 87) of the IsaPlanner benchmark is not a theorem:

minus(minus(X, Y), Z)≈minus(X, minus(Y , Z))

Here, minus is subtraction over the natural numbers. None of the tools described in the evaluation
section Sect. 4.7 is capable of detecting that this is not a theorem. To the best of my knowledge,
including a non-theorem in the benchmark was not intentional.

In the presence of induction, a first-order saturation of the axioms and the negated conjecture is
not sufficient to show that the conjecture is invalid. There could be additional lemmas (provable
by induction) that, when added to the previously saturated set, yield a contradiction. A test that is
still useful in the presence of induction is: A conjecture is invalid if its negation follows from a
consistent set of axioms. In the case of superposition this can be restated as follows: a conjecture
is invalid if its negation reduces to the consistent axioms. Furthermore, we know that if the
axioms are consistent and a proposition is valid with respect to the axioms, then the union of
every of the proposition’s induction hypotheses with the axioms is consistent.

Theorem 4.5.2.1 (Invalid Conjecture).
If the negated conjecture clause set NC of a simple state is empty then the corresponding conjecture
is invalid.

If the global axiom clause set is not consistent, the Optimized Conjecture Superposition for
Global Axioms inference rule of SupInd will eventually derive the empty clause, thereby proving
the initial conjecture. Therefore, the individual inference rules of the optimized variant of SupInd
dealing with states can always assume that the global axiom clause set is consistent.

If the negated conjecture set (NC) of a simple state is the empty set, it is implied by the axioms,
induction hypothesis and inference results. Thus, the conjecture cannot hold. Because consistency
of the axioms can be assumed and because induction hypotheses of valid propositions together
with a consistent set of axioms cannot be unsatisfiable, simple states with an empty conjecture
(NC) can be removed. Thus, optimized SupInd can be extended by the following simplification
rules.
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Optimized Purge Invalid Propositions Let S be an arbitrary state.

(NA, NIH , {}) & S
({}, {}, {}) &l

S & (NA, NIH , {})
({}, {}, {}) &r

(NA, NIH , {}) | S
S |l

S | (NA, NIH , {})
S |r

4.6. Implementation

In this section I give an overview over the way the SupInd calculus is implemented in the version
of Pirate that supports induction. There are three main data structures that hold all necessary
information:

NGA the global axiom clause set. Initially, this set holds all input axioms. During the proof
search all those inductive consequences that Pirate has proved to follow directly from the
global axiom clause set are added.

tree the and/or-tree representing the state. The simple states, which are all at the leaves and
contain the clause set triples, are not part of the and/or-tree but only referenced by it.
Simplifying the tree means to propagate the (dis)proofs. An or-node of the tree is proven if
one of its subnodes is proven and disproven if all its subnodes are disproven. An and-node
of the tree is proven if all of its subnodes are proven and disproven if one of its subnodes
are disproven. In keeping with SupInd states I also refer to the or-nodes as |-states and the
and-nodes as &-states.

states a list of simple states annotated with additional information that is useful in a practical
implementation. One such information is if further induction is necessary or only first-order
reasoning is required and the other main information is a reference counter for each state,
counting how often that state is referenced in the and/or-tree. This list of simple states is
deduplicated so that a simple-state can occur multiple time in the tree but only occurs once
in the states .

Initially, the global axiom clause set is filled with the input axioms. The negated conjecture NC

is represented by new simple state ( /0, /0, NC) that is added to the states list. The tree is initialized
with a single reference to the currently only simple state. Optionally, Pirate has a setting so that
it starts with attempts to proof associativity and commutativity for all binary function symbols,
before starting the actual proof attempt.

4.6.1. The Main Loop

After initialization the main loop (Alg. 1) is started. At the beginning of each loop iteration
the next simple-state is selected (line 2). Then superposition is performed on the global axiom
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Algorithm 1: SupInd Main Loop

1 while states is not empty and tree is not a proof or a disproof do
2 nextState := extract the next state from states;
3 Sup(NGA); /* Sect. 4.6.2 */
4 Sup(nextState); /* Sect. 4.6.2 */
5 simplify the tree accordingly if a (dis)proof is found;
6 move globally valid conjectures to NGA; /* I.e. for proofs without side conditions */
7 add nextState to end of states;
8 if nextState is not marked as first-order reasoning only then
9 replace nextState in tree by an |-state with the following children:

• itself, flagged to only continue first-order reasoning;

• Induction(nextState); /* Sect. 4.6.3 */

• Generalization(nextState); /* Sect. 4.6.4 */

• Bound Strengthening (nextState); /* Sect. 4.6.6 */

10 return tree /* tree now contains the proof derivation or the disproof */;

clause set and the selected simple-state (lines 3-4). If this results in a proof or disproof the tree is
updated, and the corresponding states are removed from states (line 5). If a proof was obtained
and the conjecture is not dependent on any side conditions (e.g. the NA and NIH parts of the
simple state are empty), then the conjecture can be added to the global axiom clause set NGA (line
6). The simple state is added to the end of the states list (line 7). If the simple state requires
inductive reasoning, the tree and as appropriate the states are updated and structural induction
and strengthenings are performed (line 9). If the loop terminates the tree contains the result and
the annotations necessary to reconstruct a proof.

4.6.2. Superposition

Superposition is applied to the global axiom set and the union of the clause set triple of the
currently processed simple state. In addition to the reduction rules implemented for the typed
calculus (Sect. 3.4.1), a restricted from of splitting is implemented. Superposition is run with
a time limit and a limit on the number of inferences that are performed. The global axiom set
and the simple states are updated, i.e. the resulting inferences are added to them. If an empty
clause is derived, i.e. the current state is shown unsatisfiable, then the tree is updated accordingly.
Additionally, the first-order reasoning steps are recorded for the later proof output. Similarly,
when the current conjecture is shown to be invalid, the state is removed from the tree. If the
parent-state is an &-state, that &-state is also removed. No recording of reasoning steps is
necessary in this case.
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Distinctness and Injectivity

For the superposition calculus used in SupInd we integrated special reduction rules to for distinct-
ness (Def. 4.2.1.4) and injectivity (Def. 4.2.1.5). The main motivation for this is to ensure that
distinctness and injectivity properties are used to reduce a clause as soon as possible. Addition-
ally, the integration leads to more compact and readable proofs, because the application of those
properties is immediately obvious instead of hidden behind other reduction rules.

Distinctness of data type constructors means that clauses that contain a disequation between to
distinct constructors are true. Furthermore, equations between two distinct constructors can be
removed from clauses. The rules treating injectivity for negative and positive literals of clauses
are as follows.

Distinct Let fi and f j be data type constructors such that i 6= j.

fi(. . .) 6≈ f j(. . .) ∨C
> NEG DISTINCT

fi(. . .)≈ f j(. . .) ∨C
C POS DISTINCT

Injectivity of data type constructors means that disequation between to distinct constructors
are true only if one of the arguments is not equal. Furthermore, equations between two distinct
constructors can only be true if all arguments are equal. The rules treating injectivity for negative
and positive literals of clauses are as follows.

Injective Let fi be a data type constructor.

fi(s1, . . . , sn) 6≈ fi(t1, . . . , tn) ∨C
s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn ∨C NEG INJ.

fi(s1, . . . , sn)≈ fi(t1, . . . , tn) ∨C
(s1 ≈ t1 ∨C) ∧ . . . ∧ (sn ≈ tn ∨C)

POS INJ.

I also added two special rules that handles the (dis)equation of variables (only for single literal
clauses). Two variables of a data type with more than one constructor cannot be equal for all
instantiations. Such single literal clauses are often introduced by using injectivity, therefore
special reduction rules seem advisable.

Data Type Variable Let X, Y be variables of a data type, with more than one constructor.

X 6≈ Y
> NEG VARS

X ≈ Y
⊥ POS VARS
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4.6.3. Structural Induction

To perform the Structural Induction inference rule the current goal is analyzed first, in order
to determine the Skolem constant c whose induction cases we want to generate next (line 1,
Sect. 4.3). Then the goals for the induction cases including the induction hypotheses are generated
(lines 3-9, Sect. 4.2). The induction hypotheses will not be created for base cases since there
is no argument of the same data type (lines 5-7). Previous induction hypotheses are kept for
all cases (line 8). Note that in order to create the proper induction hypotheses, only the clauses
from the negated conjecture NC , i.e. those clauses that represent the (potentially reduced) negated
conjecture are ‘unnegated’ (line 6). Because of previous reasoning steps, the negated conjecture
of the simple state can be different from the initial negated conjecture of the simple state. Thus,
the additional negation step is required.

Algorithm 2: Structural Induction
Input: NA axioms, NH hypotheses, NC conjectures,

1 c := analyze(NA,NH ,NC); /* Sect. 4.3 */
2 cases := new &-state;
3 foreach constructor f of the data type of c do
4 let c1, . . . ,cn be fresh Skolem constants such that f (c1,. . . ,cn) is well-typed;
5 foreach ci of the same data type as c do
6 N′H := unnegate(NC[c 7→ ci]) and clausify;
7 N′H += NH[c 7→ ci];
8 N′H += NH[c 7→ f (c1, . . . ,cn)];
9 cases += (N′H ,NC[c 7→ f (c1, . . . ,cn)]);

10 return cases;

unnegate negates the negated conjecture to retrieve the current conjecture from the negated
conjecture. When unnegating, all Skolem constants, except the Skolem constant c of the current
induction step, can be treated as existentially quantified and thus are turned into universally quan-
tified variables. Then the result is clausified again to initialize the new induction hypotheses (N′H ,
line 6). In Pirate I have also implemented an alternative unnegate which preserves the Skolem
constants, yielding less powerful ground induction hypotheses which have easier first-order goals.

Induction hypotheses of strong structural induction hold for all structurally smaller terms.
In each induction case (f (c1,. . . ,cn) ≈ c), the arguments (ci) of the data type constructor (f )
are structurally smaller than the whole constructor term. Thus all induction hypotheses that
hold for c also hold for ci and the corresponding induction hypotheses are added (line 7). This
way the (generally infinite) set of terms smaller than c and their induction hypotheses are
gradually constructed in subsequent induction steps (then over the ci) when the Skolem constants
representing those smaller terms are introduced.

4.6.4. Generalization

Generalization first preprocesses the simple state by generating a set of negated conjectures,
which are different representations of the negated conjecture (NC) of the simple state generated by
applying the NEWEQ inference rule (line 2, Sect. 4.4.1). The generated set contains the negated
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conjecture (NC) and all negated conjectures that can be derived by applying NEWEQ at most once
per subterm of the negated conjecture. Then, for each generated clause we apply generalization to
every complex term that occurs at least once in NC or more than once in a NEWEQ-extension (line
3). The complex terms are then replaced by fresh Skolem constants in the negated conjecture, the
axioms and the induction Hypotheses(lines 5-7). Furthermore, new simple states representing
the generalizations are created (line 8). Finally, the dependency preserving generalization is
performed using the information gathered by the standard generalization (line 9).

Algorithm 3: Generalization
Input: NA axioms, NIH hypotheses and NC negated conjectures clauses of a simple-state

1 generalizations := new |-state;
2 foreach nC in Preprocess(NA, NH , NC) do
3 commonterms := compute set of subterms of nC that occur at least twice in nC (at

least once if nC is NC);
4 foreach S ⊆ commonterms do
5 n′C := c[t1 7→ bt, . . . , tn 7→ bt for each ti ∈ S ] for some fresh Skolem constants bt;
6 n′A := NA[t1 7→ bt, . . . , tn 7→ bt for each ti ∈ S ]
7 n′IH := NIH[t1 7→ bt, . . . , tn 7→ bt for each ti ∈ S ]
8 generalizations += (n′A, n′IH , n′C);
9 generalizations += DepPreserve(NA, NIH , NC , n′C , bt); /* Sect. 4.4.2 */

10 return generalizations;

4.6.5. Term-Dependency Preserving Generalization

Term-Dependency Preserving Generalization (the inference rule is described in Sect. 4.4.2)
requires as input a simple state, a term (t) contained in the negated conjecture and a fresh Skolem
constant (bt). The simple state is the one which contains the negated conjecture we are using
to generalize. The term t is the term that generalization picked to generalize and the Skolem
constant bt is by what the term t was replaced. Then, for each Skolem constant occurring in
the term t term-dependency preserving generalization is performed (line 2). First, the negated
conjecture is split into an unchanging part (Nl) and a generalization part (Nr) according to the
Term-Dependency Preserving Generalization inference rule (line 3). In our evaluations (Sect. 4.7)
the unchanged part Nl, in the generalizations used in successful proofs, is empty. This is because
most negated conjectures of the evaluation only have one or two clauses. From the generalization
part (Nr) of the negated conjecture a set of terms is selected that contain the Skolem constant
bt (line 4). In Pirate we consider all first or second superterms (of the same data type as bt)
of some occurrence of bt. Then an &-state that contains both the term-dependency preserving
generalization and the side conditions is created (lines 5-9). The generalization is created by
replacing all chosen superterms (S ) by the generalization Skolem constant bt (line 6). For each
such superterm (ti ∈ S ) the side condition that it must be equal to t is required. This is ensured by
adding the appropriate simple state (representing the conjecture that ti ≈ t) to the &-state (line 8).
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Algorithm 4: DepPreserve
Input: NA axioms, NIH hypotheses and NC negated conjectures clauses of a simple-state,

t term generalized in goal , bt Skolem constant to which t was generalized;
1 newgoals := new |-state;
2 foreach c in Skolem-symbols-of(t) do
3 (Nl, Nr) := split NC;
4 foreach S in choose-set-of-superterms-of-c in Nr do
5 DependencyLemma := create &-state;
6 DependencyLemma += (NA, /0, Nl∪Nr[t1 7→ bt, . . . , tn 7→ bt for each ti ∈ S ]);
7 foreach ti in S do
8 DependencyLemma += (NA, /0, Nl∪{ti 6≈ t});
9 newgoals += DependencyLemma;

10 return newgoals;

4.6.6. Strengthening Conjectures with Bounds

Strengthening conjectures with bounds has two phases and its inference rule is described in
section 4.4.3. The first is an initial phase to gather cap argument positions of all function symbols.
The second phase is run each time a negated conjecture is strengthened.

Initial Analysis Phase

The first phase determines which function symbols have cap argument positions. This is achieved
by initially (before starting the SupInd main loop) computing the structural analysis fixpoint for
each function symbol. The fixpoint starts with the assumption that all positions of all functions

Algorithm 5: Cap Argument Position Analysis

Input: NA axioms
1 positions := [ f 7→ {1, . . . ,arity( f )} | for all function symbols f ];
2 foreach c in NA do
3 foreach f (t1, . . . , tn)≈ t in c do
4 foreach i in {1, . . . ,n} do
5 if t == f (r1, . . . ,rn) and ri is not c-subterm of ti and

ri has no cap subterm that is a c-subterm of some ti
such that i ∈ positions( f ) then

6 positions( f ) := positions( f ) \ { i };
7 else if tr is not c-subterm of some ti and

tr has no cap subterm that is a c-subterm of some ti then
8 positions( f ) := positions( f ) \ { i };
9 return positions;

are structurally bigger than their result (line 1). The algorithm then proceeds by iterating over
all defining equations (which are marked in the input) to check if they obviously uphold the
subterm property (line 3-8). To that end, the right hand side must either be a recursive call to
the same function, such that all arguments of the recursive call are smaller than some argument
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of the initial call (such that that argument is still marked as a cap argument position, lines 5-6).
Alternatively, the complete right hand side (tr) can be smaller than some argument ti (lines 7-8).
This algorithm assumes that the marked initial axioms fully define the used functions.

Strengthening Conjectures

The second phase generalizes a negated conjecture according to the information gathered by the
analysis phase. For each negated conjecture that is to be strengthened, each (sub)term (t) that
has a cap subterm is taken as a basis for strengthening (line 2). For each cap subterm tc of t the
Bound Strengthening inference is applied (line 3). The inference results in an &-state consisting
of the strengthened conjecture and the inverse steps (lines 4-9). The strengthening is derived by
replacing t by tc in the negated conjecture (NC , line 5). For each constructor of the data type of t
an inverse step is necessary (line 6). Each inverse step ensures that if the conjecture holds, with t
replaced by each constructor with fresh Skolem constants as argument, it also holds for t replaced
with the Skolem constant arguments of the same data type (lines 7-9).

Algorithm 6: Strengthening Conjectures with Bounds

Input: NA axioms, NIH hypotheses and NC negated conjectures clauses of a simple-state
1 strengthenings := new |-state;
2 foreach t occurring in NC and t is of a data type do
3 foreach tc that is a cap subterm of t do
4 boundstates := new &-state;
5 boundstates += (NA, /0, NC[t 7→ tc]);
6 foreach κi constructor of t’s data type do
7 tκ := κi(s1, . . . , sn) for fresh Skolem constants si;
8 foreach si that is of t’s data type do
9 boundstates += (NA, /0, cnf (¬NC[ti 7→ tκ])∪NC[ti 7→ si]);

10 strengthenings += boundstates;
11 return strengthenings;

4.6.7. Example

In this section I show one example file and Pirate’s output on that file. The file is in the DFG
format. It is the 38th problem of the IsaPlanner [22] benchmark set (Sect. 4.7).

Input

The input of Pirate is the DFG file format used for the monomorphic SPASS [9], extended with
polymorphism and data type declarations. In the preamble, the DFG format has a number of
descriptions, that we do not use in Pirate. They are still present in the input file, because the DFG
format requires them.

begin problem ( benchmark ) .

l i s t o f d e s c r i p t i o n s .
name ({∗∗} ) .
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a u t h o r ({∗∗} ) .
s t a t u s ( unknown ) .
d e s c r i p t i o n ({∗∗} ) .
e n d o f l i s t .

The function, predicates and type symbols are declared after the preamble. For function and
predicate symbols, the format is (name-of-the-symbol, number-of-type-arguments+number-of-
term-arguments). If the number of type arguments is zero, the number and the + can be omitted.
For types only the number of type arguments is needed, for background compatibility types can
also be named sorts.

l i s t o f s y m b o l s .
f u n c t i o n s [ ( n i l , 1+0) , ( cons , 1+2) , ( z , 0 ) , ( s , 1 ) , ( append , 1+2) , ( count , 1 + 2 ) ] .
p r e d i c a t e s [ ( l e s s , 1+2) ] .
s o r t s [ ( l i s t , 1 ) , ( na t , 0 ) ] .
e n d o f l i s t .

Next come the function and predicate declarations (F , P). The format of the declarations
begins with function( or predicate(. Then comes the function-symbol (which must have been
defined above), followed by a comma. The next component is the type variable declarations
[A,. . . ], list(A)), again followed by a comma. The number of type variables must agree with the
declared number of type arguments. The last component is a tuple of the arguments followed by
white space and the return type (only for functions). The number of argument types must agree
with the declared number of term arguments. The declaration is finished by a closing bracket and
a dot.

The data type declarations (DT ) are also declared here. The format of the data type declarations
begins with datatype( and is followed by the type constructor that build the data type (e.g. nat)
and a common. Next is a comma separated list of constructors. The declaration is finished by a
closing bracket and a dot.

l i s t o f d e c l a r a t i o n s .
f u n c t i o n ( n i l , [A] , l i s t (A) ) .
f u n c t i o n ( cons , [A] , (A, l i s t (A) ) l i s t (A) ) .
f u n c t i o n ( z , n a t ) .
f u n c t i o n ( s , ( n a t ) n a t ) .
f u n c t i o n ( append , [A] , ( l i s t (A) , l i s t (A) ) l i s t (A) ) .
f u n c t i o n ( count , [A] , (A, l i s t (A) ) n a t ) .

p r e d i c a t e ( l e s s , [A] , A, A) .

data type ( na t , z , s ) .
data type ( l i s t , n i l , cons ) .
e n d o f l i s t .

After the declarations, the next part of the input are the axiom formulas. The formulas have a
name attached to them, so that the proof output can refer to the formulas by name. The logical
part of the formulas is build from type quantification (forall sorts), term quantification (forall)
and the usual connectives (equal, implies,. . . ). Terms are build from variables or the function
symbol with first the type arguments < · · · > followed by the term arguments in round brackets.
The :lr annotation (for equations and equivalences), informs the solver that the equations should
be oriented from left to right. We introduced it in previous work on SPASS [9].
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l i s t o f f o r m u l a e ( axioms ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) ] ,

equal : l r ( append<A>( n i l<A>,LS ) , LS ) ) ) , a p p e n d n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) , Y:A, YS : l i s t (A) ] ,
equal : l r ( append<A>(cons<A>(Y, YS) , LS ) ,

cons<A>(Y, append<A>(YS , LS ) ) ) ) ) , a p p e n d c o n s ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, LS : l i s t (A) ] ,
equal ( count<A>(X, n i l<A>) , z ) ) ) , c o u n t n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, L :A, LS : l i s t (A) ] ,
i m p l i e s ( equal (X, L ) ,

equal ( count<A>(X, cons<A>(L , LS ) ) ,
s ( count<A>(X, LS ) ) ) ) ) ) , c o u n t c o n s e q u a l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, L :A, LS : l i s t (A) ] ,
i m p l i e s ( n o t ( equal (X, L ) ) ,

equal ( count<A>(X, cons<A>(L , LS ) ) ,
count<A>(X, LS ) ) ) ) ) , c o u n t c o n s n o t e q u a l ) .

e n d o f l i s t .

The last part of the input is the conjecture. Superposition will negate the conjecture before
trying to show the axioms and the conjecture to be unsatisfiable.

l i s t o f f o r m u l a e ( c o n j e c t u r e s ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, XS : l i s t (A) ] ,

equal ( count<A>(X, append<A>(XS , cons<A>(X, n i l<A>) ) ) ,
s ( count<A>(X, XS) ) ) ) ) , c o n j p r o p 3 8 ) .

e n d o f l i s t .

end problem .

Output

I now show the output of the inductive version of Pirate on the problem file presented above.
First the preamble is printed. The reduceDFGtoFacts script is used to replay first-order proof
obligations in the monomorphic version of SPASS. This is done during development to ensure
that the proofs found are actually correct. I did not use the replay during evaluation.

S t a r t i n g
s c a l a v e r s i o n 2 . 1 1 . 2
Unkown / Legacy−s t y l e Argument : / home / dwand / p i r a t e / r educeDFGtoFac t s

The negated, clausified and Skolemized conjecture is printed next. Clauses always start with a
hash of the clause (here: FB832), followed by a counter that is independent of the clause structure
(00007). Next comes the priority (rank) of the clause. Axioms have priority 1000 while the
negated conjecture has priority 1. Newly inferred clauses have a priority one higher than the
minimum priority of their parents. Then, the tab-separated list of negative literals is printed. The
output –> separates the list of positive literals from the negative literals. Finally, the origin is
printed. It refers to input formulas by their name and to previous clauses by their hash.

I n i t i a l Conjec tures :
: FB832−00007 ( 1 ) {} | | c o u n t ( skf1 , append ( skf2 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , s k f 2 ) ) −> .

o r i g i n ( Conj ( c o n j p r o p 3 8 from : S e t (B94AA) ) )
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After printing the conjecture, the proof search is started. This proof is relatively simple and
therefore one few outputs were made. Every time a new globally valid axiom (i.e. without any
assumptions) is found it is printed. Optionally, its proof can also be printed. For this proof, Pirate
discovered that nil is also a neutral argument to append if its in the second argument position.
The CaseProofTask represent the states of the SupInd calculus. At the beginning of the line, after
the @, the time in milliseconds is shown (since program start).
@ 233 @head (1 rank : 10 ) : CaseProofTask−TID : 4 ( p a r e n t TID : 3 , Der iveCase ( −> append ( V2 , n i l ) = V2 . ) )
Welcoming new knowledge :

: 5A0D0−00105 ( 1000) {} | | −> append ( V2 , n i l ) l r=> V2∗ . o r i g i n ( De r ived ( E60F3 ) )
@ 326 @head (0 rank : 12 ) : CaseProofTask−TID : 6 ( p a r e n t TID : 5 , I n i t i a l )

After the successful proof search , either a proof or a counter example is found. Otherwise, a
time out occurs. If a proof or counter example was found, it is printed. For a proof, the axiom
and conjecture formulas that were used are also listed.
Found f a l s e
Formulas used : c o n j p r o p 3 8 c o u n t c o n s e q u a l a p p e n d n i l c o u n t n i l a p p e n d c o n s c o u n t c o n s n o t e q u a l

Finally, the remaining output consists of the full refutation proof (without clausification). The
clauses are printed in the order they were derived, which for smaller proofs (like this one) gives a
good separation into the induction cases. The conclusion of the refutation proof is the last clause
derived and thus the last clause printed.

The first part of the proof output are the clausified input clauses and the initial reduction results.
Invo lved c l a u s e s :
B94AA−00001 ( 1000) {} | | −> c o u n t ( V2 , append ( V4 , cons ( V2 , n i l ) ) ) = s ( c o u n t ( V2 , V4 ) ) . o r i g i n ( I n p u t ( c o n j p r o p 3 8 ) )
6E897−00002 ( 1000) {} | | −> append ( n i l , V2 ) = V2 . o r i g i n ( I n p u t ( a p p e n d n i l ) )
761AF−00003 ( 1000) {} | | −> append ( cons ( V2 , V4 ) , V6 ) = cons ( V2 , append ( V4 , V6 ) ) . o r i g i n ( I n p u t ( a p p e n d c o n s ) )
CE930−00004 ( 1000) {} | | −> c o u n t ( V2 , n i l ) = z . o r i g i n ( I n p u t ( c o u n t n i l ) )
E3A4E−00005 ( 1000) {} | | V2 = V4 −> c o u n t ( V2 , cons ( V4 , V6 ) ) = s ( c o u n t ( V2 , V6 ) ) . o r i g i n ( I n p u t ( c o u n t c o n s e q u a l ) )
0CF07−00006 ( 1000) {} | | −> c o u n t ( V2 , cons ( V4 , V6 ) ) = c o u n t ( V2 , V6 ) V2 = V4 . o r i g i n ( I n p u t ( c o u n t c o n s n o t e q u a l ) )
FB832−00007 ( 1 ) {} | | c o u n t ( skf1 , append ( skf2 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , s k f 2 ) ) −> .

o r i g i n ( Conj ( c o n j p r o p 3 8 from : S e t (B94AA) ) )
6F4F1−00010 ( 1000) {} | | V2 = V2 −> c o u n t ( V2 , cons ( V2 , V4 ) ) = s ( c o u n t ( V2 , V4 ) ) . o r i g i n (NuV( E3A4E ) )
96D58−00011 ( 1000) {} | | −> c o u n t ( V2 , cons ( V2 , V4 ) ) = s ( c o u n t ( V2 , V4 ) ) . o r i g i n ( L i t E l i m (6 F4F1 ) )

After the input clauses, the inference results appear. In this proof they are separated into the
induction case for nil and cons of skf2. The following clause is the negation of the negated
conjecture (keeping the Skolemization). It is needed to generate the induction Hypothesis.
BC7A5−00153 ( 1 ) {} | | −> c o u n t ( skf1 , append ( skf2 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , s k f 2 ) ) .

o r i g i n ( Negate ( S e t ( FB832 ) ) )

First, the clauses for the nil-case are printed. Because it is a base case, no induction hypothesis
is included, thus the clause BC7A5 is only relevant in the step case. The induction case (clause
88E01) is generated by replacing skf2 with nil in the initial conjecture (clause FB832)
88E01−00156 ( 1 ) {} | | c o u n t ( skf1 , append ( n i l , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , n i l ) ) −> .

o r i g i n ( IndCase ( n i l , sk f2 , FB832 ) )
8E55B−00157 ( 1 ) {} | | s ( c o u n t ( skf1 , n i l ) ) = s ( z ) −> . o r i g i n (Rew(88 E01 wi th S e t [ CE930 , 6E897 , 96D58 ] ) )
AAE6D−00161 ( 1 ) {} | | c o u n t ( skf1 , n i l ) = z −> . o r i g i n (DT− I n j e c t i v e (8 E55B ) )
BB8E7−00162 ( 1 ) {} | | −> . o r i g i n (MRR(AAE6D,− CE930 ) )

Then, the clauses for the cons-case are printed. For this case, the induction case (clause 47F39)
is generated by replacing skf2 with cons(i1003, i1004) in the initial conjecture (clause FB832),
where i1003, i1004 are fresh Skolem constants. The induction hypothesis (clause 0A9F1) is
generated from the negation of the negated-conjecture (clause BC7A5) by replacing the induction
Skolem skf2 by the fresh Skolem i1004, which was created as an argument (of the same type as
skf2) to cons for the induction case (clause 47F39).
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47F39−00163 ( 1 ) {} | | c o u n t ( skf1 , append ( cons ( i1003 , i1004 ) , cons ( skf1 , n i l ) ) )
= s ( c o u n t ( skf1 , cons ( i1003 , i1004 ) ) ) −> . o r i g i n ( IndCase ( cons , skf2 , FB832 ) )

0A9F1−00165 ( 1 ) {} | | −> c o u n t ( skf1 , append ( i1004 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , i1004 ) ) .
o r i g i n ( IndHyp ( skf2 , cons : BC7A5) )

4E4C2−00166 ( 1 ) {} | | c o u n t ( skf1 , cons ( i1003 , append ( i1004 , cons ( skf1 , n i l ) ) ) )
= s ( c o u n t ( skf1 , cons ( i1003 , i1004 ) ) ) −> . o r i g i n (Rew(47 F39 wi th S e t [761AF ] ) )

7D761−00174 ( 2 ) {} | | c o u n t ( skf1 , append ( i1004 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , cons ( i1003 , i1004 ) ) )
−> s k f 1 = i1003 . o r i g i n ( Sup (4 E4C2 by 0CF07 ) )

3E9A2−00177 ( 2 ) {} | | s ( c o u n t ( skf1 , i1004 ) ) = s ( c o u n t ( skf1 , cons ( i1003 , i1004 ) ) ) −> s k f 1 = i1003 .
o r i g i n (Rew(7 D761 wi th S e t [0 A9F1 ] ) )

3EA25−00186 ( 2 ) {} | | c o u n t ( skf1 , i1004 ) = c o u n t ( skf1 , cons ( i1003 , i1004 ) ) −> s k f 1 = i1003 .
o r i g i n (DT− I n j e c t i v e (3 E9A2 ) )

2F309−00242 ( 3 ) {} | | c o u n t ( skf1 , i1004 ) = c o u n t ( skf1 , i1004 ) −> s k f 1 = i1003 s k f 1 = i1003 .
o r i g i n ( Sup (3 EA25 by 0CF07 ) )

37EF4−00245 ( 3 ) {} | | −> s k f 1 = i1003 s k f 1 = i1003 . o r i g i n ( L i t E l i m (2 F309 ) )
37EF4−00246 ( 3 ) {} | | −> s k f 1 = i1003 . o r i g i n ( RemDup(37 EF4 ) )
E7E00−00255 ( 1 ) {} | | s ( c o u n t ( skf1 , append ( i1004 , cons ( skf1 , n i l ) ) ) ) = s ( s ( c o u n t ( skf1 , i1004 ) ) ) −> .

o r i g i n (Rew(4 E4C2 wi th S e t [37 EF4 , 96D58 ] ) )
D6027−00261 ( 1 ) {} | | c o u n t ( skf1 , append ( i1004 , cons ( skf1 , n i l ) ) ) = s ( c o u n t ( skf1 , i1004 ) ) −> .

o r i g i n (DT− I n j e c t i v e ( E7E00 ) )
603D8−00262 ( 1 ) {} | | −> . o r i g i n (MRR( D6027 ,− 0A9F1 ) )

Finally, the induction cases are combined and a contradiction is derived between the negated
conjecture of the inital property and the clauses derived by induction.
F8DD1−00263 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ cons by 603D8 , n i l by BB8E7 ] ) )
B94AA−00264 ( 1000) {} | | −> c o u n t ( V2 , append ( V4 , cons ( V2 , n i l ) ) ) = s ( c o u n t ( V2 , V4 ) ) . o r i g i n ( De r ived ( F8DD1 ) )
72304−00265 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( FB832 ) and S e t (B94AA) ) )
Invo lved c l a u s e s : 29

Tota l t ime : 2 .517414314 s

More examples can be found in the appendix (Ch. A), including a disproof of the conjecture
by finding a counter example (Sect. A.1.4).

4.7. Evaluation and Comparison with Related Work

There are several related inductive theorem proving methods. Some inductive theorem provers’
proof methods are based on rewriting and support only equational formulas, e.g. IsaPlanner [22]
based on rippling and case-splitting. Some approaches rely on satisfiability modulo theories
(SMT): HipSpec [17] and Dafny [42] integrate SMT as a blackbox, whereas the SMT solver
CVC4 [50] integrates support for structural induction. SMT is often successful for theorem
proving in first-order logic, but typically it does not provide any completeness guarantees. Its
interpreted symbols and theories can be beneficial, e.g. dedicated support for natural numbers,
can (for larger values) be better than the unary term representation. Other tools provide their own
calculus. One example is Zeno [59], whose calculus is based on critical pairs and path, but does
not support existential quantification and negation. The interactive proof assistant ACL2 [16]
also has powerful induction heuristics. Unlike SMT, superposition-based theorem provers for
first-order logic are typically refutationally complete. Thus, it is guaranteed to terminate on an
inconsistent first-order clause set, but might diverge on a consistent one. It is used in explicit and
consistency based induction methods. Consistency based methods [18], also called inductionless
induction, reduce inductive reasoning to first-order consistency checking. While their reduction
phase is powerful, finite saturation of first-order theories can often not be obtained. Explicit
induction methods, such as structural induction, compute an induction schema at the start of the
proof attempt of each conjecture, whereas implicit induction is usually based on term rewrite
systems and the induction schema is constructed during the proof attempt [24]. Kersani and
Peltier [35] show how an infinite set of (explicit) induction schemata for natural numbers can
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be integrated into superposition by a loop detection rule. This rule provides syntactic criteria to
detect inference loops and derive inductive conclusions from those loops. Our induction method
is also based on explicit induction, namely strong structural induction, but our approach also
supports other data types and serves as a basis for our other main contributions, i.e. explicit
(heuristic) control of where to apply induction and strengthenings for complex conjectures.

A proof of an inductive conjecture might require additional lemmas, which typically are not
directly obvious from the axioms and the conjecture. Automatically deriving useful lemmas is
crucial to any serious automation of induction [18]. Lemma generation is in principle a variation
of the naive idea of enumerating all possible propositions (e.g. by enumerating all formulas).
Conjecture strengthening considers only those lemmas that are immediately useful to prove an
unproven conjecture. Generalization is an instance of strengthening that is widely used and
applicable to arbitrary first-order conjectures [16, 22, 59]. We contributed two other strengthening
methods which we believe can be incorporated by most other approaches. Another avenue is to
consider all properties that can be guessed from the (initial) problem. One such tool is HipSpec
which integrates QuickSpec to compute equalities from terms constructed by declared functions
by integrating testing [17]. Those equalities that remain are then proposed as possible lemmas
and processed by the inductive prover. CVC4 also includes such a lemma generation module. It
is also restricted to (unconditional) equational lemmas.

Since additional lemmas must be proposed and many of the guesses might not be theorems, it
is important to purge non-theorems. For explicit superposition based methods it is sufficient to
show that the negated conjecture is reduced to the axioms to detect a non-theorem. Saturation
itself is not sufficient, because it only shows that the theorem is not a first-order consequence
of the axioms. CVC4 uses (syntactic) rule-based filtering of proposed lemmas augmented by
instantiation-based testing. Despite the clear benefits of removing non-theorems, surprisingly
little research has been published on this.

To evaluate our approach, we use two induction benchmarks. The evaluation results are
available under

http://people.mpi-inf.mpg.de/~dwand/thesis/

The first benchmark was originally used to evaluate IsaPlanner [22]. In its original form it
consists of 87 problems, one of which is not a theorem. We process the problems individually,
meaning that we are not reusing results from previous proof attempts. For each problem, we
only include the relevant function definitions as axioms. We report the results published for this
benchmark for IsaPlanner [22], Zeno [59], HipSpec [17], Dafny [42], ACL2s [16] (as evaluated
by Zeno in [59]) and CVC4 [50]. We ran our tool, Pirate, with a single setting on a Xeon E5-2643
3.5 GHz within a Java 8 VM with 80 gigabytes of heapspace and used a timeout of 300 seconds.
Pirate completed 83 problems within 10 seconds and 4 problems took up to 200 seconds. Our
tool is the only one that can solve the complete benchmark.

Zeno CVC4 HipSpec ACL2s IsaPlanner Dafny Pirate
82 80 80 74 47 45 87

Even though Zeno reports that the benchmark has only 85 provable problems [59] and Hip-
Spec also only uses those [17], we can prove 86 problems and find a counterexample for the
remaining one, which we also count as success. The counterexample is for the 87th problem:
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minus(minus(X,Y),Z) ≈ minus(X,minus(Y ,Z)) and is detected by repeated induction steps
until X and Z are instantiated to s(0) and Y to 0 . The lost (86th) problem is

X < Y→ (element(X, insert(Y ,Xs))↔ element(X,Xs))

which is provable since X is different from Y if X is strictly smaller than Y . CVC4 is the only
other tool capable of proving problem 86 (see Sect. A.1.3 for the full problem and proof output).

To the best of my knowledge, Pirate is currently the only tool capable of disproving problem
87 and proving the complex problem 85 (see Sect. A.1.2 and A.1.4 for the full problem and proof
output):

len(Xs)≈ len(Ys) =⇒ zip(rev(Xs), rev(Ys))≈ rev(zip(Xs,Ys))

The other tools either lack support for conditional theorems (HipSpec), do not propose conditional
lemmas (IsaPlanner, CVC4), do not support negation (Zeno) or cannot perform nested inductions
(Dafny). In our approach there is no fundamental difference between a single literal conjecture or
a complex one with multiple clauses.

Many problems from the IsaPlanner benchmark are relatively easy: HipSpec can prove 67
theorems by induction without generating lemmas, whereas we can solve 73 problems the same
way. This includes problem 50 (see Sect. A.1.1 for the full problem and proof output):

butlast(Xs)≈ take(minus(len(Xs),s(0)),Xs)

Neither HipSpec, ACL2s, IsaPlanner nor Dafny can prove it.
The second benchmark set was used by CLAM [33] to evaluate its proof-critics. For a large

fraction, 20 of 50 theorems, we find proofs without generating any additional lemmas. A portfolio
version of Pirate combining several settings is the most successful on this benchmark. The single
most successful setting for Pirate is the one where all features are enabled. There are four main
settings for Pirate:

1. Transformation of Skolems into variables in the Structural Induction rule (Sect. 4.2.2)

2. The use of the Skolem selection heuristic (Sect. 4.3)

3. Use of the (term-dependency preserving) generalization (Sect. 4.4.1 and 4.4.2) and/or
bound strenghtening (Sect. 4.4.3)

4. Initial guessing of properties (Sect. 4.6)

The portfolio uses three settings:

• the one where all features are enabled (42 problems),
• one where Skolems are not turned into variables in the induction’s CNF translation and

initially no properties are guessed (+3 problems) and
• one where term-dependency generalization is disabled (+2 problems)

For this benchmark we used a timeout of 2 hours. Pirate completed 34 problems within 1
minute, further 7 within 400 seconds and one problem took 50 minutes. We again report the
published numbers in the literature [17, 33, 50].

CLAM HipSpec HipSpec portfolio CVC4 Zeno Pirate Pirate portfolio
41 44 47 40 21 42 47
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IsaPlanner and Zeno can certify their proofs with Isabelle. HipSpec and Dafny do not appear
to have a detailed proof output. Pirate generates proofs including all first-order reasoning and
induction steps. Isabelle’s Sledgehammer [10] has support for replaying our first-order steps in
Isabelle. We are also interested in integrating into other tools as well, e.g., program verifiers such
as Why3 [14].

Currently, there is a focus on creating and extending a new benchmark set called “tons of
inductive problems” (TIP) [54]. TIP was officially started at the second workshop for automated
induction theorem-proving (WAIT 2015). It currently mainly contains the IsaPlanner and CLAM
benchmark and some new benchmark problems. We plan on supporting the TIP format, which
is based on the SMT-LIB format [7]. There are some open problems to solve, e.g. the SMT-
theories have to be integrated into our superposition based solver. Our current focus is a stronger
integration into Isabelle. In particular, support for arbitrary induction schemata and automatic
proof reconstruction by Sledgehammer.
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5. Conclusion

In the (mechanized) theorem proving community there are two main fields, the automated theorem
provers and the proof assistants. Automated theorem provers for first-order logic, like those based
on the superposition calculus, provide full, push button, automation. Proof assistants, e.g. for
higher-order logic (HOL), like Isabelle/HOL, lack this automation. But they provide abstractions,
e.g. type systems, that make them convenient to use for humans. It is generally known in the
higher-order research community that no proof assistant can be complete with respect to the
standard semantics of HOL. That completeness is only possible for the Henkin semantics [29].
The Henkin semantics restricts the function types in such a way that the logic becomes compact
and thus refutational completeness is possible. Furthermore, it seems that tools (and humans) do
not construct or find proofs that are possible in the standard semantics, but are not available with
the Henkin semantics. Higher order logic, interpreted with the Henkin semantics, can be encoded
into first-order logic, in a complete fashion. This motivates an overall research program that
attempts to build an automated theorem prover for higher-order logic, by directly supporting the
abstractions of proof assistants in an automated theorem prover, instead of encoding them. This
thesis presented one step of this research program by making induction and a polymorphic type
system with type classes available for superposition in an efficient manner. It thereby enables
automated theorem provers that share more features with proof assistants, further closing the gap
between the two fields.

I presented a superposition calculus, including all necessary machinery (such as unification
and orderings), that incorporates a polymorphic type system extended with type classes. I have
shown the polymorphic superposition calculus to be refutationally complete. The only and minor
restriction over the untyped calculus is that the typed calculus requires a simplification ordering
instead of a reduction ordering that is total on ground terms. This change is caused by the fact that
there can now be typed terms that do not share any context. In practice, this is negligible, because
the widely used orderings for superposition are simplification orderings, for example both KBO
and LPO, are simplification orderings. The polymorphic type system extended with type classes
removes all type system related encoding overhead for the HOL family of proof assistants. I
have also shown that the presented type system is competitive with monomorphization, especially
for larger fact sizes. Monomorphization is generally considered to be an efficient native type
encoding. The evaluation shows that the polymorphic type system extended with type classes
requires, in average, less time and fewer inferences than the monomorphic and the other type
encodings.

I introduced an extension of the typed first-order logic with data types and the SupInd calculus
which combines strong structural induction and superposition. An implementation and an
evaluation on a set of benchmarks has promising results. To make the SupInd calculus efficient,
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I developed a heuristic which guides the application of the induction inference into promising
directions. This heuristic is complemented by a novel technique that mitigates irrelevant (nested)
induction steps, based on the analysis of (partial) proofs. I have shown heuristics on how to
generate propositions to discover useful auxiliary lemmas. In contrast to other tools, the heuristics
also work in the full (clausal) first-order setting. The heuristics include a novel preprocessing
step to the well established generalization. Furthermore, I introduced term-dependency based
generalization which discovers stronger generalizations and useful propositions from the required
side conditions. My final heuristic to generate auxiliary lemmas is based on the use of an upper
bound and is targeted to conjectures that use orderings. I have also presented an optimized
variant of SupInd that reduces the number of inference steps that are necessary. The integration
between superposition and inductive reasoning also enables the discovery and removal of invalid
propositions, which allows us to disprove conjectures. This combination of redundancy and
nested induction, without guessing lemmas, is already capable of proving conjectures many other
tools struggle with. This is also shown by the promising benchmark results.

5.1. Future Work Directions

This thesis provided one step on bridging the gap between proof assistants and automated theorem
provers by providing a type system and support for induction over data type. However, there are
other areas of research that remain to be explored until this gap is fully closed.

One such area is the encoding of features of higher-order logic. While implementing the
type system has removed one of the encoding phases, the encoding of higher-order features
into first-order still remains. This includes encoding λ as combinators, in order to simulate
higher-order unification. A superposition calculus that directly supports λ would be interesting.
Support for curried functions, e.g. native support for partial applications of functions, would also
help efficiency. High-order logic does not differentiate between terms and formulas. While the
distinction between those are crucial for superposition, better encodings for boolean connectives
and formulas could also help.

Furthermore, the type system could be extended. I have shown refutational completeness for
superposition with a polymorphic type system extended by type classes. This type system is
sufficient for the HOL family of proof assistants. Supporting dependent type theory would help
improve automation for proof assistants such as Coq and Lean and possibly for programming
languages such as Scala. A reasonable first step could be support for path-dependent types, like
those features in the DOT calculus [1], the underlying and formal description of (a simplified)
Scala. Path-dependent types are types that can express (object-oriented) type hierarchies. They
strictly subsume polymorphism, but I expect that an approach similar to the one presented here
would work for them.

Moving the relevance filtering from the proof assistant to the automated theorem prover by
providing all theorems and all open conjectures to the automated theorem prover, could enable
the automated theorem prover to do potentially a better job. It would also enable it to preprocess
the axioms. This could enable a cooperation between proof assistant and automated theorem
prover where automated theorem provers spend significant amounts of time processing the axioms
without the user being required to wait on the automated prover. In the current setting the user
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has to wait for the automated prover to process both the axioms and the conjecture. Preprocessing
the axioms can be designed in such a way that it does not require the reasoning over the axioms
to start from scratch for every conjecture. Such a integration feature preprocessing would gives
an automated theorem prover more time, then the current 30 seconds default in Sledgehammer, to
process the axioms. Thus, more of the time the user is waiting can be spent processing the actual
conjecture (instead of unchanging axioms).

For structural inductions, detecting and removing invalid properties is important. For users
of proof assistants, the information that they are proving a non-theorem can avoid wasted effort.
Extending the rather simple detection to finding counter examples used in SupInd, to a more
general approach that is also useful for purely first-order settings, would be a nice addition to any
integration between proof assistants and automatic tools.

The integration of theories, such as (linear) arithmetic into superposition that also supports a
type system would further help automating some tasks that arise in proof assistants. It would also
be required to fully support the SMT-based format for the TIP benchmark set. An example of
such integration is the hierarchical superposition calculus.

Besides structural induction over data types, another very common induction schema is rule
induction, used to proof conjectures over inductive definitions, such as inductively defined sets
or predicates. Rule induction is useful, for example, to proof that a property holds for all even
numbers, when even numbers are inductively defined. Extending the SupInd calculus further to
enable induction over such definitions would further help the integration between proof assistants
and automated theorem provers.

147





Bibliography

[1] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki. The essence of dependent object
types. In S. Lindley, C. McBride, P. Trinder, and D. Sannella, editors, A List of Successes
That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His
60th Birthday, pages 249–272. Springer, Cham, 2016.
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[43] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language: Design
and logical encoding. In J. Esparza and R. Majumdar, editors, Tools and Algorithms for
the Construction and Analysis of Systems: 16th International Conference, TACAS 2010,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, pages 312–327. Springer, Berlin,
Heidelberg, 2010.

[44] W. McCune. OTTER 3.3 reference manual. CoRR, cs.SC/0310056, 2003.

[45] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

[46] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality constrained
clauses. Journal of Symbolic Computation, 19(4):321–351, 1995.

[47] T. Nipkow. Order-sorted polymorphism in Isabelle. In Papers Presented at the Second
Annual Workshop on Logical Environments, pages 164–188. Cambridge University Press,
1993.

[48] T. Nipkow and C. Prehofer. Type checking type classes. In Proc. 20th ACM Symp. Principles
of Programming Languages, pages 409–418. ACM Press, 1993.

152

http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea-ss12/script/script.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea-ss12/script/script.pdf


[49] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer, 2002.

[50] A. Reynolds and V. Kuncak. Induction for SMT solvers. In VMCAI 2015, January 12-14,
2015. Proceedings, pages 80–98, 2015.

[51] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order theories with
equality. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 133–150.
American Elsevier, New York, 1969.

[52] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, Jan. 1965.

[53] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[54] D. Rosén, M. Johansson, and N. Smallbone. Tons of inductive problems, 2015. Available at
https://github.com/tip-org.
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A. Example Files with Pirate’s Proofs

A.1. IsaPlanner

In this section I present the complete problems mentioned in the chapter on Induction. A
commented example (problem 38) can be found in section 4.6.7.

A.1.1. Problem 50

Input

The problem in DFG format, edited for better readability.

begin problem ( benchmark ) .

l i s t o f d e s c r i p t i o n s .
name ({∗∗} ) .
a u t h o r ({∗∗} ) .
s t a t u s ( unknown ) .
d e s c r i p t i o n ({∗∗} ) .
e n d o f l i s t .

l i s t o f s y m b o l s .
f u n c t i o n s [ ( z , 0 ) , ( s , 1 ) , ( cons , 1+2) , ( n i l , 1+0) ,

( minus , 2 ) , ( l en , 1 + 1 ) , ( append , 1+2) , ( t ake , 1 + 2 ) , ( b u t l a s t , 1 + 1 ) ] .
p r e d i c a t e s [ ( l e s s , 1+2) ] .
s o r t s [ ( l i s t , 1 ) , ( na t , 0 ) ] .
e n d o f l i s t .

l i s t o f d e c l a r a t i o n s .
f u n c t i o n ( z , n a t ) .
f u n c t i o n ( s , ( n a t ) n a t ) .

f u n c t i o n ( n i l , [A] , l i s t (A) ) .
f u n c t i o n ( cons , [A] , (A, l i s t (A) ) l i s t (A) ) .

f u n c t i o n ( minus , ( na t , n a t ) n a t ) .
f u n c t i o n ( l en , [A] , ( l i s t (A) ) n a t ) .
f u n c t i o n ( t ake , [A] , ( na t , l i s t (A) ) l i s t (A) ) .
f u n c t i o n ( b u t l a s t , [A] , ( l i s t (A) ) l i s t (A) ) .

data type ( na t , z , s ) .
data type ( l i s t , n i l , cons ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( axioms ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus ( z ,Y) , z ) ) , m i n u s z l e f t ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus (X, z ) , X) ) , m i n u s z r i g h t ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus ( s (X) , s (Y) ) , minus (X,Y) ) ) , m i n u s s ) .

formula ( f o r a l l s o r t s ( [A] , equal : l r ( l en<A>( n i l<A>) , z ) ) , l e n n i l ) .
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formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ L :A, LS : l i s t (A) ] ,
equal : l r ( l en<A>(cons<A>(L , LS ) ) s ( l en<A>(LS ) ) ) ) ) , l e n c o n s ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) ] ,
equal : l r ( append<A>( n i l<A>,LS ) , LS ) ) ) , a p p e n d n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) ,Y:A, YS : l i s t (A) ] ,
equal : l r ( append<A>(cons<A>(Y, YS) , LS ) ,

cons<A>(Y, append<A>(YS , LS ) ) ) ) ) , a p p e n d c o n s ) .

formula ( f o r a l l s o r t s ( [A] , equal : l r ( b u t l a s t <A>( n i l<A>) , n i l<A>) ) , b u t l a s t n i l ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A] ,

equal : l r ( b u t l a s t <A>(cons<A>(X, n i l<A>) ) , n i l<A>) ) ) , b u t l a s t c o n s n i l ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, Y:A, LS : l i s t (A) ] ,

equal : l r ( b u t l a s t <A>(cons<A>(X, cons<A>(Y, LS ) ) ) ,
cons<A>(X, b u t l a s t <A>(cons<A>(Y, LS ) ) ) ) ) ) , b u t l a s t c o n s c o n s ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ XS : l i s t (A) ] ,
equal : l r ( t ake<A>(z , XS) , n i l<A>) ) ) , f a c t t a k e d e f z ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X: na t , XS : l i s t (A) ] ,
equal : l r ( t ake<A>(X, n i l<A>) , n i l<A>) ) ) , f a c t t a k e d e f n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X: na t , Y:A, YS : l i s t (A) ] ,
equal : l r ( t ake<A>( s (X) , cons<A>(Y, YS) ) ,

cons<A>(Y, t ake<A>(X, YS) ) ) ) ) , f a c t t a k e d e f c o n s ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( c o n j e c t u r e s ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ XS : l i s t (A) , YS : l i s t (A) ] ,

equal ( b u t l a s t <A>(XS) ,
t ake<A>(minus ( len<A>(XS) , s ( z ) ) ,XS) ) ) ) , c o n j p r o b 5 0 ) .

e n d o f l i s t .

end problem .

Output

The boxed parts are the unedited output of Pirate (except for adding bold for keywords). Pirate
was using only induction, i.e. no strengthenings.
S t a r t i n g
s c a l a v e r s i o n 2 . 1 1 . 2
Unkown / Legacy−s t y l e Argument : / home / dwand / p i r a t e / r educeDFGtoFac t s
I n i t i a l Conjec tures :

: FE538−00015 ( 1 ) {} | | b u t l a s t ( s k f 1 ) = t a k e ( minus ( l e n ( s k f 1 ) , s ( z ) ) , s k f 1 ) −> . o r i g i n ( Conj (
c o n j p r o b 5 0 from : S e t (8944B) ) )

@ 252 @head (0 rank : 10 ) : CaseProofTask−TID : 5 ( p a r e n t TID : 4 , I n i t i a l )
@ 452 @head (0 rank : 22 ) : CaseProofTask−TID : 6 ( p a r e n t TID : 5 , Case ( cons o f s k f 1 ) )

Found f a l s e
Formulas used : l e n c o n s f a c t t a k e d e f c o n s m i n u s z l e f t c o n j p r o b 5 0 l e n n i l f a c t t a k e d e f z f a c t t a k e d e f n i l m i n us s

b u t l a s t n i l b u t l a s t c o n s n i l m i n u s z r i g h t b u t l a s t c o n s c o n s

Invo lved c l a u s e s :
8944B−00001 ( 1000) {} | | −> b u t l a s t ( V2 ) = t a k e ( minus ( l e n ( V2 ) , s ( z ) ) , V2 ) . o r i g i n ( I n p u t ( c o n j p r o b 5 0 ) )
36218−00002 ( 1000) {} | | −> minus ( z , V2 ) = z . o r i g i n ( I n p u t ( m i n u s z l e f t ) )
C3313−00003 ( 1000) {} | | −> minus ( V2 , z ) = V2 . o r i g i n ( I n p u t ( m i n u s z r i g h t ) )
29DEB−00004 ( 1000) {} | | −> minus ( s ( V2 ) , s ( V4 ) ) = minus ( V2 , V4 ) . o r i g i n ( I n p u t ( m i n us s ) )
B7230−00005 ( 1000) {} | | −> l e n ( n i l ) = z . o r i g i n ( I n p u t ( l e n n i l ) )
E1EC9−00006 ( 1000) {} | | −> l e n ( cons ( V2 , V4 ) ) = s ( l e n ( V4 ) ) . o r i g i n ( I n p u t ( l e n c o n s ) )
D0DA3−00009 ( 1000) {} | | −> b u t l a s t ( n i l ) = n i l . o r i g i n ( I n p u t ( b u t l a s t n i l ) )
87351−00010 ( 1000) {} | | −> b u t l a s t ( cons ( V2 , n i l ) ) = n i l . o r i g i n ( I n p u t ( b u t l a s t c o n s n i l ) )
0FD30−00011 ( 1000) {} | | −> b u t l a s t ( cons ( V2 , cons ( V4 , V6 ) ) ) = cons ( V2 , b u t l a s t ( cons ( V4 , V6 ) ) ) .

o r i g i n ( I n p u t ( b u t l a s t c o n s c o n s ) )
0F9DA−00012 ( 1000) {} | | −> t a k e ( z , V2 ) = n i l . o r i g i n ( I n p u t ( f a c t t a k e d e f z ) )
8DC7A−00013 ( 1000) {} | | −> t a k e ( V2 , n i l ) = n i l . o r i g i n ( I n p u t ( f a c t t a k e d e f n i l ) )
30122−00014 ( 1000) {} | | −> t a k e ( s ( V2 ) , cons ( V4 , V6 ) ) = cons ( V4 , t a k e ( V2 , V6 ) ) . o r i g i n ( I n p u t (

f a c t t a k e d e f c o n s ) )
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FE538−00015 ( 1 ) {} | | b u t l a s t ( s k f 1 ) = t a k e ( minus ( l e n ( s k f 1 ) , s ( z ) ) , s k f 1 ) −> . o r i g i n ( Conj (
c o n j p r o b 5 0 from : S e t (8944B) ) )

C9E8C−00110 ( 1 ) {} | | −> b u t l a s t ( s k f 1 ) = t a k e ( minus ( l e n ( s k f 1 ) , s ( z ) ) , s k f 1 ) . o r i g i n ( Negate ( S e t (
FE538 ) ) )

C740D−00112 ( 1 ) {} | | b u t l a s t ( n i l ) = t a k e ( minus ( l e n ( n i l ) , s ( z ) ) , n i l ) −> . o r i g i n ( IndCase ( n i l ,
sk f1 , FE538 ) )

4D0C1−00113 ( 1 ) {} | | n i l = n i l −> . o r i g i n (Rew( C740D wi th S e t [ B7230 , D0DA3 , 8DC7A,
3 6 2 1 8 ] ) )

A2213−00114 ( 1 ) {} | | −> . o r i g i n ( L i t E l i m F (4D0C1 ) )
5CC8F−00115 ( 1 ) {} | | b u t l a s t ( cons ( i1001 , i1002 ) ) = t a k e ( minus ( l e n ( cons ( i1001 , i1002 ) ) , s ( z ) ) , cons ( i1001 ,

i1002 ) ) −> . o r i g i n ( IndCase ( cons , skf1 , FE538 ) )
22370−00117 ( 1 ) {} | | −> b u t l a s t ( i1002 ) = t a k e ( minus ( l e n ( i1002 ) , s ( z ) ) , i 1002 ) . o r i g i n (

IndHyp ( skf1 , cons : C9E8C ) )
0E0B3−00118 ( 1 ) {} | | b u t l a s t ( cons ( i1001 , i1002 ) ) = t a k e ( minus ( l e n ( i1002 ) , z ) , cons ( i1001 , i1002 ) ) −> .

o r i g i n (Rew(5CC8F wi th S e t [ E1EC9 , 29DEB ] ) )
61994−00119 ( 1 ) {} | | b u t l a s t ( cons ( i1001 , i1002 ) ) = t a k e ( l e n ( i1002 ) , cons ( i1001 , i1002 ) ) −> .

o r i g i n (Rew(0 E0B3 wi th S e t [ C3313 ] ) )
414EA−00224 ( 1 ) {} | | b u t l a s t ( cons ( i1001 , n i l ) ) = t a k e ( l e n ( n i l ) , cons ( i1001 , n i l ) ) −> .

o r i g i n ( IndCase ( n i l , i1002 , 61994) )
4D0C1−00228 ( 1 ) {} | | n i l = n i l −> . o r i g i n (Rew(414EA wi th S e t [0F9DA , B7230 , 8 7 3 5 1 ] ) )
B6DCB−00229 ( 1 ) {} | | −> . o r i g i n ( L i t E l i m F (4D0C1 ) )
AC725−00230 ( 1 ) {} | | b u t l a s t ( cons ( i1001 , cons ( i1003 , i1004 ) ) ) = t a k e ( l e n ( cons ( i1003 , i1004 ) ) , cons ( i1001 ,

cons ( i1003 , i1004 ) ) ) −> . o r i g i n ( IndCase ( cons , i1002 , 61994) )
98449−00231 ( 1 ) {} | | −> b u t l a s t ( cons ( i1003 , i1004 ) ) = t a k e ( minus ( l e n ( cons ( i1003 , i1004 ) ) , s ( z ) ) , cons ( i1003 ,

i1004 ) ) . o r i g i n ( IndHyp ( i1002 , cons : 22370) )
0F69D−00240 ( 1 ) {} | | cons ( i1001 , b u t l a s t ( cons ( i1003 , i1004 ) ) ) = cons ( i1001 , t a k e ( l e n ( i1004 ) , cons ( i1003 ,

i1004 ) ) ) −> . o r i g i n (Rew( AC725 wi th S e t [30122 , 0FD30 , E1EC9 ] ) )
DD524−00241 ( 1 ) {} | | −> b u t l a s t ( cons ( i1003 , i1004 ) ) = t a k e ( minus ( l e n ( i1004 ) , z ) , cons ( i1003 , i1004 ) ) .

o r i g i n (Rew(98449 wi th S e t [ E1EC9 , 29DEB ] ) )
92F72−00242 ( 1 ) {} | | b u t l a s t ( cons ( i1003 , i1004 ) ) = t a k e ( l e n ( i1004 ) , cons ( i1003 , i1004 ) ) i1001 =

i1001 −> . o r i g i n (DT− I n j e c t i v e (0 F69D ) )
6B629−00243 ( 1 ) {} | | b u t l a s t ( cons ( i1003 , i1004 ) ) = t a k e ( l e n ( i1004 ) , cons ( i1003 , i1004 ) ) −> .

o r i g i n ( L i t E l i m (92 F72 ) )
E98A5−00244 ( 1 ) {} | | −> b u t l a s t ( cons ( i1003 , i1004 ) ) = t a k e ( l e n ( i1004 ) , cons ( i1003 , i1004 ) ) .

o r i g i n (Rew( DD524 wi th S e t [ C3313 ] ) )
F647B−00245 ( 1 ) {} | | −> . o r i g i n (MRR( E98A5,− 6B629 ) )
FB118−00246 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by B6DCB, cons by F647B ] ) )
699A2−00247 ( 1000) {} | | −> b u t l a s t ( cons ( V2 , V4 ) ) = t a k e ( l e n ( V4 ) , cons ( V2 , V4 ) ) . o r i g i n ( De r ived ( FB118

) )
DF075−00248 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( 6 1 9 9 4 ) and S e t (699A2 ) ) )
D618F−00249 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by A2213 , cons by DF075 ] ) )
8944B−00250 ( 1000) {} | | −> b u t l a s t ( V2 ) = t a k e ( minus ( l e n ( V2 ) , s ( z ) ) , V2 ) . o r i g i n ( De r ived ( D618F ) )
D8170−00251 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( FE538 ) and S e t (8944B) ) )
Invo lved c l a u s e s : 38

Tota l t ime : 2 .551100824 s

A.1.2. Problem 85

Input

The problem in DFG format, edited for better readability.

begin problem ( benchmark ) .

l i s t o f d e s c r i p t i o n s .
name ({∗∗} ) .
a u t h o r ({∗∗} ) .
s t a t u s ( unknown ) .
d e s c r i p t i o n ({∗∗} ) .
e n d o f l i s t .

l i s t o f s y m b o l s .
f u n c t i o n s [ ( n i l , 1+0) , ( cons , 1+2) , ( p , 2 + 2 ) , ( z , 0 ) , ( s , 1 ) ,

( append , 1+2) , ( rev , 1+1) , ( z ip , 1+2) , ( l en , 1 ) ] .
p r e d i c a t e s [ ( l e s s , 1+2) ] .
e n d o f l i s t .

l i s t o f d e c l a r a t i o n s .
f u n c t i o n ( n i l , [A] , l i s t (A) ) .
f u n c t i o n ( cons , [A] , (A, l i s t (A) ) l i s t (A) ) .
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f u n c t i o n ( p , [A, B] , (A, B) p a i r (A, B) ) .

f u n c t i o n ( z , n a t ) .
f u n c t i o n ( s , ( n a t ) n a t ) .

f u n c t i o n ( append , [A] , ( l i s t (A) , l i s t (A) ) l i s t (A) ) .
f u n c t i o n ( rev , [A] , ( l i s t (A) ) l i s t (A) ) .
f u n c t i o n ( z ip , [A, B] , ( l i s t (A) , l i s t (B) ) l i s t ( p a i r (A, B) ) ) .
f u n c t i o n ( l en , [A] , ( l i s t (A) ) n a t ) .

p r e d i c a t e ( l e s s , [A] , A, A) .

data type ( p a i r , p ) .
data type ( na t , z , s ) .
data type ( l i s t , n i l , cons ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( axioms ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) ] ,

equal : l r ( append<A>( n i l<A>,LS ) , LS ) ) ) , a p p e n d n i l ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ LS : l i s t (A) , Y:A, YS : l i s t (A) ] ,

equal : l r ( append<A>(cons<A>(Y, YS) , LS ) ,
cons<A>(Y, append<A>(YS , LS ) ) ) ) ) , a p p e n d c o n s ) .

formula ( f o r a l l s o r t s ( [A] ,
equal : l r ( rev<A>( n i l<A>) , n i l<A>) ) , r e v n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [Y:A, YS : l i s t (A) ] ,
equal : l r ( rev<A>(cons<A>(Y, YS) ) ,

append<A>( rev<A>(YS) , cons<A>(Y, n i l<A>) ) ) ) ) ,
r e v c o n s ) .

formula ( f o r a l l s o r t s ( [A] ,
equal : l r ( l en<A>( n i l<A>) , z ) ) , l e n n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ L :A, LS : l i s t (A) ] ,
equal : l r ( l en<A>(cons<A>(L , LS ) ) ,

s ( l en<A>(LS ) ) ) ) ) , l e n c o n s ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ XS : l i s t (A) ] ,
equal : l r ( z ip<A, A>(XS , n i l<A>) ,

n i l<p a i r (A,A)>) ) ) , z i p n i l r i g h t ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [ YS : l i s t (A) ] ,

equal : l r ( z ip<A, A>( n i l<A>,YS) ,
n i l<p a i r (A,A)>) ) ) , z i p n i l l e f t ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, XS : l i s t (A) ,
Y:A, YS : l i s t (A) ] ,

equal : l r ( z ip<A, A>(cons<A>(X, XS) , cons<A>(Y, YS) ) ,
cons<p a i r (A,A)>(p<A, A>(X,Y) , z ip<A, A>(XS , YS) ) ) ) ) ,

z i p c o n s ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( c o n j e c t u r e s ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, XS : l i s t (A) , Y:A, YS : l i s t (A) ] ,

i m p l i e s ( equal ( l en<A>(XS) , l en<A>(YS) ) ,
equal ( z ip<A, A>( rev<A>(XS) , rev<A>(YS) ) ,

rev<p a i r (A,A)>( z ip<A, A>(XS , YS) ) ) ) ) ) ,
c o n j p r o b 8 5 ) .

e n d o f l i s t .

end problem .
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Output

The boxed parts are the unedited output of Pirate (except for adding bold for keywords).
S t a r t i n g
s c a l a v e r s i o n 2 . 1 1 . 2

The problem contains two negated-conjecture clauses.
I n i t i a l Conjec tures :

: 7DD03−00012 ( 1 ) {} | | z i p ( r e v ( s k f 1 ) , r e v ( s k f 2 ) ) = r e v ( z i p ( skf1 , s k f 2 ) ) −> . o r i g i n ( Conj (
c o n j p r o b 8 5 from : S e t ( A720D ) ) )

: 8A2C7−00011 ( 1 ) {} | | −> l e n ( s k f 1 ) = l e n ( s k f 2 ) . o r i g i n ( Conj ( c o n j p r o b 8 5 from : S e t (
A720D ) ) )

The proof search derives three global axioms (see the Welcoming new knowledge lines) and
has already quite a few states (CaseProofTask).
@ 313 @head (3 rank : 7 ) : CaseProofTask−TID : 8 ( p a r e n t TID : 5 , I n i t i a l )
@ 517 @head (3 rank : 10 ) : CaseProofTask−TID : 4 ( p a r e n t TID : 3 , Der iveCase ( −> z i p ( V2 , n i l ) = n i l . ) )
Welcoming new knowledge :

: 71DCE−00201 ( 1000) {} | | −> z i p ( V2 , n i l ) l r=> n i l∗ . o r i g i n ( De r ived ( A17A6 ) )
@ 534 @head (2 rank : 10 ) : CaseProofTask−TID : 6 ( p a r e n t TID : 3 , Der iveCase ( −> append ( V2 , n i l ) = V2 . ) )
Welcoming new knowledge :

: 90D36−00227 ( 1000) {} | | −> append ( V2 , n i l ) l r=> V2∗ . o r i g i n ( De r ived (47A3E) )
@ 604 @head (1 rank : 10 ) : CaseProofTask−TID : 7 ( p a r e n t TID : 3 , Der iveCase ( −> z i p ( n i l , V2 ) = n i l . ) )
Welcoming new knowledge :

: 9A748−00230 ( 1000) {} | | −> z i p ( n i l , V2 ) l r=> n i l∗ . o r i g i n ( De r ived ( 8 1 5 1 9 ) )
@ 619 @head (0 rank : 22 ) : CaseProofTask−TID : 9 ( p a r e n t TID : 8 , Case ( cons o f s k f 2 ) )
@ 873 @head (1 rank : 24 ) : CaseProofTask−TID : 1 2 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( −> z i p ( r e v ( s k f 1 ) , r e v ( V2 ) ) =

r e v ( z i p ( skf1 , V2 ) ) . , l e n ( s k f 1 ) = s ( l e n ( i1002 ) ) −> z i p ( r e v ( s k f 1 ) , r e v ( V2 ) ) = r e v ( z i p ( skf1 , V2 ) ) . ) ) )
@ 995 @head (1 rank : 42 ) : CaseProofTask−TID : 1 1 ( p a r e n t TID : 9 , Case ( cons o f s k f 1 ) )
@ 1382 @head (9 rank : 24 ) : CaseProofTask−TID : 1 8 ( p a r e n t TID : 1 7 , M u l t i D e r i v e C a s e ( −> l e n ( V2 ) = l e n ( r e v ( V2 ) ) .

) )
@ 1433 @head (9 rank : 40 ) : CaseProofTask−TID : 1 4 ( p a r e n t TID : 1 1 , Case ( n i l o f i1006 ) )
@ 1472 @head (8 rank : 44 ) : CaseProofTask−TID : 1 3 ( p a r e n t TID : 1 2 , Case ( cons o f s k f 8 ) )
@ 1624 @head (10 rank : 40 ) : CaseProofTask−TID : 3 2 ( p a r e n t TID : 3 1 , M u l t i D e r i v e C a s e ( l e n ( s k f 1 ) = s ( l e n ( i1002 ) )

−> z i p ( r e v ( s k f 1 ) , r e v ( V2 ) ) = r e v ( z i p ( skf1 , V2 ) ) . ) )
@ 1689 @head (10 rank : 40 ) : CaseProofTask−TID : 3 3 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( −> z i p ( r e v ( s k f 1 ) , r e v ( V2 ) )

= r e v ( z i p ( skf1 , V2 ) ) . , l e n ( s k f 1 ) = s ( l e n ( i1002 ) ) −> z i p ( r e v ( s k f 1 ) , r e v ( V2 ) ) = r e v ( z i p ( skf1 , V2 ) ) . ) ) )
@ 1789 @head (10 rank : 52 ) : CaseProofTask−TID : 2 0 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( l e n ( i1006 ) = l e n ( i1002 ) −>

z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( V4 , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , V4 ) , cons ( p ( i1005 , i1001 ) ,
n i l ) ) . , −> z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( V4 , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , V4 ) , cons ( p (
i1005 , i1001 ) , n i l ) ) . ) ) )

@ 2019 @head (11 rank : 50 ) : CaseProofTask−TID : 3 6 ( p a r e n t TID : 2 0 , Case ( n i l o f s k f 2 0 ) )
@ 2131 @head (11 rank : 24 ) : CaseProofTask−TID : 3 8 ( p a r e n t TID : 3 6 , Case ( cons o f s k f 1 9 ) )
@ 2491 @head (13 rank : 24 ) : CaseProofTask−TID : 4 0 ( p a r e n t TID : 3 9 , Case ( n i l o f i1006 ) )
@ 2545 @head (13 rank : 27 ) : CaseProofTask−TID : 4 5 ( p a r e n t TID : 4 0 , Case ( n i l o f i1002 ) )
@ 2569 @head (12 rank : 32 ) : CaseProofTask−TID : 4 1 ( p a r e n t TID : 3 9 , Case ( cons o f i1006 ) )
@ 2683 @head (11 rank : 32 ) : CaseProofTask−TID : 4 4 ( p a r e n t TID : 4 2 , Case ( cons o f i1002 ) )
@ 2757 @head (10 rank : 52 ) : CaseProofTask−TID : 2 7 ( p a r e n t TID : 2 4 , M u l t i D e r i v e C a s e ( l e n ( V2 ) = l e n ( V4 ) −> z i p (

append ( V2 , cons ( i1005 , n i l ) ) , append ( V4 , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , V4 ) , cons ( p ( i1005 , i1001 ) , n i l ) )
. ) )

@ 2913 @head (11 rank : 45 ) : CaseProofTask−TID : 4 6 ( p a r e n t TID : 2 7 , Case ( n i l o f s k f 1 0 ) )
@ 2944 @head (10 rank : 55 ) : CaseProofTask−TID : 2 9 ( p a r e n t TID : 1 8 , Case ( cons o f s k f 1 7 ) )
@ 3040 @head (12 rank : 56 ) : CaseProofTask−TID : 1 6 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( l e n ( i1006 ) = l e n ( i1002 ) −>

z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , r e v ( i1002 ) ) , cons ( p
( i1005 , i1001 ) , n i l ) ) . , −> z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) =
append ( z i p ( V2 , r e v ( i1002 ) ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . ) ) )

@ 3314 @head (14 rank : 45 ) : CaseProofTask−TID : 5 2 ( p a r e n t TID : 1 6 , Case ( n i l o f i1002 ) )
@ 3386 @head (13 rank : 56 ) : CaseProofTask−TID : 1 9 ( p a r e n t TID : 1 7 , M u l t i D e r i v e C a s e ( l e n ( V2 ) = l e n ( i1002 ) −>

z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , r e v ( i1002 ) ) , cons ( p (
i1005 , i1001 ) , n i l ) ) . ) )

@ 3547 @head (15 rank : 35 ) : CaseProofTask−TID : 6 6 ( p a r e n t TID : 6 5 , M u l t i D e r i v e C a s e ( −> l e n ( V2 ) = l e n ( append (
n i l , V2 ) ) . ) )

@ 3551 @head (14 rank : 56 ) : CaseProofTask−TID : 2 3 ( p a r e n t TID : 2 1 , M u l t i D e r i v e C a s e ( l e n ( i1006 ) = l e n ( V2 ) −>
z i p ( append ( r e v ( i1006 ) , cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) = append ( z i p ( r e v ( i1006 ) , V2 ) , cons ( p (
i1005 , i1001 ) , n i l ) ) . ) )

@ 3722 @head (18 rank : 35 ) : CaseProofTask−TID : 7 8 ( p a r e n t TID : 7 7 , M u l t i D e r i v e C a s e ( −> l e n ( V2 ) = l e n ( append ( V2
, n i l ) ) . ) )

@ 3725 @head (17 rank : 40 ) : CaseProofTask−TID : 7 5 ( p a r e n t TID : 7 3 , M u l t i D e r i v e C a s e ( −> l e n ( V2 ) = l e n ( append (
n i l , r e v ( V2 ) ) ) . ) )

@ 3770 @head (16 rank : 45 ) : CaseProofTask−TID : 7 1 ( p a r e n t TID : 2 3 , Case ( n i l o f i1006 ) )
@ 3803 @head (15 rank : 56 ) : CaseProofTask−TID : 2 8 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( −> z i p ( append ( r e v ( i1006 ) ,

cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) = append ( z i p ( r e v ( i1006 ) , V2 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . ,
l e n ( i1006 ) = l e n ( i1002 ) −> z i p ( append ( r e v ( i1006 ) , cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) =

append ( z i p ( r e v ( i1006 ) , V2 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . ) ) )
@ 4098 @head (17 rank : 45 ) : CaseProofTask−TID : 8 3 ( p a r e n t TID : 2 8 , Case ( n i l o f i1006 ) )
@ 4159 @head (17 rank : 18 ) : CaseProofTask−TID : 9 3 ( p a r e n t TID : 8 3 , Case ( cons o f s k f 2 1 ) )
@ 4210 @head (17 rank : 21 ) : CaseProofTask−TID : 9 4 ( p a r e n t TID : 9 3 , Case ( n i l o f i1002 ) )
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@ 4234 @head (16 rank : 60 ) : CaseProofTask−TID : 3 4 ( p a r e n t TID : 3 2 , Case ( cons o f s k f 1 ) )
@ 4339 @head (17 rank : 49 ) : CaseProofTask−TID : 9 6 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( −> z i p ( r e v ( V2 ) , r e v ( s k f 2 3 ) )

= r e v ( z i p ( V2 , s k f 2 3 ) ) . , l e n ( i1018 ) = l e n ( i1002 ) −> z i p ( r e v ( V2 ) , r e v ( s k f 2 3 ) ) = r e v ( z i p ( V2 , s k f 2 3 ) ) . ) ) )
@ 4402 @head (17 rank : 60 ) : CaseProofTask−TID : 3 5 ( p a r e n t TID : 3 3 , Case ( cons o f s k f 1 ) )
@ 4554 @head (18 rank : 49 ) : CaseProofTask−TID : 9 9 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( l e n ( i1020 ) = l e n ( i1002 ) −>

z i p ( r e v ( V2 ) , r e v ( s k f 2 6 ) ) = r e v ( z i p ( V2 , s k f 2 6 ) ) . , −> z i p ( r e v ( V2 ) , r e v ( s k f 2 6 ) ) = r e v ( z i p ( V2 , s k f 2 6 ) ) . ) )
)

@ 4665 @head (18 rank : 60 ) : CaseProofTask−TID : 5 0 ( p a r e n t TID : 1 0 , Der iveCase ( −> s ( l e n ( V2 ) ) = l e n ( append ( V2 ,
cons ( i1011 , n i l ) ) ) . ) )

@ 4699 @head (17 rank : 65 ) : CaseProofTask−TID : 5 8 ( p a r e n t TID : 5 6 , M u l t i D e r i v e C a s e ( l e n ( i1006 ) = l e n ( V2 ) −>
z i p ( append ( skf22 , cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) = append ( z i p ( skf22 , V2 ) , cons ( p ( i1005 ,
i1001 ) , n i l ) ) . ) )

@ 4825 @head (17 rank : 65 ) : CaseProofTask−TID : 6 9 ( p a r e n t TID : 1 0 , Der iveCase ( S e t ( l e n ( s k f 1 6 ) = l e n ( i1002 ) −>
z i p ( append ( skf16 , cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) = append ( z i p ( skf16 , V2 ) , cons ( p ( i1005 ,

i1001 ) , n i l ) ) . , −> z i p ( append ( skf16 , cons ( i1005 , n i l ) ) , append ( V2 , cons ( i1001 , n i l ) ) ) = append ( z i p ( skf16 ,
V2 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . ) ) )

@ 4993 @head (17 rank : 65 ) : CaseProofTask−TID : 7 4 ( p a r e n t TID : 7 3 , M u l t i D e r i v e C a s e ( l e n ( V2 ) = l e n ( s k f 1 3 ) −>
z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( skf13 , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , s k f 1 3 ) , cons ( p ( i1005 ,
i1001 ) , n i l ) ) . ) )

@ 5107 @head (17 rank : 65 ) : CaseProofTask−TID : 9 2 ( p a r e n t TID : 9 0 , M u l t i D e r i v e C a s e ( l e n ( V2 ) = l e n ( i1002 ) −>
z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( skf21 , cons ( i1001 , n i l ) ) ) = append ( z i p ( V2 , s k f 2 1 ) , cons ( p ( i1005 ,
i1001 ) , n i l ) ) . ) )

@ 5230 @head (18 rank : 60 ) : CaseProofTask−TID : 1 0 7 ( p a r e n t TID : 9 2 , Case ( n i l o f s k f 2 1 ) )
@ 5290 @head (18 rank : 28 ) : CaseProofTask−TID : 1 0 9 ( p a r e n t TID : 1 0 7 , Case ( cons o f s k f 5 6 ) )
@ 5346 @head (18 rank : 32 ) : CaseProofTask−TID : 1 1 0 ( p a r e n t TID : 1 0 9 , Case ( cons o f i1002 ) )
@ 5511 @head (20 rank : 30 ) : CaseProofTask−TID : 1 1 2 ( p a r e n t TID : 1 1 1 , Case ( n i l o f i1078 ) )
@ 5545 @head (20 rank : 33 ) : CaseProofTask−TID : 1 1 7 ( p a r e n t TID : 1 1 2 , Case ( n i l o f i1080 ) )
@ 5560 @head (19 rank : 40 ) : CaseProofTask−TID : 1 1 3 ( p a r e n t TID : 1 1 1 , Case ( cons o f i1078 ) )
@ 5597 @head (18 rank : 40 ) : CaseProofTask−TID : 1 1 6 ( p a r e n t TID : 1 1 4 , Case ( cons o f i1080 ) )
@ 5638 @head (17 rank : 70 ) : CaseProofTask−TID : 3 0 ( p a r e n t TID : 1 3 , Case ( cons o f s k f 1 ) )
@ 5938 @head (24 rank : 60 ) : CaseProofTask−TID : 1 1 8 ( p a r e n t TID : 3 0 , Case ( n i l o f i1016 ) )
@ 6027 @head (24 rank : 72 ) : CaseProofTask−TID : 4 9 ( p a r e n t TID : 1 0 , Der iveCase ( −> s ( l e n ( r e v ( i1012 ) ) ) = l e n (

append ( r e v ( i1012 ) , cons ( i1011 , n i l ) ) ) . ) )
@ 6028 @head (23 rank : 75 ) : CaseProofTask−TID : 3 7 ( p a r e n t TID : 2 0 , Case ( cons o f s k f 2 0 ) )
@ 6703 @head (30 rank : 28 ) : CaseProofTask−TID : 1 3 4 ( p a r e n t TID : 1 3 3 , Case ( n i l o f s k f 1 9 ) )
@ 7054 @head (31 rank : 36 ) : CaseProofTask−TID : 1 4 9 ( p a r e n t TID : 1 4 7 , Case ( cons o f i1006 ) )
@ 7153 @head (30 rank : 36 ) : CaseProofTask−TID : 1 5 2 ( p a r e n t TID : 1 5 0 , Case ( cons o f i1002 ) )
@ 7234 @head (29 rank : 75 ) : CaseProofTask−TID : 4 7 ( p a r e n t TID : 2 7 , Case ( cons o f s k f 1 0 ) )

Found f a l s e
Formulas used : l e n c o n s c o n j p r o b 8 5 r e v c o n s G e n e r a l i z a t i o n−with−s i d e−c o n d i t i o n−B91EE l e n n i l Side−Cond−B91EE

a p p e n d n i l r e v n i l z i p c o n s G e n e r a l i z a t i o n −60BD0 z i p n i l r i g h t a p p e n d c o n s

Invo lved c l a u s e s :
A720D−00001 ( 1000) {} | | l e n ( V2 ) = l e n ( V4 ) −> z i p ( r e v ( V2 ) , r e v ( V4 ) ) = r e v ( z i p ( V2 , V4 ) ) .

o r i g i n ( I n p u t ( c o n j p r o b 8 5 ) )
77D48−00002 ( 1000) {} | | −> append ( n i l , V2 ) = V2 . o r i g i n ( I n p u t ( a p p e n d n i l ) )
A6F4B−00003 ( 1000) {} | | −> append ( cons ( V2 , V4 ) , V6 ) = cons ( V2 , append ( V4 , V6 ) ) . o r i g i n ( I n p u t (

a p p e n d c o n s ) )
4622A−00004 ( 1000) {} | | −> r e v ( n i l ) = n i l . o r i g i n ( I n p u t ( r e v n i l ) )
745AD−00005 ( 1000) {} | | −> r e v ( cons ( V2 , V4 ) ) = append ( r e v ( V4 ) , cons ( V2 , n i l ) ) . o r i g i n ( I n p u t (

r e v c o n s ) )
B7230−00006 ( 1000) {} | | −> l e n ( n i l ) = z . o r i g i n ( I n p u t ( l e n n i l ) )
E1EC9−00007 ( 1000) {} | | −> l e n ( cons ( V2 , V4 ) ) = s ( l e n ( V4 ) ) . o r i g i n ( I n p u t ( l e n c o n s ) )
71DCE−00008 ( 1000) {} | | −> z i p ( V2 , n i l ) = n i l . o r i g i n ( I n p u t ( z i p n i l r i g h t ) )
51B06−00010 ( 1000) {} | | −> z i p ( cons ( V2 , V4 ) , cons ( V6 , V8 ) ) = cons ( p ( V2 , V6 ) , z i p ( V4 , V8 ) ) .

o r i g i n ( I n p u t ( z i p c o n s ) )
8A2C7−00011 ( 1 ) {} | | −> l e n ( s k f 1 ) = l e n ( s k f 2 ) . o r i g i n ( Conj ( c o n j p r o b 8 5 from : S e t ( A720D ) ) )
7DD03−00012 ( 1 ) {} | | z i p ( r e v ( s k f 1 ) , r e v ( s k f 2 ) ) = r e v ( z i p ( skf1 , s k f 2 ) ) −> . o r i g i n ( Conj (

c o n j p r o b 8 5 from : S e t ( A720D ) ) )

36DB6−00167 ( 1 ) {} | | z i p ( r e v ( s k f 1 ) , r e v ( n i l ) ) = r e v ( z i p ( skf1 , n i l ) ) −> . o r i g i n ( IndCase ( n i l ,
sk f2 , 7DD03) )

A5244−00170 ( 1 ) {} | | n i l = n i l −> . o r i g i n (Rew(36DB6 wi th S e t [71DCE, 4622A] ) )
DEAD1−00171 ( 1 ) {} | | −> . o r i g i n ( L i t E l i m F ( A5244 ) )
A4424−00172 ( 1 ) {} | | z i p ( r e v ( s k f 1 ) , r e v ( cons ( i1001 , i1002 ) ) ) = r e v ( z i p ( skf1 , cons ( i1001 , i1002 ) ) ) −> .

o r i g i n ( IndCase ( cons , skf2 , 7DD03) )
CC891−00173 ( 1 ) {} | | −> l e n ( s k f 1 ) = l e n ( cons ( i1001 , i1002 ) ) . o r i g i n ( IndCase ( cons , skf2 , 8A2C7 ) )
F27CB−00176 ( 1 ) {} | | z i p ( r e v ( s k f 1 ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) = r e v ( z i p ( skf1 , cons ( i1001 ,

i1002 ) ) ) −> . o r i g i n (Rew( A4424 wi th S e t [745AD] ) )
FCB76−00177 ( 1 ) {} | | −> l e n ( s k f 1 ) = s ( l e n ( i1002 ) ) . o r i g i n (Rew( CC891 wi th S e t [ E1EC9 ] ) )
8F158−00307 ( 1 ) {} | | −> l e n ( n i l ) = s ( l e n ( i1002 ) ) . o r i g i n ( IndCase ( n i l , sk f1 , FCB76 ) )
84A5B−00311 ( 1 ) {} | | −> z = s ( l e n ( i1002 ) ) . o r i g i n (Rew(8 F158 wi th S e t [ B7230 ] ) )
CD288−00312 ( 1 ) {} | | −> . o r i g i n (DT−D i s t i n c t (84A5B) )
3FE76−00313 ( 1 ) {} | | −> l e n ( cons ( i1005 , i1006 ) ) = s ( l e n ( i1002 ) ) . o r i g i n ( IndCase ( cons , skf1 ,

FCB76 ) )
97C61−00314 ( 1 ) {} | | z i p ( r e v ( cons ( i1005 , i1006 ) ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) = r e v ( z i p ( cons (

i1005 , i1006 ) , cons ( i1001 , i1002 ) ) ) −> . o r i g i n ( IndCase ( cons , skf1 , F27CB ) )
ED4BD−00325 ( 1 ) {} | | −> s ( l e n ( i1006 ) ) = s ( l e n ( i1002 ) ) . o r i g i n (Rew(3 FE76 wi th S e t [ E1EC9 ] ) )
B91EE−00326 ( 1 ) {} | | z i p ( append ( r e v ( i1006 ) , cons ( i1005 , n i l ) ) , append ( r e v ( i1002 ) , cons ( i1001 , n i l ) ) ) =

append ( r e v ( z i p ( i1006 , i1002 ) ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n (Rew(97 C61 wi th S e t [51 B06 ,
745AD] ) )
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09165−00331 ( 1 ) {} | | −> l e n ( i1006 ) = l e n ( i1002 ) . o r i g i n (DT− I n j e c t i v e (ED4BD) )
DFF55−00915 ( 1 ) {} | | l e n ( V2 ) = l e n ( V4 ) −> z i p ( append ( V2 , cons ( i1005 , n i l ) ) , append ( V4 , cons ( i1001 , n i l

) ) ) = append ( z i p ( V2 , V4 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . o r i g i n ( I n p u t ( non neg c o n j ) )
7E880−00916 ( 1 ) {} | | −> l e n ( s k f 9 ) = l e n ( s k f 1 0 ) . o r i g i n ( Conj ( G e n e r a l i z a t i o n−with−s i d e−

c o n d i t i o n−B91EE from : S e t ( DFF55 ) ) )
FA5C4−00917 ( 1 ) {} | | z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , append ( skf10 , cons ( i1001 , n i l ) ) ) = append ( z i p (

skf9 , s k f 1 0 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n ( Conj ( G e n e r a l i z a t i o n−with−s i d e−c o n d i t i o n−
B91EE from : S e t ( DFF55 ) ) )

0ECF8−01046 ( 1 ) {} | | −> l e n ( V2 ) = l e n ( r e v ( V2 ) ) . o r i g i n ( I n p u t ( Side−Cond−non−Neg−B91EE ) )
14F20−01047 ( 1 ) {} | | l e n ( s k f 1 7 ) = l e n ( r e v ( s k f 1 7 ) ) −> . o r i g i n ( Conj ( Side−Cond−B91EE from :

S e t (0 ECF8 ) ) )
64F41−01219 ( 1 ) {} | | l e n ( n i l ) = l e n ( r e v ( n i l ) ) −> . o r i g i n ( IndCase ( n i l , skf17 , 14 F20 ) )
2F5DE−01220 ( 1 ) {} | | z = z −> . o r i g i n (Rew(64 F41 wi th S e t [ B7230 , 4622A] ) )
756DD−01221 ( 1 ) {} | | −> . o r i g i n ( L i t E l i m F (2F5DE ) )
60BD0−01225 ( 1 ) {} | | s ( l e n ( i1012 ) ) = l e n ( append ( r e v ( i1012 ) , cons ( i1011 , n i l ) ) ) −> .

o r i g i n (Rew(2 D869 wi th S e t [ E1EC9 , 745AD] ) )
C5074−03855 ( 1 ) {} | | l e n ( s k f 9 ) = l e n ( s k f 1 0 ) −> z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , append ( skf10 ,

cons ( i1001 , n i l ) ) ) = append ( z i p ( skf9 , s k f 1 0 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . o r i g i n ( Negate ( S e t ( FA5C4 ,
7E880 ) ) )

91218−03860 ( 1 ) {} | | z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , append ( n i l , cons ( i1001 , n i l ) ) ) = append ( z i p ( skf9
, n i l ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n ( IndCase ( n i l , skf10 , FA5C4 ) )

DBF5A−03861 ( 1 ) {} | | −> l e n ( s k f 9 ) = l e n ( n i l ) . o r i g i n ( IndCase ( n i l , skf10 , 7E880 ) )
5D4D3−03862 ( 1 ) {} | | z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , cons ( i1001 , n i l ) ) = cons ( p ( i1005 , i1001 ) , n i l )

−> . o r i g i n (Rew(91218 wi th S e t [71DCE, 77D48 ] ) )
226BF−03863 ( 1 ) {} | | −> l e n ( s k f 9 ) = z . o r i g i n (Rew(DBF5A wi th S e t [ B7230 ] ) )
D0306−03920 ( 1 ) {} | | z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , append ( cons ( i1035 , i1036 ) , cons ( i1001 , n i l ) ) ) =

append ( z i p ( skf9 , cons ( i1035 , i1036 ) ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n ( IndCase ( cons , skf10
, FA5C4 ) )

D35CD−03921 ( 1 ) {} | | −> l e n ( s k f 9 ) = l e n ( cons ( i1035 , i1036 ) ) . o r i g i n ( IndCase ( cons , skf10 , 7E880 ) )
B68C6−03923 ( 1 ) {} | | l e n ( s k f 9 ) = l e n ( i1036 ) −> z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , append ( i1036 ,

cons ( i1001 , n i l ) ) ) = append ( z i p ( skf9 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . o r i g i n ( IndHyp ( skf10 ,
cons : C5074 ) )

66512−03924 ( 1 ) {} | | −> l e n ( s k f 9 ) = s ( l e n ( i1036 ) ) . o r i g i n (Rew(D35CD wi th S e t [ E1EC9 ] ) )
7E53F−03925 ( 1 ) {} | | z i p ( append ( skf9 , cons ( i1005 , n i l ) ) , cons ( i1035 , append ( i1036 , cons ( i1001 , n i l ) ) ) ) =

append ( z i p ( skf9 , cons ( i1035 , i1036 ) ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n (Rew( D0306 wi th S e t [
A6F4B ] ) )

35A58−04058 ( 1 ) {} | | z i p ( append ( n i l , cons ( i1005 , n i l ) ) , cons ( i1001 , n i l ) ) = cons ( p ( i1005 , i1001 ) , n i l ) −>
. o r i g i n ( IndCase ( n i l , sk f9 , 5D4D3) )

0A341−04059 ( 1 ) {} | | cons ( p ( i1005 , i1001 ) , z i p ( n i l , n i l ) ) = cons ( p ( i1005 , i1001 ) , n i l ) −> .
o r i g i n (Rew(35 A58 wi th S e t [51 B06 , 77D48 ] ) )

C42E9−04060 ( 1 ) {} | | z i p ( n i l , n i l ) = n i l p ( i1005 , i1001 ) = p ( i1005 , i1001 ) −> .
o r i g i n (DT− I n j e c t i v e (0 A341 ) )

1B501−04061 ( 1 ) {} | | z i p ( n i l , n i l ) = n i l −> . o r i g i n ( L i t E l i m ( C42E9 ) )
6778B−04062 ( 1 ) {} | | −> . o r i g i n (MRR(1 B501 ,− 71DCE) )
FE9E8−04063 ( 1 ) {} | | −> l e n ( cons ( i1037 , i1038 ) ) = z . o r i g i n ( IndCase ( cons , skf9 , 226BF ) )
90922−04068 ( 1 ) {} | | −> s ( l e n ( i1038 ) ) = z . o r i g i n (Rew( FE9E8 wi th S e t [ E1EC9 ] ) )
A7CD7−04069 ( 1 ) {} | | −> . o r i g i n (DT−D i s t i n c t ( 9 0 9 2 2 ) )
142A0−04070 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by 6778B , cons by A7CD7 ] ) )
5CD72−04071 ( 1000) {} | | z = l e n ( V2 ) −> z i p ( append ( V2 , cons ( V4 , n i l ) ) , cons ( V6 , n i l ) ) = cons ( p ( V4 ,

V6 ) , n i l ) . o r i g i n ( De r ived (142A0 ) )
E97D7−04072 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (5D4D3 , 226BF ) and S e t (5CD72 ) ) )
41691−04265 ( 1 ) {} | | s ( l e n ( s k f 2 8 ) ) = l e n ( append ( skf28 , cons ( i1011 , n i l ) ) ) −> . o r i g i n ( Conj (

G e n e r a l i z a t i o n −60BD0 from : S e t (60BD0) ) )
0F1FF−07739 ( 1 ) {} | | −> s ( l e n ( s k f 2 8 ) ) = l e n ( append ( skf28 , cons ( i1011 , n i l ) ) ) . o r i g i n ( Negate ( S e t

( 4 1 6 9 1 ) ) )
71C49−07742 ( 1 ) {} | | s ( l e n ( n i l ) ) = l e n ( append ( n i l , cons ( i1011 , n i l ) ) ) −> . o r i g i n ( IndCase ( n i l ,

skf28 , 41691) )
346BC−07745 ( 1 ) {} | | s ( z ) = s ( l e n ( n i l ) ) −> . o r i g i n (Rew(71 C49 wi th S e t [ B7230 , E1EC9 , 77

D48 ] ) )
D6A23−07746 ( 1 ) {} | | l e n ( n i l ) = z −> . o r i g i n (DT− I n j e c t i v e (346BC) )
F9091−07747 ( 1 ) {} | | −> . o r i g i n (MRR( D6A23,− B7230 ) )
E6401−07748 ( 1 ) {} | | s ( l e n ( cons ( i1067 , i1068 ) ) ) = l e n ( append ( cons ( i1067 , i1068 ) , cons ( i1011 , n i l ) ) ) −> .

o r i g i n ( IndCase ( cons , skf28 , 41691) )
B593D−07755 ( 1 ) {} | | −> s ( l e n ( i1068 ) ) = l e n ( append ( i1068 , cons ( i1011 , n i l ) ) ) . o r i g i n ( IndHyp ( skf28 ,

cons : 0F1FF ) )
6DB94−07757 ( 1 ) {} | | s ( s ( l e n ( i1068 ) ) ) = s ( l e n ( append ( i1068 , cons ( i1011 , n i l ) ) ) ) −> .

o r i g i n (Rew( E6401 wi th S e t [ A6F4B , E1EC9 ] ) )
3E49B−07758 ( 1 ) {} | | s ( l e n ( i1068 ) ) = l e n ( append ( i1068 , cons ( i1011 , n i l ) ) ) −> . o r i g i n (DT−

I n j e c t i v e (6DB94 ) )
23DC0−07759 ( 1 ) {} | | −> . o r i g i n (MRR(3 E49B,− B593D ) )
F6F97−07760 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by F9091 , cons by 23DC0 ] ) )
6BC4C−07763 ( 1 ) {} | | −> s ( l e n ( V2 ) ) = l e n ( append ( V2 , cons ( i1011 , n i l ) ) ) . o r i g i n ( De r ived ( F6F97

) )
032E0−07764 ( 1 ) {} | | s ( l e n ( s k f 2 8 ) ) = s ( l e n ( s k f 2 8 ) ) −> . o r i g i n (Rew(41691 wi th S e t [6BC4C ] ) )
368A6−07765 ( 1 ) {} | | −> . o r i g i n ( L i t E l i m F (032 E0 ) )
1BC46−07766 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by 756DD, cons by 368A6 ] ) )
0ECF8−07767 ( 1000) {} | | −> l e n ( V2 ) = l e n ( r e v ( V2 ) ) . o r i g i n ( De r ived (1 BC46 ) )
062F6−13532 ( 1 ) {} | | −> l e n ( n i l ) = s ( l e n ( i1036 ) ) . o r i g i n ( IndCase ( n i l , sk f9 , 66512) )
E2ECB−13538 ( 1 ) {} | | −> z = s ( l e n ( i1036 ) ) . o r i g i n (Rew(062 F6 wi th S e t [ B7230 ] ) )
BBFD0−13539 ( 1 ) {} | | −> . o r i g i n (DT−D i s t i n c t (E2ECB) )
D0964−13540 ( 1 ) {} | | −> l e n ( cons ( i1111 , i1112 ) ) = s ( l e n ( i1036 ) ) . o r i g i n ( IndCase ( cons , skf9 ,

66512) )
B1C55−13541 ( 1 ) {} | | z i p ( append ( cons ( i1111 , i1112 ) , cons ( i1005 , n i l ) ) , cons ( i1035 , append ( i1036 , cons (

i1001 , n i l ) ) ) ) = append ( z i p ( cons ( i1111 , i1112 ) , cons ( i1035 , i1036 ) ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> .
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o r i g i n ( IndCase ( cons , skf9 , 7E53F ) )
4E6E4−13543 ( 1 ) {} | | l e n ( i1112 ) = l e n ( i1036 ) −> z i p ( append ( i1112 , cons ( i1005 , n i l ) ) , append ( i1036 ,

cons ( i1001 , n i l ) ) ) = append ( z i p ( i1112 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . o r i g i n ( IndHyp (
skf9 , cons : B68C6 ) )

C2FB1−13552 ( 1 ) {} | | cons ( p ( i1111 , i1035 ) , z i p ( append ( i1112 , cons ( i1005 , n i l ) ) , append ( i1036 , cons ( i1001 ,
n i l ) ) ) ) = cons ( p ( i1111 , i1035 ) , append ( z i p ( i1112 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) ) −> .

o r i g i n (Rew( B1C55 wi th S e t [ A6F4B , 51B06 ] ) )
4C358−13553 ( 1 ) {} | | −> s ( l e n ( i1112 ) ) = s ( l e n ( i1036 ) ) . o r i g i n (Rew( D0964 wi th S e t [ E1EC9 ] ) )
05196−13558 ( 1 ) {} | | −> l e n ( i1112 ) = l e n ( i1036 ) . o r i g i n (DT− I n j e c t i v e (4 C358 ) )
C1ECD−13559 ( 1 ) {} | | z i p ( append ( i1112 , cons ( i1005 , n i l ) ) , append ( i1036 , cons ( i1001 , n i l ) ) ) = append ( z i p (

i1112 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) p ( i1111 , i1035 ) = p ( i1111 , i1035 ) −> . o r i g i n (DT
− I n j e c t i v e ( C2FB1 ) )

4375A−13560 ( 1 ) {} | | z i p ( append ( i1112 , cons ( i1005 , n i l ) ) , append ( i1036 , cons ( i1001 , n i l ) ) ) = append ( z i p (
i1112 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) −> . o r i g i n ( L i t E l i m (C1ECD) )

A0487−13562 ( 1 ) {} | | −> z i p ( append ( i1112 , cons ( i1005 , n i l ) ) , append ( i1036 , cons ( i1001 , n i l ) ) ) = append ( z i p (
i1112 , i1036 ) , cons ( p ( i1005 , i1001 ) , n i l ) ) . o r i g i n (MRR(05196 ,− 4E6E4 ) )

724C8−13567 ( 1 ) {} | | −> . o r i g i n (MRR( A0487 ,− 4375A) )
CFF69−13568 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by BBFD0 , cons by 724C8 ] ) )
C1C89−13569 ( 1000) {} | | l e n ( V2 ) = s ( l e n ( V4 ) ) −> z i p ( append ( V2 , cons ( V6 , n i l ) ) , cons ( V8 , append ( V4 ,

cons ( V10 , n i l ) ) ) ) = append ( z i p ( V2 , cons ( V8 , V4 ) ) , cons ( p ( V6 , V10 ) , n i l ) ) . o r i g i n ( De r ived ( CFF69 ) )
AB7BC−13570 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (7 E53F , 66512) and S e t ( C1C89 ) ) )
35234−13571 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by E97D7 , cons by AB7BC ] ) )
424F8−13572 ( 1000) {} | | l e n ( V2 ) = l e n ( V4 ) −> z i p ( append ( V2 , cons ( V6 , n i l ) ) , append ( V4 , cons ( V8 , n i l ) ) ) =

append ( z i p ( V2 , V4 ) , cons ( p ( V6 , V8 ) , n i l ) ) . o r i g i n ( De r ived ( 3 5 2 3 4 ) )
A2C66−13575 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( B91EE , 09165) and S e t (424 F8 , 0ECF8 ) ) )
ABE6D−13576 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by CD288 , cons by A2C66 ] ) )
8991D−13577 ( 1000) {} | | l e n ( V2 ) = s ( l e n ( V4 ) ) −> z i p ( r e v ( V2 ) , append ( r e v ( V4 ) , cons ( V6 , n i l ) ) ) = r e v (

z i p ( V2 , cons ( V6 , V4 ) ) ) . o r i g i n ( De r ived (ABE6D) )
CE2A4−13578 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( F27CB , FCB76 ) and S e t (8991D) ) )
38F66−13579 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by DEAD1, cons by CE2A4 ] ) )
A720D−13580 ( 1000) {} | | l e n ( V2 ) = l e n ( V4 ) −> z i p ( r e v ( V2 ) , r e v ( V4 ) ) = r e v ( z i p ( V2 , V4 ) ) .

o r i g i n ( De r ived (38 F66 ) )
137DF−13581 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (7DD03 , 8A2C7 ) and S e t ( A720D ) ) )
Invo lved c l a u s e s : 98

Tota l t ime : 8 .607543767 s

A.1.3. Problem 86

Input

The problem in DFG format, edited for better readability.

begin problem ( benchmark ) .

l i s t o f d e s c r i p t i o n s .
name ({∗∗} ) .
a u t h o r ({∗∗} ) .
s t a t u s ( unknown ) .
d e s c r i p t i o n ({∗∗} ) .
e n d o f l i s t .

l i s t o f s y m b o l s .
f u n c t i o n s [ ( z , 0 ) , ( s , 1 ) , ( cons , 1+2) , ( n i l , 1+0) , ( i n s , 1 + 2 ) ] .
p r e d i c a t e s [ ( l e s s , 1 + 2 ) , ( elem , 1 + 2 ) ] .
s o r t s [ ( l i s t , 1 ) , ( na t , 0 ) ] .
e n d o f l i s t .

l i s t o f d e c l a r a t i o n s .
f u n c t i o n ( z , n a t ) .
f u n c t i o n ( s , ( n a t ) n a t ) .

f u n c t i o n ( n i l , [A] , l i s t (A) ) .
f u n c t i o n ( cons , [A] , (A, l i s t (A) ) l i s t (A) ) .

f u n c t i o n ( i n s , [A] , (A, l i s t (A) ) l i s t (A) ) .

p r e d i c a t e ( l e s s , [A] , A, A) .
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p r e d i c a t e ( elem , [A] , A, l i s t (A) ) .

data type ( na t , z , s ) .
data type ( l i s t , n i l , cons ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( axioms ) .
formula ( f o r a l l ( [X: n a t ] , not ( l e s s<na t >(X, z ) ) ) , l e s s z r i g h t ) .
formula ( f o r a l l ( [X: n a t ] , l e s s<na t >(z , s (X) ) ) , l e s s z l e f t ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equiv : l r ( l e s s<na t >( s (X) , s (Y) ) ,

l e s s<na t >(X,Y) ) ) , l e s s z ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, LS : l i s t (A) ] ,
not ( elem<A>(X, n i l<A>) ) ) ) , e l e m n i l ) .

formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, L :A, LS : l i s t (A) ] ,
i m p l i e s ( equal : l r (X, L ) ,

elem<A>(X, cons<A>(L , LS ) ) ) ) ) , e l e m c o n s e q u a l ) .
formula ( f o r a l l s o r t s ( [A] , f o r a l l ( [X:A, L :A, LS : l i s t (A) ] ,

i m p l i e s ( not ( equal : l r (X, L ) ) ,
equiv : l r ( elem<A>(X, cons<A>(L , LS ) ) ,

elem<A>(X, LS ) ) ) ) ) , e l e m c o n s n o t e q u a l ) .

formula ( f o r a l l ( [X: n a t ] , equal : l r ( i n s<na t >(X, n i l<na t >) ,
cons<na t >(X, n i l<na t >) ) ) , i n s n i l ) .

formula ( f o r a l l ( [X: na t , Y: na t , YS : l i s t ( n a t ) ] ,
i m p l i e s ( l e s s<na t >(X,Y) ,

equal : l r ( i n s<na t >(X, cons<na t >(Y, YS) ) ,
cons<na t >(X, cons<na t >(Y, YS) ) ) ) ) , i n s l e s s ) .

formula ( f o r a l l ( [X: na t , Y: na t , YS : l i s t ( n a t ) ] ,
i m p l i e s ( not ( l e s s<na t >(X,Y) ) ,

equal : l r ( i n s<na t >(X, cons<na t >(Y, YS) ) ,
cons<na t >(Y, i n s<na t >(X, YS) ) ) ) ) , i n s n o t l e s s ) .

e n d o f l i s t .

l i s t o f f o r m u l a e ( c o n j e c t u r e s ) .
formula ( f o r a l l ( [X: na t , Y: na t , LS : l i s t ( n a t ) ] ,

i m p l i e s ( l e s s<na t >(X,Y) ,
equiv ( elem<na t >(X, i n s<na t >(Y, LS ) ) ,

elem<na t >(X, LS ) ) ) ) , c o n j 8 6 ) .
e n d o f l i s t .

end problem .

Output

The boxed parts are the unedited output of Pirate (except for adding bold for keywords).
S t a r t i n g
s c a l a v e r s i o n 2 . 1 1 . 2
Unkown / Legacy−s t y l e Argument : / home / dwand / p i r a t e / r educeDFGtoFac t s
I n i t i a l Conjec tures :

: 917BF−00015 ( 1 ) {} | | −> elem ( skf1 , i n s ( skf2 , s k f 3 ) ) elem ( skf1 , s k f 3 ) . o r i g i n ( Conj (
c o n j 8 6 from : S e t (6 E1FE , 71276) ) )

: 46111−00016 ( 1 ) {} | | elem ( skf1 , i n s ( skf2 , s k f 3 ) ) elem ( skf1 , s k f 3 ) −> . o r i g i n ( Conj ( c o n j 8 6
from : S e t (6 E1FE , 71276) ) )

: 78F19−00014 ( 1 ) {} | | −> l e s s ( skf1 , s k f 2 ) . o r i g i n ( Conj ( c o n j 8 6 from : S e t (6 E1FE , 71276) )
)

@ 299 @head (1 rank : 2 ) : CaseProofTask−TID : 4 ( p a r e n t TID : 3 , Der iveCase ( −> l e s s ( V2 , V4 ) l e s s ( V4 , V2 ) . ) )
@ 778 @head (2 rank : 3 ) : CaseProofTask−TID : 6 ( p a r e n t TID : 5 , I n i t i a l )
@ 983 @head (2 rank : 4 ) : CaseProofTask−TID : 8 ( p a r e n t TID : 7 , Case ( z o f s k f 4 ) )
@ 1061 @head (2 rank : 8 ) : CaseProofTask−TID : 9 ( p a r e n t TID : 7 , Case ( s o f s k f 4 ) )
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@ 1142 @head (1 rank : 8 ) : CaseProofTask−TID : 1 4 ( p a r e n t TID : 6 , Case ( s o f s k f 2 ) )
@ 2606 @head (2 rank : 6 ) : CaseProofTask−TID : 1 6 ( p a r e n t TID : 1 4 , Case ( n i l o f s k f 3 ) )
@ 2662 @head (1 rank : 15 ) : CaseProofTask−TID : 1 5 ( p a r e n t TID : 8 , Case ( z o f s k f 5 ) )
@ 2687 @head (0 rank : 15 ) : CaseProofTask−TID : 1 7 ( p a r e n t TID : 1 4 , Case ( cons o f s k f 3 ) )
@ 6852 @head (2 rank : 20 ) : CaseProofTask−TID : 2 0 ( p a r e n t TID : 1 9 , S p l i t C a s e ( 1 ) )
@ 7164 @head (1 rank : 20 ) : CaseProofTask−TID : 2 1 ( p a r e n t TID : 1 9 , S p l i t C a s e ( 2 ) )

Found f a l s e
Formulas used : i n s n i l s p l i t −ground−pos e l e m c o n s n o t e q u a l s p l i t −ground−neg e l e m c o n s e q u a l e l e m n i l l e s s z r i g h t

i n s n o t l e s s i n s l e s s l e s s z c o n j 8 6

Invo lved c l a u s e s :
6E1FE−00001 ( 1000) {} | | elem ( V2 , i n s ( V4 , V6 ) ) l e s s ( V2 , V4 ) −> elem ( V2 , V6 ) . o r i g i n ( I n p u t

( c o n j 8 6 ) )
71276−00002 ( 1000) {} | | elem ( V2 , V4 ) l e s s ( V2 , V6 ) −> elem ( V2 , i n s ( V6 , V4 ) ) .

o r i g i n ( I n p u t ( c o n j 8 6 ) )
0D298−00003 ( 1000) {} | | l e s s ( V2 , z ) −> . o r i g i n ( I n p u t ( l e s s z r i g h t ) )
E1868−00005 ( 1000) {} | | l e s s ( s ( V2 ) , s ( V4 ) ) −> l e s s ( V2 , V4 ) . o r i g i n ( I n p u t ( l e s s z ) )
74758−00006 ( 1000) {} | | l e s s ( V2 , V4 ) −> l e s s ( s ( V2 ) , s ( V4 ) ) . o r i g i n ( I n p u t ( l e s s z ) )
511EF−00007 ( 1000) {} | | elem ( V2 , n i l ) −> . o r i g i n ( I n p u t ( e l e m n i l ) )
59740−00008 ( 1000) {} | | V2 = V4 −> elem ( V2 , cons ( V4 , V6 ) ) . o r i g i n ( I n p u t ( e l e m c o n s e q u a l

) )
F0650−00009 ( 1000) {} | | elem ( V2 , cons ( V4 , V6 ) ) −> elem ( V2 , V6 ) V2 = V4 . o r i g i n ( I n p u t

( e l e m c o n s n o t e q u a l ) )
5C661−00010 ( 1000) {} | | elem ( V2 , V4 ) −> elem ( V2 , cons ( V6 , V4 ) ) V2 = V6 . o r i g i n ( I n p u t

( e l e m c o n s n o t e q u a l ) )
5C1C9−00011 ( 1000) {} | | −> i n s ( V2 , n i l ) = cons ( V2 , n i l ) . o r i g i n ( I n p u t ( i n s n i l ) )
8B37E−00012 ( 1000) {} | | l e s s ( V2 , V4 ) −> i n s ( V2 , cons ( V4 , V6 ) ) = cons ( V2 , cons ( V4 , V6 ) ) .

o r i g i n ( I n p u t ( i n s l e s s ) )
7B2F6−00013 ( 1000) {} | | −> l e s s ( V2 , V4 ) i n s ( V2 , cons ( V4 , V6 ) ) = cons ( V4 , i n s ( V2 , V6 ) ) .

o r i g i n ( I n p u t ( i n s n o t l e s s ) )
78F19−00014 ( 1 ) {} | | −> l e s s ( skf1 , s k f 2 ) . o r i g i n ( Conj ( c o n j 8 6 from : S e t (6 E1FE , 71276) ) )
917BF−00015 ( 1 ) {} | | −> elem ( skf1 , i n s ( skf2 , s k f 3 ) ) elem ( skf1 , s k f 3 ) . o r i g i n ( Conj ( c o n j 8 6

from : S e t (6 E1FE , 71276) ) )
46111−00016 ( 1 ) {} | | elem ( skf1 , i n s ( skf2 , s k f 3 ) ) elem ( skf1 , s k f 3 ) −> . o r i g i n ( Conj ( c o n j 8 6

from : S e t (6 E1FE , 71276) ) )
A507B−00019 ( 1000) {} | | V2 = V2 −> elem ( V2 , cons ( V2 , V4 ) ) . o r i g i n (NuV( 5 9 7 4 0 ) )
B9A26−00020 ( 1000) {} | | −> elem ( V2 , cons ( V2 , V4 ) ) . o r i g i n ( L i t E l i m ( A507B ) )
BA31D−00836 ( 1 ) {} | | −> l e s s ( skf1 , z ) . o r i g i n ( IndCase ( z , skf2 , 78 F19 ) )
C9099−00842 ( 1000) {} | | −> . o r i g i n (MRR(0 D298,− BA31D) )
27412−00843 ( 1 ) {} | | −> elem ( skf1 , i n s ( s ( i1003 ) , s k f 3 ) ) elem ( skf1 , s k f 3 ) . o r i g i n (

IndCase ( s , skf2 , 917BF ) )
F25C3−00844 ( 1 ) {} | | −> l e s s ( skf1 , s ( i1003 ) ) . o r i g i n ( IndCase ( s , skf2 , 78 F19 ) )
87558−00845 ( 1 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , s k f 3 ) ) elem ( skf1 , s k f 3 ) −> . o r i g i n (

IndCase ( s , skf2 , 46111) )
D7328−01762 ( 1 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , s k f 3 ) ) l e s s ( skf1 , s ( i1003 ) ) −> elem ( skf1 ,

s k f 3 ) . o r i g i n ( Negate ( S e t ( F25C3 , 87558 , 27412) ) )
2A820−01763 ( 1 ) {} | | elem ( skf1 , s k f 3 ) l e s s ( skf1 , s ( i1003 ) ) −> elem ( skf1 , i n s ( s ( i1003 ) ,

s k f 3 ) ) . o r i g i n ( Negate ( S e t ( F25C3 , 87558 , 27412) ) )
C3247−01777 ( 1 ) {} | | −> elem ( skf1 , i n s ( s ( i1003 ) , n i l ) ) elem ( skf1 , n i l ) . o r i g i n ( IndCase ( n i l ,

sk f3 , 27412) )
F25C3−01779 ( 1 ) {} | | −> l e s s ( skf1 , s ( i1003 ) ) . o r i g i n ( IndCase ( n i l , sk f3 , F25C3 ) )
BCC96−01786 ( 1 ) {} | | −> elem ( skf1 , cons ( s ( i1003 ) , n i l ) ) elem ( skf1 , n i l ) . o r i g i n (Rew(

C3247 wi th S e t [5 C1C9 ] ) )
7D520−01821 ( 1 ) {} | | −> elem ( skf1 , cons ( s ( i1003 ) , n i l ) ) . o r i g i n (MRR( BCC96,− 511EF ) )
EC543−01841 ( 2 ) {} | | −> elem ( skf1 , n i l ) s k f 1 = s ( i1003 ) . o r i g i n ( Res (7 D520,− F0650 ) )
315F8−01844 ( 2 ) {} | | −> s k f 1 = s ( i1003 ) . o r i g i n (MRR( EC543,− 511EF ) )
88A75−01898 ( 1 ) {} | | −> l e s s ( skf1 , s k f 1 ) . o r i g i n (Rew( F25C3 wi th S e t [315 F8 ] ) )
FED48−02373 ( 1 ) {} | | −> elem ( skf1 , i n s ( s ( i1003 ) , cons ( i1006 , i1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) .

o r i g i n ( IndCase ( cons , skf3 , 27412) )
0FE6E−02374 ( 1 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , cons ( i1006 , i1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −> .

o r i g i n ( IndCase ( cons , skf3 , 87558) )
F25C3−02375 ( 1 ) {} | | −> l e s s ( skf1 , s ( i1003 ) ) . o r i g i n ( IndCase ( cons , skf3 , F25C3 ) )
BB79B−02387 ( 1 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) l e s s ( skf1 , s ( i1003 ) ) −> elem ( skf1 ,

i1007 ) . o r i g i n ( IndHyp ( skf3 , cons : D7328 ) )
ECBDB−02391 ( 1 ) {} | | elem ( skf1 , i1007 ) l e s s ( skf1 , s ( i1003 ) ) −> elem ( skf1 , i n s ( s ( i1003 ) ,

i1007 ) ) . o r i g i n ( IndHyp ( skf3 , cons : 2A820 ) )
3C405−02398 ( 1 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) −> elem ( skf1 , i1007 ) . o r i g i n (MRR(

BB79B,− F25C3 ) )
F08A5−02399 ( 1 ) {} | | elem ( skf1 , i1007 ) −> elem ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) . o r i g i n (MRR(

ECBDB,− F25C3 ) )
25904−05953 ( 1 ) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( skf1 , s k f 1 ) −> elem ( V2 , n i l ) .

o r i g i n ( Negate ( S e t (511EF , B9A26 , 88A75 ) ) )
17406−05956 ( 1 ) {} | | −> l e s s ( z , z ) . o r i g i n ( IndCase ( z , skf1 , 88A75 ) )
2C5ED−05965 ( 1 ) {} | | −> . o r i g i n (MRR(17406 ,− 0D298 ) )
511EF−05966 ( 1000) {} | | elem ( V2 , n i l ) −> . o r i g i n ( IndCase ( s , skf1 , 511EF ) )
44697−05967 ( 1 ) {} | | −> l e s s ( s ( i1008 ) , s ( i1008 ) ) . o r i g i n ( IndCase ( s , skf1 , 88A75 ) )
B9A26−05968 ( 1000) {} | | −> elem ( V2 , cons ( V2 , V4 ) ) . o r i g i n ( IndCase ( s , skf1 , B9A26 ) )
A05AC−05978 ( 1 ) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( i1008 , i1008 ) −> elem ( V2 , n i l ) .

o r i g i n ( IndHyp ( skf1 , s : 25904) )
6A6BD−05981 ( 1 ) {} | | l e s s ( i1008 , i1008 ) −> elem ( V2 , n i l ) . o r i g i n (MRR(A05AC,− B9A26 ) )
5B612−06010 ( 1 ) {} | | −> l e s s ( i1008 , i1008 ) . o r i g i n ( IPSC (44697 by E1868 and 74758) )
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D552C−06015 ( 1 ) {} | | −> elem ( V2 , n i l ) . o r i g i n (MRR(6A6BD,− 5B612 ) )
36F33−06017 ( 1 ) {} | | −> . o r i g i n (MRR( D552C,− 511EF ) )
05200−06018 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ z by 2C5ED , s by 36 F33 ] ) )
E3E4C−06019 ( 1000) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( V6 , V6 ) −> elem ( V2 , n i l ) .

o r i g i n ( De r ived ( 0 5 2 0 0 ) )
39EE5−06020 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (511EF , B9A26 , 88A75 ) and S e t ( E3E4C ) ) )
00AE6−06196 ( 2 ) {} | | l e s s ( s ( i1003 ) , i 1006 ) −> elem ( skf1 , cons ( s ( i1003 ) , cons ( i1006 , i1007 ) ) ) elem

( skf1 , cons ( i1006 , i1007 ) ) . o r i g i n ( Sup ( FED48 by 8B37E ) )
BBA64−06198 ( 2 ) {} | | elem ( skf1 , cons ( s ( i1003 ) , cons ( i1006 , i1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) l e s s

( s ( i1003 ) , i1006 ) −> . o r i g i n ( Sup (0 FE6E by 8B37E ) )
B288B−06419 ( 2 ) {} | | −> elem ( skf1 , cons ( i1006 , i n s ( s ( i1003 ) , i 1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) l e s s

( s ( i1003 ) , i1006 ) . o r i g i n ( Sup ( FED48 by 7B2F6 ) )
4A957−06421 ( 2 ) {} | | elem ( skf1 , cons ( i1006 , i n s ( s ( i1003 ) , i 1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −>

l e s s ( s ( i1003 ) , i 1006 ) . o r i g i n ( Sup (0 FE6E by 7B2F6 ) )
88FD4−06584 ( 3 ) {} | | elem ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −> l e s s

( s ( i1003 ) , i1006 ) s k f 1 = i1006 . o r i g i n ( Res (4 A957,− 5C661 ) )
5B066−06727 ( 3 ) {} | | elem ( skf1 , cons ( i1006 , i1007 ) ) l e s s ( s ( i1003 ) , i 1006 ) −> s k f 1 = s ( i1003 ) .

o r i g i n ( Res ( BBA64,− 5C661 ) )
351CF−06840 ( 3 ) {} | | −> elem ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) l e s s ( s ( i1003

) , i1006 ) s k f 1 = i1006 . o r i g i n ( Res ( F0650 ,− B288B ) )
F0CF3−06981 ( 3 ) {} | | l e s s ( s ( i1003 ) , i 1006 ) −> elem ( skf1 , cons ( i1006 , i1007 ) ) s k f 1 = s ( i1003 ) .

o r i g i n ( Res ( F0650 ,− 00AE6) )
553C2−07728 ( 4 ) {} | | l e s s ( s ( i1003 ) , i 1006 ) −> s k f 1 = s ( i1003 ) . o r i g i n ( Res (5 B066 ,−

F0CF3 ) )
A62A0−07948 ( 2 ) {} | | −> elem ( skf1 , cons ( i1006 , i1007 ) ) elem ( skf1 , i1007 ) l e s s ( s ( i1003 ) , i1006 ) s k f 1

= i1006 . o r i g i n ( Res (3 C405 ,− 351CF ) )
A6F69−08122 ( 3 ) {} | | −> elem ( skf1 , i1007 ) l e s s ( s ( i1003 ) , i 1006 ) s k f 1 = i1006 . o r i g i n ( Res (

F0650 ,− A62A0 ) )
1ACCD−08463 ( 2 ) {} | | elem ( skf1 , cons ( i1006 , i1007 ) ) elem ( skf1 , i1007 ) −> l e s s ( s ( i1003 ) , i 1006 ) s k f 1

= i1006 . o r i g i n ( Res ( F08A5,− 88FD4 ) )
FF5D8−08656 ( 3 ) {} | | elem ( skf1 , i1007 ) −> l e s s ( s ( i1003 ) , i 1006 ) s k f 1 = i1006 . o r i g i n ( Res (5

C661 ,− 1ACCD) )
F3F30−24223 ( 1000) {} | | l e s s ( s ( i1003 ) , i 1006 ) −> . o r i g i n ( I n p u t ( s p l i t −ground−neg ) )
5B46C−24224 ( 1000) {} | | −> i n s ( s ( i1003 ) , cons ( i1006 , i1007 ) ) = cons ( i1006 , i n s ( s ( i1003 ) , i 1007 ) ) .

o r i g i n ( Res ( F3F30 ,− 7B2F6 ) )
C5321−24225 ( 1000) {} | | −> l e s s ( s ( i1003 ) , i 1006 ) . o r i g i n ( I n p u t ( s p l i t −ground−pos ) )
93366−24226 ( 1000) {} | | −> i n s ( s ( i1003 ) , cons ( i1006 , i1007 ) ) = cons ( s ( i1003 ) , cons ( i1006 , i1007 ) ) .

o r i g i n ( Res ( C5321 ,− 8B37E ) )
80AF4−24335 ( 1 ) {} | | elem ( skf1 , cons ( i1006 , i n s ( s ( i1003 ) , i 1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −> .

o r i g i n (Rew(0 FE6E wi th S e t [5 B46C ] ) )
3A9D5−24338 ( 3 ) {} | | elem ( skf1 , i1007 ) −> s k f 1 = i1006 . o r i g i n (MRR( FF5D8,− F3F30 ) )
0C699−24357 ( 3 ) {} | | −> elem ( skf1 , i1007 ) s k f 1 = i1006 . o r i g i n (MRR( A6F69,− F3F30 ) )
5D37C−25023 ( 4 ) {} | | −> s k f 1 = i1006 . o r i g i n ( Res (3A9D5,− 0C699 ) )
23964−25073 ( 1 ) {} | | elem ( skf1 , cons ( skf1 , i n s ( s ( i1003 ) , i 1007 ) ) ) elem ( skf1 , cons ( skf1 , i1007 ) ) −> .

o r i g i n (Rew(80AF4 wi th S e t [5D37C ] ) )
8F0AA−25149 ( 1 ) {} | | elem ( skf1 , cons ( skf1 , i1007 ) ) −> . o r i g i n (MRR(23964 ,− B9A26 ) )
D7686−25185 ( 1 ) {} | | −> . o r i g i n (MRR(8F0AA,− B9A26 ) )
08B6D−25186 ( 1 ) {} | | elem ( skf1 , cons ( s ( i1003 ) , cons ( i1006 , i1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −> .

o r i g i n (Rew(0 FE6E wi th S e t [ 9 3 3 6 6 ] ) )
315F8−25198 ( 4 ) {} | | −> s k f 1 = s ( i1003 ) . o r i g i n (MRR(553C2,− C5321 ) )
88A75−25341 ( 1 ) {} | | −> l e s s ( skf1 , s k f 1 ) . o r i g i n ( SRew ( F25C3 by 315F8 ) )
7B2F8−25552 ( 1 ) {} | | elem ( skf1 , cons ( skf1 , cons ( i1006 , i1007 ) ) ) elem ( skf1 , cons ( i1006 , i1007 ) ) −> .

o r i g i n (Rew(08B6D wi th S e t [315 F8 ] ) )
3F5D5−25628 ( 1 ) {} | | elem ( skf1 , cons ( i1006 , i1007 ) ) −> . o r i g i n (MRR(7 B2F8,− B9A26 ) )
EE209−27108 ( 1 ) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( skf1 , s k f 1 ) −> elem ( skf1 , cons ( i1006 , i1007 ) ) .

o r i g i n ( Negate ( S e t (3 F5D5 , B9A26 , 88A75 ) ) )
17406−27112 ( 1 ) {} | | −> l e s s ( z , z ) . o r i g i n ( IndCase ( z , skf1 , 88A75 ) )
C3E76−27130 ( 1000) {} | | −> . o r i g i n (MRR(0 D298,− 17406) )
9D08C−27131 ( 1 ) {} | | −> l e s s ( s ( i1010 ) , s ( i1010 ) ) . o r i g i n ( IndCase ( s , skf1 , 88A75 ) )
B9A26−27133 ( 1000) {} | | −> elem ( V2 , cons ( V2 , V4 ) ) . o r i g i n ( IndCase ( s , skf1 , B9A26 ) )
C14A0−27151 ( 1 ) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( i1010 , i1010 ) −> elem ( i1010 , cons ( i1006 , i1007 ) ) .

o r i g i n ( IndHyp ( skf1 , s : EE209 ) )
B7AE6−27156 ( 1 ) {} | | elem ( i1010 , cons ( i1006 , i1007 ) ) −> . o r i g i n ( IndHyp ( skf1 , s : 3F5D5 ) )
03C29−27192 ( 1 ) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( i1010 , i1010 ) −> . o r i g i n (MRR( C14A0,−

B7AE6 ) )
D1845−27249 ( 1 ) {} | | −> l e s s ( i1010 , i1010 ) . o r i g i n ( IPSC (9D08C by E1868 and 74758) )
47D12−27255 ( 1 ) {} | | l e s s ( i1010 , i1010 ) −> . o r i g i n (MRR(03 C29,− B9A26 ) )
4EC41−27257 ( 1 ) {} | | −> . o r i g i n (MRR(47 D12,− D1845 ) )
B82D3−27258 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ z by C3E76 , s by 4EC41 ] ) )
B4241−27259 ( 1000) {} | | elem ( V2 , cons ( V2 , V4 ) ) l e s s ( V6 , V6 ) −> elem ( V6 , cons ( V8 , V10 ) ) .

o r i g i n ( De r ived ( B82D3 ) )
04B82−27260 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (3 F5D5 , B9A26 , 88A75 ) and S e t ( B4241 ) ) )
C58A8−27261 ( 1 ) {} | | −> . o r i g i n ( B y S p l i t ( D7686 ,− 04B82 ) )
CCC35−27262 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ n i l by 39EE5 , cons by C58A8 ] ) )
DBE1F−27263 ( 1000) {} | | elem ( V2 , V4 ) l e s s ( V2 , s ( V6 ) ) −> elem ( V2 , V4 ) . o r i g i n ( De r ived ( CCC35

) )
DA9E7−27264 ( 1000) {} | | elem ( V2 , V4 ) l e s s ( V2 , s ( V6 ) ) −> elem ( V2 , i n s ( s ( V6 ) , V4 ) ) .

o r i g i n ( De r ived ( CCC35 ) )
E73B3−27265 ( 1000) {} | | elem ( V2 , i n s ( s ( V4 ) , V6 ) ) l e s s ( V2 , s ( V4 ) ) −> elem ( V2 , V6 ) .

o r i g i n ( De r ived ( CCC35 ) )
CE01E−27266 ( 1000) {} | | elem ( V2 , i n s ( s ( V4 ) , V6 ) ) l e s s ( V2 , s ( V4 ) ) −> elem ( V2 , i n s ( s ( V4 ) , V6 ) ) .

o r i g i n ( De r ived ( CCC35 ) )
DD3E9−27267 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t ( F25C3 , 87558 , 27412) and S e t ( DBE1F , DA9E7 ,

CE01E , E73B3 ) ) )
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8E937−27268 ( 1 ) {} | | −> . o r i g i n ( I n d u c t i o n ( L i s t [ z by C9099 , s by DD3E9 ] ) )
71276−27269 ( 1000) {} | | elem ( V2 , V4 ) l e s s ( V2 , V6 ) −> elem ( V2 , i n s ( V6 , V4 ) ) .

o r i g i n ( De r ived (8 E937 ) )
3A852−27270 ( 1000) {} | | elem ( V2 , i n s ( V4 , V6 ) ) l e s s ( V2 , V4 ) −> elem ( V2 , i n s ( V4 , V6 ) ) .

o r i g i n ( De r ived (8 E937 ) )
904F3−27271 ( 1000) {} | | elem ( V2 , V4 ) l e s s ( V2 , V6 ) −> elem ( V2 , V4 ) . o r i g i n ( De r ived (8 E937

) )
6E1FE−27272 ( 1000) {} | | elem ( V2 , i n s ( V4 , V6 ) ) l e s s ( V2 , V4 ) −> elem ( V2 , V6 ) . o r i g i n (

De r ived (8 E937 ) )
DCD34−27273 ( 1 ) {} | | −> . o r i g i n ( C o n t r a d i c t i n g S e t (78 F19 , 46111 , 917BF ) and S e t (3 A852 , 6E1FE ,

71276 , 904F3 ) ) )
Invo lved c l a u s e s : 108

Tota l t ime : 8 .60884282 s

A.1.4. Problem 87

Input

The problem in DFG format, edited for better readability.

begin problem ( benchmark ) .

l i s t o f d e s c r i p t i o n s .
name ({∗∗} ) .
a u t h o r ({∗∗} ) .
s t a t u s ( unknown ) .
d e s c r i p t i o n ({∗∗} ) .
e n d o f l i s t .

l i s t o f s y m b o l s .
f u n c t i o n s [ ( z , 0 ) , ( s , 1 ) , ( minus , 2 ) ] .
p r e d i c a t e s [ ( l e s s , 1+2) ] .
s o r t s [ ( na t , 0 ) ] .
e n d o f l i s t .

l i s t o f d e c l a r a t i o n s .
f u n c t i o n ( minus , ( na t , n a t ) n a t ) .
data type ( na t , z , s ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( axioms ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus ( z ,Y) , z ) ) , m i n u s z l e f t ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus (X, z ) , X) ) , m i n u s z r i g h t ) .
formula ( f o r a l l ( [Y: na t , X: n a t ] , equal : l r ( minus ( s (X) , s (Y) ) , minus (X,Y) ) ) , m i n u s s ) .
e n d o f l i s t .

l i s t o f f o r m u l a e ( c o n j e c t u r e s ) .
formula ( f o r a l l ( [Y: na t ,X: na t , Z : n a t ] , equal ( minus ( minus (X,Y) ,Z ) , minus (X, minus (Y, Z ) ) ) ) ,

c o n j 8 7 ) .
e n d o f l i s t .

end problem .

Output

The boxed parts are the unedited output of Pirate (except for adding bold for keywords).
S t a r t i n g
s c a l a v e r s i o n 2 . 1 1 . 2
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Unkown / Legacy−s t y l e Argument : / home / dwand / p i r a t e / r educeDFGtoFac t s
I n i t i a l Conjec tures :

: 49044−00005 ( 1 ) {} | | minus ( minus ( skf2 , s k f 1 ) , s k f 3 ) = minus ( skf2 , minus ( skf1 , s k f 3 ) ) −> .
o r i g i n ( Conj ( c o n j 8 7 from : S e t (34DDF) ) )

@ 148 @head (0 rank : 11 ) : CaseProofTask−TID : 5 ( p a r e n t TID : 4 , I n i t i a l )
@ 359 @head (3 rank : 26 ) : CaseProofTask−TID : 6 ( p a r e n t TID : 5 , Case ( s o f s k f 3 ) )
@ 630 @head (8 rank : 26 ) : CaseProofTask−TID : 8 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( minus ( s ( s k f 2 ) , V2 ) , s k f 3 )

= minus ( skf2 , minus ( V2 , s ( s k f 3 ) ) ) . ) )
@ 840 @head (15 rank : 24 ) : CaseProofTask−TID : 2 1 ( p a r e n t TID : 2 0 , Case ( z o f s k f 4 ) )
@ 903 @head (18 rank : 24 ) : CaseProofTask−TID : 3 0 ( p a r e n t TID : 2 9 , Case ( z o f s k f 3 ) )
@ 914 @head (17 rank : 26 ) : CaseProofTask−TID : 9 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( s ( minus ( skf2 , s k f 1 ) ) , V2

) = minus ( skf2 , minus ( s ( s k f 1 ) , V2 ) ) . ) )
@ 1078 @head (22 rank : 26 ) : CaseProofTask−TID : 1 0 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( minus ( V2 , s ( s k f 1 ) ) ,

s k f 3 ) = minus ( V2 , s ( minus ( skf1 , s k f 3 ) ) ) . ) )
@ 1181 @head (24 rank : 30 ) : CaseProofTask−TID : 3 1 ( p a r e n t TID : 2 9 , Case ( s o f s k f 3 ) )
@ 1181 @head (23 rank : 32 ) : CaseProofTask−TID : 2 4 ( p a r e n t TID : 2 3 , Case ( z o f s k f 2 ) )
@ 1181 @head (22 rank : 36 ) : CaseProofTask−TID : 3 3 ( p a r e n t TID : 3 2 , Case ( z o f s k f 2 ) )
@ 1181 @head (21 rank : 36 ) : CaseProofTask−TID : 3 9 ( p a r e n t TID : 3 8 , Case ( z o f s k f 5 ) )
@ 1231 @head (20 rank : 39 ) : CaseProofTask−TID : 1 2 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( minus ( s ( s k f 2 ) , V2 ) , V4 )

= minus ( skf2 , minus ( V2 , s ( V4 ) ) ) . ) )
@ 1366 @head (26 rank : 30 ) : CaseProofTask−TID : 5 6 ( p a r e n t TID : 5 5 , Case ( z o f s k f 8 ) )
@ 1420 @head (28 rank : 28 ) : CaseProofTask−TID : 6 5 ( p a r e n t TID : 6 4 , Case ( z o f s k f 7 ) )
@ 1431 @head (27 rank : 35 ) : CaseProofTask−TID : 6 6 ( p a r e n t TID : 6 4 , Case ( s o f s k f 7 ) )
@ 1431 @head (26 rank : 39 ) : CaseProofTask−TID : 1 4 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( minus ( V2 , s ( s k f 1 ) ) , V4 )

= minus ( V2 , s ( minus ( skf1 , V4 ) ) ) . ) )
@ 1521 @head (29 rank : 39 ) : CaseProofTask−TID : 1 6 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( s ( minus ( skf2 , s k f 1 ) ) ,

V2 ) = minus ( skf2 , minus ( s ( s k f 1 ) , V2 ) ) . ) )
@ 1661 @head (33 rank : 39 ) : CaseProofTask−TID : 2 6 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( minus ( V2 , s k f 4 ) , s k f 3 )

= minus ( V2 , s ( minus ( skf4 , s ( s k f 3 ) ) ) ) . ) )
@ 1661 @head (32 rank : 39 ) : CaseProofTask−TID : 2 8 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( s ( minus ( s ( s k f 2 ) , s k f 4 ) )

, V2 ) = minus ( skf2 , minus ( skf4 , V2 ) ) . ) )
@ 1662 @head (31 rank : 39 ) : CaseProofTask−TID : 5 1 ( p a r e n t TID : 7 , Der iveCase ( −> minus ( s ( minus ( skf6 , V2 ) ) , V4 )

= minus ( skf6 , s ( minus ( V2 , V4 ) ) ) . ) )
@ 1767 @head (37 rank : 44 ) : CaseProofTask−TID : 1 8 ( p a r e n t TID : 1 7 , Case ( z o f s k f 3 ) )
@ 1767 @head (36 rank : 44 ) : CaseProofTask−TID : 3 6 ( p a r e n t TID : 3 5 , Case ( z o f s k f 1 ) )
@ 1767 @head (35 rank : 45 ) : CaseProofTask−TID : 1 1 ( p a r e n t TID : 6 , Case ( s o f s k f 2 ) )
@ 2024 @head (45 rank : 20 ) : CaseProofTask−TID : 1 0 0 ( p a r e n t TID : 9 9 , Case ( z o f s k f 1 ) )

i n i t i a l found c o u n t e r ex f o r c a s e Case ( z o f s k f 1 )

Tota l t ime : 2 .340949979 s

The above is the default output, used for the evaluation. Pirate can be configured to also output
the counter example, the corresponding line then is:
i n i t i a l found c o u n t e r ex f o r c a s e Case ( z o f s k f 1 : minus ( minus ( s ( i1002 ) , s k f 1 ) , s ( i1001 ) ) = minus ( s ( i1002 ) , minus (

skf1 , s ( i1001 ) ) ) −> . )
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