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Abstract

Human motor behavior includes a very wide range of movements such as grasping a cup 

to drink your coffee, playing a musical instrument such as the piano, or sports skills such as  

throwing  a  ball.  Some  of  these  skills  are  performed  with  one  hand  (unimanually)  others  

simultaneously  with  both  hands  (bimanually).  However,  all  of  these  skills  have  to  be  

learned. In the domain of motor control and learning it is well documented that feedback is  

one  potential  learning  variable  that  supports  the  learning  process.  Recent  research  has  

indicated  that  one  important  factor  refers  to  the  salient  feedback  information  that  a  

performer uses to increase motor performance and learning. Salient feedback information in  

this  context  not  only  supports  the  detection  and  correction  of  errors.  It  also  forces  the  

performer  to  achieve  a  stable  performance  pattern  and  improves  the  development  of  an  

efficient movement representation. This research involved three experiments which focused  

on  the  following  issues:  (1)  determining  the  impact  of  availability  and  accessibility  of  

salient  feedback for  the  development  of  a  movement  sequence  representation,  (2)  finding  

out  at  which  hemisphere  the  movement  sequence  representation  is  represented,  and  (3)  

establishing  the  impact  of  salient  feedback  information  during  a  life-span  in  a  bimanual  

coordination  task.  The  results  indicate  that  performers  have  developed  an  efficient  

movement sequence representation depending on the available salient feedback information 

(Experiment  1)  and  that  this  information  is  represented  in  a  specific  hemisphere  in  our  

central nervous system (Experiment 2). Salient information also supports the performance of  

a  multifrequency  bimanual  coordination  task  after  10  minutes  of  practice.  However  the  

performance changes in the course of a life-span (Experiment 3). 



Zusammenfassung

Das  menschliche  Verhalten  beinhaltet  eine  Vielzahl  von  Alltagsbewegungen,  wie  das 

Greifen einer Tasse,  Bewegungen im musischen Bereich wie das Klavierspielen oder auch 

sportliche Bewegungen wie das Werfen eines Balles. Einige dieser Bewegungen werden mit  

einer  Hand  ausgeführt  (unimanuell)  andere  gleichzeitig  mit  beiden  Händen  (bimanuell).  

Gemein allen diesen Bewegungen ist das sie erlernt werden müssen. In der Literatur ist gut  

dokumentiert,  dass  Feedback  eine  Lernvariable  ist,  welche  die  Lernprozesse  unterstützen  

kann. Aktuelle Forschungsergebnisse zeigen, dass eine wichtige Komponente in der Salienz  

von  Feedbackinformationen  besteht.  Dies  bedeutet  welche  Informationen  werden  aus  der  

Vielzahl  von  Informationen  die  dem  Lernenden  zu  Verfügung  stehen  herausgehoben  und 

somit  dem  Lerner  leichter  zugänglich  gemacht  damit  dieser  eine  effiziente  

Bewegungsrepräsentation  für  die  motorische  Ausführung  etablieren  kann.  In  drei  

Experimenten  wurde  den  Fragen  nachgegangen  (1)  ob  in  Abhängigkeit  der  Verfügbarkeit  

und Zugänglichkeit von Feedback eine Bewegungsrepräsentation etabliert werden kann, (2)  

wo  die  Informationen  über  die  Bewegungsrepräsentation  in  unserem Zentralnervensystem 

abgespeichert werden und (3) ob saliente Informationen die motorische Ausführungsleistung 

über  die  Lebenspanne  bei  einer  bimanuellen  Koordinationsaufgabe  unterschiedlich 

beeinflussen.  Die  Ergebnisse  zeigen,  dass  in  Abhängigkeit  der  Salienz  von 

Feedbackinformationen  Lerner  eine  effiziente  Bewegungsrepräsentation  basierend  auf  

visuell-räumlichen  oder  motorischen  Informationen  entwickeln  (Experiment  1)  und  diese  

Informationen  hemisphärenspezifisch  in  unserem  Zentralnervensystem  abgespeichert  

werden  (Experiment  2).  Saliente  Informationen  ermöglichen  es  den  Lernern  zudem, 

bimanuelle  multifrequenzielle  motorische  Aufgaben  bereits  nach  weniger  als  10  Minuten  

Übung auszuführen.  Die Leistung ist  aber  über  die  Lebensspanne graduell  unterschiedlich  

(Experiment 3).
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1 Introduction

To establish learning processes and increases in performance all kinds of systems take  

advantage of various feedback mechanisms. The complexity of feedback mechanisms  

ranges from a simple heater-thermostat unit in a room which is using the thermostat as  

an information feedback channel to high-end technical systems like autonomous cars,  

which  incorparate  a  plurality  of  different  sensors  to  process  internal  and  external 

feedback in order to ensure a safe and successful arrival at the right destination. One of  

the most  complex systems,  however,   is  the human motor  system and it  remains  far  

from being perfectly understood. The human motor system controls our daily actions,  

can rapidly learn new skills and always seeks to optimize its performance. In order to  

do so,  the human motor system uses several different information channels to obtain  

the  necessary  feedback  information  in  order  to  reach  its  goals  and  improve  its  

performance. 

Adams  (1971)  proposed  that  motor  learning  processes  are  shaped  and  improved  

through  the  refinement  of  perceptional-motor  feedback  loops.  A  motor  task  like  

grasping  a  glass,  for  example,  is  a  process  in  our  motor  system  that  provides  

perceptional feedback information to reduce errors in the repetitions of the task. A mix  

of  feedback  information  is  involved  in  this  task.  Visual-perceptional  information 

provides  the  motor  system  with  basic  information  about  the  target  itself  and  the  

system’s spatial relation to the target.  But further supporting feedback information is  

proceeded in this  task, e.g. haptic information to control the strength of the grasp or  

proprioceptic information to estimate the right force to lift the glass. 
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According to Adams (1971), feedback provides information helping to solve the motor  

problem by guiding the movement to the target on successive trials. He suggested that  

feedback does  not  directly  produce  learning,  but,  it  creates  the  appropriate  situation  

(i.e.,  being  on  target)  so  that  the  actual  learning  mechanisms  can  operate  (i.e.,  the  

movement's  feedback producing an increment in “strength” for the perceptual  trace).  

This  source  of  information  is  thought  to  serve  as  a  basis  for  error  detection  and  

correction  on  subsequent  trials  and  thus  can  be  used  to  achieve  more  effective  

performance as practice continues.

According to the literature on motor learning, one of the most important variables in  

the learning of motor skills is the information provided by extrinsic feedback regarding  

the  progress  and  outcome  of  performing  movements.  This  visual-perceptual  

information can be presented through concurrent and terminal feedback (Adams, 1971;  

Bilodeau & Bilodeau, 1958). A lot of research has been done on the topic of visual-

perceptual feedback and provided evidence that there are all  kind of parameters that  

influence  our  motor  system  in  the  way  it  deals  with  visual-perceptual  feedback 

information.  More  than  a  century  ago  Woodworth  (1899)  already  described  the  

influence of  the visual-perceptual feedback on the control modes subjects choose for  

their motor action. His subjects were given the task to draw a line on a piece of paper  

in  a  back-and-forth movement.  The execution  speed was controlled  by a  metronome  

and was gradually increased. In one condition, his subjects kept their eyes open during  

the execution and in the second condition subjects had to close their eyes. The results  

showed  the  accuracy  advantage  of  the  open-eyes  group  in  the  trials  with  a  lower  

velocity versus the closed-eyes group. This advantage in accuracy steadily shrank with  

the  increase  of  movement  velocity.  Woodworth  deducted  from these  results  that  the 
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movements  of  both  groups  were  initialized  as  pre-programmed  movements,  but  the  

eyes-open-group was able to use their visual-perceptual information (or what he called 

current control) during the execution to reduce their movement errors, at least as long 

the  movement  velocity  still  gave  them the  opportunity  to  use  the  feedback  in  their  

action.  This  so called  critical  velocity describes the time mark in  the duration of  an 

action  at  which  visual-perceptual  feedback  can  be  included  in  the  motor  control  

process  and  be  used  for  error  correction.  This  critical  time  was  estimated  by  

Woodworth to be around 200ms. This has largely been confirmed by later researches  

(e.g. Keele & Possner, 1968). These early findings lead to the conclusion that visual-

perceptual feedback always depends on the context of its action. In this case, the value 

of  the feedback information changes in contrast to the duration of the original action.

In research on motor learning and performance there has always been a great effort  to  

present feedback information most accurately in order to provide optimal support for  

learning and performance.  As mentioned before, which still  today has high relevance 

for  the  understanding  of  the  mechanisms behind  processing  feedback  information  is  

the  closed-loop  theory  of  motor  learning  by  Adams  (1971).  The  basic  idea  of  this  

theory is  that  the  learners   develop a  perceptual  trace based  on the various  types  of  

feedback information generated through their action. This perceptual trace is used for 

an ongoing comparison versus a stored set of sensory consequences to reduce errors in  

future  performances.  The  model  is  based  on an  engineering  analogy,  also  known as  

negative  feedback  loop,  and  is  consistent  with  previous  findings  on  the  role  of 

feedback in learning and performance (e.g., Adams, 1968; Bilodeau, 1966).

To better  support this negative feedback loop, feedback information can be modified 

and optimized.  This optimized feedback information can also be described as salient 
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information.  In general,  salient information is  characterized by pieces of multimodal  

perceptual  information,  which  before,  during  or  after  a  movement  is  more  readily  

accessible  to  the  learner,  to  improve motor  performance and motor  learning.  Salient  

perceptual  information  facilitates  pattern  detection  and improves  error  detection  and 

correction processes to increase stable performance through practice (see Shea et al.,  

2016). 

Salient  feedback  information  is  a  way  to  optimize  this  negative  feedback  loop  by  

providing  modified  information,  making  it  easier  and  more  efficient  for  the  motor 

system  to  detect  and  minimize  errors.  In  other  words,  developing  more  salient 

feedback information is like switching from a roadmap to a navigation system to find a  

certain street in an unknown city. A map in combination with the knowledge of your  

current location provides all the necessary information to find a final destination and 

enables  the user  to look at  the map at  anytime to correct  his  direction.  But  the map 

does  not  present  the  most  needed  piece  of  information.  All  information  required  to  

reach a destination is embedded in the sum of all the information this map can provide  

to  the viewer.  And the viewer has to make an effort  to  extract  the specific  feedback  

information needed at this point. In contrast, most mobile navigation systems provide  

the user with a reduced amount of information based on their current location.  Some 

devices even display new information only before a direction change. The navigation  

system displays  salient  feedback information which is  reduced to  a  set  of  core facts 

and pre-processed  for  better  flawless  integration  into  our  primary  feedback loop,  so  

that the user can navigate the vehicle to the final destination.

In  the  experiments  conducted  in  the  framework  to  this  thesis  the  type  of  salient  

information is also a visual information aiming to support a person in optimizing their  
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negative  feedback  loops.  The  visual  salient  information  here  is  represented  in  two 

different modes in which a computer cursor is controlled by one or two arm-levers. 

In experiment 1 and experiment 2 the presented salient feedback information supports  

the performer in learning a unimanual movement sequence. In some of the conditions 

of these two experiments the performers can see the cursor and a representation of the 

target  movement  sequence  and  are  provided  with  a  visual  online  feedback  of  the  

spatial and temporal differences of their concurrent movement production. Afterwards,  

in all  conditions the performers are given a KR (knowledge of result)  feedback. The  

produced movement sequence is displayed as a graphical overlay on the representation  

of the target movement sequence. This also provides the performers a simplified visual  

comparison  of  the  produced  movement  sequence  and  the  differences  in  spatial  and 

temporal dimensions. 

In experiment 3, the task and the characteristics of the salient feedback information are  

altered.  The  task  switches  from  a  unimanual  task  to  a  bimanual  task.  The  salient  

feedback  information  addresses  the  bimanual  coordination  problem  of  the  task.  To  

support  the performer,  the  salient  feedback information  of  both limbs is  compressed  

into one displayed cursor.  Reducing the  amount  of  visual  information  in  this  salient  

feedback information makes it easier to integrate it into a negative feedback loop. 
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2 Theoretical background

With this context dependency of visual-perceptual feedback in mind, this thesis and its  

experiments  offer  further  perspectives  on  how  salient  information  in  the  form  of  

visual-perspective  feedback influence  the  way we learn  and perform different  motor  

tasks. 

The  way  movement  sequences  are  represented  and  processed  in  our  brain  is  an  

important research topic in the field of motor control and learning. It started with the  

work  of  Lashley  (1951)  and  the  topic  is  still  very  visible  in  recent  research  groups  

(Bapi, Miyapuram, Graydon, & Doya, 2006; Hikosaka, Nakamura, Sakai, & Nakahara,  

2002; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Kirsch & Kunde, 2012; Korman,  

Raz,  Flash,  &  Karnim,  2003;  Nakahara,  Doya,  & Hikosaka,  2001;  Shea  &  Kovacs,  

2013;  Shea  & Wright,  2012;  Tanaka &Watanabe,  2014).  A main  conclusion  of  these  

research  groups  is  that  there  seems  to  be  some  evidence  that  independent  codes  or  

representations during the acquisition of a movement sequence are developed and the  

availability  of  several  pieces  of  information,  like  salient  information,  assist  the 

learning process (Keele et al., 2003). In addition, most of these theoretical frameworks  

describe a change in the representation during the acquisition phase (Bapi et al., 2006;  

Dirnberger & Novak-Knollmueller, 2013).

A consistent theoretical framework is the parallel neural-network model of Hikosaka et  

al. (1999). It is based on behavioral and neuronal imaging data (Bapi, Doya, & Harner,  

2000; Hikosaka et al., 1999, 2002). Hikosaka et al. (1999) describe the development of  

two  parallel  representations  during  the  acquisition  of  a  movement  sequence.  One  

neural stream is a fast developing representation based on a visual-spatial  coordinate  
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system (e.g.,  spatial  locations  of  the  end  effector  and/or  sequential  target  positions,  

effector-independent) and the second one, is a contemporaneous but slower developing  

representation which bases on a motor coordinate system (e.g., sequence of activation  

patterns  of  the  agonist/antagonist  muscles  and/or  achieved  joint  angles,  effector-

dependent).  According to this  framework, the reaction of the parallel  neural-network 

model  to  further  practice  is  an alternating  shift  of  reliance from the fast  developing  

visual-spatial  coordinate  system  to  the  slower  developing  motor  coordinate  system 

(Hikosaka et al., 1999; Bapi et al., 2000).

Besides practice, it seems there are additional parameters which have an impact on the  

more efficient  coordinate  system for sequence production.  Moreover,  the complexity  

(for example the amount of reversals and/or the duration) of the movement sequence  

and  the  availability  of  concurrent  visual  feedback  seem  to  influence  the  preference  

toward the dominating coordinate system in the sequence production (Panzer, Krueger,  

Muehlbauer, Kovacs, & Shea, 2009; Shea et al., 2011). The results of Kovacs, Boyle,  

Gruetzmacher,  and Shea  (2010)  provide  a  more  detailed  example.  They showed that  

the availability of concurrent visual feedback and the possibility of online control in a  

movement sequence resulted in a stronger preference for the visual-spatial coordinate  

system.  In  contrast,  if  concurrent  visual  feedback  was  prevented,  the  participants  

showed a better performance in the motor transfer test, which implies a preference for  

the motor coordinate system. 

Based on the results, our follow-up question is to know whether it is possible to switch  

coding schemes (motor and visual-spatial)  and control  modes (online and pre-planed 

control)  after  the  acquisition  depending  on  the  type  of  salient  information  which  is  

presented.
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In  accordance  to  the  theoretical  framework  of  Hikosaka  et.  al.  (1999)  it  should  be  

possible to access both coordinate systems regardless of the performers’ learning stage 

or their actual status. Depending on the available salient information, subjects use the  

most successful code for sequence production irrespective of the stage of practice (see  

also Clegg, DiGirolamo, & Keele, 1998; Kovacs, Han, & Shea, 2009).

Furthermore   this  is  a  relevant  question  with  regard  to  the  perspective  of  control  

modes.  According  to  Glover  (2004)  and  the  older  works  of  Woodworth  (1899),  our 

motor  control  system  is  able  to  alternate  between  pre-planned  control  and  online 

control,  but  it  naturally  chooses  the  more  efficient  control  mode  depending  on  the  

context of the task (e. g. the availability of feedback and the kind of task). Based on 

these assumptions of Glover’s (2004) planning-control model, the leading question in  

this first experiment helps to further understand how flexible the subjects are in their  

choice of control  modes and to  what  extent  subjects  are  able  to  switch the executed  

control  mode through a change in  the  availability  of  salient  information at  a  certain  

point after the task acquisition.

The outcome of the first  experiment leads us to  a shift  from the starting question of 

how  movement-related  information  is  influenced  by  manipulating  the  supporting 

salient  information  to  the  follow-up  question  of  where this  movement-related 

information  is  stored  and proceeded after  the  acquisition  with  the  support  of  salient  

information.

To obtain answers  to this  question we combined for  the first  time the idea of  the  

intermanual-transfer-test  paradigm  with  a  recognition  test  based  on  the  visual-half-

field (VHF) paradigm. There already have been experiments which combined the idea  
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of  intermanual-transfer-test  and  the  visual-half-field  paradigm,  but  in  a  different  

application and for other purposes. Ellenbuerger et al. (2012) and Schmitz et al. (2013)  

have conducted experiments, where visual information about a sequence was presented  

in different VHF during sequence acquisition in order to investigate the encoding of a  

sequence  representation  in  the  two  hemispheres.  They  used  the  visual-half-field 

paradigm  to  project  information  directly  on  a  specific  hemisphere.  This  was  done  

during  acquisition  and  without  physical  exercise.  Based  on  this  thesis  the  visual  

information  Ellenbuerger  et  al.  (2012)  and  Schmitz  et  al.  (2013)  used  in  their  

experiments  can  be  classified  as  salient  information.  In  the  first  experiment  of  this  

dissertation the focus was on the time required to recognize the stimulus in a visual-

half-field shortly after the physical acquisition of a movement sequence.  

The  basic  assumption  of  the  visual-half-field  paradigm  is  based  on  inter-

hemispheric  transmission  and  the  physiological  structures  of  the  crossed  visual  

pathways. Visual stimuli  presented selectively to either the left  visual field (LVF) or  

the  right  visual  field  (RVF)  are  initially  projected  directly  to  the  contralateral  

hemisphere  (Bourne,  2006).  The  latency  a  subject  needs  to  respond  to  a  stimulus  

presented  in  either  of  the  VHFs  reveals  details  about  the  hemispheric  origin  of  the  

information  processing.  If  the  response  time  of  a  stimulus  presented  in  the  RVF  is  

lower compared to the response time of the same stimulus presented in the LVF, this  

means the origin of the response production is based on the left brain hemisphere. The  

higher response time that comes with a LVF presentation must be traced back to the 

detour the stimulus information takes from the right brain hemisphere over the corpus  

callosum to the left brain hemisphere, which is the main proceeding brain hemisphere  

for  this  information  and  resulting  response  production  (Hardyck,  Tzeng,  &  Wang,  
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1977; Kinsbourne, 1970; Poffenberger, 1912; Berlucchi, Aglioti, & Tassinari, 1994 for  

a review).

A further advantage and additional feature of the VHF-paradigm are in contrast to  

the  intermanual-transfer-test,  as  it  reduces  possible  lateralization  effects  caused  

through  the  handedness  of  the  learner.  This  can  be  ascribed  to  the  fact,  that  motor  

information is  only  recognized after  acquisition  by a  response through a bimanually  

keypress and  not physically reproduced with unilateral limb movement.

In the last step of these experiments we extended the use of salient information by 

modifying the task. At first we used salient information in different presentation modes  

as  support  in  the  acquisition  of  a  unimanual  task.  In  the  last  experiment  we  used 

salient information as concurrent feedback to support the execution of a continuous 1:2  

bimanual  coordination  task.  The  task  itself  asks  the  subject  to  make  a  continuous  

extension-flexion movement with both of their limbs. This had to be done in a manner  

so that one limb had to move twice as fast as the other limb. These limb movements  

result in a continuous change between the symmetrical and the non-symmetrical mode  

of  coordination  while  performing  the  task  (Swinnen,  Dounskaia,  Walter,  &  Serrien,  

1997). Because of this dynamical change task was hard to learn. But with visual online  

support  of  salient  information,  the  subjects  were  able  to  produce  an  effective 

performance  of  this  task  after  a  few  minutes  of  practice.  The  salient  information  

provided in this task was an online Lissajous feedback. Lissajous display presents the  

integrated movement of the two limbs as a cursor in one plane, where the movement of  

the right limb, for example, moves the cursor to the right (extension) and left (flexion),  

while  the  movement  of  the  left  limb  moves  the  cursor  up  (extension)  and  down 

(flexion) on the display. This compressing of the movement information of both limbs  
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results  in  optimized perceptual  information  and  reduced attentional  demands  for  the  

learner (see Shea et. al., 2015 for review).

In  addition  to  this,  the  driving  idea  in  this  last  experiment  was  to  trace  the  

development  of  the  bimanual  skill  acquired  with  the  support  of  salient  information  

over a subject’s life span. As shown in motor development research children and older  

adults have a stronger tendency for mirror movements in bimanual coordination tasks  

than  young  adults  (e.g.,  Addamo,  Farrow,  Bradshaw,  &  Georgiou-Karistianis,  2011; 

Cattaert,  Semjen,  &  Summers,  1999;  Cohen,  Taft,  Mahadeviah,  &  Birch,  1967; 

Conolly & Stratton, 1968; Walter & Swinnen, 1990b; Wolff, Gunnoe, & Cohen, 1983).  

Throughout life this tendency decreases in children, but increase again in older adults.  

There  is  some  evidence  that  both  changes  are  connected  to  transformations  of  the  

corpus callosum. For children the tendency decreases with the time of the completion  

of the myelination of the corpus callosum (e.g., Chicoine, Proteau, & Lassonde, 2000;  

Serrien, Sovijärvi-Spapé, & Rana, 2014; Yakovlev & Lecours, 1967). For older adults  

the  reappearance  of  these  mirror  movement  tendencies  co-occurs  with  age-related  

degenerative processes of the callosal structures, i.e., the demyelination of the callosal  

fibers (e.g., Pfefferbaum et al., 2000; Salat et al., 2005).
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3 Overview

The  main  contents  of  this  thesis  are  three  experiments  presented  in  published  

journal  articles which highlight  the role  of salient information in motor  performance  

and learning.

In experiment  1  (“The impact  of  concurrent  visual  feedback  on coding of  on-line  

and  pre-planned  movement  sequences”)  the  main  purpose  of  the  experiment  was  to 

determine if the availability of salient information during an acquisition influences the  

preference of our motor control system for one of the two parallel coordinate systems 

(visual–spatial,  motor).  Another  research  question  was  as  to  how flexible  the  motor  

control system is, if the availability of the salient information suddenly changes.

The task was to reproduce a 2000ms spatial-temporal pattern of a sequence of elbow 

flexions and extensions. Subjects were randomly assigned to one of the two conditions,  

online (OL) or pre-planned (PP). In the OL condition the criterion waveform and the  

cursor  were  provided  during  movement  production  while  this  information  was  

withheld during movement production for the PP condition. The task was embedded in 

an inter-manual transfer design. After the retention test an additional subdivision was  

introduced. One half of the subjects stayed in their condition (PP->PP or OL->OL) and  

the other half switched the condition for the transfer tests (PP->OL or OL->PP). The  

mirror  effector  transfer  test  required the  same pattern of  muscle  activation and limb  

joint  angles  as  required  during  acquisition.  The  non-mirror  transfer  test  required  

movements to the same visual-spatial locations as experienced during acquisition.

Experiment 2 (“Hemispheric asymmetries of a motor memory in a recognition test  

after learning a movement sequence”) answers the question on where,  i.  e. on which 
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brain  hemisphere,  the  more  efficient  coordinate  system  for  sequence  production  is  

represented.  This experiment is divided in two sub-experiments. In sub-experiment 1,  

dominant right-handers were randomly divided into one of two acquisition groups: a  

left-hand  starter  and  a  right-hand  starter  group.  After  an  acquisition  phase,  reaction 

time  (RT)  was  measured  in  a  recognition  test  by  providing  the  acquired  sequential  

pattern  in  the  left  or  right  visual  half-field  for  150  ms.  The  recognition  test  was 

embedded in  a  visual-half-field  design.  In  a  retention  test  and two transfer  tests  the  

dominant coordinate system for sequence production was evaluated. In sub-experiment 

2 dominant left-handers and dominant right-handers had to acquire the sequence with 

their dominant limb.

Finally, in the third experiment (“Life span changes: Performing a continuous 1:2  

bimanual coordination task”) the perspective changes from a unimanual to a bimanual 

task. The research interest was to find out how a person’s age influences the execution  

of the newly acquired bimanual skill,  which was acquired with the support of salient  

information feedback.

Children, young adults, and older adults were instructed to perform a continuous 1:2  

bimanual coordination task by performing flexion-extension wrist movements over 30s 

where symmetrical and non-symmetrical coordination patterns alternate throughout the  

trial.  The  vision  of  the  wrists  was  obstructed  and  salient  information  in  form  of  

Lissajous-feedback was provided online. All age groups had to perform 10 trials under  

three different load conditions (0 kg, .5 kg, 1.0 kg: order counterbalanced). The load  

was  manipulated  in  order  to  determine  if  heavier  load  increases  the  likelihood  of  

mirror movements.
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3.1 Overview about the conducted experiments

Experiment 1

Authors: Leinen, P., Shea, C. H. & Panzer, S.

Title: “The impact of concurrent visual feedback on coding of on-line and pre-planned 

movement sequences”

Contribution of Peter Leinen: planning; organization; data acquisition; data analysis;  

authoring of the manuscript

Status: published in Acta Psychologica, 2015 

Experiment 2

Authors: Leinen, P., Panzer, S. & Shea, C. H.

Title: “Hemispheric asymmetries of a motor memory in a recognition test after

    learning a movement sequence”

Contribution  of  Peter  Leinen:  planning;  organization;  hardware  development  (eye  

tracker); data acquisition; data analysis; authoring of the manuscript

Status: published in Acta Psychologica, 2016

Experiment 3

Authors: Leinen, P., Vieluf, S., Kennedy, D., Aschersleben, G., Shea, C. H. & 

Panzer, S.

Title: “Life span changes: Performing a continuous 1:2 bimanual coordination task”

Contribution of Peter Leinen: planning; organization; data acquisition; data analysis;  

authoring of the manuscript

Status: published in Human Movement Science, 2016

20



3.2 Overview about further publications

Authors: Leinen, P. & Panzer, S.

Title: “Entwicklung eines trainerfreundlichen Messplatzes in einer Schwimmhalle mit 

Open Source Tools.”

Contribution  of  Peter  Leinen:  planning;  organization;  hardware  development;  

authoring of the manuscript

Status: published in DVS Sportinformatik -  Abstract- und des Proceeding-Band, 2016

Authors: Vieluf, S., Massing, M., Blandin, Y., Leinen, P. & Panzer, S.

Title: “The role of eye movements in motor sequence learning”

Contribution of Peter Leinen: planning; data analysis; authoring of the manuscript

Status: published in Human Movement Science, 2015

Authors: Malangré, A., Leinen, P. & Blischke, K,

Title: “Sleep-related offline learning in a complex arm movement sequence.”

Contribution of Peter Leinen: planning; organization; data analysis

Status: published in Journal of Human Kinetics, 2014

3.3 Overview about conference talks with review of the 
submitted abstract

Authors: Leinen, P. & Panzer, S.

Title: “Entwicklung eines trainerfreundlichen Messplatzes in einer Schwimmhalle mit

Open Source Tools ”

Contribution of Peter Leinen: Presenter
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Conference: DVS Conference “Sportinformatik”, 2016

Authors: Leinen, P. & Panzer, S.

Title: “Pointing movements and visual illusion: van Donkelaar (1999) revisited.”

Contribution of Peter Leinen: Presenter

Conference: NASPSPA Conference, 2016

Authors:  Leinen, P., Panzer, S. & Shea, C.H.

Title: “Does ischemia influence effector transfer?”

Contribution of Peter Leinen: Presenter

Conference: NASPSPA Conference, 2015

Authors: Panzer, S., Leinen, P. & Shea, C.H.

Title: “Is the motor coordinate system lateralized in the left hemisphere?”

Contribution of Peter Leinen: in cooperation with Stefan Panzer

Conference: NASPSPA Conference, 2014

Authors: Panzer, S. & Leinen, P.

Title: “Lateralisierte Wissensrepräsentation von Sportgeräten.”

Contribution of Peter Leinen: Presenter

Conference: DVS Conference “Motorik”, 2013
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movement sequence
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6 Experiment 3 - Life span changes: Performing a 
continuous 1:2 bimanual coordination task
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Shea³ & Stefan Panzer¹   
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7 General discussion and outlook

This  dissertation  contributes  to  a  better  understanding  of  the  human  motor  control  

system. According to Rosenbaum (2009) the subject of motor control can be structured  

into four core problems:

 the degrees of freedom problem

 the sequencing and timing problem

 the perceptual-motor integration problem

 the learning problem

The experiments in this thesis specifically address the latter two: how are perception  

and motor control combined? How are perceptual-motor skills acquired? The results of  

these experiments can be summed up into five main findings.

First,  providing  visual  salient  feedback  information  during  the  acquisition  of  a  

movement  sequence  is  crucial  for  this  kind  of  representation.  If  a  visual  salient  

feedback is concurrently provided, it stimulates a visual-spatial representation. But, if  

visual  salient  feedback is  withheld,  the  acquired sequence tends  to  take a  form of  a  

motor coordinate representation (experiment 1).

Second,  if  the  subjects  develop  a  preference  for  a  more  efficient  movement  

representation  one  day  after  the  acquisition,  this  does  not  mean  the  motor  system 

cannot  fall  back  on  the  alternate  representation.  If  the  extrinsic  salient  feedback 

condition suddenly changes by covering salient feedback, the motor system adapts to  

the new condition and is able to access a motor coded representation (experiment 1). 
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Third, if the motor coordinate representation is the dominant representation for a task,  

its information is mainly localized on the left brain hemisphere (experiment 3).

Fourth, salient information can be used to reduce the amount of attention consuming  

processes  in  a  difficult  1:2  bimanual  coordination  task.  By  using  the  concept  of  a  

Lissajous template the visual feedback information of two hands can be compressed in  

a  single  cursor.  This  relieves  attentional  processes  during  an  online  controlled  

execution and simplifies bimanual coordination.

Fifth, this  support through preprocessed and reduced salient feedback information by  

using a Lissajous template works on all three age groups in this experiment (children,  

young adults  and older  adults).  However,  performance differs  between these groups.  

Performance over age groups can be described as an inverted-U-function. Middle-aged  

young adults out-perform both of the other groups. 

In  the  follow-up section it  will  be discussed in  more detail  how this  finding have  a  

share in the above mentioned two core problems of motor control.

7.1 The learning problem

What Rosenbaum (2009) named the fourth core problem is the question of how motor  

skills  are  acquired.  The  first  two  experiments  described  in  this  thesis  deal  with  the  

influence of salient information on learning processes, or, to be more specific, learning  

a movement sequence of a spatial-temporal movement sequence. The first result  (see  

above)  shows  how  the  learning  process  is  deeply  codetermined  by  the  extrinsic  

feedback modalities the learner is equipped with during acquisition. This is not a new 

finding. The influence of extrinsic visual information on our performance has been an  

active research field since Woodworth (1899). As argued in experiment 1 and already  
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in  previous  research  by  Kovacs,  Boyle,  Gruetzmacher  and  Shea  (2010),  the  learner  

operates  in  a  pre-planned  control-mode  if  salient  information  is  withheld  during  

execution in the acquisition phase.  If  information is  given the learner  operates in  an  

online  controlled  mode.  These  control  modes  based  on Glover’s  (2004)  concept  are  

related  to  Rosenbaum’s  (2009)  concept,  which  propose  that  motor  learning  uses  

forward and inverse models to improve during the acquisition of a skill. Furthermore,  

supporting a motor task during acquisition also influences what the learner believes is  

the more efficient coding system (motor vs. visual-spatial) to rely on. 

Based on the second main findings  it  can be assumed that  the motor  control  system  

during a learning process does not only develop the most efficient representation of a  

motor  sequence  under  the  given  conditions.  Like  Hikosaka  et.  al.  (1999)  already  

proposed in  their  model,  the  less  efficient  representation  is  developed as  well.  With  

changing conditions, like withdrawal of the salient information, the motor system can  

immediately fall back from the primary stream of visual-spatial coded information to  

the secondary stream of motor-coded information and keep up its performance as far as 

possible.

The  third  main  finding  of  experiment  2  clarifies  in  the  context  of  learning  the 

localization of motor-coded information directly after an acquisition. The results from 

these  two  sub-experiments  offered  further  evidence  for  an  asymmetry  of  the  human  

brain  hemispheres.  Independent  of  handedness  motor  coded  information  seem to  be  

stored on the left  brain hemisphere.  This main finding supports  the concept  of brain  

hemisphere  specialization  (Liepmann,  1905;  Kimura,  1977;  Serrien  and  Sovijärvi-

Spapé,  2015)   and helps  to  get  a  deeper  understanding of  the  neural  level  of  motor  

learning. 
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Experiment 3 is not directly connected to a review of learning processes. There was no 

retention  test  after  a  certain  time  period  and  no  control  condition  if  the  acquired  

bimanual  coordination  pattern  outlasted  a  certain  time  period,  which  is  a  basic  

requirement for learning in general.

7.2 The perceptual-motor integration problem

The question of how motor learning is established is intertwined with the question of  

perception-motor  integration.  To  improve  motor  learning  processes  a  learner  is 

dependent  on some kind of  feedback.  It  is  the basic  mechanism to detect  errors  and  

correct these on the fly or in further trials. As already mentioned in the introduction,  

visual  feedback is  one  of  the  most  powerful  feedback channels  of  the  human motor  

system and salient information is a way to make this visual feedback easier to process.  

But  modulating  feedback  always  has  some  kind  of  impact  on  the  whole  motor  

performance  and  learning  process.  Besides  the  already  mentioned  influence  of  the  

availability  of  salient  feedback  on  our  motor  control-mode  and  the  kind  of  

representation  knowledge,  salient  information  can  also  accelerate  the  acquisition  

processes.  What  is  listed  as  the  fourth  of  the  main  findings  of  this  dissertation  

describes  how  perceptual  processing  can  be  reduced  in  a  1:2  continuous  bimanual  

coordination task, which results in a better integration into the motor control system. 

This kind of multi-frequency ratio task, which consists of an alternating in-phase/anti-

phase pattern is  quiet  a challenge for a novice performer (e.g.,  Byblow & Goodman,  

1994; Sternad, Turvey, & Saltzman, 1999a, 1999b; Treffner & Turvey, 1993; Swinnen,  

Dounskaia,  Walter,  &  Serrien,  1997).  Without  the  presented  salient  information  the 

performer would have to invest a lot of time to manage the task, but displaying salient  
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information in form of Lissajous feedback and template, the performer can manage this  

task  in  about  5  min  (Kovac,  Buchanan  &  Shea,  2010).  An  explanation  for  the  

impressive  support  of  this  kind  of  salient  information  in  this  task  is  based  on 

perceptual constraints. The performers have to split their attention on two effectors at  

the same time.  Additionally,  the effectors  are  in  a  continuous change between stable  

and  less  stable  coordination  patterns.  This  perceptional  split  and  ongoing  change  in  

coordination  patterns  is  hard  to  manage  for  the  motor  system  (Shea,  Buchanan  & 

Kennedy,  2015).  An online controlled task like in  this  experiment  relies on a  steady 

and  fast  feedback  integration.  By  compressing  the  feedback  into  a  single  attention  

point  perceptual  feedback  integration  is  facilitated  and biomechanical  constraints  of  

the  altering  shift  between  stable  and  less  stable  coordination  patterns  can  be  

overwhelmed (Shea, Buchanan & Kennedy, 2015). Furthermore, the fifth main finding  

suggests  that  this  advantage  (offered  by  a  facilitated  visual  feedback  integration)  is  

available to performers regardless of their age. The findings of age-related differences  

are  in  accordance  to  other  research  which  has  demonstrated  that  children  and  older 

adults  showed a strong tendency to  produce mirror  movements  (e.g.,  Addamo et  al.,  

2009; Wolff et al., 1983). 

7.3 Outlook

Based  on  the  main  findings  of  this  dissertation  and  the  highlighted  links  between 

salient  information  and  motor  learning/performance,  it  becomes  clear  that  salient  

information  has  a  huge impact  on  the  way our  motor  system processes  information.  

These interactions should always be considered in future research in the field of motor  

learning  and  performance.  A  further  approach  resulting  from  the  findings  of  

experiment  1  and  experiment  2  would  be  to  ask  if  changing  access  to  salient  
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information during performance does not only change the coding mode of the acquired  

information  and  the  control-mode  during  the  task,  but  also  influences  which  brain  

hemisphere is dominantly involved in the process. Furthermore, it will be interesting to  

find out if this hemisphere dominance also switches by changing the access to salient  

information.  To answer this  question  it  would be necessary to  extend the domain  of  

behavioral  research  to  a  neural  brain  imagery  level,  like  monitoring 

electroencephalography (EEG) activity during the execution of a unimanual movement  

sequence.  By comparing the motor  cortex area activity  of both brain hemispheres,  it  

could be possible to detect a change in hemisphere dominance under different salient  

information  conditions.  The  results  of  an  experiment  like  this  would  probably  be  a 

further  step  to  help  integrate  the  findings  of  this  dissertation  and  its  underlying  

theoretical concepts into a neural structural correlate, which is widely discussed in the  

domain of brain hemisphere specialization (Haaland & Harrington, 1989; Harrington & 

Haaland,  1992;  Kimura,  1977;  Mutha,  et  al.,  2012;  Serrien,  et.  al.,  2006  for  

overviews). 

Another connection point of further research would be to close the experimental gap  

between the work of Ellenbuerger et. al. (2012) and experiment 2 in this dissertation.  

Ellenbuerger  et.  al.  (2012)  analyzed  how presenting  information  in  different  visual-

half-fields  in  a  pure  observational  learning  setting  influences  the  performance  in  a  

physical  execution  transfer-test  the  next  day.  Their  result  showed  an  advantage  for  

visual-spatial coded information, if the information was presented in the visual central  

field  or  right-half-field.  Experiment  2  of  this  dissertation found evidence  of  a  right-

visual-field  advantage  for  recognition  motor-coded  information  after  a  physical  

acquisition.  A  question  arising  from  these  two  experiments  is  to  know  whether  
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presenting  salient  information  in  a  benefited  half-field  during  a  physical  acquisition  

would lead to an advantage in performance. To answer this question would require an 

experiment which ensures an exclusive presentation of the information in the specific  

half-field.  This  could  be  implemented  by  using  a  head-mounted-display  or  a  virtual  

reality headset. Potential results of such an experiment would also be interesting from  

the  perspective  of  applied  science.  The  arrangement  of  information  on  head-up-

displays, for example in cars, could be improved by considering these findings.

The last  of the three experiments shows how it  is  possible  to  use manipulate  salient  

information in order to achieve a huge performance gain in a very difficult bimanual  

coordination  task.  This  idea  of  optimizing  salient  information  in  other  complex 

coordination tasks deserves more attention, particularly in the field of applied science.  

Rehabilitation research, for example, could improve methods for relearning disrupted  

coordination patterns after a stroke. In sports or when learning musical instruments, it  

is often a hard challenge for the learner to adopt complex coordination patterns,  like  

doing gymnastics  or playing the guitar.  With today’s  possibilities,  which range from 

smartphone applications to real time full body motion tracking, these challenges could  

be  lowered  (especially  for  novices)  by  additionally  presenting  compressed  salient  

feedback information during the initial learning phase.
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