
Generation and Grounding

of Natural Language Descriptions

for Visual Data

A dissertation submitted towards the degree
Doctor of Engineering

(Dr.-Ing.)
of the Faculty of Mathematics and Computer Science

of Saarland University

by
Anna Rohrbach, M.Sc.

Saarbrücken
March 2017



ii

Day of Colloquium 15th of May, 2017

Dean of the Faculty Univ.-Prof. Dr. Frank-Olaf Schreyer

Examination Committee
Chair Prof. Dr. Antonio Krüger

Reporters Prof. Dr. Bernt Schiele

Prof. Dr. Vera Demberg

Prof. Trevor Darrell, Ph.D.

Academic Assistant Dr. Björn Andres



ABSTRACT

Generating natural language descriptions for visual data links computer vision and
computational linguistics. Being able to generate a concise and human-readable
description of a video is a step towards visual understanding. At the same time,
grounding natural language in visual data provides disambiguation for the linguistic
concepts, necessary for many applications. This thesis focuses on both directions
and tackles three specific problems.

First, we develop recognition approaches to understand video of complex cooking
activities. We propose an approach to generate coherent multi-sentence descriptions
for our videos. Furthermore, we tackle the new task of describing videos at variable
level of detail.

Second, we present a large-scale dataset of movies and aligned professional
descriptions. We propose an approach, which learns from videos and sentences to
describe movie clips relying on robust recognition of visual semantic concepts.

Third, we propose an approach to ground textual phrases in images with little or
no localization supervision, which we further improve by introducing Multimodal
Compact Bilinear Pooling for combining language and vision representations. Finally,
we jointly address the task of describing videos and grounding the described people.

To summarize, this thesis advances the state-of-the-art in automatic video de-
scription and visual grounding and also contributes large datasets for studying the
intersection of computer vision and computational linguistics.
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ZUSAMMENFASSUNG

Die Erstellung natürlicher Sprachbeschreibungen für visuelle Daten verbindet Com-
puter Vision und Computerlinguistik. Die Fähigkeit eine prägnante und menschlich
lesbare Beschreibung eines Videos zu produzieren, ist ein Schritt zum visuellen
Verständnis. Gleichzeitig ermöglicht Lokalisierung der natürlichen Sprache in vi-
suellen Daten die Disambiguierung der sprachlichen Konzepte. Diese Dissertation
konzentriert sich auf beide Richtungen wie folgt.

Zuerst entwickeln wir Methoden, um komplexe Kochaktivitäten in Videos zu
verstehen und für diese dann kohärente Multi-Satz-Beschreibungen mit variabler
Detaillierung zu generieren.

Zweitens präsentieren wir einen umfangreichen parallelen Datensatz von Fil-
men mit professionellen Beschreibungen. Wir schlagen einen Ansatz vor, der aus
Videos und Sätzen lernt Videoclips zu beschreiben, und der sich auf einer robusten
Erkennung visueller Konzepte stützt.

Drittens schlagen wir einen Ansatz vor, um sprachliche Konzepte in Bildern
mit wenig oder keiner Überwachung zu lokalisieren, den wir durch eine neue
multimodale Kombination der Sprach- und Bild-Repräsentationen verbessern. Ab-
schließend beschreiben wir Videos während wir gleichzeitig die beschriebenen
Personen lokalisieren.

Zusammenfassend stellt diese Dissertation neue Methoden in der automatischen
Videobeschreibung und Lokalisierung natürlicher Sprache in visuellen Daten vor.
Zur weiteren Forschung am Schnittpunkt von Computer Vision und Computerlin-
guistik trägt diese Dissertation große Datensätze bei.
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1I N T R O D U C T I O N

Humans live in a multi-modal world, where vision and language are the
primary channels of perception and communication. Naturally, we would
like to develop machines, or intelligent agents, that are able to similarly

communicate with us. Such agents should be able, among other things, to describe
what they see, understand what we refer to and answer questions about the visual
world. The interplay between natural language understanding and visual recognition
is thus an important research direction, studied in the computer vision as well as
computational linguistics communities.

Many multi-modal tasks that involve vision and language have emerged recently.
One such task that has drawn a lot of attention is generating natural language
descriptions for images and videos (Venugopalan et al., 2015a; Vinyals et al., 2015).
Such descriptions make visual data accessible in text form, which enables many
applications, e.g. visual search or Audio Description (AD) for the visually impaired
people. The main difference of the image/video description task from the classical
visual recognition problems is that it goes beyond predicting a set of class labels
by generating a coherent description of the entire visual scene. An important
challenge in working with language is that words are ambiguous and they exist
independently of specific image instances. It is thus important to enable machines to
understand, or ground, natural language descriptions in visual data. Such grounding
can be done at different levels, e.g. coarsely, like video-to-text alignment (Bojanowski
et al., 2015; Dogan et al., 2016) or very finely, like localizing textual phrases in
images (Kazemzadeh et al., 2014). This provides further research opportunities and
interesting applications. Such ability would allow interacting with a robot by asking
to localize certain visual objects or answering questions about visual scenes.

Vision and language have been shown to benefit each other, e.g. we found that
vision can provide useful cues for common sense knowledge acquisition (Tandon
et al., 2016). In this thesis we focus on three problems which are introduced in
the following. There are, of course, other tasks that involve language and vision
interaction, e.g. cross-modal retrieval (Wang et al., 2016a), which are not the focus of
this thesis.

An automatic computer assistant, that is able to understand our daily activities by
watching us, can assist us more effectively and provide help to people with special
needs. Human daily activity recognition has been extensively studied in the past
(Tenorth et al., 2009; la Torre et al., 2009). In particular, the long, composite activities,
which consist of many fine-grained steps are challenging to understand (Rohrbach
et al., 2012b). In this thesis we target the task of video description of fine-grained cooking
activities. Our goal is to recognize the fine-grained cooking activities and then to
describe them automatically with natural language. In the first part we employ hand-

1



2 chapter 1. introduction

centric visual representations targeted to both activities and manipulated objects.
In the second part we propose approaches to describe long cooking videos with
multiple sentences and at multiple levels of detail. Chapters 3 and 4 of the thesis
focus on fine-grained cooking video understanding and description.

In addition to the challenging fine-grained activities in the cooking scenario,
we also address an open domain scenario. Motivated by a lack of a large parallel
corpus of videos and sentences, we present a new large-scale dataset of movies with
associated textual descriptions. We source these descriptions from movie scripts as
well as Audio Descriptions (AD) (Salway, 2007), also known as Descriptive Video
Service, for the visually impaired people. AD is provided as additional audio
stream in the movies to help the visually impaired to better follow the story. The
collected movie data is diverse and visually challenging. We propose an approach
to automatic movie description, which recognizes diverse activities, objects and
locations in movies and translates the predictions to a sentence with a recurrent
neural network. We have also organized two workshops and challenges for movie
description to help foster research in this area. Chapter 5 extensively discusses our
endeavor on large-scale movie description.

As discussed above, the goal of visual grounding is to disambiguate language
concepts by linking them to visual concepts. In particular, we are interested in
the task of localizing natural language phrases in visual data. The classical object
detection task, i.e. given an image, to predict a bounding box for a given object
class, is a well researched problem with a long history (Viola and Jones, 2001;
Felzenszwalb et al., 2010). The object classes are predefined and their number is
limited. At the same time, language provides a natural way of describing as well as
referring to particular objects in the visual scene. In this thesis we address the task of
grounding textual phrases in images with bounding boxes. Importantly, we focus on
a scenario when limited localization supervision is available. Although generating
video descriptions and visual grounding are typically addressed separately, it is
natural to reason about them jointly. I.e. while describing a video one could also try
to localize the described concepts. To this end we propose a novel task of grounded
video description, where we describe video while jointly grounding the described
people. Chapters 6, 7 and 8 focus on language grounding and grounded video description.

The rest of this chapter is organized as follows. First we discuss the main chal-
lenges towards solving the aforementioned tasks and our contributions to address
them (Section 1.1). Next, we provide an outline of the thesis in Section 1.2.

1.1 contributions of the thesis

Tasks which involve both linguistic and visual modalities typically require addressing
the following aspects: a) language representation, b) visual recognition, c) joint
language and visual modeling. The language representation should capture language
semantics and syntax. The visual recognition should provide information about a
visual scene including objects and activities. The joint language-vision modeling



1.1 contributions of the thesis 3

depends on the task that we are addressing. In video description we aim to translate
the visual signal into language, i.e. generate a novel description. To do so we need
to understand what is in the scene, which parts of it to describe and at which level
of abstraction. In visual grounding we aim to estimate the compatibility between a
language query and multiple visual regions in order to find the most relevant region.
Both the language query and the visual scene can be complex. However, grounding
requires a detailed understanding of both language and vision to estimate their
compatibility. Additionally, learning joint representations requires parallel corpora
with aligned language and visual data, which are not always readily available. In the
following we detail these and related challenges towards generation and grounding
of natural language descriptions for visual data, as well as the contributions this
thesis makes to address them.

1.1.1 Video description of fine-grained cooking activities

The first target of the thesis is understanding and describing fine-grained cooking
activities. Specifically, we work with the cooking activity dataset “MPII Cook-
ing 2”, presented in Chapter 3 of this thesis. Each of our videos represents a dish
preparation (e.g. pizza, scrambled eggs) and consists of many steps, which involve
fine-grained activities (e.g. take out, cut dices) and objects (e.g. broccoli, spice shaker).
“MPII Cooking 2” provides low level semantic annotations (e.g. activity, object, tool,
location) for all videos. We start with defining the main challenges in this research
area.

1.1.1.1 Challenges

Lack of a large parallel dataset of videos and sentences for long-term composite
activities. Typical existing datasets consist of short clips described with just a
single sentence. To learn describing long-term composite activities it is necessary to
have a parallel dataset of videos and sentences with the following properties. First,
such a dataset should have continuous multi-sentence video descriptions. Second, is
should provide high-level as well as detailed descriptions of a video. Depending on
the context we might be either interested in a detailed description or rather want to
read a short summary of a video or simply find out that e.g. “The person made a
cup of coffee.”

Fine-grained visual recognition. Performing recognition in domains with low
inter-class and high intra-class variation is naturally challenging. E.g. in cooking
videos it is important to successfully distinguish “peeling an orange” from “cutting
an orange”. Most activity recognition datasets and approaches do not focus on
fine-grained activities. Additionally, in a cooking scenario many activities involve
little body movement and rather focus on hands.
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Multi-sentence description. Most research on automatic video description focuses
on describing short video clips with single sentences. Such short clips are either
specifically collected or manually pre-segmented from longer videos. To address
multi-sentence description, however, one needs to automatically segment the videos
and produce coherent descriptions for them. The latter is especially important, as
descriptions that “jump” from one subject to another would be unnatural.

Multi-level description. For the long and complex videos it is important to pro-
vide descriptions at different levels of detail for different purposes, i.e. detailed
descriptions or short summaries. This ability requires understanding of the differ-
ences between the language used in different scenarios. To the best of our knowledge
no prior work has addressed this problem.

1.1.1.2 Contributions

The following summarizes the contributions for video description of fine-grained cooking
activities.

The first contribution is the Tacos Multi-Level dataset, which augments 185 cook-
ing videos with detailed multi-sentence descriptions (up to 15 sentences). Moreover,
Tacos Multi-Level provides two additional descriptions for each cooking video: short
(3-5 sentences) and single sentence, thus making it possible to study multi-level
video description, see Chapter 4. The dataset contains over 24K video clips with
almost 16 hours of video.

The second contribution of this thesis is an approach to fine-grained activity and
object recognition. Our approach relies on the fact that hands are frequently highly
informative for the hand-centric type-of-activities, such as cooking. We combine
holistic motion features with hand-centric features informative of motion, color and
appearance (Chapters 3, 4).

The third contribution is an automatic temporal segmentation algorithm as well
as a coherent multi-sentence description approach. Our approach is based on the
method of Rohrbach et al. (2013b), which first predicts an intermediate semantic
representation (SR) from a video and then translates it with Statistical Machine
Translation (SMT) (Koehn, 2010). The approach relies on the low level semantic
annotations provided with the dataset to predict the SR. To ensure coherence across
different generated sentences we integrate high level topic information in this
approach, and ensure the consistent prediction across multiple video segments
(Chapter 4).

The fourth contribution is a novel task of multi-level video description, or video
description at different levels of detail. On the Tacos Multi-Level dataset we find that
the language used in detailed and short descriptions is quite similar, while single-
sentence descriptions differ. Thus we propose extractive/abstractive summarization-
based approaches to obtain short summaries/single-sentence descriptions, respec-
tively, from detailed descriptions, see Chapter 4.
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1.1.2 Large-scale movie description

Next we address a broader domain, more specifically, movies. Given a movie clip we
aim to generate a natural language description. Unlike the previous scenario, in this
case we are given no low level semantic annotations for the training videos, only the
sentence descriptions. When moving to open domain video, new challenges arise.

1.1.2.1 Challenges

Lack of a large-scale, open domain video description dataset. Good datasets
benefit most areas of research, however many existing datasets on video description
suffer from some limitations, e.g. size or diversity. We have witnessed how large scale
datasets have benefited Deep Learning approaches for the tasks of object (Deng et al.,
2009) or scene (Zhou et al., 2014) recognition. In order to learn to describe videos we
also require a large dataset of videos and sentences. Challenges (competitions) are
also important for measuring progress in the field, comparing different approaches
and understanding the main difficulties. We witnessed a lot of advancement in
object classification and image captioning largely due to popular challenges, like the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015) and the MS COCO Captioning Challenge (Chen et al., 2015). There is thus a
demand for a similar video description challenge.

Noisy sentence annotations. When working with the cooking videos we had
access to manually annotated low level semantic representations (e.g. activity, object).
For large-scale and open domain vdeos we need to learn to translate videos to
language without relying on an intermediate semantic representation. We are given
videos paired with sentences, while the sentences can be noisy or mention non-visual
concepts. It is thus rather challenging to capture various interactions which exist
between the two modalities.

Large-scale visual recognition. When working with large-scale, diverse video data
visual recognition becomes more challenging. While object recognition in images
has made impressive progress in the last years, these findings do not immediately
transfer to video. Not only is the movie data different from typical object recognition
data, e.g. ImageNet Deng et al. (2009), due to a domain shift, but also the videos
bring additional challenges, like people and camera motion. Combined with the
need to recognize various aspects of the video, like locations and activities, all of
this makes visual recognition a real challenge.

1.1.2.2 Contributions

In the following we present the contributions of the thesis for large-scale movie
description.

The first contribution is a large-scale dataset, MPII Movie Description (MPII-MD),
which consists of movies and associated textual descriptions (Chapter 5). Movies
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provide an excellent source of long, realistic and diverse videos. The descriptions
are obtained from professionally written movie scripts and Audio Descriptions (AD)
for the visually impaired. We analyze AD for the first time in the computer vision
community and show that they provide a good resource for learning video-language
models. All sentences are cleaned-up and manually aligned to the video. The dataset
contains 94 movies, 68,337 clips and almost 78 hours of video in total. To date
MPII-MD was requested by almost 200 research groups from all over the world.

The second contribution is an approach to movie description, Visual-Labels, which
extracts the most reliable and visual information from sentence annotations, i.e. the
visual semantic labels (actions, objects, locations) and learns the visual classifiers
to recognize them. To tackle the large-scale visual recognition we employ state-
of-the-art visual representations to recognize actions, objects and locations, and
subsequently focus on the most reliable ones. We then rely on a Long Short-Term
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) to translate the visual
representations into sentence descriptions, see Chapter 5.

The third contribution is the Large Scale Movie Description Challenge (LSMDC)
which is based on the MPII-MD and M-VAD datasets (Torabi et al., 2015). We set
up the evaluation server where the participants can submit to a public test set and
to a blind test set (only video available). We perform automatic as well as human
evaluation of the challenge submissions and determine the winner according to
human evaluation on the blind test set. The challenge results were presented at two
workshops, one at the International Conference on Computer Vision (ICCV) in 2015

and the second at the European Conference on Computer Vision (ECCV) in 2016. In
addition to the movie description task, in the last challenge edition we also proposed
the fill-in-the-blank task (Maharaj et al., 2017). In a related effort, Torabi et al. (2016)
contributed a movie retrieval track for LSMDC 2016. We discuss and extensively
analyze the submissions of the challenge participants in Chapter 5.

1.1.3 Language grounding and grounded video description

The goal of visual grounding in this thesis is to localize natural language phrases in
images and videos. Our first target is predicting a bounding box for a phrase given
an image. Considering the high cost of collecting localization supervision (bounding
boxes) for phrases, we aim to reduce the need for such supervision. Our second
target is to combine video description and visual grounding. Namely we propose a
task of video description with grounded and co-referenced people.

1.1.3.1 Challenges

Limited localization supervision for visual grounding. To provide supervision
for the visual grounding task we need to annotate natural language phrases along
with the corresponding bounding boxes in images or spatial-temporal tubes in
videos. Such annotation is costly and does not scale well. Moreover, many datasets
only provide images/videos with sentences without any localization information.
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We thus require approaches that can work with little or no localization supervision.

Modeling compatibility between language and vision. Language and visual rep-
resentations are informative of the respective modalities, however it is not obvious
how to combine them or relate them to each other. In the visual grounding task
we need to match a phrase to a particular region of an image. As the natural lan-
guage phrases can be rather complex, e.g. “a second boy right from the car”, it is
challenging to correctly match such phrases to image regions.

Joint description generation and grounding. Ultimately, we would like to gener-
ate descriptions which can also be grounded in the visual data. However, typically
description and grounding tasks are addressed separately, as for grounding we
assume that the description is already given. Only few recent works look into
predicting descriptions jointly with grounding them in the visual data.

Language and visual co-references. One aspect of video description which re-
ceived little attention in the literature, is handling of co-references. When we
encounter a repeating entity (a person or an object) we should be able to refer to
this entity as “he”,“it”, etc. Establishing connections between the previous scene
and the current scene requires solving the “visual co-reference resolution” problem.
Specifically, we need to link the repeating entities in the video and then transfer this
link in the generated description through the grounding.

1.1.3.2 Contributions

Here we present the contributions of the thesis for the language grounding and grounded
video description.

The first contribution is our approach GroundeR (GROUNDing by Reconstruc-
tion) which can operate in different supervision regimes: fully-supervised, semi-
supervised and unsupervised, w.r.t. the localization supervision. In order to learn to
select the correct bounding box given a phrase query and an image, we introduce
a reconstruction loss. Specifically, we reconstruct the phrase from the “attended”
(selected) region and compare the output with the ground-truth query. In short,
once the reconstruction is correct, the grounding must also be correct. For details
see Chapter 6.

The second contribution is a comparison of different ways of combining visual
and language representations (e.g. concatenation, element-wise product) and, as a
result, the proposed Multimodal Compact Bilinear pooling (MCB). MCB efficiently
approximates the outer product of the two input vectors. We show that this pooling
is beneficial for visual grounding as well as visual question answering (VQA),
consequently winning the VQA challenge (Antol et al., 2015) with real images in
2016, see Chapter 7.

The third contribution is an approach which addresses a new task of generating
video descriptions with grounded and co-referenced people. It jointly generates
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a video description and predicts grounding, co-reference and gender for all the
generated human entities. Our approach relies on an attention mechanism which
reasons about grounding and local co-reference over two adjacent sentences and
clips. For details see Chapter 8.

The fourth contribution is to supply the attention mechanism in our grounded
video description approach with automatically obtained localization (grounding and
co-reference) supervision. The supervision comes from the linking between name
mentions (e.g. Mary, Paul) and visual tracks, obtained with our weakly-supervised
approach GroundeR (Chapter 8).

1.2 outline of the thesis

In this section we shortly discuss each chapter of the thesis and indicate the collabo-
rations with other researchers.

Chapter 2: Related Work. In this chapter we review related work on automatic
video description, video description datasets and visual grounding, as well as
other related topics.

Chapter 3: Recognizing Fine-Grained and Composite Activities using Hand Cen-
tric Features and Script Data. This chapter presents the MPII Cooking 2 dataset
of cooking videos. We describe our approaches to fine-grained activity and
participating object recognition as well as composite activity recognition. In
particular, for fine-grained recognition of activities and objects we propose a
combination of holistic and hand-centric features.

The content of this chapter corresponds to the IJCV 2016 publication “Recog-
nizing Fine-Grained and Composite Activities using Hand-Centric Features
and Script Data” (Rohrbach et al., 2016b), which is partially based on Rohrbach
et al. (2012a) and Rohrbach et al. (2012b). Marcus Rohrbach was the lead author
of these papers. Anna Rohrbach significantly contributed with the hand-centric
approach for the fine-grained activity and object recognition, experiments and
an overall discussion.

Chapter 4: Coherent Multi-Sentence Video Description with Variable Level of
Detail. This chapter presents the Tacos Multi-Level corpus of descriptions
collected for the MPII Cooking 2 video dataset (Chapter 3). We propose an
approach to coherent multi-sentence video description. We also propose a new
task, multi-level video description and present an approach to address it.

The content of this chapter corresponds to the GCPR 2014 publication: “Coher-
ent Multi-Sentence Video Description with Variable Level of Detail” (Rohrbach
et al., 2014), which was accepted as an Oral. Anna Rohrbach was the lead
author of the paper. This work was done in collaboration with Department
of Computational Linguistics, Saarland University, who contributed to the
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analysis of the collected corpus and implementation of the probabilistic input
for Statistical Machine Translation (SMT) with a word lattice.

Chapter 5: Movie Description. In this chapter we propose the new large-scale MPII
Movie Description (MPII-MD) dataset. This video description dataset is large,
open domain, and relies on professionally written descriptions of movies. In
particular we source movie scripts, available online, and Audio Descriptions,
available for some movies to help the visually impaired people to follow the
events in the movie more easily. We also propose an approach to automatic
movie description, called Visual-Labels. Our approach makes use of sentence
descriptions to extract semantic labels and learns respective visual classifiers.
It then uses an LSTM network to translate the visual features into a sentence.
Finally, we present the Large-Scale Movie Description Challenge, based on the
MPII-MD and M-VAD (Torabi et al., 2015) datasets. In this chapter we review
the challenge submissions and discuss their results.

The content of this chapter is based on the following publications: CVPR 2015

publication: “A Dataset for Movie Description” (Rohrbach et al., 2015b); GCPR
2015 publication: “The Long-Short Story of Movie Description” (Rohrbach
et al., 2015a) (accepted as an Oral and received an Honorable Mention prize) and
IJCV 2017 publication: “Movie Description” (Rohrbach et al., 2017b). Anna
Rohrbach was the lead author of these papers. Atousa Torabi (Disney Research,
Pittsburgh) contributed with the M-VAD dataset, which became part of the
LSMDC.

Chapter 6: Grounding of Textual Phrases in Images by Reconstruction. This chap-
ter presents our approach to grounding (localizing) textual phrases in images.
We propose an approach GroundeR (Grounding by Reconstruction), which
aims to reconstruct the query phrase from the selected/attended subset of
the image. We thus ensure that we select/attend to a correct image region,
which corresponds to a phrase, i.e. we ground it. We evaluate our approach in
fully-, semi- and un-supervised settings on two datasets and show consistent
improvement over prior work in all of them.

The content of this chapter corresponds to the ECCV 2016 publication: “Ground-
ing of Textual Phrases in Images by Reconstruction” (Rohrbach et al., 2016a),
which was accepted as an Oral (1.8% acceptance rate). Anna Rohrbach was the
lead author of the paper.

Chapter 7: Multimodal Compact Bilinear Pooling for Visual Question Answer-
ing and Visual Grounding. In this chapter we explore different ways of
combining language and visual representations. We present a Multimodal
Compact Bilinear pooling, an effective and expressive way of combining two
representations. We show how this pooling improves the performance of our
visual grounding approach, GroundeR (Chapter 6), and additionally study the
related task, Visual Question Answering (VQA).
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The content of this chapter corresponds to the EMNLP 2016 publication: “Mul-
timodal Compact Bilinear Pooling for Visual Question Answering and Visual
Grounding” (Fukui et al., 2016). Akira Fukui, Dong Huk Park, Daylen Yang
and Anna Rohrbach have equal contribution to the paper. Akira Fukui, Dong
Huk Park and Daylen Yang contributed to the VQA experiments, while Anna
Rohrbach contributed to the visual grounding experiments and overall discus-
sion. The proposed approach to VQA has taken the first place in an open-ended
VQA challenge (Antol et al., 2015) with real images in 2016.

Chapter 8: Generating Descriptions with Grounded and Co-Referenced People.
This chapter aims to integrate the video description and visual grounding
problems. We present a new task of video description with grounded and
co-referenced people. More specifically, we want to generate a video descrip-
tion, while jointly localizing (grounding) the human entities in video and
co-referencing their occurrence across two consecutive clips/sentences. Our
proposed approach address all these tasks jointly, additionally performing
gender recognition for the described human entities. We also supply our
approach with supervision, by performing name-visual track linking relying
on our GroundeR approach (Chapter 6).

The content of this chapter corresponds to the CVPR 2017 publication (Rohrbach
et al., 2017a). Anna Rohrbach was the lead author of the paper.

Chapter 9: Conclusions and future perspectives. Finally, in this chapter, we sum-
marize the thesis and discuss some future research directions in the areas on
video description and visual grounding.



2R E L AT E D W O R K

As discussed in the previous chapter, this thesis focuses on three research
directions: video description of fine-grained cooking activities, large-scale movie
description and language grounding and grounded video description. Essentially,

all three directions are concerned with video description, while the third one focuses
more on visual grounding. Therefore, in this chapter we present the related work,
structured around: video description datasets (Section 2.1) and approaches (Sec-
tion 2.2), and visual grounding (Section 2.3). Some of the following chapters present
the related work for specific topics covered in these chapters.

2.1 video description datasets and benchmarks

Machine learning in general, and deep learning in particular, benefit from large
datasets, such as ImageNet (Deng et al., 2009), a large-scale dataset for object class
recognition. While the video description task has been explored as early as 2002

(Kojima et al., 2002), there were no large datasets for this task until recently. Most early
datasets were also rather constrained visually (DARPA, 2011). This is one reason
why early approaches were limited to specific scenarios and relied on manually
defined rules, rather than learned to generate novel descriptions from data. More
recently, video depicting daily activities, such as cooking (Regneri et al., 2013), and
YouTube videos (Chen and Dolan, 2011) became a popular source of data. These
datasets tend to be more diverse and realistic, but still limited in size. In 2015-2016 a
number of large-scale open domain video description datasets have been proposed
(Xu et al., 2016; Zeng et al., 2016). In the following we review the existing parallel
datasets of videos and sentences, organized by the video domain. In the end we
relate the contributions of this thesis to the prior work.

2.1.1 Surveillance video descriptions

Some early works Barbu et al. (2012); Hanckmann et al. (2012) use a subset of DARPA
Mind’s Eye Y1 (Year 1) dataset (DARPA, 2011) for the video description task. The
dataset features surveillance-type videos paired with verb phrases constructed from
48 different verbs. The corpus consists of 3,480 training and 749 test videos.

2.1.2 TRECVID video descriptions

The Text REtrieval Conference (TREC) of the U.S. National Institute of Standards and
Technology (NIST) is a long-run conference which focuses on information retrieval

11
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with yearly organized competitions. TRECVID (TREC VIDeo)1 is an independent
track which includes various video related tasks (e.g. video indexing, content-based
retrieval). TRECVID features internet videos with user-provided metadata (title,
keywords, description, etc). Typically, only the challenge participants have access
to the data and only for the time of the competition. Subsets of the TRECVID
challenge data have been used for video description research. E.g.TRECVID 2010
Multimedia Event Detection (MED10) task (Over et al., 2010), which consists of
three events: “making a cake”, “batting a run”, and “assembling a shelter”, was used
by Tan et al. (2011). They generate textual descriptions for 140 MED test videos that
contain at least one of the aforementioned events. Another subset, TRECVID 2012
Multimedia Event Detection (MED12) (Over et al., 2012) covers 25 event categories,
while each category has around 200 videos. It was used by Das et al. (2013) to train
their video description system. They also use the subset of the Multimedia Event
Recounting (MER12) (Over et al., 2012) data which covers 5 out of 25 events from
MED12 (“cleaning an appliance”, “renovating a home”, etc.). Specifically, there are
six test videos for each event. As the access to MER12 test data is restricted, Das et al.
(2013) collect text descriptions for these videos in-house.

The TRECVID 2016 edition features a new task, Video to Text Description (Awad
et al., 2016). The new dataset contains over 30,000 Twitter Vine2 videos. In the pre-
sented task around 2,000 videos are used, each video is annotated by two distinct
annotators. Given a set of 2,000 video URLs and two sets of descriptions, the par-
ticipants have to submit their results for at least one of the two tasks: a) Matching
and Ranking, i.e. “Return for each video URL a ranked list of the most likely text
descriptions that correspond to the video from each of the sets”; b) Description
Generation, i.e. “Automatically generate for each video URL a text description (1
sentence) independently and without taking into consideration the existing sen-
tences” (Awad et al., 2016). The latter is evaluated with standard automatic metrics,
e.g. METEOR (Lavie, 2014) and BLEU (Papineni et al., 2002), as well as with an
experimental Semantic Textual Similarity (STS) (Han et al., 2013) metric. The test
data is publicly available.

2.1.3 Description datasets of daily activities

The TACoS (Textually Annotated Cooking Scenes) dataset, presented by Regneri
et al. (2013), is based on the “MPII Composites” cooking video corpus (Rohrbach
et al., 2012b). TACoS augments the cooking videos with multiple textual descriptions
collected by crowd-sourcing via Amazon Mechanical Turk (AMT)3. The dataset
covers 127 videos from “MPII Composites”, each described by 20 turkers. The
descriptions are collected by letting a turker watch a video, then stop at a particular
point and enter a sentence describing what has just happened in the scene. In total,
the dataset contains 18,227 sentences linked to 7,206 unique video intervals.

1http://trecvid.nist.gov/
2A hosting service for user-generated six-second-long looping videos, https://vine.co/
3http://www.mturk.com
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Das et al. (2013) present YouCook, a dataset which consists of 88 (49 training and
39 test) long YouTube cooking videos. The featured videos cover different cooking
styles, e.g. baking, grilling, diverse kitchen environments and have dynamic camera
changes. The ground-truth descriptions for the videos are collected via AMT, on
average there are 8 multi-sentence descriptions per video. The training set also
includes annotations for 48 participating objects and 7 activities.

Charades is a recent dataset of Sigurdsson et al. (2016), recorded by people in
their homes while performing common household activities. The data collection
process consists of three steps: script generation, script-guided video recording,
verification and annotation. All steps are performed via AMT crowdsourcing. In
total the dataset includes 9,848 videos with 27,847 sentence descriptions and features
267 people.

Several datasets are based on YouTube instruction videos, obtaining video de-
scriptions directly from speech or user-provided descriptions. Alayrac et al. (2016)
present a dataset of instruction videos for five tasks: changing a car tire, perform-
ing Cardio Pulmonary resuscitation (CPR), jumping a car, repotting a plant and
making coffee. For each task they obtain 30 videos with English language speech
transcripts from YouTube. They manually clean up the spelling and punctuation of
the transcripts. The time alignment is obtained through the closed caption timings.
Malmaud et al. (2015) collect a dataset of 180k cooking videos with aligned recipes.
The videos are obtained from YouTube and also have English transcripts, which
are not manually corrected. All the videos have accompanying textual descriptions,
which contain the recipes. Malmaud et al. (2015) automatically extract the relevant
parts of the descriptions which describe recipe steps or ingredients. Additionally
they extract a set of 1.4M short video clips automatically annotated with an action
and a noun phrase.

2.1.4 Description datasets of open domain web video

YouTube videos are frequently used to construct vision datasets, due to their diversity
and availability. On the downside many YouTube videos suffer from rather low
quality. The Microsoft Video Description (MSVD) corpus (Chen and Dolan, 2011) is
a popular video description dataset sourced from YouTube. Initially it was collected
for the tasks of language paraphrasing and translation, thus it has multi-lingual
descriptions. Typically, in the video description research, only the English part of the
corpus is used. It contains 1,970 short videos, each paired with around 16 sentence
descriptions collected via AMT.

Habibian et al. (2014) propose the VideoStory46K Dataset, which consists of
45,826 videos from YouTube. The videos are comparatively long, 58.4 seconds on
average, and in total there are 743 hours of videos. Each video is provided with a
short user-generated caption. There are no precise temporally aligned descriptions
provided with the video.

MSR-VTT (MSR-Video to Text) is a recent dataset presented by Xu et al. (2016).
It is collected by querying a commercial video search engine with 257 queries from
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20 categories (e.g. music, sports, news). The initial release of MSR-VTT contains
7,180 videos split into 10,000 clips (10-30 seconds on average) and the total duration
is 41.2 hours. Each clip is annotated with about 20 natural sentences, which makes
200K clip-sentence pairs in total. Based on the MSR-VTT dataset the MSR Video
to Language Challenge4 was proposed as part of the Multimedia Grand Challenge
2016. The challenge includes both the automatic (BLEU@4 (Papineni et al., 2002),
METEOR (Lavie, 2014), ROUGE-L (Lin, 2004), and CIDEr-D (Vedantam et al., 2015))
as well as human evaluation. The latter is done on a subset of the test set.

VTW (Video Titles in the Wild) (Zeng et al., 2016) is a dataset which focuses
on longer YouTube videos (1.5 minutes on average). VTW includes 18,100 videos
with 1-3 sentence long user provided descriptions and editor provided titles (44,603

sentences in total). Unlike the standard video description works, Zeng et al. (2016)
aim to generate concise video titles for these long videos.

2.1.5 Description datasets of image sequences

Li et al. (2016) present a new dataset, Tumblr GIF (TGIF), that contains 100K ani-
mated GIFs from Tumblr5 paired with 120K natural language descriptions obtained
via crowdsourcing. GIFs are generated by users to represent concise and dynamic
visual messages. They are rather short (3.10 seconds on average) and have no
accompanying audio.

VIsual STorytelling (VIST) (Huang et al., 2016) is a dataset of image sequences
from Flickr data (Thomee et al., 2015) accompanied by textual descriptions. The
descriptions are collected in three ways. First are the standard descriptive captions
for individual images. Second are the descriptions of images in sequence. And third
are the stories for images in sequence, which use less descriptive and more narrative
language. VIST contains 20,211 image sequences with 81,743 unique photos. The
stories are centered around topics like a party, amusement park, church etc. Although
the data does not contain videos but instead image sequences, it allows for studying
multi-sentence story-driven description generation, also relevant for videos.

2.1.6 Movie scripts, audio descriptions and books

Movie scripts have been used for automatic discovery and annotation of scenes and
human actions in videos (Duchenne et al., 2009; Laptev et al., 2008; Marszalek et al.,
2009), as well as a resource to construct activity knowledge bases (Tandon et al.,
2015; de Melo and Tandon, 2016). Others, like e.g. Bojanowski et al. (2013, 2014);
Duchenne et al. (2009); Laptev et al. (2008); Marszalek et al. (2009), proposed datasets
focused on extracting several activities from movies using movie scripts. Most of the
movies are part of the “Hollywood2” dataset (Marszalek et al., 2009) which contains
69 movies and 3669 clips. Another line of work (Cour et al., 2009; Everingham et al.,

4http://ms-multimedia-challenge.com/challenge
5http://www.tumblr.com
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2006; Ramanathan et al., 2014; Sivic et al., 2009; Tapaswi et al., 2012) proposed datasets
for character identification targeting TV shows.

Other prior work has looked at supporting Audio Descriptions (AD) production
using scripts as an information source (Lakritz and Salway, 2006) and automatically
finding scene boundaries (Gagnon et al., 2010). ADs have been used to understand
which characters interact with each other (Salway et al., 2007). Salway (2007) analyse
the linguistic properties on a non-public corpus of ADs from 91 movies. Their corpus
is based on the original sources to create the ADs and contains different kinds of
artifacts not present in actual description, such as dialogs and production notes.

Tapaswi et al. (2015) propose a dataset for book to movie alignment. It consists of
the first season of the TV series Game of Thrones and the respective book, further
denoted as GOT, and the Harry Potter and the Sorcerer’s Stone book and movie,
denoted as HP. The provided alignment between the book and the video is rather
coarse, at a chapter/scene level. In total the dataset covers 73 GOT and 17 HP
chapters, and 369 GOT / 138 HP movie scenes. In a related effort, Zhu et al. (2015b)
propose a MovieBook dataset. It covers more movies (11) and introduces a more
precise book-to-movie alignment, namely at a sentence or paragraph level. In total the
MovieBook dataset contains 2,070 movie shot to sentence correspondences. Finally,
Tapaswi et al. (2016) propose MovieQA, a dataset which focuses on answering
questions about movies. Besides the QA data, the dataset features 408 subtitled
movies with plot synopses sourced from Wikipedia. 199 movies also have aligned
movie scripts and 60 have the AD sourced from our MPII-MD dataset (Chapter 5).

2.1.7 Relations to our work

In this section we relate prior work to the contributions of this thesis and, specifi-
cally, to the proposed video description datasets: TACoS Multi-Level, MPII Movie
Description and Large Scale Movie Description Challenge (LSMDC) benchmark.

To the best of our knowledge the TACoS Multi-Level dataset (Chapter 4) is
the only video/sentence dataset that provides descriptions at three levels of detail
(detailed, short and single-sentence). Similar to TACoS (Regneri et al., 2013), which
is based on cooking videos from MPII Composites (Rohrbach et al., 2012b), TACoS
Multi-Level is based on the extended version, MPII Cooking 2 (Chapter 3). However,
unlike TACoS, our dataset contains the precise temporal alignment of sentences to
video (not only the endpoint), descriptions at three levels of detail, and it is by a
factor of 4 larger in number of sentences.

The recent large-scale video description datasets like MSR-VTT (Xu et al., 2016),
TGIF (Li et al., 2016), VTW (Zeng et al., 2016) all rely on web content, while our
proposed MPII Movie Description (MPII-MD) dataset focuses on movies (Chapter 5).
MPII-MD leverages movie scripts and Audio Descriptions (AD) aligned to movies.
It is most similar to the concurrently published Montreal Video Annotation Dataset
(M-VAD) (Torabi et al., 2015). There are three differences between our and their
corpus. First, MPII-MD consists both of movie scripts and ADs, while M-VAD only
uses ADs. Second, we manually align every sentence to the corresponding activity in
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the video, while M-VAD relies on automatic AD detection and uses its timestamps,
leading to less precise alignment. Last, we use Blu-ray HD movies, while M-VAD
uses DVDs. Both corpora are presented jointly as the LSMDC challenge in Chapter 5.
LSMDC is the largest dataset to date in terms of a number of video clips (128K).
While many existing datasets (e.g. MSVD, MSR-VTT, TGIF) focus on short clips
described with a single sentence and do not allow studying longer video or multi-
sentence description, VTW, TACoS Multi-Level and LSMDC allow for multi-sentence
description and story understanding.

So far we have organized the LSMDC challenge twice, at the corresponding
ICCV15 and ECCV16 workshops. The recent MSR Video to Language Challenge,
presented in 2016, also raised high interest in the community. Additionally, TRECVID
2016 introduced a pilot challenge track Video to Text Description. All of this
indicates that video description is a relevant and important problem, well established
in the computer vision community. All challenges employ automatic evaluation
metrics, while LSMDC and MSR Video to Language Challenge also perform human
evaluation. To facilitate video understanding research and allow for purely automatic
evaluation, the last edition of LSMDC in 2016 introduced the movie annotation and
retrieval track (Torabi et al., 2016) as well as the movie fill-in-the-blank track (Maharaj
et al., 2017).

Other works, datasets, and challenges are already building upon our data. Gao
et al. (2016a) study the physical causality of action verbs using crowdsourcing to
collect causality attributes for the TACoS Multi-Level sentences. Zhu et al. (2015b)
learn a visual-semantic embedding from our movie clips and ADs to relate movies
to books. Bruni et al. (2016) learn a joint embedding of videos and descriptions and
use this representation to improve activity recognition on the Hollywood 2 dataset
Marszalek et al. (2009). Tapaswi et al. (2016) use our AD transcripts for building their
MovieQA dataset, which asks natural language questions about movies, requiring
an understanding of visual and textual information, such as dialogue and AD, to
answer the question. Zhu et al. (2015a) present a fill-in-the-blank challenge for audio
description of the current, previous, and next sentence description for a given clip,
requiring to understand the temporal context of the clips.

2.2 video description approaches

The first works on video description with natural language go back to Kojima et al.
(2002). Early works typically employed manually defined templates or retrieval
approaches to video description (Barbu et al., 2012; Das et al., 2013; Krishnamoorthy
et al., 2013). A few works proposed to generate novel sentences by means of learning
the language models (Rohrbach et al., 2013b). After we witnessed an explosive
interest to image captioning around 2015 (Fang et al., 2015; Karpathy and Fei-
Fei, 2015), it consequently steered the interest to video description (Venugopalan
et al., 2015c; Yao et al., 2015). Many recent approaches rely on recurrent neural
networks to learn the language representation and to generate novel descriptions.
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In the following we review prior work on video description, grouped according to
the language generation mechanisms. We start with manually defined templates
and grammars, then discuss retrieval approaches and, finally, the more recent
“translation” approaches. We also review approaches to generate multi-sentence
video descriptions. Afterwards we relate these prior works to the contributions of
the thesis.

2.2.1 Manually defined templates and grammars

Most of the early works on video description rely on manually defined templates to
generate sentences. Typically, as the first step, they detect certain visual concepts
(e.g. Subject, Verb, Object) and then use these predictions to “fill in” the predefined
templates. Other works manually define more sophisticated language grammars,
typically limited to small vocabularies. Such approaches, although they might
guarantee a perfect language grammar, are limited by the hand-designed rules and
predefined visual concept detectors.

Kojima et al. (2002) tackle a surveillance setting, where a person is seen entering
an office room and interacting with objects. They propose a manually defined action
hierarchy modeled with the “case frames” (e.g. predicate, agent, location, object).
Kojima et al. build a recognition system for the case frames based on body, head and
hand movements. Lastly they apply a set of rules to translate the case frames into
natural language sentences.

Tan et al. (2011) exploit a video as well as an audio channel to learn audio-visual
concepts for three types of TRECVID 2010 Multimedia Event Detection (MED10)
events (Over et al., 2010). Such concepts can refer to human actions (e.g. walking,
running), scenes (e.g. kitchen, crowd) and audio (e.g. cheering). Tan et al. generate
sentences using the predefined templates based on the predicted concepts.

Barbu et al. (2012) extract human body pose and track objects in DARPA Mind’s
Eye Y1 (DARPA, 2011) videos. They use Hidden Markov Models (HMMs) to
recognize human actions based on the extracted tracks. Based on a predicted action
and associated tracks Barbu et al. employ templates to generate sentence descriptions.

Yu and Siskind (2013) propose a framework of learning the semantics of words
through the video which also allows them to generate descriptions for new videos.
Their approach, “Sentence Tracker”, tracks multiple objects in a video mentioned in
a sentence description. They employ HMMs to model verbs as well as other parts of
speech that apear in sentences. Each part of speech is grounded in specific visual
features. Finally, the sentence/video pairs are jointly scored to obtain the highest total
likelihood. Siddharth et al. (2014) show how the “Sentence Tracker” can be applied
to three video understanding tasks, namely sentence-guided focus of attention
(tracking), video description generation, and video retrieval. The experiments are
carried out on a small dataset with a vocabulary of 17 words, modeled with regular
expressions or finite-state recognizers (FSMs). In their follow-up work, Yu and
Siskind (2015a) investigate whether the information that events are absent in the
video can benefit their approach. They provide the “Sentence Tracker” with “positive”
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and “negative” sentences, and propose a discrimination score which ensures that
the positive sentences are scored higher. Another difference from the work of Yu
and Siskind (2013) is that here the word meaning is learned in a weakly supervised
manner, without explicit word-to-video annotations.

Krishnamoorthy et al. (2013) predict Subject, Verb, Object (SVO) triplets for videos
by relying on pre-trained object detectors (Felzenszwalb et al., 2010) for subjects
and objects as well as motion descriptions (Laptev et al., 2008) for verbs. They
also expand the set of detected verbs by including synonym verbs from WordNet
(Fellbaum, 1998). Next, they score the obtained SVO triplets with respect to an SVO
language model and generate multiple sentences for the best triplet with different
templates. Finally, they choose one most likely sentence w.r.t. an n-gram language
model. Guadarrama et al. (2013) scale the approach of Krishnamoorthy et al. (2013)
by relying on stronger object detectors of Li et al. (2010) and Dense Trajectories
(Wang et al., 2013a). They also employ the “hedging-your-bets” strategy (Deng et al.,
2012) to predict more abstract descriptions in case of uncertainty. Additionally, the
usage of external linguistic knowledge from web-scale textual corpora allows them
to do “zero-shot” verb prediction, namely predicting verbs that were not seen during
training. Thomason et al. (2014) rely on similar visual recognition as Guadarrama
et al. (2013) but enhance it by integrating large scale object classifiers (Deng et al.,
2012) and scene classifiers (Xiao et al., 2010). Thomason et al. use a factor graph
to combine visual prediction for objects, activities and scenes with the language
statistics mined from large corpora to estimate the most likely subject, verb, object,
and place.

Sun and Nevatia (2014) propose a Semantic Aware Transcription (SAT) framework
based on Random Forest classifiers. SAT uses object and action detection responses
as input and models the semantic relationships between SVO labels. Specifically,
it relies on a continuous skip-gram language model (Mikolov et al., 2013) to group
semantically similar words during training.

Xu et al. (2015b) jointly address the language generation and video/language
retrieval tasks. They learn a joint embedding for a deep video model and a composi-
tional semantic language model. Sentences are modeled by subject, verb, and object
(SVO) triplets which are represented with Word2Vec (Mikolov et al., 2013). The entire
sentence representation is obtained via a recursive neural network. Sentences are
generated with the SVO templates.

2.2.2 Retrieval based approaches

Another line of work approaches video description as a retrieval task, namely
they retrieve sentences from the training set. Although this guarantees perfect
grammar, such approaches can not compose novel descriptions and are limited to
the descriptions in the training set, thus the retrieved descriptions are likely not to
be entirely correct with respect to the test video.

Das et al. (2013) propose a system which consists of three parts: a low-level
topic model which predicts keywords, a mid-level concept detectors and high-level
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semantic verification. The high-level system ensures that the low-level detections
are consistent with the mid-level concept predictions, and retrieves the most likely
training sentence based on a ranking w.r.t. low- and mid-level predictions.

The recent winners of the TRECVID 2016 Video to Text Description challenge,
Dong et al. (2016b), propose Word2VisualVec, a deep neural network model, which
learns to match sentences to videos. Specifically, they project the language Word2Vec
(Mikolov et al., 2013) representation into a deep video feature space via a multilayer
perceptron.

Kaufman et al. (2016) present a retrieval-based approach which took the first place
in the LSMDC16 Movie Description track. The problem which they address is more
general. They want to establish correspondences between test videos and reference
videos with associated (task specific) semantics, so that the semantics is transferred to
test videos. Special cases of such task are video description and video summarization.
The nearest neighbor video is retrieved from the reference set via the unified space
using Canonical Correlation Analysis (CCA). The CCA space is learned over visual
and semantic features, while optimizing the semantics-appearance similarity and
temporal coherency.

2.2.3 Translation approaches

Most recent approaches treat video description as a translation problem, i.e. they aim
to learn the mapping between the two “languages", video and text. The first work to
apply this idea to video description is by Rohrbach et al. (2013b), who propose a two-
step learning approach. First they predict an intermediate semantic representation
(SR) modeled with a CRF. Next, they use statistical machine translation (SMT) (Koehn
et al., 2007) to translate the SR to a sentence. The approach of Rohrbach et al. (2013b)
learns from a parallel corpus of videos, low-level semantic annotations and sentence
descriptions.

More recent works take inspiration from the encoder-decoder approaches to
neural machine translation (Cho et al., 2014; Sutskever et al., 2014). If we apply
the translation paradigm to video description, the encoder corresponds to a visual
feature extractor, e.g. a convolutional neural network (CNN). The decoder, typically
a recurrent neural network (RNN), or specifically, the Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), generates sentence descriptions from
the encoded visual representations. Inspired by this idea, Donahue et al. (2015)
propose Long-term Recurrent Convolutional Networks (LRCN) to describe videos
using LSTM. They rely on precomputed CRF scores of Rohrbach et al. (2014), thus
still depending on low-level semantic annotations. Venugopalan et al. (2015c) extend
this work to extract CNN features from frames which are mean-pooled over time,
removing the need for low-level annotations. They show the benefit of pre-training
the LSTM network for image captioning and fine-tuning it to video description. Later
Venugopalan et al. (2015a) propose S2VT, an encoder-decoder framework, where a
single LSTM encodes the input video frame by frame and decodes it into a sentence.
This approach improves over the prior work which does mean-pooling of video
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features over time. In their follow-up work, Venugopalan et al. (2016) explore the
benefits of pre-trained word embeddings and language models for generation on
large external text corpora.

To handle the challenging scenario of movie description, Yao et al. (2015) propose
a soft-attention based model which selects the most relevant temporal segments in a
video, incorporates 3D convolutional neural networks (3D-CNN) and generates a
sentence using an LSTM. Ballas et al. (2016) leverage multiple convolutional maps
from different CNN layers to improve the visual representation for activity and video
description. Later Yao et al. (2016) conduct an interesting study on performance
upper bounds for both image and video description tasks on available datasets,
including our LSMDC dataset.

Shetty and Laaksonen (2015) evaluate different visual features as input for an
LSTM generation framework. Specifically they use dense trajectory features (Wang
et al., 2013a) extracted for the clips and CNN features extracted at center frames of
the clip. They find that training concept classifiers on MS COCO with the CNN
features, combined with dense trajectories provides the best input for the LSTM.
Later Shetty and Laaksonen (2016) propose to train an evaluator network to select
the best caption from multiple models, trained with different feature combinations
(at video frame level and video segment level).

Pan et al. (2016b) propose a Long Short-Term Memory with visual-semantic
Embedding (LSTM-E) framework. It consists of mean pooled 2-/3-D CNN represen-
tations and LSTM trained jointly with a visual-semantic embedding to ensure better
coherence between video and text. Yu et al. (2017b) jointly address video description,
retrieval and fill-in-the-blank tasks. The main components of their approach are a
concept word detector, which predicts a set of concepts for a given video, and an
LSTM with semantic attention mechanism (over the word concepts), similar to the
one of You et al. (2016).

Pan et al. (2016a) extend the video encoding idea by presenting a hierarchical
recurrent neural encoder (HRNE) to exploit temporal structure of videos. HRNE
introduces a second LSTM layer which receives input of the first layer, but skips
several frames, reducing its temporal depth. Pan et al. also incorporate a temporal
attention mechanism, similar to Yao et al. (2015). Baraldi et al. (2017) propose to
leverage the hierarchical structure of the video by means of a novel time boundary-
aware LSTM. The proposed LSTM can identify discontinuities (cuts) in the video and
modify the temporal connectivity accordingly, e.g. by resetting the hidden state and
memory. This enables the network to better adapt to the input data. Peris et al. (2016)
propose to use Bidirectional Recurrent Neural Networks to model relationships in
two temporal directions. Their model is based on the model of Yao et al. (2015).
Peris et al. obtain expressive visual representations by combining CNNs for object
detection and scene classification.

Multiple approaches have been proposed as part of the MSR Video to Language
Challenge, based on the MSR-VTT dataset. Ramanishka et al. (2016) propose a video
description model, which fuses multiple modalities (e.g. visual, audial), based on
the S2VT model of Venugopalan et al. (2015a). They also include high level video
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category information in the model (e.g. cooking, sports), available in the MSR-VTT
dataset, and show that a “committee” of expert models for each category outperforms
one joint model. Jin et al. (2016) focus on multi-modal fusion of visual, audio, speech
and meta modalities. An LSTM is used to decode the visual representation into
a sentence. Dong et al. (2016a) employ early embedding and late re-ranking for
video description. Early embedding enriches the input to LSTM with automatically
predicted video tags. Late reranking re-scores generated sentences with respect to
tag matching or semantics to promote the most relevant captions.

Looking in a slightly alternative direction, Li et al. (2015) study the problem of
summarizing a long video to a single concise description by using ranking based
summarization of multiple generated candidate sentences. Specifically, they generate
sentence descriptions for each video frame, construct an adjacency graph, connecting
all pairs of sentences, and prune the graph with a ranking based summarization
method, obtaining the final description.

2.2.4 Multi-sentence video description

Some works go beyond the “single clip - single sentence” scenario by producing
multi-sentence video descriptions. Gupta et al. (2009) learn AND/OR graphs to
capture the causal relationships of actions given visual and textual data. At test
time they find the most fitting graph to produce template-based, multi-sentence
descriptions. Khan et al. (2011) first produce multiple sentences and then rely on
paraphrasing and merging to get the minimum needed number of sentences. Using
a simple template, Tan et al. (2011) generate a sentence every 10 seconds of the
video based on concept detections. They recognize a high level event and remove
inconsistent concepts. To generate multiple sentences for a video, Das et al. (2013)
segment the video based on the similarity of concept detections in neighboring
frames but rely on manually defined verbs instead of predicting them.

More recently, Yu et al. (2016a) propose to use two stacked RNNs where the first
models words within a sentence and the second models sentences within a paragraph.
The paragraph generator takes the sentential embeddings produced by the sentence
generator as input and assigns the new initial state to the sentence generator. Shin
et al. (2016) generate story-like video descriptions by temporally segmenting the
video with respect to the localized actions, and generating a consistent narrative
(multiple sentences) by means of multiple natural language processing techniques.
Specifically they perform backward coreference resolution and introduce connective
words, such as “then”.

2.2.5 Relations to our work

In this section we put our approach to multi-sentence and multi-level video descrip-
tion as well as the Visual-Labels approach to movie description in context of prior
work.
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Our video description approach, presented in Chapter 4, falls in the group of
translation approaches. Although it builds upon the work of Rohrbach et al. (2013b),
there are multiple differences between them. While Rohrbach et al. (2013b) generate
single sentences, the focus of our work is to produce multi-sentence descriptions
for an entire video at multiple levels of detail. In contrast to Rohrbach et al. (2013b)
who rely on pre-segmented video snippets, we segment the video automatically.
Furthermore, we exploit the probabilistic output of the CRF and incorporate it in
SMT using a word-lattice (Dyer et al., 2008).

Regarding multi-sentence video description, unlike prior works (Das et al., 2013;
Khan et al., 2011; Tan et al., 2011) we use agglomerative clustering of visual attribute
classifiers trained to capture the desired granularity. Our visual attributes include
fine-grained activities and participating objects. Similar to Tan et al. (2011), we
recognize the high level event (in our case a composite activity) to make sure that
the individual sentences are consistent. However, Tan et al. work in a much simpler
setting of just 3 high level events with manually defined relations to all existing
concepts.

We are not aware of any work in computer vision approaching descriptions
at different levels of detail. There is some relation with the work of Guadarrama
et al. (2013), who predict more abstract words if the uncertainty is too high for a
more specific prediction. Our approach is complementary, as our goal is to produce
descriptions at different levels of detail rather than to decrease uncertainty.

Our movie description approach, Visual Labels (Chapter 5), is another representa-
tive of translation approaches. Unlike most recent end-to-end approaches, we argue
that the movie description task requires a targeted visual representation, learned
on the movie domain, while pre-trained CNN representations from other domains
might be not sufficient. Visual Labels builds on two ideas: the visual classifiers
of Rohrbach et al. (2013b) and the LSTM decoder of Donahue et al. (2015). Unlike
Rohrbach et al. (2013b), who rely on low-level semantic annotations of the video, we
extract labels from sentence descriptions automatically, using our semantic parser
(Chapter 5), focusing on three semantic groups of labels (verbs, objects and places).
For sentence generation we rely on the LSTM implementation of (Donahue et al.,
2015), based on Caffe Jia et al. (2014). Additionally, we analyze different aspects
and variants of this architecture for movie description, e.g. dropout strategies and
placements and ensemble of multiple networks with different random initializations.
Finally, our approach Visual Labels is ranked second in the LSMDC 2016 Movie De-
scription challenge, according to human judges, only losing to the recently proposed
approach of Kaufman et al. (2016).

2.3 visual grounding

Visual grounding is a rather broad term as discussed in the previous chapter. In this
thesis we focus on two instances of the visual grounding problem. First, is the task
of localizing natural language phrases in images and video (Plummer et al., 2015)
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and a very related task of referring expression comprehension (localization) (Mao
et al., 2016). Second, is the task of joint generation and grounding of descriptions for
images and videos (Xu et al., 2015a; Zanfir et al., 2016). In the following we review
the works addressing both directions. We conclude with relating the contributions
of the thesis to prior work.

2.3.1 Grounding natural language in images and video

For grounding language in images, the approach of Kong et al. (2014) is based on a
Markov Random Field which aligns 3D cuboids to words in textual descriptions of
of RGB-D scenes. Their approach is limited to nouns of 21 object classes relevant to
indoor scenes. Recently, Plummer et al. (2015) presented a new dataset, Flickr30k
Entities, which augments the Flickr30k dataset (Young et al., 2014) with bounding
boxes for all noun phrases present in textual descriptions. Plummer et al. propose
an approach based on a Canonical Correlation Analysis (CCA) (Gong et al., 2014)
embedding, learned from phrases and associated visual features. Later Plummer
et al. (2016) improve their CCA approach with more proposal regions and additional
object detectors as well as size and color features. Wang et al. (2016a) propose Deep
Structure-Preserving Embedding for image-sentence retrieval; by formulating it as
a ranking problem they also apply it to phrase localization. For each phrase they
retrieve the closest image region using the learned embedding space.

The Spatial Context Recurrent ConvNet (SCRC) (Hu et al., 2016b) uses an RNN-
based caption generation framework to score the phrase on the set of proposal boxes,
to select the box with the highest score. In addition to local descriptors from the
proposal boxes, they take the global context and geometric configuration of the
boxes into account. A similar approach is taken by Mao et al. (2016), who also score
the proposal boxes based on the local and global visual features. Additionally to
phrase localization (referred to as comprehension in their work), they also address the
generation of referring expressions in the same framework. They also present a new
dataset of images and localized referring expressions, based on MS COCO, named
Google Refexp (GRef). Yu et al. (2016b) propose two more datasets for referring
expression localization, RefCOCO and RefCOCO+, collected following Kazemzadeh
et al. (2014). Both datasets are based on MS COCO images. While RefCOCO does
not have any restriction on the language of referring expressions, the RefCOCO+ has
one constraint: no location words can be used, thus expressions are more focused on
appearance. Yu et al. also propose their approach to comprehension (localization)
and generation of referring expressions. They integrate contextual features from
other regions of the image to provide visual comparison of a target object to other
objects.

A number of recent works state that it is necessary to look beyond single objects
and also reason about relationships between object pairs. Following Wang et al.
(2016a), Wang et al. (2016b) formulate a structured matching problem for phrases
and image regions. They aim to fullfill two constraints: an image region can only
be matched to one phrase and the relation between two phrases should result in
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a similar relation for corresponding image regions. They only consider a subset
of relations which include possessive pronouns. At the same time, Nagaraja et al.
(2016) propose to ground referring expressions in two image regions: a target region
and a context region. E.g. in the expression “a monitor above the keyboard” the
“monitor” is a target, while the “keyboard” is the context. Their approach is closely
related to the work of Mao et al. (2016), with a difference that not one but two
regions are used as input. The context region is not known at training time, so
it is discovered using multiple instance learning (MIL). Hu et al. (2017) propose
Compositional Modular Networks (CMNs), a modular end-to-end architecture for
referring expression localization. CMN decomposes the expression into parts (subject,
relation, object) and grounds them in the image. The expression parsing is done
with three respective soft attention maps. Two types of neural modules are used to
perform word to image alignment: the localization module (to score the regions)
and the relationship module (to score the region pairs).

Yu et al. (2017a) address referring expression generation and localization in a
joint Speaker-Listener-Reinforcer framework. The idea is similar to the one by
Andreas and Klein (2016), where a speaker aims to generate a discriminative caption
for an image, so that a listener can distinguish it from another image. Here, the
listener has to perform the grounding of the referring expression, and the additional
reward-based reinforcer module guides the sampling for the speaker module.

Luo and Shakhnarovich (2017) propose to use a referring expression comprehen-
sion model to train a better generation model, by allowing the comprehension model
to rerank the candidate expressions. Their comprehension model is based on our
grounding approach, presented in Chapter 6. They introduce several changes, such
as a different phrase representation (mean-pooled bidirectional LSTM initialized
with Word2Vec (Mikolov et al., 2013)), a dot product to combine visual and language
representations, and an alternative loss formulation.

Zhang et al. (2016) study the top-down task-driven attention in CNNs. They
propose Excitation Backprop, a back-propagation method, which follows the proba-
bilistic Winner-Take-All formulation. Zhang et al. introduce the contrastive top-down
attention by amplify the discriminative class-specific neurons, which helps them
enhance the discriminativeness of the attention maps. They train a large scale tag
classifier and and obtain attention maps for individual words from Flickr30k Entities
test phrases. The averaged attention maps for each phrase are then used to score the
region proposals.

A few works address visual grounding of linguistic structures other than natural
language phrases. Johnson et al. (2015) use a Conditional Random Field (CRF)
to ground scene graphs in images. The scene graphs capture image semantics,
representing objects, their attributes, and relationships between them. They are used
as a proxy between textual queries and images to perform image retrieval. Sadeghi
et al. (2015) localize relation phrases of the type Subject-Verb-Object (SVO) at a large
scale in order to verify their correctness, while relying on concept detectors (for S,
O, SV, VO, SVO) from Divvala et al. (2014). Recently, Lu et al. (2016) detect visual
relationships in a form of (object, predicate, object) with bounding boxes in images.
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They rely on the RCNN object detector (Girshick et al., 2014), a visual module that
scores pairs of objects w.r.t. predicates, and a language model, which estimates
a likelihood of relationships. In total they relate 100 objects with 70 predicates
in their system. Karpathy et al. (2014a) ground sentence fragments, in a form of
dependency-tree relations, to image regions, from a pre-trained object detector, using
multiple instance learning and a ranking objective. Later Karpathy and Fei-Fei (2015)
simplify this objective to just the maximum score and replace the dependency tree
with a learned bidirectional recurrent network.

In the video domain some of the representative works on spatial-temporal lan-
guage grounding are Yu and Siskind (2013) and Lin et al. (2014a). The approach
of Yu and Siskind, who ground a sentence in the object tracks, was discussed in
Section 2.2. Lin et al. ground individual words in a query to object tracks in a video.
They build a semantic graph for the query and try to match it to objects detected in
the video. Both works are limited to a small set of nouns.

2.3.2 Grounded image and video description

Recently, latent attention mechanisms have been explored for image and video
description. The idea is to select (attend to) a subset of visual features while
generating a word of a description. Xu et al. (2015a) first propose two variants of
attention mechanisms to ground each word to spatial CNN image features. First is
the deterministic soft attention, which weights multiple images regions according to
the attention weights, second is the stochastic hard attention, which selects a single
image region. Most follow-up works adopt the soft attention mechanism, which is
also easier to train with standard back-propagation, while the hard attention includes
non-differentiable sampling.

You et al. (2016) extend this approach to semantic attention over attributes. They
run the learned attribute detectors on images. During caption generation they
apply a soft-attention mechanism over the detected bounding boxes that represent
attribute words. Recently, Yang et al. (2016b) extend the standard attentive encoder-
decoder framework (Xu et al., 2015a) to “encoder-reviewer-decoder” by introducing
a reviewer module. This module updates the encoder hidden states with an attention
mechanism, and produce global fact vectors which become input to the attention
mechanism in the decoder.

Unlike others, Lu et al. (2017) argue that not all words in the image caption can
and should be visually grounded (e.g. articles and prepositions). They introduce
an adaptive attention model, which learns when to look at the image and when
to rely on a language model during sentence generation. Their LSTM model is
extended with an additional “visual sentinel” latent representation in the decoder
and a respective gate, providing an option to either to rely on image or on the visual
sentinel during decoding. They also propose a new spatial attention model, inspired
by Residual Networks (He et al., 2016).

In the video domain, Yao et al. (2015) apply the soft attention mechanism across
video frames, allowing the description model to focus on relevant video segments, as
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discussed earlier in Section 2.2. Zanfir et al. (2016) extend it to spatio-temporal object
proposals in video. They also model video semantics with SVO triplets and represent
videos as classifier responses over different S, V and O classes. Additionally they
rely on the pre-trained object classifier (Simonyan and Zisserman, 2015) and detector
(Ren et al., 2015). All the different semantic visual representations are provided as
input into LSTM, along with the spatio-temporally weighted visual representations
(Simonyan and Zisserman, 2015).

Most recent works do not evaluate the correctness of the obtained localizations
or attention maps, but exceptions exist. Liu et al. (2017) look into evaluating and
improving attention correctness for image captioning. They propose an evaluation
metric to measure the attention correctness, which captures the agreement between
human annotations and automatic attention maps. They also propose multiple
models which can integrate different forms of attention supervision, from explicit
word-level localization supervision, to weak object class-level localization supervision.
Ramanishka et al. (2017) propose an approach, Caption-Guided Visual Saliency, to
analyze the mapping between spatial/spatio-temporal regions in images/video and
words in captions, while the latter can be either generated or provided independently.
They predict saliency maps for images and videos in a top-down fashion, based on
the captions, exploiting the implicit dependencies captured by the LSTM. Saliency is
estimated for each word by computing the decrease in probability of predicting this
word, when given only a particular spatial/temporal region.

Johnson et al. (2016) take a different direction and build a model for dense
captioning, which describes the entire image by jointly predicting large number of
bounding boxes and a corresponding short phrase for each box. Lin et al. (2015a)
parse the visual 3D scene into a scene graph, transform it into a sequence of semantic
trees, and from these generate coherent multi-sentence descriptions, where the nouns
are grounded in 3D cuboids.

2.3.3 Relations to our work

This section discusses our approaches to visual grounding and grounded video
description with respect to prior work.

For the first problem, phrase localization, the main advantage of our approach
GroundeR (Chapter 6) over prior work is its applicability to un- and semi-supervised
training regimes (in terms of localization supervision). We believe that our approach
of encoding the phrase optimizes the better objective for grounding than scoring the
phrase with a text generation pipeline as e.g. done by Hu et al. (2016b) or Mao et al.
(2016). Luo and Shakhnarovich (2017) base their localization approach on ours but
introduce several modifications, like e.g. initializing language representation with
pre-trained Word2Vec. As shown by Plummer et al. (2016), taking into account object
size and color benefits grounding performance. We believe our approach would
also benefit from such additional features. We also think that modeling context and
relationships between objects, as done by e.g. Hu et al. (2017); Nagaraja et al. (2016);
Wang et al. (2016a); Yu et al. (2016b), is beneficial for phrase localization, but we leave
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this to future work.
Regarding different ways of combining language and visual representations, we

propose Multimodal Compact Bilinear pooling (Chapter 7) and show its superiority
to other methods, e.g. concatenation, elementwise product, for visual grounding and
visual question answering. Although most neural approaches rely on representation
concatenation (Hu et al., 2016b; Mao et al., 2016; Nagaraja et al., 2016; Yu et al., 2017a),
alternatives exist. E.g. Luo and Shakhnarovich (2017) use a dot product, while Hu
et al. (2017) use element-wise multiplication, followed by L2 normalization.

As for the second problem, grounded video description, our focus is to localize
people in a video when we mention them in a generated sentence (Chapter 8).
More specifically, we address four tasks jointly: description generation, people
grounding, people local coreference resolution, and prediction of their gender. For
that we employ a soft attention mechanism which jointly reasons about grounding
and visual co-reference over people head tracks. Similar to Liu et al. (2017), we
provide supervision to our attention mechanism, by automatically linking character
mentions in text to visual tracks, for what we rely on our weakly supervised approach
GroundeR (Chapter 6). The most related works are by Ramanishka et al. (2017); Zanfir
et al. (2016), who also ground the words while generating video descriptions. The
main difference is that they aim to ground all the words in a generated description,
while we not only ground but also resolve local co-reference, and predict the gender
of the described people. Unlike these works, we evaluate all the predictions of our
approach, including grounding of people in video.





3
R E C O G N I Z I N G F I N E - G R A I N E D A N D C O M P O S I T E
A C T I V I T I E S U S I N G H A N D - C E N T R I C F E AT U R E S A N D
S C R I P T D ATA

Activity recognition has shown impressive progress in recent years. However,
the challenges of detecting fine-grained activities and understanding how
they are combined into composite activities has been largely overlooked. In

this chapter we approach both tasks and present a dataset which provides detailed
annotations to address them. The first challenge is to detect fine-grained activities,
which are defined by low inter-class variability and are typically characterized by
fine-grained body motions. We explore how human pose and hands can help to
approach this challenge by comparing two pose-based and two hand-centric features
with state-of-the-art holistic features. To attack the second challenge, recognizing
composite activities, we leverage the fact that these activities are compositional
and that the essential components of the activities can be obtained from textual
descriptions or scripts. We show the benefits of our hand-centric approach for fine-
grained activity classification and detection. For composite activity recognition we
find that decomposition into attributes allows sharing information across composites
and is essential to attack this hard task. Using script data we can recognize novel
composites without having training data for them.

In Chapter 4 we address the video description task, using the proposed dataset.

3.1 introduction

Human activity recognition in video is a fundamental problem in computer vision.
State-of-the-art methods (e.g. Tang et al., 2012; Wang et al., 2013b; Wang and Schmid,
2013; Karpathy et al., 2014b) achieve near perfect results for simple actions (e.g. KTH
dataset, Schuldt et al., 2004) and robustly recognize actions in realistic settings such
as Hollywood movies (Marszalek et al., 2009), videos from YouTube (Liu et al., 2009),
or sport scenes (Rodriguez et al., 2008).

While impressive progress has been made, we argue that most works are ad-
dressing only a part of the overall activity recognition challenge. Many application
scenarios, such as human-robot interaction or elderly care require to understand com-
plex activities (e.g. does the person prepare food?), consisting of multiple fine-grained
activities and object manipulations (e.g. is it fried and what is in it?). Frequently it
is important to recognize both, the individual steps and the high level composite
activities. Consequently we approach both problems in this chapter: recognizing
fine-grained activities and recognizing composite activities. Fine-grained activities are
defined as a set of activities which are visually very similar, i.e. have a low inter-class
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Figure 3.1: Sharing or transferring attributes of composite activities using script data.
Composite activities (gray boxes) are composed of activities and their participants
(light-blue boxes), modeled as attributes. These attributes can be transferred to
unseen composite activities (dashed-line box) with the help of script data which
allows estimating the relevant attributes (red). Our activities have the additional
challenge of being fine-grained, we thus refer to them as fine-grained activities.

variability. Composite activities are activities which can be temporally decomposed
into multiple shorter activities, i.e. they consist of multiple steps. We note that both
the terms are not exclusive, i.e. composite activities can also be fine-grained. In
fact some of our composites are very similar. However, in our work we consider
composite activities which consist of fine-grained activities.

When surveying the field we also noticed a lack of datasets allowing to pursue
the challenges of fine-grained and composite activity recognition. Specifically this
is reflected in the following limiting factors of current benchmark databases. First,
while datasets with large numbers of activities exist, the typical inter-class variability
is high. This seems rather unrealistic for many domains such as surveillance or
elderly care where we need to differentiate between consequentially different but
visually similar activities e.g. hug someone versus hold someone or throw in garbage
versus put in drawer. Second, the activities considered so far are full-body activities,
e.g. jumping or running. This appears rather untypical for many applications where
we want to differentiate between more small motion and frequently hand centric
activities. Consider e.g. the cutting activity in domains such cooking (see Figure 3.1),
handicraft work or surgeries, as well as different repairing activities in the domain
of house keeping or machine maintenance with subtle difference in motion and low
inter-class variability. As a third limitation we found that many available databases
contain videos of few second length and focus on simple basic-level activities such
as walking or drinking. In contrast, the recognition of longer-term, complex, and
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composite activities such as assembling furniture, food preparation, or surgeries have
been rarely addressed in computer vision. Notable exceptions exist (see Section 3.2)
even though these have other limiting factors such as small number of classes.

We recorded, annotated, and publicly released a large dataset in a kitchen scenario
which addresses the discussed limitations. It allows us to work on the challenges of
fine-grained and composite activity recognition as follows.

Recognizing fine-grained activities is challenging due to their low inter-class
variability. In contrast to fine-grained object recognition challenges where the same
object category typically is also visually consistent, activities of the same category
are frequently very diverse, i.e. have a high intra-class variability. Consider e.g.
the activities peeling, which can be very different depending of the participating
object: peeling a carrot versus peeling a pineapple. At the same time, we have to handle
small differences between categories, i.e. low inter-class variability, consider e.g.
mix versus stir or slice versus cut dice. This typically requires to understand the
difference between fine-grained body motions. To approach both of these challenges
we propose to focus on body pose and hands. As can be seen in Figures 3.1 and 3.2
many fine-grained activities, especially in our kitchen scenario, are hand-centric.
Here it is not only important to understand the activity but also the participating
object, e.g. open egg versus open tin. We thus propose to focus on the hand regions
for extracting visual features. However, hand detection is a challenging problem in
itself in real-world scenarios due to a large variability in shape and frequent partial
occlusions (Mittal et al., 2011; Gkioxari et al., 2013). To get reliable hand detections,
we integrate a hand detector into an articulated pose estimation. Consequently
we use the hand position to extract color Sift and Dense Trajectories (Wang et al.,
2013a) and learn detectors for fine-grained activities and their participating objects.
Recently, Jhuang et al. (2013) showed that exploiting body pose in form of body
joints can be beneficial for full-body activities. We explore two approaches based
on body pose tracks, motivated from work in the sensor-based activity recognition
community (Zinnen et al., 2009).

For recognizing composite activities, state-of-the-art methods, which build on
discriminative learning from low-level activity features, experience scalability issues
due to the typically highly diverse composite activities and little training data. A
promising approach towards scaling activity recognition methods to a large number
of complex activities is to use intermediate representations that are shared and
transferred across activities by exploiting their compositional nature. We exploit this
technique and propose building on an attribute-based representation, with attributes
denoting the fine-grained activities and the participating objects. For example in
Figure 3.1 the composite activity preparing scrambled egg shares the attributes stir
and spatula with the composite activity preparing onion and the attributes open and
egg with the composite activity separating egg. Instead of learning a holistic model
for each composite activity we learn models for a large set of attributes shared
across composite activity classes. Such approaches have been shown effective to
recognize previously unseen object categories (Lampert et al., 2013) and have also
been applied to activity recognition (Liu et al., 2011). A major challenge to recognize
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everyday activities is that these composite activities can often be performed in a
wide variety of ways, and it is practically infeasible to create a visually annotated
training set with all possible alternatives. Instead, we collect a large number of
textual descriptions (scripts) for composite activities to compute the association
strength between attributes and composite activities. Using this script data we can
handle the inherent variation of composites and even recognize unseen composite
activities. As illustrated in Figure 3.1, the attributes in red are determined to be
important for preparing scrambled eggs using script data and can be transferred from
known composites such as separating egg and preparing onion.

Our main contributions are as follows. First, we propose several hand- and
pose-based activity recognition approaches to recognize fine-grained activities and
their object participants. We benchmark them together with state-of-the-art activity
recognition features on our dataset. Second, we contribute an attribute-based
approach which shares knowledge across composite activities and exploits textual
script data to handle their large variability and allows transfer to unseen composite
activities. Third, we recorded and annotated a video dataset called MPII Cooking 2. It
provides challenges for classification and detection of fine-grained activities and their
participants, human pose estimation, and composite activity recognition (optionally)
using script data. In addition to activity recognition, which is the focus of our
work, the dataset is also being used for 3D human pose estimation (Amin et al.,
2013), multi-frame pose estimation (Cherian et al., 2014), discovering object categories
from activities (Srikantha and Gall, 2014), grounding semantic similarities of natural
language sentences in video (Regneri et al., 2013), and for generating natural language
descriptions (Rohrbach et al., 2013b).

The remaining chapter is structured as follows. We first make an extensive review
of related datasets, activity recognition approaches, and the use of text data for
visual recognition in Section 3.2. Then we introduce our MPII Cooking 2 dataset
in Section 3.3 which we benchmark in the subsequent sections. In Section 3.4 we
make a quantitative comparison of our pose-recognition and hand detection with
related work on the pose challenge of our dataset. Using the pose-estimation and
hand detections we define several visual features and discuss fine-grained activity
detection in Section 3.5. In Section 3.6 we present our approach to combine the
fine-grained activities to composite activities and integrate script data. In Section 3.7
we evaluate fine-grained and composite activity recognition and then we conclude
with the most important findings and directions for future work in Section 3.8.

3.2 related work

We first present an overview of the different video activity recognition datasets (Sec-
tion 3.2.1) and then review recent approaches to activity recognition (Section 3.2.2),
putting a focus on works which use human pose as a cue. Next we discuss works
which use textual information for improved recognition of activities (Section 3.2.3).
We conclude by relating them to our work (Section 3.2.4).
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3.2.1 Activity datasets

Even when excluding single image action datasets such as the Stanford-40 Action
Dataset (Yao et al., 2011b) or the Pascal Action Classification Challenge (Everingham
et al., 2011), the number of proposed activity datasets is quite large (Chaquet et al.
(2013) survey 68 datasets). Here, we focus on the most important ones with respect
to database size, usage, and similarity to our proposed dataset (see Table 3.1).
We distinguish four broad categories of datasets: full body pose, movie and web,
surveillance, and assisted daily living datasets – our dataset falls in the last category.

The full body pose datasets are defined by actors performing full body actions.
KTH (Schuldt et al., 2004), USC gestures (Natarajan and Nevatia, 2008), and similar
datasets (Singh and Nevatia, 2011) require classifying simple full body and mainly
repetitive activities. The MSR actions (Yuan et al., 2009) pose a detection challenge
limited to three classes. In contrast to these full body pose datasets, our dataset
contains more and in particular fine-grained activities.

The second category consists of movie clips or web videos with challenges such
as partial occlusions, camera motion, and diverse subjects. UCF50

1 and similar
datasets (Liu et al., 2009; Niebles et al., 2010; Rodriguez et al., 2008) focus on sport
activities. Kuehne et al.’s evaluation suggests that these activities can already be
discriminated by static joint locations alone (Kuehne et al., 2011). UCF50 has been
extended to UCF 101 (Soomro et al., 2012), significantly increasing the number of
categories to 101 and including 2.4 million frames at a rather low resolution of
320x240. The Sports-1M dataset exceeds all datasets with respect to number of clips
(1.1 million) and categories (487 different sports), which are, however, only weakly
labeled. Hollywood2 (Marszalek et al., 2009), HMDB51 (Kuehne et al., 2011), and
ASLAN (Kliper-Gross et al., 2012) have very diverse activities. Especially HMDB51

(Kuehne et al., 2011) is an effort to provide a large scale database of 51 activities while
reducing the database bias. Although it includes similar, fine-grained activities, such
as shoot bow and shoot gun or smile and laugh, most classes have a large inter-class
variability and the videos are low-resolution. ASLAN (Kliper-Gross et al., 2012)
focuses on a larger number of activities but with little training data per category.
The task is to identify similar videos rather than categorising them. A significantly
larger video collection is evaluated during the TRECVID challenge (Over et al., 2012).
The 2012 challenge consisted of 291h of short videos from the Internet Archive
(archive.org) and more than 4,000h of multi-media (audio and video) data. The
challenge covers different tasks including semantic indexing and multi-media event
recognition of 20 different event categories such as making a sandwich and renovating
a home. Large parts of the data are, however, only available to the participants
during the challenge. Although our dataset is easier in respect to camera motion
and background, it is challenging with respect to a smaller inter-class variability.

The datasets Coffee and Cigarettes (Laptev and Pérez, 2007) and High Five
(Patron-Perez et al., 2010) are different to the other movie datasets by promoting
activity detection rather than classification. This is clearly a more challenging

1http://vision.eecs.ucf.edu/data.html
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Dataset cls,det classes clips /videos subjects # frames resolution

Full body pose datasets
KTH (Schuldt et al., 2004) cls 6 2,391 25 ≈200,000 160x120

USC gestures cls 6 400 4 740x480

(Natarajan and Nevatia, 2008)
MSR action (Yuan et al., 2009) cls,det 3 63 10 320x240

Movie and web video datasets
Hollywood2 (Marszalek et al., 2009) cls 12 1,707 /69

UCF 101 (Soomro et al., 2012) cls 101 13,320 ≈2,400,000 320x240

Sports-1M (Karpathy et al., 2014b) cls 487 1.1 mil
HMDB51 (Kuehne et al., 2011) cls 51 6,766 height:240

ASLAN (Kliper-Gross et al., 2012) cls 432 3,631 /1,571

Coffee and Cigarettes det 2 264 /11

(Laptev and Pérez, 2007)
High Five (Patron-Perez et al., 2010) cls,det 4 300 /23

Surveillance datasets
PETS 2007 (Ferryman, 2007) det 3 10 32,107 768x576

UT interaction cls,det 6 120 6

(Ryoo and Aggarwal, 2009)
VIRAT (Oh et al., 2011) det 23 17 1920x1080

Assisted daily living datasets
TUM Kitchen (Tenorth et al., 2009) det 10 20 /4 36,666 384x288

CMU-MMAC (la Torre et al., 2009) cls,det >130 26 1024x768

URADL (Messing et al., 2009) cls 17 150 /30 5 ≤ 50,000 1280x720

MPII Cooking 2 (our dataset) cls,det 67/ 59 14,105 /273 30 2,881,616 1624x1224

Table 3.1: Overview of activity recognition datasets: We list if datasets allow for
classification (cls), detection (det); number of activity classes; number of clips
extracted from full videos (only one listed if identical), number of subjects, total
number of frames, and resolution of videos. We leave fields blank if unknown or not
applicable.

problem as one not only has to classify a pre-segmented video but also to detect
(or localize) an activity in a continuous video. As these datasets have a maximum
of four classes, our dataset goes beyond these by distinguishing a large number of
classes.

The third category of datasets is targeted towards surveillance. The PETS (Fer-
ryman, 2007) or SDHA2010

2 workshop datasets contain real world situations from
surveillance cameras in shops, subway stations, or airports. They are challenging as
they contain multiple people with high partial occlusion. The UT interaction (Ryoo
and Aggarwal, 2009) requires to distinguish 6 different two-people interaction ac-
tivities, such as punch or shake hands. The VIRAT (Oh et al., 2011) dataset is a recent
attempt to provide a large scale dataset with 23 activities on nearly 30 hours of video.
Although the video is high-resolution people are only of 20 to 180 pixel height.
Overall the surveillance activities are very different to ours which are challenging

2http://cvrc.ece.utexas.edu/SDHA2010/
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with respect to fine-grained hand motion.
Next we discuss the domain of Assisted daily living (ADL) datasets, which also

includes our dataset. The University of Rochester Activities of Daily Living Dataset
(URADL) (Messing et al., 2009) provides high-resolution videos of 10 different
activities such as answer phone, chop banana, or peel banana. Although some activities
are very similar, the videos are produced with a clear script and contain only one
activity each. In the TUM Kitchen dataset (Tenorth et al., 2009) all subjects perform
the same composite activity (setting a table) and rather similar actions with limited
variation. Roggen et al. (2010) and la Torre et al. (2009) present recent attempts to
provide several hours of multi-modal sensor data (e.g. body worn acceleration and
object location). But unfortunately people and objects are (visually) instrumented,
making the videos visually unrealistic. In the CMU-MMAC dataset (la Torre et al.,
2009) all subjects prepare the identical five dishes with very similar ingredients
and tools. In contrast to this our dataset contains 59 diverse dishes, where each
subject uses different ingredients and tools in each dish. The authors also record
an egocentric view. Similarly to (Farhadi et al., 2010a; Fathi et al., 2011; Stein and
McKenna, 2013) the camera view mainly shows hands and manipulated cooking
ingredients. Also recorded in an egocentric view, Pirsiavash and Ramanan (2012)
propose a dataset of 18 diverse daily living activities, not restricted to the cooking
domain, recorded in different houses in non-scripted fashion.

Overall our dataset fills the gap of a large database with on the one hand a
detection challenge of fine-grained activities and on the other hand a recognition
challenge of highly variable composite activities.

3.2.2 Advances in activity recognition

Activity recognition for still images has been advanced e.g. by jointly modeling
people and objects (Yao and Li, 2012) or scenes and objects (Li and Li, 2007). In the
following we focus on recognizing activities in video, distinguishing three aspects:
holistic features for activity recognition, exploiting body pose, and modelling the
temporal structure of activities.

To create a discriminative feature representation of a video, many approaches
first detect space-time interest points (Chakraborty et al., 2011; Laptev, 2005) or
sample them densely (Wang et al., 2009a) and then extract diverse descriptors
in the image-time volume, such as histograms of oriented gradients (HOG) and
histograms of oriented flow (HOF) (Laptev et al., 2008) or local trinary patterns (Yeffet
and Wolf, 2009). Messing et al. (2009) found improved performance by tracking
Harris3D interest points (Laptev, 2005). The state-of-the-art Dense Trajectories
approach from Wang et al. (2013a) uses this idea: it tracks dense feature points
and extracts strong video features around these tracks, namely HOG, HOF, and
Motion Boundary Histograms (MBH, Dalal et al., 2006). They report state-of-the
art results on several datasets including KTH (Schuldt et al., 2004), UCF YouTube
(Liu et al., 2009), Hollywood2 (Marszalek et al., 2009), and HMDB51 (Kuehne et al.,
2011). Recently, Wang and Schmid (2013) improved their approach by removing
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background flow and by ensuring that detected humans do not contribute to the
background motion estimation. Additionally they replace the BoW encoding with
Fisher vectors. The computational effort of this approach can be significantly reduced
by replacing dense flow with motion information from video compression (Kantorov
and Laptev, 2014). As alternative to manually defined activity features, Taylor et al.
(2010), Baccouche et al. (2011), Le et al. (2011), and Ji et al. (2013) use deep learning
with convolutional neural networks to learn an activity feature representation. So far
these approaches cannot reach the manually defined Dense Trajectories even when
learning on a database of over a 1 million videos (Karpathy et al., 2014b).

Human body poses and their motion frequently characterize human activities and
interactions. This has been exploited in Microsoft’s Kinect, which uses human pose
as a game controller but relies on a depth sensor to recognize human pose (Shotton
et al., 2011). Earlier work in human pose based activity recognition employed motion
capture systems using physical on-body markers to reliably capture human poses
(Campbell and Bobick, 1995). Such an approach is impractical for recording realistic
data. Recently a number of hand and pose-centric approaches have been proposed
for activity recognition for more realistic video recordings (Fathi et al., 2011; Packer
et al., 2012; Yao et al., 2011a; Sung et al., 2011; Raptis and Sigal, 2013; Jhuang et al.,
2013) as well as in static images (Yang et al., 2011; Yao and Li, 2012). Packer et al.
demonstrate impressive results in recognition of kitchen activities using body poses
recovered from depth images. Fathi et al. (2011) propose a hand-centric approach for
learning effective models of activities from egocentric video by observing regularities
in hand-object interactions. Hand poses have been shown to facilitate extraction of
appearance features for activity recognition in static images (Karlinsky et al., 2010).
Pose-based models are effective for activity recognition when body poses can be
estimated reliably, as e.g. in depth images (Packer et al., 2012; Sung et al., 2011).
Mittal et al. (2011) and Gkioxari et al. (2013) aim for specialized representations for
hands, but do not apply them to pose estimation or activity recognition. Jhuang et al.
(2013) study the benefits of pose estimation for activity recognition on a subset of the
HMDB dataset (Kuehne et al., 2011). They show that ground truth pose, estimated
over time can significantly outperform the holistic Dense Trajectories features (Wang
et al., 2013a); this is also true for estimated pose using (Yang and Ramanan, 2013)
but only on a subset where the full body is visible.

Although several interesting techniques have been proposed to model the tempo-
ral structure of videos, they typically perform only below or on par with bag-of-word
based approaches: A simple temporal structure is encoded in the template-based Ac-
tion MACH by Rodriguez et al. (2008), Brendel and Todorovic (2011) model temporal
and spatial structure by segmenting the space-temporal volume, and Niebles et al.
(2010) model activities as a temporal composition of primitive actions and discrimi-
natively learn such models. While Niebles et al. fix anchor points and the length of
the temporal segments before training, Tang et al. (2012) learn all parameters from
data using a variable-duration hidden Markov model. An AND/OR graph structure
can be used to combine different features at its nodes (Tang et al., 2013) or model
co-occurring and consecutive actions (Gupta et al., 2009). Recently Pirsiavash and
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Ramanan (2014) have shown how to efficiently parse activity videos with segmental
grammars.

3.2.3 Natural language text for activity recognition

Natural language descriptions have shown beneficial for image segmentation (Socher
and Fei-Fei, 2010) or recognizing object categories (Wang et al., 2009b; Elhoseiny
et al., 2013). Similar to our work, Elhoseiny et al. use classifiers trained on the
known classes. Representing the text descriptions with tf∗idf (term frequency times
inverse document frequency) vectors for relevant encyclopedic entries, they compare
a regression, a domain adaptation, and a newly proposed constrained optimization
formulation to learn a function from the textual vector to the visual classifier space.
On two fine-grained visual recognition datasets, CU200 Birds (Welinder et al., 2010)
and Oxford Flower-102 (Nilsback and Zisserman, 2008), they show the benefit of
their constraint optimization approach. Semantic similarity from linguistic resources
has also been used to allow zero-shot recognition in images via attributes and direct
similarity (Rohrbach et al., 2010) and by learning an embedding into a linguistic
word vector space (Socher et al., 2013; Frome et al., 2013). Additionally to transferring
knowledge one can exploit the unlabeled instances to improve recognition, assuming
a transductive setting. For this, Fu et al. (2013) exploit the test-data distribution by
performing a single round of self-training by averaging over the k-nearest neighbors.

Teo et al. (2012) improve activity recognition by adding object detectors, which are
selected based on the linguistic co-occurrence statistics in the newswire Gigaword
Corpus. A similar idea is pursued by Motwani and Mooney (2012), who mine and
cluster verbs from descriptions of the video snippets in the MSVD dataset (Chen
and Dolan, 2011). Zhang et al. (2011) show that tf∗idf can identify the most relevant
terms in text descriptions collected for seven video scenes allowing to yields close
to perfect (98%) recognition accuracy on their dataset. Ramanathan et al. (2013)
jointly recognize actions and roles in YouTube videos using their captions. They
mine a large number of YouTube descriptions and use a topic model to estimate the
semantic relatedness between an action/role and a description.

Another line of work focuses on describing videos with natural language descrip-
tions. Recently Guadarrama et al. (2013) generated simple sentences for the Microsoft
Video Description corpus (Chen and Dolan, 2011) containing challenging web videos.
Das et al. (2013) compose descriptions for kitchen videos of their YouCook dataset
showing YouTube cooking videos. Finally, (Rohrbach et al., 2013b) have shown how
to learn a translation model for generating natural sentences on our dataset.

3.2.4 Relations to our work

Most of the activity recognition approaches and datasets have been evaluated on
full-body motion or challenging web or movie datasets but not on fine-grained
motions with low inter-class variability. We therefore evaluate the holistic Dense
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Trajectories approach from Wang et al. (2013a) as well as two pose-based and two
hand centric approaches on our MPII Cooking 2 dataset. Our pose-based approach
encodes trajectories of body joints using features motivated from the sensor-based
activity recognition community (Zinnen et al., 2009). The features are also similar to
the relational and distance features defined on joints by Jhuang et al.. Similarly to
their work we define relational and distance metrics between joints per frame and
over time. However, our activities contain very subtle motions and the people have
a very similar pose for most activities, which reduces the benefits of this feature
representation. Jhuang et al. examine the advantages of focusing Dense Trajectories
(Wang et al., 2013a) on body joints. In our static scene (holistic) Dense Trajectories
are already restricted to human body as the features are only extracted on moving
points. However, in this work we propose to focus on hands, as they are the main
cue for recognizing our fine-grained activities and participating objects.

Amin et al. (2013) show how to improve the hand localization by leveraging
multiple cameras to handle self-occlusion. Instead, we remain monocular and
propose to use a specialized hand detector to improve pose estimation and activity
recognition.

To improve fine-grained activities and their participating objects we train a
classifier on stacked classifier scores from co-occurring activities/objects as well as
from temporal context after max pooling. Classifier stacking has previously been
explored e.g. by Ting and Witten (1997); Liu et al. (2012); Sill et al. (2009). Most
relevant to our work, Liu et al. (2012) try to optimize the usage of training data and
avoid over-fitting when learning stacked video classifiers. This could be beneficial
when applied to our approach.

In this chapter we exploit cooking instructions (script data) to extract which
activities, tools, and ingredients are relevant for a certain dish (composite activity).
For this we compare co-occurrence statistics with tf∗idf, which has also been used
by Zhang et al. (2011) and Elhoseiny et al. (2013) to extract relevant concepts for
video scene and object recognition. We find that tf∗idf better discriminates different
dishes and improves performance in most cases. Script data allows for zero-shot
recognition, which has mainly been used for object recognition, but also for multi-
media data by Fu et al. (2013). Fu et al. learn a latent attribute representation on the
known classes, but then use manually defined attribute associations to transfer.

While the temporal structure, i.e. temporal ordering, seems an important com-
ponent to recognize activities, so far mainly the short term structure of short video
clips has been explored (e.g. Gupta et al., 2009; Brendel and Todorovic, 2011; Tang
et al., 2012). Here we exploit temporal co-occurrence within the same time interval
and context of short actions and their participating objects within the entire video
using max pooling. For long term composite activities we aggregate its components
with max pooling ignoring the temporal order. Nevertheless, we believe that the
temporal structure of scripts (Regneri et al., 2010) might form a good prior for the
temporal structure of videos and vise-versa. Bojanowski et al. (2014) have recently
shown the benefit of movie scripts as a weak supervision. They use the ordering
constraints provided by the script data to localize the actions and to learn action
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models.
Finally we shortly summarize how this chapter extends the prior work by

Rohrbach et al. (2012a) and Rohrbach et al. (2012b). First, we updated the dataset by
correcting and unifying some of the annotations and adding a few more videos. We
refer to this new version as MPII Cooking 2. It supersedes both previous datasets, see
Table 3.3. Second, we integrated Propagated Semantic Transfer (PST) of Rohrbach
et al. (2013b) for composite activity recognition. Specifically, this thesis contributes
with the hand-centric approaches for fine-grained recognition, namely an integration
of pose-estimation and hand detector, and Hand centric features for activity recogni-
tion. We also extended qualitative and quantitative results and rerun experiments
with updated version of Dense Trajectories (Wang and Schmid, 2013).

3.3 dataset “mpii cooking 2”

For our dataset we video-recorded human subjects cooking a diverse set of dishes,
e.g. making pizza or preparing cucumber. The dishes form the composite activities and
the individual steps taken are the fine-grained activities, e.g. cut, pour, or spice. All
videos have a composite label and are annotated with time intervals. Each time
interval has a fine-grained activity and the participating objects as labels. A subset
of frames was annotated with human pose and hands. In the following we provide
details and statistics of the dataset, Figures 3.1 and 3.2 show example frames of the
dataset.

3.3.1 Dataset statistics and versions

We recorded 30 subjects in 273 videos with a total length of more than 27 hours or
2,881,616 frames. Each video contains a single subject preparing a certain dish.

The dataset was recorded in two batches. The first part contains few, but very
diverse and complex dishes (see upper part of Table 3.2) and was presented in
(Rohrbach et al., 2012a). The second part, presented by (Rohrbach et al., 2012b), fo-
cuses on composite activities and thus contains significantly more dishes/composites
which are slightly shorter and simpler, see lower part of Table 3.2. The second set of
composite activities are selected according to our script corpus which we describe
below in Section 3.3.4. We ignored some of them which were either too elementary
to form a composite activity (e.g. how to secure a chopping board), were duplicates
with slightly different titles, or because of limited availability of the ingredients (e.g.
butternut squash).

For this work we corrected and unified some of the annotations and added a few
more videos. We refer to this new dataset version as MPII Cooking 2. It supersedes
both previous datasets. Table 3.3 compares the different versions and shows different
statistics about them. The table also shows the proposed training/validation/test
split, which is selected in a way that for all 31 composite activities in the test set, there
are at least 3 training/validation videos and there is no overlap between training,
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MPII Cooking sandwich, salad, fried potatoes, potato pancake, omelet, soup, pizza, casserole,
mashed potato, snack plate, cake, fruit salad, cold drink, and hot drink

MPII Composites cooking pasta, juicing {lime, orange}, making {coffee, hot dog, tea}, pouring
beer, preparing {asparagus, avocado, broad beans, broccoli and cauliflower, broc-
coli, carrots and potatoes, carrots, cauliflower, chilli, cucumber, figs, garlic,
ginger, herbs, kiwi, leeks, mango, onion, orange, peach, peas, pepper, pineap-
ple, plum, pomegranate, potatoes, scrambled eggs, spinach, spinach and leeks},
separating egg, sharpening knives, slicing loaf of bread, using {microplane
grater, pestle and mortar, speed peeler, toaster, tongs}, zesting lemon

Table 3.2: Composite activities (dishes) of MPII Cooking 2 dataset, composites
marked in bold are part of the test split.

videos subjects categories ground truth attribute video
composites attributes time intervals instances duration

MPII Cooking 44 12 14 218 3,824 15,382 3-41 min
MPII Composites 212 22 41 218 8,818 33,876 1-23 min
combined 256 30 55 218 12,642 49,258 1-41 min

MPII Cooking 2 273 30 59 222 14,105 54,774 1-41 min
- Training set 201 24 58 222 10,931 42,619 1-41 min
- Validation set 17 1 17 107 445 1,662 1-8 min
- Test set 42 5 31 169 2,102 8,023 1-13 min

Table 3.3: Dataset statistics. Note that the train/val/test split do not add up to the
full dataset, as some videos of the test subjects are not used as they have less than
three train/val videos.

validation, and test subjects. In contrast to the earlier versions we avoid multiple
test splits for simpler evaluation and to reduce the computational burden for other
researchers evaluating on the dataset.

3.3.2 Dataset recording and annotation protocol

To record realistic behavior we neither asked subjects to perform certain activities
nor to follow a certain recipe but we told them only which dish they should prepare.
This resulted in a larger variety of how subjects prepared things. This means subjects
used different tools for preparation (knife or peeler for peeling), took different steps
(e.g. some people cooked the vegetables some did not), and did things in different
temporal orders for the same dish (e.g. washed the vegetable before or after they
peeled it). Before the recording the subjects were shown our kitchen and places
of tools and ingredients to feel at home. During the recording subjects could ask
questions in case of problems and some listened to music. We always started the
recording with an empty and clean kitchen, prior to the subject entering the kitchen
and ended it once the subject declared to be finished, i.e. we did not include the final
cleaning process. Most subjects were university students from different disciplines
recruited by e-mail and publicly posted flyers. Subjects were paid per hour and
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1. get a large sharp knife 1. gather your cutting board
and knife.

1. wash the cucumber

2. get a cutting board 2. wash the cucumber. 2. peel the cucumber
3. put the cucumber

on the board
3. place the cucumber flat

on the cutting board.
3. place cucumber on

a cutting board.
4. hold the cucumber

in your weak hand
4. slice the cucumber

horizontally into round
slices.

4. take a knife and rock it
back and forth on the cucum-
ber

5. chop it into slices with
your strong hand

5. make a clean thin slice each
time.

Table 3.4: Three example scripts for the composite activity preparing cucumber.

cooking experience ranged from beginner cookers to amateur chefs.
Composite activities are annotated on the level of each video. Fine-grained

activities were annotated with a two-stage revision phase with start and end frame
using the annotation tool Advene (Aubert and Prié, 2007). In addition to the activity
category each annotation consists of used tools, ingredients, and locations (we
refer to them as participants). Composite activities were chosen as described in
Sections 3.3.1 and 3.3.4. Activity, tool, ingredient, and location categories were
chosen to describe all activities the human subjects were performing. The decision
was made after the recording on the base what the human subjects did. With respect
to the level of detail, we do not annotate the specific motions (e.g. move arm up or
down) but what effect or semantic they have (e.g. open versus close). See Table 3.7
for the chosen granularity.

We recorded in our kitchen (see Figure 3.2(a)) with a 4D View Solutions system
using a Point Grey Grasshopper camera with 1624x1224 pixel resolution at 29.4fps
and global shutter. The camera is attached to the ceiling, recording a person working
at the counter from the front. We provide the sequences as single frames (jpg with
compression set to 75) and as video streams (compressed weakly with mpeg4v2 at
a bit-rate of 2500). For most videos we recorded 7 additional camera views on the
kitchen, a subset was used and released by Amin et al. (2013). Although they are not
used in this work we will make the remaining 7 views available upon publication.
All fine-grained and composite activity annotations are also valid for the other
cameras as each frame was synchronized across all 8 cameras.

We also provide intermediate representations of holistic video descriptors, human
pose detections, tracks, and features defined on the body pose. We hope this will
foster research at different levels of activity recognition.

The dataset provides furthermore human body pose annotations (see Section 3.3.3),
script data (see Section 3.3.4) and there exist textual descriptions in the TACoS (Reg-
neri et al., 2013) and TACoS Multi-Level corpus (Chapter 4). The descriptions in
TACoS describe what happens in a specific video and are temporally aligned to the
video, i.e. they provide a textual annotation. In contrast, the scripts used in this
work are collected independently of the video and thus contain domain or script
knowledge, i.e. what activities and what objects are likely used for a certain dish. As
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Figure 3.2: Single frames from the dataset depicting fine-grained cooking activities
and diverse sets of tools and ingredients (participants). (a) Full scene of slicing in the
composite activity omelet, and crops of (b) take out, (c) dicing, (d) take out, (e) squeeze,
(f) peel, (g) wash, (h) grate.

they are not specific to the training videos they allow to transfer and generalize to
novel test scenarios.

3.3.3 Pose challenge

A subset of frames have articulated human pose and hand annotations to learn
and evaluate pose estimation approaches and hand detectors. For human pose we
annotated the frames with right and left shoulder, elbow, wrist, and hand joints as
well as head and torso. We have 2,994 frames of 10 subjects for training of pose
annotation and an additional of 4,250 training images with hand points used for
training the hand detector. For testing we sample 1,277 frames from all activities
with 7 subjects as test set for the pose challenge. All training and test frames are
from MPII Cooking (Rohrbach et al., 2012a) and thus avoid an overlap with the test
subjects and test composites in MPII Cooking 2.

3.3.4 Mining script data for composite activities

Linguistics and psychology literature knows prototypical sequences of certain ac-
tivities as so-called scripts (Schank and Abelson, 1977; Barr and Feigenbaum, 1981).
Scripts describe a certain scenario which corresponds to composite activities in
our case. Scenarios (e.g. eating in a restaurant) are temporally ordered events (the
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patron enters restaurant, he takes a seat, he reads the menu,...) and subjects (patron, waiter,
food, menu,...). Written event sequences for a scenario can be collected on a large
scale using crowd-sourcing (Regneri et al., 2010). We make use of this method to
collect scripts for our composite activities and assembling a large number of written
sequences for each of those.

We collect natural language sequences similar to Regneri et al. (2010) using
Amazon Mechanical Turk. For each composite activity, we asked the subjects to
give tutorial-like sequential instructions for executing the respective kitchen task.
The instructions had to be divided into sequential steps with at most 15 steps per
sequence. We select 53 relevant kitchen tasks as composite activities by mining the
tutorials for basic kitchen tasks on the webpage “Jamie’s Home Cooking Skills”3. All
those tasks/scenarios are about processesing ingredients or using certain kitchen
tools. In addition to the data we collected in this experiment, we use data from
the OMICS corpus (Singh et al., 2002) and Regneri et al. (2010) for 6 kitchen-related
composite activities. This results in a corpus with 59 composite activities and 2,124

sequences in sum, having a total of 12,958 individual event descriptions. Note that
for practical reasons we only recorded videos for 35 of these composite activities as
discussed in Section 3.3.1. They are listed in Table 3.2 under “MPII Composites”.

This script corpus provides much more variation than the limited number of
video training examples can capture. Of course this also poses a challenge, because
we need to overcome the problem of different wordings and coordinated events:
Table 3.4 shows three examples we collected for the composite activity preparing
cucumber. They differ in verbalization (e.g. slice, chop, and make a slice) and granularity
(getting something is often left out). Further, the sequences reflect different ways
of preparing the vegetable, some include peeling it, some do not wash it, and so on.
Some sentences contain conjugated events (take a knife and rock it...). While we clean
the data to a certain degree by fixing spelling mistakes and resolving pronouns with
the method from Bloem et al. (2012), we end up with both challenges and blessings
of a noisy but big script corpus.

In Section 3.6.4 we will describe how we extract semantic relatedness from this
data.

3.4 hand detection and pose estimation

One goal of this chapter is to investigate the applicability of state-of-the-art pose
estimation methods in the context of activity recognition. Therefore, in this section
we propose our new pose estimation method based on Andriluka et al. (2011) and
benchmark it on our dataset together with state-of-the-art pose estimation methods.
Another goal is to demonstrate the importance of hand-based features for recognizing
activities and their participants. For this we need to localize hands, which is in itself
a challenging task due to partial occlusions, obstruction by manipulated objects, and
variability of hand postures. In order to achieve high quality hand localization we

3http://www.jamieshomecookingskills.com



44 chapter 3. recognizing fine-grained and composite activities

leverage two complementary sources of information. We exploit the characteristic
appearance of hands in order to train an effective hand detector. We then integrate
observations from this detector in our pose estimation approach to take advantage
of the context provided by the other body parts. As another finding, we show
that localization of all body parts benefits significantly from our specialized hand
detector.

In the following we introduce our hand detector (Section 3.4.1) and pose esti-
mation method (Section 3.4.2) as well as how we combine them (Section 3.4.3). In
Section 3.4.4 we evaluate our proposed approaches as well as state-of-the-art pose
estimation methods on our dataset.

3.4.1 Hand detection based on local appearance

As a basis for our hand detector we rely on the deformable part models (DPM,
Felzenszwalb et al., 2010). We discuss several design choices in order to achieve best
performance.

Detection of left and right hands. We aim for a hand detector that can correctly
distinguish the left and right hand of a person. The rationale behind this is that for
many activities left and right hands have different roles (e.g. for a cutting activity the
dominant hand is typically holding a knife while the supporting hand is holding the
object that is being cut). Further, we would like to avoid situations when two strong
hypotheses for one of the hands are chosen over two hypotheses for both hands. We
achieve this by dedicating separate DPM components to left and right hands and
jointly training them within the same detector (see examples in Figure 3.3). Note
that in contrast to the default setting mirroring is switched off in DPM. At test time
we pick the best scoring hypothesis among the components corresponding to left
and right hands.

Component initialization. We capture the variance of hand postures by decom-
posing the hands’ appearance into multiple modes and representing each mode with
a specific DPM component. We found that a rather large number of components
is necessary to achieve good detection performance. We initialize the components
by clustering the HOG descriptors of the training examples using K-means as in
Divvala et al. (2012). The detection further improves by first clustering the training
examples by hand orientation and then by HOG.

Body context. We improve the hand localization by augmenting the hand detector
with the context provided by a person detector. We rely on the person detector to
constrain the search for hands to the image locations within the extended person
bounding box and also constrain the scale of the hands detector to the scale of the
person hypothesis.



3.4 hand detection and pose estimation 45

Figure 3.3: Examples of training images assigned to 4 different hand components,
each row shows images from one component. Rows 1 and 2 correspond to right
hand components, and rows 3 and 4 to left hand components.

3.4.2 Pose estimation

We base our pose estimation approach on the pictorial structures (PS) approach
(Fischler and Elschlager, 1973; Felzenszwalb and Huttenlocher, 2005). In PS the
body is represented as a collection of rigid parts linked via a set of pairwise part
relationships. Unlike the original model we define a flexible variant of the PS model
(FPS) that consists of N = 10 parts corresponding to head, torso, as well as left and
right shoulders, elbows, wrists and hands. Denoting the configuration of parts as
L = l1, . . . , lN , and image observations as D, the posterior over the part configuration
is given by

p(L|D) ∝ ∏
(i,j)∈E

p(li|lj) ·
i=N

∏
i=1

p(D|li), (3.1)

where E is a set of connected part pairs. We build on the publicly available PS
implementation from Andriluka et al. (2011). In this model the pairwise connections
between parts form a tree structure, which permits efficient and exact inference. The
pairwise terms represent the spatial relationships between part positions and are
modeled as Gaussians with respect to relative position and orientation of parts. The
appearance of individual parts is represented with boosted part detectors and shape
context image features. Conceptually the formulation of Andriluka et al. (2011) is
similar to flexible mixture of parts model (FMP, Yang and Ramanan, 2011). The
FMP model represents appearance of each body part with a set of HOG templates.
Pairwise terms are adapted depending on the particular template. Parameters of
appearance templates and pairwise terms of the FMP model are jointly trained
using max-margin objective. The model of Andriluka et al. (2011) relies on a single
appearance template for all parts. Parameters of pairwise terms are estimated using
maximum likelihood independently from appearance terms. We extend this model
by incorporating color features into the part likelihoods by stacking them with
shape context features prior to part detector training. We encode the color as a
multidimensional histogram in RGB space using 10 bins for each color dimension
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which results in 1000 dimensional feature vectors. We then concatenate color and
shape context features and train boosted part detectors for each part using the
combined representation. We use standard AdaBoost for training and rely on the
same weak learners as in Andriluka et al. (2011).

3.4.3 Combining hand detection and pose estimation

We extend the image observations in Eq. 3.1 with detection hypotheses for left and
right hands, which we obtain using the corresponding components of our hand
detector. We denote the set of hand hypotheses produced by our hand detector
by H = {(dk, sk)|k = 1, . . . , K}, where dk is the image position and sk the detection
score. Based on this sparse set of detections we obtain a dense likelihood map for
the hand part lh using a kernel density estimate:

p(H|lh) =
K

∑
k=1

wk exp(−σ2‖dk − lh‖2), (3.2)

where wk = sk − m is a positive weight associated with each hand hypothesis
computed by shifting the detection score by the minimal score value m. There
is no specific upper/lower bound for the scores sk, but since DMP relies on SVM
formulation the scores tend to be centered around 0 with confident negative examples
having score less than -1. In practice we set m = −1 and ignore all detections with a
smaller score than m.

3.4.4 Evaluation: pose estimation and hand detection

We first evaluate the results on the upper-body pose estimation task. In order to
identify the best 2D pose estimation approach we use our 2D body joint annotations
(see Section 3.3.3). For evaluating these methods we adopt the PCP measure (per-
centage of correct parts) proposed by Ferrari et al. (2008). The results are shown in
Figure 3.5. The first three lines compare three state-of-the-art methods: the cascaded
pictorial structures (CPS, Sapp et al., 2010), the flexible mixture of parts model (FMP,
Yang and Ramanan, 2011) and the implementation of pictorial structures model (PS,
Andriluka et al., 2011), using their published pose models. Lines 4 and 5 show the
models of Yang and Ramanan and Andriluka et al. retrained on our data. Overall
the model of Andriluka et al. performs best, achieving 66.0 PCP for all body-parts.
We attribute the improvement of PS over FMP to the following. The FMP model
encodes different orientation of parts via different appearance templates, whereas
the PS model uses a single template that is rotation invariant and is evaluated at all
orientations. The FMP model has a larger number of parameters because appearance
templates are not shared across different part orientations. A larger number of
parameters means that it is easier to overfit the FMP model than the PS model. This
could explain the performance differences after retraining on our data. It could also
be that finer discretization of body part orientations in the PS model compared to
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upper arm lower arm
Method Torso Head r l r l All

Original models
CPS Sapp et al. (2010) 67.1 0.0 53.4 48.6 47.3 37.0 42.2
FMP Yang and Ramanan (2011) 63.9 72.1 60.2 59.6 42.1 46.7 57.4
PS Andriluka et al. (2009) 58.0 45.5 50.5 57.2 43.3 38.8 48.9

Trained on our data
FMP Yang and Ramanan (2011) 79.6 67.7 60.7 60.8 50.1 50.3 61.5
PS Andriluka et al. (2009) 80.1 80.0 67.8 69.6 48.9 49.6 66.0

FPS 78.5 79.4 61.9 64.1 62.4 61.0 67.9
FPS + data 79.3 85.0 64.3 64.6 60.0 59.8 68.8
FPS + data + hand det 79.6 84.9 70.9 70.0 73.5 70.2 74.9
FPS + data + color 80.7 85.8 69.1 67.4 69.3 65.5 73.0
FPS + data + hand det + color 81.3 86.1 72.4 71.3 74.4 70.3 75.9

Table 3.5: 2D upper body pose estimation results on the “Pose Challenge” of our
dataset. The numbers correspond to the “percentage of correct parts” (PCP).
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Figure 3.4: Accuracy of different methods for detection of right and left hands for a
varying distance (in pixels) from the ground truth position.

the FMP model is important for good performance. As described above we base our
model (FPS) on PS, adding to it flexible part configuration.

The bottom part of the Figure 3.5 shows that this as well as our other improve-
ments (more training data comparing to Rohrbach et al. (2012a), color features, and
hand detections) in the model each helps to improve performance. Overall, com-
pared to PS, we achieve an improvement from 66.0 to 75.9 PCP and most notably an
improvement from 48.9 to 74.4 and from 49.6 to 70.3 for lower arms, which are most
important for recognizing hand-centric activities. We also would like to point to the
benefit which hand detectors have to pose estimation (compare line 7 vs 8 and 9 vs
10).

Next we discuss the hand detection results. Our final hand detector handDPM
is based on 32 components with 16 components allocated to each hand. The com-
ponents are initialized by first grouping the training examples of each hand into 4
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Figure 3.5: Pose helps to resolve failure cases of hand localization (upper row -
handDPM, lower row is FPS+data+hand det+color).

discrete orientations, and then clustering their HOG descriptors. In the experiments
on hand localization we use a metric that reflects the localization accuracy and mea-
sures the percentage of hand hypotheses within a given distance from the ground
truth. We visualize the results by plotting the localization accuracy for a range of
distances.

Figure 3.4 presents the evaluation of the localization accuracy of both hands.
We observe that our hand detector (handDPM, red-dashed curve) alone already
significantly improves over the proposed FPS approach (black-dotted-triangles). The
performance further improves when hand detection hypotheses are integrated within
the pose estimation model (blue-solid-stars). However, the improvement is moderate,
likely because the pose estimation approach is not optimized specifically for hand
detection and has to compromise between localization of hands and other body
parts. Some qualitative examples are shown in Figure 3.5.

We also compare our hand detector to a state-of-the-art hand detector of Mittal
et al. (2011) using the code made publicly available by the authors. We perform the
best-case evaluation and assign the hand hypothesis returned by the approach to
the closest left and right hand in the ground-truth, as the hand detector does not
differentiate between left and right hands. For a fair comparison we also filter the
hand detections of Mittal et al. (2011) at irrelevant scales and image locations using
body context as explained before. Our detector significantly improves over the hand
detector of Mittal et al. (2011), which in addition to hand appearance also relies on
color and context features, whereas our hand detector uses hand regions only. Note
that there are significant differences between localization accuracy of left and right
hands. We attribute this to the fact that the majority of people in our database are
right handed. Since people perform many activities with their dominant hand, the
pose of the right hand is more likely to be constrained by various activities due to
the use of tools such as a knife or peeler. The left hand’s pose is far less deterministic
and the hand is often occluded behind the counter or while holding various objects.
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3.5 fine-grained activity recognition and detection

In this section we focus on fine-grained activity recognition to approach the chal-
lenges typical e.g. for assisted daily living. Along with the activities we want to
recognize their participating objects. To better understand the state-of-the-art for this
challenging task we benchmark three types of approaches on our new dataset. The
first type (Section 3.5.1) uses features derived from upper body model motivated
by the intuition that human body configurations and human body motion should
provide strong cues for activity recognition. For body pose estimation we rely on our
approach described in Sections 3.4.2 and 3.4.3. The second type (Section 3.5.2) are
the state-of-the-art Dense Trajectories (Wang et al., 2013a) which have shown promis-
ing results on various datasets. It is a holistic approach in a sense that it extracts
visual features on the entire frame. As the third type (Section 3.5.3) we present our
hand-centric visual features, targeted at recognizing our hand-centric activities and
the participating objects which are typically in the hand neighbourhood. For this we
propose a hand detector (Sections 3.4.1, 3.4.3). Finally, we discuss our approaches to
activity classification and detection in Section 3.5.4.

3.5.1 Pose-based approach

Pose-based activity recognition approaches were shown to be effective using inertial
sensors (Zinnen et al., 2009). Inspired by Zinnen et al. (2009) we build on a similar
feature set, computing it from the temporal sequence of 2D body configurations.

We employ a person detector (Felzenszwalb et al., 2010) and estimate the pose of
the person within the detected region with 50% border around. This allows us to
reduce the complexity of the pose estimation and simplifies the search to a single
scale. To extract the trajectories of body joints we rely on search space reduction
(Ferrari et al., 2008) and tracking. To that end we first estimate poses over a sparse set
of frames (every 10-th frame in our evaluation) and then track over a fixed temporal
neighborhood of 50 frames forward and backward. For tracking we match SIFT
features for each joint separately across consecutive frames. To discard outliers we
find the largest group of features with coherent motion and update the joint position
based on the motion of this group. This approach combines the generic appearance
model learned at training time with the specific appearance (SIFT) features computed
at test time.

Given the body joint trajectories we compute two different feature representations.
First is a manually defined statistics over the body model trajectories, which we
refer to as body model features (BM). Second is Fourier transform features (FFT) from
Zinnen et al. (2009), which have shown effective for recognizing activities from body
worn wearable sensors.

Body model features (BM). For the BM features we compute the velocity of all
joints (similar to gradient calculation in the image domain). We bin it in an 8-bin
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histogram according to its direction, weighted by the speed (in pixels/frame). This is
similar to the approach by Messing et al. (2009) which additionally bins the velocity’s
magnitude. We repeat this by computing acceleration of each joint. Additionally we
compute distances between the right and corresponding left joints as well as between
all 4 joints on each body half. Similar to the joint trajectories (i.e. trajectories of
x,y values) we build corresponding “trajectories” of distance values by stacking the
values over temporally adjacent frames. For each distance trajectory we compute
statistics (mean, median, standard deviation, minimum, and maximum) as well as a
rate of change histogram, similar to velocity. Last, we compute the angle trajectories
at all inner joints (wrists, elbows, shoulders) and use the statistics (mean etc.) of the
angle and angle speed trajectories. This totals to 556 dimensions.

Fourier transform features (FFT). The FFT feature contains 4 exponential bands,
10 cepstral coefficients, and the spectral entropy and energy for each x and y
coordinate trajectory of all joints, giving a total of 256 dimensions.

Feature representation. For both features (BM and FFT) we compute a separate
codebook for each distinct sub-feature (i.e. velocity, acceleration, exponential bands
etc.) which we found to be more robust than a single codebook. We set the codebook
size to twice the respective feature dimension, which is created by computing k-
means from all features (over 80,000). We compute both features for trajectories of
length 20, 50, and 100 (centered at the frame where pose was detected) to allow for
different motion lengths. The resulting features for different trajectory lengths are
combined by stacking and give a total feature dimension of 3,336 for BM and 1,536

for FFT.

3.5.2 Holistic approach

Most approaches for activity recognition are based on a bag-of-words representations.
We pick the state-of-the-art Dense Trajectories approach (Wang et al., 2011, 2013a)
which extracts histograms of oriented gradients (HOG), flow (HOF Laptev et al.,
2008), and motion boundary histograms (MBH Dalal et al., 2006) around densely
sampled points, which are tracked for 15 frames by median filtering in a dense
optical flow field. The x and y trajectory speed is used as a fourth feature. Using their
code and parameters which showed state-of-the-art performance on several datasets
we extract these features on our data. Following Wang et al. (2013a) we generate a
codebook for each of the four features of 4,000 words using k-means from over a
million sampled features.

3.5.3 Hand-centric approach

In domains where people mainly perform hand-related activities it seems intuitive to
expect that hand regions contain important and relevant information for recognizing
those activities and the participating objects. Thus, in addition to using the holistic
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and pose-based features, we suggest to focus on the hand regions. To obtain the
hand locations we rely on our hand detector described in Section 3.4.1 as well as on
the pose estimation method with integrated hand candidates (Section 3.4.3). In order
to increase the robustness of the method we use both location candidates (provided
by the handDPM detector and the final pose model) and sum the obtained features.

Hand-Trajectories. We want to represent different type of information: hand
motion, hand shape, and shape variations over time, as well as the appearance of
objects manipulated by the hands. We propose to densely sample the neighborhood
of each hand and to track those points over time. For tracking and also representing
the point trajectories with powerful features we adapt the approach of Wang et al.
(2013a). We focus only on densely sampled points around the estimated hand
positions instead of sampling the entire video frame. We specify a bounding box
around each hand detection and densely sample points inside of it. In our experiment
we use 120×140 pixels bounding box around hands to include the information about
the hands’ context. We use 8 pixels grid spacing for points sampling and finally
we get 136 interest point tracks for each frame. After extracting the features along
computed tracks we create codebooks that contain 4000 words per feature.

Hand-cSift. Color information is another important cue for recognizing activities
and even more prominent for recognizing the participating objects. Similar to the
previous approach we densely sample the points in the hands’ neighborhood and
extract color Sift features on 4 channels (RGB+grey). We quantize them in a codebook
of size 4000.

3.5.4 Fine-grained activity classification and detection

Activity classification. Given a long video we assume that it consists of multiple
time intervals. Each such interval t depicts a single fine-grained activity and its
participating objects (e.g. dry, hands, towel). In the following we refer to both,
activities and participants, as activity attributes ai, (i ∈ {1, . . . , n}), i.e. ai can be
any attribute including cut, knife, or cucumber. We train one-vs-all SVM classifiers
on the features described in the previous sections given the ground truth intervals
and labels. The classifiers provide us with real valued confidence score functions
f base
i : RN 7→ R for attribute ai and feature vectors of dimension N. Combining

different features is achieved by concatenating, i.e. stacking, the corresponding
feature vectors.

Activity detection. While we use ground truth intervals for training the activity
classifiers, we use a sliding window approach to find the correct interval of detection.
To efficiently compute features of a sliding window we build an integral histogram
over the histogram of the codebook features. We use non maximum suppression
over different window lengths and start with the maximum score and remove all
overlapping windows. In the detection experiments we use a minimum window



52 chapter 3. recognizing fine-grained and composite activities

size of 30 with a step size of 6 frames; we increase window and step size by a factor
of
√

2 until we reach a window size of 1800 frames (about 1 minute). Although
this will still not cover all possible frame configurations, we found it to be a good
trade-off between performance and computational costs.

3.6 modeling composite activities

In the previous section we discussed how we recognize fine-grained activities (such
as peeling or washing) and their object participants (such as grater, knife, or cucumber).
Now we focus on exploiting the temporal context and on recognizing different
composite activities, e.g. preparing a cucumber or cooking pasta.

For this, we first show how we exploit temporal context and co-occurrence
to improve the recognition of fine-grained activities and their object participants
(Section 3.6.1). Then, we model composite activities as a flexible combination
of attributes, where attributes refer jointly to the fine-grained activities and their
object participants (Section 3.6.2). We then show how to use prior knowledge
(Section 3.6.3) to improve the recognition of composite activities, overcoming the
notorious lack of training data and handling the large variability of composite
activities. In Section 3.6.4 we discuss how to mine the semantic relatedness from
script data. Finally, in Section 3.6.5 we introduce an automatic approach to temporal
video segmentation, which removes the necessity to manually annotate the ground
truth intervals in a video.

3.6.1 Recognizing activity attributes using context and co-occurrence

For a time interval t we want to classify if a particular fine-grained activity and its
participants are present. We refer to activities and participants as activity attributes
ai. We distinguish three types of attribute classifiers. The first type of is given by
the classifiers introduced in the previous section providing us with confidence score
functions f base

i : RN 7→ R for each attribute ai. Let us denote the score of a given
feature vector xt at time interval t as:

si,t = f base
i (xt). (3.3)

Together these score constitute a matrix S of dimensions n × T (# attributes ×
#timestamps). Based on these scores, we define features for context (in the same
video sequence) as well as features for co-occurrence of other attributes (in the same
time interval t).

Contextual features formalize the intuition that adjacent time frames have strongly
related attributes: e.g. if a cucumber is peeled in one time interval, then cutting the
cucumber is probably also present in the same video sequence. As visualized in
Figure 3.6(a) we define a context feature gcon

t : Rn×T 7→ Rn at time t by max pooling
the scores of each attribute over all time intervals except t:

gcon
t (S) = max

u∈{1,...,T}\{t}
su (3.4)
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Figure 3.6: Our approach to recognition of attributes (a) and composite activities (b).

where max is an element-wise operator over all columns su ∈ Rn of matrix S.
Similarly, activity attributes happening at the same time interval t are related,

e.g. if we peel something it is more likely to observe also carrot or cucumber rather
than cauliflower. We thus define the co-occurrence as a feature gcoocc

i : Rn 7→ Rn−1 by
stacking all attribute scores at time t excluding si,t:

gcoocc
i (st) = [s1,t; ...; si−1,t; si+1,t; ...; sn,t], (3.5)

where st ∈ Rn is a column of matrix S.
Based on these features we train activity attribute SVM classifiers using the

features individually or by stacking them. Specifically we obtain corresponding
confidence score functions for context: f con

i : Rn 7→ R and co-occurrence: f coocc
i :

Rn−1 7→ R, where i denotes that a separate function for each attribute ai is trained.
We define corresponding scores as:

scon
i,t = f con

i (gcon
t (S)) (3.6)

and
scoocc

i,t = f coocc
i (gcoocc

i (st)). (3.7)

This formulation can be easily extended to other attribute representations depending
on the task and available features.

3.6.2 Composite activity classification using activity attributes

We now want to classify composite activities that span an entire video sequence,
given attribute classifier scores. We note that we can use any of the scores introduced
in the previous section (si,t, scon

i,t , scoocc
i,t or their stacked combination). In the following

for simplicity we refer to these scores as si,t and corresponding matrix as S. In this
approach we rely on the representation that captures likelihoods of the presence
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or absence of a particular attribute and leave modeling the temporal ordering of
attributes for future work. We define a feature for the video sequence as gseq :
Rn×T 7→ Rn by max pooling the scores of each attribute over all time intervals (see
Figure 3.6(b)):

gseq(S) = max
t∈{1,...,T}

st (3.8)

where max is an element-wise operator over all columns st ∈ Rn of matrix S.
To decide on the class z of a sequence d we use the feature gseq and classify it

using a nearest neighbor classifier (NN) or a one-versus-all SVM given a set of labeled
training sequences. The SVM classifier provides us with the following confidence
function for all composite classes z: f seq

z : Rn 7→ R, where the final score is defined
as:

sseq
z,d = f seq

z (gseq(Sd)), (3.9)

where Sd is the score matrix for sequence d. The following sections describe alterna-
tives to NN and SVM to incorporate prior knowledge mined from script data.

3.6.3 Script data for recognizing composite activities

Composite activities show a high diversity which is practically impossible to capture
in a training corpus. Our system thus needs to be robust against many activity
variants that are not present in the training data. The use of attributes allows to
include external knowledge to determine relevant attributes for a given composite
activity. For this we assume associations between attribute ai and composite activity
class z in a matrix of weights wz,i, with Z being the number of composite activity
classes. The vectors wz are L1 normalized, i.e. ∑n

i=1 wz,i = 1. Our system extracts
those associations from script data (see Section 3.6.4), but the approach generalizes
to other arbitrary external knowledge sources. We explore three options to use such
information which we detail in the following.

Script data: We compute the confidence f scriptdata
z : Rn 7→ R of a sequence being

of the composite activity z using the attribute-based feature representation gseq(S)
introduced in Equation (3.8). Given the weights wz,i we compute a weighted sum:

f scriptdata
z (gseq(S)) =

n

∑
i=1

wz,ig
seq
i (S). (3.10)

For a specific sequence d with corresponding score matrix Sd we get the following
score:

sscriptdata
z,d = f scriptdata

z (gseq(Sd)). (3.11)

This formulation is similar to the sum formulation used by Rohrbach et al. (2011)
for image recognition with attributes, which itself is an adaption of the direct
attribute prediction model introduced by Lampert et al. (2013). Note that the weight
matrix retrieved from script data is sparse (most wz,i = 0). When mining from other
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corpora one might need to threshold the weights wz,i, setting all others to zero, to
achieve good performance as done e.g. by Rohrbach et al. (2011).

NN+script data: When training data is available we can use a nearest neighbor
classifier. Often, only a handful of attributes are likely to be indicative for a composite
activity class, while the majority of other attributes will provide irrelevant, potentially
noisy information. When searching for nearest neighbors such irrelevant attributes
might dominate the distance, resulting in suboptimal performance. To reduce this
effect we rely on the script data to constrain the attribute feature vector to the
relevant dimensions.

More specifically, we replace the L2 norm for computing the distance of nearest
neighbor with the following training class dependent weighted L2 norm. It takes
weights of class-attribute associations into account. It is defined between the test
attribute vector of unseen class gseq(Stest) and the training attribute vector gseq(Sz

train)
of class z as:

Dist(Stest, Sz
train) =

(
n

∑
i=1

wz,i
(

gseq
i (Stest)− gseq

i (Sz
train)

)2
)0.5

. (3.12)

To enhance robustness further, we binarize all association weights wz,i by setting all
non-zero weights to 1 (and L1-normalize wz). This reduces the distance computation
to the relevant attributes, normalized by the total number of relevant attributes.

Propagated semantic transfer (PST): As the third approach to integrate external
knowledge from script data we use Propagated semantic transfer (PST), proposed by
Rohrbach et al. (2013a), and summarize shortly in the following. The approach builds
on Equation (3.10) and uses label propagation to exploit the distances within the
unlabeled data, i.e. it assumes a transductive setting where all test data is available
when predicting a single test label.

We can incorporate (partially) labeled training data lz,d ∈ {0, 1, ∅} for class z and
sequence d. ∅ denotes that we do not have a label for this sequence and class. We
combine the labels with the predictions in the following way, using only the most
reliable predictions sscriptdata

z,d (top-δ fraction) per class z:

sPST
z,d =


γlz,d if lz,d ∈ {0, 1}
(1− γ)sscriptdata

z,d if among top-δ fraction
of predictions for class z

0 otherwise.

(3.13)

γ provides a weighting between the true labels and the predicted labels. In the
zero-shot case we only use predictions and γ = 0. The parameters δ, γ ∈ [0, 1] are
chosen, similar to the remaining parameters, on the validation set. For zero-shot we
use the unlabeled training data as additional data for label propagation.

For computing the distance between the sequences we use the feature represen-
tation gseq(S), as for the NN-classifier, which is much lower dimensional than the
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raw video feature representation and provides more reliable distances as shown
by Rohrbach et al. (2013a). We build a k-NN graph by connecting the k closest
neighbours. We set the weights of the graph edges between sequences d and e to
exp(−0.5σ0.5‖gseq(Sd)− gseq(Se)‖), where σ is set to the mean of the distances to
the nearest neighbours. We initialize this graph with the scores sPST

z,d and propagate
them using label propagation from Zhou et al. (2004).

3.6.4 Prior knowledge from script data

We want to quantify what activities and objects typically occur in a composite activity
by leveraging the script data we collected (see Section 3.3.4). In order to use prior
knowledge from textual script data, we have to match the (controlled) attribute labels
from the video annotations to the (freely) written script instances (Section 3.6.4.1).
Based on the matched attributes we compute two different word frequency statistics
(Section 3.6.4.2).

3.6.4.1 Label matching

To transfer any kind of knowledge from the script corpus to the attributes in the
video annotation, we need to match attribute labels to natural language descriptions.
The annotated attribute labels are standard English verbs (for activities, wash) and
nouns (for participating objects, carrot), sometimes with additional particles (take
apart and take out). As the script instances contain freely written natural language
sentences, they do not necessarily have any correspondence with the attribute label
annotations. We compare two strategies for mapping annotations to script data
sentences:

• literal: we look for the exact matching of the attribute label within the data.

• WordNet: we look for attribute labels and their synonyms. We take synonyms
as members of the same synset according to the WordNet ontology (Fellbaum,
1998) and restrict them to words with the same part of speech, i.e. we match
only verbal synonyms to activity predicates and only nouns to object terms.

3.6.4.2 Statistics computed on the script data

We compute two different association scores between attribute labels ai and compos-
ite activities z. For this we concatenate all scripts for a given composite z to a single
document δz.

• freq: word frequency f req(ai, δz) for each attribute ai and composite activity z.

• tf∗idf (term frequency ∗ inverse document frequency, Salton and Buckley,
1988) is a measure used in Information Retrieval to determine the relevance



3.7 evaluation 57

of a word for a document. Given a document collection D = {δ1, ..., δz, ..., δm},
tf∗idf for a term or attribute ai and a document δz is computed as follows:

t f id f (ai, δz) = f req(ai, δz) ∗ log
|D|

|{δ ∈ D : ai ∈ δ}| , (3.14)

where {δ ∈ D : ai ∈ δ} is the set of documents containing ai at least once. tf∗idf
represents the distinctiveness of a term for a document: the value increases if
the term occurs often in the document and rarely in other documents.

We set wz,i = f req(ai, δz) or wz,i = t f id f (ai, δz) and L1-normalize all vectors wz.
These weights wz,i are then used in Equations (3.10) and (3.12) and subsequently
also in the PST approach.

3.6.5 Automatic temporal segmentation

While we assume a segmented video during training time to learn attribute classifiers
as described in Section 3.5.4, we want to segment the video automatically at test time.
To avoid noisy and small segments we follow the approach discussed in more detail
in Chapter 4, namely we employ agglomerative clustering. We start with uniform
intervals of 60 frames and describe each interval with an attribute-classifier score
vector. We combine neighbouring intervals based on the cosine similarity of their
score vectors and stop when we reach a threshold (found on the validation set). We
aim for a segmentation with granularity similar to original manual annotation. After
this a separately trained visual background classifier removes irrelevant or noisy
segments. In our experiments we show that this leads to composite recognition
results, similar to using the ground truth intervals for the attributes.

3.7 evaluation

In this section we evaluate our approaches to fine-grained and composite activity
recognition. We start with the fine-grained activity classification and detection and
compare three types of approaches described in Section 3.5, namely pose-based,
hand-centric and holistic approaches. Next we evaluate our approaches for composite
activity recognition introduced in Section 3.6, evaluating our attributes enhanced
with context and co-occurrence, the recognition of composite cooking activities using
different levels of supervision, and the zero-shot approach using script data.

3.7.1 Experimental Setup

This section details our experimental setup. We will release evaluation code to
reproduce and compare with our results. See Table 3.3 for the information on our
training/validation/test split. We estimate all hyper parameters on the validation
set and then retrain the models on the training and validation set with the best
parameters.
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3.7.1.1 Experimental setup fine-grained activity classification and detection

In the fine-grained recognition task we want to distinguish 67 fine-grained activities
and 155 participating objects (see Tables 3.7, 3.8 for the lists of activities and objects).
To learn the visual classifiers we use the annotated ground truth intervals provided
with the dataset. We train one-vs-all SVMs using mean SGD (Rohrbach et al., 2011)
with a χ2 kernel approximation (Vedaldi and Zisserman, 2010). For detection we
use the midpoint hit criterion to decide on the correctness of a detection, i.e. the
midpoint of the detection has to be within the ground-truth. If a second detection
fires for one ground-truth label, it is counted as false positive. In the following we
report the mean over the average precision (AP) of each class. Combining features is
achieved by stacking the bag-of-word histograms.

3.7.1.2 Experimental setup composite activity recognition

For localizing attributes within composite activities we rely on our automatic seg-
mentation (Section 3.6.5). We aim to recognize 31 composite activities (see bold
names in Table 3.2).

We distinguish two cases for training the attributes with respect to composites.

Attribute training on all composites. We use all available 218 training+validation
videos for training the attribute classifiers. See left half of Tables 3.10, 3.11, and
3.12.

Attribute training on disjoint composites. We use all available videos apart from
those showing the test composite categories (in total 92 videos). This means that
attributes and composites are trained on disjoint sets of composite categories
and thus also on disjoint sets of videos. This tests how well novel composite
categories can be recognized without additional attribute labels. See right half
of Tables 3.10, 3.11, and 3.12.

Next, we have two cases for training the composites.

With training data for composites. We train on the 126 training+validation videos
whose category is in the set of the 31 test categories. Note that in case of
Attribute training on all composites the training videos are also part of the
attribute training. See top part of Table 3.11.

No training data for composites. Here we do not rely on any training labels for the
composite activities. See bottom part of Table 3.11 and all of Table 3.12. Com-
bined with Attribute training on disjoint composites this is zero-shot recognition.

3.7.2 Fine-grained activity classification and detection

Activity classification. We start with the classification results on fine-grained
activities and their participants (Table 3.6).
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Approach Activities Objects All

Pose-based approaches
(1) BM 18.9 13.8 15.7
(2) FFT 19.0 16.2 17.2
(3) Combined 24.1 19.0 20.8

Hand-centric approaches
(4) Hand-cSift 23.0 23.8 23.5
(5) Hand-Trajectories 45.1 31.5 36.4
(6) Combined 43.5 34.2 37.5

Holistic approach
(7) Dense Trajectories 44.5 31.3 36.1

Combinations
(8) Dense Traj,BM,FFT 43.1 30.7 35.2
(9) Dense Traj,Hand-Traj 52.2 37.7 42.9

(10) Dense Traj,Hand-Traj,-cSift 51.2 39.3 43.7

Table 3.6: Fine-grained activity and object classification results, mean AP in % (see
Section 3.7.2 for discussion).

The body model features on the joint tracks (BM) achieve a mean average preci-
sion (AP) of 18.9% for activities and 13.8% for objects. Comparing this to the FFT
features, we observe that FFT performs slightly better, improving over BM the AP
by 0.1% and 2.4% respectively. The combination of BM and FFT features (line 3 in
Table 3.6) yields a significant improvement, reaching AP of 24.1% for activities and
19.0% for objects. We attribute this to the complementary information encoded in
the features. While BM encodes among others velocity-histograms of the joint-tracks
and statistics between tracks of different joints, FFT features encode FFT coefficients
of individual joints. Still, this is a relatively low performance. It can be explained,
on one hand, by failures of the pose estimation method and, on the other hand,
the pose-based features might not contain enough information to successfully dis-
tinguish the challenging fine-grained activities and participating objects. Next we
look at the performance of our proposed hand-centric features. Color Sift features,
densely sampled in the hand neighborhood, allow us to improve the object recog-
nition AP to 23.8% (Hand-cSift), indicating their better suitability in particular for
recognizing objects. Dense Trajectories features computed around hands (denoted as
Hand-Trajectories) reach 45.1% and 31.5% recognition AP for activities and objects,
respectively. Combining both features leads to a small disimprovement for activities,
however it helps to further improve the object recognition performance to 34.2%.
Overall our hand-centric approach reaches the recognition AP of 37.5% for activities
and objects together. The state-of-the-art holistic approach of Dense Trajectories
(Wang et al., 2013a) obtains 44.5% and 31.3% recognition AP for activities and objects.
If compared to our hand-centric features, this is slightly below the Hand-Trajectories,
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Dense Hand Combi Dense Hand Combi
Activity Traj Traj +cSift Activity Traj Traj +cSift

add 19.8 16.3 24.0 put in 55.5 50.8 58.0
arrange 61.9 32.1 33.8 put lid 87.3 85.3 90.0
change temperature 69.1 78.1 75.4 put on 6.2 5.6 1.2
chop 36.6 35.4 48.3 read 5.1 5.4 5.6
clean 32.0 33.0 33.3 remove from package 19.3 34.3 31.5
close 76.3 68.8 77.0 rip open 2.8 45.0 100.0
cut apart 33.8 36.2 33.5 scratch off 30.7 33.1 31.9
cut dice 39.3 45.7 44.9 screw close 77.3 77.5 77.5
cut off ends 21.4 52.0 31.9 screw open 78.7 69.4 79.2
cut out inside 2.2 0.8 2.0 shake 73.0 75.7 77.3
cut stripes 12.9 13.0 15.4 shape - - -
cut 28.3 44.9 27.2 slice 47.2 71.3 57.4
dry 81.9 85.1 84.5 smell 49.7 15.7 33.0
enter 100.0 100.0 100.0 spice 88.6 89.0 89.2
fill 94.3 90.8 86.2 spread 87.1 77.1 96.7
gather 25.7 23.8 35.7 squeeze 90.1 92.9 91.9
grate 66.7 100.0 100.0 stamp - - -
hang 85.8 57.2 81.4 stir 91.2 81.9 91.7
mix 10.3 5.4 52.9 strew 1.7 2.4 2.4
move 75.7 75.7 78.3 take apart 1.6 32.1 53.3
open close 60.8 65.7 64.7 take lid 66.2 76.8 71.7
open egg 50.0 28.1 39.2 take out 94.1 93.9 95.1
open tin - - - tap 3.3 4.2 6.2
open 22.0 22.0 34.5 taste 9.4 21.0 22.0
package 0.4 1.6 1.8 test temperature 11.3 11.8 35.1
peel 55.0 67.2 58.6 throw in garbage 96.7 96.0 97.1
plug 41.6 32.6 81.0 turn off 7.4 21.1 33.0
pour 44.8 44.9 45.1 turn on 27.8 30.6 48.5
pull apart 38.7 53.8 45.2 turn over - - -
pull up 79.2 21.7 75.6 unplug 8.7 3.8 20.0
pull 1.3 9.1 1.2 wash 93.4 93.9 93.7
puree - - - whip - - -
purge 0.1 0.1 0.6 wring out 3.3 4.5 5.3
push down 30.7 7.6 28.0

Table 3.7: Fine-grained activities classification performance of Dense Trajectories,
Hand Trajectories, and their combination including Hand-cSift (line 10 in Table 3.6)
for 67 fine-grained activities. AP in %. “-” denotes that the category is not part of
the test set and not evaluated.

which are restricted to the areas around hands. This supports our hypothesis that
the most relevant information for recognizing our fine-grained activities is contained
in the hand regions. We also consider several feature combinations (lines 8, 9, 10

in Table 3.6). Combining Dense Trajectories with the pose-based features does not
improve the recognition performance. However, combining them with Hand-Tra-
jectories improves the activity recognition by 7.7% and object recognition by 6.4%
(line 7 vs 9 in Table 3.6). Finally, adding the Hand-cSift features allows to reach the
impressive 43.7% recognition AP for activities and objects together.

The detailed comparison of Dense Trajectories, Hand-Trajectories and the final
feature-combination (line 10 in Table 3.6) can be found in Tables 3.7 and 3.8. Hand-
Trajectories loose to Dense Trajectories on activities that include “coarser” motion,
e.g. push down, hang or plug, and corresponding objects such as hook or teapot. Note
that Hand-Trajectories outperform the Dense Trajectories for 35 activity classes, while
in the opposite direction this holds only 25 times (for objects, respectively 65 vs
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43 times). This shows again that the hand-centric features consistently outperform
the holistic features in both tasks. Some example cases where the hand-centric
approach is significantly better, are such activities as rip open, take apart, and grate
and such objects as cauliflower, oven, and cup. At the same time the final feature
combination (line 10 in Table 3.6) consistently outperforms both aforementioned
features in about 60% of cases. We demonstrate some qualitative results comparing
Dense Trajectories to the final feature combination in Table 3.13. We also looked
closer at the performance of other features. e.g. the combined pose features (line 3

in Table 3.6) perform well on “coarser”, full-body activities, such as throw in garbage,
take out, move, while rather poorly on more fine-grained activities. On the other hand
the Hand-cSift features are good in recognizing objects with distinct shapes/colors,
e.g. pineapple, carrot, bowl, etc.

Activity detection. Next we look at the detection performance (Table 3.9), which is
inherently more challenging than the classification task. Here the BM features reach
8.3% overall AP and FFT get 9.3%. Their combination (line 3 in Table 3.9) gets 11.4%
overall AP, while Hand-cSift only reaches 10.7%. Hand-Trajectories alone get 16.6%
AP and combined with Hand-cSift they reach 22.5%, while the Dense Trajectories get
24.4% AP. As we can see for this task our hand-centric features perform worse than
holistic and even pose-based features (line 3 vs 4 in Table 3.9). We believe the reason
for this is that for correct segmentation of the video into activity intervals we need
more holistic information, which the hand-centric features cannot provide, while
pose-based and holistic features can capture it better. Similarly, when combining
Dense Trajectories with the pose-based features (line 8 in Table 3.9) we observe a
small improvement, supporting our hypothesis that pose indeed helps to capture
the detection boundaries. On the other hand, combining Dense Trajectories with our
hand-centric features significantly improves the performance, in particular by 4.7%
for activities and by 3.7% for objects (line 6 vs 9 in Table 3.9). Combining the obtained
features with the Hand-cSift further improves the results and we reach the 28.6%
overall AP. The improvement obtained after combining holistic and hand-centric
features can be explained by the increased classification AP within the obtained
intervals. We thus conclude that for activity detection we require holistic information,
which can come e.g. from the human pose. Combining the holistic and hand-centric
features is still beneficial and significantly improves the performance.

3.7.3 Context and co-occurrence for fine-grained activities

While so far we looked at individual fine-grained activities, we now evaluate the
benefit from co-occurrence and context as introduced in Section 3.6.1. Table 3.10

provides the results for recognizing activities and their participants, modeled as
attributes. We evaluate in two settings. The left two columns of Table 3.10 show the
results for training on all composites in training set, while the right two columns are
trained only on composites absent in test set (Disjoint Composites), i.e. the second is
a more challenging problem, as there is less training data and the attributes are tested
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Object Dense Traj Hand Traj Combi+cSift Object Dense Traj Hand Traj Combi+cSift

arils 19.8 57.8 12.5 leek 10.6 19.5 17.6
avocado 2.5 4.3 3.8 lid 67.1 70.8 71.8
bottle 57.1 49.3 57.7 lime 14.2 3.7 14.6
bowl 34.7 33.1 49.0 mango 3.8 7.0 2.5
bread 3.7 6.5 8.9 measuring-pitcher 0.7 5.0 5.3
bread-knife 3.0 4.0 8.1 measuring-spoon 34.1 12.6 7.3
broccoli 2.0 2.3 5.7 milk 0.4 0.4 0.4
bun 1.2 2.3 8.5 net-bag 0.3 0.2 0.7
bundle 0.5 1.1 1.4 oil 52.3 47.6 55.6
butter 6.2 1.9 9.6 onion 19.3 20.4 22.7
carafe 44.4 46.7 54.4 orange 18.4 11.1 19.3
carrot 26.5 41.3 64.9 oven 30.7 73.4 89.3
cauliflower 29.3 68.9 73.8 paper-bag 20.5 10.3 33.0
chefs-knife 59.9 73.3 63.1 paper-box 1.0 1.2 3.6
chili 0.6 0.9 1.3 parsley 23.4 25.5 49.6
coffee 3.3 25.0 100.0 pasta 26.1 16.0 40.7
coffee-container 34.6 24.8 73.4 peel 40.3 28.6 35.2
coffee-machine 34.7 65.1 91.2 pepper 3.1 14.4 6.7
coffee-powder 0.5 1.3 3.0 pineapple 19.5 47.0 49.7
colander 63.4 62.2 77.9 plastic-bag 36.4 37.7 43.6
counter 71.8 70.3 76.5 plastic-bottle 4.7 2.8 9.1
cream 0.9 0.5 1.4 plastic-box 2.6 9.0 5.3
cucumber 4.3 5.2 4.1 plastic-paper-bag 0.9 14.7 19.6
cup 27.0 26.7 43.6 plate 65.7 69.2 73.9
cupboard 97.5 98.0 98.4 plum 0.7 2.5 1.3
cutting-board 84.4 85.4 88.9 pomegranate 5.1 0.8 2.3
drawer 98.2 98.4 98.5 pot 84.3 88.0 91.1
egg 12.1 3.6 7.3 potato 0.4 0.4 0.6
eggshell 3.5 3.6 11.2 salt 59.8 48.7 64.1
electricity-column 89.3 82.3 98.1 side-peeler 50.0 11.7 37.8
electricity-plug 74.3 70.6 87.7 sink 47.0 54.0 53.9
fig 1.0 1.0 0.9 spatula 72.9 76.2 78.2
filter-basket 1.3 3.4 13.1 spice 19.1 13.3 12.4
finger 18.4 15.4 8.8 spice-holder 95.6 94.4 96.3
flat-grater 31.7 27.7 40.9 spice-shaker 88.3 87.3 91.5
fork 8.7 7.5 10.5 sponge 17.2 45.4 38.2
fridge 100.0 99.8 100.0 sponge-cloth 67.1 68.1 75.0
front-peeler 21.8 6.0 17.6 spoon 2.8 5.9 8.9
frying-pan 88.7 91.9 93.6 squeezer 52.5 67.0 59.3
garbage 13.7 17.9 27.5 stone 0.2 0.7 0.7
garlic-bulb 0.3 0.6 0.8 stove 84.4 87.2 90.4
garlic-clove 11.7 3.6 9.3 sugar 22.0 24.2 29.0
ginger 1.9 3.3 3.6 tap 70.2 71.8 79.1
glass 2.6 4.5 21.6 tea-egg 37.2 28.7 36.1
green-beans 21.1 24.6 23.2 tea-herbs 60.5 55.6 91.1
hand 95.9 95.2 96.4 teapot 46.4 6.7 69.1
handle 100.0 9.1 100.0 teaspoon 29.2 32.4 36.5
hook 95.6 71.2 98.3 toaster 1.3 8.1 6.7
hot-dog 2.1 2.7 8.8 towel 73.2 76.9 79.2
jar 5.4 14.2 17.8 tube 1.0 9.5 10.2
ketchup 2.0 3.1 19.6 water 55.0 46.9 57.2
kettle-power-base 14.4 9.8 41.4 water-kettle 40.7 25.9 53.7
kiwi 1.1 2.9 1.5 wrapping-paper 2.9 0.4 2.0
knife 69.6 83.5 76.8 yolk 0.5 0.5 0.3

Table 3.8: Object classification performance of Dense Trajectories, Hand Trajectories,
and their combination including Hand-cSift (line 10 in Table 3.6) for 108 participating
objects. (47 objects are not in the test set and thus not evaluated: apple, asparagus, bag, baking-paper,
baking-tray, blender, box-grater, cheese, chive, chocolate, cooking-spoon, corn, dough, flower-pot, food,
ham, hot-chocolate-powder-bag, knife-sharpener, kohlrabi, ladle, lemon, masher, mortar, mushroom,
oregano, paper, peach, pear, peppercorn, pestle, philadelphia, puree, raspberries, salad, salami, seed,
soup, spinach, table-knife, tin, tin-opener, tissue, tomato, tongs, top, wire-whisk, zucchini.)
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Approach Activities Objects All

Pose-based approaches
(1) BM 9.7 7.6 8.3
(2) FFT 10.5 8.7 9.3
(3) Combined 14.3 9.8 11.4

Hand-centric approaches
(4) Hand-cSift 10.5 10.9 10.7
(5) Hand-Trajectories 21.3 14.0 16.6
(6) Combined 26.0 20.6 22.5

Holistic approach
(7) Dense Trajectories 29.5 21.5 24.4

Combinations
(8) Dense Traj,BM,FFT 30.7 21.5 24.8
(9) Dense Traj,Hand-Traj 34.3 25.2 28.5

(10) Dense Traj,Hand-Traj,-cSift 34.5 25.3 28.6

Table 3.9: Fine-grained activity and object detection results, mean AP in % (see
Section 3.7.2 for discussion)

in a different context. The performance in the first line is equivalent to the results in
Table 3.6. The very left column shows results on Dense Trajectories. More specifically
using only temporal context to recognize activity attributes performance drops from
36.1% AP for the base classifier to 11.1% AP. This is the expected result, because the
context is similar for all activities of the same sequence and thus cannot discriminate
attributes. In contrast, when using co-occurrence only (line 4 in Table 3.10), the
performance increases by 2.0% compared to the base classifiers due to the high
relatedness between the attributes, namely between activities and their participants.
Combining context and co-occurrence information with the base classifier gives
37.8% and 38.1%, respectively. A combination of all training modes achieves a
performance of 39.3% AP, improving the base classifier’s result by 3.2%. While
results for Dense Trajectories are as expected i.e. adding context and co-occurrence
improves performance, the performance drops slightly for the (in general) better
performing combined features (second column). However, although the attribute
prediction performance drops, we found that for recognizing the composites, context
and co-occurrence are still useful.

In the second setting, we restrict the training dataset to composites absent in the
test set (right two columns of Table 3.10), requiring the activity attributes to transfer
to different composite activities. When comparing the right two the left columns,
we notice a significant performance drop for all classifiers and both features. This
decrease can mainly be attributed to the strong reduction of training data to about
one third. The base classifier performs best and co-occurrence variants slightly
below. Variants including context lead to tremendous performance drops in all
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Attribute training on: All Disjoint
Composites Composites

Dense Combi Dense Combi
Traj +cSift Traj +cSift

(1) Base (sbase) 36.1 43.7 33.5 35.9
(2) Context only (scon) 11.1 12.6 6.8 8.1
(3) Base+Context 37.8 41.2 28.3 32.3
(4) Co-occ. only (scoocc) 38.1 41.7 32.6 35.3
(5) Base+Co-occ. 38.1 41.4 32.7 35.2
(6) Base+Cont.+Co-occ. 39.3 41.5 30.8 32.6

Table 3.10: Attribute recognition using context and co-occurrence, mean AP in %.
Combi+cSift refers to Dense Traj,Hand-Traj,-cSift, see Section 3.7.3 for discussion.

combinations because the activity context changes from training to test (having
different composite activities).

3.7.4 Composite cooking activity classification

After evaluating attribute recognition performance in Section 3.7.3, we now show
the results for recognizing composites as introduced in Section 3.6.2. From the
different attribute combination variants we only use the combination of base, context,
and co-occurrence (last line in Table 3.10). Although this is not always the best
choice for recognizing attributes we found it to work better or similar to alternatives
for composite recognition. The results are shown in Table 3.11, which, similar to
Table 3.10, shows results for training the attributes on all composites, on the left, and
reduced attribute training on non-test composites on the right. In the top section of
the table we use training data for the composite cooking activities. In the bottom
section of the table we use no training data for the composite cooking activities.
This is enabled by the use of script data as motivated before. Disregarding the first
line which does not use attributes at all and the second line which uses ground
truth intervals for attributes, all other lines are based on attributes computed on our
automatic temporal segmentation, introduced in Section 3.6.5.

Examining the results in Table 3.11 we make several interesting observations.
First, training composites on attributes of fine-grained activities and objects (line 3

in Table 3.11) outperforms low-level features (line 1 in Table 3.11), supporting our
claim that for learning composite activities it is important to share information on
an intermediate level of attributes.

The second somewhat surprising observation is that recognizing composites
based on our segmentation (line 3 in Table 3.11) outperforms using ground truth
segments (line 2 in Table 3.11). We attribute this to the fact that our segmentation is
coarser than the ground truth and that we additionally remove noisy and background
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Attribute training on: All Disjoint
Composites Composites

Dense Combi Dense Combi
Traj +cSift Traj +cSift

With training data for composites
Without attributes

(1) SVM 39.8 41.1 - -
Attributes on gt intervals

(2) SVM 43.6 52.3 32.3 34.9
Attributes on automatic segmentation

(3) SVM 49.0 56.9 35.7 34.8
(4) NN 42.1 43.3 24.7 32.7
(5) NN+Script data 35.0 40.4 18.0 21.9
(6) PST+Script data 54.5 57.4 32.2 32.5

No training data for composites
Attributes on automatic segmentation

(7) Script data 36.7 29.9 19.6 21.9
(8) PST + Script data 36.6 43.8 21.1 19.3

Table 3.11: Composite cooking activity classification, mean AP in %. Top left quarter:
fully supervised, right column: reduced attribute training data, bottom section: no
composite cooking activity training data, right bottom quarter: true zero shot. See
Section 3.7.4 for discussion.

segments with a background classifier. This leads to more robust attributes and
consequently better composite recognition. This allows to have separate training
sets for composites and attributes. This setting is explored in the top right quarter
of Table 3.11. Here the training sequences for attributes are disjoint with the ones
for composites, i.e. we do not require the attribute annotataions for the composite
training set.

Third, the improvements we achieved for fine-grained activities and object recog-
nition by combining hand-centric with holistic features are still evident for com-
posites. The Combination of Dense Trajectoreis, Hand-Trajectories, and Hand-cSift
(2nd, 4

th column) outperforms in most cases Dense Trajectories only (1st, 3
rd column),

most notably in the setting “All Composites” for SVM (56.9% over 49.0% AP) and
PST+Script data (43.8% over 36.6% AP).

Fourth, using our Propagated Semantic Transfer (PST) approach is in most cases
superior to other variants of incorporating script data (NN+Script data/ Script data).
Most notably it reaches 57.5% AP for our combined feature. This is the overall
best performance and also outperforms the SVM with 56.6% AP. PST slightly drops
for the last number in table (19.3%), which we found is due to rather suboptimal
parameters selected on the validations set. We note that in the scenario of Disjoint
Composites (top right quarter of Table 3.11) PST+Script data is outperformed by
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Attribute training on: All Disjoint
Composites Composites

Dense Combi Dense Combi
Traj +cSift Traj +cSift

No training data for composites
Script data
(1) freq-literal 28.2 30.5 19.8 24.1
(2) freq-WN 25.3 28.6 17.4 20.3
(3) tf∗idf-literal 35.9 31.8 20.0 23.6
(4) tf∗idf-WN 36.7 29.9 19.6 21.9

Table 3.12: Variants of script knowledge, AP in %. Combi+cSift refers to Dense
Traj,Hand-Traj,-cSift. See Section 3.7.4 for discussion.

training an SVM. We attribute this to the fact that the attributes are less robust in
this scenario (see Table 3.10) and the SVM can better adjust to that by learning which
attributes are reliable and which not. NN and PST are based on distances between
attribute score vectors, thus metric learning could be beneficial in these cases.

Fifth, script data does not only allow to achieve the maximum performance
but also allows transfer (bottom part of Table 3.11) achieving in some cases results
close to supervised approaches. The bottom right part of the table shows zero-shot
recognition. Although here the performance cannot compete with the supervised
setting, we like to point out that this is a very challenging scenario, where attributes
are trained on different composites, without composite training data, and the video
stream has to be segmented automatically.

Sixth, while in Table 3.11 we always used the variant tf∗idf-WN for Script data,
we show different variants of Script data for the case where they are not combined
with NN or PST in Table 3.12. The main observation is that freq-WN performs in all
cases worst, most likely the WordNet expansions make the results noisier. While in
the first column the tf∗idf-WN works best, there is overall no clear winner. However,
when incorporated in PST, it is more important to select appropriate parameters for
PST on the validation set rather than selecting the right variant of Script data.

Last, we want to look at an interesting comparison of the first line (SVM without
attributes) versus line 8 (PST + Script data), which effectively compares the settings
“only composite labels” versus “only attribute labels” (+ Script data). Although
the latter does not have any labels for the actual task of composite recognition it
either performs close (in case of Dense Trajectories) or slightly better (for combined
features). This indicates that our PST + Script data approach is very good in
transferring information from the original task it was trained on to another which is
very important for adaptation to novel situations, typical for assisted daily living
scenarios.

Table 3.13 provides qualitative results for three composite videos including how
they are decomposed into fine-grained activities and participating objects.



3.7 evaluation 67

Composite

Ground-
truth

cauliflower, cutting-
board, hand, pull
apart(A)

cauliflower, cut(A),
cutting-board, knife

add(A), cauliflower,
colander, cutting-
board, hand

cauliflower, colan-
der, hand, wash(A)

Preparing
cauliflower

Dense Traj hand, cutting-board,
pull apart(A), onion,
peel, cut apart(A)

knife, cutting-board,
cut apart(A), counter,
chefs-knife, cut(A)

hand, cutting-board,
move(A), counter,
bowl, colander

hand, wash(A), plate,
colander, onion, peel

Preparing
or-
ange

Dense Traj,
Hand-Traj,
-cSift

hand, cutting-
board, cut apart(A),
cauliflower, onion,
pull apart(A)

cauliflower, cut
apart(A), knife,
chefs-knife, cutting-
board, cut(A)

hand, cutting-board,
move(A), counter,
cauliflower, colander

hand, wash(A),
bowl, colander,
cauliflower, onion

Preparing
cauliflower

Composite

Ground-
truth

carrot, chefs-knife,
cut off ends(A),
cutting-board

carrot, front-peeler,
peel(A)

carrot, chefs-knife,
cut stripes(A),
cutting-board

carrot, chefs-knife,
cut apart(A), cutting-
board

Preparing
carrot

Dense Traj cutting-board, cut
apart(A), chefs-knife,
cut off ends(A),
knife, put on(A)

cutting-board,
peel(A), front-peeler,
chefs-knife, knife,
cucumber

cutting-board, chefs-
knife, slice(A), knife,
cut apart(A), cucum-
ber

cutting-board, cut
apart(A), chefs-knife,
knife, cauliflower, cut
off ends(A)

Preparing
cu-
cum-
ber

Dense Traj,
Hand-Traj,
-cSift

cutting-board, cut
off ends(A), chefs-
knife, cut apart(A),
knife, carrot

cutting-board,
peel(A), carrot, chefs-
knife, front-peeler,
cucumber

cutting-board, chefs-
knife, slice(A), knife,
carrot, cut apart(A)

cutting-board, cut
apart(A), chefs-knife,
cut off ends(A), knife,
carrot

Preparing
carrot

Composite

Ground-
truth

knife, onion, peel(A) chop(A), cutting-
board, knife, onion

add(A), cutting-
board, frying-pan,
knife, onion

frying-pan, onion,
spatula, stir(A)

Preparing
onion

Dense Traj peel(A), hand, onion,
throw in garbage(A),
bowl, front-peeler

cutting-board, knife,
cut dice(A), onion,
chop(A), slice(A)

hand, frying-pan,
cutting-board, pot,
spatula, add(A)

spatula, frying-
pan, stir(A), onion,
add(A), egg

Preparing
onion

Dense Traj,
Hand-Traj,
-cSift

peel(A), hand, throw
in garbage(A), onion,
knife, peel

cutting-board, knife,
cut dice(A), slice(A),
chop(A), chive

hand, frying-pan,
add(A), pot, spatula,
cauliflower

frying-pan, spat-
ula, stir(A), onion,
add(A), broccoli

Preparing
onion

Table 3.13: Qualitative results for Dense Trajectories and its combination with hand-centric
features (line 10 in Table 3.6). We show top-6 highest scoring attributes, activities(A) and
objects, and composite activity predictions. Correct results are marked with bold. Many
predictions are not correct according to the ground truth but very relevant, e.g. slice instead
of cut stripes.
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3.8 conclusion

In this chapter we address two challenges that have not been widely explored so far,
namely fine-grained activity recognition and composite activity recognition. In order
to approach these tasks we propose the large activity database MPII Cooking 2. We
recorded and annotated 273 videos of more than 27 hours with 30 human subjects
performing a large number of realistic cooking activities. Our database is unique
with respect to size, length, complexity of the videos, and available annotations
(activities, objects, human pose, text descriptions).

To estimate the complexity of fine-grained activity recognition in our database
we compare three types of approaches: pose-based, hand-centric, and holistic. We
evaluate on a classification and the often neglected detection task. Our results
show that for recognizing fine-grained activities and their participating objects it is
beneficial to focus on hand regions as the activities are hand-centric and the relevant
objects are in the hand neighbourhood.

Composite activities are difficult to recognize because of their inherent variability
and the lack of training data for specific composites. We show that attribute-based
activity recognition allows recognizing composite activities well. Most notably, we
describe how textual script data, which is easy to collect, enables an improvement
of the composite activity recognition when only little training data is available, and
even allows for complete zero-shot transfer.

As part of future work we plan to validate our hand-centric approach in other
domains and exploit the scripts for composite activity recognition by modeling the
temporal structure of the video.

In the following chapter we explore how to generate natural language descriptions
for our cooking videos.



4
C O H E R E N T M U LT I - S E N T E N C E V I D E O D E S C R I P T I O N
W I T H VA R I A B L E L E V E L O F D E TA I L

Humans can easily describe what they see in a coherent way and at varying
level of detail. However, existing approaches for automatic video descrip-
tion focus on generating only single sentences and are not able to vary the

descriptions’ level of detail. In this chapter, we address both of these limitations: for
a variable level of detail we produce coherent multi-sentence descriptions of complex
videos. To understand the difference between detailed and short descriptions, we
collect and analyze a video description corpus of three levels of detail. We rely
on the videos from our MPII Cooking 2 dataset (Chapter 3). We follow a two-step
approach where we first learn to predict a semantic representation (SR) from video
and then generate natural language descriptions from it. For our multi-sentence
descriptions we model across-sentence consistency at the level of the SR by enforcing
a consistent topic. We contribute to the robust generation of sentences using a word
lattice. For the visual recognition of participating objects we rely on the hand-centric
approach, introduced in the previous chapter. Human judges rate our descriptions
as more readable, correct, and relevant than related work.

4.1 introduction

Describing videos or images with natural language sentences is an intriguing but
difficult task. Recently it has received increased interest both in the computer vision
(Das et al., 2013; Farhadi et al., 2010b; Guadarrama et al., 2013; Kulkarni et al., 2011;
Rohrbach et al., 2013b) and computational linguistic communities (Krishnamoorthy
et al., 2013; Kuznetsova et al., 2012; Yu and Siskind, 2013). The focus of most works on
describing videos is to generate single sentences for short video snippets at a fixed
level of detail. In contrast, we want to generate coherent multi-sentence descriptions
for long videos with multiple activities and allow for producing descriptions at the
required levels of detail (see Fig. 4.1).

Multi-sentence description, our first task, has been explored for videos (Das
et al., 2013; Khan et al., 2011; Tan et al., 2011), but open challenges remain, e.g.
finding a segmentation of appropriate granularity and generating a conceptually
and linguistically coherent description. To allow reasoning across sentences we use
an intermediate semantic representation (SR) which is inferred from the video. For
generating multi-sentence descriptions we ensure that sentences describing the same
video are about the same topic (dish in our cooking scenario) and we improve intra-
sentence consistency by allowing our language model to choose from a probabilistic
SR rather than a single MAP estimate.

69
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Detailed Description: A man took a cutting board and knife from the drawer. He took out an orange
from the refrigerator. Then, he took a knife from the drawer. He juiced one half of the orange.
Next, he opened the refrigerator. He cut the orange with the knife. The man threw away the
skin. He got a glass from the cabinet. Then, he poured the juice into the glass. Finally, he
placed the orange in the sink.

Short Description: A man juiced the orange. Next, he cut the orange in half. Finally, he poured the
juice into a glass.

Single Sentence Description: A man juiced the orange.

Figure 4.1: Output of our system for a video, producing coherent multi-sentence
descriptions at three levels of detail, using our automatic segmentation.

The second task is generating descriptions with a varying level of detail. While
this is a researched problem in natural language generation, e.g. in context of user
models (Zukerman and Litman, 2001), we are not aware of any work in computer
vision that studies how to select the desired amount of information to be recognized.
To understand which information is required for producing a description at a needed
level of detail we collected descriptions at three levels of detail for the same video
and analyzed which aspects of the video are verbalized in each case.

The first contribution of this chapter is to generate coherent multi-sentence
descriptions. For this task we (a) propose a model which enforces conceptual
consistency across sentences (Sec. 4.3.1), (b) suggest a simple but effective (and to
our knowledge novel) segmentation approach, (c) significantly improve the visual
recognition based on the semantic unaries and hand-centric features to provide
a consistent description (Sec. 4.4), (d) couple visual recognition and language
generation using a word lattice to improve consistency within each sentence, and (e)
improve linguistic cohesiveness/readability (Sec. 4.5). Our second contribution is to
propose a novel task of describing videos at multiple levels of detail. To approach
this task we (a) collected and aligned a corpus of descriptions of three levels of detail,
which we provide on our web-page (Sec. 4.2), (b) perform a thorough analysis of
the collected data (Sec. 4.2), and (c) propose an approach to handle this new task:
namely by selecting the relevant video segments according to the topic and using a
language model learned for the right level of detail (Sec. 4.3.2).

4.2 analysis of human video descriptions at multiple lev-
els of detail

An important goal of our work is to generate natural language descriptions for
videos at different levels of detail. In this section we investigate which aspects of a
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Figure 4.2: Percentage of descriptions in which each category is verbalized.

video are verbalized by humans and how descriptions of different levels of detail
differ.

Data collection. We have selected a subset (185 videos) from the MPII Cooking 2
dataset (Chapter 3) and collected text descriptions for the videos via Amazon
Mechanical Turk (AMT). For each video we asked to describe it in three ways:
(1) a Detailed Description with at most 15 sentences, (2) a Short Description (3-5
sentences), and (3) a Single Sentence Description. In total, we have collected a corpus
with about 20 triples of descriptions for each video. which we call TACoS Multi-
Level. Unlike Regneri et al. (2013), workers could freely describe videos without
aligning each sentence to the video. Our data collection hence results in more
natural descriptions, having a more complex sentence structure (e.g., they make use
of temporal connectives and anaphora).

Analysis of human-written descriptions. First, we analyze the collected descrip-
tions with respect to which aspects of the videos are verbalized. We assign part-of-
speech (POS) tags to the collected descriptions and the ones provided by TACoS
using the Stanford POS tagger (Toutanova et al., 2003). Any word tagged as a verb is
considered to be an activity, and any word tagged as an adjective is considered to
represent an attribute. We classify all adverbials as providing spatial or temporal infor-
mation using a hand-compiled list of adverbials. quantity information is assumed
when one of the words has been tagged as a cardinal number or when a noun is
a hyponym, i.e., in an is-a relation, of ‘quantity’ or ‘portion’ in WordNet Fellbaum
(1998). We use person, food, tool, utensil or appliance and categories for nouns. To
identify the category of a specific noun, we check whether the words are hyponyms
of appropriate WordNet entries, and additionally check manually created white- and
blacklists for each category. food is considered to be any edible item or dish. tools are
items such as knife or chopper, while utensils are other kitchen utensils such as bowl
or cutting board. Finally, the appliance category comprises non-movable items such as
stove, kitchen or sink. Figure 4.2 shows the percentages of descriptions in which at
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least one word of the respective category occurred. activities, food items and the person
are mentioned in almost all descriptions. For tools, utensils, appliances, attributes,
quantities, and spatial the occurrence frequency decreases as the descriptions become
shorter. tools, utensils, and appliances nearly fully disappear in the Single Sentence
Descriptions. The Detailed Descriptions and the descriptions from TACoS are similar
except in the appliance category.

Next, we performed a qualitative comparison of the most frequent activities/food
items verbalized in different types of descriptions. The descriptions from TACoS,
the Detailed Descriptions and the Short Description mainly use verbs describing
specific activities, such as cut or take. In the Single Sentence Descriptions, verbs such
as prepare, cook and make, which summarize a set of activities, are frequently used.
This indicates that when generating Single Sentence Descriptions of videos, it may
not be sufficient to simply extract sentences from the longer descriptions, but some
degree of abstractive summarization is needed. Regarding the food items mentioned
in the collected descriptions we find the following. While the Detailed Descriptions
frequently mention common ingredients such as water, salt or spice, this is less for
the Short Descriptions, and almost never for the Single Sentence Descriptions. In
the Short Descriptions humans mention the objects that are more relevant for the
respective dish, which are usually the main ingredients such as potato or carrot, and
skip the rest. Correspondingly, in the Single Sentence Descriptions humans only
focus on the main ingredients. This suggests that knowing the dish that is being
prepared is necessary in order to determine the important objects to be verbalized.

Discussion. We draw four conclusions from this analysis. (1) In the Detailed
Descriptions all activities and objects are mentioned, therefore the visual recognition
system should identify all of them. (2) The Short Descriptions could be obtained
from Detailed Descriptions using extractive summarization techniques. However,
the various levels show different relative frequency of verbalized concepts, hence
it might be beneficial to learn a language model targeted to a desired level. (3)
The Single Sentence Descriptions qualitatively differ from all other types, which
suggests that abstractive summarization is required for this level. (4) It is important
to recognize the topic (dish that is prepared, in our scenario). This would also help
to generate consistent multi-sentence descriptions, another goal of this chapter.

4.3 generating consistent multi-sentence video descriptions

at multiple levels of detail

Based on an analysis how humans describe videos we present our approach to
generate consistent multi-sentence descriptions at multiple levels on detail.
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4.3.1 Multi-sentence video descriptions

Assume that a video v can be decomposed into a set of I video snippets represented
by video descriptors {x1, ..., xi, ..., xI}, where each snippet can be described by a
single sentence zi. To reason across sentences we employ an intermediate semantic
representation (SR) yi. We base our approach for a video snippet on the translation
approach proposed by Rohrbach et al. (2013b). We choose this approach as it allows
to learn both the prediction of a semantic representation x → y from visual training
data (xi, yi) and the language generation y → z from an aligned sentence corpus
(yi, zi). While this chapter builds on the semantic representation of Rohrbach et al.
(2013b), our idea of consistency is applicable to other semantic representations.
The SR y is a tuple of activity and participating objects/locations, e.g. in our case
〈activity, tool, object, source, target〉. The relationship is modeled in a CRF where these
entities are modeled as nodes n ∈ {1, ..., N} (N = 5 in our case) observing the video
snippets xi as unaries. We define sn as a state of node n, where sn ∈ S. We use a
fully connected graph and linear pairwise (p) and unary (u) terms. In addition, to
enable a consistent prediction within a video, we introduce a high level topic node t
in the graph, which is also connected to all nodes. In contrast to the other nodes it
observes the entire video v rather than a single video snippet. For the topic node
t we define a state st ∈ T. We then use the following energy formulation for the
structured model:

E(s1, ..., sN, st|xi, v) =
N

∑
n=1

Eu(sn|xi) + Eu(st|v) +
l,m∈{1,...,N,t}

∑
l∼m

Ep(sl, sm) (4.1)

with Ep(sl, sm) = wp
l,m, where wp

l,m are the learned pairwise weights between the
CRF node-states sl and sm. We discuss the unary features in Sec. 4.4.

While adding the topic node makes each video snippet aware of the full video,
it does not enforce consistency across snippets. Thus, at test time, we compute the
conditional probability p(s1, ..., sN|ŝt), setting st to the highest scoring state ŝt over
all segments i:

(ŝt, î) = arg max
st∈T,i∈I

p(st|xi, v). (4.2)

We learn the model by independently training all video descriptors xi and SR labels
yi = 〈s1, . . . , sN, st〉 using loopy belief propagation implemented by Schmidt (2013).
The possible states of the CRF nodes are based on the video segment labels and
topic (dish) labels of the videos provided by our approach from Chapter 5.

Segmentation. For the described approach, we have to split the video v into video-
snippets xi. Two aspects are important for this temporal segmentation: it has to find
the appropriate granularity so it can be described by a single sentence and it should
not contain any unimportant (background) segments which would typically not
be described by humans. For the first aspect, we employ agglomerative clustering
on a score-vector of semantic attribute classifiers (see Sec. 4.4). The termination
threshold is selected to capture the annotation granularity (number of intervals). The
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second aspect is achieved by training a background classifier on all unlabeled video
segments as negative examples versus all labeled snippets as positive. We evaluate
the quality of our segmentation with respect to the final task, namely generating
natural language descriptions, in Sec. 4.6.

4.3.2 Multi-level video descriptions

Based on the observations discussed in Sec. 4.2, we propose to generate shorter
descriptions by extracting a subset of segments from our segmentation. We select rel-
evant segments by scoring how discriminative their predicted SR is for the predicted
topic by summing the tf*idf scores of the node-states, computed on the training set.
For the SR 〈s1, . . . , sN, st〉, its score r equals to:

r(s1, ..., sN, st) = ∑N
n=1 tf*idf (sn, st) (4.3)

where tf*idf is defined as the normalized frequency of the state sn (i.e. activity or
object) in topic st times the inverse frequency of its appearance in all topics:

tf*idf (sn, st) =
f (sn,st)

maxs′n∈S f (s′n,st)
log
(

|T|
∑s′t∈T f (sn,s′t)>0

)
(4.4)

This way we select the K highest scoring segments and use them to produce a Short
Description of the video. One way to produce a description would be to simply
extract sentences that correspond to selected segments from the Detailed Description.
However, given that some concepts are not verbalized in shorter descriptions, we
additionally explore the approach of learning a translation model targeted to the
desired level of detail. For the Single Sentence Descriptions we assume that the
predicted topic is sufficient to describe the video. Therefore, we reduce the SR to
〈dish〉 and learn a translation model to the single sentences.

4.4 improving visual features

One conclusion drawn in Rohrbach et al. (2013b) is that the noisy visual recognition
is a main limitation. Especially for our problem of multi-sentence generation it
is important to recognize the manipulated objects to ensure consistency across
sentences. We thus aim to improve the visual recognition by using the semantic
unaries and hand-centric features.

Semantic unaries. The approach of Rohrbach et al. (2013b) uses visual attributes to
obtain the features for CRF unaries. However, this approach ignores the semantic role
of the attributes. E.g. a classifier for a visual attribute knife is learned disregarding
whether a knife is a tool (cut with a knife), or an object (take out knife). The CRF unaries
use the complete score vectors as features, namely: Eu(sn|xi) =< wu

n, xi >, where
wu

n is a vector of weights between the node-state sn and the visual attributes’ score
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Figure 4.3: Encoding probabilistic input for SMT using a word lattice: 〈cut off,egg-
shells〉 has the highest confidence but is unlikely according to the language model
and other candidate paths, e.g. 〈cut off, cucumber〉 can be considered.

vector. Unlike the described method, we train SVM classifiers for visual attributes
using their semantic role, e.g. we distinguish between knife-tool and knife-object. This
allows us to use a score of each classifier directly as a feature for a corresponding
unary: Eu(sn|xi) = wu

nxi,n. Here wu
n is a scalar weight and xi,n is a score of the visual

classifier. Thus we get more discriminative unaries and also reduce the number of
model parameters (number of connections between node-states and visual features).
The topic node unary Eu(st|v) is defined similarly, based on the composite activity
recognition features (Chapter 5) as visual descriptors of a video v.

Hand centric features for object recognition. The visual recognition approach of
Rohrbach et al. (2013b) is based on Dense Trajectory features (Wang et al., 2013a). In
order to improve the object recognition, we propose to focus on hands’ regions, in
addition to using the holistic features that track all the moving points in the scene.
This observation is intuitive, in particular in domains, where people mostly perform
hand-related activities. To obtain the hand locations we use our hand detector based
on appearance and body pose (Chapter 5). We densely sample the points in the
hands’ neighborhood, extract color Sift features (Vedaldi and Fulkerson, 2008) on 4

channels (RGB+grey) and quantize them in a codebook of size 4000. The obtained
features are added as another unary to the CRF nodes.

4.5 generating natural descriptions

Probabilistic input for SMT. While the translation-based approach can achieve
performance comparable with humans on ground truth SRs, this does not hold
if the SRs are noisy. The approach of Rohrbach et al. (2013b) only takes into ac-
count the most probable prediction, the uncertainty found in the SR is not used.
However, uncertain input is a known problem for SMT as speech based transla-
tion is also based on uncertain input. The work of Dyer et al. (2008) shows that
a probabilistic input encoded in a word lattice can improve the performance of
translation by decoding alternative hypotheses with lower confidence (see Fig. 4.3).
A word lattice is a Directed Acyclic Graph allowing to efficiently decode multiple
visual recognition outputs. To construct a word lattice from a set of predicted SRs
〈activity,tool,ingredient,source,target〉, we construct a word lattice for each node and
then concatenate them. In case that semantic labels are empty in the SRs, we use
a symbol null+node id to encode this information in the word lattice. SMT com-
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bines scores from a phrase-based translation model, a language model, a distortion
model and applies word penalties. Word lattice decoding enables us to incorporate
confidence scores from the visual recognition.

Creating cohesive descriptions. As SMT generates sentences independently for
each video segment, the produced descriptions seem more like a “list of sentences”
rather than a “text” to readers. Cohesion describes the linguistic means which relate
sentences on a surface level, and which do not require deep understanding of the
text. Hence, we automatically post-process the descriptions such that they are more
cohesive using a set of domain-independent rules: (1) we fix punctuation and create
syntactic parses using the Stanford parser (Klein and Manning, 2003). (2) We combine
adjacent sentences if they have the same verb but different objects. (3) We combine
adjacent sentences if they have the same object but different verbs. (4) The use of
referring expressions such as pronouns is a strong cohesive device. As in English,
there is no appropriate pronoun for the phrase the person, we use gold-standard
gender information and replace this phrase by appropriate nouns and pronouns. (5)
We insert temporal adverbials such as next, then and finally.

4.6 evaluation

For collecting our corpus we rely on the MPII Cooking 2 dataset. This dataset is
realistic and typical for assisted daily living or industrial applications which require
distinguishing a large number of fine-grained activities and hand-object interaction.
Besides, the dataset contains long (average 6 minutes) videos, allowing to describe
them with multiple sentences and at multiple levels.

We evaluate our approach on the TACoS dataset of Regneri et al. (2013) and on
our new corpus TACoS Multi-Level (Sec. 4.2). For TACoS we follow the setup of
Rohrbach et al. (2013b). For the new corpus we use the training/validation/test split
defined for MPII Cooking 2. Comparing to TACoS, our test split is more challenging
with more videos (42 vs. 13) and more human subjects (5 vs. 1). We preprocess both
corpora by substituting gender specific identifiers with “the person” and transform
all sentences to past tense to ensure consistent multi-sentence descriptions.

We evaluate the generated text using BLEU@4, which computes the geometric
mean of n-gram word overlaps for n=1,...,4, weighted by a brevity penalty. We also
perform human evaluation of the produced descriptions asking human subjects to
rate readability (without seeing the video), correctness, and relevance (with respect to
the video). Readability is evaluated according to the TAC1 definition which rates the
description’s grammaticality, non-redundancy, referential clarity, focus, structure and
coherence. Correctness is rated per sentence with respect to the video (independent
of completeness), we average the score over all sentences per description. Relevance
is rated for the full descriptions and judges if the generated description captures the
most important events present in the video. We select all hyperparameters (SVM,

1www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
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Approach activity tool object source target all dish

CRF of Rohrbach et al. (2013b) 59.1 79.6 36.8 71.5 78.2 21.4 -

Our CRF + Semantic unaries 59.2 81.1 39.1 73.8 77.6 23.4 -
+ Hand centric unaries 60.3 82.3 42.6 74.3 78.3 24.2 -

+ Dish unaries 60.4 82.1 48.9 74.3 78.2 26.0 49.3

number of states 78 53 138 69 49 - 31

Table 4.1: Visual recognition of SR, accuracy in % (mean over all intervals).

CRF, SMT, segmentation) on the validation set and fix them for all experiments; for
our segmentation they are the initial segment size (60 frames), the similarity measure
(cosine), and the termination threshold (0.982).

4.6.1 Visual recognition

We first evaluate the output of our visual recognition (SR) on MPII Cooking 2 dataset.
We report accuracy of CRF nodes over all ground truth intervals on the test set in
Table 4.1. The first line shows the results of Rohrbach et al. (2013b). We notice that
the recognition of the handled object (in many cases the ingredient) is the most
difficult, achieving only 36.8% compared to 59.1% or more for the other nodes.
This lower performance is due to the larger number of states (last line, Table 4.1)
and high intra-class variability of the ingredients. As a first step we add semantic
unaries to the CRF. The performance improves for tools by 1.5% and objects by
2.3% compared to the first line. Next we add our hand centric color Sift features
as second unary to the CRF nodes. This leads to an improvement for each node,
especially for objects (+3.5%). Finally, we add a dish node to the CRF computing
unaries with the approach from Chapter 5. This further improves recognition of
object by an impressive 6.3%. In comparison to Rohrbach et al. (2013b) we achieve
an overall improvement of 1.3% for activity, 2.5% for tool, 12.1% for object and 2.8%
for source (line 1 vs 4). The percentage of segments where the complete SR tuple is
correct (column “all”) improves on each step and overall increases by 4.6%. In the
next section we show that it leads to more consistent generated descriptions.

4.6.2 Multi-sentence generation

We first evaluate the effect of our improved visual recognition and the improvements
in natural language sentence generation. We start with the TACoS dataset to allow
a direct comparison to Rohrbach et al. (2013b), using the ground truth intervals
provided by TACoS. The first line of Table 4.2 shows the results using the SR and
SMT from Rohrbach et al. (2013b) (the best version, learning on predictions), which
achieves a BLEU score of 23.2% when evaluated per sentence. This is an increase from
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Approach
BLEU

Sent Desc R
ea

d.

C
or

r.

R
el

ev
.

On gt intervals
Rohrbach et al. (2013b) 23.2 55.7 2.5 3.3 2.8
Our SR 25.1 63.8 3.3 3.6 3.0
+ prob. 27.5 66.1 3.6 3.7 3.1
Human 36.03

63.63
4.4 4.9 4.8

Table 4.2: BLEU@4 in % on sentences (Sent) and full descriptions (Desc). Human
judgments (Readability, Correctness, Relevance) from 1-5 (5 is best): TACoS.

22.1% reported by Rohrbach et al. (2013b) due to converting the TACoS corpus to past
tense, making it more uniform. The BLEU score evaluated per description is 55.7%2

and human judges score these descriptions with 2.5 for readability, 3.3 for correctness,
and 2.8 for relevance on a scale from 1-5, where 5 is best. Using our improved SR
(line 2 in Table 4.2) consistently improves the quality of the descriptions. Judges
rate especially the readability much higher (+0.8) which is due to our increased
consistency introduced by the dish node. Also correctness (+0.3) and relevance (+0.2)
are rated higher, and the BLEU score improves by 1.9% and 8.1%.

Next, we evaluate the effect of using probabilistic input for SMT (line 3 in Table
4.2). Again all scores increase. Most notably the BLEU by 2.3% and readability by
0.3. While learning on predictions can recover from systematic errors of the visual
recognition, using probabilistic input for SMT allows to recover from errors made
at test time by choosing a less likely SR but more likely sentence according to the
language model, e.g. “The person got out a knife and a cutting board from the pot” is
correctly changed to “The person took out a pot from the drawer”. While the probabilistic
input helps in many cases, we found that it sometimes generates sentences that
diverge from the video content.

Now we validate our approach on the Detailed Descriptions of the TACoS Multi-
Level corpus (Table 4.3). The upper part of the Table shows the results on the ground
truth intervals provided by the collected descriptions. Here and in the following
“Our” denotes the proposed approach with the improved SR and probabilistic input.
The performance agrees with the results on TACoS. While we make significant
improvements over Rohrbach et al. (2013b), there is still a gap to human description,
showing the difficulty of the task and the dataset3. In the bottom part of Table 4.3 we
evaluate our automatic segmentation and make the following observation: according
to human judges, the performance drops only slightly compared to ground truth
intervals and it is still higher than the result of Rohrbach et al. (2013b) on ground
truth intervals. This indicates the good quality of our automatic segmentation.

In lines 2 and 5 of Table 4.3 we evaluate the impact of the linguistic post-

2The BLEU score per description is much higher than per sentence as the n-grams can be matched
to the full descriptions.

3The BLEU score for human description is not fully comparable due to one reference less, which
typically has a strong effect on the BLEU score.
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Approach
BLEU

Sent Desc R
ea

d.

C
or

r.

R
el

ev
.

On gt intervals
Rohrbach et al. (2013b) 24.9 60.3 2.8 3.7 3.3
Our 26.9 65.1 3.2/3.4 4.1 3.6
Human 47.83

62.33
4.9 5.0 5.0

On our segmentation
Rohrbach et al. (2013b) - 48.3 2.5 3.5 3.1
Our - 51.0 2.9/3.2 4.0 3.3

Table 4.3: BLEU@4 in % on sentences (Sent) and full descriptions (Desc). Hu-
man judgments (Readability, Correctness, Relevance) from 1-5 (5 is best): Detailed
Descriptions.

Approach
BLEU

Sent Desc R
ea

d.

C
or

r.

R
el

ev
.

On gt intervals
Rohrbach et al. (2013b) 23.3 52.3 3.6 3.6 3.2
Our 24.7 54.6 3.8/4.0 3.9 3.7
Human 43.93

56.63
4.9 4.9 4.9

On our segmentation
Our on Det Desc 53.4 - - -
Our on Short Desc 54.3 3.9/4.1 3.7 3.4

Table 4.4: BLEU@4 in % on sentences (Sent) and full descriptions (Desc). Hu-
man judgments (Readability, Correctness, Relevance) from 1-5 (5 is best): Short
Descriptions.

processing (Sec. 4.5) on readability: the score improves from 3.2 to 3.4 and 2.9 to 3.2,
respectively (all other reported numbers obtained without post-processing).

4.6.3 Multi-level generation

On the Short Descriptions the results on ground truth intervals (upper part of Table
4.4) agree with the previously discussed results. To produce a Short Description
using our segmentation, we select the 3 most relevant segments, as described in
Sec. 4.3. We decide for 3 segments as the average length of Short Descriptions is 3.5
sentences. In the last two lines of the Table 4.4 we compare training our system on
the Detailed vs. Short Descriptions. As expected the language model trained on the
Short Descriptions performs better (+0.9% BLEU) supporting our hypothesis that it
is beneficial to learn a language model for a desired level of detail.

Table 4.5 shows the results for the Single Sentence Descriptions. The second line
corresponds to our approach of using the dish prediction from the segmentation
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Approach BLEU R
ea

d.

C
or

r.

R
el

ev
.

Upper bound
Human 53.23

4.9 4.9 4.7

On our segmentation
Our on Sing Sent Desc 57.7 4.9 3.4 3.3
Our on Det Desc 15.2 - - -
Our on Short Desc 21.0 5.0 3.3 2.6

Table 4.5: BLEU@4 in % on sentences (Sent) and full descriptions (Desc). Human
judgments (Readability, Correctness, Relevance) from 1-5 (5 is best): Single Sentence
Descriptions.

to translate it into a sentence (Sec. 4.3.2). We also investigated a retrieval and a
template baselines that rely on the dish prediction. They achieve lower BLEU score
but nearly identical human judgments, indicating that the dish prediction is the most
important aspect for the Single Sentence Descriptions. The last two lines compare
the extractively produced descriptions, where the single (most relevant) segment
was selected. The model trained on the Short Descriptions performs better than
the one trained on the Detailed Descriptions, however it is far below the Single
Sentence Descriptions with respect to relevance (-0.6) and BLEU (-36.7%), showing
the significant difference between these types of descriptions.

4.7 conclusion

This chapter addresses the challenging task of coherent multi-sentence video de-
scriptions. We show that inferring the high level topic helps to ensure consistency
across sentences. Using semantic unaries and hand centric features we improve
visual recognition, especially for the most challenging semantic category, namely
manipulated objects, which consecutively leads to better descriptions.

We also address the so far unexplored task of producing video descriptions
at multiple levels of detail with our collected corpus of human descriptions. In
an analysis we found that with decreasing length of description, the verbalized
information is ‘compressed’ according to the topic of the video. Based on this we
propose a method to extract most relevant segments of the video.

We believe that these results transfer to other domains as our approach is not
specific to the kitchen setting. We plan to validate that as part of future work by
exploring other domains. While we make a first step to couple visual recognition and
language generation by using probabilistic input for SMT on the sentence level, we
believe that a direction for future work is to reason jointly about visual recognition
and language generation for multi-sentence descriptions.

In the following chapters we move to an open domain scenario. We tackle movie
description in Chapter 5 and address local co-reference resolution of described
people in Chapter 8.
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M O V I E D E S C R I P T I O N

In the previous chapter we have addressed video description in a cooking scenario.
We now look at the open domain scenario, namely movies. Audio Description
(AD) provides linguistic descriptions of movies and allows visually impaired

people to follow a movie along with their peers. Such descriptions are by design
mainly visual and thus naturally form an interesting data source for computer vision
and computational linguistics. In this chapter we propose a novel dataset which
contains transcribed ADs, which are temporally aligned to full length movies. In
addition we also collected and aligned movie scripts used in prior work and compare
the two sources of descriptions. We introduce the Large Scale Movie Description
Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned
to video clips from 200 movies (around 150 hours of video in total). The goal of
the challenge is to automatically generate descriptions for the movie clips. First
we characterize the dataset by benchmarking different approaches for generating
video descriptions. Comparing ADs to scripts, we find that ADs are more visual
and describe precisely what is shown rather than what should happen according to the
scripts created prior to movie production. Furthermore, we present and compare the
results of several teams who participated in the challenges organized in the context
of two workshops at ICCV 2015 and ECCV 2016.

In Chapter 8 we present our approach to grounded video description, where
besides describing video we also aim to localize the described people.

5.1 introduction

Audio descriptions (ADs) make movies accessible to millions of blind or visually
impaired people1. AD — sometimes also referred to as Descriptive Video Service
(DVS) — provides an audio narrative of the “most important aspects of the visual
information” (Salway, 2007), namely actions, gestures, scenes, and character appear-
ance as can be seen in Figures 5.1 and 5.2. AD is prepared by trained describers and
read by professional narrators. While more and more movies are audio transcribed,
it may take up to 60 person-hours to describe a 2-hour movie (Lakritz and Salway,
2006), resulting in the fact that today only a small subset of movies and TV programs
are available for the blind. Consequently, automating this process has the potential
to greatly increase accessibility to this media content.

In addition to the benefits for the blind, generating descriptions for video is an
1 In this chapter we refer for simplicity to “the blind” to account for all blind and visually

impaired people which benefit from AD, knowing of the variety of visually impaired and that AD is
not accessible to all.

81
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AD: Abby gets in
the basket.

Mike leans over and
sees how high they
are.

Abby clasps her
hands around his
face and kisses him
passionately.

Script: After a
moment a frazzled
Abby pops up in
his place.

Mike looks down to
see – they are now
fifteen feet above
the ground.

For the first time in
her life, she stops
thinking and grabs
Mike and kisses the
hell out of him.

Figure 5.1: Audio description (AD) and movie script samples from the movie “Ugly
Truth”.

interesting task in itself, requiring the combination of core techniques from computer
vision and computational linguistics. To understand the visual input one has to
reliably recognize scenes, human activities, and participating objects. To generate a
good description one has to decide what part of the visual information to verbalize,
i.e. recognize what is salient.

Large datasets of objects (Deng et al., 2009) and scenes (Xiao et al., 2010; Zhou
et al., 2014) have had an important impact in computer vision and have significantly
improved our ability to recognize objects and scenes. The combination of large
datasets and convolutional neural networks (CNNs) has been particularly potent
(Krizhevsky et al., 2012). To be able to learn how to generate descriptions of visual
content, parallel datasets of visual content paired with descriptions are indispens-
able (Rohrbach et al., 2013b). While recently several large datasets have been released
which provide images with descriptions (Hodosh et al., 2014; Lin et al., 2014b; Or-
donez et al., 2011), video description datasets focus on short video clips with single
sentence descriptions and have a limited number of video clips (Xu et al., 2016; Chen
and Dolan, 2011) or are not publicly available (Over et al., 2012). TACoS Multi-Level
(Chapter 4) and YouCook (Das et al., 2013) are exceptions as they provide multiple
sentence descriptions and longer videos. While these corpora pose challenges in
terms of fine-grained recognition, they are restricted to the cooking scenario. In
contrast, movies are open domain and realistic, even though, as any other video
source (e.g. YouTube or surveillance videos), they have their specific characteristics.
ADs and scripts associated with movies provide rich multiple sentence descriptions.
They even go beyond this by telling a story which means they facilitate the study of
how to extract plots, the understanding of long term semantic dependencies and
human interactions from both visual and textual data.

Figures 5.1 and 5.2 show examples of ADs and compare them to movie scripts.
Scripts have been used for various tasks (Cour et al., 2008; Duchenne et al., 2009;
Laptev et al., 2008; Liang et al., 2011; Marszalek et al., 2009), but so far not for video
description. The main reason for this is that automatic alignment frequently fails
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AD: Buckbeak rears
and attacks Malfoy.

Hagrid lifts Malfoy
up.

As Hagrid carries Mal-
foy away, the hip-
pogriff gently nudges
Harry.

Script: In a flash,
Buckbeak’s steely
talons slash down.

Malfoy freezes. Looks down at the blood
blossoming on his robes.

Buckbeak whips around,
raises its talons and - see-
ing Harry - lowers them.

AD: Another room,
the wife and mother
sits at a window with
a towel over her hair.

She smokes a cigarette
with a latex-gloved
hand.

Putting the cigarette
out, she uncovers
her hair, removes the
glove and pops gum
in her mouth.

She pats her face and
hands with a wipe,
then sprays herself
with perfume.

She pats her face and
hands with a wipe,
then sprays herself
with perfume.

Script: Debbie opens
a window and sneaks
a cigarette.

She holds her cigarette
with a yellow dish
washing glove.

She puts out the
cigarette and goes
through an elaborate
routine of hiding the
smell of smoke.

She puts some weird oil
in her hair and uses a
wet nap on her neck
and clothes and brushes
her teeth.

She sprays cologne
and walks through it.

AD: They rush out
onto the street.

A man is trapped un-
der a cart.

Valjean is crouched
down beside him.

Javert watches as Val-
jean places his shoul-
der under the shaft.

Javert’s eyes narrow.

Script: Valjean and
Javert hurry out
across the factory
yard and down the
muddy track beyond
to discover -

A heavily laden cart
has toppled onto the
cart driver.

Valjean, Javert and
Javert’s assistant all
hurry to help, but
they can’t get a
proper purchase in
the spongy ground.

He throws himself
under the cart at
this higher end, and
braces himself to lift it
from beneath.

Javert stands back and
looks on.

Figure 5.2: Audio description (AD) and movie script samples from the movies
“Harry Potter and the Prisoner of Azkaban”, “This is 40”, and “Les Miserables”.
Typical mistakes contained in scripts marked in red italic.

due to the discrepancy between the movie and the script. As scripts are produced
prior to the shooting of the movie they are frequently not as precise as the AD
(Figure 5.2 shows some typical mistakes marked in red italic). A common case is
that part of the sentence is correct, while another part contains incorrect/irrelevant
information. As can be seen in the examples, AD narrations describe key visual
elements of the video such as changes in the scene, people’s appearance, gestures,
actions, and their interaction with each other and the scene’s objects in concise and
precise language. Figure 5.3 shows the variability of AD data w.r.t. to verbs (actions)
and corresponding scenes from the movies.

In this chapter we present a dataset which provides transcribed ADs, aligned to
full length movies. AD narrations are carefully positioned within movies to fit in the
natural pauses in the dialogue and are mixed with the original movie soundtrack
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Figure 5.3: Some of the diverse verbs / actions present in our Large Scale Movie
Description Challenge (LSMDC).

by professional post-production. To obtain ADs we retrieve audio streams from
DVDs/Blu-ray disks, segment out the sections of the AD audio and transcribe them
via a crowd-sourced transcription service. The ADs provide an initial temporal
alignment, which however does not always cover the full activity in the video. We
discuss a way to fully automate both audio-segmentation and temporal alignment,
but also manually align each sentence to the movie for all the data. Therefore, in
contrast to Salway (2007) and Salway et al. (2007), our dataset provides alignment
to the actions in the video, rather than just to the audio track of the description. In
addition we also mine existing movie scripts, pre-align them automatically, similar
to Cour et al. (2008) and Laptev et al. (2008), and then manually align the sentences
to the movie.

As a first study on our dataset we benchmark several approaches for movie
description. We first examine nearest neighbor retrieval using diverse visual features
which do not require any additional labels, but retrieve sentences from the training
data. Second, we adapt the translation approach of Rohrbach et al. (2013b) by
automatically extracting an intermediate semantic representation from the sentences
using semantic parsing. Third, based on the success of Long Short-Term Memory
networks (LSTMs) (Hochreiter and Schmidhuber, 1997) for the image captioning
problem (Donahue et al., 2015; Karpathy and Fei-Fei, 2015; Kiros et al., 2015a; Vinyals
et al., 2015) we propose our approachVisual-Labels. It first builds robust visual
classifiers which distinguish verbs, objects, and places extracted from weak sentence
annotations. Then the visual classifiers form the input to an LSTM for generating
movie descriptions.

The main contribution of this chapter is the Large Scale Movie Description
Challenge (LSMDC)2 which provides transcribed and aligned AD and script data
sentences. The LSMDC was first presented at the Workshop “Describing and
Understanding Video & The Large Scale Movie Description Challenge (LSMDC)”,
collocated with ICCV 2015. The second edition, LSMDC 2016, was presented at the

2https://sites.google.com/site/describingmovies/
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“Joint Workshop on Storytelling with Images and Videos and Large Scale Movie
Description and Understanding Challenge”, collocated with ECCV 2016. Both
challenges include the same public and blind test sets with an evaluation server3

for automatic evaluation. LSMDC is based on the MPII Movie Description dataset
(MPII-MD) and the Montreal Video Annotation Dataset (M-VAD) (Torabi et al., 2015)
which were initially collected independently but are presented jointly in this work.
We detail the data collection and dataset properties in Section 5.3, which includes
our approach to automatically collect and align AD data. In Section 5.4 we present
several benchmark approaches for movie description, including our Visual-Labels
approach which learns robust visual classifiers and generates description using an
LSTM. In Section 5.5 we present an evaluation of the benchmark approaches on
the M-VAD and MPII-MD datasets, analyzing the influence of the different design
choices. Using automatic and human evaluation, we also show that our Visual-Labels
approach outperforms prior work on both datasets. In Section 5.5.5 we perform an
analysis of prior work and our approach to understand the challenges of the movie
description task. In Section 5.6 we present and discuss the results of the LSMDC
2015 and LSMDC 2016.

5.2 related work

Related work which focuses on video description approaches and datasets has been
presented earlier in Chapter 2 of the thesis, specifically, in Section 2.2 and Section 2.1.
In the following we shortly review recent approaches to image description.

Prior work on image description includes Farhadi et al. (2010b); Kulkarni et al.
(2011); Kuznetsova et al. (2012); Li et al. (2011); Kuznetsova et al. (2014); Mitchell et al.
(2012); Socher et al.. Recently image description has gained increased attention with
work such as that of Chen and Zitnick (2015); Donahue et al. (2015); Fang et al. (2015);
Karpathy and Fei-Fei (2015); Kiros et al. (2014, 2015a); Mao et al. (2015); Vinyals et al.
(2015); Xu et al. (2015a). Much of the recent work has relied on Recurrent Neural
Networks (RNNs) and in particular on Long Short-Term Memory networks (LSTMs).
New datasets have been released, such as the Flickr30k (Young et al., 2014) and
MS COCO Captions (Chen et al., 2015), where Chen et al. (2015) also presents a
standardized protocol for image captioning evaluation. Other work has analyzed the
performance of recent methods, e.g. Devlin et al. (2015) compare them with respect
to the novelty of generated descriptions, while also exploring a nearest neighbor
baseline that improves over recent methods.

5.3 datasets for movie description

In the following, we present how we collect our data for movie description and dis-
cuss its properties. The Large Scale Movie Description Challenge (LSMDC) is based

3https://competitions.codalab.org/competitions/6121
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on two datasets which were originally collected independently. The MPII Movie
Description Dataset (MPII-MD) was collected from Blu-ray movie data. It consists of
AD and script data and uses sentence-level manual alignment of transcribed audio
to the actions in the video (Section 5.3.1). In Section 5.3.2 we discuss how to fully
automate AD audio segmentation and alignment for the Montreal Video Annotation
Dataset (M-VAD), initially presented by Torabi et al. (2015). M-VAD was collected
with DVD data quality and only relies on AD. Section 5.3.3 details the Large Scale
Movie Description Challenge (LSMDC) which is based on M-VAD and MPII-MD,
but also contains additional movies, and was set up as a challenge. It includes a
submission server for evaluation on public and blind test sets. In Section 5.3.4 we
present the detailed statistics of our datasets, also see Table 5.1. In Section 5.3.5 we
compare our movie description data to other video description datasets.

5.3.1 The MPII Movie Description (MPII-MD) dataset

In the following we describe our approach behind the collection of ADs (Sec-
tion 5.3.1.1) and script data (Section 5.3.1.2). Then we discuss how to manually
align them to the video (Section 5.3.1.3) and which visual features we extracted from
the video (Section 5.3.1.4).

5.3.1.1 Collection of ADs

We search for Blu-ray movies with ADs in the “Audio Description” section of the
British Amazon4 and select 55 movies of diverse genres (e.g. drama, comedy, action).
As ADs are only available in audio format, we first retrieve the audio stream from
the Blu-ray HD disks. We use MakeMKV5 to extract a Blu-ray in the .mkv file format,
and then XMediaRecode6 to select and extract the audio streams from it. Then we
semi-automatically segment out the sections of the AD audio (which is mixed with
the original audio stream) with the approach described below. The audio segments
are then transcribed by a crowd-sourced transcription service7 that also provides us
the time-stamps for each spoken sentence.

Semi-automatic segmentation of ADs. We are given two audio streams: the
original audio and the one mixed with the AD. We first estimate the temporal
alignment between the two as there might be a few time frames difference. The
precise alignment is important to compute the similarity of both streams. Both
steps (alignment and similarity) are estimated using the spectograms of the audio
stream, which is computed using a Fast Fourier Transform (FFT). If the difference
between the two audio streams is larger than a given threshold we assume the
mixed stream contains AD at that point in time. We smooth this decision over time

4www.amazon.co.uk
5www.makemkv.com/
6www.xmedia-recode.de/
7CastingWords transcription service, http://castingwords.com/
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using a minimum segment length of 1 second. The threshold was picked on a few
sample movies, but had to be adjusted for each movie due to different mixing of
the AD stream, different narrator voice level, and movie sound. While we found
this semi-automatic approach sufficient when using a further manual alignment, we
describe a fully automatic procedure in Section 5.3.2.

5.3.1.2 Collection of script data

In addition to the ADs we mine script web resources8 and select 39 movie scripts.
As starting point we use the movie scripts from “Hollywood2” (Marszalek et al.,
2009) that have highest alignment scores to their movie. We are also interested
in comparing the two sources (movie scripts and ADs), so we are looking for the
scripts labeled as “Final”, “Shooting”, or “Production Draft” where ADs are also
available. We found that the “overlap" is quite narrow, so we analyze 11 such movies
in our dataset. This way we end up with 50 movie scripts in total. We follow
existing approaches (Cour et al., 2008; Laptev et al., 2008) to automatically align
scripts to movies. First we parse the scripts, extending the method of (Laptev et al.,
2008) to handle scripts which deviate from the default format. Second, we extract
the subtitles from the Blu-ray disks with SubtitleEdit9. It also allows for subtitle
alignment and spellchecking. Then we use the dynamic programming method of
(Laptev et al., 2008) to align scripts to subtitles and infer the time-stamps for the
description sentences. We select the sentences with a reliable alignment score (the
ratio of matched words in the near-by monologues) of at least 0.5. The obtained
sentences are then manually aligned to video in-house.

5.3.1.3 Manual sentence-video alignment

As the AD is added to the original audio stream between the dialogs, there might be a
small misalignment between the time of speech and the corresponding visual content.
Therefore, we manually align each sentence from ADs and scripts to the movie in-
house. During the manual alignment we also filter out: a) sentences describing
movie introduction/ending (production logo, cast, etc); b) texts read from the screen;
c) irrelevant sentences describing something not present in the video; d) sentences
related to audio/sounds/music. For the movie scripts, the reduction in number
of words is about 19%, while for ADs it is under 4%. In the case of ADs, filtering
mainly happens due to initial/ending movie intervals and transcribed dialogs (when
shown as text). For the scripts, it is mainly attributed to irrelevant sentences. Note
that we retain the sentences that are “alignable” but contain minor mistakes. If the
manually aligned video clip is shorter than 2 seconds, we symmetrically expand it
(from beginning and end) to be exactly 2 seconds long. In the following we refer to
the obtained alignment as a "2-seconds-expanded" alignment.

8http://www.weeklyscript.com, http://www.simplyscripts.com, http://www.dailyscript.com,
http://www.imsdb.com

9www.nikse.dk/SubtitleEdit/
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5.3.1.4 Visual features

We extract video clips from the full movie based on the aligned sentence intervals.
We also uniformly extract 10 frames from each video clip. As discussed earlier, ADs
and scripts describe activities, objects and scenes (as well as emotions which we do
not explicitly handle with these features, but they might still be captured, e.g. by
the context or activities). In the following we briefly introduce the visual features
computed on our data which are publicly available10.

IDT We extract the improved dense trajectories compensated for camera motion
(Wang and Schmid, 2013). For each feature (Trajectory, HOG, HOF, MBH) we create
a codebook with 4,000 clusters and compute the corresponding histograms. We
apply L1 normalization to the obtained histograms and use them as features.

LSDA We use the recent large scale object detection CNN (Hoffman et al., 2014)
which distinguishes 7,604 ImageNet (Deng et al., 2009) classes. We run the detector
on every second extracted frame (due to computational constraints). Within each
frame we max-pool the network responses for all classes, then do mean-pooling over
the frames within a video clip and use the result as a feature.

PLACES and HYBRID Finally, we use the recent scene classification CNNs
(Zhou et al., 2014) featuring 205 scene classes. We use both available networks,
Places-CNN and Hybrid-CNN, where the first is trained on the Places dataset (Zhou
et al., 2014) only, while the second is additionally trained on the 1.2 million images
of ImageNet (ILSVRC 2012) (Russakovsky et al., 2015). We run the classifiers on all
the extracted frames of our dataset. We mean-pool over the frames of each video
clip, using the result as a feature.

5.3.2 The Montreal Video Annotation Dataset (M-VAD)

One of the main challenges in automating the construction of a video annotation
dataset derived from AD audio is accurately segmenting the AD output, which is
mixed with the original movie soundtrack. In Section 5.3.1.1 we have introduced
a way of semi-automatic AD segmentation. In this section we describe a fully
automatic method for AD narration isolation and video alignment. AD narrations
are typically carefully placed within key locations of a movie and edited by a post-
production supervisor for continuity. For example, when a scene changes rapidly,
the narrator will speak multiple sentences without pauses. Such content should be
kept together when describing that part of the movie. If a scene changes slowly, the
narrator will instead describe the scene in one sentence, then pause for a moment,
and later continue the description. By detecting those short pauses, we are able to
align a movie with video descriptions automatically.

In the following we describe how we select the movies with AD for our dataset
(Section 5.3.2.1) and detail our automatic approach to AD segmentation (Sec-
tion 5.3.2.2). In Section 5.3.2.3 we discuss how to align AD to the video and obtain
high quality AD transcripts.

10mpii.de/movie-description
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Figure 5.4: AD dataset collection. From the movie "Life of Pi". Line 2 and 3: Vocal
isolation of movie and AD soundtrack. Second and third rows shows movie and AD
audio signals after voice isolation. The two circles show the AD segments on the AD
mono channel track. A pause (flat signal) between two AD narration parts shows
the natural AD narration segmentation while the narrator stops and then continues
describing the movie. We automatically segment AD audio based on these natural
pauses. At first row, you can also see the transcription related to first and second
AD narration parts on top of second and third image shots.

5.3.2.1 Collection of ADs

To search for movies with AD we use the movie lists provided in "An Initiative of the
American Council of the Blind"11 and "Media Access Group at WGBH"12 websites,
and buy them based on their availability and price. To extract video and audio from
the DVDs we use the DVDfab13 software.

5.3.2.2 AD narrations segmentation using vocal isolation

Despite the advantages offered by AD, creating a completely automated approach
for extracting the relevant narration or annotation from the audio track and refining
the alignment of the annotation with the video still poses some challenges. In the
following, we discuss our automatic solution for AD narrations segmentation. We
use two audio tracks included in DVDs: 1) the standard movie audio signal and 2)
the standard movie audio mixed with AD narrations signal.

Vocal isolation techniques boost vocals, including dialogues and AD narrations

11http://www.acb.org/adp/movies.html
12http://main.wgbh.org/wgbh/pages/mag/dvsondvd.html
13http://www.dvdfab.cn/
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while suppressing background movie sound in stereo signals. This technique is
used widely in karaoke machines for stereo signals to remove the vocal track by
reversing the phase of one channel to cancel out any signal perceived to come from
the center while leaving the signals that are perceived as coming from the left or the
right. The main reason for using vocal isolation for AD segmentation is based on
the fact that AD narration is mixed in natural pauses in the dialogue. Hence, AD
narration can only be present when there is no dialogue. In vocal isolated signals,
whenever the narrator speaks, the movie signal is almost a flat line relative to the AD
signal, allowing us to cleanly separate the narration by comparing the two signals.
Figure 5.4 illustrates an example from the movie “Life of Pi”, where in the original
movie soundtrack there are sounds of ocean waves in the background.

Our approach has three main steps. First we isolate vocals, including dialogues
and AD narrations. Second, we separate the AD narrations from dialogues. Finally,
we apply a simple thresholding method to extract AD segment audio tracks.

We isolate vocals using Adobe Audition’s center channel extractor14 implemen-
tation to boost AD narrations and movie dialogues while suppressing movie back-
ground sounds on both AD and movie audio signals. We align the movie and AD au-
dio signals by taking an FFT of the two audio signals, compute the cross-correlation,
measure similarity for different offsets and select the offset which corresponds to
peak cross-correlation. After alignment, we apply Least Mean Square (LMS) noise
cancellation and subtract the AD mono squared signal from the movie mono squared
signal in order to suppress dialogue in the AD signal. For the majority of movies on
the market (among the 104 movies that we purchased, 12 movies have been mixed
to the center of the audio signal, therefore we were not able to automatically align
them), applying LMS results in cleaned AD narrations for the AD audio signal. Even
in cases where the shapes of the standard movie audio signal and standard movie
audio mixed with AD signal are very different - due to the AD mixing process - our
procedure is sufficient for the automatic segmentation of AD narration.

Finally, we extract the AD audio tracks by detecting the beginning and end of AD
narration segments in the AD audio signal (i.e. where the narrator starts and stops
speaking) using a simple thresholding method that we applied to all DVDs without
changing the threshold value. This is in contrast to the semi-automatic approach
presented in Section 5.3.1.1, which requires individual adjustment of a threshold for
each movie.

5.3.2.3 Movie/AD alignment and professional transcription

AD audio narration segments are time-stamped based on our automatic AD narration
segmentation. In order to compensate for the potential 1-2 seconds misalignment
between the AD narrator speaking and the corresponding scene in the movie, we
automatically add two seconds to the end of each video clip. Also we discard all
the transcriptions related to movie introduction/ending which are located at the
beginning and the end of movies.

14creative.adobe.com/products/audition
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Unique Average Total
Movies Words Sentences Clips length, sec. length, h.

MPII-MD (AD) 55 330,086 37,272 37,266 4.2 (4.1) 44.0 (42.5)
MPII-MD (Movie script) 50 317,728 31,103 31,071 3.9 (3.6) 33.8 (31.1)
MPII-MD (Total) 94 647,814 68,375 68,337 4.1 (3.9) 77.8 (73.6)
M-VAD (AD) 92 502,926 55,904 46,589 6.2 - 84.6 -

LSMDC 15 Training 153 914.327 91,941 91,908 4.9 (4.8) 124.9 (121.4)
LSMDC 15 Validation 12 63,789 6,542 6,542 5.3 (5.2) 9.6 (9.4)
LSMDC 15&16 Public Test 17 87,150 10,053 10,053 4.2 (4.1) 11.7 (11.3)
LSMDC 15&16 Blind Test 20 83,766 9,578 9,578 4.5 (4.4) 12.0 (11.8)
LSMDC 15 (Total) 200 1,149,032 118,114 118,081 4.8 (4.7) 158.1 (153.9)

LSMDC 16 Training 153 922,918 101,079 101,046 4.1 (3.9) 114.9 (109.7)
LSMDC 16 Validation 12 63,321 7,408 7,408 4.1 (3.9) 8.4 (8.0)
LSMDC 15&16 Public Test 17 87,150 10,053 10,053 4.2 (4.1) 11.7 (11.3)
LSMDC 15&16 Blind Test 20 83,766 9,578 9,578 4.5 (4.4) 12.0 (11.8)
LSMDC 16 (Total) 200 1,157,155 128,118 128,085 4.1 (4.0) 147.0 (140.8)

Table 5.1: Movie description dataset statistics, see discussion in Section 5.3.4. For
average/total length we report the "2-seconds-expanded" alignment, used in our
work, and an actual manual alignment in brackets.

In order to obtain high quality text descriptions, the AD audio segments were
transcribed with more than 98% transcription accuracy, using a professional tran-
scription service15. These services use a combination of automatic speech recognition
techniques and human transcription to produce a high quality transcription. Our
audio narration isolation technique allows us to process the audio into small, well
defined time segments and reduce the overall transcription effort and cost.

5.3.3 The Large Scale Movie Description Challenge (LSMDC)

To build our Large Scale Movie Description Challenge (LSMDC), we combine the
M-VAD and MPII-MD datasets. We first identify the overlap between the two,
so that the same movie does not appear in the training and test set of the joined
dataset. We also exclude script-based movie alignments from the validation and
test sets of MPII-MD. The datasets are then joined by combining the corresponding
training, validation and test sets, see Table 5.1 for detailed statistics. The combined
test set is used as a public test set of the challenge. We additionally acquired 20

more movies where we only release the video clips, but not the aligned sentences.
They form the blind test set of the challenge and are only used for evaluation. We
rely on the respective best aspects of M-VAD and MPII-MD for the public and
blind test sets: we provide Blu-ray quality for them, use the automatic alignment/

15TranscribeMe professional transcription, http://transcribeme.com
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Dataset Vocab. Nouns Verbs Adjec- Adverbs
size tives

MPII-MD 18,871 10,558 2,933 4,239 1,141

M-VAD 17,609 9,512 2,571 3,560 857

LSMDC 15 22,886 12,427 3,461 5,710 1,288

LSMDC 16 22,500 12,181 3,394 5,633 1,292

Table 5.2: Vocabulary and POS statistics (after word stemming) for our movie
description datasets, see discussion in Section 5.3.4.

transcription described in Section 5.3.2 and clean them using a manual alignment
as in Section 5.3.1.3. For the second edition of our challenge, LSMDC 2016, we
also manually align the M-VAD validation and training sets and release them with
Blu-ray quality. The manual alignment results in many multi-sentences descriptions
to be split. Also the more precise alignment reduces the average clip length.

We set up the evaluation server3 for the challenge using the Codalab16 platform.
The challenge data is available online2. We provide more information about the
challenge setup and results in Section 5.6.

In addition to the description task, LSMDC 2016 includes three additional tracks,
not discussed in this chapter. There is a movie annotation track which asks to select
the correct sentence out of five in a multiple-choice test, a retrieval track which asks
to retrieve the correct test clip for a given sentence, and a fill-in-the-blank track which
requires to predict a missing word in a given description and the corresponding clip.
Torabi et al. (2016) provide more details about the annotation and the retrieval tasks,
while Maharaj et al. (2017) describe the movie fill-in-the-blank task.

5.3.4 Movie description dataset statistics

Table 5.1 presents statistics for the number of words, sentences and clips in our
movie description corpora. We also report the average/total length of the annotated
time intervals. We report both, the “2-seconds-expanded” clip alignment (see
Section 5.3.1.3) and the actual clip alignment in brackets. In total MPII-MD contains
68,337 clips and 68,375 sentences (rarely multiple sentences might refer to the same
video clip), while M-VAD includes 46,589 clips and 55,904 sentences.

Our combined LSMDC 2015 dataset contains over 118K sentence-clips pairs and
158 hours of video. The training/validation/public-/blind-test sets contain 91,908,
6,542, 10,053 and 9,578 video clips respectively. This split balances movie genres
within each set, which is motivated by the fact that the vocabulary used to describe,
say, an action movie could be very different from the vocabulary used in a comedy
movie. After manual alignment of the training/validation sets, the new LSMDC
2016 contains 101,046 training clips, 7,408 validation clips and 128K clips in total.

16https://codalab.org/
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Dataset Multi- Domain Sentence Videos Clips Sent. Length,
sent. source h

YouCook (Das et al., 2013) x cook. crowd 88 - 2,668 2.3
TACoS (Regneri et al., 2013) x cook. crowd 127 7,206 18,227 10.1
TACoS Multi-Level (ours) x cook. crowd 185 24,764 74,828 15.8
MSVD (Chen and Dolan, 2011) open crowd - 1,970 70,028 5.3
TGIF (Li et al., 2016) open crowd - 100,000 125,781 ≈86.1
MSR-VTT (Xu et al., 2016) open crowd 7,180 10,000 200,000 41.2
VTW (Zeng et al., 2016) x open crowd/prof. 18,100 - 44,613 213.2

M-VAD (ours) x open professional 92 46,589 55,904 84.6
MPII-MD (ours) x open professional 94 68,337 68,375 77.8
LSMDC 15 (ours) x open professional 200 118,081 118,114 158.1
LSMDC 16 (ours) x open professional 200 128,085 128,118 147.0

Table 5.3: Comparison of video description datasets. Discussion see Section 5.3.5.

Table 5.2 illustrates the vocabulary size, number of nouns, verbs, adjectives, and
adverbs in each respective dataset. To compute the part of speech statistics for our
corpora we tag and stem all words in the datasets with the Standford Part-Of-Speech
(POS) tagger and stemmer toolbox (Toutanova et al., 2003), then we compute the
frequency of stemmed words in the corpora. It is important to notice that in our
computation each word and its variations in corpora is counted once since we
applied stemmer. Interesting observation on statistics is that e.g. the number of
adjectives is larger than the number of verbs, which shows that the AD is describing
the characteristics of visual elements in the movie in high detail.

5.3.5 Comparison to other video description datasets

We compare our corpus to other existing parallel video corpora in Table 5.3. We look
at the following properties: availability of multi-sentence descriptions (long videos
described continuously with multiple sentences), data domain, source of descriptions
and dataset size. The main limitations of prior datasets include the coverage of a
single domain (Das et al., 2013; Regneri et al., 2013) and having a limited number
of video clips (Chen and Dolan, 2011). Recently, a few video description datasets
have been proposed, namely MSR-VTT (Xu et al., 2016), TGIF (Li et al., 2016) and
VTW (Zeng et al., 2016). Similar to MSVD dataset (Chen and Dolan, 2011), MSR-VTT
is based on YouTube clips. While it has a large number of sentence descriptions
(200K) it is still rather small in terms of the number of video clips (10K). TGIF is a
large dataset of 100k image sequences (GIFs) with associated descriptions. VTW is a
dataset which focuses on longer YouTube videos (1.5 minutes on average) and aims
to generate concise video titles from user provided descriptions as well as editor
provided titles. All these datasets are similar in that they contain web-videos, while
our proposed dataset focuses on movies. Similar to e.g. VTW, our dataset has a
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“multi-sentence” property, making it possible to study multi-sentence description or
understanding stories and plots.

5.4 approaches for movie description

Given a training corpus of aligned videos and sentences we want to describe a new
unseen test video. In this section we discuss two approaches to the video description
task that we benchmark on our proposed datasets. Our first approach in Section 5.4.1
is based on the statistical machine translation (SMT) approach of (Rohrbach et al.,
2013b). Our second approach (Section 5.4.2) learns to generate descriptions using
Long Short-Term Memory network (LSTM). For the first step both approaches rely
on visual classifiers learned on annotations (labels) extracted from natural language
descriptions using our semantic parser (Section 5.4.1.1). While the first approach
does not differentiate which features to use for different labels, our second approach
defines different semantic groups of labels and uses most relevant visual features
for each group. For this reason we refer to this approach as Visual-Labels. Next,
the first approach uses the classifier scores as input to a CRF to predict a semantic
representation (SR) (SUBJECT, VERB, OBJECT, LOCATION), and then translates it
into a sentence with SMT. On the other hand, our second approach directly provides
the classifier scores as input to an LSTM which generates a sentence based on them.
Figure 5.5 shows an overview of the two discussed approaches.

5.4.1 Semantic parsing + Statistical Machine Translation (SMT)

As our first approach we adapt the two-step translation approach of (Rohrbach et al.,
2013b). As a first step it trains the visual classifiers based on manually annotated
tuples e.g. 〈cut, kni f e, tomato〉 provided with the video. Then it trains a CRF which
aims to predict such tuple, or semantic representation (SR), from a video clip. At a
second step, the Statistical Machine Translation (SMT) (Koehn et al., 2007) is used
to translate the obtained SR into a natural language sentence, e.g. “The person cuts a
tomato with a knife", see Figure 5.5(a). While we cannot rely on a manually annotated
SR as in (Rohrbach et al., 2013b), we automatically mine the SR from sentences using
semantic parsing which we introduce in this section.

5.4.1.1 Semantic parsing

Learning from a parallel corpus of videos and natural language sentences is chal-
lenging when no annotated intermediate representation is available. In this section
we introduce our approach to exploit the sentences using semantic parsing. The
proposed method automatically extracts intermediate semantic representations (SRs)
from the natural sentences.
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Figure 5.5: Overview of our movie description approaches: (a) SMT-based approach,
adapted from (Rohrbach et al., 2013b); (b) our proposed LSTM-based approach.

Phrase WordNet VerbNet Desired
Mapping Mapping Frame

the man man1
n Agent.animate Agent: man1

n

begin to shoot shoot4
v shoot4

v Action: shoot4
v

a video video2
n Patient.inanimate Patient: video2

n

in in PP.in

the moving bus bus1
n NP.Location. solid Location: moving bus1

n

Table 5.4: Semantic parse for “He began to shoot a video in the moving bus”. For
discussion, see Section 5.4.1.1.

Approach. We lift the words in a sentence to a semantic space of roles and WordNet
(Fellbaum, 1998) senses by performing SRL (Semantic Role Labeling) and WSD
(Word Sense Disambiguation). For an example, refer to Table 5.4 where the desired
outcome of SRL and WSD on the input sentence “He shot a video in the moving bus”
is “Agent: man1

n, Action: shoot4
v, Patient: video2

n, Location: bus1
n”. Here, e.g. shoot4

v
refers to the fourth verb sense of shoot in WordNet17. This is similar to the semantic
representation of Rohrbach et al. (2013b), except that those semantic frames were
constructed manually while we construct them automatically and our role fillers are
additionally sense disambiguated. As verbs are known to have high ambiguity, the

17The WordNet senses for shoot and video are:
• shoot1

v: hit with missile . . . video1
n: picture in TV

• shoot2
v: kill by missile . . . video2

n: a recording . . .

• . . . . . .

• shoot4
v: make a film . . . video4

n: broadcasting . . .
where, shoot1

v refers to the first verb (v) sense of shoot.
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disambiguation step will provide clearer representations (corresponding WordNet
sense) of a large set of verbs present in movie descriptions.

We start by decomposing the typically long sentences present in movie descrip-
tions into smaller clauses using the ClausIE tool (Del Corro and Gemulla, 2013). For
example, “he shot and modified the video” is split into two clauses “he shot the video”
and “he modified the video”). We then use the OpenNLP tool suite18 to chunk every
clause into phrases. These chunks are disambiguated to their WordNet senses17

by enabling a state-of-the-art WSD system called IMS (Zhong and Ng, 2010), to
additionally disambiguate phrases that are not present in WordNet and thus, out of
reach for IMS. We identify and disambiguate the head word of an out of WordNet
phrase, e.g. the moving bus to the proper WordNet sense bus1

n via IMS. In this way
we make an extension to IMS so it works for phrases and not just words. We link
verb phrases to the proper sense of its head word in WordNet (e.g. begin to shoot to
shoot4

v). The phrasal verbs such as e.g. “pick up” or “turn off” are preserved as long
as they exist in WordNet.

Having estimated WordNet senses for the words and phrases, we need to assign
semantic role labels to them. Typical SRL systems require large amounts of training
data, which we do not possess for the movie domain. Therefore, we propose leverag-
ing VerbNet (Kipper et al., 2006; Schuler et al., 2009), a manually curated high-quality
linguistic resource for English verbs that supplements WordNet verb senses with
syntactic frames and semantic roles, as a distant signal to assign role labels. Every
VerbNet verb sense comes with a syntactic frame e.g. for shoot4

v, the syntactic frame
is NP V NP. VerbNet also provides a role restriction on the arguments of the roles
e.g. for shoot3

v (sense killing), the role restriction is Agent.animate V Patient.animate
PP Instrument.solid. For another sense, shoot4

v (sense film), the semantic restriction is
Agent.animate V Patient.inanimate. We ensure that the selected WordNet verb sense
adheres to both the syntactic frame and the semantic role restriction provided by
VerbNet. For example, in Table 5.4, because video2

n is a type of inanimate object
(inferred through WordNet noun taxonomy), this sense correctly adheres to the
VerbNet role restriction. We can now simply apply the VerbNet suggested role
Patient to video2

n.

Semantic representation. Although VerbNet is helpful as a distant signal to dis-
ambiguate and perform semantic role labeling, VerbNet contains over 20 roles and
not all of them are general or can be recognized reliably. Therefore, for simplicity,
we generalize and group them to get the SUBJECT, VERB, OBJECT, LOCATION
roles. For example, the roles patient, recepient, and, benefeciary are generalized to
OBJECT. We explore two approaches to obtain the labels based on the output of
the semantic parser. First is to use the extracted text chunks directly as labels.
Second is to use the corresponding senses as labels (and therefore group multiple
text labels). In the following we refer to these as text- and sense-labels. Thus from
each sentence we extract a semantic representation in a form of (SUBJECT, VERB,
OBJECT, LOCATION).

18OpenNLP tool suite: http://opennlp.sourceforge.net/
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Figure 5.6: (a-c) LSTM architectures. (d) Variants of placing the dropout layer.

5.4.1.2 Statistical Machine Translation (SMT)

For the sentence generation we build on the two-step translation approach of
(Rohrbach et al., 2013b). As the first step it learns a mapping from the visual
input to the semantic representation (SR), modeling pairwise dependencies in a CRF
using visual classifiers as unaries. The unaries are trained using an SVM on dense
trajectories (Wang and Schmid, 2013). In the second step it translates the SR to a
sentence using Statistical Machine Translation (SMT) (Koehn et al., 2007). For this
the approach uses a concatenated SR as input language, e.g. cut knife tomato, and
natural sentence as output language, e.g. The person slices the tomato. We obtain the
SR automatically from the semantic parser, as described above, Section 5.4.1.1. In
addition to dense trajectories we use the features described in Section 5.3.1.4.

5.4.2 Visual labels + LSTM

Next we present our two-step LSTM-based approach. The first step performs visual
recognition using the visual classifiers which we train according to labels’ semantics
and “visuality”. The second step generates textual descriptions using an LSTM
network (see Figure 5.5(b)). We explore various design choices for building and
training the LSTM.

5.4.2.1 Robust visual classifiers

For training we rely on a parallel corpus of videos and weak sentence annotations.
As before (see Section 5.4.1) we parse the sentences to obtain a set of labels (single
words or short phrases, e.g. look up) to train visual classifiers. However, this time we
aim to select the most visual labels which can be robustly recognized. In order to do
that we take three steps.

Avoiding parser failure. Not all sentences can be parsed successfully, as e.g. some
sentences are incomplete or grammatically incorrect. To avoid loosing the potential
labels in these sentences, we match our set of initial labels to the sentences which



98 chapter 5. movie description

the parser failed to process. Specifically, we do a simple word matching, i.e. if the
label is found in the sentence, we consider this sentence as a positive for the label.

Semantic groups. Our labels correspond to different semantic groups. In this work
we consider three most important groups: verbs, objects and places. We propose to
treat each label group independently. First, we rely on a different representation
for each semantic group, which is targeted to the specific group. Namely we use
the activity recognition features Improved Dense Trajectories (DT) for verbs, LSDA
scores for objects and PLACES-CNN scores for places. Second, we train one-vs-all
SVM classifiers for each group separately. The intuition behind this is to avoid
“wrong negatives” (e.g. using object “bed” as negative for place “bedroom”).

Visual labels. Now, how do we select visual labels for our semantic groups? In or-
der to find the verbs among the labels we rely on our semantic parser (Section 5.4.1.1).
Next, we look up the list of “places” used in (Zhou et al., 2014) and search for corre-
sponding words among our labels. We look up the object classes used in (Hoffman
et al., 2014) and search for these “objects”, as well as their base forms (e.g. “domestic
cat” and “cat”). We discard all the labels that do not belong to any of our three
groups of interest as we assume that they are likely not visual and thus are difficult
to recognize. Finally, we discard labels which the classifiers could not learn reliably,
as these are likely noisy or not visual. For this we require the classifiers to have
certain minimum area under the ROC-curve (Receiver Operating Characteristic). We
estimate a threshold for the ROC values on a validation set. We empirically evaluate
this as well as all other design choices of our approach in Section 5.5.4.2.

5.4.2.2 LSTM for sentence generation

We rely on the basic LSTM architecture proposed in (Donahue et al., 2015) for video
description. At each time step an LSTM generates a word and receives the visual
classifiers (input-vis) as well as as the previous generated word (input-lang) as input
(see Figure 5.6(a)). We encode each word with a one-hot-vector according to its index
in a dictionary and project it in a lower dimensional embedding. The embedding
is jointly learned during training of the LSTM. We feed in the classifier scores as
input to the LSTM which is equivalent to the best variant proposed in (Donahue
et al., 2015). We analyze the following aspects for this architecture:

Layer structure. We compare a 1-layer architecture with a 2-layer architecture. In
the 2-layer architecture, the output of the first layer is used as input for the second
layer (Figure 5.6b) and was used by (Donahue et al., 2015) for video description.
Additionally we also compare to a 2-layer factored architecture of (Donahue et al.,
2015), where the first layer only gets the language as input and the second layer gets
the output of the first as well as the visual input.
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Dropout placement. To learn a more robust network which is less likely to overfit
we rely on a dropout (Hinton et al., 2012), i.e. a ratio r of randomly selected units
is set to 0 during training (while all others are multiplied with 1/r). We explore
different ways to place dropout in the network, i.e. either for language input (lang-
drop) or visual (vis-drop) input only, for both inputs (concat-drop) or for the LSTM
output (lstm-drop), see Figure 5.6(d).

5.5 evaluation on mpii-md and m-vad

In this section we evaluate and provide more insights about our movie description
datasets MPII-MD and M-VAD. We compare ADs to movie scripts (Section 5.5.1),
present a short evaluation of our semantic parser (Section 5.5.2), present the au-
tomatic and human evaluation metrics for description (Section 5.5.3) and then
benchmark the approaches to video description introduced in Section 5.4 as well
as other related work. We conclude this section with an analysis of the different
approaches (Section 5.5.5).

In Section 5.6 we will extend this discussion to the results of the Large Scale
Movie Description Challenge.

5.5.1 Comparison of AD vs. script data

We compare the AD and script data using 11 movies from the MPII-MD dataset
where both are available (see Section 5.3.1.2). For these movies we select the overlap-
ping time intervals with an intersection over union overlap of at least 75%, which
results in 279 sentence pairs, we remove 2 pairs which have idendical sentences. We
ask humans via Amazon Mechanical Turk (AMT) to compare the sentences with
respect to their correctness and relevance to the video, using both video intervals as
a reference (one at a time). Each task was completed by 5 different human subjects,
covering 2,770 tasks done in total. Table 5.5 presents the results of this evaluation.
AD is ranked as more correct and relevant in about 2/3 of the cases (i.e. there is
margin of about 33%). Looking at the more strict evaluation where at least 4 out of
5 judges agree (in brackets in Table 5.5) there is still a significant margin of 24.5%
between ADs and movie scripts for Correctness, and 28.1% for Relevance. One can
assume that in the cases of lower agreement the descriptions are probably of similar
quality. This evaluation supports our intuition that scrips contain mistakes and
irrelevant content even after being cleaned up and manually aligned.

5.5.2 Semantic parser evaluation

We empirically evaluate the various components of the semantic parsing pipeline,
namely, clause splitting (Clause), POS tagging and chunking (NLP), semantic role
labeling (Roles), and, word sense disambiguation (WSD). We randomly sample 101

sentences from the MPII-MD dataset over which we perform semantic parsing and
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Correctness Relevance

Movie scripts 33.9 (11.2 ) 33.4 (16.8 )
ADs 66.1 (35.7 ) 66.6 (44.9 )

Table 5.5: Human evaluation of movie scripts and ADs: which sentence is more
correct/relevant with respect to the video (forced choice). Majority vote of 5 judges
in %. In brackets: at least 4 out of 5 judges agree. See also Section 5.5.1.

Corpus Clause NLP Roles WSD

MPII-MD 0.89 0.62 0.86 0.7

Table 5.6: Semantic parser accuracy on MPII-MD. Discussion in Section 5.5.2.

log the outputs at various stages of the pipeline (similar to Table 5.4). We let three
human judges evaluate the results for every token in the clause (similar to evaluating
every row in Table 5.4) with a correct/ incorrect label. From this data, we consider
the majority vote for every token in the sentence (i.e. at least 2 out of 3 judges must
agree). For a given clause, we assign a score of 1 to a component if the component
made no mistake for the entire clause. For example, “Roles” gets a score of 1 if,
according to majority vote from the judges, we correctly estimate all semantic roles
in the clause. Table 5.6 reports the average accuracy of the components over 130

clauses (generated from 101 sentences).
It is evident that the poorest performing parts are the NLP and the WSD com-

ponents. Some of the NLP mistakes arise due to incorrect POS tagging. WSD is
considered a hard problem and when the dataset contains rare words, the perfor-
mance is severely affected.

5.5.3 Evaluation metrics for description

In this section we describe how we evaluate the generated descriptions using auto-
matic and human evaluation.

5.5.3.1 Automatic metrics

For automatic evaluation we rely on the MS COCO Caption Evaluation API19. The
automatic evaluation measures include BLEU-1,-2,-3,-4 (Papineni et al., 2002), ME-
TEOR (Lavie, 2014), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015). We
also use the recently proposed evaluation measure SPICE (Anderson et al., 2016),
which aims to compare the semantic content of two descriptions, by matching the
information contained in dependency parse trees for both descriptions. While we
report all measures for the final evaluation in the LSMDC (Section 5.6), we focus our

19https://github.com/tylin/coco-caption
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discussion on METEOR and CIDEr scores in the preliminary evaluations in this sec-
tion. According to (Elliott and Keller, 2013; Vedantam et al., 2015), METEOR/CIDEr
supersede previously used measures in terms of agreement with human judgments.

5.5.3.2 Human evaluation

For the human evaluation we rely on a ranking approach, i.e. human judges are
given multiple descriptions from different systems, and are asked to rank them with
respect to the following criteria: correctness, relevance, and grammar, motivated by
prior work Rohrbach et al. (2013b) and on the other hand we asked human judges
to rank sentences for “how helpful they would be for a blind person to understand
what is happening in the movie”. The AMT workers are given randomized sentences,
and, in addition to some general instruction, the following definitions:

Grammar. “Rank grammatical correctness of sentences: Judge the fluency and
readability of the sentence (independently of the correctness with respect to the
video).”

Correctness. “Rank correctness of sentences: For which sentence is the content
more correct with respect to the video (independent if it is complete, i.e. describes
everything), independent of the grammatical correctness.”

Relevance. “Rank relevance of sentences: Which sentence contains the more salient
(i.e. relevant, important) events/objects of the video?”

Helpful for the blind. In the LSMDC evaluation we introduce a new measure,
which should capture how useful a description would be for blind people: “Rank the
sentences according to how useful they would be for a blind person which would
like to understand/follow the movie without seeing it.”

5.5.4 Movie description evaluation

As the collected text data comes from the movie context, it contains a lot of infor-
mation specific to the plot, such as names of the characters. We pre-process each
sentence in the corpus, transforming the names to “Someone” or “people” (in case
of plural).

We first analyze the performance of the proposed approaches on the MPII-MD
dataset, and then evaluate the best version on the M-VAD dataset. For MPII-MD
we split the 11 movies with associated scripts and ADs (in total 22 alignments, see
Section 5.3.1.2) into validation set (8) and test set (14). The other 83 movies are used
for training. On M-VAD we use 10 movies for testing, 10 for validation and 72 for
training.
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METEOR

SMT with our sense-labels
IDT 30 4.93

IDT 100 5.12

Combi 100 5.19

SMT with our text-labels
IDT 30 5.59

IDT 100 5.51

Combi 100 5.42

Table 5.7: Video description performance of different SMT versions on MPII-MD.
Discussion in Section 5.5.4.1.

5.5.4.1 Semantic parsing + SMT

Table 5.7 summarizes results of multiple variants of the SMT approach when using
the SR from our semantic parser. “Combi” refers to combining IDT, HYBRID, and
PLACES as unaries in the CRF. We did not add LSDA as we found that it reduces
the performance of the CRF. After extracting the labels we select the ones which
appear at least 30 or 100 times as our visual attributes. Overall, we observe similar
performance in all cases, with slightly better results for text-labels than sense-labels.
This can be attributed to sense disambiguation errors of the semantic parser. In the
following we use the “IDT 30” model, which achieves the highest score of 5.59, and
denote it as “SMT-Best”.

5.5.4.2 Visual labels + LSTM

We start with exploring different design choices of our approach. We build on the
labels discovered by the semantic parser. To learn classifiers we select the labels that
appear at least 30 times, resulting in 1,263 labels. The parser additionally tells us
whether the label is a verb. The LSTM output/hidden unit as well as memory cell
have each 500 dimensions.

Robust visual classifiers. We first analyze our proposal to consider groups of
labels to learn different classifiers and also to use different visual representations for
these groups (see Section 5.4.2). In Table 5.8 we evaluate our generated sentences
using different input features to the LSTM on the validation set of MPII-MD. In our
baseline, in the top part of Table 5.8, we use the same visual descriptors for all labels.
The PLACES feature is best with 7.10 METEOR. Combination by stacking all features
(IDT + LSDA + PLACES) improves further to 7.24 METEOR. The second part of
the table demonstrates the effect of introducing different semantic label groups. We
first split the labels into “Verbs” and all others. Given that some labels appear in
both roles, the total number of labels increases to 1328 (line 5). We compare two
settings of training the classifiers: “Retrieved” (we retrieve the classifier scores from
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Classifiers (METEOR in %)

Approach Labels Retrieved Trained

Baseline: all labels treated the same way
(1) IDT 1263 - 6.73

(2) LSDA 1263 - 7.07

(3) PLACES 1263 - 7.10

(4) IDT+LSDA+PLACES 1263 - 7.24

Visual labels
(5) Verbs(IDT), Others(LSDA) 1328 7.08 7.27

(6) Verbs(IDT), Places(PLACES), Others(LSDA) 1328 7.09 7.39

(7) Verbs(IDT), Places(PLACES), Objects(LSDA) 913 7.10 7.48

(8) + restriction to labels with ROC ≥ 0.7 263 7.41 7.54
Baseline: all labels treated the same way, labels from (8)
(9) IDT+LSDA+PLACES 263 7.16 7.20

Table 5.8: Comparison of different choices of labels and visual classifiers. All results
reported on the validation set of MPII-MD. For discussion see Section 5.5.4.2. Bold
indicates the best performing variant in the table.

the classifiers trained in the previous step), “Trained” (we train the SVMs specifically
for each label type, e.g. “Verbs”). Next, we further divide the non-“Verb” labels into
“Places” and “Others”(line 6), and finally into “Places” and “Objects”(line 7). We
discard the unused labels and end up with 913 labels. Out of these labels, we select
the labels where the classifier obtains a ROC higher or equal to 0.7 (threshold selected
experimentally). After this we obtain 263 labels and the best performance in the
“Trained” setting (line 8). To support our intuition about the importance of the label
discrimination (i.e. using different features for different semantic groups of labels),
we propose another baseline (line 9). Here we use the same set of 263 labels but
provide the same feature for all of them, namely the best performing combination
IDT + LSDA + PLACES. As we see, this results in an inferior performance.

We make several observations from Table 5.8 which lead to robust visual clas-
sifiers from the weak sentence annotations. a) It is beneficial to select features
based on the label semantics. b) Training one-vs-all SVMs for specific label groups
consistently improves the performance as it avoids “wrong” negatives. c) Focusing
on more “visual” labels helps: we reduce the LSTM input dimensionality to 263

while improving the performance.

LSTM design choices. Now, as described in Section 5.4.2.2, we look at different
LSTM architectures and training configurations. In the following we use the best
performing “Visual Labels” approach, Table 5.8, line (8).

We start with examining the architecture, where we explore different configu-
rations of LSTM and dropout layers. Table 5.9(a) shows the performance of three
different networks: “1 layer”, “2 layers unfactored” and “2 layers factored” intro-
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Architecture METEOR
1 layer 7.54
2 layers unfact. 7.54
2 layers fact. 7.41

Dropout METEOR
no dropout 7.19

lang-drop 7.13

vis-drop 7.34

concat-drop 7.29

lstm-drop 7.54

Dropout ratio METEOR
r=0.1 7.22

r=0.25 7.42

r=0.5 7.54
r=0.75 7.46

(a) (b) (c)
LSTM architectures Dropout strategies Dropout ratios
(fixed parameters: (fixed parameters: (fixed parameters:

LSTM-drop, dropout 0.5) 1-layer, dropout 0.5) 1-layer, LSTM-drop)

Table 5.9: LSTM architectures, dropout strategies and dropout ratios, MPII-MD val
set. Labels, classifiers as Table 5.8, line (8). For discussion see Section 5.5.4.2. Bold
indicates the best performing variant in the table.

Approach METEOR
lr=0.005, step=2000 7.30

lr=0.01, step=2000 7.54

lr=0.02, step=2000 7.51

lr=0.005, step=4000 7.49

lr=0.01, step=4000 7.59
lr=0.02, step=4000 7.28

Approach METEOR
step=2000, iter=25,000 7.54

step=4000, iter=25,000 7.59
step=6000, iter=25,000 7.40

step=8000, iter=25,000 7.32

poly, pow=0.5, maxiter=25,000 7.36

poly, pow=0.5, maxiter=10,000 7.45

poly, pow=0.7, maxiter=25,000 7.43

poly, pow=0.7, maxiter=10,000 7.43

(a) (b)
Base learning rates Learning strategies with lr=0.01

Table 5.10: (a) Comparison of different base learning rates, network trained for 25,000

iterations. (b) Comparison of different learning strategies with lr=0.01. Labels and
classifiers from Table 5.8 (8). All results reported on the MPII-MD val set.

duced in Section 5.4.2.2. As we see, the “1 layer” and “2 layers unfactored” perform
equally well, while “2 layers factored” is inferior to them. In the following experi-
ments we use the simpler “1 layer” network. We then compare different dropout
placements as illustrated in (Table 5.9(b)). We obtain the best result when applying
dropout after the LSTM layer (“lstm-drop”), while having no dropout or applying it
only to language leads to stronger over-fitting to the visual features. Putting dropout
after the LSTM (and prior to a final prediction layer) makes the entire system more
robust. As for the best dropout ratio, we find that 0.5 works best with lstm-dropout
(Table 5.9(c)).

Next we compare different learning rates (Table 5.10 (a)) and learning strategies
(Table 5.10 (b)). We find that the best learning rate in the step-based learning is
0.01, while step size 4000 slightly improves over step size 2000 (which we used in
Table 5.8). We explore an alternative learning strategy, namely decreasing learning
rate according to a polynomial decay. We experiment with different exponents (0.5
and 0.7) and numbers of iterations (25K and 10K), using the base-learning rate 0.01.
Our results show that the step-based learning is superior to the polynomial learning.
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Approach METEOR
1 net: lr 0.01, step 2000, iter=25,000 7.54

ensemble of 3 nets 7.52

1 net: lr 0.01, step 4000, iter=25,000 7.59

ensemble of 3 nets 7.68

1 net: lr 0.01, step 4000, iter=15,000 7.55

ensemble of 3 nets 7.72

Table 5.11: Ensembles of networks with different random initializations. All results
reported on the validation set of MPII-MD.

In most of experiments we trained our networks for 25,000 iterations. After
looking at the METEOR performance for intermediate iterations we found that for the
step size 4000 at iteration 15,000 we achieve best performance overall. Additionally
we train multiple LSTMs with different random orderings of the training data. In
our experiments we combine three in an ensemble, averaging the resulting word
predictions. In most cases the ensemble improves over the single networks in terms
of METEOR score (see Table 5.11).

To summarize, the most important aspects that decrease over-fitting and lead to
better sentence generation are: (a) a correct learning rate and step size, (b) dropout
after the LSTM layer, (c) choosing the training iteration based on METEOR score as
opposed to only looking at the LSTM accuracy/loss which can be misleading, and
(d) building ensembles of multiple networks with different random initializations.
In the following section we compare our best ensemble (selected on the validation
set) to related work on the test sets of MPII-MD and M-VAD.

5.5.4.3 Comparison to related work

Experimental setup. In this section we perform the evaluation on the test set
of the MPII-MD dataset (6,578 clips) and M-VAD dataset (4,951 clips). We use
METEOR and CIDEr for automatic evaluation and we perform a human evaluation
on a random subset of 1,300 video clips, see Section 5.5.3 for details. For M-VAD
experiments we train our method on M-VAD and use the same LSTM architecture
and parameters as for MPII-MD, but select the number of iterations on the M-VAD
validation set.

Results on MPII-MD. Table 5.12 summarizes the results on the test set of MPII-
MD. Here we additionally include the results from a nearest neighbor baseline, i.e.
we retrieve the closest sentence from the training corpus using L1-normalized visual
features and the intersection distance. Our SMT-Best approach clearly improves over
the nearest neighbor baselines. With our Visual-Labels approach we significantly
improve the performance, specifically by 1.44 METEOR points and 1.84 CIDEr points.
Moreover, we improve over the recent approach of (Venugopalan et al., 2015b), which
also uses an LSTM to generate video descriptions. Exploring different strategies to
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METEOR CIDEr Human evaluation: rank
Approach in % in % Correct. Grammar Relev.

NN baselines
IDT 4.87 2.77 - - -
LSDA 4.45 2.84 - - -
PLACES 4.28 2.73 - - -
HYBRID 4.34 3.29 - - -

SMT-Best (ours) 5.59 8.14 2.11 2.39 2.08

S2VT (Venugopalan et al., 2015b) 6.27 9.00 2.02 1.67 2.06

Visual-Labels (ours) 7.03 9.98 1.87 1.94 1.86

NN METEOR upperbound 19.43 - - - -

Table 5.12: Comparison of our proposed methods to prior work on MPII-MD test set.
Human eval ranked 1 to 3, lower is better. For discussion see Section 5.5.4.3. Bold
values indicate the best performing variant per measure/column.

METEOR CIDEr
Approach in % in %

Temporal attention (Yao et al., 2015) 4.33 5.55

S2VT (Venugopalan et al., 2015b) 5.62 7.22

Visual-Labels (ours) 6.36 7.48

Table 5.13: Comparison of our proposed methods to prior work on M-VAD test set.
Human eval ranked 1 to 3, lower is better. For discussion see Section 5.5.4.3. Bold
values indicate the best performing variant per measure/column.

label selection and classifier training, as well as various LSTM configurations allows
to obtain better result than prior work on the MPII-MD dataset. Human evaluation
mainly agrees with the automatic measure. Visual-Labels outperforms both other
methods in terms of Correctness and Relevance, however it loses to S2VT in terms
of Grammar. This is due to the fact that S2VT produces overall shorter (7.4 versus
8.7 words per sentence) and simpler sentences, while our system generates longer
sentences and therefore has higher chances to make mistakes. We also propose
a retrieval upperbound. For every test sentence we retrieve the closest training
sentence according to the METEOR score. The rather low METEOR score of 19.43

reflects the difficulty of the dataset. We show some qualitative results in Figure 5.7.

Results on M-VAD. Table 5.13 shows the results on the test set of M-VAD dataset.
Our Visual-Labels method outperforms S2VT (Venugopalan et al., 2015b) and Tem-
poral attention (Yao et al., 2015) in METEOR and CIDEr score. As we see, the results
agree with Table 5.12, but are consistently lower, suggesting that M-VAD is more
challenging than MPII-MD. We attribute this to a more precise manual alignment of
the MPII-MD dataset.
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Approach Sentence

SMT-Best (ours) Someone is a man, someone is a man.
S2VT Someone looks at him, someone turns to someone.
Visual-Labels (ours) Someone is standing in the crowd, a little man with a

little smile.
Reference Someone, back in elf guise, is trying to calm the kids.

SMT-Best (ours) The car is a water of the water.
S2VT On the door, opens the door opens.
Visual-Labels (ours) The fellowship are in the courtyard.
Reference They cross the quadrangle below and run along the

cloister.
SMT-Best (ours) Someone is down the door,

someone is a back of the door, and someone is a door.
S2VT Someone shakes his head and looks at someone.
Visual-Labels (ours) Someone takes a drink and pours it into the water.
Reference Someone grabs a vodka bottle standing open on the

counter and liberally pours some on the hand.

Figure 5.7: Qualitative comparison of our proposed methods to prior work: S2VT
(Venugopalan et al., 2015b). Examples from the test set of MPII-MD. Visual-Labels
identifies activities, objects, and places better than the other two methods. See
Section 5.5.4.3.

5.5.5 Movie description analysis

Despite the recent advances in the video description task, the performance on the
movie description datasets (MPII-MD and M-VAD) remains rather low. In this
section we want to look closer at three methods, SMT-Best, S2VT and Visual-Labels,
in order to understand where these methods succeed and where they fail. In the
following we evaluate all three methods on the MPII-MD test set.

5.5.5.1 Difficulty versus performance

As the first study we suggest to sort the test reference sentences by difficulty, where
difficulty is defined in multiple ways.

Some of the intuitive sentence difficulty measures are its length and average
frequency of its words. When sorting the data by difficulty (increasing sentence
length or decreasing average word frequency), we find that all three methods
have the same tendency to obtain lower METEOR score as the difficulty increases.
Figure 5.8(a) shows the performance of compared methods w.r.t. the sentence length.
For the word frequency the correlation is even stronger, see Figure 5.8(b). Visual-
Labels consistently outperforms the other two methods, most notable as the difficulty
increases.
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Figure 5.8: Y-axis: METEOR score per sentence. X-axis: MPII-MD test sentences 1

to 6,578 sorted by (a) length (increasing); (b) word frequency (decreasing). Shown
values are smoothed with a mean filter of size 500. For discussion see Section 5.5.5.1.
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Figure 5.9: Average METEOR score for WordNet verb Topics. Selected sentences
with single verb, number of sentences in brackets. For discussion see Section 5.5.5.2.

5.5.5.2 Semantic analysis

WordNet Verb Topics. Next we analyze the test reference sentences w.r.t. verb
semantics. We rely on WordNet Topics (high level entries in the WordNet ontology),
e.g. “motion”, “perception”, defined for most synsets in WordNet (Fellbaum, 1998).
Sense information comes from our automatic semantic parser, thus it might be noisy.
We showcase the 3 most frequent verbs for each Topic in Table 5.14. We select
sentences with a single verb, group them according to the verb Topic and compute
an average METEOR score for each Topic, see Figure 5.9. We find that Visual-Labels
is best for all Topics except “communication", where SMT-Best wins. The most
frequent verbs there are “look up” and “nod”, which are also frequent in the dataset
and in the sentences produced by SMT-Best. The best performing Topic, “cognition”,
is highly biased to “look at” verb. The most frequent Topics, “motion” and “contact”,
which are also visual (e.g. “turn”, “walk”, “sit”), are nevertheless quite challenging,
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Topic Entropy Top-1 Top-2 Top-3

motion 7.05 turn walk shake
contact 7.10 open sit stand
perception 4.83 look stare see
stative 4.84 be follow stop
change 6.92 reveal start emerge
communication 6.73 look up nod face
body 5.04 smile wear dress
social 6.11 watch join do
cognition 5.21 look at see read
possession 5.29 give take have
none 5.04 throw hold fly
creation 5.69 hit make do
competition 5.19 drive walk over point
consumption 4.52 use drink eat
emotion 6.19 draw startle feel
weather 3.93 shine blaze light up

Table 5.14: Entropy and top 3 frequent verbs of each WordNet topic. For discussion
see Section 5.5.5.2.

which we attribute to their high diversity (see their entropy w.r.t. different verbs and
their frequencies in Table 5.14). Topics with more abstract verbs (e.g. “be”, “have”,
“start”) get lower scores.

Top 100 best and worst sentences. We look at 100 test reference sentences, where
Visual-Labels obtains highest and lowest METEOR scores. Out of 100 best sentences
44 contain the verb “look” (including phrases such as “look at”). The other frequent
verbs are “walk”, “turn", “smile”, “nod”, “shake”, i.e. mainly visual verbs. Overall
the sentences are simple. Among the worst 100 sentences we observe more diversity:
12 contain no verb, 10 mention unusual words (specific to the movie), 24 have
no subject, 29 have a non-human subject. This leads to a lower performance, in
particular, as most training sentences contain “Someone” as subject and generated
sentences are biased towards it.

Summary. a) The test reference sentences that mention verbs like “look” get higher
scores due to their high frequency in the dataset. b) The sentences with more “visual”
verbs tend to get higher scores. c) The sentences without verbs (e.g. describing a
scene), without subjects or with non-human subjects get lower scores, which can be
explained by dataset biases.

5.6 the large scale movie description challenge

The Large Scale Movie Description Challenge (LSMDC) was held twice, first in
conjunction with ICCV 2015 (LSMDC 15) and then at ECCV 2016 (LSMDC 16). For
the automatic evaluation we set up an evaluation server3. During the first phase
of the challenge the participants could evaluate the outputs of their system on the
public test set. In the second phase of the challenge the participants were provided
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BLEU METEOR ROUGE CIDEr SPICE
Approach 1 2 3 4

Submissions to LSMDC 15
Visual-Labels (ours) 16.1 5.2 2.1 0.9 7.1 16.4 11.2 13.2
S2VT (Venugopalan et al., 2015a) 17.4 5.3 1.8 0.7 7.0 16.1 9.1 11.4
Frame-Video-Concept Fusion 11.0 3.4 1.3 0.6 6.1 15.6 9.0 13.4
(Shetty and Laaksonen, 2015)
Temporal Attention (Yao et al., 2015) 5.6 1.5 0.6 0.3 5.2 13.4 6.2 14.3

Submissions to LSMDC 16
Temporal Tessellation 14.5 4.1 1.4 0.6 5.8 13.4 10.1 7.7
(Kaufman et al., 2016)
Aalto University 6.9 1.6 0.5 0.2 3.4 7.0 3.5 2.6
(Shetty and Laaksonen, 2016)
Seoul NU 9.2 2.9 1.0 0.4 4.0 9.6 7.6 4.8
SNUVL (Yu et al., 2017b) 15.6 4.4 1.4 0.4 7.1 14.7 7.0 11.5
IIT Kanpur 11.8 3.6 1.3 0.5 7.4 14.2 4.7 7.2
VD-ivt (BUPT CIST AI lab) 15.9 4.3 1.0 0.3 8.0 15.0 4.8 10.6

Table 5.15: Automatic evaluation on the blind test set of the LSMDC, in %. For
discussion see Section 5.6.2. Bold indicates the best performing approach per
measure/column for LSMDC 15, and LSMDC 16, if it improved over LSMDC 15.

with the videos from the blind test set (without textual descriptions). These were
used for the final evaluation. To measure performance of the competing approaches
we performed both automatic and human evaluation. The submission format was
similar to the MS COCO Challenge (Chen et al., 2015) and we also used the identical
automatic evaluation protocol. The challenge winner was determined based on the
human evaluation. In the following we review the participants and their results for
both LSMDC 15 and LSMDC 16. As they share the same public and blind test sets,
as described in Section 5.3.3, we can also compare the submissions to both challenges
with each other.

5.6.1 LSMDC participants

We received 4 submissions to LSMDC 15, including our Visual-Labels approach. The
other submissions are S2VT (Venugopalan et al., 2015a), Temporal Attention (Yao
et al., 2015) and Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015). For
LSMDC 16 we received 6 new submissions. As the blind test set is not changed
between LSMDC 2015 to LSMDC 2016, we look at all the submitted results jointly. In
the following we summarize the submissions based on the (sometimes very limited)
information provided by the authors.
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5.6.1.1 LSMDC 15 submissions

S2VT (Venugopalan et al., 2015a). Venugopalan et al. (2015a) propose S2VT, an
encoder-decoder framework, where a single LSTM encodes the input video, frame
by frame, and decodes it into a sentence. We note that the results to LSMDC were
obtained with a different set of hyper-parameters then the results discussed in the
previous section. Specifically, S2VT was optimized w.r.t. METEOR on the validation
set, which resulted in significantly longer but also nosier sentences.

Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015). Shetty and Laakso-
nen (2015) evaluate diverse visual features as input for an LSTM generation frame-
work. Specifically they use dense trajectory features (Wang et al., 2013a) extracted for
the entire clip and VGG (Simonyan and Zisserman, 2015) and GoogleNet (Szegedy
et al., 2015) CNN features extracted at the center frame of each clip. They find that
training 80 concept classifiers on MS COCO with the CNN features, combined with
dense trajectories provides the best input for the LSTM.

Temporal Attention (Yao et al., 2015). Yao et al. (2015) propose a soft-attention
model based on (Xu et al., 2015a) which selects the most relevant temporal segments
in a video, incorporates 3-D CNN and generates a sentence using an LSTM.

5.6.1.2 LSMDC 16 submissions

Temporal Tessellation (Kaufman et al., 2016). This submission retrieves a nearest
neighbor from the training set, learning a unified space using Canonical Correlation
Analysis (CCA) over textual and visual features. For the textual representation
it relies on the Word2Vec representation using a Fisher Vector encoding with a
Hybrid Gaussian-Laplacian Mixture Model (Klein et al., 2015) and for the visual
representation it uses RNN Fisher Vector (Lev et al., 2015), encoding video frames
with the 19-layer VGG.

Aalto University (Shetty and Laaksonen, 2016). Shetty and Laaksonen (2016) rely
on an ensemble of four models which were trained on the MSR-VTT dataset (Xu
et al., 2016) without additional training on the LSMDC dataset. The four models were
trained with different combinations of key-frame based GoogleLeNet features and
segment based dense trajectory and C3D features. A separately trained evaluator
network was used to predict the result of the ensemble.

Seoul NU. This work relies on temporal and attribute attention.

SNUVL (Yu et al., 2017b). Yu et al. (2017b) first learn a set of semantic attribute
classifiers. To generate a description for a video clip, they rely on attention over
semantic attributes.
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Approach Avg. sent. Vocabulary % Unique % Novel
length size sentences sentences

Submissions to LSMDC 15
Visual-Labels (ours) 7.47 525 45.11 66.76

S2VT (Venugopalan et al., 2015a) 8.77 663 30.17 72.10

Frame-Video-Concept Fusion 5.16 401 9.09 30.81

(Shetty and Laaksonen, 2015)
Temporal Attention (Yao et al., 2015) 3.63 117 1.39 6.48

Submissions to LSMDC 16
Temporal Tessellation (Kaufman et al., 2016) 9.34 5,530 58.35 0.00

Aalto University 6.83 651 24.39 94.09

(Shetty and Laaksonen, 2016)
Seoul NU 6.16 459 24.26 52.78

SNUVL (Yu et al., 2017b) 8.53 756 41.54 76.03

IIT Kanpur 16.2 1,172 39.37 100.00

VD-ivt (BUPT CIST AI lab) 8.00 7 0.01 100.00

Reference 8.75 6,820 97.19 92.63

Table 5.16: Description statistics for different methods and reference sentences on
the blind test set of the LSMDC. For discussion see Section 5.6.2.

IIT Kanpur. This submission uses an encoder-decoder framework with 2 LSTMs,
one LSTM used to encode the frame sequence of the video and another to decode it
into a sentence.

VD-ivt (BUPT CIST AI lab). According to the authors, their VD-ivt model consists
of three parallel channels: a basic video description channel, a sentence to sentence
channel for language learning, and a channel to fuse visual and textual information.

5.6.2 LSMDC quantitative results

We first discuss the submissions w.r.t. to automatic measures and then discuss the
human evaluations, which determined the winner for the challenges.

5.6.2.1 Automatic evaluation

We first look at the results of the automatic evaluation on the blind test set of
LSMDC in Table 5.15. In the first edition of the challenge, LSMDC 15, our Visual-
Labels approach obtains highest scores in all evaluation measures except BLEU-1,-2,
where S2VT wins. One reason for lower scores for Frame-Video-Concept Fusion
and Temporal Attention appears to be the generated sentence length, which is
much smaller compared to the reference sentences, as we discuss below (see also
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Approach Correctness Grammar Relevance Helpful for blind

Visual-Labels (ours) 3.32 3.37 3.32 3.26
S2VT (Venugopalan et al., 2015a) 3.55 3.09 3.53 3.42

Frame-Video-Concept Fusion 3.10 2.70 3.29 3.29

(Shetty and Laaksonen, 2015)
Temporal Attention (Yao et al., 2015) 3.14 2.71 3.31 3.36

Reference 1.88 3.13 1.56 1.57

Table 5.17: Human evaluation on the blind test set of the LSMDC 2015. Human eval
ranked 1 to 5, lower is better. For discussion see Section 5.6.2. Bold indicates the best
performing approach per measure / column.
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Figure 5.10: LSDMC 16: We plot the correlation between human evaluation score
(x-axis) and 4 automatic measures (y-axis).

Table 5.16). When extended to LSMDC 16 submissions, we observe that most
approaches perform below S2VT / Visual-Labels, except for VD-ivt, which achieves
METEOR 8.0. Surprisingly, but confirmed with the authors, VD-ivt predicts only a
single sentence “Someone is in the front of the room.”, which seems to be optimized
w.r.t. the METEOR score, while e.g. CIDEr score shows that this sentence is not
good for most video clips. While most approaches are generating novel descriptions,
Temporal Tessellation is the only retrieval-based approached among the submissions.
It takes a second place w.r.t. the CIDEr score, while not achieving particularly high
scores in other measures.

We closer analyze the outputs of the compared approaches in Table 5.16, pro-
viding detailed statistics over the generated descriptions. Among the LSMDC 15

submissions, with respect to the sentence length, Visual-Labels and S2VT demon-
strate similar properties to the reference descriptions, while the approaches Frame-
Video-Concept Fusion and Temporal Attention generate much shorter sentences
(5.16 and 3.63 words on average vs. 8.74 of the references). In terms of vocabulary
size all approaches fall far below the reference descriptions. This large gap indicates
a problem in that all the compared approaches focus on a rather small set of visual
and language concepts, ignoring a long tail in the distribution. The number of
unique sentences confirms the previous finding, showing slightly higher numbers
for Visual-Labels and S2VT, while the other two tend to frequently generate the same
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Approach better or equal
than reference

Submissions to LSMDC 15
Visual-Labels (ours) 18.8
S2VT (Venugopalan et al., 2015a) 15.6
Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015) 15.2
Temporal Attention (Yao et al., 2015) 16.8

Submissions to LSMDC 16
Temporal Tessellation (Kaufman et al., 2016) 22.4
Aalto University (Shetty and Laaksonen, 2016) 16.4
Seoul NU 14.4
SNUVL (Yu et al., 2017b) 8.8
IIT Kanpur 7.2
VD-ivt (BUPT CIST AI lab) 1.6

Table 5.18: LSMDC 16. Human evaluation. Ratio of sentences which are judged
better or equal compared to the reference description, with at least two out of three
judges agreeing (in %). For discussion see Section 5.6.2. Bold indicates the best
performing approach in the table.

description for different clips. Finally, the percentage of novel sentences (not present
among the training descriptions) highlights another aspect, namely the amount
of novel vs. retrieved descriptions. As we see, all the methods “retrieve” some
amount of descriptions from training data, while the approach Temporal Attention
produces only 7.36% novel sentences. Looking at the LSMDC 16 submissions, we,
not surprisingly, see that Temporal Tessellation retrieval approach achieves highest
diversity among all approaches. Most other submissions have similar statistics to
LSMDC 15 submissions. Interestingly, Shetty and Laaksonen (2016) generate many
novel sentences, as they are not trained on LSMDC, but on the MSR-VTT dataset.
Two outliers are IIT Kanpur, which generates very long and noisy descriptions, and
VD-ivt, which, as mentioned above, generates the same sentence for all video clips.

5.6.2.2 Human evaluation

We performed separate human evaluations for LSMDC 15 and LSMDC 16.

LSMDC 15. The results of the human evaluation are shown in Table 5.17. The
human evaluation was performed over 1,200 randomly selected clips from the blind
test set of LSMDC. We follow the evaluation protocol defined in Section 5.5.3.2.
As known from literature (Chen et al., 2015; Elliott and Keller, 2013; Vedantam
et al., 2015), automatic evaluation measures do not always agree with the human
evaluation. Here we see that human judges prefer the descriptions from Frame-
Video-Concept Fusion approach in terms of correctness, grammar and relevance. In
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Approach Sentence

Visual-Labels (ours) Someone lies on the bed.
S2VT Someone lies asleep on his bed.
Frame-Video-Concept Fusion Someone lies on the bed.
Temporal Attention Someone lies in bed.
Reference Someone lies on her side facing her new friend.

Visual-Labels (ours) Someone sits down.
S2VT Someone sits on the couch and looks at the tv.
Frame-Video-Concept Fusion Someone sits at the table.
Temporal Attention Someone looks at someone.
Reference Someone takes a seat and someone moves to the stove.

Visual-Labels (ours) Someone walks to the front of the house.
S2VT Someone looks at the house.
Frame-Video-Concept Fusion Someone walks up to the house.
Temporal Attention Someone looks at someone.
Reference Someone sets down his young daughter then moves to a small

wooden table.

Visual-Labels (ours) Someone turns to someone.
S2VT Someone looks at someone.
Frame-Video-Concept Fusion Someone turns to someone.
Temporal Attention Someone stands alone.
Reference Someone dashes for the staircase.

Visual-Labels (ours) Someone takes a deep breath and takes a deep breath.
S2VT Someone looks at someone and looks at him.
Frame-Video-Concept Fusion Someone looks up at the ceiling.
Temporal Attention Someone stares at someone.
Reference Someone digs out her phone again, eyes the display, and an-

swers the call.

Figure 5.11: Qualitative comparison of our approach Visual-Labels, S2VT (Venu-
gopalan et al., 2015a), Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015) and
Temporal Attention (Yao et al., 2015) on the blind test set of the LSMDC. Discussion
see Section 5.6.3.

our alternative evaluation, in terms of being helpful for the blind, Visual-Labels wins.
Possible explanation for it is that in this evaluation criteria human judges penalized
less the errors in the descriptions but rather looked at their overall informativeness.
In general, the gap between different approaches is not large. Based on the human
evaluation the winner of the LSMDC 15 challenge is Frame-Video-Concept Fusion
approach of Shetty and Laaksonen (2015).

LSMDC 16. For the LSMDC 16 the evaluation protocol is different from the one
above. As we have to compare more approaches the ranking becomes unfeasible.
Additionally we would like to capture the human agreement in this evaluation.
This leads us to the following evaluation protocol which is inspired by the human
evaluation metric “M1" in the MS COCO Challenge (Chen et al., 2015). The humans
are provided with randomized pairs (reference, generated sentence) from each
system and asked to decide in terms of being helpful for the blind person a) if
sentence 1 is better b) both are similar c) sentence 2 is better. Each pair is judged
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Approach Sentence

Visual-Labels (ours) Someone takes a seat on the table and takes a seat on his desk.
S2VT Someone looks at someone and smiles.
Frame-Video-Concept Fusion Someone looks at someone.
Temporal Attention Someone gets up.
Temporal Tessellation Farther along, the mustached stranger sits on a bench.
Reference Later, someone sits with someone and someone.

Visual-Labels (ours) Someone gets out of the car and walks off.
S2VT Someone walks up to the front of the house.
Frame-Video-Concept Fusion Someone walks up to the front door.
Temporal Attention Someone gets out of the car.
Temporal Tessellation He sees a seated man on the TV gesturing.
Reference Now someone steps out of the carriage with his new employers.

Visual-Labels (ours) Someone walks up to the street, and someone is walking to the
other side of.

S2VT Someone walks over to the table and looks at the other side of
the house.

Frame-Video-Concept Fusion Someone walks away.
Temporal Attention Someone gets out of the car.
Temporal Tessellation Later smiling, the two walk hand in hand down a busy sidewalk

noticing
every hat-wearing man they pass.

Reference The trio starts across a bustling courtyard.

Visual-Labels (ours) Someone sips his drink.
S2VT Someone sits at the table and looks at someone.
Frame-Video-Concept Fusion Someone sits up.
Temporal Attention Someone looks at someone.
Temporal Tessellation Someone sits at a table sipping a drink.
Reference As the men drink red wine, someone and someone watch some-

one take a sip.

Visual-Labels (ours) Someone takes a bite.
S2VT Someone sits at the table.
Frame-Video-Concept Fusion Someone looks at someone.
Temporal Attention Someone looks at someone.
Temporal Tessellation Later at the dinner table.
Reference Someone tops off someone’s glass.

Figure 5.12: Qualitative comparison of our approach Visual-Labels, S2VT (Venu-
gopalan et al., 2015a), Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015),
Temporal Attention (Yao et al., 2015), and Temporal Tessellation (Kaufman et al.,
2016) on 5 consecutive clips from the blind test set of the LSMDC. Discussion see
Section 5.6.3.
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by 3 humans. For an approach to get a point at least 2 out of 3 humans should
agree that a generated sentence is better or equal to a reference. The results of the
human evaluation on 250 randomly selected sentence pairs are presented in Table
5.18. Temporal Tessellation (Kaufman et al., 2016) is ranked best by the human judges
and thus it wins the LSMDC 16 challenge. Visual-Labels gets the second place, next
are Temporal Attention and Aalto University. The VD-ivt submission with identical
descriptions is ranked worst. Additionally we measure the correlation between the
automatic and human evaluation in Figure 5.10. We compare BLEU@4, METEOR,
CIDEr and SPICE and find that CIDEr score provides the highest and reasonable
(0.61) correlation with human judgments. SPICE shows no correlation, METEOR
demonstrates negative correlation. We attribute this to the fact that the approaches
generate very different types of descriptions (long/short, simple/retrieved from
the training data, etc.) as discussed above and that we only have a single reference
to compute these metrics. While we believe that these metrics can still provide
reasonable scores for similar models, comparing very diverse methods and results,
requires human evaluation. However, also for human evaluation, further studies are
needed in the future, to determine what are the best evaluation protocols.

5.6.3 LSMDC qualitative results

Figure 5.11 shows qualitative results from the competing approaches submitted to
LSMDC 15. The first two examples are success cases, where most of the approaches
are able to describe the video correctly. The third example is an interesting case
where visually relevant descriptions, provided by most approaches, do not match
the reference description, which focuses on an action happening in the background
of the scene (“Someone sets down his young daughter then moves to a small
wooden table.”). The last two rows contain partial and complete failures. In one all
approaches fail to recognize the person running away, only capturing the “turning”
action which indeed happened before running. In the other one, all approaches fail
to recognize that the woman interacts with the small object (phone).

Figure 5.12 compares all LSMDC 15 approaches with the LSMDC 16 winner,
Temporal Tessellation (Kaufman et al., 2016), on a sequence of 5 consecutive clips.
We can make the following observations from these examples. Although, Temporal
Tessellation is a retrieval-based approach, it does very well in many cases, providing
an added benefit of fluent and grammatically correct descriptions. One side-effect
of retrieval is that when it fails, it produces a completely irrelevant description, e.g.
the second example. Temporal Tessellation and Visual-Labels are able to capture
important details, such as sipping a drink, which the other methods fail to recognize.
Descriptions generated by Visual-Labels and S2VT tend to be longer and noisier than
the ones by Frame-Video-Concept Fusion and Temporal Attention, while Temporal
Attention tends to produce generally applicable sentences, e.g. “Someone looks at
someone”.
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5.7 conclusion

In this chapter we present the Large Scale Movie Description Challenge (LSMDC),
a novel dataset of movies with aligned descriptions sourced from movie scripts
and ADs (audio descriptions for the blind, also referred to as DVS). Altogether the
dataset is based on 200 movies and has 128,118 sentences with aligned clips. We
compare AD with previously used script data and find that AD tends to be more
correct and relevant to the movie than script sentences.

Our approach, Visual-Labels, to automatic movie description trains visual clas-
sifiers and uses their scores as input to an LSTM. To handle the weak sentence
annotations we rely on three ingredients. (1) We distinguish three semantic groups
of labels (verbs, objects, and places). (2) We train them separately, removing the
noisy negatives. (3) We select only the most reliable classifiers. For sentence genera-
tion we show the benefits of exploring different LSTM architectures and learning
configurations.

To evaluate different approaches for movie description, we organized a challenge
at ICCV 2015 (LSMDC 15) where we evaluated submissions using automatic and
human evaluation criteria. We found that the approaches S2VT and our Visual-
Labels generate longer and more diverse descriptions than the other submissions
but are also more susceptible to content or grammatical errors. This consequently
leads to worse human rankings with respect to correctness and grammar. In contrast,
Frame-Video-Concept Fusion (Shetty and Laaksonen, 2015) wins the challenge by
predicting medium length sentences with intermediate diversity, which gets rated
best in human evaluation for correctness, grammar, and relevance. When ranking
sentences with respect to the criteria “helpful for the blind”, our Visual-Labels is well
received by human judges, likely because it includes important aspects provided by
the strong visual labels. Overall all approaches have problems with the challenging
long-tail distributions of our data. Additional training data cannot fully ameliorate
this problem because a new movie might always contain novel parts. We expect
new techniques, including relying on different modalities, see e.g. (Hendricks et al.,
2016b), to overcome this challenge.

The second edition of our challenge (LSMDC 16) was held at ECCV 2016. This
time we introduced a new human evaluation protocol to allow comparison of a
large number of approaches. We found that the best approach in the new evaluation
with the “helpful for the blind” criteria is a retrieval-based approach Temporal
Tessellation (Kaufman et al., 2016). Likely, human judges prefer the rich while also
grammatically correct descriptions provided by this method. In the future work
the movie description approaches should aim to achieve rich yet correct and fluent
descriptions. Our evaluation server will continue to be available for automatic
evaluation.

Our dataset has already been used beyond description, e.g. for learning video-
sentence embeddings or for movie question answering. Beyond our current challenge
on single sentences, the dataset opens new possibilities to understand stories and
plots across multiple sentences in an open domain scenario on a large scale.



6G R O U N D I N G O F T E X T U A L P H R A S E S I N I M A G E S B Y
R E C O N S T R U C T I O N

The previous chapters were concerned with the task of automatic video descrip-
tion. In this chapter we look at the task of visual grounding. Grounding (i.e.
localizing) arbitrary, free-form textual phrases in visual content is a challeng-

ing problem with many applications for human-computer interaction and image-text
reference resolution. Few datasets provide the ground truth spatial localization
of phrases, thus it is desirable to learn from data with no or little supervision for
grounding. We propose a novel approach which learns grounding by reconstructing
a given phrase using an attention mechanism, which can be either latent or optimized
directly. During training our approach encodes the phrase using a recurrent network
language model and then learns to attend to the relevant image region in order to
reconstruct the input phrase. At test time, the correct attention, i.e. the grounding, is
evaluated. If grounding supervision is available it can be directly applied via a loss
over the attention mechanism. We demonstrate the effectiveness of our approach on
the Flickr 30k Entities (Plummer et al., 2015) and ReferItGame (Kazemzadeh et al.,
2014) datasets with different levels of supervision, ranging from no supervision over
partial supervision to full supervision. Our supervised variant improves by a large
margin over the state-of-the-art on both datasets.

In Chapter 7 we propose a modification of this approach, as we explore different
ways of combining visual and language representations.

6.1 introduction

Language grounding in visual data is an interesting problem studied both in the
computer vision (Karpathy and Fei-Fei, 2015; Karpathy et al., 2014a; Kong et al., 2014;
Plummer et al., 2015; Hu et al., 2016b) and natural language processing (Krishna-
murthy and Kollar, 2013; Matuszek et al., 2012) communities. Such grounding can
be done on different levels of granularity: from coarse, e.g. associating a paragraph
of text to a scene in a movie (Tapaswi et al., 2015; Zhu et al., 2015b), to fine, e.g.
localizing a word or phrase in a given image (Plummer et al., 2015; Hu et al., 2016b).
In this chapter we focus on the latter scenario. Many prior efforts in this area have
focused on rather constrained settings with a small number of nouns to ground (Lin
et al., 2014a; Kong et al., 2014). On the contrary, we want to tackle the problem of
grounding arbitrary natural language phrases in images. Most parallel corpora of
sentence/visual data do not provide localization annotations (e.g. bounding boxes)
and the annotation process is costly. We propose an approach which can learn to
localize phrases relying only on phrases associated with images without bounding
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(a) Predicted grounding. (b) Training time. (c) Test time.

Figure 6.1: (a) Without bounding box annotations at training time our approach
GroundeR can ground free-form natural language phrases in images. (b) During
training our latent attention approach reconstructs phrases by learning to attend to
the correct box. (c) At test time, the attention model infers the grounding for each
phrase. For semi-supervised and fully supervised variants see Figure 6.2.

box annotations but which is also able to incorporate phrases with bounding box
supervision when available (see Figure 6.1).

The main idea of our approach is shown in Figure 6.1(b,c). Let us first consider
the scenario where no localization supervision is available. Given images paired
with natural language phrases we want to localize these phrases with a bounding
box in the image (Figure 6.1c). To do this we propose a model (Figure 6.1b) which
learns to attend to a bounding box proposal and, based on the selected bounding
box, reconstructs the phrase. As the second part of the model (Figure 6.1b, bottom)
is able to predict the correct phrase only if the first part of the model attended
correctly (Figure 6.1b, top), this can be learned without additional bounding box
supervision. Our method is based on Grounding with a Reconstruction loss and
hence named GroundeR. Additional supervision is integrated in our model by adding
a loss function which directly penalizes incorrect attention before the reconstruction
step. At test time we evaluate whether the model attends to the correct bounding
box.

We propose a novel approach to grounding of textual phrases in images which
can operate in all supervision modes: with no, a few, or all grounding annotations
available. We evaluate our GroundeR approach on the Flickr 30k Entities (Plummer
et al., 2015) and ReferItGame (Kazemzadeh et al., 2014) datasets and show that
our unsupervised variant is better than prior work and our supervised approach
significantly outperforms state-of-the-art on both datasets. Interestingly, our semi-
supervised approach can effectively exploit small amounts of labeled data and
surpasses the supervised variant by exploiting multiple losses.
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6.2 related work

Related work on language grounding in image and video data has been presented
in Section 2.3 of the thesis. In the following we compare our problem setting and
approach to relevant work on object co-localization (or co-detection). We then review
how the attention mechanism is used in the recent work and finally, discuss other
approaches that perform bi-directional mapping between two domains.

Object co-localization focuses on discovering and detecting an object in images
or videos without any bounding box annotation, but only from image/video level
labels (Blaschko et al., 2010; Cinbis et al., 2014; Joulin et al., 2014; Kwak et al., 2015;
Song et al., 2014; Tang et al., 2014; Yu and Siskind, 2015b). These works are similar
to ours with respect to the amount of supervision, but they focus on a few discrete
classes, while our approach can handle arbitrary phrases and allows for localization
of novel phrases. There are also works that propose to train detectors for a wide
range of concepts using image-level annotated data from web image search (Chen
and Gupta, 2015; Divvala et al., 2014). These approaches are complementary to
ours in the sense of obtaining large scale concept detectors with little supervision,
however they do not tackle complex phrases e.g. “a blond boy on the left” which is
the focus of our work.

Attention in vision tasks. Recently, different attention mechanisms have been
applied to a range of computer vision tasks. The general idea is that given a visual
input, e.g. set of features, at any given moment we might want to focus only on
part of it, e.g. attend to a specific subset of features (Bahdanau et al., 2015). Xu et al.
(2015a) integrate spatial attention into their image captioning pipeline. They consider
two variants: “soft” and “hard” attention, meaning that in the latter case the model
is only allowed to pick a single location, while in the first one the attention “weights”
can be distributed over multiple locations. Jin et al. (2015) adapt the soft-attention
mechanism and attends to bounding box proposals, one word at a time, while
generating an image captioning. Yao et al. (2015) rely on a similar mechanism to
perform temporal attention for selecting frames in video description task. Yeung et al.
(2015) use attention mechanism to densely label actions in a video sequence. Our
approach relies on soft-attention mechanism, similar to the one of Xu et al. (2015a).
We apply it to the language grounding task where attention helps us to select a
bounding box proposal for a given phrase.

Bi-directional mapping. In our model, a phrase is first mapped to a image region
through attention, and then the image region is mapped back to phrase during
reconstruction. There is conceptual similarity between previous work and ours on
the idea of bi-directional mapping from one domain to another. In autoencoders
(Vincent et al., 2008), input data is first mapped to a compressed vector during
encoding, and then reconstructed during decoding. Chen and Zitnick (2015) use a bi-
directional mapping from visual features to words and from words to visual features
in a recurrent neural network model. The idea is to generate descriptions from
visual features and then to reconstruct visual features given a description. Similar
to Chen and Zitnick (2015), our model can also learn to associate input text with
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visual features, but through attending to an image region rather than reconstructing
directly from words. In the linguistic community, Ammar et al. (2014) proposed a
CRF Autoencoder, which generates latent structures for the given language input
and then reconstructs the input from these latent structures, with the application to
e.g. part-of-speech tagging.

6.3 grounder: grounding by reconstruction

The goal of our approach is to ground natural language phrases in images. More
specifically, to ground a phrase p in an image I means to find a region rj in the
image which corresponds to this phrase. rj can be any subset of I, e.g. a segment
or a bounding box. The core insight of our method is that there is a bi-directional
correspondence between an image region and the phrase describing it. As a correct
grounding of a textual phrase should result in an image region which a human
would describe using this phrase, i.e. it is possible to reconstruct the phrase based
on the grounded image region. Thus, the key idea of our approach is to learn
to ground a phrase by reconstructing this phrase from an automatically localized
region. Figure 6.1 gives an overview of our approach.

In this work, we utilize a set of automatically generated bounding box proposals
{ri}i∈N for the image I. Given a phrase p, during training our model works in two
parts: the first part aims to attend to the most relevant region rj (or potentially also
multiple regions) based on the phrase p, and then the second part tries to reconstruct
the same phrase p from region(s) rj it attended to in the first phase. Therefore, by
training to reconstruct the text phrase, the model learns to first ground the phrase
in the image, and then generate the phrase from that region. Figure 6.2a visualizes
the network structure. At test time, we remove the phrase reconstruction part, and
use the first part for phrase grounding. The described pipeline can be extended
to accommodate partial supervision, i.e. ground-truth phrase localization. For that
we integrate an additional loss into the model, which directly optimizes for correct
attention prediction, see Figure 6.2b. Finally, we can adapt our model to the fully
supervised scenario by removing the reconstruction phase, see Figure 6.2c.

In the following we present the details of the two parts in our approach: learning
to attend to the correct region for a given phrase and learning to reconstruct the
phrase from the attended region. For simplicity, but without loss of generality, we
will refer to rj as a single bounding box.

6.3.1 Learning to ground

We frame the problem of grounding a phrase p in image I as selecting a bounding box
rj from a set of image region proposals {ri}i=1,··· ,N. To select the correct bounding
box, we define an attention function fATT and select the box j which receives the
maximum attention:

j = arg max
i

fATT(p, ri) (6.1)
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Figure 6.2: Our model learns grounding of textual phrases in images with (a) no,
(b) little (c) or full supervision of localization, through a grounding part and a
reconstruction part. During training, the model distributes its attention to a single
or several boxes, and learns to reconstruct the input phrase based on the boxes it
attends to. At test time, only the grounding part is used.

In the following we describe the details of how we model the attention in fATT.
The attention mechanism used in our model is inspired by and similar to the soft
attention formulations of Jin et al. (2015) and Xu et al. (2015a). However, our inputs
to the attention predictor are not single words but rather multi-word phrases, and
consequently we also do not have a “doubly stochastic attention” which is used in
Xu et al. (2015a) to normalize the attention across words.

The phrases that we are dealing with might be very complex thus we require a
good language model to represent them. We choose a Long Short-Term Memory
network (LSTM) (Hochreiter and Schmidhuber, 1997) as our phrase encoder, as it has
been shown effective in various language modeling tasks, e.g. translation (Sutskever
et al., 2014). We encode our query phrase word by word with an LSTM and obtain a
representation of the phrase using the hidden state h at the final time step as:

h = fLSTM(p) (6.2)

Each word wt in the phrase p is first encoded with a one-hot-vector. Then it is
embedded in the lower dimensional space and given to LSTM.

Next, each bounding box ri is encoded using a convolutional neural network
(CNN) to compute the visual feature vector vi:

vi = fCNN(ri) (6.3)

Based on the encoded phrase and feature representation of each proposal, we
use a two layer perceptron to compute the attention on the proposal ri:

ᾱi = fATT(p, ri) = W2φ(Whh + Wvvi + b1) + b2 (6.4)
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where φ is the rectified linear unit (ReLU): φ(x) = max(0, x). We found that this
architecture performs better than e.g. a single layer perceptron with a hyperbolic
tangent nonlinearity used in Bahdanau et al. (2015).

We get normalized attention weights αi by using softmax, which can be inter-
preted as probability of region ri being the correct region r ĵ:

αi = P(i = ĵ|ᾱ) = exp(ᾱi)

∑N
k=1 exp(ᾱk)

(6.5)

If at training time we have ground truth information, i.e. that r ĵ is the correct
proposal box, then we can compute the loss Latt based on our prediction as:

Latt = −
1
B

B

∑
b=1

log(P( ĵ|ᾱ)), (6.6)

where B is the number of phrases per batch. This loss activates only if the training
sample has the ground-truth attention value, otherwise, it is zero. If we do not
have ground truth annotations then we have to define a loss function to learn the
parameters of fATT in a weakly supervised manner. In the next section we describe
how we define this loss by aiming to reconstruct the phrase based on the boxes that
are attended to. At test time, we calculate the IOU (intersection over union) value
between the selected box rj and the ground truth box r ĵ.

6.3.2 Learning to reconstruct

The key idea of our phrase reconstruction model is to learn to reconstruct the phrase
only from the attended boxes. Given an attention distribution over the boxes, we
compute a weighted sum over the visual features and the attention weights αi:

vatt =
N

∑
i=1

αivi, (6.7)

which aggregates the visual features from the attended boxes. Then, the visual
features vatt are further encoded into v′att using a non-linear encoding layer:

v′att = fREC(vatt) = φ(Wavatt + ba) (6.8)

We reconstruct the input phrase based on this encoded visual feature v′att over
attended regions. During reconstruction, we use an image description LSTM that
takes v′att as input to generate a distribution over phrases p:

P(p|v′att) = fLSTM(v′att) (6.9)

where P(p|v′att) is a distribution over the phrases conditioned on the input visual
feature. Our approach for phrase generation is inspired by Donahue et al. (2015);
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Vinyals et al. (2015) who have effectively used LSTM for generating image descrip-
tions based on visual features. Given a visual feature, it learns to predict a word
sequence {wt}. At each time step t, the model predicts a distribution over the next
word wt+1 conditioned on the input visual feature v′att and all the previous words.
We use a single LSTM layer and we feed the visual input only at the first time
step. We use LSTM as our phrase encoder as well as decoder. Although one could
potentially use other approaches to map phrases into a lower dimensional semantic
space, it is not clear how one would do the reconstruction without the recurrent
network, given that we have to train encoding and decoding end-to-end.

Importantly, the entire grounding+reconstruction model is trained as a single
deep network through back-propagation by maximizing the likelihood of the ground
truth phrase p̂ generated during reconstruction, where we define the training loss
for batch size B:

Lrec = −
1
B

B

∑
b=1

log(P( p̂|v′att)) (6.10)

Finally, in the semi-supervised model we have both losses Latt and Lrec, which
are combined as follows:

L = λLatt + Lrec (6.11)

where parameter λ regulates the importance of the attention loss.

6.4 experiments

We first discuss the experimental setup and design choices of our implementation and
then present quantitative results on the test sets of Flickr 30k Entities (Tables 6.1,6.2)
and ReferItGame (Table 6.3) datasets. We find our best results to outperform
state-of-the-art on both datasets by a significant margin. Figures 6.3 and 6.4 show
qualitatively how well we can ground phrases in images.

6.4.1 Experimental setup

We evaluate GroundeR on the datasets Flickr 30k Entities (Plummer et al., 2015)
and ReferItGame (Kazemzadeh et al., 2014). Flickr 30k Entities contains over 275K
bounding boxes from 31K images associated with natural language phrases. Some
phrases in the dataset correspond to multiple boxes, e.g. “two men”. For consistency
with Plummer et al. (2015), in such cases we consider the union of the boxes as ground
truth. We use 1,000 images for validation, 1,000 for testing and 29,783 for training.
The ReferItGame dataset contains over 99K regions from 20K images. Regions
are associated with natural language expressions, constructed to disambiguate the
described objects. We use the bounding boxes provided by Hu et al. (2016b) and the
same test split, namely 10K images for testing; the rest we split in 9K training and
1K validation images.
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We obtain 100 bounding box proposals for each image using Selective Search
(Uijlings et al., 2013) for Flickr 30k Entities and Edge Boxes (Zitnick and Dollár,
2014) for ReferItGame dataset. For our semi-supervised and fully supervised models
we obtain the ground-truth attention by selecting the proposal box which overlaps
most with the ground-truth box, while the overlap IOU (intersection over union) is
above 0.5. Thus, our fully supervised model is not trained with all available training
phrase-box pairs, but only with those where such proposal boxes exist.

On the Flickr 30k Entities for the visual representation we rely on the VGG16

network (Simonyan and Zisserman, 2015) trained on ImageNet (Deng et al., 2009).
For each box we extract a 4,096 dimensional feature from the fully connected
fc7 layer. We also consider a VGG16 network fine-tuned for object detection on
PASCAL (Everingham et al., 2010), trained using Fast R-CNN (Girshick, 2015a). In
the following we refer to both features as VGG-CLS and VGG-DET, respectively.
We do not fine-tune the VGG representation for our task to reduce computational
and memory load, however, our model trivially allows back-propagation into the
image representation which likely would lead to further improvements. For the
ReferItGame dataset we use the VGG-CLS features and additional spatial features
provided by Hu et al. (2016b). We concatenate both and refer to the obtained feature
as VGG+SPAT. For the language encoding and decoding we rely on the LSTM variant
implemented in Caffe (Jia et al., 2014) which we initialize randomly and jointly train
with the grounding task.

At test time we compute the accuracy as the ratio of phrases for which the
attended box overlaps with the ground-truth box by more than 0.5 IOU.

6.4.2 Design choices and findings

In all experiments we use the Adam solver (Kingma and Ba, 2014), which adaptively
changes the learning rate during training. We train our models for about 20/50

epochs for the Flickr 30k Entities/ReferItGame dataset, and pick the iteration on the
validation set. Next, we report our results for optimizing hyperparmeters on the
validation set of Flickr 30k Entities while using the VGG-CLS features.

Regularization. Applying L2 regularization to parameters (weight decay) is
important for the best performance of our unsupervised model. By introducing
the weight decay of 0.0005 we improve the accuracy from 20.33% to 22.96%. In
contrast, when supervision is available, we introduce batch normalization (Ioffe and
Szegedy, 2015) for the phrase encoding LSTM and visual feature, which leads to a
performance improvement, in particular from 37.42% to 40.93% in the supervised
scenario.

Layer initialization. We experiment with different ways to initialize the layer
parameters. The configuration which works best for us is using uniform initialization
for LSTM, MSRA (He et al., 2015) for convolutional layers, and Xavier (Glorot and
Bengio, 2010) for all other layers. Switching from Xavier to MSRA initialization for
the convolutional layers improves the accuracy of the unsupervised model from
21.04% to 22.96%.
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Approach Accuracy
Other VGG-CLS VGG-DET

Unsupervised training
Deep Fragments [6] 21.78 - -
GroundeR - 24.66 28.94

Supervised training
CCA (Plummer et al., 2015) - 27.42 -
SCRC (Hu et al., 2016b) - 27.80 -
DSPE (Wang et al., 2016a) - - 43.89

GroundeR - 41.56 47.81

Semi-supervised training
GroundeR 3.12% annot. - 33.02 42.32

GroundeR 6.25% annot. - 37.10 44.02

GroundeR 12.5% annot. - 38.67 44.96

GroundeR 25.0% annot. - 39.31 45.32

GroundeR 50.0% annot. - 40.72 46.65

GroundeR 100.0% annot. - 42.43 48.38

Proposal upperbound 77.90 77.90 77.90

Table 6.1: Phrase localization performance on Flickr 30k Entities with different levels
of bounding box supervision, accuracy in %.

6.4.3 Experiments on the Flickr 30k Entities dataset

We report the performance of our approach with multiple levels of supervision in
Table 6.1. In the last line of the table we report the proposal upper-bound accuracy,
namely the presence of the correct box among the proposals (which overlaps with
the ground-truth box with IOU > 0.5).

Unsupervised training. We start with the unsupervised scenario, i.e. no phrase
localization ground-truth is used at training time. Our approach, which relies on
VGG-CLS features, is able to achieve 24.66% accuracy. Note that the VGG network
trained on ImageNet has not seen any bounding box annotations at training time.
VGG-DET, which was fine-tuned for detection, performs better and achieves 28.94%
accuracy. We can further improve this by taking a sentence constraint into account.
Namely, it is unlikely that two different phrases from one sentence are grounded
to the same box. Thus we post-process the attended boxes: we jointly process the
phrases from one sentence and greedily select the highest scoring box for each
phrase, while the same box cannot be selected twice. This allows us to reach the
accuracy of 25.01% for VGG-CLS and 29.02% for VGG-DET. While we currently
only use a sentence constraint as a simple post processing step at test time, it
would be interesting to include a sentence level constraint during training as part
of future work. We compare to the unsupervised Deep Fragments approach of
Karpathy et al. (2014a). Note, that Karpathy et al. (2014a) do not report the grounding
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performance and does not allow for direct comparison with our work. With our best
case evaluation1 of Deep Fragments (Karpathy et al., 2014a), which also relies on
detection boxes and features, we achieve an accuracy of 21.78%. Overall, the ranking
objective in Karpathy et al. (2014a) can be seen complimentary to our reconstruction
objective. It might be possible, as part of future work, to combine both objectives to
learn even better models without grounding supervision.

Supervised training. Next we look at the fully supervised scenario. The accuracy
achieved by Plummer et al. (2015) is 27.42%2 and by SCRC (Hu et al., 2016b) is 27.80%.
Recent approach of Wang et al. (2016a) achieves 43.89% with VGG-DET features.
Our approach, when using VGG-CLS features achieves an accuracy of 41.56%,
significantly improving over prior works that use VGG-CLS. We further improve our
result to impressive 47.81% when using VGG-DET features.

Semi-supervised training. Finally, we move to the semi-supervised scenario.
The notation “x% annot.” means that x% of the annotated data (where ground-truth
attention is available) is used. As described in Section 6.3.2 we have a parameter λ
which controls the weight of the attention loss Latt vs. the reconstruction loss Lrec.
We estimate the value of λ on validation set and fix it for all iterations. We found
that we need higher weight on Latt when little supervision is available. E.g. for 3.12%
of supervision λ = 200 and for 12.5% supervision λ = 50. This is due to the fact that
in these cases only 3.12% / 12.5% of labeled instances contribute to Latt, while all
instances contribute to Lrec.

When integrating 3.12% of the available annotated data into the model we
significantly improve the accuracy from 24.66% to 33.02% (VGG-CLS) and from
28.94% to 42.32% (VGG-DET). The accuracy further increases when providing more
annotations, reaching 42.43% for VGG-CLS and 48.38% for VGG-DET when using all
annotations. As ablation of our semi-supervised model we evaluated the supervised
model while only using the respective x% of annotated data. We observed consistent
improvement of our semi-supervised model over the supervised model. Intrestingly,
when using all available supervision, Lrec still helps to improve performance over
the supervised model (42.43% vs. 41.56%, 48.38% vs. 47.81%). Our intuition for this
is that Latt only has a single correct bounding box (which overlaps most with the
ground truth), while Lrec can also learn from overlapping boxes with high but not
best overlap.

Results per phrase type. Flickr 30k Entities dataset provides a “type of phrase”
annotation for each phrase, which we analyze in Table 6.2. Our unsupervised

1We train the Deep Fragments model (Karpathy et al., 2014a) on the the Flickr 30k dataset and
evaluate with the Flickr 30k Entities ground truth phrases and boxes. Our trained Deep Fragments
model achieves 11.2%/16.5% recall@1 for image annotation/search compared to 10.3%/16.4% re-
ported in Karpathy et al. (2014a). As there is a large number of dependency tree fragments per
sentence (on average 9.5) which are matched to proposal boxes, rather than on average 3.0 noun
phrases per sentence in Flickr 30k Entities, we make a best case study in favor of Karpathy et al.
(2014a). For each ground-truth phrase we take the maximum overlapping dependency tree fragments
(w.r.t. word overlap), compute the IOU between their matched boxes and the ground truth, and take
the highest IOU.

2The number was provided by the authors of Plummer et al. (2015), while in Plummer et al. (2015)
they report 25.30% for phrases automatically extracted with a parser.
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Phrase type peo- clo- body- ani- vehi- instru- scene other novel
ple thing parts mals cles ments

Number of instances 5,656 2,306 523 518 400 162 1,619 3,374 2,214

Unsupervised training
GroundeR (VGG-DET) 44.32 9.02 0.96 46.91 46.00 19.14 28.23 16.98 25.43

Supervised training
CCA embedding Plummer et al. (2015) 29.58 24.20 10.52 33.40 34.75 35.80 20.20 20.75 n/a
GroundeR (VGG-CLS) 53.80 34.04 7.27 49.23 58.75 22.84 52.07 24.13 34.28

GroundeR (VGG-DET) 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08 40.83

Semi-supervised training
GroundeR (VGG-DET) 3.12% annot. 56.51 29.84 9.18 57.34 59.75 28.40 50.71 24.48 34.28

GroundeR (VGG-DET) 100.0% annot. 60.24 39.16 14.34 64.48 67.50 38.27 59.17 30.56 42.37

Proposal upperbound 85.93 66.70 41.30 84.94 89.00 70.99 91.17 69.29 79.90

Table 6.2: Detailed phrase localization, Flickr 30k Entities, accuracy in %.

approach does well on phrases like “people”, “animals”, “vehicles” and worse on
“clothing” and “body parts”. This could be due to confusion between people and
their clothing or body parts. To address this, one could jointly model the phrases
and add spatial relations between them in the model. Body parts are also the most
challenging type to detect, with the proposal upper-bound of only 41.3%. The
supervised model with VGG-CLS features outperforms Plummer et al. (2015) in all
types except “body parts” and “instruments”, while with VGG-DET it is better or
similar in all types. Semi-supervised model brings further significant performance
improvements, in particular for “body parts”. In the last column we report the
accuracy for novel phrases, i.e. the ones which did not appear in the training data.
On these phrases our approach maintains high performance, although it is lower than
the overall accuracy. This shows that learned language representation is effective
and allows transfer to unseen phrases.

Summary Flickr 30k Entities. Our unsupervised approach performs similar
(VGG-CLS) or better (VGG-DET) than the fully supervised methods of Plummer et al.
(2015) and Hu et al. (2016b) (Table 6.1). Incorporating a small amount of supervision
(e.g. 3.12% of annotated data) allows us to outperform Plummer et al. (2015) and
Hu et al. (2016b) also when VGG-CLS features are used. Our best supervised model
achieves 47.81%, surpassing all the previously reported results, including Wang et al.
(2016a). Our semi-supervised model efficiently exploits the reconstruction loss Lrec
which allows it to outperform the supervised model.

6.4.4 Experiments on the ReferItGame dataset

Table 6.3 summarizes results on the ReferItGame dataset. We compare our approach
to the previously introduced fully supervised method SCRC (Hu et al., 2016b), as
well as provide reference numbers for two other baselines: LRCN Donahue et al.
(2015) and CAFFE-7K (Guadarrama et al., 2014) reported in Hu et al. (2016b). The
LRCN baseline of Hu et al. (2016b) is using the image captioning model LRCN
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Approach Accuracy
Other VGG VGG+SPAT

Unsupervised training
LRCN (Donahue et al., 2015) 8.59 - -
(reported in Hu et al. (2016b))
CAFFE-7K (Guadarrama et al., 2014) 10.38 - -
(reported in Hu et al. (2016b))
GroundeR - 10.69 10.70

Supervised training
SCRC (Hu et al., 2016b) - - 17.93

GroundeR - 23.44 26.93

Semi-supervised training
GroundeR 3.12% annot. - 13.70 15.03

GroundeR 6.25% annot. - 16.19 19.53

GroundeR 12.5% annot. - 19.02 21.65

GroundeR 25.0% annot. - 21.43 24.55

GroundeR 50.0% annot. - 22.67 25.51

GroundeR 100.0% annot. - 24.18 28.51

Proposal upperbound 59.38 59.38 59.38

Table 6.3: Phrase localization performance on ReferItGame with different levels of
bounding box supervision, accuracy in %.

(Donahue et al., 2015) trained on MSCOCO (Lin et al., 2014b) to score how likely the
query phrase is to be generated for the proposal box. CAFFE-7K is a large scale
object classifier trained on ImageNet (Deng et al., 2009) to distinguish 7K classes.
Guadarrama et al. (2014) predict a class for each proposal box and constructs a word
bag with all the synonyms of the class-name based on WordNet (Fellbaum, 1998).
The obtained word bag is then compared to the query phrase after both are projected
to a joint vector space. Both approaches are unsupervised w.r.t. the phrase bounding
box annotations. Table 6.3 reports the results of our approach with VGG, as well as
VGG+SPAT features of Hu et al. (2016b).

Unsupervised training. In the unsupervised scenario our GroundeR performs
competitive with the LRCN and CAFFE-7K baselines, achieving 10.7% accuracy. We
note that in this case VGG and VGG+SPAT perform similarly.

Supervised training. In the supervised scenario we compare to the best prior
work on this dataset, SCRC (Hu et al., 2016b), which reaches 17.93% accuracy. Our
supervised approach, which uses identical visual features, significantly improves
this performance to 26.93%.

Semi-supervised training. Moving to the semi-supervised scenario again demon-
strates performance improvements, similar to the ones observed on Flickr 30k Entities
datset. Even the small amount of supervision (3.12%) significantly improves perfor-
mance to 15.03% (VGG+SPAT), while with 100% of annotations we achieve 28.51%,
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A little girl in
a pink shirt is
looking at a
toy doll.

A woman is riding a
bicycle on the pave-
ment.

A girl with a red cap,
hair tied up and a
gray shirt is fishing in
a calm lake.

Figure 6.3: Qualitative results on the test set of Flickr 30k Entities. Top : GroundeR
(VGG-DET) unsupervised, bottom: GroundeR (VGG-DET) supervised.

outperforming the supervised model.
Summary ReferItGame dataset. While the unsupervised model only slightly

improves over prior work, the semi-supervised version can effectively learn from few
labeled training instances, and with all supervision it achieves 28.51%, improving
over Hu et al. (2016b) by a large margin of 10.6%. Overall the performance on
ReferItGame dataset is significantly lower than on Flickr 30k Entities. We attribute
this to two facts. First, the training set of ReferItGame is rather small compared to
Flickr 30k (9k vs. 29k images). Second, the proposal upperbound on ReferItGame is
significantly lower than on Flickr 30k Entities (59.38% vs 77.90%) due to the complex
nature of the described objects and “stuff" image regions.

Qualitative results. We provide qualitative results on Flickr 30K Entities dataset
in Figure 6.3. We compare our unsupervised and supervised approaches, both
with VGG-DET features. The supervised approach visibly improves the localization
quality over the unsupervised approach, which nevertheless is able to localize many
phrases correctly. Figure 6.4 presents qualitative results on ReferItGame dataset. We
show the predictions of our supervised approach, as well as the ground-truth boxes.
One can see the difficulty of the task from the presented examples, including two
failures in the bottom row. One requires good language understanding in order to
correctly ground such complex phrases. In order to ground expressions like “hut
to the nearest left of the person on the right” we would need to additionally model
relations between objects, an interesting direction for future work.



132 chapter 6. grounding of textual phrases in images

two people on right
picture of a bird fly-
ing above sand

dat alpaca up in
front, total coffeelate
swag

palm tree coming
out of the top of the
building

guy with blue shirt
and yellow shorts

hut to the nearest
left of the person on
the right

Figure 6.4: Qualitative results on the test set of ReferItGame: GroundeR (VGG+SPAT)
supervised. Green: ground-truth box, red: predicted box.

6.5 conclusion

In this chapter we address the challenging task of grounding unconstrained natural
phrases in images. We consider different scenarios of available bounding box
supervision at training time, namely none, little, and full supervision. We propose a
novel approach, GroundeR, which learns to localize phrases in images by attending
to the correct box proposal and reconstructing the phrase and is able to operate in
all of these supervision scenarios. In the unsupervised scenario we are competitive
or better than related work. Our semi-supervised approach works well with a small
portion of available annotated data and takes advantage of the unsupervised data to
outperform purely supervised training using the same amount of labeled data. It
outperforms state-of-the-art, both on Flickr 30k Entities and ReferItGame dataset, by
4.5% and 10.6%, respectively.

Our approach is rather general and it could be applied to other regions such
as segmentation proposals instead of bounding box proposals. In Chapter 8 it is
applied to associate people head tracks with their names. Possible extensions for our
approach are to include constraints within sentences at training time, jointly reason
about multiple phrases, and to take into account spatial relations between them.
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M U LT I M O D A L C O M PA C T B I L I N E A R P O O L I N G F O R
V I S U A L Q U E S T I O N A N S W E R I N G A N D V I S U A L
G R O U N D I N G

Modeling textual or visual information with vector representations trained
from large language or visual datasets has been successfully explored in
recent years. However, tasks such as visual question answering and visual

grounding, discussed in the previous chapter, require combining these vector repre-
sentations with each other. Approaches to multimodal pooling include element-wise
product or sum, as well as concatenation of the visual and textual representations.
We hypothesize that these methods are not as expressive as an outer product of the
visual and textual vectors. As the outer product is typically infeasible due to its high
dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling
(MCB) to efficiently and expressively combine multimodal features. We extensively
evaluate MCB on the visual question answering and grounding tasks. We consis-
tently show the benefit of MCB over ablations without MCB. For visual question
answering, we present an architecture which uses MCB twice, once for predicting
attention over spatial features and again to combine the attended representation
with the question representation. This model outperforms the state-of-the-art on the
Visual7W dataset and the VQA challenge. For the visual grounding we replace the
multi-modal combination by concatenation with MCB in our approach presented in
the previous chapter, and improve over the state-of-the-art on two datasets.

7.1 introduction

Representation learning for text and images has been extensively studied in recent
years. Recurrent neural networks (RNNs) are often used to represent sentences or
phrases (Sutskever et al., 2014; Kiros et al., 2015b), and convolutional neural networks
(CNNs) have shown to work best to represent images (Donahue et al., 2013; He et al.,
2016). For tasks such as visual question answering (VQA) and visual grounding,
most approaches require joining the representation of both modalities. For combining
the two vector representations (multimodal pooling), current approaches in VQA or
grounding rely on concatenating vectors or applying element-wise sum or product.
While this generates a joint representation, it might not be expressive enough to fully
capture the complex associations between the two different modalities.

In this chapter, we propose to rely on Multimodal Compact Bilinear pooling
(MCB) to get a joint representation. Bilinear pooling computes the outer product
between two vectors, which allows, in contrast to element-wise product, a multi-
plicative interaction between all elements of both vectors. Bilinear pooling models
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Figure 7.1: Multimodal Compact Bilinear Pooling for visual question answering.

(Tenenbaum and Freeman, 2000) have been shown to be beneficial for fine-grained
classification for vision only tasks Lin et al. (2015b). However, given their high
dimensionality (n2), bilinear pooling has so far not been widely used. In this chapter,
we adopt the idea from Gao et al. (2016b) which shows how to efficiently compress
bilinear pooling for a single modality. In this chapter, we discuss and extensively
evaluate the extension to the multimodal case for text and visual modalities. As
shown in Figure 7.1, Multimodal Compact Bilinear pooling (MCB) is approximated
by randomly projecting the image and text representations to a higher dimensional
space (using Count Sketch (Charikar et al., 2002)) and then convolving both vectors
efficiently by using element-wise product in Fast Fourier Transform (FFT) space. We
use MCB to predict answers for the VQA task and locations for the visual grounding
task. For open-ended question answering, we present an architecture for VQA which
uses MCB twice, once to predict spatial attention and the second time to predict
the answer. For multiple-choice question answering we introduce a third MCB to
relate the encoded answer to the question-image space. Additionally, we discuss
the benefit of attention maps and additional training data for the VQA task. To
summarize, MCB is evaluated on two tasks, four datasets, and with a diverse set of
ablations and comparisons to the state-of-the-art.

7.2 related work

In the following we discuss which multimodal pooling techniques have been em-
ployed in various recent VQA and visual grounding approaches. We then review
the works which like us adopt bilinear pooling for computer vision tasks. Finally,
we discuss the relation of our work to multimodal embedding learning.

Multimodal pooling. Current approaches to multimodal pooling involve element-
wise operations or vector concatenation. In the visual question answering domain, a
number of models have been proposed. Simpler models such as iBOWIMG baseline
(Zhou et al., 2015a) use concatenation and fully connected layers to combine the
image and question modalities. Stacked Attention Networks (Yang et al., 2016a) and
Spatial Memory Networks (Xu et al., 2015a) use LSTMs or extract soft-attention on
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the image features, but ultimately use element-wise product or element-wise sum
to merge modalities. D-NMN (Andreas et al., 2016a) introduced REINFORCE to
dynamically create a network and use element-wise product to join attentions and
element-wise sum predict answers. Dynamic Memory Networks (DMN) (Xiong et al.,
2016) pool the image and question with element-wise product and sum, attending
to part of the image and question with an Episodic Memory Module (Kumar et al.,
2016). DPPnet (Noh et al., 2015) creates a Parameter Prediction Network which learns
to predict the parameters of the second to last visual recognition layer dynamically
from the question. Similar to this work, DPPnet allows multiplicative interactions
between the visual and question encodings. Lu et al. (2016) recently proposed a
model that extracts multiple co-attentions on the image and question and combines
the co-attentions in a hierarchical manner using element-wise sum, concatenation,
and fully connected layers. For the visual grounding task, in the previous chapter
we presented our approach GroundeR, where the language phrase embedding
is concatenated with the visual features in order to predict the attention weights
over multiple bounding box proposals. Similarly, Hu et al. (2016a) concatenate
phrase embeddings with visual features at different spatial locations to obtain a
segmentation.

Bilinear pooling. Bilinear pooling has been applied to the fine-grained visual
recognition task. Lin et al. (2015b) use two CNNs to extract features from an image
and combine the resulting vectors using an outer product, which is fully connected to
an output layer. Gao et al. (2016b) address the space and time complexity of bilinear
features by viewing the bilinear transformation as a polynomial kernel. Pham and
Pagh (2013) describe a method to approximate the polynomial kernel using Count
Sketches and convolutions.

Joint multimodal embeddings. In order to model similarities between two modal-
ities, many prior works have learned joint multimodal spaces, or embeddings. Some
of such embeddings are based on Canonical Correlation Analysis (Hardoon et al.,
2004) e.g. (Gong et al., 2014; Klein et al., 2015; Plummer et al., 2015), linear models
with ranking loss (Frome et al., 2013; Karpathy and Fei-Fei, 2015; Socher et al.; Weston
et al., 2011) or non-linear deep learning models (Kiros et al., 2014; Mao et al., 2015;
Ngiam et al., 2011). Our MCB pooling can be seen as a complementary operation that
allows us to capture different interactions between two modalities more expressively
than e.g. concatenation. Consequently, many embedding learning approaches could
benefit from incorporating such interactions.

7.3 multimodal compact bilinear pooling for visual and

textual embeddings

For the task of visual question answering (VQA) or visual grounding, we have to
predict the most likely answer or location â for a given image x and question or
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Figure 7.2: Multimodal Compact Bilinear Pooling (MCB)

phrase q. This can be formulated as

â = argmax
a∈A

p(a|x, q; θ) (7.1)

with parameters θ and the set of answers or locations A. For an image embedding
x = Ξ(x) (i.e. a CNN) and question embedding q = Ω(q) (i.e. an LSTM), we are
interested in getting a good joint representation by pooling both representations.
With a multimodal pooling Φ(x, q) that encodes the relationship between x and q
well, it becomes easier to learn a classifier for Equation (7.1).

In this section, we first discuss our multimodal pooling Φ for combining represen-
tations from different modalities into a single representation (Section 7.3.1) and then
detail our architectures for VQA (Section 7.3.2) and visual grounding (Section 7.3.3),
further explaining how we predict â with the given image representation Ξ and text
representation Ω.

7.3.1 Multimodal Compact Bilinear Pooling (MCB)

Bilinear models (Tenenbaum and Freeman, 2000) take the outer product of two
vectors x ∈ Rn1 and q ∈ Rn2 and learn a model W (here linear), i.e. z = W [x⊗ q],
where ⊗ denotes the outer product (xqT) and [ ] denotes linearizing the matrix in a
vector. As discussed in the introduction, bilinear pooling is interesting because it
allows all elements of both vectors to interact with each other in a multiplicative
way. However, the high dimensional representation (i.e. when n1 and n2 are large)
leads to an infeasible number of parameters to learn in W. For example, we use
n1 = n2 = 2048 and z ∈ R3000 for VQA. W thus would have 12.5 billion parameters,
which leads to very high memory consumption and high computation times.

We thus need a method that projects the outer product to a lower dimensional
space and also avoids computing the outer product directly. As suggested by Gao
et al. (2016b) for a single modality, we rely on the Count Sketch projection function
Ψ (Charikar et al., 2002), which projects a vector v ∈ Rn to y ∈ Rd. We initialize two
vectors s ∈ {−1, 1}n and h ∈ {1, ..., d}n: s contains either 1 or −1 for each index, and
h maps each index i in the input v to an index j in the output y. Both s and h are
initialized randomly from a uniform distribution and remain constant for future
invocations of count sketch. y is initialized as a zero vector. For every element v[i]
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Algorithm 1 Multimodal Compact Bilinear
1: input: v1 ∈ Rn1 , v2 ∈ Rn2

2: output: Φ(v1, v2) ∈ Rd

3: procedure MCB(v1, v2, n1, n2, d)
4: for k← 1 . . . 2 do
5: if hk, sk not initialized then
6: for i← 1 . . . nk do
7: sample hk[i] from {1, . . . , d}
8: sample sk[i] from {−1, 1}
9: v′k = Ψ(vk, hk, sk, nk)

10: Φ = FFT−1(FFT(v′1)� FFT(v′2))
11: return Φ
12: procedure Ψ(v, h, s, n)
13: y = [0, . . . , 0]
14: for i← 1 . . . n do
15: y[h[i]] = y[h[i]] + s[i] · v[i]
16: return y

its destination index j = h[i] is looked up using h, and s[i] · v[i] is added to y[j]. See
lines 1-9 and 12-16 in Algorithm 1.

This allows us to project the outer product to a lower dimensional space, which
reduces the number of parameters in W. To avoid computing the outer product
explicitly, Pham and Pagh (2013) showed that the count sketch of the outer product
of two vectors can be expressed as convolution of both count sketches: Ψ(x ⊗
q, h, s) = Ψ(x, h, s) ∗ Ψ(q, h, s), where ∗ is the convolution operator. Additionally,
the convolution theorem states that convolution in the time domain is equivalent
to element-wise product in the frequency domain. The convolution x′ ∗ q′ can be
rewritten as FFT−1(FFT(x′) � FFT(q′)), where � refers to element-wise product.
These ideas are summarized in Figure 7.2 and formalized in Algorithm 1, which
is based on the Tensor Sketch algorithm of Pham and Pagh (2013). We invoke the
algorithm with v1 = x and v2 = q. We note that this easily extends and remains
efficient for more than two multi-modal inputs as the combination happens as
element-wise product.

7.3.2 Architectures for VQA

In VQA, the input to the model is an image and a question, and the goal is to answer
the question. Our model extracts representations for the image and the question,
pools the vectors using MCB, and arrives at the answer by treating the problem as a
multi-class classification problem with 3,000 possible classes.

We extract image features using a 152-layer Residual Network (He et al., 2016) that
is pretrained on ImageNet data (Deng et al., 2009). Images are resized to 448× 448,
and we use the output of the layer (“pool5”) before the 1000-way classifier. We then
perform L2 normalization on the 2048-D vector.
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Figure 7.3: Our architecture for VQA: Multimodal Compact Bilinear (MCB) with
Attention. Conv implies convolutional layers and FC implies fully connected layers.
For details see Section 7.3.2.

Input questions are first tokenized into words, the words are one-hot encoded
and passed through a learned embedding layer. The tanh nonlinearity is used after
the embedding, followed by a 2-layer LSTM with 1024 units in each layer. The
outputs of each LSTM layer are concatenated to form a 2048-D vector.

The two vectors are then passed through MCB. The MCB is followed by an
element-wise signed square-root and L2 normalization. After MCB pooling, a fully
connected layer connects the resulting 16,000-D multimodal representation to the
3,000 top answers.

Attention. To incorporate spatial information, we use soft attention on our MCB
pooling method. Explored by Xu et al. (2015a) for image captioning and by Xu and
Saenko (2016) and Yang et al. (2016a) for VQA, the soft attention mechanism can be
easily integrated in our model.

For each spatial grid location in the visual representation (i.e. last convolutional
layer of ResNet [res5c], last convolutional layer of VGG [conv5]), we use MCB
pooling to merge the slice of the visual feature with the language representation.
As depicted in Figure 7.3, after the pooling we use two convolutional layers to
predict the attention weight for each grid location. We apply softmax to produce
a normalized soft attention map. We then take a weighted sum of the spatial
vectors using the attention map to create the attended visual representation. We also
experiment with generating multiple attention maps to allow the model to make
multiple “glimpses” which are concatenated before being merged with the language
representation through another MCB pooling for prediction. Predicting attention
maps with MCB pooling allows the model to effectively learn how to attend to
salient locations based on both the visual and language representations.

Answer encoding. For VQA with multiple choices, we can additionally embed
the answers. We base our approach on the proposed MCB with attention. As can
be seen from Figure 7.4, to deal with multiple variable-length answer choices, each
choice is encoded using a word embedding and LSTM layers whose weights are
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Q  : “What do you see?”  (Ground Truth : a3) 
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Figure 7.4: Our architecture for VQA: MCB with Attention and Answer Encoding

shared across the candidates. In addition to using MCB with attention, we use an
additional MCB pooling to merge the encoded answer choices with the multimodal
representation of the original pipeline. The resulting embedding is projected to a
classification vector with a dimension equal to the number of answers.

7.3.3 Architecture for visual grounding

We base our grounding approach on the fully-supervised version of GroundeR
(Chapter 6). The overview of our model is shown in Figure 7.5. The input to the
model is a query natural language phrase and an image along with multiple proposal
bounding boxes. The goal is to predict a bounding box which corresponds to the
query phrase. We replace the concatenation of the visual representation and the
encoded phrase in GroundeR with MCB to combine both modalities. In contrast to
the previous chapter, we include a linear embedding of the visual representation and
L2 normalization of both input modalities, instead of batch normalization (Ioffe and
Szegedy, 2015), which we found to be beneficial when using MCB for the grounding
task.

7.4 evaluation on visual question answering

We evaluate the benefit of MCB with a diverse set of ablations on two visual question
answering datasets.

7.4.1 Datasets

The Visual Question Answering (VQA) real-image dataset (Antol et al., 2015) con-
sists of approximately 200,000 MSCOCO images (Lin et al., 2014b), with 3 questions
per image and 10 answers per question. There are 3 data splits: train (80K images),
validation (40K images), and test (80K images). Additionally, there is a 25% subset of
test named test-dev. Accuracies for ablation experiments are reported on the test-dev
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Figure 7.5: Our Architecture for Grounding with MCB (Sec. 7.3.3)

data split. We use the VQA tool provided by Antol et al. (2015) for evaluation. We
conducted most of our experiments on the open-ended real-image task. In Table 7.4,
we also report our multiple-choice real-image scores.

The Visual Genome dataset (Krishna et al., 2016) uses 108,249 images from the
intersection of YFCC100M (Thomee et al., 2015) and MSCOCO. For each image, an
average of 17 question-answer pairs are collected. There are 1.7 million QA pairs of
the 6W question types (what, where, when, who, why, and how). Compared to the VQA
dataset, Visual Genome represents a more balanced distribution of the 6W questions.
The average question and answer lengths for Visual Genome are larger than for the
VQA dataset. To leverage the Visual Genome dataset as additional training data, we
remove all the unnecessary words such as ”a”, ”the”, and ”it is” from the answers
to decrease the length of the answers and extract QA pairs whose answers are
single-worded. The extracted data is filtered based on the answer vocabulary space
created from the VQA dataset, leaving us with additional 1M image-QA triplets.

The Visual7W dataset (Zhu et al., 2016) is a part of the Visual Genome. It adds a
7th which question category to accommodate visual answers, but we only evaluate
the models on the Telling task which involves 6W questions. The natural language
answers in Visual7W are in a multiple-choice format and each question comes
with four answer candidates, with only one being the correct answer. Visual7W is
composed of 47,300 images from MSCOCO and there are a total of 139,868 QA pairs.

7.4.2 Experimental setup

We use the Adam solver (Kingma and Ba, 2014) with ε = 0.0007, β1 = 0.9, β2 = 0.999.
We use dropout after the LSTM layers and in fully connected layers. For the
experiments in Tables 7.1 and 7.2, we train on the VQA train split, validate on the
VQA validation split, and report results on the VQA test-dev split. We use early
stopping: if the validation score does not improve for 50,000 iterations, we stop
training and evaluate the best iteration on test-dev. For the Visual7W, we use the
same hyperparameters and training settings as in the VQA experiments. We use the
splits from Zhu et al. (2016) to train, validate, and test our models. We also compute
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Method Accuracy

Element-wise Sum 56.50

Concatenation 57.49

Concatenation + FC 58.40

Concatenation + FC + FC 57.10

Element-wise Product 58.57

Element-wise Product + FC 56.44

Element-wise Product + FC + FC 57.88

MCB (2048× 2048→ 16K) 59.83

Full Bilinear (128× 128→ 16K) 58.46

MCB (128× 128→ 4K) 58.69

Element-wise Product with VGG-19 55.97

MCB (d = 16K) with VGG-19 57.05

Concatenation + FC with Attention 58.36

MCB (d = 16K) with Attention 62.50

Table 7.1: Comparison of multimodal pooling methods. Models are trained on the
VQA train split and tested on test-dev.

accuracies on this data using their evaluation code. For VQA multiple choice, we
train the open-ended models and take the argmax over the multiple choice answers
at test time. For Visual7W, we use the answer encoding as described in Section 7.3.2.

7.4.3 Ablation results

We compare the performance of non-bilinear and bilinear pooling methods in Table
7.1. We see that MCB pooling outperforms all non-bilinear pooling methods, such as
eltwise sum, concatenation, and eltwise product.

One could argue that the compact bilinear method simply has more parame-
ters than the non-bilinear pooling methods, which contributes to its performance.
We compensated for this by stacking fully connected layers (with 4096 units per
layer, ReLU activation, and dropout) after the non-bilinear pooling methods to in-
crease their number of parameters. However, even with similar parameter budgets,
non-bilinear methods could not achieve the same accuracy as the MCB method.
For example, the “Concatenation + FC + FC” pooling method has approximately
40962 + 40962 + 4096× 3000 ≈ 46 million parameters, which matches the 48 million
parameters available in MCB with d = 16000. However, the performance of the
“Concatenation + FC + FC” method is only 57.10% compared to MCB’s 59.83%.

Section 2 in Table 7.1 also shows that compact bilinear pooling has no impact on
accuracy compared to full bilinear pooling. Section 3 in Table 7.1 demonstrates that
the MCB brings improvements regardless of the image CNN used. We primarily use
ResNet-152 in this work, but MCB also improves performance if VGG-19 is used.



142 chapter 7. multimodal compact bilinear pooling

Compact Bilinear d Accuracy

1024 58.38

2048 58.80

4096 59.42

8192 59.69

16000 59.83
32000 59.71

Table 7.2: Accuracies for different values of d, the dimension of the compact bilinear
feature. Models are trained on the VQA train split and tested on test-dev. Details in
Section 7.4.3.

Method What Where When Who Why How Avg

Zhu et al. 51.5 57.0 75.0 59.5 55.5 49.8 54.3
Concat+Att. 47.8 56.9 74.1 62.3 52.7 51.2 52.8
MCB+Att. 60.3 70.4 79.5 69.2 58.2 51.1 62.2

Table 7.3: Multiple-choice QA tasks accuracy (%) on Visual7W test set.

Section 4 in Table 7.1 shows that our soft attention model works best with MCB
pooling. In fact, attending to the Concatenation + FC layer has the same performance
as not using attention at all, while attending to the MCB layer improves performance
by 2.67 points.

Table 7.2 compares different values of d, the output dimensionality of the multi-
modal compact bilinear feature. Approximating the bilinear feature with a 16,000-D
vector yields the highest accuracy.

We also evaluated models with multiple attention maps or channels. One attenion
map achieves 64.67%, two 65.08% and four 64.24% accuracy (trained on train+val).
Visual inspection of the generated attention maps reveals that an ensembling or
smoothing effect occurs when using multiple maps.

Table 7.3 presents results for the Visual7W multiple-choice QA task. The MCB
with attention model outperforms the previous state-of-the-art by 7.9 points overall
and performs better in almost every category.

7.4.4 Comparison to state-of-the-art

Table 7.4 compares our approach with the state-of-the-art on VQA test set. Our
best single model uses MCB pooling with two attention maps. Additionally, we
augment our training data with images and QA pairs from the Visual Genome
dataset. We also concatenate the learned word embedding with pretrained GloVe
vectors (Pennington et al., 2014).

Each model in our ensemble of 7 models uses MCB with attention. Some of
the models were trained with data from Visual Genome, and some were trained
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Test-dev Test-standard

Open Ended MC Open Ended MC

Y/N No. Other All All Y/N No. Other All All

MCB 81.2 35.1 49.3 60.8 65.4 - - - - -
MCB+Genome 81.7 36.6 51.5 62.3 66.4 - - - - -
MCB+Att. 82.2 37.7 54.8 64.2 68.6 - - - - -
MCB+Att.+GloVe 82.5 37.6 55.6 64.7 69.1 - - - - -
MCB+Att.+Genome 81.7 38.2 57.0 65.1 69.5 - - - - -
MCB+Att.+GloVe+Genome 82.3 37.2 57.4 65.4 69.9 - - - - -
Ensemble of 7 Att. models 83.4 39.8 58.5 66.7 70.2 83.2 39.5 58.0 66.5 70.1

Naver Labs (challenge 2nd) 83.5 39.8 54.8 64.9 69.4 83.3 38.7 54.6 64.8 69.3
HieCoAtt (Lu et al., 2016) 79.7 38.7 51.7 61.8 65.8 - - - 62.1 66.1
DMN+ (Xiong et al., 2016) 80.5 36.8 48.3 60.3 - - - - 60.4 -
FDA (Ilievski et al., 2016) 81.1 36.2 45.8 59.2 - - - - 59.5 -
D-NMN (Andreas et al., 2016a) 81.1 38.6 45.5 59.4 - - - - 59.4 -
AMA (Wu et al., 2016) 81.0 38.4 45.2 59.2 - 81.1 37.1 45.8 59.4 -
SAN (Yang et al., 2016a) 79.3 36.6 46.1 58.7 - - - - 58.9 -
NMN (Andreas et al., 2016b) 81.2 38.0 44.0 58.6 - 81.2 37.7 44.0 58.7 -
AYN (Malinowski et al., 2016) 78.4 36.4 46.3 58.4 - 78.2 36.3 46.3 58.4 -
SMem (Xu and Saenko, 2016) 80.9 37.3 43.1 58.0 - 80.9 37.5 43.5 58.2 -
VQA team (Antol et al., 2015) 80.5 36.8 43.1 57.8 62.7 80.6 36.5 43.7 58.2 63.1
DPPnet (Noh et al., 2015) 80.7 37.2 41.7 57.2 - 80.3 36.9 42.2 57.4 -
iBOWIMG (Zhou et al., 2015a) 76.5 35.0 42.6 55.7 - 76.8 35.0 42.6 55.9 62.0

Table 7.4: Open-ended and multiple-choice (MC) results on VQA test set (trained on
train+val set) compared with state-of-the-art: accuracy in %. See Section 7.4.4.

with two attention maps. This ensemble is 1.8 points above the next best approach
on the VQA open-ended task and 0.8 points above the next best approach on the
multiple-choice task (on Test-dev). Even without ensembles, our “MCB + Genome
+ Att. + GloVe” model still outperforms the next best result by 0.5 points, with an
accuracy of 65.4% versus 64.9% on the open-ended task (on Test-dev).

7.5 evaluation on visual grounding

7.5.1 Datasets

We evaluate our visual grounding approach on two datasets. The first is Flickr30k
Entities (Plummer et al., 2015) which consists of 31K images from Flickr30k dataset
(Hodosh et al., 2014) with 244K phrases localized with bounding boxes. We follow
the experimental setup from the previous chapter, e.g. we use the same Selective

1Plummer et al. (2016) achieve higher accuracy of 50.89% when taking into account box size and
color. We believe our approach would also benefit from such additional features.
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Method Accuracy, %

Plummer et al. (2015) 27.42

Hu et al. (2016b) 27.80

Plummer et al. (2016)1
43.84

Wang et al. (2016a) 43.89

GroundeR (Chapter 6) 47.81

Concatenation 46.50

Element-wise Product 47.41

Element-wise Product + Conv 47.86

MCB 48.69

Table 7.5: Grounding accuracy on Flickr30k Entities dataset.

Method Accuracy, %

Hu et al. (2016b) 17.93

GroundeR (Chapter 6) 26.93

Concatenation 25.48

Element-wise Product 27.80

Element-wise Product + Conv 27.98

MCB 28.91

Table 7.6: Grounding accuracy on ReferItGame dataset.

Search (Uijlings et al., 2013) object proposals and the Fast R-CNN (Girshick, 2015a)
fine-tuned VGG16 features (Simonyan and Zisserman, 2015). The second dataset is
ReferItGame (Kazemzadeh et al., 2014), which contains 20K images from IAPR TC-12

dataset (Grubinger et al., 2006) with segmented regions from SAIAPR-12 dataset
(Escalante et al., 2010) and 120K associated natural language referring expressions.
For ReferItGame we follow the experimental setup of Hu et al. (2016b) and rely on
their ground-truth bounding boxes extracted around the segmentation masks. We
use the Edge Box (Zitnick and Dollár, 2014) object proposals and visual features
(VGG16 combined with the spatial features, which encode bounding box relative
position) from Hu et al. (2016b).

7.5.2 Experimental setup

In all experiments we use the Adam solver with ε = 0.0001. The embedding size
is 500 both for visual and language embeddings. We use d = 2048 in the MCB
pooling, which we found to work best for the visual grounding task. The accuracy
is measured as percentage of query phrases which have been localized correctly.
The phrase is localized correctly if the predicted bounding box overlaps with the
ground-truth bounding box by more than 50% intersection over union (IOU).
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VQA Examples

What vegetable is the
dog chewing on?
MCB: carrot
GT: carrot

What kind of dog is this?
MCB: husky
GT: husky

What kind of flooring
does the room have?
MCB: carpet
GT: carpet

What color is the traffic
light?
MCB: green
GT: green

Is this an urban area?
MCB: yes
GT: yes

Where are the buildings?
MCB: in background
GT: on left

Visual Grounding Examples
MCB Eltwise Product+Conv MCB Eltwise Product+Conv

A tattooed woman with a green dress and yel-
low backpack holding a water bottle is walking
across the street.

A dog distracts his owner from working at her
computer.

Figure 7.6: Top: predicted answers and attention maps from MCB model on VQA
images. Bottom: predicted grounding from MCB model (left) and Eltwise Product +
Conv model (right) on Flickr30k Entities images.



146 chapter 7. multimodal compact bilinear pooling

7.5.3 Results

Tables 7.5 and 7.6 summarize our results in the visual grounding task. We present
multiple ablations of our proposed architecture. First, we replace the MCB with
simple concatenation of the embedded visual feature and the embedded phrase,
resulting in 46.5% on the Flickr30k Entities and 25.48% on the ReferItGame datasets.
The results can be improved by replacing the concatenation with the element-wise
product of both embedded features (47.41% and 27.80%). We can further slightly
increase the performance by introducing additional 2048-D convolution after the
element-wise product (47.86% and 27.98%). However, even with fewer parameters,
our MCB pooling significantly improves over this baseline on both datasets, reaching
state-of-the-art accuracy of 48.69% on Flickr30k Entities and 28.91% on ReferItGame
dataset. Figure 7.6 (bottom) shows examples of improved phrase localization.

7.6 conclusion

In this chapter we propose Multimodal Compact Bilinear Pooling (MCB) to combine
visual and text representations. For visual question answering, our architecture with
attention and multiple MCBs gives significant improvements on two VQA datasets
compared to state-of-the-art. In the visual grounding task, introducing MCB pooling
into our grounding approach (Chapter 6) leads to improved phrase localization
accuracy, indicating better interaction between query phrase representations and
visual representations of proposal bounding boxes.



8G E N E R AT I N G D E S C R I P T I O N S W I T H G R O U N D E D A N D
C O - R E F E R E N C E D P E O P L E

Learning how to generate descriptions of images or videos received major
interest both in the computer vision and natural language processing commu-
nities. In Chapters 4 and 5 we have presented our own contributions to this

end. While a few works have proposed to learn a grounding during the generation
process in an unsupervised way (via an attention mechanism), it remains unclear
how good the quality of the grounding is and whether it benefits the description
quality. In this chapter we propose a movie description model which learns to
generate description and jointly ground (localize) the mentioned characters as well
as do visual co-reference resolution between pairs of consecutive sentences/clips.
We also propose to use weak localization supervision through character mentions
provided in movie descriptions to learn the character grounding. At training time,
we first learn how to localize characters by relating their visual appearance to men-
tions in the descriptions via our semi-supervised approach from Chapter 6. We
then provide this (noisy) supervision into our description model which greatly
improves its performance. Our proposed description model improves over prior
work w.r.t. generated description quality and additionally provides grounding and
local co-reference resolution. We evaluate it on the MPII Movie Description dataset
(Chapter 5) using automatic and human evaluation measures and using our newly
collected grounding and co-reference data for characters.

8.1 introduction

When humans talk about what they see, they not only use common objects and terms,
but typically refer to reappearing entities, most commonly using names (“John”) and
referential words such as pronouns (“he”, “it”). To correctly generate descriptions
with reappearing entities, one needs to understand and link them across sentences
and visual appearances (images/frames). Current image/video captioning datasets
essentially ignore this aspect as they ask to independently describe each image/clip
with a single sentence. At the same time, e.g. visual storytelling (Huang et al., 2016)
and movie description (Chapter 5) ultimately require solving this problem. However,
the first approaches on visual storytelling (Huang et al., 2016) so far have not taken it
into account, and current movie description challenges and approaches (Chapter 5)
abstract from it by looking at a single clip at a time and replacing all the character
mentions with e.g. “Someone”.

In this chapter we address grounded co-reference resolution, with application
to movie description. The most prominent entities in movies are the people or

147
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Sophia		talks	to	 Emma			while	they	fold	clothes	and	watch			Zoe. This	work: She			walks	over	to	 Zoe

Someone	talks	to	Someone	while	they	fold	clothes	and	
watch	Someone.

Prior	work:	Someone	walks	over	to	Someone.

Current	clipPrevious	clip

Figure 8.1: Bring in the color: our task is to generate grounded and co-referenced descrip-
tions for the current clip using pronouns and new or reappearing character IDs, which are
grounded, i.e. localized in the current clip (boxes and lines) and visually co-referenced to the
previous clip (dashed lines). The visual grounding allows for co-reference to the previous
clip/sentence which enables us using the pronoun “she” to refer to the first ID (Sophia).

characters. In fact, there is a long line of work which aims to link character mentions
in movie or TV scripts with their visual tracks (Cour et al., 2009; Everingham et al.,
2006; Sivic et al., 2009; Tapaswi et al., 2012; Parkhi et al., 2015a; Bojanowski et al., 2013;
Ramanathan et al., 2014). However, all these works are already given the description
for all movies where they want to predict the linking. In contrast we want to generate
a description, while jointly linking it with the currently and previously depicted
character’s visual presence. Specifically, the task we address in this work is to
generate descriptions for movies and at the same time localize or ground the characters,
recognize their gender and refer to them consistently, i.e. co-reference them across
sentences, as visualized in Figure 8.1. Importantly, rather than trying to obtain
consistent ids in the entire movie, we focus on robust local co-reference resolution
on two consecutive sentences/clips. We argue that local co-reference resolution is an
important problem on itself. On the one hand there are many characters without
proper names and/or with only a few occurrences, which can and should be resolved
locally, e.g. “The priest takes their vows. He declares them wife and husband”. On the
other hand, there are many hard decisions which have to be made locally, e.g. which
character to describe and whether a character should be referenced by proper name
or pronoun. To clarify, we do not generate the true proper names of the characters,
but only identities with gender. We use a predefined set of names in our examples
(e.g. Sophia). In future work we believe the true names could be extracted either
from dialog, or from one/a few annotations per character.

Approaching the joint description and grounding task requires three main ingre-
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dients: we need to localize the characters, we need to decide which character(s) to pay
attention to, and we need to co-reference visual characters appearances in neighboring
sentences/clips. In Section 8.4 we detail how we approach character localization using
head detection and tracking via a two-stage clustering approach.While generating
the sentence, we advocate to jointly decide which character to pay attention to and
if and how to co-reference it to the previous grounded characters. In Section 8.5, we
propose to adapt the attention mechanism (Bahdanau et al., 2015; Xu et al., 2015a)
for this and extend it to attend jointly over both problems: grounding (i.e. track
selection) and co-reference (i.e. track linking). A key insight is that this can not be
learned purely from sentence supervision for generation. Instead, we supervise the
joint-attention mechanism with automatically obtained linking of character mentions
and tracks (Section 8.5.2). We note that at test time this supervision is not available
and the system has learned, how to jointly ground, co-reference, and describe.

The contributions of this chapter include: a) a new task of movie description
with grounded and co-referenced characters; to foster research in this direction we
will share our newly collected co-reference annotations and grounding of character
mentions in the MPII-MD dataset (Section 8.3); b) a novel approach which addresses
this problem by jointly learning to ground the described characters and perform
local co-reference resolution between the neighboring clips; c) a robust automatic
way of obtaining linking between character mentions in text and visual tracks in
video, which we use to supervise our description approach and which we show is
essential for the co-reference resolution task.

8.2 related work

Our work aims to do three tasks jointly: generating video descriptions, grounding,
and co-reference resolution. The prior work on video description and visual ground-
ing has been presented in Section 2.2 and Section 2.3 of the thesis, respectively. In
the following we review related work on co-reference resolution. As we focus on
people grounding and co-reference, we also discuss the related work on person
re-identification and track naming.

Co-reference resolution. Co-reference resolution is task defined in linguistic com-
munity (Bergsma and Lin, 2006) where the goal is to establish correct links between
named entities and references to then, e.g. pronouns. Ramanathan et al. (2014)
address co-reference resolution in TV show descriptions with a bidirectional opti-
mization using character visual appearance and linguistic co-reference resolution
features.

Person re-identification. Person re-identification from face/head images is a well
studied problem and recently many deep learning based approaches have been
proposed to address it (Li et al., 2014; Parkhi et al., 2015b; Schroff et al., 2015; Sun
et al., 2015; Taigman et al., 2014; Zhou et al., 2015b). Our work is related to this line of
work as we aim to re-identify characters between two video clips while generating a
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video description.

Linking tracks to names. Related works (Cour et al., 2009; Everingham et al., 2006;
Ramanathan et al., 2014; Sivic et al., 2009; Tapaswi et al., 2012) propose datasets for
character identification targeting TV shows, which rely on alignment of video to
movie/TV scripts. The goal is to track faces in the video and assign names to them.
Typically the tracks include background characters. Bojanowski et al. (2013) attack
the problem of learning a joint model of actors and actions in movies using weak
supervision provided by scripts. Parkhi et al. (2015a) propose a multiple instance
learning based approach which specifically focuses on recognizing background
characters and show significant improvement over prior work. While there is a
similarity between ours and this line of works, in fact we focus on different tasks.
First, we aim to re-identify characters locally, without ever seeing them before.
Second, when obtaining the matching between names and visual tracks, our goal is
to predict the grounding for a given character, not to name all the tracks.

8.3 a dataset for grounded and co-referenced characters

One of our goals is to learn visual co-reference resolution. To address this task
and evaluate it we collected annotations both on language and visual sides. On the
language side we want to know when different mentions actually refer to the same
person. On the visual side we require grounding of names to visual appearances.
Towards these goals we collect new annotations for character co-reference resolution
and grounding for the MPII Movie Description (MPII-MD) dataset (Chapter 5).

Co-reference annotations for character mentions. In the first step, we aim to
label all the character mentions in the movie descriptions of the MPII-MD. The
standard version of the descriptions consists of sentences with all character names
replaced with “Someone” and multiple names (e.g. “Ann and Bob”) with “people”.
Along with the transformed descriptions, the MPII-MD dataset provides the original
descriptions with all the character names preserved. We rely on these and run the
Stanford Named Entity Recognizer (NER) (Finkel et al., 2005) and obtain our initial
name list. We perform manual cleaning and filter out non-human related entities.
We also manually check for names missed by NER and add them to our list. With
the final name list we label the names in the entire dataset which include many
instances missed by the original NER pass. E.g. there might be two different ways
of referring to the same character (“Mary Jane” as “MJ”), so we link them together
under one “alias”. Additionally we annotate the gender of all the characters. In
the second step, we annotate pronouns “he” and “she” in all descriptions. When
possible we link them to one of the existing names (with some exceptions for rare
characters which were not named). In total we label 45,325 name mentions and
annotate 17,839 pronouns, see Table 8.1. With this information, we create our
corpus MPII-MD Co-ref+Gender where we transform the original descriptions so



8.4 visual representations for characters and their context 151

Names Pronouns All Mentions Boxes

Training 37,432 15,093 52,525 489

Validation 3,440 1,092 4,532 412

Test 4,453 1,654 6,107 1,748

Total 45,325 17,839 63,164 2,649

Table 8.1: Left: number of annotated mentions, right: number of named bounding
boxes, on MPII-MD.

that every character mention, which appears in a previous sentence, is replaced
with “MaleCoref”/“FemaleCoref”, otherwise with “MaleName”/“FemaleName”.
We emphasize that this is the only difference to the standard “Someone” MPII-MD,
and there are no other differences between the datasets, i.e. the video-clips and splits
are identical.

Grounded character annotations. To evaluate the correctness of character ground-
ing we annotate some characters with bounding boxes in video frames. For a subset
of movies from MPII-MD Training, Validation and Test set we randomly select some
sentences and annotate all the mentioned characters. More specifically, whenever
the character is mentioned in the sentence and visible in the corresponding clip
we annotate a few frames of the clip with his/her head bounding boxes. In the
final evaluation we also want to check the co-reference correctness, i.e. the link
between the character track in current and previous clips. Thus we include pairs of
consecutive sentences/clips from the Test set in our annotations. In total we label
2,649 bounding boxes with names, see Table 8.1.

8.4 visual representations for characters and their con-
text

In this section our goal is to localize individual characters in video and extract visual
representations informative of their appearance and context. Towards this goal we
first detect, track, and extract localized representations for individual characters
(Section 8.4.1), and then extract global representations which capture the scene and
context not captured in localized character representations (Section 8.4.2).

8.4.1 Character tracks and representations

To localize the characters in movies we focus on localizing the heads as most of the
time the head of a character is shown, but frequently not the full body. In contrast
to prior work e.g. (Ramanathan et al., 2014) we do not focus on frontal faces only
but also allow for more challenging views, like back view. We first detect the heads
(Section 8.4.1.1) and then track them with a two-step clustering approach which
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is able to track across shot boundaries (Section 8.4.1.2). We extract several visual
representations based on the tracks which allow us to estimate character’s identity,
activity, gender, and their importance to be described (Section 8.4.1.3).

8.4.1.1 Head detection

We first detect all person instances in our videos using a head detector. Unlike
conventional face detectors, our head detector can reliably detect profile faces and
even back view heads. This is desirable because movies contain a large variety
of view angles on heads. Our detector is based on the Faster R-CNN (Girshick,
2015b), a state-of-the-art object detection framework. For training our head detector
we collect head detection bounding box annotations over the PASCAL VOC 2010

trainval set. The dataset consists of 10,103 images of 7,372 head instances. 6,659

images do not have people, but we retain them as source of negatives. We make
two modifications to the original Faster R-CNN configuration (tuned for 20 PASCAL
object category detection) to make it more suitable for our head detection task. First,
we account for small heads by adding smaller scale "anchor boxes". Anchor boxes
refer to the default set of sliding window proposals from which Faster R-CNN
regresses detection bounding boxes. Second, instead of doing hard negative mining
by considering only proposals with ground truth overlap > 0 and ≤ 0.5 as negative
samples, we include any proposal with overlap ≤ 0.5 as negatives. This greatly
improves the quality of our head detector by increasing the diversity of negative
head training samples. We run our detector on every frame of MPII-MD. We keep
all the head detections with scores ≥ 0.5 and both dimensions ≥ 40 pixels.

8.4.1.2 Head tracking

After obtaining the head detections we aim to track them within the video clip.
More specifically, we want to group all detections corresponding to the same person
together. We need to take into account that the movies have shot boundaries (rapid
changes in a camera viewpoint/angle). Thus the motion of a person can not be the
only cue for tracking and we require an appearance cue to group together different
views of the same character. This motivates our two-step approach, where we first
group head detections within individual shots based on their motion and then
further group the obtained tracks based on their appearance.

We obtain shot boundaries with a shot boundary classifier: To determine whether
a there is a boundary between two frames we rely on two features. First, we obtain
the color histograms on both frames and compute the Manhattan distance between
the two. Second, we run a standard Matlab interest point tracking, namely, the
Kanade-Lucas-Tomasi (KLT) point tracker (Lucas and Kanade, 1981; Tomasi and
Kanade, 1991), initialized in the first frame with corner points from the minimum
eigenvalue algorithm. We compute the ratio of points that are reliably tracked in the
second frame. Based on these two characteristics we estimate the thresholds which
allow us to detect shot boundaries and achieve high recall on a small set of manually
annotated frame pairs w.r.t. to being a shot boundary. We select the parameters on a
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set of annotated frames and get the F-score 0.98. We try to detect all boundaries if
possible and not produce too many false positives (wrong boundaries). Our tracking
approach can deal with some false positives by clustering different tracks together
based on appearance.

Our tracking framework is based on work of Tang et al. (2015), a multicut (Chopra
and Rao, 1993; Grötschel and Wakabayashi, 1989) tracker for pedestrians in street
scene videos. The idea is to build a graph based on the person detections in the
video, and then obtain the tracks by partitioning the graph into an optimal number
of connected components, based on attractive and repulsive pairwise terms between
pairs of detections. It is essentially a clustering based tracking formulation, which
produces robust tracking result. In our work, we adapt the multicut tracker to
generate tracks for person heads in video clips. We cast our tracking task as a
two-level clustering problem. On the first level, we generate tracks from detections
that are obtained on the consecutive frames within individual shots. To generate
tracks from detections, we employ simple geometric features between detection
bounding boxes. Specifically, given two detection bounding boxes b and b′, each
has spatial-temporal location (x, y, t) , scale h and a corresponding image region
B. We define the following variables h̄ =

(hb+hb′ )
2 , ∆x =

|xb−xb′ |
h̄ , ∆y =

|yb−yb′ |
h̄ , ∆h =

|hb−hb′ |
h̄ , IOU =

|Bd∩Bd′ |
|Bd∪Bd′ |

, where IOU is the intersection over union of the two detection
bounding boxes. The pairwise feature is defined as (∆x, ∆y, ∆h, IOU). Additionally,
we add the quadratic terms of each feature to form a non linear mapping from
feature space to the pairwise potentials.

On the second level, we cluster tracks that are obtained from the first level that
are at least 5 frames long for computational efficiency. For the second level we rely
on the visual appearance features. More specifically, for each track we mean pool the
FaceVGG (Parkhi et al., 2015b) fc7 features on the head crops. We then compute the
cosine distance between each pair of tracks and use 1− cosine as pairwise potentials
in the second clustering step.

8.4.1.3 Track representations

As mentioned earlier we need the representations extracted from the tracks to allow
us to (re-)identify the characters, predict their activity and gender, and estimate if
they are worth describing.

For re-identification of characters we again rely on the FaceVGG (Parkhi et al.,
2015b) fc7 representation, referred to as vhead in the following. We mean pool the
track representation over all head crops clustered in this track and refer to this as
vhead(t) of track t. We discuss in Section 8.5 how we estimate the similarity of two
tracks for character re-identification in our pipeline. We include the person body
context which could be useful to e.g. predict the person’s activity. We extract the
body region w.r.t. the head bounding box: 3 times wider and 6 times taller. We
experiment with two visual features on the body region. First is a VGG (Simonyan
and Zisserman, 2015) representation (fc7) fine-tuned on the 393 activities from the
MPII human pose activity dataset (Pishchulin et al., 2014) using the model provided
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by Gkioxari et al. (2015). We only use the body crop ignoring the additional context
features as they would be similar across tracks and thus likely not help too much to
distinguish tracks, but would significantly increase computation. Another feature
we compute is ResNet (He et al., 2016) (pool5), trained on ImageNet (Deng et al.,
2009) for object classification. We mean pool both visual representations over all
body crops in a track and refer to this as vbody(t). In the experiments we specify
if/which feature is being used. We find, as also noted by Parkhi et al. (2015a), that
the described characters are frequently in the front, center, and large compared to
characters not described (background characters). Rather than manually defining
a good function we provide the following track statistics vstat(t) and allow our
approach to learn from this data: track length, mean and standard deviation of head
width/height/center/detection score.

We do not extract designated gender features, as we find that vhead and vbody

carry strong information about this aspect. It is straightforward to include even more
targeted representation as part of future work. All the computed representations are
normalized element-wise by first mean centering and then dividing by the standard
deviation to improve learning subsequent functions with deep learning.

8.4.2 Holistic video representations

In the previous section we discussed how and which localized features we extract
for characters. To additionally capture context, objects, and scene information which
are all important to describe movies, we additionally rely on global representations
described in Chapter 5. We shortly review them in the following: 1) scores from
146 activity classifiers trained with Dense Trajectory features (Wang and Schmid,
2013); 2) scores from 99 object classifiers trained with LSDA (Hoffman et al., 2014)
responses; 3) scores from 18 scene classifiers trained with PLACES-CNN (Zhou et al.,
2014) responses. All the classifiers were trained using the words from descriptions
as labels. The provided visual feature vglobal is a 263 dimensional concatenation of
all three groups of scores.

8.5 generating grounded and co-referenced descriptions

As discussed in the introduction we focus on local character grounding and co-
reference resolution, while generating the description. More specifically we aim to
predict the character grounding and do co-reference resolution given the previous
sentence grounding. At test time this allows to e.g. process the movie sequentially
from start to end. In the following we rely on our transformed description corpus,
MPII-MD Co-ref+Gender, as described in Section 8.3.

The key ideas of our approach are to predict grounding and co-reference reso-
lution jointly while generating the sentence (Section 8.5.1) and to learn grounding
and co-reference with noisy supervision at training time obtained automatically
by linking character mentions and tracks (Section 8.5.2). Figure 8.2 provides an
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overview of our model.

8.5.1 Predicting grounding and co-reference during sentence generation

For generating sentences we rely on the recurrent LSTM (Hochreiter and Schmid-
huber, 1997) network as defined in (Zaremba and Sutskever, 2014). To predict
the hidden state at step τ of the sentence, we provide it with the previous word
wτ−1 and hidden state hτ−1, as well as the current visual representation vτ: hτ =
f LSTM([wτ−1vτ], hτ−1) where [.] denotes concatenation. The f LSTM has an additional
hidden state or memory cell ct which is not exposed. The word is then predicted
as wτ = f pred(hτ) = So f tmax(Wpredhτ + bpred) which can be supervised with the
ground truth word ŵτ. Note that our vocabulary w ∈ V does not contain any char-
acter names, but only Vperson = {MaleCoref,FemaleCoref,MaleName,FemaleName} ⊂ V.

In the following we discuss how we obtain a vτ which allows to predict the
correct word and at the same time solve the grounding and co-reference problem.
We formulate the problem in terms of tracks which are the result of the head tracking
in Section 8.4.1.2. We have tracks tc ∈ Tc in the current clip (C = |Tc|), and tracks
tp ∈ Tp in the previous clip (P = |Tp|). We always assume the sentences in the
previous clip are already grounded to tracks and only consider those tracks which
correspond to mentions of characters in the sentence. Whenever we generate a word
wτ which refers to a person wτ ∈ Vperson, the task is to also select which track tĉ
it corresponds to in the current clip and which track t p̂ in the previous clip. To
account for the case when the person was not mentioned in the previous sentence we
include t0 in Tp which represents a null track, which has to be selected to indicate
we describe a “new” name. As we are modeling only two consecutive clips at a time,
this means if t p̂ = t0 we want to generate MaleName or FemaleName and MaleCoref or
FemaleCoref otherwise.

Track re-identification for visual co-reference. To estimate similarity of two tracks
tp and tc we learn a weighting after element-wise multiplication1:

vid(tp, tc) = vhead(tp)� vhead(tc) (8.1)

f id(tp, tc) = W idvid(tp, tc) (8.2)

For p = 0, which indicates no similar track exists, we set vid(t0, tc) = −1. In
preliminary experiments we found that this works better than 0, as values vid are
close to 0.

Learning grounding and co-reference jointly. The goal of our approach is to
select a track tĉ and the corresponding previous track t p̂ which matches the person

1A note to our notation: We use superscript for names of variables and functions and subscript
for indexes. W is consistently used to represent learned multiplicative weights and b to represent
additive bias weights.
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Figure 8.2: Overview of our model. Some components are omitted for clarity, e.g.
we omit the body and statistic representations.

we are describing with the current word at time τ, in other words we ground this
person in tĉ and link it to t p̂. As noted above if t p̂ = t0 there is no previous track
with the same identity as tĉ. We propose to jointly predict ĉ and p̂ using an attention
mechanism which takes into account the re-identification and visual representations
as well as the hidden state hτ−1 of the recurrent LSTM network generating the
description.

The visual features are jointly embedded in the same space as the embedding
learned for the hidden state:

f visual(tp, tc) = Wheadvhead(tc) + Wbodyvbody(tc) + Wstatvstat(tc) + f id(tp, tc) + bv

(8.3)

Afterwards visual and hidden state representation are element-wise multiplied and
we learn a function to predict the attention α. This is inspired by Xu et al. (2015a),
who combine convolutional visual features and the recurrent hidden state in the
same way to predict spatial attention. Conceptually different, we predict two aspects
jointly, the grounding tp and linking tc of tracks from different clips.

ᾱp,c,τ = f att(tp, tc, τ) = Wαφ(Whhτ−1 + bh)� φ( f visual(tp, tc)) + bα (8.4)

with the htan non-linearity φ(x) = ex−e−x

ex+e−x . The attention is normalized with softmax
and then we use the predicted α in a weighted sum to get the new local visual
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representation:

αp,c,τ =
exp(ᾱp,c,τ)

∑P
i=0 ∑C

j=1 exp(ᾱi,k,τ)
(8.5)

vgrounded
τ =

P

∑
i=0

C

∑
j=1

αp,c,τ[vhead(tc), vbody(tc), vstat(tc)vid(tp, tc)], (8.6)

where [.] denotes concatenation. We use this together with the global/holistic video
representation vglobal (see Section 8.4.2) and the previous word wτ−1 to predict
the next hidden state of the recurrent LSTM network as discussed above: hτ =
f LSTM([vgrounded, vglobal, wτ−1], hτ−1).

Supervising grounding and co-reference. While this system can be trained by
only providing reference sentences as supervision, it is difficult to jointly correctly
learn the grounding and co-reference resolution. We thus discuss in the next section
how to obtain supervision for αp,c,τ. Instead of annotating all characters mentions
with tracks, we try to automatically predict the correct track t for each character
mentions wτ in the sentence. As we have ground truth co-reference on the text side
for the entire training data (Section 8.3), we can construct the joint ground truth α̂p,c,τ
from the groundings per clip α̂p,τ, α̂c,τ. For all non-character words wτ /∈ Vperson, no
supervision and thus no loss is provided. The losses from sentence supervision and
grounding/co-reference supervision are weighted equally.

8.5.2 Obtaining automatic supervision: linking character mentions and tracks

In this section we discuss how to ground or link character mention with id mτ in
text at position τ to a corresponding visual track tc in the video to provide ground
truth α̂c,τ used above. In contrast to sentence generation here we explicitly use the
character mentions m (e.g. "Harry") which appear in the text. In other words we
want to robustly choose the correct track for all character mentions. Note, that
this is a different from e.g. Parkhi et al. (2015a), who aim to link all the visual
tracks to correct names. To link the name mentions in text to tracks we adapt our
approach GroundeR (Chapter 6). This approach was initially proposed for the task of
localizing text phrases within an image without localization supervision, i.e. where
the phrase is located. The main idea is to learn to attend to the right bounding box
out of a set of proposals, by trying to reconstruct the phrase. We adapt this to our
scenario by learning to localize a character mτ,k in the set of tracks Tk from clip
k, where character m is mentioned in the sentence k at position τ. We represent
tracks with vhead(tc,k) and encode character names m together with an identifier of
the gender(m) ∈ {M, F} as separate word in an LSTM. Adding the gender allows
the model to exploit correlations with different visual appearance of male versus
female people and thus simplifies selecting the right track. In the special case when
the sentence k only contains a single name and the clip k contains a single track,
i.e. |Tk| = 1 we assume that grounding is correct and this information is used as
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additional supervision, thus enabling the semi-supervised setting of GroundeR. To
train the model we use pairs ([gender(mτ,k), mτ,k], {vhead(tc,k)}c∈{1..C}) and predict
the grounding as the track with maximum attention from the all tracks in the clip.

8.6 evaluation

We start with evaluating the quality of our person head detection and tracking. Then
we look at the quality of automatic linking between character names and tracks,
obtained in Section 8.5.2. Finally, we evaluate our complete pipeline for grounded
movie description. We break down the evaluation in two parts: description quality
and grounding quality.

8.6.1 Head detection and tracking

We evaluate our head detections and tracks on the collected bounding box annota-
tions from Section 8.3. Given the annotated bounding boxes we compute detection
recall by looking whether there is a head detection in a given frame that overlaps by
IOU ≥ 0.5 (Intersection Over Union) with the annotated head box. The track recall is
computed similarly, based on the presence of the track that goes through the given
frame while overlapping with the annotated box by IOU ≥ 0.5. Table 8.2(a) shows
recall on the Training, Validation and Test parts of the annotations.

We analyze the missing recall of our head detector on the Training annotations.
We find that there are multiple failure modes, such as motion blur, occlusion and
head size (both small and large) contributing to the missing recall. On the well
visible heads we achieve 93.2% recall. The tracking recall is slightly lower than the
detection recall, due to the short track rejection (see Section 8.4.1.2). In particular
tracking can be hard when the head is observed from an unusual angle. Overall,
we find that our annotations are rather challenging and the obtained performance
is reasonable. We also note that our approach works already works with one good
track for each character.

8.6.2 Linking characters with tracks

For every clip we restrict the number of tracks to at most 50, if more than 50
tracks are available we sort them by length and keep the longest, otherwise we
zero-complete the missing tracks. For the previous track we consider at most 7

candidate tracks in addition to the "null" track (no match among the previous
tracks). Thus there are 8× 50 possible choices to predict the character grounding and
co-reference during sentence generation. We first train the GroundeR (Chapter 6)
approach on Training movies only in order to estimate the hyper parameters. Next
we combine the Training, Validation and Test movies and train GroundeR on this
joint set. We evaluate the accuracy of the obtained predictions on the annotated
pairs name/bounding box presented in Section 8.3. For a given name we choose the
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Recall Training Validation Test Accuracy Training Validation Test

Detection 82.00 65.78 84.73 GroundeR 78.12 84.46 80.35

Tracking 78.53 61.65 81.41

(a) (b)
Table 8.2: (a) Detection and tracking recall on the annotated character heads. (b)
GroundeR accuracy on the annotated names/bounding boxes (evaluated on the
boxes covered by the tracks). In %.

top scoring track as the grounding prediction. For this track we then check whether
it contains the annotated frame and overlaps with the annotated box by IOU ≥ 0.5.
Table 8.2(b) shows that GroundeR is able to quite robustly predict the correct track
for a given character name.

8.6.3 Evaluating description quality

We evaluate our approach in terms of description quality and compare it to a few
baselines as well as prior work via an automatic as well as human evaluation. We
report all the standard automatic measures in Table 8.3. For human evaluation the
human judges were provided with pairs of a reference sentence and a predicted
sentence, and asked to compare them w.r.t. being helpful for a blind person to follow
the events in the video. The judges can decide that one sentence is better than the
other or both are similar. Each pair is evaluated by three human judges. Afterwards
for every system we compute the percentage of times when at least 2 out of 3 judges
decided that the predicted sentence is similar or better than the reference. Table 8.3
presents the results of human evaluation in the last column.

The top part of the table contains the reference numbers from prior works on
the standard version of the corpus. We cannot use attention supervision or evaluate
grounding on standard MPII-MD, which are our core contributions. It is encouraging
that our reduced model “Our w/o α” achieves similar scores to prior work.

The middle and bottom part of the table presents results on MPII-MD Co-
ref+Gender, thus the numbers between the two settings are not directly comparable as
the references changed which strongly affect the automatic evaluation measures. To
address this we evaluate our approach Visual-Labels (Chapter 5), on the transformed
corpus. Unlike Chapter 5, here we do not ensemble multiple models. For a fair
comparison with the Visual-Labels in the middle part of Table 8.3, we provide
ablations that do not have access to the previous clip character grounding but
instead select the 7 biggest previous tracks if sorted by track length multiplied by
an average track area. We compare a variant of our approach without the body
context features (“Our”), one with body features (“Our + Activity”) as described
in Section 8.4.1.3, and one which removes the attention mechanism but uses the
activity feature and encodes it jointly with the holistic feature (“Our + Activity w/o
attention & co-reference”). In the bottom part of Table 8.3 we use the automatically
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Automatic Human
Approach Bleu-4 Metor Rouge CIDEr judgment

Standard MPII-MD with “Someone”
SMT-Best (Chapter 5) 0.47 5.59 13.21 8.14 -
Visual-Labels (Chapter 5) 0.80 7.03 16.02 9.98 -
S2VT (Venugopalan et al., 2015a) 0.64 7.10 15.69 6.96 -
Our w/o α̂ 0.84 6.43 16.10 10.66 -

MPII-MD Co-ref+Gender
without previous clip character grounding

Visual-Labels (no ensemble) 0.66 5.21 13.94 10.34 11.8
Our + Act. w/o att.&co-ref. 0.74 5.58 14.49 10.22 11.0
Our 0.67 5.06 13.17 10.89 14.8
Our + Activity 0.71 5.31 14.14 11.33 15.0

with previous clip character grounding
Our w/o α̂ 0.66 5.82 14.29 10.48 10.8
Our w/o statistic features 0.75 5.81 14.97 11.65 -
Our 0.68 5.81 15.33 11.70 14.0
Our + Activity 0.82 6.17 16.12 12.64 14.5
Our + ResNet 0.88 6.00 15.70 11.76 13.0

Table 8.3: Left: automatic / right: human evaluation of description generation on
the test set of MPII-MD; for discussion see Section 8.6.3.

obtained previous clip grounding (via Section 8.5.2, which has access to the previous
ground-truth sentence), so that different variants of our approach are comparable,
as they obtain the same previous information. Here we compare “Our” and two
variants of our approach with body features (“Our+Activity”, “Our+ResNet”). We
also ablate the impact of the grounding and co-reference supervision (“Our w/o α̂”)
and the statistic features (“Our w/o statistic features”).

From Table 8.3 we see that: a) the ablation systems “Our” / “Our + Activity”
(without previous clip character grounding) achieve similar or better sentence quality
than the Visual-Labels baseline; b) the variant with extra body context but without
attention mechanism gets lower human score than our full system (11.0 vs. 15.0); c)
providing grounding and co-reference supervision α̂ benefits the sentence quality;
d) overall, body context features benefit the scores, while the statistic features do
not make a significant impact. The best result, according to human evaluation,
is achieved by the variant of our approach “Our + Activity” without previous clip
grounding, significantly improving over the Visual-Labels baseline. A possible expla-
nation for this is as follows. For the automatically obtained previous clip’s character
grounding we might: a) link correctly; b) link the characters to tracks incorrectly;
c) miss some links if names are absent. In a) we follow the storyline of the movie.
If we instead use the largest tracks in the previous clip, we bias the description of
the current clip in a different way, e.g. focus on the most salient characters. Thus, in
some cases the obtained descriptions are ranked higher by the humans, as they only
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Previous clip Current clip

Sophia wanders into the lobby 
and steps up to the counter.

Sophia looks at Jacob.
(1) Our + Activity with ground-truth:Ground-truth:

Sophia looks at her.
(2) Our + Activity w/o ground-truth:

prev. clip character grounding 

prev. clip character grounding 

Figure 8.3: Supported by a visual co-reference to the previous clip, (2) correctly
refers to a receptionist as ‘her’, rather than ‘Jacob’(1).

see the current clip in isolation (no story-line). In b), c) it is naturally more difficult
to obtain a correct description of the current clip. See Figure 8.3 for an example.

8.6.4 Evaluating grounding quality

In this section we evaluate the correctness of the predicted grounding, co-reference
and the generated character specific word wτ ∈ {MaleCoref, FemaleCoref, MaleName,
FemaleName}. We evaluate our predictions with respect to the manually obtained
ground-truth (Section 8.3) or automatically obtained ground-truth (Section 8.5.2).
For each of the named bounding boxes we obtain the track which overlaps with it
most, for every character mention we obtain one or more associated ground-truth
tracks. In total we obtain a set of 186 sentences with manually obtained grounding
and co-reference. For the automatic annotations we evaluate on a complete MPII-MD
Test set (6, 578 sentences).

We break down the evaluation in three parts: Grounding, Grounding + Co-Reference,
Grounding + Co-Reference + wτ (generated word). We compute precision and recall for
each of these tasks and report the F1 score. Precision is computed as a percentage
of predictions {αp,c,τ, wτ}, wτ ∈ {MaleCoref, FemaleCoref, MaleName, FemaleName},
which are present in ground-truth. For the grounding task we only check whether
the track tc is present among ground-truth tracks. For co-reference it has to be also
correctly linked to the track tp from a previous clip. For the final task the predicted
word wτ with the track tc and predicted co-reference tp has to be present in the
ground-truth. Recall is computed in a reversed way: for every ground-truth pair
{α̂p,c,τ, ŵτ} we check whether it is in the predictions.
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manual labeled subset automatic gt, full set
F1 score Ground.+Co-Ref + wτ Ground.+Co-Ref + wτ

Baselines with heuristic attention
Visual-Labels Center 59.21 19.33 13.83 36.17 24.52 17.26

Visual-Labels LxA 69.58 23.93 18.80 41.62 27.58 19.82

Visual-Labels LxA,Sim 69.58 39.05 6.07 41.62 29.76 13.11

Our w/o α̂ 64.60 21.75 13.47 46.19 28.88 20.41

Our w/o stat.feat. 70.77 50.34 44.57 46.34 38.14 32.87

Our 69.17 53.92 49.55 47.24 38.47 33.88

Our + Activity 71.99 50.54 45.63 53.12 42.15 37.23

Our + ResNet 69.76 51.51 46.54 54.73 43.17 37.92

GroundeR gt 89.10 84.36 84.13

Table 8.4: Grounding evaluation on test set. For discussion see Section 8.6.4.

The top part of Table 8.4 shows a set of baselines where we aim to obtain
the grounding and co-reference resolution as a post-processing step after the sen-
tence was generated. We use Visual-Labels as a sentence generation baseline. We
consider multiple heuristics to select the track: central position, length, length multi-
plied with the average area. Additionally we use a simple co-reference resolution
method: if there are tracks in the previous clip we pick the one which is most
similar to the selected track as a co-reference. The similarity is estimated as a
1− cosine(vhead(tc), vhead(tp)). The bottom part of the table lists the variants of our
approach introduced earlier.

Table 8.4(left) presents the evaluation with the manually obtained ground-truth.
As we can see: a) the baselines are rather competitive in the grounding task, however
they fall far below our approach in the co-reference task; b) grounding and co-
reference supervision α̂ is very important to learn the co-reference prediction; c)
statistics features, although they did not impact the description quality significantly,
benefit the co-reference resolution; d) our approach is doing quite well in the final
task, meaning that the language model correctly learns when to use co-references
and recognizes the gender information.

In the last line of Table 8.4 we evaluate the quality of automatic ground-truth
predictions from Section 8.5.2 with respect to our tasks. As we can see the predictions
are overall quite reliable. Encouraged by that we perform the evaluation on this
automatic ground-truth for the complete Test set, Table 8.4(right). We note, that the
manually annotated set covers only 2.8% of the full test set, so the results on the
full test are more stable. We make the following observations: a) an ablation w/o
statistic features again slightly drops in performance; b) all the baselines fall below
our best approaches in all three tasks; this can be attributed to a more challenging
data distribution: the complete test set contains sentences/clips where characters
are absent and that has to be recognized correctly, while the manually annotated
set always contains characters and is biased towards co-references; c) on this larger
and more challenging test set we see that “Our + Activity” and “Our + ResNet”
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Sophia   gags as she pushes past him and walks out. Our + Activity: She   and   Jacob   walk down the corridor.

Visual Labels: Someone strides to the window.

Current clipPrevious clip

Daniel    runs to the alarm console and turns it off with 
two seconds to spare.

Our + Activity: Jacob  and  Daniel   go to the door.

Visual Labels: Someone enters the room, then follows the door.

Current clipPrevious clip

8

Figure 8.4: Qualitative results of our approach on the grounded movie description
task. Given a previous grounding we predict a sentence, grounding and co-reference.

benefit from additional body features and achieve better performance than the basic
variant “Our”; one observation we make is that these two variants are more accurate
with respect to presence/absence of people in the sentence/video which impacts the
precision and thus the F1 score. In Figure 8.4 we provide some qualitative examples
with the predictions from our approach.

8.7 conclusions

In the previous chapters we separately studied the problem of video description
(Chapters 4, 5) and visual grounding (Chapters 6, 7). In this chapter we look at a
novel task, namely generating descriptions with joint grounding and co-reference
resolution of person mentions. We propose a novel approach, which relies on an
attention mechanism that jointly learns to solve the grounding and co-reference
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resolution while learning to describe the video clip. By learning to automatically
link names and tracks we provide supervision into our approach which significantly
improves its ability to perform co-reference resolution. We demonstrate encouraging
results in a complex task of grounded movie description and achieve improvements
over several baselines. Our approach generates sentences of better quality than the
baselines as shown by automatic and human evaluation. Overall, our approach
can describe video, reason about persons identities, recognize their genders, and
localize them in video. We believe that this work is a first step towards fully coupling
generation and grounding while performing image/video description. We will
release the annotations and extracted tracks and hope that this will benefit other
researchers who work on linguistic and/or visual co-reference resolution, movie
question answering, visual storytelling, and multi-sentence video description.



9
C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

Language description of visual content is a long standing problem in computer
vision which received significant attention only recently. In the last few years image
captioning and video description became standard tasks, and generally, Language and
Vision became one of the most exciting and fast evolving research directions. This
creates a lot of opportunities for collaboration and knowledge exchange between
computer vision and computational linguistics. Indeed, many ideas from language
processing have been applied to computer vision problems (Duygulu et al., 2002;
Hofmann, 2001; Sivic et al., 2005; Vinyals et al., 2015) and vice versa (Barnard and
Johnson, 2005; Johnson and Zhang, 2015; Pu et al., 2007). While the early works have
only studied limited interactions between language and vision (Barbu et al., 2012;
Kulkarni et al., 2011), now, the increasingly popular deep learning techniques allow
us to bridge the gap between different modalities more easily (Karpathy and Fei-Fei,
2015; Kiros et al., 2015a; Tapaswi et al., 2016). At the same time, new tasks have
emerged and quickly became popular, such as visual question answering (Antol et al.,
2015; Malinowski and Fritz, 2014) and localization of textual phrases or referring
expressions (Mao et al., 2016; Plummer et al., 2015). Although most research focuses
on the image domain, recent deep learning techniques and new parallel corpora
of video and sentences allow us to study video-language interactions more closely
(Maharaj et al., 2017; Yao et al., 2016).

In this thesis we have looked at three research directions, which we shortly
summarize in the following. In the first direction, video description of fine-grained
cooking activities, we focused on long cooking video understanding and description.
We proposed approaches to recognize fine-grained and composite cooking activities,
and describe them in a coherent way at variable level of detail. We also contributed
with a parallel dataset of videos and multi-level descriptions to study the aforemen-
tioned problem. In the second direction, large-scale movie description, we moved to the
large-scale open movie domain. We contributed with a new large dataset of movies
with aligned professional descriptions, and proposed an approach to provide reliable
descriptions for short movie clips. In the third direction, language grounding and
grounded video description, we addressed the visual grounding problem. We showed
how to approach textual phrase localization in images with little or no localization
supervision. Furthermore, we proposed an approach to video description with
grounded and co-referenced people. In all three directions we have advanced the
state-of-the-art on multiple challenging benchmarks.

In this chapter we discuss the contributions of the thesis in more detail (Sec-
tion 9.1) and then review open issues and possible future research directions (Sec-
tion 9.2).
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9.1 discussion of contributions

In this thesis we have explored two high-level topics: automatic natural language
video description and grounding of natural language in visual data. We tackled three
specific sub-topics, namely video description of fine-grained cooking activities, large-scale
movie description and language grounding and grounded video description, as introduced
earlier. We now discuss the main results and insights that this thesis contributes.

9.1.1 Video description of fine-grained cooking activities

The first two chapters of the thesis are devoted to understanding and describing
fine-grained cooking activities. We introduced our MPII Cooking 2 dataset in
Chapter 3. The dataset includes 273 videos of 30 different human subjects performing
various cooking activities. We addressed both, the fine-grained activity (small
steps) classification and detection, as well as composite activity (high-level topic)
classification. We showed that our hand-centric approach, namely detecting hands of
the subject and extracting visual representations around them, benefits fine-grained
activity and object recognition. We found that Dense Trajectory features extracted
around hands outperform the holistic Dense Trajectories. When combined with
additional hand-centric color Sift features we further improved the recognition of
manipulated objects. Towards composite activity recognition, we took the attribute-
based approach, namely we modeled the composites with the smaller steps that they
include (fine-grained activities) as well as participating objects. We also showed how
to improve the recognition and even perform zero-shot recognition of composite
activities by exploiting linguistic data (scripts).

In Chapter 4 we proceeded to automatically describing the cooking videos
in the MPII Cooking 2 dataset. To train and evaluate our models we collected
sentence descriptions for each video at three levels of detail, resulting in our TACoS
Multi-Level dataset. As our videos are long, each depicting a certain composite
activity (i.e. dish preparation), it is natural to generate multi-sentence descriptions
for them. To that end we proposed an automatic temporal segmentation approach,
based on agglomerative clustering of visual attributes, and then described each
segment relying on the translation approach of Rohrbach et al. (2013b). However
this does not guarantee coherence across generated sentences. We showed that
modeling the composite activity (high level topic shared by all segments) in our
probabilistic formulation improves consistency of the descriptions. We additionally
post-processed the generated descriptions to increase their fluency and cohesiveness.
We also improved the visual recognition in two ways. First, we trained semantic
role-aware classifiers for visual attributes to distinguish e.g. if a knife is used as a
tool (“he cuts a carrot with the knife”) or an object (“he rinses the knife”). Second, we
exploited the hand centric approach to fine-grained activity and object recognition,
described above. This lead to substantial improvement in recognizing manipulated
objects. One the language generation side, we used a probabilistic input to the
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translation system in a form of a word lattice and showed its benefits over the
single best visual prediction as done by Rohrbach et al. (2013b). We also addressed
the multi-level description generation, namely describing videos at three levels of
detail. We analyzed the collected descriptions in TACoS Multi-Level corpus, and
found that across different types of descriptions the language statistics changes.
We showed that the high level topic of the video can guide us to extract the most
informative segments that summarize the video. We applied this idea to generate
short 3 sentence summaries by extracting the respective sentences from the detailed
descriptions. To obtain the single sentence descriptions, however, we showed that it
is necessary to learn a targeted translation model to capture the language statistics.

9.1.2 Large-scale movie description

Chapter 5 of the thesis focused on a challenging problem of movie description.
A central contribution is a new large-scale dataset of movie video with manually
aligned professional descriptions, the Large Scale Movie Description Challenge
(LSMDC), based on the MPII Movie Description (MPII-MD) and M-VAD datasets.
We sourced the descriptions from movie scripts and Audio Descriptions (AD) for
the visually impaired. Our dataset comprises 200 movies of diverse genres and has
over 150 hours of video. We showed that AD is a better language resource than
scripts to study the movie description task. Over 200 research groups from all over
the world have requested access to our dataset. We have organized two editions
of the Large Scale Movie Description and Understanding Challenge (LSMDC)2 to
maintain progress in video understanding research, LSMDC15 at ICCV 2015 and
LSMDC16 at ECCV 2016. The evaluation protocol for LSMDC15 involved all the
standard automatic measures and human evaluation. Humans were asked to rank
the provided descriptions w.r.t. their correctness, grammar, and relevance to the
video. We also proposed to evaluate according to the new criteria, “Helpful for the
blind”, namely asking which description is more helpful for a blind person to follow
the movie. We changed the evaluation protocol in LSMDC16, converging on the
“Helpful for the blind” criteria and switching from ranking to a pairwise comparison
of evaluated systems and human references, similar to “M1" metric in the MS COCO
Challenge (Chen et al., 2015), to allow comparison of a higher number of systems.
We found that all the competing approaches, except the retrieval-based, struggle to
capture the long-tail distribution of the LSMDC dataset.

We also presented a movie description approach, Visual-Labels, which relies
on visual classifiers, and, similar to Donahue et al. (2015), provides the classifier
scores as input to an LSTM. We used our semantic parser to extract the most visual
semantic concepts from the sentence descriptions, and trained the respective visual
classifiers. We showed that maintaining the most reliable classifiers and training
different semantic concepts disjointly benefits the performance. We also showed
the benefits of applying dropout after the LSTM module in the generation pipeline,
the importance of selecting training iteration w.r.t. the linguistic evaluation metric,
and the advantage of using LSTM ensembles. Visual-Labels obtained state-of-the-art
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performance on the MPII-MD and M-VAD datasets according to automatic and
human evaluation. We analyzed the challenges in the movie description task using
our and two other approaches. We found that the factors which contribute to higher
performance include presence of frequent words, sentence length and simplicity as
well as presence of “visual” verbs (e.g. “nod”, “walk”, “sit”, “smile”). We also found
a high bias in the data towards humans as subjects and verbs like “look”, “stare”,
etc. All the compared approaches suffer from the issue of a low vocabulary size,
compared to reference descriptions.

Beyond our study on single sentences, the LSMDC opens new possibilities to
understand stories and plots across multiple sentences in an open domain scenario
on large scale.

9.1.3 Language grounding and grounded video description

The remaining three chapters of the thesis addressed different aspects of the visual
grounding problem. In Chapter 6 we tackled the task of textual phrase localization
in images. We proposed GroundeR (GROUNDing by Reconstruction), an approach
which jointly learns visual and language representations in one end-to-end architec-
ture. We addressed the challenge of limited localization supervision (phrases paired
with bounding boxes) by introducing the Reconstruction loss. This loss penalizes
incorrectly attended image regions if the phrase generated from this region does
not match the query phrase. This enabled our approach to work in all supervision
regimes: with no, little, or full supervision. In order to handle the complexity of
natural language queries we suggested to encode them with an LSTM network
and learned a phrase representation end-to-end, jointly with the representations for
individual words. We showed experimentally that with little available localization
supervision we can already achieve state-of-the-art results, and our fully supervised
version significantly improved over the state-of-the-art on two datasets. We showed
the advantage of the Reconstruction loss also compared to a fully supervised version,
which only relied on a classification objective.

Chapter 7 studied how to combine the language and vision representation in
a neural architecture, an important aspect relevant to many language and vision
problems. We introduced the Multimodal Compact Bilinear Pooling (MCB), which
approximates the outer product between the two vector representations. We showed
two application scenarios, visual question answering (VQA) and visual grounding.
In both cases we improved over the state-of-the-art on multiple datasets. We exten-
sively ablated the proposed pooling strategy, compared it to e.g. concatenation or
element-wise product, and found MCB to work best. It also outperformed all other
approaches by a significant margin submitted to VQA challenge, and won both the
open ended and multiple choice track on real images.

In Chapter 8 of the thesis we proposed a new task of generating video descriptions
with grounded and co-referenced people. We proposed a novel end-to-end approach
which addresses multiple tasks jointly, namely it generates a video description,
while grounding and locally co-referencing the described people, and predicting
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their genders. In the core of our approach is a soft attention mechanism, which
reasons across multiple visual tracks in the two neighbouring video clips. We also
automatically generated a linking between names and tracks in a movie in a weakly-
supervised manner, using our approach GroundeR. With this linking we provided
supervision into our approach which significantly improved its ability to perform
co-reference resolution. To facilitate research in this direction we annotated the
name mentions, i.e. proper human names, their co-references (aliases, pronouns)
and genders in the MPII-MD dataset. We also annotated a subset of names with the
corresponding bounding boxes. We evaluated individual steps of our pipeline on the
set of manually annotated bounding boxes with character names. We then evaluated
our complete approach on a large and challenging test set of MPII-MD dataset. We
compared to our approach to video description, Visual-Labels, and showed that we
can achieve better performance, w.r.t. automatic and human evaluation.

9.2 future perspectives

In this section we first outline the open issues and next steps towards video descrip-
tion (Section 9.2.1) and visual grounding (Section 9.2.2), and then provide a broader
look on the field, including possible research directions in Section 9.2.3.

9.2.1 Video description

In the thesis we have discussed many challenges towards automatic video description
and provided solutions to address them (Chapters 3, 4, 5). However, our research in
this thesis points to open problems and new emerging tasks. We discuss the most
prominent ones in the following.

Addressing long tail distribution. One of the main challenges of describing open
domain video data, e.g. movies from our LSMDC dataset, is to address the challeng-
ing long-tail distribution. The data is rather imbalanced: some words are extremely
frequent (e.g. look, turn), while others are rare (e.g. transform, boil). Most ap-
proaches struggle to output diverse descriptions with a vocabulary size compared to
human references. One idea could be to decompose sentences into smaller semantic
concepts, e.g. verb phrases (“he runs”, “car drives”), and try to model the semantic
relationships between them. We could then transfer the knowledge from more
common concepts like “he runs”, to less common, e.g. “she jogs”. Another idea is to
employ the external text and visual corpora, to learn the semantics of each respective
domain first. Some recent works (Hendricks et al., 2016b; Venugopalan et al., 2017)
look into that, i.e. they study how to generate image captions for rare and even novel
(unseen) concepts.

Coherent multi-sentence generation. We have addressed multi-sentence video
description in a scenario of cooking videos (Chapter 4). However, describing open
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domain videos, such as movies, with coherent multi-sentence descriptions remains
an open problem. A few recent works approach it as they attempt to generate
paragraph-long descriptions for open domain videos (Shin et al., 2016; Yu et al.,
2016a). Multiple aspects need to be addressed to this end, e.g. a decoder which can
handle temporal connectives, anaphora, etc. in the language generation pipeline. We
studied co-reference resolution in Chapter 8, but we limited it to two neighbouring
video clips and sentences. Next steps include to extend the time horizon to a
few previous clips, which should be sufficient to decide on the usage of language
pronouns (“he”/”she” etc). Second, we need to obtain consistent person IDs in the
entire movie, rather than only locally, as we did in this thesis.

Video temporal structure. Another challenge of describing long video and/or
generating multi-sentence description, is to design an encoder, which can capture
the video temporal structure and exploit long- and short-range context. A few recent
works propose approaches to encode the short-term temporal structure (Baraldi et al.,
2017; Pan et al., 2016a; Peris et al., 2016). Still, capturing the long-term information,
such as a movie storyline, remains an open issue. The encoder should model video
hierarchical structure, i.e. frames, shots, scenes and sequences, discover which ones
are related and thus should be used as context to allow for longe-range reasoning.

Bringing in other modalities. One important challenge of our LSMDC dataset
is to obtain not purely descriptive, but also more emotion-coloured descriptions,
e.g. “She tries to hide her excitement.” This is especially challenging as the visual
representations tend to focus on objects and actions, but not on human emotions.
The recent MSR Video to Language Challenge also revealed the benefit of exploiting
multiple modalities, such as audio and metadata (high-level video category). Overall,
audio (sound), speech (dialog), emotions, body language, and meta-data can benefit
video description and should be exploited, if available. Our approach, Visual Labels,
which targets three semantic categories (actions, objects, locations) could be easily
extended to include representations from other categories/modalities.

Automatic AD generation. To fully address the automatic Audio Description (AD)
generation one needs to tackle all the challenges listed above. Moreover, one needs
to model the context, such as dialog and storyline. AD has to be carefully placed
between the dialogs, also considering the music and other sounds in the video.
Movie-specific information, e.g. movie synopsis could be extremely helpful and can
be obtained from external online resources. Additionally, named entity recognition
(e.g. people, places, objects) has to be built in the description pipeline. In this thesis
we took the first step to locally co-referencing re-appearing people (Chapter 8). In
future work the true names could be extracted either from dialog, or from one or a
few annotations per character.

Multi-level video description. The ability to produce long and detailed descrip-
tions or short summaries on demand is an important property of a video description
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system. In Chapter 4 we introduced our approach to multi-level description of
cooking videos. However, multiple issues still need to be addressed. First, we rely
on a high level topic prediction to produce summaries, which is challenging in open
domain videos. E.g. this requires understanding of a complex activity or event
shown in a video. Second, we rely on an extractive summarization technique, while
it would be more flexible to incorporate variable levels of detail into the language
generation system, and learn to adapt to a needed level of detail.

9.2.2 Visual grounding

We have discussed different aspects of visual grounding problem in this thesis
(Chapters 6, 7, 8). In the following we review the possible extensions of the proposed
approaches.

Constraints within sentences at training time. In our grounding approach (Chap-
ter 6) we apply post-processing in a form of a constraint, that multiple phrases from
the same sentence should not be grounded in the same region. In situations when
such a sentence context is available, one should model the constraints at training
time. Moreover, sometimes the sentence contains information which is necessary to
disambiguate the individual phrases. Thus grounding phrases would benefit from
incorporating full sentence context.

Model relationships between objects. A number of recent works exploit context
in a form of pairwise relationships between objects (Hu et al., 2017; Nagaraja et al.,
2016; Wang et al., 2016a; Yu et al., 2016b), by taking into account their visual similarity
or spatial relations. Future work should explore other types of relationships, i.e.
going beyong pairwise and spatial relationships. Recent datasets, such as the Visual
Genome (Krishna et al., 2016) allow us to learn diverse inter-object relationships, that
would be beneficial for visual grounding.

Compositionality. An important condition for correct understanding of complex
textual phrases is an ability to capture fine details, e.g. to distinguish “a man on a
horse” from “a man next to a horse”. Additionally, we should be able to generalize
to previously unseen phrases and configurations, e.g. “a person on top of a car”.
This indicates a need for compositional approaches, which would extract detailed
representations of the individual phrase elements and relate them to the visual scene.
A recent work of Hu et al. (2017) makes a first step towards this goal.

Language grounding in video. Grounding of natural language expressions in
video has not yet received a lot of attention in the community. The existing ap-
proaches target restricted scenarios (Lin et al., 2014a; Yu and Siskind, 2013). Grounded
video description generation is still in its infancy, as we (Chapter 8) and others (Ra-
manishka et al., 2017; Zanfir et al., 2016) take the first steps to address it. In addition
to the challenge of relating two modalities to each other, we need to tackle the
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temporal aspect, while recognizing humans and objects in video is significantly
more challenging than in static images. Our effort so far focused on humans in
video, aiming to localize and locally disambiguate them. Next steps could include
grounding human manipulated objects and subjects other than humans.

Grounding human interactions in video. As we performed people grounding in
this thesis, naturally the next step is to model relationships between multiple people.
Spatial and temporal proximity of characters in a movie can indicate interactions,
which are an important aspect in describing movies. As part of the future work we
plan to integrate grounded person relationships in the movie description pipeline.

9.2.3 A broader outlook

Finally, in this section we look at some recent trends in vision and language research
and speculate about promising research directions.

Explainability of neural models. Despite the fact that deep neural architectures
provide state-of-the-art results for many computer vision problems, inspecting and
understanding their decision making process remains challenging. Some works
visualize the back-propagated signal in the image for the object classification task
Selvaraju et al. (2016); Zhang et al. (2016); Zhou et al. (2016). Others aim to provide
explicit textual explanations for making object classification decisions (Hendricks
et al., 2016a). One recent work analyzes the decision making of a VQA system,
enabling it to provide counter-examples, i.e. similar images where an answer to
the same question is different Goyal et al. (2017). Other works aim to evaluate the
correctness of latent mappings between objects and words, learned by the captioning
systems (Liu et al., 2017; Ramanishka et al., 2017). Future work should make the
decision making process of the deep networks more transparent, e.g. in context of
video description, by providing grounding for the generated linguistic concepts.

Leveraging external knowledge. As the complexity of language and vision tasks
increases, more and more frequently we have to reason about high level concepts
and facts, which are trivial for humans, but challenging for machines. In particular,
incorporating external knowledge in deep architectures is not straightforward. A
few works take different steps towards this end. Wu et al. (2016) enhance their
VQA system by enabling it to access an external knowledge base. Other works
take a different approach, enabling one language and vision task supervise another,
e.g. video description helps VQA (Zeng et al., 2017) or VQA helps image-sentence
retrieval Lin and Parikh (2016). Future works should look into providing external
knowledge into a wider range of tasks, e.g. movie description, as discussed earlier.

Pragmatic description generation. Describing visual content with natural lan-
guage essentially is ill-defined when no specific task or context is given. Recently,
a few works proposed to study pragmatic or task-specific description generation.
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One line of work looks into generating non-ambiguous captions (Andreas and Klein,
2016) or referring expressions (Luo and Shakhnarovich, 2017) for images and their
regions. Other works look into generating explanations instead of captions for
images, as also discussed above (Hendricks et al., 2016a). In the context of this thesis,
generating AD for the blind is a better defined target, than generic video description.
Bringing in pragmatics could also benefit the evaluation procedure of description
generation, by providing proxy tasks which can be evaluated automatically.

Limited multi-modal supervision. Most supervised deep architectures are strongly
dependent on the amount of available training data. At the same time, often the
available supervision is limited, in particular, when we require aligned visual and
linguistic corpora. In this thesis we proposed a solution to un- and semi-supervised
textual phrase localization in images (Chapter 6). Future work should be able to learn
from little parallel data by introducing alternative (e.g. reconstruction) objectives
and exploiting the unlabeled uni-modal data.

What is a good video representation? Evaluating video representation in terms of
its ability to understand the video is not straightforward. Activity recognition is only
one aspect of the video content. Video description goes beyond individual category
predictions, and provides a concise textual representation of the video. At the same
time, evaluating video description is tedious, as it requires human evaluation: most
existing automatic evaluation measures only to some extent correlate with human
judgements. Other tasks, such as video/sentence retrieval, video question answering
and video fill-in-the-blank are easier to evaluate automatically. Thus, architectures
which target multiple tasks jointly would be most beneficial. We hope that our
LSMDC benchmark, which, in addition to a movie description track, features movie
annotation and retrieval (Torabi et al., 2016), and movie fill-in-the-blank (Maharaj
et al., 2017) track, will help to evaluate and develop better video representations.
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