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ABSTRACT

Non-commutative distributions constitute the backbone of non-commutative probabil-
ity in general and free probability in particular. In the multivariate case, these objects
are mostly treated by combinatorial means, because an analytic description in terms of
measures — as one is used to in classical probability — fails due to the underlying non-
commutativity. However, the rapidly growing field of “free analysis”, which is developed
as a counterpart of classical analysis at the highest degree of non-commutativity, offers
already many powerful tools for an analytic treatment of non-commutative distributions.

Indeed, during the last years, some significant progress has been made on very fundamental
questions in that context. This thesis reports on successful attempts which follow the
common strategy that properties of the joint non-commutative distribution px, . x, of
non-commutative random variables X7, ..., X, can be understood by studying the single-
variable distributions p(x,. x,) of f(Xi,...,X,) for suitable “non-commutative test
functions” f. More precisely, we will discuss here the following topics:

Computation of analytic distributions and of Brown measures: If Xy,..., X, are freely
independent non-commutative random variables, then the single-variable distributions
Hx,y,-- ., fx, fully determine their joint non-commutative distribution px, . x, and so
KP(Xi,....X,) for any non-commutative polynomial . Nevertheless, apart from a few special
cases, there was for a long time no general machinery for making this relation explicit.
We will explain how the so-called “linearization trick” in several refined versions gives in
combination with operator-valued free probability an algorithmic solution to this problem,
which applies even more to non-commutative rational expressions and is moreover easily
accessible for numerical computations. Depending on the concrete situation, pp(x;... x,)
can be encoded either by the analytic distribution or (at least partially) by the Brown
measure of P(Xy,..., X,,).

Regularity questions: Free probability has produced some deep quantities like free Fisher
information, free entropy, and free entropy dimension that can be attached to families of
non-commutative random variables. Despite the lack of a rigorous justification, it was be-
lieved that these quantities measure the regularity of the corresponding non-commutative
distributions. Following the so-called non-microstates approach, we will give evidence to
this by showing that maximality of the free entropy dimension excludes atoms in the
distribution of any non-constant self-adjoint polynomial expressions in these variables.
Furthermore, we will see that the method of this proof can be generalized such that it
also applies to free stochastic calculus. We will use this to exclude atoms in the distribu-
tion of any non-constant and self-adjoint element in the finite Wigner chaos (which is the
free counterpart of the Wiener-It6 chaos in classical probability theory).






ABSTRAKT

Nichtkommutative Verteilungen bilden eine tragende Saule in der nichtkommutativen
Wahrscheinlichkeitstheorie im Allgemeinen und der freien Wahrscheinlichkeitstheorie im
Besonderen. Im Fall mehrerer Variablen werden diese Objekte meist mit kombinatorischen
Mitteln behandelt, da eine analytische Beschreibung durch Mafle — in der Form, wie man
es in der klassischen Wahrscheinlichkeitstheorie gewohnt ist — wegen der zugrundeliegen-
den Nichtkommutativitat nicht moglich ist. Jedoch stellt das stark wachsende Gebiet der
“freien Analysis”, welche als ein Gegenstiick zur klassischen Analysis auf der Ebene max-
imaler Nichtkommutativitat entwickelt wird, bereits eine Vielzahl machtiger Werkzeuge
zur analytischen Behandlung nichtkommutativer Verteilungen bereit.

In der Tat wurden in den letzten Jahren einige wesentliche Fortschritte bei sehr fun-
damentalen Fragestellungen in diesem Zusammenhang erzielt. Die vorliegende Arbeit
berichtet iiber erfolgreiche Ansétze, welche der gemeinsamen Strategie folgen, dass Eigen-
schaften nichtkommutativer Verteilungen px, . x, von nichtkommutativen Zufallsvari-
ablen Xi,...,X, dadurch verstanden werden koénnen, dass man die einvariabligen
Verteilungen ji¢(x, .. x,) von f(Xi,...,X,) fir passende “nichtkommutative Testfunk-
tionen” f untersucht. Genauer werden wir hier die folgenden Themen diskutieren:

Berechnung wvon analytischen Verteilungen und Brown-Mafen: Sind Xi,..., X, frei
unabhangige nichtkommutative Zufallsvariablen, dann bestimmen die einvariabligen
Verteilungen pix,, ..., px, vollstindig ihre gemeinsame Verteilung px, . x, und somit
HP(Xy,...x,) fiir jedes nichtkommutative Polynom P. Dennoch gab es lange Zeit, aufler in
ein paar Spezialféllen, keinen allgemeinen Apparat, mit dem man diese Beziehung ex-
plizit machen konnte. Wir werden erklaren, wie der sogenannte “Linearisierungstrick”
in verschiedenen verfeinerten Versionen in Kombination mit operator-wertiger freier
Wahrscheinlichkeitstheorie eine algorithmische Losung dieses Problems liefert, welche
sogar auf rationale Ausdriicke angewendet werden kann und die dartiber hinaus auch fir
numerische Berechnungen sehr gut geeignet ist. Je nach konkret gegebener Situation wird
Ip(x,,...x,) hierbei entweder durch die analytische Verteilung oder (zumindest teilweise)
durch das Brown-MaB von P(Xj,...,X,) erfasst werden.

Regularitdatsfragen: Die freie Wahrscheinlichkeitstheorie hat etwa mit der freien Fisher In-
formation, der freien Entropie und der freien Entropiedimension einige tiefliegende Grofien
hervorgebracht, die Familien von nichtkommutativen Zufallsvariablen zugeordnet werden
konnen. Obwohl eine formale Bestatigung bisher fehlte, ging man davon aus, dass diese
GroBlen ein Maf fiir die Regularitdat der zughehdrigen Verteilungen darstellen. Dem so-
genannten non-microstates Zugang folgend, werden wir dies belegen, indem wir zeigen,
dass die Maximalitat der freien Entropiedimension Atome in den Verteilungen nicht-
konstanter, selbstadjungierter Polynome in diesen Variablen ausschliefit. Dariiber hinaus
werden wir sehen, dass diese Beweismethode derart verallgemeinert werden kann, dass sie
auch im Rahmen des freien stochastischen Kalkiils angewendet werden kann. Wir verwen-
den dies, um Atome in den Verteilungen nicht-konstanter, selbstadjungierter Elemente
im endlichen Wigner Chaos (welches das freie Gegenstiick zum Wiener-I1t6 Chaos in der
klassischen Wahrscheinlichkeitstheorie darstellt) auszuschliefien.
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Introduction

The main objects which are treated in this thesis are non-commutative distributions. They
constitute the combinatorial backbone of non-commutative probability theory in general
and are therefore of particular interest in free probability theory. Our emphasis is on the
analytic aspects of their theory.

Free probability was invented around 1985 by Dan-Virgil Voiculescu; see [Voi85]. This
theory was originally intended to serve as a tool for attacking one of the most influential
open question in the theory of von Neumann algebras, namely the isomorphism problem
for the so-called free group factors L(F,) with n > 2. Recall that the free group factor
L(F,) arises as the group von Neumann algebra associated to the free group F,, with n
generators. The problem is to decide whether this operator-algebraic object L(F,,) mem-
orizes the group F, from which it was constructed, or in other words, the number n of
generators. More formally, the question is whether for integers n,m > 2 the following
implication holds true:

L(F,) = L(F,,) = n=m

The starting point for Voiculescu’s ingenious considerations around this important and
intricate question was the observation that, loosely speaking, the free product F,, x F,, =
F,tm on the group level is reflected by the relative position of L(F,) and L(F,,) inside
L(F,41m). In order to make this statement precise, we must involve the unique normal
tracial state 7 on the type IIj-factor L(F,.,,). With a bit of work, one can show then
that F, = F,, = F,.,, yields some kind of factorization property for the values of 7.
This relation was ingeniously interpreted by Voiculescu in a probabilistic manner as some
kind of independence between L(F,) and L(F,,), regarded as unital subalgebras of the
non-commutative probability space (L(F, ), 7). This notion of independence, which is
called free independence, makes perfectly sense not only in (L(F,,,),7) but in any non-
commutative probability spaces.

By definition, a non-commutative probability space is a tuple (A, ¢), which consists of a
unital complex algebra A and some linear functional ¢ : A — C that satisfies the condition
¢(1) = 1. This nomenclature is justified by the observation that any classical probability
space (Q,F,P) yields by A = L>(Q,F,P) and ¢(X) = [, X(w)dP(w) a canonical ex-
ample of a non-commutative probability space. It might be confusing that this example
is actually commutative, but the fact that classical probability spaces fit into this frame
simply highlights that the definition of non-commutative probability spaces is designed
in such a way that it properly imitates the setting of classical probability theory as far as
this is possible without referring to the underlying structure of classical probability spaces.
This is in accordance with some common strategy by which commutative concepts are
often transferred into the non-commutative world: passing from the commutative object
(Q, F,P) to some suitable algebra of functions over it leads us to (L>°(£2,P), E) and finally
to the more general framework of non-commutative probability spaces (A, ¢), where the
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inherent commutativity of the algebra L>(€,[P) can easily be dropped, but to the price
that the underlying structure (€2, F,P) disappears.

With this artifice, Voiculescu put the original problem into the setting of non-commutative
probability theory, where free independence can be studied in much wider generality and
can be treated detached from the concrete case of free group factors. This opened a
completely new and very promising perspective on the original operator algebraic question
and marked the birth of free probability theory, which Voiculescu started to develop as a
counterpart of classical probability theory at the highest level of non-commutativity.

Although we must admit that free probability was not yet able to solve the isomorphism
problem for the free group factors, it gave nonetheless incredibly deep insights and has
produced striking results about the structure of von Neumann algebras in general and the
free group factors in particular.

Despite this undoubtedly great success, free probability would have probably become
known only among experts in the field of operator algebras. The reason is that for people
from outside this area, free independence might appear at first sight as a rather artificial
concept with seemingly no contact to the “real world”, in contrast to the much more
intuitive notion of independence in classical probability. However, the situation totally
changed when Voiculescu discovered some deep connections to random matrix theory. By
what later became known as the phenomenon of asymptotic freeness, he explained that free
independence governs the asymptotic behavior of many types of classically independent
random matrices as their dimension tends to infinity. This attracted the attention of
many people, both in pure mathematics and in the more applied disciplines, and started
in particular an extremely fruitful interaction between the theory of operator algebras
and random matrix theory. In the course of this active exchange of ideas, random matrix
methods found their way into the field of operator algebras, while free probability became
a very powerful tool in analyzing the asymptotic behavior of large random matrices.

It is therefore not surprising that non-commutative distributions, which arise from con-
siderations in free probability, have attracted a lot of attention since the early days of this
theory. Conversely, the desired applications have also raised their own questions.

But what actually are non-commutative distributions? Non-commutative distributions are
by definition purely combinatorial objects, which can be introduced in the generality of
non-commutative probability spaces: given any family X = (X;);e; of non-commutative
random variables X; in some non-commutative probability space (A, ¢) over some (mostly
but not necessarily finite) index set I, then the non-commutative (joint) distribution px
of X = (X});es is defined as the collection

<¢(Xi Xi XZk)) k>0

01, €L

of all (joint) moments ¢(X;y Xi, -+ Xi,) with iy,...,i € I of any order k, including
¢(1) =1 as the moment of order k = 0.

Like distributions in classical probability theory, non-commutative distributions are meant
for describing the family of non-commutative random variables to which they correspond.
Indeed, this strategy works well under a few natural assumptions on the underlying non-
commutative probability space. This culminates in the fascinating idea that properties of
operators, viewed as non-commutative random variables, can be encoded by their joint

2



non-commutative distribution and hence by purely combinatorial data — although reading
out this information can be a highly non-trivial task.

For some purposes, one might prefer to add a more analytic component to the combi-
natorial picture of non-commutative distributions, comparable to the measure theoretic
description of distributions in classical probability theory. However, due to the underlying
non-commutativity, these classical methods fail in general and a description in terms of
measures is limited typically to the case of distributions of a single non-commutative
random variable. This was the reason why the idea came up that multivariate non-
commutative distributions should be understood via suitable “non-commutative test func-
tions”, which are evaluated in the given family of non-commutative random variables. If
the result of this evaluation is such that its distribution allows an analytic description, one
gains at least some partial information about the original non-commutative distribution,
which becomes the more accurate the larger the considered class of non-commutative test
functions is.

The still undefined term “non-commutative test functions”, which we have used above
in order to outline our strategy, raises actually two different questions, which we should
better separate now: firstly, what are non-commutative functions, and secondly, how can
we evaluate them? The first question is answered by “free analysis”, which provides an
analogue of (complex) analysis at the highest degree of non-commutativity. It originates
in the work of J. L. Taylor [Tay72), [Tay73|], whose ideas later were taken up and de-
veloped further by Voiculescu for applications in free probability theory; see the survey
[Voi08]. Many authors, like D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, worked out
free analysis as a theory in its own right with numerous applications in different fields of
mathematics; their beautiful book [K'V14] presents the current state of the art. The sec-
ond question concerns the existence of some sort of functional calculus for non-commuting
operators. Indeed, non-commutative functions as considered in free analysis are natural
candidates that could lead us to an non-commutative analogue of the well-known holomor-
phic functional calculus in the commutative setting. This again goes back to the work of
Taylor [Tay72, [Tay73], but is still far from its final stage. It therefore constitutes a very
active field of current research (see for instance [AM16bl, [AM16a]) and we leave it for
further investigation, to which extend these recent achievements could be used in study-
ing non-commutative distributions in a similar fashion like here. We will focus here on
such non-commutative functions that are induced by some “universal expression”, i.e., by
some combination of formal variables and arithmetic operations, which make sense on ev-
ery complex unital algebra, so that evaluation works here in a straightforward way. What
we have in mind are more precisely non-commutative polynomials and non-commutative
rational expressions. They will play the leading role in what follows. Let us note that
also non-commutative power series work to some extend if we assume in addition that
the algebra, on which evaluations are considered, carries a norm with respect to which it
becomes a Banach algebra.

This approach to non-commutative joint distributions was already used in [MS13|, where
the speed of convergence in the multivariate free central limit theorem was measured in
terms of polynomial evaluations and their Cauchy transforms. Using results presented by
the author in the appendix of [SV12], it was possible to control this convergence even in
terms of the Kolmogorov distance. It is work in progress to strengthen the statements pre-
sented in [MS13] by inventing some non-commutative analogue of the Lindeberg method
for the setting of operator-valued free probability theory.
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In the following two sections, we will outline the precise questions that are treated in this
thesis and which are spread out over Chapters [[IT, [[V], [V], [V and [VTI]

The rest of the thesis is organized as follows. In Chapter [, we will give a streamlined
introduction to free probability theory. For convenience of the readers, we collect here all
results which are needed in the subsequent chapters. Note that our exposition conveys
a more analytic perspective on that theory and correspondingly leaves out most of its
combinatorial aspects. It covers both the scalar-valued and the operator-valued case, as
well as a brief discussion of the Brown measure. In Chapter [T} we will provide some basic
terminology from random matrix theory, where our main focus is on its connections to
free probability theory. In the appendix, Chapter [A]is devoted to the Schur complement
formula, Chapter [B] collects some facts about analytic functions between Banach spaces,
and Chapter [C] aims at giving an overview over different topologies on sets of Radon
measures, such as the vague or the weak topology.

Computation of analytic distributions and of Brown measures

It is a basic fact that free independence among a collection X7, ..., X,, of non-commutative
random variables fully determines their joint distribution px, . x, in terms of the individ-
ual distributions px,, ..., jx,. This particularly means that the distribution pupx, .. x,)
for each non-commutative polynomial P, evaluated in Xi,..., X, is completely deter-
mined by px,,. .., px,. Accordingly, we can write

HP(X1,..,Xn) = PD(MXM HE a,an)a

where P(pux,,...,px,) stands for the free polynomial convolution as introduced in
[BV93]. However, apart from the basic cases P(x1,22) = 21 + 22 and P(x1,23) = x1 - 22,
which can be computed by means of the free additive convolution px, B ux, and the
free multiplicative convolution px, X uy,, respectively, only the commutator P(xy,z5) =
i(r1x9 — xox1) and the anti-commutator P(z1,xs) = x129 + 2221 were treated in detail
(see [NS98|, [Vas03]). Computing pp(x,... x,) for more general polynomials P was out
of reach for a long time — not to mention the analogous question with non-commutative
polynomials replaced by non-commutative rational expressions.

Clearly, we can only hope for some deeper insights going beyond the combinatorial tools
when working in some analytic setting. The precise problems thus read as follows.

PROBLEM 1. Given a self-adjoint non-commutative rational expression r in the formal
variables © = (1, ...,x,). Let X1,..., X, be freely independent self-adjoint elements in
some non-commutative C*-probability space (A, @), for which the evaluation r(Xy, ..., X,)
is well-defined. If the distribution of each of the X;’s is known, how can we compute the
distribution of r(Xq,..., X,)?

PROBLEM 2. Given an arbitrary non-commutative rational expression r in the formal
variables © = (x1,...,x,). Let X1,..., X, be freely independent self-adjoint elements in
some tracial W*-probability space (A, ¢) for which the evaluation r(Xy,...,X,) is well-
defined. If the distribution of each of the X;’s is known, how can we compute the Brown-
measure of r(Xq,...,X,)?

In Chapter [V] we will present a systematic approach to these problems, resulting in
Algorithm and Algorithm [[V.4.2] which provide their complete solutions and also

4



some very efficient machinery for carrying out numerical computations. Lemma|[I.4.1|and
Lemma |I1.4.4] will show that our results even apply to questions in random matrix theory.

Let us point out that both of these algorithms are based essentially on two pillars, namely

e on operator-valued free probability theory, especially on Theorem [[.2.18] which
allows an effective analytic treatment of the operator-valued free additive con-
volution by means of subordination functions for general operator-valued C*-
probability spaces. Theorem [[.2.18 which was obtained in [BMS13], finalized
several previous attempts [Bia98al, [Voi00b, [Voi02al, which were accomplished
in an operator-valued frame but under more restrictive assumptions. In addition,
it provides a fixed point iteration scheme for the involved subordination func-
tions, which is analogous to the scalar-valued case as treated in [BBOT].

e on the method of linearization, which allows us to transfer by purely algebraic
means any well-defined non-commutative rational expression r(Xy, ..., X,) into
some linear but matrix-valued expression

L(X1,..., X)) =L9 4+ LOX, +... 4+ LWX,,

whose coefficients L®, LM ... Lt are complex matrices. This translates the
scalar-valued problem concerning (X, ..., X,) into an operator-valued prob-
lem about L(Xj,...,X,). The method of linearization, which is inside the free
probability community also known under the name “linearization trick”, will
be presented in detail in Chapter [[I]. Our exposition relies on [BMS13] and
[HMS15], but provides in addition several refinements and generalizations of
the results that were presented therein.

Regularity questions

Non-commutative distributions are by definition purely combinatorial objects and apart
from the commutative case (including especially the case of one variable), no analytic
description in terms of measures is possible. Accordingly, there is no natural notion of
regularity for non-commutative distributions.

However, based on the analogy to the classical situation, it was commonly believed that
conditions on quantities like the free Fisher information, the free entropy, or the free
entropy dimension, which were introduced by Voiculescu in his famous series of papers
[Voi93, [Vo0i94,, V0i96,, [Voi97, Voi98|, Voi99] (see also the survey [VoiO2b]), imply
strong regularity properties of the considered distributions. But how should one make
such statements precise without having an absolute notion of regularity?

A very natural and also quite promising approach is that regularity of non-commutative
distributions px,, . x, for non-commutative random variables should be understood as
regularity — in the usual measure theoretic meaning — of those one-variable distributions
Hf(X1,....X,), Which arise under evaluation of sufficiently many self-adjoint test functions
f in the given variables X1, ..., X,,. Following this strategy, one typically imposes some
of the previously mentioned more abstract conditions on non-commutative distributions
and tries then to detect regularity in the latter sense via evaluations.

All of the papers [MSW14, MSW17, Mail5|, which underlie our approach to these
regularity questions, are based on the theory of non-commutative derivatives, which arises
from the work of Voiculescu [Voi98|, [V0i99] and of Dabrowski [Dab10, Dab14]. This
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will be the topic of Chapter [V] It aims at a uniform exposition of their results on a general
level like in [Mail5], culminating in Proposition , which is taken in this form from
[Mail5] and which appeared before in a more specialized version in [MSW14, MSW17].
This statement is at the core of some general reduction argument, which will be essential
in Chapter [VI| and Chapter [VII]

In Chapter , which is based on [MSW14, MSW17|, we show that in a tracial and
finitely generated W *-probability space existence of conjugate variables excludes algebraic
relations for the generators; see Theorem [VI.I.5 Moreover, under the assumption of max-
imal non-microstates free entropy dimension, i.e. 6*(X1, ..., X,,) = n, we prove that there
are no zero divisors in the sense that the product of any non-commutative polynomial in
X1, ..., X, with any element from the generated von Neumann algebra is zero if and only
if at least one of those factors is zero; see Theorem [VI.2.1] On the one hand, this gives an
interesting connection to the work of Linnell [Lin91l, Lin92) [Lin93), Lin98| on analytic
versions of the zero divisor conjecture, especially in the case of the free group. On the
other hand, it shows that under the assumption 6*(Xi,..., X, ) = n the distribution of
any non-constant self-adjoint non-commutative polynomial P(Xy,...,X,) in X;,..., X,
does not have atoms; see Corollary [VI.2.2] Questions on the absence of atoms for polyno-
mials in non-commuting random variables (or for polynomials in random matrices) have
been an open problem for quite a while. We solve this general problem by showing that
maximality of free entropy dimension excludes atoms. This continued and generalized the
previous work [SS15] on regularity questions for polynomial evaluations and the meth-
ods investigated in [MSW14l, MSW17] have already initiated an impressive variety of
follow-up research; see [CS16l, Dab15), Har15].

Following [Mail5], we discuss in Chapter another extension of the methods of Chapter
[VI, namely to the continuous setting of free stochastic calculus. Wigner integrals

I3(f)= | f(ti,. . tn) dSy -+ dS;,
RY
for f € L*(R}) on Ry = [0,00) and the corresponding Wigner chaos were introduced by
P. Biane and R. Speicher in 1998 as a non-commutative counterpart of classical Wiener-
[t6 integrals and the corresponding Wiener-1to chaos, respectively, in free probability;
see [BS9§]|. In the classical case, a famous result of I. Shigekawa [Shi78|, [Shi80] states
that non-trivial elements in the finite Wiener-It6 chaos have an absolutely continuous
distribution. We provide here a first contribution to such regularity questions for Wigner
integrals by showing that the distribution of non-trivial elements in the finite Wigner
chaos of the form
L)+ 13(fo) + - - + IR(fx)

with mirror-symmetric f, € Lz(R’jr) forn=1,...,N and fy # 0 cannot have atoms.
The corresponding Theorem answers a question of I. Nourdin and G. Peccati
[NP13]. Similar to the discrete case, we will deduce Theorem from a more general
statement, Theorem [VII.3.12] by which we exclude zero-divisors in the finite Wigner chaos.

For doing so, we establish in Subsection the notion of directional gradients in
the context of the free Malliavin calculus. These directional gradients bridge between free
Malliavin calculus and the theory of non-commutative derivations presented in Chapter
[Vl The methods of [MSW14), MSW17], which were used for treating similar questions
in the case of finitely many variables as outlined in Chapter [VI, will be extended in such
a way that they even apply to directional gradients.
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CHAPTER 1

Some basics of free probability theory

Free probability theory can be seen as a counterpart of classical probability at the highest
degree of non-commutativity. It gives a special instance of non-commutative probability
theory and is therefore formulated in this general language, but it enjoys the characteristic
feature that it comes with its own notion of independence, called “free independence”.
This independence totally differs from the classical notion of independence, but it shows
many conceptional similarities, so that free probability evolves excitingly far in parallel
to the classical theory.

This theory was invented around 1985 by Voiculescu and it was intended originally to
serve as a tool for attacking the isomorphism problem for the free group factors L(IF,,).
This is based on the fascinating observation that free independence reflects on the operator
algebraic side the structure that is induced by free products on the group side.

Later, Voiculescu also found a quite surprising and extremely fruitful connection to ran-
dom matrix theory. He noticed that free independence shows up very naturally for many
classes of independent random matrices in the limit when their dimension tends to infin-
ity. Based on this so-called “asymptotic freeness” phenomenon, free probability nowadays
provides a powerful machinery to understand limiting eigenvalue distributions for many
types of random matrices. This replaced, systematized, and generalized previously given
ad hoc arguments and has even more produced an impressive amount of totally new
results.

However, apart from the free product construction and the limiting behavior of certain
random matrices, there is still another important source of free independence. In fact,
it shows up among creation and annihilation operators for orthogonal vectors on the
full Fock space. We admit that this might sound like a rather artificial approach to free
independence, but since this construction is easily accessible to concrete computations, it
is of great theoretical importance. In particular, it underlies the free Malliavin calculus

as we will outline in Chapter

For the seek of completeness but without going into details, we mention that free prob-
ability found applications also in the study of some asymptotic phenomena in the repre-
sentation theory of the symmetric group; see, for instance, [Bia98b] or the recent survey
paper [Spel6).

In this chapter, we will provide a brief introduction to the field of free probability. Of
course, we can only discuss here some of its basic aspects, and we will do this in a way
which is mostly streamlined to our needs. For a more detailed introduction, we refer the
interested reader to the monographs [VDN92|, [Voi00a, HP0Ob, INS06].

In Section [[.1I} we will first present the scalar-valued theory of free probability, and in
Section[[.2] we will turn our attention to its operator-valued generalization. In each of these
cases, we will focus on the analytic aspects of that theory. Nonetheless, our discussions



8 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

will begin in most cases on a purely algebraic level and we also try to highlight whenever
we hit an important link to the combinatorial side.

I.1. Scalar-valued free probability theory

We first present the scalar-valued part of free probability theory. As we will see in Section
[.2] there exists also an operator-valued extension of free probability, which generalizes the
scalar-valued theory in the same vein as conditional expectations generalize expectations
in classical probability. For the seek of clarity, we prefer to discuss these topics separately.

I.1.1. Non-commutative probability spaces. At the basis of non-commutative
probability and free probability in particular is the notion of non-commutative probability
spaces.

[.1.1.1. The basic terminology. We are going to present the most general and purely
algebraic definition first.

DEFINITION L.1.1. A non-commutative probability space is a pair (A, ¢) consisting of a
unital complex algebra] A and a linear functional ¢ : A — C that satisfies ¢(1) = 1.
Elements of A are called non-commutative random variables and ¢ is called expectation

on A.

In order to convince the reader that this is indeed some reasonable terminology, we should
first check that the classical notion of probability spaces fits into this general frame. This
will be done in the following example.

ExAMPLE 1.1.2. Let us take any classical probability space (£, F,P). Recall that this
means that ) is some set, F some g-algebra consisting of subsets of {2, and P some prob-
ability measure, which is defined on all sets belonging to F. The complex unital algebra
L>(Q,P) of bounded random variables is then naturally endowed with the expectation
E : L>(92,P) — C, which is the unital linear functional that is defined by

/ X(w) dP(w for any X € L*=(Q,P).

We thus see that (L>(£2,P),E) indeed provides an example of a non-commutative prob-
ability space.

Matrix algebras constitute another basic example of non-commutative probability spaces.
They will be discussed next.

ExAMPLE 1.1.3. For any positive integer N, let My (C) denote the algebra of N x N
matrices over C. If we endow My (C) with the normalized trace

try(X) : ZX“ for all X = (X;;)N,_; € My(C).

IThe term “algebra” is — as experience teaches us — a constant source of confusion, since different
communities typically agree on slightly different properties. Thus, let us stipulate that “a complex algebra
A” for us always means “an associative complex algebra A”, i.e., a complex vector space A that is endowed
with a C-bilinear mapping - : A x A — A, called the multiplication, which is associative in the sense that
X -(Y-Z)=(X-Y)-Z holds for all X,Y,Z € A. By the additional term “unital”, we indicate that A
contains a unique element 1 = 14, called the identity element of A, which satisfies 1- X =X = X -1 for
all X € A.



CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 9

we obtain the non-commutative probability space (My(C),try).

We point out that a suitable combination of the previously mentioned examples will
provide us in Chapter [l| some appropriate framework for dealing with random matrices;
see Definition [T1.1]

Example motivates the following definition.

DEFINITION 1.1.4. Let A be a algebra and ¢ : A — C be a linear map. We call ¢ tracial
(or trace), if it satisfies

H(XY) =9(YX) for all X,Y € A.

Well-known facts from linear algebra say that the non-commutative probability space
(My(C), try), which was presented in Example [[.1.3] indeed comes with a tracial ex-
pectation. For more trivial reasons, namely due to the commutativity of the underlying
algebra of random variables, the classical expectation appearing in Example is also
tracial. Furthermore, as we will see in Chapter [[I} the traciality of these two examples
passes to the non-commutative probability space of random matrices.

[.1.1.2. x-probability spaces. All non-commutative probability spaces that we dis-
cussed in the examples above have in common that their corresponding algebras carries
some additional *-structure. Recall that a complex unital algebra A is called *-algebra, if
it is endowed with a complex anti-linear mapping * : A — A, which satisfies (X*)* = X
forall X € Aand (XY)* =Y*X* for all X,Y € A. We will now focus on such situations.

DEFINITION 1.1.5. Let (A, ¢) be a non-commutative probability space. We call (A, ¢) a
x-probability space, if A is a x-algebra and the expectation ¢ is positive, i.e., if it satisfies
H(X*X) >0 forall X € A.

Of particular interest are x-probability spaces (A, ¢), whose expectation ¢ is moreover
faithful. Loosely speaking, this means that ¢ can “see” all positive elements in A, which
are elements of the form X*X for some X € A.

DEFINITION 1.1.6. Let A be a x-algebra and ¢ : A — C be a linear map. We call ¢
faithful, if for any X € A the condition ¢(X*X) = 0 implies that X = 0.

It is easy to check that the non-commutative probability spaces introduced in Example
and in Example [[.1.3] are indeed *-probability spaces with faithful expectations.

Although this definition is still of algebraic nature, the positivity constraint imposed
on the expectation brings us already close to the analytic setting. Indeed, the assumed
positivity of ¢ enforces many strong properties, such as (see [NS06, Remark 1.2])

H(X™) = o(X) for all X € A
and the Cauchy-Schwarz inequality
p(Y*X)> < o(X*X)p(Y*Y)  forall X,Y € A.

[.1.1.3. C*- and W*-probability spaces. The actual analytic setting is reached by
putting some topological structure on A, with which the expectation ¢ must be compat-
ible. We will focus here on two important examples, namely on C*- and W*-probability
spaces.

Let us first consider C*-probability spaces.
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DEFINITION 1.1.7. A C*-probability space is a pair (A, ¢) consisting of a unital C*-algebra,
A and a state ¢ on A.

Recall that a state ¢ on a unital C*-algebra A is a linear functional ¢ : A — C, which
is , i.e. satisfies ¢(X*X) > 0 for all X € A, and for which ¢(1) = 1 holds. Therefore, a
C*-probability space is clearly a non-commutative probability space and, with respect to
its involution %, it is in fact a x-probability space. Depending on the intended application,
we will sometimes assume in addition that the corresponding state is faithful, tracial, or
even both.

Let us continue with W*-probability spaces. Each von Neumann algebra is of course a C*-
algebra and W*-probability spaces are correspondingly a special instance of C*-probability
spaces, but this description does by no means meet the actual truth. Therefore, W*-
probability spaces should like von Neumann algebras be considered as objects of their
own right. Among several possible definitions, we choose here the following one which
perfectly suits our needs.

DEFINITION 1.1.8. A tracial W*-probability space is a pair (M, T), where M is a von
Neumann algebra and 7 a faithful normal tracial state on M.

Recall that a state 7 on M is called normal, if limyep 7(7%) = 7(T') holds for each
monotone increasing net (7)) ea of positive operators in M with least upper bound T' €
M. We point out that normality is in fact equivalent to the statement that 7 is continuous
with respect to the weak (or the strong) operator topology if it is restricted to sets in M
of bounded operator-norm; see [Bla06, Theorem I11.2.1.4].

We note that the non-commutative probability space (My(C), try), which we know from
Example and which was already identified as a x-probability space, is in fact a
C*-probability space (with try being a faithful tracial state) and even more a tracial
W*-probability space.

It is important to note that there is a canonical tensor product for von Neumann algebras
that respects even the notion of W*-probability spaces.

REMARK 1.1.9. If (M;, 1) and (M, 1) are two tracial W*-probability spaces, then also
their von Neumann algebra tensor product M; ® M, becomes, endowed with the tensor
product state 7 ® T, a tracial W*-probability space.

Another construction that will be used repeatedly in the subsequent considerations are
the non-commutative LP-spaces.

REMARK [.1.10. Given any tracial W*-probability space (M, 7), we may introduce the

non-commutative LP-spaces LP(M, 1) for 1 < p < oo as the completion of M with respect
1

to the norm ||| o(arry := 7((2*x)%)?, and for p = oo simply by L=(M, 7) := M where we

put ||z||pee(ar,ry = ||z||. Whenever it is not necessary to indicate explicitly the underlying

von Neumann algebra, we will abbreviate || - ||, :== || - || e (ag,r)-

1.1.2. Non-commutative distributions. Non-commutative distributions transfer
the well-established notion of joint distributions known from classical probability theory to
the realm of non-commutative probability. It is therefore instructive to recall the classical
situation first.

10
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ExampLE [.1.11. Let (92, F,P) be a classical probability space. For any given collection
X = (Xy,...,X,) of finitely many random variables Xi,...,X,, € L*(Q,P), the (joint)
distribution of X is given as the probability measure px, which is defined by

px(B) =P({w € Q] (X1(w),...,X,(w)) € B})

for any Borel subset B of R". In other words, 1x is nothing but the push forward measure
of P under the measurable map

X: Q->R" w— (Xi(w),..., X, (w)).

With a bit of work, one can show that the probability measure px is compactly supported
and that

E[P(X1,...,Xn)] :/QP(Xl(w),...,Xn(w))dP(w)
(1.1)
:/nP(a;l,...,:Un)d,ux(xl,...,xn)

holds for each commutative polynomial P € Clzy,...,z,]; see [NS06|, Example 4.4 (1)].

The latter formula turns the classical joint distribution into the linear functional
Clzy,...,x,) > C, P—E[P(Xy,...,X,)].

It is a very important feature of this formula that it gives meaning to the classical joint dis-
tribution px only in terms of (L>°(€2,P),E) and hence without referring to the underlying
probability space (€2, F,P). The linear functional

px : Cly,...,2,) = C, P ¢(P(Xy,...,X,))

gives therefore a natural generalization of the classical joint distribution to the case of non-
commutative random variables (X7, ..., X,,) in some non-commutative probability space
(A, ¢), for which typically no underlying structure such as (€, F,P) exists. Of course,
for this purpose, we should also replace the much too restrictive algebra Clzy, ..., z,| of
commutative polynomials by the algebra C(zy,...,z,) of non-commutative polynomials.

[.1.2.1. Non-commutative distributions in general non-commutative probability spaces.
The motivating discussion about the classical case gives justification for the terminology of
non-commutative joint distributions, which we are going to introduce now in the generality
of non-commutative probability spaces.

DEFINITION 1.1.12. Let I be some non-empty index set.

(i) By C(x;] i € I), we denote the free algebra over C with generators {z;| i € I'}.
In the following, we will refer to C(x;| i € I) as the algebra of non-commutative
polynomials in the formal non-commuting variables {z;| i € I}.

(ii) Let X = (X;)ier be a family of non-commutative random variables, over the
index set I, living in a non-commutative probability space (A, ¢). Denote by
evy the evaluation homomorphism

evy : Cla;|iel) — A,

which is, as a homomorphism, uniquely determined by 1 — 14 and z; — X; for
alli € I. For any given P € C(z;| i € I), we mostly abbreviate P(X) := evx(P).
The non-commutative (joint) distribution px of X = (X;)ies is defined as the
linear functional pux := ¢ oevy, i.e.

px : Clz;|iel) - C, P ¢(P(X)).
11
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REMARK 1.1.13. By linearity and due to the normalization ux(1) = ¢(1) = 1, the non-
commutative distribution pux of any family X = (X;);es is fully determined by its values

px (i, Ty -+ 3,) = 0(Xi, Xiy - X5,
on all monomials x; x;, - - - x;, with k > 1 and 4,4, ...,% € I. An expression of the form
(X Xiy - X))  withidy, ... i, €1,

will be called moment of order k > 0, where we include ¢(1) = 1 as the moment of order
k = 0. Thus, px can be seen as the collection of all (joint) moments of (X;)ier-

[.1.2.2. Non-commutative distributions in *-probability spaces. When working in -
probability spaces, it is natural to consider non-commutative random variables at once
with their adjoints. This leads to the notion of x-distributions.

DEFINITION 1.1.14. Let I be some non-empty index set.

(i) By C(zy,zf| i € I), we denote the x-algebra of all non-commutative -
polynomials in the formal variables {x;| i € I}. Formally, C(z;,zf| i € I) is
nothing but the free algebra with formal generators {z;| i € I} U{zf|i € [}. Tt
carries naturally an involution * by declaring 1* = 1 and (z;)* = «} for all i € I.

(ii) Let (A, ¢) be a x-probability space and let X = (X;);e; be some family of
non-commutative random variables in \A. We denote by evx x« the evaluation
x-homomorphism

evx x+: Cla,af|iel) — A,

which is, as a x-homomorphism, uniquely determined by 1 +— 14 and z; — X for
all i € I. For any given P € C(x;,z}| i € I), we mostly abbreviate P(X, X*) :=
evx x+(P). The non-commutative (joint) x-distribution of X = (X;)es is given
as the linear functional px x« := ¢ oevy x+, i.e.

pxx: Clr,zi|iel)y —C, P— ¢(P(X,X")).
Clearly, we can view px x+ as the non-commutative joint distribution of the
family (X7)eie)erx{1,4)-

REMARK [.1.15. In the same way as each non-commutative distributions px is uniquely
determined by the collection of all joint moments of X, as it was observed in Remark
[.1.13, non-commutative *-distributions p1x x- are determined by their values

€1 4.€2 €k\ __ €1 YyE2 .. €k
/J/X7X* (l"il xiz U mlk) - ¢(X11 Xiz X’Lk )

on all x-monomials a7 x;? - -~ x;k with k > 1, 41,dy,...,ix € I, and €y,...,&x € {1,%}. An

expression of the form
O(XIX2--- XF)  withiy,... ip €l and ey, ... e € {1, %},

is called x-moment of order k > 0, where we include ¢(1) = 1 as the *x-moment of order
k = 0. Again, ux x« can be seen as the collection of all (joint) x-moments of (X;)ier.

Whenever we work with families (X;);e; of self-adjoint non-commutative random vari-
ables in some *-probability space (A, ¢), then its non-commutative *-distribution jx x« :
C(x;,zf| i € I} — C clearly does not contain more information than just the non-
commutative distribution py : C(x;| i € I) — C. We will come back to this point when
talking about analytic distributions in the case of normal and self-adjoint operators; see
Definition and Definition below. There, we will make the distinction between

12
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measures on C and measures on R, which in our current combinatorial setting indicates
that, for self-adjoint X = (X;);es, we should think of the formal variables (z;);c; appear-
ing in pux : C(z;| i € I) — C as being self-adjoint in some appropriate sense. Let us make
this more precise.

DEFINITION 1.1.16. Let I be some non-empty index set. Then the algebra C(z;| i € I)
carries a natural involution *, with respect to which it becomes a x-algebra. This involution
* is uniquely determined by the conditions that 1* = 1 and =} = x; for all < € I holds.

[.1.2.3. Non-commutative distributions in C*- and W*-probability spaces. The advan-
tage of working in C*- or W*-probability spaces is that their underlying topological struc-
ture allows to treat non-commutative distributions by more analytic tools — at least in
the case of one variable.

Let us take any non-commutative random variable X in some C*-probability space (A, ¢)
and suppose that X is normal, i.e., that X commutes with its adjoint X*. Then the non-
commutative *-distribution px x- of X, i.e. the collection of all x-moments of X, can be
encoded by some compactly supported Borel probability measure on the complex plane
C. Its construction proceeds as follows: the functional calculus for X yields an isometric
s-homomorphism f — f(X) from C(c(X)), the space of all complex-valued continuous
functions on the spectrum o(X) of X, into the C*-algebra A. Accordingly, we obtain a
bounded linear functional

I: C(o(X)) = C, fo(f(X))

and the positivity of ¢ gives that this linear functional is also positive. Thus, the Riesz
representation theorem (see Corollary [C.5)) tells us that I can be written as I = I, i.e.

(12) dﬂX»—Aj&ﬁmxw@) for all f € C(o(X)),

for some unique Borel measure px y- on C, whose support is contained in the compact set
o(X) and which is due to ¢(1) = 1 in fact a probability measure. Hence, we can record:

DEFINITION 1.1.17. Let X be a normal non-commutative random variable in a C*-
probability space (A, ¢). The (analytic) x-distribution px x- of X is the compactly sup-
ported Borel probability measure on C, which is uniquely determined by the condition

(1.3) S(XF(X)) = / H5 duy () for k1€ Ny,
C

Note that we have replaced in Definition [[.1.17| the determining condition (I.2]) for the
analytic distribution px x+ by (L.3); this is possible since the C-linear span of all functions

2+ 27! with k,1 € Ny is dense in C(o(X)) by the Stone-Weierstrafl theorem.

Moreover, let us point out that one can show (see [NS06, Proposition 3.15]) that in fact
supp(ux) = o(X) holds.

In the special case of a self-adjoint non-commutative random variable X, we can specify
the construction in such a way that its representing measure becomes a Borel probability
measure on R. Like in the normal case above, the analytic distribution px of X is based
on the functional calculus for X and on the Riesz representation theorem (see Corollary
[C.5). This identifies 1x as the unique Borel probability measure on R, which satisfies

(14) WﬂXﬁzéf@mww for all f € C(o(X)).

13



14 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

DEeFINITION 1.1.18. Let X be a self-adjoint non-commutative random variable in a C*-
probability space (A, ¢). The (analytic) distribution ux of X is the compactly supported
Borel probability measure on R, which is uniquely determined by the condition

(L5) H(XH) = /R Fdux(t)  for k€ No.

Deﬁnition characterizes the analytic distribution px by the condition , whereas
the stronger condition (.4} is required in order to deduce uniqueness from the Riesz
representation theorem. That these conditions are indeed equivalent follows from the
observation that the C-linear span of all functions ¢ — * with k € Ny is dense in C'(c(X))
according to the Stone-Weierstrafl theorem.

Clearly, for a self-adjoint X we can also consider ux x- besides the more appropriate jix,
but since the x-distribution of X contains exactly the same amount of information as its
distribution, it is not surprising that px x« is related with px via px x+(B) = ux(BNR)
for each Borel subset B of C.

Finally, a few words on the notation are in order. Note that the analytic distribution px x-
(respectively px) encodes all s-moments (respectively moments) of any normal (respec-
tively self-adjoint) non-commutative random variable X and can therefore be uniquely
identified with the distribution of X in the previous sense of Definition (respectively
Definition . This excuses that we use the same symbol both for the combinatorial
and the analytic distribution.

So far, we were concerned with the case of C*-probability spaces. Now, let us turn our
attention to W*-probability spaces. Here, analytic *-distributions for non-commutative
random variables can be connected with the spectral distribution measure. We first remind
ourselves of some background details.

REMARK 1.1.19. The spectral theorem for normal operators (see, for instance, [Bla06),
Theorem 1.6.2.2]) tells us that for any normal operator X on some Hilbert space H, we
can find a projection-valued measure Ex on the Borel subsets of the spectrum o(X) of
X, the so-called spectral measure of X, such that

X = / 2dEx(z)
o(X)

holds. Furthermore (see [Bla06) 1.6.2.4]), we can use this representation to define a func-
tional calculus: for each bounded Borel measurable function f : o(X) — C, we put

f(X):= - (2) dEx(2).

It is known that this functional calculus extends the polynomial functional calculus, i.e.
we have

(1.6) Xk(XH = /(X)f(z) dEx(z)  for k,1 € N.

Now, if we take any normal non-commutative random variable in some tracial W*-
probability space (M, ), the spectral measure Ey takes its values in the von Neumann
subalgebra vN(X) C M generated by X. Thus, we can apply 7 to (.6 in order to deduce
that

T(XF(X*)) = / f(z)d(T o Ex)(z) for k,1 € Ny.
o(X)

14



CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 15

Comparing this with (I.3]), we see that the compactly supported measure given by 70 Ex
must agree with the analytic distribution g x x+. We record this important observation for
later references.

LEMMA 1.1.20. Let X be a normal non-commutative random variable in some tracial
W*-probability space (M, 7). If Ex denotes its spectral measure on o(X) C C, then the
non-commutative x-distribution ux x- of X is given by

Ux x+ =TO Ex.

Analogously, if X is even self-adjoint, then the analytic distribution pux of X is given by

MX:TOEXa

where Ex now stands for spectral measure of X on o(X) C R.

Consequently, an atom « of px x- (respectively of py) implies by the spectral the-
orem, which we have recalled in Remark [[.L1.I9] the existence a non-zero-projection
u = Ex({a}) € M, such that (X — al)u = 0 holds. Note that o € C (respectively
a € R) is said to be an atom of a Borel probability measure p on C (respectively on R),

if p({a}) # 0.

We conclude our discussion with the following example.

ExaAMPLE [.1.21. An easy but very enlightening task is the computation of analytic distri-
butions in the C*-probability space (My(C),try), which we already know from Example
[L1.3] Indeed, if we take any matrix X € My(C), which is self-adjoint, then basic linear
algebra tells us that we can find a unitary matrix U € My(C), such that X can be written
as

A 0
X =UAU” with A= 7
0 AN
where Aq,..., Ay are the eigenvalues of X, listed according to their multiplicity. The

analytic distribution px of X is then given as

1 N
Hx = N;5A“

where 0, denotes the Dirac measure with atom X; hence, we see that ux is just the
eigenvalue distribution of X. Indeed, we can check (by using the trace property of try)
that

N
1
trN(Xk) = trN(UAkU*) = tl"N(Ak) = NZ)\f = / tk d,ux(t)
i=1 R

holds for all k£ € Ny. In particular, we obtain the Cauchy transform of px as

N

1 1 1
G,¢X<z>=/Rz_tdux<t>=ﬁz;z_&.

1=

15



16 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

1.1.2.4. Non-commutative x-distributions and isomorphisms. Non-commutative -
distributions that are built with respect to faithful expectation functionals have the very
nice feature that, up to isomorphism, they determine uniquely the x-algebra, which is gen-
erated by their corresponding family of non-commutative random variables. The following
theorem is taken from [NS06l, Theorem 4.10] and explains this phenomenon.

THEOREM 1.1.22. Let (A, ¢) and (B,1) be x-probability spaces, such that ¢ and i) are
both faithful. Denote by 14 and 1g the units of A and B, respectively. Let X = (X;)ier
and Y = (Y;)ier families of non-commutative random variables in A and B, respectively,
which are indezed by the same index set I. Assume that

(i) A is generated as a *-algebra by {X;| 1 € T} U {14},
(ii) B is generated as a x-algebra by {Y;| 1 € I} U {1z}, and
(iii) we have px x+ = pyy+.

Then there ezists a unique x-isomorphism ® : A — B, such that ®(14) = 1z and ®(X;) =
Y; foralli € I and v o ® = ¢ holds.

Since the proof of this important theorem is both simple and instructive, we do not want
to withhold it completely from the reader. So let us briefly sketch the beautiful ideas on
which the proof is based: given any *-isomorphism ® : A — B, which satisfies ®(X;) = Y;
for all ¢ € I, it is clear that we must have ®(P(X)) = P(Y) for any P € C(z;,z}| i € I),
and because A and B are generated by the variables X and Y, respectively, we see that ®
is uniquely determined by these conditions. The following commuting diagram illustrates
this situation:

C(x;, xf| i e I)

Hence, if we want to define such ®, the only choice that we have is to put ®(A) := P(Y)
for each given A € A, which can be written as A = P(X) for some P € C(x;,xf| i € I). Of
course, if A € A is given, one can always find a non-commutative polynomial P satisfying
the condition A = P(X), but this P might not be unique. This definition of ® thus
requires to check that the assigned value P(Y') does not depend on the actual choice of
P. For seeing this, we must involve the condition p1x x+« = py,y~ and the faithfulness of 9.
Indeed, if Py, P, € C{x;, x| i € I) are given such that P, (X) = P,(X) holds, we clearly
have P(X) = 0, where P € C(z;,z}| i € I) is given by P := (P, — P,)(P; — P)*. This
implies

V((P(Y)=R(Y))(P(Y)=Pa(Y))") = 0(P(Y)) = pyy+(P) = px x-(P) = ¢(P(X)) =0

and finally Pi(Y) — Py(Y) = 0, since ¢ was assumed to be faithful. This proves the
existence of a x-homomorphism ® : A — B satisfying ®(X;) = Y; for all i € I and
¥ o ® = ¢. Switching now the roles of X and Y and repeating the above argument
produces another x-homomorphism ¥ : B — A satisfying U(Y;) = X; for all i« € I and
¢ oW = 1. This yields the assertion since ® and W are clearly inverses of each other.

Amazingly, in the setting of C*- and W*-probability spaces, these isomorphisms even ex-
tend to the corresponding C*-and W*-algebras, respectively. This means that all inherent
operator-algebraic properties are encoded by the non-commutative distribution of their
generators and hence in purely combinatorial terms.

16



CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 17

The following theorem, which is taken from [NS06l Exercise 4.20], gives the precise state-
ment in the case of C*-probability spaces.

THEOREM 1.1.23. Let (A, ¢) and (B, ) be C*-probability spaces, such that ¢ and ¢ are
both faithful. Denote by 14 and 1z the units of A and B, respectively. Let X = (X;)ier
and Y = (Y;)ies families of non-commutative random variables in A and B, respectively,
which are indexed by the same index set I. Assume that

(i) A is generated as a C*-algebra by {X;| i € I} U {14},
(ii) B is generated as a C*-algebra by {Y;| i € I} U {lg}, and
(iii) we have px x+ = pyy+.

Then there ezists a unique isometric x-isomorphism ® : A — B, such that ®(14) = 15
and ®(X;) =Y, for alli € I and ¢ o ® = ¢ holds.

In other words, the unital C*-algebra generated by a family of non-commutative random
variables X = (Xj);es is determined, up to isomorphism, by the non-commutative x-
distribution p1x x+. This opens a completely new point of view, since it means for example
that properties of an operator of the form P(X) with P € C(z;,2}| ¢ € I), which are
invariant under isometric *-isomorphisms (such as norm and spectrum), only depend
on px x- and P, and hence on purely combinatorial data. Let us illustrate this by the
following proposition.

PROPOSITION 1.1.24 (Proposition 3.17 in [NSO06]). Let (A, ¢) be a C*-probability space
with ¢ being faithful. Then, for any X € A, we have

(17) X)) = lim 6((X"X)")=

Note that , if written in the alternative form
1
(L8) X[ = Jim gy - ((272)")

perfectly fits the strategy explained above: according to Theorem [.1.23] the non-
commutative x-distribution px x+ : C(z,2*) — C determines the C*-algebra generated
by X, up to isometric *-isomorphisms, and so, since the quantity || X|| is invariant under
isometric *-isomorphisms, its precise value must be contained in jpix x-; this is what is

confirmed and made explicit by Formula .

For the seek of completeness, we point out that there is an analogous statement in the
context of von Neumann algebras; see [MS16], Theorem 6.2].

THEOREM 1.1.25. Let (A, ¢) and (B,1)) be W*-probability spaces. (Recall that this means
i our terminology that ¢ and 1 are both faithful normal tracial states; see Definition
) Let X = (X;)ier andY = (Y;)ier families of non-commutative random variables in
A and B, respectively, which are indexed by the same index set I. Assume that

(i) A is generated as a W*-algebra by {X;| 1 € I},
(ii) B is generated as a W*-algebra by {Y;| i € I}, and
(iii) we have pux x+ = pyy+.

Then there ezists a unique isometric x-isomorphism ® : A — B, such that ®(14) = 15
and ®(X;) =Y, foralli € I and ¢ o ® = ¢ holds.

17



18 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

1.1.3. Cauchy-Stieltjes transform. This subsection is devoted to Cauchy-Stieltjes
transforms. This kind of transform plays a similarly important role in free probability
as the Fourier transform does in classical probability theory. However, Cauchy-Stieltjes
transforms appeared long before, mainly in the context of moment problems, and they
were also used in random matrix theory — a surprising fact, which one can see as a first
hint on some deeper connections between free probability and random matrix theory.

The term “Cauchy-Stieltjes transform” actually subsumes two closely related concepts,
namely Cauchy transforms and Stieltjes transforms. Let us begin with Cauchy transforms.

DEFINITION 1.1.26. Let C* and C~ denote the upper and the lower half-plane in C,
respectively, i.e.

Ct:={2€C|S(2) >0} and C :={z€C|3(z) <0}

The Cauchy transform G, of a Borel probability measure p on R is the holomorphic
function

G,: Ct=>C, 2+

du(t).
My (1)

The Stieltjes transform only differs by a minus sign from the aforementioned Cauchy trans-
form. More explicitly, for any Borel probability measure p on R, the Stieltjes transform
S, is the holomorphic function S, : C* — C*, which is defined by

Su(z) = /]R ! du(t) for all z € C*.

t— =z

Following the tradition of free probability, we will work here with Cauchy transforms
rather than with Stieltjes transforms.

Cauchy transforms attach to each Borel probability measure p on R a certain holomorphic
function on C*. Surprisingly, one can write down a very short list of properties, which all
functions arising in this way have in common and by which they are characterized among
all holomorphic functions on C*. This is the content of the following theorem; see for
instance [GHO03|, Lemma 2].

THEOREM 1.1.27. Let G be a holomorphic function on the upper half-plane C*t. Then G
is the Cauchy transform of a Borel probability measure pn on R, if and only if the following
two conditions are satisfied:

(i) All values of G lie in the lower half-plane, i.e. I(G(2)) < 0 holds for all z € C*.
(ii) It holds true that lim iyG(iy) = 1.
Y—00

Viewing the Cauchy transform abstractly as a map from the space of all Borel probability
measures on R to the space of holomorphic functions living on C*, it is natural to study
their “continuity” with respect to different topologies. The following theorem, which can
be found for instance in [GHO3]|, says that weak convergence can be detected easily with
the help of Cauchy transforms.

THEOREM 1.1.28. If (tn)nen s a sequence of Borel probability measures on R and p
another Borel probability measure on R, then (fi,)nen converges weakly to w if and only if
(Gpi Jnen converges pointwise on C* to G,.

18
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Surprisingly, one does not even need the convergence (G, (2))nen to G, (2) at all points z €
C™ in order to conclude that (u,)nen converges weakly to p. It is a very nice application of
the well-known Vitali-Porter Theorem that pointwise convergence on any infinite subset
K of C*, which has some accumulation point in C*, is already enough; see [GHO3].

The content of the next theorem is the well-known Stieltjes inversion formula. This im-
portant theorem tells us that the measure p can be recovered from its Cauchy transform
G, by a certain limit procedure.

THEOREM 1.1.29 (Stieltjes inversion formula). Consider the Cauchy transform G, : CT —
C~ of a Borel probability measure v on R. Then

dp.(t) = ;S(Gu(t +ig)) dt

defines for any € > 0 an absolutely continuous probability measure . on R. These mea-
sures [t converge weakly to p as e 0, i.e. we have

lim / £(0) dpa(t) = / £(t) du(t)

for all bounded continuous functions f : R — C.

Cauchy transforms encode in a very nice way the moments of the corresponding probability
measure u, supposed that moments up to so some order exist. For making this more
precise, let us consider first the simplest case of compactly supported probability measures.
If ;o has compact support, it is easy to see that its Cauchy transform G, : C* — C~
extends (uniquely) to a holomorphic function G, : C\ supp(s) — C and hence admits a
Laurent expansion around infinity. More precisely, for any R > 0 satisfying supp(u) C
[—R, R], we have that

— (1) :
(L.9) Gu(z) = Z e for all z € C with |z] > R,
k=0

where my(p) denotes the k-th moment of p, i.e.

my (1) :—/Rtkd,u(t).

In particular, we see that the moment sequence (my(u))i>0 of a compactly supported
probability measure p on R uniquely determines p among all compactly supported prob-
ability measures on R. Indeed, if there would be another compactly supported probability
measure y', which has the same moments as p, its Cauchy transform G, would also
admit a Laurent expansion around infinity and would by assumption agree with the Lau-
rent expansion of G,. Thus, by the identity principle for holomorphic functions, it follows
that G, = G/, which tells us due to the Stieltjes inversion formula Theorem that
p =/, as claimed. Alternatively, we could conclude by Corollary [C.5] Indeed, since com-
plex polynomials are known to be dense in C'([—R, R]) with respect to the uniform norm,
where R > 0 is chosen such that the supports of u and p' are both contained in [—R, R],
it follows that the two positive and continuous linear functionals 1, and 1, on C([—R, R])
must agree on C'([—R, R]). Hence, by uniqueness, u = 1.

Surprisingly, the moment sequence (mg(p))r>0 of a compactly supported probability mea-
sure 1 on R determines p even among all probability measures on R, which have moments
of each order. This statement is less obvious and its validity is guaranteed by the assump-
tion that p has compact support. However, the condition of having compact support can

19



20 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

be significantly relaxed, such that the same conclusion holds for a larger class of measures
i, namely those, which are determined by their moments.

DEFINITION 1.1.30. A probability measure x4 on R, not necessarily compactly supported,
but for which all moments

() = / Fdu(t)  with k € Ny
R

exist, is said to be determined by its moments, if for any other Borel probability measure
i/ on R the condition my () = my(p') for all k£ > 0 implies that u = p'.

Let us point out the following.

REMARK 1.1.31. In order to detect weak convergence of a sequence (i, )nen of Borel prob-
ability measures on R, which all have moments of all orders, towards a Borel probability
measure ;4 on R, which is determined by its moments, it is sufficient to check convergence
of all moments, i.e.

lim [ t*du,(t) = /tk du(t) for all k € Ny.
R R

n—oo

There are powerful results providing sufficient conditions for a measure p to be determined
by its moments. Typically, they formulate certain constraints on the growth of the moment
sequence (my(p))k>0. As a particularly important example, let us mention here Carleman’s
condition, which says that a Borel probability measure p on R having moments of all
orders is determined by its moments, if the series

> man(p)
k=1

is divergent. This allows the announced conclusion that each compactly supported Borel
probability measure on R is determined by its moments.

REMARK 1.1.32. Consider a Borel probability measure g on R and suppose that p has
compact support. In analogy to (L.7)), we have that

1
lim mgk(u)i = lim (/t% du(t )) * = max || <
k—o0 k—o0 R tesupp(p)
and hence limy,_,o0 Mo (1) "2 € (0, 00, which forces Yooy mak(11) 2% to be divergent. By
Carleman’s condition, we may conclude that p is indeed determined by its moments.

In most cases, we will work with measures that arise as analytic distributions of non-
commutative random variables in C*- or W*-probability spaces. Such measures clearly
have compact support.

REMARK [.1.33. If ux is the distribution of any non-commutative random variable X =
X* € Ain a C*-probability space (A, ¢), then tells us that we have

/ — duX =¢((z— X))  forzeC" .

In such cases, we will therefore often write G x instead of G, . This holomorphic function
enjoys an analytic extension to C\supp(px) = C\o(X) = p(X), where o(X) = o4(X)
and p(X) = pa(X) denote the spectrum and the resolvent set of X in A, respectively. On

20



CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 21

the set {z € C| |z| > R}, where R is chosen such that supp(uyx) = o(X) C [—R, R], the
resolvent (z — X)™! can be written as a convergent series

o0

1
—1 n
(=)t =) X

k=0
This yields the Laurent expansion

¢(X")

ok+1

NE

Gx(Z) =

e
Il

0

Compared with the Laurent expansion (L.9) of G, , this gives

H(XP) = my,(ux) = /t’c dpx (t) for k € Ny,
R

which simply reflects the determining condition (L.5) of px, which was given above in
Definition [LT.18

1.1.4. Free independence. The setting that we have introduced so far is of general
nature and not at all specific for free probability theory. The actual starting point of free
probability is Voiculescu’s notion of free independence, which we will introduce next.

DEFINITION 1.1.34 (Free independence). Let (A, ¢) be a non-commutative probability
space.

(i) Let (A;)ics be a family of unital subalgebrag] of A with an arbitrary index set
I #0. We call (A);er freely independent (or just free), if

holds whenever the following conditions are fulfilled:
e We have n > 1 and there are indices i1, ... ,%, € [ satisfying

i1 # gy ino1 # i

e For j =1,...,n, we have X; € A;, and it holds true that ¢(X;) = 0.

(ii) Let (X;)ics a family of subsets of A with an arbitrary index set I # (. We call
(X;)ier freely independent (or just free), if (A;);cs are freely independent in the
sense of (i), where A; denotes for each i € I the unital subalgebra of A that is
generated by the elements of Aj.

(iii) Elements (X;);er are called freely independent (or just free), if (A;);er are freely
independent in the sense of (i), where A; denotes for each ¢ € I the unital
subalgebra of A that is generated by Xj;.

Roughly speaking, free independence gives some kind of “universal rule” to compute
expectations of mixed products. The following theorem gives the precise statement.

THEOREM 1.1.35 (Lemma 5.13 in [NS06]). Let (A, ¢) be a non-commutative probability
space and let (A;)ier be a family of unital subalgebras A; of A, which are freely independent.
Denote by B the subalgebra of A, which is generated by | J,.; Ai. Then the restriction ¢|s
of ¢ to B is fully determined by the family of restrictions (¢|.a4,)icr-

2We note that for us “unital subalgebra” always means “unitally embedded subalgebra”, i.e. the unit
of the smaller algebra is the unit of the larger algebra.
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22 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

Since the proof of this statement is quite constructive, it might convey a better feeling for
the concept of free independence, and so we want to discuss briefly its idea. Clearly, any
element in B is a linear combination of elements of the form

X, X,

with X; € A;; for j = 1,...,n, where n > 1 and 4y,...,i, € I are such that i; #
i9,...,i,_1 7 1, holds. Hence, by linearity of ¢, it suffices to show that the expectation
of such elements is determined by (¢|4,)ies. For proving this, we proceed by (strong)
induction on the length n of the product. For n = 1, the statement is trivially true. If we
assume that the statement is already proven for any length < n for some n > 2, we may
involve the freeness condition, which tells us that

S((X1 = ¢(X1) -+ (Xp — 9(Xn))) = 0.
The latter yields after expanding

SXi- X)) +Y Y (DX oK), ) = 0

k=1 1<j1<<jx<n
where II; stands for the ordered product of all Xi,..., X, but with the factors
X, ..., X;, omitted, i.e.
e = X X X X X - X,
This implies that ¢(X; - -+ X,,) is determined by expectations of products of length < n.
By the induction hypothesis, we conclude that ¢(X; --- X,,) is determined by (¢4, )icr-

ExampPLE 1.1.36. Consider a non-commutative probability space (A, ¢) and two unital
subalgebras A;, Ay of A, which are freely independent. If we chose X1, X5, X35 € A; and
Y € Ay with ¢(Y) = 0, then

H(X1Y XoY X3) = o( X1 X3)p(X2)d(Y?).
Indeed, the freeness condition yields
O((X1 — o(X1)Y (X2 — ¢(X2))Y (X5 — 6(X3))) = 0.
An expansion of the left hand side gives
B((X1 — ¢(X1))Y (X — §(X2))Y (X5 — ¢(X3)))
= H(XY XaY X3) — $(X1)0(Y XV X5) — 3(X2)d(X1 Y2 Xs) — 0(X5)$(X,V XY)
+ O(X1)P(X2)d(Y? X3) + 6(X1)9(X3)d(Y XoY) + ¢(X2)p(X3) (X1 Y?)
— O(X1)p(X2)p(X1)p(Y?).

Next, we study the expressions ¢(Y X5V X3), ¢(X;Y?X3) and ¢(X,Y X,Y). For the first,
we have

0= §(Y(Xs = $(X1))Y (X3 — (X))
= p(Y X5Y X3) — ¢(X2)p(Y?X3) — 6(X3)p(Y X)) + ¢(Xo)p(X5)p(Y?),
for the second
0= o((X1 = ¢(X1))(Y? = 6(Y?))(X5 — $(X3)))
= ¢(X1Y?X3) — ¢(X1)d(Y2X3) — ¢(X1 X3)p(Y?) — o(X3)(X,1Y?)
+26(X1)(X5)B(1?),
22
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and finally for the third one
0= (X1 = §(X1))Y (X2 — 6(X3))Y)
= 9(X1Y XoY) — (X1)p(Y X2Y) — ¢(X2)d(X1Y?) + 6(X1)(X2) (V7).

In the next step, we compute in the same way

O(Y?X3) = o(X3)p(V?), (Y X2Y) = d(Xo)p(Y?), and ¢(XiY?) = o(X1)o(Y?),
such that the previously found relations reduce to

P(YXoY X3) = ¢(X2)p(X3)0(Y?)
O(X1Y?X3) = o(X1X5)p(Y?)
PXIYXoY) = ¢(X1)p(X2)p(Y?)

Combining this with the very first result, we obtain
0= ¢(X1Y XoY X3) — p(X1)p(Y XoV X3) — ¢(X5)p(X1Y 2 X3) — ¢(X3)p(X1Y X,Y)
+ O(X1)(X2)o(Y? X3) + ¢(X1)(X3)p(Y XoY) + ¢(Xo)(X3)p(X1Y?)

— ¢(X1)p(X2)p(X1)p(Y?)
= ¢(X1YX2YX3) - ¢(X2)¢<X1X3)¢(Y2)>

from which the stated formula follows.

We point out that one can significantly simplify such computations by using the powerful
combinatorial machinery of free cumulants, which was introduced to free probability by
Speicher [Spe90, Spe94]; see also[Nic96] and [NS06].

We conclude by recording an important consequence of Theorem [[.1.35|for later reference.

REMARK 1.1.37. A direct consequence of the previous Theorem is, that the
non-commutative distribution py for any family (X;);e; of freely independent non-
commutative random variables in a non-commutative probability space (A, ¢) is com-
pletely determined by the family of single variable distributions (px;,)icr-

I.1.5. Free additive convolution. From the observation recorded in Remark [.1.37]
it follows in particular that the distribution gy, x, of the sum of two freely independent
non-commutative random variables X; and X» only depends on the distributions pux,
and px, of X and Xj, respectively, and not on the concrete realization of X; and Xo
in a non-commutative probability space. Indeed, any moment ¢((X; + X3)™) of X7 + X»
expands as

(i1,esin) €{1,2}7
where now each mixed moment ¢(X;, X, --X;,) can be computed in a recursive but
universal way (which only relies on the structure of the freeness condition) out of the
moments of X; and X5. We only mention here that these universal formulas take a much
more explicit form in terms of free cumulants. Accordingly, Voiculescu’s free additive
convolution H can be defined by as a binary operation on the set of all abstract distribu-
tions (i.e., the set of all linear functionals p : C(x) — C satisfying u(1) = 1), such that

Hx, &5 Hxy = HX14+X5-
Driven by Definition [[.1.18] which identifies the combinatorial distribution of a single self-
adjoint element with a compactly supported Borel probability measure on R, we want
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24 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

to extend now the free additive convolution H to a binary operation on all compactly
supported Borel probability measures on R. This, however, requires some additional ar-
guments, which we collect in the following remark.

REMARK 1.1.38. The main issue here is that the free additive convolution is defined
originally in terms of operators. Thus, we have to convince ourselves that for two given
compactly supported probability measures p1, 2 on R, we can always find operators X;
and X, in some C*-probability space, which are freely independent and whose distribu-
tions are given by py and o, respectively.

(i) If p is any compactly supported probability measure on R, we need to find
some self-adjoint non-commutative random variable X that lives in some non-
commutative C*-probability space (A, ¢), such that © = px. Let us consider
A = C(supp(p)), the unital C*-algebra of all C-valued continuous functions
on the compact support supp(u) of u, endowed with the uniform norm || - |-
Elements from A act naturally as multiplication operators on the Hilbert space
L*(R, ). This action leads us directly to the unital *-homomorphism

m: A— B(L*(R, ), g M,,
where M, € B(L*(R,u)) is defined by M,f := g- f for all f € L*(R, ) and

satisfies ||M,]| = ||g|l- Thus, we see that the s-homomorphism 7 is in fact
isometric. On A, we can introduce a state ¢ by

o(g) = (r(g) 1,1) = / g(x)dp(z)  forallg e A,

R
where 1 denotes the function in L*(R, i), that takes constantly the value 1. Due
to the commutativity of A, the state ¢ is trivially a trace, and since 7 is faithful,
we conclude that ¢ is also faithful. Now, if we consider X := idgpp(u) € A, We
can readily check that px = p. Indeed, we have

H(XF) = (m(X¥)1,1) = (X*,1) = / Fdp(n)  for ke N,
R
as Definition [[.1.18| requires.

(ii) There is a general construction that produces out of any given family ((A;, ¢;))ier
of C*-probability spaces (A;, ¢;), which are endowed with faithful and tracial
states ¢;, some C*-probability space (A, ¢) with ¢ being faithful and tracial,
such that

e cach A; is unitally and isometrically embedded into A,

e ¢|4, = ¢; holds for all i € I, and

e the subalgebras (A;);c; are freely independent in (A, ¢).
This C*-probability space is called the reduced free product of the C*-algebras
(A;)ier with respect to (¢;)ier, and it is denoted by

The arguments given above even show that for arbitrarily many compactly supported

Borel probability measures p1, ..., uxy on R one can find freely independent self-adjoint

non-commutative random variables X, ..., X in some C*-probability space (A4, ¢), such

that the analytic distribution of X is given by u; fore=1,... N.

The promised definition of H as a binary operation on the set of all compactly supported
Borel probability measures on R reads then as follows.
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 25

DEFINITION 1.1.39. Let pq, s be two compactly supported Borel probability measures on
the real line R. The free additive convolution u, H ps is defined as analytic distribution of
X + X, where X; and X, are self-adjoint elements in any C*-probability space (A, ¢),
which are freely independent and whose analytic distributions are given by ux, = p1 and

Hxy = H2-

We point out that the free additive convolution H can also be defined for Borel probability
measures, which are not compactly supported. The assumption of compact support was
dropped in [BV93] with the help of affiliated operators. We leave out the details here.

Of course, Definition is tempting to believe that H would even extend to some
binary operation on the set all compactly supported Borel probability measures on the
complex plane C, but since X; + X5 is not necessarily normal if X; and X, are so, the
construction simply fails in this generality unlike the self-adjoint case.

REMARK 1.1.40. Without going into details, let us note that in a similar way, the free
multiplicative convolution X can be defined; see [Voi87]. It is given as a binary operation
on the space of all abstract distributions, such that px, X ux, = px, x, holds. Like the
free additive convolution H, also X extends to the level of compactly supported Borel
probability measures, but in order to stay inside the class of Borel probability measures
on R, we need to impose the additional condition that at least one of the measures j;
and ps is supported on R, = [0, 00) in order to define p; X ps.

[.1.5.1. The R-transform. The free additive convolution H is clearly the free analogue
of the classical convolution * of probability measures. In classical probability, the Fourier
transform pu — i can be used to compute this kind of convolution, since its logarithm
linearizes * in the sense that log(jiy * fi2) = log(fi1) + log(jiz). In free probability, the role
of the linearizing transform is played by the so-called R-transform p — R, which was
introduced by Voiculescu [Voi86]. It is determined by the equation

e

1
(I.10) G, (; + Ru(z)) =z forall z €,

for some domain () # Q' C C~; see also [Haa97]. We want to give a more detailed
explanation of this important equation. For this purpose, let us recall some results from
[BV93], which notably even apply in the case of measures having unbounded support.

To begin with, let 1 be any Borel probability measure on R. Let us introduce the so-called
F-transform F), of p, which is the holomorphic function

1
Gu<z)‘
Furthermore, for any o, 5 > 0, we will consider the so-called Stolz angle I, 5 as the set
Lap:={z €l |z| > B}, where [, :={z € C"| |R(2)| < aS(2)}.

If we chose now 0 < ¢ < «, then according to [BV93, Proposition 5.4], we can find g > 0,
such that F), is injective on the Stolz angle I'y s and such that F,(I'a ) 2 T'a—c g(1+e)
holds. By gluing together different Stolz angles (see [BV93l Corollary 5.5]), we find a
domain € of the form Q = J,.,'a,5., such that F,, admits a holomorphic right inverse
F;l defined on €2, i.e. F;l : Q) — C* and

F,

W(FN(z) =2  forall zeQ.
25
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Properties of F), (see [BV93, Proposition 5.2] and [BV93, Corollary 5.3]) translate to
statements about F, !, namely

L - FG)

S(F; (2) <SQ(2) forall zeQ and lim —+——=

H |z| =00 z
z€l'y

=1 forall a>0.

Finally, if we consider the Voiculescu transform ¢,, which lives on the same domain 2
and is given by

Pu(2) = Fu_l(z)—z for all z € 0,

we immediately get that ¢, satisfies

S(pu(z)) <0 forall z € Q2 and Il‘im 9ulz) =0 forall a>0.
z|—00 z
z€ly

This is a good point to take a short rest in order to summarize what we have done so far.
Ignoring for the moment all technical details, we can summarize that we have introduced
some special function ¢,, which can be attached to any Borel probability measure ;1 on
the real line. Although there is no universal domain on which all these functions ¢, can be
defined, we know at least that each individual domain is a union of certain Stolz angles.
It might happen (and it actually happens in some important cases) that ¢, enjoys an
analytic extension beyond these domains and even to the entire upper half-plane. This
feature (see [BV93|, Theorem 5.10]) in fact characterizes the so-called B-infinitely divisible
probability measures. Note, if ¢,, and ¢,, for two probability measures ji1, pi2 on R are
given, we can always find some Stolz angle that belongs to both of their domains, so that
we can always compare ¢,, and ¢,,. Assume now that these functions agree on their
joint domain. Following the construction backwards, we see that in this case also F;ll and
F ;21 must coincide there, such that by the identity theorem their F-transforms and finally
their Cauchy transforms must agree. Using Stieltjes inversion, we may conclude that
p1 = po. This means that ¢, determines p uniquely. However, it remains unclear which
holomorphic functions ¢ arise as the Voiculescu transform of some probability measure
on R. The following theorem provides such a characterization.

THEOREM 1.1.41 ([BV93| Proposition 5.6]). Let ¢ be a holomorphic function, which is
defined on some Stolz angle I'y g. Then the following statements are equivalent:

(i) There exists a probability measure u on R and some ' > 3, such that ¢(z) =
¢u(2) forallz ey p.
(ii) There exists 3/ > 3, such that
o J(¢(2)) <0 forall z e Ty p,

z
e lim M =0, and
|z| 500 Z
ZEFQ,BI
e for any choice of finitely but arbitrarily many points zi,...,z, € I'a g, the
matriz

(e ).

18 positive

But what is the actual use of these functions? The answer to this question can be found
in [BV93, Corollary 5.8]. This fundamental theorem connects the previously explained
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 27

complex analysis construction with the operator-algebraic world of free independence by
establishing that p — ¢, yields a linearizing transform for BH. More precisely, it tells us
that we have for each a > 0

qulEEMQ(Z) = ¢u1(z) + ¢M2 (Z) fOI" au z € Faﬁ’

if B > 0 is chosen large enough. Note that in contrast to the R-transform, which appears
in ([.10]), the Voiculescu transform is determined by

Gu(z+ u(2)) = % for all z € Q.

The desired R-transform, which satisfies an equation of the form (|[.10)), is thus obtained by
putting R, (z) := ¢,,(1) for all z belonging to ' := {1] z € Q}. Put Faﬂ = {2z € Tap}
Then the above addition formula for ¢, rephrases as

Ry e, (2) = Ry, (2) + Ry, (2) for all z € T, 5.

Thus, if we want to compute p; B uo for two given Borel probability measures pq, o on
R, we can proceed now as follows.

(i) Compute the Cauchy transforms G,, and G,

(ii) Solve equation ([.10)) for p; and s separately in order to obtain the R-transforms
R, and R,,.

(iii) Compute the R-transform of py B pe by R mu, = R, + Ry, on their joint
domain.

(iv) Solve (L.10)) in order ti)obtain an expression for G, m,, (at least locally and if
necessary extend to C).

(v) Apply Stieltjes inversion to G, m,, in order to get piq B po.

This algorithm sounds quite simple, but actually it is not, since it requires to deal with
equation (|[.10), which is in general not an easy task. Even worse, one often arrives at
equations for which no analytic solution is known. Therefore, one would surely appreciate
an alternative approach. This will be addressed next.

[.1.5.2. Subordination. Indeed, there is the powerful concept of subordination, which
is both of great practical and theoretical use. These ideas were developed by many au-
thors, starting from Voiculescu [Vo0i93], and brought into its final form in [Bia98al; see
also [CG11]. We refer to [BBOT] for a beautiful proof based on the theory of Denjoy-
Wolff points, which in addition provides a fixed point iteration scheme for the desired
subordination functions.

Before giving the statement, let us introduce the so-called h-transform
h,: C"—=C", 2 F,(2) — 2
for any Borel probability measure p on R.

THEOREM 1.1.42 (see [BBO7, Theorem 4.1]). Given Borel probability measures puy and
1o on R, there exist unique holomorphic functions wi,ws : C* — C* such that

o Forj € {1,2}, we have I(w;(z)) > J(2) for all z € C* and

lim £209) _ 5,

y—oo 1y ’
o Flum(2) = Fm( ( )) Fyy(wa(2)) for all z € CT;
o wi(z) +wy(z) = Fimus(2) for all z € CT.
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28 Ll. SCALAR-VALUED FREE PROBABILITY THEORY

Moreover, if z € C* is given, then wi(z) is the unique fized point of the map
f.: CH—=C*, w— hy(hi(w) +2) + 2,

and wy(z) = lim, o f2"(w) for any w € Ct, where fo means the n-fold composition of
f. with itself. Same statements hold for wy, with f, replaced by w +— hy(ha(w) + 2) + 2.

I.1.6. The semicircular and the Marchenko-Pastur distribution. The most
important (analytic) distribution in free probability is the semicircular distribution, which
plays here the same role as the Gaussian distribution does in classical probability.

DEFINITION 1.1.43. The semicircular distribution with mean 0 and variance t > 0 is the
compactly supported Borel probability measure o; on the real line R that is given by

1
doy(z) = %\/ A — 2?1y 05 () dz.

A non-commutative random variable living in some non-commutative C*-probability space
is called semicircular element (of mean 0 and variance t), if its analytic distribution is
given by the semicircular distribution (with mean 0 and variance t), i.e., if we have that
is, = 0y The following example shows that semicircular operators arise in a very natural
way.

ExaMPLE [.1.44. Let H be a separable complex Hilbert space with fixed orthonormal
basis (e, )nen,. Consider the C*-probability space (B(H), ¢) with ¢ being the vector state
with respect to eg, i.e.
¢: B(H) = C, X — (Xep,ep).

Let us denote by [ the right shift on H with respect to the given orthonormal basis
(€n)nen, and by [* its adjoint, i.e. the left shift on H with respect to (e,)nen,. The analytic
distribution of the non-commutative random variable S, = \/#(I +*) is then given by the
semicircular distribution o;. This can be shown as follows:

e It clearly suffices to prove that us, = o1 holds. Indeed, as soon as pug, = oy is
established, the obvious relation S; = v/t5; gives us for all k € Ny

k 2 2Vt
t 1
o(sh) =thosh = o [ VI Fde— oo [ iRy = [t doo),
2T _9 2t —2Vt R
where we used the substitution y = v/tx. Having this, Definition |I.1.18] tells us

that pug, = oy.

e According to Definition [[.1.18] we have to show that ¢(S¥) = my (o) holds for
each k € Ny. This can be done by combinatorial methods: on the one hand, if
we put formally /7! := [*, then the moments of S; turn out to be

P(SF) = Z (1F® . =5 Wy eg) = Z 1,

e(1),.e(k)e{-1,1} c(1),.e(k)e{-1,1}
V1<p<k: e(1)+-+e(p)>0
e(1)4-4e(k)=0
which means that ¢(S¥) counts the number of Dyck paths of length k. Their
number is clearly 0, if &k is odd, and is known to be the Catalan number Cj o, if
k is even; recall that the Catalan numbers are defined by C,, = #1 (27?) On the

other hand, due to the symmetry of o1, we have that the moment my(cy) is 0,
if k is odd, and one can prove that my(o1) = Cy/2 holds, if k is even.
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A generalization of this construction will play an important role in Chapter [VII]

We now collect a few important properties of the semicircular distribution.
REMARK 1.1.45.

(i) The Cauchy transform of o, satisfies the equation

tGy, (2)? — 2Gy(2) +1=0  forall z€ C*

and is therefore given by

oz
2t
where the branch of the square root is chosen such that the necessary condition
lim, o 1yGy, (iy) = 1 is satisfied (see condition (ii) of Theorem [[.1.27). The
R-transform takes the very simple form R,,(z) = tz.

(ii) We note that (oy);>¢ forms a semi-group with respect to the free additive con-
volution, i.e. we have that

4t
Go,(2) <1 —4/1— —2> for all z € C*,

z

osBoy =044y for all s,t > 0.

This can be checked directly by using the additivity of the R-transforms.

(iii) One can formulate a free analogue of the classical central limit theorem, where
the semicircular distribution arises as the limiting distribution; see [Voi85] or
[NS06| Theorem 8.10].

Another very important distribution, which takes over in free probability the role of the
classical Poisson distribution, is the so-called free Poisson distribution. Due to its first
appearance in random matrix theory, see [MPG68], the free Poisson distribution also goes
under the name of Marchenko-Pastur distribution.

DEFINITION [.1.46. The free Poisson distribution py, with rate X\ > 0 and jump size
a € R is defined by

o (1_)\)50‘{'”/\,047 0<A<1
Hx o = Uras A 2:1 )

where v, , is an absolutely continuous measure (with respect to the Lebesgue measure on
R), which is given by

1
dvy.a (t) = M\/(t - pmin)(/)max - t) Lipin puma] (t> dt.

where pmin < Pmax are the two solutions ¢ of 4 a? — (t — a(1 + \))? = 0.

It is a very special feature of the free world that the free Poisson distribution p;, can be
realized as the distribution of an operator W; := S? where S; is a semicircular element
of mean 0 and variance t, i.e. pug, = oy.

REMARK 1.1.47.

(i) We recall that its Cauchy transform is given by

z+a—da—/(z—a(l+N))? -4 a?
Gyn(2) = Ve

and that its R-transform is of the form R, (z) = 2%

l—az
29
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(ii) One easily sees with the help of the R-transforms, that (uyq)a>o forms for any
fixed a € R a semigroup with respect to the free additive convolution H.

(iii) One can formulate a free analogue of the Poisson limit theorem, where gy o
shows up in the limit; see [NS06l, Proposition 12.11].

I.2. Operator-valued free probability theory

Operator-valued free probability theory generalizes the setting of free probability theory,
which we have presented in the previous section, in the sense that the role of the complex
numbers is taken over by any another unital subalgebra of the given algebra of non-
commutative random variables. This theory was initiated by Voiculescu in [Voi95|] and
the combinatorial approach was developed by Speicher in [Spe98].

I1.2.1. Operator-valued non-commutative probability spaces. Strictly follow-
ing the rule that the complex numbers are replaced by more general algebras, it is natural
to adapt also the definition of non-commutative probability spaces. The main difference
between the usual setting of scalar-valued free probability theory and operator-valued free
probability theory is that expectations are replaced by conditional expectations. These
objects can be seen as the natural non-commutative analogues of conditional expectations,
which we know from classical probability.

[.2.1.1. The basic terminology. Let us begin with the purely algebraic setting, which
generalizes Definition [[.1.1]

DEFINITION 1.2.1. An operator-valued non-commutative probability space (A, E,B) con-
sists of a unital complex algebra A, a unital subalgebra B of A, which is unitally embedded
in A, and a conditional expectation E : A — B, i.e. a unital map F : A — B satisfying

e E[b] =0 for all b € B and
[ ] E[lebQ] = blE[X]bQ for all X € A, bl,b2 € B.

ExampPLE 1.2.2. Like a non-commutative probability space (A, ¢) can be seen as a non-
commutative analogue of (L*(£2,P),E) for classical probability spaces (€2, F,[P), also
operator-valued non-commutative probability spaces (A, E, B) have their classical an-
cestor. If we take any classical probability space (2, F,P) and a sub-c-algebra F' of
F, then the classical conditional expectation E[X, F'] : © — C of any random variable
X € L>(Q, F,P) is a F'-measurable function that belongs to L>°(Q, F',P|#) and it has
the property that
E[XY, F| =E[X, F|Y for all Y € L>=(Q, F',P|5).
Thus, the conditional expectation gives rise to a mapping
E[-, F']: L™(Q, F,P) — L>=(Q, F',P|=),

for which (L>*(Q,F,P),E[-, F],L>*(Q, F',P|x)) forms an operator-valued non-
commutative probability space in the sense of Definition |[.2.1}
ExXAMPLE 1.2.3. Let (C, ¢) be any non-commutative probability space. Then

A:=MyC)®C, B = My(C), and E = idc) @9,

where ® stands for the algebraic tensor product over C, defines an operator-valued non-
commutative probability space (A, E,B). In the following, whenever we want to distin-
guish between several dimensions N, we write more precisely Ey instead of E.
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1.2.1.2. Operator-valued C*- and W*-probability spaces. Since we are mostly interested
in analytic aspects of operator-valued free probability theory, we need to add some an-
alytic structure to the purely algebraic framework of operator-valued non-commutative
probability spaces. In analogy to the scalar-valued case, which was presented in Paragraph
[.1.2.3 we will mention here operator-valued C*- and W*-probability spaces.

DEFINITION 1.2.4. An operator-valued C*-probability space (A, E, B) is an operator-valued
non-commutative probability space, where A is a unital C*-algebra and B a C*-subalgebra
of A, which contains the unit, and where the conditional expectation £ : A — B is a
positive.

REMARK 1.2.5.

(i) Note that £ : A — B being positive simply means that E is positive as a
linear map between the unital C*-algebras A and B. Recall that a linear map
® : A — B between arbitrary C*-algebras A and B is said to be positive,
if it maps positive elements in A to positive elements in B, i.e., if it satisfies
®(a*a) > 0 for all a € A.

(ii) Since the linear map E is positive and satisfies F[1] = 1, it follows that F is
bounded with norm 1.

(iii) As a conditional expectation, the positivity of F already implies that E' is even
completely positive. Recall that a map ® : A — B between C*-algebras is called
completely positive, if for each n € N the induced map

(I)(n) : Mn(.A> — Mn(B), (ak7l>z7l:1 —> ((I)(Clk,l))

kl=1
is positive as a linear map between the C*-algebras M, (A) and M, (B).

DEFINITION [.2.6. An operator-valued W*-probability space (M, E, N) is an operator-
valued non-commutative probability space, where M is a von Neumann algebra and N a
unitally embedded von Neumann subalgebra of M, and where the conditional expectation
E : M — N is positive, weakly continuous, and faithful.

REMARK 1.2.7. It follows from results of [Ume54] (see also [Tak72] for generalizations)
that whenever (M, 1) is a W*-probability space and N is any (unitally embedded) von
Neumann subalgebra of M, then there exists a unique conditional expectation £ : M —
N, such that (M, E, N) is an operator-valued W*-probability space and such that 7|y o
E = 7 is satisfied.

1.2.2. Operator-valued non-commutative distributions. There is also an
operator-valued generalization of non-commutative distributions.

DEFINITION [.2.8. Let I be some non-empty index set and B be a unital complex algebra.

(i) By B(z;| i € I), we denote the algebra of non-commutative polynomials over B
in the formal variables {z;| i € I'}. Formally, as a vector space, it is given by

Blazi|iel)=PBoX)*" B,
n=0
where X is the vector space with basis {z;| ¢ € I} and with the multiplication
induced by the tensor product ®z with amalgamation over B.
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(ii) Let (A, E,B) be an operator-valued non-commutative probability space and
consider a family X = (X;);e; of non-commutative random variables in A. We
denote by evy the evaluation homomorphism

evx : Blx|iel)— A,

which is, as a homomorphism, uniquely determined by b + b for all b € B and
x; — X; for all i € I. For any given P € B(x;| i € I), we mostly abbreviate
P(X) := evx(P). The operator-valued (joint) distribution px of X means the
B-linear functional given by ux := Foevy, i.e.

px = Blx;|iel)— B, P— E[P(X)].

1.2.3. Operator-valued Cauchy transform. Similar to the scalar-valued case,
Cauchy transforms play an important role in the analytic description of free independence
with amalgamation. Their generalizations to the operator-valued setting are defined as
follows.

DEFINITION 1.2.9. Let (A, E, B) be an operator-valued C*-probability space. We call
H*(B):={beB|Fe>0: J(b) >el} and H (B):={beB|F>0: —S(b) >el}

the upper and lower half-plane of B, respectively, where we use the notation (b) :=
2%.(1)— b*). The B-valued Cauchy transform Gx of any X = X* € A is the Fréchet analytic
function

Gx: HY(B) = H (B), b+ E[(b— X)™ ]

A few comments on the analyticity of operator-valued Cauchy transforms (using the
terminology of Appendix |B|) are in order. It is not hard to check that

1
6Gx(bih) = lim  ~(Gx(b+ 2h) — Gx (b)) = —E[(b— X)"h(b - X)7']
eU{bh\{0} ©

holds for each b € H*(B) and all h € B, where we put U(b; h) := {z € C| b+zh € H*(B)}.
Indeed, for each z € U(b; h), we have

%(((b L) = X) T (b= X)) = (b4 =) — X) (b — X)),

Correspondingly, Definition tells us that Gx : HT(B) — H™(B) is Gateaux analytic
on H*(B). Furthermore, apart from the invertibility of b — X for b € H*(B), it is known
(see [BPV12], for instance) that ||(b — X)~7|| < ||S(b) | holds. Therefore, we see that

8Gx(b;-): B— B, hws —E[(b— X)"h(b— X)7!]

is a bounded linear map with ||6Gx (b;-)|| < [|S(b)~*||*. Definition [B.1] together with Re-
mark [B.2] yields that G is in fact Fréchet analytic on H*(B). Even better, the inequality
|(b— X))~ < [|S(b) 71| tells us that ||Gx(b)]] < [|S(b)7!|| holds at any point b € H*(B),
from which it follows then that Gx is locally bounded. According to Definition [B.3] this
means that Gx must in fact be analytic.

Let us point out that operator-valued Cauchy transforms in the sense of the previous
Definition [[.2.9] always enjoy an analytic extension like in the scalar-valued case; see Sub-
section in particular Remark [.1.33] More precisely, the B-valued Cauchy transform
Gx : H"(B) — H (B) of any non-commutative random variable X = X* living in some
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operator-valued C*-probability space (A, E, B) can be extended uniquely to an analytic
function

Gx: pas(X) > H(B), b= E[(b—X)7'],
where we denote by pa/p(X) the B-valued resolvent set of X in A. It is defined as the
set of all b € B, for which b — X is invertible in A. Note that H*(B) C p4/s(X). The
analyticity can be checked by using the Taylor expansion

o

Gx(b+h) => (~1)*E[(b—X)""(h(b— X)™")],
which holds due to
((b+h)=X) ' =0b-X)"A+hb-X)")"=> (b-X)(h(b- X))

at any fixed point b € pa/p(X) for each h € B satisfying [|h]] < [|(b— X))~ 7"

For the seek of completeness, let us mention that correspondingly the B-valued spectrum
of X in A is defined as the complement o 4,5(X) = B\pa/p(X). It is easy to see that, in
analogy to the more familiar case B = C, the B-valued resolvent set p4,3(X) is an open
subset of B and the B-valued spectrum o4,3(X) is a closed subset of B for any X € A.
Moreover, since {z1] z € 0.4(X)} C 0.4/8(X), we have that 04,3(X) is non-empty, but it
fails in general to be a compact or a bounded set.

The following example will be of great importance in Chapter [[V]

ExamMpPLE 1.2.10. We have seen in Example that each non-commutative prob-
ability space (C,¢) induces an operator-valued non-commutative probability space
(Mn(C), Ex, Mn(C)) for each N € N (where we used the isomorphism My(C) =
My (C)®C). It is easy to check that (My(C), Ex, Mn(C)) gives an example of an operator-
valued C*-probability space, if we start from a C*-probability space (C, ¢).

Now, if we take any non-commutative random variable X = X* € C and any matrix
L = L* € My(C), the distribution of X with respect to ¢ determines the My (C)-valued
distribution of LX with respect to Ey. This is easy to see on the combinatorial level, but
of course, we should also be able to compute the My (C)-valued Cauchy transform of LX
in terms of the matrix L and the scalar-valued Cauchy transform of X.

Indeed, we have the following relation

Gox(b) = / (b— L) dux(t)

with the matrix-valued integral understood in the Bochner sense, from which we can

deduce with the help of Stieltjes inversion formula, Theorem |[.1.29] that

(L11) G (b) = li{r(l)_?l/R(b— EL) LGt + i) dt.

However, from a computational point of view, the formula given above in Exam-
ple is not satisfying since many expensive matrix inversions are needed in order
to reach a sufficiently accurate approximation of the integral, for instance by Riemann
sums. Several very inspiring discussions that the author had with J. W. Helton led to the
following algorithm, which significantly increases the calculation speed compared to the
former approach based on formula .
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34 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

ALGORITHM 1.2.11. Let (C,¢) be a C*-probability space and consider X = X* € C with
giwen scalar-valued Cauchy transform Gx, analytically extended to the resolvent set of X .
For any matrizc L. = L* € My(C), the matriz-valued Cauchy transform Gpx of LX €
Mn(C) at any point b € H(My(C)) can be obtained as follows:

(i) Since the matriz L is supposed to be self-adjoint, we can find a unitary matriz
U € My(C) such that

A .
— 0 : _ ,
U*LU = (O O) with A= . 7
Ad
where Ay, ..., \g are the non-zero eigenvalues of by, listed with multiplicities.

(ii) For the given point b € H* (My(C)), we decompose

x big b1
U bU = ’ '
(52,1 52,2> ’
such that by 1 belongs to My(C) and all other blocks are of appropriate size.
(iii) Since F(ba2) > 0, we know that by s must invertible. Thus, we may introduce
S =0by1— bl,zbiébz,l-

The Schur complement formula, Lemma tells us that S — AX is invertible
and that

by —AX bio) 1 0\ ((S—AX)"" 0 (1 —biobys
ba 1 b2 N —bz_,%bZ,l 1 0 b2—§ 0 1 '

(iv) Combining the previous observations, we deduce
Grx(b) = Ey[(b—LX)™']
— UEN[(U"U — (U*LU)X) "' |U"

bii— AX bio\

by 1 bs o
B 1 0 (S—AX)"t 0 1T —biabys) o
= 0 1) B (O bz‘é)] (o ™)

_ 1 0\ (Eal(S—AX)"] 0 (1 —bisbys e
- —byaba 1 0 by3) \0 1 '

(v) Therefore, the initial problem is now reduced to the calculation of E4[(S—AX)™1].
Here, we proceed as follows. First, let us assume that A=S can be diagonalized,
i.e. there exists an invertible matriz V- € My(C) such that

= ULy U*

M1
A'S =V . v
Hd
where i1, ..., g are the eigenvalues of A=1S, listed according to multiplicity.

Notice that, as the invertibility of A and S — AX is guaranteed, each of the
complex numbers p, ..., g must belong to the resolvent set of X, because S —
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AX = A(A71S —14X). Hence, the points piy, . . .
unique analytic extension of Gx and we obtain

, ba belong to the domain of the

Gx ()
Eq[(S—AX) = EgJAT'S = 1,X) AT =V VAT
Gx (pa)
Otherwise, if A=1S fails to be diagonalizable, we can use instead its Jordan nor-
mal form
Ji
AT'S =V V!

Jp

with an invertible matriz V€ My(C) and a block diagonal matriz consisting of
the Jordan blocks Ji, ..., J, associated to the eigenvalues iy, . .., ,, respectively.
Proceeding like above, one easily sees that J, — X1g4,,...,J,— X1g, are invertible
and that

Eay[(J1 — X14)7Y
EJ(S—=AX) =V VAT
Eg, [(Jp = X1a,) ]
Thus, we are done after involving Lemma[I.2.19 below.

LEMMA 1.2.12. Let X be a self-adjoint non-commutative random variable living in some
C*-probability space (C, ). Fix d € N and consider any matriz J € My(C) of the form

w 10 ... 0 o 1 0 ... 0
0 pu 1 : 0 0 1 :
J=plyg+N=1¢9 o 0 with N=1o9 o 0
Do o1 ; .. 001
0O ... 0 0 pu O ... 0 0 O

where p is any complexr number. Then J — X1y is invertible in My(C) if and only if u
belongs to the resolvent set of X . In this case, the conditional expectation of (J — X14)~*
can be computed, by involving the values of the extended Cauchy transform Gx and of its
derivatives GV, ..., G\ at the point 1, via the formula

Gx() G - w6 ()
d—1
1 : :
(] = X1)7 =Y 6@t = | 0 Gxlw) |
k=0 ™ 5 LG

Proor. Consider the decomposition J = ply + N and note that N is a nilpotent
matrix, which satisfies N¢ = 0.

Assume first that g belongs to the resolvent set of X. In this case, we can write
J—=Xly=(p—X)1lg+N=(—-X)(1g+ (p—X)"'N),
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where 14+ (1 — X)7'N is invertible and has the inverse

IS
—

(Lot (= X)7'N) 7 =D (=1 (= X) "N,

i

since the matrices (u— X)14 and N commute. Therefore, also J — X1, must be invertible
and we have that

U

(112) (J—X1y) "= (Lg+ (n— X)—lN)*l(M —X) = 9 (—1)%(u — X)~®+D NE,

B
Il

Conversely, suppose now that J — X1, is invertible in My(A). Since in fact J — X1, €
My(Ap), where Ay denotes the commutative C*-subalgebra of A generated by X = X*
we infer that J — X 14 must be invertible also in My(Ap). Put R := (J— X14)~" and write
R = (R;;){,—,. From the relation R(J — X14) = 14, we easily obtain Ry;(u — X) = 1
and from this (u — X )Ry 1 = 1, by the commutativity of 4. In summary, this yields the
invertibility of p — X with (u — X)™' = Ry ;.

In the case where J — X1, and p — X are both invertible, we use
Ggl;)(u) = (=) Kklp((u — X)~*+D) for each k € Ny
in order to obtain with the help of ([.12]) that

B~ X1)7] = 3 (-1 ((n — X))V = 3 LGB (N

QU
QU
[

B
Il
=
Il

This yields the stated formula and hence concludes the proof. 0

Note that in the scalar-valued setting Cauchy transforms were defined first for Borel prob-
ability measures on R and after that for self-adjoint non-commutative random variables
via their analytic distributions. In the operator-valued setting, we have to be content with
Definition since there is no measure theoretic description of B-valued distributions
similar to the classical case behind the scenes. However, there is an intermediate level,
on which we can come closer to the scalar-valued situation: for any b € HT(B) with
|67 < || X]|, we see that the B-valued Cauchy transform Gy admits a series expansion

G (b) = D B[ X) 0] = D (07 2)"07),
k=0 k=0

where only the B-valued distribution px : B(x) — B is involved. This is the B-valued
analogue of (L.9). In this sense p1x determines Gx uniquely and we are thus allowed to
write G, instead of G'x. Accordingly, we can talk about the B-valued Cauchy transform
G, of p, whenever we start with p : B(x) — B, which arises as the B-valued distribution
of a non-commutative random variable in some C*-probability space over B. Amazingly,
these “abstract distributions” can be characterized. This works as follows.

We denote by X5 the set of all linear mappings p : B{x) — B satisfying p(b) = b for all
b € B, which are moreover positive (i.e. they satisfy p(PP*) > 0 in B for all P € B(z))
and which have the property that
,u(blpbg) = bl,u(P)bQ for all bl,bg € Band P ¢ B<$C>
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Furthermore, we denote by %% the subset of ¥, consisting of those u : B{z) — B, for
which some constant M > 0 exists, such that

lpe(zdrz - - abpa) || < Moo - [[ox|
for all Kk € N and by,...,b; € B holds. We can formulate now the following result.

THEOREM 1.2.13 (see [PV13] Proposition 2.2]). Let u € Y5 be given. Then p € L% if
and only if there exists a C*-probability space (A, E,B) over B and a non-commutative
random variable X = X* € A, such that j = px.

Any operator-valued C*-probability space (A, E,B) induces naturally a family of
operator-valued C*-probability spaces. They are given by (M, (A), E™, M, (B)) for each
n € N, where E denotes the amplification of F (see part (iii) of Remark [.2.5) defined
by

E™ : My (A) = My(B), (Xxo)iimr = (BIXk)i iz

Accordingly, for any X = X* € A, we have a whole family of Cauchy transforms
G HY(M,(B)) — H (M, (B)), b E™[(b - X1,)7"].

This observation was at the base of Voiculescu’s “free analysis” [VoiO8| and it allows
to treat operator-valued Cauchy transforms as non-commutative functions in the sense
of [KV14]. The motivation comes from the fact that knowledge of Gx is not enough

to recover the full B-valued distribution of X, whereas the tower (Gg?))neN contains all
this information. Although we cannot formulate a precise analogue of Stieltjes inversion

formula, the following theorem should give some justification to our claim that (Gg?))neN
fully controls the B-valued distribution of X.

THEOREM 1.2.14 ([BPV12, Proposition 2.11]). Let (fin)nen be a sequence in X%, which
1s uniformly bounded in the sense that there exists a constant M > 0, such that we have

i (xbrz - - by || < MHbo]| - [|bi
for alln,k € N and all by, ...,b, € B. Then the following statements are equivalent:

(1) (fn)nen norm-converges to some p € X%, i.e., we have for all k € N

lim sup | pin(xby - - - xbgx) — p(abyx - - - bpz)|| = 0.

by ||=1,.. bk 1 =1

(ii) For all m € N, the sequence (G,&T))neN converges uniformly to GLm) on balls in
H* (M, (B)), which lay at positive distance from the boundary OHT (M,,(B)).

The above given formulations are adjusted to our needs and so they do not present [PV13]
Proposition 2.2] and [BPV12, Proposition 2.11] in full strength and generality.

ExaMmPLE [.2.15.

(i) There is an important example of an operator-valued distribution, namely
operator-valued semicircular elements. Since a description of the B-valued dis-
tribution of B-valued semicircular elements would require some combinatorial
terminology, which we did not introduce here, we stick to the following defini-
tion, which is inspired by [Spe98| Theorem 4.1.12.]: a self-adjoint element S in
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an operator-valued C*-probability space (A, E, B) is called B-valued semicircu-
lar element (with zero mean and covariance map n : B — B), if n is completely
positive and if the B-valued Cauchy transform Gg of S solves the equation

N(Gs(b)Gs(b) — bGg(b) +1=0  for all b € H(B).

In fact, it was shown in [HESO7| as part of a more general statement that
this equation has for each completely positive map 7 a unique solution G :
H*(B) — H™(B). It is an additional feature of the proof given in [HFSO07] that
the pointwise inverse of this solution G, i.e. the operator-valued F-transform

F: HY(B) — H*(B),b+ G(b)™,

can be obtained by a fixed point iteration. From this, it can be deduced that G
is in fact a locally bounded Fréchet holomorphic function and hence analytic.
Operator-valued semicircular elements arise naturally by some construction
based on Remark [.2.17 if si,...,s, are scalar-valued semicircular elements
(not necessarily freely independent) in some C*-probability space (C,¢) and if
bi,...,b, are any self-adjoint matrices in My (C), then

S=b®®s1+--+b, s,

gives an operator-valued semicircular element in (My(C) ® C, E, My (C)) with
mean zero and covariance map 7 : My(C) — My (C) given by

ij=1

1.2.4. Free independence with amalgamation. The definition of free indepen-

dence in the general setting of operator-valued non-commutative probability spaces (see

Definition [[.1.34]) reads as follows.

DEFINITION 1.2.16 (Free independence with amalgamation). Let (A, E, B) be an operator-
valued non-commutative probability space

(i)

Let (A;)ic; be a family of subalgebras B C A; C A with an arbitrary index set
I #0. We call (A);es freely independent with amalgamation over B (or just free
over B), if

E[X;-X,] =0

holds whenever the following conditions are fulfilled:
e We have n > 1 and there are indices 41, ...,%, € I satisfying

i1 F dg, ey in1 F lp.
e For j =1,...,n, we have X; € A;; and it holds true that E[X;] = 0.

(i) Let (X;)ier a family of subsets of A with an arbitrary index set I # (). We call

(X;)ier freely independent (or just free), if (A;);es are freely independent in the
sense of (i), where A; denotes for each i € I the unital subalgebra of A that is
generated by B and the elements of X;.

(iii) Elements (X;);es are called freely independent with amalgamation over BB (or just

free with amalgamation over B), if (A;);cs are freely independent with amalga-
mation over B in the sense of (i), where A4; denotes for each i € I the subalgebra
of A that is generated by B and X;.
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For our purposes, it is important to note that operator-valued non-commutative prob-
ability spaces can easily be constructed by passing to matrices over scalar-valued non-
commutative probability spaces.

LEMMA 1.2.17. Let (C, ¢) be any non-commutative probability space. Then
.A = MN(C) X C, B = MN((C), cmd E = idMN((C) ®Q§

defines, as we noticed in Erample an operator-valued non-commutative probabil-
ity space (A, E,B). If (C;)icr is any family of freely independent subalgebras of C, then
A; .= Mn(C) @ C; fori € I defines a family (A;)icr of subalgebras of A, which is freely
independent with amalgamation over B.

Before proceeding to the proof of Lemma let us introduce first the following ter-
minology: for k,l = 1,..., N, we denote by ey, the (k,)-matriz unit in My(C), i.e., the
matrix e,; € My (C) whose entries are all zero, except for the (k,[)-entry, which is set to
be 1.

PrRoOOF OF LEMMA [L2.17] It is easy to check that (A, E, B) satisfies the conditions
given in Definition |[.2.16] It thus only remains to show that operator-valued free inde-
pendence arises from scalar-valued free independence in the described way. For seeing

this, we take n > 1 and indices iy, ...,i, € I satisfying i; # is,... 0,1 # in, as well
as non-commutative random variables Xi,. .., X, satisfying X; € A;; and E[X}] = 0 for
j=1,...,n. With respect to the matrix units e, of M, (C), we can write

X, = Zekl®Xkl), WhereXgl)GCij for k,l=1,...,N.
k=1

Since we have by assumption

k=1
we can rewrite this as N
X;= Z €kl @ (Xlgj,l) - ¢(X;§fz)))
k=1

Thus, ignoring some obvious cancellations coming from matrix products of the form
€y ly " " Chn lns WE Obtain

N N
Yoo D (e ern) ® (X, — S(X00)) -+ (X, — 6(X )

k1,l1=1 kn,ln=1

and after applying E on both sides

E[X, Z Z X =X 0)) - () — (X)) (et i)

ki,l1=1 kn,ln=1

The assumed free independence for (Ci)ie 7 gives that

(b(( k:1 11 - ¢( ki, zl)) (X(:?n - (b(XIgZ?ln))) =0
for any choice of ky,1y,...,kn, 1, € {1,...,n} and thus
E[X, - X,] =0,
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as we had to show. O

1.2.5. Operator-valued free additive convolution. Like in the scalar-valued case,
also the B-valued non-commutative distribution px,x, for elements X; and X5 living in
some operator-valued non-commutative probability space (A, E, B), which are freely inde-
pendent with amalgamation over B, only depends on px, and ux,, and not on the concrete
choice of the operators X; and X,. With respect to the universal formulas provided by
the freeness condition, we can introduce the free additive convolution H as a binary oper-
ation on the set of all abstract B-valued distributions (i.e., the set of all linear functionals
u : B{x) — B satisfying the conditions p(b) = b for all b € B and (b1 Pby) = byju(P)bs
for all by,by € B and P € B(x).), such that we can write px,1x, = px, B px,.

In analogy to the scalar-valued case, which was treated in [Voi86], Voiculescu introduced
in [Voi95| a linearizing transform for the B-valued free additive convolution H, the so-
called operator-valued R-transform; see [Dyk06] for an alternative description. We have
already seen in the scalar-valued case that the most convenient way to deal with the free
additive convolution is the subordination formalism. This approach is appropriate also
in the operator-valued case, but technically even more demanding. Preliminary versions
were obtained under more restrictive assumptions in [Bia98al, [Voi0OO0b), [Voi02a|, and
it was shown in [BMS13] that subordination even works in the more general situation
of operator-valued C*-probability spaces. Let us point out that this approach enjoys the
additional feature that it is easily accessible for numerical computations, as it provides
a fixed point iteration scheme similar to [BBOT|. This will be of great importance in

Chapter [[V]
Before we give the precise statement, let us introduce the following transforms, which are
both related to Cauchy transforms, namely

e the reciprocal Cauchy transform, called F-transform, Fx : Ht(B) — H"(B) by

Fx(b) = E[(b—X)"']7" = Gx(b)™
e and the h-transform hx : Ht(B) — H*(B) by
hx(B):=E[(b—X)"']"' = B= Fx(b) —b.

Note, that these mappings are indeed well-defined since it has been shown in [BPV12]
that S(Fx (b)) > (b) for all b € HT(B), which implies S(hx (b)) > 0 for all b € H*(B).

For the relevant definitions and more details about holomorphic functions in Banach
spaces, we refer to Appendix

THeoREM 1.2.18 ([BMS13|). Assume that (A, E,B) is a C*-operator-valued non-
commutative probability space and X1, Xo € A are two self-adjoint operator-valued random
variables, which are free with amalgamation over B. Then there exists a unique pair of
Fréchet (and thus also Gateaux) holomorphic maps wy,wy : HT(B) — HY(B) so that

(i) S(wj(b)) > (b) for allb € HT(B) and j € {1,2},
(i) Fx, (wl( ) + b= Fx,(wa(b)) + b = wi(b) + wa(b) for all b € H*(B),
(ili) Gx,(w1(b)) = Gx,(wa(b)) = Gx,+x,(b) for all b € H*(B).
Moreover, if b € HY(B) is given, then wi(b) is the unique fized point of the map
fb : H+<B) — H+<B), w +— th(th(w) + b) + b,
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and wy(b) = lim, o f"(w) for any w € HY(B), where fg™ means the n-fold composition
of fy with itself. Same statements hold for wy, with fi, replaced by w — hx, (hx,(w)+b)+b.

We do not want to present a detailed proof of this statement, but we want to mention
that the proof given in [BMS13] is based on the Earle-Hamilton Theorem [B.5| This
theorem replaces in the present operator-valued setting the Denjoy-Wolff theory, which
was crucially used in the proof of the scalar-valued version, Theorem as given in
[BBO7T].

1.3. Brown measures

The so-called Brown measure has its origins outside the area of free probability. It was
invented in 1986 by L. G. Brown [Bro86| in order to generalize Lidskii’s theorem. This
famous theorem states that the trace of any trace class operator on a separable Hilbert
space is the sum of its eigenvalues, where multiplicities are counted. In the setting of a
von Neumann algebra M, which is endowed with a faithful, normal, semi-finite traceﬂ,
Brown proved that for any operator X € L'(M,7), there exists a unique measure vy on

o(X)\{0}, such that

T(log|l — 2X]) = / log |1 — zw| dvx (w) for all z € C
a(X)\{0}
holds true. He was able to show that this measure satisfies

/ lwl? dvx (w) < 7(|X|P) for all 0 < p < o0
a(X)\{0}

and even

T(X) = / wdvx(w),
o(X)\{0}

which completes the analogy to Lidskii’s theorem. Much later, namely in 2000, the Brown
measure was introduced to the free probability community by U. Haagerup and F. Larsen.
They took up Brown’s ingenious work in their influential paper [HLOO], where they used
the Brown measure as some replacement of the analytic distribution for more general
operators beyond the self-adjoint or the normal case; see Definition and Definition
[.1.17] This revived Brown’s beautiful theory and attracted attention of many people, not
only from free probability but also from other areas of mathematics; see [BLO1), [Sni02),
Sni03, [GKZ11].

Of particular interest for us is the paper [GKZ11], as it shows with the help of free
probability tools (in particular those coming from [HLOO|) that the Brown measure can
be used to describe the limiting eigenvalue distribution of certain non-self-adjoint random
matrices. This kind of phenomenon is conjectured in many other cases. We will come
back to this in Chapter [[V] where we will present an algorithm that allows us to compute
numerically the Brown measures for non-commutative rational expressions evaluated in
freely independent variables.

Although the Brown measure is of totally different nature than the analytic distribu-
tions, which we discussed so far, the familiar machinery of Cauchy transforms can still be

3These terms are understood in the sense of weights. Since we will only work in tracial W*-probability
spaces (M, T), we omit the general definitions here. Instead, we refer the interested reader to [Bla06,
Section I1.6.7]

41
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used to deal with this technically difficult object. For that purpose, however, the scalar-
valued theory is not sufficient and we must go over to setting of the operator-valued free
probability. This was worked out in [BSS15].

1.3.1. Background and definition. Since we are only interested in applications to
free probability, we will not present the theory in full generality. However, we point out
that in order to use this theory, we have to stay in the setting of finite von Neumann
algebras. Hence, we will in the following discussions around the Brown measure always
work in a tracial W*-probability space (M, 7).

Given an arbitrary element X in any tracial W*-probability space (M, 7), we may define
its Fuglede-Kadison determinant A(X) by the equation

. 1 * 2
= il\I‘I(l] QT(log(XX +¢%)).

This quantity was introduced in [FK51), [FK52].

log(A(X))

It was shown in [Bro86], that the function z — 5= log(A(X — z)) is subharmonic on C
and harmonic outside the spectrum of X. Thus, we may consider the associated Riesz
measure (see also the Riesz Decomposition Theorem [Ran95, Theorem 3.7.9]), which is
a Radon measure vx on C such that

[ o donta) = - [ (G560 + 55 s(a0x = 2 (e

holds for all functions ¢ € C°(C). There, we denote by A?* the Lebesgue measure on C,
which is induced under the usual identification of C with R2. In other words, the Brown
measure vx is the generalized Laplacian of z — 5-1og(A(X — z)), which means that vy
of X is determined (in the distributional sense) by

(I.13) vx = ———log(A(X — 2))
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Note that we made use of the fact that, on C?-functions, the usual Laplacian 8‘9—; + 52

can be rewritten as
0? . 0? .00
0z Oy? 0207
in terms of the Pompeiu-Wirtinger derivatives

0 0 0 0 0 .0
&Z%(%‘Za—y) and %Z%(%“a—@)

I.3.2. The hermitization method. Following [BSS15| (see also [Lar99]), we will
now discuss how tools from operator-valued free probability can be used to compute
Brown measures.

Conceptually, this approach is similar to the way, how we usually deal with distributions
for self-adjoint operators: given an operator X, we must find the Cauchy transform Gy,
from which we can recover the analytic distribution px of X by means of the Stieltjes
inversion formula as explained in Theorem [[.1.29] This means more precisely that we
approximate px by certain absolutely continuous regularizations jix ., which converge
weakly to pux as € N\, 0. In order to compute the Brown measure vx of some operator X,
it is also convenient to approximate vy by certain regularizations vy .. But at first sight,
it is absolutely not clear, by which object we should replace the Cauchy transform in order
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 43

to construct the desired regularizations. It is therefore much more intuitive to proceed the
other way around, namely, we first give a reasonable candidate for such regularizations
and then we check if there some sort of transform behind, which could replace the Cauchy
transform.

To begin with, let us take a look at the construction of the Brown measure. It crucially
relies on the Fuglede-Kadison determinant A, which itself involves some limit procedure.
It is therefore a very natural starting point to replace A by the so-called regularized
Fuglede-Kadison determinant A., which is determined by the following equation

1
log(AL(X)) = ET(Iog(XX* +£%)).
Thus, natural regularizations vx . of the Brown measure vx can be obtained as follows.

DEFINITION 1.3.1. The regularized Brown measures vx . of X are obtained by replacing
in its defining equation ([.13) the Fuglede-Kadison determinant A by the regularization
A.. Explicitly and again in the distributional sense, this means that

(I.14) vxe(2) = ———=—=log(A(X — 2)).

One can show, by using for example [Ran95| Exercise 3.7 (4)], that vy . converges weakly
to vy as € \(0.

It remains to find some kind of Cauchy transform, which will hopefully allow us to compute
these regularizations in a slightly simpler way.

LEMMA [.3.2. If we consider the regularized Cauchy transform of X
Gxe(z) = T((z - X)((z=X)(z— X)" + 52)_1),
which is a C*-function on C (but obviously not holomorphic on C), we have that

(1.15) di.(2) = %%Gx,s(z) N2(2).

The answer provided by the lemma above is surprisingly simple and looks quite appealing:
the formula for vx . given in yields indeed a satisfying replacement for the Stieltjes
inversion formula, Theorem [[.1.29] and the obtained regularized Cauchy transform Gx .
(which can be seen as an analogue for the function z — G, (z+ic) appearing in the Stieltjes
inversion formula) seems to be fairly close to being a Cauchy transform. But unfortunately,
on closer inspection, one realizes that G x . is — though its striking similarity to Cauchy
transforms — still a different object. Since free probability theory provides powerful tools
to deal with Cauchy transforms, this conclusion is clearly quite disappointing. However,
operator-valued free probability comes to our rescue. It turns out that Gx. can indeed
be related to Cauchy transforms, but for this purpose, we must leave the scalar-valued
setting and work on an operator-valued level. More precisely, we must go over to the
M;(C)-valued C*-probability space (My(M), E, M5(C)) as introduced in Lemma
and use the so-called hermitian reduction method. This trick, which originally comes from
random matrix theory [JNPZ97], is explained in the following lemma.

LEMMA 1.3.3. Consider the self-adjoint element
0 X
X = (X* O) € My(M).
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44 1.3. BROWN MEASURES

The value of the reqularized Cauchy transform Gx . at the point z € C can then be obtained
as the (2,1)-entry of the My(C)-valued Cauchy transform of X, if it is evaluated at the
point

A(z) = (Z; .Z) € H* (My(C)).

i€
More precisely, we have for each z € C that

(1.16) Gxe(2) = [Gx(Ac(2))]21-

Collecting our observations, we see that the regularized Brown measures vy . defined by
(I.14) (and thus the Brown measure vy in the limit € N\, 0) can be computed via (I.15])
from its regularized Cauchy transforms Gx ., whereas the regularized Cauchy transform
Gx . itself can be deduced by from the Mjy(C)-valued Cauchy transform of the
self-adjoint element X. All this puts the Brown measure into the more familiar setting of
self-adjoint operators, where the analytic machinery of operator-valued free probability
theory applies. This approach will be used in Chapter [[V]
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CHAPTER 1II

Random matrices and asymptotic freeness

While free probability theory was invented with the intention to used it as a tool for
operator algebraic questions, many surprising and fascinating connections to completely
different areas of mathematics were found later on. Most of these connections have in
common that contact to free probability is made by certain limit processes, in which
some free structure shows up.

One of the first and certainly also one of the most exciting connections of this kind was
found by Voiculescu [Voi91], namely to random matrix theory. Here, free independence
surprisingly turned out to describe the relations among many types of classically inde-
pendent random matrices in the limit when their dimension tends to infinity. In turn,
based on the free convolutions H and X, free probability allowed to understand the as-
ymptotic behavior of sums and products of independent random matrices of this type and
provided by its powerful analytic machinery an effective way to compute these limiting
distributions. In this sense, free probability can be seen as a very natural limit of classical
probability theory, so that it unquestionably leaves what some people might consider as
the “ivory tower of operator algebras”.

Nowadays, many generalizations of Voiculescu’s groundbreaking results to a wide range
of random matrices are known and beyond the case of sums and products it is even
possible to describe the limiting behavior of general polynomial and rational expressions
in independent random matrices. The latter will be outlined in Chapter

This exciting applicability of free probability methods to questions of random matrix
theory — although they are located originally in the realm of classical probability theory
— is essentially due to the following two observations:

(i) The eigenvalue distributions of many types of random matrices, like Wigner or
Wishart random matrices, show a nice asymptotic behavior when the dimension
tends to infinity. In fact, the randomness disappears in the limit and the resulting
deterministic distributions can be described.

(i) Classical independence among collections of independent random matrices often
produces free independence in the limit when the dimension of the involved
matrices goes to infinity.

The first mentioned phenomenon was well-known in random matrix theory long before
the birth of free probability theory. For instance, Wigner’s famous semicircular law (see
Theorem below) states that the eigenvalue distribution of self-adjoint Gaussian
random matrices, which are a special instance of Wigner matrices, converges almost surely
to the semicircular distribution as their dimension grows to infinity.

However, what might be surprising at first sight is that those limiting eigenvalue distribu-
tions agree with some prominent distributions in free probability, such as the semicircular
distribution (which is the free analogue of the normal distribution) or the free Poisson
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46 II.1. SOME BASIC FACTS ABOUT RANDOM MATRICES

distribution. One could think about this just as a curious coincidence but it rather in-
dicates a deeper link between these two fields, as explained by the second phenomenon
explains. It became now known under the name “asymptotic freeness” and was one of
the big discoveries of Voiculescu, by which he opened the door for an extremely fruitful
interaction between random matrix theory and the theory of operator algebras, with a
strong impetus in both directions.

This chapter, which is devoted to the connections between free probability and random
matrix theory, is organized as follows. In Section we will introduce the terminology
and provide some basic knowledge about random matrices. We will introduce them as
elements in certain non-commutative probability spaces. This approach has the advantage
that it fits nicely to the general setting of asymptotic freeness, which will be presented
in Section [[I.2] Finally, in Section [[I.3] we turn our attention to the important case of
Wigner and Wishart random matrices.

Nevertheless, this chapter can of course only be a very tiny scratch on the surface of ran-
dom matrix theory. For a more detailed introduction, we refer the reader to the excellent
lecture notes [Kem13| and to [AGZ10].

I1.1. Some basic facts about random matrices

In this section we will see that random matrices fit nicely into the general frame of
non-commutative probability spaces. But what actually are random matrices? There are
essentially two point of views: either we could say that random matrices are matrices which
are randomly chosen according to some given distribution on the space of all (mostly self-
adjoint) matrices of some fixed size, or we could think of random matrices as (again, mostly
self-adjoint) matrices whose entries are random variables. On closer inspection, these
pictures turn out to be equivalent, but both of them have advantages and disadvantages,
depending on the intended application. For our purposes, we prefer the second named
approach.

II.1.1. Non-commutative probability space of random matrices. To begin
with, let us fix some classical probability space (€2, F,[P). Our point of view is that clas-
sical random variables over (€2, F,PP) should constitute the entries of random matrices.
If we want to deal with random variables in such a way that the corresponding ran-
dom matrices fit into the frame of non-commutative probability theory, then Example
proposes the non-commutative probability space (L>°(€2,P),E) as some reasonable
choice. The drawback, however, is that L>°(€2,P) contains by definition only bounded
random variables, whereas the most prominent examples of random matrices are built
on unbounded ones, such as Gaussian random variables. We thus need a slight modifica-
tion of Example in order to bring at least some unbounded random variables in the
range of non-commutative probability theory. For this purpose, let us define the following
variant of L*°(Q,P), namely

L (Q,P):= (] L(QP),
1<p<oo

which is the complex unital algebra of all random variables that have finite moments of
any order. It is not totally obvious that L>~(Q2,P) is indeed closed under multiplication,
but this can be shown with the help of Hélder’s inequality. On L*~ (2, P), we finally
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CHAPTER II. RANDOM MATRICES AND ASYMPTOTIC FREENESS 47

introduce the expectation functional E by
E[X] = / X(w)dP(w)  for all X € L~ (0, P).
Q

With this underlying non-commutative probability space (L~ (£2,P),E), our definition
of random matrices reads as follows.

DEFINITION IL.1.1. A random matriz (of size nxn) is an element of the non-commutative
probability space (9, 7,) given by

M, = Mn(LOO_ (Qa ]P))) and Tp 1=ty O]E(n)7

where tr,, denotes the normalized trace on M, (C) and E™ : M, (L>*~(Q,P)) — M,(C)
the linear functional that is given as the natural amplification of E, i.e.

n

E[(Xi)kica] = (BIXwd),,o,  forall X = (Xpo)fy € M.

Note that we have the relation 7,, = tr,, oE(™ in the first and 7, = E o tr,, in the second
case.

REMARK II.1.2. Note that under the natural (algebraic) isomorphism
M, = M, (L>*(2,P)) = M,(C) ® L= (Q,P),

the expectation 7, on M, = M,(L>(2,P)) is identified with tr, ®E on M, (C) ®
L>*~(Q,P). In particular, we see that 9, induces naturally two operator-valued non-
commutative probability spaces by

(M,,,E™ M, (C))  and (M, tr,, L2 (Q,P)),
where in the latter one tr, is understood as a linear functional tr,, : 9, — L>~(Q,P) by

1

tr, (X ey) = - Y Xpw  forall X = (Xp)p oy € M,
k=1

We have introduced above (9, 7;,) as a non-commutative probability space, ignoring that
there is a natural involution x on L~ (€, P). This x-structure goes over to 9, which
turns both L~ (€, P) and 9M,, into *-probability spaces. Indeed, for X € L*~(Q,P), we
denote by X* the random variable in L>°~ (2, P), which is determined by the condition that
X*(w) = X (w) for P-almost all w € Q. Tt is easy to check that (L>~(Q,P),E) becomes
with respect to x a #-probability space in the sense of Definition [.1.5] Corresponding to
x on L~ (€, P), we have a natural involution on 91,; since it extends %, we will denote it
by the same symbol. Given a random matrix X = (Xj,);,=; € M, the random matrix
X* € M, is defined by X* := (X[} )i ,=;. It is easy to see that (9, 7,) becomes in this
way a x-probability space.

REMARK I1.1.3. Having this underlying *-structure, it is very natural to call a random
matrix X = (Xp)p,=; € M, self-adjoint, if X = X~ holds. This means explicitly, that
matrix X (w) = (Xgi(w))i =1 € My(C) is self-adjoint with respect to the usual conjugate
transpose on M, (C) for P-almost all w € .
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I1.1.2. The empirical eigenvalue distribution. We consider now a self-adjoint
random matrix X € 9M,. As we have expounded in Remark [[I.1.3, X being self-adjoint
means that the matrix X (w) is a self-adjoint non-commutative random variable in the
non-commutative C*-probability space (M,,(C), tr,,) for P-almost all w € Q. Furthermore,
we have seen in Example [[.1.21] m 1| that the analytic distribution px (. of X(w) is given by
its normalized eigenvalue distribution, i.e.

MX(w) = Za)\ (w)>

where \j(w) < -+ < A, (w) denote the elgenvalues of X (w), listed according to their
multiplicity.

Since the measure jix(,,) depends on the outcome w € €2, one is tempted to call w — frx ()
a random probability measure. However, this does not come for free, since talking in a
formally correct way about measure-valued random variables forces us to impose some
measurability condition on w +— px(.), which itself requires to have identified some o-
algebra on the corresponding set of probability measures. This is usually done in such
a way that being a random probability measure means for w — px(.) that the function
W > [ix(w)(B) is measurable for each fixed Borel subset B of R.

DEeFINITION I1.1.4. Let X € 9, be a self-adjoint random matrix, such that the function
W — fix(w)(B) is measurable for each Borel subset B of R.

(i) The empirical eigenvalue distribution of X is the random probability measure

Hx(): W X (w)

given by the eigenvalue distribution of X (w) for w € Q.
(ii) The mean empirical eigenvalue distribution of X is the Borel probability measure
itx on R which is defined by

jix(B) = Bl (B)] = [ juxo(B) dBw)

for each Borel subset B of R.

One easily sees that under the assumptions of the previous definition

(IL.1) /f ) diix(t) /f ) dpix () ]

holds for each simple function f : R — C. By some standard approximation argument
(with respect to the uniform norm || - || on R) we may deduce that even holds for
each function f € Cy(R). The Riesz-representations theorem guarantees that jix is
uniquely determined by this condition among all positive Radon measures on R.

In particular, given z € C*, we may apply ([I.1) to the resolvent function f, € Cy(R),
which is defined by f.(t) := = for t € R. This gives

Gﬂx (Z) = E[G#X(.) (Z)] )
which says that the Cauchy transform fix can be obtained pointwise as the expectation of

the random variable w — G, (). The measurability of w — G, (2) for fixed z € C*

follows, since G, can be expressed in the following way

Gy (2) =t (z = X(w)™) for all z € C*
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and in particular without referring to the eigenvalues A\;(w) < -+ < A\, (w) of X (w).

Thus, alternatively, we could introduce fix by means of Theorem which guarantees
that the holomorphic function G, defined by

Go(2) = /Q tr (= = X(w) ") dP(w)  forall - € C*

is indeed the Cauchy transform of some Borel probability measure jix on R. Since the
Stone-Weierstral theorem shows that the linear span of {f,|z € C\R} is dense in Cy(R),
we can conclude backwards that iy satisfies the characterizing condition (II.1)) for each

f € Co(R).

For general random matrices X, the mean empirical eigenvalue distribution fix is hard to
compute, but in some particular cases explicit formulas are known; see Remark [[1.3.3]

II.2. Asymptotic freeness

We will now present Voiculescu’s definition of asymptotic freeness as given in [Voi91].
Though it will be formulated in general terms, we should keep in mind that random
matrices constitute the most prominent example, according to which this definition is
actually modeled.

DEFINITION I1.2.1. Fix some non-empty index set . For each n € N, let (A,,, ¢,,) be a non-

commutative probability space and let X = (Xi(”))ie ; be a family of non-commutative
random variables in A,,.

(i) The sequence (X™), cy is said to be convergent in distribution to X = (X;)icr,
for some family X = (X;);e; of non-commutative random variables living in some
non-commutative probability space (A, ¢), if the sequence (fixm) )nen converges
pointwise to the non-commutative distribution ux, i.e., if we have

Tim oo (P(X™M)) = ¢(P(X))  forall P Claicl).

(ii) The sequence (X ™), ¢y is said to be asymptotically free, if (X™),en converges
in distribution to a family X = (X;);c; in some non-commutative probability
space (A, ¢), such that (X;);cr are in addition freely independent in (A, ¢).

In the case of random matrices, the family ((A,, ¢,))nen of non-commutative probability
spaces is given by (9, 7,))nen. As explained in Remark [[I.1.2] the expectation 7, can
be written as a composition 7,, = E o tr,, where the trace tr,, is understood as a linear
functional tr, : 9, — L*~(Q,P). Therefore, it becomes possible to separate its random
part and its deterministic part. This leads us to the notion of almost sure convergence in
distribution and almost sure asymptotic freeness; see [HP0OD, Section 4.3].

DEFINITION I1.2.2. Fix a classical probability space (€2, F,P) and some non-empty index

set I. For each n € N, let X = (Xi(”))ie 1 be a family of non-commutative random vari-
ables X living in the non-commutative probability space (9, 7,,) build over (2, F,P).

(i) The sequence (X™),,cy is said to be almost surely convergent in distribution to
X = (X})ier, for some family X = (X;);e; of non-commutative random variables
living in some non-commutative probability space (9, 7), if we have

lim tr, (P(X™(w))) = 7(P(X)) for P-almost all w € 2
n—o0
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for each P € C{x;| i € I).

(ii) The sequence (X™),cy is said to be almost surely asymptotically free, if
(X™), ey converges almost surely in distribution to a family X = (X;)c; in
some non-commutative probability space (9%, 7), such that (X;);e; are in addi-
tion freely independent in (90, 7).

Note that the expectation 7 of the limiting space (9%, 7) can be chosen to be tracial, since
we can always restrict to the subalgebra 9, of 9t generated by {X;| i € I}, on which
To := T|m, must be tracial since each tr, is so.

Now, let us have a look at the case of a single random matrix.

REMARK 11.2.3. For each n € N, let X(™ be a random matrix in (9M,,7,), which is
defined over the probability space (€2, F,P). Furthermore, let X be a self-adjoint non-
commutative random variable living in some C*-probability space (91, 7). Consider its
analytic distribution py, which is a compactly supported Borel probability measure on
R and thus, in particular, determined by its moments; see Definition and Remark
[[.1.32] We record the following useful observations:

(i) The sequence (X ™), cy converges in distribution to X in the sense of Definition

if and only if
lim E tr, ((X(”))k)} = 7(X") for all £ > 0,
n—oo

or equivalently, in terms of the mean empirical eigenvalue distributions fiy ), if

lim [ t*dfiym (t) = / t*dux(t)  for all k > 0.
R R

n—oo

With the help of Remark [I.1.31) we conclude that (fiym) )nen converges even
weakly to pix.
(ii) The sequence (X ™), cn converges almost surely in distribution to X in the sense

of part (i) of Definition [II.2.2] if and only if for each fixed integer £ > 0

lim tr, (X(”) (w)*¥) = 7(X") for P-almost all w € €,

n—oo
or equivalently, in terms of the random probability measures pym, if for each
fixed integer k > 0

lim [ ¢* ditx ) () (t) = /tk dux(t) for P-almost all w € €.
R R

n—oo

The latter means more explicitly, that we can find or each k > 0 a set A, € F
with P(A) = 0, such that

lim [ t* dhix ) () (t) = / t* dux (t) for all w € Q\ Ay.

If we put A := [J;. Ax, We obtain another set A € F with the property P(A) =
0, which is such that for all w € O\ A

Hm [ % dpxon e, (t) = / t*dux(t)  for all k > 0.

Hence, we see that for P-almost all w € () the moments of the sequence

(L xm) () )nen converge to the respective moments of px. With the help of Re-
mark [[.1.31} we conclude that (jiym)(,))nen converges even weakly to px for

P-almost all w € €.
50



CHAPTER II. RANDOM MATRICES AND ASYMPTOTIC FREENESS 51

In Chapter [V we will be interested in certain non-commutative random variables X,
for which the analytic distribution pux can be computed numerically — more precisely, we
will explain how to find Borel probability measures j1x ., which are absolutely continuous
with respect to the Lebesgue measure on R and which converge weakly to pux as e 0.
At the same time, random matrix models X for X are available, so that we can use
their eigenvalue distribution as an alternative approximation of the limiting distribution
ix . The previous observations made in (i) and (ii) now explain, why we see in most case
a striking similarity between the shape of the normalized eigenvalue histograms for X
for sufficiently large n and the approximating densities of 1y . In fact, while the setting of
(i) requires for this purpose to average over independent realizations of X, the stronger
conditions imposed in (ii) guarantee that already one “generic” realization of X ™ will be
sufficient.

I1.3. Gaussian and Wishart random matrices

In Chapter we will use random matrices as models for non-commutative distributions.
Our models rely mostly on two, very prominent types of random matrices, namely self-
adjoint Gaussian and Wishart random matrices. These random matrices are build out of
Gaussian random variables and accordingly on the normal distribution. Recall that the
normal distribution v,2 of variance o® > 0 is the absolutely continuous Borel probability
measure on R, which is given by

2

dy,2(x) = 21 exp(— ’ )dx.

0'27'(' 20'2

Let us agree on the following terminology.

DEFINITION I1.3.1. Let (2, F,P) be any probability space.

(i) A random variable X € L>~(Q,P) is called a real Gaussian random variable (of
mean 0 and variance o?), if X (w) is real for P-almost all w € Q and if

E[X*] = / 2¥ dyye(x)  for all k € N.
R

(ii) A random variable X € L*~ (€, P) is called a complex Gaussian random vari-
able, if R(X) and I(X) are independent real Gaussian random variables.

Note that o? = E[X?] holds for each real Gaussian random variable X with mean 0
and variance o2. Thus, a Gaussian random variable with mean 0 is fully characterized
by prescribing its second moment. This fact will be used below in Definition and
Definition [L.3.5

Furthermore, let us recall some well-known fact from classical probability theory, saying
that the normal distribution 7,2 of each variance o2 is determined by its moments in
the sense of Definition [[.1.30] This explains why we have introduced Gaussian random
variables in terms of their moments.

I1.3.1. Self-adjoint Gaussian random matrices and their asymptotic eigen-
value distribution. Let us begin with the definition of self-adjoint Gaussian random
matrices. More formally, we should call them standard self-adjoint complex Gaussian ran-
dom matrices, but for the seek of simplicity and since there is no risk of confusion, we
will suppress the terms “standard” and “complex” in the following.
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52 I1.3. GAUSSIAN AND WISHART RANDOM MATRICES

DEFINITION I1.3.2. A random matrix X = (Xk,l)Z,l:1 € M, is called a self-adjoint Gauss-
tan random matriz, if X is self-adjoint and if

are independent Gaussian random variables satisfying the following conditions:

o]E[Xkl]—Oforkl ,...

° ]E[(?R(Xk’l)) ] = 2i and E[(%(Xk,l))2] = % for 1 <k<l<n.

1
° ]E[(X]mk)z] = E for 1 < k <n.

Note that this definition does not depend on the underlying probability space, since the
properties of these random matrices are influenced only by the distribution of their entries
and not by the concrete space on which they are realized.

As announced before, we have introduced here self-adjoint Gaussian random matrices
as matrices that are build out of classical random variables. At this point, it is worth
to take a look at the alternative picture, which describes self-adjoint Gaussian random
matrices by introducing some probability measure on the space M,,(C)s, of all self-adjoint
matrices of size n X n over C. As a real vector space, M, (C)s, is naturally isomorphic
to R™ (by counting n degrees of freedom for the diagonal and n( 2 ) both for the real
and the imaginary part of all entries above the diagonal, which gives in total the real
dimension n?). With respect to this fixed real basis, the Lebesgue measure 27" on R™ can
be transferred to M, (C)s,, yielding the measure

dX = [ dXis ] dR(Xi;) dS(Xiy).
1<i<n 1<i<j<n
Sometimes, it is more appropriate to rescale the chosen basis on M,,(C), in such a way
that the isomorphism between M, (C)s, and R™ becomes isometric if M,,(C)g, is endowed
with the Hilbert-Schmidt norm and R™ with the usual Euclidean norm; this results then
in the measure A,, on M, ((C)Sa, which is given by (see [HP0OOD])

A, (X) =275 T dXs [ dR(X.) dS(X,).

1<i<n 1<i<j<n

The self-adjoint Gaussian random matrices are distributed according to
C,, exp ( - gTrn(X2)) dXx,

where Tr,, denotes the unnormalized trace on M, (C) and where we abbreviate C,,

—7’L2 . . . . .
2~/ 2(%) 2 The important fact that with X also UXU* forms a self-adjoint Gaussian
random matrix for any unitary matrix U € M, (C) is reflected by the invariance of this
measures under the mapping X — UXU*.

We already mentioned earlier that computing the mean empirical eigenvalue distribution
is a challenging task in general and that explicit formulas are known only in very few
cases. One such case are self-adjoint Gaussian random matrices.

REMARK 11.3.3. If X € 9, is a self-adjoint Gaussian random matrix, it can be shown
that fixm is absolutely continuous with respect to the Lebesgue measure on R, i.e. we
have dfixm (t) = p,n(t) dt. The density p,, can be obtained in the following way:
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FiGure II.1. Plot of p, for different values of n, compared to the normal-
ized histogram of eigenvalues for a self-adjoint Gaussian random matrix of
size n x n, averaged over 10000 independent realizations; see Remark [[T.3.3]
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e For n € Ny, let H, : R — R denote the n-th Hermite polynomial. The Hermite
polynomials are defined recursively by Hy(x) = 1, Hi(x) = x and

xH,(x) = Hyp1(x) + nH, 1 (2) for all n > 1.

As this three term recurrence relation already suggests, these polynomials are
orthogonal polynomials for some measure on R. Indeed, the Hermite polynomials
are orthogonal with respect to the Gaussian distribution v := ~; and more
precisely they satisfy

/RHn(x)Hm(x) dy(z) = pmn!.

e For n € Ny, we denote by ¢, : R — R the n-th Hermite function. The Hermite
functions are given by

Un(z) 1= (27) 73 (nl) 273"

The normalization is such that the Hermite functions (¢,),>0 form an orthonor-
mal basis of L?(R, dz) with respect to the Lebesgue measure.

e For n € N, we consider the n-th Hermite kernel K, : R? — R, which is defined
by

2

H,(z) for all n > 0.

n—1

Ko(,y) =Y tn()n(y).

k=0
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e For n € N, the density p, is given by
pn(z) = n_%Kn(n%x,n%x).

The densities p,, for the values n = 2,3, 4,10 are shown in Figure

The pictures shown in Figure[[T.T|suggest that the densities p,, of the mean empirical eigen-
value distributions converge to some limiting function as the size n of the corresponding
random matrices tends to infinity. This is indeed true and one can prove this fact for
instance by examining the asymptotic behavior of the involved Hermite kernels. Doing
this, the limiting eigenvalue distribution turns out to be the semicircular distribution.

Let us now formulate the precise statement, which goes back to Wigner [Wig55|, Wig5§],
but was improved to almost sure convergence in the work of Arnold [Arn67].

THEOREM I1.3.4 (Wigner’s semicircle law). Let (X™),cn be a sequence of self-adjoint
Gaussian random matrices X™ € M, over the probability space (2, F,P). Moreover,
let S be a semicircular element in some C*-probability space (M, T), meaning that S is
a self-adjoint non-commutative random variable in M, whose analytic distribution g s
given by the semicircular distribution oy of mean 0 and variance 1 (see Definition .
Then the following holds true:

(i) The sequence (X™),cn converges in distribution to S. In the sense of part (i)

of Definition this means that
lim Eftr,(X™)")] =7(S*)  for all k > 0.
n—oo

According to part (i) of Remark|I1.2.5, this means that the mean empirical eigen-
value distribution [ixm) converges weakly to the semicircular distribution oy as
n — 00.

(ii) The sequence (X ™) ex almost surely converges in distribution to S. In the sense
of part (i) of Definition this means that for each fized integer k > 0

lim tr, (X ™ (w)*) = 7(5*) for P-almost all w € Q.
n—oo

According to part (1) Remark this means that for P-almost all w € Q, the
empirical eigenvalue distributions pixm) () converges weakly to the semicircular
distribution o1 as n — 00.

I1.3.2. Wishart random matrices and their asymptotic eigenvalue distribu-
tion. Another important class of random matrices are self-adjoint Wishart matrices. A
more accurate name for them would be standard self-adjoint complex Wishart matrix,
but again for the seek of simplicity, we prefer to shorten this clumsy nomenclature.

DEFINITION I1.3.5. Let {vg,| 1 <k <p, 1 <1l <n} C L* (Q,P) be given, such that
R 1 <k <p, 1<1<nU{S(u)| 1<k <p, 1<1<nj
are independent Gaussian random variables satisfying
o E[vg] =0
o E[(R(ui1))?] = 5 - and E[(S(0x)] = 5-

2n
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FicUure I1.2. Normalized histograms of the eigenvalues of one realization
of a self-adjoint Gaussian random matrix (see Definition [II.3.2)) for several
dimensions d.

fork=1,...,pand [l =1,...,n. We put
V = (Vk1)k=1,..p-

=1,...,n

Then the matrix X := V*V € 9, is called a standard self-adjoint (complex) Wishart
matrix.

The eigenvalue distribution of Wishart random matrices has like in the case of Gauss-
ian random matrices a deterministic limit. The following theorem, which goes back to
[MP68], gives the precise statement.

THEOREM I1.3.6 (Marchenko-Pastur law). Let (X™),cn be a sequence of standard
Wishart matrices X™ € 9M,,, which are given as X™ = V*V,,, where V,, is a p(n) x n
matriz of elements in L~ (2, P). Assume additionally that the limit

p(n)

A= lim —=
n—oo M

exists. Moreover, let W be a free Poisson element with rate A and jump size « = 1 in some
C*-probability space (MM, T), i.e., W is a self-adjoint non-commautative random variable in
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(a) d=5
(d) d =40
(g) d = 320 (h) d = 640 (i) d = 1280

Ficure I1.3. Normalized histograms of the eigenvalues of one realization
of a self-adjoint Wishart random matrix with rate A = 2 (see Definition

[1.3.5)) for several dimensions d.

M, whose analytic distribution pw is given by the Marchenko-Pastur distribution iy (see
Definition . Then the following holds true:

(i) The sequence (X™),en converges in distribution to W. In the sense of part (i)
of Definition this means that

lim Eftr,(X™)")] =7(W*)  for all k >0,

n—oo
According to part (i) of Remark|ll.2.5, this means that the mean empirical eigen-
value distribution [ixm) converges weakly to the free Poisson distribution py 1 as
n — oo.

(ii) The sequence (X™),en almost surely converges in distribution to W. In the
sense of part (i) of Definition this means that for each fixed integer k > 0

lim tr, (X ™ (w)¥) = (W) for P-almost all w € Q.
n—oo

According to part (ii) of Remark this means that for P-almost all w €
Q, the empirical eigenvalue distributions pixwm)(, converges weakly to the free
Poisson distribution py, as n — oo.
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I1.3.3. Asymptotic freeness of Gaussian and Wishart random matrices. So
far, we have seen that the eigenvalue distribution of a single Gaussian or a single Wishart
random matrix shows a nice asymptotic behavior if ifs dimension tends to infinity. How-
ever, typical questions in random matrix theory are concerned with more than only one
random matrix. For instance, we could take N independent series of Gaussian random
matrices, say (Xl(n))neN, ce (X](\?))neN, where independence for random matrices simply
means that the their entries form independent sets of classical random variables. We
know then from Wigner’s semicircle law (see Theorem that the semicircular dis-
tributions shows up almost surely in the limit of each of these sequences, separately. But
what happens, if we look instead at the sequence

(P(X, X e

for any fixed non-commutative polynomial P € C(zy,...,xy), which is supposed to be
self-adjoint? It is clear that this gives just another sequence of random matrices, but it is
rather questionable whether its empirical eigenvalue distribution still shows a controllable
behavior as n — oco. Surprisingly, it does, and the deterministic distribution that arises
in the limit turns out to be the analytic distribution of

P(Si,...,5n),

for freely independent semicircular elements Sy, ..., Sy. This phenomenon is explained by
the following theorem due to Voiculescu [Voi91], which complements Wigner’s semicircle

law, Theorem |[1.3.4

THEOREM I1.3.7 (Asymptotic freeness for self-adjoint Gaussian random matrices). Let

(X™),cx be a sequence of N-tuples X" = (Xi(n))lgigzv of independent self-adjoint Gauss-
1an random matrices Xl("), e ,X](\?) e M,,. Then (X(”))neN converges in distribution to an
N-tuple S = (S1,...,SN) of freely independent semicircular elements Sy, ..., Sy, living

in some non-commutative C*-probability space (M, P).

The phenomenon of asymptotic freeness is by no means limited to the case of self-adjoint
Gaussian random matrices. In fact, a similar statement is also true for self-adjoint Wishart
random matrices. This is the content of the next theorem; see [HPOOb, [HP0Oa| and
[Tho00].

THEOREM I1.3.8 (Asymptotic freeness for self-adjoint Wishart random matrices). Let
(XM, cx be a sequence of N-tuples X = (XZ-(n))gigN of independent self-adjoint
Wishart matrices Xl(n)7 o ,X](\?) € M,. Then (X™),cn converges in distribution to an
N-tuple (W1, ..., Wy) of freely independent Poisson elements W1, ..., Wy, living in some

non-commutative C*-probability space (M, ¢).

I1.3.4. Asymptotic freeness for unitarily invariant random matrices. The
previously quoted theorems state that independent self-adjoint Gaussian random matrices
and independent self-adjoint Wishart random matrices are asymptotically free separately.
But what happens if we mix both types of matrices? Amazingly, asymptotic freeness even
shows up in this generality. The reason is that matrices of both types are unitarily in-
variant. The latter means that the considered class of random matrices is stable under
unitary conjugation X — UXU* for an arbitrary unitary matrix U € M,,(C). The follow-
ing theorem, which is taken from [HPOOb), Theorem 4.3.5], gives the precise statement.
Notably, it supersedes both Theorem and Theorem [[1.3.8] and it covers also the

mixed case.
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THEOREM 11.3.9 (Asymptotic freeness for unitarily invariant self-adjoint random matri-
ces). Let (X™),cn be a sequence of families X ™ = (Xi(n))iel of independent self-adjoint
random matrices Xi(n) € M,, over some fized index set I # (), which are unitarily invari-

ant. Assume that for each i € I a compactly supported Borel probability measure p; on R
exists, such that for each integer k > 0

7
n—00

lim trn((X(n) (W)F) = / t* dpy (1) for P-almost all w € €.
R

Then (X ™) ,en is almost surely asymptotically free.

I1.4. Non-commutative functions in asymptotically free random matrices

Roughly speaking, all results collected in the previous subsections tell us that free inde-
pendence arises in the limit out of classical independence for many interesting classes of
random matrices. In this sense, the concept of asymptotic freeness completes the picture
of Theorem and Theorem [[I.3.6] It bridges between random matrix theory and free
probability as it puts questions concerning the limiting behavior of random matrices of
the form

(f(Xl(n)a <. >X](\?)))n€N7

with independent random matrices X 1(n), o, X ](\? ) and some “non-commutative function”
f, into the free probability problem concerning the distribution of operators of the form

f(Xy, ..., XnN),

with freely independent non-commutative random variables Xy, ..., Xy. Depending on
f, we need to impose different conditions on the convergence of the random matrix en-

semble (X 1(") e ,X](\?)) towards (X1, ..., Xy). These issues will be discussed in the next
subsections.

11.4.1. Non-commutative polynomials. Let us consider first treat the case of
non-commutative polynomials. With the following lemma, we make for f being a non-

commutative polynomial the aforementioned relationship between f(X f"), o X ](\? )) and
f(X1,..., Xy) more explicit.

LEMMA I1.4.1. For eachn € N, let X™ = (Xl(n), e ,X](?)) be an N-tuple of independent
self-adjoint random matrices X{n), e ,X](\?) € M, over (U, F,P). Assume that for each

1 =1,...,N the empirical eigenvalue distribution of the sequence (Xi(n))neN converges
almost surely to some limiting distribution in the sense that a compactly supported Borel
probability measure p; on R exists, such that for each integer k > 0

lim trn((Xi(n) (W)F) = /tk dpi; (t) for P-almost all w € Q.
R

n—oo
Consider now any self-adjoint non-commutative polynomial P € C(xy,...,zn). If
(Xl(n), e ,X](\T,l))neN are almost surely asymptotically free, then for P-almost all w € ),

the eigenvalue distribution of
PX{" (), ..., X))
converges weakly to p = P2 (uy, ..., uy) as n — oo.
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PROOF. The assumption that the random matrices (X 1("), cee X](\?)) are almost surely
asymptotically free tells us according to Definition that we can find some tuple
X = (X1,...,Xy) of freely independent elements X;,..., Xy in a non-commutative
probability space (9, 7), such that for each P € C(xy,...,zN)

lim tr, (P(X{"(w),..., Xy (W))) = 7(P(X1,...,Xy))  for P-almost all w € Q
n—oo
holds.

Consider now the non-commutative distribution pux : C(zy,...,zny) — C of X. The
freeness condition gives us (see Remark [[.1.37)) that puy is completely determined by the
individual distributions uy,, ..., ux, : C(x) — C. Furthermore, for each i =1,..., N,

px, (2%) = /tk dp;(t) for each integer k > 0,
R

since we have for P-almost all w € 2 that

) = 7(XE) = Jim (X)) = [ i),

This has the important consequence (see Remark that the non-commutative dis-
tribution px can be realized on a C*-probability space. More precisely, we can assume
with no loss of generality that (90, 7) is a C*-probability space and that X;,..., X, are
freely independent self-adjoint operators in 91, whose analytic distributions are given by
K1, N

Fix now a self-adjoint P € C(xy,...,zy) and consider the corresponding random matrices
Yy = P(Xl("), e ,XJ(\?’)) € M,, and the operator Y := P(Xy,..., Xy) € M. Given any
integer k > 0, we have Y (w)k = Pk(Xl(")(w), . ,X](\;L) (w)) for all w € © and hence

lim tr, (Y™ (w)¥) = lim tr, (PHX7 (), ..., X§ (@)

n—oo n—oo
= 7(P*(X4,..., XN))
=7(v")

for P-almost all w € §2. As the analytic distribution py of Y has compact support and is
thus in particular determined by its moments (see Remark , it follows by the obser-
vations made in Remark that the sequence of eigenvalue distributions (fiy () () )nen
converges weakly to py for P-almost all w € ). Since we have

My = HpP(X,.. . XN) = PD(Nh e >,UN):
this concludes the proof. 0

This is clearly both of great theoretical and practical importance. If we take for instance
the polynomial given by P = x1 + x5, then the limiting distribution can be computed by
means of the free additive convolution H, and a polynomial like P = xx92; can be treated
likewise by the free multiplicative convolution X. Even for more general polynomials P,
the abstract theory tells us that the distribution of P(Xj,..., Xy) must be determined
by P and the individual distributions of the variables X7, ..., Xy. However, there was for
a long time no general machinery available that allows to make this relation explicit and
finally computable. We will present a complete algorithmic solution with in Chapter [[V]

However, while in the special case of a non-commutative polynomial P the convergence of

the eigenvalue distribution of P(X 1("), ce X](\’f)) to P(Xy,...,Xy) is an easy consequence
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of asymptotic freeness, the situation for more general test functions f, is much more
intricate, as the next subsection will show.

11.4.2. Non-commutative rational expressions. Let us now take a look at the
case of non-commutative rational expressions. We warn the reader that non-commutative
rational expressions and related notions, such as domain and evaluation, are not yet de-
fined. This will be done first in Subsection [[II.2.1] of the next Chapter [[II, We apologize for
this inconsistency, but by postponing our subsequent discussion until then, we would take
them out of their actual context. Any reader, who suspects a hidden circular reasoning,
may skip this paragraph at first reading and may return after having worked through
Subsection [[TI.2.1], which should finally convince him of the contrary.

One of the main difficulties when trying to evaluate any non-commutative rational ex-
pression r at a given N-tuple (X\™, ..., X"} of random matrices is that (X", ..., X")
should almost surely belong to the domain of r if their dimension n is sufficiently large.

More precisely, if (X7, ..., Xx) belongs to the A-domain of the non-commutative rational
expression r, we want that (Xl(n)7 e ,X](\;l)) lies in the domain of r eventually, that is, for

P-almost all w € €2, we find some n,, € N, such that (X{") (w),... ,XJ(?) (w)) falls into the

M,,(C)-domain of r for all n > n,,. Recent results due to Yin [Yinl6] constitute a suffi-

cient criterion, which is based on the notion of strong convergence of ((X l(n), e X](\?)))%N

to (Xi,...,Xxn). Though it applies equally well to random matrices, which are not self-
adjoint, we restrict our attention to the self-adjoint case. The corresponding definition
reads as follows.

DEFINITION I1.4.2. For each n € N, let (Xf"), . 7X](\?)) be some N-tuple of self-adjoint
random matrices Xl(n), e ,X](\?) in (M,,, 7,), constructed over some classical probability
space (£, F,P). Given a C*-probability space (9, 7) with a faithful state 7 and self-
adjoint non-commutative random variables Xj, ..., Xy, we say that ((Xl("), e X](\?)))HGN

converges strongly to (Xi, ..., Xy), if the two following condition holds true:

(i) The sequence ((X\™, ... ,X](\?)))neN almost surely converges in distribution to
(X1,...,Xy) in the sense of Definition [I1.2.2]
(ii) For each P € C(z1,...,xy) (not necessarily self-adjoint), we have that
lim |P(X™(w), ..., XPw)|| = |P(X1,...,Xn)|  for P-almost all w € €.
n—oo
The class of tuples of random matrices, for which strong convergence is known to hold true,

contains tuples of self-adjoint Gaussian random matrices [HT05] and tuples of Wishart
random matrices [CDOT].

Let us now give the precise formulation of the beautiful results of [Yinl6]. For reasons
of simplicity, we decided to present the statement only in the self-adjoint case, which is
sufficient for our purposes but does not exploit the full strength of [Yin16].

THEOREM I1.4.3. For each n € N, let self-adjoint random matrices Xl(n),...,X](\?)
in (M, T,) be given, where the non-commutative probability space (IM,,T,) is con-
structed over (0, F,P). Moreover, let X1,...,Xn be self-adjoint non-commutative ran-
dom variables in some C*-probability space (I, T) with a faithful state 7. Suppose that
((Xl("), . ,X](\?)))neN converges strongly to (X1,...,Xy). If r is any non-commutative
rational expression in the formal variables x1, ..., xx, then the following statements holds
true:
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(i) Asn — oo, (Xl("), o ,X](\?)) belongs eventually to the M, (C)-domain of r, i.e.,
for P-almost all w € 0, we find some n, € N, such that
(X" (w),. .. ,X](\?)(w)) € domyy, c)(7) for alln > n,,.
(ii) For P-almost all w € 2, we have that
Tim o, (r(X{V (W), X @) = 7(r(X, . Xn)) and

Jim (X @), X @D = (X X)L

Correspondingly, we have the following analogue of Lemma [[1.4.1

LEMMA 11.4.4. For each n € N, let (Xl(n), e ,X](\?)) be an N-tuple of indepen-
dent self-adjoint random matrices Xl(n),...,X](\?) € M, over (Q,F,P). Assume that
((Xl(n), . ,X](\?)))neN converges strongly to (Xi,...,Xy) in the sense of Definition
where X1, ..., Xn are self-adjoint non-commutative random variables in some C*-
probability space (I, T) that comes with a faithful state 7. Consider any non-commutative
rational expression r in the formal variables x = (x1,...,xy), such that the condition

(X17 e ,XN) € domgm(r)
is satisfied. Then, for P-almost all w € 2, there exists some n, € N, such that
(Xf")(w), . ,X](\?)(w)) € domyy, ¢ (r) for alln € N with n > n,,
holds, and the eigenvalue distribution of
(XU W), ., Xy (W)

converges weakly to the analytic distribution p of r(Xq,..., Xn) € M as n — 0.

PROOF. The above mentioned results of [Yinl6|] show that the strong convergence
of (X{n),...,XJ(\?)) to the point (Xi,...,Xy) in the 9i-domain of r implies, under
the assumption that (90,7) is a C*-probability space with some faithful state 7, that

(X 1(n), o ,X](\?)) lies in the domain of r eventually. Recall that this means that we can
find for P-almost all w € 2 some n, € N, such that

(X" (W), ... ,X](\?)(w)) € domyy, (¢ () for all n € N with n > n,,.
For such w € Q and n > n,, we put Y™ (w) = r(X\"(w), ... ,X](\?)(w)). Now, if £ > 1

is any integer, we clearly have Y™ (w)* = 'rk’(Xl(") (W), ..., X5’ (w)), where r* denotes
the non-commutative rational expression, which is defined recursively by 7! := r and

rk ==t for k> 2. If we put Y :=r(Xy,..., Xn) € M, we get
lim tr, (Y™ (w)") = lim tr, (X (W), ..., X3P (W)))
=7(r*"(Xy,...,XN))
= 7(Y")
for P-almost all w € 2. As the analytic distribution puy of Y has compact support and is
thus in particular determined by its moments (see Remark[[.1.32)), it follows by the obser-
vations made in Remark [[1.2.3[ that the sequence of eigenvalue distributions (fiy-n) (w))neN

converges weakly to pu = py for P-almost all w € €. This is exactly what we had to
show. 0
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In the Brown measure case, despite the amazing similarity between the output of our
algorithm and of the random matrix simulation (see Section , there is up to now no
general statement, which would give a rigorous justification of this phenomenon, neither
for non-commutative rational expression nor for the more basic case of non-commutative
polynomials. However, it is conjectured to be true at least for non-commutative polyno-
mials.
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CHAPTER III

Linearization

This chapter is devoted some powerful technique of purely algebraic nature, which has
become recently a very important tool in free probability theory. Here, it goes under
the name “linearization trick” and it was introduced to this community by the work of
Haagerup and Thorbjgrnsen [HT05] and Haagerup, Schultz, and Thorbjgrnsen [HSTO06],
but some ideas can be traced back already to the early work of Voiculescu. Later, it got
a fresh impetus by Anderson [And12), [And13), [And15].

All these techniques are strongly related and they have in common that they allow an
effective treatment of non-commutative polynomials in terms of matrices whose entries
are linear polynomials. More precisely, if p is any non-commutative polynomial in g formal
non-commuting variables x1, ..., 4, the method of linearization allows us to construct in
an explicit way some linear expression of the form

L=L0 ¢ L(l)Il et L(Q)xg’
where L LM L are complex matrices of some dimension N depending on p, such
that, after evaluation of p in non-commutative random variables X1, ..., X, all “relevant

information” about p(Xy, ..., X,) is encoded in L(Xj,. .., X,) and can be easily recovered
from it.

From the viewpoint of free probability theory, this has the important consequence that

we can reformulate questions about polynomial expressions p(Xj, ..., X,), build in non-
commutative random variables X;,..., X,, to questions about some linear expression of
the form

L(X1,.. ., X)) =LO + LOX, +... + LWX,,

but to the price that the obtained linear expression has matricial coefficients. Therefore, at
first sight, it is not clear that passing from p(Xj, ..., X,) to the linearization L(X7, ..., X,)
should cause a significant simplification in the treatment of p(Xj, ..., X,). In order to see
why this is indeed the case, one needs to take a closer look at the way how p relates
to its linearization L. In fact, the “linearization trick” is built such th