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Abstract

In this thesis, we investigate a certain type of local similarities between geo-
metric shapes. We analyze the surface of a shape and find all points that are
contained inside identical, spherical neighborhoods of a radius r. This allows us
to decompose surfaces into canonical sets of building blocks, which we call mi-
crotiles. We show that the microtiles of a given object can be used to describe a
complete family of related shapes. Each of these shapes is locally similar to the
original, meaning that it contains identical r-neighborhoods, but can have com-
pletely different global structure. This allows for using r-microtiling for inverse
modeling of shape variations and we develop a method for shape decomposi-
tion into rigid, 3D manufacturable building blocks that can be used to physically
assemble shape collections. We obtain a small set of constructor pieces that are
well suited for manufacturing and assembly by a novel method for tiling gram-
mar simplification: We consider the connection between microtiles and non-
context-free tiling grammars and optimize a graph-based representation, find-
ing a good balance between expressiveness, simplicity and ease of assembly. By
changing the objective function, we can re-purpose the grammar simplification
method for mesh compression. The microtiles of a model encode its geomet-
rically redundant parts, which can be used for creating shape representations
with minimal memory footprints. Altogether, with this work we attempt to give
insights into how rigid partial symmetries can be efficiently computed and used
in the context of inverse modeling of shape families, shape understanding, and
compression.





Kurzzusammenfassung

Diese Dissertation beschäftigt sich mit den Eigenschaften von Symmetrieabbil-
dungen von geometrischen Flächen. Wir betrachten r-symmetrische Punkte, die
mittels euklidische Transformationen aufeinander abgebildet werden können,
sodass alle Nachbarpunkte in einer sphärischen Umgebung mit Radius r iden-
tisch bleiben. Wir zerlegen 3D-Modellen in Bausteine, die wir Microtiles nen-
nen. Alle Punkte im selben Baustein haben die gleichen Symmetrietransfor-
mationen. Wir zeigen, dass sich aus den Microtiles eines 3D-Objektes einen
wohl-definierten Raum ähnlicher Objekten konstruieren lässt. Jedes neues Ob-
jekt ist punkweise gleich mit dem ursprnglichen Modell, kann aber eine be-
liebige globale Struktur haben. Diese Eigenschaft ermöglicht das automatische
Zerlegen von Geometrieobjekten in herstellbare Bausteine, die Objektvariatio-
nen bilden können. Wir stellen ein Optimierungsverfahren vor, wodurch wir
verschiedene Eigenschaften von den Bausteinen beeinflussen können. Wir be-
trachten die Microtiles als eine formale Grammatik und transformieren einen
darauf basierenden Graphen. Das ermöglicht uns anwendungspezifische Eigen-
schaften der Bausteine wie Variationsmenge, Einfachheit, Zusammensetzbarkeit
zu verbessern. Dasselbe Optimierungsverfahren findet zusätzliche Anwendun-
gen im Bereich der Datenkomprimierung. Da die Microtiles Redundanzen in der
Geometrie darstellen, ist es möglich aus den Bausteinen eine Flächendarstellung
zu berechnen, die möglichst wenig Speicherplatz benötigt. Im ganzen, gewin-
nen wir mit dieser Arbeit einen Einblick in die Zusammenhnge zwischen Sym-
metrien, der Analyse und Synthese von 3D-Objekten, und deren Komprim-
ierung.
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1 Introduction

The similarities in geometric shapes, as well as the ability to recognize them,
play an important role in the way humans perceive and understand their sur-
roundings. Symmetries and regularities help us understand, memorize, and an-
alyze objects and processes. We often use visual cues such as the observed sim-
ilarities in the appearance of objects, to transfer other properties like purpose,
functionality, and even estimate potential risk associated with them. For exam-
ple, L-shaped cylindrical levers are often used as door-handles (purpose) and
are activated by rotating them (functionality), while many plants have spikes
that can hurt us. We even consider symmetric biological forms like faces to
be more appealing, and possibly being a characteristic trait for good genetic
material.

Not surprisingly, the mathematical principles related to shape similarities, or
symmetries, have received a lot of attention from scientists, while at the same
time artists have been using them as means to influence the aesthetics of their
creations.

© muffet1 (devianart)

© Will Hedington

© BraZ (turbosquid)

© ssavalot (turbosquid)

Figure 1.1: Examples for symmetries occurring in nature (the Japanese maple leaf and the
wasp nest) and in man made shapes (the gazebo and the concept truck).

In computer graphics, symmetries can have multiple applications. The infor-

1



1 Introduction

mation about geometric redundancy represented by the symmetric parts of an
object can be used to simplify or compress it. The resulting representation can
in turn be used for understanding certain properties related to the structure of
the shape. We will demonstrate how such analysis allows for generating shape
variations via inverse modeling. Other applications where symmetries play an
important role include shape matching, shape segmentation, shape retrieval,
and geometry completion.

In this thesis, we analyze a specific type of geometric self-correspondences,
which we call r-symmetry. In Chapter 3, we first prove analytically that the sur-
face of a geometric object can be decomposed into microtiles – a set of building
blocks, out of which one can construct not only the original model, but a whole
family of related (r-similar) shapes. Each of the new shapes is locally similar
to the primary exemplar, but has a different global structure. These results are
published in [KBW+12].

Based on this theoretical foundation, in Chapter 4 we derive algorithms for ef-
ficient and robust decomposition of triangle meshes into microtiles. The main
challenge here is converting the initial point-wise correspondences into a finite
set of building blocks with arbitrary shape and exact boundaries that are inde-
pendent of the shape triangulation. The methods are discussed in [Kal15].

An additional contribution of this thesis is a method for tiling-grammar simpli-
fication, discussed in Chapter 5. Each similar shape constructed from microtiles
is also a word from a language, generated by a context-sensitive grammar rep-
resented by the microtiles and a set of assembly rules given by their pairwise
adjacency in the original surface. We analyze and simplify this grammar by
computing an optimized decomposition according to a cost model. By using dif-
ferent objective functions we can optimize the initial shape decomposition for
various applications.

We demonstrate the usefulness of the approach with two application scenarios.
First, in Chapter 6, we use the geometric redundancies encoded by the building
blocks for compressing triangle meshes. This is possible by representing the
original mesh by a small set of pieces that are replicated in space. Second, in
Chapter 7 we develop a method for automatic shape decomposition into 3D
manufacturable constructor sets for modeling shape variations. The methods in
Chapter 5 and Chapter 7 are discussed in [KWS16].

The author of this thesis has been the principle investigator for the research
leading to the contributions listed above and detailed in Chapters 3, 4, 5, 6, and
7. The work has been conducted under the supervision and in collaboration
with Prof. Michael Wand and Prof. Philipp Slusallek.
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2 Symmetry in 3D Geometry

In this chapter we introduce the mathematical notions upon which our work is
founded. The readers with background in (partial) symmetry analysis in 3D can
safely skip to Chapter 3.

2.1 Classical Theory

In general, the term symmetry is used to describe invariance under certain
operations. For example, cars have mostly symmetric left and right exterior
parts, meaning that mirroring the car along a vertical plane trough the middle
will not change its appearance. In mathematics, this invariance of the entire
shape for given transformations makes it possible to enclose the operations in
algebraic groups [SS64].

Formally, we say that a geometric shape S ⊂ R3 is symmetric under a trans-
formation T if S remains unchanged after applying T on it, i.e. S = T (S), or
∀p ∈ S, ∃q ∈ S : q = T (p). This implies that the set of transformations that
preserve S forms a group: ({T |S = T (S)}, ·) is a group. A set of objects, here
transformations, and a composition operation · is a group if the following group
axioms are satisfied:

• Closure: For every pair of elements T1, T2, T1 · T2 is also inside the set.
This holds in the case of symmetry transformations, since each of them
leaves the defining shape S unchanged, hence S = T2(S) = T2(T1(S)).

• Identity: There is an identity element I such that for any other element T
in the set I · T = T = T · I. Trivially, the identity transformation (leaving
S as is) exists for every object S.

• Inverse Element: For every transformation T in the group, there must
exist an inverse T−1 such that T · T−1 = T−1 · T = I. For this to hold,
for each of the considered operations transforming points in space, there
should be another one (not necessarily different from the original), which
returns each transformed point back to its original location.

• Associativity: Composition of more than two elements yield the same
result regardless of priority, i.e. (T1 ·T2)·T3 = T1 ·(T2 ·T3), ∀T1, T2, T3. This
follows analogous to the closure: The transformations leave S unchanged
regardless of the priority of application.

In this thesis we will focus on certain kinds of geometric transformations such

3



2 Symmetry in 3D Geometry

as rotations, translations, mirroring, and combinations thereof. These particular
types of transformations form the Euclidean group (or E(3)) and are referred
to as rigid transformations or isometries. They have the property of preserving
distances and angles, which is important for the analysis of typical man-made,
non-deformable (rigid) objects.

Rotate 60º Rotate 120º Rotate 180º Rotate 300º

Mirror
Mirror

Dihedral Group D6

Figure 2.1: A regular n-sided polygon has n rotational and n reflection symmetries, making
for 2n elements in the dihedral group Dn.

The classical theory for symmetries analyses the characteristics of the set of
transformations mapping a geometric shape to itself exactly. Example shapes
with such properties include regular polygons (see Figure 2.1). The most no-
table property of the generating transformations is that they form a closed alge-
braic group. Because the entire object remains unchanged after a transforma-
tion, we will call these types of symmetries global.

In our examples so far we have only considered transformation groups of finite
elements - rotations and reflections. These operations preserve the center of
the transformed object. This does not hold for translations. However, there
are symmetry groups that do contain translations. Excerpts1 of such groups
are used to describe 1D, 2D repetitive patterns often observed in architectural
ornaments.

Global symmetries are important for 3D graphics, and are by now a well un-
derstood topic thanks to their connection to mathematical groups. However,
humans are able to recognize geometric similarities on parts of objects, like the
windows on a building facade. The latter usually cannot be mapped to each
other by an algebraically closed set of transformations (see Figure 2.2).

2.2 Partial Symmetries

While the classical type of symmetries (we refer to them as global) can be ob-
served in a variety of shapes, these require transformations that map the entire
object to itself. This work is focused on partial symmetries, i.e. self-similarities
that occur on parts of a shape. These types of correspondences occur more
often than global symmetries and allow for decomposing (segmenting) shapes
into recurring pieces, which can be used to analyze or further process a shape.

1Groups containing translation are infinite. Therefore, not all elements can be represented phys-
ically.
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Approximate Symmetries 2.3

Symmetry detection and analysis become more complicated when only un-
known parts of the input object correspond to each other. In addition to finding
the inducing transformations, the shape must be segmented into pieces. In Fig-
ure 2.2, the object to the right has three global symmetries (mirroring along
the xy, xz, and yz plane) but also consists of 5 identical boxes that correspond
to each other via horizontal translations. This example illustrates an additional
difficulty of partial vs global symmetry detection: the transformations inducing
partial symmetries do not always form closed algebraic structures as is the case
with global self-symmetries.

R1 R2

R3
T

T2

T3

Figure 2.2: The set of transformations inducing global symmetries form a closed group
(left). This is not the case with partial symmetries (right). In the right example T 3 = T ·T ·T
does not produce a partial match.

For global symmetries the rotations and reflection planes are all centered at
the object center, and in general, the centroid of the object is a fix-point for
any symmetry transformations. This is not the case for partial correspondences,
which makes it more difficult to compute their inducing transformations.

In this work we investigate how partial symmetries characterize shapes and
shape collections. We develop an abstract framework for shape decomposition
into symmetric parts, which we call microtiles. We also look into how the mi-
crotiles induced by a certain type of rigid self-correspondences can be used for
inverse modeling of shape variations. We show that these particular microtiles
can be used to assemble a whole family of locally similar shapes.

2.3 Approximate Symmetries

When do we say that two geometric objects have symmetric or identical parts?
Ideally, the pair of objects A,B ⊂ R3 must match exactly, because in Section 2.1
we defined: A = B if and only if ∀p ∈ A,∃q ∈ B : q = p. However, in prac-
tice this requirement is too strict and well behaved shapes that allow precise
matching are rare. In addition, humans intuitively recognize “almost” identical
shapes or “close” matches. Note that in many of these cases our cognitive ability

5



2 Symmetry in 3D Geometry

is not entirely based on experience rather than precise estimation of the geom-
etry of the shape. We can, for example, recognize similarities between tools or
weapons, despite deformations caused by aging, rusting, or defects. At the same
time, recognizing that a pair of line segments have orientations that differ by
less than 10◦, but are not parallel to each other is not a skill an average human
needs to posses. In this thesis, we are mainly interested in exact geometric cor-
respondences and leave for future work the adaption of the proposed methods
to approximate symmetry.

Even though our theoretical framework is focused on exact symmetries, practice
demands a more general and robust approach. To address shape deformations
caused by noise, numerical imprecision or modeling (artist) mistakes, we need
to allow to match shapes approximately. One way to do this is to consider a
distance function d(·, ·) : P

(
R3
)
×P

(
R3
)
→ R that measures pairwise similarity

of geometric shapes (P(·) is the power set of ·). We can choose a threshold t
and identify two shapes A and B if d(A,B) < t. Note that in the case of self-
correspondences B is usually a transformed copy of A.

There is more than one way to define a distance measure, and we will define one
such function in Section 4.4.2. Other measures include the Hausdorff distance

dH(A,B) := max

{
sup
x∈A

inf
y∈B
||x− y||2, sup

y∈B
inf
x∈A
||x− y||2

}
or integrating point-wise square distances: For B = T (A) with T a transforma-
tion

d2(A, T (A)) :=

∫
x∈A
||Tx− pM (Tx)||2dx

where pM (y) is the projection (or closest point) of y onto M .

Note that, typically, defining approximate symmetries with a distance func-
tion does not preserve the group structure of the inducing transformations,
even for global symmetries. It is usually possible to have d(A, T1(A)) < t and
d(A, T2(A)) < t while d(A, T1T2(A)) > t. Hence, symmetries defined this way
are not necessarily transitive, making them harder to detect.

Another important aspect of approximate symmetry detection is the error toler-
ance, usually achieved by the threshold t. It is usually user defined and applica-
tion dependent.

In this work we consider well-behaved shapes with no noise and minimal defor-
mations. Nevertheless, we derive a detection method that handles approximate
symmetries and deal with numerical imprecision as well as some triangle mesh
inconsistencies typical for real world 3D models modeled by humans. In ad-
dition, we demonstrate that our detection method can be extended to handle
small shape deformations caused, for example, by artist mistakes. However,
we leave for future work the application to more challenging scenarios such as
scanned models subject to noise, missing parts, and other artifacts. We therefore
use a strict threshold on our distance metric.

6



3 Building Blocks from Correspondences

In this chapter, we develop a theoretical framework for characterizing collec-
tions of shapes by elementary pieces we refer to as building blocks. We in-
troduce a formal model for shape segmentation into ”microtiles” - elementary
pieces induced by a set of input correspondences that define a point-wise equiv-
alence relation between surface points. Each mapping matches parts of the
input model. We convert the initial set of arbitrary overlapping surface patches
into a unique set of microtiles and show that the latter encode all partial sym-
metries of the input shape.

We then consider a specific correspondence model called r-similarity and prove
that the microtiles of a given shape S characterize a whole space of shapes
similar to S (up to zero-area deviations). This insight is the major theoretical
contribution of the thesis and is important for various applications, including
Inverse Procedural Modeling (see Section 3.5), where the microtiles can be used
as a tiling grammar - a set of building blocks and assembly rules that allow for
the generation of a vast set of shape variants.

The contributions of this chapter are discussed in [KBW+12]. This chapter con-
sists of two main parts. First, we develop a model for representing partial sym-
metries with microtiles. We consider a shape S and set of mappings F that maps
subsets of S back to S, in a way that it defines an equivalence relation among
the points of S. Usually, the regions matched by the pairwise relations overlap
arbitrarily. This provides a notion of redundancy, which we then convert into
canonical building blocks.

We formally prove a number of interesting properties of the microtiles: First,
the construction is unique and canonical: It does not require any choices or pa-
rameters in addition to the input correspondences. Furthermore, microtiles are
disjoint and different types of tiles do not have partial correspondences among
each other or themselves, meaning that if parts of two microtiles match, then the
entire pieces match as well. Finally, unions of microtiles have the intersection of
their associated cliques of transformations as permissible operations. Thus, we
can derive all partial symmetry properties of a shape from our decomposition
by simple set operations.

In the second part of the chapter, we apply the abstract model for a specific
type of point-wise correspondences. We consider r-similarity – the matching
of rigid neighborhoods with radius r around points on the input surface. This
yields a point-wise equivalence relation, from which we can build r-microtiles.
Furthermore, a shape S2 is considered r-similar to S1 if all points y ∈ S2 are
r-similar to some point x ∈ S1. We can now characterize the space of r-similar
shapes: We prove that all shapes S2 that are r-similar to S1 can be constructed

7



3 Building Blocks from Correspondences

by rigidly assembling r-microtiles of S1 up to a set of points with zero area. The
assembly is disjoint and unique.

3.1 Related Work

Early approaches to structuring partial symmetries by building blocks used sim-
ple region growing [MGP06, BBW+09b], which does not lead to canonical re-
sults because they depend on the initialization. It is also not clear how to re-
assemble such tilings to form new shapes. Another way of structuring pairwise
correspondences is to look for algebraic regularity in the domain of the trans-
formations, for example by detecting commutative grids [PMW+08, MBB10].
This describes the structure of the correspondences only partially, as the input
contains only excerpts of the symmetry groups (which are usually infinite), and
irregularly placed instances are not captured. In other words, an algebraic reg-
ularity is usually not present in the domain of transformations, as translational
components cannot be captured inside a finite group. Our decomposition gives
closed groups when viewed as exchangeable parts, i.e., as permutations of sets,
but not in the transformation domain.

An alternative is to enumerate the overlapping regions of pairwise matches
[BWS10]. This implicitly encodes all symmetry information, but does not ex-
pose its structure. Based on this, Bokeloh et al. [BWS10] use the boundaries of
partial r-symmetry in order to cut out dockers that form a context-free shape
grammar. It encodes a set of objects that are r-similar to the input exemplar.
Due to the restriction to context-free grammars, their method must avoid in-
tersections of cuts. Our approach is the opposite, performing all cuts, even for
continuous symmetries (which their method explicitly excludes). Thereby, we
can span the complete space of r-similar objects with assemblies of microtiles,
while context-free tiles only cover a restricted subset. Lifting this restriction and
understanding the set of r-similar models was the main motivation of our work.

We should note that local similarity is often used in texture synthesis [EL99,
WL00] and their analogs in geometry synthesis [BIT04, ZHW+06, Mer07] but
these methods use variational formulations that do not provide insight into
the structure of the shape space. In contrast, our approach explicitly provides
building blocks and rules that span the shape space but restricts us to exact
r-similarity.

In terms of representing partial symmetry, our method is related to the work of
Lipman et al. [LCDF10]: Their method also starts from point-wise equivalence
relations and computes cliques in correspondence graphs. Unlike our approach,
they use a spectral clustering technique that is robust even under noisy and am-
biguous data. The result is a symmetry factored embedding that maps points
with a similar symmetry structure to nearby points in a Euclidean space. A
subsequent clustering in this space produces a partitioning that resembles our
microtiles. However, our model for dealing with partiality is different. Rather
than weighting the percentage of mapped points, we model the functions and
domains of partial matches explicitly. This allows us to formally study the re-

8



Correspondences and Microtiles 3.2

𝑥1 

𝑥2 

   𝑥4 

𝑥3 
𝑓24 

𝑓34 

𝑓12 

𝑓23 

𝑓13 

𝑓14 

Figure 3.1: A graph representation of an example set of partial mappings. The nodes are
(colored) points on the surface and the edges are mappings. As illustrated, all connected
components of the graph have to be cliques by definition.

sulting tile decompositions and gives us a formal framework for how general
mapping functions should be treated. In this chapter, we provide complemen-
tary insights: We focus on the study of the resulting tiles and their properties,
and study how the class of shapes can be assembled out of those tiles. In ad-
dition, the similarity model in [LCDF10] is partly based on diffusion, making
it difficult to determine the exact boundary of the corresponding region. This
makes it unsuitable for the applications we discuss in the subsequent chapters
of this thesis.

3.2 Correspondences and Microtiles

We consider a set of functions that relate points on a geometric shape, and
decompose it into classes of points that agree to be mapped simultaneously to
other points (s. Figure 3.1). In other words, we group the subsets of surface
points that are always mapped together to their similar counterparts.The result
is a set of minimal tiles that cannot be split further into pieces with differing
(symmetry) properties. The only requirement on the mappings is that, as a set,
they form an equivalence relation.

Definition 1. Input: In the following, we use S ⊂ R3 to denote the exemplar
piece of geometry for which we want to compute a microtile decomposition. Let

9



3 Building Blocks from Correspondences

(a) (b) (c) (d) (e)

Figure 3.2: Construction of microtiles: (a) Input geometry S. (b,c,d) We consider par-
tial correspondences F within S. (c) The geometry is cut at the boundaries of the partial
matches. (d) This yields the microtile decomposition. (e) Each microtile is characterized
by cliques of equivalent points; cliques with the same set of transformations form the same
class of microtiles.

F ⊆ {(P, f)|P ⊆ S, f : P → S, f is a homeomorphism} (3.1)

be a set of functions f that map subsets P ⊂ S of the exemplar back to itself, in
a topology preserving way. In other words, F is a set of partial correspondences
on S. The sets P identify the parts of S the functions f act upon.

Definition 2. Equivalence of points: Given a set of mappings F , we can now
say that two points x,y ∈ S are equivalent or similar, if there is a mapping
f ∈ F , which maps x to y:

x ≡f y :⇔ ∃(P, f) ∈ F : x ∈ P and f(x) = y (3.2)

We require that this relation be an equivalence relation. This means, we must
choose F in a way such that this induced point-wise relation is:

• Reflexive: (S, id) ∈ F

• Symmetric: x ≡f y⇒ y ≡g x for some g ∈ F

• Transitive: x ≡f y and y ≡g z⇒ x ≡h z for some h ∈ F

This is illustrated in Figure 3.1 where points on a surface are mapped based
on partial symmetries. Having an equivalence relation of such mapping means
that if we construct a graph with the surface points as nodes and the mappings
between them as edges, then each connected component of this graphs will be
a clique. The vertices in each clique form an equivalence class with respect to
F .

The equivalence classes given by the set of mappings already provide a decom-
position of the input into sets of points. However, there are usually infinitely
many such classes (or cliques), which makes this kind of decomposition im-
practical. In the following, we therefore cluster cliques with the same set of
mappings.

Definition 3. Pointwise correspondence sets: For any x ∈ S, let Fo(x)
denote the set of all outgoing pointwise correspondences:

Fo(x) = {f |(P, f) ∈ F ,x ∈ P} (3.3)

10
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Figure 3.3: A castle wing decomposed into microtiles w.r.t. r-symmetry. The colors indicate
the class of the tiles.

Definition 4. Instances of Microtiles: Comparing Fo(x) for each point x in-
troduces a new equivalence relation on S: A maximal connected component of
points x that have the same set Fo(x) forms the same instance of a microtile.
We require connected components at this point because, as we show later, these
form the building blocks required for constructing new shapes.

Definition 5. Classes of Microtiles: Two instances of microtiles τ1, τ2 are from
the same class if and only if they are matched by a correspondences f ∈ F . This
is because if two instances share a single pointwise correspondence, the whole
instances must already be mapped by a correspondence from F , by the follow-
ing arguments: First, by definition, the same set of transformation applies to
all points in a tile, implying that all points are mapped simultaneously. Sec-
ond, any transformation is required to be a homeomorphism. Thus, connected
components are preserved. In the following, we will denote the microtile de-
composition of a shape S by µ(S). Examples of microtiles are visualized in
Figures 3.3 and 3.1. Microtiles are colored by their classes.

Lemma 1. Elementary properties: There are several important properties of
microtiles: First of all, for any S there exists a unique decomposition µ(S). This
follows directly from the definition. In addition, if a point x is not equivalent
to any other points, it belongs to a microtile characterized by the set Fo(x)
containing only the identity mapping.

For any point x ∈ S there is exactly one microtile τ ∈ µ(S) that covers x in
S. This is also straight-forward: for each point x ∈ S there is exactly one set of
mappings to equivalent points. Thus there is exactly one microtile that contains
x. Thus, microtiles form a disjoint partition of S.

11
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Finally, a microtile can be globally mapped to itself, but not partially. If a point
on the tile can be mapped to another one by f , then f maps all other points
on the same tile as well, because otherwise, we would have introduced varying
cliques of mappings within the same tile, contradicting the definition.

Lemma 2. Cutting: We can define instances of microtiles in an alternative way:
An instance τ of a microtile is a maximal, connected set such that:

∀x1,x2 ∈ τ : ∀(P, f) ∈ F : (x1 ∈ P ⇔ x2 ∈ P)

The equivalence to the definition above is straightforward. This formulation
shows that we can characterize the tile instances by the intersection of the do-
mains of all partial mappings. Intuitively, we can think of cutting at the bound-
aries of all partial matches.

Lemma 3. Combinations of tiles: Let Q ⊆ µ(S) be a set of tile instances. We
then consider a union of tiles

⋃
τ∈Q τ . We now want to find the set of symmetry

transformations of Q, i.e., the set of f ∈ F that map all tile instances in Q
simultaneously back to S. From the definition, this is obviously

⋂
τ∈Q Fo(τ),

i.e., the intersection of all mapping functions associated with the individual tiles.
This also holds if Q contains arbitrary fragments of tiles: Otherwise, we would
have partial symmetries of tiles. Hence, the microtile decomposition encodes
all partial symmetries of S and they can be computed easily and efficiently by
set operations.

Lemma 4. Permutation groups: Microtiles also have an algebraic regularity
model: If we restrict any pair of mappings {f, f−1} ∈ F that acts on a tile τ
to the domain of this tile instance, we obtain an operation that swaps two tiles
τ, f(τ), not affecting the shape of S. The set of all such permutations for all
microtiles generates a group of permutations that characterize the symmetries
of the shape. Please note, that neither the transformations involved nor the
input set F has a group structure in general. By definition, the permutation
group of each tile class is maximal with respect to sets of possible permutations,
and the union of tiles of the same class are the maximal subset of S with that
property.

3.3 Microtiles for r-Symmetry

The above definition of microtiles is still abstract; whether the concept of mi-
crotiles is useful or not depends on the input set of mappings that determine the
building blocks. In order to demonstrate a concrete application, we derive some
of the properties for a microtile decomposition based on partial r-symmetry as
defined by Bokeloh et al. [BWS10].

Definition 6. r-Similarity and r-Symmetry: From now on, let T = E(3)
be the group of rigid transformations of R3. Let Nr(x) be the spherical r-
neighborhood of x in S with respect to Euclidean distance. We first define a
local notion of equivalence by matching neighborhoods of points: The points
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x and y are r-similar under a transformation T ∈ T if and only if their local
neighborhoods match under a rigid motion. We denote this by:

x
r,T↔ y :⇔ T(Nr(x)) = Nr(y)

r-Symmetry: This relation, which we call r-symmetry, is an equivalence re-
lation because E(3) forms a group and its actions are isometries with respect to
Euclidean distance, i.e., they do not change r. In the following, let F denote
the partial mappings induced by the set of all pairwise r-symmetry relations.

r-Similarity: We can use the same matching model to compare shapes: Let
S1,S2 ⊆ S be two shapes in S, with distance larger than r, and x ∈ S1,y ∈
S2. We call S2 r-similar to S1 if every point in S2 is equivalent to at least one
(arbitrary) point in S1. Formally:

S2 is r-similar to S1 :⇔ ∀y ∈ S2 : ∃x ∈ S1 : x
r,T↔ y.

Obviously, r-similarity is reflexive and transitive but in general not symmetric.

In the following, we will consider decomposition of surfaces (e.g. triangle
meshes) into microtiles with respect to r-symmetry, and we will show a number
of interesting properties that these particular microtiles have. The main the-
oretical result in this thesis is the proof that these microtiles are a canonical
description of the space of r-similar shapes to the input shape. Before we con-
tinue, we will make further restrictions to the input in order to make the further
model well defined:

• S is bounded.

• S is a 2-manifold (with or without boundary).

• S is piecewise smooth; we assume a union of a finite number of facets,
each of which is a an algebraic surface bounded by a finite set of algebraic
curves.

The last point allows representations like meshes of trimmed NURBS, which
can represent (exact) rotational symmetries. Our current practical implementa-
tion is actually based on triangle meshes, where exact matching rules out these
symmetries.

Types of Microtiles

When constructing the microtiles according to r-symmetry, one can distinguish
between two types of microtiles – those with finitely and those with infinitely
many equivalent counterparts. The restrictions on the input surface to a finite
mesh of polygons or patches allow us to simplify the cases where infinitely many
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3 Building Blocks from Correspondences

transformations map a point to an r-symmetric one. If a tile is characterized by
infinitely many transformations, then these can be represented by a continuous
function parameterizable in one or two dimensions. This kind of symmetries
(here r-symmetries) are analyzed by Gelfand and Guibas [GG04] and the sym-
metric points are called slippable. Thus we have two types of tiles with respect
to the size of their defining transformation sets:

• Discrete pieces: A single piece of geometry that is instantiated once or
more by a (finite) discrete set of symmetry transformations.

• Slippable pieces: These pieces (and their r-neighborhood in their instan-
tiation) are slippable. They can be planar, spherical, cylindrical, helical,
surfaces of revolution, or extrusions, e.g. edges (see Gelfand and Guibas
[GG04]).

– Planar, spherical, cylindrical microtiles: These form area elements,
represented by a single point and its slippage properties. They can
be expanded to arbitrary area covering the underlying primitive, but
need to be bounded by other tiles (or self-closed, e.g. for spheres)

– Helical tiles, extrusions, surfaces of revolution: These can be ex-
panded in one dimension, forming curve primitives. They are either
self-closed (surfaces of revolution) or bounded by other tiles (helical
tiles, edges).

In Figure 3.3 the gray-colored points are all instances of a single class of mi-
crotiles because their r-neighborhoods are planar. We call them 2-slippable be-
cause it is possible to parameterize their set of r-symmetry transformations in
2 dimensions. Analogously the yellow-colored points correspond to multiple
1-slippable classes of microtiles. For triangle meshes, only planar 2-slippable
elements and 1-slippable extrusions are possible.

Complexity: The set of microtiles can be encoded with a finite number of real
parameters. For a triangle mesh, this is easy to see. A single triangle is always
described by a finite set of different microtile classes. Inductively, adding a
triangle to a set of finite classes of tiles can only create a finite number of new
such classes, bounded by a finite graph of straight edges. We conjecture that
a similar property holds for a mesh of general algebraic surfaces as well, but a
formal proof is beyond the scope of this document.

3.4 The Space of r-Similar Shapes

In this section, we discuss how the microtiles of an exemplar S characterize the
space of all shapes that are r-similar to S. We discuss two different aspects:
First, we show that all such shapes can be assembled from a disjoint union of
microtiles, and that this decomposition is unique (up to global symmetries of
the tiles, which has no effect). Second, we give some necessary conditions for a
shape grammar that constrains how the tiles can possibly be fit together.

14



The Space of r-Similar Shapes 3.4

Theorem 1. The Space of r-Similar Shapes: The main result that we want
to show is the following: Let S1,S2 be valid input surfaces in the sense of our
definition. Furthermore, let S2 be (r+ ε)-similar to S1 for ε > 0. Then S2 can be
constructed (completely covered) by a disjoint union of r-microtiles from µ(S1),
using only transformations from T to arrange the pieces.

𝑆1 𝑆2

𝑇, 𝑟 + 𝜖

𝑥1

𝑝1 𝑝2
𝑥2

𝑇
2
3 ,𝑟

𝑝3
𝑥3

𝑇, 𝑟

Figure 3.4: Representation of the points in the proof. The r + ε symmetries and neigh-
borhoods are marked with black arrows and circles, r-symmetries and neighborhoods with
blue. We show that the red tile border can not cross the image of an r-microtile on S2.

Proof: Because S2 is (r + ε)-similar to S1, we can find a correspondence for
each point of S2 and the point-wise equivalence classes or cliques of S2 are a
subset of those of S1.

It remains to show that points on the same tile τ of µ(S1) cannot be r-symmetric
to points on different tiles of S2. Assume that this is not the case and the points
on a tile of S2 can only be mapped to points of at least two tiles of S2, i.e.
in S2 exists a tile boundary not observed in S1 (Figure 3.4, red dashed line).
Consider two points p1,x1 ∈ τ ∈ µ(S1) and a transformation T ∈ T such that
dist(p1,x1) < ε, and p2 := T(p1) and x2 := T(x1) are not in the same r-
tile of S2 (s. Figure 3.4). In other words, we are interested in a pair of points
(p2,x2 ∈ S2) on different tiles, but within the ε-neighborhood of a tile boundary
that is only present in S2. We will show that p2,x2 cannot belong to different
tile classes, contradicting the assumption of the existence of an additional tile
boundary in S2.

Because, by assumption p2,x2 do not belong to the same microtile class, there

must exist p3,x3 ∈ S2 with p2
r,T23↔ p3 such that x3 := T23(x2) is not r-

symmetric to x2 (Figure 3.4). From the theorem statement (the condition on
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r + ε similarity of S1 and S2), having p1
r+ε,T↔ p2 and p2

r,T23↔ p3 implies

p1
r+ε,T·T23↔ p3. Therefore, x1

r,T·T23↔ x3. The latter holds because if p2 and
x2 are closer than ε, the r-neighborhood of x2 is completely inside the (r +
ε)-neighborhood of p2. The same holds for (p1,x1) and (p3,x3) respectively.
However, x1, x2 and x3 being r-symmetric to each other contradicts that the
latter two belong to different r-microtiles of S2.

The theorem shows that out of the r-microtiles it is possible to construct any
shape r-similar to a given exemplar up to a subset of measure zero. This holds
because it is possible to choose ε arbitrarily small. One can think that this
result is actually stronger, i.e. that one can let ε converge to 0 and argue that
the statement can be transferred to the limit, but we were not able to show
that this is always possible. Observe that for the theorem to hold in the limit
case, the properties of the tiles like number, size, adjacency should also change
continuously with r. In the case of triangle meshes for example this is always
the case up to a countable amount of values where discontinuities in all of the
mentioned properties occur. To illustrate this consider a single triangle. For
large enough radius, the whole triangle will be a single microtile, while if the
radius is small enough, the triangle will be decomposed into separate microtiles
for corners, edges and a plane. For each value of r inside this range at which
the number of microtiles changes, the set of r-similar shapes for ε > 0 and ε = 0
differs.

This limitation is not very important, because the values of r for which the
microtiles do not suffice to characterize the space of shapes r-similar to an ex-
emplar are finitely many and do not pose a real concern in practice.

3.5 Towards a Microtile Shape Grammar

In addition to having a unique decomposition into microtiles, we can constrain
the construction of r-similar shapes further. We will now show that we cannot
only learn the tiles from the exemplar, but also some rules of how they can
possibly be assembled. To that end, we first have to define boundaries of a tile:

Let τ1, τ2 be two instances of microtiles of different type. The boundary b
between τ1, τ2 is the set of points that have distance zero to both τ1, τ2, i.e.,
b = τ1 ∩ τ2, where the bar denotes set closure. Because we assume manifold
input, and tiles are disjoint, the boundaries are (multi-)curves (possibly consist-
ing of multiple fragments). Only two tiles can share a common curve except
from isolated points that can be a boundary to more than two tiles.

We now show that tiles can only be assembled along boundaries that have been
observed in the exemplar. We have the following theorem:

Theorem 2. Let S2 be (r+ ε)-similar to S1. Let τ1, τ2 be two different instances
of r-microtiles of S1. Let τ ′1 = T1(τ1), τ ′2 = T2(τ2),T1,T2 ∈ T be instances
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Figure 3.5: Microtiles can only be assembled with pairwise adjacency relations as in the
exemplar (left).

of tiles of the same types as τ1, τ2 in S2, i.e., τ ′1, τ
′
2 ⊂ S2. Let τ ′1, τ

′
2 share a

common boundary b′. Then, there must exist instances of τ1, τ2 in S1 that share
a boundary b. Furthermore, we can always find a pair of instances τ1, τ2 ∈ S1
such that T1 = T2 and b′ = T1(b).

Proof. We show that b ⊂ S1 must exist (Fig. 3.5) with arguments similar to the
proof of the previous theorem. We know that τ ′1 ⊂ S2 corresponds to one or
more tiles in S1. Let x′ ∈ τ ′1 and y′ ∈ τ ′2 be two points, both with distance
less than ε/2 to the boundary b′. Because S2 is (r + ε)-similar to S1, x′ and its
(r + ε)-neighborhood map to a point x ∈ S1 that is contained in one of these
tiles. Let τ1 denote this tile, and T−11 ∈ T denote the mapping. Because of the
(r + ε)-similarity, Nr(x′) and Nr(y

′) are both mapped back to S1 under T−11 .
As before, this implies that T−11 (τ ′2) ⊂ S1 is also an instance of the microtile τ2
(otherwise, we would have found a partial symmetry of τ2). Therefore, we have
constructed a pair of corresponding tiles with T1 = T2, which implies that the
boundary b = T−11 (b′) exists in S1.

This shows that we can learn restrictions how to connect microtiles from the
exemplar: We can collect all boundaries along which microtiles are neighboring
in the exemplar S1 and allow only these combinations for building new shapes.
For discrete microtiles, this is straightforward (we just need to enumerate the
observed combinations). For continuous microtiles, the situation is more com-
plicated: Continuous tiles can be neighboring to themselves. For example, the
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tile of a plane consists of a single point only; finite pieces are formed by collec-
tions of points. This implies that continuous microtiles that have themselves as
neighbors (which actually can be expected to be almost always the case) can be
extended to form arbitrary kinematic surfaces of the type the tile corresponds
to (planes, spheres, helical surfaces, etc). The only constraint is the boundary:
The continuous tile must be bounded by observed boundaries to tiles of other
types, which again can be continuous or discrete1. Any combinations of these
boundaries are possible, as long as the adjacency of the boundary elements
themselves is compatible as well. As an example, consider a flat wall with a
single window in it that forms a single tile. This means, that in a newly con-
structed shape, we can insert an arbitrary number of windows into the plane,
rotated and translated arbitrarily, as long as their distance is larger than r.

Discussion: The rules are necessary for assembling (r+ε)-similar objects, but
not sufficient. Following the (informal) arguments of Bokeloh et al. [BWS10],
we conjecture that our rules of assembling microtiles according to previously ob-
served “docking sites” are sufficient for creating r-similar objects, leaving only
a gap of ε in the class of shapes described. However, a formal proof is subject to
future work, as well as a constructive characterization of a shape grammar that
can directly create new objects. Analogous to [BWS10], we call these assembly
rules a microtile grammar. This grammar gives a more general and explicit
version of the “shape matching grammar” in their paper, which is only defined
implicitly. Both grammars are not context free, but rather resemble a jigsaw-
puzzle. Our version provably covers all (r + ε)-similar shapes. Please note that
both are unrestricted, type-0 Chomsky grammars [Cho59] (in our case, includ-
ing the special case of defining continuous pieces by their boundaries). They
resemble a puzzle of pieces docked along their boundary curves rather than the
hierarchical replacement scheme of traditional, context-free shape grammars.

3.6 Final Words

We have presented a formal model for decomposing a model into building
blocks when we have correspondences that identify equivalent surface points.
The basic idea is very simple: We group all connected points that are mapped
by the same set of mapping functions. Nevertheless, the decomposition has a
number of remarkable properties. As an abstract decomposition it is a unique
and disjoint partition. It also encodes all consistent matches of subsets of the in-
put surface. Applying it to the concrete correspondence model of rigid matches
of local neighborhoods, we get the even stronger result that the tiles of the de-
composition are sufficient to uniquely construct any model that is similar to the
decomposed one in this sense.

In this document we demonstrate two main application areas where our ap-
proach is of utility. First, it provides a canonical representation of redundancy in

1Spherical mirotile types are an exception, because we can form a closed sphere, which is a
bounded set that respects the neighborhood rule, i.e. having observed boundaries to other types of
building blocks is not a requirement in this case.
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shapes. With respect to given correspondences, we can consider the microtiles
as elementary units. This has obvious applications in shape compression (see
Chapter 6) and could be used to analyze collections of shapes for similarity
(demonstrated briefly in Chapter 4). In addition to relating the tiles them-
selves, the relative arrangement of the tiles could probably, in future work, be
used to characterize geometry independent of the actual geometry. A further
application area is inverse procedural modeling, where we can characterize the
space of shapes that is locally similar to an exemplar. In Chapter 7 we exploit
this property to inversely decompose input models into manufacturing-ready
constructor pieces that can build families of r-similar shapes.

19



3 Building Blocks from Correspondences

20



4 r-Symmetry Detection

In the previous chapter we introduced a theoretical model for shape decom-
position into microtiles – building blocks derived by a set of correspondences
that define an equivalence relation on the surface points of a given model. We
also showed that for a specific correspondence functions (rigid r-neighborhood
matching) the set of microtiles characterizes all shapes r-similar to a given ex-
emplar. Now we address the problem of computing a microtile decomposition
and show how to efficiently detect r-symmetric of points on triangle meshes.
We first demonstrate that a microtile decomposition w.r.t. rigid r-symmetry is
computable (see [KBW+12]). Afterwards, we introduce an efficient method for
computing microtiles, which permits such involved analysis to be used in variety
of geometry processing applications.

4.1 Introduction

Partial symmetry detection and its uses in the field of Computer Graphics has
been studied extensively in the recent years (see Mitra et al. [MPWC12]). The
advances in this area leave the impression that symmetry detection, and in par-
ticular detection of rigid partial symmetries is a well understood and broadly
covered problem [MGP06, BBW+09b, LCDF10]. However, none of the proposed
techniques is widely accepted to be robust and efficient enough to warrant its
integration into existing geometric modeling software. Furthermore, the major-
ity of the recent papers on this topic are focused on discovering a subset of the
partial correspondences of an input model (or models), which suffices to allow
further analysis of the data.

This makes it highly unlikely that these symmetry detection algorithms can be
used to efficiently compute a microtile decomposition in the sense discussed in
Section 3.3, where all point-wise equivalences must be computed in order to
obtain the required decomposition. It might be possible to use some of the re-
lated techniques for partial symmetry detection to perform “brute force” search
for possible correspondences. However, the amount of the potential and actual
partial matches even for apparently simple models is so high, that the result-
ing running times of such implementation would make the microtile analysis
impractical.

In this chapter, we present two novel algorithms for microtile decomposition
and r-symmetry detection. First, we derive an implementation using the work
by Bokeloh et al. [BWS10] as a starting point and use it to verify the theoretical
concept from Chapter 3 and the proof of the main theorem in Section 3.4. The
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first part of the chapter is discussed by Kalojanov et al. [KBW+12]. We then go
on and derive an efficient and practical algorithm that is faster by two orders
of magnitude compared to the first attempt and can be efficiently implemented
on parallel architectures such as graphics processors. We are able to achieve
decomposition times under a minute on a commodity PC for meshes of non-
trivial complexity, detecting hundreds of thousands of partial correspondences
.

4.2 Related Work

The algorithms for symmetry detection we discuss are closely related to the
works of Bokeloh et al. [BBW+09b, BWS10]. There, the authors identify and
match line features to detect similar or corresponding regions on the surface
of the input model. Bokeloh et al. [BWS10] detect matching points that lie
on pairs of r-symmetric cuts through the model. To decompose a shape into
microtiles one needs to compute all such cuts. This implies that the matching
algorithms used by Bokeloh et al. can be applied for microtiles, but are in gen-
eral inefficient because of the larger number of candidate transformations that
need to be evaluated.

Lipman et al. [LCDF10] propose a symmetry-aware distance metric and evalu-
ation method based on spectral clustering. A common aspect of their method
and our work is the grouping of surface points into equivalence classes, which
they call orbits. Lipman et al. assume that the closer two points are located
spatially, the more likely it is for them to have the same correspondences and
therefore combine their similarity measure with diffusion. This makes their
method robust to data with noise and deformations present in scanned mod-
els. We instead focus on clean surface models in order to compute the exact
boundaries of each symmetric region, which is necessary for the applications in
Chapter 6 and Chapter 7.

In addition to the closely related approaches we already mentioned, there are
a number of recent methods for global and partial symmetry detection and ex-
traction including [AMWW87, Ata85, BAK10, BBW+08, BBW+09a, BCBSG10,
BWKS11, BWM+11, CK10, GCO06, GG04, KCD+03, KFR04, KLCF10, LTSW09,
MBB10, MGP06, OSG08, PMW+08, PSG+06, RBBK07, RBBK10, RBB+10, SKS06,
SOG09, TW05, XZT+09, ZPA95], all of which are systematically summarized in
the state-of-the-art report by Mitra et al. [MPWC12].

4.3 Naı̈ve Microtile Detection

We now describe an algorithm that computes the microtile decomposition of a
manifold triangle mesh in polynomial time. This method is used by Kalojanov et
al. in [KBW+12] as a first attempt at computing a complete microtile decompo-
sition w.r.t. r-symmetry. We start with the abstract algorithm and then discuss
its correctness and a concrete prototype implementation. Following Mitra et
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al. [MPWC12], we proceed in three stages: Feature selection, aggregation,
and extraction.

Feature Selection: We cannot test infinitely many transformations in the way
they appear in slippable regions. Therefore, we first perform slippage analysis
for all r-neighborhoods [GG04]. Afterwards, we ignore slippable regions in the
remaining computation. Then, we compute line features [BBW+09b]. For a
triangle mesh, this is the subset of the edges with adjacent non-coplanar faces.
We then generate candidate transformations by matching line features.

Aggregation: For each candidate transformation T and its inverse we match
the whole scene S against T(S). An exact algorithm would compute an in-
tersection of the two meshes (in practice, we will resort to an approximation,
using voxels rather than the triangle meshes as representation [BWS10]). For
each matching fragment, we record the matching element and the transforma-
tion indices in a table. After all transformations are processed the table encodes
all detected partial r-symmetries for the shape.

Extraction: We extract a segmentation of the input scene into microtiles by
region growing starting at an arbitrary (non-processed) element and expanding
the current tile with elements that have the same set of symmetry transfor-
mations. We use the table we computed in the previous step to look up the
transformations that map the geometry to r-symmetric parts of the surface. Af-
ter the initial segmentation, we compute the equivalence classes of points (the
cliques discussed in Figure 3.1). We transform the voxels that belong to a given
microtile, and search in the overlapping voxels for the equivalent microtile in-
stance.

4.3.1 Algorithm Overview:

1. We start by computing a voxel representation of the input geometry, that
we store in an octree similar to Bokeloh et al. [BWS10].

2. We compute and mark all r-slippable voxels and treat them separately in
the following steps.

3. We then detect the line features that indicate possible symmetry trans-
formations s. [BBW+09b]. We use them to compute the actual set of
candidate transformations that map pairs of r-symmetric points to each
other.

4. We compute the set of partial r-symmetries for the scene by iterating over
the set of candidates and for each transformation T:

• We mark all parts of the model r-symmetric w.r.t. T or T−1

• We store the information in a global table.
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5. We subdivide the scene into segments based on the symmetry transforma-
tion table we computed.

6. Finally, we find all equivalent tiles using the symmetry transformations
that map voxels of each tile to r-similar voxels.

4.3.2 Correctness and Complexity

The above algorithm computes a correct microtile decomposition if there is no
rigid transformation T ∈ T such that points on different microtiles of the out-
put are r-symmetric under T. In other words we need to compute all trans-
formations that can map two r-regions on S symmetrically. This is the ma-
jor difference between our symmetry analysis and most of the related work
[BWS10, BWKS11, LCDF10], where it suffices to find some, but not all, of the
partial correspondences present in the model.

There are three cases of r-neighborhoods, that we need to consider in order to
correctly decompose them in microtiles. These neighborhoods (as well as the
respective microtiles) can be 2-slippable, 1-slippable or non-slippable. The 2-
slippable surfaces on a triangle mesh can only be planes. They are characterized
by a single microtile, and we check for its existence in the input model during
slippage analysis.

If a point on a triangle mesh is 1-slippable, then its r neighborhood contains one
or more edges, that are parallel to the line features of the input scene S. Even
though 1-slippable microtiles are mapped by infinitely many transformations to
symmetric tiles, it is possible to consider segments of non-zero lengths instead
of the infinitely small microtiles. Detecting discrete symmetries between such
segments allows for decomposing the 1-slippable microtiles. To this end, we
need to compute all transformations that map pairs of line features to each
other (s. [BBW+09b]).

It remains to find all valid transformations. Each of them maps a pair of non-
slippable neighborhoods symmetrically. Observe that any such neighborhood
has to contain at least two non-parallel edges (line features). Transformations
that map pairs of non-parallel line features have to align the center of the short-
est line segment between the two lines and the line directions. These transfor-
mations can be computed by exhaustively checking all possible pairs of features
at distance no more than r from each other.

For n input triangles, the abstract algorithm performs no more than O(n4) in-
tersection computations of S against a transformed version of itself (which can
trivially be computed in quadratic time). Each intersection test costs O(n2) if
performed brute force, and exhaustively testing all pairs of elements (triangles)
for symmetries requiresO(n2) such tests.In practice, for non-degenerate scenes,
O(n2) such matches with slightly super-linear costs (using spatial data struc-
tures for intersection computation) could be expected, i.e. the total complexity
is approximately O(n3 log n).
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Figure 4.1: Simple models. Left: Simultaneous decomposition of three simple meshes in
one scene, S = S1 ∪ S2 ∪ S3. Right: decomposition of 7 boxes in one scene. Equivalent tiles
in each figure were computed and colored automatically. The number of different microtiles
are 6, 5, and 5 for S1,S2,S3. Each box on the right has 3 microtiles, as expected. The
run-time for the näıve decomposition method of the first three meshes was around 10 min,
the boxes on the right took approx. 1min.

4.3.3 Results

We have implemented a simple prototype of the algorithm outlined above. We
follow the method of [BWS10] and use a volumetric grid to discretize the sym-
metry information: cubes of side length h are annotated with transformations.

We have applied our prototype implementation to a few scenes to visualize the
structure of the decomposition. For the tests we set the radius of symmetry
to 0.008 (Figure 4.1) or 0.016 (all other tests) of the diagonal of the bounding
box of the scene. The voxel size was set to 1/512 of the diagonal (1/256 for
Fig. 4.3). To prevent errors due to coarse discretization, classes of microtiles
were computed only for microtiles larger than 32 voxels. Very small tiles usually
indicate places where a finer discretization is required and we could not reliably
compute the equivalence classes of such microtiles. Computing of the candidate
transformations and the table that stores the set of transformations for each
voxel are implemented in parallel. All test were performed on a single Intel
Core 2 Quad Q9400 CPU with 4 cores running at 2.66GHz.

Figure 4.1 shows a very simple test scene composed out of boxes. The left hand
side shows a scene of three different shapes, decomposed simultaneously. On
the right, a simpler scene of independent boxes is decomposed. For these simple
scenes, we obtain accurate results up to the resolution of the discretization. In
Figure 4.2, we apply the algorithm to more complex meshes of architectural
objects. We depict 2-slippable tiles in gray, 1-slippable in yellow (irrespective of
the class), and only show the large tiles, as explained above. The corresponding
unassigned area is shown in dark gray.

The computed decompositions are in most regions qualitatively correct, how-
ever, the grid-discretization leads to certain variations at the boundary. We ob-
serve some unassigned area, but its diameter is below r in all of the examples.
Because the voxel-discretization does not permit a 1 : 1 mapping, boundaries
show some variability within voxel resolution (particularly visible at the sides
of the courthouse).

Furthermore, rotational patterns are numerically problematic (e.g., overseg-
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2-slippable
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r

Figure 4.2: More complex models: Castle (left), staircase (middle), courthouse (right) mod-
els decomposed into r-microtiles. The classes can be computed reliably only for microtiles
larger than 32 voxels. The diameter of this uncertain area is smaller than r. Run-time:
around 1 hour (castle), 18 min (staircase), and 40 min (courthouse). Far right: compari-
son to [BBW+09b].

1-slippable
2-slippable

too small

Figure 4.3: A spaceship model (left) – the tiles are recognized correctly, but again, some
unassigned area remains (gray). A cascade of models with increasing complexity (right) –
the newly added parts create new tiles.

mentation of the steps of the staircase). Similar results are obtained for the
models in Figure 4.3. We compare our results to the previous method by
Bokeloh et al. [BBW+09b], which is computationally mostly similar but uses
(as most others) simple region growing for segmentation. Their method is sim-
ilarly susceptible to discretization and boundary artifacts. It does not capture
all symmetries (unlike ours), but samples prominent representatives due to the
area/instance ratio heuristic employed. Global symmetries of the steps are de-
tected, which do not affect the microtiles but are obtained implicitly with our
new approach.

This implementation is only intended as a proof of concept, but there are al-
ready some direct applications: We can determine whether two shapes are r-
similar, by matching their respective microtiles. The three box sculptures in
Figure 4.1 are made of the same tiles, except from the leftmost, which contains
one extra, unique tile, colored violet. Similarly, the isolated tower at the left
of the castle in Figure 4.2 is r-similar to the castle, which contains additional
tiles. A further example is demonstrated in Figure 4.3 (right). A sequence of
models with increasing complexity is decomposed into microtiles, revealing the
redundancy in the model collection.

4.3.4 Discussion

The voxel- and feature-based approach has some drawbacks we need to ad-
dress: The precision of the decomposition is limited by the discretization of
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Figure 4.4: Drawbacks of the näıve microtile extraction method: The global voxelization
results in different voxel representations for equivalent microtiles (top) and artifacts inside
voxels on tile boundaries (bottom left). One- and two-slippable microtiles are excluded from
the analysis (bottom right).

the scene. Because we voxelize the scene globally, equivalent microtiles will be
decomposed in different ways, and will have a slightly different voxel repre-
sentations (see Figure 4.4). We are sometimes unable to correctly compute the
equivalence classes or cliques inside voxels on tile boundaries (see Figure 4.4).
In order to reduce the artifacts on tile boundaries we post-process the initial
segmentation based on pairwise matching. We transform the microtiles with
each of the r-symmetry transformations to find their equivalent counterparts.
Because a single tile will overlap multiple other parts, we gather votes from the
overlapping voxels and select the tile that is most similar in terms of size and
set of symmetry transformations.

Another practical issue is related to the precision with which we can compute
the matrices for the actual transformations. Because we align each of them
at a single corner feature, the mapping becomes more imprecise the longer
the distance to the feature. In combination with the voxel quantization, the
result is that near tile borders, r-symmetry detection becomes inconsistent and
the set of transformations for many of the voxels is incomplete. This shows
up as a large amount of small microtiles, that make further extraction of the
equivalence classes virtually impossible. We address this problem by a filter:
Near tile boundaries, we merge small tiles to neighboring larger one, whenever
the voxel distribution and set of transformations of the smaller one suggest that
it can be a part of the larger tile. We never discard a tile that has at least one
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voxel completely surrounded by voxels on the same tile. This ensures that the
area we filter will converge to zero if the voxel size does so.

The final important limitation is the runtime of the decomposition algorithm.
It is rather large for two reasons. First, the algorithm performs all pairwise
comparisons explicitly. Small test scenes compute in a few minutes, medium
complexity scenes such as the castle require 1 hour (see Figure 4.1,4.2). Both
the number of features and the required resolution for representing the symme-
tries are limiting factors, and both act quadratically on the run-time.

The second limiting factor for the runtime is the large number of self correspon-
dences that we compute. Even geometrically simple models can exhibit a large
number of partial self-symmetries, making a microtile decomposition expensive
to compute in general. For example, the transformation candidates we test for
the courthouse model in Figure 4.3 and Figure 4.4 is more than 3 million. To
combat this, we try to discard candidate transformations as early as possible.
We ignore transformations between corner features that fail to align all edges
meeting at the corner. We discard duplicate transformations, and those that
map corner points that are not r-symmetric. If a transformation matches two
line features, we only consider it as a valid candidate if all 1-slippable voxels
along the shorter feature a mapped to symmetric (1-slippable) voxels along the
longer feature. Despite these optimizations, the run time and the number of
remaining transformations remains rather large (see Figures 4.1, 4.2, 4.3).

4.4 Efficient r-Symmetry Detection

The microtile decomposition method used in [KBW+12] has several significant
limitations. These fall into two categories: implementation specific and concep-
tual.

The algorithmic (or conceptual) challenges that were not solved come from the
nature of the analysis required to obtain a microtile decomposition. We need
to compute all rigid transformations that map any point on the input surface to
another point such that their neighborhoods with radius r match. The number
of such mappings is substantial regardless of the scene complexity, even without
explicitly computing the infinite amount of matches on the slippable portions of
the input model undergoing continuous r-symmetry.

On the other hand, implementation specific limitations are caused by the use
of a global scene discretization to perform and record symmetry information
about the object. In previous works [KBW+12, BWS10], the authors transform
the complete scene and match it with itself using a spatial index structure (an
octree) to compute and store self similarities. Apart from being inefficient, this
approach leads to discretization artifacts, especially at the boundaries of the
symmetric regions. These problems are amplified by imprecision caused by the
floating point representation of the transformation matrices.

In the following, we will describe a more efficient and robust algorithm for r-
symmetry detection and microtile decomposition. The new approach and its
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implementation are faster by up to two orders of magnitude compared to the
naive version. The significantly improved performance is essential, because it
turns microtile detection for triangle meshes into a feasible pre-processing step
for many geometry processing applications. Also, the method will allow for
computing building blocks and cut the input surface exactly at the microtile
boundaries, which is essential for computing 3D realizable building blocks in
Chapter 7.

4.4.1 Feature-Based Discretization

We improve the performance the näıve microtile extraction algorithm in two
aspects. On the one hand, we simplify and optimize the implementation of
the individual steps required to obtain the building blocks, and we perform
the most time-consuming parts in parallel. On the other hand, we propose a
different approach in terms of algorithms and scene discretization. The latter
makes the decomposition robust to discretization artifacts because unlike the
näıve version, the segmentation no longer has to be performed on a per-voxel
basis, which allows to reliably compute exact boundaries and microtile repre-
sentations invariant under rigid transformations.

In the following, we will prove that in order to compute all equivalence classes
of rigid r-neighborhoods on a triangle mesh it suffices to classify those centered
at geometric corners or geometric edges. That is, we will be able to deduce
a microtile decomposition for the entire input surface if we consider a finitely
many feature points and line segments.

In Section 4.3.2 we showed that in order to classify non-slippable regions in
equivalence classes (and subsequently microtiles), one needs to compute all
transformations that match parts of those regions r-symmetrically.

Lemma 5. Every non-slippable region is characterized by at least two non-
parallel geometric edges in the triangle mesh. Note that those are actual edges
in the geometry, not every triangle edge needs to be considered.

Proof. Consider a point x of the surface defined by the triangle mesh. As-
sume that there exists not more than one geometric edge intersecting the r-
neighborhood of x . Then it follows by definition that the r-neighborhood of x
is either two-slippable or one-slippable.

In the näıve algorithm for microtile detection (Section 4.3.2), corner features
were used to compute candidate transformations. In a second step, symmetric
regions were computed by transforming and matching the whole input mesh
to itself. We will show that it suffices to compute a decomposition into par-
tial symmetries only for the key points (corner features), which corresponds to
computing microtiles w.r.t. r-symmetry for r → 0. It is then possible to deduce
the mesh segmentation into microtiles from this intermediate representation.

Lemma 6. It suffices to decompose the r-neighborhoods of all geometric cor-
ners and edges to obtain a surface decomposition into microtiles in the sense of
Definition 4.
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Proof. Consider a point x on the surface that is a non-slippable region. Non
slippable regions consist of r-neighborhoods of corner features – we construct
a corner feature at the closest point to each pair of non-parallel edges. Because
we know which microtile the corner feature does belong to, we can determine
at least one microtile, such that x is in the r-neighborhood of a point on the
tile. This shows that we can reconstruct each non-slippable point of the input
shape from the r-neighborhoods of its corner features. We therefore need to
decompose the corner feature into microtiles to encode the complete surface.

Limitations: Note that the microtile decomposition discussed here is not al-
ways equivalent to the microtiles w.r.t. to r-symmetry (Definition 6 and Theorem
1), because building blocks that do not contain a corner point are merged with
the nearest microtile which does. Therefore some of the redundancies present
in the input shape are not captured. On the other hand the new decomposition
conforms to Definition 4 if we restrict the set of defining point-wise correspon-
dences to the ones that map r-neighborhoods of corner features.

Note, that the slight redundancy in the new microtiles has no influence on the
set of shapes that can be assembled from them, i.e. the possible shape variations
remains the same and therefore the claim in Theorem 1 remains valid for the
new decomposition. This follows from Lemma 5, which implies that all possible
variations of rigid regions are represented by microtiles that contain at least two
non-parallel edges with distance smaller than r.

Benefits: The above lemma allows for simplifying the r-symmetry detection
in the following way. We no longer need to match the complete shape against
its transformed copy in order to compute overlaps that define partially sym-
metric regions. Instead, we can identify and match all non-slippable (rigid)
r-neighborhoods to each other. These are located within a distance r to at least
two non-parallel line features, and can be centered at the point with the short-
est distance to these two lines. This point is either an existing corner feature, or
can be represented as a “virtual” one. The one-slippable edges can be processed
afterwards, by matching their respective rigid neighbors at both ends.

Because we match only regions of radius r around points of interest, we elim-
inate the biggest performance bottleneck of the näıve algorithm, and replace
it with a cheaper and easily parallelizeable alternative. In addition, assuming
that we require a constant effort to match each pair of r-neighborhoods, the
algorithm complexity becomes quadratic instead of cubic.

Restricting the decomposition to characteristic points has advantages not only
in terms of the reduced running time of the algorithm. It also allows for exactly
matching features to each other instead of having to compare voxelized parts
of the surface, eliminating errors caused by miss-alignment of the discretized
regions of the mesh. This is a critical advantage over the previous work, which
suffered from inconsistencies at tile boundaries and required filtering to resolve
errors.
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Using the näıve method, the entire model was transformed via a given transfor-
mation matrix, trying to identify all matching segments of the shape globally.
Here we generate the candidate transformations separately for each pair of in-
terest points (corner features in our implementation) and compare small, local
subsets of the geometry. This minimizes the influence of misalignment errors far
away from the transformation center caused by the numerical representation of
the entries of the matrix. We used single precision floating point numbers for
both methods, and the second approach proved significantly more robust to-
wards these precision issues.

4.4.2 Approximate Neighborhood Matching

An additional improvement of the r-symmetry detection stage of the algorithm
can be obtained by matching the surface at pairs of key-points approximately.
Instead of considering exact geometric matches, we compute how likely it is
that the regions are r-symmetric. There are various ways to do that. We imple-
mented a simple method that works on the voxelized geometry we use for the
previous stages of the algorithm. Even though this voxelization approach was
used to perform global matches in the näıve detection algorithm, here we are
not interested in the boundaries of the matching regions, and do not have to
consider the discretization artifacts, e.g. seen in Figure 4.4.

Let Nr(x) be an r-neighborhood of a corner feature x, and let y be an candidate
for a r-symmetry under a transformation T . To perform a match, we need to
compare the geometry inside Nr(x) to T (Nr(y)) (the geometry inside Nr(y)
transformed with T ). We do this by matching all fragments in the voxelized
region Nr(x).

Definition 7. A fragment is a voxel-triangle overlap and is represented by a
position (the projection of the cell center onto the triangle) and a normal (the
geometric normal of the triangle). In other words, a fragment is a sample of
an infinite plane aligned with a triangle intersecting a voxel. When comparing
two corner points for geometric similarity, we consider all fragments in their
r-neighborhoods.

Definition 8. Let f, g be fragments. We say that f and g are matching frag-
ments if the angle between the normals of f and g is smaller than an angle
threshold tα (we used 20 ◦ in our tests). Formally,

m(f, g) :=

{
1 ∠(f.n, g.n) < tα

0 otherwise,

where ·.n denotes the fragment normal, and ∠(·, ·) is the angle between two
vectors.

Definition 9. We define the distance between a fragment f and a set of frag-
ments G to be the distance to the closest matching fragment in G. Let Gf :=
{g ∈ G : m(f, g) = 1} be the set of fragments in G that match f . Let p(f, g)
be the projection of the position f.p of the fragment f onto the infinite plane
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defined by (g.p, g.n).

dist(f,G) :=

{
min {|f.p− p(f, g)| : g ∈ Gf} if Gf 6= ∅
∞ otherwise,

Definition 10. We define the similarity between two sets of fragments to be
the percentage of matching fragments inside these sets, closer than a distance
threshold td (we used r

10 + vd, where vd is the length of the voxel diagonal).
Let G denote a set of fragments, and f be a fragment. We define

M(f,G) :=

{
1 dist(f,G) < td

0 otherwise,

and let F,G be two sets of fragments, then

Sim(F,G) := max


∑
f∈F

M(f,G)

|F |
,

∑
g∈G

M(g, F )

|G|


In order to compute how closely two r-neighborhoods Nr(x), Nr(y) resemble
each other, we compute Sim(Fr(Nr(x)), F r(Nr(y)), where Fr(·) gives the frag-
ment contained inside the neighborhood. Because Sim(·, ·) ∈ [0, 1], we chose
a threshold (t = 0.9 in our tests) and considered neighborhoods with similarity
above it to be equivalent, which makes the respective center points r-symmetric.

The above formulation of similarity is similar to SIFT features [Low99], and
allows for matching arbitrary sets of fragments, i.e. it is not restricted to indi-
vidual r-neighborhoods. This allows for comparing larger subsets of the input
surface to each other and distributing potential differences across larger surface
area, allowing to identify equivalent microtiles even if the similarity of some
pairs of their features is below the initial threshold t. We use this property later
on to better match large building blocks resulting from the merging of multiple
microtiles together.

A limitation of the similarity metric Sim(·, ·) involves transitivity. Given three
sets of fragments A,B,C and a threshold t, having Sim(A,B) < t as well as
Sim(A,C) < t does not necessarily imply Sim(B,C) < t. For microtile de-
tection, we need the matches to form an equivalence relation. If the similar-
ity metric is not transitive, the correspondence graph we compute might have
missing edges. This can be caused by noise, deformations, or simply by nu-
merical precision issues when matching geometry. However, since we assume
an equivalence relation, and therefore know that each connected component of
the correspondence graph must be a clique, we can add the missing edges. This
is equivalent to ignoring, for some elements, that they are less similar than the
allowed threshold t, if there are additional elements that are similar enough to
each of the first two.

Note that the approximate matching of r-neighborhoods of key-poins can be
used to match noisy or deformed input data. However, in order for this to
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two-slippable

line features equivalent corner features microtiles

one-slippable

Figure 4.5: Mircotile decomposition pipeline. First, all geometric edges are computed
and later used to identify all corner features. Then r-neighborhoods of corner features are
matched to compute equivalence cliques. Features and neighborhoods with the same out-
going equivalence transformations are merged into microtiles (third image). Tiles of the
same shape have the same color. In the third image, two-slippable geometry is gray and
one-slippable pieces are burgundy.

work one must first find unique key-points inside each non-slippable region
of the input model. While sometimes possible, but not easy in general (see
[BBW+09b]). Since the main focus of our work is not feature detection, we
limit our experiments to relatively clean input models, and use this matching
method because of the added robustness to numerical errors and the ability to
match geometry undergoing some small deformations, which we improve upon
using the method we introduce in Section 5.5.

4.4.3 Algorithm Overview

Based on the above derivations, we can formulate a microtile extraction algo-
rithm that operates on a finite subset of points on the input surface and there-
fore does not require global self-similarity matches. More importantly, the new
discretization into corner features is invariant under rigid transformations, al-
lowing to compute correspondences between pairs of individual elements rather
than regions of unknown size. This was not possible to do with the näıve algo-
rithm, because, in general, a rigidly transformed voxel will overlap more than
one other voxel.

1. Perform slippage analysis of the model.

We do this by computing a voxel representation of the input geometry,
which we store in a uniform grid. We then compute all 1- or 2-slippable
voxels.

2. Find key points and use them to compute candidate transformations.

We compute all geometric edges and their intersections, which we call
corner points or corner features (see Figure 4.5). We then compute all
possible transformations that might map two corner features symmetri-
cally. Similarly to the näıve algorithm we try to discard invalid transfor-
mations as early as possible.

3. Compute the pairwise correspondence of the corner features (see Figure
4.5).
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We use the voxel grid computed in the first step of the algorithm to ap-
proximately match r-neighborhoods of corner points to each other. This
gives us a distance, which we convert to a probability for a pair of corner
features to be r-symmetric.

We propagate and make probabilities p consistent within cliques in the
correspondence graph. We use a probability threshold (between 0.01 and
0.04 in our experiments) to determine equivalence and convert each con-
nected component to a clique by “inserting the missing” edges (see Section
4.4.2).

An alternative approach for the same operation on noisy or deformed
data can be implemented via spectral clustering similarly to Lipman et
al. [LCDF10].

4. Compute microtile membership for the corner features.

We only need to sift corner features into equivalence classes to obtain the
decomposition. The remaining points of the surface are contained in the
r-neighborhoods of the respective corners and edges.

To sift corner features we employ the same approach as in the previous
step of the algorithm: We compute the likelihood with which cliques of
corner features share the same microtile class by comparing the relative
locations of their elements (corner features).

5. Compute a segmentation of the shape into microtiles (see Figure 4.5).

We already have a microtile decomposition for the corner features. The
r-neighborhood of the latter together with the neighborhoods of their con-
necting edges cover the complete input surface, which allows us to seg-
ment it into building blocks.

Note that this segmentation ignores microtiles that do not contain a corner fea-
ture, but is nevertheless a valid decomposition in the sense of Definition 4.

The most significant difference with the näıve algorithm is the sparse discretiza-
tion into corner features as opposed to voxels. A voxelized representation of
the surface is still used to match potentially symmetric r-spheres around corner
points, however these matches are not computed per voxel, but for a small num-
ber of corner features. This allows for one-to-one mapping between discrete el-
ements, for which we compute self-correspondences. In the first algorithm, we
had to compute per-voxel correspondences, which caused discretization arti-
facts on tile boundaries because each transformed voxel overlaps multiple other
voxels. The new discretization allows us to eliminate the surface parts that are
not assigned to a microtile (Figure 4.6).

4.4.4 Compact Transformation Representation

Real-life models often need to be decomposed into a set of microtiles such that
many elements have global symmetries. For example a corner of a box or build-
ing is 3-way symmetric to itself. This produces redundancies in the set of trans-
formations that map the feature to other surface points symmetrically. Namely,
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Figure 4.6: Left: Output of the näıve decomposition algorithm for the courthouse model.
The discretization artifacts on the stairs remain even after filtering. Right: The microtile
decomposition is computed exactly per key point (geometric corners) and then transferred
to the voxelized representation for illustration purpose The slight discrepancies in the two
segmentations are caused by limitations in the näıve algorithm, which prevent accurate
detection of correspondences between very small regions.

the number of valid transformation between a pair of features is a multiple of
the number of transformations that map each of the feature to itself. For the mi-
crotile decomposition we need to compute and store cliques of corner features.
To reduce the computational effort and storage requirements we do not store
all transformations that map pairs of points in a clique symmetrically. We can
easily show that it suffices to to store one transformation for each feature point
in the clique plus a single (and complete) set of transformations that maps each
feature point to itself symmetrically.

More formally: In order to represent the equivalence class consisting of the r-
neighborhoods centered at points p1, ..., pn, we need to find one symmetry trans-
formation Tij for each pair pi, pj with i 6= j. However if the r-neighborhood of
pi is symmetric to itself under multiple transformations (e.g. 120◦ rotations if pi
is the corner of a cube), then each of these latter transformations can be mul-
tiplied with Tij and yield a symmetry mapping between pi and pj as well. We
therefore avoid testing each of the redundant mappings, and discard some of
the candidate matches early on.

In addition, we use this property to discard pairs of r-neighborhoods that cannot
be symmetric, because they have different number of global self-symmetries.
For example the corner of a box has 3 global symmetries, while the top of a
square pyramid has 4, which means that one cannot rigidly map one onto the
other symmetrically. In practice we were able to eliminate up to a third of the
candidate transformations without having to perform additional tests. Because
computing the geometric matches is the main computational bottleneck and the
number of potential matches is given by the number of candidate transforma-
tions, we reduced the overall run time of the decomposition with 30% for test
models like the courthouse in Figure 4.6 and the castle in Figure 4.5.

Another optimization opportunity presents itself when storing the computed
equivalence classes of r-neighborhoods and their symmetry transformations.
Instead of storing one transformation per pair equivalent elements, we can keep
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only linear number of matrices. The transformations should map p1 to p2, ..., pn.
All other mappings can be reconstructed as a composition of the stored ones if
necessary. In the correspondence graph analogy, this means that instead of
storing all edges inside each node clique, we can remove maximal amount of
edges, such that the cliques remain a connected component.

A useful approach to eliminate further candidate symmetry transformations of
individual features is to classify the outgoing line features by length and to
ensure that each transformation maps edges shorter than the symmetry radius
to edges of the same length. Edges longer than the radius should be mapped to
counterparts not necessarily equal in length, but not shorter than the radius of
symmetry.

With the above optimizations we were able to significantly reduce the number
of geometric matches we have to compute. For the courthouse model (Fig-
ure 4.6) we could eliminate 2.92 million out of the initial 3 million possible
matches before having to perform an actual distance test on the voxelized r-
neighborhoods around pairs of corner features. For the model in Figure 4.5
we could eliminate 12.39 million transformation candidates and only had to
perform around 160 000 matches.

4.4.5 Parallel Implementation

An additional advantage of matching individual regions around corner features
is related to the implementation of the algorithm. As opposed to the näıve ap-
proach where symmetric regions were computed by matching the entire shape
to a transformed copy, applying the insights from Lemma 5 and Lemma 6 allows
us to use local matches instead. We compare the geometry inside (multiple)
pairs of spherical r-neighborhoods, and these operations are easier to distribute
across multiple (CPU and/or GPU) threads. In addition a complex hierarchical
structure like an octree is no longer necessary – it is more efficient to use an
uniform grid an match all voxels inside the two r-neighborhoods of the pair of
corner features.

4.4.6 Results

We implemented and tested the efficient microtile detection algorithm on a PC
with an Intel Core i7-3770K CPU with 4 cores running at 3.5GHz and an NVIDIA
GeForce 660Ti GPU. We used the GPU to compute a scene voxelization and to
perform all geometric matches in the third step of the algorithm (see Section
4.4.3). The latter proved to be slightly faster (20%) compared to a parallel CPU
implementation.

The efficient r-symmetry detection algorithm reduced the overall running time
significantly – up to two orders of magnitude compared to the näıve version.
This allows for efficiently decomposing even non-trivial input models that have
partial correspondences in the orders of millions. The resulting decomposition
does not suffer from artifacts at tile boundaries and the better efficiency allows
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Figure 4.7: Microtile decompositions of two test models downloaded from thingiverse [Thi].
The cathedral on the left was decomposed in 38s into 931 microtiles of 527 classes. The
church on the right was decomposed in 3min into 2276 microtiles of 395 classes.

for computing arbitrarily small microtiles. Note, that the visualization artifacts
in the figures (e.g. Figure 4.7 and Figure 4.8) are caused by the use of a low
resolution global 3D texture to color the individual microtiles. Computing the
exact boundaries of the building blocks is a difficult problem, which we discuss
and solve later in Chapter 7.

We evaluate the new decomposition algorithm on mostly clean input models.
The approximate neighborhood matching around individual features allows for
handling slight deformations and typical inconsistencies in the geometric rep-
resentation caused by the floating point representation of vertices and transfor-
mation matrices. In Chapter 5, we extend the decomposition approach further
and also handle very small deformations that can be caused by noise or artist
errors.

4.4.7 Discussion

In this chapter we showed how to lift important limitation of the microtile anal-
ysis introduced in [KBW+12]. The main theoretical insight here is that although
r-symmetry and r-similarity are defined per point, it suffices to analyze a finite
amount of surface elements in order to perform a complete analysis (and seg-
mentation) of the input surface. The elements we consider here are geometric
edges and corners and slippable regions of the input surface.

With the algorithms for r-symmetry detection and microtile decomposition dis-
cussed here, we introduce a novel and practical tool for shape analysis. The
insights we employed in order to develop the efficient extraction algorithm al-
low us to develop a practical tool for partial symmetry detection and use it as
a starting point of several interesting application for mesh compression (Chap-
ter 6) and procedural modeling (Chapter 7). While there certainly are other
methods for symmetry detection and different definitions of building blocks, so
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Figure 4.8: It took 28s to decompose the above building on into 921 microtiles of 196
classes.

Figure 4.9: Left: Output of the näıve decomposition algorithm for a castle with 4 towers.
Run-time was approximately 1 hour. Right: the new algorithm is able to compute more
detailed decomposition in 52s.

far only the microtiles, introduced here, allow for systematically computing and
characterizing a concrete family of shape variations – an essential property for
applications in the area of shape analysis and inverse procedural modeling.

We improved the reliability of the näıve decomposition approach, which suf-
fered from fundamental problems related to the global discretization and self-
matching routines. This allowed us to reliably compute detailed decomposition
into microtiles w.r.t. r-symmetry, thus making it possible to perform complex
shape analysis with the resulting building blocks. Furthermore, we drastically
improved the efficiency of the detection algorithm, which allows its use as a
pre-processing stage for modeling applications.

In the following chapter we can build on the results presented here and develop
a mechanism for building block simplification. With them we address the com-
plexity of the decomposition and use it to compute optimal building blocks for
various applications.
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Figure 4.10: This castle model was decomposed in 4min into 2078 microtiles of 962 classes.
We tested 2 million r-symmetry candidates – triplets of two features and a transformation.
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5 Tiling Grammar Simplification

So far in this thesis, we have described a system for microtile analysis of shapes.
In Chapter 3 we introduced the theoretical foundations, defined the building
blocks we call microtiles, and proved that they can be used to describe infinite
families of r-similar shapes. In Chapter 4 we discussed how to implement a
robust, high-performance microtile analysis system for triangle meshes. To this
end, we address various practical limitations that previously prevented robust
microtile extraction.

We now want to use the symmetry information encoded by the microtiles for
applications like inverse modeling of shapes, shape analysis, and mesh com-
pression. The microtiles can be used in each of these scenarios without modifi-
cation, however they are not necessarily optimal for any of these purposes. The
building blocks minimize the number of r-neighborhoods of points needed to
represent an input shape and all shapes r-similar to it. This is the case, because
our definition of redundancy (or similarity) is based on r-symmetry of surface
points. While theoretically sound, in practice, this approach can lead to over-
segmentation of the input shape, making the building blocks too expensive to
store (for mesh compression), or generating too many pieces to allow intuitive
assembly into shape variations (inverse modeling).

In this chapter, we introduce a method for tiling grammar simplification. Our
goal is to convert the initial microtile decomposition into a new set of building
blocks, better suited for a pre-defined application. In other words, we modify
the microtiles aiming to obtain an optimal set of building blocks according to
some cost function.

5.1 Related Work

The construction of shape grammars from partial symmetry has been intro-
duced by Bokeloh et al. [BWS10]. The authors find tiles by considering pairs
of non-intersecting symmetric cuts and obtain a context-free grammar by re-
jecting overlapping cuts. So far in this thesis, this concept was generalized by
“microtiling” the surface through the set of all possible symmetric curve pairs.
Unfortunately, this yields a grammar containing infinitesimally small, slippable
pieces in addition to a large number of small rigid building blocks. Because of
that, applications like mesh compression and manufacturing remain challeng-
ing.

Liu et al. [LVW+15] extend the notion of rigid tilings to generic graphs of par-
tially matching, deformable tiles, where only the topology of the assembly is
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context-free grammar tiling grammar

Figure 5.1: Example shape grammars in 2D. The context-free grammar consists of hierar-
chical sets of rules, making it easier to create shapes. On the other hand, tiling grammars
have greater expressive power and, in the case of the microtiles discussed here, have building
blocks that correspond directly to the partial symmetry structure of the resulting shapes.

constrained and free-form deformation is used for assembly. We use this gener-
alized model in an experiment to demonstrate simplification of tiling grammars
independent of rigid symmetry. Further, Liu et al. note that even simple rigid
tiling grammars are Turing-capable, thereby making it impossible to fully assess
shape variability (even assembling finite tile sets is NP-hard). We therefore rely
on counting symmetric cut-pairs [BWS10] to lower-bound the variability of the
generic tiling grammars. In our system, the hard problem of assembly is left to
the human user (this is the objective of the game), but the negative complexity
results again clearly show that we must proactively bound the complexity of the
decomposition.

Obviously, this problem tightly related to recent techniques for inverse pro-
cedural modeling [S̆BM+10, BWS10, KBW+12, JTRS12, ZCOM13, MWZ+13,
LVW+15]. These methods decompose 3D objects into building blocks and de-
rive rules for their assembly. New shape variations are created by assembling
these pieces along matching boundaries. On an abstract level, these approaches
can be understood as automated constructions of tiling grammars [KBW+12,
LVW+15] that build graphs of nodes (representing the building blocks) that are
connected through edges conforming to local connectivity constraints (consti-
tuting the rules of the tiling grammar). The individual approaches differ in how
exactly the tiles and rules are obtained (for example, context free approaches
[BWS10] are a special case of general tiling grammars [LVW+15]), and what
procedure is employed to instantiate and geometrically embed the graphs.

Construction of optimal shape grammars has previously been explored by Wu
et al. [WYD+14] and Talton et al. [TYK+12], also trading-off compactness
(a coding length model) against expressiveness. The main difference to our
work is that they only consider context-free shape grammars, i.e., all assembly
rules must be hierarchically structured (see Figure 5.1). In the context of our
construction set application, this restriction is unnatural and makes automatic
grammar generation difficult. Further, there is a close connection between tiling
grammars and partial symmetry: Their building blocks directly provide a low-
level encoding of redundancy in shapes. We believe that further processing
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Figure 5.2: Mircotile decomposition (left), non-slippable microtiles (middle) and the re-
sulting graph (right). Equivalent building blocks, graph nodes, and graph edges are colored
identically.

and simplifying this type of information is a valuable tool of its own, given the
importance of partial symmetry in modern geometry processing algorithms.

5.2 Microtile Graphs

The initial microtile decomposition we obtained is typically too detailed to be
practical for a wide range of applications. For example, the model in Figure
4.8 is decomposed into 921 tiles of 196 different types (excluding continuous
parts). If we consider mass-production via molding as a possible application
of our analysis, the current representation becomes quite inefficient due to the
large number of molds necessary to produce each type of building block. The
main result in this chapter is a graph-based algorithm for optimizing the mi-
crotiles defined in the previous section. Our framework will allow for efficiently
transforming the structure induced by the partial symmetries into a decomposi-
tion that is better suited for a particular application (e.g. mass-production of the
building blocks). We obtain the improved building blocks by sacrificing some of
the expressive power of the microtiles, i.e., we trade off the number of possible
shape variations that can be constructed out of the new building blocks for a
simpler decomposition of the input model.

Definition 11. Microtile Graph: We define a microtile graph (Figure 5.2) to be
a representation of the microtile decomposition. The graph nodes correspond
to rigid (non-slippable) microtiles, and two nodes are connected if they have
an overlapping spherical r-neighborhood, or if they are connected to the same
1-slippable edge.

This means that a graph edge can represent ether a 1-slippable edge of the input
mesh, or intersecting r-neighborhoods of two rigid building blocks. We do not
include 2-slippable regions in the microtile graph, but, if necessary, we keep
track of the amount and type of their surrounding microtiles.

Observe that the correspondence of the graph nodes with microtiles allows for
transferring equivalence relations from geometry to graph nodes and subse-
quently to graph edges (see Figure 5.2).
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Definition 12. Equivalent Nodes: We call two nodes equivalent nodes when-
ever their corresponding microtiles are of the same class (type), i.e., the nodes
are equivalent if and only if the respective microtiles are equivalent.

Definition 13. Equivalent Edges: We consider two edges e1 := (a1, b1), e2 :=
(a2, b2) to be equivalent if a1, a2 and b1, b2 are from the same equivalence classes
respectively and the relative transformation from a1 to b1 is the same as the one
that transforms the local coordinate frame of a21 into the coordinate frame of
b2. In other words, equivalent edges describe equivalent geometric relations
between equivalent pieces.

Implicit grammar encoding: Importantly, the microtile graph itself implicitly
encodes the tiling grammar that describes a whole family of shapes. Formally,
we consider any object a valid shape variant that (i) consists only of rigid copies
of tiles (nodes) of the example graph, and (ii) connections to neighboring tiles
are only permitted if the original graph shows at least one example of the two
tiles connecting with the same relative transformation across the same pair of
boundary curves.

The abstract graph we propose is based on a given symmetry-based decompo-
sition of an input surface. We already specified a decomposition – microtiles
for point-wise r-symmetry, however the general approach presented here is not
limited to this particular decomposition. The latter can be substituted by any
other symmetry-induced segmentation into recurring or exchangeable pieces
(e.g. the user-defined segmentation used in [LVW+15] and Figure 5.6).

5.3 Microtile Cost Models

There are applications, for which the microiles and their structure are not opti-
mal. After all, the decomposition only encodes redundancies due to partial sym-
metries. We are interested in modifying the microtile graph in order to optimize
the building blocks for several different applications. One possible modification
is collapsing sets of equivalent edges. Another possibility is to simultaneously
deform all instances of a class of tiles such that it matches (resembles closely)
the instances of a different class.

Because we want these operations to lead to some improvement we introduce
the notion of a cost model associated with the graph and the operations we
perform on it. Different applications can pose completely different (even con-
tradicting) requirements for the nodes and structure of the graph.

Hence, we derive specific cost function and optimization strategy separately
for each application. However, the approach, in general, is to define a global
graph cost and perform graph transformations that minimize it. The global cost

1The local coordinate frame of each microtile is computed from its geometric corner features.
We take into account their coordinate frames from the initial pairwise matching step (step 2) of the
microtile detection algorithm in Section 4.4.3.
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defines how well the individual pieces can perform a certain task (e.g. compress
the geometry of the input mesh).

In Chapter 6 we discuss a cost model that reflects the memory required to store
the geometric representation of the microtiles. Therefore, a decomposition with
a minimal cost can be used for symmetry based, loss-less mesh compression.

Chapter 7 discusses a more challenging problem: We derive a cost model for
3D manufacturing. We express various properties important for the physical
realization of assemblable 3D constructor pieces that can be used for inverse
modeling of shape families. As a result we convert the microtile decomposition
into a segmentation of a few, and therefore cheap to mass-produce, pieces that
can assemble a number of shape variants - just like the popular construction
toys - LEGO.

In this chapter we focus on the general approach of modifying and optimizing
microtile grammars and discuss the choice of appropriate cost function later.
Therefore, we first consider a simple example of a cost function that allows to
trade-off redundancy captured in the decomposition for the simplicity of the
representation.

Simplicity: One way to derive a simple explanation for the structure of a given
shape is to find a decomposition into minimal number of different recurring
pieces. In other words we would like to minimize the number of microtile
classes. Let t ∈ Tiles be a non-slippable microtile. Let Neq(t) be the number of
microtiles equivalent to t (tiles of the same microtile classes). Let NClasses be
the total number of different types of microtiles:

NClasses :=
∑

t∈Tiles

1

Neq(t)
(5.1)

Let NInitialClasses be the number of classes in a canonical microtile decompo-
sition. We define the cost for simplicity for a given modified decomposition CS
as:

CS :=
NClasses

NInitialClasses
, CS ∈ (0, 1] (5.2)

Redundancy: The redundancies represented in the microtiles are measured
by summing up the areas of one representative tile for each microtile class.

Let SA(t) denote the surface area of a tile. Let Nsym(t) be the number of differ-
ent transformations that lead to global self-similarities of tile t. We define the
redundancy cost CR:

CR :=

∑
t∈Tiles

SA(t)

Neq(t)Nsym(t)∑
t∈Tiles

SA(t)

Nsym(t)

, CR ∈ (0, 1] (5.3)
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55 classes
280 tiles

20 classes
96 tiles

11 classes
28 tiles

6 classes
12 tiles

αR=4; αS=1 αR=2; αS=1 αR=1; αS=1

Figure 5.3: A microtile decomposition of a fence model (left) and optimization examples
using the basic cost funtion Cost := αRCR+αSCS to control the amount of simplification.
From left to right: CR rises from 0.1 to 0.4; CS drops from 1 to 0.14.

In other words the redundancy term CR is equal to ratio of the combined surface
area of points with unique r-neighborhoods divided by the total surface area of
points with rigid r-neighborhoods.

Note that we only need to consider non-slippable microtiles, because the slip-
pable pieces have zero area. Also note that while CR = 0 means that the points
on the model with rigid r-neighborhoods have zero measure, which is not the
case in general. Usually, because the symmetry radius r is larger than 0, the
rigid parts of the model have area larger than zero, which makes CR positive.

Lemma 7. The initial microtile decomposition has minimal redundancy cost
CR.

Proof. Assume the opposite – there is a non-zero area surface patch that is con-
tained in instances of microtiles from different classes. This implies that there
is a (partial) match between the two building blocks which contradicts Lemma
1.

In other words, any combination of microtile instances of different microtile
classes is a minimal subset of the input shape that contains the selected r-
neighborhoods (modulo global self-symmetries of pieces). The above consider-
ations imply that the smaller the cost for redundancy of a given segmentation,
the closer it will be to the canonical microtile decomposition we compute in
Chapter 4.

Finally, we can define a generic cost function that measures the quality of a
given decomposition w.r.t. to simplicity and redundancy in the sense defined
above:

Cost := αRCR + αSCS , (5.4)

where αR and αS are used-defined weights. To optimize the cost of a microtile
segmentation we need to be able to modify it. In the following, we discuss two
possible approaches for that.
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5.4 Edge Collapsing

In order to improve the microtile decomposition, we modify the structure of the
segmentation of the shape into building blocks. An efficient way to perform
this operation is to collapse edges of the microtile graph. Each collapse will
merge two building blocks with each other. In order to preserve the symmetry
structure in the new representation, we only collapse whole equivalence classes
of edges. That is, if we collapse an edge between a tile x of type X, and tile
y of type Y we collapse all edges connecting pairs of tiles of type X and Y
in the graph. This is very important, because it prevents the introduction of
unnecessary redundancies in the modified decomposition.

Note that collapsing a set of graph edges does not change the input geome-
try, only its segmentation into microtiles, and is therefore a loss-less operation
with regards to the geometric representation of the input object. Also note that
although we try to improve the actual building blocks, we perform transforma-
tions directly on the microtile graph. This makes the transformation easy to
perform and very fast.

5.5 Tile Replacement

The ability of edge collapses to preserve the original shape and its symmetry
information makes the algorithm sensitive to inaccuracies in the initial decom-
position. The latter can be caused due to numerical errors, noise or other types
of deformations in the input geometry.

On the other hand, our graph simplification approach facilitates discovering
redundant regions in a hierarchical fashion. We can take advantage of this
property by matching pairs of tile classes after merging them. Increasing the
size of the segments reduces the importance of local errors or deformations.
Our similarity metric allows for identifying geometric regions that are identical
up to a user-defined area (we used 10% in all tests). When computing the initial
decomposition the size of each region is fixed – a single r-neighborhood. Hence,
matching merged sets of building blocks allows for distributing the local errors
over a larger surface area and discover additional redundancies in the simplified
decomposition.

In a scenario where preserving the input geometry is not necessary, the sym-
metry structure encoded in the microtile graph can be simplified by modifying
the geometry of the building blocks. One can combine two or more classes of
microtiles into a single one. One way of doing this is to discard all instances of
class B, and replace them by instances of class . Alternatively one can compute
a replacement class C, by deforming the instances of A and B.

Including tile replacement operations during the optimization made our algo-
rithm robust to local deformations caused by artist errors (Figure 5.4) and dis-
cretization artifacts in curved shapes in some models (see Figure 5.5). Oval
parts in other models (e.g. the columns in the courthouse model in Figure 4.6),
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Figure 5.4: The corners of several windows on this building differ from the rest, probably
due to a modeling error. Lower right: Merging the microtiles into larger building blocks
allows for approximately matching these regions despite their discrepancies.

could be identified without the additional use of tile replacement.

Even if we are allowed to modify the input, replacing arbitrary pieces of geom-
etry seldom results in a meaningful shape. To enforce only meaningful mod-
ifications, we only replace a tile if the operation preserves its boundary with
the rest of the shape. This guarantees that performing tile replacement will not
introduce holes or discontinuities in the shape, if there is no evidence that such
anomalies are acceptable.

Note that a more general operation is to replace entire sets of microtiles at
once. Finding appropriate sets amounts to finding sub-graphs of microtiles with
matching boundaries. This is a generalization of the approach by Bokeloh et
al. [BBW+09b], in which the authors find such boundaries randomly, without
computing microtiles. However, each such operation is equivalently performed
by collapsing all edges in the respective sub-graphs and replacing the resulting
bigger microtiles afterwards.
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Figure 5.5: Replacing tile classes during simplification facilitates fixing errors in the ini-
tial decomposition. In this example the parts of the model with complex curvature can be
identified as similar, even though some of their r-neighborhoods do not match precisely.

5.6 Optimization Approach

Let the edge cost be defined as the difference in the graph cost after collapsing
this edge (and all edges equivalent to it). Unfortunately, the cost of a given
edge is not invariant under graph transformations. This is the case because edge
collapses change global properties of graph such as the number of tile classes
(CC) or introduce changes in the node connectivity. This makes the behavior
of the cost function for graph edges difficult to predict – collapsing an edge
can increase or decrease the overall cost by a different amount, depending on
which other edges have been previously collapsed. Therefore it is not possible
to express the minimization objective as an easy to minimize, convex (or even
continuous) function.

On the other hand, given a set of (non-equivalent w.r.t. Definition 13) edges
that will be collapsed, the resulting graph is the same regardless of the order
in which the operations are performed. This shrinks the search space for an
optimal solution, and instead of having to find an optimal sequence of trans-
formations, one needs to determine an optimal subset of the graph edges to
collapse. The latter considerations also imply that an optimal solution is com-
putable, due to the finite number of possible transformation for a given graph.

Because the graph transformations do not involve any complex geometric com-
putations, it is possible to perform exhaustive search for quite large input sizes
in reasonable time. Nevertheless, we tried to find more efficient search algo-
rithms. The best results we obtained were by sampling the space of possible
solutions. We performed a series of random edge collapses. Each series was
terminated randomly via Russian Roulette with probability 1

NClasses
(NClasses

is the number of different microtile classes (types)). For each model we per-
formed roughly about NClasses searches and kept the graph with the best cost.
Although this approach will only find an optimal solution with some probability,
in our tests we could always improve the initial segmentation significantly.
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We also experimented with several greedy, deterministic strategies. For ex-
ample, we collapsed the largest set of equivalent edges. A single step of this
algorithm introduces the smallest decrease in redundancy and keeps CR (see
Equation 5.3) smallest while at the same time reducing the number of building
blocks and potentially the classes of microtiles (CS , Equation 5.2). This method
was faster compared to the random search, which delivered slightly (around
15%) superior results. Further discussion on optimization strategies is outside
the scope of this chapter, because the results depend on the choice of the cost
function. Here, we demonstrate that edge-collapse algorithms can be used as a
general method for optimization of shape decompositions.

Sometimes we were able to further improve the solution by re-starting the sam-
pling process and initializing it with the best solution from the previous run, but
the improvements were never significant. Also note, that although this stage of
the algorithm works without user interaction, this does not have to be the case.
One can also compute a number of solutions with cost close to the optimal and
let the user choose one.

Another advantage in terms of complexity is gained by the fact that we perform
collapses of sets of equivalent edges (i.e. edges that connect tiles of the same
types). In other words whenever we consider collapsing an edge, we collapse
a whole set simultaneously. This makes the number of potential solutions ex-
ponential in the number of pairwise non-equivalent edges instead of the total
number of edges. In Figure 5.2 we have 16 edges but only 3 possible collapse
operations because of equivalence. If a set of equivalent edges to be collapsed
form a cycle, we always collapse the maximum number of edges, which results
in a simpler resulting graph.

5.7 Shape Variations

One of the important properties of microtiles with respect to r-symmetry is their
ability to describe families of (r-similar) objects. However, modifying the gram-
mar can reduce the amount of related shapes that are assemblable from the
building blocks. It should be noted that processing any finite set of shapes si-
multaneously results in building blocks that construct each of the input shapes.
In the following two sections we discuss the more challenging problem of gen-
erating (infinitely many) variations of a single input object.

It is possible to restrict the edge collapses in order to guarantee that the resulting
pieces keep their property of characterizing the space of r-similar objects. This
ensures that the set of shapes that can be constructed by the building blocks
does not shrink after the transformation. However, we preferred to trade-off
some of the expressive power of the building blocks to improve other properties
like size, number of occurrences, and simpler overall structure of the shape,
expressed by the cost function (see Equation 5.4). Therefore, in addition to
collapsing safe edges we allow three operations that can potentially reduce the
number of shapes constructable by the microtiles:

50



Evaluation 5.8

Figure 5.6: Left: A model is decomposed manually in 18 pieces of 5 types. Middle: The opti-
mized version consists of 12 pieces of 4 types. Right: Allowing replacement of approximately
matching tiles further reduces the complexity to 6 pieces of 3 types.

• We compact microtile classes by merging pairs of microtile instances from
the same class. This can affect the variations in the size of grid-like repet-
itive patterns of tiles.

• We collapse cycles of equivalent edges, if any of the edge in the cycle
has to be collapsed. This can reduce variations in the size of the possible
microtile cycles.

• We construct and collapse edges through one-slippable regions of the in-
put shape. This can restrict production of r-similar shapes where the cor-
responding edges are longer or shorter.

Note that the majority of transformations we perform do not fall in any of the
above categories and therefore preserve the expressive power of the decompo-
sition.

If the desired output of the algorithm is a set of microtiles that can construct a
given finite collection of r-similar objects, one can perform the microtile decom-
position and the subsequent optimization simultaneously on the whole collec-
tion. This will guarantee that the resulting tiles will construct each exemplar in
the target collection regardless of the simplification process. However an even
more interesting challenge is to compute manufacturable microtiles that can
construct an infinite set of shape variations (see Chapter 7).

5.8 Evaluation

In this chapter we evaluate the simplification algorithm briefly with the simple
cost function we introduced. We provide more detailed analysis in the next
two chapters, where we derive application-specific cost models and use them
to decompose shapes into pieces that can be used for mesh compression or 3D
manufacturing.

The main result we can provide already with the simple cost model (Equation
5.4) is the ability to simplify a microtile decomposition, by sacrificing some of
the redundancy in order to reduce the number of pieces required to represent
the shape.
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Figure 5.7: Original (left) and optimized (right) decomposition of a spaceship model. The
number of tiles was reduced to 7 from 319 and the types of tiles was reduced to 6 from 111.

In Figure 5.3 we demonstrate how re-weighting the cost function terms enables
intuitive control of the amount of simplification – the bigger the weight αR for
the redundancy term, the more pieces and types of pieces we obtain.

We also tested our grammar simplification method on a manually decomposed
shape, similar to test models used by [LVW+15]. We could improve the com-
plexity of the decomposition even for the already simple example in Figure
5.6. We show the optimal results without and with tile replacement operations
(Section 5.5). Approximate replacement allows for identifying the entire red
columns as “identical” if the discrepancies between the two are not significant.
For the example in the figure, we allowed 10% of the surface area of one of the
pieces to mismatch the other.

In general, using the graph simplification approach presented here, we are able
to simplify the initial microtile decomposition substantially, while preserving
significant amount of the symmetry information encoded in the initial decompo-
sition. This indicates that graph-based tiling grammar simplification algorithms
can be practical methods for improving symmetry-induced shape decomposi-
tions. We will further validate this claim in the following two chapters, by
deriving appropriate cost models for the simplification method presented here
and adapt the optimization process for specific applications.

5.9 Conclusion

The method introduced in this chapter is an important corner stone for de-
tection and analysis of rigid symmetries. Unlike most of the related work in
the area, which deals mostly with context-free grammars for shape generation,
we address the problem of optimizing the more general context sensitive tiling
grammars that naturally describe partial symmetries. On its own, the simplifi-
cation algorithm allows for generating symmetry-aware shape decompositions
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Conclusion 5.9

Figure 5.8: Microtile decomposition of a church model. Left: the initial decomposition into
2276 microtiles of 395 classes. Right: after optimization, we got 8 microtiles of 5 classes.
We used the cost function from Chapter 7 for this test.

with controllable complexity. However, this approach will become more inter-
esting when combined with specific cost functions, allowing to compute optimal
shape decompositions for applications like mesh compression or 3D manufac-
turing.
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5 Tiling Grammar Simplification

Figure 5.9: After optimizing the microtiles for the building above, we reduced the number
of tiles from 921 to 30 and the number of classes from 196 to 17. We used αR = 1 and
αS = 1 for this test.

Figure 5.10: After optimizing the microtiles for the cathedral model, we reduced the num-
ber of tiles from 931 to 206 and the number of classes from 527 to 135. We used αR = 3
and αS = 1 for this test.
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6 Mesh Compression

In this chapter, we discuss the use of microtile decompositions for loss-less mesh
compression in the context of real-time ray tracing. We use partial symmetries
to inversely compute a 2-level hierarchical representation of the scene geom-
etry and apply the optimization technique from Chapter 5 to obtain a scene
representation with minimal memory footprint.

6.1 Ray Tracing

We are interested in using ray tracing in the context of physically-based render-
ing algorithms. This means that we want to generate 2D images of a virtual
3D scene. The rendering process is analogous to taking a digital photograph,
and ray tracing is used to compute light paths for energy originating in the light
sources that is transported to the virtual camera.

Formally, the operation of tracing a ray is defined as a query over a geometric
scene. Given a ray with an origin o and direction ~d, and a scene consisting of
geometric primitives (e.g. triangles), we determine whether there is a primitive
in the scene that the ray intersects, and optionally which of them is the primitive
closest to the origin. With other words, we want to know if there is a non-
negative scalar value t, such that o + t~d is a point in space that belongs to a
given primitive P in the scene.{

t | ∃P ∈ scene s.t. (o+ t~d) ∈ P
}
6= ∅ (6.1)

We may optionally look for the first primitive intersected by the ray:

min
{
t | ∃P ∈ scene s.t. (o+ t~d) ∈ P

}
. (6.2)

To be able to answer such queries, one only must be able to perform an inter-
section test between a ray and a geometric primitive. Given a ray one can test
every input primitive for intersection to determine if there is one. Even though
this can be done in linear time it is very inefficient even for small scenes. This is
why high performance ray tracing implementations rely on acceleration struc-
tures. These are search structures (the spatial analogue of dictionaries) that
subdivide space into cells or nodes. During ray traversal, only primitives con-
tained in nodes (or cells) of the acceleration structure that are intersected by
the ray are tested. In this way some cheap traversal calculations help eliminate
large amount of intersection candidates – those contained in cells that do not
intersect the ray.
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6 Mesh Compression

The way ray tracing is related to performing a search, acceleration structures
for ray tracing are related to general search structures like dictionaries. For
ray tracing one uses spatial structures that subdivide the space and store the
geometric primitives in their cells. A Binary Space Partition tree (BSP tree) for
example is the analog of a binary search tree. It partitions space hierarchically
via planes and stores the primitives in its leaves. Instead of testing each ray
against each primitive for intersection, one first traverses the tree to find all
leaves intersected by the ray and tests only the primitives stored in those leaves.
In this way some cheap traversal calculations help eliminate large amount of
intersection candidates – those that are not contained in leaves intersected by
the ray.

Because tracing a ray is a global operation – one needs to have access to all
geometric primitives, the entire scene must be stored in physical memory during
rendering. Therefore, the amount of storage space usually limits the size and
geometric complexity of the input scenes. Note that in most rendering scenarios,
the geometric models are only a part of the scene description that needs to be
stored in memory. Assets like textures and material descriptions constitute a
significant portion of the memory footprint of a typical scene. Nonetheless,
reducing the size of the geometric representation of the surfaces is beneficial
and can be used to work around memory bottlenecks.

6.2 Geometry Instancing

A well understood technique to reduce the memory footprint of massive geo-
metric models is called instancing. The scene can be generated out of multiple
copies of the same (or similar) objects, each of them is stored once in memory
and a virtual copy is placed for each instance – each occurrence of the orig-
inal in the scene [DMS06]. The advantage is that representing the instances
only requires to place a bounding box surrounding the replicated geometry and
record a transformation matrix and a pointer to the original. A two-level accel-
eration structure is computed – the top level is build over the bounding boxes
of the instances, and for each original exemplar there is a separate acceleration
structure (see Figure 6.1). During rendering, rays that are likely to intersect an
instance are transformed with the inverse of the transformation matrix and then
traverse the second-level spatial subdivision containing the original. Therefore,
the geometry for the copies never has to be generated or stored.

Usually, the geometric objects that are replicated via instancing are static. This
alleviates the need for expensive refitting of the acceleration structure contain-
ing the original object. However the copies can be transformed with rigid trans-
formations, allowing the scene to be animated with rigid motion [GFW+06].
Dynamic scenes like these are typically supported in real-time ray tracing en-
gines by rebuilding the top-level of the spatial structure which is invalidated
after an object changes its position in the scene. This can be performed fast
enough if the number of objects stored in the first level of the acceleration struc-
ture is not too large. Rebuilding the second level is not necessary in general,
and can be overly expensive.
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Inverse Instancing 6.3

Flat Instanced 

Figure 6.1: Standard ray tracing acceleration structures are constructed over a flat scene
representation (left). Geometry for every copy of the objects is stored separately in memory.
Instancing enables to build a single spatial structure over the original instance and reference
it multiple times in the top-level of the hierarchy (right).

The ray tracing system we use in this chapter allows for supporting fully dy-
namic scenes, because we can rebuild both levels of the acceleration structure
quickly. This is possible by using fast to construct uniform grids as an accel-
eration structure for both levels of the hierarchy and build them in parallel on
a GPU. We generalize the two-level grid construction algorithm by Kalojanov
et al. [KBS11]. There, the authors build a two-level hierarchical grid over a
triangle soup. Their algorithm efficiently constructs each level of the accelera-
tion structure in parallel, by reducing the process to a sorting problem. In our
implementation, we extended this approach and used a uniform grid for the up-
per level of the structure and a uniform grid for each second-level object. The
difference with [KBS11] is that we can place each of the second-level grids at
an arbitrary location, instead of restricting them to be contained inside a single
cell of the top-level grid (see Figure 6.1). This is done by storing independent
bounding boxes for each second level element of the acceleration structure.

6.3 Inverse Instancing

So far in literature, instancing is always employed in a forward manner, mean-
ing that in order to use it for a given scene, the objects and their copies have
to be generated in advance. This limits the impact of the technique to scenarios
where the consumer has the privilege of generating the geometric scene for ren-
dering. In practice this often prevents the use of instanced geometry because
geometric scenes are modeled as a triangle soup without explicit information
about geometric similarity.
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In this chapter, we will use the methods for microtile detection and tiling gram-
mar simplification to compute a decomposition of the scene into reoccurring
instances, such that the memory required to store the scene is minimal. In
other words, we will use the microtile decomposition and grammar simplifi-
cation methods to derive a symmetry-based method for loss-less triangle mesh
compression. The theory we developed so far allows us to automatically decom-
pose existing geometric scenes into reoccurring instances of a given type – the
microtiles are instances of their respective classes. The algorithms for microtile
detection can extract all parts of a geometric scene, that have been replicated.

Recall that the microtile decomposition minimizes redundancies in the geomet-
ric appearance of the input shape by identifying identical pieces of the surface.
So far our experiments have shown that the unique pieces required to describe
the input (and all of its similar shapes) compose only a small part of the com-
plete input object. Therefore, a straight-forward application of the results in
Chapter 3 and Chapter 4 can be used to compute a more-compact scene repre-
sentation by representing the r-microtiles as instances.

6.4 A Cost Model for Mesh Compression

While it is clear that a microtile decomposition can be directly ray traced using
the inverse instancing approach presented here, this is only useful, if the new
representation is superior to the standard one in some aspect. Since instancing
is primarily utilized to compact the memory footprint of the model, we will
investigate the use of inverse instancing for triangle mesh compression.

So far we have shown that, using microtiles, one can minimize the redundancy
in the geometric shape with respect to point-wise r-symmetry. Because the ini-
tial equivalence relations (partial symmetries) for the input mesh are defined
per point, the measure of the redundant parts encoded in the classes of mi-
crotiles is zero. Therefore, the combined surface area of all microtile classes is
minimal w.r.t. to partial symmetries.

The property of having minimal surface area is important for compressing the
geometry. In many of our test models this representation also reduces the
amount of triangles and storage necessary to represent the input scene for ren-
dering. However, since the decomposition is triangulation independent and in-
stancing an object introduces some memory overhead for storing the bounding
box and inverse transformation matrix, the initial decomposition is not always
optimal with respect to the memory footprint. In other words, while decom-
posing a shape into microtiles is triangulation invariant, the memory footprint
of the microtiles still depends on their geometric representation. This means
that instancing all r-symmetric parts might introduce memory overhead if the
mesh triangulation does not allow to reduce the number of triangles necessary
to describe the set of unique building blocks. This can be addressed by convert-
ing the initial decomposition into one with minimal memory footprint using the
simplification method in Chapter 5.

58



A Cost Model for Mesh Compression 6.4

6.4.1 General Cost Model

We will apply the grammar simplification algorithm using a cost function that
characterizes the memory required to store the building blocks. In the case
of triangle meshes the memory footprint depends on the triangulation of the
particular mesh and consecutively the triangulation of each of the microtile
classes. More precisely, the graph cost is

TotalCost := |TileInstances| · CI +
∑

A∈TileClasses

∆A, (6.3)

where ∆A denotes the space required to store all triangles in A, and as in the
previous case, |TileInstances| is the total number of tile instances and CI is the
cost for storing a single instance in memory. Here collapsing an edge between
two nodes a, b of types A,B amounts to

Cost(a, b) :=



∆AB −∆A− if ∀As have adjacent Bs
−∆B − |IB | · CI and ∀Bs have adjacent As,

∆AB −∆B − |IB | · CI if ∀Bs have adjacent As,

∆AB −∆A − |IA| · CI if ∀As have adjacent Bs,

∆AB − |IAB | · CI otherwise.

Here |IA|, |IB |, and |IAB | denote the number of instances equivalent to a, b, and
ab respectively, and ∆AB is the storage for the geometry in the newly introduced
building block consisting of a attached to b. Note that it is not possible to
have the first case in the initial microtile graph because it will contradict the
existence of different partial symmetries across the border of each 2 microtiles.
It is however possible to arrive at a situation where the first case occurs after
performing some edge collapses.

The second simplification operation: tile replacement always reduces the mem-
ory footprint because it simplifies the representation without introducing over-
head. Therefore, we perform tile replacement whenever possible. However,
since the opportunities for approximately matching large aggregated building
blocks are usually rare, successful edge collapse operation have larger impact
on the final cost.

6.4.2 Actual Memory Footprint

The reduction of the overall memory footprint is implementation specific and
depends on the actual representation of tile classes and their instances, as well
as the format used to represent the input triangles.

Triangles: In our evaluation, we assume a scenario in which the size of the
scene is the main limitation. In this case, the input triangles are most compactly
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6 Mesh Compression

represented as a triple of indices pointing inside a global vertex buffer, without
additional pre-computed structure for faster ray-triangle intersections. In prac-
tice, the actual scene is more likely to be stored less efficiently. Often, in order
to avoid the additional memory indirection, the triangles are stored as vertex
triples, which requires to store multiple copies of each vertex in the scene. It
is also common to pre-compute and store additional data structures that are
used instead of the vertex coordinates during ray-triangle intersection tests. We
measure the quality of our compression method as the reduction of the memory
footprint compared to the initial representation. Therefore, the improvements
we report are a worst case with respect to the most commonly used memory
strategies for ray tracing triangle meshes.

Instances: The second implementation specific aspect of the evaluation of
our method is the representation of the instances and the unique objects in the
scene. These are accounted for in the variable CI in Equation 6.3.

For each instance, we need to store a pointer (index) to the object it copies,
and a rigid transformation that ”transports” the object to the location of the
instance. A näıve representation of the latter as a 3 × 3 rotation matrix and a
translation vector is not very efficient, consuming 12 32bit floats. In our eval-
uation we reduced the necessary space by half using a translation vector and
a normalized quaternion, which represents the rotational part of the transfor-
mation. We also hide a bit-flag in the object pointer, which we use to indicate
whether or not the transformed instance had to be mirrored. This is necessary,
because a combination of a rotation and a reflection cannot be represented by
a single quaternion.

In our evaluation, the size of each instance is 28 bytes. We use this representa-
tion to evaluate our method, but we also implemented a 52 byte version, which
stores a transformed bounding box, as well as a 76 byte variant with a complete
transformation matrix. The larger variants allow for faster build times and bet-
ter ray tracing performance. The differences in the compression rates for the
three variants are minimal, which indicates that the overhead for instancing
was not a major bottleneck for our method.

Additional overhead: When reporting our results, we take into account the
memory overhead of the second level of acceleration structures constructed over
the original exemplars. We use a standard two-level hierarchical grid as a base-
line (see Figure 6.1 left, and [KBS11]) and count the resolution, the bounding
box, and the two additional pointers as extra cost per tile class (∆A in Equation
6.3).

Even though we based the evaluation on our ray tracer implementation, the
use of the optimization algorithm for other rendering applications is straight-
forward – it only requires adapting the cost terms CI and ∆A, which can usually
be accurately estimated in advance.
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microtile boundary
r-neighborhood boundary
overlapping triangles

rigid microtiles
1-slippable microtiles
2-slippable microtiles

Figure 6.2: The microtile decomposition is triangulation independent, meaning that the
microtile boundaries do not coincide with triangle edges. Triangles protruding outside the
r-neighborhood of a microtile cannot, in general, be replicated at each occurrence without
causing visual artifacts.

6.5 Surface Triangulation and r-Symmetry

In order to decompose the input triangle mesh into interchangeable surface
segments, we have to consider that geometric correspondences we compute are
triangulation independent as shown in Figure 6.2. If we näıvely select one mi-
crotile per class, find all triangles that it overlaps, and use them to represent the
remaining equivalent microtiles as copies, we are likely to create visual artifacts
like those in Figure 6.3. These are caused by triangles that extrude beyond the
r-neighborhood of a microtile. Our symmetry model ensures equivalence of all
surface points closer than the symmetry radius r to a microtile, i.e. only points
on the input surface inside the r-neighborhood of a microtile can be safely repli-
cated.

We therefore need to address triangles that span across the boundaries of the
r-neighborhood of each microtile we chose as representative for its class. We
developed two approaches that can be used to solve the problem. The first
keeps the geometry unchanged and modifies the acceleration structure used
to store it, erasing the excess parts. This is a convenient solution for a ray
tracing system because there using a spatial index structure is necessary. The
disadvantage of this approach is that the cells (or nodes) containing invalid
geometry have to be re-computed or stored. We address this with a second
method that replaces triangles extruding outside microtile neighborhoods with
smaller ones. This introduces a small overhead and some additional triangles,
but allows for discarding the r-symmetry information and storing the resulting
triangle meshes in files using a slightly modified standard format.

Voxel Trimming: In our implementation, we were able to remove the visual
artifacts like those in Figure 6.3 without modifying the input geometry. This is
possible if we modify the acceleration structure storing the original copy. Be-
cause we used uniform grids in the second level of our hierarchy, we could build
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(3) no trimming (4) slippable trimmed

extruding geometry

(1) (2)

Figure 6.3: (1) The upper corner of the courthouse model. (2) Näıve replication of the
transformed instances can lead to artifacts caused by triangles on the microtile border that
are only partially contained inside the r-neighborhood of the original. Ray tracing a model
before (3) and after (4) marking as empty all cells of the acceleration structure containing
geometry outside rigid microtiles. This technique resolves the artifacts seen in (2).

the acceleration structure using cell sizes similar to the voxel size during sym-
metry detection. After the instances are passed to our renderer and we compute
the uniform grids that contain them, we post-process the acceleration structures
and ”delete” cells outside the r-neighborhood of the tile see Figure 6.3 (3), (4).
This means that we mark any cell outside the r-neighborhood of the tile as
empty and do not render its contents. This approach might fail when using very
coarse discretization, however the default voxel sizes we used for symmetry de-
tection ( 1

256 and 1
512 of the input scene diagonal) were small enough to allow for

artifact-free rendering. In general, a voxel size smaller than r
2 allows for isolat-

ing the parts of the input surface inside the r-neighborhood of a microtile. The
resulting surface will be identical to the non-instanced one, even if the actual
triangles used to render the compressed version are too large.

Two-Slippable Pieces: The above voxel trimming method together with our
decomposition approach present an additional opportunity for compression. As
a part of the analysis we compute all planar regions of the mesh that have an
area larger than πr2. In some of our test models these regions were tesselated
into multiple small triangles. We could replace these triangles by a single tri-
angle or a quad covering the complete region. We shrink the bounding box of
the triangle to the smallest one enclosing the original region. Similar to the
non-slippable microtiles we modified the acceleration structure that contained
them, by erasing the contents of the cells that were outside the original two-
slippable region (see Figure 6.4. In other words we replaced each planar region
by instancing a single triangle.

In our implementation, the footprint of each slippable region is 156 bytes dis-
tributed as follows:

• 36 bytes for triangle vertices

• 12 bytes for triangle indices (or 24 if we use a triangulated quad)

• 28 bytes for the geometry instance

• between 40 and 80 bytes for the additional uniform grid1

1We report results using an 80 bytes structure. A different memory organization of the acceler-
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two-slippable region bounding quad "bounding triangle" modified acceleration structure

Figure 6.4: We replace each two-slippable (planar) region with a single triangle that covers
its bounding quad. We then modify the size and cells of the acceleration structure to ”cut out”
the extruding parts. We use this representation regardless of the underlying triangulation.

For simplicity, we assume the same cell size of the acceleration structure for
both the instanced version and the original model. This yields the same mem-
ory footprint of the cells and geometry references stored in both acceleration
structures. This makes our representation more compact for any planar region
that contains at least 6 triangles. These would occupy 168 bytes of space. This
can be reduced to 4 triangles (120 bytes) by using a more compact uniform grid
representation.

Note that fixing the cell size for rendering to the one used during symmetry de-
tection limits the flexibility of the method: In a standard ray tracer the number
of grid cells is set proportional to the number of triangles. Assuming standard
grid density for ray tracing, i.e. around 5 cells per input triangle, we will intro-
duce an initial memory overhead for meshes smaller than 3 million triangles.
However, after reducing the model to instances, the acceleration structure built
once per object type. The initial microtile decomposition usually eliminates
more than 95% of the surface area for non-slippable geometry and we build
acceleration structures over the remaining 5% of the mesh.

Boundary Re-Meshing: Using the acceleration structure to deal with excess
geometry while keeping the local triangulation intact is a memory efficient solu-
tion, however it limits the method to ray tracing systems and requires to either
store or re-compute the microtile boundaries before rendering the input mesh.
An alternative solution, we implemented, is to replace triangles that extrude
outside of the r-neighborhood of a microtile.

We consider 4 cases of triangles that are partially inside a microtile, based on
the number of triangle vertices (0, 1, 2, or 3) within the microtile boundary. We
use the strategy in Figure 6.5 for the cases with one or two vertices inside the
boundary. Here, we assume that a triangle edge has at most one intersection
with the microtile boundary. If we have 0 or 3 vertices, we find a vertex inside
the triangle that is inside or outside respectively and recursively split the triangle
into 3 new triangles that are likely to either one or two vertices inside and can be
handled as in Figure 6.5. Triangles with edges that have multiple intersections
with the microtile boundary require multiple levels of recursive subdivision.

Note that shortening the triangle edges as in Figure 6.5 can create holes if the

ation structure could use 36 bytes for grid resolution and 4 bytes for an index into a global storage
for the grid cells.
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(1) one vertex inside (2) two vertices inside

 microtile
boundary

 r-neighborhood
boundary

Figure 6.5: We replace triangles with one or two vertices inside the microtile with smaller
ones if they extrude beyond the r-neighborhood of the building block. Partially overlapping
triangles with 0 or 3 vertices inside the boundary can be (recursively) split into triangles
that have either 1 or 2 vertices inside the microtile.

edge of a very long and thin triangle coincides with an edge feature, but is
only partially contained inside the r-neighborhood of the microtile. This can be
handled by re-meshing the input model in a pre-processing step, which might
increase the memory footprint and negate any benefits from the subsequent
compression. However such extreme cases are rare.

While this re-meshing method introduces additional triangles, the latter are
considered when evaluating the cost function during optimization. This makes
it possible to find a representation with minimal memory footprint, even if the
latter is slightly larger than the one obtained with the voxel trimming method.
The advantage of this approach is that it does not require special acceleration
structure for rendering. This makes it possible to render the resulting com-
pressed mesh using rasterization, and lifts the restrictions on the cell size for
the acceleration structure for ray tracing. Further, it allows for storing the re-
sulting instanced meshes using standard file formats that support instancing,
e.g. VRML, X3D [Web]. We tested our method with a straight-forward exten-
sion of the Wavefront OBJ format [Wav].

In summary: We implemented two solutions that allow for inversely instantiat-
ing triangle meshes using r-symmetry regardless of the specific mesh triangu-
lation (see Figure 6.6). In ray tracing applications, we modify the acceleration
structure instead of the geometry to separate symmetric from non-symmetric
parts of the model. This facilitates replacing large planar segments with just
one or two triangles allowing to achieve better compression, especially for sur-
face tessellated into large amounts of small co-planar triangles. Alternatively,
we can modify triangles crossing microtile boundaries and export the resulting
scene representation in files as well as render it using rasterization.
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(1) 
input microitles
(not instanced)

(2)
 boundary re-meshing

(3)
 voxel trimming

(4)
 voxel trimming

Figure 6.6: The initial triangle mesh (1) is decomposed into microtiles and then rendered
using instancing. ”Cutting out” building blocks from the mesh can be achieved by modifying
either the geometry (2), or the acceleration structure (3) and (4). The latter allows for
greater compression rates, but the results cannot be efficiently stored in files. We replaced
each 2-slippable region with 2 triangles in (3), and with a single triangle in (4).

6.6 Evaluation

We used the optimization algorithm from Chapter 5 for the Cost Function 6.3
and tested our implementation on various meshes. We initially expected that
the reduction of the memory footprint will be related to the amount of par-
tial symmetries discovered prior to the optimization step. Indeed, the number
of possible representations through instances increases with the number of geo-
metric redundancies in the input mesh. However, note that the overall compres-
sion rate also depends on how the individual building blocks are triangulated.
This is the motivation for converting the initial triangulation independent re-
dundancies into a representation that accounts for the actual memory footprint.

The compression results for the test models in Figures 6.7, 6.8, 6.9, and 6.10,
vary significantly. While some models, like the ”Companion Cube” (rightmost
image in Figure 6.8 and 6.10, have partial symmetries that allow significant
reduction in their memory footprint, simpler meshes like the asylum building in
Figure 6.8 do not have complex non-slippable regions that can be compressed
efficiently trough instancing.

The results in Figure 6.9 also show that the impact of the proposed techniques,
e.g. replacing slippable geometry, depends on the use case. Certain models and
the way they are triangulated lend themselves better to compression trough
inverse instancing. Other models, might not have a triangulation and partial
symmetries that allow a large improvement. On the upside, in most cases where
compressing the model is not possible, given enough simplification steps, the
optimization method will eventually merge all building blocks into a single one.
This happens for example for the cathedral model in Figure 5.10.

One advantage of the method presented here is that it can handle non-manifold
meshes with holes and other triangulation defects. This robustness is due to the
combination of the approximate feature matching (see Section 4.4.2) combined
with tile replacement (see Section 5.5). These techniques allow handling ge-
ometry with small deformation artifacts like the cube and the asylum building
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microtiles - 47% memory optimized - 39% memory final rendering

Figure 6.7: The initial microtile decomposition for the courthouse reduces the footprint
of the scene by 53% of its original size (left). After optimization, we further reduce the
memory footprint by 61% (middle). Apart from some minor glitches due to self-occlusion,
the rendering of the inversely instantiated scene (right) matches the original.

microtiles: 67%
optimized: 42%

microtiles: 167% optimized: 124%

microtiles: 101% optimized: 65%microtiles: 143% optimized: 70%

microtiles: 135% optimized: 48%

Figure 6.8: Inversely instanced meshes ant their memory footprints relative to the size
of the model before symmetry detection. The size of the initial decomposition into partial
symmetries (microtiles) is reduced (optimized) using the grammar simplification method
from Chapter 5. We used voxel trimming for all examples in the figure.

in Figure 6.8.

In addition to the examples presented here, we used our ray tracing implemen-
tation to generate all rendered images in this thesis. All rendered scenes in this
section show instantiated geometry.

6.7 Limitations

The compression approach we present has several limitations that affect ren-
dering. Our method depends on the symmetry based decomposition, which is
computed using a coarse voxelization of the input geometry. Because of that,
we introduce overlapping geometry at the boundaries of neighboring geome-
try instances. Even though the radius of symmetry r allows for segmenting the
models using approximate cuts, special care must be taken during rendering to
prevent self-occlusion or self-shadowing, which can be observed for example on
the pillars in Figure 6.7, right. Note however, that the color noise in the overlap-
ping area on microtile borders (Figure 6.9 and 6.10), are only present, because
we intentionally change the appearance of the different types of building blocks.

Further, the presented approach for mesh compression depends on the initial
symmetry analysis, which limits the number of possible decomposition into in-
stances. Therefore, the overall compression rate can be low if the input model
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slippable region replacement
48% memory

boundary re-meshing
98% memory

Figure 6.9: Finely tessellated meshes are best compressed by replacing 2-slippable regions
with proxy geometry. In this example, symmetry-based instancing of non-slippable geometry
provides comparatively small amount of compression.

57%76%88%42%

Figure 6.10: Compression results using boundary re-meshing. While the compression rates
are lower compared to the alternative method (Figure 6.8), the resulting models can be
efficiently stored and transferred via files.

only has a few geometric redundancies, or only few of these were successfully
detected. A negative example presents itself in asylum building (Figure 6.8),
where the symmetry structure and initial triangulation of the mesh do not pro-
vide a sufficient room for compression using inverse instancing resulting in a
memory overhead compared to the non-instanced model.

6.8 Conclusion

In this chapter we applied a partial symmetry detection method for triangle
mesh compression in the context of ray tracing. We used rigid r-symmetries and
their induced microtiles to decompose triangle meshes into symmetric building
blocks – a representation that minimizes geometric redundancy w.r.t. to rigid
transformations of spherical point neighborhoods of a given radius r. We then
used the tiling grammar simplification algorithm from the previous Chapter 5
and converted the initial decomposition into a set of triangle mesh excerpts
and instances thereof, such that these minimize the memory footprint of the
input model when rendered via ray tracing. We were able to obtain significant
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reduction in size in some input models with suitable symmetry structure and tri-
angulation. In addition, the compressed mesh representation can be ray traced
directly without the need for decompression. Since the complete decomposi-
tion and optimization pipeline works without the need of user input or prior
knowledge of the input model, we believe that the method presented here can
be used in a number of ray tracing applications with limited memory footprint
of the input scene.
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7 Building Shapes from Symmetries

(1) intput (4) volumetric
pieces

(3) optimized
segmentation

(5) shape
variations

(2) microtiles

Figure 7.1: Given a geometric model, we compute elementary building blocks from its
partial symmetries, optimize the segmentation, and convert it to pieces that can be manu-
factured and assembled to produce shape variations.

In this chapter, we use the microtile ability to describe shape families and de-
velop an approach for shape decomposition into manufacturable building blocks
that can be used to assemble the original shape as well as multiple variations
of it. More specifically, we address the problem of finding a small amount of
rigid pieces out of which an example 3D model as well as a large set of related
shapes can be physically assembled.

In order to reduce the complexity and variety of microtiles, we apply the tiling
grammar simplification approach introduced in Chapter 5. We formulate a cost
function that quantifies the most important properties of the building blocks
with respect to their 3D realization and mass-production via manufacturing
processes like injection molding. In particular, we address the simplicity of
the decomposition expressed in the number of types of pieces, the amount of
geometric redundancies represented by the building blocks, the assemblability
of the pieces and the amount of shape variation in the resulting shapes.

We demonstrate that the results of our algorithm can be used as building blocks
in combination with 3D manufacturing techniques, where production of the
pieces with the same shape is efficient. We also validate the functionality of
the building blocks and their ability to assemble into multiple variations of the
original shape, by printing prototypes with a common Fused Decomposition
Modeling (FDM) 3D-printer.

7.1 Related Work

One aspect of our work is the computation and analysis of a set of pieces that as-
semble a 3D shape. Mitra et al. [MYY+10] analyze the functional properties of
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man-made assemblies. Guo et al. [GYL+13] introduce a framework that can au-
tomatically compute and visualize the assembly and disassembly of man-made
objects. Their work together with a wide range of research on disassembly
analysis and planning [DA03] address the problem of finding optimal assem-
bly/disassembly sequences. In this paper we try to automatically generate an
assembly, for which at least one assembly sequence exists. This is a compli-
cated problem if general types of interlocking parts and assembly motions are
considered. Some existing approaches like [SFCO12, SG99] restrict the types
of interlocking components and only allow assembly via translational motions.
We instead use a soft optimization constraint to conservatively minimize the
amount of interlocking components, which can prevent assembly.

Xin et al. [XLF+11] and Song et al. [SFCO12] address the problem of decom-
posing a 3D shape into a set of interlocking puzzle pieces. The results of our
method can be used to compute 3D puzzles, however we do not enforce a de-
composition into interlocking constructor pieces, and instead of restricting the
assembly actions to translations, we allow for arbitrary rigid motions.

The works by Fu et al., Singh et al., and Eigensatz et al. [FLHCO10, SS10,
EKS+10] consider the problem of decomposing surfaces into sets of equivalent
patches. The authors optimize the shape of a polygonal mesh in order to mini-
mize the types of polygons necessary to represent the model. Instead, we com-
pute triangulation invariant building blocks of an arbitrary three-dimensional
shape. Similarly to the previous related works, the authors do not consider
construction of a collection of related shapes in addition to the original.

Luo et al. [LBRM12] explores algorithms for shape partition. The difference
between our work and theirs is that their primary objective is to reduce the
size of the individual pieces and make them fit the maximum build volume of
a given 3D printer. Although our method might potentially be used for similar
purposes, we do not explore this objective here.

7.2 A Cost Model for 3D Manufacturing

Given a shape and its microtiles with their microtile graph, we define a cost
model to measure the quality of the decomposition and its structure. We are
interested in finding an optimal segmentation for a given application, in this
case 3D manufacturing. To this end, we define a graph cost that depends on the
nodes of the graph and search for a set of graph transformations minimizing
this cost.

In this chapter, we focus on minimizing the complexity of the decomposition
by reducing the number of different pieces and make them easier to manufac-
ture and assemble. To this end, we define several desirable properties of the
decomposition and try to express them in simple to compute properties of the
microtiles and the microtile graph. We obtain significant improvement of the
tile graph quality for these aspects, which are generic, but also relevant to ap-
plications like manufacturing and procedural modeling.
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A Cost Model for 3D Manufacturing 7.2

CO=0.31 CO=0.22

interlocking
components

Figure 7.2: The higher the overlap cost (CO), the greater is the chance of producing inter-
locking components that can cause problems during assembly.

Redundancy: One of the advantages of using corresponding building blocks is
that they encode the redundancies in the shape geometry. The microtile decom-
position is in fact optimal with respect to the r-similarity equivalence relation.
Each different r-neighborhood is contained in exactly one microtile, hence the
surface area covered by r-symmetric points represented more than once is zero
(Lemma 7). We approximately compute the surface area covered by one in-
stance per tile class i by counting the number ni non-empty voxels intersected
by the instance, as well as the total number of non-empty voxels in the scene
NV and define the cost

CSA := max

{∑
i ni
NV

, αSA

}
, CSA ∈ [0, 1], (7.1)

which approximates the fraction of non-redundant surface area in the represen-
tation. We limit the cost from below by the constant αSA to relax the penalty
and allow introducing a small amount of redundancy. We set this parameter to
1
20 throughout our experiments.

Simplicity: It is well understood that one of the most important guidelines
for (manual) design for manufacturability and assembly is to aim at reducing
the number of types of pieces necessary to construct a given object [Boo96].
Here, this translates to minimizing the number of tile classes. Intuitively, this
reduces the production costs and minimizes the chances of producing defective
elements or making assembly errors. We use the initial microtile decomposition
as a benchmark for the shape complexity and express the cost for the number
of microtile classes as a fraction of this initial amount (also see Figure 5.3). Let
TCcurrent and TCinitial be the set of microtile classes for the optimized and the
initial decomposition. We define:

CC :=
|TCcurrent|
|TCinitial|

, CC ∈ (0, 1]. (7.2)

Assemblability: Being able to ensure that once the physical pieces are produced
it will be possible to put them together is a complicated problem – the blocks
might have a complex form obstructing insertion of neighboring pieces. To
our knowledge, there is no related work in the field of geometric modeling
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dealing with this problem for pieces that can have arbitrary shape. Instead,
related approaches (e.g. [XLF+11, SFCO12]) restrict the allowed shape of their
puzzle pieces such that assemblability can be ensured trivially. We therefore use
insights from the field of Mechanics and Design for Manufacturing and apply
them to solve potential problems with the assembly of the manufactured pieces
during optimization.

In their work on mechanical disassembly analysis, Shyamsundar et al. [SG99]
identify that invalid assemblies are the result of interlocking sub-assemblies
with at least 2 parts. The latter are characterized by the interfering volumes of
the parts participating in the assembly. An interfering volume is defined by the
intersection of a piece with the convex hull of a neighboring piece. Motivated
by this, we penalize the overlap between bounding boxes of neighboring mi-
crotiles. This reduces the number and size of the interfering volumes of neigh-
boring pieces and hence minimizes the chance for interlocking sub-assemblies
(see Figure 7.2). We define the cost for overlapping:

CO =
1

NT

NT∑
i=0

∑NT

j=0
Vij

Vi
δij∑NT

j=0 δij
, CO ∈ [0, 1], (7.3)

where Vij is the volume of the intersection of the bounding boxes of tile i and
tile j, Vi the volume of the bounding box of tile i, NT is the total number of tiles
and

δij :=

{
1 if tiles i and j are adjacent
0 otherwise.

(7.4)

Note that the denominator
∑NT

j=0 δij is the number of neighbors of tile i, and is
used to normalize the maximum value of the cost to 1.

Global Cuts: The building blocks we compute, represent all object variations
constructable with non-slippable pieces. However some of the r-similar shapes
require slippable building blocks with continuously varying size, which we can-
not manufacture. In order to increase the shape variation we can actually build
from the manufactured building blocks we define

CGC := |ntarget − ncuts|, CGC ∈ [0,∞] (7.5)

as the cost for the difference between a (user defined) desired (ntarget) and the
actual number (ncuts) of symmetric global cuts. Each of these cuts splits regions
of continuous symmetries into rigid parts that can be re-assembled into shape
variations. We define and discuss how the cuts are computed in the following
Section 7.3. It is important to note that some of the possible shape variations
we obtain are due to these symmetric cuts.

Finally, in our tests we used the sum of the above cost functions to measure the
quality of the microtile graphs we computed

Cost := αRCR + CC + CO + CGC (7.6)

The weight αR and the target number of global cuts can be used to control
the amount of simplification during optimization. If not said otherwise, we set
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Symmetry Cuts 7.3

Figure 7.3: An example model and two pairs of symmetric planar cuts (left) and an opti-
mized microtile decomposition that preserves these cuts (right). We do not merge microtiles
across cuts of this type to increase the number of shape variants we can construct.

αR = 1 and vary only the number of global cuts in the remaining experiments.
Scaling the term CO in order to prevent complicated assembly is also possible,
but was not necessary for our test models.

Please note that our framework in principle is also fairly general; The varia-
tional formulation makes it easy to define, in future work, alternative objective
functions for other applications.

7.3 Symmetry Cuts

How can we quantify variability? Unfortunately, tiling grammars are known to
be able to encode the computation of Turing machines [Ber66, LVW+15], ren-
dering it impossible to understand in general any of their properties algorithmi-
cally, including their expressiveness. For this reason, we resort to a lower bound
for quantifying their potential for shape variations: We recall the observation of
Bokeloh et al. [BWS10] that a sufficient (but not always necessary) condition
for shape variations is the presence of pairs of global cuts that match each other
(r-similarly) under a fixed rigid transformation (see Figure 7.3). The same idea
can also be adapted to general discrete graphs [LVW+15], then replacing r-
symmetry with graph matching. We could efficiently compute a subset of these
global cuts that subdivide slippable regions in addition to rigid microtiles.

Before the graph optimization step, we set a desired number of such global cuts
that the final graph should contain (we used 2 or 3 in our experiments). During
graph transformations we keep track of how many pairs of cuts remain valid
after the operation is performed and penalize deviation of the target number
in the cost function with the term CCG (see Equation 7.5). If the number of
remaining global pairs of cuts becomes less or equal to the target quantity, we
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Figure 7.4: The microtile decomposition is triangulation independent - two triangulations
of the same surface yield the same segmentation. This implies that the microtile boundaries
do not coincide with triangle edges. The building blocks are visualized via a voxel grid used
as 3D texture. Rectilinear voxels can be used to color the surface, but do not yield pieces
invariant under rotations.

stop performing graph transformations that eliminate the existing cuts. In other
words we set a hard constraint on the minimal number of global symmetric
cuts.

The cuts computed by Bokeloh et al. [BWS10] are per-voxel because they can
have arbitrary complicated shapes. For simplicity, we restrict the types of per-
formed cuts when generating the geometry that has to be manufactured and
compute all global planar cuts that intersect non-slippable edges through the
middle – we separate rigid tiles from each other through the middle of the
connecting edges. We also sample all slippable edges and find cuts that are con-
tained entirely in slippable regions. This limits the types of cuts we can detect
and we can only split the input shape with infinite planes (see Figure 7.3). On
the other hand introducing this restriction speeds-up the search for global cuts,
and allow for the cuts to be easily realized with simple CSG operations later on.

The global planar cuts are also used to presegment the slippable geometry that
we so far have considered as single coherent pieces: Each global plane is con-
structed to separate pairs of rigid tiles either indirectly, through a connecting
slippable edge, or directly, through the middle of a non-slippable connecting
edge. This simplifies the detection of the global cuts: we need to check once
for each non-slippable graph edge and sample along the remaining edges to
exhaust all possible cut locations. Choosing to split rigid edges in a ratio 1:1
also simplifies the later extraction of the non-slippable building blocks. In the
further process, this also splits intersecting planar (2-slippable) nodes.
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Exact Microtiles 7.4

Figure 7.5: An example collection of r-neighborhoods of corner features (left) and line
features (middle). The resulting building block (right) is the result of a CSG intersection of
the input model and the union of the spheres and cylinders enclosing the r-neighborhoods
of the feature points and lines.

7.4 Exact Microtiles

Our analysis so far is performed on a triangle mesh representing an input sur-
face. In this section we describe our method for converting the optimized sur-
face decomposition into manufacturable building blocks. The main challenge
we need to address, is ensuring that the resulting pieces are invariant under
rigid transformations. As shown in Figure 7.4, the correspondences based on
point-wise r-symmetry yield triangulation independent decomposition, and a
straight-forward voxelization in rectilinear voxels does not deliver interchange-
able rigid pieces. This prevents the mass-production of the individual construc-
tor pieces. In a scenario, where 3D-printing is used to manufacture the pieces,
the problem manifests during assembly, when only a correct variant of a build-
ing block will fit given configuration of adjacent pieces.

The näıve solution to only identify pieces as similar if they are triangulated in
the same way will obviously discard most of the initial symmetries and signif-
icantly reduce the possible shape variations, and the possible graph simplifica-
tions that we use to improve the quality of the decomposition w.r.t. manufactur-
ing.

To address the problem of computing exactly matching rigid building blocks
we derive a discretization from the definition of r-symmetry. Even though the
initial correspondences are defined per point on the input surface, we already
showed in Section 4.4.1, Lemma 6 that it suffices to consider a finite amount of
surface elements in order to obtain a complete decomposition of corresponding
points.

We consider three types of discrete elements: geometric corners, geometric
edges and planar regions. In other words, we separate the points on the in-
put surface based on their r-slippability. Because each point on the triangle
mesh is either rigid (non-slippable), one- or two-slippable, its r-neighborhood
will either be planar, or it will contain a corner or edge. Therefore, the point

75



7 Building Shapes from Symmetries

I1

I3

I2

I4

O4

O3

O2
O1

I3

I1

I6

I8

O6
O3

O8 O1

Figure 7.6: Our näıve strategy for separating overlapping r-neighborhoods in 2D. From
left to right – the initial situation, the subtracted polygons (second, third image), and the
resulting cut. The quads (boxes in 3D) between inner (Is) and outer (Ot) vertices are
always subtracted, while the triangles OpIqIr and quads I1I3IqIr (p, q, r ∈ {2, 4, 6, 8}) are
not subtracted if any of the sides OpIq, OpIr, or IqIr is behind I1I3.

will either be two-slippable, or inside the r-neighborhood of a corner or edge,
which shows that the input surface is covered by r-neighborhoods of finitely
many elements apart from the two-slippable regions, which are easy to extract.
See Section 4.4.1 for details.

The above considerations imply that the exact representation of each building
block is contained inside the r-neighborhoods of a finite number of geometric
features. These neighborhoods are easily enclosed by a set of spheres around
corner features and cylinders along line features (see Figure 7.5). It is there-
fore possible to extract a 3D manufacturable representation of our r-symmetric
building blocks via CSG operations with simple geometric primitives.

We implemented an algorithm that computes a CSG tree that encloses the r-
neighborhood of each building block. Intersecting the tree with the input model
delivers 3D manufacturable building blocks that can be assembled in the origi-
nal shape and its variations. In order to verify our extraction method, we used a
Fused Decompostion Modeling (FDM) 3D-printer to produce a set of construc-
tor pieces for several test models.We now discuss how this is performed for the
two types of building blocks we have: non-slippable (rigid) and (one- or two-)
slippable.

7.4.1 Rigid Pieces

Each non-slippable building block in our segmentation is defined by a set of cor-
ner points, with r-neighborhoods matching the r-neighborhoods of all equiva-
lent microtiles. Hence, the r-neighborhood of each microtile is contained inside
a set of spheres (around corner features) and cylinders (along line features) by
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Figure 7.7: The input (first model) can be decomposed into building blocks in three different
modes. One-slippable and two-slippabe microtiles can be generated separately (blue and
gray) or merged together (violet). It is sometimes possible to leave the two-slippable pieces
attached to the enclosed volume (second model). Some pieces are removed for clarity.

definition. This allows us to use a union of elementary shapes to cut out the
microtile together with its r-neighborhood from the input shape using CSG op-
erations. Similarly, by definition of r-symmetry each surface point at distance
not greater than r to any geometric edge with both ends inside the microtile has
an equivalent surface point in all microtile instances. Therefore, the geometry
inside these volumes is guaranteed to be identical (equivalent) for all microtiles
of a given type.

We need to take special care for overlapping r-neighborhoods of neighboring
tiles when extracting building blocks that need to be put together after manu-
facturing. Intersecting r-neighborhoods of instances of the same tile class are
present even in the simple example in Figure 7.5.

To resolve overlapping neighborhoods of tiles we modify the equivalence rela-
tion that defines our elementary building blocks. Initially microtiles are clas-
sified according to r-neighborhoods of corner features. We construct a new
decomposition by splitting classes of microtiles if they have different neighbors
at distance less or equal than 2r. This enables classifying r-neighborhoods of
corner points as well as intersections of these neighborhoods into equivalence
classes.

At this point, it remains to consistently separate pairs of corners and edges with
overlapping r-neighborhoods at each tile boundary. A general solution to this
problem is to construct a 3D Voronoi diagram and split along its edges. For
our tests, we constructed Voronoi regions only at corner points (see Figure 7.6).
We then extended the regions along edges using the convex hull of the Voronoi
regions at both end points of each edge. If pairs of neighborhoods constructed
in this way had intersections, we assigned the intersecting volume to the smaller
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Figure 7.8: Left – the input model (white), some of its corner features, their r-
neighborhoods and all visible r-slippable edges (black). Right - we extend the r-
neighborhoods of rigid pieces (green) along outgoing long edges to avoid concavities (out-
lined in yellow) that are likely to complicate the assembly of the manufactured pieces.

neighborhood. It is important to note that using Voronoi regions to separate r-
neighborhoods of corner points allows for preserving all planar cuts that split
rigid geometry through the middle of geometric edges shorter than r.

Although not essential for the evaluation of our method, this ensures a canonical
representation of the final pieces and allows for simplified extraction. This is
the case, because the shape of the extracted building blocks remains the same,
regardless of the order in which the pieces are ”cut out” of the input model.

Furthermore, for practical considerations, we extend the r-neighborhoods of
each rigid (non-slippable) building block in two ways depicted in Figures 7.8
and 7.9. In both cases we merge parts of the splippable geometry together
with rigid building blocks to make the assembly of the pieces less complicated.
One-slippable edges are shortened whenever their enclosing cylinder intersect
neighborhoods of rigid tiles at their end-points (see Figure 7.8). One-slippable
and two-slippable regions contained completely inside a rigid building block
are merged with the respective tile (see Figure 7.9). Both operations reduce
the interfering volumes between slippable and non-slippable building blocks
and may resolve issues with assemblability due to interlocking components.
However, the main reason for implementing these aspects was to make assembly
more convenient and reduce the concavities in the final pieces.

7.4.2 Slippable Pieces and Symmetry Cuts

After we have removed all rigid r-neighborhoods in the previous step, we can
extract one-slippable tiles by intersecting the modified input object with a set of
their enclosing cylinders.

The difference of the input shape and the remaining microtiles consists of all
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Figure 7.9: The spherical r-neighborhoods of corners (left) are merged with one-slippable
edges (middle) and two-slippable planar areas (right) of the model and then carved out of
the input model using CSG operations.

two-slippable building blocks attached to the volume enclosed by the shape. In
order to separate the individual planar pieces from the inner volume, one can
intersect them with their enclosing voxels. The last operation was not always
necessary (see Figure 7.7), but it increases the likelihood that the pieces can
be assembled after manufacturing. We parameterized the CSG tree for the slip-
pable building blocks to allow three types of cutting as illustrated in Figure 7.7.
For our experiments, we preferred to merge one- and two-slippable microtiles
together. This resulted in fewer building blocks and did not prevent assembly
for our test models.

As already discussed in Section 7.3, we separate slippable pieces along symmet-
ric pairs of global planar cuts in order to increase shape variability. Each pair
of planes defines an ”inner” and ”outer” region of the input model. From the
intersections of these regions we obtain a general, not necessarily rectilinear,
grid. We split the geometry in different grid cells by adding an intersection with
the respective cell volume to the CSG-tree used to extract the final pieces.

Some pairs of symmetric planes isolate a region consisting entirely of slippable
geometry, e.g. the middle section of the tower in Figure 7.7. If this is the
case, valid shape variations can be obtained by ”stretching” or ”shrinking” the
slippable building blocks. To construct variations of the same model in Figure
7.1 (right-most image) we computed segments with the original size and shorter
ones , e.g. of length r.

7.5 Evaluation

We demonstrate that our approach is practical by implementing all stages of the
pipeline depicted in Figure 7.1, apart from cutting the manufacturable building
blocks form the original shape, for which we used OpenSCAD [Ope] – a tool for
modeling CAD solids via scripts.

Decomposition Quality: We tested our method on several meshes of various
complexity displayed in Figure 7.10, 7.11, 7.12 and 7.14. Note that we do not
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microtilesinput optimized shape variations

Figure 7.10: A bridge is initially decomposed into 232 microtiles of 27 types, excluding
slippable elements. The optimized decomposition with two global cuts consists of 13 pieces
of 5 types including 5 slippable elements of 3 types. The initial cost of 1.39 was reduced to
0.26. We created some of the possible shape variations with the simplified building blocks.

microtilesinput optimized shape variations

Figure 7.11: A model of a modern building is initially decomposed into 246 microtiles of
36 types, excluding slippable elements. The optimized decomposition consists of 47 pieces of
28 types including 20 slippable elements of 17 types. The initial cost of 2.19 was reduced to
0.42. We preserved two global cuts and used them to construct some shape variations.

refer to the triangle count, but the number of partial self-symmetries, when
discussing the complexity of the input model. Our test models are subjects
to self-symmetries generated by a large number (in the order of 104 − 105) of
transformations. Our test results indicate that the graph transformations allow
for dramatically improving both the cost for the decomposition and the number
of building blocks, without reducing the shape variability significantly (see Table
7.1 and Figures 7.10, 7.11, 7.12,7.14, and 7.13).

Another strong point of the optimized decompositions is the significant amount
of redundancies encoded in the resulting pieces (measured by CR) , which never
represented more than 16% of all rigid neighborhoods. Even though we use
abstract test criteria, the substantial improvements in the shape decomposition
we obtain indicate the potential for a significant practical impact of our method.

Shape Variations: It is difficult to quantify by how much our simplifications
reduce the variability of shapes, because characterizing all shapes that can be
constructed from a context-sensitive tiling grammar is an undecidable problem.
We can however, guarantee that a certain variability will be present, as long as
there are some global symmetric cuts left in the decomposition.

For some models it makes sense to not compute the complete shape decom-
position as in Figures 7.10, 7.11, and 7.12, because the resulting set of pieces
might be too complex. In those cases it makes sense to modify the last step of
the pipeline and generate constructor pieces by splitting the shape only along
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microtilesinput optimized shape variations

Figure 7.12: A castle is initially decomposed into 693 microtiles of 53 types, excluding
slippable elements. The optimized decomposition consists of 191 pieces of 39 types including
42 slippable elements of 27 types. The initial cost of 1.31 was reduced to 0.65. In addition
to the three global cuts, we created shape variations by exchanging rigid pieces.

microtiles optimized shape variations

Figure 7.13: An asylum building is initially decomposed into 956 microtiles of 206 types,
excluding slippable elements. The optimized decomposition consists of 29 pieces of 13 types
excluding slippable elements. The initial cost of 2.26 was reduced to 0.31. We only used
the discovered global cuts to decompose the model and did not separate rigid and slippable
microtiles.

its global cuts (Figures 7.14, and 7.13). For each of these models, additional
variations cannot be obtained by re-introducing the separation between rigid
and slippable building block.

Note however, that in general the global cuts provide a subset of the shape vari-
ations. Individual rigid pieces can also be swapped, e.g. the tower tops in Figure
7.12 (4). Finally, the initial expressiveness of the shape grammar can be pre-
served by restricting the graph simplification operations, which coincidentally is
the case for the final decomposition of the tower and bridge models in Figures
7.1 and 7.10.

3D Manufacturing: In order to demonstrate that the decomposition we com-
pute is manufacturable, we used a Fused Decomposition Modeling 3D printer
(MakerBot Replicator 2 [Mak]) to produce the resulting pieces. Although we
cannot formally guarantee the assemblability of the building blocks we com-
pute, in practice, our heuristic works well: penalizing the overlap of the bound-
ing volumes of neighboring pieces sufficed and we did not encounter problems
when assembling our test models. It was also possible to assemble our test mod-
els even if the one and two-slippable pieces were printed together (see Figure
7.15).

Complexity parameters: We also explore how we can adapt the granular-
ity of our construction sets by varying parameters (Figure 7.17): Increasing
the weight αR for the redundancy term CR in the cost formulation limits the
amount of simplification and preserves more of the initially discovered partial
symmetries. This increases the amount of shape variations. In Figure 7.17, the
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microtilesinput optimized shape variations

Figure 7.14: A church is initially decomposed into 2276 microtiles of 395 types, excluding
slippable elements. The optimized decomposition consists of 8 pieces of 5 types excluding
slippable elements. The initial cost of 1.32 was reduced to 0.38. We only used the discovered
global cuts to decompose the model and did not separate rigid and slippable microtiles.

# rigid pieces # types of rigid pieces cost
init. opt. diff. init. opt. diff. init. opt. diff.

tower 104 8 13× 15 2 7× 1.21 0.28 4×
bridge 232 8 29× 27 3 9× 1.39 0.26 5×
house 246 27 9× 36 11 3× 2.19 0.42 5×
castle 693 149 4× 53 12 4× 1.31 0.65 2×
church 2276 8 284× 395 5 79× 1.32 0.38 3×
asylum 956 29 32× 206 13 16× 2.26 0.31 7×

Table 7.1: The improvement (difference) in the rigid building blocks and the overall cost of
the decomposition we achieved after optimization.

use of larger αR enables swapping the types of castle towers, modifying the
length of the castle walls, as well as more variations of the facade of the asylum
model. The difference between αR and the target number of cuts ntarget w.r.t.
creating shape variations is that not all related shapes preserved by αR can be
constructed using manufactured, rigid building blocks. Variations that involve
slippable geometry are problematic. For example, swapping the types of win-
dows in a facade after the building blocks are manufactured is only possible if
both pieces have the same silhouette. This makes the use of αR better suited for
modeling virtual shapes.

Performance: All computations were performed on a PC with an Intel Core i7-
3770K CPU, 16 GB of RAM, and an NVidia GeForce 570 GTX graphics card. The
initial symmetry detection took about 1 minute for the models in Figures 7.11
and 7.12. This is the most efficient stage in the pipeline – a näıve implemen-
tation would require hours for our test models, because of the tens of millions
symmetry transformations candidates (see Chapter 4). The random search of a
tile graph with optimal cost did take about 1 hour, because of the n4 random
samples of modified graphs we computed. This part of the implementation can
be made interactive, by providing feedback in sub-second times after a small
number of graph transformations and allowing the user to accept or discard the
modifications. Using OpenSCAD to perform the CSG operations and compute
the triangle meshes for the manufacturable building blocks was the slowest part
of the process. We do not consider this to be an important performance bottle-
neck, since each operation has to be performed as a post-process and only once
for each type of rigid building blocks and additional 2n times for the slippable
pieces, where n is the number of pairs of symmetric cuts. Therefore, we opted
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Figure 7.15: Our test models assembled from 3D printed building blocks. We used a Maker-
bot Replicator 2 to print all models. We manually removed the pair of horizontal global cuts
when manufacturing the castle model (right-most image) to simplify the assembly.

Figure 7.16: Variations of the asylum and church models assembled from 3D printed build-
ing blocks. We used a Makerbot Replicator 2 to print all models and only split the input
along global cuts to simplify assembly.

for highly tessellated meshes for the building blocks, resulting in run-times be-
tween several minutes and 8 hours for the most complex set of slippable pieces
of the castle model (Figure 7.12).

7.6 Limitations

The shape analysis approach presented in this chapter has several limitation
that provide interesting avenues for future work.

While we are able to guarantee that the building blocks will fit together, we
enforce assemblability with a soft constraint in our cost model. We penalize
the interference between neighboring building blocks to reduce the chance of
generating invalid assemblies. An interesting venue of future work is to find
a less-conservative objective that can ensure the existence of a disassembly se-
quence for the final decomposition.

A property of the building blocks we neglected so far is the structural strength
of the pieces. The scripts we use to generate the final pieces are parameterized
and allow adjustment of the thickness of the slippable pieces for 3D printing,
however the material and shape of the building blocks are currently not consid-
ered.

Finally, we limit the shape of the global symmetric cuts used to generate shape
variation in the slippable building blocks to infinite planes. Splitting along cuts
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of arbitrary shape is not easy to perform with the elementary CSG primitives
and operations we used in our tests. An interesting continuation of this work
would be to develop an approach to split the slippable parts of the input model
using more general types of cuts.

7.7 Conclusion

In this chapter, we employ the theoretical and algorithmic insights from Chap-
ters 3, 4, and 5 and make a first step towards developing a system for inverse
procedural modeling of physically realizable shape collections. Even though
some challenges remain to be addressed, our method already delivers promising
results and provides means for automatic creation of 3D-printable constructor
toys from virtual models.
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  αR = 1
ncuts = 1

5 classes
7 tiles

CR = 0.44  CC = 0.09  CO  = 0  CGC = 0

  αR = 4
ncuts = 1

15 classes
77 tiles

CR = 0.11  CC = 0.26  CO  = 0.07  CGC = 0

  αR = 8
ncuts = 1

21 classes
176 tiles

CR = 0.1  CC = 0.34  CO  = 0.23  CGC = 0

  αR = 1
ncuts = 2

9 classes
24 tiles

CR = 0.37 CC = 0.15  CO  = 0  CGC = 0

  αR = 4
ncuts = 2

17 classes
158 tiles

  αR = 8
ncuts = 2

16 classes
245 tiles

CR = 0.11  CC = 0.28  CO  = 0,23  CGC = 0 CR = 0.08  CC = 0.26  CO  = 0,28  CGC = 0

  αR = 1
ncuts = 2

26 classes
77 tiles

CR = 0.32  CC = 0.08  CO  = 0  CGC = 0

  αR = 2
ncuts = 2

24 classes
130 tiles

CR = 0.26  CC = 0.07  CO  = 0.04  CGC = 0

  αR = 4
ncuts = 2

34 classes
206 tiles

CR = 0.22  CC = 0.11  CO  = 0.04  CGC = 0

  αR < 1.75
ncuts = 2

4 classes
7 tiles

CR = 0.58  CC = 0.01  CO  = 0  CGC = 0

  αR = 1.85
ncuts = 2

49 classes
163 tiles

CR = 0.58  CC = 0.01  CO  = 0  CGC = 0

  αR = 4
ncuts = 2

86 classes
364 tiles

CR = 0.16  CC = 0.27  CO  = 0.25  CGC = 0

Figure 7.17: The granularity of the building blocks can be controlled by weighting the
redundancy term: CR with αR. Preserving more of the initially discovered symmetries can
increase the amount of shape variations like the length of the castle walls or the possible
facades of the asylum building. On the other hand, the smaller αR the better the overall
quality of the decomposition for manufacturing.
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8 Conclusion

The goal of this work is to give insights into how shapes are structured from
their partial symmetries. In the first part of this thesis we derive a universal
definition of building blocks using point-wise self-correspondences.

While the basic concept of a microtile is quite abstract – a connected set of sur-
face points that share their symmetry transformations, we show that these build-
ing blocks have a number of properties useful for characterizing shapes and for
a specific type of correspondences (r-symmetry) collections of related shapes.
The fundamental concept behind the definition of a microtile is to separate all
parts of the shape ”that are the same”. In other words, trough the microtiles of
a shape we structure its geometric redundancies and define a segmentation into
sets of equivalent (or identical) pieces. The notion of equivalence encoded in
the resulting decomposition allows to determine which parts of a model can be
exchanged without visibly changing its geometric shape, and enables splitting
the input into pieces that can be assembled in multiple ways, thereby creating
shape variations.

The proof of Theorem 1 is the main theoretical contribution of this thesis. We
show that using partial symmetries we can compute a formal description of
an entire family of shapes. A key insight that we gained while working on
the theoretical aspects of the microtile model, is that unlike global symmetries,
which are characterized only by their inducing transformations, partial symme-
tries are defined by the corresponding pieces and the transformations inducing
these correspondences.

A shape segmentation into building blocks, however interesting their properties,
is not very useful if it cannot be computed efficiently. We address the extraction
of microtiles with respect to rigid r-symmetry and develop an efficient algo-
rithm for decomposing shapes into elementary exchangeable pieces. While the
complexity of our algorithm is quadratic, we achieve runtimes fast enough to
make microtile decomposition a practical geometry analysis tool.

Being able to quickly compute microtiles allows us to explore application sce-
narios for the two main concepts behind them – the geometric redundancies,
and inverse modeling of similar shapes. However, it turns out that in both
cases using partial symmetries as the only criteria might not suffice for a good
segmentation. For example architectural models typically have a large number
of self correspondences that generate a dense decomposition into small build-
ing blocks. This makes the building blocks unsuitable for mass production and
manual assembly. We propose a solution with a graph-based tiling grammar
simplification algorithm that optimizes the initial microtile decomposition for a
particular application. The resulting segmentation still preserves some of the
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initial symmetries, but trades some of the geometric redundancies for other im-
portant and application dependent properties. In other words, the graph-based
simplification method allows for a good answer to a more specific question:
“What are the best building blocks for application X?”, as opposed to trying to
find pieces that are optimal only with respect to partial symmetries.

We use the combination of symmetry based segmentation and subsequent sim-
plification to develop a novel solution to a popular problem – triangle mesh
compression. This application maps well to the ability of the microtiles to en-
code geometric redundancies. We can then convert the initial redundancies in
the input shapes into redundancies w.r.t. the shape and its specific triangula-
tion. An interesting aspect of our method is that using instancing, allows for
ray tracing the compressed representation, without having to decompress in
advance.

Finally, the we try to address the challenging problem of automatically comput-
ing physically realizable families of shapes. The unique properties of microtiles
that relate them to tiling grammars for shapes, in addition to our grammar
simplification method, allow us to make first steps towards automatically de-
composing models into manufacturable sets of pieces that assemble into a num-
ber of shape variations. While our solution leaves a lot of avenues for future
work, after addressing a number of technical challenges we are able to create
constructor sets consisting of a few 3D manufacturable pieces that can be as-
sembled into a large number of shape variants – the most significant result of
this work.

With this work, we hope to have provided useful insights in the areas of symmetry-
based shape analysis, shape understanding, and automatic shape creation. While
some of the problems we approach are not fully solved, we believe that a
symmetry-induced shape segmentation can have a variety of applications, and
therefore the core concepts we explore in this work can prove useful. The prac-
tical methods in the the last two chapters provide evidence for this claim.
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