
Biomechanical Models for
Human-Computer Interaction

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Myroslav Bachynskyi, M.Sc.

Saarland University

Saarbrücken
September, 2016



Dekan – Dean:
Prof. Dr. Frank-Olaf Schreyer
Universität des Saarlandes, Saarbrücken, Germany

Kolloquium – Defense

Vorsitzender – Chairman of the Examination Board:
Prof. Dr.-Ing. Philipp Slusallek
Universität des Saarlandes, Saarbrücken, Germany

Gutachter – Reviewers:
Prof. Dr. Antti Oulasvirta
Aalto University, Espoo, Finland

Prof. Dr. Jürgen Steimle
Universität des Saarlandes, Saarbrücken, Germany

Prof. Dr. Albrecht Schmidt
Universität Stuttgart, Stuttgart, Germany

Akademischer Beisitzer – Academic Assistant:
Dr. Simon Olberding
Universität des Saarlandes, Saarbrücken, Germany

Datum - Date:
4. November 2016 – November 4th, 2016



Acknowledgements

For almost 5 years I have been working towards writing this thesis, and
many great people guided and supported me in achieving this goal. I
am very thankful to all of them and hope I do not forget to share my
gratitude for anyone.

First, I want to thank my first supervisor Antti Oulasvirta for his pa-
tience in building a scientist from an engineer. He is the person who
formed my way of thinking as a researcher while giving me freedom to
choose a research direction interesting for me. He always provided con-
structive feedback, guidance and help in dealing with diverse research-
related problems. I am very grateful for his continuous support and be-
lieving in my ability to succeed.

I want to thank my second supervisor Jürgen Steimle for welcoming
me into his group when I decided to stay at Saarland University. He
provided detailed feedback and recommendations and his guidance kept
me on track towards completion of the thesis.

I want to thank the key collaborators in our thesis-relevant projects,
Tino Weinkauf and Gregorio Palmas. They significantly contributed to
the success of the projects through joint planning and discussions of the
experiments and data analyses, and in particular through developing
beautiful, informative visualizations for the papers, reused also in this
thesis.

I want to thank my co-workers at the HCI and Embodied groups Gilles
Bailly, Anna Maria Feit, Srinath Sridhar, Mirella Scholtes, Simon Olberd-
ing, Martin Weigel and Daniel Gröger for providing a supportive, friendly
environment, and contributing many discussions, brainstorming sessions
and a lot of feedback, as well as helping and volunteering for user stud-
ies. Also, I want to thank all members of the Computer Graphics depart-
ment, Ubiquitous Media Technology Lab and Sign Language Synthesis
and Interaction Group for their feedback and constructive discussions at
multiple reading groups, HCI Stammtisch and CHI clinics.

iii



I want to thank Roderick Murray-Smith and the IDI group from Glas-
gow University, and Jörg Müller and the UBI group from Aarhus Univer-
sity for their support and discussions on the potential of biomechanical
simulation in the HCI field.

I want to thank Albrecht Schmidt for reviewing my thesis and raising
interesting practical questions at the defense.

This research would not have been possible without support from the
Max Planck Institute for Informatics, Cluster of Excellence on Multimodal
Computing and Interaction and Graduate School of Computer Science
and I want to thank Hans-Peter Seidel, Kristina Scherbaum, Michelle
Carnell and the administrative team for accepting me as a PhD student
in their departments and for providing financial support, equipment for
experiments, a creative working environment and help in dealing with
the foreigner-related bureaucracy.

My deepest thanks go to my family and friends for their endless sup-
port in all other matters. In particular I am grateful to my parents Josyf
Bachynskyi and Olexandra Bachynska for always encouraging me, to
my wife Kateryna Kravchuk for her patience, love and support—a great
source of motivation during all the years of my PhD, and my little son for
the special motivation he gave me in the last most difficult phases of the
thesis writing.



 

 

 

Дякую батькам 
For my parents 





Abstract

Post-desktop user interfaces, such as smartphones, tablets, interactive
tabletops, public displays and mid-air interfaces, already are a ubiqui-
tous part of everyday human life, or have the potential to be. One of the
key features of these interfaces is the reduced number or even absence
of input movement constraints imposed by a device form-factor. This
freedom is advantageous for users, allowing them to interact with com-
puters using more natural limb movements; however, it is a source of 4
issues for research and design of post-desktop interfaces which make tra-
ditional analysis methods inefficient: the new movement space is orders
of magnitude larger than the one analyzed for traditional desktops; the
existing knowledge on post-desktop input methods is sparse and spo-
radic; the movement space is non-uniform with respect to performance;
and traditional methods are ineffective or inefficient in tackling physical
ergonomics pitfalls in post-desktop interfaces. These issues lead to the re-
search problem of efficient assessment, analysis and design methods for
high-throughput ergonomic post-desktop interfaces.

To solve this research problem and support researchers and designers,
this thesis proposes efficient experiment- and model-based assessment
methods for post-desktop user interfaces. We achieve this through the
following contributions:

• adopt optical motion capture and biomechanical simulation for HCI
experiments as a versatile source of both performance and ergonomics
data describing an input method;

• identify applicability limits of the method for a range of HCI tasks;
• validate the method outputs against ground truth recordings in typ-

ical HCI setting;
• demonstrate the added value of the method in analysis of perfor-

mance and ergonomics of touchscreen devices; and
• summarize performance and ergonomics of a movement space through

a clustering of physiological data.
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The proposed method successfully deals with the 4 above-mentioned
issues of post-desktop input. The efficiency of the methods makes it
possible to effectively tackle the issue of large post-desktop movement
spaces both at early design stages (through a generic model of a move-
ment space) as well as at later design stages (through user studies). The
method provides rich data on physical ergonomics (joint angles and mo-
ments, muscle forces and activations, energy expenditure and fatigue),
making it possible to solve the issue of ergonomics pitfalls. Additionally,
the method provides performance data (speed, accuracy and through-
put) which can be related to the physiological data to solve the issue of
non-uniformity of movement space. In our adaptation the method does
not require experimenters to have specialized expertise, thus making it
accessible to a wide range of researchers and designers and contributing
towards the solution of the issue of post-desktop knowledge sparsity.



Zusammenfassung

Post-Desktop Benutzerschnittstellen, wie zum Beispiel Smartphones, Tablets,
interaktive Tische, Public Displays und berührungslose Schnittstellen, sind
bereits ein Teil des täglichen menschlichen Lebens oder haben Potenzial,
dies zu werden. Eines der wichtigsten Merkmale dieser Schnittstellen ist
die reduzierte Zahl oder sogar Abwesenheit von räumlichen Beschränkun-
gen der Eingabebewegungen, welche durch das Gerät vorgegeben wer-
den. Diese Freiheit ist von Vorteil für die Benutzer und erlaubt ihnen
eine Interaktion mit Rechnern mittels natürlicher Bewegungen, z.B. der
Extremitäten. Gleichzeitig erzeugt sie Schwierigkeiten für Forschung und
Design von Post-Desktop Benutzeroberflächen: der neue Bewegungsraum
ist um Größenordnungen größer als der früher analysierte Bewegungsraum
des Desktops; das vorhandene Wissen über Post-Desktop Eingabemetho-
den ist spärlich und sporadisch; der Bewegungsraum ist ungleichmäßig
in Bezug auf Kenngrößen der Benutzerleistung, wie etwa Bewegungzeiten;
traditionelle Methoden sind ineffektiv und ineffizient bei der Lösung von
Problemen der physischen Ergonomie von Post-Desktop Benutzerschnitt-
stellen. Diese Schwierigkeiten führen zur Forschungsproblem bezüglich
der effizienten Auswertung-, Analyse- und Entwurfsmethoden für er-
gonomische hochleistungs Post-Desktop Benutzerschnittstellen.

Zur Lösung dieser Probleme und zur Unterstützung von des Designs
solcher Schnittstellen schlägt diese Arbeit effiziente Experimentalmetho-
den und modellbasierte Auswertungsmethoden für Post-Desktop Benutzer-
schnittstellen. Wir erreichen dieses Ziel durch die folgenden Beiträge:

• wir passen optische Bewegungserfassung und biomechanische Sim-
ulation an MCI-Experimente an, um vielseitige Benutzerleistungs-
daten und ergonomische Daten von Eingabemethoden effizient zu
sammeln;

• wir ermitteln die Grenzen des Anwendungsbereiches der Methode
für diverse MCI Aufgaben;
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Zusammenfassung

• wir validieren die Ergebnisse dieser Methode im Vergleich zu etablierten
Methoden der MCI;

• wir zeigen den Mehrwert der Methode zur Ermittlung der Benutzer-
leistung und Ergonomie von Touch-Screen Geräten auf; und

• wir fassen die Benutzerleistung und Ergonomie des Bewegungsraumes
mittels Clusteranalyse von physiologischen Daten zusammen.

Die vorgeschlagene Methode begegnet mit Erfolg den vier oben genan-
nte Schwierigkeiten von Post-Desktop Benutzerschnittstellen. Die Ef-
fizienz der Methode erlaubt effektive Lösung der Schwierigkeit der Größe
des Bewegungsraumes von Post-Desktop Benutzerschnittstellen in frühen
Entwicklungsphasen (durch clusterbasierte Modelle des Bewegungsraum)
und in späteren Entwicklungsphasen (durch Benutzerexperimente). Die
Methode generiert vielseitige ergonomische Daten (Gelenkwinkel und -
momente, Muskelkräfte und -aktivierungen, Energieaufwand und Ermü-
dung) und erlaubt damit die Messung und Verbesserung der physische
Ergonomie. Zusätzlich generiert die Methode Daten der Benutzerleistung
(Geschwindigkeit, Genauigkeit und Bandbreite), welche mit den physiol-
ogischen Daten verglichen werden können, um die Schwierigkeit der Un-
gleichmäßigkeit des Bewegungsraumes zu lösen. Unsere Anpassung der
Methode erfordert keine Spezialkenntnisse von Experimentatoren, und
ist so für ein breites Spektrum von Forschern und Designern anwendbar.
Damit trägt sie zur Lösung der Schwierigkeit von Post-Desktop Benutzer-
schnittstellen bei.
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Chapter 1

Introduction
For decades humans have been interacting with computers using a nar-
row range of input devices such as keyboards, mice or touchpads. But
recent developments in touch and motion tracking technology have al-
lowed a new generation of input methods to emerge. Post-desktop user
interfaces, such as smartphones, tablets, interactive tabletops, public dis-
plays, gesture-based and full-body interfaces, e.g. Leap Motion or Mi-
crosoft Kinect, already are or have the potential to become ubiquitous
everyday user interfaces, in particular considering trends in the penetra-
tion of computing devices into all spheres of human life. One of the key
features of these input methods is the reduced number or even absence of
interaction movement constraints imposed by a device form-factor. This
freedom is advantageous for users, as it allows more natural interaction
with computers. However, development of post-desktop user interfaces is
a challenging task for interaction designers and researchers, as traditional
analysis and evaluation methods become inefficient in the new setting.

This introductory chapter provides an overview of current trends in
computer input methods and Human-Computer Interaction (HCI), cor-
responding design problems, traditional solving approaches and their
deficiencies in the new context. We motivate our search for new alter-
native methods and tools which can fill the emerging gaps in knowledge
and inform the design process. We propose motion capture-based biome-
chanical simulation as a potential method to deal with the issues of the
post-desktop interface design. We formulate the research problem and
identify the main challenges in adoption of the new method in HCI. Fur-
ther, we list our specific contributions in the adoption and adaptation
of biomechanical simulation for HCI tasks and corresponding scientific
publications. Finally, we briefly describe the outline and structure of this
thesis.
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Introduction

1.1 Benefits and Challenges of Post-Desktop In-
put Methods

There are many ways humans can express their intent to the external
world, for example voice, voluntary movements, biochemical activity,
electrical peripheral neural signals or brain activity. However, for com-
puter input, the only appropriate information medium in most cases is
human voluntary movement. It can be expressed as a button press, a
mouse-mediated aimed movement, a direct touch aimed movement, a
touchscreen or mid-air gesture, full-body movement, etc.

For decades, Human-Computer Interaction (HCI) was focused on a
narrow range of devices for computer input operated mostly by small
discreet hand and finger movements, for example keyboard, mouse or
touchpad. But rapid developments of touch and motion sensing tech-
nology in recent years give us more freedom to broaden the interaction
space and use not only our fingertips, but the whole body for computer in-
put. Nowadays touchscreen, tabletop, Inertial Measurement Unit (IMU),
camera or depth sensor-based interfaces have become a ubiquitous part
of human life.

The input methods beyond the desktop are capable to provide more
intuitive, easy-to-learn and enjoyable interaction, called Natural User In-
terfaces (NUI) [1]. Each input method or gesture can be selected so that it
matches users’ internal knowledge and understanding of an action to be
performed. For example, NUI allows manipulation of virtual 2D and 3D
objects resulting in object transformations equivalent to the ones known
from the physical-world manipulations. While computing devices pene-
trate into all spheres of human life as the internet of things [2], these input
methods gain huge potential to be applied everywhere, without explicit
visible physical input artifacts, and improve the quality of human lives.

It is considered that the naturalness of interaction with post-desktop
interfaces provides improved User Experience (UX) and as a result they
are particularly desirable for entertainment, and for most new systems in
general [3]. User Experience is a “user’s perceptions and responses that
result from the use or anticipated use of a product, system or service” [4].
It depends on a user’s internal state, the properties of the product and
the context of the interaction. To large extent UX is a subjective mea-
sure, but objective measures of performance and physical ergonomics reflect
on users’ perceptions: proper measures lead to satisfactory or improved

2
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UX, while bad ones degrade UX significantly, in particular in long-term
use [5]. Thus it can be considered that proper physical ergonomics and
performance are prerequisites for positive UX.

The post-desktop input methods give users freedom to use their ad-
vantages in multiple application scenarios, but also pose big challenges to
interface designers and HCI researchers due to the massive design space
of possible movements, non-uniformity with respect to performance, ab-
sence of a solid background in the area and multiple physical ergonomics
pitfalls.

The first issue concerns the size of design and interaction space: all
traditional input methods are linked to a physical input artifact, which
limits the design space and defines the potential movement space. For
example, the keyboard limits its design space to a sequence of discrete
keypress events, its hand movement space covers a small parallelogram
volume over the keys, and fingers perform flexion-extension movements
when pressing a key. The mouse limits its design space to planar aimed
movements, a few button presses and scroll wheel operations, and the
movement space covers usually smaller than 30cm×30cm, mostly planar
movements for the hand with up to 5cm in height during clutching, and
a few button and scroll wheel-specific flexion-extension movements for
the fingers. In contrast to these, the post-desktop input methods allow
complete freedom in continuous gesture, trajectory and manipulation-
based interaction, expanding the design space immensely. Even the de-
sign space of a keyboard is quite large, although it is based on discrete
key presses: the total number of possible letter to event mappings (for ex-
ample keyboard layouts) is 26! ≈ 4× 1026, leaving aside different types of
possible event sets. However, for post-desktop interfaces the design space
is continuous and the number of possible events, for example trajectory-
based gestures, which can be mapped to computer actions grows to infin-
ity. For example, considering such elementary action as a short directed
movement and the directional resolution of 10◦ we get a set of 614 alterna-
tives; further, if we use this set in trajectory-based gestures consisting of
a sequence of 12 such elementary actions (e.g. three characters “M”), the
design space already becomes 61412 ≈ 3× 1033, leaving smooth continu-
ous movements aside. The movement space includes all possible postures
and movements of human fingers, hands, arms and the whole body, and
is constrained only by the body’s internal skeletal joint constraints. Even
considering a single arm end-effector only, the corresponding movement
volume is 200 times larger than that of the mouse. Such large design and

3
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movement spaces complicate analysis of post-desktop input methods and
make traditional approaches inefficient or ineffective.

The second issue concerns the absence of solid body of knowledge
in design of post-desktop input methods. A body of knowledge is “a sys-
tematic collection of activities and outcomes in terms of their values, con-
structs, models, principles and instantiations, which arises from continu-
ous discovery and validation work by members of the profession and en-
ables self-reflective growth and reproduction of the profession” [6]. Years
of research and practice on many aspects of traditional input methods
have created a solid body of knowledge allowing effective development
of user interfaces based on these input methods. However, the existing
knowledge, namely design principles, models, templates and processes,
cannot be easily transferred to post-desktop input methods, as they pro-
vide broader input and movement spaces than the ones studied in the
past. Even the ubiquitous in HCI and extensively validated Fitts’ law
is limited in applications to post-desktop input methods, as described
in the following paragraph. Another example: application of the tradi-
tional desktop display layout with a menu placement at the top of the
screen to a large interactive public display leads to poor performance
and ergonomics, as the menu located above users’ heads requires sig-
nificant effort to operate, and even becomes an accessibility problem for
smaller or shorter users. Instead of extrapolating existing knowledge of
traditional interfaces, the post-desktop input methods require individual
broader data collection and analysis, which would eventually lead to de-
velopment of rules, best practices and templates for effective and efficient
post-desktop interface design. Unfortunately, the complexity of tradi-
tional analysis methods in application to post-desktop interfaces leads
only to sparse knowledge in the area, sporadically gathered in user stud-
ies.

The third issue concerns non-uniformity of the movement space
with respect to performance. Generally user performance is a measure
describing efficiency and quality in task completion, or more specifically
users’ speed and number of errors [7]. In the case of goal-directed move-
ments, in HCI a common performance measure is speed and accuracy,
or their relationship described by Fitts’ law and combined into a single
measure of throughput [8]. The traditional HCI input performance de-
scription and modeling methods (Fitts’ law and its derivatives) do not
consider the effect of the spatial location of targets with respect to hu-
mans on the movement accuracy, speed and throughput and assume that
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the whole movement space is uniform. While this assumption is reason-
able for small movement spaces of traditional input methods, it does not
work for post-desktop input methods, as the movements in various re-
gions of the large movement space are executed by different kinematic
chains and neuromuscular networks providing different levels of perfor-
mance and leading to non-uniformity. Thus, new performance models
need to be developed and applied for the analysis of post-desktop input
methods, which would take into account the non-uniformity and repre-
sent all nuances of human movements.

The fourth issue concerns a wide range of potential physical er-
gonomics problems induced by post-desktop input methods. Physical
ergonomics describes the risks to human musculoskeletal system imposed
by regular physical work activity or a particular movement task [9]. In the
context of HCI, physical ergonomics can be interpreted as a biomechan-
ical cost of interaction consisting from two components: musculoskele-
tal health risks and general energy expenditure coupled with fatigue.
It has been known for decades that prolonged or repetitive postures,
movements and human body-internal stresses can lead to injuries and
musculoskeletal disorders, in general known as cumulative trauma or
repetitive strain injuries (RSI). For example, although the loads caused
by a mouse and keyboard on our musculoskeletal system are relatively
low, after prolonged repetitive use over years, they often lead to carpal
tunnel syndrome or tendinitis. To reduce the bad impacts on human
health, these devices were extensively studied for physical ergonomics is-
sues, resulting in an elaborate set of related ergonomic recommendations.
Nowadays most device manufacturers take physical ergonomics recom-
mendations into account (specific shape, button pressing damping forces,
size, weight of devices), some of them putting physical ergonomics in first
place (vertical or tilted mouse, split keyboard, vertical keyboard). Besides
being a source of RSI, the input methods with poor physical ergonomics
often completely fail to be adopted by a wide population of users even
when they have excellent performance and learnability properties. An
example of this effect is the light pen, which was initially considered to
be the mouse-killer due to its intuitiveness, directness and high perfor-
mance [10], but failed to be widely adopted by computer users because
of the induced load and resulting fatigue to the shoulder and arm mus-
cles. The post-desktop input methods involve new types of postures and
movements, whose physical ergonomics effects have to be properly stud-
ied and understood before industrial production and wide public adop-
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tion. Unless the post-desktop interfaces will be developed according to
ergonomics recommendations derived from physical ergonomics studies,
they will either fail to be adopted, or will lead to a variety of disorders.

Unfortunately, even nowadays, only a few years after the beginning
of the post-desktop era in industry, we can already observe examples of
major failures, such as a number of Microsoft Kinect applications [11] or
Leap Motion [12], as well as adverse effects of poor designs on human
health, e.g. “smartphone neck” [13], “Blackberry thumb” [14] or “Gorilla
arm” [15]. The four issues mentioned in the previous paragraphs make
it extremely demanding for companies to perform extensive analysis of
their designs before reaching the users. Additionally, the time-to-market
period, continuously shrinking under pressure from competitors, does
not allow thorough assessment of performance and ergonomics using tra-
ditional methods, barely leaving time for technical testing of a product.
As a result many interactive products either provide poor ergonomics
(mid-air or touchscreen interfaces), or completely shift ergonomics de-
cisions to the end-user without giving any warning or recommendation
(hand-held devices). To solve this problem, we need more efficient per-
formance and ergonomics analysis methods for post-desktop interfaces,
which can fit tight timelines in industry and research.

The traditional approach to design of input methods was based on
User-Centered Design (UCD) [16]. UCD is an iterative process alternating
phases of context analysis, design, prototyping and evaluation of a user
interface prototype. While it can effectively lead to good designs, ev-
ery iteration becomes extremely time consuming, in particular in design
stages which involve user studies with a large design space and a variety
of design alternatives. To avoid this cost, some user evaluations can be
replaced by predictive models or simulations characterizing users. However,
there is a lack of such models for post-desktop input methods describing
physical ergonomics and performance.

Existing methods which were traditionally applied for physical er-
gonomics assessment reach their limits when working with post-desktop
interfaces due to their application cost, complexity, inaccuracy or super-
ficiality. For example, questionnaires are subjective and unreliable, and
often people cannot perceive the musculoskeletal discomfort or strain in
short-term studies, while long-term usage can lead to RSI. From the side
of objective measures, surface electromyography (sEMG) provides activa-
tion signals only for the close-to-skin muscles, and it suffers from cross-
talk and low reliability in dynamic movements. Invasive electromyogra-
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phy (iEMG) is too complex to apply and necessitates a clinical setting.
Additionally, most objective measurement methods are too cumbersome
to apply on the whole body and could interfere with the naturalness of
the interaction.

In order to make successful post-desktop interfaces, new, more effi-
cient and versatile physical ergonomics and performance methods need to be pro-
posed, explored and developed for HCI experiments, and ideally, further
adopted by the industry.

1.2 Main Objectives

As described above, post-desktop input methods need to assess both per-
formance and ergonomics within HCI. Traditional physical ergonomics
methods are too complex, costly, time-consuming, invasive to the human
body or intrusive to natural interaction. This prohibits an efficient analy-
sis, assessment and design process of post-desktop input methods.

This thesis aims to advance the current theoretical and methodolog-
ical base of HCI, as well as provide practitioners with more efficient
methods for performance and ergonomics evaluation of post-desktop
interfaces. This is achieved through the following objectives:

• provide an efficient performance and ergonomics assessment method
applicable and valid for analysis of post-desktop interfaces and tack-
ling the 4 issues described in the previous section;

• demonstrate the knowledge added by the method to the HCI field
by solving real HCI problems;

• inform the design of post-desktop interfaces with the proposed method
as a source of knowledge.

1.3 Approach and Methods

To achieve the research objectives, as a first step we need to propose a
method suitable for HCI deployment and efficiently dealing with post-
desktop interface research issues. We identify the potential method through
review of current and previous work from relevant research fields: er-
gonomics, biomechanics, kinesiology, sports and rehabilitation. As the
most suitable method, we consider motion capture-based biomechanical
simulation.
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Motion capture-based biomechanical simulation is a method which
integrates optical motion capture to record the human body and limb
movements with simulation of biomechanical processes producing them.
As the first step, optical motion capture records 3D trajectories of markers
attached to all segments of the human body according to anatomical land-
marks. These marker trajectories completely describe kinematics of the
human body, and directly are a source of movement performance infor-
mation. As the next step, biomechanical simulation transforms marker tra-
jectories in 3D space into human body skeletal kinematics, dynamics and
muscular control [17], which are a rich data source for ergonomics analy-
sis. This method is currently applied in research on rehabilitation [18] and
sports [19] and its potential has been recognized for industrial ergonomics
research [20]. It has potential to become a great tool also for HCI research
and interface design, since the motion capture equipment and compu-
tational cost are not a bottleneck anymore [21], and a range of biome-
chanical models and simulation software are available for a reasonable
price (SIMM, AnyBody, LifeModeler), or even open source (OpenSim).
However, before the work described in this thesis, motion capture-based
biomechanical simulation has not been applied in HCI.

The method can tackle the four issues of post-desktop input by pro-
viding data for efficient and cheap analysis of both performance and
ergonomics, namely biomechanical stresses, muscular loads and end-effector
speed and accuracy. As it does not restrict natural human movements by
sparsely attached markers, it can be applied to most types of movement-
based HCI tasks. However, for analysis of post-desktop interfaces, this
method brings the largest benefits providing information to avoid cum-
bersome postures or straining movements. As the method is efficient to
apply, it is possible to use it not only for evaluation of interface proto-
types, but for recording of data describing the whole movement space,
which can be used to inform the design. Additionally, performance and
ergonomics data can be analyzed synchronously in a combined manner
to identify optimal trade-offs between them, or to relate performance data
with respect to biomechanical system segments executing the movement.

In contrast to existing design methods such as UCD, and previous
physical ergonomics methods such as EMG or videometry, the applica-
tion cost, required expertise, intrusiveness to the task and invasiveness to
the human body of motion capture-based biomechanical simulation are
at an acceptable level. However, before wide adoption of the method in
HCI, a few problems still need to be solved. In contrast to the fields where
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the method is already successfully deployed (eg. rehabilitation, sports),
the HCI field has few key specifics:

• it covers a wide range of movement types, from barely observable
finger movements to large whole-body movements;

• HCI experimenters do not have much experience with biomechanics
or physiology;

• there are fewer resources which can be spent on each study par-
ticipant, prohibiting fine-tuning of experiment and model for each
participant;

• there is no advance interest in a particular body segment; rather, the
segment of interest is identified in the study;

• the focus is on analysis of the whole population rather than a par-
ticular participant.

We need to identify applicability limits of the method for HCI-specific
movements, validate the method outputs in the HCI setting, evaluate
usefulness of the generated data for HCI research and produce data gen-
eralizations to inform post-desktop interface design.

Our goal is to develop motion capture-based biomechanical simula-
tion as a generic method for HCI which can be applied without strong as-
sumptions about specific motion capture equipment, involved types of
movements, or experimenter expertise. In this thesis we want to adapt
the method for user experiments in the HCI setting, evaluate the value
of its output data for HCI research, and generalize the data to inform
interface design.

To achieve the goal we perform interdisciplinary research integrating
existing knowledge from the fields of human-computer interaction, com-
puter science, physical ergonomics, kinesiology and biomechanics, and
adapt it for the new environment. As a result, in our research we use
not only the generic scientific method [22] but also the methods and
tools specific for each of the fields. We use systematic cross-field litera-
ture review to position the proposed method in the context of the related
methods and identify its advantages and disadvantages, controlled lab-
oratory experiments to validate the method and evaluate its applicability
limits, simulations to get data for relevant aspects not available from mea-
surements, interactive visual data exploration to explore patterns in the data
and identify specific insights, computational and statistical methods to build
generalizations and models of the data, and deductive and inductive logic
to derive practical recommendations and draw experiment conclusions.
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Mostly we work with and draw our conclusions from quantitative data
such as EMG, optical motion capture and force recordings, length mea-
surements of participants’ body segments, and their body weight, as well
as computation and simulation results, but we use also qualitative data
collected in questionnaires and personal interviews. To achieve general-
izability of the experimental data, we recruit a diverse participant popu-
lation, or in the case of detailed data collection from a single participant
we validate the recorded data against the subset recordings of a set of
other participants.

1.4 Problem Statement and Research Questions

The overarching research problem considered in this thesis is:

How can we efficiently design, analyze and assess high-throughput
ergonomic post-desktop input methods?

This is a broad problem and it has multiple approaches to the solution.
To be more specific, we split the problem into 3 smaller steps required to
achieve the solution. These steps systematically tackle the four issues
of post-desktop interface design. We state concrete research questions
related to each step and answer them in the thesis.

Step 1: Proposing an efficient method to measure and generate per-
formance and ergonomics data.

In order to solve the issue of the large design and movement space,
we need a method which is efficient and low-cost compared to
current methods. Additionally, to understand the issues of perfor-
mance and ergonomics, we need to be able to generate both types
of data.

Question 1.1: How can we efficiently measure and generate
objective performance and physical ergonomics data?
At first, we need to identify an efficient method able to provide
objective data on performance and physical ergonomics. Under
“efficiency” we consider the ability of the method to generate
the desired data with minimal duration, resource and expertise
overhead with respect to an HCI user study without actual data
collection. It needs to have low setup overhead, and require
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affordable equipment, limited experimenter expertise and as
little interference with the experimental task as possible.

Question 1.2: What are the applicability limits of the pro-
posed method with respect to a variety of tasks within HCI?
Under “applicability limits” we understand the range of tasks
for which the method can technically succeed and provide re-
alistic results. HCI tasks are extremely diverse and cover move-
ments of various types, amplitudes, locations, velocities, kine-
matic chains, end-effectors, accuracy and force characteristics.
We need to identify this range of tasks which can be assessed
by the method, and specify the limitations, and possible im-
provements of the method with respect to them, in the near
future.

Question 1.3: Does the method produce valid outputs in the
HCI setting?
We need to ensure that the method is “valid”—it provides cor-
rect data, not critically affected by noise or bias when applied
in experiments with resources, expertise, scope, focus, tasks
and goals common for HCI.

Step 2: Evaluation of the usefulness of the generated data for input
method research and design.

In order to solve the issue of physical ergonomics pitfalls and pro-
vide a base for addressing the performance non-uniformity issue,
we need to evaluate the data generated by the method with respect
to its usefulness for HCI research and input method design. Addi-
tionally, this step provides some insights for post-desktop interface
design towards a solution of the issue of absence of prior knowl-
edge.

Question 2.1 Does the data provide new insights with respect
to input performance?
A lot of knowledge has been accumulated in tens or even hun-
dreds of user studies on the performance of various types of
movements and through various types of devices. We need
to evaluate the value of the performance data provided by the
new method, whether it provides deeper insights compared
to the previous knowledge and how significant the differences
are.
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Question 2.2 Does the data provide new insights with respect
to physical ergonomics?
Although previously physical ergonomics was not considered
deeply in HCI, there is a large body of relevant knowledge in
the field of industrial ergonomics. The previous work from
industrial ergonomics does not deal with post-desktop or ges-
tural interfaces, but we still need to assess how advantageous
the new method is compared to it, and whether it can provide
insights beyond designers’ intuition or the existing knowledge.

Question 2.3 Does the data provide new insights concern-
ing the relationship between performance and physical er-
gonomics? The past research in performance and ergonomics
was separated between the two fields. The new method should
provide both performance and ergonomics data in a synchro-
nized way, which allows joint analyses. We need to identify
how large the benefits of joint analysis of the two aspects are,
compared to the previous separate analyses.

Step 3: Proposing generalizations and models of the data to inform
the design on early stages without user studies.

This step provides a solution for the performance non-uniformity
issue by relating the non-uniformity with biomechanical bases. Fur-
ther, this step systematizes movement space in a model towards a
solution of the issue of absence of prior knowledge for post-desktop
interfaces. It is demonstrated on a case of free-arm mid-air interac-
tion and models the space reachable by the arm.

Question 3.1 How can we reduce complexity of multidimen-
sional joint performance and ergonomics dataset to enable a
quick overview?
As the human body is very complex system, physical ergonomics
is represented by a large number of variables describing both
static and dynamic loads at each body segment, and adding to
this movement performance variables. In order for this data
to be useful in early stages of the design process, we need a
short but comprehensive and interpretable overview uncover-
ing general patterns present in the data.
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Question 3.2 How can we model performance of movements
in large non-uniform movement space?
The post-desktop movements are highly non-uniform with re-
spect to performance, as they are executed by various kine-
matic chains and neuromuscular groups. However, current
movement performance models used in HCI, namely Fitts’ law
and its derivatives, consider the whole movement space as uni-
form and relate performance with only target size, amplitude
and in some cases approach angle. We need to update move-
ment performance models to be consistent with post-desktop
input methods and the non-uniformity of the movement space.

1.5 Contributions

The goal of this thesis is to support efficient performance and ergonomics
assessment of post-desktop input methods. It solves the four issues of
post-desktop input method design in the following way:

• in order to avoid physical ergonomics pitfalls, we review the method-
ology of corresponding fields. We identify motion capture-based
biomechanical simulation as a method providing the richest set of
ergonomic variables without the need to specify the context in ad-
vance before the experiment.

• in order to be able to deal with the large post-desktop movement
space, we consider efficiency of the method as well as informative-
ness. The motion capture-based biomechanical simulation is effi-
cient and needs only slight overhead compared to regular Fitts’ law
studies.

• in order to tackle the non-uniformity of the space with respect to
performance, we associate input performance with the underlying
physiology executing the movement. The resulting mapping effec-
tively produces homogeneous regions within non-uniform space,
which are modeled well by simple Fitts’ law.

• in order to avoid problems with sparse knowledge of post-desktop
interfaces, we adapt motion capture-based biomchanical simulation
as an experimental method for HCI tasks by making it more accessi-
ble for non-experts, and further lower the expertise barrier through
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movement space summarization. In this way, HCI researchers and
designers can more broadly apply the method without need for
biomechanics expertise, and with low overhead compared to reg-
ular HCI experiments, which should result in improved coverage
of post-desktop research problems and contribution towards a solid
body of knowledge on post-desktop input.

Following the order of research questions, our contributions are made
in 3 steps:

• based on review of relevant fields, we identify the method suit-
able for efficient performance and ergonomics assessment—motion
capture-based biomechanical simulation. We adopt the method to
the HCI setting, and subsequently evaluate its applicability limits
and validity of outputs through two user studies.

• to demonstrate added value of the method, we apply it to real HCI
tasks of touch surface analysis and comparison as well as analysis of
ergonomics of tablet interaction. We perform a 40-participant user
study, process the data and contribute to the research community
the consolidated dataset as well as a number of its analyses.

• to inform the design of post-desktop input methods and lower the
expertise barrier we create a data-driven model which integrates
physical ergonomics as well as tackles performance non-uniformity—
the muscle co-activation clustering. We achieve this through an
extensive user study uniformly covering whole-arm aimed move-
ments in reachable space, processing of the collected data and ap-
plication of statistical learning methods.

In the context of the HCI field the contributions can be classified into the
following categories:

• Methodological: We systematically review methodology of relevant
fields and identify the method which bears the highest potential for
the HCI field, namely motion capture-based biomechanical simula-
tion. To adapt the method for HCI, we create a pipeline lowering
the expertise barrier of its application, in two user studies we as-
sess applicability of the method for HCI tasks and its validity in
the HCI setting, and in another two experiments we consider the
information provided by the method and its value for HCI.
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• Theoretical: In most previous work on understanding users human
performance was considered separately from ergonomics. In con-
trast to this, our work describes joint quantitative analysis of per-
formance and ergonomics. Furthermore, to our knowledge we are
the first to perform joint analysis of touch interaction with 5 vari-
ous types of surfaces and directly compare them. We enrich current
understanding of mid-air aimed movements by encompassing the
non-uniformity of movement space into a set of equivalence classes
derived using hierarchical clustering of muscle activation patterns.

• Technical: We develop a data processing pipeline to streamline the
biomechanical simulation and allow a quick start with the method
for non-experts. Additionally, together with our collaborators we
create an interactive visualization tool allowing case-specific spatial
interactive visualization and analysis of biomechanical, experimen-
tal and performance data using linking and brushing.

• Design: Our analyses contribute to design recommendations for
mid-air interaction with computer vision-based interfaces, or touch
interaction with public displays. Findings from the study of per-
formance and ergonomics of touch surfaces give recommendations
concerning each type of surface and can inform design of multi-
surface interfaces. Furthermore, deeper analyses of ergonomics data
of hand-held devices reveal that most users interact with the devices
in harmful postures. We raise this problem and provide recommen-
dations on how to avoid or improve the postures.

1.6 Relevant Publications

This thesis is based on and contains parts, including figures and tables,
of research described in the following publications. Each reused segment
is marked by footnotes. Some of the visualizations or their parts reused
from the papers were created by our collaborators from the visualization
group.

Peer-reviewed:

1. M. Bachynskyi, “Physical ergonomics of tablet interaction while sit-
ting,” Proceedings of the 39th Annual Meeting of the American Society of
Biomechanics, ASB, August 2015.
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2. M. Bachynskyi, G. Palmas, A. Oulasvirta, J. Steimle, and T. Weinkauf,
“Performance and ergonomics of touch surfaces: A comparative
study using biomechanical simulation,” Proceedings of the 33rd An-
nual ACM Conference on Human Factors in Computing Systems, pp. 1817–
1826, ACM, April 2015.

3. M. Bachynskyi, G. Palmas, A. Oulasvirta, and T. Weinkauf, “In-
forming the design of novel input methods with muscle coactiva-
tion clustering,” ACM Trans. Comput.-Hum. Interact., vol. 21, no. 6,
pp. 30:1–30:25, ACM, January 2015.

4. G. Palmas, M. Bachynskyi, A. Oulasvirta, H.-P. Seidel, and T. Weinkauf,
“MovExp: A versatile visualization tool for human-computer inter-
action studies with 3D performance and biomechanical data,” IEEE
Trans. Vis. Comput. Graphics, vol. 20, no. 12, pp. 2359–2368, IEEE,
December 2014.

5. M. Bachynskyi, A. Oulasvirta, G. Palmas, and T. Weinkauf, “Is mo-
tion capture-based biomechanical simulation valid for HCI studies?:
Study and implications,” Proceedings of the 32nd Annual ACM Con-
ference on Human Factors in Computing Systems, pp. 3215–3224, ACM,
May 2014.

Poster papers:

7. M. Bachynskyi, A. Oulasvirta, T. Weinkauf, and G. Palmas, “Biome-
chanical simulation in the analysis of aimed movements,” CHI ’13
Extended Abstracts on Human Factors in Computing Systems, pp. 277–
282, ACM, 2013.

In addition to the main papers, the following papers not directly related
to the thesis topic have also been published.

9. G. Palmas, M. Bachynskyi, A. Oulasvirta, H.-P. Seidel, and T. Weinkauf,
“An edge-bundling layout for interactive parallel coordinates,” Visu-
alization Symposium (PacificVis), 2014 IEEE Pasific, pp. 57–64, March
2014.

10. A. Oulasvirta, T. Weinkauf, M. Bachynskyi, G. Palmas, “Gestikulieren
mit Stil,” Informatik-Spektrum, vol. 37, no. 5, pp. 449–453, Springer,
October 2014.
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11. A. Oulasvirta, A. Reichel, W. Li, Y. Zhang, M. Bachynskyi, K. Ver-
tranen, and P.-O. Kristensson, “Improving two-thumb text entry on
touchscreen devices,” Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2765–2774, ACM, 2013.

8. A.-M. Feit, M. Bachynskyi, and S. Sridhar, “Towards multi-objective
optimization for UI design,” CHI 2015 Workshop on Principles, Tech-
niques and Perspectives on Optimization and HCI, Seoul, Korea, April
2015.

9. M. Bachynskyi, “Towards biomechanicly-inspired index of expert
drawing gestures complexity,” CHI 2014 Workshop on Gesture-based
Interaction Design: Communication and Cognition, Toronto, Canada,
pp. 65-68, April 2014.

1.7 Thesis Structure

The thesis is structured according to the order of the research questions:

• In Chapter 2 we consider Research Question 1.1 by providing a
broad overview of the related work.

• In Chapter 3 we continue with Research Question 1.1 by describ-
ing methods of motion capture-based biomechanical simulation and
the adaptations necessary to apply it for HCI tasks. We describe the
pipeline, which integrates both performance and ergonomics assess-
ment within a single dataset, and tools developed for its analysis.

• In Chapter 4 we consider Research Question 1.2 by describing a
user study aimed to assess applicability limitations of the method
for 5 HCI-specific tasks.

• In Chapter 5 we consider Research Question 1.3 by validating the
method outputs against ground truth muscle activation data, recorded
as EMG for full-arm aimed movements.

• In Chapter 6 we consider Research Questions 2.1, 2.2 and 2.3 by
providing examples of the application of biomechanical simulation
for analysis of 3 different tasks, and highlight the value added by
the method.
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• In Chapter 7 we consider Research Questions 3.1 and 3.2 by de-
scribing a compact summarization of the whole movement space of
the arm using muscle co-activation clustering. Based on this sum-
marization, we approach the non-uniformity of movement perfor-
mance.

• In Chapter 8 we summarize the research described in this thesis
in the context of research questions and propose future research
directions to improve the method.
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Chapter 2

Background & Related Work

The work described in this thesis bridges the fields of HCI with Er-
gonomics, equips input method designers with powerful tools from Biomech-
nical research, and makes Biomechanical Modeling and Simulation more ac-
cessible for non-expert users. It proposes an efficient method to assess
performance and physical ergonomics of post-desktop input methods,
evaluates its applicability and validity in the HCI setting, demonstrates
the value added by the method, and to further lower the expertise bar-
rier, develops a summarization of a whole-arm movement space through
a muscle co-activation clustering.

This chapter provides background on the state of the art of each rel-
evant field and highlights new insights gained in this thesis. In order
to provide context on the current state of the HCI field, we describe, in
the first section, general approaches of input method design, principles
and goals of traditional input method design, and the specifics of post-
desktop input methods. We highlight user performance and physical
ergonomics as two of the most important design objectives, and describe
the methods and models to assess them in more detail in the next 2 sec-
tions. We pay special attention to previous digital human simulations in
HCI and ergonomics, as they are the closest ancestors of the biomechan-
ical simulation within these fields. We provide background on motion
capture-based biomechanical simulation by describing the state of the
art of biomechanical modeling and simulation, including the established
practices and methods, their explored limitations and general validity. In
this way we provide a basis to answer Research Question 1.1. Further,
we describe previous approaches of summarizing biomechanical data and
extracting higher-level features using machine learning methods. Finally,
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we put the work performed within this thesis into perspective with the
existing knowledge and highlight its novelty and overall gains.

2.1 Input Method Design

Input method design is an area within HCI which deals with shaping and
development of information transfer methods from the user to a comput-
ing system. Over more than 30 years the HCI field has established stan-
dard practices, rules and processes to design user interfaces for personal
computers [23]. However, the traditional methods turn out to be ineffi-
cient for design of input methods “beyond the desktop”, for example for
vertical touch displays, mid-air or full-body gestural input methods. One
of the main reasons for this is that in the past the task of input method
design was split between two fields:

• Industrial design dealt with design and development of hardware
and physical input artifacts, for example mice, keyboards or joy-
sticks, and their appropriate physical ergonomics assessment.

• Human-computer interaction dealt with cognitive and information
processing aspects of computer input in software, for example trans-
fer functions, menu hierarchy, control elements placement on the
display, etc., and analysis of their usability in terms of effectiveness,
efficiency and satisfaction.

The input artifacts for traditional input methods usually constrained
movement types and ranges to a small area, which allowed thorough
analysis of physical ergonomics. Further, the HCI field benefited from
limited movement space of the artifact, as it provided a good basis for
the input space uniformity assumption, necessary for user evaluations,
as well as development and application of user performance models.

In contrast, post-desktop input methods do not constrain movement
space, and as a result give more movement freedom to users, challenging
designers. The designers have to deal simultaneously with both cognitive
as well as biomechanical properties of an input method. For example,
when designing a mid-air gesture the designer has to consider move-
ment ranges, physiological loads and fatigue as an ergonomics expert,
and learnability, cognitive load, memorability and errors as a HCI ex-
pert. Additionally, the physiological and cognitive properties of an input
method interleave when looking at efficiency and satisfaction.
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Fig. 2.1: User-centered design process [24]

2.1.1 Design Process

Since its establishment as a separate field, HCI has developed a num-
ber of design methods, approaches and processes, the most effective of
which are documented as international standards [4, 24, 25]. As even the
greatest products and systems can fail if they do not meet user needs, the
user is often recognized as a central person in the design, for example
in user-centered design (UCD) [16, 26, 27], or participatory design [28, 29]
approaches.

UCD is a design process which deeply involves end-users through-
out the whole period of shaping and development of a product, which
makes it possible to define and meet multiple design goals: matching a
user’s conceptual model and his knowledge, skills and capabilities, and
providing consistency, useful and informative feedback, error recovery
and simplicity. UCD ensures that a product can be used by the end-users
to achieve their goals with effectiveness, efficiency and satisfaction in the
specified context of use, or in other words, UCD ensures good usability
of the product. It is one of the most effective design processes, and that is
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why it has became an international standard [4, 24]. As can be observed
in Figure 2.1, UCD consists of multiple iterations of 4 activities [16, 24]:

1. understand and specify the context of use,

2. specify the user requirements,

3. produce design solutions,

4. evaluate designs against requirements.

In the first step designers need to understand the user and his tasks
and context of use, so they perform research with real people represent-
ing a prospective user population. The designers apply ethnographic
study, contextual inquiry, prototype testing, or other methods, or careful
analysis of similar products if available. In this way the designers gather
necessary information to understand real user problems, tasks, needs,
and the context in which they emerge.

After the context is specified, the next step is to establish the user
and organizational requirements. The requirements need to cover mul-
tiple aspects of the system and define trade-offs between them: system
performance, development and operation cost, legal requirements with
respect to safety and health, interaction of multiple users and stakehold-
ers, users organizational task requirements, user performance, integration
and learning cost, maintenance cost, workstation design and interface de-
sign.

In the third stage the design ideas are generated and further imple-
mented in the system prototypes. The designers have to take into account
previously specified requirements and widely accepted user interface de-
sign principles [16, 23]. The prototypes imitate functionality of the final
system to present it early to users for their feedback. The prototypes
can be of different fidelity levels, from simple sketches to imitation of the
working system through the “Wizard of Oz” technique [16].

The fourth stage is evaluation of the prototypes, ideally with potential
users through usability testing. The users are presented with the proto-
type as a working system and asked to complete a set of typical tasks.
During the experiments users are observed by the researchers, who col-
lect a range of qualitative and quantitative data. If a product was already
deployed, the data can be collected directly in real use by user population
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by providing an alternative design to a subset of users. This data is fur-
ther used to identify deficiencies of the interface, and as input for design
refinement.

There are a few design processes close to UCD, for example human-
centered design [30,31], activity-centered design [31,32], and goal-directed
design [33, 34]. They differ mostly in the focus of the design process, but
the process itself stays close to the UCD and contains similar steps, in-
volving user research, analysis and evaluation.

While UCD is a widely used and effective design process, it still has
its deficiencies; for example, the cost of prototypes and user studies can
be high, the participants of user studies can poorly represent the user
population, and the design process can take a considerable amount of
time, increasing time-to-market and posing a risk of losing against com-
petitors. For this reason, considerable effort was invested by the research
community into model-based interface design and development of gen-
eralized human models, which can provide cheaper, more accessible and
information-rich alternatives to inform input method design [35–37].

The user models can serve two purposes: first, they provide relevant
analytical information on the user research stage, and second, they help
to evaluate prototypes without performing user experiments. Most mod-
els within HCI describe users’ cognitive processes and information pro-
cessing performance to complete a task, for example GOMS [38, 39] or
KLM [40]. Additionally, all operations within a cognitive model of a
task are represented by operation-specific models, for example movement
performance models such as Fitts’ law [41], selection time models such
as Hick-Hyman law [42] or power law of practice [43], etc. The domain-
specific models from the ergonomics field estimate postures [44,45], phys-
iological loads within the body [46,47], injury risks [48,49], energy expen-
diture and muscular fatigue [50, 51], etc. Similarly as GOMS aggregates
operation-specific models in HCI, the ergonomic models are aggregated
into complex Digital Human Models [52,53]. We provide more details on
the existing models in Sections 2.3 and 2.4.

Both UCD and model-based design have their pros and cons, and
typically are applied interchangeably depending on a stage of product
development [23]. That is why the goal of this thesis is to support efficient
evaluation of physical ergonomics together with performance of post-
desktop input methods on both early and late stages of the design process
within UCD and model-based design.
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2.1.2 Performance & Ergonomics—Key Objectives of In-
put Method Design

UCD and usability evaluation ensure achievement of requirements and
goals set up for a particular product. The exact goals differ for each prod-
uct, but usually they systematically cover a few categories. As defined
by ISO9241-11 [25] these categories are effectiveness, efficiency and satis-
faction. Nielsen defines 5 categories: learnability, expert user efficiency,
memorability for infrequent users, frequency and seriousness of human
errors, and subjective user satisfaction [54]. Quesenbery proposes another
formulation, 5E: efficient, effective, engaging, error tolerant and easy to
learn [55]. These formulations cover the same range of aspects, with slight
differences between category details.

Each category is assigned a priority, depending on the actual user
interface and application. When focusing on an input method which is
used regularly for prolonged periods, two goal categories naturally get
high priorities: performance and ergonomics.

Input performance closely corresponds to the above-mentioned ef-
ficiency category and additionally contributes to satisfaction, as reach-
ing high input performance in a task improves user satisfaction. Per-
formance is the most important factor in technology acceptance models
for professional use [56–58], and one of the most important factors for
hedonic-motivation systems acceptance models [59]. These models quan-
tify whether the user population will adopt or ignore a particular tech-
nology.

The physical ergonomics category is orthogonal to the usability cate-
gories listed above and contributes to most of them, for example an input
method with poor physical ergonomics would fail even if it is intuitive,
easy to understand and efficient. The best example for this is Light Pen,
which was considered as the “mouse killer”, but failed in user adoption
due to poor physical ergonomics, namely due to high fatigue levels [60].

2.2 Body of Knowledge in Desktop and Post-
Desktop Interface Design

In the next sections we present an overview of the current body of knowl-
edge with respect to performance and ergonomics for traditional input
methods, touch-based and mid-air interfaces. The overview of traditional
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Fig. 2.2: Collection of traditional input devices [61]

input methods we provide as a baseline, to highlight the research deficit
in post-desktop input methods. This thesis contributes to the knowledge
on both touch-based and mid-air input methods through novel user stud-
ies, datasets and analyses.

2.2.1 Traditional Input Methods

Traditionally HCI was focused on interaction with personal computers
(PCs) using physical input artifacts such as a keyboard, mouse, joystick,
touchpad, trackball, etc. (Figure 2.2). At that time the tasks of ergonomics
and performance assessment were split between two fields: HCI and
industrial design. Both fields have developed corresponding methods,
which rarely intersected in research, and even if they intersect, it is not
particularly deeply—every paper has a clear focus within its own field,
and can only briefly mention some concerns related to the other field. So
it is logical to describe the related work as split into two parts: physical
ergonomics and input performance.

Physical Ergonomics

Since the penetration of personal computers into the work environment,
they became the object of interest for a multitude of physical ergonomics
works [62]. Each of the papers either covers work with personal com-
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puters in general [63–65], or is focused on musculoskeletal health effects
of interaction using a particular computer form-factor [66–68] or input
device, such as a keyboard [69–71], mouse [72–74] or touchpad [75]. A
large fraction of works are questionnaire-based, but they often cover im-
pressively large user populations, from a few hundred [76, 77], up to a
few thousand [72, 78]. Fewer works are based on user observations [79]
and objective measurements of videometry [68, 80], goniometers [68, 81],
EMG [74, 82, 83], grip and interaction forces [74, 84], or even pressure in-
side the carpal tunnel [81].

Concerning interaction with personal computers in general, it has
been found that total time of interaction per day or per week is associated
with higher risk of musculoskeletal disorders of the neck, upper back,
shoulder and arm [64, 76], in particular for females [63, 65]. Addition-
ally, muscle activity of the upper back and shoulder muscles is increased
under high mental demands [82], which also increases the risk of corre-
sponding musculoskeletal disorders [77]. Prolonged computer use is par-
ticularly problematic for musculoskeletal health of children [78,85], as all
of them use incorrect postures [79] at computer and further adopt them
habitually [86]. Researchers have developed corresponding ergonomics
models [87] and guidelines [69, 88–90] describing workplace setup and
activity patterns, which, when adopted, should reduce musculoskeletal
risks during computer work.

Concerning individual device types, laptops are disadvantaged com-
paring to desktops, as individual input and output components cannot
be detached and adjusted, thus leading to a non-optimal workplace setup
and particularly bad postures when used on the lap [66–68]. Computer
mouse usage increases loads, muscle activity and contributes towards
musculoskeletal risks for the neck, shoulder, arm and forearm due to in-
creased arm abduction [91]; as well, it is tightly associated with carpal
tunnel syndrome in the case of extensive use [72, 81]. Ergonomic ver-
tical mouse designs [73] or alternative pointing devices [83, 92] provide
lower musculoskeletal loads, pose smaller risks and can even lead to im-
provement of existing musculoskeletal disorders [73]. The musculoskele-
tal loads and muscle activity posed by computer keyboards are lower
than those of mice [82], but they still contribute to musculoskeletal dis-
orders or pain in the upper back, neck and wrist [69]. Ergonomic split
keyboards, when placed below elbow height with correct tilt angle and
used jointly with arm support, reduce musculoskeletal loads, risks and
pain [69, 71, 80, 93, 94].
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Decades of ergonomics research concerned with traditional input meth-
ods have resulted in the desktop workspace with traditional input devices
optimized according to the established ergonomic recommendations; this
can significantly reduce or even minimize risks of various musculoskele-
tal outcomes. However, even in this highly studied area, motion capture-
based biomechanical simulation can contribute by providing quantitative
data for different design alternatives; for example, it can show how great a
reduction in musculoskeletal stress we can get when using a tilted mouse
or split keyboard instead of the standard ones.

Input Performance

Input performance of traditional interfaces was extensively studied, even
more broadly than physical ergonomics. For example Soukoreff [95] lists
24 papers just for non-standard Fitts’ law modeling of mouse input per-
formance, leaving out performance evaluation with the standard Fitts’
law as well as performance evaluations using movement time directly
and skipping Fitts’ law entirely. Works analyzing keyboard performance
are found even before the development of computers, instead addressing
typewriters [96]. Already back in 1972 Kroemer [97] describes a num-
ber of related works dealing with the effect of different keyboard design
factors like key arrangement, physical keyboard layout and orientation
on user typing performance. While early works on both keyboard and
mouse use task completion time as a measure of performance [60], since
the end of the 70s performance measures of both types of devices essen-
tially come down to Fitts’ law modeling [8, 98].

Performance of multiple devices and various aspects of interaction in
pointing tasks were analyzed in a large number of comparative studies,
most of which use Fitts’ law [95]. These studies covered mouse, jump
key, tablet, stylus, touchpad, trackball, trackpoint, joystick, knee control
and custom input methods in studies of pointing, dragging, text selec-
tion, scrolling & pointing, and trajectory-based tasks [98–103], as well as
combinations of these devices and custom 6DOF devices for computer
input in 6DOF tasks [104, 105]. Most of the studies cover adult subjects,
but a few of them also consider children [106, 107]. While the results
of some studies contradict others, in general there is an agreement that
pointing is faster than dragging [100], and the mouse is the fastest for
dragging, while it provides performance similar to tablet and stylus in
pointing [100]. The light pen performs better for novice users, while the
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mouse is better for experts [60]. Some works conclude that the mouse is
close to pure eye-hand tasks with respect to performance, so there is not
much possibility for improvement over it [98]. Concerning performance
between different mice there is no agreement: while Isokorski [102] found
performance of different mouse types to be comparable, Han has found
Apple mice to perform better than others [108]. Joysticks are usually
worse than mice for pointing tasks [60, 109], but can complement them
better than a scroll wheel for scrolling & pointing tasks [110]. Multiple
studies also considered various aspects of interaction. Users can interact
with pointing devices using both the dominant and non-dominant hand
with similar performance, excluding small targets, for which the dom-
inant hand performs better [101]. Mice with higher gain show higher
performance for all but small target tasks, but this can be improved by
using cursor acceleration [111]. Interaction using the fingers provides 30%
higher performance than using the hand only [104]. For trajectory-based
tasks, the mouse performs similarly to a tablet, trackpoint, a touchpad,
but trackballs perform worse [112]. It has been shown that extrapolation
of mouse interaction principles to 3 dimensions, namely a “flying” 3D
mouse, provides the best performance in 3D docking tasks [105].

While pointing is an important part of interaction with any comput-
ing system, it is limited by pointing performance of the user as described
by Fitts’ law. Often researchers tried to exploit effects of individual Fitts’
law parameters to reach higher performance using software-based tech-
niques to dynamically increase the size of or decrease the distance to the
potential target, for example pie menus, potential targets mapped next to
the cursor, object pointing, area cursors, expanding targets, dynamic ad-
justments of control-to-display gain, semantic widgets, etc. While these
techniques work well in some specific artificial cases, they do not provide
benefits in real interaction [113].

Research on text entry has found that the keyboard design can be sig-
nificantly improved with respect to performance by adopting different
physical designs (split keyboard, rotated segments for each hand) [114],
or character mappings [115]. Despite a large amount of research analyz-
ing keyboard performance, and wide knowledge of drawbacks of QW-
ERTY compared to optimized designs [116,117], or even DVORAK [96], it
still is considered as standard, with only a small fraction of users switch-
ing to other keyboard types.

The method proposed in this thesis can contribute to analysis of per-
formance of traditional input methods by providing direct instead of
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device-mediated user performance in movement-based tasks. Addition-
ally, it can provide direct mapping between performance and physical
ergonomics or underlying musculoskeletal structures, and quantify the
corresponding effects.

2.2.2 Touch-Based Input Methods1

Advances in capacitive sensing technology accelerated the development
and integration of touchscreens in a range of interactive devices, from
touch-based ticket and banking terminals, interactive tabletops, public
displays, and in-car systems, to multimedia players, tablets, smartphones
and smartwatches. As a result, billions of touchscreen devices are sold
and regularly used worldwide [119].

While the UCD is formulated as a general and abstract process which
can be applied to a variety of design tasks, including design of touch-
based input methods [120, 121], there are a number of important con-
siderations which have to be taken into account for the design of usable
touchscreen applications. In contrast to keyboard- and mouse-based in-
teraction, which were extensively studied for both ergonomics [69–74]
and performance [95, 98, 100, 110] over more than 30 years, touchscreen
devices reached the market so fast that extensive analyses have not been
performed.

We review previous work from two areas: physical ergonomics and
performance, two areas which have rarely intersected in previous work.

Physical Ergonomics

Studies of physical ergonomics in touchscreen interaction have looked at
comfort, user preferences, joint angles, postures and muscle use. Each
study has focused on a particular type of surface.

Müller-Tomfelde et al. [122] collected user preferences for touch dis-
play workspace design. They found that the majority of participants
preferred a tilted display at 45° or 30° angles to horizontal or vertical
configurations. They explained this preference by better visibility and
reachability of the display, improved comfort for the visual system and
body posture. Barbé et al. [123] simulated postures for interaction with
different touch displays in an airplane cockpit. They validated the models

1This section is based on the paper Performance and Ergonomics of Touch Surfaces: A
Comparative Study Using Biomechanical Simulation [118]
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using motion capture data and a simple digital human simulation, CA-
TIA/HUMAN. The location and orientation of the display had a strong
influence on physical effort. In particular, it needs to be taken into ac-
count for prolonged tasks taking longer than 60s. Davis et al. [124] an-
alyzed data entry comparing touchscreens to physical keyboards. They
found that a touchscreen is equal to or better than a keyboard in terms
of kinematics, discomfort, usability, and error rates. A tilted orientation
was preferable to a horizontal or vertical orientation, an effect that was
influenced by both physical and visual ergonomics [125]. The authors
conclude that the biomechanical analysis was limited, as a deeper anal-
ysis of physical loads inside the body could not be performed. Young et
al. [126] assessed postures and muscle activity in the shoulder and fore-
arm during tablet interaction. They had several findings: the wrist is
often operating in close-to-extreme angles, the forearm extensor muscles
are highly activated in text entry, the trapezius muscles have higher acti-
vation when the tablet is on the table, and the anterior deltoid has high
variance when the tablet is heavier. Kim et al. [127] analyzed smartphone
interaction and found that the body posture (sitting, standing, sitting at
a desk) affects the range of motion and the muscle activity of the thumb.
They concluded that deeper analyses of ergonomics are necessary in fu-
ture work.

In this thesis we apply motion capture-based biomechanical simu-
lation to the analysis of 5 different touch surface form factors: public
display, interactive tabletop, laptop with touchscreen, tablet and smart-
phone. To our knowledge, this is the first work which considers these
5 surfaces in a comparative user study using within-subject design, cre-
ates such a rich dataset describing corresponding musculoskeletal loads,
quantifies strengths and weaknesses of each surface type, and highlights
the main risks, namely stressful neck posture in 95% of participants in
interaction with a tablet.

Input Performance

Touch input has been found to be advantageous but also challenging
when compared to mouse and keyboard [128, 129]. Touch lacks the hap-
tic feedback of a physical button, and it suffers from occlusion and the
fat finger problem. However, it performs relatively well in pointing tasks
that involve medium-sized and big targets. Due to its directness it has
additional advantages for novice users [128, 130].

30



2.2. Body of Knowledge in Desktop and Post-Desktop Interface Design

Multiple studies have analyzed input performance with touch sur-
faces. However, as noted, most exclusively focused on a particular device
[130–133]. We are aware of only a single publication comparing different
types of surfaces. However, it analyzes only reading comfort and perfor-
mance [134].

Many previous studies look at accuracy. Beringer et al. [135] ana-
lyzed response times and accuracy on vertical touch displays, finding
them to be non-uniform with respect to the target location and to the
angle between line-of-sight and the screen. They also modeled input off-
sets between touch points and targets, which improved the accuracy of
touch for a particular participant. Park et al. [133], similarly to Beringer
et al., assessed the accuracy of single-thumb interaction with a smart-
phone. They found that distributions of touch points are Gaussian and
distinct for each participant, button location, and size. Similarly, Parhi et
al. [136] reported touch accuracy limits for PDAs, recommending mini-
mum target sizes of at least 9.2 mm for single target tasks and 9.6 mm for
multi-target tasks. Wang et al. [137] analyzed the touch area for all fin-
gers on a tabletop and extracted touch area properties as shape, size, and
orientation. Holz et al. [138] analyzed human errors while using touch
and concluded that the origin of errors is not the fat finger problem, but
the perceived input point, which they model based on roll, pitch and yaw.
Their projected center model [139] performs significantly better than the
standard method, decreasing input offsets to as low as 1.6 mm.

A large number of other studies investigate input performance in gen-
eral, taking speed into account. Most of the analyses have used Fitts’ law
modeling [95]. Sears et al. [130] found that direct touch outperforms
mouse input on a vertical touchscreen when pointing to targets larger
than a single pixel. With additional stabilization, the performance was
the same and the error rate for 4 pixel and 1 pixel targets significantly
decreased. Micire et al. [131] confirmed the suitability of Fitts’ law mod-
els for horizontal tabletops. The study found that touch performes better
than mouse input for all but 10mm targets; however, for 10mm and 20mm
targets, the error rate was higher for touch input. Kin et al. [132] found
that any touch-based method outperforms mouse input in a multitarget
selection task, while the difference between multitouch and touch is very
small. Sasangohar et al. [140] found that direct touch input on a tabletop
provides significantly better performance for most targets in a tapping
task, although it has the worst error rate for the smallest targets. Po et
al. [141] compared pointing performance of mouse and direct touch in-
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put in the upper and lower visual field of a large vertical display. Oehl
et al. [142] compared pointing with a stylus to the same target setup on
touch displays of different screen sizes. Their surprising finding was that
for difficult targets (small, distant) the participants performed better on
bigger rather than smaller displays.

With respect to performance, similarly to ergonomics, this thesis con-
tributes joint analysis among 5 surface types. Although the underlying
interaction principle—direct touch—is the same for all surfaces, we have
found performance differences of up to 30% between them. Our joint
performance-ergonomics analysis can shed light on the relationship be-
tween them for different surfaces, in particular between performance and
energy expenditure represented by total muscle activation.

2.2.3 Mid-Air Input Methods

Development of IMU-, camera- and depth-based motion tracking and
gesture recognition technology allowed human-computer interaction to
be shifted beyond the desktop and touch into mid-air. A large number
of recent works propose mid-air interfaces, which bring benefits to users
where touching a computer is not acceptable (medical setting, surgery),
regular 2-D touch interaction is not comfortable (large display environ-
ments, 3D interaction, remote interaction, smartwatch interaction), touch
interaction is not hygienic due to too many users (outdoor interactive
public displays), specific movements are desired (rehabilitation, exergam-
ing), the movements provide a more natural communication channel (hu-
man-robot interaction), or mid-air interactions better map to physical
world movements and could be more fun (sports games for Microsoft
Kinect, PlayStation Move, Nintendo Wii) [143–149]. Unfortunately, most
current papers propose an interface or interaction technique without pro-
per evaluation and possibility to put them into context with other works
with respect to ergonomics and performance. For ergonomics evaluation
usually only subjective measures are used, while performance is com-
monly evaluated either by movement time, by words per minute for mid-
air text entry, or by the classical Fitts’ law, which does not perform well
for large mid-air movements due to non-uniformity.
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Physical Ergonomics

Only a few works related to mid-air input consider physical ergonomics
of an interaction. Hincapié-Ramos et al. [150] proposes the consumed
endurance metric for assessing fatigue of mid-air input. It is based on
Rohmert’s law and moment at the shoulder joint, and represents simpli-
fied biomechanical simulation computed on Microsoft Kinect output with
integrated joint torque bounded from above. The authors have validated
the method against a Borg CR10 scale and demonstrated how to apply
it for HCI tasks. While this method of course provides some insights
on fatigue and physical ergonomics, it still lacks predictive power due to
simplifications considered in computation, and it does not consider mus-
cles. Another work used the NASA Task Load Index to assess workload
of users during mid-air interaction with and without feedback [151]. The
results showed that presence of feedback improved all scores of the NASA
TLX and could potentially reduce fatigue in mid-air interaction. A third
work considers input performance with respect to perceived comfort of
a mid-air interaction in various regions [152]. In a first study 27 partici-
pants rated their comfort in 26 arm postures. Then a pointing study with
another 21 participants was performed with aimed movements in each
of 26 postures, but the results did not show a significant difference in
performance between comfortable and uncomfortable postures.

The method described in this thesis makes it possible to perform ef-
ficient quantitative analysis of physical ergonomics in mid-air interaction
both in user studies as well as using the proposed clustering. We demon-
strate its effectiveness on an analysis of mid-air aimed movements and
corresponding virtual keyboard and camera-based smartwatch interac-
tion by identifying optimal mid-air keyboard placement and smartwatch
camera orientation.

Input Performance

Few works assess input performance in mid-air input. Özacar et al. [153]
compare direct 3D object manipulation with a 2D cursor-based pointing
technique for 3D docking task and find that direct manipulation, while
being slightly faster than the baseline, suffers from larger error. Erazo et
al. [154] create a KLM-based performance model for mid-air interaction.
They estimate model parameters in a user study, and then validate it in 3
user studies and 14 tasks. Winkler et al. [155] investigated mid-air interac-
tion with projector phones, and found that interaction in mid-air behind
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the phone provides the best performance, but a higher error rate com-
pared to the interaction in “touchpad” or user-elicited modes. Wagner
et al. [156] investigated performance of simultaneous pointing to a tar-
get on a wall display and to a particular body part. They found that the
compound task was significantly slower than pointing alone, as pointing
to a body part was affecting balance either of the whole body, or of the
pointing arm. A few studies also look at performance of pointing-based
mid-air text entry methods for large wall displays [157–159]. However,
they do not look at individual aimed movements and do not use Fitts’
law performance measures. The only measure they use is aggregated
words per minute.

Our method allows analysis of movement performance in mid-air
tasks using Fitts’ law and relation of performance to underlying mus-
cle groups. In this way the large, non-uniform with respect to perfor-
mance movement space can be split into uniform regions, within which
Fitts’ law can be successfully applied. In this way it provides a more
task-independent performance measure. We use our method to create
a performance map of the whole reachable space based on muscle co-
activation clustering, and apply it to the analysis of mid-air keyboard
placement.

2.2.4 Discussion

Input method design approaches rely on assessment of physical ergono-
mics and performance either in usability evaluations or in model-based
evaluations. While traditional input methods were centered around phys-
ical artifacts, the movement and design space were small enough for fast
evaluation of physical ergonomics within one field and then evaluation of
performance within the other field. It was possible to analyze small de-
sign and movement space using a wide range of methods, as reported in
tens of relevant user studies. However, with post-desktop input methods
the situation changes quite radically: the movement space is huge and
both performance and ergonomics have to be considered within the field
of HCI; as a result, the traditional methods are inefficient and additionally
there is a lack of ergonomics expertise. Therefore the amount of research
in assessment of post-desktop input methods is much smaller than for
traditional input devices, which is reflected in the reduced number of re-
lated works when moving from traditional input methods to touch-based
input methods and further to mid-air input methods. In particular for
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mid-air input methods this results in poor designs, a number of large
industrial failures and current stagnation in the field.

Our goal is to propose new efficient methods allowing joint analy-
sis of performance and ergonomics, which could accelerate the research,
development and testing of post-desktop interfaces and design ideas.

2.3 Physical Ergonomics

Ergonomics is the scientific discipline concerned with the understanding
of interactions among humans and other elements of a system, and the
profession that applies theory, principles, data and methods to design in
order to optimize human well-being and overall system performance [9].
Physical ergonomics is a subfield of ergonomics which considers human
anatomy, physiology and biomechanics in relation to physical activity.
Physical ergonomics principles and methods are widely used in industrial
design, but not yet in HCI. In this section we summarize existing physical
ergonomics practices, tools and methods used in research and design. We
highlight possibilities and deficiencies of these methods for applications
within HCI.

2.3.1 Physical Ergonomics Data Collection Methods

In the past, the physical ergonomics field was concerned mostly with
workplace analysis and design, so it has established a number of corre-
sponding assessment methods. A large fraction of them is applied di-
rectly at the workplace in order to capture regular activities of the work-
ers without artificial disturbances. All these methods can be categorized
into 3 groups: self-reported discomfort questionnaires, workplace obser-
vations and direct measurement-based methods [160, 161].

Discomfort questionnaire methods

Discomfort questionnaire-based methods provide rough qualitative data
about the risks at the workplace and are the most straightforward to ap-
ply. It is generally accepted that the discomfort at the workplace is the
first sign warning of musculoskeletal injury. If the discomfort is ignored,
after prolonged exposure it can lead to experience of pain caused by mi-
nor trauma. If further ignored, it can lead to serious musculoskeletal
injury or disease, as for example repetitive strain injury, carpal tunnel
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syndrome or arthritis [160]. As discomfort is a subjective experience of
a user, it can only be assessed by asking the user about it, either in an
interview or by filling a questionnaire.

All questionnaires are based on previous work in the ergonomics field
and reflect the state of a particular society’s requirements for muscu-
loskeletal safety at the workplace. The most prominent discomfort ques-
tionnaires are Standardised Nordic Questionnaire [162], PLIBEL [163],
NIOSH [164] and the Dutch Musculoskeletal Survey [165]. They consist
of a set of questions systematically covering postures, movement types
and their temporal characteristics. The health risk areas are identified
based on all responses, and are then investigated in detail by observation
or measurement-based methods.

The questionnaires contain various types of questions: binary, categor-
ical and ordinal. While binary or categorical results are straightforward
to interpret, ordinal results need special analysis and interpretation. Or-
dinal questions commonly asses perceived levels of exposure, discomfort,
exertion, workload, stress, etc. on a rating scale. The most common in all
areas are 5- or 7-level Likert scales [166], and within ergonomics the Borg
Ratings of Perceived Exertion (RPE) and Borg Category-Ratio 10 (CR10)
scales [167]. In contrast to purely ordinal Likert scales, Borg RPE and
Borg CR10 provide mappings of verbal anchors to numerical values on a
linear scale, allowing application of standard statistical methods.

While a variety of questionnaires are often applied in HCI studies,
discomfort questionnaires are poorly suited for them. The reason is that
these methods are oriented toward workers regularly exposed to the risk
factors for a long enough period to develop a discomfort, while the com-
mon HCI studies are not prolonged enough, making the results unre-
liable. Additionally, even with long exposures the results are subjective,
need a large number of participants to be statistically significant, and lack
validity and reliability.

Posture observation methods

Posture observation-based methods allow expert ergonomists to gather
objective qualitative data about the risks at the workplace without dis-
turbing the workers or influencing their activities. These methods are
based on the fact that the observable human posture reflects the muscu-
loskeletal activity of the whole body. It is assumed that there exists a
safe “neutral” posture, and deviations from it impose risks on the mus-
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culoskeletal system proportional to the angle, frequency and duration
of exposure. In contrast to discomfort questionnaires, this method allows
possible risks to be identified even before the discomfort can be perceived,
providing applicability in short-term studies for interface design. The as-
sessment is performed by ergonomics experts either by direct observation
of the workplace or by analysis of video recordings [168].

The most important and widely used methods from this category are
Rapid Upper Limb Assessment (RULA) [169] and Rapid Entire Body As-
sessment (REBA) [170]. Similarly to questionnaires, they systematically
cover regions of interest (RULA) or the whole body (REBA) and allow
ergonomics experts to quickly perform event-based assessments of users’
postures. Additionally, they support the ergonomists in rating the pos-
tures by visualizations of postural schemes. Further, all posture segment
ratings are summarized through table computations into a single risk as-
sessment score.

Another method, the Strain Index (SI) [171], includes into the assess-
ment, besides possible postures of the arms below the elbow, also the
observed exertion levels in each posture and temporal features of the ac-
tivity, such as duration of exertion, percentage of task cycle in exertion,
frequency of exertions and total time on the task per day. While part of
the data necessary for SI is quantitative, it is still split into few categories
and provides only qualitative results.

A number of other methods within this category were developed and
used for ergonomical analyses of worplaces, for example the Quick Ex-
posure Checklist [172], Ovako Working posture Analysis System (OWAS)
[173], posture distribution-based RULA [174], the Portable Ergonomics
Observation (PEO) [175], OCRA Index ( [176]), etc. However, they are
similar to the above-described RULA, and REBA, or SI, use the same
principles and assumptions, so we do not describe them here.

In contrast to discomfort questionnaires, the observation-based meth-
ods can be applied in HCI for injury risk assessment in research and on
early stages of input method design. In this way major design faults, in
particular for gestural interfaces [177], can be avoided at relatively low
cost. The downside is that application of these methods demands special
skills from the investigators, which are commonly out of scope of HCI
expertise. Although the data avoids subjective variability of each indi-
vidual worker, it is still subjective with respect to an ergonomics expert
performing the analysis. As a result, these methods provide only impre-
cise qualitative results concerning presence or absence of the health risks
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and usually require following more detailed analyses to reduce the risk.
While health risk assessment is of course important for success of input
methods, the observation-based methods still lack the power to provide
information about effort and fatigue, which are particularly important for
HCI.

Direct measurement methods

Direct measurement-based methods are the most comprehensive, infor-
mative and accurate, albeit the most resource intensive. They provide rich
quantitative data, measured directly in the human body, which describes
most physiological and even some cognitive and emotional states and
processes. Depending on the type of data recorded in the experiment, the
direct measurement methods can be further split into 3 broad categories:

1. methods which consider mechanical processes inside the human body,
for example computer vision (CVMC) [178–181], electromagnetic
(EMMC) [182], mechanical (MMC) [183] and inertial motion unit-
based (IMUMC) [184] human motion capture, electronic goniom-
etry (EGM) [185–187], hand kinematics recording by CyberGlove
(CG) [188, 189], trunk kinematics recording with Lumbar Motion
Monitor (LMM) [190], force recording within the musculoskeletal
system with force transducers (FT) [191], isometric [192, 193], iso-
tonic [194], and isokinetic [195,196] dynamometers (DM), as well as
external force recording with force plates (FP) [181], instrumented
treadmills (IT) [197], force sensors (FS) [187, 198] and pressure sen-
sors (PrS) [199–201];

2. methods which consider electrical processes inside the human body,
for example surface (sEMG) [201–204] and intramuscular (iEMG)
[205,206] electromyography, and electroencephalography (EEG) [207,
208];

3. methods which consider physiological processes inside the human body
and their effects, for example electrodermal activity (EDA) [209–
211], electrocardiography (ECG) [207, 212, 213], pupil size (PS) [214,
215], blood pressure (BP) [216,217], heart rate (HR) [216–218], respi-
ratory measurement (RM) [219–221], etc.

In contrast to questionnaires and observation-based methods, most of
the direct measurement methods cannot be applied directly at a work-
place, and necessitate special equipment and often also a laboratory set-
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Fig. 2.3: Summary of direct measurement methods’ informativeness vs. application
complexity. Informativeness takes into account type of data, its detail and scope with
respect to the whole human body. Application complexity takes into account complex-
ity and time to set up a measurement system, complexity of individual subject prepara-
tions and level of expertise required from experimenters. The values were subjectively
assessed through pairwise comparisons of each method’s combination with respect to
each variable.
Black—mechanical, dark gray—electrical and light gray—physiological methods.
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ting. The complexity of experimental data collection depends on a partic-
ular method and can be relatively low for some methods and very high
for the others, as we summarize in Figure 2.3. Multiple methods are also
very invasive, which restricts possible application scenarios and could
lead to unnatural behaviors during the experiment. We give more details
on the most important methods and their applicability in the paragraphs
below.
The first category of methods concern physical ergonomics most directly,
as any mechanical activity or body movement is captured in this category.
The mechanical methods can be split further into 3 categories, which
complement each other in detailed analysis: kinematics, internal forces
and external forces measurements.

Kinamatics measurements include positions, velocities and accelera-
tions of given points on the human body (CVMC, EMMC, IMUMC) or
angular equivalents at given skeletal joints (MMC, EGM, CG, LMM), and
is performed on a small segment of the body (EGM, CG, LMM) or on
the whole body (CVMC, MMC, IMUMC). All measurements are non-
invasive to the human body and some of them are also non-intrusive to
a human activity, for example, as can be seen in Figure 2.4, CVMC ne-
cessitates only wearing a special skin-tight suit [222], or in the case of
markerless motion capture, even specifies no other requirements besides
keeping a line of sight between the user and cameras [223, 224]. Motion
capture data is used for analyses of postures and human movement over
the whole activity duration. All necessary analyses can be performed on
it without manual frame-by-frame data inspection. For deeper insights
about processes inside the human body, motion capture data can be used
as an input to biomechanical simulation.

However, kinematics data alone does not provide any insights about
actual muscle and skeleton tissue loads inside the human body, which
are essential for ergonomics assessment. That is why it is usually com-
plemented by external force measurement, and sometimes also internal
force measurement. Internal muscle and skeleton tissue loads are defined
by kinematics of movement considered in the context of inertial proper-
ties of the body, as well as external forces acting on the body, for example
gravity, ground reaction force, chair reaction force, object weight and re-
action force, etc. External forces are measured between contact points
of the human body and the external world or object by introducing an
intermediate force-sensing layer. For ground reaction forces this layer is
represented by force plates or an instrumented treadmill; for other exter-
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Fig. 2.4: Optical motion capture and external force recording during mid-air gestural
interaction.

nal forces, specific force or pressure sensors are installed. In some studies
external forces are considered as a stand-alone data source for ergonomics
analysis, for example when looking at grasp force during mouse interac-
tion [225], but more often they are considered jointly with motion capture
data and in the context of biomechanical simulation.

In contrast to external forces, internal forces are much harder and
more invasive to measure. Measurement of internal forces within an ac-
tivity of interest is possible only by inserting special force transducers into
corresponding tendons or muscles, and is not possible outside a clinical
setting. Internal muscle forces are sometimes estimated in an additional
experiment from measurements by isometric, isotonic and isokinetic dy-
namometers in order to tune muscle parameters in a musculoskeletal
model. This allows more accurate simulation of an activity of interest.

In general, the group of mechanical process methods provide the
best application complexity vs. informativeness trade-off for physical er-
gonomics assessment. As can be seen in Figure 2.3, most methods from
this group (black abbreviations) are in left central and upper segments
of the chart, which corresponds to low to average application complexity
and average or higher informativeness.
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Fig. 2.5: Electrode setup for EMG of 10 forearm muscles [226].

The second category of methods describe electrical processes inside the
human body. These processes belong to deeper levels in the system
than mechanical processes and can be understood as control signals from
the central nervous system (CNS) to the mechanical plant of the muscu-
loskeletal system. The methods of this group consider electrical signals at
each muscle (sEMG and iEMG), or more centrally, activations of various
brain areas (EEG).

The human neural system transmits action potentials from the brain
motor cortex to muscles similarly to electrical current. The action po-
tential arrives to muscle at a motor end-plate, and then propagates along
muscle fibers forcing them to contract and as a result generate mechanical
force between opposite ends of fibers. EMG measures the difference in
electrical potentials between two points along the muscle fiber located on
the same side from the motor end-plate using either a pair of electrodes
inserted into the muscle next to muscle fibers of interest (iEMG), or a
pair of electrodes attached to the skin surface over the muscle of interest
(sEMG). The force depends both on amplitude of the action potential and
frequency, so there is a linear relationship between the linear envelope of
EMG and force exerted by a muscle. To estimate muscle force from EMG
an additional measurement is necessary: in parallel with EMG recording
an isometric, isotonic or isokinetic dynamometer is applied during a sim-
ilar type of muscle contraction. This makes it possible to approximate the
relationship between the EMG envelope value and force output, and use
the relationship further for estimation of force. A second additional mea-
sure of EMG is during maximum voluntary contraction (MVC), which is
used as a basis for normalization between experiment sessions or partic-
ipants. EMG can also be used to estimate fatigue, which is reflected in a
frequency shift of the power spectrum.
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While EMG methods are very informative, their complexity, limita-
tions and invasiveness prevent wide adoption in ergonomics and HCI.
They demand special expertise from the experimenters, in particular ac-
curate muscle identification, and iEMG necessitates precise needle inser-
tion. iEMG is very invasive and cannot be applied outside a clinical set-
ting. Additionally, needles can cause discomfort in muscles during dy-
namic movements and prevent natural behavior. sEMG is not invasive,
but it is limited to close-to-the-surface muscles, and is still intrusive to
activities and naturalness of human behavior due to cables. sEMG data
is also not very reliable, as it suffers from muscular cross-talk, or muscle
drift during dynamic contractions. It contains a large amount of vari-
ability between participants and experiments due to natural day-to-day
variation in skin conductivity. Simultaneous recording of a large num-
ber of muscles makes both surface and intramuscular EMG setup very
cumbersome, complex, and time consuming, and impacts naturalness of
movements; for example, Figure 2.5 displays the complexity of the setup
for 10 muscles out of the 630 present in the human body.

EEG records electrical activity of the brain sensed by electrodes at-
tached to the scalp. Unlike EMG, it cannot provide a fine-grained signal
related to activation of a particular muscle, and gives only a high-level
summary of brain area activity. In ergonomics it is used as an aggregated
signal to detect general fatigue and sleepiness [207, 208]. In HCI research
it is used as an input method in brain-computer interfaces [227] rather
than as an ergonomics measurement instrument.
The third category of methods considers physiological processes in the
human body, such as heart rate, blood pressure, skin conductivity, pupil
size, respiratory measurement and oxygen intake, etc. These processes
reflect whole-body aggregated variables and are used for assessment of
energy expenditure (RM in Figure 2.6), physical (RM, BP) or mental work-
load (PS), and emotions (HR, ECG, EDA), in particular stress (EDA). They
require special equipment and can be applied in a laboratory setting,
but they do not demand extensive specialized expertise from the experi-
menters. In HCI these methods can be used for general evaluation of an
input method, but not for detailed analysis to inform design. With re-
spect to informativeness these methods are better than questionnaires or
observations as they provide objective quantitative data, but worse than
other direct measurement methods as they do not provide enough details,
despite having almost the same application complexity.
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Fig. 2.6: Respiratory measurement of walking.2

2.3.2 Ergonomical Models

The methods described in the previous section provide a large amount
of data describing human activity from a variety of possible perspectives,
but to make sense of the data, mathematical and statistical models are
applied, which aggregate the data and provide clear interpretable con-
clusions as output. A number of such models have been developed for
physical ergonomics and human factors.

A large fraction of models directly correspond to and were developed
in tight coupling with a specific data collection method; this especially
concerns questionnaires and observation-based methods. For example,
within REBA [170] the experimenter observes occurrence of events re-
lated to postures of six body segments and assigns corresponding ratings
for each of them according to the scheme. Then the assigned ratings are

2© User:Cosmed/WikimediaCommons/CC-BY-SA-3.0
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used to compute two composite ratings for body posture (legs, trunk and
neck) and arm posture (shoulder, elbow and wrist) using predefined ta-
bles. Further, the two composite ratings are combined into a single grand
rating. The grand rating is then interpreted into severity of risks and
priority of action on workplace improvement. Most other questionnaire-
and observation-based methods use similar models, encoded as scoring
tables (QEC, RULA) or as a linear formula (DMS, SI, OCRA Risk Index)
for convenience.

More interesting and complex models were developed for direct mea-
surement data. We have classified them into the 6 following groups, al-
though the boundaries between them are not always sharp:

1. direct health risk estimation models;

2. exposure-effect models;

3. anthropometric posture prediction models;

4. posture-based skeletal load prediction models;

5. models which predict physiologic measures; and

6. models of muscular fatigue and recovery.

The first group, health risk estimation models, is the broadest, and
similarly to the questionnaire- and observation-based models, these take
into account all collected data and directly output health risks. These
models provide either high-level generic results, for example the model
of overexertion [228], or alternatively consider a small part of the hu-
man body and provide a more detailed result for it, for example a risk
model of carpal tunnel syndrome [49, 229]. Such models were devel-
oped for assessment of lower back risks [230–234], neck and upper ex-
tremity risks [48, 63], arm and hand risks [235], carpal tunnel syndrome
risks [49,229], overexertion [228], etc. In most cases they are developed by
a regression fit of a low-degree polynomial relating risk levels to a list of
independent variables present in the data, which, besides other variables,
usually includes force level and duration of the exertion. The drawback
of such models is that they do not provide any information on internal
loads imposing the risk, and in this way break the logical chain of load
propagation, reduce interpretability and limit detailed analysis.

The second group of models generalize the models from the first
group and describe the load propagation chain from external loads, through
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internal loads, to acute and chronic effects. These models provide a con-
ceptual framework for inclusive ergonomics risk assessment in the pres-
ence of data from various sources; in particular they make it possible to
assess health risks not only from directly collected external load data for
some body segment, but perform whole-body assessment based on inter-
nal physiological loads [236,237]. These models need physiological loads
as input, so they can be applied only after the internal loads are measured
or computed.

The third group of models estimate probable user postures for a va-
riety of workplace setups [44, 45, 238], or physical properties of designed
artifacts [239, 240] based on anthropometric data of a user population.
Unlike user studies, they can be used on early stages of design as in-
puts to the models which predict internal loads based on posture. The
limitation of these models is that they provide predictions only for static
postures. Synthesis of dynamic movements based on these models leads
to unnatural movements transitioning between static postures.

The fourth group of models predict internal musculoskeletal loads
based on measured user postures and external forces. These models use
an inverse approach for computation of internal loads, in which they
consider the whole kinematic chain, its inertial properties and applied
external loads as inputs. The models belonging to this group range in
complexity from simple link-segment models computing rough joint an-
gles and moments in 2 dimensions [47,241–243] to high-fidelity full-body
digital human models [46, 47, 244] able to compute joint angles, forces
inside joints and moments at the joints. However, biomechanical mod-
els currently used in ergonomic computations do not predict muscular
loads and activations by the neural system, which are important for er-
gonomics, energy expenditure and fatigue analysis. Often the models
from this group together with anthropometric models are a core part of
digital human simulations, described in Section 2.3.3.

The fifth group of models predict internal physiologic loads based
on non-postural inputs. The most important and widely used inputs for
physiological load estimation are EMG signals [245–248]. They enable
computation of actual forces exerted by muscles and generated joint mo-
ments. Although these models can provide deep insights based on the
physically measured data of muscle activity, they are also constrained by
limitations inherent in both intramuscular and surface EMG data collec-
tion: low reliability for dynamic movements, limited number of acces-
sible muscles or invasiveness, high between-session and between-subject
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variability, high complexity and cost of experiments. Within this group
there are also models which consider other types of inputs, for example
the mass-spring-damper model of grip [249], pendulum model of walk-
ing [250], model of force distribution in the shoulder [251], etc., but they
provide less accurate and insightful results than EMG-based models or
the posture-based models from the fourth group.

The sixth group of models predict muscular fatigue, recovery and en-
durance during physical activity. They take as input the level of force
exertion, its duration and repetitiveness, fraction of exerted force to the
maximum voluntary contraction force, and sometimes also percentage
of fast-twitch and slow-twitch muscle fibers, and compute the fatigue-
recovery state of a muscle and its endurance in the context of a particular
power output. Multiple models are developed within this group, for ex-
ample the muscle fatigue-recovery model [252–254], work-rest model of
discomfort and endurance [50], critical power and power-time to exhaus-
tion model [51], etc. These models complement the models predicting
internal physiological loads in the physical ergonomics assessment by
quantifying the muscle state and potential work-recovery cycle and dura-
tion.

Often data collection and analyses in ergonomics are not limited to
a single type of data or a particular model, and combine results of a
combination of methods which support and complement each other. In
particular this is common for modern ergonomics assessment software
and digital human simulations [52, 255, 256].

2.3.3 Digital Human Simulation in Ergonomics and HCI

As mentioned in the previous section, digital human simulations are the
closest ancestors of the biomechanical simulation within the fields of er-
gonomics and HCI. They are computer systems of complex models repre-
senting a variety of relationships within the human body and providing
insightful outputs based on relatively simple inputs. The first digital hu-
man models were developed more than 3 decades ago to predict human
reach and body size for automotive designs [257] using anthropometric
data. Later more complex digital human simulations were developed
which combined multiple models within one computer application and
predicted potential postures and movements, their comfort, performance,
a few types of internal physiological loads and ergonomics risks for the
human body [52, 53, 255, 258].
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At the core of each digital human simulation are an anthropometric
model which predicts body size proportions and a biomechanical model
which predicts internal loads in various postures and movements. Cur-
rent digital human simulations contain biomechanical models capable of
predicting kinematics and dynamics, namely joint angles, joint moments
and forces inside joints, but no movement actuation or muscles. Some of
the models also try to predict human postures and movements, but the
results lack smoothness and physiological compatibility [36, 259].

To our knowledge, biomechanical simulation with muscles has never
been applied to HCI tasks. However, simple digital human simulations
were integrated with motion capture in a few previous ergonomics tools,
and applied to cases in office safety assessment [260] and automobile as-
sembly analysis [256]. These implementations included simplified mod-
els without muscles which instead require additional EMG recordings
[256].

2.3.4 Discussion

The field of ergonomics has a large number of sophisticated methods for
physical ergonomics assessment in a workplace and in controlled exper-
iments. Multiple types of data can be collected to describe the physical
ergonomics, and multiple models can be used on top of the data to ex-
pand and interpret it. However, most data collection types are not suit-
able for design, and in particular for post-desktop input methods, either
because of unreliability, or because of application limits, due to being
too intrusive or needing too much expertise. Optical motion capture us-
ing a marker suit and external force recording provide the best trade-off
between application complexity and information quality provided by the
data. However, all models previously used in ergonomics can only poorly
interpret the data.

Thus, in order to interpret the data in the context of the human body,
we need to apply biomechanical simulation with muscles, which is new
to the ergonomics field. Additionally, we can perform joint analysis of
performance and ergonomics based on recorded data, which would pro-
vide even more benefits for the field.
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2.4 Input Performance Assessment Methods

Input performance has been of major interest in HCI since the establish-
ment of the field. There are multiple approaches to understanding input
performance, its measurement and modeling. Most current input meth-
ods, except brain-computer and EMG-based interfaces, are based on hu-
man movements, for example moving a mouse, reaching to and pressing
a key, selecting a target on a touchscreen, swiping a finger on a touch-
screen gesture keyboard, or performing a mid-air gesture. The common
performance measure for such movement-based input methods is speed
and accuracy of the corresponding movements. Usually speed and accu-
racy are considered together in a trade-off relationship. This is reflected in
a range of data collection methods and models for target-directed move-
ments (Fitts’ law [8], delta-lognormal law of kinematic theory [261]) and
trajectory-tracking movements (steering law [262], sigma-lognormal law
of kinematic theory [263]).

Data necessary for input performance analysis includes end-effector
movement endpoints and durations, and for deeper analysis also move-
ment time-histories and velocity profiles. It can be collected using a va-
riety of devices, for example a pen, stylus, keyboard, mouse, joystick,
light pen, touchpad, trackpoint, trackball, touch tablet, or touchscreen for
1D and 2D pointing tasks, and 3D mouse, motion tracking system, or
computer vision system for 3D pointing tasks, etc. [8, 112, 261]

Fitts’ law is the most widely used input performance model in HCI,
which has already become standard for performance evaluation of input
methods [95, 264]. It was developed by Paul Fitts back in 1954 based on
Shannon’s theorem of information transfer [265], and expresses the rela-
tionships between movement time and task index of difficulty (ID) [41]:

ID = log2

(
2A
W

)
MT = a + b× ID

Since that time tens of studies validated and used Fitts’ law for analysis of
aimed movements and movement performance prediction based on target
size and movement amplitude. Multiple researchers proposed alternative
formulations for the model [8, 266], as well as new interpretations [8, 261,
267]. The most recent formulation of Fitts’ law commonly used in HCI
proposes to consider an effective target width instead of a fixed width

49



Background & Related Work

to better account for errors, and adjusts the index of difficulty to more
closely reflect Shannon’s theorem [95]:

We = 4.133× SDx

ID = log2

(
A

We
+ 1
)

Fitts’ law was extended for 2-dimensional [268] and 3-dimensional [266]
tasks by minor adaptations accounting for target width and height as
well as for approach angle. A Fitts’ law extension called the steering law
is used for analysis of trajectory-tracking tasks [262]. It derives an index
of difficulty for the whole trajectory by integration of the local amplitude
to the tunnel width relationship over the whole length of the trajectory.

Despite the large number of user studies and wide range of applica-
tions, Fitts’ law model and its direct extensions are still poorly backed
up by the theory. Although it models well high level movement prop-
erties for large range of movements, it still fails for closer-to-boundary
conditions, for example for low IDs the relationship is observed to be
non-linear [269], or contribution of amplitude and target width are not
equal, in particular for small targets [270]. While Fitts’ law provides a re-
lationship between aggregated movement properties and movement time,
it lacks details on movement kinematics, in particular about trajectory and
velocity profiles, which are important for complex trajectories or gestures.

As a result, significant effort was invested in physiologically-based
models of movement and motor control, for example the VITE model [271]
or kinematic theory [261]. These models use a notion of functional muscle
synergies together with corresponding neural networks as basic subsys-
tems for movement execution. These models provide good fit for the
movement trajectories and velocity profiles and superior-to-Fitts’-law fit
for the aggregated values. However, they still ignore complex skeletal
chain kinematics of human movements. Considering biomechanics to-
gether with movement performance could provide new insights on hu-
man movement generation, and could potentially lead to refinements of
the proposed models and theories.

2.4.1 Discussion

Input performance is one of the key factors in HCI and one of the most
studied. A number of performance models are regularly used in research
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and practice, most popular of which is Fitts’ law. Although Fitts’ law was
extended for 2D and 3D tasks, it still does not consider multiple factors.
First, it does not consider non-uniformity of the throughput with respect
to location of start and target. Second, it does not consider movements
with respect to the kinematic chain responsible for them, or the muscle
groups which execute them. Third, it does not consider movement kine-
matics and dynamics beyond aggregated values of movement time with
respect to target size and amplitude. Other models, although not as pop-
ular as Fitts’ law, partially deal with one of the above mentioned aspects,
though still not consistently. For example, kinematic theory considers
dynamics and muscle groups, but it does not relate muscle groups to the
physiology and kinematic chain.

The method we propose allows synchronous analysis of performance
together with a particular movement, kinematic chain or muscle recruit-
ment. This allows investigations of relationships between these factors,
and could lead to improvement of current movement performance mod-
els by taking into account non-uniformity of space, or could contribute to
development of new physiologically-based performance models.

2.5 Motion Capture-Based Biomechanical Simu-
lation

Motion capture-based biomechanical simulation is an experimental and
computational method developed in the field of biomechanics and adopted
in the fields of medicine, rehabilitation and sports research. It “reverse
engineers” observed motion to explain it in terms of anatomical events.
Its input is the movement of pointlights in 3D space. When accompanied
by information on how the pointlights map to the human anatomy (map-
ping and scaling), motion is first explained as rotations of joints (inverse
kinematics). Then, given mass distribution of the body, required forces at
joints are estimated (inverse dynamics). Finally, given muscle anatomy,
plausible muscle activations are estimated (static optimization or com-
puted muscle control). It makes it possible to precisely analyze natural
human movements, and corresponding mechanical processes inside the
human body, for example to assess movement deficiency sources, mus-
culoskeletal risk factors and achievable performance improvements by
athletes, or outcomes of potential surgery.

51



Background & Related Work

The method consists of a few important steps:

• Measurement of necessary musculoskeletal properties of a particu-
lar patient or athlete for adjusting the generalized musculoskeletal
model to match his body;

• User study accurately recording the movement of interest of the
participant with a motion capture system;

• Application of the biomechanical simulation pipeline to produce
joint angles and moments, muscle forces, activations and excitations
developed within the movement;

• Analysis of the simulation outputs, their comparison to “normal”
ranges and patterns and identification of problematic spots.

The biomechanics community paid special attention to minimizing
effects of measurement and modeling errors during all steps and devel-
oped corresponding practices and recommendations. We describe them
and their possible application within HCI, while staying realistic about
HCI goals, expertise, resources and experimental settings.

2.5.1 Optical Motion Capture

The key experimental input for biomechanical simulation and analysis
is motion capture data describing human movements. This data con-
sists of sequences of the 3D spatial coordinates of markers attached to
human body or angular coordinates of joints within the body. It can
be recorded by a variety of methods which can be grouped into 5 cate-
gories: marker-based computer vision (Vicon [272], OptiTrack [273], Phas-
eSpace [222], Qualisys [274], Metria Innovation [275]), markerless and
depth-based computer vision (The Captury [276], Microsoft Kinect [277],
Apple PrimeSense), electromagnetic (Polhemius [182]), mechanical (Meta-
Motion Gypsy [183]) and IMU-based (Xsens [278]) tracking.

Each of the motion capture categories has own advantages and lim-
itations, which affect its applicability to biomechanical simulation, and
within HCI. Mechanical and IMU systems are cheap and do not limit
tracking volume, but they do not provide precision suitable for accurate
biomechanical simulation. Additionally, they are cumbersome to apply
and calibrate. Electromagnetic systems provide good precision and are
applied in some cases for biomechanical simulation, but any conductors,
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if present within the captured volume, distort the signal and recording,
which significantly limits applicability for HCI tasks. Markerless com-
puter vision and depth-based systems are the cheapest, easiest to apply
and have great potential in future HCI applications, but at the current
stage of development they provide limited accuracy, poorly suited for
biomechanical simulation. The most widely adopted in conjunction with
biomechanical simulation are the marker-based computer vision systems,
as they provide sub-millimeter precision and reliable data. Their main
limitation is that markers need to be within the field of view of the cam-
eras to be tracked, which is usually considered when attaching the mark-
ers to a participant’s body for a particular task.

In the last decade optical motion capture technology has not only ma-
tured, but also become significantly cheaper: for example, it is now pos-
sible to install a fully-functional optical motion capture system with a
covered volume of 3× 3× 2.5 meters and with sub-millimeter precision
of marker tracking for as low as $20000 [21]. This allows wide adoption of
motion capture systems and opens them up for more applications. In par-
ticular they are becoming more accessible for HCI laboratories, enabling
biomechanical simulation for them.

The optical motion capture system consists of a few components:

• a set of high-speed cameras overseeing the capture space,

• a set of markers to attach to a captured person, or a suit with pre-
attached set of markers,

• a camera synchronization and data processing system.

The cameras observe the space and synchronously record images of it.
The markers either emit light of a specific frequency (active markers),
or reflect infrared light emitted by lighting fixed to cameras (passive
markers). As a result, marker locations on each image correspond to
the brightest spots, so it is easy to identify them correctly and efficiently.
The marker locations are then matched between the cameras, resulting
in a reconstruction of their 3D position. The sequence of 3D positions of
markers attached to all skeletal segments of the human body completely
describes human movement [279].

Markers can be attached to the human body in various configura-
tions, but they need to cover all skeletal segments of interest and con-
form to common practices or recommendations for optimal marker place-
ment [279,280]. According to the recommendations, optimal accuracy can
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be achieved by rigidly attaching at least 3 markers on visible locations of
each skeletal segment, and additionally attaching 2 markers on two sides
of each joint [280, 281].

The accuracy of movement reconstruction is sensitive to errors within
two mappings:

• mapping of all cameras to locations and orientations in 3D space,
and

• mapping of markers to their locations in coordinate frames of cor-
responding skeletal segments.

Accordingly, two types of calibration are necessary before each session to
reduce these errors:

• calibration of camera locations and orientations is performed by
presenting a known pattern (checkerboard, system-specific “magic
wand”) within the field of view of all cameras, covering as much of
the field of view of each camera as possible. Additionally, a global
reference frame is defined during this calibration step.

• calibration of marker locations with respect to reference frames of
each body segment is performed by recording of a static posture, in
which a subset of markers is attached to anatomical landmarks of a
participant, while the rest of the markers are rigidly attached close
to the middle of each skeletal segment.

In this thesis we analyze biomechanical simulation with optical mo-
tion capture data recorded in non-ideal conditions, with a non-optimal
marker set, and with a reduced number of markers and spatial con-
straints on adjustment of each marker. Additionally, due to our HCI-
specific physical setup, we deal with significant marker occlusions and
reflections in the motion capture data.

2.5.2 Musculoskeletal Models

The core of biomechanical simulation is a model of the human muscu-
loskeletal system. This model describes the human body as a mechan-
ical multi-body system, which consists of passive elements constraining
a movement (bones, joints) and active elements which generate forces
and energy for movement (muscles) based on a particular control input
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(neural signals). Mathematically this system can be interpreted as a set
of non-linear differential equations. Biomechanical simulation fits this
model to a user, then to motion capture data of particular movements,
and outputs joint angles, then by deeper interpretation joint moments
and forces, and finally muscle forces and activations.

Development of biomechanical models started from simple 1-joint kine-
matics models, adding inertial properties towards dynamic models and
adding muscle properties towards musculoskeletal models. All simple
models were developed using direct measurement experimental data from
cadavers, X-rays, or joint moment or EMG measurements of living hu-
mans as can be seen in Table 2.1. The more complex models commonly
integrate parameters of multiple simpler models, sometimes with adjust-
ments if the source models are based on different types of subject popu-
lations (cadavers, students, adults, etc.), and compare the final high-level
outputs with corresponding data. While these models can be considered
as representing a “Frankenstein”, as different sets of parameters are col-
lected from different populations, they still can provide realistic results,
as discussed in Section 2.5.5.

The research effort in biomechanics community has been unevenly
distributed between studying lower extremities, upper extremities and
the trunk, resulting in uneven quality of full-body musculoskeletal mod-
els. While current lower-body models describe the human body in im-
pressive detail, upper-extremity models are less developed, and trunk
models are the weakest part.

The musculoskeletal models describe human body on 3 levels:

• Kinematic aspects describe rigid skeletal geometry, and osteo- or
even arthrokinematics of joints between the rigid segments; in par-
ticular, high-fidelity musculoskeletal models can describe both com-
plex joint-specific 3D translation and 3D rotation components of 1-
DoF joint such as the knee, while low-fidelity models describe such
a joint as a simple hinge with 1 axis of rotation. These aspects al-
low estimation of joint angles and the whole posture matching the
motion capture data.

• Dynamic aspects describe inertial properties of each skeletal seg-
ment, like a mass and inertia matrix. Most biomechanical models
describe each skeletal segment as completely rigid with constant
inertia, while in real life soft tissues have a significant effect on re-
sulting joint moments and forces and corresponding wobbling mass
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models promise to reach more realism [282]. The dynamic aspects
are necessary for estimation of joint moments for a particular kine-
matics.

• Muscular aspects describe active force generation within the hu-
man body by musculo-tendon units. The musculo-tendon units
in musculoskeletal models are commonly represented by Hill-type
models [283, 284] consisting of 3 components: active element, se-
rial and parallel elastic elements. Such models are described by
a force-length-velocity relationship (active), or tendon stiffness and
force-length relationship (passive). Musculo-tendon unit implemen-
tations of current biomechanical models differ mostly in how the
above mentioned relationships are numerically described, which
directly affects feasibility, efficiency and accuracy of computations.
Further, musculoskeletal models differ in the quality of muscle model
parameters of each muscle: while in some cases the parameters are
derived from cadavers, in other cases they are derived from healthy
adults or sports students. The muscular aspects are necessary for
estimation of muscle forces, muscle activations, and also excitations
of muscles by neural signals.

In our work we use existing musculoskeletal models: the SIMM full-
body model from MusculoGraphics [285] and the Upper Extremity model [286,
287]. They are state-of-the-art musculoskeletal models widely used in
biomechanics, sports and rehabilitation research. We validate the outputs
of these models against EMG measurements for HCI tasks, in particu-
lar full-arm mid-air aimed movements. Further, we use these models for
analysis of various input methods, and as a method for gaining interme-
diate data for muscle co-activation clustering.

Table 2.1: Previous musculoskeletal models, their movement coverage and validity.

Model Movements Validated
Body Parts

Type
of
Data

Drawbacks YearRefe-
rence

Lower Ex-
tremity

Running 8 lower ex-
tremity mus-
cles

EMG,
Pre-
vious
EMG

Completely dif-
ferent part of
body

2010 [288]

Index Finger
and Thumb

Pinching, hy-
pothetical
rotation

Flexors and
extensors of
fingers

Pre-
vious
EMG

Different model
and type of
movements

1995 [289]
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Wrist with 4
virtual mus-
cles

Static poses 4 virtual mus-
cles

Pre-
vious
EMG

Simplified
model, no
movement,
qualitative
comparison to
earlier data

1974 [290]

Elbow with
3 flexor mus-
cles

Elbow flexion Biceps, bra-
chioradialis,
brachialis

Vali-
dated
pre-
dicted
force

Simplified
model, spe-
cific simplistic
movement,
only 3 vali-
dated muscles,
no recorded
EMG

1993 [291]

Elbow joint
with flexor
and extensor
muscles

– – – No validation 1996 [292]

Elbow with 8
muscles

Ballistic move-
ments

8 muscles EMG Single joint,
specific move-
ments

1996 [293]

Elbow with 3
flexors

Elbow flexions
with different
speed

Biceps,
brachialis
and brachio-
radialis

Pre-
vious
EMG

Simplified
model, spe-
cific simplistic
movements,
lacks its own
EMG

1997 [294]

Elbow with 8
muscles

Elbow flexion
and supination

8 elbow mus-
cle

EMG Single joint,
specific move-
ments, qualita-
tive compari-
son

1998 [295]

Elbow with 2
muscles

Elbow flexion Flexor and
extensor

EMG Simplified
model, single
joint, specific
movement

2000 [296]

Elbow with 5
muscles

– – – No validation 2003 [297]

Elbow with 6
muscles

– – – No validation 2005 [298]

Elbow with 5
muscles

Elbow flexions
in horizontal
plane

Biceps, tri-
ceps

EMG Single joint,
specific move-
ments, only 2
muscles with
EMG

2005 [299]
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Shoulder
with 34
muscles

Arm elevation
in sagittal plane

Anterior
deltoid,
supraspina-
tus, in-
fraspinatus

EMG Specific sim-
plistic move-
ment, only
3 validated
muscles

1992 [251]

Finite ele-
ment shoul-
der

Abductions of
shoulder

12 muscles EMG Single joint
model, spe-
cific simplistic
movement in
1D

1994 [300]

Shoulder
with 1 de-
gree of
freedom and
two muscles

Goal directed
shoulder move-
ments in
sagittal plane

Anterior del-
toid and latis-
simus dorsi

Pre-
vious
EMG

Simplified
model with
no real mus-
cles, simplistic
movements in
1D of single
joint, lack of
correspondence
between model
muscles and
muscles for
which EMG
was used

1994 [301]

Shoulder
with 20
muscles

Aimed move-
ment in sagittal
plane

9 shoulder
muscles

EMG
tim-
ing

Single joint,
simplistic
movements,
qualitative
EMG timing
comparison

1995 [302]

Shoulder
with 30
muscles

Static posture 9 muscles EMG Single joint,
static posture

1995 [303]

Shoulder
with 30
muscles

Aimed move-
ments in frontal
plane

7 muscles EMG Single joint,
small set of
different move-
ments

1995 [304]

Shoulder
with 30
muscles for
load-sharing

– – – No validation 1996 [305]

Shoulder
with 13
muscles

Wheelchair
propulsion

13 shoulder
muscles

Pre-
vious
forces

Single joint,
specific move-
ment, lack of
own ground
truth

2004 [306]
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Upper Limb
with 30 mus-
cles

– – – No validation 1992 [307]

Upper Limb
with 21 mus-
cle

Static pull 21 muscle of
upper limb

Sum
of
forces

Static posture,
no EMG

1999 [308]

Shoulder
and elbow
with 2 de-
grees of
freedom and
6 muscles

– – – No validation 2000 [309]

Shoulder
and elbow
with 6 vir-
tual muscles

Constrained ro-
tations

Posterior
deltoid, pec-
toralis major,
tricepls lat-
eral head,
brachialis,
long head
of triceps,
biceps

EMG Simplified
model, specific
movements,
lack of cor-
respondence
between model
muscles and
muscles with
EMG

2004 [310]

Upper Ex-
tremity

Different static
postures of the
arm

Shoulder,
elbow and
wrist

Joint
Mo-
ments

Static postures,
no muscle vali-
dation

2005 [286]

Delft Shoul-
der and El-
bow with 31
muscles

– – – No validation 2005 [311]

Modified
Upper Ex-
tremity

Specific reach-
ing movement
to single point
in front

Anterior del-
toid, biceps,
triceps

EMG Specific move-
ment, only
3 muscles,
qualitative
comparison,
lack of agree-
ment between
predicted ac-
tivations and
EMG

2009 [312]

Upper Ex-
tremity

Full-arm point-
ing in all direc-
tions and loca-
tions

8 upper ex-
tremity mus-
cles

EMG,
Pre-
vious
EMG

– – This
thesis
[313]
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2.5.3 Biomechanical Simulation

Biomechanical simulation is a set of algorithms which perform computa-
tions using a musculoskeletal model as a prior to fit motion capture and
external force data, and output internal musculoskeletal model states de-
scribing joint angles and moments, muscle forces and activations for an-
alyzed movement.

A musculoskeletal model is a complex mathematical system, which
cannot be solved efficiently by current computing machinery when ap-
proached directly. However, efficient algorithms exist for subtasks, which
can solve the biomechanical system in a sequence of consecutive passes.
These steps correspond to different levels of musculoskeletal modeling
aspects:

1. Model Scaling adjusts generic musculoskeletal model to match the
anthropometric parameters of a particular person, namely the size
of his skeletal segments, total body mass and mass distribution, and
musculotendon properties. Scaling of individual segments is per-
formed by either applying manual measurements of those segments—
length, width, depth measured by measuring tape, or by applying
automatic scaling ratios proportional to the relative distance ratio
between a marker pair attached to the participants and a corre-
sponding marker pair attached to the model. Mass for each segment
is adjusted according to the same ratio, and further it is uniformly
scaled to match the total mass of a person. Muscle fiber length and
tendon slack length of musculotendon units are adjusted propor-
tionally to the total musculotendon length. Usually markers used
for scaling are placed according to anatomical landmarks close to
opposite ends of a skeletal segment, which allows precise place-
ment with respect to both the human body and the musculoskeletal
model [17]. This step outputs a model which has proportions of the
person, his weight, mass distribution and musculotendon parame-
ters.

2. Marker Adjustment is performed after model scaling to improve
spatial correspondence between the markers attached to a model
and to a participant far from anatomical landmarks, usually close
to the middle of a skeletal segment. While these markers exhibit
the smallest soft tissue and skin drift during movements, advanta-
geous for inverse kinematics, their precise placement on both partic-
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ipant and model is very difficult. To improve the placement of the
model markers with respect to the ones attached to a participant,
modified inverse kinematics is performed on one averaged frame of
static posture data with known minimal drift of the markers close
to anatomical landmarks, which are considered by the algorithm as
fixed, and shifting other markers locations to match their correspon-
dences in the data [314]. After this step the markers on the model
and markers on the participant are in close correspondence.

3. Inverse Kinematics fits the posture of musculoskeletal model to
match the recorded motion capture data frame by frame. This algo-
rithm corresponds to an optimization problem subject to kinematic
constraints of the musculoskeletal model and minimizing an energy
function of total squared error between virtual and physical mark-
ers and, if known, between the externally computed and the model’s
generalized coordinates, by adjusting the model’s generalized coor-
dinates as parameters:

arg min
q

[
∑

i∈markers
wi

(
~xdata

i −~xmodel
i (qmodel)

)2
+ ∑

j∈coord.
wj

(
qdata

j − qmodel
j

)2
]

where q denotes generalized coordinates, x marker 3D locations,
and wi and wj weights of a particular marker or a particular joint
coordinate. If the simulation inputs contain solely marker data, the
second part of the energy function vanishes. This step outputs se-
quences of the model’s generalized coordinates closely matching the
motion capture data within each frame [17, 314, 315].

4. Inverse Dynamics computes total joint moments and forces emerg-
ing within movements described by the kinematics data. According
to Newton’s second law, point acceleration is directly proportional
to sum of forces acting on it and inversely proportional to its mass,
or equivalently:

∑ F = M× a

Assuming that the human body consists of rigid segments of a par-
ticular mass and inertia, and measuring external forces acting on it,
it is straightforward to apply the laws of classical mechanics, sepa-
rate known forces and rearrange equation components to derive the
forces and moments inside the human body:

τ = M(q)q̈ + C(q, q̇) + G(q)
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where q, q̇ and q̈ ∈ RN are the vectors of generalized coordinates,
their velocities and accelerations, M(q) ∈ RN×N is the skeleton’s
mass matrix, C(q, q̇) ∈ RN is a vector of the Coriolis and centrifugal
forces, G(q) ∈ RN is the gravity vector, and τ ∈ RN is the vector
representing all generalized forces, namely total joint moments and
total forces for translational joints [314]. All components on the right
side of the equation are known from measurements or previous sim-
ulation steps, resulting in direct and straightforward computation.
This step outputs joint moments and forces that need to be applied
at each degree of freedom of the skeleton in each frame to produce
the specified kinematics.

5. Static Optimization computes forces applied by each muscle and
corresponding activations necessary to produce the total joint mo-
ments computed for each frame by inverse dynamics. It resolves
muscle redundancy using an optimal force distribution assumption,
namely that the human brain recruits muscles in an optimal way
with respect to some objective function. Multiple objective func-
tions have been studied in the past and optimality criteria were pro-
posed, for example total muscle force, total squared muscle stress,
total squared muscle activation, mechanically-based metabolic en-
ergy, biochemical muscle energy consumption, etc. [316–318]. It has
been shown that squared muscle activation, while being a simple
and computationally cheap objective function, provides a high cor-
relation (0.85 in [318]) between predicted muscle cost and recorded
metabolic cost (VO2 consumption); thus, it is the most widely used
objective function in biomechanical simulation. The problem is for-
mulated as a minimization of the objective function:

J = ∑
m∈muscles

(am)
2

subject to a set of constraints describing the muscle force-length-
velocity physiological relationship and relating muscle forces with
total joint moments:

∑
m∈muscles

[am f (F0
m, lm, vm)]rm,j = τj

where am is activation of a muscle, F0
m is the muscle’s maximum

isometric force, lm is the muscle’s fiber length, vm the muscle fiber
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shortening velocity, f (F0
m, lm, vm) the force-length-velocity surface of

a muscle, rm,j the moment arm of a muscle at a particular joint and
τj the total moment at the joint [314]. While static optimization per-
forms computations frame-per-frame ignoring activation dynamics
(activation value of each frame is not influenced by the values of
preceding frames) and contraction dynamics (the tendon is consid-
ered as rigid and serial elastic element in muscles is ignored), it can
produce remarkably similar muscle activations and joint reaction
forces compared to the ones produced by computationally inten-
sive dynamic simulation [319]. This step outputs muscle forces and
activations necessary to produce the joint moments following the
recorded kinematics.

6. Computed Muscle Control similarly to static optimization com-
putes muscle forces, activations, and additionally muscle excita-
tions by the neural system. Unlike static optimization, CMC per-
forms more dynamically consistent simulation of movement taking
into account contraction and activation dynamics, while still being
computationally tractable, in contrast to full dynamic optimization.
CMC integrates static optimization and forward simulation into a
feedback loop with proportional-derivative control, as illustrated in
Figure 2.7. In simple words, the muscle activations computed by
static optimization are inputted into forward dynamics and inte-
grated, then the difference between the resulting from forward dy-
namics kinematics and required kinematics are used to adjust the
next static optimization input [17,320,321]. The outputs of the CMC
algorithm are muscle forces, activations and neural excitations pro-
ducing the given kinematics with the musculoskeletal model.

The described algorithms represent the state of the art in biomechani-
cal simulation, and most of them or variations thereof are implemented in
biomechanical software such as OpenSim [17], SIMM [322], AnyBody [323],
LifeModeler [324] or SantosHuman [325]. Their effectiveness and effi-
ciency has been shown in the biomechanics, rehabilitation and sports
fields, but in this thesis biomechanical simulation is used for the first
time in the field of human-computer interaction. In the HCI setting we
shift the simulation application paradigm from application to a particu-
lar movement of a single subject in the context of a small body segment
and tuning of hundreds of algorithm parameters, to a batch processing
of experiment population data with a single set of algorithm parameters,
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eliminate the need for residual forces. This was
accomplished using the overall equations of motion
(first 6 equations of (2)) which are independent of
muscle forces and require that the net external forces
balance the sum of forces and torques due to coriolis,
centripetal, gravitational and inertial effects (Green-
wood, 1988). These equations were solved for the pelvis
translational accelerations (

€
q
*

x) and low back angular
accelerations ð

€
q
*
bÞ; assuming the ground reactions and

all other generalized coordinates were well represented by
experimental values. Given initial states (i.e., q

*
x;
_
q
*

x; q
*

b;
and

_
q
*
b at t ¼ 0), the accelerations were solved at each

time step and integrated forward to produce new
estimates for pelvis translational ðq

*exp

x Þ and low back

angular ðq
*exp

b Þ trajectories. Nonlinear optimization was

used to solve for a set of initial states that minimized a
cost function:

J ¼
XN

j¼1

wxjq
*exp

x ðjTÞ � q
*kin

x ðjTÞj
2

þ
XN

j¼1

wbjq
*exp

b ðjTÞ � q
*kin

b ðjTÞj
2

þ
XN

j¼p

ws½jq
*exp

b ðjTÞj � jq
*kin

b ð½j � p�TÞj�2 ð3Þ

which is the weighted sum of the squared deviations
from the kinematically determined trajectories plus a
penalty term for nonperiodic behavior of the back
angles. In Eq. (3), N is the number of data points, T is
the sample interval ( ¼ 0.01 s), p is the number of data
points within a half-gait cycle, and wx, wb, and ws are
weighting parameters. The optimal pelvis translation
and back angle trajectories were then combined with the
kinematically determined lower extremity joint angular

trajectories to form a set of generalized coordinate
trajectories, q

*exp
; to be tracked by the model. The

generalized coordinates of the musculoskeletal model
were set to q

*exp
to determine the corresponding

trajectories of the muscle–tendon lengths ð l
*exp

mt Þ: Both

q
*exp

and l
*exp

mt were subsequently fit with seventh-order

splines (Woltring, 1986) prior to tracking.

2.3. Computed muscle control algorithm

CMC was used to compute muscle excitations that
would drive a forward dynamic simulation to track the
subset of generalized coordinates, q

*
j ; corresponding to

anatomical joints (Fig. 1):

q
*

j ¼ fq
*T

r q
*T

l q
*T

b g
T. (4)

Only the anatomical joint angles were tracked since the
pelvis (i.e., the base segment) motion is dictated by the
foot–floor reactions. At a time t in the simulation, the
tracking errors ðe

*
q;
_
e
*

qÞ between the simulated ðq
*

j ;
_
q
*

jÞ

and corresponding experimental states were used to
compute a set of desired joint angular accelerations

ð
€
q
*
des

Þ that should be achieved a short interval

(T ¼ 0:01 s) later to track q
*exp

j

€
q
*

des

j ðtþ TÞ ¼
€
q
*
exp

j ðtþ TÞ þ kv½
_
q
*exp

j ðtÞ �
_
q
*

jðtÞ�

þ kp½q
*exp

j ðtÞ � q
*

jðtÞ�, ð5Þ

where kv and kp are feedback gains for the velocity and
position errors, respectively.

Muscle activation and contraction dynamics were
integrated forward from t to t+T for a range of muscle
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Fig. 1. Schematic of the computed muscle control algorithm applied to gait. The algorithm is applied every T( ¼ 0.01) seconds during a forward

dynamic simulation. A set of desired accelerations ð
€
q
*

des

Þ are first computed that will drive the generalized coordinates and speeds of the model (q
*
and

_
q
*
) toward the experimental kinematics (q

*
exp and

_
q
*exp

). kv and kp are feedback gains that weight the current velocity ð
_
e
*

qÞ and position errors ðe
*

qÞ;

respectively. Static optimization is used to compute a set of desired muscle forces that are achievable at t+T, would produce the desired accelerations

ð€~q
des
Þ in the current configuration, and also minimizes a cost function to resolve muscle redundancy. Muscle excitations ðu

*
Þ that produce the desired

forces are then found by inverting contraction and activation dynamics. Excitations are held constant while numerical integration of the full system

state equations are used to advance all states to t+T. The tracking algorithm is applied repeatedly every T seconds until the simulation runs to

completion.

D.G. Thelen, F.C. Anderson / Journal of Biomechanics 39 (2006) 1107–1115 1109

Fig. 2.7: Computed muscle control algorithm [321].

covering a large variety of movements and simulating the whole human
body. We validate the produced simulation results against EMG record-
ings, and analyze the whole body results for different types of interaction
using interactive visualization software and statistical methods. Further,
we work towards simplification of the biomechanical algorithms, so that
HCI researchers can run the simulations without tuning all the algorithm
parameters.

2.5.4 Improvement over Traditional HCI Methods3

We here compare the outputs to existing measurements in physical er-
gonomics.

Motion capture and biomechanical simulation create a high-dimensional
description of a user’s movement. The output variables are best un-
derstood as descriptors of physical ergonomics costs, the anatomical and
physiological costs of movement [326, 327]. Within this scope, mocap-
based biomechanical simulation can estimate six out of eight measures
that would normally require specialized measurement instruments (Ta-
ble 2.2).

Joint angles are indicators of movement constraints and extreme pos-
tures and often measured by labor-intensive videometry, or goniometer
measurement, which is limited to a few joints at a time and can perturb
the movement. Posture is the state of the whole kinematic tree. It predicts
overloading and musculoskeletal stress. In mocap-based biomechanical
simulation, inverse kinematics yields angles and posture.

3This section is based on the paper Is motion capture-based biomechanical simulation valid
for HCI studies?: Study and implications [313]
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Goniometers

Videometry

Accelerometers

Force plates

Dynamometers

Surface EMG

Self-reports

DHM

Biom. simulation

fully covered partially covered not covered

Table 2.2: Comparison of biomechanical simulation against traditional instruments for
physical ergonomics costs.

Kinematics describes angles and the distribution of loads and mass
during movement and predicts overloading and repetitive-strain injuries.
Force plates, on-limb accelerometers and on-joint friction/bending sen-
sors can be used, but these have limited coverage, are cumbersome to
apply, and can influence movements. Moments and forces at joints can esti-
mate the overall energy expenditure [328] and also point to arthrokinetic
strain and stress. Moments at joints are the sum of muscle forces multi-
plied by moment arms. Dynamometers are used in sports sciences but are
limited to static setups and cover one movement type at a time. Mocap-
based biomechanical simulation estimates moments and forces based on
the outputs of inverse kinematics and full mass of the participant, assum-
ing standard mass distribution.

Muscular load is the force produced by a muscle for a movement. Di-
rect measurement of muscular forces is intrusive, but surface EMG [329]
(sEMG) can be used to estimate it if parameters such as cross-sectional
area are known. Muscle activation refers to the recruitment of muscle
fibers by action potential induced by motor units. sEMG can be used for
measurements, but it is limited to preselected muscles. In mocap-based
biomechanical simulation, these two are given by static optimization.
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Fatigue is the state of a muscle when it cannot produce its maximum
force. It is reflected in the sEMG signal. Muscular fatigue can be de-
scribed by total mechanical energy expenditure of a muscle, which can
be calculated from muscle activations integrated over time, estimated by
static optimization. Presently, the best way to measure muscular fatigue
is to infer it from the EMG signal and to use self-reports.

Self-reports are verbal reports of effort, fatigue, and stress; they are typ-
ically measured via questionnaires administered after a task. A workload
questionnaire widely used in HCI is NASA-TLX, which taps into some of
these aspects. There are no published studies on the relationship between
self-reports and outputs of biomechanical simulation.

2.5.5 Previous Validations of Musculoskeletal Models and
the Simulation4

Although mocap-based biomechanical simulation has gained ground only
recently, some steps of the simulation have been known for decades and
are more thoroughly understood [327] than muscle activation models.

Error in joint angle prediction has been estimated to be within 1 degree
for flexion–extension and abduction–adduction, and within 3 degrees for
axial rotation [315]. Mean joint dislocations were smaller than 0.5cm,
which should be accurate enough for HCI. Forces and moments have
been validated in a study that compared the output of inverse dynamics
to joint moments calculated with a machine learning algorithm from an
EMG signal for the knee [328]. Model fit was high: R2 = 0.91± 0.04.

The only studies looking at the validity of muscle activation predic-
tions of real movement of whole limbs involve lower extremities and con-
sider gait or running [288, 330]. They compare predicted muscle activa-
tions against sEMG. Although there are few validation studies of simu-
lations related to upper extremities, all of them are constrained and sim-
ulate only one-dimensional movements of a single joint. The previous
validations of lower extremities or separate joints of upper extremities, as
summarized in Table 2.1, do not generalize to the upper extremity model
and cannot be considered as “valid” for HCI tasks [331]. The only study
with a comprehensive upper extremity model reported, qualitatively, a
lack of agreement in a comparison of predicted muscle activations and

4This section is based on the paper Is motion capture-based biomechanical simulation valid
for HCI studies?: Study and implications [313]
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recorded EMG of 3 muscles for single specific reaching movement [312].
The validation study described in this thesis is the first exhaustive vali-
dation of upper extremity models for whole-arm aimed movements in all
directions and locations.

2.5.6 Discussion

Motion capture-based biomechanical simulation is a powerful tool which
allows to “look inside the human body”. However, there are still a lot of
unanswered questions and potential for improvement of the method, in
particular for the other fields which lack biomechanical expertise, or for
other types of movements. Additionally, the method cannot be consid-
ered as valid by default for all tasks and movements. As already stated,
the biomechanical simulation and models are much better developed for
the lower body than for upper extremities and trunk, while for HCI upper
extremities are of prime interest.

We contribute towards biomechanical simulation by simplifying ap-
plication of the method for non-experts—we predefine most simulation
parameters and then run the simulation for all trials and participants
without fine-tuning. Second, we validate the predictions computed using
the upper extremity model against EMG recording for whole-arm aimed
movements of various accuracies, amplitudes and spatial characteristics.
Third, we are the first to adopt and apply biomechanical simulation in the
HCI field, as well as validate biomechanical simulation in the HCI setting
with predefined parameters and an upper extremity model.

2.6 Summarization and Clustering of Physiolog-
ical Data5

There is compelling evidence suggesting non-uniformity of human move-
ment: two movements that differ in location, direction, and amplitude can
and will vary in many important aspects, in particular in performance
and ergonomics. Simplifying these heterogeneous patterns is one of the
goals of our work.

First, studies of movement trajectories have shown the tangential velocity
pattern generally to be asymmetric and bell-shaped [333]. However, sev-

5This section is based on the paper Informing the Design of Novel Input Methods with
Muscle Coactivation Clustering [332]
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eral factors affect trajectory and velocity profiles, such as starting posture,
the location of the end-effector, and ending posture [334], as well as the
availability of visual feedback [335–337]. Movement properties also de-
pend on ego-centric location and direction of movement [338–340]. Some
of these effects have been captured in a number of movement models,
including the minimum jerk principle [341], the torque change minimiza-
tion model [342], and the endpoint variance minimization model [343].
Our experimental paradigm for data collection includes the effects of dif-
ferent starting postures, ego-centric location, and direction. No limita-
tions were imposed on the use of visual feedback.

Second, performance models capture the speed-accuracy trade-off of
pointing tasks (e.g., [261,266,343–345]). The earlier models treated move-
ments as equal in regards to starting location and direction [8, 41, 268,
346, 347]. Some recent models have started to capture these factors (e.g.,
[261, 266, 348]). Because three target sizes were used and the whole 3D
space of the arm covered, our dataset allows grouping any movements in
the 3D space for performance modeling. The clusters we identify differ in
movement location, direction, and amplitude. We show that performance
prediction can be improved by segmenting the data based on muscle-
based clusters.

Third, studies of muscle dynamics have shown a general three-phasic
pattern of muscle activations from agonist to antagonist [349, 350]. Mus-
cle activations in the initial agonist activation are directly proportional
to the duration of the acceleration phase [351, 352]. Durations of the ini-
tial EMG bursts of the agonist muscles are proportional to the move-
ment amplitude [350]. It has been found that the set of muscles acti-
vated at the initialization phase of movement depend on the target loca-
tion [340]. Also, depending on the movement direction, a common wave-
form of muscle activation is scaled and delayed in a specific way for each
muscle [353]. Furthermore, earlier studies have exposed codependencies,
such that shoulder and elbow joints are coupled during movement, but
the wrist is independent [354, 355]. Our muscle activation data confirm
the general pattern and as such, show large differences within the point-
ing space. The goal of our clustering is to capture the tendencies in the
whole reachable space of the arm. As stated, no a-priori assumptions are
made about muscle recruitment, but we identify classes in a data-driven
approach.

We are aware of few attempts to apply statistical methods of modeling,
classifying or clustering to biomechanical data. Santos et al. performed
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clustering of kinetic and kinematic variables of gait, stair ascent and de-
scent to identify different functional fitness levels of elderly people [356].
However, this work was focused on identification of the most relevant
feature set, and used ground truth data identified in a separate test to
assess quality of the clustering. Even fewer papers attempt to model and
classify muscle activation patterns of arm movements. They are based on
EMG recordings that were statistically related to kinematics or dynam-
ics of the arm. [353] extracts two principal components from the EMG
signals. These components contain similar patterns among muscles with
the differences in amplitude and temporal shift, depending on the de-
sired movement direction. Micera et al. [357, 358] use machine learning
techniques to classify EMG signals into three categories. The involved
movements are all planar, and only three muscles are examined. These
studies account for non-uniformity, but they cover only a narrow set of
upper extremity muscles and are limited to close-to-the-surface muscles.
Moreover, they do not associate the patterns to pointing performance.

2.6.1 Discussion

There is compelling evidence that human movements are non-uniform
with respect to spatial location, orientation, amplitude speed and accu-
racy. However, there are not many attempts to tackle this non-uniformity
with respect to ergonomics or performance. In our work we assume that
the active components of the human body which produce movements
are the muscles, and movements produced by similar muscle activations
also exhibit similar properties. Thus, we compute uniform regions based
on similarity in muscle activations. Our work takes the first step in the
direction of non-uniform performance models—we identify smaller uni-
form regions within the non-uniform movement space reachable by the
arm. Furthermore, based on those uniform regions, we provide a com-
pact overview not only for performance, but also for ergonomics factors,
as they are dependent on muscle recruitment.

2.7 Summary

We have described the state of the art of fields of HCI input method
design, physical ergonomics, and biomechanical modeling and simula-
tion in the aspects related to this thesis. Each field has own tasks, re-

69



Background & Related Work

search methods and models, but this work advances all fields by provid-
ing bridges between them and advancing each field by methods from the
others.

The largest is the contribution to HCI input method design: we adapt
and validate biomechanical simulation for HCI goals, tasks and settings,
which makes feasible detailed analyses of gestural and mid-air interfaces
to accelerate their development and wide adoption. We show the ef-
fectiveness of biomechanical simulation on analysis of touchscreen de-
vices and the added knowledge compared to traditional methods. Our
movement space summarization provides quick access to biomechanical
properties of mid-air aimed movements based on movement location and
orientation. The summarization can be used by input method designers
without much prior knowledge in biomechanics, kinesiology or physiol-
ogy, while knowledge of anatomy is still necessary to understand areas
under load in the human body.

The contribution for the field of physical ergonomics is similar, but not
as significant as for HCI, as ergonomists usually have better knowledge
of human physiology and biomechanics, and while they were not able to
perform such detailed analysis, the movement summarization may have
less value for them.

The contribution to biomechanics is two-fold: we validate biomechani-
cal simulation with an upper extremity model for new types of movement
tasks and, by creating the simulation pipeline, we make biomechanical
simulation more user-friendly and accessible to a wider range of users.
In particular this aspect is important for doctors and practitioners who
have knowledge of the human body, but lack technical knowledge to run
biomechanical simulation, tune optimization parameters or adjust mod-
els.
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Chapter 3

The HCI Biomechanics Pipeline

3.1 Introduction

Following the overview of modern ergonomics and biomechanics meth-
ods in the previous chapter, we answer Research Question 1.1 in this
chapter by adapting and framing the motion capture-based biomechani-
cal simulation as a method suitable for the HCI field.

As already described, user performance and physical ergonomics are
two key characteristics of input methods defined during the design pro-
cess. A usable input method satisfies both these aspects by allowing high
throughput (high words per minute for typing, fast target selection and
menu navigation, etc.) and necessitating low ergonomics cost (postures
closer to neutral, small joint and muscle loads, low energy expenditure
and fatigue). For post-desktop input methods the problem of perfor-
mance and ergonomics assessment becomes particularly hard due to such
issues as lack of previous knowledge, large input space and its non-
uniformity with respect to performance, and complexity of ergonomics
analysis using traditional methods.

As presented in the overview of modern methods deployed in rele-
vant fields, the most promising data collection method for our purposes
is optical motion capture in combination with biomechanical simulation.
While optical motion capture data is perfect for movement performance
analysis (end-effector velocity, movement time, Fitts’ law, throughput,
etc.), it also serves as input to biomechanical simulation, which pro-
vides physical ergonomics variables for the corresponding movement.
The computations are executed with a generic musculoskeletal model
as a prior and generate joint angles, joint moments, muscle forces and
activations.
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The proposed analysis pipeline collecting and integrating both per-
formance and ergonomics is shown in Figure 3.2. The pipeline is im-
plemented in Matlab and includes the OpenSim biomechanical simula-
tor [17] to generate biomechanical data. The experiments need to be
performed in a motion capture laboratory and necessitate only slight
adaptations to typical-for-HCI experimental setups and procedures. The
preprocessing typical for motion capture data is applied to remove ar-
tifacts. This data is used further to derive performance characteristics,
and in parallel it serves as the main input to biomechanical simulation.
The resulting performance and ergonomics indices are synchronized and
registered back in 3D movement space together with representation of
experimental setup, namely the 3D targets.

The final dataset broadly covers both performance and ergonomics
with more than 400 variables (for the upper extremity musculoskeletal
model). Any movement can be analyzed and compared against others
with respect to various types of indices, and at different levels of granu-
larity, from frame level, to aggregates per movement and per movement
type. In contrast to traditional methods, the richness of the dataset makes
it possible to define the scope of the analysis a posteriori, rather than
before the experiment. This gives the researcher additional advantages
and flexibility in the search for general trends and anomalies. Another
big advantage of the proposed method is the possibility of joint analysis
of performance and ergonomics. This is the first method which tightly
integrates both measures and makes it possible to systematically assess
trade-offs between them, which would be very valuable for post-desktop
interface designers and researchers.

Creation of the dataset is not the last step of the proposed analysis
pipeline. To support the practitioners in analysis of such multidimen-
sional multi-factor data we, together with our collaborators, have devel-
oped an interactive visualization tool. This tool makes it possible to ex-
plore different facets of the data using individual, most intuitive visu-
alizations for them; for example, it supports 3D trajectory visualization
to analyze end-effector kinematics; muscle visualizations to analyze re-
cruitment, loads and energy expenditure; or task-specific visualizations
relating indices of the data with spatial characteristics of the task. The
tool supports joint analysis of the data across all three facets: perfor-
mance, ergonomics, and task-specific movement characteristics; for ex-
ample, it is possible to select desired movements in 3D space, then an-
alyze their properties in ergonomics space (joint angles and moments,
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Fig. 3.1: Terminology and setup for data collection. Markers on the human body are
mapped via anatomical landmarks to a generalized model of the human. Physical tar-
gets are also registered in the virtual 3D space.

muscle forces and activations), or performance space (speed, accuracy,
throughput). The tool is suitable for typical HCI decision-making tasks:
validation, exploration and planning.

3.2 General Adaptation of the Method for HCI
Studies

Previous industrial human factors work has developed mocap-based mod-
els of workers in reaching and assembly tasks (e.g., [359]). They simulate
workers with different anatomical properties, but the models are highly
task- and setup-specific. To be useful across the very diverse domains
of HCI, mocap-based biomechanical simulation should not pre-specify a
motion range. Moreover, a wide variety of movements must be covered
in a single experiment.

Our goal has been to allow researchers to examine any observed motion
of the user in 3D space for both user performance and ergonomics. Conse-
quently we have identified the following subgoals:

• Coverage: Motions and aspects typical of HCI settings must be ac-
commodated: 1) Contact with objects, which causes external forces;
2) multiple objects in the scene, causing occlusion of cameras; 3)
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rapid, abrupt motions that can involve large forces; and 4) fine sub-
centimeter movements such as those of the fingertips.

• Efficiency: The method has to allow efficient analysis of the whole
population of potential users and consistently integrate them into a
single analysis.

• Simplicity: The method must be streamlined to be applicable by
researchers without specific expertise in biomechanics.

• Motion segmentation: Because performance indices require multi-
ple observations, the whole motion sequences must be segmented
into individual aimed movements.

• Universal 3D registration: Every trajectory must be augmented
with both performance and ergonomics indices, and registered in
a 3D coordinate system that includes 1) the user’s virtual body and
2) input regions.

• Multiple scales of analysis: Output must allow analysis at the
frame level (e.g., where the index finger is at a given moment),
movement level (e.g., the trajectory for a multitouch rotation), and
task level (e.g., what the average loading of the shoulder muscle is
in a task).

3.3 Adaptation of Experimental Design

As shown in Figure 3.2, the first step of the proposed pipeline is to collect
motion capture data in a user study. This data completely describes hu-
man movements recorded in the study, as well as the experimental setup.
We list adaptations to typical HCI experiments necessary to apply the
method.

First, the researcher defines the movement space for the study. Limi-
tations are posed only by the optical tracking system. For the analysis
of users’ performance in aimed movements, which is typical for studies of
input methods in HCI [95], it is necessary to set up the space such that
the physical targets or input regions are observable by the cameras. For
example, for the setup of Figure 3.1, the targets were instantiated by car-
ton boards on aluminum sticks. If the space is in the ego-centric instead
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Variable Level Unit Count

Physical space

Physical target 3D position Trial mm 3

Physical target size Trial mm 1

E�ective target 3D position Trial mm 3

E�ective target size Trial mm 1

Target amplitude Trial mm 1

Centroid amplitude Trial mm 1

End-e�ector 3D position Frame mm 3

Performance

End-e�ector velocity Frame m/s 3

Velocity angles Frame m/s 2

End-e�ector absolute velocity Frame m/s 1

Mean movement velocity Movement m/s 1

Movement o�set Movement mm 1

Index of di�culty Trial bit 1

E�ective index of di�culty Trial bit 1

Movement time Movement ms 1

Mean movement time Trial ms 1

Throughput(4 types) Trial bits/s 4

Ergonomics

Generalized coordinates Frame ◦ 115

Moments at joints Frame N ·m 115

Integrated moments at joints Movement N ·m · s 115

Forces inside joints Frame N 345

Forces exerted by muscles Frame N 351

Force integrated over movement Movement N · s 351

Muscle activations Frame 0-1 351

Activation summed over movement Movement 0-1 351

Total muscle activations Frame 0-1 1

�//� summed over movement Frame 0-1 1

Table 3.1: Output variables produced by the method. Count is based on simulations
with the SIMM full body model.
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Fig. 3.2: Overview of steps required for use of biomechanical simulation in HCI studies.

of exo-centric reference system, the movement space must be scaled to
the proportions of each subject. Linear geometric scaling can be used to
adjust the target positions to the arm length and the height of a subject.

If external forces are involved—for example, ground reaction force if a
user is jumping—or any other force is exerted on a physical object, force
sensors should be used. We have used a Micro Load Cell (0–20 kg) with
PhidgetBridge mounted under to-be-touched surfaces. For gait, force
plates could be used.

For marker placement, we have followed recommendations for upper-
extremity analyses based on anatomical landmarks [280] with some modi-
fications due to limitations in suit marker placement. Our system (Phase-
Space using Impulse cameras) tracks a full-body suit and gloves with flex-
ibly attachable marker positions. For HCI cases, it is necessary to add
further markers on the end-effectors (e.g., index finger). This minimizes
the error in performance analysis.
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For universal registration, two types of calibration data must be recorded
prior to the experimental trials:

1. Calibration for scaling to the user involves 5–10 seconds recorded with
the subject standing in a straight static pose with arms and legs
extended (T-pose). This type of data is needed for Scaling. Alterna-
tively, physical measurements can be used.

2. Calibration for target registration is necessary for physical targets. Cal-
ibration is done for each session and each user by touching the cen-
ter of each target with an end-effector equipped with a marker. Such
calibration needs to be performed for every session to avoid the ef-
fects of between-session changes in the coordinate system of the
mocap equipment.

With these calibrations, a user study can be performed in an optical
tracking system.

3.4 Data Preprocessing

The second step in the pipeline (Figure 3.2) is preprocessing of the col-
lected marker data. The raw mocap data contains a number of artifacts
caused by marker occlusions, reflections or shifts in a set of cameras observ-
ing a particular marker. The artifacts are typical when the user moves
around or the scene is crowded. The first two issues manifest themselves
as abrupt “jumps” in motion paths to that can be reliably identified from
the second derivative of coordinate values that are further than 2 SD from
the mean; the identified points are deleted from the data. The third issue
can be identified as a shift of the whole sequence happening between two
neighboring frames. In this case removing only the two frames does not
help, and wider regions have to be cleared. After these two steps, the
dataset has gaps that must be filled. We have experimented with sev-
eral interpolation types and found linear interpolation to yield sufficient
quality.

Finally, although most optical tracking systems can automatically smooth
marker trajectories, additional smoothing is necessary for ID and SO. Any
unsmoothed abrupt change in trajectory can only be explained in biome-
chanical simulation by an impossibly high use of force. We have tried
standard methods, such as Butterworth, but found Kalman smoothing
[360, 361] to produce the best results.
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3.5 Extraction of Performance Data1

After the data has been preprocessed, the pipeline (Figure 3.2) contin-
ues with extraction of movement performance data. For computation of
performance indices, the whole mocap sequence must be first segmented
into individual aimed movements. For reciprocal and cyclical aimed
movements, we use local minima of absolute velocity of the end-effector
marker, assuming that end-effector velocity falls to near zero in nearing
the target and before the new movement begins. Given the calibration
data, movement time and velocity can then be computed as indices of speed.
Offset from the target center is derived as an index of accuracy. Effective
accuracy is computed on the basis of a sphere covering 96% of movements
that end within the target. Alternatively, the centroid of the effective
target can be used for the cutoff. From the segmented data, individual
movement outliers can also be easily removed via definition of cutoffs for
speed/accuracy or distance to targets. From the segmented data, indices
of difficulty and Fitts’-law models can be calculated for a given set of D and
W parameters. We use a univariate model of pointing, but bivariate and
trivariate models can be computed from this data (e.g., [266]).

We follow recommendations from previous research [95] and use the
Shannon formulation of the index of difficulty (ID):

ID = log2

(
D
W

+ 1
)

where D is the amplitude and W is the target width. The unit of ID is
bits. We compute the effective target width We = 4.133σ and amplitude
De = ∑N

i=1 Di/N instead of D and W, where σ is the standard deviation of
endpoint positions, Di is the distance between start point and end point
of a single movement and N is the number of aimed movements. We
compute the coefficients a and b of Fitts’ law using least squares fitting
for a linear model:

MT = a + b× IDe

where MT is the average movement time. We assess the goodness of the
fit by computing R2 for each model. Furthermore, we calculate through-

1This section is based on the paper Performance and Ergonomics of Touch Surfaces: A
Comparative Study Using Biomechanical Simulation [118]
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put TP for each condition as:

TP =
1
y

y

∑
i=1

(
1
x

x

∑
j=1

IDeij

MTij

)

where y is the number of subjects and x is the number of trials performed
in a particular condition.

3.6 Extraction of Physical Ergonomics Data

After the preprocessing step (Figure 3.2), the conventional steps of the
biomechanical simulation algorithm can already be carried out as de-
scribed in Section 2.5.3. However, for computational reasons (biomechan-
ical simulation is extremely time-consuming, in particular static optimiza-
tion) we perform the simulation only on “representative” movement for
a particular sequence of aimed movements. The “representative” move-
ment can be identified as the one with performance properties closest to
the average of the sequence. We use a single set of parameters tuned on
example data to run the simulation for the whole dataset. As simulation
in current software is implemented as single-threaded, we use external
scripts to perform batch processing and parallelization of biomechanical
simulation. For SO, additional reserve actuators can be added to ensure
the existence of a solution, if the model contains too-weak muscles to
explain abrupt or fast movements. The results should be checked for re-
serve activations, and if they are large, the virtual model should be better
tuned to the individual subject [314].

3.7 Spatial Registrations of Data

After the extraction of performance and biomechanics indices, all 3D
datasets are aligned and transformed in accordance with the calibration
data (Figure 3.2). We compute the transformation between two target se-
tups by optimizing least-squares errors between the references and post-
transform positions. These transformations are further applied to 3D data
of aimed movements and aligned in the same space, so that they can be
jointly analyzed. If data are collected across multiple sessions, drift and
shifts in the coordinate system of the motion capture tool must be ad-
dressed by the same method.
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3.8 Data Representation on Multiple Aggrega-
tion Levels

The next step in the pipeline (Figure 3.2) after spatial registration com-
bines all types of data within a single table. To provide more flexible
analysis, the dataset is represented on multiple aggregation levels. The
frame level corresponds to the data recorded by PhaseSpace Impulse mo-
tion capture system at 480Hz. The movement level corresponds to the
spatial performance and ergonomics values aggregated for each individ-
ual movement. Aimed movement performance models are computed at
the aggregation level per multiple movements relevant for particular tar-
gets. All values can be further aggregated with respect to a particular
segmentation of the movement space (for example movements within 3
vertical segments: left, center and right) and finally the aggregated values
for the whole movement space.

3.9 Interactive Analysis

The previous stages in the pipeline (Figure 3.2) produce a high-dimensional
and complex dataset with hundreds or even thousands of variables de-
scribing complex interrelations between performance, postures, joint loads,
muscle recruitment and energy expenditure, target locations and sizes,
etc. For example the dataset created using the SIMM full body model
contains 2125 variables (Table 3.1). Most of the variables describe phys-
ical ergonomics and can be related to a particular type of health risk:
generalized coordinates (angles at joints), when close to joint limits, are
related to increased risk of RSI; moments at joints can be related to acute
injury when peak values are high, or to development of disease when in-
tegrated (accumulated) values are high; forces inside joints are relevant to
risks of joint damage; peak forces exerted by muscles are related to acute
muscle injuries; and muscle activations integrated over time correspond
to energy expenditure and fatigue.

Evaluation and interpretation of such a large dataset becomes particu-
larly hard without visual analysis, but available interactive visualization
tools poorly support all facets of the data. As a result, we have worked
on another step of the pipeline which supports such visual analysis. To
achieve this, we have collaborated with experts in scientific visualization.
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Muscle
Fig. 3.3: Interactive analysis tool MovExp [362] with an application scenario.
The case describes a dataset of aimed movements between 25 targets covering the reach-
able space of the arm, namely within a half-sphere centered at the shoulder. To identify
differences between movements in left, central and right parts of the space, we select
corresponding three segments among targets in the setup (b). The 3D trajectories of cor-
responding movements can be observed and manipulated in 3D space visualization (d).
Performance of the movements can be observed on the scatter plot (a) showing move-
ment time with respect to accuracy. Further, the relationship between throughput, am-
plitude and total muscle activation can be investigated through the parallel coordinates
plot (d). The muscle view (e) shows aggregated information on muscle recruitment dur-
ing movements in corresponding space segments. Different types of aggregated values
can be examined through bar plots (f). In this figure they show mean values for speed,
accuracy and throughput.

We have specified the requirements for visual analysis software necessary
to support HCI researchers and designers in evaluating datasets created
by the proposed method. Further, our collaborators have created the in-
teractive analysis software MovExp [362] (application example screenshot
in Figure 3.3) which is able to handle such data, use intuitive spatial rep-
resentations for all facets of the dataset, and flexible enough to accommo-
date task-specific analyses. Most case-studies in this thesis were analyzed
using this tool and some of the corresponding visualizations are included
in the thesis.

The tool provides common visualization functionality: scatterplots,
histograms, parallel coordinates, 3D visualizations, barplots with inter-
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active aggregation functionality, interactive linking and brushing [363]
as a selection method and simple boolean algebra to combine selections.
Besides this, the tool provides a muscle visualization method mapping
muscle-related values to the opacity of corresponding polygon. The bases
for all polygons are illustrations created by Henry Gray [364]. Addition-
ally, the same technical structure can be used to create case-specific visu-
alizations, highlighting for example target layout.

MovExp follows our goal to streamline the biomechanical analysis,
and make it efficient and accessible to non-experts. The tool supports
HCI practitioners in 3 scenarios:

• Validation: The data in the pipeline undergoes multiple processing
steps, and to avoid artifacts, measurement errors, outliers or biases
it should be visually assessed after each step.

• Exploration: Interactive exploration of the dataset is essential in
identification of relationships, patterns, problematic spots, or good
design trade-offs among performance, ergonomics and task vari-
ables.

• Planning: Practitioners can specify their design constraints in visual
queries to identify the other facets of the hypothesized design. For
example, they can specify performance, ergonomics and available
task requirements and get a set of movements satisfying them as a
result. Or inversely, they can specify a set of movements and get
their performance and ergonomics characteristics.

3.10 Summary

We have described the integration of motion capture-based biomechan-
ical simulation with movement performance analysis and task-specific
variables into a single pipeline, whose outputs can be further effectively
explored, evaluated and interpreted using the interactive visualization
tool MovExp. This pipeline proposes slight adaptations to the HCI ex-
periments, as well as to the common practices in optical motion capture
and biomechanical simulation, resulting in an effective method for HCI
researchers and designers. The efficiency and simplicity of the proposed
method can significantly accelerate design of post-desktop input meth-
ods.
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Chapter 4

Applicability of the Simulation
for HCI Tasks1

4.1 Introduction

This chapter describes the evaluation of technical feasibility of motion
capture-based biomechanical simulation when applied to a range of HCI
tasks. We respond to Research Question 1.2 by performing a user study
which covers HCI-specific types of movements with different spatial and
temporal properties, as well as various body segments and muscle groups
involved in the movement generation. First, a user performs a set of
5 tasks in a motion capture laboratory, and then we process the data
through the biomechanical simulation pipeline and note if the computa-
tion fails. We consider the biomechanical pipeline as technically appli-
cable for a task if all corresponding simulation steps succeed. Typical
simulation error examples are discontinuities in IK output, muscle acti-
vations reaching the maximum boundary, or large activations of reserve
actuators. Additionally, when available, we compare the simulation re-
sults against existing EMG measurements for similar tasks described in
previous work.

1This chapter is based on the paper Is motion capture-based biomechanical simulation
valid for HCI studies?: Study and implications [313]
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(a) Full-body motion (b) Mouse pointing (c) Typing

Fig. 4.1: Selected muscle activation predictions for three HCI tasks in the applicability
study. (a) Arm and shoulder muscle activations when moving the arm up in a dance
game. (b) Shoulder activations for mouse pointing: Activation marked in blue is for
movement to left and red for right. (c) Muscle activations in hand and arm muscles for
typing two letters with the middle finger.

4.2 General Setup

The current study examines HCI-relevant motor control tasks in 3D space.
The system we utilize in the study represents the state of the art. Our
recordings are done with high-end, commodity motion capture equip-
ment: the PhaseSpace system with Impulse cameras tracks a full-body suit
and gloves with flexibly attachable marker positions. For simulation, we
use OpenSim [17], the only comprehensive open source simulator. It sup-
ports editing of the musculoskeletal model, scripting, and visual investi-
gation of the results in a GUI. We use the SIMM full body model, which
combines measurements from several anatomical studies [286] best repre-
senting an average adult male. It contains models of 118 bones, 86 joints,
and 285 muscles.

In the user study we have followed the pipeline and adaptations de-
scribed in the previous chapter, as well as the manual of OpenSim [314].

4.3 User Study

A 36-year-old subject (male, 178-cm, 78 kg) volunteered for the study. The
subject is right-handed and has no perceptual, neurological, or cognitive
deficits. As this study is focused only on technical feasibility of biomechan-
ical simulation in application to various HCI tasks, there was no necessity
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Fig. 4.2: Self-made force platform to measure main components of external force.

to recruit more participants. The PhaseSpace motion capture system with
12 Impulse cameras at 480 fps was used to record the movement of 43
active markers. In tasks 3, 4, and 5, a force plate of our own construction
(Figure 4.2) measured the main components of external forces. Interac-
tive software was used in tasks 1, 3, and 5. The tasks were performed in a
single three-hour session. This allowed us to use a single calibration and
scaling. Details of the tasks follow:

1. Full-body dance game involves configural movements of the full
human body. It was performed to a song from Just Dance 2 on the
Nintendo Wii.

2. Plane control involves steering a plane through continuous aimed
movements of the upper part of the human body. Three control
schemes were used: The first used a “bird paradigm,” the second
a steering-wheel paradigm. In the third, the arm was lowered and
flexed. The subject had to mimic the motions of a person “flying”
in a video as accurately as possible.

3. Mouse pointing involves fine-grained movements that deploy mus-
cles from the shoulder down. It consisted of lateral reciprocal aim-
ing movements performed with a commodity mouse. The control-
to-display ratio was varied in three conditions: ratios of 4, 10, and
18 (scale: 1–20). Four target sizes and four distances were used,
yielding 1280 selections in all.

4. Multitouch gestures on a surface involve fine-grained movements
that employ the small muscles of the hand and the arm. We fol-
lowed an existing gesture set [365]: rotation (45 deg, 90 deg, and
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180 deg), pinch with two fingers (4 cm and 10 cm), pull with 2 fin-
gers (4 cm and 10 cm), pinch with all fingers (10 cm), pull with all
fingers (10 cm), drag with index finger (horizontal 4 cm and 10 cm,
and vertical 4 cm and 10 cm), drag with four fingers (horizontal
and vertical 10 cm), and tap with index finger. Each condition was
repeated 50 times.

5. Typing involves fast simultaneous movements of multiple end-effectors
and recruits small muscles. The participant typed his name as
quickly and precisely as possible 50 times on a regular physical
QWERTY keyboard.

In all tasks, the subject was trained prior to motion capture to reach a level
of performance we considered representative for that task. Sufficient rest
was provided throughout.

4.4 Analyses

We have processed the motion capture data through our custom Matlab
scripts to clear it from marker occlusions and reflections, removed noise
using a Kalman filter and then transformed it to a format supported by
OpenSim. At the next stage we tried to process the data of each condition
through the biomechanical simulation pipeline, trying to reach as far in
the simulation steps as possible by adjusting the simulation parameters.
We have documented the problems stopping progress in the simulation
for the failed conditions. For the steps completed throughout the whole
simulation pipeline, we have qualitatively compared the simulation out-
puts with the knowledge from previous literature.

4.5 Results

Table 4.1 summarizes the success or failure of the biomechanical compu-
tations for the specific HCI tasks. Three out of five tasks were completely
successful. For these tasks, the method is discriminative and the out-
puts are sensible as highlighted in Figure 4.1 using representative muscle
activation patterns. In particular, Figure 4.1a shows a clear activation
of upper back, shoulder and biceps muscles when the dancer moves his
arm up, and lower back, shoulder and triceps muscles when he moves his
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Task IK ID SO

Dance game

Flight

Mouse

Typing

Multitouch gestures

full success partial success failure

Table 4.1: Completion of simulation steps for five HCI tasks in the applicability study.
See text for details.

arm down. For the mouse pointing task (Figure 4.1b), different shoulder
muscles (deltoideus anterior and pectoralis major vs. deltoideus poste-
rior and medius) are activated for movements from left to right and vice
versa. When typing (Figure 4.1c), the subject mainly used his middle
finger, which is reflected in a higher proportion of activation of muscles
controlling that finger.

To follow, we discuss our detailed observations during this study, in
particular regarding the cases where the biomechanical simulation could
not be applied (cf. Table 4.1):

Inverse Kinematics

Data from all tasks except multitouch gestures could be processed for IK.
IK requires keeping the RMS (root mean square) error within 2 cm and
largest marker error less than 4 cm. Although such errors are considered
to be normal for full-body simulation, they were too large for multitouch
gestures where the movement size falls within this range. This resulted
in fingers being “stuck” in the same pose during the simulation. The
other borderline case is typing: in our particular case IK was successful,
because the participant used only 3-4 fingers with pronounced up/down
movements when typing. Had the participant used the ten finger touch-
typing technique, IK would have failed.

Inverse Dynamics

Tasks that are successful in the IK stage can proceed to ID. The only
problem we encountered in this step were tasks where large external
forces were applied. For dance, where the user jumped up and down,
because we did not have force plates on the ground, we manually esti-
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mated ground reaction forces based on observation of movements. This
approach improved the validity of full-body results, but the results were
not reliable for the lower extremities.

Static Optimization

Our analysis here is limited to selected shorter segments (< 2,000 ms)
of the full recordings, because of computational intensiveness. Comput-
ing just 50 frames of SO for the dance task took 15 hours on a desktop
computer with a state-of-the-art CPU, as, unfortunately, biomechanical
algorithms implemented in OpenSim do not benefit from parallelization.

One observed limitation is due to movements that are produced by
muscles that are stronger than the corresponding ones of the general-
ized model. Another was that of motions where limbs are overextended
or produce very fast abrupt movements. A successful simulation of the
“bird” controller in the flight task required adding reserve actuators at
the shoulder joints. This issue can be partially addressed by adjusting
the muscle parameters of the general full-body model to the individual
participant. Similarly to ID, SO needs correct external forces, so only part
of the outputs from dance can be considered valid.

Agreement with literature

Muscle activation predictions of two cases—mouse pointing and typing—
could be checked against an earlier report using EMG to compare the two
input devices. Overall, muscle activation predictions agree with previous
findings. While we cannot compare absolute values, relative activations
agree: the trapezius descendens is 1.8 times more activated and deltoids
are 1.3 times more activated when working with the mouse than when
working with a keyboard [366].

4.6 Discussion

From the results we can conclude that the motion capture-based biome-
chanical simulation can be technically applied to a wide range of HCI
tasks, and particularly post-desktop input methods with large whole limb
movements, but there are a few factors influencing technical applicability
of the method.
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The first factor is the size of movements of interest considered in the
context of the body part of interest. If we use the full-body model, the
movements with amplitude shorter than 4 cm are not feasible, as the
amplitude is at the level of the average full-body marker error, which
allows the finger model to stay between the endpoints. This limits the
method’s applicability to such tasks as smartphone interaction, subtle
button presses or finger manipulations. A potential solution could be
to split the simulation into two parts: full-body simulation to get data
for large movements and postural loads, and hand-only simulation to
assess finger movements. For smaller musculoskeletal models, for ex-
ample hand-only, the average marker error will be much smaller, which
could allow the simulation of finger movements. Another solution is to
either attach more markers to the hand and fingers [367], and increase
the weight of these markers, or apply a markerless hand tracking algo-
rithm [368] and apply the kinematics directly.

The second factor is movement range with respect to skeletal joint
boundaries. If the recorded range is larger than those allowed in the
musculoskeletal model of the average human, or close to the joint limit,
the simulation produces incorrect results. This problem can be identified
by examining IK results and fixed by additional model adjustment to a
particular user, but this is a resource-intensive process.

The third factor is presence of external forces. Their inclusion observ-
ably improved realism of simulation even for small forces, as for example
in the case of touch typing.

Most current limitations can be tackled by future research in biome-
chanics, improvements in the user interface of the biomechanical model-
ing and simulation software and development of cheaper force sensors.
Such developments would significantly expand the application scenarios
in HCI.
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Chapter 5

Validity of the Simulation in the
HCI Setting1

5.1 Introduction

This chapter considers Research Question 1.3; namely, it evaluates the
validity of biomechanical simulation outputs against direct measures in
a typical HCI task. A weak point of biomechanical simulation is the
numerous sources of error, which can decrease reliability of the outputs.
These sources of error come into play at each step, starting from marker
placement and finishing with user-specific non-optimal muscle activation
patterns. For successful biomechanical simulation we need to take care
regarding these sources of error. Examples of fields where biomechanical
simulation is successfully applied are medicine and sports. These fields
have their own specific aspects, which tend to avoid or minimize the
errors coming to the simulation from different sources. A goal of our
work is to assess whether the simulation can be also successfully applied
in HCI setting, which is quite different from medicine and sports. Here
are the main contrasts between HCI versus medicine and sports:

• First, motion capture recordings and simulation in medicine and
sports are performed by biomechanically educated professionals,
who gather practical experience every day, while in HCI practiotion-
ers and researchers should not be obligated to have deep knowledge
in biomechanics or physiology to use the simulation for interface
design.

1This chapter is based on the paper Is motion capture-based biomechanical simulation
valid for HCI studies?: Study and implications [313]
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• Second, that there are more resources in medicine and sports which
can be spent to simulate the biomechanics of a single person. This
allows spending more time on accurate marker placement and mea-
surement of the person, taking additional measurements of muscle
force, EMG, weight distribution, etc. and fine-tuning the biomechan-
ical model to the person.

• Third, the goals of the simulation are different—in medicine and
sports the goal is deep understanding of specific movements of the
particular person, while in HCI our goal is to understand the whole
movement space for a population of users.

• Fourth, in medicine and sports the simulation is initially focused on
a specified body segment, which allows accelerating the analysis,
while in HCI we need to look at the whole body and then identify
possible ergonomics pitfalls.

• Fifth, medicine and sports are mostly focused on the lower extrem-
ities, gait and running, but for HCI the main interest is in the up-
per extremities and full-body movements, starting from small mul-
titouch finger movements to full-body gestures.

Additionally, it has been found that current biomechanical models cannot
be considered as “valid in general” and that they need to be validated for
each type of task [331].

This chapter answers the question of whether motion capture-based
biomechanical simulation is still valid in the HCI setting, considering
the above-mentioned differences in typical applications of the method.
We consider the biomechanical simulation as “valid” if simulation results
are reasonably similar to the actual physiological measures. We choose
muscle activations computed by static optimization and EMG for ground
truth as measures for comparison for the following reasons:

• muscle activations are the values of interest for HCI, as they con-
vey a measure not only for ergonomics risk, but also for muscular
fatigue;

• muscle activations are the deepest simulation level, and thus they
accumulate the largest errors; and
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• the EMG is one of the few physiological measures we can directly
compare to simulation outputs, for example joint moments cannot
be easily measured in dynamic tasks.

To answer the question we perform a user study with 16 participants,
recording both motion capture and EMG for a typical HCI task—aimed
movements.

The study addresses the predictive validity of muscle activations in HCI-
relevant motions. Informed by the applicability study (previous chapter),
we decided to focus on gross movements instead of small ones, and chose
mid-air pointing gestures as the topic. This topic is relevant for research
on interfaces that use computer vision and accelerometers for control.

Surface-EMG was measured for eight muscles of sixteen subjects while
performing a 3D pointing task. The participants carried out in-air recip-
rocal pointing movements among targets in the reachable space of their
arms (Figure 5.1). The experimental design covered the whole reach-
able space of the arm and allowed us to vary target size and amplitude
of movements. Moreover, we had 16 users with varying demographics,
which allowed us to learn about potential inter-subject differences and
differences between muscles.

EMG was chosen as “ground truth” following existing recommenda-
tions [331] in studies of lower limbs [288]. We use EMG amplitude as
ground truth. This can be justified because for a particular muscle, larger
EMG amplitude corresponds to larger muscle activation if 1) an EMG
segment is recorded during con- or eccentric movement but not both, 2)
cross-talk is minimized by precise electrode placement on larger muscles,
3) electrode displacement is minimal (here for 5 out of 8 muscles), 4)
no between-muscle or between-movement comparison is carried out for
EMG amplitudes, and 5) the absolute value of EMG is ignored (we use
Pearson correlation as the metric).

5.2 Sources of Error in Biomechanical Simula-
tion

To motivate the need for a validation study, here we outline the most
significant sources of error in the method.

Generally speaking, the estimations of joint and muscle activities should
be treated as hypotheses made possible by a strong prior: an anatomically

93



Validity of the Simulation in the HCI Setting

correct but generalized full-body model. The two most important sources
of error are, first, the precision of motion capture that affects all compu-
tations “downstream.” State-of-the-art marker-based tracking is accurate
to the millimeter level. For example, we used the PhaseSpace system in
the studies, which allows 1/5 mm accuracy at 480 Hz. Second, every
subsequent step in the simulation pipeline introduces unique sources of
error, some of which are accentuated in HCI studies:

1. Marker Placement and Mapping

Biomechanical simulation depends on a reliable mapping between the
body model and pointlights in the 3D mocap data. There are guidelines
for marker placements that increase reliability by identifying anatomical
landmarks that are more matchable (e.g., acromion, elbow) [280]. The
mapping, called the virtual marker set, is manually defined after the data
collection by the experimenter using a GUI.
Sources of error: First, typical optical tracking allows only a limited number
of markers on the body (e.g., our system has 38). The experimenter must
define which limbs to track and which to leave out. For example, tracking
the articulation of hands is limited, if the rest of the upper torso should be
tracked as well. Second, the placement of virtual markers on the model
can never be perfect, since the virtual body model does not have the
exact same geometry, and because markers are placed with an offset from
the bones that mark the landmarks. Third, mapping is less accurate in
segments that are farther away from anatomical landmarks.

2. Scaling

Every user needs to be scaled to match the anatomy of the generalized
human model. A measurement set is a set of marker pairs and body parts
that are scaled according to the ratio of distances between virtual and
physical markers. The model size and weight are adjusted on the basis
of the measurement set or from manual measurements. Automatic marker
adjustment is then done based on data from a calibration pose of the user.
It adjusts marker positions by means of inverse kinematics, which mini-
mizes the errors between virtual and physical marker positions.
Sources of error: First, scaling assumes that the distribution of mass in a
body is a linear function of the model’s distribution. Second, automatic
marker adjustment can err due to improper weight distribution, causing
correctly placed markers to be misplaced.
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3. Inverse Kinematics (IK)

IK calculates generalized coordinates that describe a skeletal movement
in terms of angles between bones at joints, and translations and rotations
of the human model relative to the ground. It minimizes the weighted
least-squares distance between physical markers and corresponding vir-
tual markers.
Sources of error: First, markers can drift during movement due to non-
rigid skin movement. Second, often for better computation speed, the
joints are modeled as simple “hinges” and omit, for example, translation
at joints [326].

4. Inverse Dynamics (ID)

ID calculates forces and moments at joints produced by a movement given
as a generalized-coordinate sequence. External forces can be added to the
simulation at this step—for example, if they are recorded by a force plate,
force transducers, or dynamometers.
Sources of error: First, measurements of external forces can be imprecise or
temporally or spatially out of synch with the pointlights. Second, mass
distribution and anatomy of a given user may differ from that of the
model, causing inaccuracies.

5. Static Optimization (SO)

SO resolves the required activations of muscles by minimizing total mus-
cle activation as its objective function. It uses two muscle models as con-
straints: ideal force generators and muscles constrained by force–length–
velocity properties.
Sources of error: First, SO assumes that people move “optimally” in terms
of minimizing total activation, which cannot be assumed in many HCI
tasks. Second, muscle anatomy and strength may differ between the
user and the model. Third, movement speed may be an issue: For slow
movements, activation patterns could be identified incorrectly, because
humans can use a different activation strategy, or use smaller muscula-
ture to move.
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Fig. 5.1: Left: Experimental setup for the validation study: A 3D space with physical
targets is scaled to the reachable area of a user’s arm. End effector and physical targets
are tracked in addition to the pointlights of the motion tracking suit. Right: Electrode
placement for the validation study.

5.3 User Study

Sixteen subjects (9 males and 7 females) with ages ranging from 21 to 36
(M = 25.9), height from 162 to 178 cm (M = 170), and weight from 61 to
79 kg (M = 70) were recruited. No subject had musculoskeletal or neural
disorders, and every subject took part in some regular physical exercise.
While the recruited subjects group does not include extremes with re-
spect to height, weight, age or physical condition, it covers a relatively
wide population considering only automatic adjustment of the muscu-
loskeletal model, which represents an average adult male. The population
extremes, for example children, the elderly, or significantly overweight
people, would need manual model adjustment or development of a new
model to match the extreme in general before the automatic adjustment
of the new model to a particular person.
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Five targets from a total of 25 physical targets (see Figure 5.1) were
selected for each subject by stratified sampling from five segments of the
reachable space of the dominant arm: left upper outer, left lower outer,
right upper outer, right lower outer, and central inner. There are three
target sizes (20, 40, 80 mm). We recorded three trials for every pairwise
combination of the five targets—in total, 30 trials per subject. The order
of trials was randomized.

In addition to motion capture, surface EMG was recorded with a
Myon 320 [369] and self-adhesive electrodes (Ambu Neuroline 720 00
S/25 with Ag/AgCI and conductive gel) at a sampling rate of 2000 Hz.
All subjects confirmed that the EMG electrodes did not restrict their
movements. Existing recommendations (SENIAM [370]) were used in
electrode application to minimize errors from electrode-skin impedance,
cross-talk and muscle drift. Electrodes were placed on eight muscles: the
pectoralis major, deltoideus anterior, deltoideus medius, deltoideus pos-
terior, trapezius descendens, trapezius transversalis, biceps, and triceps
(see Figure 5.1). The skin was prepared for electrode placement follow-
ing the same recommendations.

Retrospective self-reports were measured by a questionnaire. Sub-
jects were asked to rate task difficulty and also the stress/tension in the
muscles of the arm, shoulder, back, and chest with a seven-point Likert
scale [371].

5.4 Preprocessing and Analyses

All motion capture data was processed through IK and SO. Because of
the computational cost of SO, we selected representative movements by
choosing a movement for each trial with a movement time closest to the
mean and which ended within the effective target.

Following the recommendation of the manufacturer, the DC offset was
removed from the EMG data and frequencies below 20 Hz, above 500 Hz,
and between 49 and 51 Hz (power-line interference) were filtered. The sig-
nal was then full-wave rectified and normalized according to maximum
voluntary contraction. Then both EMG and the activations calculated via
static optimization were low-pass filtered at a frequency of 4 Hz to create
a linear envelope of the signals.
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Fig. 5.2: Examples of EMG vs. predicted muscle activation with high (left) and low (right)
correlations.

5.5 Results

For each movement (n = 960), we computed the Pearson correlation coef-
ficients between the time series of the EMG signals and the corresponding
SO activations of the studied muscles. The full distribution of the corre-
lation coefficients can be observed in Figure 5.3a. The median of the
correlation coefficients over the full dataset is r = 0.48. Examples of high
and low correlations are given in Figure 5.2.

We also segmented the distribution based on different independent
variables (i.e. muscle, participant, target size or location) and analyzed
distributions within segments. Several observations were made:

• SO predicts better for larger muscles: deltoideus (r = 0.64) and
trapezius (r = 0.67). For smaller and less-recruited muscles, cor-
relations are small or negligible: biceps (r = 0.27), triceps (r = 0.04),
pectoralis major (r = 0.04). This can also be explained by larger
relative drift of the smaller muscles with respect to EMG electrodes.

• SO better predicts gross movements, i.e. movements toward large
targets (8 cm radius; r = 0.59) rather than small ones (2 cm radius; r
= 0.37). Perhaps the recruitment of smaller musculature in the finer
control of motion is well captured by neither sEMG nor SO.

• Correlations differ significantly among subjects (range: 0.33 < r <
0.62), with the strongest correlations recorded for the oldest subject
(36 years old, male). This is understandable given that the muscu-
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Correlation

s

Fig. 5.3: Distributions of correlation coefficients between predicted muscle activations
and EMG (left) and between prediction and subjective measures (right)

lature in the model (SIMM-FBM) is based on measurements from
adult males.

• Correlations increase in the course of a session (average slope=0.11%,
in total 3.14% over 30 trials), perhaps because muscles are getting
fatigued, so that muscle parameters of partially fatigued young peo-
ple are closer to the muscles of an average adult in the body model.

• Self-reports of stress/tension have only a weak correlation (0.1 <
r < 0.2) with both recorded and simulated variables (Figure 5.3).

We did not find effects for the location of movement in the 3D space.

5.6 Discussion

From the results we can conclude that for HCI tasks the biomechanical
simulation is valid and the outputs are similar to actual muscle activations
in most cases. However, there are large variations with respect to muscle,
subject and target size.

As we can see, all medians of Pearson correlations are positive, and for
most muscles higher than 0.6, but for triceps, biceps and pectoralis major
they are much lower. One possible explanation is that these three muscles
were moving much more relative to the skin in contrast to the trapezius
and deltoids, shifting muscle belly from under the EMG electrodes, which
leads to an unreliable EMG measurement. However, as we do not have
quantitative data to support this explanation, we cannot confirm that the

99



Validity of the Simulation in the HCI Setting

Muscles 

Pe
ar

so
n

 C
o

rr
el

at
io

n
 

M 
23 

F 
26 

F 
24 

F 
24 

M 
24 

M 
26 

M 
23 

F 
23 

F 
27 

F 
28 

M 
21 

M 
27 

M 
32 

M 
25 

F 
24 

M 
36 

ParticipantID 

Pe
ar

so
n

 C
o

rr
el

at
io

n
 

Fig. 5.4: Top: Correlations of muscle activation predictions with EMG recordings. Break-
down by muscle. Bottom: Breakdown by user.

simulation works well for small muscles. Thus, we would recommend
focusing the experiments on large muscles.

The simulation produced valid results for all participants; namely, the
median Pearson correlations are positive and larger than 0.3 for every-
one. However, the variability is also present here: the median correlation
is twice as high for a middle-aged male compared to a young female,
which is understandable considering the model we used represents an
average adult male. Our recommendation concerning participant selec-
tion is to select a wide population of participants, but in analysis of simu-
lation outputs take into account lower prediction quality for participants
different from the model.

Concerning the task, we see that predictions are better for larger tar-
gets. This can be explained by the higher speed of movements to large
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System Setup

S1. Follow anatomical guidelines for marker placement.

S2. Use additional markers for end e�ectors.

S3. Use force plates to record contact forces at surfaces.

Data Preprocessing

D1. Use reserve actuators for overextended movements.

D2. Use Kalman smoothing for more robust IK and ID.

Participants (based on the existing full-body models)

P1. Middle-aged subjects are better predicted than young ones.

P2. Males are better predicted than females.

Tasks and Procedure

M1. Movements with large amplitudes are better predicted.

M2. Movements to large targets are better predicted.

M3. Fine movements of less than 4 cm of amplitude are not feasible.

M4. Faster movements are better predicted than slow.

M5. Prediction is better for movements recruiting larger muscles.

M6. Prediction improves when the muscle gets more tired over time.

M7. Over-extended motions are poorly predicted.

Table 5.1: Recommendations for improving accuracy of muscle activation prediction in
HCI studies.

targets, which makes activations of the responsible muscles more promi-
nent. Additionally, movements to large targets can be less accurate, so
they need less co-activation of antagonists; as well, they can skip recruit-
ment of small motor units with corresponding musculature. Thus, as a
recommendation we note that the simulation results are better for faster
and coarser movements than for slower and more accurate ones.

The self-reports were not predicted by the method, which needs fur-
ther investigation.

To sum up, the biomechanical simulation at its current state already
produces valid results for tasks in an HCI setting. While there is a lot
of variation in output quality, for favorably chosen participants and sub-
set of muscles, the median correlation is as high as 0.81. The summary
of recommendations for new adopters of biomechanical simulation is in
Table 5.1.
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Chapter 6

Knowledge Added by
Biomechanical Simulation in
Input Method Design

This chapter addresses Research Questions 2.1, 2.2 and 2.3 by applying
the biomechanical pipeline to analysis of interaction with touch surfaces.
It considers both performance and ergonomics as well as interaction be-
tween them in comparative study of 6 touch surfaces. Additionally, new
ergonomic insights are described in detail for interaction with a tablet in
a sitting posture.

6.1 Performance and Ergonomics of Touch Sur-
faces1

6.1.1 Introduction

Nowadays people interact with multiple types of touch surfaces in every-
day life. Half of the world population uses a smartphone as an everyday
tool; tablets are less ubiquitous, but still widespread; laptops are increas-
ingly getting touchscreens and becoming more similar to tablets; and
interactive tabletops and public displays are gaining attention.

We analyze performance and ergonomics of interaction with the above-
mentioned touch surface types. These factors were already studied be-

1This section is based on the paper Performance and Ergonomics of Touch Surfaces: A
Comparative Study Using Biomechanical Simulation [118]
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fore, for example in [129, 133, 138, 141], but in most cases only a single
surface type and single factor (either performance or ergonomics) was
in the focus: tabletop [131], vertical display [130], tilted display [132], or
mobile devices [133]. Each of the existing studies was also different with
respect to task, performance or ergonomics measure, participant popu-
lation, devices used, etc., which makes it impossible to compare results
or consolidate them into a single body of knowledge. As a result, there
is a lack of knowledge of how different form-factors affect touch interac-
tion, which would be necessary to create applications compatible across
devices.

In this section we describe a user study directly comparing the touch
surfaces in a target selection task in a within-subject design. In this way
we can directly compare performance and ergonomics factors among the
surfaces. As a result, we can identify strengths and weaknesses of each
surface type and trade-offs in speed, accuracy, joint and muscle loads
and loads sustained over time causing muscular fatigue. From the find-
ings it is possible to derive recommendations for design of user interfaces
satisfying both performance and ergonomics requirements. In this way
new designs can avoid or minimize adverse effects, for example “touch
thumb”, “gorilla arm”, or “smartphone neck”.

While interaction with touch surfaces involves the same basic princi-
ple, namely “direct touch”, every surface involves different types of pos-
tures, limbs, movements and accuracies. We assume that these differences
are reflected in the human musculoskeletal system, and the differences in
performance and ergonomics characteristics of each surface can be at-
tributed to the underlying biomechanics. Touch surfaces are very flexible
in terms of how they can be situated in space. Furthermore, they can be
carried on the user. This flexibility involves an immense space of possible
interaction postures. In this study we do not limit the participants’ pos-
tures, allowing them to take whatever is preferred by them; based on this
data we analyze the posture space and identify “typical” postures—the
postures commonly used by participants. We analyze typical postures
used in interaction with 5 surface types:

1. public display: large area, vertically positioned, used while stand-
ing

2. tabletop: large area, horizontally positioned, used when seated

3. laptop: medium area, adjustable tilted position, used when seated
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4. tablet: medium area, handheld

5. smartphone: small area, used with one or two hands

In the user study we apply the motion capture-based biomechanical
simulation pipeline described and validated in this thesis. Unique to this
study is the free choice of posture by the participants for each touch sur-
face. The time series of postures of all participants are then grouped per
surface type and clustered into equivalence classes: similar postures used
by different users belong to one class. Further, to attribute the perfor-
mance and ergonomics characteristics to the posture type, more detailed
analysis is performed individually for each class. In multiple conditions
the users were interacting with the surfaces in a sitting posture. As men-
tioned in previous chapters, external force recording is necessary to make
simulation in such cases more accurate; thus, we have instrumented a
chair with multiple force sensors allowing measurement of main external
forces.

While gesture-based input is becoming more popular, as an exper-
imental task we have chosen aimed movements, as they are the most
common type of input on touch surfaces, and in some cases even gesture-
based tasks can be represented through a sequence of simple aimed move-
ments. The task was a multidirectional Fitts pointing task, which is com-
mon for HCI experiments and allows computation of throughput (bits/s)
based on speed and accuracy of corresponding aimed movements [95].
The target setup is equivalent with respect to indices of difficulty and di-
rections for each surface, which allows direct comparison of performance
between surfaces.

Additionally, we have consolidated the data into a single dataset,
TouchCorpus, and released it to the research community. This dataset
includes the data from multiple processing levels of the pipeline: mo-
tion capture, speed, accuracy, throughput and measure of quality of Fitts’
models, joint angles, joint moments, muscle forces and muscle activa-
tions. The dataset is generated on both the frame level as well as the ag-
gregated per-trial level. We hope that this shared corpus will contribute
to the replicability of user studies, and allow comparison of findings from
studies of individual surfaces in a single context.
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Markers

Fig. 6.1: The experiment was carried out in a motion capture laboratory equipped with
a special chair instrumented with force plates. Surfaces were emulated with cardboard.
The targets were registered in 3D space and tracked during performance. Here a user is
performing the task in the Tablet condition (seated). The inset shows an example of the
multi-directional target setups used in the experiment.

6.1.2 Experimental Method

This experiment compares six surface conditions in a multidimensional
target selection task. All movements are recorded with a motion capture
system. We built a chair with sensor plates to record external forces while
seated. Figure 6.1 provides an overview of the setup.

Participants

40 participants (26 males and 14 females) were recruited at the local uni-
versity campus. The age range is 19 to 39 years, with a mean of 24.9. The
range of heights is 156-190 cm (mean 171.4 cm). The range of weights is
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47-95 kg (mean 67.4 kg). The right hand was the dominant hand for 38 of
the subjects. No participant had a known musculoskeletal or neural dis-
order. We also collected their reports of previous experience with touch
screens. Most participants used a smartphone on a daily basis. They were
compensated for participation at a rate of 10 Euro/hour.

Experimental Design

We follow a 6 x 12 within-subject design with 6 surface type conditions
and 12 target selection conditions (see below). The order of surfaces was
randomized for each subject, and within each surface condition the target
selection conditions were also randomized. The surface types are: public
display, tabletop, laptop, tablet, and smartphone with two hands or one
hand. We have selected the most widely used condition for each surface
type: standing for the public display, and seated in the other cases. The
12 target selection conditions consist of:

• index of difficulty (3): 2, 3.5 and 5 for small and medium surfaces;
2, 4 and 6 for large surfaces;

• approach angle (4): 0°, 45°, 90°, 135°

Target sizes on each surface were proportional to the screen size. They
were 60, 28 and 10 mm for the public display; 50, 22 and 8 mm for the
tabletop; 20, 14 and 7 mm for the laptop; 18, 10 and 7 mm for the tablet;
and 7.5, 5 and 3.6 mm for the smartphone. Movement amplitudes on all
surfaces matched screen size. In smartphone conditions amplitudes were
shorter than marker error limits, limiting the applicability of the full-
body simulation. Because biomechanical simulation has limited validity
for small-scale movements [313], only 10 users participated in the two
smartphone conditions in addition to the other ones. The remaining 30
participated in all other conditions except the smartphone conditions.

Task and Materials

We used a multidirectional Fitts pointing task [95] with circular targets, 3
index of difficulty (ID) and 4 directionality conditions: in total, 12 condi-
tions for each type of surface (the target setup is visualized in Figure 6.1).
In contrast to a typical multidirectional pointing task in which users per-
form pointing movements, changing the target direction after each one,
in our experiment the participant performed around 50 repetitive aimed
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movements for each condition, without changing direction on the fly. The
participant had to select the given target and then auditory feedback was
given. Next, he needed to select the opposite target.

To minimize the effects of different surface frictions, sensor resolu-
tions, accuracies and processing lags of various devices, we used tar-
get setups printed on paper and universal tracking with an optical mo-
tion capture system for all but smartphone conditions. The targets were
printed on surface-size paper and affixed to a stand, a tabletop, and a
tablet-shaped piece of plywood. The “tablet” is also tracked by the motion
capture system through three rigidly attached markers. For the “smart-
phone” conditions we used a real device in addition to a motion tracking
system, as we needed higher tracking accuracy at the targets than our
motion capture system could provide. We selected the Galaxy S3 for this
condition as a representative device, because its screen size is close to the
market average, and it offers a screen with high performance and resolu-
tion. The target setup on the device was represented statically, similarly
to the printed setups.

Procedure

Each study began with the subject wearing the motion capture suit and
standing in an upright static pose. This is necessary for musculoskele-
tal model scaling. Then the subject sought a comfortable posture for the
surface we had selected randomly. The experimental task was then in-
troduced and practiced. Next, the experimenter selected a random task
condition and administered it with custom-written software. The partici-
pant first performed a calibration for two given targets by touching their
centers, and the system stored the end-effector positions. We used this to
provide auditory feedback while the task was performed.

Next, the participant could practice the task before the experimenter
started the recording. The participants were instructed to perform repeti-
tive aimed movements between a given pair of targets “as fast as possible
while keeping the accuracy at a specified level”. The system counted 50
aimed movements and then gave the signal to stop the selections.

After the participant completed the task in all conditions of a surface
type, a break was provided and the next device brought. Each session was
split into 6 blocks corresponding to surface type, lasting approximately 15
minutes. The participants were allowed to take breaks when they wanted
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to rest. After the trials, we conducted an informal interview. We asked
about participants’ experience with touchscreens and their preferred ex-
perimental condition, and we measured the weight of the participants.

Apparatus

Motion capture system: The experiment was performed in a motion capture
laboratory with no vocal or visual distractors during the tasks. Motions
were tracked with a PhaseSpace Impulse optical motion capture system
featuring 12 cameras. The system tracked 38 active markers attached to
a skin-tight motion capture suit at defined anatomical points. We added
extra markers to the end-effectors (relevant fingertips). The motion was
tracked with a frame rate of 480 Hz and an accuracy of 1/2 mm.

Chair: External forces were recorded with a custom-built low-cost
force chair and platform with two integrated Phidgets bridges and 8 load
cells (2000N, 2x1000N, 5x500N; max error = 0.2%) (Figure 6.1). The chair
sensed the most significant forces on the platform under the feet, under
the seat, on the backrest and both arm rests and at two movable force
platforms of 30cm x 40cm. The height of the seat was 50cm, width 45cm
and depth 40cm; the height of the armrest was 70cm and width 8cm; and
the backrest height was 95cm. The chair provided the force data at 125
frames per second. Figure 6.1 shows a user sitting on the chair in the
Tablet condition.

Synchronization: Motion capture and force data were synchronized in
real time using a custom-developed application on a high-end machine
(Dell Precision M4800) to minimize latency (<5ms). For the smartphone
conditions, we created an Android application for tracking touchscreen
events. The touchscreen tracking had non-uniform sampling with an av-
erage framerate close to 60Hz.

6.1.3 Analyses

In our analyses we have followed the pipeline described in the Chap-
ter 3 with slight additions to accommodate the tracking on smartphone
touchscreen. The data from the smartphone touchscreen is aligned and
synchronized with motion capture data during the preprocessing step;
further, in performance extraction for the smartphone, the screen data is
used directly. Besides the standard pipeline steps we add in this analysis
a hierarchical clustering to identify common postures. This step is per-
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formed after completion of biomechanical simulation and before dataset
consolidation into a single table.

Posture Clustering

During the trials, users were free to take any posture they wanted. To
make sense of this data, we use hierarchical clustering on the inverse
kinematics data to identify the main types of postures for each surface
type.

The inverse kinematics outputs serve as input for this step: the angles
at joints calculated by inverse kinematics are applied to the musculoskele-
tal model of an average adult male, putting the model into the corre-
sponding posture. In this posture we extract 3D locations of 22 keypoints
at all joints of the human body and use them as input for the clustering
algorithm. We have selected hierarchical clustering [372] because it is flex-
ible and does not make assumptions about the data. We use Euclidean
distance measure to treat all keypoints and dimensions equally. To ac-
quire compact clusters with minimized variance we use Ward’s linkage
criteria.

To select the correct number of clusters we examine computed dendro-
grams and use multiple goodness-of-clustering indices: Pearson gamma,
Dunn index, average silhouette width, and within-to-between ratio. The
computations are performed in R with hclust from the stats package and
cluster.stats from the fpc package. Following this approach, we obtained 7
clusters for the tablet, 3 for the laptop, 2 for the tabletop, 2 for the large
display, 3 for the 2-handed smartphone, and 4 for the 1-handed smart-
phone. We introduce these postures later on in the paper.

6.1.4 The TouchCorpus dataset

The outcome of these analyses is a dataset that integrates all variables
extracted at different processing steps in a synchronized way. As can be
seen in Table 6.1, the dataset includes 1181 variables describing different
aspects of performance, ergonomics and experiment metadata. While the
performance variables have been studied for years in HCI, the ergonomics
variables from biomechanical simulation are more recent and therefore
described here in more detail:

• Joint angles are related to the discomfort during the interaction. Op-
eration of a joint at close-to-extreme angles causes postural discom-
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Fig. 6.2: Throughput and total muscle activation per surface type. Vertical bars denote
confidence intervals.

fort and poses high risk for future musculoskeletal disorder, for ex-
ample repetitive strain injury or carpal tunnel syndrome. In the
dataset we consider extreme values at all joints.

• Excessive joint moments cause high load on the joint tissues and can
cause damage to the joint, in particular when high moments are sus-
tained for a prolonged period of time. We consider peak moments
as well as the values integrated over the whole movement.

• Large muscle forces stress the muscle and tendon and can cause dam-
age to their tissue.

• Muscle activations take into account the muscle forces, but normal-
ized by the muscle size. The activation value of each muscle ranges
from 0 when the muscle is at rest to 1 when the muscle is max-
imally recruited. We use the muscle activations integrated over a
whole movement as an index of muscular energy expenditure and
fatigue.

6.1.5 Results

We used MATLAB, R and MovExp [362] for exploring the dataset. This
section presents the main findings. We focus on basic indicators of perfor-
mance (throughput) and ergonomics (muscle activation, muscle groups),
and postures. For statistical testing, we use repeated measures ANOVA
with an alpha-value of .05.

111



Knowledge Added by Biomechanical Simulation in Input Method Design

Variable Count Aspect
Subject ID 1 Exp metadata
Device ID 1 Exp metadata
Trial ID 1 Exp metadata
Index of difficulty condition ID 1 Exp metadata
Approach angle ID 1 Exp metadata
Target ID 1 Exp metadata
Location of targets 6 Exp setup
Location of endpoint centroids 6 Performance
Offset to target center 1 Performance
Mean offset to centroid 1 Performance
Movement time 1 Performance
Target amplitude 1 Performance
Centroid amplitude 1 Performance
Index of difficulty 1 Performance
Index of difficulty effective 1 Performance
Fitts model parameters 2 Performance
Fitts model parameters effective 2 Performance
R2 of Fitts models 2 Performance
Throughput 2 Performance
Throughput effective 2 Performance
Total mean muscle activation 1 Ergonomics
Total integrated muscle activation 1 Ergonomics
Extrema (min/max) of joint angles 218 Ergonomics
Peak joint moments 109 Ergonomics
Integrated joint moments 109 Ergonomics
Peak muscle forces 236 Ergonomics
Mean muscle activations 236 Ergonomics
Integrated muscle activations 236 Ergonomics
Posture cluster 1 Ergonomics

Table 6.1: Dataset variables extracted by the different types of analyses.

Performance

We here focus on throughput as an aggregate metric of performance. Full
data on speed and accuracy is provided in TouchCorpus.

Figure 6.2 (left) provides an overview of throughput versus surface
type. The effect of surface type on throughput was statistically significant
(F5,8 = 9.24, p < .0001). It can be clearly seen in the figure that the
tabletop has the highest throughput, and 2-hand smartphone follows in
second place. The public display showed a slightly lower performance,
while the laptop and tablet conditions saw the worst user performance.

112



6.1. Performance and Ergonomics of Touch Surfaces

Condition Size Support Orientation Color

Tablet 19 x 24.3 cm Handheld —
Laptop 31 x 23 cm Supported Tilted

Tabletop 110 x 70 cm Supported Horizontal
Public display 85 x 120 cm Supported Vertical

Smartphone 2-hands 6 x 10.6 cm Handheld —
Smartphone 1-hand 6 x 10.6 cm Handheld —

Table 6.2: The studied surface types. We introduce a color convention for the remaining
analyses.

Average throughput was 6.55 bits/s. In the tabletop condition it was
20.5% higher than average. With the 2-hand smartphone it was 5.3%
higher than average, and in the public display condition 5.2% higher. By
contrast, with the 1-hand smartphone it was 8% lower than average, with
the tablet 10.9% lower than average, and in the “laptop” condition 12.1%
lower. Fitts’ law models elaborate this view.

Figure 6.3 shows Fitts’ law models for the six surface types. The plots
show movement time (MT) against index of difficulty (ID). All Fitts’
law models had high fit, with R2 > 0.95 in most cases. However, there
are some non-linear components visible for tablet, laptop, tabletop, and
public display. Still, fitting a nonlinear model increased the fit by only
1-1.5%, and we therefore continued to use the linear model.

The Fitts’ law models elaborate the overview by crossovers. For ex-
ample, there is a crossover for the 2-hand smartphone condition versus
the tabletop condition. The tabletop is worse in low ID conditions. The
plots also show that the 1-hand smartphone is different from other sur-
face types, because it provides high performance that is pronounced in
the low ID conditions. However, performance degrades much faster than
in other conditions when ID increases.

Total Muscle Activation

The effect of surface type on total muscle activation was statistically sig-
nificant (F5,8 = 10.59, p < .0001). Figure 6.2 (right) provides an overview.

We report standardized effect sizes for total muscle activation, as its
units are coupled with our musculoskeletal model. We learn that to-
tal muscle activation was lowest in the laptop and 2-hand smartphone
conditions. In the tablet condition, it was slightly lower than average
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Fig. 6.3: Fitts’ law models for each surface type.

(“touchscreen in general”). It was the highest for the public display. The
mean of total muscle activation was 608.1. For 2-hand smartphone use it
was 19.2% better than average, for the laptop 18.6% better, for the 1-hand
smartphone 9.6% better, and for the tablet 6.9% better than average. By
contrast, the tabletop was 9.3% worse and the public display 45% worse
than average.

Trade-offs: Muscle Activation vs. Performance

We found a non-trivial relationship between (effective) throughput and
total muscle activation, as illustrated in Figure 6.4. The figure shows
second order polynomials fitted to the original data. The most surprising
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Fig. 6.4: Total integrated muscle activation vs. effective throughput.

pattern in the plot is that low throughput movements are associated with
high muscle activations. The reason is that the lowest throughputs come
from conditions with difficult-to-reach targets that require more careful
control of muscles.

We also found that the approach angle influences throughput. How-
ever, it has no effect on total muscle activation. As stated before, average
throughput is 8.5 bits/s. When considering the different movement direc-
tions, the highest throughput was found for horizontal movements (+9%)
and the lowest for movements on a diagonal with 45° negative slope (-6%)
and vertical movements (-5%). Movements on the diagonal with 45° pos-
itive slope have throughput close to the average.

Muscle Groups

Although input with all surfaces is carried out with the same arm, biome-
chanical simulation exposes large differences in which muscle groups are
involved.

Interaction with a tablet is characterized by high activations of side
and back deltoids for the interacting arm. For the arm that holds the sur-
face, we see higher activation in frontal deltoid, triceps, and infraspinatus.
Laptop use is characterized by high activations of the front and medial
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deltoids and infraspinatus. The tabletop recruits muscles of the lower
back and the medial deltoid of the input arm. The public display, sim-
ilarly to the laptop, recruits frontal and medial deltoid muscles of the
input arm. Additionally, due to the standing posture, it shows higher
total activation in all postural muscles. When interacting with the smart-
phone with two hands, the lower back muscles of the holding arm, as
well as the upper back, medial, and back deltoid muscles, are strongly
activated. When interacting with one hand, upper back muscles are not
that activated, but the medial and back deltoids of the interacting arm are
more strongly activated.

Posture Analysis

Our posture clustering permits insight into differences within surfaces.
Recall that users were allowed to take whatever postures they liked. We
first report on the postures used by our participants. The clusters are
visualized in Figure 6.5.

The following observations can be made.

• Tablet: These postures were grouped into six clusters. In the first
five, the subjects hold the tablet in their hands in a low position
close to their stomach. In the sixth cluster, they hold the surface
closer to their face in a higher position. None of the subjects rest
their back on the backrest of the chair, while four sit with their legs
crossed.

• Laptop: These postures were grouped into three clusters. In all
three, the subjects keep their left arms under the table and none of
them rest their back on the backrest of the chair.

• Tabletop: Two clusters were found. In the first, the subjects mainly
rest their left arm on the armrest while they perform their task. In
the second, they have both arms on the table. Again, none of the
subjects rest on the backrest of the chair.

• Public display: Two clusters were found. In both, subjects keep
their left arm along their body. The main difference is that in the
first cluster, the subjects have their trunk closer to the surface.

• Smartphone, 2-handed: Three clusters were found. In the first, the
subjects rest on the backrest of the chair and place their elbows on
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Fig. 6.6: The median postures for each surface type recorded in the study.

the armrests, so that the trunk is oblique with respect to the seat.
They keep the phone very close to their face. In the second, they sit
instead in a straight position keeping the phone close to their knees.
In the third, they sit back on the chair, resting their back. They keep
the phone close to their face and their legs are outstretched.

• Smartphone, 1-handed: Four clusters were found. In the first, the
subjects keep their right elbow on the right armrest and they have
their torso bent toward the front. In the other clusters, the subjects
sit in an upright position. In the third, the subjects keep their legs
crossed, and in the fourth they keep the phone close to their face.

Note that by using the clusters, we can improve the fit of Fitts’ law
models by 10%. The new goodness scores are shown in Table 6.3. This
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XXXXXXXXXXXXXCluster
Variable Fitts’ a

coefficient
Fitts’ b

coefficient
Fitts’ R2 Throughput

(bits/s)
Muscle

activation

Tablet

1 -0.34 0.44 0.85 4.39 608
2 -0.15 0.28 0.97 5.79 569
3 -0.14 0.30 0.95 5.20 619
4 -0.15 0.27 0.78 5.40 602
5 -0.16 0.29 0.84 4.99 627
6 -0.37 0.46 0.62 4.67 1561
7 -0.27 0.37 0.54 4.45 522

Laptop
1 -0.15 0.29 0.97 5.08 597
2 -0.18 0.28 0.97 5.39 549
3 0.04 0.21 0.82 4.67 600

Tabletop
1 -0.52 0.30 0.97 7.41 710
2 -0.48 0.30 0.94 6.84 686

Public
display

1 -0.47 0.31 0.96 6.24 1025
2 -0.41 0.29 0.94 6.27 849

Smartphone
2 hands

1 -0.57 0.34 0.96 6.42 672
2 -0.46 0.29 0.89 7.42 616
3 -0.42 0.24 0.98 8.54 357

Smartphone
1 hand

1 -1.20 0.56 0.91 5.72 632
2 -0.58 0.36 0.96 6.09 578
3 -0.67 0.42 0.93 4.92 755
4 -0.45 0.29 0.95 6.83 236

Table 6.3: Performance and ergonomics indices for posture clusters.

is in line with the idea that muscle groups affect Fitts’ law model pa-
rameters. By decreasing heterogeneity in postures we can therefore also
improve model fit. This effect is not achieved by arbitrary reclusterings,
for example per user only.

6.1.6 Discussion

The study has demonstrated that although touch interaction on different
surfaces is similar, there are in fact large differences, in particular with
respect to ergonomics. The differences in performance are also large, but
not extreme, so with respect to performance all surfaces can be used for
interaction even with high IDs, without degrading throughput too much.
In contrast to performance, differences in ergonomics can be as large as
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2-fold on an aggregated level over the whole body, for example in the case
of the public display and smartphone, and 6-fold on an aggregated level
over body regions, for example the neck loads. Thus, our finding with re-
spect to ergonomics has to be considered when designing an application
for multiple devices.

We summarize the observations as follows:

• The tablet has poor performance and is suitable for long-term use
only after adjustment of the pose to avoid neck problems.

• The laptop has mediocre, almost poor performance, but it is suitable
for long-term use.

• The tabletop has high performance, but it is not suitable for long-
term use, unless proper posture support is provided.

• The public display has high performance but it is not suitable for
long-term use.

• The smartphone used with two hands has high performance but it
is unsuitable for long-term use.

• The smartphone used with one hand has medium performance and
is also unsuitable for long-term use.

The dataset is available for the research community, and here we pro-
vide slightly deeper discussion only for the laptop and public display.
The interaction with these surfaces is performed through movements of
the arm, but they differ with respect to postures and performance. In in-
teraction with the laptop the posture varies slightly, and most participants
tend to minimize muscular load and keep the arm posture as close to the
neutral posture as possible. The most used muscles are muscles of the
shoulder and arm, and in contrast to expectations, the laptop provides
the lowest total muscle activations with acceptable throughput, which
means that it can be used for a prolonged period. The interaction with
the public display involves postures with much higher muscle activations,
involving shoulder, back and arm muscles much more strongly, but pro-
viding slightly higher throughput. Additionally, the movements involved
with public display interaction are much longer than with the laptop,
which leads to even higher total muscle activations, in particular when
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reaching targets higher on the screen. Thus, as expected, the public dis-
play is not suitable for prolonged interaction, and will lead to “Gorilla
arm”.

To contextualize our findings, we qualitatively compared them with
previous studies. Similarly to Barbe et al. [123], our results confirmed
significant differences among different postures. Although the conditions
cannot be directly compared, the laptop in front of the user in our study
demonstrated the lowest fatigue index among conditions, agreeing with
Barbe et al.’s “tilted display.” The recruitment of shoulder muscles in the
tablet condition varied with respect to posture and the presence of sup-
port, and the upper trapezius on the dominant side was more activated
than on the non-dominant side, as in the study of Young et al. [126].
Similarly to Oehl et al. [142], we observed an effect of display size on
throughput for tilted and horizontal displays, but not for handheld and
vertical display conditions. As in the study of Wagner et al. [373], we
observed different grips during the experiment, including both “novice”
and “expert” grips. However, in our case users were seated, and they
often adjusted their posture and supported the tablet with their knee or
leg.

As we can see, the motion capture-based biomechanical simulation
provides new insights concerning interaction. In contrast to traditional
methods, the straightforward application of the proposed method makes
it possible to conduct broader studies involving more interface alterna-
tives, comparing them or tuning some design parameters. While the
gains in insights with respect to performance only are not much larger
compared to traditional performance measurement methods, the gains
with respect to ergonomics as well as with respect to interactions between
performance and ergonomics are much larger.

Theoretically, by using traditional methods it could be possible to
get many of the variables generated by our method, possibly even with
slightly higher reliability and details of individual variables due to direct-
ness of measurements. However, it would necessitate multiple separate
experiments and experimental set-ups, which would significantly reduce
comparability between the data recorded in separate setups and sessions,
as well as overall interpretability of the data. To benefit from direct mea-
sures of individual variables, it would be better to perform direct-measure
experiments only in a second run—localized on a particular segment of
human body and focused on the variables with the most interesting dif-
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ferences, while using motion capture-based biomechanical simulation in
the first run to identify general patterns and the most interesting vari-
ables.

6.2 Physical Ergonomics of Tablet Interaction2

6.2.1 Introduction

In this section we expand our analysis of the ergonomics of tablet interac-
tion. The analyses are performed on the dataset described in the previous
section. We present a physical ergonomics assessment of typical tablet
device usage. Tablet devices are becoming widespread and often even
displace personal computers and laptops. However, while the physical
ergonomics of PCs and laptops was extensively studied in the past, there
is only a little knowledge of the ergonomics of tablet devices. In particu-
lar, the user assessment is complex due to the portability of tablets, which
allows a variety of tablet locations, orientations and ways of holding them
which can be adopted by users. The purpose of this work was to identify
typical postures, the set of recruited muscles and health risks related to
the tablet interaction.

A few previous works [126, 375] have measured head and neck pos-
ture, or wrist and shoulder posture of tablet usage, but they used a pre-
defined set of tablet hold configurations. They extracted joint angles di-
rectly from locations of markers attached to anatomical landmarks, which
ignores such sources of error as marker drift during movement, joint dis-
placement, or absence of skeletal anatomy. In contrast to this, we do not
assume a particular posture for interaction and ask participants to take a
pose and hold the tablet as is comfortable for them. We record motion
of the whole human body and analyze biomechanical indices simulated
using an anatomically-correct musculoskeletal model.

6.2.2 Methods

For the analyses we used the TouchCorpus dataset described in the pre-
vious section. We use Matlab and an interactive visualization tool [362] to

2This chapter is based on the paper Physical ergonomics of tablet interaction while sit-
ting [374]

122



6.2. Physical Ergonomics of Tablet Interaction

Body part
Biomechanical indices

Av. j.
angle

Av. j.
moment

Peak j.
moment

Peak m.
force

Av. m.
force

Stress
level

Neck -31.5° 2.9N ·m 411.9N ·m 260.4N 20.2N High
Supporting shoulder 38° 2.3N ·m 184.8N ·m 2588.8N 83N Moderate
Supporting arm 59.8° 1.2N ·m 46.1N ·m 2006.9N 73.8N Low
Interacting shoulder 19.2° 1.5N ·m 208.8N ·m 2351.7N 77.5N Low
Interacting arm 110.4° 1.8N ·m 137N ·m 2010.2N 53.2N Low

Table 6.4: Biomechanical indices for tablet interaction.

perform deeper and more specific analyses on the data. We compute av-
erage postures of each joint and compare them to movement ranges and
neutral postures. Postures close to extreme are considered as a health
risk after prolonged use. Further, we consider average and peak joint
moments. High values of average joint moments pose health risk after
prolonged use; high peak moments can lead to an injury even in brief
interaction. We consider peak muscle forces as a factor that can lead to
a muscle or tendon injury. High average muscle forces lead to muscle
stress and fatigue. In our analyses we focus on the body segments most
affected by the tablet usage: upper back and neck, shoulder and arm sup-
porting the tablet, and shoulder and arm interacting on the device. The
most extreme value at each segment defines the health risk for the whole
segment.

6.2.3 Results & Discussion

The overview of aggregated results is shown in Table 6.4. The results
show that the typical posture selected for interaction with a tablet is in-
correct and has a high risk for users’ health. In particular, the posture of
upper back and neck is stressful and imposes serious risk: the average
neck flexion differs by 42.6° from the neutral pose. Average and peak
joint moments are also high for the neck, which can lead to RSI after
prolonged use, or to an acute injury in the neck joint. Average muscle
forces are moderate, which means that muscles are not actively recruited
to support the head and will not suffer from fatigue, but the peak muscle
force is high, and can lead to injuries in the neck extensor muscles.

The average elevation angle of the supporting shoulder is slightly
larger than neutral zone, so the joint angle is not extreme, but muscles
can fatigue after a relatively short period. The average joint moment at
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the shoulder is high, which can lead to RSI after prolonged use, but the
peak joint moment is moderate; as a result, an acute injury is less prob-
able. Average muscle force is high, and as a result muscles will fatigue
relatively fast. Peak muscle force is also high, which can lead to a muscle
strain. The elbow joint is in the neutral zone. The average joint moment
is low and the peak moment is also low. Average muscle force and peak
muscle force are high for some muscles; however, there are redundant
muscles with similar action which can be recruited if necessary; for ex-
ample the biceps can generate force if the brachialis is fatigued. There is
no such reserve for the shoulder muscles to recruit in the case of fatigue.

Average shoulder elevation of the interacting arm is in the neutral
zone. Average and peak joint moments are moderate; the average mo-
ment is 35% lower than the moment of the supporting shoulder. Aver-
age muscle forces and peak muscle forces are only slightly lower than
in the supporting shoulder, but the set of recruited muscles is different
and there is more variability in recruitment. As a result, the muscles of
the interacting shoulder can be fatigued, but much more slowly than in
the supporting shoulder. Average elbow flexion is 110.4°, which is at the
edge of the neutral zone. Average and peak joint moments are moderate.
Average muscle forces are low, but peak muscle forces are still high for
some muscles. There is more variability in muscle groups of the interact-
ing arm. This adds to more balanced usage of the musculature without
exhaustion of a particular muscle.

To sum up, the largest risks of tablet interaction in the typical postures
are related with bad neck posture and fatigue of the supporting shoulder
muscles. Both device manufacturers and users need to be aware of the
risk and should minimize it using the following recommendations.

For device manufacturers:
• Limit the weight of the device, as a lower weight would allow users

to hold the device in a correct posture for a longer period.
• Support better grip over the device: in addition to the bezel, also

over the touchscreen area.
• Provide options for different external supports for the device, which

would allow fixing it in the environment instead of holding it in the
hand.

For the users:
• Increase awareness of your posture used during the interaction, and

the corresponding health risks.
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• Try to use correct posture during prolonged interactions.
• Use external supports to fix the device in the environment, or to

support your arm.
• Vary the posture of the holding arm, and shift the device towards

the right or left over time; this would allow slightly more rest for
the muscle groups supporting the device in each posture.

6.3 Summary

In this chapter the motion capture-based biomechanical simulation was
used for analyses of real HCI problems. The described examples demon-
strate the richness of the produced biomechanical data and its value for
the HCI field. The insights derived from the data provide new, often
counterintuitive information concerning the effects of interest.

The first part demonstrated the relationship between performance, er-
gonomics and touch surface type. The interesting finding is that the inter-
action with the laptop with a touchscreen provided the best total energy
expenditure, even better than the tablet. With respect to performance
the 2-handed smartphone and tabletop were in the lead, though with a
relatively small advantage. Another counterintuitive result showed the
absence of a trade-off between total energy expenditure and input perfor-
mance, which means that by optimizing for high performance we simul-
taneously minimize ergonomics cost.

The second part demonstrated the size of the problem related to ex-
cessive neck flexion while interacting with a tablet. While it was known
before that excessive flexion poses a risk to human health, only the simu-
lation allowed us to compute that on average 95% of users interacting in
a bad posture impose 5 times larger neck loads than those interacting in
an optimal posture.

To conclude, this chapter has responded to Research Questions 2.1,
2.2 and 2.3 by:

• providing new insights with respect to performance through com-
parison of touch surfaces, and showing up to 30% differences be-
tween the conditions.

• providing new insights with respect to ergonomics through com-
parison of touch surfaces as well as deeper analysis of tablet er-
gonomics, and showing 2-fold differences in total muscle activation
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(index of energy expenditure), as well as 5-fold differences in joint
moments (mechanical loads) at the neck.

• providing new insights on interaction between performance and er-
gonomics, namely demonstrating that instead of a trade-off between
these factors, there is a synergy—by maximizing performance we si-
multaneously minimize total muscle activation.
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Chapter 7

Lowering Barriers for
Non-Experts: Overview of the
Full-Arm Movement Space
through Muscle Co-Activation
Clustering1

7.1 Introduction

This chapter considers Research Questions 3.1 and 3.2. We have al-
ready demonstrated that motion capture-based biomechanical simulation
is a technically applicable and valid method which can provide HCI re-
searchers and practitioners with new insights with respect to performance
and ergonomics of post-desktop input methods. However, while being
more feasible and informative than other HCI methods, the proposed
method is still complex to apply. Additionally, while it can be directly
applied for summative studies (interface prototype evaluations and com-
parison of alternative designs), there is a lack of support for formative
studies (research on the design space and informed generation of design
alternatives).

In this chapter we approach the above-mentioned problems through
development of a summarization of performance and ergonomics of move-

1This chapter is based on the paper Informing the Design of Novel Input Methods with
Muscle Coactivation Clustering [332]
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ment space in a set of equivalence classes. Considering the recommenda-
tions for motion capture-based biomechanical simulation, we have cho-
sen to investigate whole-arm aimed movements in mid-air. Mid-air in-
teraction has recently become attention in HCI due to development of
computer vision and tracking technology. A few examples of recent
works in this research direction are medical image exploration [376],
tabletops [365], hand articulation interactions [377], large interactive dis-
plays [378, 379], projector phones [155], video gaming, exergames [380],
and rehabilitation [381].

Our equivalence classes summarize performance and ergonomics of
whole-arm aimed movements by associating these aspects with the phys-
iological bases of these movements, namely muscle groups activated to
execute a movement and corresponding muscle activation patterns. Such
summarization is useful for HCI, as it directly includes various measures
of the two most important factors—performance and ergonomics.

Formally, equivalence classes (or clusters) refer to “patterns whose
distribution in feature space is governed by a probability density specific
to each cluster” [382] (page 7). In our particular case, the clusters are un-
derstood as muscular equivalence sets of aimed movements that are similar
in the time-dependent muscle coactivation patterns in an upper extremity
of the human body. The clustering concerns the time-dependent activa-
tion signal of 41 muscles of the upper extremities in pointing movements.
Every movement in this dataset is mapped to one cluster, for which we
also compute standard indices of performance (speed, accuracy, through-
put) from the optical tracking data. The clustering is based on a novel
dataset where muscle coactivations are estimated for real 3D pointing
performance of an athlete uniformly covering the whole reachable space of
the arm: 72,000 movements altogether. To our knowledge, this is the
most comprehensive dataset of this kind; as we explain later, it covers
many scenarios of novel user interfaces.

The clusters capture the largest trends in the highly non-uniform mo-
tion space of the human arm. Previous work has demonstrated that the
space of pointing movements in general is non-uniform with respect to
location [338], direction [339], performance [261,266,343–345,383] and in-
volved muscles [340]. Because muscles differ in size, fiber distribution,
and force-length-velocity properties, they are differentially recruited in
movements in terms of force, timing, moment and acceleration. A move-
ment of the arm on the left-hand side of the torso will recruit a different
subset of the muscles than a movement on the right-hand side. Our goal
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is to find a minimum number of interpretable clusters that capture such
variability in the whole reachable space of the arm.

We assume in our clustering that the main body part responsible for
movement is muscle. Human movements are produced by neural im-
pulses (action potential) transferred by the neural system to muscles, sim-
ilarly to electric current. Muscles react to action potential by contraction
to produce an active force. Forces produced by groups of muscles work-
ing at a particular joint sum up to produce total moment at the joint.
Finally, under the action of moment the joint rotates, producing visible
movement. Thus we can see that muscle activations contain all necessary
information describing a movement. Thus we do not predefine classes
in any way, but compute them in a pure data-driven approach based on
muscle activation patterns. Additionally, the approach to build classes
based on muscle co-activations is physiologically plausible according to
the synergy hypothesis of motor control [384]. However, we do not claim
the clustering as a motor control hypothesis, to keep it simpler and prac-
tical for HCI. We demonstrate that the clustering not only summarizes
complex movement space with respect to physiological and biomechani-
cal factors, it also improves fit of Fitts’ performance models within each
cluster, meaning that the data inside a cluster is more homogeneous than
in the general dataset.

This chapter builds on previous work from HCI and motor control,
and broadens it by:

• collecting an extensive dataset of aimed movements uniformly cov-
ering the whole space reachable by the arm;

• augmenting the dataset with activation data of all the main muscles
of the upper extremity, including the ones not accessible by previous
analysis methods;

• associating pointing performance, location in 3D space and ergonomics
properties of movements with muscle activation patterns; and

• summarizing a complex dataset with multi-source data in a single
simple-to-understand clustering.

The clustering can be used in interface design and research as a heuris-
tic, which provides rough ergonomic and performance characteristics for
a movement type of interest. Conversely, it can be used as a summary of
the arm movement space, and necessary movements or movement areas
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can be chosen based on required performance or ergonomic properties.
We demonstrate the effectiveness of clustering on a few examples of real
HCI design tasks.

In this chapter we focus on whole-arm aimed movements, but the
approach to clustering is general enough to be used for other types of
movement spaces, for example for fine-grained finger movements or leg
movements, and more complex movement types, for example trajectory-
based tasks.

7.2 Data Collection

To cover all aimed movements within the reachable space of the arm, we
collected optical motion tracking data of the 3D pointing performance of
an athlete. The dataset contains 72,000 movements between 25 targets
uniformly covering the whole reachable space of the dominant arm.

We tracked the full-body motion of the subject during the movements.
Motion capture data of the full body allows us to perform biomechanical
simulation of recorded movements to look at the indices inside our body:
joint angles, moments and forces at joints, forces exerted by muscles and
muscle activations [17]. This data can be also used as an estimation of
energy expenditure and fatigue indices for each movement.

The data collection setup with the 25 targets is shown at the left in
Figure 7.1. Since we use targets with three different sizes (yellow, orange,
and red in the figure), and include varying target-to-target distances, the
data allows for the computation of performance models.

The athlete is an amateur kickboxer: this sport emphasizes stamina
and hand-eye coordination. Hence, the dataset estimates the upper bound
of performance reachable by regular users. By studying aimed move-
ments to physical targets with no intermediary input device, we can study
the performance directly, without the typical limitations of devices such
as dwell-time, visibility of the user interface, or latency of cursor updates.

7.2.1 User Study

Participant: The subject is a 27-year-old male (right-handed, 180 cm, 72.5
kg) with no known health problems. During the last five years, he placed
first in the French and German amateur kickboxing competitions. How-
ever, he is a well-balanced athlete and regularly does different types of
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Fig. 7.1: Performance was recorded for all reciprocal pointings between 25 targets (left)
covering the reachable space of the arm. To allow biomechanical simulation, optical
markers on the subject’s body (center) are mapped via anatomical landmarks to a gen-
eralized model of the human (right). Physical targets are registered in the virtual 3D
space to allow the computation of performance metrics (speed, accuracy, and through-
put).

training besides kickboxing: athletics and running, push-ups and pull-
ups, cycling, swimming, hiking and dancing. The fact of balanced train-
ing implies that recruitment of his muscles is similarly distributed as
that of average people, which is confirmed against 16 other subjects (Sec-
tion 7.2.2). However, regular training implies that all muscles are stronger,
so his data would correspond to skilled user performance.

Movement targets: Figure 7.1 (left) shows the reachable space studied:
a half-sphere with radius equal to the subject’s arm length and centered
at the right shoulder’s pivot point. The targets were distributed over the
3D space by means of a densest sphere-packing algorithm. They were
created from cardboard disks of three colors (yellow, orange, and red)
that correspond to three target-width conditions, with radii of 8 cm, 4
cm, and 2 cm, respectively. These were attached to the ends of aluminum
pipes. To ensure that the shoulder stays at the center of the sphere, we
prevented leaning with a horizontal obstacle placed about 2 cm in front
of the chest.

Experimental design: We have selected aimed movements as a basic
movement type ubiquitous in HCI, which can additionally serve as a base
for trajectory-based gestures. The experiment consists of 80–85 aiming
movements carried out for all pairs of the 25 targets, each with three
target-width conditions (2, 4, and 8 cm). This yields a total of 72,000
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pointing acts. The order of trials was randomized in the experiment.
Procedure: Thirty sessions of 90–120 minutes each were carried out

over three weeks. The subject stands in a position marked on the floor and
repeatedly moves between two given targets as accurately and quickly as
possible. Before each target pair, the subject can find the best manner
of aiming at the targets. Timing starts with the index finger on a target.
After a trial, if the self-reported fatigue level is high, five minutes of rest
is required. All movements were made with the subject’s dominant hand.
We imposed a minimum recovery interval of six hours between sessions
to allow fast twitch muscle fibers to restore their potential energy.

Apparatus: The PhaseSpace system with 12 Impulse cameras at 480
fps was used to record the movement of 38 active markers (Figure 7.1,
center). Marker placement was done with care to minimize drift during
a session. The tracking accuracy is approx. 1/5 mm.

Data processing: The data processing was performed according to the
pipeline described in Chapter 3.

7.2.2 Validation

Because our analysis is based on a single participant, a trained athlete,
we wanted to confirm that his movements do not differ significantly from
those of “regular users”. The fact that the participant performs balanced
training in different sports is very important here, since this way he trains
not only some particular muscle, but all muscles of his body uniformly.
Hence, his muscles are proportionally more powerful than the muscles
of an average person, but he recruits them in a very similar way. To this
end, we acquired a recently published dataset that used exactly the same
experimental setup and task with 16 participants (9 m, 7 f, mean age 26,
mean height 170 cm, mean weight 70 kg) [313]. The task is otherwise
the same, but a stratified sample of five targets was used per subject (the
athlete dataset has 25 targets).

To compare movement style between the athlete and the sixteen par-
ticipants, we computed correlations for marker positions, movement ve-
locity, joint angles and moments. The obtained correlations show that
although the athlete was much faster at the task, the movement style was
very similar: absolute position (r = 0.98), absolute velocity (r = 0.97),
joint angles (r = 0.87) and joint moments (r = 0.75).
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7.3 Overview of the Dataset

The obtained dataset provides a rich description of human movement
when pointing in 3D. It contains over 400 variables describing complex
interrelations between spatial locations, performance, and ergonomics:

• spatial information: 28 variables including target positions and
sizes, trajectories of the end-effector, velocity, acceleration, direction-
ality in polar coordinates and angles of projections on two vertical
planes and with origin at the shoulder center;

• performance: 17 variables including accuracy, movement time, ef-
fective target width, index of difficulty, Fitts’ law model parameters
and coefficient of determination, throughput;

• ergonomics: 361 variables including moments and forces for 21
joints, forces and activations for 41 muscles per frame, as well as
corresponding aggregated values for complete movements.

We briefly present an overview of the dataset here, before proceeding to
the clustering method in the next section. Table 7.1 provides a full dataset
description.

Figure 7.2 shows the non-uniformity of aimed movements in 3D, par-
ticularly with respect to ergonomics. For example, the three parts of the
deltoid muscle of the human shoulder are extensively used when point-
ing in 3D, but each of them has a distinct spatial activation pattern. Fig-
ure 7.2(a) shows that the movements with the highest activation of the
anterior deltoid are found in the left half of the movement space, while
the lateral and posterior deltoids have different patterns in the right and
top-right corner.

Figure 7.2(c) shows how different muscle groups are activated when
performing in the upper, middle, and lower parts of the ego-centric space.
Both examples show that there is a strong connection between the activa-
tion of muscles and the spatial location of the performance. Figure 7.2(b)
shows that there is also a strong relation between performance and er-
gonomics. We bisected the dataset into movements with high and low
precision by splitting it on mean accuracy, and visualize the muscle ac-
tivations for these two sets. It can clearly be seen that specific muscles
are more activated in order to produce precise aimed movements. Again,
this confirms the non-uniformity of aimed movements in 3D.

133



Overview of the Movement Space through Muscle Co-Activation Clustering

(a)M
ovem

enttrajectories
produced

w
ith

high
activation

ofthe
anterior

(left),
the

lateral(center)
and

the
posterior

(right)
parts

of
the

deltoid
m

uscle.

(b)D
ifferentm

uscles
contribute

to
precise

(left)and
non-precise

(right)m
ove-

m
ents.T

he
m

ain
differences

are
highlighted

using
arrow

s.

(c)
D

ifferent
m

uscles
are

activated
w

hen
m

oving
in

the
upper,

m
iddle

or
low

er
ego-centric

space
(from

top
to

bottom
).

Fig.7.2:
O

verview
of

the
non-uniform

ity
in

the
dataset.

The
three

plots
show

how
aim

ed
m

ovem
ents

in
3D

space
are

non-uniform
w

ith
respect

to
the

recruitm
ent

of
m

uscles
for

m
ovem

ents
w

ith
different

properties.
C

olor
saturation

in
(b)

and
(c)

indicates
the

strength
of

the
m

uscle
activation.

134



7.3. Overview of the Dataset

Variable Count Aspect

Subject’s age 1 Case
Subject’s height/weight 2 Case
Other case studies’ dependent variables N.A. Case
Size of targets 1 Case/Physical Space
UI setup 7 Case/Physical Space
End-effector 3D coordinates 3 Physical Space
End-effector velocity 3 Performance
Velocity angles 2 Performance
End-effector absolute velocity 1 Performance
Mean movement velocity 1 Performance
Movement offset 1 Performance
Index of difficulty 1 Performance
Effective index of difficulty 1 Performance
Movement time 1 Performance
Mean movement time 1 Performance
Throughput (4 types) 4 Performance
Generalized coordinates 21 Ergonomics
Moments at joints 21 Ergonomics
Integrated moments at joints 21 Ergonomics
–//– normalized over movement length 21 Ergonomics
Forces inside joints 90 Ergonomics
Forces exerted by muscles 41 Ergonomics
Force integrated over movement 41 Ergonomics
–//– normalized over movement length 41 Ergonomics
Muscle activations 41 Ergonomics
Activation summed over movement 41 Ergonomics
–//– normalized over movement length 41 Ergonomics
Total muscle activations 1 Ergonomics
–//– summed over movement 1 Ergonomics

Table 7.1: Description of all dataset variables
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7.4 Clustering

The collected dataset represents aimed movements of all lengths, in all
directions and in all locations of the reachable space. In this section, we
develop a comprehensive clustering that helps in understanding the er-
gonomic and performance impacts of design choices. We capture the
differences and similarities of muscle activations using the following ap-
proach: we cluster all movements based on the temporal muscle activa-
tion patterns. Section 7.4.1 explains this in detail. The result is a com-
prehensive set of 11 clusters—each with distinctive ergonomic and per-
formance costs of aimed movements in specific regions of the ego-centric
space (Section 7.4.2). As we will show later in our applications, these
clusters are a great resource to include biomechanical information into
the design process without running a full-blown study with biomechani-
cal simulation.

7.4.1 Method

Muscle activations are time-dependent functions. Our dataset describes
each movement with a family of 41 time-dependent muscle activations,
one for each muscle. We call this the muscle activation pattern of a move-
ment. Figure 7.3 shows these patterns for three movements in our dataset.
Note how these muscle activations are changing over time: for example,
accelerating the arm recruits different muscles than decelerating.

The goal of clustering is to identify movements which are similar to
each other with respect to their muscle activation patterns. In the dataset,
muscle activations are represented by vectors of varying length, as ini-
tially movements have different time lengths and are sampled uniformly
at constant intervals. To allow clustering of activations, we normalize
them by time and represent each movement with the same number of
samples, namely 40. The samples are computed as mean activations of
all muscles within equal length segments and are concatenated into a
single vector—this is a compact representation of the muscular activity
for each movement, which is later used for clustering. All other analysis
steps are performed on the original muscle activations.

We use an agglomerative hierarchical clustering [372], which provides
different levels of abstraction and does not impose assumptions about
the distributions. We use Euclidean distance for the clustering, because
activations at any time or in any muscle have the same effect on the mea-
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Fig. 7.3: Muscle activations of three different movements. A movement is characterized
by the time-dependent activation of muscles (here: 41). The clustering is based on these
muscle activations and assigns similar ones into the same cluster.
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sure. Moreover, absolute values are appreciated, which is important in
our setting. In contrast, the Pearson correlation would ignore absolute
values. We use Ward’s minimum variance linkage method [385], because
it creates compact spherical clusters.

In addition, we have tried different clustering methods and distance
measures (k-means, hierarchical clustering with Ward, single, complete, aver-
age and centroid linkage methods, and Euclidean, maximum and Manhattan
distances) and compared their results. The clusters created across all
distance measures contain much overlap, but the Manhattan distance pre-
ferred more directionality over co-location in the space, and clusters cre-
ated with maximum distance were less prominent in 3D space than with
other distances. We conclude that Euclidean distance not only matched
our assumptions best, but also performed better than others in produc-
tion of interpretable clusters. Among linkage methods, differences were
more radical. Single and centroid linkage methods performed the worst:
at each level of hierarchy, they add a single movement to one already
existing cluster and all non-added movements are considered as separate
clusters. Complete and average linkage methods performed slightly bet-
ter than single linkage, but still they kept most movements in the single
cluster and all other clusters contained less than 10 movements each. K-
means for numbers of clusters near 20 produced clusters which strongly
overlap with the clusters identified by the hierarchical Ward method, but
some of them simultaneously span similar locations in 3D space. For
smaller numbers of clusters, k-means produced clusters which are hard
to interpret. Among methods we tried, hierarchical clustering with the
Ward linkage method and Euclidean distance produced the clusters that
were most interpretable with respect to 3D location and direction, and of
acceptable size.

For the clustering method we have chosen, Figure 7.5 shows the hier-
archy of the resulting clusters in the form of a dendrogram. As can be
seen, we selected different levels in the hierarchy for different clusters.
This was done in a semi-automatic fashion informed by three quality
measures for hierarchical clustering: Figure 7.4 shows the Pearson gamma,
the Dunn index, and the inter-to-intra cluster ratio. We have also checked
other cluster quality indices such as average silhouette width, Calinski and
Harabasz index, Goodman and Kruskal’s Gamma coefficient, and G3 coefficient,
and they show similar patterns by bumps or elbows on the plot for the
particular cluster number. These quality measures show that 6 and 9
clusters are good choices. When choosing 6 clusters, distinctions between
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Fig. 7.4: Quality measures for the clustering aid in selecting an appropriate number of
clusters.

clusters in 3D location and movement directionality are weaker or even
degraded; for example, Cluster 5 and Cluster 6 are combined into a single
one, although they correspond to movements on opposite parts of space.
When choosing more clusters, they become more compact in 3D space
and exhibit even more similarity in movement direction, but as a down-
side multiple clusters start to span the same space, which also affects
interpretability. We decided in favor of 9 clusters, since they were more
interpretable for humans—this is important, since this clustering is sup-
posed to be read and understood by humans when designing interfaces,
rather than by a machine. Finally, we inspected these clusters and split
two clusters one more time (by choosing the next level in the hierarchy
for them) in order to obtain an even more human-interpretable result, as
can be observed in Figure 7.7. The final number of clusters is 11. We
have also analyzed the dendrogram at each split to extract any semantic
interpretation of why the split occurred. We considered the most promi-
nent differences between mean values of two clusters under the split as a
semantic description of the split (Figure 7.6), although small differences
were present in patterns of most muscles.

7.4.2 Overview of Clustering

Figure 7.8 shows details about the movements in each cluster: their per-
formance, their ergonomics, and their location in 3D, as well as the main
directions of the movements. In particular, we show:

• performance: two groups of bar plots representing the average
movement time and offset. We used black for the overall value and
colors for the values of the respective clusters;
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Fig. 7.8: Each subfigure shows performance (barplots), ergonomics (LED visualization)
and spatial information (3D trajectories and oriented arrows) for the final 11 clusters.
The opacity of each LED is defined according to the average activation of the corre-
sponding muscle in the current cluster. See the last part of this figure for the legend.
(continued)
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(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

Fig. 7.8: (continued)
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(i) Cluster 9 (j) Cluster 10 (k) Cluster 11 (l) Legend

Fig. 7.8: (continued) The muscles represented in the LED visualization are: 1–3 Pec-
toralis major, 4–6 Pectoralis minor, 7 Coracobrachialis, 8 Supinator brevis, 9 Triceps
longhead, 10 Brachialis, 11 Biceps longhead, 12 Triceps lateralis, 13 Pronator teres, 14 Bi-
ceps shorthead, 15 Triceps medialis, 16 Brachioradialis, 17 Anconeus, 18–21 Trapezius,
22–23 Rhomboid major, 24–26 Latissimus dorsi, 27–32 Serratus anterior, 33–35 Deltoid,
36 Supraspinatus, 37 Teres minor, 38 Infraspinatus, 39 Teres major, 40 Subscapularis.
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• ergonomics: activation of the four main areas of the upper part of
the human body: shoulder, chest, back and arm;

• spatial information: 3D trajectories of the involved movements, and
arrows oriented according to their main directions.

This overview shows, on the one hand, the non-uniformity of the move-
ment space, yet on the other hand, each cluster contains movements that
share similarities regarding their spatial information and other attributes.
This is important for their interpretation and their later use for guiding
UI design.

This clustering confirms our results from the previous section. For
example, we looked at the spatial distribution of the movements for the
three deltoid muscles on the shoulder (Figure 7.2(a)). These movements
are contained in clusters 6, 10, 11 and 7, which have a high shoulder acti-
vation. Furthermore, we examined the muscle activations for precise and
non-precise movements (Figure 7.2(b)). We saw that in general the chest
and shoulder muscles are more activated in the case of precise move-
ments. This trend is also shown in Figure 7.8 where clusters with the
highest precision (clusters 4, 9, 10 and 11) present a high activation in the
same areas.

The total normalized muscle activations for each cluster are reported
in Figure 7.9. Note the clear differences between the clusters, which
serves as another indicator for a good clustering.

7.4.3 Description of Clusters

We make the following observations about each cluster:
Cluster 1 covers short- and medium-length movements in the central

and left upper parts of the space, directed diagonally closer to vertical.
This cluster exhibits lower than average throughput of movements; in par-
ticular, a small advantage in speed is counterbalanced with twice-greater
drawbacks in accuracy. Muscle activations are high for the infraspinatus
and anterior deltoid, medium for medial deltoid, brachialis and biceps,
and low for all other muscles. Movements in this cluster are suitable for
short-term interaction, for alternation with other clusters, or in exergam-
ing to train the anterior deltoid.

Cluster 2 covers short- and medium-length movements in the lower
right and central parts of the space in all directions, and some long verti-
cal movements in the middle part of the space. This cluster has slightly
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IDs
Fig. 7.9: Total normalized muscle activations for each cluster.

higher than average throughput of movements; improvements are present
in both accuracy and speed. Muscle activations are high only for the me-
dial deltoid, medium for anterior deltoid, brachialis, pronator teres and
infraspinatus, and low for all other muscles. This cluster exhibits better
than average performance and optimal energy expenditure, which makes
it suitable for the majority of interfaces which need long-term interaction.
Exergames within this cluster would not be effective.

Cluster 3 covers long and medium-length movements in the central
and upper part of the space, directed diagonally closer to horizontal. This
cluster exhibits lower than average throughput of movements; in partic-
ular, a slight advantage in accuracy is counterbalanced by twice-greater
drawbacks in speed. Muscle activations are high for the infraspinatus
and anterior deltoid, medium for medial deltoid, supraspinatus, serratus
anterior, brachialis, pronator teres, upper trapezius and rhomboid ma-
jor, and low for all other muscles. Movements within this cluster can be
used for short-term interaction with huge public displays, where large
movements are necessary, or for sports exergames, for example tennis.

Cluster 4 covers long close-to-vertical movements in the right upper
part of the space, smoothly transitioning through close-to-diagonal move-
ments in the lower right part of the space, to close-to-horizontal move-
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ments in the lower left part of the space. This cluster has slightly lower
than average throughput; in particular, an increase in accuracy is strongly
counterbalanced by a decrease in speed. Muscle activations are high for
the anterior and medial deltoids, infraspinatus and brachialis, medium
for posterior deltoid, supraspinatus, triceps, pronator teres and part of
the trapezius, and low for all other muscles. Movements within this clus-
ter are close to the movements performed in sports, in tennis or golf. It
can be used for exergames, for training.

Cluster 5 covers short and medium-length horizontal movements in
the left and central part of the space. This cluster has lower than average
performance; the accuracy is 1.5 times lower than the speed is higher.
Muscle activations are high for the anterior deltoid and infraspinatus,
medium for brachialis, pronator teres and trapezius, and low for all other
muscles. Movements in this cluster are suitable for low-accuracy interac-
tion, for exergames, or primitive interactions with smartwatches.

Cluster 6 covers short and medium diagonal close-to-horizontal move-
ments in the topmost part of the space. The performance is a little bit
higher than average; a small decrease in accuracy is compensated for
by a twice-greater increase in speed. Muscle activations are high for
all deltoids, supraspinatus, brachialis, trapezius and serratus anterior,
medium for triceps, pronator teres, brachioradialis, rhomboid major and
infraspinatus, and low for the rest of the muscles. Movements within this
cluster can be used for training of multiple shoulder muscles.

Cluster 7 covers medium-length and long movements between the
leftmost lowest point and other parts of the space. This cluster has slightly
higher than average performance, with better accuracy and lower speed.
Muscle activations are high for the anterior deltoid, medium for other
deltoids, teres minor, triceps, brachialis, brachioradialis, pronator teres,
pectoralis major, serratus anterior, trapezius, rhomboid, infraspinatus and
teres major, and low for a few other muscles. Movements within this clus-
ter are the least convenient compared to other clusters, and their usage
should be avoided.

Cluster 8 covers long movements between opposite parts of the space.
This cluster has 20% lower performance, reflecting both lower accuracy
and much lower speed. Muscle activations are high for the anterior del-
toid and infraspinatus, medium for brachialis and pronator teres and low
for all other muscles. Movements within this cluster can be used for short
interaction, alternation between types of load, or for exergames.
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Cluster 9 covers medium and long diagonal and close-to-horizontal
movements mostly in the right and central parts of the space. This clus-
ter has lower than average performance; in particular, accuracy is slightly
higher and speed is almost twice as low. Muscle activations are high for
the medial deltoid, medium for other deltoids, supraspinatus, infraspina-
tus and brachialis, and low for all other muscles. Movements within this
cluster are suitable for short-term interaction, or for alternation between
loaded muscles.

Cluster 10 covers short and medium movements in the upper right
part of the space in diagonal and mostly very close to vertical direc-
tions. This cluster has higher than average performance; both accuracy
and speed are approximately 6% higher. Muscle activations are high for
the posterior and medial deltoids, infraspinatus, upper trapezius and ser-
ratus anterior, medium for the anterior deltoid, and low for all other mus-
cles. This cluster can be used for short-term interaction, for alternation
and for interactions where high throughput is necessary.

Cluster 11 covers short and medium mostly vertical movements in the
right part of the space. This cluster exhibits higher than average per-
formance; both accuracy and speed are 6% higher. Muscle activations
are high for the medial deltoid, supraspinatus, upper trapezius and sub-
scapularis, medium for serratus anterior, anterior and posterior deltoids
and brachialis, and low for all other muscles. This cluster can be used for
medium-term interaction or for alternation between muscle loads.

7.4.4 Performance Analysis per Cluster

We computed Fitts’ law models [8] for each cluster separately and com-
pared fitness for a model computed for the whole dataset. We used
the standard model introduced above, with a and b fit to subsets of
movements defined by the clusters. As Figure 7.10 shows, the model
fit per cluster is higher than for the whole dataset. The average model
fit per cluster was R2 = .97, whereas the fit for the whole dataset was
R2 = .95. This corroborates the plausibility of the clustering, as homo-
geneity of data within each cluster is higher than those of general dataset.
The improvement of the model fit is not achievable through random re-
clusterings. The models show up to 28% difference in throughput be-
tween the clusters. Details of the performance analysis of each particular
cluster are given in Figure 7.10, as well as in the context of each cluster in
Section 7.4.3.
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Fig. 7.10: Fitts’ law models for the clusters show that improvements to fitness can be
obtained by knowing the clusters.
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7.5 Input Method Design

7.5.1 Application Algorithm

The typical approach to assessing the efficiency of input methods em-
ploys empirical studies. The proposed clustering allows any given input
region to be examined for muscle load and user performance prior to such
studies, or even instead of such studies. The clustering makes it possible
to quickly quantify potential improvements and drawbacks when chang-
ing the interface from one cluster to another. While clustering is created
based on mid-air aimed movement data, it also makes it possible to as-
sess other types of devices which do not involve large external forces;
for example, interactions with capacitive touch screens can be effectively
evaluated by the method. The clustering can be applied in many scenar-
ios by following this scheme:

1. Identify characteristic properties of the involved movements: their
length, their directions, and the 3D volume in which the movements
are to be sensed.

2. Use Figure 7.8 and the corresponding descriptions from Section
7.4.3 to identify the clusters which strongly intersect that input vol-
ume.

3. Among these candidate clusters, find the ones which contain move-
ments with the desired length and directions.

4. Finally, examine the performance and ergonomics properties of these
clusters and choose the one which is most suitable for the applica-
tion.

To illustrate some applications and evaluate our clustering, we con-
sider three cases of UI design: 1) mid-air keyboard placement, 2) public
display interaction, 3) mid-air input for a smartwatch.

As argued above, the clusters represent an upper bound on perfor-
mance. The properties of the particular input method and the skills of
the user are further aspects of the performance.

7.5.2 Case 1: Mid-Air Keyboard Placement

Our first example concerns design of a virtual keyboard for mid-air text
entry by pointing with the arm (e.g., [157, 386, 387]). Such a keyboard is
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Fig. 7.11: The optimal input region for a virtual keyboard lies within cluster 2 (see also
Figure 7.8). This cluster has a good accuracy for aiming movements in a space that is
large enough to host a virtual keyboard. Furthermore, the ergonomics in this cluster are
very good: it has the lowest total normalized muscle activation (see also Figure 7.9).

already implemented in console games and remote controllers using IR
cameras and accelerometer sensors, as well as using computer vision, as
in Microsoft Kinect. These keyboards map the position of the arm end ef-
fector relative to a virtual cursor hovering over the keys, and selecting the
keys is done using a separate command. In previous studies it has been
researched how keyboard size or its depth influence the text entry. The
question is, however, how these keyboards and individual keys should
be mapped to human-centered 3D space to optimize for ergonomics and
performance.

To answer this question, we search for clusters satisfying three con-
straints: first, the movements within the space need to be accurate enough
to allow typing without typos; second, the space has to contain movement
short enough to allow movements between individual keys; and third, the
space should be large enough to allocate the whole keyboard. These con-
straints are satisfied in 4 clusters: 1, 2, 9 and 11. By examining Figure 7.8,
we identify cluster 2 as providing satisfactory accuracy and the lowest to-
tal normalized muscle activations; thus, the optimal location for a virtual
keyboard is in this cluster, as shown in Figure 7.11. As we can see, the
resulting keyboard is positioned below shoulder level, horizontally cen-
tered in front of the shoulder, and covers volume in depth matching the
length of the forearm.
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7.5.3 Case 2: Public Display

Design of user interfaces is not only about some particular aspect, but
concerns several of them, and while performance and ergonomics are the
most important, there are in some cases other constraints.

For example, an interactive public display (Figure 7.12(a)) is mounted
on a wall at a fixed height, and the user has to maintain a particular
distance from it in order to be able to read it and have a full overview. The
related movements are mostly 2-dimensional in the plane of the display
surface and a small depth when moving from one target to another, as
can be seen in Figure 7.12(b).

As we can see, in our example the menu is placed according to a
desktop design recommendation at the top of the screen (Figure 7.12(b)),
which visually can be identified as intersecting clusters 1 and 9. To check
the actual cluster intersections, we have also computed a 3D representa-
tion of the menu movement space and immersed it in a virtual space of
the recorded trajectories, which are shown in Figure 7.12(c).

From description of the clusters, we know that clusters 1 and 9 are not
suitable for prolonged interaction, so placing the menu at the top of the
screen will make users become fatigued too fast during menu navigation.
Additionally, considering that our dataset represents an average adult
male, such a menu could become an accessibility problem for shorter
users, as in corresponding human-centered coordinates the menu would
be out of reach.

As an alternative menu location, we considered the space 30cm lower
than initial menu (7.12(d)). It is completely contained in cluster 2, which
is suitable for prolonged interaction. With this update the user perfor-
mance would stay almost the same, but muscle activations are reduced
by 2.7 times (7.12(e)).

7.5.4 Case 3: Smartwatch input

Our fourth case concerns the design of input for smartwatches [388]. The
largest drawback of these devices is the very limited input space due to
the small form-factor. The number of buttons on such a device is very
small. Multitouch interfaces are not suitable, due to the tiny screen and
the occlusions that would be caused by the hand. One of the alternatives
for increasing the input space is to capture mid-air gestures using an
integrated camera.
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(a) Real-life example of a
public display.

84cm

71cm

93cm

40cm

(b) Conceptual image
showing size and posi-
tion of the device in 3D
space together with the
main directions of the in-
volved movements.

9%

53%
7%

% Movements:

Throughput:v5.52vbits/sv

Offsetvtovtargetvcenter:v48vmm
Movementvtime:v449vms

Totalvnormalizedv
musclevactivation:v1.5v

Statistical results:

23%

8%

(c) Results: percentage
of the involved move-
ments for each cluster
and additional statistical
data.

Fig. 7.12: Cluster-based design example: menu for interactive public display. We ex-
amined muscle load and user performance for the region on a vertical public display
containing an interactive menu. Starting from a real-life example (a), we extracted its
spatial setup and the main directions of its movements, (b). Using Figure 7.8 we iden-
tified the clusters that contain the desired movements: 1 and 9. These clusters are not
suitable for long-term interaction.

We analyze here two options for camera placement for gestural inter-
action: the first option (Figure 7.13(a)) is used in the recently released
Samsung Gear. The second option (Figure 7.13(d)) is our alternative to it,
informed by our dataset and clustering.

The camera placement in Figure 7.13(a) requires the user to enter ges-
tures with the right arm in the left contralateral area, namely in clusters 1
and 9. Our alternative design, on the other hand, features a camera facing
to the right of the smartwatch, as demonstrated in Figure 7.13(d). This
would allow interaction in Cluster 2, which is two times less fatiguing
and provides higher accuracy and performance.
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84cm

71cm
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(d) Conceptual image
showing a lowered inter-
action area.
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(e) Results: percentage
of the involved move-
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data for the lowered in-
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Fig. 7.12: (continued) Cluster-based design example: menu for interactive public display.
Alternatively, we lowered the region in order to bring all movements to cluster 2 (d). As
a result, the movements have better performance and lower ergonomic costs. More ac-
curate cluster intersecting percentages and average performance and ergonomics values
are shown in (c) and (e).

7.6 Discussion

Motion capture-based biomechanical simulation is an efficient, effective
and informative method for research and design on post-desktop inter-
faces. In this chapter we have presented an additional extension of the
method to reduce the cost of its application for HCI tasks. Instead of
running complete biomechanical simulation in the early stages of design,
designers can get an overview of the movement space with respect to
performance and ergonomics characteristics of different types of move-
ments directly from a single scheme (Figure 7.8). The clustering provides
mapping between various aspects of design and can be used in different
ways: designers can specify a set of requirements predefined by a design
(for example, movement locations, direction and amplitude, or speed, ac-
curacy, throughput and muscle activations), get an overview of the rest
of parameters within selected clusters, and select the optimal one for the
specific task.

The clustering is based on an extension of a purely data-driven ap-
proach [353, 357, 358] in biomechanics of aimed movements uniformly
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(a) Real-life example of
a smartwatch. Interac-
tion volume for the cam-
era placement of Sam-
sung Gear.

(b) Conceptual image
showing size and posi-
tion of the interaction
volume in 3D space
together with the main
directions of the involved
movements.
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for each cluster and addi-
tional statistical data.

(d) Real-life example of a
smartwatch. Interaction
volume for an alternative
camera placement.

(e) Conceptual image
showing size and posi-
tion of the interaction
volume in 3D space
together with the main
directions of the involved
movements.
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Movementmtime:m442.5mms

Totalmnormalizedm
musclemactivation:m0.8m

Statistical results:

(f) Results: percentage of
the involved movements
for each cluster and addi-
tional statistical data.

Fig. 7.13: We examined the muscle load and user performance for gestural input to
a smartwatch. We considered 2 alternative interaction volumes depending on camera
placement and direction (upper—Samsung Gear case, lower—alternative case). Start-
ing from real-life examples (a, d), we extracted the spatial setup of the corresponding
interaction volumes and the main directions of their movements (b, e). Using Figure
7.8, we identified the clusters that contain the desired movements: clusters 1 and 9 for
the first case, and cluster 2 for the alternative case. More accurate cluster intersecting
percentages and average performance and ergonomic values are shown in (c, f).
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covering the whole space reachable by the arm and coupled with perfor-
mance metrics. The result is a summarization of muscle activation pat-
terns of upper extremity muscles, which execute all movements covered
in the dataset. Considering that the dataset uniformly and quite densely
covers the movement space of the arm, it could describe well movements
which are not present there. Surprisingly, the clusters computed on mus-
cle activations are also prominent in the spatial domain, which is an addi-
tional confirmation of clustering validity and can be directly used by the
designers. While looking at clusters in the spatial domain, it is possible
to identify the movement parameters (location, direction) characterized
by recruitment of the same group of muscles.

While this particular clustering can be used for analysis and design of
interfaces involving mid-air arm movements, the approach is general and
can be applied for other types of movement tasks in the following way:

• identify the movement space of interest,

• uniformly sample movements from this space using motion capture,

• simulate the underlying biomechanics and muscle recruitment,

• segment the whole recorded dataset based on muscle activation pat-
terns,

• compute performance models for each class, and

• map the clusters back to the spatial domain.

In this way designers get an overview of the whole movement space and
can make informed decisions concerning the desired interface, instead of
guessing at design alternatives and evaluating them one by one.

To answer our Research Questions 3.1 and 3.2, we have shown that
a complex movement space with 1800 different movements can be de-
scribed in a set of only 11 equivalence classes. Each equivalence class con-
tains movements homogeneous with respect to the recruitment of muscles
which generate them, and all movements within a class are characterized
by similar ergonomic and performance characteristics. With respect to
performance, the clustering is a representation of a non-uniform move-
ment space through a small set of uniform regions.
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Chapter 8

Conclusions

8.1 Discussion

This thesis shows that biomechanical simulation, after a small set of adap-
tations, can be successfully applied to a wide range of HCI tasks, that it
produces valid results, and that they provide new insights into perfor-
mance and ergonomics of an input method. Additionally, the large move-
ment space can be summarized in a small set of homogeneous regions
based on the underlying physiology executing the movement, namely
based on muscle activation patterns.

The proposed method effectively deals with the 4 issues of post-desktop
user interface design.

First, the method is very efficient and generic with respect to user
studies, and needs only slight overhead compared to a regular Fitts’ law
pointing experiment—5 minutes to calibrate the motion capture system
and another 10-15 minutes to put on the MoCap suit, and adjust and cal-
ibrate markers. The motion capture system generally tracks movement of
the body and end-effectors in 3D space and can be used for 3D, 2D and
1D pointing tasks, while most previous aimed movement studies were
performed only in 1D or 2D and necessitated special hardware for each
dimension setting, for example a regular mouse and display for 1D or
2D tasks, but a 3D mouse and volumetric display for 3D tasks. An ad-
ditional advantage of motion capture in user studies is that it allows for
tracking human movements as they are in a 3D and natural environment,
without intermediary input devices or transfer functions, thus measur-
ing pure human performance not affected by intermediaries. As modern
motion capture systems provide sub-millimeter precision, they are suit-
able for most movement-based HCI tasks, excluding only the ones with
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small movements and extra-high accuracy (higher than that of the mo-
cap system) or force controls (for example isometric joysticks). Motion
capture data also provides other advantages for performance analysis;
for example, it could allow associating different performance fractions to
individual limb segments.

Given such richness of motion capture data for performance analysis,
the cost of physical ergonomics analysis comes only from the computa-
tional cost of biomechanical simulation, which is significantly lower than
the cost of user studies. While regular biomechanical simulation involves
tuning a lot of parameters for each individual subject and each move-
ment, in Chapter 5 we have demonstrated that the simulation produces
valid results even without fine-tuning, using a generic set of parameters
for all participants and all movements. This makes the simulation even
more resource-efficient for the HCI setting. The computational cost of
current biomechanical software is still significant, but we know of current
developments which accelerate the computation to real-time [389]. The
biomechanical simulation outputs a wide range of physical ergonomics
indices with high value to researchers and designers.

As a result, at a cost of a regular Fitts’ pointing experiment, we get a
rich dataset characterizing both performance and ergonomics of a partic-
ular set of movements. Considering the high efficiency of the method, it
becomes possible to deal with the large movement space of post-desktop
interfaces, either using biomechanical simulation in usability evaluations
of design alternatives, or following our approach described in Chapter 7:
uniformly covering the whole movement space in a user study, and sum-
marizing it by a small set of homogeneous classes which can inform the
design in early stages.

Second, having such an efficient method which deals with move-
ments in 3D space and simultaneously provides both performance and
ergonomics, it becomes possible to conduct more research on input meth-
ods beyond the desktop in more HCI laboratories. In particular, consider-
ing the lower cost of modern motion capture systems and biomechanical
software, setups for motion capture-based biomechanical simulation will
become accessible for almost every laboratory. The cost of equipment
can be reduced even more with the development of markerless motion
capture [276, 368], or by deploying Microsoft Kinect for movement track-
ing (at the expense of accuracy). Furthermore, using our pipeline, these
laboratories do not need high expertise in biomechanics or physiology to
collect data and analyze input methods of interest.
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Third, the non-uniformity of the movement space with respect to per-
formance can be approached, as we described in Chapter 7, through as-
sociation of movement performance to underlying biomechanical struc-
tures executing the movement. Of course, in our method we used hi-
erarchical clustering and selected a small set of internally homogeneous
clusters to keep the overview of movement space practical for design-
ers, but in the real human body the number of homogeneous classes can
be much higher, and the transition between classes can be smooth. We
have demonstrated that such an approach is feasible and meaningful for
whole-arm movements and 11 classes, but moving further in that direc-
tion, the movement performance can be associated with muscle synergies
or even individual muscles.

Fourth, the physical ergonomics pitfalls can be approached using all
biomechanical indices we get from the simulation. Different stages of sim-
ulation produce indices of different depth and focus in the human body:
joint angles, joint moments, forces inside joints, muscle forces and activa-
tions. For each type of index, specific types of health risks can be consid-
ered. For example, for joint angles, risks are imposed by poses far from
the neutral posture and close to joint limits; for forces inside joints and
muscle forces, we can consider peak values as risk factors, as high peak
force can damage joint ligaments, muscles or tendons; for muscle activa-
tions, we can consider the values integrated over the time of interaction
as a measure of energy expenditure and muscular fatigue. Additionally,
designers and researchers are free to define their own ergonomics indices
which would, besides adhering to high-risk constraints, optimize for an-
other measure, for example maximizing variability of postures or muscle
recruitment to balance loads on individual muscles.

With respect to previous work on both performance and ergonomics,
the proposed method is not only one of the most efficient and effective,
but it is also the most generic.

With respect to performance, it is based on Fitts’ law, but in contrast to
it, the method tackles non-uniformity of the 3D movement space through
movement equivalence classes. In this way the data within each class is
more homogeneous and the fit (R2) of Fitts’ models per class is improved
over the general fit. The relation of performance to the underlying muscu-
loskeletal system is similar to the kinematic theory, but unlike that theory
our method does not assume separate functional muscle synergy for each
individual movement, but uses muscle co-activation patterns prominent
in the whole dataset. Such a representation is closer to physiologically-
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based muscle synergies than to functional muscle synergies, and as a
result it is more biologically plausible.

With respect to ergonomics, most previous methods deal only with
one individual type of physiological index or load, and none of the meth-
ods encompasses such a broad range of variables as motion capture-based
biomechanical simulation. The closest ancestors of our method—digital
human models (DHM)—while providing joint angles and in some cases
joint moments, do not provide any information on muscle forces or re-
cruitment, or in the best case record it externally for preselected mus-
cles using EMG. However, the benefit of some DHM is that they con-
tain databases of human anthropometry and can predict static postures
for different surroundings and tasks. In such cases, the user studies are
skipped completely and indices of static postures are considered in de-
sign. Of course, such posture predicting functionality could be helpful
extension for our method, in particular when applied for analysis of in-
teraction with widgets fixed in the external world, one example of which
is menu placement on an interactive public display. However, in post-
desktop interaction we mostly consider dynamic movements, which can-
not yet be predicted, so this is a promising future research direction.

In the context of the HCI field in general, this thesis contributes to
the science and problem solving part of HCI by providing new meth-
ods and models, and less to the design part of HCI by providing rec-
ommendations, guidelines and examples. This thesis significantly in-
creases problem-solving capacity [390], in particular for conceptual prob-
lems more important for the development of the field:

• The methodological contribution, namely the motion capture-based
biomechanical simulation pipeline, allows other researchers as well
as practitioners to efficiently tackle and make informed decisions
about user performance and physical ergonomics of new user inter-
faces, in particular post-desktop input methods, using user studies
which were not previously manageable. Additionally, the method
provides deeper insight into each analyzed interface through a broad
range of physical ergonomics and user performance indices. The
significance of this contribution is high: the main stakeholders are
the HCI researchers and practitioners performing user studies, but
implications of the method application to actual design of post-
desktop interfaces and consequent improvements can be reflected
in large populations of users. For example, there are currently more
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than 1 billion smartphone users; furthermore, the costs of bad de-
signs are even larger, as they include not only costs due to low in-
teraction performance, failed technologies or devices, but significant
risks to the health of the whole user population. The effectiveness
is also relatively high, as the method provides rich data describ-
ing multiple performance and ergonomics aspects of interaction.
Although the outputs do not include user experience, the above-
mentioned factors are a prerequisite for it; namely, if performance
or ergonomics are bad, user experience suffers as well. The effi-
ciency of the method is high among HCI experiments, as it needs
only slight overhead compared to a regular pointing task to cap-
ture movement dynamics and also generate ergonomics indices, al-
though compared to model-based assessment the efficiency is much
lower. Motion capture-based biomechanical simulation is transfer-
able to a wide range of HCI tasks as already discussed, and has
the potential to be applied for even more tasks with improvements
in musculoskeletal models. Although relying on some assumptions
and hypotheses (optimality of muscle recruitment), the method has
demonstrated high validity and robustness with respect to individ-
ual simulation parameters, thus providing high confidence.

• The other methodological contribution, namely summarization of
movement space through muscle co-activation clustering, allows re-
searchers and practitioners to use the summary to inform their re-
search or design. Additionally, although not providing an extensive
motor control hypothesis, the clustering deals with some problems
of the existing movement performance model—Fitts’ law—by relat-
ing performance of a movement with underlying muscular groups
executing it. In this way, Fitts’ model parameters can be related to
muscle groups, and considering a particular population can be used
for forward performance predictions. The significance of this con-
tribution is high, similarly to the previous one. The effectiveness
is average, as it provides only a summary of the movement space
with respect to performance and ergonomics and does not reflect all
the details provided by the experimental pipeline. The efficiency of
the contribution is high even among predictive models, as it quickly
gives an overview over the whole movement space and can guide
research or early stages of design. The transfer is also lower than for
the experimental pipeline, as the current model covers only full-arm
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mid-air movements. However, using the same approach, any move-
ment space can be summarized and modeled, and in this way the
transfer is high. The confidence of this contribution is high, albeit
lower than that of the experiment pipeline, as it includes additional
data-processing steps and is based on the assumption that the mus-
cles are the base for a movement. However, behavior of the data in
the clustering implicitly confirms the validity of the approach.

While it has been debated that the main reasons for fragmentation and
problems in development of the HCI field is the lack of conceptual con-
tributions [390] which would be able to bridge empirical and constructive
contributions, the conceptual (methodological) contributions described in
this thesis can fill this gap for physical ergonomics and performance of
movement-based interfaces, and help to close the gap for predictive move-
ment performance modeling in general.

As we can see, the motion capture-based biomechanical simulation
could significantly improve post-desktop interface research and design.
Besides some current limitations of the method, it can successfully tackle
performance- and ergonomics-related design and research challenges in
movement-based interaction. There were of course some critical questions
on the applicability and validity of the method in HCI, as well as the value
of the data, and we have answered these questions in the thesis.

To respond to Research Question 1.1, we have systematically ana-
lyzed related work in the relevant fields and as a result identified motion
capture-based biomechanical simulation as a potential method for HCI
research in Chapter 2. Further, we have proposed a small set of adapta-
tions to the initial method to allow its application within HCI in Chapter
3. The proposed method is efficient, straightforward to apply and pro-
vides rich performance and ergonomics data, with only slight overhead
compared to traditional HCI experiments.

To respond to Research Question 1.2, in Chapter 4 we performed
the applicability user study collecting motion capture data of 5 differ-
ent HCI tasks. Then we tried to run the simulation on all types of the
recorded data, and noted failure cases and reasons for them. Although
we analyzed only 5 types of interaction, it allowed us to identify strong
and weak points of biomechanical simulation in HCI tasks. As a result,
we have identified applicability limits and a range of potential success-
ful applications. The method is applicable to all HCI tasks without subtle
finger movements and without large external forces, for example for mid-
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air interaction or touch interaction with capacitive sensors. Interactions
involving external forces, such as button presses, external supports for
body parts (armrests, seating), full-body (exergame) and dynamic (walk-
ing, running) interaction, or manipulations of physical objects (tangibles)
necessitates recording of external forces. There is potential for improve-
ment in finger simulations: first capturing hand movement with com-
puter vision methods [368], and development in musculoskeletal hand
models [391, 392].

To respond to Research Question 1.3, in Chapter 5 we performed the
validity user study collecting EMG and motion capture data for mid-air
aimed movements. We compared muscle-related biomechanical simu-
lation outputs against EMG recordings and found that the median cor-
relation between the two is at 48% for a broad user population and an
HCI setting. Additionally, we have found factors which influence valid-
ity and accuracy of the simulation: large muscles are better predicted
than small ones; large fast movements are better predicted than slow
and accurate ones; and the predictions are better for participants more
closely matching the model representing an average adult male, but me-
dian correlations were positive even for young females. The participants
representing population extremes with respect to body size, age, weight,
or muscle state would necessitate manual skilled model adjustment to be
valid. In the study we have validated the model for aimed movements,
but considering that aimed movements are ubiquitous in HCI tasks and
also provide a base for more complex behaviors [261], we can conclude
that the method is valid for most HCI tasks.

To respond to Research Question 2.1, in Section 6.1 we conducted a
user study of aimed movements in 6 touch device conditions. We found
that movement performance significantly depends on the surface: the
tabletop and smartphone 2-hands provide 30% higher performance than
the tablet or laptop. Additionally, user performance depends on the pos-
ture used during interaction, reaching 7.4 bit/s for tabletop and 8.5 bit/s
for smartphone 2-hands. Different throughputs provided on individual
devices can be explained by different muscle groups executing move-
ments in each posture.

To respond to Research Question 2.2, we continued the analysis of
interaction with touch surfaces from Section 6.1 in Section 6.2 through
deeper analysis of skeletal and muscular loads depending on touch sur-
face and on posture. We have found that most users use an incorrect
posture when interacting with a tablet, in which their neck loads are 5
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times larger than normal. In general, public displays lead to the highest
energy expenditure, and surprisingly, laptops induce the lowest energy
expenditure, even slightly lower than tablets. Differences between indi-
vidual postures are also large; for example, for tablets the energy expen-
diture ranges from 522 to 1561 units, with postures using external sup-
port for tablet having lower energy expenditure and postures better for
neck demanding higher energy expenditure, particularly for arm muscles
supporting the tablet at a higher position.

To respond to Research Question 2.3, in Section 6.1 we analyzed
trade-offs between performance and ergonomics and found non-trivial
relationships: in fact there was no trade-off, but rather a synergy be-
tween performance and ergonomics factors. Namely, bad ergonomics
indices were related with low throughput movements, while high perfor-
mance indices were related to better ergonomics indices, with long tails
in both directions. Supposedly, this behavior is created by duration of
movements: with longer durations the muscles need to resist gravity for
longer periods and, consequently, fatigue more with respect to the same
processed information bits.

To respond to Research Question 3.1, in Chapter 7 we performed
clustering on muscle co-activation patterns of each movement within the
space reachable by the arm collected in an extensive experiment. Simi-
larly to the validity study, we used aimed movements, as they are ubiq-
uitous in HCI and also serve as a base for all trajectory-based tasks [261].
Due to the size of the user study, we recruited a single participant—
a well-balanced athlete—to represent skilled user performance, but his
muscle recruitment patterns match those of regular users, as validated
against samples of 16 other participants. We have found that it is possible
to represent the large dataset through a small number of clusters which
are interpretable in the spatial domain and exhibit more uniform perfor-
mance and ergonomics properties within each cluster. The clusters can
quickly provide a good overview of the movement space and inform the
design of most mid-air input methods.

To respond to Research Question 3.2, in Chapter 7 we computed per-
formance models for each cluster individually and for the whole dataset.
We found that the fit of cluster-based models improved by 2%, which also
confirms the validity of the clustering for the performance domain. In this
way, the performance indices are related to the physiological bases under-
lying each movement, namely to corresponding muscle recruitment. This
supports previous theories relating movement characteristics to the mus-
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cle synergy properties responsible for the movement [261].
The chapters of the thesis provide answers to all our initial research

questions, leading to the solution of the research problem:
We can efficiently design, analyze and assess high-throughput er-

gonomic post-desktop input methods using motion capture-based biome-
chanical simulation as a source of data describing the interaction, and
using summarizations or models derived from that data to inform the
design.

8.2 Future Research Directions

As biomechanical simulation is gaining new applications, more resources
are being invested in this research direction. This results in rapid im-
provement of related technologies, and the biomechanical algorithms and
models relevant for HCI will likely be improved as well. We have identi-
fied a number of problems of particular importance for HCI research, as
described below.

8.2.1 Expanding Applicability Limits

As already mentioned, the main applicability limit of significant impor-
tance for HCI is fine finger movements. In order to enable finger simula-
tion, the research should expand in two directions:

• First, a better kinematics tracking method is necessary for the hand
and fingers. Current marker-based motion capture methods need
overly cumbersome marker setups to accurately track all hand and
finger segments. Additionally, hands are prone to significant amounts
of self-occlusions, which would quickly degrade the quality of marker-
based motion capture data. An alternative to this are cyber-gloves or
markerless hand tracking methods [368]. Cyber-gloves are not the
best option for HCI, as they impact the naturalness of movements,
as well as prohibit capacitive touch and fine haptic feedback. Mark-
erless hand tracking methods are the most promising direction, but
currently they are not robust and accurate enough. Additionally,
there will be a need to align and integrate markerless hand tracking
with motion capture data of the rest of the body.
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• A second direction is in the development of improved musculoskele-
tal hand models. Current hand models do not model factors impor-
tant for capturing the complete richness of hand movements: inter-
nal palm joints, passive elastic tissue effects, intrinsic hand muscles
and interconnected tendon networks inside the hand.

A second applicability limit is the presence of unmeasured external
forces. There are two approaches to solve this:

• A first approach is development of cheap, easily attachable accurate
3D force sensors. There is significant progress in this direction, for
example small 3D force sensors made from silicone, or force sensors
integrated in shoes to measure ground reaction force.

• A second approach is to estimate them using some additional knowl-
edge [393].

The external forces are important in multiple HCI tasks, for example tan-
gibles, physical input artifacts and devices, body supports, etc.

8.2.2 Streamlining the method

To support practitioners in application of the method, it needs to be made
more intuitive and simple to apply. While we have proposed an approach
to streamline the method through a processing pipeline, there is still a lot
of potential for improvement; for example, improvement of the user in-
terface of biomechanical software would make it possible to more easily
edit the models and make manual adaptations to them to match users.
Another direction for simplification is deployment of full-body marker-
less motion capture [223], or even using Microsoft Kinect to track the
kinematics. This would make it possible to use the method without the
costs of a motion capture system, and without the overhead of marker
setup. Additionally, it would allow participants to move freely without
any restrictions. However, this simplicity comes at the cost of lower ac-
curacy than provided by marker-based systems, so it is still necessary to
investigate for which tasks the provided accuracy is sufficient.

8.2.3 Improving biomechanical simulation software

A significant practical issue of biomechanical simulation is the amount of
time necessary for computations. For example, computations of inverse
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kinematics, inverse dynamics and static optimization take 15, 50 and 1800
seconds for 240 frames of data; computed muscle control, while more
accurate, is even slower [17]. Additionally, in current implementations
the algorithms do not leverage benefits of multicore architectures. Faster
simulation algorithms have already been proposed [389], but they are not
applied anywhere yet, and additionally they will need to be validated for
HCI.

8.2.4 Improving Validity of the Simulation

There are two issues with the validity of simulation:

• the current models employ many simplifications; for example, they
represent many joints as hinges, and the segment inertia as that of a
rigid body, and there are many muscular simplifications. Improving
accuracy of the model would lead to more precise results, as well as
to better predictions in close-to-extreme postures.

• current models represent an average adult male. However, for many
tasks HCI deals with populations close to extremes with respect to
size, weight or age. It is necessary to collect broader demographic
statistics on each of the model parameters, and further applying
such statistic-based model would make it easier to address the pop-
ulations that are farther from average.

8.2.5 Developing a Predictive Model and Input Method
Optimization

While we have shown that the complex biomechanical dataset can be
summarized by a small set of equivalence classes, the further steps are
to develop an analytical model representing the movement space. The
model should be based on a plausible neuromuscular control hypothesis.
Such a model would not only allow an overview of already recorded
movements, but it would also be able to generate new types of movements
not present in the dataset. Compared to clustering, such a model would
have higher predictive power based on the same experimental data.

There are a number of recent projects which can provide a basis for
development of such a model. One of the projects is a plugin which
can help to develop neuromuscular simulations based on OpenSim [394].
Using this plugin, it becomes possible to integrate feedback control into
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the biomechanical simulation, build Simulink models of neural control
and computationally test motor control hypotheses.

Another direction for future research is model-based optimization of
input methods and user interfaces. The described clustering can already
be used for simple optimizations of an input method, as described in the
case studies. However, analytical models of movements could open up
the full potential for input method optimization. Additionally, further
research is necessary to identify possible criteria for model-based input
method optimization.

8.3 Concluding Remarks

This thesis proposes motion capture-based biomechanical simulation as
an experimental method for efficient performance and ergonomics assess-
ment of post-desktop input methods. The experimental procedure needs
only slight overhead compared to common Fitts’ law user studies: 10-15
minutes are necessary for putting on the suit with markers and calibrat-
ing the motion capture system. This method can be used within a UCD
process to accelerate the assessment of design alternatives. Additionally,
based on collected data, we propose a summarization of the movement
space reachable by the arm with muscle co-activation clustering. This
summarization can be used for a quick overview of the movement space
to inform the design, or as a model-based performance and ergonomics
assessment on early design stages.

Although there are still many open problems related to motion cap-
ture and biomechanical simulation within HCI, these methods can al-
ready be successfully applied to relevant problems.
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