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Abstract

In this thesis we are mainly concerned with a modification of the classical total
variation image inpainting model. This alteration, which leads to a variational
problem with linear growth, has been suggested by M. Bildhauer and M. Fuchs
and is of interest since it describes inpainting with simultaneous denoising,
i.e., we jointly reconstruct the region of the image for which data are missing
or inaccessible and denoise the generated image on the entire domain. First
numerical experiments in collaboration with J. Weickert have revealed that the
above modification is numerically comparable to the standard total variation
image inpainting model with the advantage of a comprehensive existence and
regularity theory of the corresponding solutions. The main focus of this thesis
lies on establishing such a theory for any dimension together with arbitrary
codimension, i.e., vector-valued images are included in our investigations.
More precisely we first show existence of generalized minimizers (in a suitable
sense) and pass to the associated dual problem. In this context we prove new
density results for functions of bounded variation and for Sobolev functions.
Afterwards we investigate the regularity behavior of generalized minimizers.
As a slight advancement we moreover study a special non-autonomous variant
of the above variational problem in the context of the denoising of images for
which we establish existence and regularity results of generalized minimizers.

Zusammenfassung

Diese Arbeit beschäftigt sich hauptsächlich mit einer Abwandlung des klas-
sischen TV-image inpainting Modells. Diese Modifikation, welche ein Varia-
tionsproblem mit linearem Wachstum beschreibt, wurde von M. Bildhauer und
M. Fuchs vorgeschlagen und vereinigt das sogenannte inpainting mit simul-
tanem Entrauschen. Numerische Experimente in Zusammenarbeit mit J. We-
ickert haben gezeigt, dass die obige Modifikation im Vergleich zu den bekannten
TV-image inpainting Verfahren numerisch vergleichbare Ergebnisse erzielt. Ein
klarer Vorteil des neuen Modells ist jedoch, dass eine ganzheitliche Existenz-
und Regularitätstheorie für Lösungen existiert, wobei es ein Kernanliegen dieser
Arbeit ist, eine solche Theorie für beliebige Dimensionen in Kombination mit
beliebiger Kodimension zu entwickeln.
Zunächst wird dabei die Existenz verallgemeinerter Minimierer (in einem geeig-
neten Sinne) gezeigt, bevor wir anschließend das duale Problem untersuchen.
Als Hilfsmittel werden wir neue Dichtheitssätze für Funktionen von beschränk-
ter Variation und für Sobolevfunktionen beweisen. Im Anschluss diskutieren
wir die Regularität verallgemeinerter Minimierer.
Ferner werden wir eine nicht-autonome Modifikation des obigen Variationsprob-
lems im Kontext des reinen Entrauschens von Bildern untersuchen. Dabei wer-
den wir Existenz und Regularität von verallgemeinerten Minimieren beweisen
sowie die Existenz und Eindeutigkeit dualer Lösungen verifizieren.
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Chapter 1

Introduction

The calculus of variations is an important and intensively studied field in math-
ematical analysis. One of the most basic problems occuring in this context is the
minimization of (strictly) convex functionals subject to additional constraints
(such as prescribed Dirichlet boundary data). Problems of such type often arise,
e.g., in engineering, mathematical physics, geometry, economics or digital im-
age processing (see, e.g., [58] for an overview of historical facts, examples and
references).
The subject of this thesis is the study of (strictly) convex energy functionals
occuring in digital image processing. Before going into analytical details, we
give a short introduction in the field of image analysis.

Image analysis

Digital image processing is about transforming a digital image into another
digital image that allows a better interpretation by humans or computers. In
the mathematical sense we understand images as mappings w : Ω → R

M ,
M ≥ 1, where Ω ⊂ R

n, n ≥ 2, usually denotes a bounded Lipschitz domain,
e.g., a rectangular area in the case n = 2 or a cuboid if n = 3. In fact there are
numerous types of images depending on the dimension of the domain and the
codomain, respectively.

• For n = 2 and M = 1 we are concerned with a classical digital image (see
Figure 1.1)) whose co-domain specifies the grey value. Normally, low grey
levels are dark and high grey levels are bright in this context (see, e.g.,
[13, 66, 73]).

• The case n = 3 together with M = 1 covers three-dimensional images
that are of fundamental meaning in medical imaging, e.g., computerized
tomography or magnetic resonance imaging (MRI) (see, e.g., [72, 73, 97]
and the references quoted therein).

3



CHAPTER 1. INTRODUCTION

• Considering the vectorial setting, i.e., M > 1, with arbitrary dimension
n ≥ 2, we are confronted with color images where each channel (or di-
mension) represents a corresponding color (see, e.g., [29, 48]). Another
example of a vector-valued image is a multi-spectral image (e.g. satellite
images) containing a variety of channels representing different frequency
bands (see, e.g., [101]). Moreover we can consider tensor-valued images,
e.g., matrix-valued images w : Ω → MM (R) (MM (R) denotes the set
of M ×M -square matrices with real entries). Such tensor-valued data
arise, e.g., in diffusion tensor magnetic resonance imaging (DT-MRI) and
physical measurements of anisotropic behavior (see, e.g.,[101, 102] and the
references quoted therein).

Figure 1.1: A classical digital image. Courtesy of J. Weickert

Image denoising

In what follows we are concerned with one of the oldest and most fundamental
problems arising in image processing, the so-called image restoration. Before
going into details we fix our basic setup and our underlying assumptions: we
suppose that we are given an observed image represented by a Ln-measurable
(Ln denoting Lebesgue’s measure on R

n), at least locally integrable, function
f : Ω → R

M (M ≥ 1). We assume this image to be corrupted by a statistical
phenomenon called noise (see Figure 1.2). In applications, this noise is usually
caused by technical issues, such as faulty accquistion or errenous transmission.
Usually, an additive noise model is assumed which means that the decomposi-
tion

f = u+ n, (1.0.1)

holds. Here, the function n : Ω → R
M models the noise and the function

u : Ω → R
M stands for “meaningful“ image data. In the discrete setting, the

functions f, u and n are represented as a (higher-dimensional) array of real
values and the noise n affects the values of u in a specific way, depending on
the special nature of n, that is, the model for n. A famous and very popular
noise model is the so-called Gaussian noise (we refer the reader to [13], p.61,
where some examples of image degradation by noise are presented).

4



(a) Original image (b) Original image with
additive Gaussian noise

Figure 1.2: Example of image degradation. Courtesy of J. Weickert

The general goal of image denoising is to recover the unknown u from the
given data f . There is a huge amount of methods and techniques to achieve
this goal which roughly can be divided into three types: the probabilistic meth-
ods (see, e.g., [30, 56] and the references quoted therein), methods based on
partial differential equations (PDEs), and variational methods relying on the
minimization of certain energy functionals. We are strictly concerned with tech-
niques from the latter type and here especially with variants of the so-called
TV-regularization (TV stands for“total variation“). For detailed information on
PDE-based methods and the minimization of the total variation or of related
functionals having superlinear growth we refer to [1, 13, 14, 22, 29, 31, 34–
37, 42, 70, 82, 85, 98, 100] and the references quoted therein where among
theoretical aspects, numerical investigations are partially carried out as well.
In the variational approach to image denoising, the original image u is thought
to be the (hopefully) unique minimizer of a functional of type (see, e.g., [1, 13,
31] and the references quoted therein)

J [w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

ψ(|∇w|)dx. (1.0.2)

The function w : Ω → R
M is an element of an adequate energy class K,

f ∈ L2(Ω)M , ψ is a suitably pre-selected (strictly) convex and increasing func-
tion and finally λ is a positive parameter steering the amount of regularization.
In this thesis we restrict ourselves to unconstrained problems, hence we do not
take into account any boundary condition of Dirichlet-, Neumann- or any other
type.
Interpreting the structure of the functional J , the first term in (1.0.2) can be
regarded as a measure for the quality of “data fitting“, i.e., the deviation of
the image w : Ω → R

M from the original data f on Ω. The second term in
(1.0.2) allows to incorporate apriori information of the sought minimizer into
the minimization process and can be interpreted as a regularizer. In our case,
this apriori information is a prescribed degree of smoothness of w, and then, the
regularizing term is sometimes called “fidelity“ term. At this point we like to
point out that the name “fidelity term“ is often used for the data term as well
(in this case, the data term is sometimes called “data fidelity“-term). Neverthe-
less, in this thesis, the label fidelity term will be only used for the regularizing
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CHAPTER 1. INTRODUCTION

term. Observe that the presence of noise in an image decreases its fidelity by
the very nature of noise. As a consequence, a large (relative) weight on the
data term favoures close-to-data-minimizers while a relatively large weight on
the fidelity term increases the smoothness of the minimizer. Roughly speaking,
it is the balance between the opposite effects of the data fitting- and fidelity-
term that determines the minimization process and the characteristics of the
minimizer.

It is natural that the choice of the function ψ in (1.0.2) crucially influences
the minimization process and the properties of the minimizer, i.e., the result of
the denoising process. One common and classical choice of the function ψ is

ψ(t) := t2, t ≥ 0, (1.0.3)

i.e., we choose the fidelity term to be Dirichlet’s energy. This idea has been
proposed in 1977 by Arsenin and Tikhonov (see [95]), where the original aim
of adding a regularization term was to overcome the ill-posedness of the mere
data fitting minimization problem. To be precise we seek minimizers of the
functional

J2[w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

|∇w|2dx, (1.0.4)

with functions w : Ω → R
M in the appropriate Sobolev space W 1,2(Ω)M (for

details concerning those spaces the reader is referred to [4]). As a slight gen-
eralization of (1.0.3) we can consider ψ(t) := tp with p > 1, i.e., we look for
minimizers of the functional

Jp[w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

|∇w|pdx

among functions w : Ω→ R
M in the space W 1,p(Ω)M∩L2(Ω)M . Here, the inter-

section of the Sobolev space W 1,p(Ω)M and the Lebesgue space L2(Ω)M ensures
well-definedness of the functional Jp. At this point we give a short comment on
the space W 1,p(Ω)M ∩L2(Ω)M : if Ω is a bounded Lipschitz domain in Rn, then
there exists a continuous embedding W 1,p(Ω)M ↪→ Lq(Ω)M for all 1 ≤ q < np

n−p
(see, e.g., [4], Theorem 5.4, p. 97/98). Thus, under certain assumptions on the
dimension n and the exponent p, the problem “Jp → min“ can be investigated
on the entire space W 1,p(Ω)M . Otherwise, the requirement“w ∈ L2(Ω)M“ is an
additional constraint. Using the direct method in the calculus of variations we
see, that the problem “Jp → min“ admits at least one minimizer u ∈W 1,p(Ω)M .
Uniqueness of the minimizer then is a consequence of the strict convexity of the
data fitting term

∫
Ω

|w − f |2dx w.r.t. w.

Thus, by involving p-growth with some finite exponent p > 1 in the fidelity
term we are actually dealing with superlinear problems. As a consequence,
we are able to remove the noise and retrieve smooth solutions, where the
procedure does not cause numerical problems. Since large gradients indicate
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edges in an image, a severe penalization of the gradient norm produces “over-
smoothed“ images, where essential features such as edges are blurred (see Figure
1.3 in the case p = 2). The penalizing effect and hence the blurring effect is as
smaller as closer the exponent p > 1 is to one.

(a) noisy image (b) filtered image

Figure 1.3: Regularization with Dirichlet’s energy (The regularization param-
eter λ has been optimized such that the smallest possible mean square error
w.r.t. the original image without noise is obtained).
Courtesy of J. Weickert

Now we are facing two technical obstacles. First, in view of the above observa-
tion, the natural question arises, how to find the optimal choice of the exponent
p for preserving edges and other characteristic ingredients of the observed image
f . If we consider the limit case p = 1 in the functional Jp, we are confronted
with the problem

J1[w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

|∇w|dx→ min in W 1,1(Ω)M ∩ L2(Ω)M .

Recalling the continuous embedding W 1,1(Ω)M ↪→ L
n
n−1 (Ω)M it becomes evi-

dent that the requirement “w ∈ L2(Ω)M“ is an additional constraint if n ≥ 3.
Furthermore, a functional analytical problem arises since the Sobolev space
W 1,1(Ω)M is not reflexive, i.e., apriori we can not assume existence of a weakly
convergent subsequence of minimizing sequences being uniformly bounded in
W 1,1(Ω)M . Hence, we cannot expect solvability of the above problem.
Secondly, the Sobolev spaces in general are not suitable for image processing
since they simply do not contain “important“ images such as cartoon-like im-

ages. To be more precise, even a characteristic function 1A(x) =

{
1, x ∈ A
0, x /∈ A

with A ( Ω (A is assumed to be at least a set of finite perimeter in Ω, see,
e.g., [63] for more details) does not belong to any Sobolev space. Already in
the one-dimensional case with A = (−ε, ε) ⊂ Ω := (−1, 1), it is obvious that
1A ∈ L1((−1, 1)) whereas its distributional derivative is a difference δ−ε − δε
of Dirac δ-distributions representing a signed Radon measure with finite to-
tal variation. Now, simple calculations show that 1A does not belong to any
Sobolev space W 1,p(Ω) with p ≥ 1. However, the space of functions of bounded
variation BV (Ω)M covers all L1-functions w : Ω → R

M whose distributional
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CHAPTER 1. INTRODUCTION

gradient ∇w is represented by a tensor-valued Radon measure on Ω with finite
total variation

∫
Ω

|∇w| (for details, we refer to the monographies of Ambrosio,

Fusco and Pallara [7] and Giusti [63]). This suggests that the space BV (Ω)M

has to be considered when dealing with the denoising of images and it is there-
fore natural to consider an extension of the functional J1 to the larger space
BV (Ω)M ∩ L2(Ω)M . One of the first contributions in this direction has been
made by Rudin, Osher and Fatemi in 1992. In their work [85], they suggested
to involve the total variation of w into the minimization process of J1. This
leads to the TV-regularization in its most elementary form which means that
we are interested in solutions of the problem

J̃ [w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

|∇w| → min in BV (Ω)M ∩ L2(Ω)M . (1.0.5)

Recalling the continuous embedding BV (Ω)M ↪→ L
n
n−1 (Ω)M (see, e.g., [7],

Corollary 3.49, p.152) we see that the requirement “w ∈ L2(Ω)M“ represents
an additional constraint if n ≥ 3. Using well-known properties of functions of
bounded variation we state, that J̃ admits at least one solution. Once more,
uniqueness follows by strict convexity of the data fitting quantity w.r.t. w. Pro-
vided that our original function f is bounded we can even derive a maximum
principle for u. At this point, the question arises if the J̃-minimizer u can be
linked with the original problem formulated in the space W 1,1(Ω)M . Clearly, u
is not J1-minimizing but it can be viewed as a generalized minimizer of J1 in a
suitable sense, as will be clarified in the second chapter of this thesis.
As a method for image denoising, TV-regularization has clearly its merits: no
generation of new discontinuities, preservation of already existing edges, over-
smoothing and blurring does not occur and in general, cartoon-like images are
preserved to a large extent. Nevertheless, there are also drawbacks of this tech-
nique: regions, where the function values are changing in a smooth manner
turn into regions, where the function values are piecewise constant. This phe-
nomenon is called staircase effect (see, e.g., [39]).

(a) noisy image (b) filtered image

Figure 1.4: TV-regularization (The regularization parameter λ has been op-
timized such that the smallest possible mean square error w.r.t. the original
image without noise is obtained).
Courtesy of J. Weickert
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An interesting compromise between the case p > 1 and the limit case p = 1
provides the choice ψ(t) := h(t) := t log(1 + t), t ≥ 0. The function ψ satisfies
a “nearly linear growth“ condition (“L logL case“). This leads to the so-called
“logarithmic regularization“ which boils down to the minimization of the func-
tional ∫

Ω

|f − w|2dx+ λ

∫
Ω

h(|∇w|)dx (1.0.6)

with w ∈W 1,h(Ω)M ∩ L2(Ω)M . Here, W 1,h(Ω)M represents the Orlicz-Sobolev
space (see, e.g., [4] for more details) generated by the N -function h. It is worth
noting that we can choose any finite iteration of the logarithm for the func-
tion h as well. As outlined in [22] in the two-dimensional setting, the usage of
such a N -function as density ψ indeed leads to a less strong smoothing effect
if compared to the regularization results obtained with densities of p-growth
for any exponent p > 1. These theoretical statements are at least on a visual
level confirmed by numerical experiments in collaboration with J. Weickert (see
below).

(a) noisy image (b) filtered image

Figure 1.5: logarithmic regularization (The regularization parameter λ has been
optimized such that the smallest possible mean square error w.r.t. the original
image without noise is obtained).
Courtesy of J. Weickert

Denoising by means of TV-regularization, that is the usage of the functional J̃ ,
has its clear advantages. However, due to the lack of ellipticity we cannot expect
regular solutions of the corresponding variational problem in general. In order
to overcome this effect we exploit an idea from [22] and replace the rather un-
pleasant TV-density |∇w| by a strictly convex integrand F (∇w). This density
F is assumed to be of linear growth w.r.t. the tensor-valued Radon measure
∇w but possesses better ellipticity properties. The corresponding functional
now reads

J [w] := λ

∫
Ω

F (∇w)dx+

∫
Ω

|w − f |2dx, w ∈W 1,1(Ω)M ∩ L2(Ω)M . (1.0.7)

Nonetheless, the study of smoothness properties of corresponding solutions of
(1.0.7) remains a difficult problem since the required linear growth of F admits

9



CHAPTER 1. INTRODUCTION

only weak and anisotropic ellipticity conditions and it is not surprising that
regularity crucially depends on the modulus of ellipticity that we propose. In
accordance with [22] (see equation (1.13) therein) the following choice of F
provides a natural class of examples w.r.t. approximating the TV-density |P |,
P ∈ R

nM : let us fix a real number µ > 1 and define the following family of
densities

ϕµ(r) :=

r∫
0

s∫
0

(1 + t)−µdtds, r ∈ R+
0 . (1.0.8)

We observe for µ 6= 2

ϕµ(r) =
r

µ− 1
+

1

µ− 1

1

µ− 2
(r + 1)−µ+2 − 1

µ− 1

1

µ− 2
, (1.0.9)

while in the case µ = 2 we get

ϕ2(r) = r − log(1 + r).

Since, in the TV-case, the density just depends on the modulus of ∇w, it is
advantageous to introduce

Φµ(Z) := ϕµ(|Z|), Z ∈ RnM . (1.0.10)

Standard calculations show that Φµ is strictly increasing, strictly convex, of class
C2(RnM ), satisfies Φµ(0) = 0, DΦµ(0) = 0, is of linear growth and approximates
the TV-density |∇w| in the following sense

(µ− 1)Φµ(Z)→ |Z| as µ→∞ (1.0.11)

for all Z ∈ RnM . Thus, the Φµ(∇w) are integrands F of linear growth that ap-
proximate |∇w|. Furthermore, the Φµ satisfy much better ellipticity properties
since they are even µ-elliptic with prescribed elliptic parameter µ > 1. For the
notion of µ-ellipticity we refer the reader to, e.g., [17], Assumption 4.1, p.97.
Section 3.1 of this thesis is devoted to this concept as well.
Now, the properties of Φµ motivate to look at the following modification of the
TV-regularization

λ

∫
Ω

Φµ(∇w) +

∫
Ω

|w − f |2dx→ min in BV (Ω)M ∩ L2(Ω)M (1.0.12)

which admits a unique solution u ∈ BV (Ω)M ∩ L2(Ω)M . At first glance, the
above problem seems somewhat artificial but numerical experiments carried out
in collaboration with J. Weickert (see [28]) indicate that the above modification
of the TV-regularization (1.0.12) is numerically comparable to the standard
TV-model (see Figure 1.6 ). However, in contrast to the classical TV-model
(1.0.5), we can provide a complete analysis of the regularity properties of the
BV -minimizer of (1.0.12) which is one of the main goals of this thesis.
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(a) noisy image (b) filtered image,
µ = 3/2

(c) filtered image,
µ = 20

Figure 1.6: Φµ-regularization (The regularization parameter λ has been opti-
mized such that the smallest possible mean square error w.r.t. the original
image without noise is obtained).
Courtesy of J. Weickert

It is clear that we can admit arbitrary real values of the ellipticity parameter
µ in the problem (1.0.12). If µ < 1, then Φµ is a strictly increasing and strictly
convex function having superlinear growth with power growth order p := 2−µ >
1 which allows to investigate problem (1.0.12) in the classical setting of the
Sobolev space W 1,p(Ω)M . Considering µ = 1 we are located in the “nearly
linear growth“ situation which means that we can discuss problem (1.0.12) in
the Orlicz-Sobolev space W 1,h(Ω)M , where h(t) := t log(1 + t), t ≥ 0, denotes
the corresponding N -function.

Image inpainting

Now we turn to another interesting and well-known problem in image restora-
tion, the so-called image inpainting. We provide a short description of the im-
age inpainting problem: suppose that we are given a bounded Lipschitz domain
Ω ⊂ R

n with n ≥ 2 and a Ln-measurable subset D of Ω having the property

0 ≤ Ln(D) < Ln(Ω).

Furthermore we assume that we are given an image described by a Ln-measura-
ble function f : Ω − D → R

M representing the partial and usually distorted
observation of our image on Ω−D. In this context, the subset D, that is called
(at least in the scalar case M = 1 together with n = 2) “inpainting domain“(see,
e.g., [33]), is a certain part of the image for which image data are not available.
Thus, the aim is to develop methods and techniques to restore the image values
for the missing part D from the known values of the part Ω−D. In other words
we want to generate an image u : Ω → R

M which interpolates the incomplete
image f : Ω − D → R

M . This kind of image interpolation fills in the missing
image data on the set D and is called, at least in the scalar case M = 1 together
with n = 2, “image inpainting“ or just “inpainting“ (see, e.g., [33, 84, 88]).
In accordance with [84] there are essentially four different types of approaches
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CHAPTER 1. INTRODUCTION

which are concerned with the inpainting problem. They can be either varia-
tional or non-variational and local or non-local.
As outlined in [84], local inpainting techniques take the information needed for
the filling-in process only from neighboring points of the boundary ∂D of D.
This is the most common type of methods employed if the inpainting region
D is rather small (see, e.g., [16, 38, 40, 41, 50, 84] and the references quoted
therein). In contrast to this, non-local methods use the entire range of infor-
mation available on the known part Ω−D of the image (see, e.g., [10–12]). As
elucidated in [84], these techniques are desirable if one wants to fill in structures
and textures into patch-like sets. However, these types of techniques often cause
high computational costs.
Non-variational approaches for instance might be based on the direct use of a
PDE not derived from a functional to fill in the missing information.

In this thesis we discuss a variational approach towards image inpainting being
of non-local type. To be more precise we study a modification of the total varia-
tion (=“TV“) image inpainting problem, where the original TV image inpainting
method is given by the problem (see, e.g., [84])∫

Ω

|∇w|+ λ

2

∫
Ω−D

|w − f |2dx→ min in BV (Ω)M ∩ L2(Ω−D)M .

Here, as usual, λ > 0 is a regularization parameter and we assume that the
incomplete image f is of class L2(Ω − D)M . At this point we like to point
to the fact that the regularization parameter usually acts as a prefactor of
the regularization term (see, e.g., [11]). Nonetheless, in the above problem,
the prefactor λ still balances the data term and the fidelity term, where small
values of λ increase the effect of smoothness of the minimizer. In contrast, large
values of λ rather generate close-to-data minimizers. Using standard properties
of BV -functions we observe that the above functional admits at least one BV -
minimizer but in contrast to the TV-regularization used for the pure denoising
of images we lose the uniqueness of BV -solutions in this context. Indeed, we
merely have uniqueness on the set Ω−D. Besides, as already mentioned above,
we apriori cannot expect any smoothness properties of solutions of variational
problems where a total variation component is involved.
In [24] extending ideas from [22], M. Bildhauer and M. Fuchs replaced the
TV-density |∇w| by a modified density F (∇w) with linear growth that satisfies
better ellipticity properties and approximates the TV-density in a suitable sense.
Here, the density Φµ from (1.0.10) appears again as a natural example. Hence,
we study the problem

I[w] :=

∫
Ω

F (∇w) +
λ

2

∫
Ω−D

|w − f |2dx→ min

in BV (Ω)M ∩ L2(Ω−D)M .

(1.0.13)

Now a short comment on the space BV (Ω)M ∩L2(Ω−D)M is in order: in accor-

dance with the continuous embedding BV (Ω)M ↪→ L
n
n−1 (Ω)M , the requirement

12



“w ∈ L2(Ω−D)M“ represents an additional constraint if n ≥ 3.
Note, that in view of (1.0.12) the variational approach in (1.0.13) actually
describes inpainting with simultaneous denoising. This means that if the in-
complete image f on Ω −D is corrupted by noise we can jointly denoise f on
Ω−D and generate a completion u defined on the whole domain Ω.
It is also worth mentioning that various modifications of the above technique
of inpainting with simultaneous denoising can be constructed. To this end, the
reader is referred to [23] where some of the modifications of the TV-image in-
painting method have been studied in the scalar case together with n = 2 and
possibly additional assumptions on D.

Following our considerations in the context of image denoising, it is reason-
able to choose F (Z) := Φµ(Z), Z ∈ R

nM , in (1.0.13) with Φµ(Z) as before
from (1.0.10). Hence, we again exploit the approximation of the TV-density by
means of Φµ (compare (1.0.11)). Although the investigation of problem (1.0.13)
with the special choice F (Z) = Φµ(Z) has been triggered by theoretical inter-
est, numerical examinations performed in collaboration with J. Weickert have
illustrated that this variational approach yields results that are numerically
comparable to the standard TV-image inpainting model.

The investigation of the general functional (1.0.13) is a major subject of this
thesis as well. We will provide a comprehensive analysis of the smoothness
properties of its BV -minimizers for any dimension n ≥ 2 and any codimension
M ≥ 1.

A short summary of already known results

Considering the scalar case M = 1 together with n = 2, problem (1.0.13) has
been studied extensively by M. Bildhauer and M. Fuchs in [23–26] and for the
case of pure denoising (“D = ∅“) in the related work [22]. It is worth mentioning,
that in [22], the case of vector-valued images together with additional (Dirichlet-
) boundary data u0 has been included as well. In [24], the existence of a unique
minimizer of the functional∫

Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx (1.0.14)

has been shown in the classical Sobolev space W 1,1(Ω) (compare [24], Theorem
1.3). Note that in accordance with Sobolev’s embedding theorem, the functional
in (1.0.14) is well-defined on the entire space W 1,1(Ω). This existence result was
proven under rather strong ellipticity conditions on the density F . To be more
precise, among other appropriate conditions, F is supposed to be µ-elliptic with
prescribed ellipticity parameter µ ∈ (1, 2), i.e., the problem is located near the
“nearly linear growth“ situation. Furthermore, the incomplete image f is as-
sumed to be of class L∞(Ω−D). Under these assumptions, it was possible to
establish a maximum principle for the unique W 1,1-minimizer u. As an addi-
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tional main result of [24], it was shown the continuity of DF (∇u) on Ω which
implies strong partial regularity of u on Ω in the sense that dimH(SingΩ(u)) = 0,
where SingΩ(u) describes the set of interior singularities of u in Ω. By defini-
tion, dimH(SingΩ(u)) = 0 means that (Hε denoting the Hausdorff measure of
dimension ε) Hε(SingΩ(u)) = 0 for any ε > 0, i.e., the set SingΩ(u) is very small
in a measuretheoretical sense.

In view of the results of [24], it is natural to ask how to deal with the functional in
(1.0.14) for large values of the parameter µ, i.e., for µ > 2. Here, an immediate
problem arises from the lack of reflexivity of the Sobolev space W 1,1(Ω) imply-
ing that in general we cannot expect existence of W 1,1-minimizers of (1.0.14).
Clearly, for µ ∈ (1, 2), the Sobolev space W 1,1(Ω) remains not reflexive and we
apriori have the same problems as for large values of µ but in case µ ∈ (1, 2),
Bildhauer and Fuchs were able to overcome this difficulty. Unfortunately, their
strategy fails and cannot be extended to µ > 2.
In [25], they used the concept of a convex function of a measure (see, e.g., [46] or
[8, 60]) and a suitable relaxation of the functional in (1.0.14) formulated on the
space BV (Ω). Then, it could be shown that the relaxed version of functional
(1.0.14) under some suitable assumptions on F is solvable (see [25], Theorem
1.2). As a remarkable byproduct, the authors established a maximum principle
for each BV -minimizer of the relaxed functional. Furthermore, they justified
that each minimizer of the relaxation can be seen as generalized minimizer of
the original functional in (1.0.14) and vice versa.
The dual variational problem associated to the original problem (1.0.13) has
been considered in [25] as well. For the dual problem, the authors showed exis-
tence of a solution σ ∈ L∞(Ω)2 and the validity of the so-called inf-sup relation.
Uniqueness of the dual solution σ has been derived under the assumption that
the conjugate function F ∗ to F is strictly convex on the set {p ∈ R2, F ∗(p) <∞}
(see [25], Theorem 1.4). We refer to [49] or Section 2.1 for more details concern-
ing the dual problem and facts from convex analysis and from duality theory.
Assuming that the set of interior points Int(D) of D is non-empty, Bildhauer
and Fuchs stated some regularity results for the BV -minimizers and the dual
solution σ on Int(D) under appropriate assumptions on the density F and the
given data (compare [24], Theorem 1.2, 5., and Theorem 1.4, 3. and 4.).

Taking the partial regularity statement of Theorem 1.4 in [24] and therewith the
existence of a non-empty, small set of singularities as a basis, the question arises
if it is possible to exclude these interior singularities, i.e., to show full interior
C1,α-regularity of the unique W 1,1-minimizer u of the functional in (1.0.14). In
the joint work [27] we could give, at least in the scalar setting together with
n = 2 and for fixed ellipticity parameter µ ∈ (1, 2), a satisfying answer to this
question. We showed everywhere C1,α-regularity of u by performing a refined
De Giorgi-type iteration (in contrast to the type of De Giorgi-type iteration that
has been carried out in [17], Theorem 4.28, pp. 119) which has been modified
to the situation at hand (see [27], Theorem 2).

14



Structure and main results of the thesis

Inspired by [24, 25] and from the joint work [27], one major effort in this thesis
and more exactly of the second and third chapter, respectively, consists in
generalizing the results of [24, 25, 27] to the case of any dimension n ≥ 2 and
any codimension M .
We start by giving some comments on the structure and the main results of
the second chapter of the thesis: assuming from now on n ≥ 2 and M ≥ 1 we
consider the functional (recall (1.0.13))

I[w] :=

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx. (1.0.15)

Here, F is supposed to be a strictly convex function being of linear growth
w.r.t. the modulus of the gradient and satisfying some additional (rather weak)
conditions which will be specified in appropriate places. Thus, I is well-defined
for functions w ∈W 1,1(Ω)M ∩L2(Ω−D)M where in accordance with Sobolev’s
embedding theorem, the requirement “w ∈ L2(Ω−D)M “ then acts as an addi-
tional constraint if n ≥ 3.
Since as usual we cannot expect existence of I-minimizers in the suitable space
W 1,1(Ω)M ∩L2(Ω−D)M we either have the possibility to weaken the notion of
an I-minimizer, i.e., to introduce a suitable concept of a generalized minimizer
or to pass to the dual variational problem associated to problem “I → min“.
In the second chapter we investigate both aspects where we emphasize that
we actually present the material of the joint article [55] with M. Fuchs. After
introducing a suitable relaxation of the original functional I formulated on the
space BV (Ω)M and defining the set of generalized minimizers of the functional
I we can show

Theorem 1.0.1
Let us assume n ≥ 2 and M ≥ 1 together with f ∈ L2(Ω − D)M . Further,
let F satisfy some appropriate (weak) conditions. Then there exists at least
one generalized I-minimizer u (w.r.t. to a natural relaxation of the functional
I) from the space BV (Ω)M ∩ L2(Ω − D)M . Further, the set of all generalized
minimizers coincides with the set of all minimizers of the corresponding relaxed
variant of the functional I.

Concerning the dual problem we will prove

Theorem 1.0.2
Let us assume n ≥ 2 and M ≥ 1 together with f ∈ L2(Ω −D)M . Further, the
density F is required to satisfy some appropriate (weak) conditions. Then, there
exists a unique dual solution σ ∈ L∞(Ω)nM of the dual problem associated to
the problem “I → min“ and the inf-sup relation holds true. Moreover we have
the validity of the duality formula

σ = DF (∇au) a.e. on Ω,
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where u denotes any generalized minimizer from Theorem 1.0.1 and ∇au de-
notes the regular part of the tensor-valued Radon measure ∇u w.r.t. Lebesgue’s
measure being unique Ln-a.e. on Ω.

Comparing the results from Theorem 1.0.1 with the results from Theorem 1.2
in [25] there are in fact two novelties in Theorem 1.0.1: on the one hand we
generalize Theorem 1.2 in [25] to n ≥ 2 with arbitrary codimension M and on
the other hand these generalizations work under slightly weaker assumptions
on F and f . Thus, we even have a generalization in the special case n = 2 at
hand. For instance, we can drop the structure condition on F and avoid the
usage of a maximum principle. It is worth mentioning that the latter point
leads to severe problems and requires the derivation of a new density result for
BV -functions (see Lemma 2.2.6).
However, by imposing a structure condition on F we can essentially use the same
arguments as presented in [24], Theorem 1.2, for discussing the case n ≥ 3 with
arbitrary codimension M . In this context, an appropriate maximum principle
which will be deduced for arbitrary minimizing sequences of the relaxed func-
tional acts as an essential tool.
Comparing Theorem 1.0.2 and [24], Theorem 1.4 there are in fact three nov-
elties: at first there is a generalization of the results from [24], Theorem 1.4,
to the case n ≥ 2 with arbitrary codimension M . In this context, it is to re-
mark, that slightly weaker assumptions on the density F and the data f are
needed. A second novelty is, that a new density result for Sobolev functions is
used in order to prove solvability of the dual problem associated to the problem
“I → min“ (see Lemma 2.2.4). As the last novelty, uniqueness of the dual
solution is proven without requiring, that the conjugate function F ∗ to F is
strictly convex on the set {P ∈ RnM , F ∗(P ) < ∞} and in addition the duality
formula is valid for Ln-a.e. x ∈ Ω.

The second chapter of this thesis is organized as follows: in Section 2.1 we
fix our assumptions and carry out the ideas in order to overcome the difficulty
of non-solvability of the problem “I → min“ in the non-reflexive Sobolev space
W 1,1(Ω)M . To this purpose we use the concept of convex functions of a measure
(see [46] or [60]) and define a suitable relaxed variant K of I which is formu-
lated on the space BV (Ω)M . Afterwards we state Theorem 1.0.1 from above
(see Theorem 2.1.1).
Subsequently we briefly recap some basic facts from convex analysis and from
duality theory which leads to the definition of the so-called Lagrangian and
therewith to the formulation of the dual problem associated to our original
problem “I → min“. Our results on the dual problem then will be summarized
in Theorem 2.1.6 and Theorem 2.1.7.
In Section 2.2 we provide some important tools and auxiliary results which
will be of fundamental meaning during the proof of Theorem 2.1.1 and The-
orem 2.1.6 as well: starting with Section 2.2.1 we discuss the general chain
rule for functions of BV -type and prove an important but known inequality
which follows from the general chain rule for BV -functions. This inequality is
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a crucial argument when proving new density results for Sobolev functions and
BV -functions in Section 2.2.2. Here we again emphasize, that the proofs of our
main results in this chapter crucially rely on the validity of these approximation
arguments. In Section 2.2.3 we prove a slightly more general but already known
variant of Poincaré’s inequality which serves as an important tool during the
proof of Theorem 2.1.1 and Theorem 2.1.6.
In Section 2.3 we give a proof of Theorem 2.1.1 while Section 2.4 is dedicated to
the proof of Theorem 2.1.6. Finally, the goal of Section 2.5 is to derive unique-
ness of the dual solution and to establish the duality formula which proves
Theorem 2.1.7.
As the last point we think it is worth remarking that Theorem 1.0.1 and The-
orem 1.0.2 actually extend to more general data fitting terms under consider-
ation. For details, the reader is referred to the joint article [81] with J. Müller
(see Theorem 1.1, Theorem 1.2 and Theorem 1.3 therein).

In the third chapter we discuss regularity properties of generalized minimiz-
ers of the functional I (w.r.t. to a suitable relaxation). As outlined in, e.g.
[17], we may essentially expect three different types of regularity results for an
arbitrary generalized minimizer u in our situation:

(i) n ≥ 2, M ≥ 1: suppose that f ∈ L∞(Ω−D)M and that F satisfies some
appropriate ellipticity conditions. Then there is an open set Ω0 ⊂ Ω such
that u ∈ C1,α(Ω0)M for any α ∈ (0, 1) with Ln(Ω− Ω0) = 0.

(ii) n ≥ 2, M = 1: full interior C1,α-regularity of u for any α ∈ (0, 1). Here,
we additionally assume that f ∈ L∞(Ω − D)M and that the density F
satisfies some appropriate ellipticity conditions.

(iii) n ≥ 2, M > 1: with the assumptions on f and F as stated in (ii) we
further suppose, that F satisfies F (Z) = g(|Z|2) for some function g ∈
C2([0,∞), [0,∞)) of class C2 and impose some additional Hölder condition
on the second derivatives of F . Then, u is of class C1,α(Ω)M for any
α ∈ (0, 1).

The aim of Chapter 3 is to establish the claims (i)–(iii) in our setting where due
to the presence of the data fitting term in the functional I from (1.0.13), it is
not possible to refer to, e.g., [17], and adding some obvious modifications. As
a consequence, our goal is to develop a suitable analysis including the penalty
term

∫
Ω−D

|w − f |2dx from (1.0.13).

ad (i). As already mentioned above, a strong partial C1,β-regularity result for
u together with full regularity of DF (∇u) has been stated in [24], Theorem
1.4 for µ-elliptic energies under the assumption µ ∈ (1, 2). Thus, the ques-
tion arises if it is possible to establish partial regularity in the usual sense, i.e.,
Ln(SingΩ(u)) = 0, of each generalized minimizer for arbitrary large values of
µ. In Theorem 3.1.9 in Section 3.1 we can give a satisfying answer where we
crucially benefit from a recent article of T. Schmidt [86]. In fact, our partial
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regularity result extends to more general densities F satisfying among other
conditions

0 < D2F (P )(Q,Q) ≤ ν3(1 + |P |)−1|Q|2 (1.0.16)

for all P,Q ∈ RnM , Q 6= 0. We additionally have to assume a structure con-
dition for F in the sense that there exists a function Φ ∈ C2([0,∞), [0,∞))
with F (P ) = Φ(|P |) for all P ∈ R

nM (in the scalar case we can weaken this
condition). This assumption allows to derive a maximum principle for each
generalized minimizer (see Theorem 3.1.4 and Theorem 3.1.5 in this thesis) and
this result ensures to get partial C1,β-regularity, where the limit β = 1

2 serves
as an optimal choice in the setting of [86].

ad (ii). In the joint article [27] with M. Bildhauer and M. Fuchs we could
establish the regularity statement (ii) in the scalar case M = 1 together with
n = 2 (see [27], Theorem 2). Taken the arguments and the assumptions on F
(in particular, F shall be µ-elliptic for some µ ∈ (1, 2)), that were given in [27],
as a basis, Section 3.5.1 is devoted to the generalization of [27], Theorem 2, to
the scalar case M = 1 together with arbitrary dimension n ≥ 3 which implies
(ii) from above in our setting (see Theorem 3.1.19 in the scalar case).
At first, a generalization of Theorem 1.3 in [24] to the case n ≥ 2 with arbi-
trary codimension M can be established (see Theorem 3.1.15 in Section 3.1).
To become more precise, we show, that under the above assumptions (in par-
ticular for µ ∈ (1, 2)), there exists a unique I-minimizer u from the space
W 1,1(Ω)M ∩ L∞(Ω)M . The boundedness of u will be derived by proving a
maximum principle. A common approach towards the regularity of general-
ized minimizers (not only in the scalar case) relies on an approximation of our
problem “I → min“ by a sequence of more regular problems admitting smooth
solutions with useful convergence properties. In our situation, for δ ∈ (0, 1]
being fixed, we look at the problem

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min in W 1,2(Ω)M (1.0.17)

where

Fδ(Z) :=
δ

2
|Z|2 + F (Z), Z ∈ RnM . (1.0.18)

The problem (1.0.17) has a unique solution uδ ∈W 1,2(Ω)M which (under partic-
ular assumptions) is of class W 2,2

loc (Ω)M ∩C1,α(Ω)M ∩L∞(Ω)M for any α ∈ (0, 1)
(see Lemma 7.1.1 in the appendix of this thesis). Further we can show that
uδ → u in L1(Ω)M and a.e. on Ω after passing to a suitable subsequence δ → 0
(see Theorem 3.1.15).
For proving (ii) we essentially use the same arguments and procedure as already
carried out in [27]. However, there is a fundamental difference between the case
n = 2 and n ≥ 3: if n = 2, local apriori uniform (in δ) Lp-estimates of ∇uδ
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for any finite p > 1 have been derived as a byproduct during the proof that
it holds uδ ∈ W 1,2

loc (Ω) uniformly in δ (see the proof of Theorem 1.3 in [24]).
This uniform higher integrability of ∇uδ plays an important role in the proof of
Theorem 2 in [27]. Adopting the arguments of the above proof in case n ≥ 3,
we merely obtain local apriori uniform (in δ) Lq-estimates for any 1 ≤ q ≤ 2n

n−2
(see Section 3.3 and Remark 3.5.9) and this initial starting integrability is not
enough for carrying out a De Giorgi-type iteration in order to obtain local uni-
form (in δ) apriori gradient bounds for uδ.
Thus, one major effort during the proof of (ii) is to verify local uniform (in δ)
Lq-estimates of ∇uδ for any finite q > 1. This is the main statement of Lemma
3.5.1. During the proof of this lemma, the derivation of an appropriate variant
of Caccioppoli’s inequality acts as an essential ingredient (see Lemma 3.5.2)
where we follow the basic idea in [17], Lemma 4.19 (i), p. 108, and include
the data fitting term in our calculations which causes severe difficulties. Note,
that in order to obtain a reasonable modification of Caccioppoli’s inequality
from [17], Lemma 4.19 (i), p. 108, we strongly need the assumption µ ∈ (1, 2).
Afterwards we adopt the refined iteration argument which has been given in
[17], Theorem 4.25, p. 116. Here, it is important to assume µ ∈ (1, 2) and to
use the modified variant of Caccioppoli’s inequality (see Lemma 3.5.2 again).
This yields the desired local uniform higher integrability result. Subsequently
we may essentially follow the arguments of [27] for establishing u ∈ C1,α(Ω).
In this context, we adopt the De Giorgi-type iteration as carried out in [27],
proof of Theorem 2. This procedure actually represents a substantial refine-
ment of the De Giorgi-iteration performed in [17], Theorem 4.28, pp.119, where
we additionally include the data fitting term in our calculations. One major
observation is that we actually do not need the entire range of local uniform
Lp-estimates of ∇uδ for getting local uniform gradient bounds of uδ (see Lemma
3.5.6).

ad (iii). In addition to the requirement that F is µ-elliptic with µ ∈ (1, 2)
we have to impose some stronger structure conditions on F . On one hand we
require that there exists a function g ∈ C2([0,∞), [0,∞)) such that F (Z) =
g(|Z|2) and on the other hand we assume that D2F satisfies a suitable Hölder-
condition. As a consequence we can benefit from the arguments and techniques
that have been used in the scalar case M = 1 for obtaining local Lipschitz
continuity of the unique I-minimizer u from the space W 1,1(Ω)M ∩ L∞(Ω)M .
It is worth remarking that we actually do not need the Hölder condition on
D2F for deducing local Lipschitz continuity of u in Ω. An essential difference
between the scalar case M = 1 and the vectorial case M > 1 is that in the
latter situation, it is not possible to apply the well-known theory of De Giorgi,
Moser and Nash in order to close the gap between local Lipschitz continuity
of u in Ω and local Hölder continuity of ∇u in Ω. At this point we follow the
basic idea of Mingione and Siepe in [78] and modify our original integrand F to
an integrand F̃ being of class C2 satisfying some appropriate isotropic growth
and ellipticity conditions. Afterwards we show that u is a local minimizer of
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the functional ∫
Ω

F̃ (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx,

being well-defined for functions from a suitable Sobolev space (here we crucially
use local Lipschitz continuity of u). Subsequently we apply Theorem 4.1.7 which
proves full interior C1,α-regularity for local minimizers of appropriate isotropic
variational integrals, and finally guarantees the same regularity for u since the
constructed auxiliary integrand allows to use this lemma.

Finally, the third chapter is organized as follows: in Section 3.1 we fix our
notation and assumptions before we formulate our main results on the regu-
larity behavior of generalized minimizers. In Section 3.2 we prove a maximum
principle for generalized minimizers of the functional I from (1.0.13) (see The-
orem 3.1.4 and Theorem 3.1.5 in the scalar case M = 1) whereas in Section 3.3
we give a proof of (i) from above (see Theorem 3.1.9). Section 3.4 is devoted to
the proof of Theorem 3.1.15 and in Section 3.5 we discuss (ii) (see Section 3.5.1)
as well as (iii) (see Section 3.5.2), i.e., we prove Theorem 3.1.19. We remark
that in Section 3.4 and Section 3.5.1 we present the material of the forthcoming
paper [94]. Furthermore, it is worth saying that Theorem 3.1.4, Theorem 3.1.5
and Theorem 3.1.9 extend to more general data terms under consideration (we
refer the reader to the joint article [81] with J. Müller (see Theorem 1.4 therein)).

In the fourth chapter of this thesis we address to image denoising and study a
non-autonomous modification of the well-known TV-regularization. In exten-
sion of the analysis started in [22] we discuss the minimization problem

I[w] :=λ

∫
Ω

F (x,∇w)dx+

∫
Ω

|w − f |2dx→ min

in W 1,1(Ω)M ∩ L2(Ω)M .

(1.0.19)

As usual, λ > 0 denotes a positive regularization parameter and we additionally
require f ∈ L∞(Ω)M . In this context, the major novelty is that we admit a
smooth x-dependence on our density F . This is motivated by the model density

F (x, P ) := Fµ(x)(P ) :=

√
ε+|P |2∫
0

s∫
0

(1 + r)−µ(x)drds, ε > 0, (1.0.20)

where x ∈ Ω and P ∈ R
nM . Here, µ denotes a function of class C2(Ω) tak-

ing its values in the interval (1,∞). With this it follows existence of some
suitable real numbers 1 < µ0 ≤ µ1 < ∞ such that µ(x) ∈ [µ0, µ1] for all
x ∈ Ω. The idea to consider the functional I from (1.0.19) by making the
choice F (x, P ) := Fµ(x)(P ) generating functionals of linear growth (uniformly
in x) originates from [28]. In this forthcoming article, the problem (1.0.19)
is investigated in the scalar setting together with n = 2 and it is to be men-
tionend that the authors include a slight modification of the density Fµ(x)(P )
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from above in their discussions. In general, it seems to be reasonable to in-
volve an additional x-dependence in the corresponding variational model to
image denoising. Considering the above problem (1.0.19) and according to the
current subregion of Ω in which we are located, we may expect a different reg-
ularity behavior of our minimizer. To become more precise, on the subregion
{x ∈ Ω, 1 < µ(x) < 2}, it stands to reason that we are confronted with slightly
“oversmoothed“ images where the edges probably appear to be blurred while on
zones with large values of µ we obtain rather irregular solutions. In the latter
case, essential characteristics of our generated image as edges will be preserved.
Thus, as outlined in [28], the basic idea of involving an additional x-dependence
in our context is, that the generated image shows a different degree of regularity
on prescribed zones of Ω and provides more flexibility to denoise a given image
by regarding the special structure of this image. From the analytical point of
view, it is “convenient“ to consider at least a continuous x-dependence of F .
Among other conditions (the reader is referred to [7], p. 312), the continuity
of x 7→ F (x, P ) for all P ∈ RnM is a basic requirement for defining a suitable
relaxed variant of the functional I from (1.0.19) on BV (Ω)M .
In literature, it seems to be common that the regularization parameter λ is
considered to depend on the independent variable x. As outlined in, e.g., [92],
λ then plays the role of balance parameter and steers the amount of regulariza-
tion w.r.t. the measured data.

The aim of Chapter 4 is to establish a comprehensive existence and regular-
ity theory for minimizers of the problem (1.0.19) where for the sake of sim-
plicity and of practical relevance we constantly consider the model integrand
F (x, P ) = Fµ(x)(P ), P ∈ RnM . Summarizing we are going to prove the follow-
ing theorem where part (a) and (c) of this theorem generalize Theorem 4 in [28]
to any dimension n ≥ 2 together with arbitrary codimension M . In addition to
Theorem 4 in [28] we discuss the dual approach in the non-autonomous setting
as well.

Theorem 1.0.3
Suppose that we are given a Ln-measurable function f : Ω → R

M (M ≥ 1) of
class L∞(Ω)M . Moreover let us fix a parameter λ > 0 and let µ ∈ C2(Ω) taking
its values in the interval (1,∞). Then it holds (with F (x, P ) := Fµ(x)(P )):

(a) There exists a unique generalized I-minimizer u (w.r.t. a suitable relax-
ation of I with I from (1.0.19)) from the space BV (Ω)M which in addition
satisfies

sup
Ω
|u| ≤ sup

Ω
|f |.

(b) The dual problem associated to (1.0.19) admits a unique solution and the
inf-sup relation holds. In addition we have the duality formula (with u from
part (a))

σ = ∇PFµ(·)(∇au)
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being valid Ln-a.e. on Ω. As usual, ∇au is the regular part of the tensor-
valued Radon measure ∇u w.r.t. Lebesgue’s measure.

(c) We have u ∈ C1,β(Ω2)M for any β ∈ (0, 1), where Ω2 := {x ∈ Ω, 1 <
µ(x) < 2}.

Now some comments on the above theorem are in order: in the course of the
proof of part (a) we may essentially follow the lines of the proof of Theorem
2.1.1 given in Section 2.3. For proving part (b) we note that an additional
(smooth) x-dependence does not affect the results from convex analysis as used
in the proof of Theorem 2.1.6 for instance. However we again prefer to give a
more direct proof relying on the analysis of solutions of a suitable regularization
of our original problem (1.0.19). It turns out that we can take into account the
same regularization as used in the proof of Theorem 2.1.6 where we replace F
by our model density Fµ(x)(P ). This does not cause any problems during the
calculations. As an important byproduct, it turns out that the corresponding
regularizing sequence (uδ) is an I-minimizing sequence satisfying uδ → u in
L1(Ω)M and a.e. in Ω by passing to appropriate subsequences δ → 0.
In part (c) we essentially apply the same procedure as already carried out in the
third chapter making minor adjustments. In fact we construct appropriate test
functions having compact support in the open set {x ∈ Ω, 1 < µ(x) < 2}. With
this we derive helpful variants of Caccioppoli’s inequality. Here, the strong uni-
form (in x) ellipticity properties of Fµ(x)(P ) are of fundamental importance.
After carrying out the same De Giorgi-type iteration as already done in Section
3.5.1 we get local Lipschitz continuity of u on Ω2. For obtaining full interior
C1,β-regularity of u in the scalar case we can quote elliptic regularity theory
while in the vectorial case we crucially benefit from Theorem 4.1.7.

In the final stage of the introduction of the fourth chapter (compare Section 4.1),
we discuss the regularity properties of (local) minimizers of a properly defined
class of non-autonomous isotropic variational problems which is the subject of
Theorem 4.1.7. This theorem is of crucial meaning during the proof of Theorem
3.1.19 in the vectorial case M > 1 and in the proof Theorem 4.1.4 in case M > 1.

In the fifth chapter we return to the setting of image inpainting where we
investigate a model for restoring images consisting only of completely black or
completely white regions. This model has already been proposed in [26] where
the scalar case together with n = 2 has been discussed. In this thesis we deal
with the scalar case M = 1 together with arbitrary dimension n ≥ 2. Among
the common assumptions on Ω as well as D we suppose that our incomplete im-
age is given by a Ln-measurable, real-valued function f : Ω−D → R attaining
its values in the interval [0, 1]. For points x ∈ Ω−D, f(x) can be interpreted as
a measure of the intensity of the grey level. To become more precise, the model
under our consideration has its origin in the TV-image inpainting method where
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one seeks minimizers of the functional

J [w] :=

∫
Ω

|∇w|+ λ

2

∫
Ω−D

(w − f)2dx.

in a suitable subspace of the space BV (Ω). Now we impose the requirement
“u(x) ∈ {0, 1}“ on our generated image u : Ω → R and it is therefore natural
to look for J-minimizers among characteristic functions. We thus consider the
energy

F [E] := P (E,Ω) +
λ

2

∫
Ω−D

(χE − f)2dx, (1.0.21)

where P (E,Ω) :=
∫
Ω

|∇χE | denotes the perimeter of the Borel set E in Ω and

χE its characteristic function. Further, E is assumed to have finite perimeter
(i.e., E is a Caccioppoli set in Ω) and we refer to [7] or [63] for more details
concerning sets of finite perimeter and the behavior of characteristic functions
of such sets.
In Section 5.1 we prove that there exists at least one F-minimizing set E of
finite perimeter whose boundary part ∂E ∩ Ω has some nice smoothness and
geometric properties. In fact, the analytical behavior of ∂E ∩ Ω crucially de-
pends on the dimension n. Here we essentially use the same arguments as
Bildhauer and Fuchs in [26] (see Theorem 1 therein). A slight novelty will be
discussed in Section 5.2: we minimize (1.0.21) among all Caccioppoli sets on
which we impose a volume constraint in the sense that we require Ln(E) = m
where m ∈ (0,Ln(Ω)) denotes a fixed number. Vividly we are confronted with
the task to restore the incomplete image using merely a given amount of black
color. In Theorem 5.2.2 we show that the described problem has at least one
solution E whose boundary ∂E is regular in some sense. Once again, this reg-
ularity result crucially depends on the dimension n.

The sixth chapter of this thesis is devoted to some final remarks about our
achieved results and the comparison of these to already known results. Fur-
thermore we will briefly discuss some extensions of the models that have been
under our consideration. In particular we sketch the problem of higher order
denoising which, from the mathematical point of view, is interesting to study.
From the numerical point of view, the higher order denoising model could lead
to difficulties. This motivates us to say a few words about coupled variants in
this context as well. In the last part of the sixth chapter we briefly discuss the
idea to study the classical TV-image inpainting model in some appropriate sub-
classes of the space BV (Ω) as, e.g., in the space of special functions of bounded
variation SBV (Ω).

In the appendix of this thesis we collect and prove some auxiliary lemmas
that are of important meaning in the course of this thesis. In Section 7.1 we
intensively discuss the regularity properties of the regularizing sequence (uδ)
(see Lemma 7.1.1). Finally we show an algebraic proposition which serves as
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a helpful tool when performing a De Giorgi-type iteration in Section 3.5.1 (see
Lemma 7.1.5). At last, Section 7.2 is devoted to an overview about the notation
and the conventions that we use in this thesis.
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Chapter 2

A modified TV-image
inpainting method: existence
results

2.1 The basic setup and statement of the main re-
sults

In this chapter we start our analysis of a modification of the total variation
image inpainting method which has already been shortly presented in the in-
troduction (see (1.0.14) therein). In fact, this modification boils down to the
minimization of a functional that is initially formulated on the non-reflexive
Sobolev space W 1,1(Ω)M . As outlined in [17], pp. 5, there are essentially two
possibilities for overcoming this problem: we either consider a suitable relax-
ation of our original functional defined on the space BV (Ω)M and introduce
solutions of this relaxed variant as generalized minimizers (in a suitable sense)
of the original problem or pass to the dual variational problem associated to our
original problem. The aim of this chapter is to discuss both concepts applied to
the modified TV-image inpainting method where we emphasize that we present
the material from the joint article with M. Fuchs [55].
Finally we note that in connection with variational problems of linear growth,
it is reasonable to give an interpretation of the underlying problem in the more
adequate space (or in a suitable subspace of) BV (Ω)M since in contrast to the
Sobolev space W 1,1(Ω)M , we can make use of compactness properties of the
space BV (Ω)M .

Before going into details we fix our setup and specify our assumptions: suppose
that we are given a bounded Lipschitz domain Ω in R

n with n ≥ 2 (e.g. a
rectangle in the case n = 2 or a cuboid in the case n = 3) and a Ln-measurable
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subset D of Ω satisfying

0 ≤ Ln(D) < Ln(Ω). (2.1.1)

Note that the case D = ∅ corresponds to “pure denoising“.
Moreover we assume that we are given an observed (possibly vector-valued)
image described through a measurable function f : Ω − D → R

M , where we
require

f ∈ L2(Ω−D)M . (2.1.2)

Now our goal is to recover the missing part D → R
M of the observed image by

means of the given data. As already described in the introduction, there is a
variety of different methods in order to handle the inpainting problem. In what
follows we concentrate our studies on a TV -like variational approach being of
non-local type. As proposed in [24] (see also the subsequent papers [23, 25–28])
we consider the functional (λ > 0 denotes a regularization parameter)

I[w] :=

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx (2.1.3)

for functions w : Ω→ R
M from a suitable class. In formula (2.1.3), F : RnM →

[0,∞) is a given density function of class C1(RnM ) satisfying the following
assumptions:

F is strictly convex and (w.l.o.g.) F (0) = 0, (2.1.4)

|DF (P )| ≤ ν1, (2.1.5)

F (P ) ≥ ν2|P | − ν3 (2.1.6)

with constants ν1, ν2 > 0, ν3 ∈ R, for all P ∈ RnM . From (2.1.5) and F (0) = 0
we immediately obtain

F (P ) ≤ ν1|P |

for all P ∈ RnM which shows that F is of linear growth in the following sense

ν2|P | − ν3 ≤ F (P ) ≤ ν1|P |. (2.1.7)

We then introduce the problem

I → min in W 1,1(Ω)M ∩ L2(Ω−D)M . (2.1.8)

Here we recall the continuous embedding W 1,1(Ω)M ↪→ L
n
n−1 (Ω)M (see, e.g.,

[4], Theorem 5.4, p. 97/98), which means that the additional constraint w ∈
L2(Ω − D)M is automatically satisfied for functions w ∈ W 1,1(Ω)M , provided
n = 2.

Without imposing stronger conditions on our density F (see Section 3 of this
thesis) we cannot expect solvability of problem (2.1.8) in the non-reflexive
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Sobolev space W 1,1(Ω)M . So the question arises how to give a reasonable ex-
tension and an interpretation of problem (2.1.8) in the setting of the more ad-
equate function space BV (Ω)M . Exploiting that I-minimizing sequences (wm)
from the space W 1,1(Ω)M ∩ L2(Ω − D)M are uniformly bounded in the space
BV (Ω)M ∩L2(Ω−D)M it follows wm →: u in L1(Ω)M and a.e. up to a subse-
quence for a function u ∈ BV (Ω)M by BV -compactness (see, e.g., [7], Theorem
3.23, p. 132). In addition we obtain u ∈ L2(Ω−D)M by using Fatou’s lemma
as well. For this reason it is natural to address the elements of the set

M := {u ∈ BV (Ω)M ∩ L2(Ω−D)M : u is L1 − limit of an I −minimizing

sequence from the space

W 1,1(Ω)M ∩ L2(Ω−D)M}

as generalized minimizers of problem (2.1.8). Another, formally different, point
is to investigate a suitable relaxed variant K of our functional I from (2.1.3) on
the space BV (Ω)M ∩L2(Ω−D)M by applying the concept of convex functions
of a measure (see, e.g., [9, 46] or [60]). Then, generalized minimizers of problem
(2.1.8) are seen as minimizers of the relaxed version K (we refer, e.g., to [7],
pp. 298 or [64]). To become more precise, in accordance with [46] or [9] we let
for w ∈ BV (Ω)M ∩ L2(Ω−D)M

K[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|+ λ

2

∫
Ω−D

|w − f |2dx. (2.1.9)

Here, for tensor-valued Radon measures ρ we denote by ρa(ρs) the regular (sin-
gular) part of ρ w.r.t. to Lebesgue’s measure Ln. Quoting Radon-Nikodým’s
theorem (see, e.g., [7], Theorem 1.28, p.14) it follows, that the densities∇aw and
∇sw
|∇sw| are of class L1(Ω)nM being unique Ln-a.e. on Ω and of class L1(Ω, |∇sw|)nM

being unique |∇sw|-a.e. on Ω, respectively.

Moreover, F∞ denotes the recession function of F and is defined by

F∞(P ) := lim
t→∞

F (tP )

t
, P ∈ RnM . (2.1.10)

From the definition of F∞ we directly get that F∞ is a 1-homogenous function.
Based on the (strict) convexity and since F is of linear growth, it follows that
F∞ is well-defined (it even defines a norm on R

nM in this case).
Now, the idea is to seek minimizers of the relaxed variational problem

K → min in BV (Ω)M ∩ L2(Ω−D)M (2.1.11)

and to introduce them as generalized solutions of problem (2.1.8).

After the above preparations we will state a first theorem that is concerned
with problem (2.1.11): first we will prove solvability of problem (2.1.11) in
the space BV (Ω)M ∩ L2(Ω − D)M . Moreover we will show uniqueness of the
absolutely continuous part ∇au of the gradient of BV -solutions on the entire
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domain Ω and will additionally prove the uniqueness of BV -solutions outside
of the inpainting region D. In part (c) we justify that each K-minimizer can be
introduced as a generalized minimizer of the original functional I from (2.1.3)
whereas in part (d) we verify that each K-minimizer is an element of the set
M of generalized minimizers of the functional I and vice versa.

Theorem 2.1.1
Let us assume the validity of (2.1.1) as well as (2.1.2) and suppose that F
satisfies (2.1.4)–(2.1.6). It then holds:

(a) Problem (2.1.11) has at least one solution.

(b) Suppose that u and ũ are K-minimizing. We then have

u = ũ a.e. on Ω−D and ∇au = ∇aũ a.e. on Ω.

(c)

inf
W 1,1(Ω)M∩L2(Ω−D)M

I = inf
BV (Ω)M∩L2(Ω−D)M

K.

(d) As defined above, we consider the set M of generalized minimizers of the
functional I from (2.1.3). ThenM coincides with the set of all K-minimizers
from the space BV (Ω)M ∩ L2(Ω−D)M .

Remark 2.1.2 • Part (b) of Theorem 2.1.1 shows uniqueness of solutions
on Ω −D and the measures ∇u and ∇ũ of minima u, ũ may only differ
in their singular parts.

• The statements (c) and (d) in Theorem 2.1.1 reveal that the minimization
of K in BV (Ω)M ∩ L2(Ω − D)M represents a natural extension of the
original variational problem (2.1.8) which in general fails to have solution
in the non-reflexive Sobolev space W 1,1(Ω)M . Furthermore, it holds I = K
on W 1,1(Ω)M ∩L2(Ω−D)M and this fact also stresses that the functional
K is a reasonable extension of the functional I. Further, it remains to be
said that part (d) implies, that the (at least formally) different points of
view from above actually describe the same set of functions.

• We emphasize that no additional topological assumptions on the inpainting
region D are needed for establishing Theorem 2.1.1.

• The assumptions on our density F in Theorem 2.1.1 can be weakend in
such a way that we just require F to be strictly convex and of linear growth
in the sense of (2.1.7). In particular, we do not need (continuous) differ-
entiability of F .

Remark 2.1.3
Note that Theorem 2.1.1 also extends to more general (strictly) convex data
terms. This and other issues have been discussed in the joint article with J.

28



2.1. THE BASIC SETUP AND STATEMENT OF THE MAIN RESULTS

Müller [81]. In this work we studied the following modification of the TV image
inpainting method: for a given finite number ζ > 1 we let

Iζ [w] :=

∫
Ω

F (∇w)dx+
λ

ζ

∫
Ω−D

|w − f |ζdx, (2.1.12)

where we suppose the hypotheses from Theorem 2.1.1 and require f ∈ Lζ(Ω −
D)M in addition. Choosing ζ = 2 in (2.1.12), I2 coincides with the functional I
from (2.1.3). The corresponding relaxed version of the functional Iζ formulated
on the space BV (Ω)M ∩ Lζ(Ω−D)M consequently reads as:

Kζ [w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|

+
λ

ζ

∫
Ω−D

|w − f |ζdx.
(2.1.13)

As discussed in [81], Theorem 1.1, we can transfer the results from Theorem
2.1.1 to any value ζ > 1 replacing K by Kζ (note that by definition we have
K = K2 with K from (2.1.9)). Furthermore, Theorem 2.1.1 partially extends
to the case ζ = 1 (in this case we lose uniqueness of BV -solutions in Ω −D).
It is worth remarking that the minimization of (2.1.13) among all functions of
class BV (Ω)M ∩Lζ(Ω−D)M in fact is a modification of the TV −Lζ-inpainting
problem given by (see, e.g., [89], for the TV − Lζ-regularization in the context
of pure denoising of images, i.e., for the choice D = ∅ below)∫

Ω

|∇w|+ λ

ζ

∫
Ω−D

|w − f |ζdx→ min in BV (Ω)M ∩ Lζ(Ω−D)M .

Here, at least in the context of pure denoising of images, the choice ζ = 1 plays
an important role in various applications (see, e.g., [65]), where the minimiza-
tion of the particular functional

λ

∫
Ω

|∇w|+
∫
Ω

|w − f |dx→ min in BV (Ω)M ,

is also known as TV −L1-regularization and seems to be reasonable for removing
impulsive noise (see, e.g., [65] again).

Taking into account assertion (b) of Theorem 2.1.1 we may derive the unique-

ness in case of W 1,1-solvability. Moreover, in the general case, the L
n
n−1 -

deviation ‖u − v‖
L

n
n−1

of different solutions u, v on the inpainting region can

be estimated in terms of ∇s(u− v), i.e., it is governed by the total variation of
the singular part ∇s(u− v) of the tensor-valued Radon measure ∇(u− v).

Corollary 2.1.4(a) If there exists u ∈ M such that u ∈ W 1,1(Ω)M ∩ L2(Ω −
D)M , then it follows M = {u}.
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(b) Suppose that D ⊂ Ω. Then there is a constant c = c(n,M) such that for
u, v ∈M it holds

‖u− v‖
L

n
n−1 (Ω)

= ‖u− v‖
L

n
n−1 (D)

≤ c|∇s(u− v)|(D).

In particular, the constant c on the right-hand side does not depend on the
free parameter λ.

Remark 2.1.5
For the proof of Corollary 2.1.4 we just note that Corollary 1.1 in [25] extends
to any dimension n ≥ 2. Furthermore, the statements remain valid for vector-
valued functions, i.e., for the case M ≥ 2. The corresponding references are
given during the proof of [25], Corollary 1.1.

Motivated by the dual variational formulation of problems in the theory of
minimal surfaces or of problems of plasticity (see [54] for a survey), the dual
approach to problem (2.1.8) seems to be very natural. One essential motiva-
tion for studying dual variational problems is the uniqueness of solutions (for
more detailed information we refer to Section 2.2 in [17]). On top of this, the
dual solution σ usually admits a clear geometric or physical interpretation. For
instance, we remark that in the theory of minimal surfaces, σ corresponds to
the normal of the surface and in the theory of plasticity, σ represents the stress
tensor. However it should be emphasized that we do not know an adequate
interpretation of the dual solution σ in the context of image processing.

In order to formulate the dual problem associated to (2.1.8) we briefly recap
some facts from convex analysis and duality theory, where we mainly follow
the monograph of Ekeland and Temam (see [49]). Let us consider a function
G : V → R := R ∪ {±∞} defined on a Banach space V . Then the so-called
conjugate function G∗ to G is defined by

G∗(v∗) := sup
v∈V

[〈v, v∗〉 −G(v)], v∗ ∈ V ∗,

where V ∗ denotes the dual space to V .
Further, the so-called biconjugate function G∗∗ to G is given by

G∗∗(v) := sup
v∗∈V ∗

[〈v, v∗〉 −G∗(v∗)], v ∈ V.

Assuming that the function G is convex and lower semicontinuous, it is shown
in [49], Proposition 4.1, p. 18 that it holds

G∗∗(v) = G(v) for all v ∈ V. (2.1.14)

Since convex functions G : V → R do not necessarily need to be differentiable
in a given point v0 ∈ V , we introduce a replacement for the differential of G in
v0, the so-called subdifferential ∂G(v0) which is defined by

∂G(v0) := {v∗ ∈ V ∗ : G(v) ≥ G(v0) + 〈v − v0, v
∗〉 for all v ∈ V }, (2.1.15)
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if G(v0) <∞ and ∂G(v0) = ∅ otherwise (see pp.20 in [49]). If G is differentiable
in v0 we obtain v∗ = DG(v0) (see, e.g., [44], Theorem 2.6, p. 39).
With this notation and under the assumption that ∂G(v0) 6= ∅, we can establish
the duality relation (see [49], Proposition 5.1, p.21), i.e.,

v∗ ∈ ∂G(v0)⇐⇒ G(v0) +G∗(v∗) = 〈v0, v
∗〉. (2.1.16)

Now we apply the abstract setting from above to our context: let F satisfy
(2.1.4)–(2.1.6) and suppose that (2.1.1) as well as (2.1.2) hold. In what follows,
our goal is to derive an alternative integral representation for our functional
I from (2.1.3) which involves the conjugate function F ∗. For that reason we
consider the functional G : L1(Ω)nM → R,

G(P ) :=

∫
Ω

F (P )dx, P ∈ L1(Ω)nM .

Applying [49], Proposition 2.1, p.271, together with the relation (2.1.14) from
above we see (see, e.g., [17], p.15)∫

Ω

F (P )dx = sup
κ∈L∞(Ω)nM

{∫
Ω

κ : Pdx−
∫
Ω

F ∗(κ)dx

}
.

where the symbol Q : Z denotes the standard scalar product in RnM . Since P =
∇w, w ∈W 1,1(Ω)M ∩L2(Ω−D)M , is an admissible choice in the above formula,
we derive the following alternative representation formula for the functional I

I[w] = sup
κ∈L∞(Ω)nM

{∫
Ω

κ : ∇w − F ∗(κ)dx

}
+
λ

2

∫
Ω−D

|w − f |2dx. (2.1.17)

Inspired by (2.1.17) we define the Lagrangian l(w,κ) (for more details, see [49],
pp.51) for all (w,κ) ∈ (W 1,1(Ω)M ∩ L2(Ω − D)M ) × L∞(Ω)nM through the
formula

l(w,κ) :=

∫
Ω

[κ : ∇w − F ∗(κ)]dx+
λ

2

∫
Ω−D

|w − f |2dx. (2.1.18)

and by virtue of (2.1.18) we can introduce the dual functional in terms of the
Lagrangian, precisely

R : L∞(Ω)nM → [−∞,∞],

R[κ] := inf
w∈W 1,1(Ω)M∩L2(Ω−D)M

l(w,κ).

Consequently, the dual problem reads as: to maximize R among all functions
κ ∈ L∞(Ω)nM .

In what follows we present the main results on the dual variational problem
associated to (2.1.8). Among proving solvability of the dual problem and show-
ing the validity of the inf-sup relation we prove uniqueness of the dual solu-
tion under the condition that F ∗ is strictly convex on the set {P ∈ R

nM :
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F ∗(P ) < ∞}. Another interesting result is part (c) from below which states
a surprising compactness property of I-minimizing sequences from the space
W 1,1(Ω)M ∩ L2(Ω−D)M .

Theorem 2.1.6
Suppose that (2.1.1) and (2.1.2) hold. Further we let F satisfy (2.1.4)–(2.1.6).
Then we have:

(a) the dual problem
R→ max in L∞(Ω)nM

admits at least one solution. Moreover, the inf-sup relation

inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v] = sup
σ∈L∞(Ω)nM

R[σ]

is valid;

(b) we have uniqueness of the dual solution if the conjugate function F ∗ is
strictly convex on the set {P ∈ RnM : F ∗(P ) <∞};

(c) consider any I-minimizing sequence (um) from the space W 1,1(Ω)M∩L2(Ω−
D)M . Then it holds

um → u in L2(Ω−D)M ,

where u is the unique restriction of any generalized minimizer u from The-
orem 2.1.1 to the set Ω−D.

In fact, in order to verify uniqueness of the dual solution, the additional
requirement on F ∗ in assertion (b) of Theorem 2.1.6 can be dropped. Further,
the unique dual solution is related to the BV -solutions from Theorem 2.1.1
through an equation of stress-strain type.

Theorem 2.1.7
Let (2.1.1), (2.1.2) hold and assume that we have (2.1.4)–(2.1.6) for the density
F . Then the dual problem

R→ max in L∞(Ω)nM

admits a unique solution σ. We further have the duality formula

σ = DF (∇au) a.e. on Ω,

where u denotes any K-minimizer from the space BV (Ω)M ∩ L2(Ω−D)M .

Remark 2.1.8
Note that no additional topological assumptions on the inpainting region D are
needed for proving Theorem 2.1.6 and Theorem 2.1.7.
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Remark 2.1.9
Let us fix a finite number ζ > 1 and consider the problem

Iζ → min in W 1,1(Ω)M ∩ Lζ(Ω−D)M

with Iζ from (2.1.12). Quoting [81], Theorem 1.2, we can state that part (a) and
part (b) of Theorem 2.1.6 extend to the dual variational problem associated to
“Iζ → min“. Moreover, we have uniqueness of the corresponding dual solution
and the validity of the duality formula as well (see [81], Theorem 1.3).

Remark 2.1.10
Let us compare our results with the recent results of M. Bildhauer and M. Fuchs
stated in their joint article [25]: Theorem 2.1.1 and Theorem 2.1.6 have been
proven in the scalar case together with n = 2 (see Theorem 1.2 and Theorem 1.4
therein) under stronger assumptions on the data and on the density F . Based
on their assumptions, Bildhauer and Fuchs could verify that K-minimizing se-
quences can be chosen in such a way that they satisfy a maximum principle
which gives compactness in BV (Ω) (see [25], proof of Theorem 1.2 (a)). If we
impose the same requirements on the data and F as done in [25], we may use
exactly the same arguments in order to generalize the results from [25] to the
case of any dimension n together with arbitrary codimension M since we can
show that K-minimizing sequences (um) may be chosen in such a way that

sup
Ω
|um| ≤ sup

Ω−D
|f |

yielding compactness in BV (Ω)M . As a direct consequence of the above in-
equality we do not need the density result for BV -functions as stated in Lemma
2.2.6, since continuity of the relaxed functional K follows after using the con-
tinuity theorem of Reshetnyak (see, e.g., [9], Proposition 2.2 or [61], Theorem
2, p.92) and dominated convergence. However, as it will be discussed in the
following sections, our imposed assumptions on the data and on F are too weak
for deducing a maximum principle for K-minimizing sequences which means
that we strongly need an appropriate density result for BV -functions as given
in Lemma 2.2.6. At least in the case n ≥ 3 together with arbitrary codimension
M , our results represent a substantial generalization of those in [25]. An anal-
ogous remark applies to Theorem 2.1.6: under the assumptions stated in [25],
we can use (more or less) the same arguments in order to generalize the results
for any dimension n together with arbitrary codimension M and we can avoid
the usage of the density result for Sobolev functions (see Lemma 2.2.4).
Finally we remark that the uniqueness of the dual solution together with the va-
lidity of the duality formula (see Theorem 2.1.7), even under stronger assump-
tions, is a new result w.r.t. the above modification of the TV-image inpainting
method.

The rest of the chapter is organized as follows: in Section 2.2 we provide some
tools and auxiliary results that are important for proving Theorem 2.1.1 and
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Theorem 2.1.6. In Section 2.3 we study generalized minimizers while in Section
2.4 we discuss the dual variational problem associated to problem (2.1.8). The
uniqueness of the corresponding dual solution together with the validity of the
duality formula will be established in Section 2.5.

2.2 Some tools and auxiliary results

The aim of this section is to provide some tools and auxiliary results that are of
important meaning in the course of the proofs of Theorem 2.1.1 and Theorem
2.1.6. This section is splitted into three parts: in Section 2.2.1 we give some
comments on the general chain rule formula for functions of BV -type and derive
an inequality acting as an important tool for proving the density of smooth
functions in spaces like BV (Ω)M ∩ L2(Ω−D)M in Section 2.2.2. Section 2.2.3
is devoted to the discussion of an appropriate variant of Poincaré’s inequality
which will play a fundamental role in the proof of Theorem 2.1.1 and Theorem
2.1.6.

2.2.1 The chain rule for functions of BV-type

Suppose that we are given a function u : Ω → R
M of bounded variation and a

Lipschitz function Φ : RM → R
L. Considering the function v := Φ ◦ u : Ω →

R
L we will see in Lemma 2.2.1 that v is still of class BV (Ω)L and that the

modulus of its distributional gradient represented by the tensor-valued Radon
measure ∇v is absolutely continuous w.r.t. to the modulus of ∇u in the sense of
measures. In this context, the problem arises how to derive a relation between
the distributional derivatives ∇v, ∇u and the “derivative“ of Φ, i.e., to prove
a chain rule for functions of BV -type.
Before going into details we want to give a short overview about classical results
in this context: assuming first that the Lipschitz function Φ is in addition
continuously differentiable, a chain rule for functions in BV is proven in, e.g.,
[7], Theorem 3.96, p.189. If we assume that Φ is merely Lipschitz we are
confronted with severe difficulties, e.g., that Φ might be nowhere differentiable
in the range of u. However, Ambrosio and Dal Maso were the first who proved
a general chain rule in BV under the condition that Φ is merely Lipschitz (see
[6], Theorem 2.1), where one of the crucial tools in this context was the concept
of tangential differentiability.
Before we briefly present the general chain rule for BV -functions we provide
some useful notation. Recall the Lebesgue decomposition ∇u = ∇auxLn+∇su
valid for any function u ∈ BV (Ω)M and motivated by the example of the so-
called Cantor-Vitali function (see, e.g., [7], Example 3.34, p.142) it makes sense
to study a decomposition of the singular part ∇su of ∇u. As outlined in [7],
Section 3.9, p.184, we can split the singular part ∇su into two parts: the jump
part

∇ju := ∇suxJu
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and the Cantor part
∇cu := ∇sux(Ω− Su).

Here, Ju denotes the set of approximate jump points (see [7], Definition 3.67,
p.163) and using [7], Theorem 3.77, p.171, ∇ju can be calculated through (see
[7], equation (3.90), p.184)

∇ju(B) =

∫
B∩Ju

(u+(x)− u−(x))⊗ νu(x)dHn−1(x), B ∈ B(Ω).

Here, B(Ω) is the Borel σ-algebra on Ω, νu represents the direction of jump and
orientates the countably Hn−1-rectifiable set Ju while the quantities u± denote
the one-sided approximate limits. As stated in [7], Definition 3.63, p.160 and
the comments after this definition, Su is called the approximate discontinuity
set where we remark that for any x ∈ Ω− Su there is a (uniquely determined)
vector z ∈ RM being denoted by ũ and called the approximate limit of u at x,
satisfying

lim
ρ→0

−
∫

Bρ(x)

|u(y)− z|dy = 0.

Altogether we have the following decomposition of ∇u (compare [7], relation
(3.89), p.184):

∇u = ∇auxLn +∇ju+∇cu = ∇̃u+∇ju,

where the quantity ∇̃u is called the diffuse part of the distributional derivative
∇u. In other words, ∇̃u represents the sum ∇auxLn +∇cu.

With the above preparations and keeping the above notation in mind, the fol-
lowing relation between ∇v, ∇u and Φ is given and proven in [7], Theorem 3.96,
p.189, where it is to emphasize that the Lipschitz function Φ is assumed to be
of class C1 at this stage:

∇̃v = ∇Φ(u)∇auxLn +∇Φ(ũ)∇cu = ∇Φ(ũ)∇̃u,
∇jv = (Φ(u+)− Φ(u−))⊗ νuHn−1xJu.

(2.2.1)

Here, it is notable that from (2.2.1) we observe that in contrast to the jump
part ∇jv the diffuse part ∇̃v actually resembles the classical chain rule formula
of differentiable functions. Moreover it is possible to summarize (2.2.1) in a
single formula (for details we refer to [7], Remark 3.98, p.191).
As already mentioned above, we can drop the requirement that the Lipschitz
function Φ is of class C1. Following the arguments of the proof of (2.2.1) (see
the proof of Theorem 3.96 in [7]) we can see that Lipschitz continuity of Φ is
sufficient for deriving the representation of the jump part ∇jv in (2.2.1). Unfor-
tunately due to the lack of differentiability, we cannot expect a corresponding
representation of the diffuse part ∇̃v of the distributional derivative ∇v in the
spirit of (2.2.1) since the range of u might be contained in regions where Φ is
not differentiable. Nevertheless, recalling Rademacher’s theorem (see, e.g., [7],
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Theorem 2.14, p.47) we know that Φ is differentiable at Ln-a.e. point of RM

and quoting an extension of this theorem in the context of geometric measure
theory (see, e.g., [7], Theorem 2.90, p.99) it makes sense to introduce the notion
of tangential differentiabilty. This concept acts as basic idea in order to derive
a general chain rule formula for BV -functions. Roughly speaking, in [6], Am-
brosio and Dal Maso introduced a suitable tangent space and showed that the
restriction of Φ to this tangent space is differentiable at the approximate limit ũ
of u for |∇u|-a.e. point x ∈ Ω− Su. Taken this statement as a basis, they then
established a formula for the diffuse part ∇̃v of ∇v involving the “tangential
differential“ of Φ at ũ(x) for |∇u|-a.e. x ∈ Ω− Su.
We think it is worth to mention that in the case M = L = 1 (and under the
assumption that Φ is merely Lipschitz) it is possible to give a more explicit
representation of the general chain rule formula in BV (compare [7], Theorem
3.99, p.192):

∇v = Φ′(u)∇auxLn + ((Φ(u+)− Φ(u−))νuHn−1xJu + Φ′(ũ)∇cu. (2.2.2)

At this stage we want to discuss an interesting inequality which arises in the
context of the proof of the chain rule for functions of BV -type.

Lemma 2.2.1
Let u ∈ BV (Ω)M and consider a Lipschitz function Φ : RM → R

L. Then
v := Φ ◦ u belongs to BV (Ω)L and it holds

|∇v| ≤ Lip(Φ)|∇u|. (2.2.3)

Proof of Lemma 2.2.1. First, we assume that Φ is in addition of class C1. Then
we reproduce the arguments that are given at the beginning of the proof of
Theorem 3.96 in [7]: we fix an open set U ⊂ Ω and find a sequence (un) ⊂
C∞(U) with un → u in L1(Ω)M and |∇un|(U)→ |∇u|(U) by using the standard
approximation procedure (see, e.g., [7], Theorem 3.9, p.122), where as usual
|∇u| denotes the total variation of u.
Exploiting that Φ is Lipschitz we immediately get that vn := Φ(un) converges
to v = Φ(u) strongly in L1(Ω)L. Further it follows

|∇vn|(U) =

∫
U

|∇vn|dx =

∫
U

|∇Φ(un)∇un|dx

≤M
∫
U

|∇un|dx = M |∇un|(U),

where M := sup
z
|∇Φ(z)|∞ is the Lipschitz constant of Φ. Next, we pass to

the limit n → ∞ and use the lower semicontinuity of the total variation w.r.t.
strong L1-convergence (see, e.g., [7], Proposition 3.6, p.120 or [63], Theorem
1.9, p.7) . This yields

|∇v|(U) ≤ lim inf
n→∞

|∇vn|(U) ≤ lim
n→∞

M |∇un|(U) = M |∇u|(U).
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Thus, by the regularity of the measures |∇v| and |∇u| (see, e.g., [7], Proposition
1.43 (ii), p.19/20), we have

|∇v| ≤M |∇u|,

which means |∇v|(E) ≤M |∇u|(E) for any Borel set E ⊂ B(Ω).
In the next step we assume that Φ is merely Lipschitz. For a given and suf-
ficiently small ε > 0, we denote by Φε a mollification of Φ, for which we can
state

Lip(Φε) ≤ Lip(Φ) and Φε → Φ uniformly as ε ↓ 0.

Consequently, vε := Φε(u) → Φ(u) = v in L1(Ω)L and a.e. as ε ↓ 0. Recalling
the arguments from above it follows

|∇vε| ≤ Lip(Φε)|∇u|.

Using lower semicontinuity of the total variation once again we finally obtain

|∇v| ≤ lim inf
ε↓0

|∇vε| ≤ lim inf
ε↓0

Lip(Φε)|∇u| ≤ Lip(Φ)|∇u|,

which proves the desired inequality (2.2.3).

Remark 2.2.2
We need the generalization of the inequality (2.2.3) to the case that Φ is only
Lipschitz continuous in the course of this chapter. As we will see in the next
section, the inequality (2.2.3) plays an important role in order to establish the
density result for BV -functions stated in Section 2.3 (see Lemma 2.2.6). Fur-
ther, we strongly need the inequality for proving a maximum principle for gen-
eralized minimizers in the third chapter of this thesis (see Section 3.1, Theorem
3.1.4 and Theorem 3.1.5).

We finish this section by adding some comments concerning the chain rule
for Sobolev functions. For this reason we assume that u : Ω → R

M is of class
W 1,t(Ω)M for some 1 ≤ t < ∞ as well as that Φ : RM → R

L is Lipschitz
continuous and of class C1 in addition. Setting v := Φ ◦ u : Ω → R

L it is
well known (see, e.g., [79], Theorem 3.1.9) that we have v ∈W 1,t(Ω)M (for this
statement we merely need Lipschitz continuity of Φ) and that the corresponding
chain rule reads as

∇v = ∇Φ(u)∇u.

Removing the hypothesis of continuous differentiability imposed on the Lips-
chitz function Φ before, a chain rule formula has been stated by Stampacchia in
[91] (without a proof). Furthermore, an inequality being in the spirit of (2.2.3)
has been proven by M. Bildhauer and M. Fuchs in [19], Lemma B.1, in the
context of Sobolev functions. Precisely, with the above notation, it then holds

|∇v| ≤ Lip(Φ)|∇u|. (2.2.4)
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Note that (2.2.4) in the slightly weaker form

|∇v| ≤
√
LLip(Φ)|∇u|

has been shown by M. Meier in [75].

Remark 2.2.3
Note that the inequality (2.2.4) with Φ just being Lipschitz continuous is of
important meaning during the proof of a density result for Sobolev functions in
Section 2.3 (see Lemma 2.2.4).

2.2.2 Some density results

As outlined in [17] (see Section B.1 therein), the standard approximation pro-
cedure for functions of bounded variation can be found in [8] (we further refer
to, e.g., [63], Theorem 1.17, p.14). In this context, a sequence of smooth func-
tions, converging in L1(Ω)M , is constructed in such a way that we also get
convergence of the total variations, where this method represents a BV -version
of the well-known Meyers-Serrin approximation which was given in the context
of Sobolev spaces (see [76]). In order to obtain continuity of the functional

K̃[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|, w ∈ BV (Ω)M ,

w.r.t. to a suitable notion of convergence wm → w, it turns out that the stan-
dard approximation of BV -functions as described above is too weak. For that
reason, there exists a slight and well-known modification of the standard ap-
proximation procedure in the literature (see, e.g., [9], Proposition 2.3 or [17],
Lemma B.1, pp.185, where a proof is given in addition) which provides the
required stronger convergences in order to apply the well-known continuity the-
orem of Reshetnyak (see, e.g., [9], Proposition 2.2 or [61], Theorem 2, p.92) that
implies the desired continuity of K̃ w.r.t. the corresponding convergences.
Having the relaxed functional K from (2.1.9) of the inpainting model at hand,
the data fitting term

∫
Ω−D

|w − f |2dx causes severe problems during this pro-

cedure since it is only defined on the Ln-measurable subset Ω − D of Ω and
as a consequence it seems to be a delicate problem to adopt the standard con-
struction for approximating BV -functions by smooth functions such that the
data fitting term is continuous w.r.t. to the corresponding convergences as well.
We conjecture that without further topological assumptions on D we cannot
expect to modify the standard approximation procedure to the situation of in-
painting at hand. In this context we refer the reader to [80] where density
results for Sobolev functions and functions of (higher order) bounded variation
with additional integrability constraints are proven by adapting the standard
Meyers-Serrin approximation procedure. In contrast to the investigations in
[25] (see Lemma 2.1 therein) we also do not assume some structure condition
on our density F , i.e., it is not possible to derive a maximum principle for
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K-minimizing sequences (compare Theorem 3.1.4 in Section 3.1) such that we
get continuity of the data fitting term after using dominated convergence (see
[25], proof of Theorem 1.2). For these reasons we have to prove the density of
smooth functions in spaces like BV (Ω)M ∩L2(Ω−D)M , which directly gives the
appropriate convergences that allow to apply Reshetnyak’s continuity theorem
and additionally provide continuity of the data fitting term. Again it should
be emphasized that the procedure of construction that we present requires no
further topological assumptions on the inpainting region D.

To get into the matter we start with a density result for Sobolev functions
which will be useful in the proof of Theorem 2.1.6 in Section 2.4.

Lemma 2.2.4
Let Ω ⊂ R

n denote a bounded Lipschitz domain and consider a measurable subset
D of Ω such that Ln(D) < Ln(Ω). Consider p ∈ [1, n) and let q ∈ ( np

n−p ,∞).

Suppose further that u ∈ W 1,p(Ω)M ∩ Lq(Ω −D)M is given. Then there exists
a sequence (uk) ⊂ C∞(Ω)M such that (as k →∞)

‖uk − u‖W 1,p(Ω) + ‖uk − u‖Lq(Ω−D) → 0. (2.2.5)

Remark 2.2.5 • By the continuity of Sobolev’s embedding W 1,p(Ω)M ↪→
L

np
n−p (Ω)M , our choice of q is reasonable, since otherwise we may directly

apply [4], Theorem 3.18, p.54.

• During the proof of Lemma 2.2.4 we need at least Lipschitz regularity of
∂Ω in order apply extension theorems for Sobolev functions.

Proof of Lemma 2.2.4. Let us choose a smooth bounded domain Ω̃ such that
Ω b Ω̃. According to [74], Remark 1.60, p.34, we may extend u ∈ W 1,p(Ω)M

to a function ũ ∈ W 1,p(Ω̃)M (compare [5], Fortsetzungssatz A 5.12, p.174, as
well). For m ∈ N we set Φm : RM → R

M ,

Φm(y) :=

{
y, |y| ≤ m
m y
|y| , |y| ≥ m

and claim for the sequence ũm := Φm ◦ ũ the validity of (as m→∞)

‖ũm − u‖Lq(Ω−D) → 0, (2.2.6)

‖ũm − ũ‖W 1,p(Ω̃)
→ 0. (2.2.7)

In fact, from |ũm − u| ≤ 2|u| a.e. on Ω − D together with ũm → ũ a.e. on Ω̃
it follows by dominated convergence that (2.2.6) is true (recall our assumption
u ∈ Lq(Ω − D)M ). In the same way we obtain ũm → ũ in Lp(Ω̃)M . The
chain rule in its general form (see, e.g., [7], Theorem 3.96, p. 189) shows
ũm ∈W 1,p(Ω̃)M together with |∇ũm| ≤ Lip(Φm)|∇ũ| = |∇ũ| (see the comments
at the end of Section 2.2.1).
From ũm = ũ a.e. on {x ∈ Ω̃ : |ũ(x)| ≤ m} =: Ω̃m it follows that ∇ũm = ∇ũ
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on Ω̃m (see [62], Lemma 7.7, p.145), in particular we get ∇ũm → ∇ũ a.e. on Ω̃,
and ‖∇ũm − ∇ũ‖Lp(Ω̃)

→ 0 again is a consequence of dominated convergence.

In view of (2.2.6) and (2.2.7) we find a subsequence (ũmk), k ∈ N, such that

‖ũmk − ũ‖W 1,p(Ω̃)
+ ‖ũmk − u‖Lq(Ω−D) ≤

1

k
(2.2.8)

for any k ∈ N. As the next step we consider a suitable sequence of radii ρk ↓ 0
such that ((·)ρk denoting the mollification operator)

‖ũmk − (ũmk)ρk‖W 1,p(Ω) + ‖ũmk − (ũmk)ρk‖Lq(Ω) ≤
1

k
(2.2.9)

for each integer k. In order to justify (2.2.9) we note that from ũmk ∈W 1,p(Ω̃)M∩
Lq(Ω̃)M (it actually holds ũmk ∈ L∞(Ω̃)M ) and by recalling Ω b Ω̃ we obtain
(ũmk)ρ → ũmk as ρ ↓ 0 in W 1,p(Ω)M ∩ Lq(Ω)M . Obviously the functions
uk := (ũmk)ρk belong to the class C∞(Ω)M , and (2.2.5) is a consequence of
(2.2.8) and (2.2.9).

Let us now come to the density result for functions of BV -type that has
already been mentioned above. Having the convergences from below at hand it
follows continuity of the relaxed functional K from (2.1.9) and this statement
plays a vital role when proving Theorem 2.1.1.

Lemma 2.2.6
With Ω and D as in Lemma 2.2.4 consider u ∈ BV (Ω)M ∩ Lq(Ω − D)M for
some q ∈ ( n

n−1 ,∞). Then there exists a sequence (um) ⊂ C∞(Ω)M such that
(as m→∞)

(i) um → u in L1(Ω)M ,

(ii) um → u in Lq(Ω−D)M ,

(iii)
∫
Ω

√
1 + |∇um|2dx→

∫
Ω

√
1 + |∇u|2.

Remark 2.2.7
According to the continuous embedding BV (Ω)M ↪→ L

n
n−1 (Ω)M valid for “bounded

extension domains“ Ω (see, e.g., [7], Corollary 3.49, p.152) it makes sense to
consider exponents q > n

n−1 in Lemma 2.2.6.

Remark 2.2.8
Clearly, (iii) implies the convergence∫

Ω

|∇um|dx→
∫
Ω

|∇u|

by applying the continuity theorem of Reshetnyak as stated in, e.g., [9], Propo-
sition 2.2 and choosing F (P ) := |P |, P ∈ RnM , in this reference. However, this
kind of convergence is actually weaker than the notion from (iii).
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Proof of Lemma 2.2.6. As already done in the proof of Lemma 2.2.4 we choose
a smooth bounded domain Ω̃ such that Ω b Ω̃. Given a function w ∈ BV (Ω̃)M

we recall that in accordance with the general concept of applying a convex
function to a measure (see, e.g., [9], Definition 2.1, or [46], p. 675) the quantity∫
Ω

√
1 + |∇w|2 is defined as follows

√
1 + |∇w|2(Ω) =

∫
Ω

√
1 + |∇w|2 :=

∫
Ω

√
1 + |∇aw|2dx+ |∇sw|(Ω),

where we remark that the above definition also extends to Borel sets B ∈ B(Ω).
Now let u0 ∈ L1(∂Ω)M denote the trace on ∂Ω of the given function u ∈
BV (Ω)M ∩Lq(Ω−D)M whose properties are summarized in e.g. [7], Theorem
3.87, p.180/181 and set u0 := 0 on ∂Ω̃, thus u0 ∈ L1(∂G)M where G := Ω̃−Ω.
Referring to [63], Theorem 2.16, p.39, we can find v ∈ W 1,1(G)M having trace
u0 on ∂G and such that

‖v‖W 1,1(G) ≤ c‖u0‖L1(∂G) (2.2.10)

with c depending on ∂G but independent of u0 and v. We then let

ũ :=

{
u, on Ω

v, on Ω̃− Ω

and observe ũ ∈ BV (Ω̃)M , which follows from [7], Corollary 3.89, p.183, and the
fact that (2.2.10) implies v ∈ BV (G)M . Viewing ∇u (resp. ∇v) as measures on
Ω̃ concentrated on Ω (resp. Ω̃− Ω) and recalling the definition of v we further
deduce from the above reference the identity

∇ũ = ∇u+∇v (2.2.11)

as measures on Ω̃. As in the proof of Lemma 2.2.4 we consider (m ∈ N)

ũm := Φm ◦ ũ

and observe (compare Lemma 2.2.1 in Section 2.2.1)

ũm ∈ BV (Ω̃)M , |∇ũm| ≤ Lip(Φm)|∇ũ| = |∇ũ|. (2.2.12)

In particular, from |∇ũ|(∂Ω) = 0 (recall (2.2.11)) it follows that

|∇ũm|(∂Ω) = 0, m ∈ N. (2.2.13)

As a consequence from (2.2.12) we obtain (compare [9], Proposition 2.1)√
1 + |∇ũm|2(E) ≤

√
1 + |∇ũ|2(E) (2.2.14)

for any Borel set E ⊂ Ω̃ while on the other hand we get by using (2.2.13)√
1 + |∇ũm|2(∂Ω) = 0, m ∈ N. (2.2.15)
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As in the proof of Lemma 2.2.4, by dominated convergence, it holds (as m→∞)

ũm → ũ in L1(Ω̃)M , (2.2.16)

ũm → u in Lq(Ω−D)M , (2.2.17)

and (2.2.16) combined with lower semicontinuity (see Lemma 2.3.1 in Section
2.3 of this thesis) implies√

1 + |∇ũ|2(Ω̃) ≤ lim inf
m→∞

√
1 + |∇ũm|2(Ω̃).

From (2.2.14) we get √
1 + |∇ũm|2(Ω̃) ≤

√
1 + |∇ũ|2(Ω̃),

thus √
1 + |∇ũm|2(Ω̃)→

√
1 + |∇ũ|2(Ω̃), m→∞. (2.2.18)

Clearly we can replace Ω̃ in (2.2.18) by the domain Ω, so that in combination
with (2.2.16) and (2.2.17) it holds for a subsequence (recall that by (2.2.11)
|∇ũ|(Ω) = |∇u|(Ω))

‖ũmk − u‖L1(Ω) + ‖ũmk − u‖Lq(Ω−D)

+

∣∣∣∣√1 + |∇ũmk |2(Ω)−
√

1 + |∇u|2(Ω)

∣∣∣∣ ≤ 1

k
, k ∈ N.

(2.2.19)

In a next step we consider a radius ρ > 0 (being sufficiently small) and introduce
the mollification (ũmk)ρ. By quoting well-known convergence properties of the
mollification (see, e.g., [4], Lemma 2.18, p.29/30) we may directly infer (note
that we have the convergence (ũmk)ρ → ũmk in Lploc(Ω̃)M as ρ ↓ 0 for any
p ∈ [1,∞))

‖(ũmk)ρ − ũmk‖L1(Ω) + ‖(ũmk)ρ − ũmk‖Lq(Ω−D) → 0 as ρ ↓ 0. (2.2.20)

In order to show the required convergence for the modification of the total
variation we adopt ideas as applied in [63], Proposition 1.15, p.12 and follow
the procedure carried out in [17], Proof of Lemma B.1, p.185-188, i.e. we
consider the function

g(Z) =
√

1 + |Z|2 − 1, Z ∈ RnM ,

and notice that its conjugate function g∗ is given by

g∗(Q) =

{
+∞, if |Q| > 1,

1−
√

1− |Q|2, if |Q| ≤ 1.

for any Q ∈ RnM . Further, we note that g∗ is convex satisfying g∗(0) = 0 as
well as g∗ ≥ 0.
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Following [46], Definition 1.2, we can state the following representation formula
for the measure

∫̃
Ω

g(∇w) with w ∈ BV (Ω̃)M (compare also (3) in [17] on p.186)

∫
Ω̃

g(∇w) = sup
κ∈C∞0 (Ω̃)nM ,|κ|≤1

[
−
∫
Ω̃

w divκ dx−
∫
Ω̃

g∗(κ)dx

]
.

Note that the above representation formula extends to any Borel set E ⊂ Ω̃,
i.e., it holds (compare [46], Definition 1.2 again)∫

E

g(∇w) = sup
κ∈C∞0 (Ω̃)nM ,|κ|≤1

[ ∫
E

κ : ∇w −
∫
Ω̃

g∗(κ)dx

]
.

By lower semicontinuity (recall (2.2.20)) we have∫
Ω

g(∇ũmk) ≤ lim inf
ρ↓0

∫
Ω

g(∇(ũmk)ρ). (2.2.21)

For verifying the reverse inequality we fix κ ∈ C∞0 (Ω)nM satisfying |κ| ≤ 1 and
get (we identify κ with its zero-extension to Rn)

−
∫
Ω̃

(ũmk)ρ divκ dx−
∫
Ω̃

g∗(κ)dx

= −
∫
Ω̃

ũmk div(κ)ρ dx−
∫
Ω̃

g∗(κ)dx.

(2.2.22)

Besides, we obtain (recall κ ≡ 0 on R
n − Ω and g∗(0) = 0)

−
∫
Ω̃

g∗(κ)dx = −
∫
Rn

g∗(κ)dx

= −
∫
Rn

g∗((κ)ρ)dx+

{∫
Rn

[g∗((κ)ρ)− g∗(κ)]dx

} (2.2.23)

In order to handle the second integral on the r.h.s. of (2.2.23) we use Jensen’s
inequality which gives

g∗((κ)ρ) ≤ g∗(κ)ρ. (2.2.24)

By means of (2.2.24) and by performing standard calculations we may derive∫
Rn

[g∗((κ)ρ)− g∗(κ)]dx ≤
∫
Rn

[g∗(κ)ρ − g∗(κ)]dx = 0. (2.2.25)

As a result of (2.2.23)–(2.2.25), (2.2.22) turns into

−
∫
Ω̃

(ũmk)ρ divκ dx−
∫
Ω̃

g∗(κ)dx

≤ −
∫
Ω̃

(ũmk) div(κ)ρ dx−
∫
Ω̃

g∗((κ)ρ)dx.

(2.2.26)
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Taking standard properties of the mollification into account (see, e.g.,[63], p.11)
we get |(κ)ρ| ≤ 1 since |κ| ≤ 1 as well as spt (κ)ρ ⊂ Ωρ := {x; dist(x,Ω) ≤ ρ}
since sptκ ⊂ Ω. Consequently, (2.2.26) turns into

−
∫
Ω̃

(ũmk)ρ divκ dx−
∫
Ω̃

g∗(κ)dx ≤
∫
Ωρ

g(∇ũmk).

At this point we take the supremum over all such κ and get∫
Ω

g(∇(ũmk)ρ) ≤
∫
Ωρ

g(∇ũmk).

Thus, we obtain

lim sup
ρ↓0

∫
Ω

g(∇(ũmk)ρ) ≤ lim
ρ↓0

∫
Ωρ

g(∇ũmk) =

∫
Ω

g(∇ũmk).

On account of (2.2.15) it holds∫
∂Ω

g(∇ũmk) = 0,

thus we arrive at

lim sup
ρ↓0

∫
Ω

g(∇(ũmk)ρ) ≤
∫
Ω

g(∇ũmk). (2.2.27)

Combining (2.2.27) with (2.2.21) we have

lim
ρ↓0

∫
Ω

g(∇(ũmk)ρ) =

∫
Ω

g(∇ũmk) (2.2.28)

which clearly gives

lim
ρ↓0

√
1 + |∇(ũmk)ρ|2(Ω) =

√
1 + |∇ũmk |2(Ω).

Passing now to a suitable subsequence of radii ρk (k ∈ N) going to zero we can
arrange

‖ũmk − (ũmk)ρk‖L1(Ω) + ‖ũmk − (ũmk)ρk‖Lq(Ω−D)

+

∣∣∣∣√1 + |∇(ũmk)ρk |2(Ω)−
√

1 + |∇ũmk |2(Ω)

∣∣∣∣
≤ 1

k
.

(2.2.29)

Putting together (2.2.19) and (2.2.29) we see that the sequence uk := (ũmk)ρk
is of class C∞(Ω)M and satisfies the desired convergences.
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Finally, in case that ∂Ω is Lipschitz, we like to give a short proof of the
classical BV -approximation procedure as carried out in, e.g., [63], Theorem
1.17, pp.14.

Corollary 2.2.9
Suppose that Ω ⊂ R

n is a bounded Lipschitz domain and let u ∈ BV (Ω)M .
Then, there exists a sequence (uk) ⊂ C∞(Ω)M such that we have (as k →∞)

(i) uk → u in L1(Ω)M ,

(ii)

∫
Ω

|∇uk|dx→
∫
Ω

|∇u|.

Proof of Corollary 2.2.9. With Ω̃, u0, ũ and ũm as in the proof of Lemma 2.2.6
we recall the following facts (see (2.2.12) and (2.2.13))

ũm ∈ BV (Ω̃)M , |∇ũm| ≤ |∇ũ|, |∇ũm|(∂Ω) = 0. (2.2.30)

An application of dominated convergence directly yields by using the definition
of ũm

ũm → ũ in L1(Ω̃)M . (2.2.31)

Combining lower semicontinuity (recall (2.2.31)) with the estimate |∇ũm| ≤
|∇ũ| from above we obtain

lim
m→∞

|∇ũm|(Ω̃) = |∇ũ|(Ω̃). (2.2.32)

Replacing Ω̃ through Ω and passing to a suitable subsequence we get (recall
(2.2.31), (2.2.32) and |∇ũ|(Ω) = |∇u|(Ω) by (2.2.11))

‖ũmk − u‖L1(Ω) +

∣∣∣∣|∇ũmk |(Ω)− |∇u|(Ω)

∣∣∣∣ ≤ 1

k
, k ∈ N. (2.2.33)

From [63], Proposition 1.15, p.12, and on account of |∇ũm|(∂Ω) = 0 we can find
a sequence of radii ρk ↓ 0 such that ((·)ρk denoting the mollification operator)
the functions uk := (ũmk)ρk satisfy∣∣∣∣|∇uk|(Ω)− |∇ũmk |(Ω)

∣∣∣∣ ≤ 1

k
, k ∈ N. (2.2.34)

Moreover due to the convergence (ũmk)ρ → ũmk in Lploc(Ω̃)M as ρ ↓ 0 for any
p ∈ [1,∞) we can arrange

‖uk − ũmk‖L1(Ω) ≤
1

k
(2.2.35)

for any k ∈ N. Putting together (2.2.33)–(2.2.35) we see that the sequence
(uk) ⊂ C∞(Ω)M has the desired properties.
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Remark 2.2.10
Quoting [63], Theorem 2.11, p.37, it follows from Corollary 2.2.9 that we even
get convergence of the particular traces. Precisely, assuming the hypotheses of
Corollary 2.2.9 and denoting by ϕk, ϕ ∈ L1(∂Ω)M the traces of the functions
uk, u from above we obtain

lim
k→∞

∫
∂Ω

|ϕk − ϕ|dHn−1 = 0.

2.2.3 A variant of Poincaré’s inequality

In this section we are going to show a variant of Poincaré’s inequality that
proves to be one of the main tools for verifying Theorem 2.1.1 and Theorem
2.1.6 as well. With Ω and D as above we consider a function u ∈ W 1,p(Ω)
with p ∈ [1,∞). Then the following well-known version of Poincaré’s inequality
holds (see, e.g., [52], Theorem 1, p. 275): there exists a constant c = c(p,Ω)
such that

‖u− (u)Ω‖Lp(Ω) ≤ c‖∇u‖Lp(Ω) (2.2.36)

where (u)Ω := −
∫
Ω

u dx := 1
Ln(Ω)

∫
Ω

u dx is the mean value of u on Ω. As it will

be shortly discussed in Lemma 2.2.12, a standard approximation as stated in
Corollary 2.2.9 shows that (2.2.36) extends to u ∈ BV (Ω).

Considering the case that Ω is convex it is even possible to calculate a con-
stant c for which we get the above inequality. Precisely it holds (see, e.g., [62],
(7.45), p.157)

‖u− (u)Ω‖Lp(Ω) ≤
(

ωn
Ln(Ω)

)1− 1
n

dn‖∇u‖Lp(Ω),

where ωn denotes the volume of the unit ball in R
n and d := diam(Ω).

Unfortunately, the inequality (2.2.36) does not precisely fit in the setting of
image inpainting. We make use of the following version of Poincaré’s inequality
(see, e.g., [7], Exercise 7.7, p. 380).

Lemma 2.2.11
Let Ω ⊂ R

n denote a bounded Lipschitz domain and consider a Ln-measurable
subset E ⊂ Ω with Ln(E) > 0. Suppose further that u ∈W 1,p(Ω) is given where
p ∈ [1,∞) is a fixed number. Then there exists a constant c = c(n, p,E,Ω) such
that

‖u− (u)E‖Lp(Ω) ≤ c‖∇u‖Lp(Ω). (2.2.37)

Proof of Lemma 2.2.11. If the statement (2.2.37) is false, we can find a sequence
(uk) ⊂W 1,p(Ω) such that

‖uk − (uk)E‖Lp(Ω) > k‖∇uk‖Lp(Ω) (2.2.38)
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for all k ≥ 1. Now we let vk := uk − (uk)E and observe

(vk) ⊂W 1,p(Ω), (vk)E = 0, as well as

‖vk‖Lp(Ω) > k‖∇vk‖Lp(Ω)

for all k ≥ 1, where the last inequality holds on account of (2.2.38).
Passing to the normalized sequence wk := vk/‖vk‖Lp(Ω) it follows

‖wk‖Lp(Ω) = 1 and ‖∇wk‖Lp(Ω) <
1

k
(2.2.39)

for all k ≥ 1.
As a consequence, (2.2.39), in particular, yields sup

k
‖wk‖W 1,p(Ω) <∞ and since

the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact (see, e.g., [4] and note that Ω is
a Lipschitz domain) we get

wk →: w in Lp(Ω) (2.2.40)

at least for a subsequence. Besides, (2.2.39) and (2.2.40) further yield

(wk,∇wk)→ (w, 0) in Lp(Ω)1+n.

Since W 1,p(Ω) is a closed subspace of Lp(Ω)1+n we directly see

w ∈W 1,p(Ω), ∇w = 0 a.e. in Ω, wk → w in W 1,p(Ω),

where ∇w = 0 in Ω implies that w is constant in Ω since Ω, in particular, is
connected.
Moreover, it holds

(w)E = 0, (2.2.41)

which implies w = 0 a.e. in E (recall that w is constant). From Ln(E) > 0 we
immediately derive w = 0 a.e. in Ω. By (2.2.40), this gives

0 = ‖w‖Lp(Ω) = lim
k→∞

‖wk‖Lp(Ω) = 1,

which is a contradiction. This proves Lemma 2.2.11.

By using standard approximation arguments it is possible to extend Lemma
2.2.11 to all functions u of bounded variation.

Lemma 2.2.12
With Ω and E as in Lemma 2.2.11 consider u ∈ BV (Ω). Then there is a
constant c = c(n,E,Ω) such that∫

Ω

|u− (u)E |dx ≤ c|∇u|(Ω) (2.2.42)
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Proof of Lemma 2.2.12. Let u ∈ BV (Ω) be given. From Lemma 2.2.11 we get∫
Ω

|v − (v)E |dx ≤ c
∫
Ω

|∇v|dx

for all functions v ∈W 1,1(Ω).
Quoting Corollary 2.2.9 from Section 2.2.2 we may choose a sequence (vk) ⊂
W 1,1(Ω) such that (as k →∞)

vk → u in L1(Ω),∫
Ω

|∇vk|dx→ |∇u|(Ω),

and an application of these convergences finally yields the desired inequality
(2.2.42).

2.3 Weak minimizers. Proof of Theorem 2.1.1

Assuming the validity of the hypotheses from Theorem 2.1.1 we first recall (see
[25], Lemma 2.2) the following auxiliary result concerning the continuity of (the
relaxed variant of) the fidelity term occuring in the functional defined in formula
(2.1.3).

Lemma 2.3.1
For w ∈ BV (Ω)M let

K̃[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|.

(a) Suppose that wm, w ∈ BV (Ω)M are such that wm → w in L1(Ω)M . Then
it holds:

K̃[w] ≤ lim
m→∞

K̃[wm]. (2.3.1)

(b) If we know in addition∫
Ω

√
1 + |∇wm|2 →

∫
Ω

√
1 + |∇w|2,

then it follows

lim
m→∞

K̃[wm] = K̃[w]. (2.3.2)
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Remark 2.3.2
The reader should note that Lemma 2.2 of [25] clearly extends to any any dimen-
sion n ≥ 2, moreover, the statement remains valid for vector-valued functions,
i.e., for the case M ≥ 2. The corresponding references are given during the
proof of [25], Lemma 2.2.

Now, let us start proving Theorem 2.1.1: first, we note that assertion (b) is
immediate by using strict convexity of F and of the data fitting term w.r.t.
w. For showing part (a) we denote by (um) ⊂ BV (Ω)M ∩ L2(Ω − D)M a
K-minimizing sequence for which we have

sup
m

∫
Ω

|∇um| <∞, (2.3.3)

sup
m

∫
Ω−D

|um|2dx <∞. (2.3.4)

Note that (2.3.3) is valid since F is of linear growth.
By virtue of (2.3.4) we apply the variant of Poincaré’s inequality as stated in
Lemma 2.2.12 in Section 2.2.3 (note that (2.1.1) trivially gives Ln(Ω−D) > 0)
which together with (2.3.3) yields

sup
m

∫
Ω

|um|dx <∞. (2.3.5)

Combining (2.3.3) and (2.3.5), the BV -compactness theorem guarantees the
existence of a function u ∈ BV (Ω)M such that um →: u in L1(Ω)M and a.e.
up to a subsequence. Further, (2.3.4) combined with Fatou’s lemma implies
u ∈ L2(Ω−D)M , i.e., u ∈ BV (Ω)M ∩ L2(Ω−D)M and K[u] is well-defined.
From (2.3.1), we then get

K̃[u] ≤ lim inf
m→∞

K̃[um],

whereas Fatou’s lemma gives∫
Ω−D

|u− f |2dx ≤ lim inf
m→∞

∫
Ω−D

|um − f |2dx.

Hence,

K[u] ≤ lim inf
m→∞

K̃[um] + lim inf
m→∞

λ

2

∫
Ω−D

|um − f |2dx

≤ lim inf
m→∞

K[um] = inf
BV (Ω)M∩L2(Ω−D)M

K.

As a consequence, u is K-minimizing showing assertion (a) of Theorem 2.1.1.

For proving assertion (c) we set

α := inf
BV (Ω)M∩L2(Ω−D)M

K, β := inf
W 1,1(Ω)M∩L2(Ω−D)M

I
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and observe that α ≤ β is obvious since I = K on W 1,1(Ω)M ∩ L2(Ω−D)M .
Conversely we fix an arbitrary K-minimizer u ∈ BV (Ω)M ∩ L2(Ω −D)M and
choose a sequence (um) according to Lemma 2.2.6 applied with exponent q = 2.
Quoting Lemma 2.3.1 we then have K̃[um] → K̃[u], and, by Lemma 2.2.6 (ii),
we conclude K[um]→ K[u]. Thus,

β = inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤ I[um] = K[um] −→ K[u] = α,

which shows (c).

To establish part (d) we first consider u ∈ M, i.e. um → u in L1(Ω)M for
an I-minimizing sequence (um) from W 1,1(Ω)M ∩ L2(Ω−D)M , where may as-
sume in addition um → u a.e. on Ω. In view of Fatou’s lemma we may conclude∫

Ω−D

|u− f |2dx ≤ lim inf
m→∞

∫
Ω−D

|um − f |2dx,

whereas by Lemma 2.3.1 (a)

K̃[u] ≤ lim inf
m→∞

K̃[um].

Thus we arrive at

K[u] ≤ lim inf
m→∞

K[um] = lim inf
m→∞

I[um] = inf
BV (Ω)M∩L2(Ω−D)M

K,

where the last equality follows from assertion (c). This gives the K-minimality
of u.
Conversely consider a K-minimizer u ∈ BV (Ω)M∩L2(Ω−D)M . If we choose um
according to Lemma 2.2.6 and apply Lemma 2.3.1 (b), we obtain (as m→∞)

I[um] = K[um]→ K[u].

Using assertion (c) again, it follows that (um) is an I-minimizing sequence for
which (see Lemma 2.2.6 (i)) um → u in L1(Ω)M . This proves u ∈ M and
completes the proof of Theorem 2.1.1. �

2.4 Dual solutions. Proof of Theorem 2.1.6

Let the assumptions of Theorem 2.1.6 hold. Primarily we note that a proof
of assertion (a) probably can be deduced from [54], Theorem 1.2.1, p.15/16 or
[49], Proposition 2.3, Chapter III, p.52. Inspired by [25], proof of Theorem 1.4,
we decide to give a more constructive proof relying on an approximation of
our original variational problem (2.1.8) by a sequence of more regular problems
admitting smooth solutions with suitable convergence properties. Consequently,
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this sequence might be of interest for numerical computations. To become more
precise we consider for fixed δ ∈ (0, 1] the problem

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min in W 1,2(Ω)M (2.4.1)

where

Fδ(P ) :=
δ

2
|P |2 + F (P ), P ∈ RnM . (2.4.2)

In the following lemma we show that (2.4.1) is uniquely solvable in the ap-
propriate Sobolev space W 1,2(Ω)M and in addition we will state some useful
uniform (in δ) features of the unique solution uδ.

Lemma 2.4.1
The problem (2.4.1) admits a unique solution uδ ∈W 1,2(Ω)M and we addition-
ally have the following uniform bounds on uδ

(i) sup
δ
‖∇uδ‖L1(Ω) <∞,

(ii) sup
δ
‖uδ − f‖L2(Ω−D) <∞,

(iii) sup
δ

δ
∫
Ω

|∇uδ|2dx <∞,

(iv) sup
δ
‖uδ‖W 1,1(Ω) <∞.

Proof of Lemma 2.4.1. Clearly, the problem (2.4.1) admits at most one solution
uδ ∈ W 1,2(Ω)M . In fact, if u1, u2 are solutions of (2.4.1), we then have ∇u1 =
∇u2 on Ω together with u1 = u2 on Ω−D. But then u1 = u2 on Ω on account
of (2.1.1). Next, with δ being fixed, we consider a minimizing sequence (um)
for (2.4.1). Using the linear growth of F it holds

sup
m
‖∇um‖L2(Ω) ≤ c(δ) <∞,

sup
m
‖∇um‖L1(Ω) <∞,

sup
m
‖um − f‖L2(Ω−D) <∞.

The quadratic variant of the Poincaré inequality from Section 2.2.3 (choose
p = 2 in Lemma 2.2.11) then yields

sup
m
‖um|‖W 1,2(Ω) <∞,

so that um ⇁: uδ in W 1,2(Ω)M at least for a subsequence of (um). Standard
theorems on lower semicontinuity (see, e.g., [57], Theorem 2.3, p.18 or [2]) then
show that uδ solves (2.4.1).
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Observing that we have the uniform estimate Iδ[uδ] ≤ Iδ[0] = I[0] we can
directly derive the assertions (i)-(iii) where the linear growth of F has to be ex-
ploited once again. Combining part (i) with Poincaré’s inequality from Section
2.2.3 (choose p = 1 in Lemma 2.2.11 and recall (ii)) we finally obtain

sup
δ
‖uδ‖L1(Ω) <∞. (2.4.3)

Summarizing, part (i) and (2.4.3) directly imply the last claim (iv) and this
completes the proof of Lemma 2.4.1.

Proceeding with the proof of Theorem 2.1.6 we first use Lemma 2.4.1 (iv)
which yields by BV -compactness (at least for a suitable sequence δ ↓ 0)

uδ →: u in L1(Ω)M and a.e.

for a function u ∈ BV (Ω)M . Moreover, Lemma 2.4.1 (ii) gives

uδ ⇁ u in L2(Ω−D)M

after passing to an appropriate subsequence. Thus,∫
Ω−D

|u− f |2dx ≤ lim inf
δ↓0

∫
Ω−D

|uδ − f |2dx.

Altogether our limit function u belongs to the space BV (Ω)M ∩ L2(Ω−D)M .
Next we set

τδ := DF (∇uδ) and σδ := DFδ(∇uδ) = δ∇uδ + τδ (2.4.4)

and observe that Lemma 2.4.1 (iii) implies

||δ∇uδ||2L2(Ω) = δ

(
δ

∫
Ω

|∇uδ|2dx
)
→ 0 as δ → 0, (2.4.5)

whereas (2.1.5) shows that τδ is uniformly bounded w.r.t. δ, i.e.,

sup
δ
||τδ||L∞(Ω) <∞. (2.4.6)

After passing to suitable sequences δ → 0 we get from (2.4.4)–(2.4.6)

σδ ⇁: σ in L2(Ω)nM and τδ
∗
⇁: τ in L∞(Ω)nM (2.4.7)

and by combining (2.4.7) with (2.4.5), it follows σ = τ .

Next, we claim that σ ∈ L∞(Ω)nM is a solution of the dual variational problem.
To justify this, we first observe that uδ solves the Euler equation∫

Ω

τδ : ∇ϕdx+ δ

∫
Ω

∇uδ : ∇ϕdx+ λ

∫
Ω−D

(uδ − f) · ϕdx = 0 (2.4.8)
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for all ϕ ∈W 1,2(Ω)M .
Applying the duality relation (2.1.16) to our smooth integrand F we obtain the
identity F (∇uδ) = τδ : ∇uδ − F ∗(τδ) which implies

Iδ[uδ] =
δ

2

∫
Ω

|∇uδ|2dx+

∫
Ω

[τδ : ∇uδ − F ∗(τδ)]dx+
λ

2

∫
Ω−D

|uδ − f |2dx.

Since uδ is an admissible choice in (2.4.8) it further holds

Iδ[uδ] = −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(τδ))dx+
λ

2

∫
Ω−D

|uδ − f |2dx

− λ
∫

Ω−D

(uδ − f) · uδdx

= −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(τδ))dx−
λ

2

∫
Ω−D

|uδ|2dx

+
λ

2

∫
Ω−D

|f |2dx,

(2.4.9)

where the quadratic structure of the data fitting term is essential in order to
establish (2.4.9).
Now we let v ∈W 1,1(Ω)M ∩L2(Ω−D)M . Taking into account (2.1.17), (2.1.18)
and the definition of the dual functional R it then follows for any ρ ∈ L∞(Ω)nM

I[v] = sup
κ∈L∞(Ω)nM

l(v,κ) ≥ l(v, ρ) ≥ inf
w∈W 1,1(Ω)M∩L2(Ω−D)M

l(w, ρ) = R[ρ],

hence, we deduce

sup
ρ∈L∞(Ω)nM

R[ρ] ≤ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v].

Obviously we have the validity of

inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v] ≤ I[uδ] ≤ Iδ[uδ]

and by virtue of (2.4.9) we may conclude

sup
ρ∈L∞(Ω)nM

R[ρ] ≤ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v]

≤ −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(τδ))dx

− λ

2

∫
Ω−D

|uδ|2dx+
λ

2

∫
Ω−D

|f |2dx.

(2.4.10)

Neglecting the quantity − δ
2

∫
Ω

|∇uδ|2dx in (2.4.10) for the moment, we pass to

the limit δ → 0. This gives by using upper semicontinuity of
∫
Ω

(−F ∗(·))dx
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w.r.t. weak-∗ convergence and by recalling
∫

Ω−D
|u|2dx ≤ lim inf

δ→0

∫
Ω−D

|uδ|2dx

(note that we have the appropriate signs in (2.4.10))

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω−D)M

I

≤
∫
Ω

(−F ∗(τ))dx− λ

2

∫
Ω−D

|u|2dx+
λ

2

∫
Ω−D

|f |2dx.
(2.4.11)

Passing to the limit δ → 0 in Euler’s equation (2.4.8) we obtain (recall (2.4.5),
(2.4.7) and uδ ⇁ u in L2(Ω−D)M )∫

Ω

τ : ∇ϕdx+ λ

∫
Ω−D

(u− f) · ϕdx = 0 (2.4.12)

for any ϕ ∈ W 1,2(Ω)M and by approximation, equation (2.4.12) extends to
ϕ ∈W 1,1(Ω)M ∩ L2(Ω−D)M (we refer to Lemma 2.2.4).
At the same time, it holds

R[τ ] : = inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

l(v, τ)

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[ ∫
Ω

τ : ∇vdx+
λ

2

∫
Ω−D

|v − f |2dx
]

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[
− λ

∫
Ω−D

(u− f) · vdx+
λ

2

∫
Ω−D

|v − f |2dx
]

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[
λ

2

∫
Ω−D

|u− v|2dx+
λ

2

∫
Ω−D

|f |2dx− λ

2

∫
Ω−D

|u|2dx
]
,

where we have used (2.4.12) with the admissible choice ϕ = v as well as the
quadratic structure of the data fitting term. As a consequence we obviously get

R[τ ] ≥
∫
Ω

(−F ∗(τ))dx+
λ

2

∫
Ω−D

|f |2dx− λ

2

∫
Ω−D

|u|2dx

which implies (recall (2.4.11))

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤ R[τ ].
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Hence τ is R-maximizing and the inf-sup relation is valid which proves assertion
(a) of Theorem 2.1.6. Additionally by means of the above chain of inequalities
we have shown that

δ

∫
Ω

|∇uδ|2dx→ 0 (2.4.13)

(uδ) is an I −minimizing sequence (2.4.14)

at least for a subsequence δm → 0. Thanks to Theorem 2.1.1, (d) and (2.4.14)
it further follows that u is K-minimizing in BV (Ω)M ∩ L2(Ω−D)M .

For assertion (b) of Theorem 2.1.6 we may proceed exactly as in [25], proof
of Theorem 1.4: we fix v ∈ W 1,1(Ω)M ∩ L2(Ω − D)M and consider the func-
tional Hv : L∞(Ω)nM → R

Hv[κ] :=

∫
Ω

[
κ : ∇v +

λ

2
1Ω−D|v − f |2

]
dx

that gives the representation

R[κ] =

∫
Ω

(−F ∗(κ))dx+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

Hv[κ]

where obviously, v 7→ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

Hv[κ] is concave.

Now, we suppose that F ∗ is strictly convex and assume that τ1, τ2 are R-
maximizing, but τ1 6= τ2 on a set S ⊂ Ω with Ln(S) > 0. Except for a set
of points with zero measure we further must have F ∗(τi(x)) < ∞, i ∈ {1, 2},
since otherwise R[τi] = −∞.
Next, we set κ := 1

2(τ1 + τ2) and as a consequence we get on the set S

F ∗(κ) <
1

2
F ∗(τ1) +

1

2
F ∗(τ2)

where on Ω − S we just have “≤“ by quoting the convexity of F ∗ on this set.
Thus ∫

Ω

(−F ∗(κ))dx >
1

2

∫
Ω

(−F ∗(τ1))dx+
1

2

∫
Ω

(−F ∗(τ2))dx

and we may conclude

R[κ] >
1

2
R[τ1] +

1

2
R[τ2] = sup

L∞(Ω)nM
R.

which contradicts the maximizing property. Hence, by requiring strict convexity
of F ∗ on the set {P ∈ RnM , F ∗(P ) <∞}, we get uniqueness of the dual solution
and as a consequence of uniqueness the convergences (2.4.7) and (2.4.13) hold
for any sequence δ → 0.
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For proving Theorem 2.1.6 (c) we proceed similar to the proof of Theorem 1.7
in [22]: let (um) denote an I-minimizing sequence from the space W 1,1(Ω)M ∩
L2(Ω−D)M . Using the previous notation, we deduce from (2.4.11) and (2.4.12)
(with admissible choice ϕ = um)

inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤
∫
Ω

[τ : ∇um − F ∗(τ)]dx− λ

2

∫
Ω−D

|u|2dx

+
λ

2

∫
Ω−D

|f |2dx+ λ

∫
Ω−D

(u− f) · um dx

where u, τ have the same meaning as before. Hence,

inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤
∫
Ω

F (∇um)dx+
λ

2

∫
Ω−D

|um − f |2dx

− λ

2

∫
Ω−D

|um − u|2dx

=I[um]− λ

2

∫
Ω−D

|um − u|2dx,

and we obtain our claim by recalling that u is K-minimizing and that by The-
orem 2.1.1 (b) we have uniqueness of K-minimizers on Ω −D. Altogether the
proof of Theorem 2.1.6 is complete. �

2.5 Uniqueness of the dual solution and the duality
formula. Proof of Theorem 2.1.7

Let the assumptions of Theorem 2.1.7 hold and consider a K-minimizing func-
tion u from the space BV (Ω)M ∩ L2(Ω −D)M , whose existence is guaranteed
by Theorem 2.1.1. Remembering the decomposition ∇u = ∇auxLn +∇su (see,
e.g., [53], Theorem 3, p.42) with density ∇au being independent of the partic-
ular minimizer (recall Theorem 2.1.1 (b)) we claim

Lemma 2.5.1
The tensor ρ := DF (∇au) is a maximizer of the dual problem.

Proof of Lemma 2.5.1. On account of (2.1.5), ρ is in admissible choice in the
dual functional R since ρ ∈ L∞(Ω)nM where we recall that R is given by

R[ρ] = inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

l(v, ρ). (2.5.1)
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For v ∈W 1,1(Ω)M ∩ L2(Ω−D)M it holds

l(v, ρ) =

∫
Ω

[DF (∇au) : ∇v − F ∗(DF (∇au))]dx

+
λ

2

∫
Ω−D

|v − f |2dx

=

∫
Ω

F (∇au)dx+

∫
Ω

(∇v −∇au) : DF (∇au)dx

+
λ

2

∫
Ω−D

|v − f |2dx,

(2.5.2)

where we have made use of the formula (recall the duality formula (2.1.16))

F (P ) + F ∗(DF (P )) = P : DF (P ), P ∈ RnM .

Since u is K-minimizing, we get (note that ∇s(u + tv) = ∇su holds for the
singular parts of the measures)

0 =
d

dt|0
K[u+ tv] =

∫
Ω

DF (∇au) : ∇vdx+ λ

∫
Ω−D

v · (u− f)dx. (2.5.3)

Using the K-minimality of u once again (notice that we make use of ∇(u+tu) =
(1 + t)∇u)

0 =
d

dt|0
K[u+ tu] =

∫
Ω

DF (∇au) : ∇audx+

∫
Ω

F∞
(
∇su
|∇su|

)
d|∇su|

+ λ

∫
Ω−D

u · (u− f)dx.

(2.5.4)

Inserting (2.5.3) and (2.5.4) into (2.5.2) we find

l(v, ρ) =

∫
Ω

F (∇au)dx+

∫
Ω

F∞
(
∇su
|∇su|

)
d|∇su|

− λ
∫

Ω−D

v · (u− f)dx+ λ

∫
Ω−D

u · (u− f)dx

+
λ

2

∫
Ω−D

|v − f |2dx.

(2.5.5)

Observing that a.e. on Ω−D it holds

−λv · (u− f) + λu · (u− f) +
λ

2
|v − f |2 =

λ

2
|u− f |2 +

λ

2
|u− v|2,

we deduce from (2.5.5)
l(v, ρ) ≥ K[u],

and (2.5.1) implies R[ρ] ≥ K[u]. But then the claim of Lemma 2.5.1 is a
consequence of the inf-sup relation that has been stated in Theorem 1.2 (a).
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By definition the dual solution ρ from Lemma 2.5.1 attains its values in the
open set Im(DF ). If the dual problem would admit a second solution ρ̃ 6= ρ,
then exactly the same arguments as used during the proof of Theorem 2.15 in
[17] would lead to a contradiction. In fact, as demonstrated in this reference,
the assumption ρ 6= ρ̃ (on a set of positive measure) yields the strict inequality∫

Ω

(−F ∗)
(
ρ+ ρ̃

2

)
dx >

1

2

∫
Ω

(−F ∗)(ρ)dx+
1

2

∫
Ω

(−F ∗)(ρ̃)dx.

At the same time we observe that

L∞(Ω)nM 3 κ 7→ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

∫
Ω

[κ : ∇v − 1Ω−D|v − f |2]dx

is a concave function, hence

R

[
ρ+ ρ̃

2

]
>

1

2
R[ρ] +

1

2
R[ρ̃],

which is not possible.
Thus, DF (∇au) is the only dual solution and the validity of the duality formula
is a direct conclusion. The proof of Theorem 2.1.7 is complete. �
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Chapter 3

A modified TV-image
inpainting method: regularity
results

3.1 The basic setup and statement of the main re-
sults

In this chapter we discuss the regularity behavior of generalized minimizers of
the functional

I[w] :=

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx,

w ∈W 1,1(Ω)M ∩ L2(Ω−D)M ,

(3.1.1)

i.e., we talk about minimizers of the relaxed variant

K[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|+ λ

2

∫
Ω−D

|w − f |2dx (3.1.2)

of the functional I from above formulated on the adequate space BV (Ω)M ∩
L2(Ω−D)M . The existence of such minimizers is guaranteed by Theorem 2.1.1.
Before starting our discussion we want to mention that most of the material
which will be presented here originates from the forthcoming paper [94]. Let Ω
and D as in the second chapter, i.e., in particular, we still assume

0 ≤ Ln(D) < Ln(Ω), (3.1.3)

and further require

f ∈ L∞(Ω−D)M , M ≥ 1, (3.1.4)
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throughout the entire chapter, where -as usual- f represents the vector-valued
partial observation on Ω−D.
Apriori, generalized I-minimizers can admit points of discontinuity but in most
cases it is however possible to show that generalized minimizers are continuously
differentiable up to a small, relatively closed, subset with Lebesgue measure
zero. This property is called almost everywhere regularity and one challenging
problem which arises in that context is to give estimates for the size of the
singular set of minimizers.
Considering the setup from the second chapter, the assumptions (2.1.4)–(2.1.6)
on F are probably too weak in order to establish any regularity results for
generalized minimizers in Ω. Thus we require the following (much stronger)
hypotheses on our integrand F : RnM → [0,∞).

F ∈ C2(RnM ) and (w.l.o.g.) F (0) = 0, DF (0) = 0, (3.1.5)

|DF (P )| ≤ ν1, (3.1.6)

ν2
1

(1 + |P |)µ
|Q|2 ≤ D2F (P )(Q,Q) ≤ ν3

1

1 + |P |
|Q|2. (3.1.7)

with some positive constants ν1, ν2, ν3, for all P,Q ∈ RnM and for a fixed expo-
nent µ > 1. Note that an integrand F ∈ C2(RnM ) satisfying (3.1.6) and (3.1.7)
with the prescribed ellipticity parameter µ > 1 is called µ-elliptic. Moreover we
suppose that F satisfies the structure condition

F (P ) = Φ(|P |), Φ ∈ C2([0,∞), [0,∞)). (3.1.8)

In order to get (3.1.6) and (3.1.7) we then require

ν2
1

(1 + t)µ
≤ min

{
Φ′(t)

t
,Φ
′′
(t)

}
, max

{
Φ′(t)

t
,Φ
′′
(t)

}
≤ ν3

1

1 + t
(3.1.9)

for all t ≥ 0 with suitable positive constants ν2 and ν3, where we point out that
the hypothesis (3.1.9) just corresponds to (1.4∗) and (1.4∗µ) from [25]. Note that
w.l.o.g. we can assume Φ(0) = Φ′(0) = 0 as well.

It is worth mentioning that despite the above rather strong hypotheses on F ,
the study of smoothness properties of generalized solutions remains a delicate
problem since the linear growth of F admits only weak and anisotropic elliptic-
ity conditions (see (3.1.7) and recall µ > 1) and we will see in our forthcoming
discussions that full regularity crucially depends on the size of the value of the
ellipticity parameter µ > 1.

Remark 3.1.1
Let us give some comment on the condition (3.1.5): we trivially may assume
F (0) = 0 for our density F . W.l.o.g. we moreover may suppose that we have
DF (0) = 0 for F : let us fix a point z0 ∈ RnM such that DF (z0) = 0 as well as
F (z0) = 0. Letting w ∈W 1,1(Ω)M ∩L2(Ω−D)M , the idea is to seek minimizers
of the modified functional

Ĩ[w] :=

∫
Ω

F̃ (∇w)dx+
λ

2

∫
Ω−D

|w − f̃ |2dx
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in the space W 1,1(Ω)M ∩ L2(Ω −D)M . Here, we have set F̃ (P ) := F (P + z0)
and f̃(x) := f(x)− z0 ·x, where we directly see f̃ ∈ L∞(Ω−D)M (recall that Ω
is a bounded domain). Further, it holds F̃ (0) = 0, DF̃ (0) = 0 and F̃ satisfies
(3.1.6) together with (3.1.7) from above. Finally, a generalized Ĩ-minimizer ũ
can be modified to a generalized I-minimizer u (with I from (3.1.1)) by setting
ũ = u− z0 · x.
Another justification that w.l.o.g. we may assume DF (0) = 0 works by arguing
with Euler’s equation, where we then insert test functions that are compactly
supported in Ω. To become more precise, we then define the auxiliary integrand
F (P ) := F (P )−DF (0) : P and consider F (P ) = F (P ) +DF (0) : P . Passing
to Euler’s equation and inserting test functions ϕ having compact support in Ω
it follows that the additional term∫

Ω

DF (0) : ∇ϕdx

vanishes. Thus, we merely argue with the density F (P ) for which we clearly
have DF (0) = 0 at hand (and the conditions (3.1.5)–(3.1.7) as well).

At this point we want to discuss an example of a non-standard class of inte-
grands that satisfy the conditions (3.1.5)–(3.1.7) with a prescribed parameter
µ > 1.

Example 3.1.2 (i) In the context of pure denoising of images and image in-
painting, respectively, the following example can serve as a model w.r.t.
approximating the TV -density |P |, P ∈ RnM : for a given number µ > 1
we let

ϕµ(r) :=

r∫
0

s∫
0

(1 + t)−µdtds, r ∈ R+
0 . (3.1.10)

As already mentioned in the introduction, it is reasonable to consider den-
sities depending on the modulus, i.e., we let

Φµ(Z) := ϕµ(|Z|), Z ∈ RnM . (3.1.11)

Clearly, Φµ : RnM → [0,∞) is of class C2 satisfying (3.1.5)–(3.1.7) with
the prescribed ellipticity parameter µ > 1.
Moreover, we have an explicit representation of ϕµ(r),

ϕµ(r) =
r

µ− 1
+

1

µ− 1

1

µ− 2
(r + 1)−µ+2 − 1

µ− 1

1

µ− 2
, µ 6= 2, (3.1.12)

whereas for µ = 2 it holds

ϕ2(r) = r − log(1 + r).

Observing next that

(µ− 1)Φµ(Z)→ |Z| as µ→∞ (3.1.13)
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for all Z ∈ R
nM , it becomes evident that the density Φµ(Z) serves as

a very good candidate for the approximation of |Z| by a regular class of
integrands with linear growth (with some suitable choice of the ellipticity
parameter µ > 1).

(ii) As outlined in, e.g. [24], Remark 1.4 (iv), for a given number µ > 1, a
slight modification of the integrands Φµ from (3.1.11) is given by

Φ̃µ(Z) :=

|Z|∫
0

s∫
0

(1 + t2)−
µ
2 dtds, Z ∈ RnM .

Here, we refer to [17], Example 3.9, pp. 48, for a short sketch of the proof
that Φ̃µ(Z) satisfies the conditions (3.1.5)–(3.1.7) for a prescribed param-
eter µ > 1.
Note that for the special choice µ = 3 we obtain the minimal surface inte-
grand F (Z) := Φ̃3(Z) =

√
1 + |Z|2 which probably is the most prominent

example that fulfills the conditions of µ-ellipticity (3.1.6) and (3.1.7) from
above.

For the class of µ-elliptic integrands we collect some useful properties that
have already been established in [17], Remark 4.2, p.97/98.

Lemma 3.1.3
Suppose that F satisfies (3.1.5)–(3.1.7) for some number µ > 1. Then F is
strictly convex on R

nM and it holds:

(i) there are real constants ν1 > 0 , ν2 ∈ R such that for all Z ∈ RnM we have

DF (Z) : Z ≥ ν1|Z| − ν2,

i.e., DF (Z) : Z is at least of linear growth;

(ii) F is of linear growth in the sense that for real numbers ν3, ν4 > 0, ν5,
ν6 ∈ R and for all Z ∈ RnM it holds

ν3|Z| − ν5 ≤ F (Z) ≤ ν4|Z|+ ν6;

(iii) the integrand satisfies a balancing condition: there exists a real constant
ν7 > 0 such that

|D2F (Z)||Z|2 ≤ ν7(1 + F (Z))

for all Z ∈ RnM .

After the above preparations we first are concerned with showing almost ev-
erywhere C1,α-regularity of generalized minimizers in the usual sense, where
we first prove the validity of a “maximum principle“ for each generalized I-
minimizer u from the space BV (Ω)M∩L2(Ω−D)M which implies global bound-
edness of u.
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Theorem 3.1.4
Suppose that we have (3.1.3) and (3.1.4). Further we assume that F satisfies
the structure condition (3.1.8) with Φ ∈ C2([0,∞), [0,∞)) satisfying (3.1.9)
with the prescribed ellipticity parameter µ > 1. It then holds

sup
Ω
|u| ≤ sup

Ω−D
|f |

for each generalized I-minimizer u ∈ BV (Ω)M ∩ L2(Ω−D)M .

For the sake of completeness let us look at the scalar case M = 1: assuming
w.l.o.g. that the observed image f : Ω −D → R takes almost all of its values
in the closed interval [0, 1] we then can derive the following slightly different
maximum principle for each generalized I-minimizer.

Theorem 3.1.5
Let M = 1, suppose that we have (3.1.3) and require that 0 ≤ f ≤ 1 a.e. on
Ω−D. Further we assume that F satisfies the structure condition (3.1.8) with
Φ ∈ C2([0,∞), [0,∞)) fulfilling (3.1.9) with the prescribed ellipticity parameter
µ > 1. For each generalized I-minimizer u ∈ BV (Ω)M ∩L2(Ω−D)M , we then
have that the inequality

0 ≤ u(x) ≤ 1

is satisfied for a.a. x ∈ Ω.

Remark 3.1.6
The reader should note that the maximum principles stated in Theorem 3.1.4
and Theorem 3.1.5, respectively, remain valid under much weaker assumptions
on our function Φ. In fact we do not need differentiability of Φ in both theorems.
Considering the vectorial case M > 1 we have to require at least that Φ is
a strictly increasing and a convex function being of linear growth (see [21],
Theorem 1). Concerning the scalar case we can give up the structure condition
(3.1.8) imposed on F . To become more precise, we can replace (3.1.8) through
the weaker condition F (P ) = F (−P ) for all P ∈ Rn. Moreover, in the scalar
case, F needs to be strictly convex and of linear growth (compare [21], Theorem
2).

Remark 3.1.7
Considering the scalar case M = 1 we note that f(x) can be seen as a measure
for the intensity of the grey level of the observed image for points x ∈ Ω −D,
where we recall that usually, low grey levels are dark and high grey levels are
bright. As a consequence, Theorem 3.1.5 can be interpreted in such a way that
each generalized I-minimizer represents a measure for the intensity of the grey
level since they automatically satisfy the inequality 0 ≤ u(x) ≤ 1 for a.a. x ∈ Ω.
Thus, from the point of view of applications in image processing, Theorem 3.1.5
seems to be an interesting result.
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Remark 3.1.8
At least in the scalar case M = 1 together with n = 2, a proof of Theorem 3.1.5
has been sketched in [25] (see the proof of Theorem 1.2 (i) therein).

Now we state our result about partial C1,α-regularity regularity of generalized
I-minimizers.

Theorem 3.1.9
Suppose that we have (3.1.3) as well as (3.1.4). Further we assume that F
satisfies (3.1.8) with a function Φ of class C2 fulfilling (3.1.9) with the prescribed
ellipticity parameter µ > 1. Then for each K-minimizer u with K from (3.1.2),

there exists an open subset Ωu
0 of Ω such that u ∈ C1, 1

2 (Ωu
0)M together with

Ln(Ω− Ωu
0) = 0.

Remark 3.1.10 • Note that Theorem 3.1.9 has already been established in
the joint article with J. Müller [81] (see Theorem 1.4 and choose ζ = 2
in this reference).

• Considering the case Ln(D) > 0 and assuming that Int(D) 6= ∅ (Int(D)
denoting the set of interior points of D) as well as that F satisfies the
hypotheses from Theorem 3.1.9, then for each K-minimizer u there exists
an open subset Gu of G := Int(D) such that we have u ∈ C1,α(Gu) for
any α ∈ (0, 1) and Ln(G − Gu) = 0. This statement is an immediate
consequence of Theorem 1.1 in [9] and we remark that we may drop the
structure condition (3.1.8) on F in this situation.

• Since we quote Corollary 3.3 in [86] in order to prove Theorem 3.1.9 we
get the bound α = 1

2 for the Hölder exponent α in Theorem 3.1.9.

Remark 3.1.11
We note that Theorem 3.1.9 remains valid under weaker assumptions on F .
For more details we refer to [81], Theorem 1.4.

Remark 3.1.12
It is worth mentioning that the size of the ellipticity parameter µ > 1 does not
affect the statement of Theorem 3.1.9. Moreover, it is not necessary to impose
any topological assumptions on D.

Remark 3.1.13
Let us recall the following modification of the total variation image inpainting
method which has been touched in Remark 2.1.3 from the second chapter: for a
given finite number ζ ≥ 1 and for functions w ∈ W 1,1(Ω)M ∩ Lζ(Ω −D)M we
consider the functional

Iζ [w] :=

∫
Ω

F (∇w)dx+
λ

ζ

∫
Ω−D

|w − f |ζdx,
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where we suppose the hypotheses from Theorem 3.1.9. Choosing ζ = 2 we
are in the setting of Theorem 3.1.9. The corresponding relaxed version of the
functional Iζ formulated on the space BV (Ω)M is given by

Kζ [w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|

+
λ

ζ

∫
Ω−D

|w − f |ζdx,
(3.1.14)

and (3.1.14) is well-defined for functions w ∈ BV (Ω)M ∩ Lζ(Ω − D)M . As
proven in the joint paper with J. Müller [81] (see Theorem 1.4 in this reference),
Theorem 3.1.9 extends to each Kζ-minimizer, where we may even include the
case ζ = 1 (we refer to Remark 1.8 in [81]).

Remark 3.1.14
Fixing a number ζ > 1 let us consider the situation as described in Remark
3.1.13: quoting Theorem 1.3 in [81] we know that the dual problem associated
to “Iζ → min“ admits a unique solution σ ∈ L∞(Ω)nM satisfying the duality for-
mula σ(x) = DF (∇au(x)) for Ln-a.e. x ∈ Ω where u denotes a Kζ-minimizer.

Taking into account the result u ∈ C1, 1
2 (Ωu

0)M together with Ln(Ω−Ωu
0) = 0 we

directly obtain σ ∈ C0, 1
2 (Ωu

0)nM .

Let us now discuss full interior C1,α-regularity of generalized I-minimizers.
In this context we will intensively use the notion of µ-elliptic integrands with
a prescribed ellipticity parameter µ > 1 and as already mentioned above, the
size of the parameter µ > 1 will play a fundamental role in our investigations.

This already concerns the integrability properties of the distributional deriva-
tives of generalized I-minimizers. To become more precise, under rather strong
assumptions on our density F , we show unique solvability of the problem
I → min with I from (3.1.1) in the natural Sobolev space W 1,1(Ω)M with-
out passing to a suitable relaxed variant of I formulated on the space BV (Ω)M

as seen in the second chapter. As a byproduct we further prove a “maximum
principle“ for the unique I-minimizer. Finally we remark that we crucially need
the requirement µ ∈ (1, 2).

Theorem 3.1.15
Suppose that we have (3.1.3) and (3.1.4) for the data. Further we assume that F
satisfies (3.1.5)–(3.1.7) for some µ ∈ (1, 2). In the case M > 1 we additionally
assume (3.1.8) with Φ ∈ C2([0,∞), [0,∞)) fulfilling (3.1.9) for some µ ∈ (1, 2).
Then the problem I → min in W 1,1(Ω)M ∩ L2(Ω − D)M with I from (3.1.1)
admits a unique solution u and this solution satisfies sup

Ω
|u| ≤ sup

Ω−D
|f |.

Looking at the proof of Theorem 3.1.15 we can state the following regularity
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result about the dual solution from Theorem 2.1.6 and Theorem 2.1.7, respec-
tively.

Corollary 3.1.16
Denote by σ ∈ L∞(Ω)nM the unique dual solution from Theorem 2.1.6 and
Theorem 2.1.7, respectively. Under the assumptions of Theorem 3.1.15, in par-
ticular assuming µ ∈ (1, 2), we have σ ∈W 1,2

loc (Ω)nM .

Remark 3.1.17 • The structure condition (3.1.8) for F is needed for estab-
lishing a maximum principle for the unique I-minimizer u. Considering
the scalar case we can drop the structure condition (3.1.8) and consult the
remarks stated after Theorem 2 in [21].

• Considering the scalar case together with n = 2, Theorem 3.1.15 has
already been proven in [24] (see Theorem 1.3 therein).

Remark 3.1.18
We conjecture that the solvability of the problem I → min in W 1,1(Ω)M∩L2(Ω−
D)M crucially depends on the size of the ellipticity parameter µ: if we require
µ ∈ (1, 2), we can adjust the arguments from [24], proof of Theorem 1.3, for
overcoming the problem of non-reflexivity of the Sobolev space W 1,1(Ω)M . Here,
the restriction µ ∈ (1, 2) is considered for technical reasons. Unfortunately, this
strategy fails for µ > 2. Furthermore, as already outlined in [17], Theorem
4.39, p. 133, the choice µ > 3 seems to be critical. Thus, for large values of µ,
we then can consider suitable relaxed versions of the original problem, e.g., an
appropriate BV -variant by using the notion of a convex function of a measure
or passing to the associated dual variational problem (we refer the reader to the
second chapter of this thesis).

At the final stage we proceed by discussing full interior C1,α-regularity of
the unique I-minimizer u being of class W 1,1(Ω)M ∩ L∞(Ω)M . Considering
the scalar case M = 1 together with n = 2 and underlying the assumptions
of Theorem 3.1.15 (in particular we assume that the density F is µ-elliptic
with some prescribed parameter µ ∈ (1, 2)) it was first shown a strong partial
C1,β-regularity result for u on Ω for any β < 1 where the relatively closed set
Singu(Ω) of singular points of u in Ω is very small in a measuretheoretical sense
(see [24], Theorem 1.4). To become more precise, it holds dimH(Singu(Ω)) = 0,
which, by definition, means that Hε(Singu(Ω)) = 0 for any ε > 0. For estab-
lishing this kind of almost everywhere regularity of u, the idea was to use the
well-known technique of Frehse and Seregin (see [87]) for proving first the conti-
nuity of DF (∇u) =: σ in the interior of Ω. In a second step, “almost everywhere
inversion “, by applying (DF )−1 to σ(x) for points x from a suitable subset Ω
then leads to the continuity of ∇u apart from a singular set with vanishing
Hausdorff-dimension.
Afterwards, in the joint paper [27] with M. Bildhauer and M. Fuchs, a substan-
tial improvement of the above partial regularity result for I-minimizers u has
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been established in the sense that it is possible to rule out interior singularities,
i.e., to prove u ∈ C1,α(Ω) for any α ∈ (0, 1) (see [27], Theorem 2).
For proving full interior C1,α-regularity of u we used modified DeGiorgi-type
arguments based on a variant of Caccioppoli’s inequality.

Inspired by the result obtained in [27] we concentrate on the following nat-
ural questions that might arise:

• Is it possible to establish C1,α-interior differentiability for the unique I-
minimizer u from Theorem 3.1.15 in the scalar case together with n ≥ 3?

• Does an analogous result hold in the vectorial case and what kind of
assumptions do we have to impose on the given data as well as on the
density F?

It turns out that we can give a positive answer to the above questions under
rather natural assumptions on the data and on F . However, if we are concerned
with vector-valued problems, a structure condition on the density F being in
the spirit of (3.1.11) is sufficient for proving Lipschitz regularity of minimizers
but it seems to be too weak in order to derive everywhere C1-regularity of
generalized minimizers. Therefore we suppose that in addition to (3.1.15) there
are constants K and 0 < α < 1 such that for all Z, Z̃ ∈ RnM

F (Z) = g(|Z|2), g ∈ C2([0,∞), [0,∞)), (3.1.15)

|D2F (Z)−D2F (Z̃)| ≤ K|Z − Z̃|α, (3.1.16)

where the structure condition (3.1.15) is considered for technical reasons.
A non-standard example of class C2(RnM ) which satisfies (3.1.6) as well as
(3.1.7) with the prescribed parameter µ > 1 and fulfills the above conditions
(3.1.15) as well as (3.1.16) is given by the density

Φ̃µ(Z) :=

√
ε+|Z|2∫
0

s∫
0

(1 + r)−µdrds, ε > 0. (3.1.17)

Taking into account Lemma 3.1.3 (ii), Φ̃µ(Z) is therefore of linear growth (note

that we have DΦ̃µ(0) = 0).
Additionally, based on (3.1.13), we can state

lim
µ→∞

(µ− 1)Φ̃µ(Z) =
√
ε+ |Z|2, ε > 0. (3.1.18)

Note that the choice of ε > 0 gives some additional flexibility for approximating
the TV-density.

At this point we formulate one of the main results of this thesis. Note that
the validity of this result crucially relies on the smallness of the ellipticity pa-
rameter µ.
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Theorem 3.1.19
Suppose that we have (3.1.3) and (3.1.4) for the data. Further we assume that
F satisfies (3.1.5)–(3.1.7) for some µ ∈ (1, 2). In addition we require that
(3.1.15) and (3.1.16) are true in the vector-valued setting M > 1. Then it holds
u ∈ C1,α(Ω)M for any 0 < α < 1 where u is the solution from Theorem 3.1.15.

Let us give some comments on Theorem 3.1.19.

Remark 3.1.20
Recalling Theorem 2.1.7 from the second chapter we know that the dual prob-
lem associated to “I → min“ with I from (3.1.1) admits a unique solution
σ ∈ L∞(Ω)nM satisfying the duality relation σ(x) = DF (∇au(x)) for Ln-a.a.
x ∈ Ω, where u denotes any K-minimizer with K from (3.1.2). Assuming the
assumptions of Theorem 3.1.19 from above, in particular we require µ ∈ (1, 2),
we immediately get the relation σ = DF (∇u), where u denotes the unique I-
minimizer being of class C1,α(Ω)M for any α ∈ (0, 1). Thus, σ is of class
C0,α(Ω)nM for any α ∈ (0, 1).

Remark 3.1.21 • One cannot overemphasize the importance of the small-
ness condition µ ∈ (1, 2) imposed on the parameter µ. Furthermore we
remark that the bound on the ellipticity parameter µ in Theorem 3.1.19
is not depending on the dimension n. In addition, we conjecture that the
limit µ = 2 serves as an optimal choice in Theorem 3.1.19 (as well as The-
orem 3.1.15) in the presence of the inpainting quantity

∫
Ω−D

|w − f |2dx.

• It is easy to check that the results stated in this section also hold if D =
∅ (“pure denoising of f“). Applying minor adjustments, the results of
Theorem 3.1.15 as well as Theorem 3.1.19 remain valid in the case that
an additional boundary condition as u = u0 on ∂Ω is involved as well.
Here u0 denotes a sufficiently regular function satisfying in addition u0 ∈
L∞(Ω)M .

• Note that no topological assumptions are imposed on D in Theorem 3.1.15
and Theorem 3.1.19.

Remark 3.1.22
Considering the vectorial situation we have to rely on the conditions (3.1.15)
and (3.1.16) for F . However, we merely need structure condition (3.1.15) for
establishing local Lipschitz continuity of the unique I-minimizer u and there-
with local apriori gradient bounds of u. In order to improve the local Lipschitz
continuity of u to C1,α-interior differentiability of u we additionally make use
of the Hölder condition (3.1.16) on D2F . We refer the reader to Section 3.5.2
for more details.

Remark 3.1.23
Let us take a short look at the essential difference in the arguments between the
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cases n = 2 and n ≥ 3: as usual, our strategy is to investigate a suitable approx-
imation of our original problem by a sequence of more regular problems admit-
ting smooth solutions with useful convergence properties towards our designated
minimizer u (we refer to the regularization stated in Section 2.4). Denoting
the unique solution of the regularized problem by uδ being of class W 1,2(Ω) (for
details we refer to Section 2.4) and following the lines of the proof of Theo-
rem 3.1.15 in this thesis it is proven that the function ϕδ := (1 + |∇uδ|)1−µ

2

(µ ∈ (1, 2)) is of class W 1,2
loc (Ω)M uniformly in δ. Setting n = 2, Sobolev’s

embedding theorem then immediately implies ∇uδ ∈ Lploc(Ω)2M uniformly in δ
for any finite exponent p and this result serves as a main ingredient for carry-
ing out a De Giorgi-type iteration that provides local uniform apriori gradient
bounds of uδ. Considering n ≥ 3, Sobolev’s embedding theorem merely yields
local uniform Lp-estimates of ∇uδ for all 1 ≤ p ≤ 2n

n−2 and it turns out that
this initial integrability of ∇uδ does not suffice for performing De Giorgi-type
arguments (we refer to Remark 3.5.9). Thus, in the final analysis, our major
effort is to establish higher local uniform (in δ) integrability of ∇uδ. Having this
result at hand we more or less can adopt the procedure from [27], Theorem 2, in
order to prove local uniform (in δ) apriori gradient bounds of uδ and therewith
local Lipschitz continuity of the unique I-minimizer u by applying the theorem
of Arzelà-Ascoli.

Remark 3.1.24
Applying minor adjustments it is worth remarking that Theorem 3.1.15 and
Theorem 3.1.19 extend to generalized Kζ-minimizers (with Kζ from (3.1.14))
with 1 < ζ <∞. We emphasize that we crucially need the restriction µ ∈ (1, 2)
on the ellipticity parameter µ.

The rest of this chapter is organized as follows: in Section 3.2 we will discuss
a maximum principle for generalized I-minimizers whereas in Section 3.3 we
prove partial regularity of generalized I-minimizers. Section 3.4 is devoted to
the proof of Theorem 3.1.15 while in Section 3.5 we show Theorem 3.1.19.
Section 3.5 itself is divided into two subsections: the first part and therewith
Section 3.5.1 is concerned with the proof of Theorem 3.1.19 in the scalar case
M = 1 while the goal of the second part and therewith of Section 3.5.2 is to
show Theorem 3.1.19 in the vectorial setting M > 1.

3.2 A maximum principle for generalized minimiz-
ers. Proofs of Theorem 3.1.4 and Theorem 3.1.5

Let us first consider the vectorial case M > 1 and assume the validity of the
hypotheses of Theorem 3.1.4. For proving Theorem 3.1.4 we basically follow
[21], proof of Theorem 1. However, we cannot directly quote Theorem 1 in
this reference since this result was given in another setting (for instance, some
boundary data u0 were included there).

69



CHAPTER 3. REGULARITY RESULTS

We denote by u ∈ BV (Ω)M ∩ L2(Ω −D)M an arbitrary K-minimizer with K
from (3.1.2). By minimality we have

K[u] ≤ K[w] (3.2.1)

for all w ∈ BV (Ω)M ∩ L2(Ω−D)M . Setting L := sup
Ω−D
|f | we now consider the

projection

H : R
M → R

M

y 7→
{
y, |y| ≤ L
L y
|y| , |y| > L

and define v := H ◦ u. In particular, H is Lipschitz continuous with Lipschitz
constant Lip(H) = 1.
Quoting Lemma 2.2.1 from Section 2.2.1 it holds v ∈ BV (Ω)M and we get the
important inequality

|∇v| ≤ Lip(H)|∇u| = |∇u|, (3.2.2)

i.e., |∇v|(E) ≤ |∇u|(E) for any Borel set E ⊂ Ω.
Further,

|v − f |2 ≤ |u− f |2 a.e. on Ω−D, (3.2.3)

which is immediate on {x ∈ Ω −D, |u(x)| ≤ L}. On {x ∈ Ω −D, |u(x)| > L},
(3.2.3) is a consequence of the inequality (|u| − L)2 ≥ 0.

As the next step we define the functional K̃ through (note that c := lim
t→∞

Φ(t)
t

exists in (0,∞) since Φ is of linear growth)

K̃[w] :=

∫
Ω

Φ(|∇aw|)dx+ c|∇sw|(Ω)

being well-defined for functions w ∈ BV (Ω)M .
Using the theorem of Besicovitch (see, e.g., [7], Theorem 2.22, p.54) it follows
by virtue of (3.2.2) for Ln-a.a. x ∈ Ω

|∇av(x)| = lim
ρ↓0

|∇v|(Bρ(x))

Ln(Bρ(x))
≤ lim

ρ↓0

|∇u|(Bρ(x))

Ln(Bρ(x))
= |∇au(x)|.

Since Φ is increasing we additionally obtain∫
Ω

Φ(|∇av|)dx ≤
∫
Ω

Φ(|∇au|)dx. (3.2.4)

In accordance with [7], Proposition 3.92 (a), p.184, we may write for functions
w ∈ BV (Ω)M

∇sw = ∇wxSw, Sw :=

{
x ∈ Ω : lim

ρ↓0

|∇w|(Bρ(x))

Ln(Bρ(x))
=∞

}
, (3.2.5)
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where thanks to (3.2.2) it holds

Sv ⊂ Su, (3.2.6)

since |∇v|(Bρ(x)) ≤ |∇u|(Bρ(x)). Combining (3.2.2), (3.2.5) and (3.2.6) we
obtain

|∇sv|(Ω) = |∇v|(Sv) ≤ |∇u|(Sv) ≤ |∇u|(Su) = |∇su|(Ω). (3.2.7)

Hence, recalling the definition of K̃ and using (3.2.3), (3.2.4) as well as (3.2.7)
together with (3.2.1) we then get

K[u] = K[v]

being only possible if (recall (3.2.3), (3.2.4) and (3.2.7) again)∫
Ω

Φ(|∇au|)dx =

∫
Ω

Φ(|∇av|)dx, (3.2.8)

|∇su|(Ω) = |∇sv|(Ω), (3.2.9)∫
Ω−D

|v − f |2dx =

∫
Ω−D

|u− f |2dx. (3.2.10)

From (3.2.10) we infer u = v a.e. on Ω −D by strict convexity. Incorporating
(3.2.8), |∇av| ≤ |∇au| and the properties of the function Φ we arrive at

|∇au| = |∇av| Ln − a.e. on Ω. (3.2.11)

Further, by exploiting (3.2.2) and (3.2.6) we get for any Borel set E ⊂ Ω

|∇sv|(E) = |∇v|(Sv ∩ E) ≤ |∇u|(Su ∩ E) = |∇su|(E). (3.2.12)

On account of (3.2.9) it follows by using (3.2.12) with E replaced by Ω− E

|∇sv|(E) = |∇sv|(Ω)− |∇sv|(Ω− E) ≥ |∇sv|(Ω)− |∇su|(Ω− E)

= |∇su|(Ω)− |∇su|(Ω− E) = |∇su|(E).

Altogether we have shown

|∇su| = |∇sv|. (3.2.13)

Now we suppose that

Ln
(
{x ∈ Ω : ∇au(x) 6= ∇av(x)}

)
> 0. (3.2.14)

From (3.2.14) we may conclude∫
[∇au6=∇av]

(|∇au|+ |∇av| − |∇au+∇av|)dx > 0, (3.2.15)
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since otherwise
|∇au+∇av| = |∇au|+ |∇av|

a.e. on [∇au 6= ∇av] and as a consequence

∇au = λ∇av

on this set where λ is a non-negative function. By virtue of (3.2.11) it must
hold λ = 1 which is a contradiction.
Applying the properties of Φ we obtain from (3.2.15)∫

Ω

Φ

(∣∣∣∣∇a(u+ v

2

)∣∣∣∣)dx < ∫
Ω

Φ

(
1

2
|∇au|+ 1

2
|∇av|

)
dx

≤ 1

2

∫
Ω

Φ(|∇au|)dx+
1

2

∫
Ω

Φ(|∇av|)dx

and since |∇s(u+ v)| ≤ |∇su|+ |∇sv| we get from (3.2.11), (3.2.13) and u = v
a.e. on Ω−D

K

[
u+ v

2

]
< K[u]. (3.2.16)

Observing that u+v
2 is an element of the space BV (Ω)M ∩L2(Ω−D)M it follows

that the strict inequality contradicts the minimizing property of u and as a
consequence, the assumption (3.2.14) is wrong which implies

∇au = ∇av Ln − a.e. on Ω. (3.2.17)

As the next step we justify ∇su = ∇sv |∇su|-a.e. To this purpose we consider
the measure µ := |∇su| and thanks to (3.2.13) we find µ-measurable functions
θu, θv : Ω→ R

nM with |θu| = 1 = |θv| µ-a.e. as well as

∇su = θuxµ, ∇sv = θvxµ. (3.2.18)

Supposing that ∣∣∣∣∇s(u+ v

2

)∣∣∣∣(Ω) < |∇su|(Ω), (3.2.19)

we obtain by virtue of (3.2.17) and u = v a.e. on Ω−D

K

[
u+ v

2

]
=

∫
Ω

Φ(|∇au|)dx+ c

∣∣∣∣∇s(u+ v

2

)∣∣∣∣(Ω) +

∫
Ω−D

|u− f |2dx

< K[u]

which again contradicts the K-minimality of u. Consequently we have in place
of (3.2.19) ∣∣∣∣ ∫

Ω

1

2
(θu + θv)dµ

∣∣∣∣ = µ(Ω),
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thus

µ(Ω) ≤ 1

2

∫
Ω

|θu + θv|dµ ≤
1

2

∫
Ω

(|θu|+ |θv|)dµ = µ(Ω),

which gives

|θu + θv| = |θu|+ |θv| µ− a.e.

Therefore we may write

θu = λ̃θv

where λ̃ is a non-negative and µ-measurable function. Recalling |θu| = 1 = |θv|
we conclude λ̃ = 1, which means θu = θv µ-a.e. Taking into account (3.2.18)
it then follows ∇su = ∇sv and using (3.2.17) we obtain ∇u = ∇v. Recalling
u = v a.e. on Ω−D and quoting [7], Proposition 3.2, p.118 (recall (3.1.3)) we
finally have u = v a.e. on Ω and in conclusion

sup
Ω
|u| ≤ L

completing the proof of Theorem 3.1.4. �

For the sake of completeness let us look at the corresponding maximum princi-
ple in the scalar case M = 1. Here we basically follow the procedure carried out
in [21], proof of Theorem 2. However, we cannot directly quote Theorem 2 in
this reference since this result was given in another setting. The claim follows
if we can show that any solution u ∈ BV (Ω) ∩ L2(Ω−D) of

K[w] = K̂[w] +
λ

2

∫
Ω−D

|w − f |2dx→ min in BV (Ω) ∩ L2(Ω−D)

with

K̂[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|,

satisfies 0 ≤ u(x) ≤ 1 a.e. in Ω. In the following we sketch the proof of the
validity of u ≥ 0 a.e. in Ω for any K-minimizer u: setting ψ(t) := max{0, t},
t ∈ R, and recalling the chain rule for real-valued functions (see equation (2.2.2)
in Section 2.2.1) we get v := ψ ◦ u ∈ BV (Ω) together with

∇v = ψ′(u)∇auxLn + (ψ(u+)− ψ(u−))νuHn−1xJu + ψ′(ũ)∇cu.

Here, our notation follows the terminology of Section 2.2.1 in this thesis. From
0 ≤ f(x) ≤ 1 a.e. on Ω −D it is immediate that |ψ(w) − f | ≤ |w − f | a.e. on
Ω−D for any w ∈ BV (Ω)∩L2(Ω−D). Moreover, using the arguments of [21],
proof of Theorem 2, where we start with (26) in this reference we get

K̂[v] = K̂[u], (3.2.20)∫
Ω−D

|v − f |2dx =

∫
Ω−D

|u− f |2dx, (3.2.21)
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where we crucially use the K-minimality of u. Clearly, (3.2.21) gives v = u a.e.
on Ω−D. Following again the arguments as applied in [21], proof of Theorem
2, starting with (31) in this reference we can derive ∇v = ∇u a.e. on Ω from
the identity (3.2.20). Quoting [7], Proposition 3.2, p.118, again we conclude
u = v a.e. on Ω and therewith u ≥ 0 a.e. on Ω. For deriving u ≤ 1 a.e. on Ω
we replace ψ(t) through ψ̃(t) := min{t, 1}, t ∈ R, and argue in the same manner
as above. This completes the proof of Theorem 3.1.5 as well. �

3.3 Partial C1, 12 -regularity of generalized minimizers.
Proof of Theorem 3.1.9

Let us assume the validity of the hypotheses of Theorem 3.1.9 and denote by
u ∈ BV (Ω)M ∩ L2(Ω − D)M a generalized I-minimizer which, by Theorem
3.1.4, is of class L∞(Ω)M as well. For proving Theorem 3.1.9 we benefit from
Corollary 3.3 in [86] choosing p = 2 in this reference. In order to justify the
application of this corollary to our setting we first formulate a proposition which
shows that we are actually in the situation of [86].

Proposition 3.3.1
Under the hypotheses of Theorem 3.1.9 it holds:

(a) for all P ∈ RnM the density F satisfies (H1)-(H4) in [86] (see Section 2 in
this reference);

(b) setting g : Ω × RM → R, g(x, y) := λ
21Ω−D|y − f(x)|2 the following state-

ments hold true:

(i) g is a Borel function;

(ii) g satisfies a Hölder condition in the following sense: for a positive
constant C we have the estimate

|g(x, y1)− g(x, y2)| ≤ C(|f(x)|+ |y1|+ |y2|)|y2 − y1| (3.3.1)

for all x ∈ Ω, y1, y2 ∈ RM .

Proof of Proposition 3.3.1. In accordance with the hypotheses of Theorem 3.1.9
we state that the density F satisfies (3.1.5), (3.1.6) as well as (3.1.7). For proving
assertion (a) we note that on account of (3.1.7) we deal with the non-degenerate
case. Quoting Remark 2.6 in [86] we then choose p = 2 in this reference and as
a consequence (H2), (H3) as well as (H4) in [86] correspond to the requirement
that F is of class C2(RnM ) with D2F (P ) > 0 for all P ∈ RnM . Thus, F satisfies
(H2)-(H4) by recalling (3.1.7). Furthermore, F fulfills (H1) since F is (strictly)
convex on R

nM (see (3.1.7) again) and of linear growth.
In order to verify the statements of part (b) we first remark that assertion
(b), (i) is immediate whereas a straight-forward calculation shows that (3.3.1)
holds.
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Recalling (3.1.4) (note that we identify f with its zero-extension to Ω) and
u ∈ L∞(Ω)M (see Theorem 3.1.4) it follows

|u|, |f | ∈ Ln,αn(Ω) (3.3.2)

for any number α ∈ (0, 1] in the context of the so-called Morrey spaces (see,
e.g., [86], Definition 4.9). Note that the choice α = 1 in (3.3.2) is optimal since
it holds Ln,αn(Ω) = {0} for α > 1.
Hence, all hypotheses from Corollary 3.3 in [86] are satisfied with optimal value
α = 1 and it follows that for each generalized I-minimizer u from the space
BV (Ω)M ∩ L2(Ω − D)M there exists an open subset Ωu

0 of Ω such that u ∈
C1, 1

2 (Ωu
0)M together with Ln(Ω− Ωu

0) = 0. This proves Theorem 3.1.9. �

Remark 3.3.2
We conjecture that the choice of the Hölder exponent γ = 1

2 is not optimal
although in the context of Corollary 3.3 in [86], this choice seems to be optimal.
Moreover, w.r.t. the results of [9] we are not sure whether one actually needs the
structure condition (3.1.8) for the density F in order to prove almost everywhere
regularity of arbitrary K-minimizers. However, due to the presence of the data
fitting term, it is not possible to refer to , e.g., Theorem 1.1 in [9] and adding
some obvious modifications.

3.4 Existence and uniqueness of weak minimizers in
W 1,1 for µ ∈ (1, 2) Proof of Theorem 3.1.15

Let us assume the validity of the hypotheses of Theorem 3.1.15. In particular we
emphasize that we will crucially make use of the requirement µ ∈ (1, 2) imposed
on the ellipticity parameter µ > 1. First of all, we pursue the common strategy
and approximate our original problem“I → min in W 1,1(Ω)M∩L2(Ω−D)M“ by
a sequence of more regular problems. Precisely we are going to regularize the
energy density F as already done in the proof of Theorem 2.1.6 (see Section
2.4), i.e., for fixed δ ∈ (0, 1] we consider the problem

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω

|w − f |2dx→ min in W 1,2(Ω)M , (3.4.1)

where Fδ(P ) := δ
2 |P |

2 + F (P ), P ∈ R
nM . As already proven in Section 2.4,

problem (3.4.1) admits a unique solution uδ of class W 1,2(Ω)M with suitable
convergence properties for δ → 0. A first collection of uniform (in δ) estimates
of uδ can be found in Lemma 2.4.1 from Section 2.4. Under the (much) stronger
hypotheses of Theorem 3.1.15 we now state a maximum principle being in the
spirit of of Theorem 3.1.4 as well as a useful local higher weak differentiability
property of uδ. A proof of this lemma can be found in the appendix of this
thesis (see Lemma 7.1.1).
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Lemma 3.4.1
The unique Iδ-minimizer uδ satisfies

(a) sup
Ω
|uδ| ≤ sup

Ω−D
|f |,

(b) uδ ∈W 2,2
loc (Ω)M .

Remark 3.4.2
The reader should note that Lemma 3.4.1 remains valid under weaker hypotheses
on F . Furthermore, in the scalar case M = 1, we can show 0 ≤ uδ ≤ 1 a.e. on
Ω provided that we assume w.l.o.g. that f : Ω −D → R takes almost all of its
values in the interval [0, 1].

In order to prove Theorem 3.1.15 we proceed similiar to the proof of Theorem
1.3 in [24]. Thanks to the restriction µ ∈ (1, 2) it is possible to show the
following uniform (in δ) statement of uδ which will be of crucial meaning during
the further proof.

Lemma 3.4.3
It holds uδ ∈W 1,2

loc (Ω)M uniformly in δ.

Proof of Lemma 3.4.3. First of all we observe that uδ solves the Euler equation∫
Ω

DFδ(∇uδ) : ∇ϕdx+ λ

∫
Ω−D

(uδ − f) · ϕdx = 0 (3.4.2)

for all ϕ ∈ C∞0 (Ω)M . Quoting Lemma 3.4.1, uδ is of class W 2,2
loc (Ω)M . Further-

more, since |D2Fδ| is bounded, DFδ(∇uδ) is of class W 1,2
loc (Ω)nM having partial

derivatives

∂γ(DFδ(∇uδ)) = D2Fδ(∇uδ)(∂γ∇uδ, ·) a.e. on Ω

where γ ∈ {1, . . . , n}. Observing that ∂γϕ serves as an admissible choice in the
Euler equation (3.4.2) and performing an integration by parts we arrive at the
differentiated Euler equation∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ϕ)dx = λ

∫
Ω−D

(uδ − f) · ∂γϕdx (3.4.3)

for all ϕ ∈ C∞0 (Ω)M and by approximation, (3.4.3) remains valid for functions
ϕ ∈W 1,2(Ω)M having compact support in Ω.

Next, we fix a point x0 ∈ Ω, a radius R > 0 such that B2R(x0) b Ω and
let η ∈ C∞0 (B2R(x0)) with η ≡ 1 on BR(x0), 0 ≤ η ≤ 1 and |∇η| ≤ c

R .
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As a consequence, ϕ := η2∂γuδ is admissible in (3.4.3) and it follows (from now
on summation w.r.t. γ)

I0 :=

∫
B2R(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2dx

= −2

∫
B2R(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ ⊗∇η)ηdx

+ λ

∫
B2R(x0)−D

(uδ − f) · ∂γϕdx =: I1 + λI2.

(3.4.4)

Considering I1 we get by using the Cauchy-Schwarz inequality and Young’s
inequality (ε > 0)

|I1| ≤ εI0 + cε−1

∫
B2R(x0)

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)dx. (3.4.5)

Studying I2 an integration by parts gives

I2 =

∫
B2R(x0)

(uδ − f) · ∂γ(η2∂γuδ)dx−
∫

B2R(x0)∩D

(uδ − f) · ∂γ(η2∂γuδ)dx

= −
∫

B2R(x0)

|∇uδ|2η2dx−
∫

B2R(x0)

f · ∂γ(η2∂γuδ)dx

−
∫

B2R(x0)∩D

(uδ − f) · ∂γ(η2∂γuδ)dx.

(3.4.6)

Putting together (3.4.5) as well as (3.4.6) and absorbing terms (we choose ε > 0
sufficiently small), (3.4.4) turns into (recall (3.1.4) and Lemma 3.4.1)∫

B2R(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2dx+ λ

∫
B2R(x0)

|∇uδ|2η2dx

≤ c
∫

B2R(x0)

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)dx+ c

∫
B2R(x0)

η2|∇2uδ|dx

+ c

∫
B2R(x0)

|∇uδ|η|∇η|dx.

(3.4.7)

From (3.4.7) it follows by using (3.1.7)∫
B2R(x0)

η2 |∇2uδ|2

(1 + |∇uδ|2)
µ
2

dx+ cλ

∫
B2R(x0)

|∇uδ|2η2dx
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≤ c
∫

B2R(x0)

[(1 + |∇uδ|2)−
1
2 + δ]|∇uδ|2|∇η|2dx+ c

∫
B2R(x0)

η2|∇2uδ|dx

+ c

∫
B2R(x0)

|∇uδ|η|∇η|dx

≤ c(R) + c

∫
B2R(x0)

η2|∇2uδ|dx,

where the last inequality is a consequence of the uniform estimate Iδ[uδ] ≤ I[0]
(recall Lemma 2.4.1) and of the linear growth of F .
Next, Young’s inequality (ε > 0) implies

c

∫
B2R(x0)

η2|∇2uδ|dx

≤ ε
∫

B2R(x0)

η2 |∇2uδ|2

(1 + |∇uδ|2)
µ
2

dx+ cε−1

∫
B2R(x0)

η2(1 + |∇uδ|2)
µ
2 dx.

Absorbing terms by choosing ε > 0 sufficiently small we have∫
B2R(x0)

η2 |∇2uδ|2

(1 + |∇uδ|2)
µ
2

dx+ c

∫
B2R(x0)

|∇uδ|2η2dx

≤ c(R) + c

∫
B2R(x0)

η2(1 + |∇uδ|2)
µ
2 dx.

(3.4.8)

Recalling µ < 2 at this point and setting p := 2
µ > 1 as well as q := 2

2−µ > 1 we

get by exploiting Young’s inequality (ε > 0) once again (note 1
p + 1

q = 1)

c

∫
B2R(x0)

η2(1 + |∇uδ|2)
µ
2 dx

≤ ε
∫

B2R(x0)

η2(1 + |∇uδ|2)dx+ cε
µ
µ−2

∫
B2R(x0)

η2dx.

(3.4.9)

Choosing ε > 0 sufficiently small again in (3.4.9) it finally follows from (3.4.8)
(recall η ≡ 1 on BR(x0))∫

BR(x0)

|∇2uδ|2

(1 + |∇uδ|2)
µ
2

dx+

∫
BR(x0)

|∇uδ|2dx ≤ c(R), (3.4.10)

where c(R) represents a local constant independent of δ. This proves the claim
of Lemma 3.4.3 after using a covering argument.

78



3.4. EXISTENCE AND UNIQUENESS OF W 1,1-MINIMIZERS

Remark 3.4.4
Setting ϕδ := (1 + |∇uδ|)1−µ

2 we get from (3.4.10)∫
BR(x0)

|∇ϕδ|2dx ≤ c(R) (3.4.11)

with a local constant not depending on δ. Using a covering argument we obtain
ϕδ ∈ W 1,2

loc (Ω) uniformly in δ. If n = 2, an application of Sobolev’s embedding
theorem then implies ϕδ ∈ Lploc(Ω) uniformly in δ for any finite p which means
∇uδ ∈ Lploc(Ω)nM uniformly in δ for any finite p. In case n ≥ 3, Sobolev’s
embedding theorem merely gives ∇uδ ∈ Lqloc(Ω)nM uniformly in δ for any 1 ≤
q ≤ 2n

n−2 .

Having the auxiliary result of Lemma 3.4.3 at hand we now proceed with
the proof of Theorem 3.1.15: quoting Theorem 2.1.6 (see Section 2.4) there
exists a function u ∈ BV (Ω)M with uδ →: u in L1(Ω)M (and a.e. on Ω)
at least for a subsequence (not relabeled). Thanks to Lemma 3.4.3 we may
conclude u ∈ W 1,2

loc (Ω)M , i.e. it actually holds u ∈ W 1,1(Ω)M by remarking

that BV (Ω)M ∩W 1,2
loc (Ω)M is a subspace of W 1,1(Ω)M . Further we can arrange

uδ ⇁ u in L2(Ω−D)M by passing to another subsequence (recall the uniform
estimate Iδ[uδ] ≤ I[0] once again), thus u ∈W 1,1(Ω)M ∩L2(Ω−D)M , i.e., I[u]
is well-defined.

Now, our goal is to show that u is I-minimizing: based on the convergence
uδ ⇁ u in W 1,2

loc (Ω)M for a subsequence we obtain∫
ω∩(Ω−D)

|u− f |2dx ≤ lim inf
δ→0

∫
ω∩(Ω−D)

|uδ − f |2dx (3.4.12)

as δ → 0 for compact subregions ω of Ω.
Moreover, it holds ∇uδ ⇁ ∇u in L2

loc(Ω)nM and obviously, this convergence
is also valid in L1

loc(Ω)nM . Quoting well-known results about (weak) lower
semicontinuity (see, e.g., [57], Theorem 2.3, p.18 or [2]) we may deduce∫

ω

F (∇u)dx ≤ lim inf
δ→0

∫
ω

F (∇uδ)dx. (3.4.13)

Combining (3.4.12) and (3.4.13) it follows∫
ω

F (∇u)dx+

∫
ω∩(Ω−D)

|u− f |2dx

≤ lim inf
δ→0

[ ∫
ω

F (∇uδ)dx+

∫
ω∩(Ω−D)

|uδ − f |2dx
]
.

Considering a compact exhaustion of Ω and using 1ω → 1Ω a.e. on Ω we
immediately get

I[u] ≤ lim inf
δ→0

I[uδ]. (3.4.14)
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Thanks to the Iδ-minimality of uδ in W 1,2(Ω)M it follows from (3.4.14)

I[u] ≤ lim inf
δ→0

I[uδ] ≤ lim inf
δ→0

Iδ[uδ] ≤ lim inf
δ→0

Iδ[v] = I[v]

where v ∈W 1,2(Ω)M .
Applying Lemma 2.2.4 we can find a sequence (vk) ⊂ W 1,2(Ω)M satisfying
vk → w in W 1,1(Ω)M∩L2(Ω−D)M . As a consequence we finally get I[u] ≤ I[w]
for all w ∈ W 1,1(Ω)M ∩ L2(Ω − D)M , i.e,. u is an I-minimizer being of class
W 1,1(Ω)M ∩ L2(Ω−D)M .

To face the uniqueness problem, let ũ denote a second I-minimizing function
from the space W 1,1(Ω)M ∩L2(Ω−D)M . By strict convexity it holds ∇u = ∇ũ
a.e. on Ω together with u = ũ a.e. on Ω−D. Thus, it follows u = ũ+ c a.e. on
Ω for a suitable constant c. Quoting (3.1.3) we directly conclude c = 0.

For proving the maximum principle we use Lemma 3.4.1 (a), together with the
a.e.-convergence uδ → u on Ω. Besides we get u ∈ W 1,2

loc (Ω)M by construction.
This completes the proof of Theorem 3.1.15. �

Remark 3.4.5
Note that for the unique I-minimizer u ∈ W 1,1(Ω)M ∩ L2(Ω − D)M we addi-
tionally obtain ∇u ∈ Lqloc(Ω)nM for any 1 ≤ q ≤ 2n

n−2 for n ≥ 3 by applying

Sobolev’s embedding theorem (recall u ∈W 1,2
loc (Ω)M ).

Remark 3.4.6
Based on the uniqueness of uδ and u we can state that it holds

Iδ[uδ]→ I[u],

δ

∫
Ω

|∇uδ|2dx→ 0,

uδ → u in L1(Ω)M ,

uδ ⇁ u in W 1,2
loc (Ω)M

as δ → 0 not only for a subsequence.

3.5 Full interior C1,α-regularity of the W 1,1-minimizer.
Proof of Theorem 3.1.19

Let us assume the validity of the hypotheses of Theorem 3.1.19. For proving
Theorem 3.1.19 we first discuss the scalar case M = 1 (see Section 3.5.1 below),
where we can avoid using the additional conditions (3.1.15) and (3.1.16) imposed
on F . Taken the arguments in the scalar case as a basis we investigate the
vector-valued case afterwards (see Section 3.5.2 below).
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3.5.1 Proof of Theorem 3.1.19: the scalar case

Let us suppose the validity of (3.1.3) and assume that we are given a function
f : Ω −D → R taking its values in the closed interval [0, 1]. As already men-
tioned in Remark 3.1.7, f(x) can be seen as a measure for the intensity of the
grey level at x ∈ Ω−D. Moreover, the density F shall fulfill (3.1.5)–(3.1.7) for
some µ ∈ (1, 2). For the sake of a better overview we will split this section into
four parts: regularization and local uniform apriori Lp-estimates, Caccioppoli-
type inequality, De Giorgi-type iteration and the conclusions.

Step 1. Regularization and local uniform apriori Lp-estimates

We consider the regularization as given in the proof of Theorem 3.1.15 (see
Section 3.3) and in the proof of Theorem 2.1.6 (see Section 2.4), respectively.
Thus, with δ ∈ (0, 1] being fixed, we denote by uδ the unique minimizer of

Iδ[w] :=
δ

2

∫
Ω

|∇w|2dx+ I[w], w ∈W 1,2(Ω).

In accordance with Lemma 3.4.1 and Remark 3.4.2, respectively, we can state

0 ≤ uδ ≤ 1 a.e. on Ω, (3.5.1)

uδ ∈W 2,2
loc (Ω). (3.5.2)

Quoting elliptic regularity theory (see, e.g., [62]) we additionally obtain (for a
proof we refer to the appendix of this thesis)

uδ ∈ C1,α(Ω) for any α ∈ (0, 1), (3.5.3)

which implies the important apriori information uδ ∈W 1,∞
loc (Ω).

Once again we remember the following uniform estimates (recall Iδ[uδ] ≤ I[0]
and Fδ(P ) = δ

2 |P |
2 + F (P ), P ∈ Rn)∫
Ω

Fδ(∇uδ)dx ≤ c1,

∫
Ω−D

(uδ − f)2dx ≤ c2 (3.5.4)

for some positive, real numbers c1, c2. Further uδ solves the Euler equation∫
Ω

DFδ(∇uδ) · ∇ϕdx+ λ

∫
Ω−D

(uδ − f)ϕdx = 0 (3.5.5)

for all ϕ ∈W 1,2(Ω) that are compactly supported in Ω.
The first step is mainly devoted to the derivation of local uniform (in δ) Lp-
estimates of ∇uδ for any finite exponent p ∈ (1,∞). This result will serve as
an important tool for carrying out a De Giorgi-type iteration in step 3 of this
proof.
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Lemma 3.5.1
For any 1 < p < ∞ and for any ω b Ω there is a constant c(p, ω), which in
particular does not depend on δ, such that

‖∇uδ‖Lp(ω) ≤ c(p, ω) <∞. (3.5.6)

Proof of Lemma 3.5.1. At first we will establish a variant of Caccioppoli’s in-
equality being only valid for µ ∈ (1, 2). Here, we use arguments as already
applied in [17], Lemma 4.19 (i), pp.108, where we include the inpainting quan-
tity that leads to severe difficulties. This version of Caccioppoli’s inequality
will be crucially used when performing an iteration argument afterwards which
finally gives uniform Lploc-gradient bounds of uδ for any finite p.

Lemma 3.5.2
For any s0 ≥ 0 there exists a real number c > 0 such that for all η ∈ C∞0 (Ω)
satisfying 0 ≤ η ≤ 1 and for any δ ∈ (0, 1) it holds∫

Ω

|∇2uδ|2Γ
s0−µ2
δ η2dx+ δ

∫
Ω

|∇2uδ|2Γs0δ η
2dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γs0δ dx,

(3.5.7)

where we have set Γδ := 1 + |∇uδ|2 and c, in particular, is independent of δ.

Proof of Lemma 3.5.2. We start by noting that the first inequality follows from
(3.1.7). For proving the second inequality we fix some number s0 > 0 (for the
case s0 = 0 we refer to Lemma 3.4.3). As already seen at the beginning of the
proof of Theorem 3.1.15 the Euler equation (3.5.5) yields∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ψ)dx = λ

∫
Ω−D

(uδ − f)∂γψdx (3.5.8)

for all ψ ∈W 1,2(Ω) with compact support in Ω.

With η as given above and by quoting uδ ∈ W 2,2
loc (Ω) ∩W 1,∞

loc (Ω) (see (3.5.2)
and (3.5.3)), ψ = η2∂γuδΓ

s0
δ is admissible in (3.5.8) (recall the product and the

chain rule for Sobolev functions). We then get (from now on summation w.r.t.
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γ ∈ {1, . . . , n}) ∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇Γδ)Γ
s0−1
δ η2dx

= −2

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

+ λ

∫
Ω−D

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx.

(3.5.9)

For the last integral on the r.h.s. of (3.5.9), we obtain∫
Ω−D

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx

=

∫
Ω

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx−

∫
Ω∩D

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx

= −
∫
Ω

|∇uδ|2η2Γs0δ dx−
∫
Ω

f∂γ(η2∂γuδΓ
s0
δ )dx

−
∫

Ω∩D

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx,

(3.5.10)

where the last equality follows by performing an integration by parts.

Moreover we have

s0

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇Γδ)Γ
s0−1
δ η2dx

=
s0

2

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx.

(3.5.11)

Incorporating (3.5.10) and (3.5.11) in (3.5.9), it follows∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+
s0

2

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx+ λ

∫
Ω

|∇uδ|2η2Γs0δ dx

= −2

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

− λ
∫
Ω

f∂γ(η2∂γuδΓ
s0
δ )dx− λ

∫
Ω∩D

(uδ − f)∂γ(η2∂γuδΓ
s0
δ )dx.

(3.5.12)
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An application of the inequality of Cauchy-Schwarz to the bilinear formD2Fδ(∇uδ)
and using Young’s inequality (ε > 0) subsequently, it holds

2

∣∣∣∣ ∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

∣∣∣∣
≤ 2

∫
Ω

(D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ))
1
2 (D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η))

1
2 ηΓs0δ dx

≤ ε
∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ 4ε−1

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx.

Recalling 0 ≤ uδ ≤ 1, 0 ≤ f ≤ 1 a.e. and absorbing terms by choosing ε = 1
2 ,

we see that∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ 2λ

∫
Ω

|∇uδ|2η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

η|∇η||∇uδ|Γs0δ dx

+ c

∫
Ω

η2|∇2uδ|Γs0δ dx+ c(s0)

∫
Ω

η2|∇uδ||∇Γδ|Γs0−1
δ dx

=: c

∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+
3∑
j=1

Ij .

(3.5.13)

Starting with I1 we again use Young’s inequality (we choose ε := λ) and get

I1 ≤ λ
∫
Ω

η2|∇uδ|2Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx. (3.5.14)

For I3 we obtain by noting |∇Γδ| ≤ c|∇uδ||∇2uδ|

I3 ≤ c(s0)

∫
Ω

η2|∇2uδ|Γs0δ dx. (3.5.15)

As a consequence of (3.5.15) the quantity I2 + I3 is bounded by the r.h.s. of
(3.5.15) and another application of Young’s inequality (ε > 0) to this integral
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leads to

c(s0)

∫
Ω

η2|∇2uδ|Γs0δ dx

≤ c(s0)

∫
Ω

[
εη2Γ

−µ
2

δ |∇
2uδ|2Γs0δ + ε−1η2Γ

s0+µ
2

δ

]
dx

≤ c(s0)

∫
Ω

[
cεD2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ + ε−1η2Γ

s0+µ
2

δ

]
dx,

(3.5.16)

where we used (3.1.7) in the last step.

Inserting (3.5.14) and (3.5.16) in (3.5.13) it follows by absorbing terms (we
choose ε > 0 sufficiently small)∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ c(s0)

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx+ c

∫
Ω

|∇uδ|2η2Γs0δ dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γ
s0+µ

2
δ dx.

(3.5.17)

Now, we investigate the last integral on the right-hand side of (3.5.17). Recalling
our assumption µ < 2 and setting p := 2

µ > 1 as well as q := 2
2−µ > 1 we get by

using Young’s inequality (ε > 0) one more time (observe 1
p + 1

q = 1)

c

∫
Ω

η2Γ
s0+µ

2
δ dx ≤ ε

∫
Ω

η2Γs0+1
δ dx+ cε

µ
µ−2

∫
Ω

η2Γs0δ dx.

Hence, absorbing terms, (3.5.17) yields∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ c

∫
Ω

D2Fδ(∇uδ)(∇Γδ,∇Γδ)Γ
s0−1
δ η2dx+ c

∫
Ω

|∇uδ|2η2Γs0δ dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γs0δ dx,

(3.5.18)

where c, in particular, does not depend on δ. Neglecting the non-negative second
and the non-negative third integral on the l.h.s. of (3.5.18) we immediately get
the desired variant of Caccioppoli’s inequality (3.5.7).
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Next, we are going to establish the local uniform (in δ) apriori Lp-estimates
of ∇uδ for any finite exponent p, where the variant of Caccioppoli’s inequality
stated in Lemma 3.5.2 plays a crucial role. To become more precise we adopt
the iteration argument from [17], pp.116 to our situation at hand which means
that we involve the data fitting term in our calculations.

Initially we fix a ball BR0(x0) b Ω where R0 > 0 denotes a real number being
sufficiently small. Next, we assume that there is a real number α0 ≥ 0 such
that

∫
BR0

(x0)

Γ
α0+ 1

2
δ dx+ δ

∫
BR0

(x0)

Γα0+1
δ dx ≤ c := c(R0, α0), (3.5.19)

where c in particular is a finite constant independent of δ. Note that (3.5.19)
is valid for α0 = 0 since we have

∫
BR0

(x0)

Γ
1
2
δ dx+ δ

∫
BR0

(x0)

Γδdx

≤
∫

BR0
(x0)

(1 + |∇uδ|)dx+ δ

∫
BR0

(x0)

Γδdx

≤ c
∫

BR0
(x0)

[1 + Fδ(∇uδ)]dx

≤ c(R0),

(3.5.20)

where the last inequality follows from the fact that
∫
Ω

Fδ(∇uδ)dx is uniformly

bounded in δ (compare (3.5.4)).

Now, we set α := α0 + 2 − µ and choose ϕ = η2Γαδ uδ where η ∈ C∞0 (BR0(x0))
satisfies 0 ≤ η ≤ 1, η ≡ 1 on BR0/2(x0) and |∇η| ≤ c

R0
. Inserting ϕ into (3.5.5)
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we obtain

0 =

∫
BR0

(x0)

DFδ(∇uδ) · ∇(η2Γαδ uδ)dx+ λ

∫
BR0

(x0)−D

(uδ − f)η2Γαδ uδdx

=

∫
BR0

(x0)

DF (∇uδ) · ∇(η2Γαδ uδ)dx+ δ

∫
BR0

(x0)

∇uδ · ∇(η2Γαδ uδ)dx

+ λ

∫
BR0

(x0)−D

(uδ − f)η2Γαδ uδdx

=

∫
BR0

(x0)

DF (∇uδ) · ∇uδ η2Γαδ dx+ 2

∫
BR0

(x0)

DF (∇uδ) · ∇η Γαδ ηuδdx

+ α

∫
BR0

(x0)

DF (∇uδ) · ∇Γδ η
2uδΓ

α−1
δ dx+ δ

∫
BR0

(x0)

|∇uδ|2η2Γαδ dx

+ 2δ

∫
BR0

(x0)

∇uδ · ∇η Γαδ uδηdx+ δα

∫
BR0

(x0)

∇uδ · ∇Γδ η
2Γα−1

δ uδdx

+ λ

∫
BR0

(x0)−D

(uδ − f)η2Γαδ uδdx.

(3.5.21)

Recalling again 0 ≤ uδ ≤ 1, 0 ≤ f ≤ 1 a.e. and using the boundedness of

DF (see (3.1.6)) we get from (3.5.21) by exploiting |∇uδ| ≤ Γ
1
2
δ as well as

|∇Γδ| ≤ c|∇uδ||∇2uδ|∫
BR0

(x0)

DF (∇uδ) · ∇uδη2Γαδ dx+ δ

∫
BR0

(x0)

|∇uδ|2η2Γαδ dx

≤ c
∫

BR0
(x0)

|∇η|ηΓαδ dx+ c(α)

∫
BR0

(x0)

|∇2uδ|η2Γ
α− 1

2
δ dx

+ cδ

∫
BR0

(x0)

|∇η|Γα+ 1
2

δ ηdx+ c(α)δ

∫
BR0

(x0)

|∇2uδ|η2Γαδ dx

+ c

∫
BR0

(x0)

η2Γαδ dx.

(3.5.22)

In view of Lemma 3.1.3 (i) we may estimate the l.h.s. of (3.5.22) as follows∫
BR0

(x0)

DF (∇uδ) · ∇uδη2Γαδ dx+ δ

∫
BR0

(x0)

|∇uδ|2η2Γαδ dx

≥ ν1

∫
BR0

(x0)

η2Γ
α+ 1

2
δ dx− c

∫
BR0

(x0)

η2Γαδ dx
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+ δ

∫
BR0

(x0)

η2Γα+1
δ dx− δ

∫
BR0

(x0)

η2Γαδ dx.

Fixing ε > 0 and using Young’s inequality, we have for the r.h.s. of (3.5.22)

r.h.s. ≤ cε
∫

BR0
(x0)

η2Γ
α+ 1

2
δ dx+ cε−1

∫
BR0

(x0)

|∇η|2Γ
α− 1

2
δ dx

+ cε

∫
BR0

(x0)

η2Γ
α+ 1

2
δ dx+ cε−1

∫
BR0

(x0)

|∇2uδ|2η2Γ
α− 3

2
δ dx

+ cδε

∫
BR0

(x0)

η2Γα+1
δ dx+ cδε−1

∫
BR0

(x0)

|∇η|2Γαδ dx

+ cδε

∫
BR0

(x0)

η2Γα+1
δ dx+ cδε−1

∫
BR0

(x0)

|∇2uδ|2η2Γα−1
δ dx

+ c

∫
BR0

(x0)

η2Γαδ dx.

Hence, by absorbing terms (choose ε > 0 sufficiently small), (3.5.22) implies∫
BR0/2

(x0)

Γ
α+ 1

2
δ dx+ δ

∫
BR0/2

(x0)

Γα+1
δ dx

≤ c
[ ∫
BR0

(x0)

|∇η|2Γ
α− 1

2
δ dx+

∫
BR0

(x0)

|∇2uδ|2η2Γ
α− 3

2
δ dx

+

∫
BR0

(x0)

η2Γαδ dx

]

+ cδ

[ ∫
BR0

(x0)

|∇η|2Γαδ dx+

∫
BR0

(x0)

|∇2uδ|2η2Γα−1
δ dx

+

∫
BR0

(x0)

η2Γαδ dx

]

=: c
3∑
j=1

Ij + cδ

6∑
j=4

Ij .

(3.5.23)

Next, we want to discuss the integrals on the r.h.s. of (3.5.23) in detail. Starting
with I1, we recall that by definition of α it holds α− 1

2 = α0 + 3
2 − µ ≤ α0 + 1

2 .
As a consequence it follows∫

BR0
(x0)

|∇η|2Γ
α− 1

2
δ dx ≤ c(R0)

∫
BR0

(x0)

Γ
α0+ 1

2
δ dx ≤ c
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on account of (3.5.19) where c does not depend on δ.

Since we may assume w.l.o.g. that µ ≥ 3
2 it holds α ≤ α0 + 1

2 . Hence, an
upper bound for I3, δI4 and δI6, which is not depending on δ, can easily be
found on account of (3.5.19).

Studying I2 we state that by definition of α we have α + µ
2 −

3
2 ≤ α0 and

since α0 ≥ 0, Lemma 3.5.2 and (3.1.7) give

I2 ≤
∫

BR0
(x0)

|∇2uδ|2η2Γ
α0−µ2
δ dx

≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γα0
δ dx

≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γα0
δ dx

+ c

∫
BR0

(x0)

|∇η|2Γα0
δ dx+ c

∫
BR0

(x0)

η2Γα0
δ dx

≤ c(R0)

∫
BR0

(x0)

[
Γ
− 1

2
δ + δ

]
Γ1+α0
δ dx+ c(R0)

∫
BR0

(x0)

Γ
α0+ 1

2
δ dx

+ c

∫
BR0

(x0)

Γ
α0+ 1

2
δ dx

≤ c(R0, α0)

where the last inequality holds in accordance with (3.5.19), thus we have found
an upper bound of I2 not depending on δ.

Proceeding with δI5 we distinguish between two cases whereby we first assume
that α ≤ 1. It follows on account of (3.1.7) and Lemma 3.5.2

δI5 ≤ δ
∫

BR0
(x0)

|∇2uδ|2η2dx

≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2dx

≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)dx+ c(R0)

≤ c(R0)

∫
BR0

(x0)

[
Γ
− 1

2
δ + δ

]
Γδdx+ c(R0)

≤ c(R0)
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where the last inequality is valid by taking into account (3.5.19) and (3.5.20),
respectively. In particular, the upper bound of I5 does not depend on δ in this
case.

Assuming α > 1 now, (3.1.7) and Lemma 3.5.2 yield

δI5 ≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γα−1
δ dx

≤ c
∫

BR0
(x0)

D2Fδ(∇uδ)(∂γuδ∇η, ∂γuδ∇η)Γα−1
δ dx+ c

∫
BR0

(x0)

|∇η|2Γα−1
δ dx

+ c

∫
BR0

(x0)

η2Γα−1
δ dx

≤ c(R0)

∫
BR0

(x0)

[
Γ
− 1

2
δ + δ

]
Γαδ dx+ c(R0)

∫
BR0

(x0)

Γα−1
δ dx+ c

∫
BR0

(x0)

Γα−1
δ dx

≤ c(R0, α0).

where once more we took into account (3.5.19) by exploiting α − 1
2 ≤ α0 + 1

2 .
Summarizing, we have proved that δI5 is bounded from above by a constant
being independent of δ.

Altogether, by means of (3.5.23) we established the following statement:
suppose that (3.5.19) holds for some given R0 > 0 and α0 ≥ 0. Then there is a
constant which is not depending on δ with∫

BR0/2
(x0)

Γ
α0+2−µ+ 1

2
δ dx+ δ

∫
BR0/2

(x0)

Γα0+2−µ+1
δ dx ≤ c. (3.5.24)

We now prove by induction that for any m ∈ N there is a constant c(m) > 0,
independent of δ, such that for all δ ∈ (0, 1)∫

BR0/2
m (x0)

Γ
m(2−µ)+ 1

2
δ dx+ δ

∫
BR0/2

m (x0)

Γ
m(2−µ)+1
δ dx ≤ c (3.5.25)

Since (3.5.19) holds for α0 = 0, it follows that α0 = 0 is also an admissible
choice in (3.5.24). Thus, (3.5.25) extends to m = 1.
Next we assume by induction that (3.5.25) is true for some m ∈ N. As a
consequence, α0 = m(2 − µ) serves as an admissible choice in (3.5.19) and
(3.5.24) leads to∫

BR0/2
m+1 (x0)

Γ
(m+1)(2−µ)+ 1

2
δ dx+ δ

∫
BR0/2

m+1 (x0)

Γ
(m+1)(2−µ)+1
δ dx

≤
∫

BR0/2
(x0)

Γ
α0+2−µ+ 1

2
δ dx+ δ

∫
BR0/2

(x0)

Γα0+2−µ+1
δ dx
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≤ c

where we like to stress that c does not depend on δ. Hence, (3.5.25) remains
valid for any choice of m ∈ N.

Next, we let ω b Ω and denote by p ∈ (1,∞) some number. Then there
exists another number m = m(p) ∈ N with p ≤ 1 + 2m(2 − µ) and a finite
number of balls BRi(xi) b Ω (i = 1, . . . ,M) such that

ω b
M⋃
i=1

Bρi(xi) ⊂ Ω where ρi :=
Ri
2m

.

Making use of (3.5.25) we infer

‖∇uδ‖pp,ω ≤
M∑
i=1

∫
Bρi (xi)

Γ
p
2
δ dx ≤

M∑
i=1

∫
Bρi (xi)

Γ
m(2−µ)+ 1

2
δ dx ≤ c(p, ω),

where the local constant c(p, ω) in particular is independent of δ. This proves
the local uniform p-integrability of ∇uδ w.r.t. δ for any finite exponent p and
therewith Lemma 3.5.1.

Remark 3.5.3
Considering the case n = 2, we directly obtain Lemma 3.5.1 by quoting Remark
3.4.4.

Step 2. Caccioppoli-type inequality

As the second step we are going to establish another Caccioppoli-type inequal-
ity which in particular is valid for any µ > 1. This variant of Caccioppoli’s
inequality acts as an important tool during the De Giorgi-type iteration which
will be carried out in the subsequent third step. We emphasize that in case
n = 2, this type of Caccioppoli’s inequality has already been established in [27],
Lemma 3, and that the arguments for deducing this inequality do not rely on
the dimension n. Nevertheless, we give the proof once again for the sake of
completeness. Originally, the variant of Caccioppoli’s inequality is used from
[17], Lemma 4.19 (ii), pp.108, in connection with“free problems“. Our major ef-
fort consists in incorporating the inpainting quantity which apriori causes some
difficulties.
Initially, we introduce some notation. We fix a point x0 ∈ Ω and consider radii
0 < r < R < R0 with BR0(x0) b Ω.
Moreover, we let Aδ(k,R) := {x ∈ BR(x0) : Γδ > k} where k > 0 and Γδ
denotes the function from Lemma 3.5.2. Further we consider η ∈ C∞0 (BR(x0))
with 0 ≤ η ≤ 1, η ≡ 1 on Br(x0) and |∇η| ≤ c

R−r . Finally, for functions
v : Ω → R we denote max{v, 0} by v+. We then have the following variant of
Caccioppoli’s inequality, which, in fact, is valid for any µ > 1.
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Lemma 3.5.4
With the previous notation and in particular for any µ > 1 it holds∫

Aδ(k,R)

Γ
−µ
2
δ |∇Γδ|2η2dx

≤ c
∫

Aδ(k,R)

|D2Fδ(∇uδ)||∇η|2(Γδ − k)2dx+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx

+ c

∫
Aδ(k,R)

η|∇η||∇uδ|3dx

≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

(3.5.26)

where ν := max{4, 2+µ} and c denotes a suitable positive constant independent
of δ, r and R.

Remark 3.5.5
As already outlined in [27], Remark 5, the choice of ν in Lemma 3.5.4 is not
optimal. In fact, if we regularize the density F by virtue of

Fδ,q(P ) :=
δ

q
|P |q + F (P ), P ∈ Rn,

with q > 1 being sufficiently close to 1, we may choose any ν > max{3, 2+µ} =
2 + µ.

Proof of Lemma 3.5.4. We note that the second inequality follows from the
first since w.l.o.g. we may assume R0 ≤ 1 implying 1 < 1

R−r , and k ≥ 2, i.e.

Γδ − k ≤ Γδ ≤ c|∇uδ|2 ≤ cΓδ on Aδ(k,R). We also recall µ > 1, thus 3 < 2 + µ
and finally we use the following inequalities on Aδ(k,R)

|D2F (∇uδ)|(Γδ − k)2 ≤ c|∇uδ|3,
δ(Γδ − k)2 ≤ c|∇uδ|4.

Now we prove the first inequality in (3.5.26): as already seen in the proof of
Theorem 3.1.15 we can state∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ϕ)dx =

∫
Ω−D

λ(uδ − f)∂γϕdx

for all ϕ ∈W 1,2(Ω) with compact support in Ω.
Observing that ϕ = η2∂γuδ(Γδ − k)+ is admissible we get (from now on sum-
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mation w.r.t. γ ∈ {1, . . . , n})∫
Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)(Γδ − k)η2dx

+

∫
Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇Γδ)η
2dx

+ 2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)η(Γδ − k)dx

=

∫
BR(x0)−D

λ(uδ − f)∂γ [η2∂γuδ(Γδ − k)+]dx.

(3.5.27)

For the second integral on the l.h.s. it holds∫
Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γu∇Γδ)η
2dx

=
1

2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx.

(3.5.28)

In accordance with (3.5.28) we also have for the third integral on the l.h.s. of
(3.5.27) ∫

Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)η(Γδ − k)dx

=
1

2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇Γδ)η(Γδ − k)dx.

(3.5.29)

Summarizing, (3.5.27)-(3.5.29) imply with the help of the Cauchy-Schwarz in-
equality applied to the bilinear form D2Fδ(∇uδ) and after the use of Young’s
inequality (ε > 0) ∫

Aδ(k,R)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)(Γδ − k)η2dx

+
1

2

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

≤ ε
∫

Aδ(k,R)

D2Fδ(∇uδ)(∇Γδ,∇Γδ)η
2dx

+ ε−1

∫
Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇η)(Γδ − k)2dx

+

∫
BR(x0)−D

λ(uδ − f)∂γ [η2∂γuδ(Γδ − k)+]dx.

(3.5.30)
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In what follows, we concentrate on the last integral on the r.h.s. of (3.5.30),
which is denoted by I1. Recalling 0 ≤ uδ ≤ 1, 0 ≤ f ≤ 1 a.e., we get

I1 ≤ c
∫

Aδ(k,R)

|∇η|η|∇uδ|(Γδ − k)dx+ c

∫
Aδ(k,R)

η2|∇2uδ|(Γδ − k)dx

+ c

∫
Aδ(k,R)

η2|∇uδ||∇Γδ|dx.
(3.5.31)

Another application of Young’s inequality (ε > 0) gives∫
Aδ(k,R)

η2|∇2uδ|(Γδ − k)dx ≤ ε
∫

Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+ ε−1

∫
Aδ(k,R)

η2(Γδ − k)Γ
µ
2
δ dx

(3.5.32)

as well as ∫
Aδ(k,R)

η2|∇uδ||∇Γδ|dx

≤ ε
∫

Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx+ ε−1

∫
Aδ(k,R)

η2|∇uδ|2Γ
µ
2
δ dx.

(3.5.33)

Recalling k ≥ 2 we have |∇uδ| ≥ 1 on Aδ(k,R) and therefore Γδ ≤ c|∇uδ|2 on
Aδ(k,R). Incorporating (3.5.32) and (3.5.33) in (3.5.31) we get

I1 ≤ c
∫

Aδ(k,R)

|∇η|η|∇uδ|3dx+ cε

∫
Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+ cε

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx+ cε−1

∫
Aδ(k,R)

η2|∇uδ|2+µdx.

(3.5.34)

Connecting (3.5.34) with (3.5.30) it follows after absorbing terms (we choose
ε > 0 sufficiently small) und using (3.1.7)∫

Aδ(k,R)

η2|∇2uδ|2(Γδ − k)Γ
−µ
2
δ dx

+

∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

≤ c
∫

Aδ(k,R)

D2Fδ(∇uδ)(∇η,∇η)(Γδ − k)2dx

+ c

∫
Aδ(k,R)

|∇η|η|∇uδ|3dx+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx,

(3.5.35)

94



3.5. C1,α-REGULARITY OF THE UNIQUE W 1,1-MINIMIZER

which proves the first inequality in (3.5.26) by neglecting the nonnegative first
integral on the l.h.s. of (3.5.35).

Step 3. De Giorgi-type iteration

The third step is devoted to the derivation of local uniform (in δ) apriori gra-
dient bounds of uδ. In this context the variant of Caccioppoli’s inequality that
has been deduced in the second step as well as the well-known Lemma of Stam-
pacchia (see, e.g., [91], Lemma 5.1, p.219 or [71], Lemma B.1, p. 63) act as
essential tools when performing a De Giorgi-type iteration.
Actually we are going to prove a De Giorgi-type lemma that provides a sufficient
condition in order to close the gap between local uniform p-integrability of the
gradients for a certain exponent p and local uniform apriori gradient bounds.
Hence, concerning future problems or applications, respectively, it might be
of interest to take note of this sufficient condition that is formulated in the
following

Lemma 3.5.6
Suppose that vδ is a sequence of class W 2,2

loc (Ω) and that we are given real num-
bers p, ν > 3, µ > 1 satisfying

µ+ ν

2
n < p.

Moreover, suppose that we have a uniform constant c > 0 (with Γδ := 1+ |∇vδ|2
and Aδ(k,R), r, R,R0, η as before) such that it holds∫

Aδ(k,R)

Γ
−µ

2
δ |∇Γδ|2η2dx ≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx (3.5.36)

and assume in addition that ∇vδ is locally p-integrable uniformly in δ, i.e.

sup
δ

∫
Ω′

|∇vδ|pdx = c(p,Ω′) <∞, (3.5.37)

where Ω′ b Ω. Then it holds ∇vδ ∈ L∞loc(Ω)n uniformly in δ.

Having the inpainting model at hand, we may even use (3.5.6) for any finite
p but as already mentioned in [27], a replacement of condition (3.5.37) from
Lemma 3.5.6 by (3.5.6) does not simplify the following proof in an essential
way. Precisely we can state an immediate conclusion of Lemma 3.5.6.

Proposition 3.5.7
Suppose that n ≥ 2, µ ∈ (1, 2), and that vδ denotes the approximating sequence
from Lemma 3.4.1 to the inpainting model under consideration. Then we have
local uniform (in δ) apriori gradient bounds for vδ.
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Remark 3.5.8
Note that Lemma 3.5.6 has already been established in [27] (compare Lemma 4
in this reference) in the case n = 2 where the essenial arguments that have been
given during the proof of Lemma 4 in this reference actually do not rely on the
dimension n ≥ 2. In fact, more or less, we can adapt the entire proof given
in [27] where the only effort consists in adjusting the exponents to the case of
arbitrary dimension n.

Remark 3.5.9
Considering the inpainting model with n ≥ 3, assuming µ ∈ (1, 2) and denoting
by uδ the approximating sequence from Lemma 3.4.1, we could show that apriori,
we have local uniform (in δ) Lp-estimates of ∇uδ for all 1 ≤ p ≤ 2n

n−2 (see
Remark 3.4.4). Consulting Lemma 3.5.6 now, it turns out that this initial local
uniform starting integrability of ∇uδ is not sufficient in order to derive uniform
local apriori gradient bounds by citing Lemma 3.5.6 since we have to require
p > 2n at least (notice that Lemma 3.5.4 provides a variant of Caccioppoli’s
inequality being in the spirit of (3.5.36)). Consequently, we had to show higher
local uniform (in δ) p-integrability of ∇uδ at least up to the fixed exponent
µ+ν

2 n + ε with ε > 0 sufficiently small before quoting Lemma 3.5.6 for getting
uniform (in δ) local apriori gradient bounds for uδ. In fact, in Lemma 3.5.1,
we could even show local uniform (in δ) p-integrability of ∇uδ for any finite
exponent p.

Proof of Lemma 3.5.6. For proving Lemma 3.5.6 we adopt techniques as al-
ready applied in [27], proof of Lemma 4, and note that the following De Giorgi-
iteration represents a substantial refinement of the one carried out in [17], The-
orem 4.28, pp.119.

As in [27], we primarily establish a technical proposition being of pure alge-
braic nature. Its proof is given in the appendix of this thesis.

Proposition 3.5.10
Consider real numbers p, ν > 3, µ > 1 with

µ+ ν

2
n < p. (3.5.38)

Then, there exist real numbers s1, s2, s3 > 1 such that

(i) 2
s1

s1 − 1
< p, (ii)

1

s1

n

n− 1
> 1,

(iii) µ
s2

s2 − 1
< p, (iv) ν

s3

s3 − 1
< p,

(v)
1

2

n

n− 1

(
1

s3
+

1

s2

)
> 1.

Now, we start proving Lemma 3.5.6. Recalling the previous notation and
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applying Sobolev’s inequality we get∫
Aδ(k,r)

(Γδ − k)
n
n−1dx ≤

∫
BR(x0)

(η(Γδ − k)+)
n
n−1dx

≤ c
( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
) n
n−1

.

Moreover it holds

c

( ∫
BR(x0)

|∇[η(Γδ − k)+]|dx
) n
n−1

= c

( ∫
Aδ(k,R)

|∇[η(Γδ − k)]|dx
) n
n−1

≤ c
( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

) n
n−1

+ c

( ∫
Aδ(k,R)

η|∇Γδ|dx
) n
n−1

=: c

[
I

n
n−1

1 + I
n
n−1

2

]
,

hence ∫
Aδ(k,r)

(Γδ − k)
n
n−1dx ≤ c

[
I

n
n−1

1 + I
n
n−1

2

]
. (3.5.39)

At this point, we are going to use the algebraic Proposition 3.5.10 with the
same parameters as given in Lemma 3.5.6. Since we may assume the validity of
(3.5.38) we get existence of real numbers si > 1, i = 1, 2, 3 fulfilling the claims
(i)–(v) of Proposition 3.5.10.

Incorporating (3.5.37) we obtain Γδ − k ∈ L
p
2 (BR(x0)) uniformly in δ. In

accordance with Proposition 3.5.10, (i) and (3.5.37), we may therefore conclude

Γδ − k ∈ L
s1
s1−1 (BR(x0)) uniformly in δ. By using Hölder’s inequality it follows

I
n
n−1

1 =

( ∫
Aδ(k,R)

|∇η|(Γδ − k)dx

) n
n−1

≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))
n
n−1

1
s1

( ∫
Aδ(k,R)

(Γδ − k)
s1
s1−1dx

) n
n−1

s1−1
s1

≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))
n
n−1

1
s1

and since on account of Proposition 3.5.10, (ii), there exists a real number
β := n

n−1
1
s1
> 1, we see

I
n
n−1

1 ≤ c

(R− r)
n
n−1

(Ln(Aδ(k,R)))β. (3.5.40)
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Next we discuss I2: applying Hölder’s inequality and the special type of Cac-
cioppoli’s inequality stated in (3.5.36) we get

I
n
n−1

2 ≤
[ ∫
Aδ(k,R)

η2|∇Γδ|2Γ
−µ
2
δ dx

] 1
2

n
n−1
[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤
[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1
[

c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

] 1
2

n
n−1

.

(3.5.41)

Quoting (3.5.37) once again we have Γ
µ
2
δ ∈ L

p
µ (BR(x0)) uniformly in δ and

by using Proposition 3.5.10, (iii) and (3.5.37), we get Γ
µ
2
δ ∈ L

s2
s2−1 (BR(x0))

uniformly in δ. With Hölder’s inequality we may estimate[ ∫
Aδ(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤
( ∫
Aδ(k,R)

Γ
µs2

2(s2−1)

δ dx

) 1
2

n
n−1

s2−1
s2

Ln(Aδ(k,R))
1
2

n
n−1

1
s2

≤ cLn(Aδ(k,R))
1
2

n
n−1

1
s2 .

(3.5.42)

Furthermore, by means of (3.5.37), it follows Γ
ν
2
δ ∈ L

p
ν (BR(x0)) uniformly in

δ. Taking Proposition 3.5.10, (iv) and (3.5.37) into account it holds Γ
ν
2
δ ∈

L
s3
s3−1 (BR(x0)) uniformly in δ and Hölder’s inequality implies[ ∫

Aδ(k,R)

Γ
ν
2
δ dx

] 1
2

n
n−1

≤
[ ∫
Aδ(k,R)

Γ
ν
2

s3
s3−1

δ dx

] 1
2

n
n−1

s3−1
s3

Ln(Aδ(k,R))
1
2

n
n−1

1
s3

≤ cLn(Aδ(k,R))
1
2

n
n−1

1
s3 .

(3.5.43)

Putting (3.5.41) - (3.5.43) together and using Proposition 3.5.10, (v) we infer
the existence of a real number β̃ := 1

2
n
n−1( 1

s2
+ 1

s3
) > 1 such that

I
n
n−1

2 ≤ c

(R− r)
n
n−1

Ln(Aδ(k,R))β̃. (3.5.44)

Assuming w.l.o.g. that Ln(Aδ(k,R)) < 1 , (3.5.39), (3.5.40) and (3.5.44) imply
the existence of a real number β > 1 with∫

Aδ(k,r)

(Γδ − k)
n
n−1dx ≤ c

(R− r)
n
n−1

Ln(Aδ(k,R))β. (3.5.45)

Now we define the following quantities for k ≥ 2 and r < R:

τδ(k, r) :=

∫
Aδ(k,r)

(Γδ − k)
n
n−1dx, aδ(k, r) := Ln(Aδ(k, r)).
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Furthermore, suppose that two real numbers h, k with h > k > 2 are given, i.e.
we have Γδ−k

h−k ≥ 1 on Aδ(h,R). Consequently it holds

aδ(h,R) ≤
∫

Aδ(h,R)

(Γδ − k)
n
n−1 (h− k)−

n
n−1dx,

thus

aδ(h,R) ≤ 1

(h− k)
n
n−1

τδ(k,R). (3.5.46)

From (3.5.45) and (3.5.46) it follows

τδ(h, r) ≤
c

(R− r)γ(h− k)α
τδ(k,R)β (3.5.47)

where

γ :=
n

n− 1
> 0, α :=

n

n− 1
β > 0, β > 1. (3.5.48)

Having (3.5.47) and (3.5.48) at hand we may apply Stampacchia’s well-known
lemma and obtain local uniform (in δ) apriori gradient bounds of vδ. To become
more precise, an application of Stampacchia’s lemma guarantees existence of a
positive quantity dδ such that for all σ ∈ (0, 1) we get

τδ(dδ + k0, R0 − σR0) = 0

with

dαδ =
2

(α+β)β
β−1 C

σγRγ0
[τδ(k0, R0)]β−1 ≤ dα,

where d is a constant not depending on δ since we may use (3.5.37) (recall
p > 2n). Choosing k0 = 2 and σ = 1

2 we infer

0 = τδ(dδ + 2, R0/2) ≥ τδ(d+ 2, R0/2) ≥ 0,

i.e. it holds

τδ(d+ 2, R0/2) = 0. (3.5.49)

Condition (3.5.49) finally leads to the uniform estimate

|∇vδ| ≤ c

a.e. on BR0/2(x0) for all δ ∈ (0, 1) where c in particular is independent of δ
since Γδ ≤ d+ 2 a.e. on BR0/2(x0).

Using a covering argument, we finally get

‖∇vδ‖L∞(ω) ≤ c(ω)

for all ω b Ω and δ ∈ (0, 1), i.e. vδ is locally uniformly Lipschitz continuous
with Lipschitz constant c(ω) > 0. This completes the proof of Lemma 3.5.6.
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Step 4. Conclusions

Taking the assumption µ ∈ (1, 2) into account, an application of Proposition
3.5.7 gives ∇uδ ∈ L∞loc(Ω)n uniformly in δ. Quoting Remark 3.4.6 we know
uδ → u in L1

loc(Ω) and since uδ is locally uniformly (in δ) Lipschitz continuous,
we may apply Arzelà-Ascoli’s theorem to get u ∈ C0,1(Ω).

In a final step in the proof of Theorem 3.1.19 in the scalar case we are going
to close the gap between local Lipschitz continuity of u and Hölder continuous
first partial derivatives of u in Ω.

Letting g := λ1Ω−D(u− f) we recall (γ ∈ {1, . . . , n}) the equation∫
Ω

DF (∇u) · ∂γ∇ψdx = −
∫
Ω

g∂γψdx (3.5.50)

valid for all ψ ∈ C∞0 (Ω). Using the information that u is Lipschitz continuous,
we may argue with the standard difference quotient technique to establish u ∈
W 2,2

loc (Ω). Thus, we get after performing an integration by parts in (3.5.50)∫
Ω

D2F (∇u)(∂γ∇u,∇ψ)dx =

∫
Ω

g∂γψdx.

for all ψ ∈ C∞0 (Ω). Setting v := ∂γu, we then see∫
Ω

D2F (∇u)(∇v,∇ψ)dx =

∫
Ω

g∂γψdx.

where the coefficients aαβ(x) := ∂2F
∂pα∂pβ

(∇u) are strictly elliptic and bounded

on any subdomain ω b Ω (this fact follows from (3.1.7) and from the local
Lipschitz continuity of u). Finally, [62], Theorem 8.22, p.200 ensures interior
Hölder continuity of v and therefore of ∂γu for all γ ∈ {1, . . . , n}, i.e., u has
locally Hölder continuous first partial derivatives in Ω. This completes the proof
of Theorem 3.1.19 in the scalar case. �

3.5.2 Proof of Theorem 3.1.19: the vectorial case

Throughout the entire section we assume that the hypotheses of Theorem 3.1.19
hold with M > 1 and denote by u ∈ W 1,1(Ω)M ∩ L∞(Ω)M the unique I-
minimizer from Theorem 3.1.15. As already done in the scalar case, the fol-
lowing proof is divided into four parts: regularization and local uniform apriori
Lp-estimates, Caccioppoli-type inequality, DeGiorgi-type iteration and the con-
clusions.
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Step 1. Regularization and local uniform apriori Lp-estimates

We apply the regularization from Theorem 3.1.15, i.e., we consider the func-
tional (recall Fδ(P ) := δ

2 |P |
2 + F (P ), P ∈ RnM )

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx, w ∈W 1,2(Ω)M , (3.5.51)

and denote by uδ ∈ W 1,2(Ω)M its unique minimizer which solves the Euler
equation ∫

Ω

DFδ(∇uδ) : ∇ϕdx+ λ

∫
Ω−D

(uδ − f) · ϕdx = 0 (3.5.52)

for all ϕ ∈ C∞0 (Ω)M .
Further, we make use of the following regularity and convergence properties of
uδ:

sup
Ω
|uδ| ≤ sup

Ω−D
|f |, (3.5.53)

uδ ∈W 2,2
loc (Ω)M , (3.5.54)

uδ ∈W 1,∞
loc (Ω)M , (3.5.55)

uδ → u in L1(Ω)M . (3.5.56)

Remark 3.5.11
The properties (3.5.53) and (3.5.54) have already been stated in Lemma 3.4.1.
A proof of (3.5.53)–(3.5.55) will be postponed to the appendix of this thesis. For
(3.5.56) we refer to Remark 3.4.6.

Now let us prove that we have local uniform apriori Lp-estimates of ∇uδ in
the vectorial setting as well.

Lemma 3.5.12
For any 1 < p < ∞ and for any ω b Ω there is a constant c(p, ω), which in
particular does not depend on δ, such that

‖∇uδ‖Lp(ω) ≤ c(p, ω) <∞. (3.5.57)

Proof of Lemma 3.5.12. As in Section 3.5.1 we first derive a suitable variant of
Caccioppoli’s inequality being only valid for µ ∈ (1, 2). It is worth mentioning
that this variant of Caccioppoli’s inequality is the vectorial analogon of the one
being stated in Lemma 3.5.2.
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Lemma 3.5.13
For any s0 ≥ 0 there exists a real number c > 0 such that for all η ∈ C∞0 (Ω)
satisfying 0 ≤ η ≤ 1 and for any δ ∈ (0, 1) it holds∫

Ω

|∇2uδ|2Γ
s0−µ2
δ η2dx+ δ

∫
Ω

|∇2uδ|2Γs0δ η
2dx

≤
∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx+ c

∫
Ω

|∇η|2Γs0δ dx

+ c

∫
Ω

η2Γs0δ dx,

(3.5.58)

where we again have set Γδ := 1 + |∇uδ|2 and the positive constant c, in partic-
ular, is independent of δ.

Proof of Lemma 3.5.13. Note that the first inequality follows from (3.1.7) and
that for the case s0 = 0 we refer to Lemma 3.4.3, i.e., we assume s0 > 0 in the
following. For proving the second inequality in (3.5.58) we may essentially follow
the arguments as given in the proof of Lemma 3.5.2 with minor adjustments.
The Euler equation (3.5.52) as usual yields (γ ∈ {1, . . . , n})∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ,∇ϕ)dx = λ

∫
Ω−D

(uδ − f) · ∂γϕdx. (3.5.59)

being valid for all ϕ ∈ W 1,2(Ω)M with compact support in Ω. From (3.5.54)
and (3.5.55) we see that ϕ = η2∂γuδΓ

s0
δ is admissible in the differentiated Euler

equation (3.5.59) and we arrive at (from now on summation w.r.t. γ)∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ s0

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ ⊗∇Γδ)Γ
s0−1
δ η2dx

= −2

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ ⊗∇η)ηΓs0δ dx

+ λ

∫
Ω−D

(uδ − f) · ∂γ(η2∂γuδΓ
s0
δ )dx.

(3.5.60)

Studying the last integral on the l.h.s. of (3.5.60) we obtain by using the
structure condition (3.1.15)

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ ⊗∇Γδ)

=
1

2
D2Fδ(∇uδ)(ej ⊗∇Γδ, ej ⊗∇Γδ) ≥ 0 a.e.,

(3.5.61)
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3.5. C1,α-REGULARITY OF THE UNIQUE W 1,1-MINIMIZER

where ej denotes the jth coordinate vector.
For any ε > 0 we obtain for the first integral on the r.h.s. of (3.5.60) using
Young’s inequality

2

∣∣∣∣ ∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γuδ∇η)ηΓs0δ dx

∣∣∣∣
≤ ε

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ 4ε−1

∫
Ω

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx.

(3.5.62)

Finally, let us discuss the last integral on the r.h.s. of (3.5.60). Using the
boundedness of f and uδ (see (3.1.4) as well as (3.5.53)), an integration by
parts gives

λ

∫
Ω−D

(uδ − f) · ∂γ(η2∂γuδΓ
s0
δ )dx

= −λ
∫
Ω

|∇uδ|2η2Γs0δ dx− λ
∫
Ω

f · ∂γ(η2∂γuδΓ
s0
δ )dx

− λ
∫

Ω∩D

(uδ − f) · ∂γ(η2∂γuδΓ
s0
δ )dx

≤ −λ
∫
Ω

|∇uδ|2η2Γs0δ dx+ c

∫
Ω

|∇η||∇uδ|ηΓs0δ dx

+ c(s0)

∫
Ω

|∇2uδ|η2Γs0δ dx.

(3.5.63)

Applying Young’s inequality for a given ε > 0 and quoting (3.5.61), (3.5.62) as
well as (3.5.63), (3.5.60) turns into∫

Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ λ

∫
Ω

|∇uδ|2η2Γs0δ dx

+
s0

2

∫
Ω

D2Fδ(∇uδ)(ej ⊗∇Γδ, ej ⊗∇Γδ)Γ
s0−1
δ η2dx

≤ ε
∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

+ 4ε−1

∫
Ω

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx

+ ε

∫
Ω

η2|∇uδ|2Γs0δ dx+ cε−1

∫
Ω

|∇η|2Γs0δ dx

+ cε

∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ cε−1

∫
Ω

η2Γ
s0+µ

2
δ dx.
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Absorbing terms by choosing ε > 0 sufficiently small, we then obtain∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ c

∫
Ω

|∇uδ|2η2Γs0δ dx

+ c
s0

2

∫
Ω

D2Fδ(∇uδ)(ej ⊗∇Γδ, ej ⊗∇Γδ)Γ
s0−1
δ η2dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx

+ c

∫
Ω

|∇η|2Γs0δ dx+ c

∫
Ω

η2Γ
s0+µ

2
δ dx.

Recalling µ < 2 we may apply Young’s inequality one more time to see∫
Ω

D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ c

∫
Ω

|∇uδ|2η2Γs0δ dx

+ c
s0

2

∫
Ω

D2Fδ(∇uδ)(ej ⊗∇Γδ, ej ⊗∇Γδ)Γ
s0−1
δ η2dx

≤ c
∫
Ω

D2Fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx

+ c

∫
Ω

|∇η|2Γs0δ dx+ c

∫
Ω

η2Γs0δ dx.

This gives the desired inequality (3.5.58) after neglecting the non-negative sec-
ond and third integral on the l.h.s.

Now, by means of Lemma 3.5.13, the same iteration procedure as already
carried out in the scalar case M = 1 (compare the arguments after the proof of
Lemma 3.5.2) can be performed for proving Lemma 3.5.12 and therewith local
uniform (in δ) apriori Lp-gradient bounds for ∇uδ.

Step 2. Caccioppoli-type inequality

In this step we provide another variant of Caccioppoli’s inequality which acts
as a crucial tool when carrying out a De Giorgi-type iteration. With the no-
tation that has already been introduced in the scalar case M = 1 (compare
the remarks before Lemma 3.5.4) the following Caccioppoli-type inequality can
be established by following the lines of the proof of Lemma 3.5.4. It is worth
remarking that we have to make use of the structure condition (3.1.15) imposed
on the density F .
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3.5. C1,α-REGULARITY OF THE UNIQUE W 1,1-MINIMIZER

Lemma 3.5.14
With the previous notation and under the assumptions of Lemma 3.5.12, in par-
ticular for any µ > 1, we have the following variant of Caccioppoli’s inequality∫

Aδ(k,R)

Γ
−µ
2
δ |∇Γδ|2η2dx

≤ c
∫

Aδ(k,R)

|D2Fδ(∇uδ)||∇η|2(Γδ − k)2dx+ c

∫
Aδ(k,R)

η2|∇uδ|2+µdx

+ c

∫
Aδ(k,R)

η|∇η||∇uδ|3dx

≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

where ν := max{4, 2 + µ} and for a suitable positive constant c independent of
δ, r and R.

Remark 3.5.15
Note that the choice of ν is not optimal. We refer to Remark 3.5.5.

Step 3. De Giorgi-type iteration

The third step is devoted to the derivation of local uniform (in δ) apriori gra-
dient bounds for uδ. As already done in the scalar case M = 1 (see Lemma
3.5.6) we formulate a De Giorgi-type lemma that provides a sufficient condition
in order to close the gap between local uniform p-integrability of the gradients
for a certain exponent p and local uniform apriori gradient bounds. A proof of
this lemma can be deduced by using the arguments from the proof of Lemma
3.5.6.

Lemma 3.5.16
Suppose that vδ is a sequence of class W 2,2

loc (Ω)M and that we are given real
numbers p, ν > 3, µ > 1 satisfying

µ+ ν

2
n < p. (3.5.64)

Moreover, suppose that we have a uniform constant c > 0 (with Γδ := 1+ |∇vδ|2
and Aδ(k,R), r, R,R0, η as usual) such that it holds∫

Aδ(k,R)

Γ
−µ

2
δ |∇Γδ|2η2dx ≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx (3.5.65)

and assume in addition that ∇vδ is locally p-integrable uniformly in δ, i.e.

sup
δ

∫
Ω′

|∇vδ|pdx = c(p,Ω′) <∞, (3.5.66)
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where Ω′ b Ω. Then it holds ∇vδ ∈ L∞loc(Ω)nM uniformly in δ.

Step 4. Conclusions

Recalling the important restriction µ ∈ (1, 2) we may apply Lemma 3.5.16
to the unique Iδ-minimizer uδ: in fact, Lemma 3.5.12 gives local uniform (in
δ) Lp-estimates of ∇uδ for any finite exponent p > 1 (note that we assume
µ ∈ (1, 2)), i.e., (3.5.66) from Lemma 3.5.16 is valid for any finite p > 1. Due
to Lemma 3.5.14 we further have a variant of Caccioppoli’s inequality at hand
as required in (3.5.65) from Lemma 3.5.16 with ν = 4 (recall µ ∈ (1, 2) again).
Finally, (3.5.64) from Lemma 3.5.16 is trivially satisfied.
As a consequence, Lemma 3.5.16 provides local uniform (in δ) apriori gradient
bounds of uδ, i.e., uδ is locally uniformly (in δ) Lipschitz continuous. With the
help of the convergence property (3.5.56) from above we apply Arzelà-Ascoli’s
theorem to get u ∈ C0,1(Ω)M , where we recall that u denotes the solution from
Theorem 3.1.15.

In the last step of the proof of Theorem 3.1.19 we are going to close the gap
between local Lipschitz continuity of u and local Hölder continuity of ∇u in
Ω. In contrast to the previous three steps it is not possible to benefit from
the procedure given in the scalar case (see Section 3.5.1, “Step 4. Conclusions“)
since the arguments that have been presented there rely on an application of the
well-known theory of DeGiorgi, Moser and Nash (compare, e.g., [62], Theorem
8.22, p.200).

For overcoming this problem, our goal is to prove that u is a local minimizer
of a properly defined autonomous isotropic variational problem for which full
interior C1,α-regularity of all its local minimizers is established.
To become more precise, we now let ω b Ω be arbitrary and set K := K(ω) :=
‖∇u‖L∞(ω). Following [78] we modify our density F and consider the auxiliary

integrand F̃ : RnM → [0,∞)

F̃ (P ) := ν + 1 + F (P ) + (|P |2 − 4K2)+3,

for some constant ν > 0.
Some straight forward calculations show F̃ ∈ C2(RnM ) and that F̃ satisfies the
following isotropic growth and ellipticity conditions (among other things, the
Hölder condition (3.1.16) imposed on D2F is crucially used)

ν1(1 + |P |2)2|Q|2 ≤ D2F̃ (P )(Q,Q) ≤ ν2(1 + |P |2)2||Q|2,

|D2F̃ (P )−D2F̃ (Q)| ≤ ν3(1 + |P |2 + |Q|2)2−λ/2|P −Q|λ,

for all P,Q ∈ RnM with some positive constants ν1, ν2, ν3 and λ. Due to (3.1.15)
it additionally holds F̃ (P ) = g̃(|P |2) for a function g̃ ∈ C2([0,∞), [0,∞)).
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In the next step we consider the functional

Ĩ[w] :=

∫
Ω

F̃ (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx

which is well-defined for functions w ∈W 1,6(Ω)M .
In particular, we see that u ∈ C0,1(Ω)M ⊂W 1,6

loc (Ω)M is a solution of the Euler
equation (recall g := λ1Ω−D(u− f))∫

Ω

DF̃ (∇u) : ∇ϕdx+

∫
Ω

g · ϕdx = 0 (3.5.67)

for all ϕ ∈ C∞0 (Ω)M since DF̃ (∇u) = DF (∇u) a.e. on the set ω := spt ϕ b Ω

(recall |∇u| ≤ K a.e. on ω). Thus, u is a local Ĩ-minimizer but for getting full
interior C1,α-regularity of local Ĩ-minimizers we cannot directly quote classical
references as e.g. Giaquinta/Modica [59] or Uhlenbeck [99] due to the pres-
ence of the data fitting term in Euler’s equation (3.5.67). However, it is worth
remarking that there exist generalizations of the results of Uhlenbeck [99] or
Giaquinta/Modica [59] in the sense that a suitable right-hand side in Euler’s
equation is considered (see, e.g., [69] and [96]) but unfortunately, we cannot
find a rigorous quotation which exactly covers our situation from (3.5.67).
Thus, we decide to give an own proof of full interior C1,α-regularity of local
Ĩ-minimizers in the fourth chapter of this thesis (see the proof of Theorem 4.1.7
in Section 4.5) where we note that we will actually prove C1,α-regularity of local
minimizers of a properly defined class of non-autonomous isotropic variational
problems. Nonetheless, we can apply Theorem 4.1.7 to our (autonomous) set-
ting choosing t = 6 therein and we obtain that the local Ĩ-minimizer u is of
class C1,α(Ω)M for any α ∈ (0, 1). This completes the proof of Theorem 3.1.19
in the vectorial setting M > 1 as well. �

107



CHAPTER 3. REGULARITY RESULTS

108



Chapter 4

A modified TV-regularization:
the non-autonomous case

4.1 The basic setup and statement of the main re-
sults

In this chapter we are concerned with a class of non-autonomous minimization
problems that can be used in image processing. Suppose that we are given a
bounded Lipschitz domain Ω ⊂ R

n, n ≥ 2, as well as an observed image being
corrupted by noise stemming from transmission or measuring errors. As usual,
this image will be described through a Ln-measurable function f : Ω→ R

M for
which we require

f ∈ L∞(Ω)M . (4.1.1)

We then introduce the problem (as usual, λ > 0 denotes a regularization pa-
rameter)

I[w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

F (x,∇w)dx→ min

in W 1,1(Ω)M ∩ L2(Ω)M ,

(4.1.2)

for a given density F : Ω × RnM → [0,∞) being of class C2(Ω × RnM ), being
of uniform (in x) linear growth w.r.t. the second variable, and which satisfies
some appropriate uniform (in x) ellipticity conditions w.r.t. the second variable
that will be specified later (see Remark 4.1.5). At this point we recall the con-

tinuous embedding W 1,1(Ω)M ↪→ L
n
n−1 (Ω)M , which means that the additional

constraint w ∈ L2(Ω)M is automatically satisfied for functions w ∈W 1,1(Ω)M if
n = 2. Note that the study of problem (4.1.2), at least in the scalar case M = 1
together with n = 2, has been suggested in [28], where the authors worked with
a particular choice of the density F (x, P ).
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Taking the results from [28] as a basis, this chapter is devoted to the discussion
of problem (4.1.2) for any dimension n together with arbitrary codimension M .
Among justifying existence of generalized solutions of problem (4.1.2) (w.r.t. a
suitable relaxation) we are particularly concerned with the derivation of regu-
larity properties of such minimizers.
In general, when investigating regularity of (local) minimizers of non-autono-
mous variational problems we have to be careful in the sense that we cannot
expect that the results that we obtain for the autonomous case extend to the
non-autonomous setting as well. For instance, let us consider the following ex-
ample of a functional (1 < p < q <∞) being of non-standard growth (see [77],
Section 5)

J̃ [w] :=

∫
Ω

(
|∇w|p + a(x)|∇w|q

)
dx.

Here, a : Ω→ [0,∞) denotes a function satisfying 0 ≤ a(x) ≤M for a positive
constant M independent of x. Moreover, the integrand F(x, Z) := |Z|p +
a(x)|Z|q with x ∈ Ω and Z ∈ RnM is of anisotropic (p, q)-growth (1 < p < q <
∞) w.r.t. to the second argument, i.e., it holds

c1|Z|p − c2 ≤ F(x, Z) ≤ c3|Z|q + c4 (4.1.3)

with suitable uniform (in x) constants c1, c3 > 0 and c2, c4 ∈ R. As outlined in
[77], Section 6.5, the presence of the function a(x) crucially influences the global
growth behavior of the integrand F : in fact, when keeping x fixed and varying
Z, it becomes evident that the integrand F satisfies some standard growth
conditions while F globally satisfies a non-standard (p, q)-growth condition in
the sense of (4.1.3).
In general, when investigating the regularity of local minimizers of functionals

J [w] :=

∫
Ω

H(·,∇w)dx

with density H : Ω×RnM of class C2 and which is supposed to satisfy a (p, q)-
growth condition in the sense of (4.1.3), the initial question arises whether local
minimizers being apriori of class W 1,p

loc (Ω)M in fact are of class W 1,q
loc (Ω)M . As

stated in [77], Section 6.5, and as illustrated in the above example, in contrast
to the case p = q, the situation crucially changes since the presence of the
independent variable x cannot be treated as a perturbation anymore (see, e.g.,
[43], where local perturbation methods are used in the case p = q). However,
under some additional hypotheses on H (among other things, DPH(x, P ) is
supposed to be α-Hölder continuous w.r.t. x), Esposito, Leonetti and Mingione
have stated in [51] a sufficient condition for deriving local q-integrability of a
local J-minimizer u: if the condition (recall that α denotes the Hölder exponent
of DPH(x, P ))

q

p
<
n+ α

n

is satisfied, then a sufficient requirement for local higher integrability is given
by

L(u,BR) = 0 for all balls BR b Ω.
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Here, L denotes the so-called Lavrentiev gap functional relative to the given
energy defined through

L = inf
u0+W 1,p

0 (BR)M
J − inf

u0+W 1,q
0 (BR)M

J

on a ball BR b Ω and with boundary data u0 ∈ W 1,p(BR)M . Conversely, if
the above sufficient condition is not true, then local minimizers are irregular.
Furthermore, Esposito, Leonetti and Mingione have stated some counterexam-
ples w.r.t. the irregularity of local minimizers that show the sharpness of their
results. In contrast, if we consider autonomous anisotropic variational problems
where the density H satisfies the same assumptions as above, then the weaker
sufficient condition

q

p
<
n+ 2

n

for deriving regularity of local minimizers was established by M. Bildhauer and
M. Fuchs in [18]. Thus, if we study regularity of local minimizers of anisotropic
variational problems it actually makes a difference if we involve a smooth x-
dependence for the density H or not.
For more details concerning the regularity of (local) minimizers of non-autono-
mous anisotropic variational integrals we mention, without being complete, the
contributions of Bildhauer and Fuchs [20], Breit [32] and Esposito, Leonetti
and Mingione [51] as well as the references quoted therein. Finally we remark
that non-autonomous anisotropic energies apply in physics and in the theory of
electrorheological fluids.

After this short excursion to non-autonomous anisotropic variational problems
we return to the investigation of the problem (4.1.2) and note that such a class
of problems is not covered by the contributions to non-autonomous variational
problems with (p, q)-growth due to the requirement p > 1 there.
From the point of view of image processing, the minimization of the appropri-
ate relaxation of the functional I from (4.1.2) to the space BV (Ω)M describes a
non-autonomous modification of the well-known TV-regularization. As already
elucidated in the third chapter of this thesis (compare (3.1.17)), a special (au-
tonomous) modification of the TV-regularization is of particular interest: for a
fixed number µ > 1 we define the following family of densities

Fµ(P ) :=

√
ε+|P |2∫
0

s∫
0

(1 + r)−µdrds, P ∈ RnM , (4.1.4)

and observe that Fµ approximates the TV-density |P | as follows (see (3.1.18))

lim
µ→∞

(µ− 1)Fµ(P ) =
√
ε+ |P |2, ε > 0. (4.1.5)

Here, the free parameter ε > 0 provides some additional flexibility when approx-
imating the TV-density. The above approximation property suggests to seek
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solutions of the following (autonomous) modification of the TV-regularization:

λ

∫
Ω

Fµ(∇w) +

∫
Ω

|w − f |2dx→ min in BV (Ω)M ∩ L2(Ω)M .

Here, we recall the continuous embedding BV (Ω)M ↪→ L
n
n−1 (Ω)M , which means

that the additional constraint w ∈ L2(Ω)M is automatically satisfied for func-
tions w ∈ BV (Ω)M , provided n = 2. It is worth remarking that in contrast
to the standard TV-model, the above model has the clear advantage of a com-
prehensive existence and regularity theory of BV -minimizers. Here, we refer
to the previous chapters of this thesis, where we note that all results obviously
extend to the case D = ∅ which corresponds to “pure denoising of images“.

Up to this point, the exponent µ > 1 arising in the integrand Fµ of the above
functional is a fixed real number and we conjecture that this aspect could be
too inflexible for certain applications in image processing. As suggested in [28]
we therefore study densities Fµ(x) with variable exponents µ(x) generating func-
tionals of linear growth in what follows. This concept provides more flexibility
in the sense that it is possible to work with different values of µ on prescribed
subregions of Ω. Thus, we expect that solutions show a different degree of reg-
ularity on prescribed zones of Ω.

After the above preparations we now fix our setup and specify our assump-
tions: assume that we are given a function µ = µ(x) of class C2(Ω) satisfying

µ(x) ∈ (1,∞), x ∈ Ω. (4.1.6)

Now we define Fµ(x)(P ) in accordance with (4.1.4) and particularly obtain the

validity of the formula (4.1.5) for each x ∈ Ω. Setting F (x, P ) := Fµ(x)(P ) in
(4.1.2) we then look at the problem

J [w] :=

∫
Ω

|w − f |2dx+ λ

∫
Ω

Fµ(x)(∇w)dx→ min

in W 1,1(Ω)M ∩ L2(Ω)M ,

(4.1.7)

where for notational and technical simplicity we assume w.l.o.g. λ = 1 in our
following discussions. In general, we cannot expect solvability of the problem
(4.1.7) since the Sobolev space W 1,1(Ω)M is not reflexive. Nonetheless we can
consider a suitable relaxation of the functional J from (4.1.7) to the more ade-
quate space BV (Ω)M ∩ L2(Ω)M : from (4.1.6) we first derive existence of some
numbers 1 < µ0 ≤ µ1 <∞ such that

µ(x) ∈ [µ0, µ1], x ∈ Ω. (4.1.8)

Afterwards, by using (4.1.8), it is not hard to check that the density Fµ(x)(P )
satisfies the requirements (i)–(iv) stated on p. 312 in [7] and in accordance with
[7], Theorem 5.54, p. 312, we let for w ∈ BV (Ω)M ∩ L2(Ω)M

K[w] :=

∫
Ω

|w − f |2dx+

∫
Ω

Fµ(x)(∇aw)dx+

∫
Ω

F∞µ(x)

(
∇sw
|∇sw|

)
d|∇sw|,
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where -as usual- F∞µ(x)(P ) denotes the recession function of Fµ(x)(P ) defined via

F∞µ(x)(P ) := lim
t→∞

Fµ(x)(tP )

t
.

In our particular case, it holds F∞µ(x)(P ) = |P |
µ(x)−1 which can be derived after

performing some standard calculations. Summarizing, we consider the following
non-autonomous variational problem as a model of pure denoising with energies
of linear growth involving variable exponents

K[w] :=

∫
Ω

|w − f |2dx+

∫
Ω

Fµ(x)(∇aw)dx+

∫
Ω

1

µ(x)− 1
d|∇sw|

→ min in BV (Ω)M ∩ L2(Ω)M .

(4.1.9)

Obviously, we can take problem (4.1.9) as a (non-autonomous) modification of
TV-image inpainting as well by replacing the data fitting term in (4.1.9) through∫
Ω−D

|w − f |2dx where D denotes the inpainting region satisfying 0 < Ln(D) <

Ln(Ω). However, one essential motivation to require D = ∅ throughout this
chapter is that we get uniqueness of BV -solutions of problem (4.1.9). As we
will see in the course of this chapter, the uniqueness of BV -solutions of problem
(4.1.9) essentially simplifies the discussions about the regularity behavior of the
BV -minimizer.

At this point we state a theorem which is concerned with problem (4.1.9): first
we will prove solvability of problem (4.1.9), where the unique K-minimizer ad-
ditionally satisfies a maximum principle. In part (b) we justify that the unique
K-minimizer can be seen as a generalized minimizer of the original functional
J from (4.1.7) while in part (c) we show that the set of generalized minimizers
just contains the unique K-minimizer.

Theorem 4.1.1
Suppose that we are given a Ln-measurable function f : Ω → R

M fulfilling
(4.1.1) and let µ ∈ C2(Ω) satisfy (4.1.6). We then have:

(a) the problem (4.1.9) admits a unique solution u and this solution satisfies

sup
Ω
|u| ≤ sup

Ω
|f |;

(b) inf
W 1,1(Ω)M∩L2(Ω)M

I = inf
BV (Ω)M∩L2(Ω)M

K;

(c) letM denote the set of all L1(Ω)M -cluster points of I-minimizing sequences
from the space W 1,1(Ω)M ∩ L2(Ω)M . It then holds M = {u}.

Remark 4.1.2
Considering the scalar case M = 1 and assuming that we are given an observed
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image being described through a Ln-measurable function f : Ω → [0, 1] we can
establish a maximum principle for the unique BV -minimizer u as seen in the
third chapter of this thesis (compare Theorem 3.1.5). To become more precise,
we then can show that it holds 0 ≤ u(x) ≤ 1 for a.a. x ∈ Ω.

Now, we discuss another approach to problem (4.1.7) which is motivated by
the dual formulation of variational problems in the theory of perfect plasticity
(we refer to [54] for a survey). As outlined in the second chapter of this thesis,
one essential motivation for the study of dual problems is the uniqueness of
solutions, where in many applications the dual problem turns out as a maxi-
mization problem for a physically significant quantity.

As before, we suppose the validity of (4.1.1) and let µ ∈ C2(Ω) satisfy (4.1.6).
In accordance with [49], we define the Lagrangian

l(v,κ) :=

∫
Ω

[κ : ∇v − F ∗(x,κ)]dx+

∫
Ω

|v − f |2dx (4.1.10)

for all (v,κ) ∈ (W 1,1(Ω)M ∩ L2(Ω)M , L∞(Ω)nM ). In this context, the function
Φ∗ : Ω× RnM → R

F ∗(x,Q) := sup
P∈RnM

[P : Q− Fµ(x)(P )], Q ∈ RnM ,

denotes the conjugate function of Fµ(x)(P ) w.r.t. to the second variable. In
view of [49], Proposition 2.1, p. 271, we get the following representation for
P ∈ L1(Ω)nM∫

Ω

Fµ(x)(P )dx = sup
κ∈L∞(Ω)nM

∫
Ω

[κ : P − F ∗(x,κ)]dx. (4.1.11)

From (4.1.11) we can derive another formula for the functional J from (4.1.7).
To become more precise we obtain

J [v] = sup
κ∈L∞(Ω)nM

l(v,κ), v ∈W 1,1(Ω)M ∩ L2(Ω)M

and now introduce the dual functional

R : L∞(Ω)nM → [−∞,∞]

R[κ] := inf
v∈W 1,1(Ω)M∩L2(Ω)M

l(v,κ).

Thus, the dual problem associated to (4.1.7) reads: to maximize R among all
functions κ ∈ L∞(Ω)nM .

After the above preparations we give our results on the dual variational problem
associated to problem (4.1.7).
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Theorem 4.1.3
Suppose that we are given a Ln-measurable function f : Ω → R

M fulfilling
(4.1.1) and let µ ∈ C2(Ω) satisfy (4.1.6). It then holds:

(a) the dual problem

R→ max in L∞(Ω)nM (4.1.12)

with R from above admits at least one solution. Moreover, the inf-sup rela-
tion (with J from (4.1.7))

inf
v∈W 1,1(Ω)M∩L2(Ω)M

J [v] = sup
σ∈L∞(Ω)nM

R[σ]

is valid;

(b) in fact, the dual problem (4.1.12) admits a unique solution σ and we further
get the validity of the duality formula

σ = ∇PFµ(·)(∇au) a.e. on Ω,

where u denotes the unique K-minimizer from the space BV (Ω)M∩L2(Ω)M ;

(c) with u from (b) we consider any J-minimizing sequence (um) from the space
W 1,1(Ω)M ∩ L2(Ω)M . We then have

um → u in L2(Ω)M .

At this stage we discuss regularity of the unique K-minimizer u from Theorem
4.1.1. At least in the scalar case M = 1 together with n = 2 it was shown in
[28], Theorem 4 (ii), that u ∈ C1,α(Ω2) for any α ∈ (0, 1), where

Ω2 := {x ∈ Ω : 1 < µ(x) < 2} (4.1.13)

denotes an appropriate subregion of Ω. In contrast, on prescribed subregions
of Ω with large values of µ(x), the BV -minimizer u might show an irregular
behavior.
Now, we are concerned with two questions:

• Can we extend the result u ∈ C1,α(Ω2) stated in [28] in the scalar case
M = 1 to any dimension n ≥ 2?

• Is it possible to establish full interior C1,α-regularity of u in the vectorial
case M > 1 with arbitrary dimension n ≥ 2 as well?

It will turn out that we can give a positive answer to both questions where we
crucially benefit from the arguments carried out in the autonomous setting in
the third chapter of this thesis.
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Theorem 4.1.4
Suppose that we are given a Ln-measurable function f : Ω → R

M satisfying
(4.1.1) and let µ ∈ C2(Ω) fulfill (4.1.6). We then have u ∈ C1,α(Ω2)M for any
α ∈ (0, 1), where the set Ω2 (possibly empty depending on the choice of µ) is
defined as in (4.1.13).

Remark 4.1.5
Note that by performing some straight forward calculations we can show that
our model density F (x, P ) := Fµ(x)(P ) satisfies the following set of assumptions:
there are uniform (in x) constants ν0, . . . , ν3,K > 0 and γ ∈ (0, 1), such that
for all x ∈ Ω, for all P,Q ∈ RnM and for γ ∈ {1, . . . , n}

(i) Φµ(x)(P ) = g(x, |P |2), g ∈ C2(Ω× RnM );

(ii) |∇PF (x, P )| ≤ ν0;

(iii) ν1(1 + |P |)−µ(x)|Q|2 ≤ D2
PF (x, P )(Q,Q) ≤ ν2(1 + |P |)−1|Q|2;

(iv) |∂γ∇PF (x, P )| ≤ ν3;

(v) |D2
PF (x, P )−D2

PF (x,Q)| ≤ K|P −Q|γ;

(vi) the variational integrand F = F (x, P ) is of linear growth in P , uniformly
w.r.t. x, i.e.

a|P | − b ≤ F (x, P ) ≤ A|P |

where the constants a,A > 0, b ∈ R, do not depend on x.

We remark that we can extend all results of this chapter to general integrands
F (x, P ) satisfying the above conditions. Note that the theorems of this chapter
partially remain true under much weaker assumptions on F (x, P ). In fact, we
merely need the entire range of the conditions (i)–(vi) for proving full interior
C1,α-regularity of the unique K-minimizer (with K from (4.1.9)) in the vectorial
case M > 1.

Remark 4.1.6
In extension of the analysis started in the joint article with J. Müller [81], we
can study a (more general) non-autonomous modification of the TV-regularization
which means that for a fixed real number ζ > 1 we seek minimizers of the func-
tional

Jζ [w] :=

∫
Ω

Fµ(x)(∇w)dx+
λ

ζ

∫
Ω

|w − f |ζdx

among functions from the space W 1,1(Ω)M ∩Lζ(Ω)M . Choosing ζ = 2 we are in
the same setting as discussed in this chapter. The corresponding relaxed version

116



4.1. THE BASIC SETUP AND STATEMENT OF THE MAIN RESULTS

of the functional Jζ formulated on the space BV (Ω)M is then given by

Kζ [w] :=

∫
Ω

Fµ(x)(∇aw)dx+

∫
Ω

1

µ(x)− 1
d|∇sw|

+
λ

ζ

∫
Ω

|w − f |ζdx,
(4.1.14)

and (4.1.14) is well-defined for functions w ∈ BV (Ω)M ∩Lζ(Ω)M . Now we can
state that we can transfer all results from Theorem 4.1.1 and Theorem 4.1.4 to
this (slightly) more general setting whereas Theorem 4.1.3 (a) and (b) remain
true as well. We further note that Theorem 4.1.1 partially holds true for the
limit case ζ = 1.

We finish this chapter by establishing a full interior C1,α-regularity result
for local minimizers of a properly defined class of non-autonomous isotropic
variational problems, where we initially recall our setup and state our hypothe-
ses: as usual, Ω ⊂ R

n denotes a bounded Lipschitz domain and D ⊂ Ω is a
Ln-measurable subset satisfying

0 ≤ Ln(D) < Ln(Ω). (4.1.15)

Moreover, f : Ω − D → R
M , M ≥ 1, is a given Ln-measurable function for

which we assume

f ∈ L∞(Ω−D)M . (4.1.16)

Furthermore, we suppose that we are given a function H : Ω × RnM → [0,∞)
of class C2 satisfying the following set of uniform (in x) isotropic ellipticity and
growth conditions for some given 2 ≤ t < ∞, for all P,U ∈ R

nM and with
positive constants λ,Λ, c

λ(1 + |P |2)
t−2
2 |U |2 ≤ D2

PH(x, P )(U,U) ≤ Λ(1 + |P |2)
t−2
2 |U |2, (4.1.17)

|∇x∇PH(x, P )| ≤ c(1 + |P |2)
t−1
2 , (4.1.18)

H(x, P ) = h(x, |P |2). (4.1.19)

Here, h : Ω × RnM → [0,∞) is a function of class C2. Moreover we suppose
that for ν > 0 and all P,Q ∈ RnM it holds

|D2
PH(x, P )−D2

PH(x,Q)| ≤ c(1 + |P |2 + |Q|2)
t−2−ν

2 |P −Q|ν . (4.1.20)

for a positive constant c independent of x.
In addition, we denote by u ∈ W 1,t

loc(Ω)M a local minimizer of the functional
(λ > 0 denotes a regularization parameter)

I[w,Ω] :=

∫
Ω

H(x,∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx, (4.1.21)
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where we additionally assume u ∈ L∞loc(Ω)M .

Here, a function u ∈W 1,t
loc(Ω)M is called a local minimizer of the functional I iff

I[u,Ω′] <∞ and I[u,Ω′] ≤ I[v,Ω′]

for any Ω′ b Ω and for all v ∈W 1,t
loc(Ω)M with spt(u− v) ⊂ Ω′.

Now we claim the following regularity statement:

Theorem 4.1.7
With the notation and assumptions from above we suppose that u ∈W 1,t

loc (Ω)M ∩
L∞loc(Ω)M (t ≥ 2) denotes a local minimizer of the functional I from (4.1.21).
It then holds u ∈ C1,α(Ω)M .

Remark 4.1.8
We stress that Theorem 4.1.7 is an essential tool in our discussions (we refer to
the proof of Theorem 3.1.19 in the vectorial setting and to the proof of Theorem
4.1.4).

Remark 4.1.9 • Neglecting the quantity
∫

Ω−D
|w − f |2dx, Theorem 4.1.7 has

already been formulated and proven in [20], Lemma 2.7. As a consequence,
our major effort consists in adjusting the arguments given in the proof of
Lemma 2.7 in [20] to the second integral of (4.1.21).

• Looking at the proof of Theorem 4.1.7 it becomes evident that the argu-
ments extend to the autonomous situation as well.

Remark 4.1.10
We conjecture, that it is possible to establish Theorem 4.1.7 in the subquadratic
case 1 < t < 2 as well. However, due to the presence of the data fitting term,
an adaption of the arguments of, e.g., [3] leads to some problems. Nonetheless,
for our investigations, we merely need Theorem 4.1.7 in the case t ≥ 2.

Finally the fourth chapter is organized as follows: in Section 4.2 we give a
proof of Theorem 4.1.1. Section 4.3 is devoted to the investigation of the dual
problem associated to (4.1.7). The aim of Section 4.4 is to show Theorem 4.1.4,
whereas in Section 4.5, we prove Theorem 4.1.7.

4.2 Weak minimizers. Proof of Theorem 4.1.1

Assuming the validity of the hypotheses of Theorem 4.1.1 we first give a short
proof of the following auxiliary result providing the continuity of (the relaxed
variant of) the fidelity term occuring in the functional defined in formula (4.1.9).
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Lemma 4.2.1
For w ∈ BV (Ω)M let

K̃[w] :=

∫
Ω

Fµ(x)(∇aw)dx+

∫
Ω

1

µ(x)− 1
d|∇sw|.

(a) Suppose that wk, w ∈ BV (Ω)M with wk → w in L1(Ω)M . We then have

K̃[w] ≤ lim inf
k→∞

K̃[wk].

(b) If we know in addition∫
Ω

√
1 + |∇wk|2 →

∫
Ω

√
1 + |∇w|2

it then holds

lim
k→∞

K̃[wk] = K̃[w].

Proof of Lemma 4.2.1. For part (a) we refer to [7], Theorem 5.54, p. 312 and
the remarks on p.313.

For showing assertion (b), we use Reschetnyak’s continuity theorem (see, e.g.,
[9], Proposition 2.2) and the version stated in [90], Theorem 1.3, in the euclidean
setting, respectively. Following [60] (we refer to [15], Remark 2.5 as well) we
homogenize Fµ(x)(P ), i.e., we consider

F̃ : Ω× [0,∞)× RnM → [0,∞)

(x, t, P ) 7→ F̃ (x, t, P ) :=

{
tFµ(x)(

P
t ), t > 0

|P |
µ(x)−1 , t = 0

,

where we note that F̃ is continuous and bounded on Ω × SnM . Here, SnM

denotes the nM -dimensional unit sphere in RnM+1. As the next step we look at
the following sequence of tensor-valued Radon measures (Mb(Ω)1+nM denoting
the space of R1+nM -valued measures on Ω with finite total variation)

µk := (Ln,∇wk) ∈Mb(Ω)1+nM

and observe |µk|(Ω) → |µ|(Ω) := |(Ln,∇w)|(Ω) by the additional assumption

stated in part (b). Clearly we have µk
∗
⇁ µ in Mb(Ω)1+nM on the other hand

(see [7], Proposition 3.13, p. 125) and from [90], Theorem 1.3, we conclude

lim
k→∞

∫
Ω

F̃

(
x,

(Ln,∇wk)
|(Ln,∇wk)|

)
d|(Ln,∇wk)|

=

∫
Ω

F̃

(
x,

(Ln,∇w)

|(Ln,∇w)|

)
d|(Ln,∇w)|.

(4.2.1)
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Note that (4.2.1) just gives

lim
k→∞

K̃[wk] = K̃[w]. (4.2.2)

For justifying that the representation stated in (4.2.1) implies (4.2.2) we can use
the Lebesgue decomposition of the tensor-valued Radon measure ∇w, Radon-
Nikodým’s theorem and the definition of F̃ from above (compare, e.g., [15],
Remark 2.5). This completes the proof of Lemma 4.2.1.

Now, let us proceed by proving Theorem 4.1.1, where it is to be noted that by
strict convexity of w 7→

∫
Ω

|w − f |2dx, it is clear that problem (4.1.9) admits at

most one solution. To justify that problem (4.1.9) has at least one solution we
denote by (wm) an arbitrary K-minimizing sequence from the space BV (Ω)M ∩
L2(Ω)M and state that due the uniform (w.r.t. x) linear growth of F (recall
(4.1.8) as well) it holds

sup
m
|∇wm|(Ω) <∞. (4.2.3)

We further obtain

sup
m
‖wm‖L2(Ω) <∞. (4.2.4)

By BV -compactness it follows existence of a function u ∈ BV (Ω)M such that
wm → u in L1(Ω)M and a.e. on Ω up to a subsequence. Moreover, (4.2.4) to-
gether with Fatou’s lemma gives u ∈ L2(Ω)M implying u ∈ BV (Ω)M ∩L2(Ω)M .
Hence, K[u] is well-defined.
Combining Lemma 4.2.1 (a) with Fatou’s lemma it follows

K[u] ≤ lim inf
m→∞

K[wm] = inf
BV (Ω)M∩L2(Ω)M

K, (4.2.5)

implying that u is K-minimizing. The maximum principle

sup
Ω
|u| ≤ sup

Ω
|f |

for u can be derived by arguing in the same manner as in the proof of Theorem
3.1.4 in Section 3.2 of this thesis. Note that the proof essentially simplifies by
taking into account the uniqueness of the K-minimizer.

For proving part (b) we proceed exactly as in the proof of Theorem 2.1.1 (c)
from Section 2.3 (we set D = ∅ therein): quoting Lemma 2.2.6 in Section 2.2.2
of this thesis (choose D = ∅ and q = 2) there is a sequence (um) of class
C∞(Ω)M satisfying

um → u in L2(Ω)M ,∫
Ω

√
1 + |∇um|2dx→

∫
Ω

√
1 + |∇u|2.
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An application of Lemma 4.2.1 (b) then gives continuity of the functional K
w.r.t. to convergence “um → u“ which yields part (b).

To establish assertion (c) we follow the lines of the proof of Theorem 2.1.1
(d) (we set D = ∅ therein). Once again we then make use of the continuity of
the functional K w.r.t. the convergence “um → u“ as stated above. Uniqueness
of the minimizer finally implies M = {u}. �

4.3 The dual problem. Proof of Theorem 4.1.3

Assuming the validity of the hypotheses of Theorem 4.1.3 we adapt the proce-
dure as already been given in the proof of Theorem 2.1.6 in the autonomous
setting and make some minor adjustments.
We approximate our original problem (4.1.7) by a sequence of more regular
problems admitting regular solutions with appropriate convergence properties.
To become more precise, for fixed δ ∈ (0, 1], we denote by uδ ∈ W 1,2(Ω)M the
unique solution of the problem (with J from (4.1.7))

Jδ[w] :=
δ

2

∫
Ω

|∇w|2dx+ J [w]→ min in W 1,2(Ω)M (4.3.1)

and state that uδ satisfies

sup
Ω
|uδ| ≤ sup

Ω
|f |, (4.3.2)

which is an easy consequence of Theorem 3.1.4 from the third chapter of this
thesis.
Due to the uniform estimate Jδ[uδ] ≤ Jδ[0] = J [0] we further get

sup
δ
‖∇uδ‖L1(Ω) <∞, (4.3.3)

sup
δ
δ

∫
Ω

|∇uδ|2dx <∞, (4.3.4)

where (4.3.3) is a consequence of the uniform (in x) linear growth of Fµ(x)(P ).
Next we let

τδ := ∇PFµ(x)(∇uδ) and σδ := δ∇uδ + τδ,

and see that (4.3.4) implies

‖δ∇uδ‖L2(Ω) → 0 as δ → 0, (4.3.5)

whereas the uniform (w.r.t. δ) boundedness of τδ gives

sup
δ
‖τδ‖L∞(Ω) <∞. (4.3.6)
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After passing to a suitable subsequence δ → 0 we get from (4.3.5) and (4.3.6)

σδ ⇁: σ inL2(Ω)nM and τδ
∗
⇁: τ in L∞(Ω)nM (4.3.7)

which yields σ = τ by means of (4.3.5).
Using (4.3.3) and (4.3.2) we may assume by BV -compactness

uδ →: u in L1(Ω)M and a.e., (4.3.8)

for a function u ∈ BV (Ω)M which is of class L∞(Ω)M as well. As a consequence
of uniqueness we note that (4.3.3), (4.3.4) and (4.3.8) hold for a particular
sequence δ → 0.
Now, we prove that σ is a solution of the dual problem: uδ solves the Euler
equation (compare (4.3.1))∫

Ω

τδ : ∇ϕdx+ δ

∫
Ω

∇uδ : ∇ϕdx+ 2

∫
Ω

(uδ − f) · ϕdx = 0 (4.3.9)

for all ϕ ∈W 1,2(Ω)M .
With the help of the duality formula τδ : ∇uδ − F ∗(·, τδ) = Fµ(·)(∇uδ) being
valid for all x ∈ Ω (remember the definition of the conjugate function F ∗(x, P )
to Fµ(x)(P )) we obtain

Iδ[uδ] =
δ

2

∫
Ω

|∇uδ|2dx+

∫
Ω

[τδ : ∇uδ − F ∗(x, τδ)]dx+

∫
Ω

|uδ − f |2dx.

Inserting the admissible function ϕ = uδ in Euler’s equation (4.3.9) we find

Iδ[uδ] = −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(x, τδ))dx−
∫
Ω

|uδ|2dx

+

∫
Ω

|f |2dx.
(4.3.10)

Next we let v ∈W 1,1(Ω)M ∩L2(Ω)M and observe (recall (4.1.7) and the defini-
tion of the dual functional R)

I[v] = sup
κ∈L∞(Ω)nM

l(v,κ) ≥ l(v, ρ) ≥ inf
v∈W 1,1(Ω)M∩L2(Ω)M

l(v, ρ) = R[ρ]

for any ρ ∈ L∞(Ω)nM , which yields

sup
ρ∈L∞(Ω)nM

R[ρ] ≤ inf
v∈W 1,1(Ω)M∩L2(Ω)M

I[v].

Using (4.3.10) we then obtain

sup
κ∈L∞(Ω)nM

R[κ] ≤ inf
v∈W 1,1(Ω)M∩L2(Ω)M

I[v]

≤ −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(x, τδ))dx−
∫
Ω

|uδ|2dx

+

∫
Ω

|f |2dx.

(4.3.11)
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By dominated convergence (recall (4.3.2) and (4.3.8)) we obtain (as δ → 0)∫
Ω

|uδ|2dx→
∫
Ω

|u|2dx,

while upper semicontinuity of
∫
Ω

(−F ∗(x, ·))dx w.r.t. weak-∗ convergence shows

lim sup
δ→0

∫
Ω

(−F ∗(x, τδ))dx ≤
∫
Ω

(−F ∗(x, τ))dx.

Dropping the term − δ
2

∫
Ω

|∇uδ|2dx for the moment and passing to the limit

δ → 0, (4.3.11) turns into

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω)M

I

≤
∫
Ω

(−F ∗(x, τ))dx−
∫
Ω

|u|2dx+

∫
Ω

|f |2dx.
(4.3.12)

Passing to the limit δ → 0 in Euler’s equation (4.3.9) we find (recall (4.3.5),
(4.3.7) and (4.3.8)) ∫

Ω

τ : ∇ϕdx+ 2

∫
Ω

(u− f) · ϕdx = 0 (4.3.13)

for any ϕ ∈W 1,2(Ω)M .
By performing standard approximation arguments (we moreover refer to Lemma
2.2.4 choosing D = ∅, p = 1 and q = 2), we obtain that (4.3.13) extends to
ϕ ∈W 1,1(Ω)M ∩ L2(Ω)M .
Besides it holds

R[τ ] : = inf
v∈W 1,1(Ω)M∩L2(Ω)M

l(v, τ)

=

∫
Ω

(−F ∗(x, τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω)M

[ ∫
Ω

τ : ∇vdx+

∫
Ω

|v − f |2dx
]

=

∫
Ω

(−F ∗(x, τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω)M

[
− 2

∫
Ω

(u− f) · vdx+

∫
Ω

|v − f |2dx
]

=

∫
Ω

(−F ∗(x, τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω)M

[ ∫
Ω

|u− v|2dx+

∫
Ω

|f |2dx−
∫
Ω

|u|2dx
]
.
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Here, we used (4.3.13) with the admissible choice ϕ = v and the quadratic
structure of the data fitting term as well. Hence,

R[τ ] ≥
∫
Ω

(−F ∗(x, τ))dx+

∫
Ω

|f |2dx−
∫
Ω

|u|2dx

and (4.3.12) implies

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω)M

I ≤ R[τ ].

As a consequence, τ is R-maximizing and the inf-sup relation is valid. Thus,
assertion (a) of Theorem 4.1.3 is proven.
As byproducts we further have shown (recall (4.3.11))

δ

∫
Ω

|∇uδ|2dx→ 0, (4.3.14)

(uδ) is an I −minimizing sequence. (4.3.15)

at least for a subsequence δm → 0. From (4.3.15) and Theorem 4.1.1 (c), it
then follows that u ∈ BV (Ω)M ∩ L∞(Ω)M is K-minimizing. By uniqueness
we get u = u a.e. on Ω, where u denotes the K-minimizer whose existence is
guaranteed by Theorem 4.1.1.

A proof of assertion (c) can be deduced by adapting the arguments from the
proof of Theorem 2.1.6, (c), choosing D = ∅ therein.

As the last step we want to establish statement (b), where we adopt the proce-
dure as given in the proof of Theorem 2.1.7 making some minor adjustments:
we recall that u ∈ BV (Ω)M ∩L∞(Ω)M denotes the unique K-minimizer and re-
member the Lebesgue decomposition ∇u = ∇auxLn+∇su of the tensor-valued
Radon measure ∇u. We then assert

Lemma 4.3.1
The tensor ρ := ∇PFµ(·)(∇au) is a maximizer of the dual functional R.

Proof of Lemma 4.3.1. Recalling ρ ∈ L∞(Ω)M and remembering the definition
of the dual functional

R[κ] = inf
v∈W 1,1(Ω)M∩L2(Ω)M

l(v,κ), κ ∈ L∞(Ω)nM ,

where the Lagrangian l(v,κ) is given as in (4.1.10), it follows that R[ρ] is well-
defined. We further obtain for v ∈ W 1,1(Ω)M ∩ L2(Ω)M (recall that F ∗(x, P )
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denotes the conjugate function to Fµ(x)(P ) w.r.t. the P -variable)

l(v, ρ) =

∫
Ω

[∇PFµ(x)(∇au) : ∇v − F ∗(x,∇PFµ(x)(∇au))]dx

+

∫
Ω

|v − f |2dx

=

∫
Ω

Fµ(x)(∇au)dx+

∫
Ω

(∇v −∇au) : ∇PFµ(x)(∇au)dx

+

∫
Ω

|v − f |2dx,

(4.3.16)

where the important formula Fµ(x)(P )+F ∗(x,∇PFµ(x)(P )) = P : ∇PFµ(x)(P ),

P ∈ RnM , being valid for all x ∈ Ω has been used.
The K-minimality of u moreover gives (note that ∇s(u + tv) = ∇su holds for
the singular part of the measures)

0 =
d

dt|0
K[u+ tv] =

∫
Ω

∇PFµ(x)(∇au) : ∇vdx+ 2

∫
Ω

v · (u− f)dx. (4.3.17)

Clearly, we have ∇(u + tu) = (1 + t)∇u and by using the K-minimality of u
once again we get

0 =
d

dt|0
K[u+ tu]

=

∫
Ω

∇PFµ(x)(∇au) : ∇audx+

∫
Ω

1

µ(x)− 1
d|∇su|

+ 2

∫
Ω

u · (u− f)dx.

(4.3.18)

Inserting (4.3.17) and (4.3.18) into (4.3.16) we see

l(v, ρ) =

∫
Ω

Fµ(x)(∇au)dx+

∫
Ω

1

µ(x)− 1
d|∇su|

+

∫
Ω

|u− f |2dx+

∫
Ω

|u− v|2dx.
(4.3.19)

Clearly, we have the validity of the formula −2v ·(u−f)+2u ·(u−f)+ |v−f |2 =
|u− f |2 + |u− v|2 a.e. on Ω which, in combination with (4.3.19), implies

l(v, ρ) ≥ K[u]

Thus, by recalling the definition of the dual functional R, it follows

R[ρ] ≥ K[u]

and this proves Lemma 4.3.1 after quoting part (a) of Theorem 4.1.3 (note that
u is K-minimal).
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Now let us show uniqueness of the dual solution σ: we first note that P 7→
F ∗(x, P ) is strictly convex on the set {P ∈ RnM , F ∗(x, P ) < ∞} for all x ∈ Ω
which can be justified by adopting the arguments of the proof of Theorem 1.4
ii) in [25]. But then, σ is unique which can be proven by arguing in the same
manner as in the proof of Theorem 2.1.6, (b) (or in the proof of Theorem 1.4
in [25]).
Using Lemma 4.3.1, we then get the validity of the duality formula

σ = ∇PFµ(·)(∇au) a.e. on Ω,

which completes the proof of Theorem 4.1.3. �

4.4 C1,α -regularity of the unique BV-minimizer.
Proof of Theorem 4.1.4

Assuming the validity of the hypotheses of Theorem 4.1.4 and denoting by u ∈
BV (Ω)M ∩ L∞(Ω)M the unique K-minimizer with K from (4.1.9) we consider
the same regularization as introduced in Section 4.3: for fixed δ ∈ (0, 1] we
denote by uδ ∈W 1,2(Ω)M the unique solution of the problem

Jδ[w] =

∫
Ω

Fδ(x,∇w)dx+

∫
Ω

|w − f |2dx→ min in W 1,2(Ω)M , (4.4.1)

where we recall Fδ(x, P ) := δ
2 |P |

2 + Fµ(x)(P ) for any x ∈ Ω and P ∈ R
nM .

Furthermore, uδ is uniformly bounded w.r.t. δ (see (4.3.2)) and we have shown
that it holds uδ → u in L1(Ω)M and a.e. up to a subsequence (compare (4.3.15)).
In the following lemma we state some regularity properties of uδ that serve as
essential tools in the further proof. A remark to a proof of this lemma can
be found in the appendix of this thesis (see Lemma 7.1.1 and Remark 7.1.4,
respectively)

Lemma 4.4.1
It holds uδ ∈W 2,2

loc (Ω)M ∩W 1,∞
loc (Ω)M .

Furthermore, uδ solves the Euler equation (see (4.3.9))∫
Ω

∇PFδ(x,∇uδ) : ∇ϕdx+ 2

∫
Ω

(uδ − f) · ϕdx = 0 (4.4.2)

for all ϕ ∈ C∞0 (Ω)M . The corresponding differentiated variant of Euler’s equa-
tion (4.4.2) then reads as (recall the uniform (in x) boundedness of |D2

PFδ| and
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uδ ∈W 2,2
loc (Ω)M )∫

Ω

D2
PFδ(x,∇uδ)(∂γ∇uδ,∇ϕ)dx+

∫
Ω

(∂γ∇PFδ)(x,∇uδ) : ∇ϕdx

= 2

∫
Ω

(uδ − f) · ∂γϕdx
(4.4.3)

for all ϕ ∈W 1,2(Ω)M with compact support in Ω.
The proof of Theorem 4.1.4 is divided into three parts: local uniform (in δ)
Lp-estimates of ∇uδ for all finite p > 1, local uniform (in δ) gradient bounds,
and the conclusions.
Within these three steps we use the same arguments as already used in the au-
tonomous setting (compare the proof of Theorem 3.1.19 in the third chapter),
where we only apply minor adjustments.

Step 1. Local uniform Lp-estimates of ∇uδ

We claim the following statement and note that we crucially will make use
of the uniform (in x) growth and ellipticity conditions of our density Fµ(x)(P ).

Lemma 4.4.2
For any 1 < p < ∞ and for any ω b Ω2 there is a constant c(p, ω), which is
not depending on δ, such that

‖∇uδ‖Lp(ω) ≤ c(p, ω) <∞. (4.4.4)

Proof of Lemma 4.4.2. As already seen in the second step of the proof of The-
orem 3.1.19 in Section 3.4, we initially prove an appropriate variant of Cacciop-
poli’s inequality which acts as an important tool during the iteration procedure
that we apply afterwards to establish uniform Lploc-gradient bounds of uδ on Ω2.

Lemma 4.4.3
Fix a ball Br(x0) b Ω2. Then for any s0 ≥ 0 there exists a real number c > 0
such that for all η ∈ C∞0 (Br(x0)) satisfying 0 ≤ η ≤ 1 and for any δ ∈ (0, 1) it
holds ∫

Br(x0)

|∇2uδ|2Γ
s0−µ2
δ η2dx+ δ

∫
Br(x0)

|∇2uδ|2Γs0δ η
2dx

≤
∫

Br(x0)

D2
PFδ(x,∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx

≤ c
∫

Br(x0)

D2
PFδ(x,∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx

+ c

∫
Br(x0)

|∇η|2Γs0δ dx+ c

∫
Br(x0)

η2Γs0δ dx,

(4.4.5)
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where we have set Γδ := 1 + |∇uδ|2 and c is a positive constant which, in
particular, is independent of δ.

Remark 4.4.4
Based on the requirement µ ∈ C2(Ω) with µ satisfying µ(x) ∈ [µ0, µ1] for suit-
able numbers 1 < µ0 ≤ µ1 < ∞ we particularly get µ1 < 2 on each compact
subset ω of Ω2.

Proof of Lemma 4.4.3. Note that the first inequality follows after using the uni-
form (in x) ellipticity condition of our density Fµ(x)(P ). Now, we fix some num-
ber s0 ≥ 0 and a ball Br(x0) b Ω2. With η given above and by quoting Lemma
4.4.1, the function ϕ = η2Γs0δ ∂γuδ with γ ∈ {1, . . . , n} is an admissible choice in
equation (4.4.3) and it follows (from now on summation w.r.t. γ ∈ {1, . . . , n})

∫
Br(x0)

D2
PFδ(x,∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ 2

∫
Br(x0)

|∇uδ|2η2Γs0δ dx

+ s0

∫
Br(x0)

D2
PFδ(x,∇uδ)(∂γ∇uδ, ∂uδ ⊗∇Γδ)Γ

s0−1
δ η2dx

= −
∫

Br(x0)

(∂γ∇PFδ)(x,∇uδ) : ∂γ∇uδη2Γs0δ dx

− 2

∫
Br(x0)

(∂γ∇PFδ)(x,∇uδ) : ∇η ⊗ ∂γuδΓs0δ ηdx

− s0

∫
Br(x0)

(∂γ∇PFδ)(x,∇uδ) : ∂γ∇uδη2Γs0δ dx

− 2

∫
Br(x0)

D2
PFδ(x,∇uδ)(∂γ∇uδ,∇η ⊗ ∂γuδ)ηΓs0δ dx

− 2

∫
Br(x0)

f · ∂γϕdx

=:
5∑
i=1

Ii.

(4.4.6)

Now, we crucially use the (uniform) boundedness of the quantity |∂γ∇PFµ(x)(P )|
to discuss I1, I2 as well as I3 whereas for I4 and I5 we argue in the same manner
as already seen in the proof of Lemma 3.5.2 and Lemma 3.5.13, respectively.
From (4.4.6) we thus get after using Young’s inequality and absorbing terms
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(c > 0 denotes a positive constant being independent of δ)∫
Br(x0)

D2
PFδ(x,∇uδ)(∂γ∇uδ, ∂γ∇uδ)η2Γs0δ dx+ c

∫
Br(x0)

|∇uδ|2η2Γs0δ dx

≤ c
∫

Br(x0)

D2
PFδ(x,∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs0δ dx

+ c

∫
Br(x0)

η2Γ
s0+

µ1
2

δ dx+ c

∫
Br(x0)

|∇η|2Γs0δ dx.

(4.4.7)

Recalling Remark 4.4.4 we have µ1 < 2 on Br(x0) b Ω2 and another application
of Young’s inequality gives for any ε > 0

c

∫
Br(x0)

η2Γ
s0+

µ1
2

δ dx ≤ ε
∫

Br(x0)

η2Γs0+1
δ dx+ cε

µ1
µ1−2

∫
Br(x0)

η2Γs0δ dx.

Absorbing terms by choosing ε > 0 sufficiently small we finally obtain the
desired second inequality in (4.4.5) after neglecting the non-negative second
integral on the l.h.s. of (4.4.7).

As the next step we use exactly the same iteration argument as already seen
in the proof of Theorem 3.1.19 in the scalar case (see “Step 1. Regularization
and local uniform apriori Lp-estimates “). Here, the variant of Caccioppoli’s
inequality (4.4.5) is a crucial tool and it is worth remarking that we again
benefit from the uniform (in x) growth and ellipticity conditions of our involved
density. Furthermore we use the fact that it holds (note that c > 0 is a uniform
constant and x0 ∈ Ω)

∇PFµ(x0)(P ) : P ≥ c|P |
|P |∫
0

(1 + ρ2)−
µ1
2 dρ,

which implies that we have the validity of Lemma 3.1.3 (a) on Br(x0) (we choose
r sufficiently small).
Thus, we get ∇uδ ∈ Lploc(Ω2)nM uniformly in δ for any finite p > 1 and Lemma
4.4.2 is proven.

Step 2. Local uniform apriori gradient bounds.

In this step we first derive another variant of Caccioppoli’s inequality which, in
particular, is valid for all µ(x) ∈ [µ0, µ1] with appropriate numbers 1 < µ0 ≤
µ1 < ∞ (recall (4.1.8)). This inequality takes a crucial part when performing
DeGiorgi-type arguments in the third step below.
Let us first introduce some notation: we fix a point x0 ∈ Ω and consider radii
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0 < r < R < R0 with BR0(x0) b Ω.
Moreover, we let for k > 0

Aδ(k,R) := {x ∈ BR(x0) : Γδ > k}.

Further we consider a suitable cut-off function η ∈ C∞0 (BR(x0)) with 0 ≤ η ≤ 1,
η ≡ 1 on Br(x0) and |∇η| ≤ c

R−r . Finally, for functions v : Ω → R we denote
max{v, 0} by v+. The following variant of Caccioppoli’s inequality then can
be established where we emphasize that the choice of the parameter ν is not
optimal (see Remark 3.5.5).

Lemma 4.4.5
With the previous notation, in particular, for any x ∈ Ω, it holds∫
Aδ(k,R)

Γ
−µ1
2

δ |∇Γδ|2η2dx

≤ c
∫

Aδ(k,R)

|D2
PFδ(x,∇uδ)||∇η|2(Γδ − k)2dx+ c

∫
Aδ(k,R)

η2|∇uδ|2+µ1dx

+ c

∫
Aδ(k,R)

η|∇η||∇uδ|3dx

≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx

(4.4.8)

where ν := max {4, 2 + µ1} and c denotes a positive constant independent of
δ, r and R.

Proof of Lemma 4.4.5. A proof of this lemma can be accomplished by inserting
the same test functions in the differentiated Euler equation (4.4.3) and carrying
out the same arguments as applied in the autonomous setting (compare the
proof of Lemma 3.5.4 and the proof of Lemma 3.5.14, respectively). As already
seen in the proof of Lemma 4.4.3, we note that the additional term occuring in
the equation (4.4.3) will be estimated by using the (uniform) boundedness of
the quantity |∂γ∇PFµ(x)(P )|. We emphasize that we further benefit from the
uniform (in x) growth and ellipticity conditions of the density Fµ(x)(P ).

For proving local uniform apriori gradient bounds of uδ we make use of
the following De Giorgi-type lemma closing the gap between local uniform p-
integrability of the gradients for a certain exponent p and local uniform apriori
gradient bounds. This lemma has already been proven in Section 3.5.1 (see the
proof of Lemma 3.5.6) and we will repeat its statement below.

Lemma 4.4.6
Suppose that vδ is a sequence of class W 2,2

loc (Ω)M and that we are given real
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numbers p, ν > 3, µ > 1 satisfying

µ+ ν

2
n < p. (4.4.9)

Moreover, suppose that we have a uniform constant c > 0 (with Γδ := 1+ |∇vδ|2
and Aδ(k,R), r, R,R0, η as above) such that it holds∫

Aδ(k,R)

Γ
−µ

2
δ |∇Γδ|2η2dx ≤ c

(R− r)2

∫
Aδ(k,R)

Γ
ν
2
δ dx (4.4.10)

and assume in addition that ∇vδ is locally p-integrable uniformly in δ, i.e.

sup
δ

∫
Ω′

|∇vδ|pdx = c(p,Ω′) <∞, (4.4.11)

where Ω′ b Ω. Then it holds ∇vδ ∈ L∞loc(Ω)nM uniformly in δ.

As a consequence we can state the following conclusion.

Proposition 4.4.7
It holds ∇uδ ∈ L∞loc(Ω2)nM uniformly w.r.t. δ.

Proof of Proposition 4.4.7. For showing the claim we apply Lemma 4.4.6 to our
setting: quoting Lemma 4.4.1 it holds uδ ∈ W 2,2

loc (Ω)M . By means of Lemma

4.4.4 we obtain uniform Lploc-estimates of ∇uδ on Ω2 for any finite p > 1.
Thus, (4.4.11) from Lemma 4.4.6 with vδ := uδ is satisfied for any finite p.
Furthermore, Lemma 4.4.5 provides a Caccioppoli-type inequality in the spirit
of (4.4.10) in Lemma 4.4.6 (with a uniform constant c > 0) where we set
µ := µ1 > 1 and ν := max {4, 2 + µ1} > 3. Recalling (4.1.8) it moreover holds
µ1 < ∞, where we can even arrange µ1 < 2 on each compact subset Ω′ b Ω2

(compare Remark 4.4.4). Finally, the requirement (4.4.9) from Lemma 4.4.6 is
trivially fulfilled. As a consequence, Lemma 4.4.6 then provides local uniform
(in δ) apriori gradient bounds for uδ on Ω2.

Step 3. Conclusions

In accordance with Theorem 4.1.3 (compare (4.3.15)) we know uδ → u in
L1

loc(Ω2) as δ → 0 where u denotes the unique K-minimizer from the space
BV (Ω)M ∩ L∞(Ω)M . Using Proposition 4.4.7 we get that uδ is locally uni-
formly (in δ) Lipschitz continuous on Ω2. An application of Arzelá-Ascoli’s
theorem then yields u ∈ C0,1(Ω2)M .
Moreover we see that u solves the Euler equation∫

Ω

∇PFµ(x)(∇u) : ∇ϕdx+ 2

∫
Ω

(u− f) · ϕdx = 0 (4.4.12)
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for all ϕ ∈ C∞0 (Ω2)M .

For proving local Hölder continuity of ∇u in Ω2 in the scalar case M = 1
we can proceed as in the proof of Theorem 3.1.19 (see “Step 4. Conclusions“)
and quote elliptic regularity theory (see, e.g., [62], Theorem 8.22, p. 200).

For closing the gap between u ∈ C0,1(Ω2)M and local Hölder continuity of
∇u on Ω2 in the vectorial setting M > 1 we adopt the same procedure as al-
ready carried out in the autonomous case (see proof of Theorem 3.1.19 in the
vectorial case, “Step 4. Conclusions“).
To become more precise we fix a ball Br(x0) b Ω2 and choose a positive num-
ber M such that sup

Br(x0)
|∇u| ≤ M . Following [78] we consider the following

integrand F̃ : Ω× RnM → [0,∞)

F̃ (x, P ) := 1 + ν + Fµ(x)(P ) + (|P |2 − 4K2)+3,

where ν > 0 denotes a constant.
By construction of F̃ we directly see that F̃ ∈ C2(Ω × RnM ). Further, some
straight forward calculations (recall the uniform (w.r.t. x) growth and ellipticity
properties of Fµ(x)(P ) and remember µ ∈ C2(Ω)) show that we can establish the
following estimates (note that we also use that D2

PFµ(x)(P ) satisfies a uniform
(in x) Hölder condition)

ν1(1 + |P |2)2|Q|2 ≤ D2
P F̃ (x, P )(Q,Q) ≤ ν2(1 + |P |2)2|Q|2,

|D2
P F̃ (x, P )−D2

P F̃ (x,Q)| ≤ ν3(1 + |P |2 + |Q|2)2−λ/2|P −Q|λ,

|∇x∇P F̃ (x, P )| ≤ ν4,

for all P,Q ∈ RnM , for all x ∈ Ω and with some positive constants ν1, . . . , ν4

and λ. Furthermore we remark that it additionally holds F̃ (x, P ) = g̃(x, |P |2)
for a function g̃ ∈ C2(Ω× [0,∞), [0,∞)).
From ∇P F̃ (x, P ) = ∇PFµ(x)(P ) for all |P | ≤ 2K it follows that u is a local
minimizer of the functional

∫
Br(x0)

F̃ (x,∇w)dx+

∫
Br(x0)

|w − f |2dx

and thus of class C1,α(Br(x0))M for any α ∈ (0, 1) by Theorem 4.1.7 (we choose
t = 6). From this information we obtain the assertion of the theorem after using
a covering argument (note that we crucially need ∇u ∈ L∞loc(Ω2)nM for carrying
out this argument). �
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4.5 C1,α -solutions to a class of non-autonomous iso-
tropic variational problems. Proof of Theorem
3.1.19

Let us assume the validity of the hypotheses of Theorem 4.1.7. We essentially
follow the arguments of Lemma 2.7 in [20] with some adjustments: first we fix
a point x0 ∈ Ω and let BR(x0) b Ω with R ≤ R0 where the radius R0 will be
fixed later. Setting H0 := H(x0, ·), the crucial observation of the entire proof
is that the unique solution v of the variational problem∫

BR(x0)

H0(∇w)dx→ min in u|BR(x0) +W 1,t
0 (BR(x0))M

satisfies the Campanato estimates (3.1) and (3.2) from Theorem 3.1 of [59]
where we remark that H0 is admissible in the sense that we have the validity
of the assumptions H.1−H.4 from [59] (see (4.1.17) and (4.1.20)). To become
more precise, the inequality (3.1) of Theorem 3.1 in [59] gives together with the
minimality of H0 and the growth of H0

‖∇v‖tL∞(BR/2) ≤ c −
∫
BR

(1 + |∇v|2)
t
2dx ≤ c −

∫
BR

(1 + |∇u|2)
t
2dx. (4.5.1)

Defining V (ξ) := (1 + |ξ|2)
t−2
4 ξ and Ht(ξ) := (1 + |ξ|2)

t
2 , Lemma 2.3 of [67]

gives

|
√
Ht(ξ)−

√
Ht(ξ)| ≤ c|Vt(ξ)− Vt(ξ)|,

which implies for ρ ≤ R
2∫

Bρ

(1 + |∇u|2)
t
2dx ≤ c

[ ∫
Bρ

(1 + |∇v|2)
t
2dx+

∫
Bρ

∣∣∣∣(1 + |∇u|2)
t
4 − (1 + |∇v|2)

t
4

∣∣∣∣2dx]

≤ c
∫
Bρ

(1 + |∇v|2)
t
2dx+ c

∫
Bρ

|V (∇u)− V (∇v)|2dx.

From (4.5.1) we may then conclude∫
Bρ

(1 + |∇u|2)
t
2dx ≤c

(
ρ

R

)n ∫
BR

(1 + |∇u|2)
t
2dx

+ c

∫
Bρ

|V (∇u)− V (∇v)|2dx.
(4.5.2)

By virtue of (2.3) from [67] and (2.1) of [59] it follows∫
Bρ

|V (∇u)− V (∇v)|2dx ≤ c
∫
BR

(1 + |∇u|2 + |∇v|2)
t−2
2 |∇u−∇v|2dx
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≤ c
∫
BR

1∫
0

(1 + |∇v + t(∇u−∇v)|2)
t−2
2 |∇u−∇v|2dt

︸ ︷︷ ︸
(∗)

dx.

Next we state that on account of (4.1.17) we have

(DH0(∇u)−DH0(∇v)) : (∇u−∇v)

=

1∫
0

D2H0(∇v + t(∇u−∇v))(∇u−∇v,∇u−∇v)dt ≥ λ (∗).

Taking into account the Euler equations valid for u and v as well as the growth
condition (4.1.18) we get by means of the above inequality∫

BR

|V (∇u)− V (∇v)|2dx

≤ c
∫
BR

(DH0(∇u)−DH0(∇v)) : (∇u−∇v)dx

=

∫
BR

(DH0(∇u)−∇PH(x,∇u)) : (∇u−∇v)dx

+

∫
BR−D

λ(u− f) · (v − u)dx

≤ cR
∫
BR

(1 + |∇u|2)
t−1
2 |∇u−∇v|dx+

∫
BR−D

λ(u− f) · (v − u)dx.

(4.5.3)

In the last integral on r.h.s. of (4.5.3) we use Young’s and Poincaré’s inequality.
It follows for any τ > 0 (recall u ∈W 1,t

loc(Ω)M ∩ L∞loc(Ω)M and t ≥ 2)∫
BR−D

λ(u− f) · (v − u)dx ≤ cτ−1

∫
BR−D

|u− f |2dx+ τ

∫
BR

|v − u|2dx

≤ cτ−1Rn + cτR2

∫
BR

|∇v −∇u|2dx

≤ cτ−1Rn + cτR2

∫
BR

(1 + |∇u|2)
t−2
2 |∇v −∇u|2dx

≤ cτ−1Rn + cτR2

∫
BR

|V (∇v)− V (∇u)|2dx

which by setting τ := εR−2 with ε > 0 turns into∫
BR−D

λ(u− f) · (v − u)dx ≤ c(ε)Rn+2 + cε

∫
BR

|V (∇v)− V (∇u)|2dx. (4.5.4)
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Further, another application of Young’s inequality gives for the first integral on
the r.h.s. of (4.5.3)

cR

∫
BR

(1 + |∇u|2)
t−1
2 |∇u−∇v|dx

≤ cε
∫
BR

(1 + |∇u|2)
t−2
2 |∇u−∇v|2dx+ c(ε)R2

∫
BR

(1 + |∇u|2)
t
2dx

≤ cε
∫
BR

|V (∇u)− V (∇v)|2dx+ c(ε)R2

∫
BR

(1 + |∇u|2)
t
2dx.

(4.5.5)

Hence, incorporating (4.5.4) as well as (4.5.5) into (4.5.3) and absorbing terms
by choosing ε > 0 sufficiently small we see∫

BR

|V (∇u)− V (∇v)|2dx ≤ cR2

∫
BR

(1 + |∇u|2)
t
2dx+ cRn+2. (4.5.6)

By means of (4.5.6) we now arrive at (recall (4.5.2))∫
Bρ

(1 + |∇u|2)
t
2dx ≤ c

[(
ρ

R

)n
+R2

] ∫
BR

(1 + |∇u|2)
t
2dx+ cRn+2 (4.5.7)

where we remark that (4.5.7) was just shown in the case ρ ≤ R
2 (the estimate

in the case R
2 < ρ < R is trivial).

As the next step we choose β < n which may be arbritrarily close to n and
with a suitable choice of R0 we may apply [57], Lemma 2.1, p.86, to (4.5.7).
Precisely, for all radii ρ∗ ≤ R∗ ≤ R0 being sufficiently small we obtain∫

Bρ∗

(1 + |∇u|2)
t
2dx ≤ c

[(
ρ∗
R∗

)β ∫
BR∗

(1 + |∇u|2)
t
2dx+ cρβ∗

]
,

which, for the particular choice ρ∗ = R and R∗ = R0, turns into∫
BR

(1 + |∇u|2)
t
2dx ≤ c

[(
R

R0

)β ∫
BR0

(1 + |∇u|2)
t
2dx+ cRβ

]
. (4.5.8)

At this point we make of the crucial Campanato estimate (3.2) from [59], i.e.,
for some exponent σ > 0 it holds

−
∫
Bρ

|V (∇v)− (V (∇v))x0,ρ|2dx

≤ c
(
ρ

R

)σ
−
∫
BR

|V (∇v)− (V (∇v))x0,R|2dx.
(4.5.9)
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Here, for a given function w and a given radius r, the quantity (w)x0,r is defined
as (w)x0,r := −

∫
Br

w dx. In accordance with [59], (5.6), the inequality (4.5.9) yields

−
∫
Bρ

|V (∇u)− (V (∇u))x0,ρ|2dx ≤ c
(
ρ

R

)σ
−
∫
BR

|V (∇u)− (V (∇u))x0,R|2dx

+

(
R

ρ

)n
−
∫
BR

|V (∇u)− V (∇v)|2dx.

As a consequence, (4.5.6) and (4.5.8) imply (recall β < n)∫
Bρ

|V (∇u)− (V (∇u))x0,ρ|2dx

≤ c
[(

ρ

R

)n+σ ∫
BR

|V (∇u)− (V (∇u))x0,R|2dx+R2

∫
BR

(1 + |∇u|2)
t
2dx+ cRn+2

]

≤ c
[(

ρ

R

)n+σ ∫
BR

|V (∇u)− (V (∇u))x0,R|2dx+R2+β

]

Observing that

Ψ : ρ 7→ Ψ(ρ) :=

∫
Bρ

|V (∇u)− (V (∇u))x0,ρ|2dx

is an increasing function and choosing n < β + 2 < n + σ we may infer from
[57], Lemma 2.1, p.86, that Ψ grows like ρ2+β. Since 2 + β > n we get Hölder
continuity of V (∇u), in particular, ∇u is of class C0. Taking into account the
continuity of ∇u we observe that the function w = ∂γu with γ ∈ {1, . . . , n}
solves an elliptic system with continuous coefficients and [57], Theorem 3.1,
p.87, then provides local Hölder continuity of ∇u with exponent α ∈ (0, 1)
(recall u ∈ L∞loc(Ω)M as well as (4.1.16)). This completes the proof of Theorem
4.1.7. �
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Chapter 5

A modified TV-image
inpainting method:
minimization among sets with
finite perimeter

5.1 Minimization among sets with finite perimeter:
the classical setting

In this chapter we discuss a particular modification of the TV-image inpainting
method. Briefly speaking we present a technique being specially devoted to
the task of restoring images that consist only of completely black or completely
white regions. In this context we adopt ideas as applied in [26] in the two-
dimensional case.
Before going into details we fix our setup and state our precise assumptions: we
consider a function u : Ω→ R defined on a bounded Lipschitz domain Ω ⊂ R

n,
n ≥ 2, where in contrast to the investigations from the previous chapters we
now impose the restriction

u(x) ∈ {0, 1} a.e. on Ω, (5.1.1)

which acts as an additional constraint on the restored image. Further we assume
that our observed image is given through a Ln-measurable function f : Ω−D →
[0, 1] where the Ln-measurable subset D of Ω -as usual- denotes a possible
inpainting region satisfying

0 ≤ Ln(D) < Ln(Ω). (5.1.2)

As already mentioned, for points x ∈ Ω − D, f(x) can be interpreted as a
measure for the intensity of the observed grey level. Our aim is to recover the
missing part D → [0, 1] from the given data f where the apriori restriction
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(5.1.1) on u represents a new feature in our forthcoming analysis.
As a starting point we look at the well-known variant of the TV-image inpainting
problem

J [u] :=

∫
Ω

|∇u|+ λ

2

∫
Ω−D

(u− f)2dx→ min.

Keeping in mind the constraint (5.1.1) it becomes evident that J has to be
minimized on an adequate subclass of the space BV (Ω) consisting of charac-
teristic functions. Thus, instead of minimizing J among functions we just seek
minimizing sets of the functional (χE denoting the characteristic function of E)

F [E] :=

∫
Ω

|∇χE |+
λ

2

∫
Ω−D

(χE − f)2dx, (5.1.3)

being well-defined for all Borel sets E ⊂ Ω having finite perimeter in Ω, i.e., it
holds P (E,Ω) :=

∫
Ω

|∇χE | < ∞ and E is also called a Caccioppoli set in this

context. For more details concerning sets of finite perimeter and the behavior
of characteristic functions of such sets we refer the reader to [7] and [63].

Remark 5.1.1
Quoting [63], Proposition 3.1, p.42, we know that for a Borel set E there exists
a Borel set Ẽ being equivalent to E (i.e. they may differ only by a set of Ln-
measure zero) and satisfying

0 < Ln(E ∩Br(x)) < ωnr
n for all x ∈ ∂Ẽ and all r > 0, (5.1.4)

where ωn denotes the volume of the unit ball. As a matter of fact we can
modify Caccioppoli sets E on sets with Ln-measure zero without changing the
perimeter which means that we are concerned with equivalence classes of sets.
As a consequence we assume in what follows that (5.1.4) is valid for any set
being under our consideration.

After the above preparations we state our results on the existence of F-
minimizing sets having finite perimeter and on their regularity properties. To
become more precise we take a more detailed look at the smoothness properties
of the boundary part ∂F ∩Ω of an arbitrary F-minimizing set and additionally
prove a geometric statement about the intersection ∂F ∩ Br(x) for a suitable
ball Br(x) ⊂ Int(D) provided that Int(D) 6= ∅. In fact we can essentially adopt
the arguments as already carried out in [26], Theorem 1, in the two-dimensional
setting. However, for the reader’s convenience, we give a proof of Theorem 5.1.2
without referring to the proof of Theorem 1 in [26].

Theorem 5.1.2
Suppose that D satisfies (5.1.2) and consider a Ln-measurable function f :
Ω−D → [0, 1] as well as the corresponding functional F from (5.1.3). Then it
holds
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(a) There exists a set E of finite perimeter in Ω such that

F [E] ≤ F [G]

for any Caccioppoli set G ⊂ Ω.

(b) If n ≤ 7 the following assertions hold true:

(i) the boundary part ∂F ∩ Ω of any F-minimizer F represents a C1-
hypersurface;

(ii) suppose that Int(D) 6= ∅. If E is a F-minimizing set and if x ∈
∂E belongs to Int(D), then for an appropriate ball Br(x) ⊂ Int(D)
the intersection ∂E ∩ Br(x) is contained in a (n − 1)-dimensional
hyperplane.

Remark 5.1.3
Note that the regularity and geometric statement formulated in Theorem 5.1.2,
part (b), (i) and part (b), (ii), respectively, crucially depend on the dimension
n. In fact, quoting the regularity theory of minimal surfaces in R

n, we have
to expect singularities if n ≥ 8. This has the reason that no singular minimal
cones C in R

n (that are not hyperplanes) can exist if n ≤ 7 (see, e.g., [63], and
combine Theorem 9.10 and Theorem 10.10 therein) and since a minimal set
E in R

n can only have singularities if there exist minimal cones in R
n having

singularities, it is not surprising that part (b) of Theorem 5.1.2 is only valid if
n ≤ 7.
However, if n ≥ 8, we indeed expect the existence of singularities but in accor-
dance with the theory of the so-called reduced boundary ∂∗E, which is a particu-
lar subset of ∂E, the possible singularities of E occur in the set (∂E−∂∗E)∩Ω
and we can estimate its size and its Hausdorff dimension, respectively. To be-
come more precise, if n ≥ 8, we have to modify the statements of Theorem
5.1.2, (b), as follows

(i) The reduced boundary part ∂E∗ ∩ Ω of any F-minimizer E is a C1-
hypersurface and Hs[(∂E − ∂E∗) ∩ Ω] = 0 for all s > n− 8.

(ii) Suppose that Int(D) 6= ∅. If E is a F-minimizing set and if x ∈ ∂E∗

belongs to Int(D), then for an appropriate ball Br(x) ⊂ Int(D) the inter-
section ∂E∗ ∩Br(x) is contained in a (n− 1)-dimensional hyperplane.

Note that a definition of the reduced boundary ∂E∗ of a Caccioppoli set E is
provided in Remark 5.1.5 stated after the proof of Theorem 5.1.2. For more
details concerning the regularity of minimal surfaces in R

n we refer the reader
to [63].

Remark 5.1.4
As already elucidated in [26], Remark 1, we do not know if the statements
(b), (i), and (b), (ii), of Theorem 5.1.2 are realistic in the context of image
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inpainting. In fact, from the analytical point of view, these results seem to be
nice.

Let us now come to the

Proof of Theorem 5.1.2. Let us assume the validity of the hypotheses of Theo-
rem 5.1.2. For verifying part (a) we let (En) denote a F-minimizing sequence
of Caccioppoli sets and observe that

sup
n∈N

[ ∫
Ω

|∇χEn |+
∫

Ω−D

(χEn − f)2dx

]
<∞. (5.1.5)

By BV -compactness (recall χEn ∈ BV (Ω) since En is Caccioppoli set for all
n ∈ N) we obtain existence of u ∈ L1(Ω) together with the convergence

χEn →: u in L1(Ω) and a.e. on Ω (5.1.6)

being valid at least for a subsequence (not relabeled).
As a consequence, lower semicontinuity of the total variation implies∫

Ω

|∇u| ≤ lim inf
n→∞

∫
Ω

|∇χEn | (5.1.7)

and therewith u ∈ BV (Ω) whereas the a.e.-convergence from (5.1.6) directly
yields u(x) ∈ {0, 1} a.e. on Ω. Besides we see (as n→∞)∫

Ω−D

(χEn − f)2dx→
∫

Ω−D

(u− f)2dx (5.1.8)

by dominated convergence. Letting E := {x ∈ Ω, u(x) = 1}, then u = χE
and from (5.1.7) as well as (5.1.8) we further conclude F(E) ≤ lim inf

n→∞
F(En)

showing the F-minimality of the set E. This proves assertion (a) of Theorem
5.1.2.

For verifying part (i) of assertion (b) we fix an arbitrary F-minimizing set F .
Here, the main idea is to apply the regularity results valid for almost minimal
boundaries (see [93], Section 1.9), where we first introduce the terminology of
almost minimal boundaries as done in [93], Section 1.5: consider a Caccioppoli
set F̃ with

F∆F̃ := (F − F̃ ) ∪ (F̃ − F ) b Br(x) (5.1.9)

for a ball Br(x) b Ω. We then call the boundary of a Caccioppoli set F almost
minimal in Ω if for any A b Ω there exists a number R ∈ (0,dist(A, ∂Ω)) and a
non-decreasing function α : (0, R)→ [0,∞) satisfying lim

r→0+
α(r) = 0 such that

|∇χF |(Br(x)) ≤ |∇χ
F̃
|(Br(x)) + α(r)rn−1 (5.1.10)
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for any x ∈ A, r ∈ (0, R) and any F̃ satisfying condition (5.1.9).
So, let us consider a Caccioppoli set F̃ satisfying (5.1.9) for a ball Br(x) b Ω.
Since F is F-minimal we see (recall 0 ≤ f ≤ 1 a.e)

∫
Br(x)

|∇χF |

≤
∫

Br(x)

|∇χ
F̃
|+ λ

2

∫
(Ω−D)∩Br(x)

[
(χ
F̃
− f)2 − (χF − f)2

]
dx

≤
∫

Br(x)

|∇χ
F̃
|+ λ

2
Ln(Br(x))

=

∫
Br(x)

|∇χ
F̃
|+ λ

2
Ln(B1(x))rn.

(5.1.11)

Setting α(r) := λ
2L

n(B1(x))r it is obvious that α(r) serves as an admissible
choice in (5.1.10). Summarizing, (5.1.11) shows that the boundary part ∂F ∩Ω
of each F-minimizer F is almost minimal in the sense of (5.1.10).

Besides, r−1α(r) is non-increasing on (0, R) and
R∫
0

r−1α
1
2 (r)dr < ∞. At this

point we can quote regularity results about almost minimal boundaries in the
sense of (5.1.10) (see [93], Section 1.9) to justify that ∂F ∩ Ω represents a C1-
hypersurface. This completes the proof of assertion (i) of part (b) of Theorem
5.1.2.

In view of the smoothness property of the boundary part ∂E∩Ω of F-minimizing
sets E we can complete the proof of Theorem 5.1.2: we can state∫

U

|∇χE | = Hn−1(∂E ∩ U)

for any open set U b Ω.
Choosing U b Int(D), we may conclude that E is a local minimizer of the
perimeter within the set U . This proves claim (ii) of part (b) of Theorem
5.1.2.

Remark 5.1.5
The reduced boundary ∂∗E of a Caccioppoli set E is a particular subset of ∂E
and is defined as follows: a point x belongs to the reduced boundary ∂∗E of a
Caccioppoli set E if (compare [63], Definition 3.3, p.43)

•
∫

Bρ(x)

|∇χE | > 0 for all ρ > 0,
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• the limit ν(x) = lim
ρ→0

νρ(x) exists, where

νρ(x) =

∫
Bρ(x)

∇χE∫
Bρ(x)

|∇χE |

and

• |ν(x)| = 1.

Using Besicovitch’s theorem of the differentation of measures (see, e.g., [7],
Theorem 2.22, p. 54) we get that ν(x) exists together with |ν(x)| = 1 for
|∇χE |-a.e. x ∈ Rn. Furthermore, it holds ∇χE = ν|∇χE |.
Note that the concept of the reduced boundary of a Caccioppoli set plays a cru-
cial role when investigating regularity of the boundary of minimizing sets. For
instance, the reduced boundary ∂∗E of a minimizing set E is analytic, where
possible singularities of ∂E must occur in ∂E − ∂∗E (see, e.g., [63], Chapter
8). Thus, one challenging problem is to estimate the size of the singular set
∂E − ∂∗E.

5.2 Minimization among sets with finite perimeter
including a volume constraint

In this section we discuss a problem arising in the above context, namely the in-
clusion of a “volume constraint“. This idea has been suggested by M. Bildhauer
and M. Fuchs in [26], Extension 3, and to become more precise we suppose that
we are faced with the problem of restoring the observed image f : Ω−D → R

taking only values in {0, 1} on the entire domain Ω where we merely may use a
given amount of black color for instance.

Recalling the defintion of the functional F via ((recall (5.1.3))

F [E] := P (E,Ω) +
λ

2

∫
Ω−D

(χE − f)2dx (5.2.1)

we consider the minimization problem F [E]→ min among all Caccioppoli sets
E in Ω satisfying

Ln(E) = m. (5.2.2)

where n ≥ 2 and m ∈ (0,Ln(Ω)) denotes a fixed number. In addition to
the question of existence of minimizing sets satisfying the volume constraint it
might also be of interest to study the analytical and topological properties of
such minimizing sets subjected to the volume constraint.
Before stating our theorem concerning existence and regularity of minimizing
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sets satisfying the volume constraint we introduce some notation where we es-
sentially follow the article of Qinglan [103] (see Section 4 in this reference).

For any σ ∈ (0, 1) we define the set

Fσ := {G ⊂ Ω : P (G,Ω) <∞,Ln(G) = σLn(Ω)}. (5.2.3)

Moreover, for any set G ∈ Fσ, a quasi perimeter of G is of the form

T (G) = P (G,Ω) + G(G)

where G is a lower semicontinuous functional on Fσ satisfying the following
estimate

G(A) ≤ G(B) + CLn(A∆B)β (5.2.4)

for any A,B ∈ Fσ, for a constant C > 0 and for a number β > 1 − 1
n for any

n ∈ N.

Thus, by setting m := σLn(Ω) and G(G) := λ
2

∫
Ω−D

(χG − f)2dx we observe

that the problem of minimizing the functional T among all sets G in Fσ is
equivalent to minimizing the functional F from (5.2.1) among all Caccioppoli
sets E in Ω satisfying a volume constraint in the spirit of (5.2.2).

After these preparations we give a lemma showing that the functional F from
(5.2.1) describes a quasi perimeter of E for any E ∈ Fσ.

Lemma 5.2.1
For any E ∈ Fσ with Fσ from (5.2.3), the functional F from (5.2.1) is a quasi
perimeter of E in the sense of the definition given above.

Proof of Lemma 5.2.1. We fix E ∈ Fσ. Clearly, G is lower semicontinuous on
Fσ. In order to verify that G satisfies the estimate (5.2.4) we fix A,B ∈ Fσ and
obtain after carrying out some standard estimates (recall χA∆B = |χA−χB| as
well as 0 ≤ f ≤ 1 a.e.)

λ

2

∫
Ω−D

(χA − f)2dx− λ

2

∫
Ω−D

(χB − f)2dx ≤ CLn(A∆B)

with constant C := λ
2 > 0. This completes the proof of Lemma 5.2.1.
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Now we state our main result in this section.

Theorem 5.2.2
Suppose that D satisfies (5.1.2) and consider a Ln-measurable function f :
Ω−D → [0, 1]. It then holds:

(a) for any σ ∈ (0, 1) the problem

F → min in Fσ

admits at least one solution;

(b) if n ≤ 7 then the boundary ∂E of any F-minimizer E in Fσ is a (n − 1)-

dimensional C1, 1
2 -hypersurface in Ω.

Proof of Theorem 5.2.2. The existence of a F-minimizing Caccioppoli set E
can be derived by following the lines of the proof of Theorem 5.1.2, where we
directly obtain E ∈ Fσ by construction.
For proving part (b) we combine Lemma 5.2.1 and Theorem 4.5 in [103]. This
completes the proof of Theorem 5.2.2.

Remark 5.2.3
Note that the analytical and topological behavior of minimizing sets satisfying
the volume constraint again crucially depends on the dimension n. If n ≥ 8
we then have to modify the statement of part (b) in the following way: the
reduced boundary ∂∗E of any F-minimizer E in Fσ is a (n − 1)-dimensional

C1, 1
2 -hypersurface in Ω, and moreover it holds dim((∂E − ∂∗E) ∩ Ω) ≤ n− 8.
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Chapter 6

Final remarks and some
extensions

The aim of this thesis was to develop and to provide a comprehensive and
complete existence and regularity theory for minimizers of the following modi-
fication of the TV-image inpainting method for any dimension n ≥ 2 together
with arbitrary codimension M ≥ 1. This model consists in the minimization of
the following functional

I[w] :=

∫
Ω

F (∇w) +
λ

2

∫
Ω−D

|w − f |2dx (6.0.1)

on the space BV (Ω)M ∩ L2(Ω−D)M .
Here, λ > 0 denotes a positive regularization parameter, f is at least of class
L2(Ω − D)M and F ∈ C1(RnM ) is a strictly convex density being of linear
growth.
For the sake of completeness we recap the main results of this thesis:

• The problem “I → min“ with I from (6.0.1) is solvable in BV (Ω)M ∩
L2(Ω − D)M where solutions of this problem can be seen as generalized
minimizers (w.r.t. a suitable relaxation) of the original problem “I →
min in W 1,1(Ω)M ∩ L2(Ω−D)M“. For two minima u, ũ we can moreover
state u = ũ a.e. on Ω−D whereas ∇au = ∇aũ a.e. on Ω.
This result is not very surprising but the novelty in this context was
that we imposed rather mild assumptions on the data (see Remark 2.1.2)
which caused severe problems during our analysis. In particular, we did
not assume a structure condition on F in the spirit of, e.g., (3.1.8). From
the point of view of applications, this might seem somewhat artificial but
from the analytical point of view, it is interesting to drop this condition.
As a byproduct we proved the density of smooth functions in spaces like
BV (Ω)M ∩L2(Ω−D)M which, according to our knowledge, is not known
in literature yet.
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CHAPTER 6. FINAL REMARKS AND SOME EXTENSIONS

• The dual problem associated to “I → min in W 1,1(Ω)M ∩ L2(Ω −D)M“
admits a unique solution σ ∈ L∞(Ω)nM . Moreover, the inf-sup relation
holds and we have the validity of the duality formula

σ = DF (∇au) a.e. on Ω.

Additionally, each I-minimizing sequence converges strongly in L2(Ω −
D)M to the unique restriction of any generalized minimizer to the set
Ω−D.
Here, we particularly mention the uniqueness of the dual solution, the
validity of the duality formula on the entire domain Ω and the described
compactness property of I-minimizing sequences as new contributions.
However, from the theoretical point of view, it might be interesting if our
results (in particular the uniqueness of the dual solution) can be estab-
lished under even weaker assumptions on F as well. To become more
precise we want to drop the condition of continuously differentiability of
F which leads to the necessity of working with the subdifferential of the
convex function F (see, e.g., (2.1.15)).

• Assume f ∈ L∞(Ω −D)M . Suppose further that F ∈ C2(RnM ) satisfies
the above assumptions, the condition of µ-ellipticity for some µ ∈ (1, 2)
and that some suitable structure conditions in the vectorial case M > 1
(plus a Hölder condition on D2F ) are imposed. We then could prove
solvability of the problem“I → min in W 1,1(Ω)M∩L2(Ω−D)M“, where we
even get uniqueness of the corresponding I-minimizer u and u ∈ L∞(Ω)M .
Moreover, it holds u ∈ C1,α(Ω)M for any α ∈ (0, 1). For large values of
µ, precisely for µ ≥ 2, we could show that for each generalized minimizer
ũ there exists an open subset Ωũ

0 ⊂ Ω of full Ln-measure such that u ∈
C1, 1

2 (Ωũ
0)M with Ln(Ω− Ωũ

0) = 0.
The above full interior C1,α-regularity result under the condition that
µ < 2 is in accordance with the result from the joint article with M.
Bildhauer and M. Fuchs [27], where the same regularity degree for u has
been derived in the scalar case together with n = 2. We think, this result is
optimal in the presence of the inpainting quantity. However we conjecture
that the partial C1, 1

2 -regularity result is not optimal. Nevertheless, due
to the presence of the inpainting quantity, it is not possible to refer, e.g.,
to [9], by adding some obvious modifications.

After this review of the essential results of this thesis we want to discuss some
extensions of the presented material.

With f as above and for a strictly convex density F of linear growth, a natural
extension of the problem (6.0.1) is the following problem, which seems to be of
interest in the context of higher order denoising of images (see, e.g., [83])

J [w] :=

∫
Ω

|w − f |2dx+

∫
Ω

F (∇2w)→ min BV 2(Ω)M ∩ L2(Ω)M . (6.0.2)
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Here, the space BV 2(Ω)M is defined as the space of all W 1,1(Ω)M -functions for
which the second order distributional derivative ∇2u is a tensor-valued Radon
measure of finite total variation. In what follows we briefly sketch the proof of
solvability of the problem (6.0.2): fixing a minimizing sequence (uk) from the
space BV 2(Ω)M ∩ L2(Ω)M we directly get the uniform information

sup
k

∫
Ω

|uk|2dx <∞,

sup
k
|∇2uk|(Ω) <∞.

Using the well-known Poincaré-inequality for functions from the spaceW 2,1(Ω)M

(see, e.g., [104], Lemma 4.2.2, p. 183, choosing m = 2, p = 1 and ε = 1 therein)
and quoting standard approximation results for functions of class BV 2(Ω)M (see
[45]) we can state the following variant of Poincaré’s inequality (C = C(n,Ω)
denotes a positive constant)

‖∇w‖L1(Ω) ≤ C[‖w‖L1(Ω) + |∇2w|(Ω)].

Combining this inequality with the above uniform estimates we directly get

sup
k
‖∇uk‖L1(Ω) <∞

and we have compactness of (uk) in BV 2(Ω)M , i.e., there exists a function
u ∈ BV 2(Ω)M for which we have uk →: u in W 1,1(Ω)M and a.e. up to a
subsequence (see [45]). Fatou’s lemma further implies u ∈ L2(Ω)M and thus,
J [u] is well-defined.
Applying lower semicontinuity of |∇2u|(Ω) w.r.t. L1-convergence (see, e.g., [68])
in combination with Fatou’s lemma it follows that u is a solution of (6.0.2). Note
that by adapting the approximation procedure for functions of class BV 2(Ω)M

we can further show that u can be seen as a generalized minimizer of the problem

I[w] :=

∫
Ω

|w − f |2dx+

∫
Ω

F (∇2w)dx→ min

in W 2,1(Ω)M ∩ L2(Ω)M ,

(6.0.3)

where among other things we use Reshetnyak’s continuity theorem (see, e.g.,
[9], Proposition 2.2).
Note that in view of the continuous embedding (see [45], Theorem 3.1)

BV 2(Ω)M ↪→ Lq(Ω)M for all q ≤ n

n− 2
,

we can study the problem (6.0.2) in the entire space BV 2(Ω)M provided that
n ≤ 4. Hence, in case n > 4, the requirement “w ∈ L2(Ω)M“ acts as an addi-
tional constraint.

Clearly we can adjust the problem (6.0.2) to obtain a modification of the higher
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CHAPTER 6. FINAL REMARKS AND SOME EXTENSIONS

order total variation image inpainting model, i.e., we then seek minimizers of
the functional

J̃ [w] :=

∫
Ω−D

|w − f |2dx+

∫
Ω

F (∇2w), w ∈ BV 2(Ω)M ∩ L2(Ω−D)M .

In this setting, existence of at least one minimizer from the space BV 2(Ω)M ∩
L2(Ω − D)M can be derived by quoting (more or less) standard arguments.
However, the justification that minimizers of the above functional can be seen
as generalized minimizers of the functional

Ĩ[w] :=

∫
Ω−D

|w − f |2dx+

∫
Ω

F (∇2w)dx, w ∈W 2,1(Ω)M ∩ L2(Ω−D)M

is not immediate and requires the proof of new density results of smooth func-
tions in spaces like BV 2(Ω)M ∩L2(Ω−D)M (we refer the reader to [80], where
such density results are established).

As before, an alternative approach is to pass to the dual problem associated to
“Ĩ → min in W 2,1(Ω)M ∩ L2(Ω − D)M“. Here, among solvability of the dual
problem and the validity of the inf-sup relation, it might be of interest to derive
uniqueness of the dual solution and to establish a duality formula relating the
dual solution to the generalized Ĩ-minimizers of class BV .

Another interesting question arising in the above context is to derive smooth-
ness properties of generalized Ĩ-minimizers. Fixing a real number µ > 1 and
taking into account our model integrand F (P ) := Φµ(P ) with Φµ(P ) from
(3.1.11) we conjecture that it is possible to show at least partial C2,β-regularity
of generalized minimizers for all µ > 1. Besides we think that it might be of
interest to investigate whether we obtain full interior C2,α-regularity for general-
ized minimizer on condition that µ ∈ (1, 2) (for any dimension n with arbitrary
codimension M).
Considering the scalar case together with n = 2, another interesting idea is
to investigate the regularity behavior of Ĩ-minimizers under the condition that
F is of subquadratic growth, i.e., F (∇2w) = (1 + |∇2w|2)

p
2 with 1 < p < 2.

In this setting it is reasonable to minimize Ĩ in the energy class K := {w ∈
W 2,p(Ω), 0 ≤ w(x) ≤ 1}, where we remark that in accordance with the conti-
nuity of the Sobolev embedding W 2,p(Ω) ↪→ C0(Ω), the class K is non-empty.
Now, it might be of interest to discuss the regularity properties of Ĩ-minimizers
being of class K.

From the numerical point of view the above models of higher order denois-
ing are not very nice to handle. For that reason we propose to consider the
following alternative model (note that the dimension n and the codimension M
are arbitrary) and consider exponents p, q, s ∈ (1,∞) and positive regularization
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parameters α1, α2 > 0 (we further assume f ∈ Ls(Ω)M )

E(u, v) :=

∫
Ω

|u− f |sdx+ α1

∫
Ω

|∇u− v|qdx+ α2

∫
Ω

|∇v|pdx→ min

in the energy class Y,

(6.0.4)

where

Y := {(u, v) ∈W 1,q(Ω)M ×W 1,p(Ω)nM : u ∈ Ls(Ω)M , v ∈ Lq(Ω)nM}.

Note that according to the values of p, q and s, we might have Y = W 1,q(Ω)M×
W 1,p(Ω)nM .
Now it is interesting to discuss existence and regularity of solutions of the
problem (6.0.4). In fact, strict convexity of the corresponding terms shows that
(6.0.4) has at most one solution.
Clearly we can involve linear growth models as well. This means that we study
solvability of the problem∫

Ω

|u− f |sdx+ α1

∫
Ω

|∇u− v|qdx+ α2

∫
Ω

|∇v| → min

in W 1,q(Ω)M ×BV (Ω)nM ,

where more generally we can replace the rather unpleasant total variation |∇v|
through Φ(|∇v|) with a function Φ : [0,∞) → [0,∞) being (strictly) convex,
(strictly) increasing and of linear growth in a suitable sense. Fixing a real
number µ > 1, a natural choice in this context would be Φ(t) := Φµ(t) with
Φµ(t) from (3.1.11). Choosing Φ(t) := Φµ(t) it follows that the above problem
has at most one solution (ũ, ṽ) ∈W 1,q(Ω)M ×BV (Ω)nM .
Of course we can also look at “linear coupling“ , which means that we seek
minimizers of the functional∫

Ω

|u− f |sdx+ α1

∫
Ω

|∇u− v|+ α2

∫
Ω

|∇v| → min

in BV (Ω)M ×BV (Ω)nM ,

where, according to the situation at hand, it might be reasonable to replace the
total variation through a function being in the spirit of Φ or Φµ from above.
Note that the above models are also applicable in the context of image inpaint-
ing.

Finally we discuss an extension of the model that has been presented in the fifth
chapter where from now on we consider the scalar case M = 1 as well as the
context of pure denoising of images. With Ω and f : Ω→ [0, 1] as above we first
consider the classical TV-image inpainting method leading to the minimization
of the functional (λ > 0- as usual- denotes a free regularization parameter)

J [w] :=

∫
Ω

|∇w|+ λ

2

∫
Ω

(w − f)2dx, w ∈ BV (Ω) ∩ L2(Ω). (6.0.5)
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As already elucidated in the introduction of this thesis we can derive existence
of a unique minimizer u ∈ BV (Ω) satisfying 0 ≤ u(x) ≤ 1 a.e. on Ω. As a
consequence, u might have singularities as jumps on the edges of the generated
image. However, in accordance with the decomposition of the vector-valued
Radon measure ∇u = ∇auxLn +∇ju +∇cu (see, e.g., [7], pp. 184 or Section
2.2 of this thesis), we apriori cannot exclude other forms of singularities due to
the presence of the Cantor part ∇cu. As a consequence, the idea is to minimize
the above functional in those subclasses of the space BV (Ω) where we auto-
matically have ∇cu = 0.

A natural approach in this context is to introduce the space of special functions
of bounded variation SBV (Ω) which just contains all functions of class BV (Ω)
for which the Cantor part of its distributional derivative vanishes (for more
details concerning special functions of bounded variation we refer the reader to
[7], pp.212). However, an analytical problem arises if we minimize J among all
functions of class SBV (Ω) since J-minimizing sequences (wk) from the space
SBV (Ω) in general have no compactness properties. An idea to overcome this
difficulty is to replace J through a functional of the type

Ĵ [w] :=

∫
Ω

|∇aw|pdx+Hn−1(Sw) +
λ

2

∫
Ω

(w − f)2dx, w ∈ SBV (Ω) ∩ L2(Ω),

where p > 1 is a fixed exponent and the set Sw -as usual- denotes the approx-
imate discontinuity set of w (see Section 2.2 of this thesis). We can apply [7],
Theorem 4.8, p.216, for getting compactness of Ĵ-minimizing sequences (wk) in
the appropriate space SBV (Ω): first we note that Ĵ-minimizing sequences (wk)
from the space SBV (Ω) ∩ L2(Ω) can be chosen in such a way that

0 ≤ wk(x) ≤ 1 a.e. on Ω. (6.0.6)

Note that (6.0.6) can be proven by following the arguments of the proof of
Theorem 3.1.4, where we briefly show that w.l.o.g. we may assume wk ≤ 1 a.e.
on Ω: with ψ(t) := min{t, 1} for t ∈ R we consider vk := ψ ◦wk which is clearly
of class BV (Ω). Furthermore, vk is of class SBV (Ω) since by applying the
chain rule for real-valued BV -functions (see equation (2.2.2) in this thesis), the
singular part ∇svk of the vector-valued Radon measure ∇vk is concentrated on
the set Juk (recall uk ∈ SBV (Ω)), i.e., on the set of approximate jump points
of uk, which by Federer-Vol’pert’s theorem is countably Hn−1-rectifiable (see,
e.g., [7], Theorem 3.87, p. 178). In particular, Juk is then σ-finite w.r.t. Hn−1

and by using [7], Proposition 4.2, p. 213, we get that vk ∈ SBV (Ω).
Furthermore we have |vk−f | ≤ |wk−f | a.e. on Ω−D. Recalling the inequality
|∇vk| ≤ Lip(ψ)|∇wk| = |∇wk| for the measures |∇vk| and |∇wk| (compare
Lemma 2.2.1 in this thesis) we can quote arguments as already used in the
proof of Theorem 3.1.4 and Theorem 3.1.5, respectively, to infer

Ĵ [vk] ≤ Ĵ [wk].

Thus, w.l.o.g., we may assume wk ≤ 1 a.e. on Ω for any Ĵ-minimizing sequence
(wk). With ψ̃(t) := max{0, t}, t ∈ R, we can use analogous arguments as applied
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above to justify that w.l.o.g. we may assume 0 ≤ wk a.e. on Ω as well.
As a consequence we derive weak-∗ convergence in BV (Ω) of a subsequence of
(wk) to a function u ∈ SBV (Ω) which means (see [7], Proposition 3.13, p.125)
wk →: u in L1(Ω) and a.e. up to a subsequence as k →∞ where we additionally
get 0 ≤ u(x) ≤ 1 a.e. on Ω. In view of the weak-∗ convergence of wk to u in
BV (Ω) (up to a subsequence) we then get by applying [7], Theorem 4.7, p.216
(choose ϕ(t) := tp and θ ≡ 1) and Fatou’s lemma

Ĵ [u] ≤ lim inf
k→∞

∫
Ω

|∇awk|pdx+ lim inf
k→∞

Hn−1(Jwk) +
λ

2
lim inf
k→∞

∫
Ω

(wk − f)2dx

≤ lim inf
k→∞

[ ∫
Ω

|∇awk|pdx+Hn−1(Jwk) +
λ

2

∫
Ω

(wk − f)2dx

]
= lim inf

k→∞
Ĵ [wk].

Thus, u ∈ SBV (Ω) is a Ĵ-minimizer satisfying 0 ≤ u(x) ≤ 1 a.e. on Ω. From
the point of view of image processing, u(x) can be interpreted as a measure for
the intensity of the grey level where possible points of discontinuity are per-
formed by jumps.

Another way to force that the Cantor part of the distributional derivative of
any BV -minimizer of the functional J from (6.0.5) vanishes is to minimize J
among all bounded piecewise constant functions w : Ω→ R, i.e., in the subspace
PC(Ω) ∩ L∞(Ω) of BV (Ω). The space PC(Ω) contains all special functions of
bounded variation whose family of level sets is a Caccioppoli partition, i.e.,
u ∈ PC(Ω) if there exists a Caccioppoli partition (Ei)i∈N of Ω and a map
t : N→ R with (see [7], Definition 4.21, p.231)

u =
∑
i∈N

tiχEi .

Note that we can replace N by any countably infinite index set I.
Going back to the problem of minimizing J among bounded piecewise con-
stant functions, a similar problem arises as already seen in the setting of SBV -
functions since J-minimizing sequences apriori have no compactness properties
in PC(Ω). However, replacing J by the functional

J [w] := Hn−1(Sw) +
λ

2

∫
Ω

(w − f)2dx, w ∈ PC(Ω) ∩ L∞(Ω)

it follows the following uniform estimate for J-minimizing sequences (wk)

sup
k

[
‖wk‖L∞ +Hn−1(Swk)

]
<∞,

which, in view of [7], Theorem 4.25, p. 234, gives compactness in PC(Ω). At
this point we note that we can replace (wk) by a J-minimizing sequence (w̃k)
with the property 0 ≤ w̃k ≤ 1 a.e. on Ω since we may argue in an analogous
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manner as already seen in the context of SBV -functions above. Here it is
worth remarking that for an arbitrary Lipschitz function ψ : R → R together
with a given function u : Ω → R of class PC(Ω), the composition v := ψ ◦ u
is still of class PC(Ω). This fact follows from the chain rule for real-valued
BV -functions (see formula (2.2.2) in this thesis again). Thus, there exists a
function u ∈ PC(Ω) such that wk →: u in measure as k → ∞ and up to
subsequence. From this convergence we can extract another subsequence (not
relabeled) with wk → u a.e. on Ω. By using lower semicontinuity we then
obtain that u ∈ PC(Ω) is the unique J-minimizer. Furthermore we can state
that 0 ≤ u(x) ≤ 1 a.e. on Ω and that all possible singularities are jumps at the
edges (for more details we refer, e.g., to [7], pp. 244).
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Chapter 7

Appendix

7.1 Some auxiliary lemmata

In this section we collect and prove some auxiliary results that have been of
important meaning in the course of this thesis.

7.1.1 Regularization

This section is devoted to the discussion of the regularity properties of the
unique minimizer of the regularization that has been introduced in Section 2.4
of this thesis.
With Ω and D as usual we suppose that our partial observation f : Ω−D → R

M

fulfills

f ∈ L∞(Ω−D)M . (7.1.1)

We further assume that we are given a density F : RnM → [0,∞) satisfying the
following set of hypotheses: there are real, positive constants ν0, ν1, ν2,K and
ν ∈ (0, 1) such that for all P,Q ∈ RnM

F ∈ C2(RnM ) (7.1.2)

|DF (P )| ≤ ν0 (7.1.3)

ν1(1 + |P |)−µ|Q|2 ≤ D2F (P )(Q,Q) ≤ ν2(1 + |P |)−1|Q|2, (7.1.4)

F (Z) = g(|Z|2), g ∈ C2([0,∞), [0,∞)), (7.1.5)

|D2F (P )−D2F (Q)| ≤ K|P −Q|ν . (7.1.6)

We now approximate our original problem

I[w] =

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min
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in W 1,1(Ω)M ∩ L2(Ω−D)M ,

by the following sequence of more regular problems (we fix δ ∈ (0, 1])

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min

in W 1,2(Ω)M ,

(7.1.7)

where

Fδ(P ) :=
δ

2
|P |2 + F (P ), P ∈ RnM , (7.1.8)

and denote by uδ ∈ W 1,2(Ω)M the unique Iδ-minimizer for which we can show
the following nice properties.

Lemma 7.1.1
For δ ∈ (0, 1] being fixed and with Ω, D as usual we assume (7.1.1) for the data
f . In addition we require that F satisfies (7.1.2)–(7.1.6) with the prescribed
ellipticity parameter µ > 1. For the unique solution uδ ∈W 1,2(Ω)M of problem
(7.1.7) we then have

(a) sup
Ω
|uδ| ≤ sup

Ω−D
|f |,

(b) uδ ∈W 2,2
loc (Ω)M ,

(c) uδ ∈W 1,∞
loc (Ω)M ,

(d) uδ ∈ C1,κ(Ω)M for all κ ∈ (0, 1).

Remark 7.1.2
In the scalar case M = 1, the statements of Lemma 7.1.1 hold true under much
weaker assumptions on the density F (for details we refer to [24]). Considering
the vectorial case M > 1, Lemma 7.1.1 partially holds true under weaker hy-
potheses on F . Precisely we merely need the entire range of hypotheses imposed
on F for deriving full interior C1,κ-regularity of uδ.

Proof of Lemma 7.1.1. Assuming the hypotheses of Lemma 7.1.1 we first refer
to Remark 3.4.2 in Section 3.3 of this thesis for a discussion of part (a).

For proving (b) we make use of the well-known difference quotient technique:
let us fix a point ξ ∈ Ω and a radius R > 0 such that B2R(ξ) b Ω. Moreover we
let η ∈ C∞0 (B2R(ξ)) satisfying 0 ≤ η ≤ 1, η ≡ 1 on BR(ξ) as well as |∇η| ≤ c

R
(c > 0). Further (γ ∈ {1, . . . , n})

∆h
γuδ :=

uδ(x+ heγ)− uδ(x)

h
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denotes the difference quotient of uδ in the direction eγ ∈ Rn with step width
h fulfilling 0 < |h| < dist(B2R(ξ), ∂Ω).

We start by observing that uδ is a solution of the Euler equation∫
Ω

DFδ(∇uδ) : ∇ϕdx+ λ

∫
Ω−D

(uδ − f) · ϕdx = 0

for all ϕ ∈W 1,2(Ω) with compact support in Ω. Inserting the admissible func-
tion ϕ = ∆−hγ (η2∆h

γuδ) in the above Euler equation it follows after integrating
by parts ∫

B2R(ξ)

∆h
γDFδ(∇uδ) : ∇(η2∆h

γuδ)dx

= λ

∫
B2R(ξ)−D

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx

(7.1.9)

In the following we concentrate on the term ∆h
γDFδ(∇uδ). We get

∆h
γDFδ(∇uδ) =

1

h
(DFδ(∇uδ(x+ heγ))−DFδ(∇uδ))

=
1

h

1∫
0

d

dt
DFδ(∇uδ + th∆h

γ∇uδ)dt

=

( 1∫
0

D2Fδ(∇uδ + th∆h
γ∇uδ)dt

)
∆h
γ∇uδ

=:

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ, ·).

(7.1.10)

Incorporating (7.1.10) in (7.1.9) we have

∫
B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx

= −2

∫
B2R(ξ)

η

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∇η ⊗∆h
γuδ)dx

+ λ

∫
B2R(ξ)−D

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx.

(7.1.11)

At this point we study the last integral on the r.h.s. of (7.1.11). An integration
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by parts leads to∫
B2R(ξ)−D

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx

=

∫
B2R(ξ)

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx−

∫
B2R(ξ)∩D

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx

= −
∫

B2R(ξ)

|∆h
γuδ|2η2dx−

∫
B2R(ξ)

f ·∆−hγ (η2∆h
γuδ)dx

−
∫

B2R(ξ)∩D

(uδ − f) ·∆−hγ (η2∆h
γuδ)dx.

Using part (a) and the boundedness of f , (7.1.11) turns into

∫
B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx+ λ

∫
B2R(ξ)

|∆h
γuδ|2η2dx

≤ −2

∫
B2R(ξ)

η

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∇η ⊗∆h
γuδ)dx

+ c

∫
B2R(ξ)

|∆−hγ (η2∆h
γuδ)|dx

(7.1.12)

The last integral on the r.h.s. of (7.1.12) can be handled via [62], Lemma 7.23,
p.168, which yields after using Young’s inequality (ε > 0)∫

B2R(ξ)

|∆−hγ (η2∆h
γuδ)|dx

≤ c
∫

B2R(ξ)

η|∇η||∆h
γuδ|dx+ c

∫
B2R(ξ)

η2|∆h
γ∇uδ|dx

≤ ε
∫

B2R(ξ)

η2|∆h
γuδ|2dx+ cε−1

∫
B2R(ξ)

|∇η|2dx

+ ε

∫
B2R(ξ)

η2|∆h
γ∇uδ|2dx+ cε−1

∫
B2R(ξ)

η2dx

≤ cε
∫

B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx+ cε−1

∫
B2R(ξ)

|∇η|2dx

+ ε

∫
B2R(ξ)

η2|∆h
γuδ|2dx+ cε−1

∫
B2R(ξ)

η2dx.
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where, in the last inequality, we have used (7.1.4) which yields (λ̃ > 0 denotes
a real parameter which, in particular, is independent of h)( 1∫

0

B
(δ)
h,γ(t)dt

)
(Q,Q) =

( 1∫
0

D2Fδ(∇uδ + th∆h
γ∇uδ)dt

)
(Q,Q)

≥ λ̃|Q|2, Q ∈ RnM .

Going back to (7.1.12) we use the fact that
1∫
0

B
(δ)
h,γ(t)dt represents a symmetric

and positive definite bilinear form. An application of the inequality of Cauchy-
Schwarz and then Young’s inequality (ε > 0) afterwards gives with the help of
the previous calculations from above∫

B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx+ λ

∫
B2R(ξ)

|∆h
γuδ|2η2dx

≤ cε
∫

B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx

+ cε−1

∫
B2R(ξ)

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∇η ⊗∆h

γuδ,∇η ⊗∆h
γuδ)dx

+ ε

∫
B2R(ξ)

η2|∆h
γuδ|2dx+ cε−1

∫
B2R(ξ)

η2dx+ cε−1

∫
B2R(ξ)

|∇η|2dx.

Using the boundedness of |D2Fδ| (see (7.1.4)) and choosing ε > 0 sufficiently
small, we obtain after absorbing terms∫
B2R(ξ)

η2

( 1∫
0

B
(δ)
h,γ(t)dt

)
(∆h

γ∇uδ,∆h
γ∇uδ)dx+ c

∫
B2R(ξ)

|∆h
γuδ|2η2dx

≤ c

R2

∫
B2R(ξ)

|∆h
γuδ|2dx+ c(R),

(7.1.13)

where the local constant c does not depend on h.
Finally we apply Lemma 7.23 in [62] on p.168 once again. We then obtain by
neglecting the non-negative second term on the l.h.s. of (7.1.13) and by using
(7.1.4) (recall η ≡ 1 on BR(ξ))∫

BR(ξ)

|∆h
γ∇uδ|2dx ≤

c

R2

∫
Ω

|∇uδ|2dx+ c(R) ≤ c(δ,R), (7.1.14)

where the local constant c(R, δ), in particular, does not depend on h. Using a
covering argument we find

‖∆h
γ∇uδ‖L2(ω) ≤ c(ω, δ)
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for all ω b Ω, where we emphasize one more time that the constant c(ω, δ)
is independent of h. As a consequence it holds ∂γ∇uδ ∈ L2

loc(Ω)nM for all

γ ∈ {1, . . . , n} and therefore uδ ∈W 2,2
loc (Ω)M which proves part (b).

For proving claim (c) we quote [47], Theorem 1.3, choosing a(z) := δz+DF (z)
(z ∈ RnM ) in this reference (recall the structure condition (7.1.5) imposed on
F ). An alternative approach for verifying part (c) is to adopt the arguments
from [54], Theorem 3.2.3, p. 173, to our situation. Among other things we
then use the corresponding Campanato estimates of the Laplacian. It is worth
remarking that we do not need the Hölder condition (7.1.6) imposed on F in
order to prove local apriori gradient bounds for uδ.

Now let us show assertion (d): starting with the scalar case M = 1 we note that
standard arguments from elliptic regularity theory yield the desired result. For
more details we refer the reader to the proof of Theorem 3.1.19 in this thesis
(see Section 3.5.1, “Step 4. Conclusions“).
Considering the vectorial case M > 1 we first remark that a direct applica-
tion of Theorem 4.1.7 fails since we would need the validity of the stronger
Hölder condition (4.1.20) for D2F (we recall that we merely require (7.1.6) for
D2F ). However, we can argue in a similiar manner as already done in Section
3.5.2 (see the proof of Theorem 3.1.19, “Step 4. Conclusions“), i.e., we benefit
from Theorem 4.1.7 in the autonomous setting: we fix Ω′ b Ω and a constant
M := M(Ω′, δ) > 0 such that |∇uδ(x)| ≤ M for a.a. x ∈ Ω′. Afterwards, in
view of [78], we construct an auxiliary integrand F̃δ of class C2(RnM ) satisfying
the assumptions of Theorem 4.1.7 in the autonomous case for an appropriate
choice of t ≥ 2 and such that we have (c > 0 denotes a constant)

Fδ(P ) + c = F̃δ(P ) and DFδ(P ) = DF̃δ(P )

for all P ∈ RnM with |P | ≤ 2M . As a consequence we may derive that uδ is a
local minimizer of an appropriate (autonomous) isotropic variational problem
for which local minimizers are of class C1,κ(Ω)M for any κ ∈ (0, 1) by applying
Theorem 4.1.7.
Altogether, the lemma is proven.

Remark 7.1.3
Considering n = 3, it is worth mentioning that we can show that |∇uδ|2 is a
weak subsolution of an elliptic equation. Here we merely need the structure con-
dition (7.1.5) and the information uδ ∈W 2,2

loc (Ω)M . At the end, our calculations
result in the inequality (α, β ∈ {1, 2, 3})∫

Ω

1

2
(aαβ + δαβ)∂α|∇uδ|2∂βη2dx

≤
∫
Ω

g · ∂αuδ∂βη2dx+ c

∫
Ω

η2dx,

where η ∈ C∞0 (Ω) with 0 ≤ η ≤ 1, g := 1Ω−D(uδ − f) ∈ L∞(Ω)M and aαβ :=
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∂2F

∂pjα∂p
j
β

. Now the theory of De Giorgi-Moser-Nash (see, e.g., [62], Theorem 8.15,

p. 179) (locally) applies to the weak subsolution |∇uδ|2 if the function g · ∂αuδ
is of class Lqloc(Ω) for some q > n. Indeed we merely get g · ∂αuδ ∈ L

2n
n−2

loc (Ω) by

Sobolev’s embedding theorem (recall uδ ∈W 2,2
loc (Ω)M ). Thus, since the condition

q := 2n
n−2 > n is only valid if n = 3, we then can quote the local bound on |∇uδ|

given by the theory of De Giorgi-Moser-Nash.

Remark 7.1.4
In the non-autonomous case (compare the fourth chapter of this thesis) we used
the regularization with δ ∈ (0, 1] being fixed (recall (4.1.4) for the definition of
the density Fµ(x)(P ) for x ∈ Ω and P ∈ RnM )

Jδ[w] : =
δ

2

∫
Ω

|∇w|2dx+

∫
Ω

Fµ(x)(∇w)dx+

∫
Ω

|w − f |2dx

→ min in W 1,2(Ω)M ,

(7.1.15)

where we denote by vδ ∈ W 1,2(Ω)M the unique solution. Due to the uniform
(in x) ellipticity and growth conditions of Fµ(x)(P ) (compare Remark 4.1.5) we
can essentially adopt the arguments from the proof of Lemma 7.1.1 in order to
establish the statements of Lemma 7.1.1 for the unique Jδ-minimizer vδ as well.
For getting vδ ∈ W 1,∞

loc (Ω)M we can adjust the arguments from [54], Theorem
3.2.3, p. 173, to the non-autonomous situation at hand. In order to prove
vδ ∈ C1,κ(Ω)M for all κ ∈ (0, 1) we proceed similar to the proof of Theorem
4.1.4 (see “Step 3. Conclusions“ in Section 4.4).

7.1.2 An algebraic lemma

The last lemma which will be proven is of pure algebraic nature and has act
as a technical tool during the proof of Theorem 3.1.19 and Theorem 4.1.4,
respectively (compare Lemma 3.5.10).

Lemma 7.1.5
Consider real numbers p, ν > 3, µ > 1 with

µ+ ν

2
n < p. (7.1.16)

Then, there exist real numbers s1, s2, s3 > 1 such that

(i) 2
s1

s1 − 1
< p, (ii)

1

s1

n

n− 1
> 1,

(iii) µ
s2

s2 − 1
< p, (iv) ν

s3

s3 − 1
< p,

(v)
1

2

n

n− 1

(
1

s3
+

1

s2

)
> 1.

Proof of Lemma 7.1.5. Primarily we choose p̃ < p such that (7.1.16) still holds
for p̃ instead of p.
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Due to (7.1.16) it holds p̃ > ν n2 . As a consequence, the statements (i) and

(iv) are obvious by setting s1 := p̃
p̃−2 > 1 as well as s3 := p̃

p̃−ν > 1. Besides,
combining µ > 1 and (7.1.16) we may conclude the validity of the inequality
p̃ > 2n. Recalling our choice of the parameter s1 from above we immediately
obtain (ii). For proving (v) we observe that we have

m := 2
n− 1

n
− 1

s3
= 2− 2

n
− 1 +

ν

p̃
< 1 (7.1.17)

since p̃ > ν n2 .
Thanks to (7.1.17) we may choose s2 > 1 in such a way that

m <
1

s2
< 1 (7.1.18)

and an application of (7.1.18) implies

1

2

n

n− 1

(
1

s3
+

1

s2

)
>

1

2

n

n− 1

(
1

s3
+m

)
= 1

which shows (v).
In order to verify the last statement of Lemma 7.1.5 we claim that it holds

1

s2
< 1− µ

p̃
(7.1.19)

and remark that the validity of (7.1.19) directly implies assertion (iii) of Lemma
7.1.5.
On account of (7.1.16) it follows

m− 1 +
µ

p̃
=
ν + µ

p̃
− 2

n
< 0.

Thus, we get

m < 1− µ

p̃

and consequently we may choose s2 > 1 in addition to (7.1.18) in such a way
that

m <
1

s2
< 1− µ

p̃
.

This shows (7.1.19) and completes the proof of Lemma 7.1.5.

7.2 Notation and conventions

The set Ω ⊂ R
n, n ≥ 2, always denotes a bounded Lipschitz domain. For

M ≥ 1, we abbreviate a given function space X(Ω,RM ) by X(Ω)M where for
M = 1 we use the common notation X(Ω). With respect to the notation of the
classical function spaces we follow the notation as introduced in [17] or [62]. In
this thesis we are particularly concerned with
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• Hölder spaces Ck,α(Ω)M ,

• Lebesgue spaces Lp(Ω)M ,

and

• Sobolev spaces W k,p(Ω)M , W k,p
0 (Ω)M .

For more details in relation to Sobolev spaces we refer the reader to the classical
monography of Adams [4].
Moreover, for the local variants we write

• Lploc(Ω)M , etc.

Now let us consider a function w ∈ L1(Ω)M . Following the monographies of
Ambrosio, Fusco and Pallara [7] or of Giusti [63], we say that w is a

• function of bounded variation in Ω (abbreviated: w ∈ BV (Ω)M ),

if the distributional derivative can be represented by a finite Radon measure in
Ω, i.e., for some RnM -valued measure (∂αw

i)1≤i≤M
1≤α≤n we have∫

Ω

w · divϕdx =

∫
Ω

wi divϕidx = −
∫
Ω

ϕiα∇αwi

= −
∫
Ω

ϕ : ∇w

for any ϕ ∈ C∞0 (Ω)nM . Note that a smoothing argument shows that the inte-
gration by parts from above remains also for all functions of class C1

0 (Ω)M as
well.
The total variation of w is given by∫

Ω

|∇w| = sup
ϕ∈C1

0 (Ω)nM ,|ϕ|≤1

∫
Ω

w · divϕdx,

and we say that w is of class BV (Ω)M if and only if the total variation is finite.
Furthermore we have the following conventions throughout the entire thesis:

divϕ = (
n∑

α=1
∂αϕ

i
α) ∈ R

M , summation is always assumed w.r.t. repeated

indices- for Latin indices the sum is taken over i = 1, . . . ,M , for Greek in-
dices this is done w.r.t. α = 1, . . . , n. Further, the standard scalar product in
R
M is denoted by “·“ whereas the symbol “:“ is reserved for the standard scalar

product in R
nM .

Further, derivatives will be denoted by “D“ or “∇“ , where the precise meaning
will always be evident in the context.
Last but not least we state that
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• if it is necessary (and possible) we usually pass to suitable subsequences
without relabeling;

• c = c(·, . . . , ·) usually denotes a constant depending only on the quantities
appearing in the current context where we commonly emphasize if it is
important to observe that c is a uniform constant (in a suitable sense).
Besides, the same letter c will be used to label different constants.

162



Bibliography

[1] R. Acar and C. R. Vogel. Analysis of bounded variation penalty methods
for ill-posed problems. Inverse Problems, 10(6):1217–1229, 1994.

[2] E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of vari-
ations. Arch. Rational Mech. Anal., 86(2):125–145, 1984.

[3] E. Acerbi and N. Fusco. Regularity for minimizers of nonquadratic func-
tionals: the case 1 < p < 2. J. Math. Anal. Appl., 140(1):115–135, 1989.

[4] R. A. Adams. Sobolev spaces. Academic Press, New York-London, 1975.
Pure and Applied Mathematics, Vol. 65.

[5] H.W. Alt. Lineare Funktionalanalysis. Springer-Verlag, 1985.

[6] L. Ambrosio and G. Dal Maso. A general chain rule for distributional
derivatives. Proc. Amer. Math. Soc., 108(3):691–702, 1990.

[7] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation
and free discontinuity problems. Oxford Mathematical Monographs. The
Clarendon Press, Oxford University Press, New York, 2000.

[8] G. Anzellotti and M. Giaquinta. Funzioni BV e tracce. Rend. Sem. Mat.
Padova, 60:1–21, 1978.

[9] G. Anzellotti and M. Giaquinta. Convex functionals and partial regularity.
Arch. Rational Mech. Anal., 102(3):243–272, 1988.

[10] P. Arias, V. Caselles, G. Facciolo, V. Lazcano, and R. Sadek. Nonlocal
variational models for inpainting and interpolation. Math. Models Meth-
ods Appl. Sci., 22(suppl. 2):1230003, 65, 2012.

[11] P. Arias, V. Caselles, and G. Saprio. A variational framework for non-local
image inpainting. IMA Preprint Series No. 2265, 2009.

[12] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro. A variational framework
for exemplar-based image inpainting. Int. J. Comput. Vis., 93(3):319–347,
2011.

[13] G. Aubert and P. Kornprobst. Mathematical problems in image process-
ing, volume 147 of Applied Mathematical Sciences. Springer-Verlag, New
York, 2002.

163



BIBLIOGRAPHY

[14] G. Aubert and L. Vese. A variational method in image recovery. SIAM
J. Numer. Anal., 34(5):1948–1979, 1997.

[15] L. Beck and T. Schmidt. On the Dirichlet problem for variational integrals
in BV . J. Reine Angew. Math., 674:113–194, 2013.

[16] M Bertalmio, G. Saprio, V. Caselles, and C. Ballester. Image inpaint-
ing. Proceedings of the 27th annual conference on Computer graphics and
interactive techniques ACM press/Addison-Wesley Publishing Co., pages
417–424, 2000.

[17] M. Bildhauer. Convex variational problems: Linear, nearly linear and
anisotropic growth conditions, volume 1818 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2003.

[18] M. Bildhauer and M. Fuchs. Elliptic variational problems with non-
standard growth. In Nonlinear problems in mathematical physics and
related topics, I, volume 1 of Int. Math. Ser. (N. Y.), pages 53–66.
Kluwer/Plenum, New York, 2002.

[19] M. Bildhauer and M. Fuchs. Partial regularity for a class of anisotropic
variational integrals with convex hull property. Asymptot. Anal., 32(3-
4):293–315, 2002.

[20] M. Bildhauer and M. Fuchs. C1,α-solutions to non-autonomous
anisotropic variational problems. Calc. Var. Partial Differential Equa-
tions, 24(3):309–340, 2005.

[21] M. Bildhauer and M. Fuchs. A geometric maximum principle for vari-
ational problems in spaces of vector valued functions of bounded varia-
tion. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
385(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii
Funktsii. 41):5–17, 234, 2010.

[22] M. Bildhauer and M. Fuchs. A variational approach to the denoising of
images based on different variants of the TV-regularization. Appl. Math.
Optim., 66(3):331–361, 2012.

[23] M. Bildhauer and M. Fuchs. Image inpainting with energies of linear
growth - a collection of proposals. J. Math. Sciences, 196(4):490–497,
2014.

[24] M. Bildhauer and M. Fuchs. On some perturbations of the total variation
image inpainting method. Part 1: regularity theory. J. Math. Sciences,
202(2):154–169, 2014.

[25] M. Bildhauer and M. Fuchs. On some perturbations of the total vari-
ation image inpainting method. Part 2: relaxation and dual variational
formulation. J. Math. Sciences, 205(2):121–140, 2015.

164



BIBLIOGRAPHY

[26] M. Bildhauer and M. Fuchs. On some perturbations of the total variation
image inpainting method. Part 3: minimization among sets with finite
perimeter. J. Math. Sciences, 207(2):142–146, 2015.

[27] M. Bildhauer, M. Fuchs, and C. Tietz. C1,α- interior regularity for min-
imizers of a class of variational problems with linear growth related to
image inpainting. Algebra i Analiz, 27(3):51–64, 2015.

[28] M. Bildhauer, M. Fuchs, and J. Weickert. Denoising and inpainting of
images using TV-type energies: theoretical and computational aspects.
submitted.

[29] P. Blomgren and T. F. Chan. Color TV: Total variation methods for
restoration of vector-valued images. IEEE Trans. Imag. Proc., 7(3):304–
309, 1998.

[30] C. Bouman and K. Sauer. A generalized Gaussian model for edge-
preserving map estimation. IEEE Trans. Imag. Proc., 2(3):296–310, 1993.

[31] K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM
J. Imaging Sci., 3(3):492–526, 2010.

[32] D. Breit. New regularity theorems for non-autonomous variational inte-
grals with (p, q)-growth. Calc. Var. Partial Differential Equations, 44(1-
2):101–129, 2012.

[33] M. Burger, L. He, and C.-B. Schönlieb. Cahn-Hilliard inpainting and a
generalization for grayvalue images. SIAM J. Imaging Sci, 2(4):1129–
1167, 2009.

[34] M. Burger, A. C. G. Mennucci, S. Osher, and M. Rumpf. Level set and
PDE based reconstruction methods in imaging, volume 2090 of Lecture
Notes in Mathematics. Springer, Cham; Fondazione C.I.M.E., Florence,
2013. Lecture notes from the CIME Summer School held in Cetraro,
September 2008, Edited by Martin Burger and Stanley Osher, Fondazione
CIME/CIME Foundation Subseries.

[35] V. Caselles, A. Chambolle, and M. Novaga. Regularity for solutions of
the total variation denoising problem. Rev. Mat. Iberoam., 27(1):233–252,
2011.

[36] A. Chambolle and P.-L. Lions. Image recovery via total variation mini-
mization and related problems. Numer. Math., 76(2):167–188, 1997.
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