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Abstract

This thesis proposes several methods to statistically analyze static and dynamic 3D face data.
First, we present a fully-automatic method to robustly register entire facial motion sequences.
The representation of the 3D facial motion sequences obtained by the registration allows us
to perform statistical analysis of 3D face shapes in motion. We then introduce a new local-
ized multilinear model that is able to capture fine-scale details while being robust to noise and
partial occlusions. To obtain a suitable registration for multilinearly distributed data, we in-
troduce a groupwise correspondence optimization method that jointly optimizes a multilinear
model and the registration of the 3D scans used for training. To robustly learn a multilinear
model from 3D face databases with missing data, corrupt data, wrong semantic correspon-
dence, and inaccurate vertex correspondence, we propose a robust model learning framework
that jointly learns a multilinear model and fixes the data. Finally, we present one application
of our registration methods, namely to obtain a sizing system that incorporates the shape of an
identity along with its motion. We introduce a general framework to generate a sizing system
for dynamic 3D motion data.
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Zusammenfassung

Diese Dissertation stellt mehrere Methoden zur statistischen Analyse statischer und dyna-
mischer 3D Gesichtsdaten vor. Zuerst präsentieren wir eine vollautomatische Methode zur
Registrierung kompletter Bewegungsabläufe von Gesichtern. Die Darstellung der 3D Se-
quenzen durch die Registrierungsmethode ermöglicht die statistische Analyse der bewegten
Gesichtsdaten. Anschließend stellen wir ein lokalisiertes multilineares Modell vor, das kleine
geometrische Details rekonstruieren kann und robust gegenüber von Störungen und teilweisen
Verdeckungen ist. Um eine geeignete Registrierung für multilinear verteilte Daten zu erhal-
ten, präsentieren wir ein gruppenbasiertes Optimierungsverfahren, das gleichzeitig ein multi-
lineares Modell lernt und die Registrierung der 3D Trainingsdaten optimiert. Um ein multi-
lineares Modell robust von 3D Gesichtsdaten mit fehlenden Einträgen, korrupten Daten, fehler-
hafter semantischer Korrespondenz und ungenauer Punktkorrespondenz zu lernen, stellen wir
ein Verfahren vor, das gleichzeitig ein multilineares Modell lernt und die Daten repariert.
Schlussendlich präsentieren wir eine Anwendung unserer Registrierungsmethoden. Wir stellen
ein generelles Verfahren vor, um Standard-Größenreihen für dynamische 3D Gesichter zu
berechnen, das sowohl die Gestalt als auch die Dynamik der Gesichtsdaten berücksichtigt.
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Chapter 1
Introduction

“The face is more honest than the mouth will ever be.”

– Daphne Orebaugh

1.1 Motivation

The human face has a major impact on our daily life as it plays an essential role in all kinds
of social interactions. For instance, facial expressions reveal much about our feelings and
thoughts [47, Chapter 1]. This motivates many different fields, including human-computer
interaction, entertainment, medicine, ergonomic design, and security, to investigate the human
face. Faces are used to control virtual avatars (e.g. [133]), to generate realistic physical de-
formable face models (e.g. [14]), to plan surgeries (e.g. [62]), to recognize certain diseases
(e.g. [59]), to design best fitting gear (e.g. [134]) or to recognize faces (e.g. [102]). Depend-
ing on the application this requires a model that precisely describes the facial variations and
achieves a high level of realism.

The facial shape is highly variable as it is affected by e.g. ethnicity, sex, age or facial
expression. Overall, the human face can perform more than ten thousand distinct facial ex-
pressions [47, Chapter 1]. To get a low-dimensional description of the facial expressions,
the Facial Action Coding System (FACS) [48] encodes the expressions as combinations of 44
action units. While these action units give a potential basis to describe facial expressions, mod-
eling the human face by hand is rather difficult. Despite the complex variations allowed by the
human face, humans are rather sensitive to recognizing unnatural face shapes, especially if the
face is moving. The negative emotional response of humans invoked by small imperfections
in simulated faces of humanoid robots or facial renderings is often referred to as uncanny val-
ley [101]. To avoid the uncanny valley, data-driven methods learn a high-quality deformable
face model from training data (e.g. [16, 132]). The goal of this thesis is to statistically analyze
static and dynamic 3D face data.

Deforming faces are often described by statistical models that decouple the influence of
identity and expression variations (e.g. [132]). This separation allows identity or expression
to be altered independently, which in turn allows for a compact description of facial dynamics
(e.g. [135]). Obtaining a high-quality statistical face model is challenging, since it must cap-
ture geometric details present in the data while compactly describing the data variations. To
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2 CHAPTER 1. INTRODUCTION

get a descriptive model, large training databases that representatively sample the population of
human faces are essential.

Several new methods (e.g. [10]) and commercial systems (e.g. [71]) have been developed
in recent last years to acquire static or dynamic 3D faces. With improved ability of capture
3D scans, the number of publicly available 3D face databases has increased (e.g. [139, 116,
138, 40]). These databases aim at capturing a wide variety of facial shapes and expressions,
including facial dynamics.

Computing statistics on these databases requires all shapes to be in correspondence [43,
Chapter 1]. Computing these correspondences for human face data is a challenging task due to
the high variability of the face shape and the large differences in the data quality. Depending
on the system used for the data acquisition, the face scans contain noise, holes, or partial
occlusions. A suitable registration method is hence required to capture fine-scale facial details
while being robust to various kinds of data corruption. For dynamic data the registration
method further needs to be robust to fast motions, and the established correspondence must be
temporally coherent.

The core idea in this thesis is to leverage redundancy in the data for shape processing. This
is done in a groupwise fashion by jointly processing large databases in the case of static data
(Chapters 6 and 7), and by processing entire motion sequences in the case of dynamic data
(Chapters 4 and 5).

1.2 Thesis outline
This thesis addresses various challenges that arise when static and dynamic 3D face data are
statistically analyzed. The organization of the thesis is as follows. Chapter 2 gives an overview
about existing related literature. Chapter 3 introduces basic concepts about linear and multi-
linear face models, the wavelet decomposition of 3D surfaces, and the combination of wavelet
decomposition and linear face models.

The statistical analysis of dynamic 3D face data requires all motion sequences to be in
full vertex correspondence. Chapter 4 describes a fully-automatic approach to register and
statistically analyze facial motion sequences using a multilinear face model as statistical prior.

While existing multilinear face models represent the global face shape well, they are unable
to capture fine-scale details. To statistically model the human face including more fine-scale
details, Chapter 5 introduces multilinear wavelets, a novel localized multilinear face model
that makes it possible to model more fine-scale details while retaining robustness to noise and
partial occlusions.

To compute a high-quality multilinear face model, the quality of the registration of the
database of 3D face scans used for training is essential. Meanwhile, a multilinear face model
can be used as an effective prior to register 3D face scans, which are typically noisy and
incomplete. Inspired by the minimum description length approach, Chapter 6 proposes the
first method to jointly optimize a multilinear model and the registration of the 3D scans used
for training. While most existing methods assume the object to be a closed manifold, our
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approach handles manifolds with multiple boundaries.
Existing methods to learn a multilinear face model degrade if not every person is captured

in every expression, if face scans are noisy or partially occluded, if expressions are erroneously
labeled, or if the vertex correspondence is inaccurate. To overcome these limitations, Chapter 7
introduces the first framework to robustly learn a multilinear model from 3D face databases
with missing data, corrupt data, wrong semantic correspondence, and inaccurate vertex corre-
spondence.

Once 3D facial motion sequences are successfully registered, they can be used in various
applications. Besides the applications of dynamic 3D motion data for the synthesis of new
motion sequences and the recognition of dynamic expressions discussed in Chapter 4, Chap-
ter 8 introduces a general framework to generate a sizing system for dynamic 3D motion data
for the design of face masks that incorporates the shape of an identity along with its motion.

Finally, Chapter 9 concludes the thesis, summarizes key advantages of our methods, and
gives an outlook on open problems and future work.

1.3 Contributions

The novel contributions described in this thesis have either been published [19, 21, 28, 22, 20]
or have been accepted for publication [24]. Where not explicitly stated otherwise, I am the
main contributor to the work. Our novel contributions described in this dissertation are as
follows.
Statistical motion analysis (Chapter 4): Parts of this work were first published in 3DV
2013 [19], and an extended version has been published in CVIU [21]. Our main contributions
are:

• a new Markov random field (MRF)-based landmark prediction method for entire motion
sequences of 3D faces,

• a fully-automatic approach to register motion sequences of 3D faces both spatially and
temporally using a multilinear model as statistical prior that is robust with respect to fast
motions,

• a general framework to statistically analyze 3D face shapes in motion, and

• four applications for our framework; namely, we propose different ways to synthesize
new motion sequences and recognize dynamic expressions.

Multilinear wavelets (Chapter 5): This work has been published in ECCV 2014 [28]. While
I was not the main author, the main contributions were achieved in close collaboration with
Alan Brunton. My responsibilities comprised the implementation of the multilinear model and
the bi-Laplacian smoothing. Further, I contributed to the model integration, testing, evaluation,
and writing the paper. Our main contributions are:
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• a statistical shape space based on a wavelet decomposition of 3D face geometry and
multilinear analysis of the individual wavelet coefficients,

• an efficient algorithm for learning a statistical shape model of the human face in varying
expressions, and

• an efficient algorithm for fitting our model to static and dynamic point cloud data that is
robust with respect to highly corrupted scans.

Registration optimization (Chapter 6): This work has been published in ICCV 2015 [22].
Our main contributions are:

• a fully automatic groupwise correspondence optimization approach for multilinearly dis-
tributed data, and

• an approach that is computationally significantly more efficient and leads to correspon-
dences of higher quality than existing PCA-based optimization methods.

Robust multilinear model learning (Chapter 7): This work has been accepted for publica-
tion in CVPR 2016 [24]. Our main contributions are:

• a data completion technique with similar performance as state-of-the-art tensor comple-
tion methods,

• a data reconstruction technique for corrupt data that outperforms the state-of-the-art, and

• a re-labeling technique to improve semantic correspondence.

Motion sizing system (Chapter 8): This work has been published in 3DV 2014 [20]. Our
main contributions are:

• a general framework to generate a sizing system for dynamic 3D motion data,

• the generation of a representative 3D model for each size for fabrication, and

• the application of our framework to generate a specific sizing system for facial motion
data for face mask design.



Chapter 2
Literature review

“Never memorize something that you can look up in books.”

– Albert Einstein

This chapter gives an overview about literature related to statistical analysis of static and
dynamic 3D face data. While statistical methods and correspondence computations are applied
to various kinds of 2D and 3D objects, we focus the literature review on statistical methods,
their applications, and correspondence computation on 3D faces. This allows us to give a
more comprehensive overview. For a more general overview on statistical models see e.g. our
survey [29], and for a more general view on correspondence computation see e.g. the surveys
by Tam et al. [125] or van Kaick et al. [131]. While previous methods on groupwise corre-
spondence optimization methods operate on 1D curves or 2D surfaces, we focus the review
of related work on surface-based methods. For a more general overview see e.g. the book by
Davies et al. [43].
Shape: In this thesis we define the shape of an object as the geometrical information that re-
mains if the effects of rotation, translation and scale are removed, as proposed by Kendall [45,
Chapter 1].
Statistical shape model: In this thesis we use statistical shape models to describe the space of
variations of a class of shapes. This space—the shape space—is defined by a low-dimensional
basis with an additional statistical prior. This statistical prior is a probability distribution that
measures, for a shape, the likelihood that it is a valid instance of the given class of shapes. For
statistical face models this prior is often a multivariate Gaussian distribution.

2.1 Data acquisition
The goal of this thesis is to statistically analyze static and dynamic 3D face data, which requires
suitable 3D face databases. Several methods and systems exist to digitally capture the 3D
surface of human faces, ranging from expensive commercial systems of high quality to cheap
consumer depth cameras of low quality. One key goal of our methods is to work for data from
various sources.

This section gives a brief overview about existing techniques to capture 3D surfaces of the
human face. Existing methods can be grouped into active and passive capture methods. In the

5
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following, we only discuss methods that are either used to acquire the databases used through-
out this thesis, namely BU-3DFE [139], BU-4DFE [138] or the Bosphorus database [116],
or systems used in low-cost consumer products like the Microsoft Kinect [78] or Intel Re-
alSense [113]. For a more detailed overview see e.g. the thesis by Scherbaum [117, Chapter
2.1].
Active methods: Active systems consist of an emitting unit and an imaging sensor. The
emitting unit projects a signal in the form of light or radiation onto an object and the imaging
sensor measures the signal reflected by the surface of the object. The calibration of the emitting
unit and the imaging sensor then makes it possible to determine the 3D position of a surface
point.

Structured light scanners are one type of active scanner system. These consist of a light
projector and an imaging sensor. They project a light pattern on the object and measure the
geometrical deformation of the pattern caused by the surface of the object. The calibration
of projector and sensor allow depth information to be computed by triangulation. For more
details see the overview by Besl [13].

The Bosphorus database and the BU-3DFE database are captured with commercial struc-
tured light scanner systems. The Bosphorus database is captured with the Inspeck Mega Cap-
ture II; the BU-3DFE database is captured with the 3DMD digitizer [71]. The 3DMD digitizer
projects random light patterns onto the surface of the object. Six digital cameras, three on
each side of the face, then capture the images used for reconstruction. The first generations of
Microsoft Kinect and Intel RealSense use a structured light scanner that consists of an infrared
projector and an infrared sensor. The Microsoft Kinect uses a speckled infrared dot pattern;
Intel RealSense uses an infrared grid as its light pattern.

Further active methods include time-of-flight (ToF) scanners. ToF scanners consist of an
infrared projector and an infrared sensor. They emit a light signal and measure the duration un-
til the signal returns to the sensor. Due to the known constant speed of light (c = 299792458m

s
)

the distance between the camera and the surface of the object can be computed once the elapsed
time is known. Instead of directly measuring the elapsed time, current ToF systems use indi-
rect measurements. Most existing methods emit a light signal with modulated intensity. The
distance from the surface of the object to the camera is then computed from the phase shift of
sent signal and received signal. For more details see Lefloch et al. [87]. The second-generation
Microsoft Kinect uses a ToF sensor, for instance.
Passive methods: In contrast to active systems, passive systems use the existing lighting of
the object without altering the appearance of the object by emitting light or radiation.

Stereoscopic methods are one widely-used type of passive 3D surface capturing system.
Stereoscopic systems usually consist of two horizontally slightly displaced imaging sensors.
The slight displacement results in two images of the same object from different perspectives.
The displacement of the x-coordinate of corresponding points caused by the different perspec-
tive is often referred to as disparity. The disparity along with the known distance of the sensors
allow the depth of a point to be computed by triangulation. The principle of stereoscopic sys-
tems is similar to the binocular visual system of humans. For more details see Moons et
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al. [100].
The BU-4DFE is captured with the Di3D [72] from Dimensional Imaging. The Di3D is

a commercial scanner system with two stereo cameras and one texture camera. Both stereo
cameras produce depth maps using a passive stereo reconstruction. These depth maps are then
combined to obtain a full 3D face scan.

2.2 Statistical face models
As the goal of this thesis is the statistical analysis of static and dynamic 3D faces, it relates to
previous methods that perform statistical analysis on facial surfaces. This section introduces
existing statistical 3D face models.

Databases of shapes are often high-dimensional while the possible variations of the shapes
only describe a low-dimensional manifold. While it is difficult to model this low-dimensional
description manually, data-driven statistical shape models can be used to describe a low-
dimensional shape space. This low-dimensional shape description reduces the search space
for various applications and hence allows various underconstrained problems to be solved (see
Section 2.5).
Global models: Given a set of 3D shapes in full correspondence, various methods exist to
statistically analyze the shapes. Blanz and Vetter [16] propose the first statistical 3D face
model, called a morphable model, that uses principal component analysis (PCA) (see Sec-
tion 3.2) to analyze 3D shape and texture of registered 3D faces, mainly with neutral expres-
sions. Patel and Smith [110] show simplifications for the morphable model by introducing
a multi-resolution fitting. While the morphable model is mainly used to analyze the shape
variations of 3D faces of different identities, other works also analyze shape variations caused
by different expressions. Yang et al. [136] build several PCA models, one for each expres-
sion. Amberg et al. [4] use another statistical model that combines a PCA model for shape and
texture of a neutral expression with a PCA model for the expression difference vectors from
the neutral expression. The linear separation of identity and expression of this model assumes
identity and expression deformations to be independent which enables the direct transfer of ex-
pression differences between faces. Tensor-based frameworks instead model the dependency
between identity and expression deformations by non-linear projections. Vlasic et al. [132]
use a tensor-based method to model 3D faces, named a multilinear model (Section 3.4), that is
a higher-order generalization of the PCA model.
Local models: Part-based models are frequently used to increase the data variability captured
by the morphable model. Instead of using one global model on the entire shape, the shape is
segmented into disjoint parts and separate models per part are computed. Learning models,
independently per part, decorrelates the different segments. Due to the decorrelation, these
multiple part-based models are more expressive than global models. Due to the better gen-
eralization capability, part-based models require less training data than global models do to
capture the same data variability.

Blanz and Vetter use a part-based model by manually segmenting the face shape into dis-



8 CHAPTER 2. LITERATURE REVIEW

joint segments and learning morphable models on each segment independently. Smet and Van
Gool [121] use an automatic segmentation of the face shape to learn a part-based model. In-
stead of using a global statistical model or part-based statistical models, Brunton et al. [30]
learn a localized wavelet model. For this, training faces are transformed into wavelet space,
and PCA is performed on the resulting localized wavelet coefficients. For more technical de-
tails see Section 3.3. This localized approach preserves local details in the context of model
fitting. Another localized method proposed by Neumann et al. [103] takes a facial motion se-
quence and decomposes the global deformation into localized components using sparse PCA.
Ferrari et al. [51] learn a sparse linear basis from a 3D face database of different identities per-
forming multiple expressions. Golovinskiy et al. [57] propose a method based on hierarchical
pyramids to reconstruct small facial details.

2.3 Correspondence computations
The statistical analysis of static and dynamic 3D faces requires all shapes to be in full corre-
spondence. This section summarizes previous methods that compute correspondences between
3D face shapes.

Dense point-to-point correspondences between shapes are used e.g. to compute statis-
tics [43, Chapter 1], to morph between shapes [27, Chapter 12], or to transfer textures between
shapes [27, Chapter 12]. Tam et al. [125] and van Kaick et al. [131] give an overview of regis-
tration techniques for different classes of objects. While it is difficult to register shapes without
prior knowledge of the class of objects, we restrict our literature overview to methods that are
specifically designed for 3D surfaces of faces. The restriction to 3D faces reduces the search
space for the correspondence computation, as it makes it possible to leverage prior knowledge
of the face shape and possible deformations.

2.3.1 Sparse face correspondence
Several methods exist to automatically establish sparse correspondence between static face
shapes by predicting facial landmarks. Computing a sparse correspondence results in an eas-
ier problem compared to computing a full per-vertex correspondence, as salient keypoints—
called landmarks—around eyes, nose, and mouth can be leveraged that are easier to detect
automatically. While computing facial landmarks has been studied extensively in 2D images
(e.g. [38]), we focus on computing landmarks in 3D face scans.

These automatic landmark detection methods learn global or local geometric properties
of the landmarks and use these information to infer the same corresponding landmarks on
new scans. Guo et al. [58] predict landmarks using a PCA based method learned on a set of
salient points together with a geometric and texture-based heuristic. Passalis et al. [108] select
possible landmarks using shape index and spin image and validate the possible landmarks
using a learned PCA space of facial landmarks. Berretti et al. [11] use curvature together
with a scale-invariant feature transform (SIFT) descriptor to predict facial landmarks. Creusot
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et al. [41] learn the statistical distribution of several descriptors on known landmarks and
their optimal combination. In contrast to this method, Salazar et al. [114] learn the statistical
distribution of one descriptor on known landmarks and train a MRF to model connections
between these landmarks. For an input scan, Salazar et al. predict the landmarks using belief
propagation. Gilani et al. [55] use a PCA model fitting to transfer landmarks from the template
face to unseen face scans. The survey by Çeliktutan et al. [38] gives further details on facial
landmarking.

2.3.2 Dense face correspondence

Computing dense 3D face correspondence is challenging as the facial shape is highly variable
and for large facial regions (except eyes, nose, and mouth) the local geometry and texture is
less distinctive which impedes dense matching solely based on local facial features. Instead
many previous methods use face templates in addition to facial landmarks to reduce the search
space for dense registration. To register a 3D face scan, these template-fitting approaches use
an initial face shape—the face template—that is deformed locally to closely match the scan.
The deformed template is then used as a registration of the scan. All scans that are registered by
deforming the same face template are implicitly in full dense per-vertex correspondence. To be
more robust to noisy scans or large expression deformations, the possible deformations of the
face template are often restricted to match geometric constraints such as minimizing surface
bending (e.g. [109]) or by parametric models such as blendshape models (see Section 3.2) or
statistical models (see Sections 3.2 and 3.4).
Single expression registration: To register static 3D faces in a single expression, Blanz and
Vetter [16] use an optical flow algorithm to match vertices with similar color. They improve the
correspondence by bootstrapping; they iteratively learn a model, fit the scans with the model,
and update the registration using optical flow. Amberg et al. [6] use a non-rigid iterative closest
point (ICP) method to fit a template to the input scan. Passalis et al. [108] fit an annotated face
model (AFM) [75] to an input scan. The AFM is an average 3D face from statistical data,
segmented into different annotated areas. The deformation of the AFM to fit the scan is done
by solving a second-order differential equation with a finite element method. To be robust to
missing data they explore the facial symmetry during AFM fitting.

Several methods exist that use a thin-plate spline (TPS) deformation to fit a template to a
scan [109, 68, 111, 58, 94]. Given two sets of points, thin-plate splines define the interpolative
mapping between both point sets with minimum bending energy [45, Chapter 10]. To register
face scans, Patel and Smith [109] compute an interpolative TPS mapping between landmarks
of a scan and landmarks in the mean shape, and resample the TPS mapping consistently to get
a dense correspondence between the template and the scan. Hu et al. [68] and Qin et al. [111]
sample up to 600 points from a template scan and establish an initial correspondence to another
scan using ICP. To refine the correspondence, Hu et al. iteratively establish an approximate
TPS mapping using the correspondence, deform the template scan according the TPS map-
ping, and update the correspondence. Qin et al. deform the template scan according the TPS
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mapping, perform PCA over all TPS based registrations, and use a bootstrapping that itera-
tively fits the model based on the updated correspondence. Guo et al. [58] and Liu et al. [94]
establish a TPS mapping between a face template and the scan using a sparse correspondence,
warp the template according the TPS mapping, and establish dense correspondence by pro-
jecting the points of the deformed template into the surface of the scan.

Further statistical model based methods exist. Blanz et al. [15] learn a morphable face
model and use this model as statistical prior to reconstruct 3D face scans; Brunton et al. [30]
learn a linear wavelet face model (Section 3.3) and use this model to reconstruct 3D face scans.
Multiple expression registration: To register static 3D faces in multiple expressions, Mpiperis
et al. [102] fit a face template to an input scan using an elastically deformable model. This
elastically deformable model consists of face template modeled as a subdivision surface that is
deformed based on a non-rigid ICP method to fit the scan. Salazar et al. [114] use a blendshape
model to fit the expression of a given input scan, and a template deformation based on a non-
rigid ICP method to fit its shape. Ferrari et al. [51] partition each input scan into 28 regions
bounded by geodesic paths between facial landmarks and resample the regions consistently to
obtain a dense correspondence. Bronstein et al. [27, Chapter 12] establish dense correspon-
dence between faces using generalized multi-dimensional scaling (GMDS) [27, Chapter 9].
GMDS embeds the intrinsic geometry of one shape into another and measures the distance
between the shapes in the embedding space defined by the second shape.
Dynamic registration: To register dynamic 3D faces in varying expressions, Fang et al. [50]
consecutively fit an AFM to a facial motion sequence where the AFM for each frame is ini-
tialized by the result of the previous frame. Huang et al. [69] decompose a face into parts and
use displacement mapping, where vertices move along their normal directions combined with
point-to-surface mappings to fit the individual face parts to an input face. This is followed by
a blending of the separate parts. Breidt et al. [97] use a morphable face model that consists of
two PCA models, one for identity and one for expression. They fit the identity PCA to the first
frame of a sequence, and for each further frame they only fit the expression PCA initialized by
the result of the previous frame while the identity is fixed.

Several methods exist that register facial RGB-D sequences in real time [90, 133, 25, 91,
127, 66, 89]. These methods use linear blendshape bases to model the expression deforma-
tions. Li et al. [90], Weise et al. [133], and Bouaziz et al. [25] compute person-specific blend-
shapes by registering specific example expression scans. For some example expressions, a
generic blendshape basis, and blendshape weights that approximately resemble the specific
expressions, they optimize for the personalized blendshape basis that best fits the example
expressions. Given the personalized basis, registering the RGB-D sequences is performed by
optimizing for the blendshape coefficients that best fit the input data. Bouaziz et al. further
use a PCA model for identity to robustly fit the identity of a neutral scan. Li et al. [91, 89]
and Hsieh et al. [66] perform deformation transfer [123] to a neutral person-specific scan to
compute person-specific blendshapes. They learn an adaptive linear PCA model from the
person-specific blendshapes to register the RGB-D sequences. To increase the expressiveness
of the PCA model during registration, Li et al. [91] and Hsieh et al. add further expressive
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training shapes to the PCA model. Thies et al. [127] use linear PCA models for identity and
albedo, and a linear blendshape model for expression. For sequences registration they estimate
the identity on a short sequence and keep the identity fixed afterwards while optimizing for the
blendshape coefficients only.

2.4 Groupwise correspondence optimization

Since we leverage redundancy in the data in a groupwise fashion to jointly optimize multi-
linear correspondence (Chapter 6) and to robustly learn a multilinear face model (Chapter 7),
our methods are related to groupwise correspondence optimization methods. This section in-
troduces methods that jointly optimize the registration of a set of 3D shapes and a learned
statistical model in a groupwise manner.

Computing these correspondences for human face data is a challenging task that many
methods aim to solve (see Section 2.3). Given a good registration, a statistical face model can
be learned that can be used to reconstruct the 3D geometry from noisy or partially occluded
face scans as discussed in Section 2.2. Such a model is directly applicable for registration
as discussed in Section 2.3. Summing up, this is a chicken-and-egg problem: given a good
registration, a statistical model can be learned, and given a representative statistical model,
a good registration can be computed. This motivates formulating the statistical face model
learning as an optimization framework that aims to learn a statistical face model while at the
same time optimizing the correspondence of the training data. These optimization frameworks
measure the model quality and change the registration such that the quality of the model and
the registration improve at the same time. Since the model quality depends on all shapes, these
model-based methods to optimize correspondence are called groupwise optimization methods.
In the absence of groupwise correspondence optimization methods for 3D faces, this section
summarizes related methods that operate on 2D surfaces of any class of shapes.
Linear methods: Most existing groupwise optimization methods describe the data with one
linear PCA model. Kotcheff and Taylor [81] propose a groupwise correspondence optimiza-
tion based on the determinant of the data covariance matrix that explicitly favors compact
PCA models. Thodberg [128] uses a simplified version of the information theoretic objective
function minimizing the description length of the data [43, Chapter 4]. The basic concept of
minimum description length (MDL) approaches is to minimize the length of a message that is
transmitted from a sender to a receiver. They encode the data with a PCA model and alter the
correspondence such that the number of bits needed to describe the model and the encoded data
is minimal. Styner et al. [122] optimize the same simplified MDL objective with additional
local curvature constraints. Davies et al. [43, Chapter 4] give a more thorough overview of dif-
ferent objective functions for correspondence optimization. Davies et al. [44] show that MDL
outperforms state-of-the-art registration methods for medical datasets. Gollmer et al. [56]
compare different objective functions. They show that while the determinant of the covariance
matrix is easier to optimize, the results are comparable to results produced by MDL.
Non-linear methods: Burghard et al. [31] use a part-based groupwise linear model. They cut
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each shape into multiple parts and optimize the correspondence of each part by minimizing the
groupwise linear objective function of Kotcheff and Taylor with an additional regularization
term. Chen et al. [39] model the data with a non-linear kernel PCA. They embed each shape
into a non-linear feature space induced by a non-linear kernel and optimize the groupwise
objective function of Thodberg in this feature space. Hirshberg et al. [64] derive a skeleton-
based approach specifically for human body shapes to jointly optimize the registration and a
statistical model.

2.5 Applications of deformable face models

This section discusses some applications of deformable 3D face models, namely statistical
face models and blendshape models. Altering facial shape or pose in 2D images or videos
is rather difficult, as parts that were originally occluded might become visible, and lighting
conditions change as e.g. shadows cast by the face shape appear or disappear. In contrast
to these problems that occur for the 2D face shape, the shape and pose of 3D faces can be
changed free of self-occlusions, and lighting changes can be simulated on the surface in 3D.
Hence, instead of processing the facial shape directly in 2D, the 3D face shape is frequently
used to process and edit faces in 2D images or 2D videos (e.g. [132]). This requires robust
methods to reconstruct 3D face shape from 2D images or videos.
Reconstruction: One body of work uses deformable face models to reconstruct 3D face shape
from one or more 2D images. Garrido et al. [54] use a personalized blendshape model as prior
information to reconstruct 3D face shape from 2D videos. Cao et al. [33] combine a personal-
ized blendshape model with a probability map for person-specific facial features like wrinkles
to reconstruct detailed 3D facial performance from 2D videos. Patel and Smith [109] and
Aldrian and Smith [1] use a morphable face model to reconstruct 3D face shape from sparse
2D markers. Aldrian and Smith use the 3D reconstruction to estimate object attributes like
facial texture, lighting conditions, and camera properties. Brunton et al. [30] use a localized
wavelet model (see Section 3.3) to reconstruct 3D face shapes from stereo images. Shi et
al. [120] use a multilinear face model to reconstruct 3D face shape from 2D videos.

Further methods exist that use deformable face models to reconstruct 3D face shape from
RGB-D images or face scans. Hsieh et al. [66] and Li et al. [89] use a personalized blendshape
model as prior information to capture facial performance from RGB-D sequences. The method
by Hsieh et al. is robust to various facial occlusions; the method by Li et al. uses additional
input of strain sensors to be robust to occlusions caused by a head-mounted display (HMD).
These strain sensors are mounted on the HMD to measure the deformations in the foam of the
HMD to estimate the expressions under the HMD that are not visible to the RGB-D camera.
Kazemi et al. [77] use a generic blendshape model to reconstruct the 3D face shape from RGB-
D images. Breidt et al. [97] use identity and expression PCA models to register 3D motion
sequences. They use the registration to analyze activated action units of motion sequences.
Ferrari et al. [51] use a sparse linear face model to reconstruct the 3D face shape from 2D
images and 3D face scans.
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Recognition: One area of work uses 3D deformable face models to recognize faces or fa-
cial expressions. Face recognition has applications in security, e.g. to automatically recog-
nize identities in surveillance systems. The automatic recognition of expressions can improve
human-computer interaction by enabling computers to react in expression-specific ways.

To recognize faces with neutral expressions, Blanz et al. [15] and ter Haar and Veltkamp
[126] use a morphable face model to reconstruct the 3D face shape from neutral-expression
3D face scans. The robustness of the morphable face model to scanner noise and lighting
conditions allows robust recognition of faces under varying conditions. Blanz et al. use the
representation in morphable model space to recognize faces; ter Haar and Veltkamp exploit
the surface correspondence induced by the fitted model to recognize faces. Amberg et al. [4]
use a combination of a morphable model for shape and a PCA model for expression difference
vectors from the mean face to recognize faces with varying expressions. Mpiperis et al. [102]
use multilinear face models to recognize faces and facial expressions in 3D face scans.
Animation: Another area of work uses 3D deformable face models to animate digital avatars.
The animation of digital avatars has various applications in the gaming or movie areas as it
allows non-human avatars to appear realistic by mimicking human facial expressions.

Li et al [90, 91], Bouaziz et al. [25], and Weise et al. [133] use a personalized blend-
shape model as prior information to capture facial performances from RGB-D sequences and
to animate artist-modeled avatars based on the obtained blendshape weights. To obtain a
personalized blendshape model, the earlier work of Li et al. [90] and the work by Weise et
al. use an initial user-specific calibration. The later work of Li et al. [91] and the work by
Bouaziz et al. use a PCA model for identity in neutral expression to alter the identity of the
blendshape model. Cao et al. [35, 34] use a multilinear face model to generate personalized
blendshapes. They use the personalized blendshape model as prior information to capture fa-
cial performance from 2D videos and to animate artist modeled avatars based on the obtained
blendshape weights. Ichim et al. [70] use a personalized blendshape model to animate digital
avatars from hand-held 2D video input. They use a multi-view stereo method to reconstruct
a 3D head model from hand-held video input. To get a personalized blendshape model, they
optimize the articulation of the head model for 2D expression recordings.
Editing: Further, many existing methods use 3D deformable face models to change face shape
or appearance. Similar to the animation of avatars, face editing has potential applications in
movie production e.g. as it allows actors’ performance to be altered in a post-processing step.

Thies et al. [127] use linear PCA models for identity and albedo, and a linear blendshape
model for expression to register RGB-D sequences to transfer expressions between subjects.

Blanz and Vetter [16] use a morphable face model to reconstruct 3D face shape from 2D
images and apply the 3D face shape to alter the images e.g. by editing the pose of the face,
or the lighting conditions. Scherbaum et al. [118] use a morphable face model to reconstruct
face scans with and without makeup. Then they learn a mapping between facial appearance
and facial makeup and automatically suggest makeup for new face scans. Yang et al. [136]
learn multiple PCA spaces, one for each expression, to transfer facial parts between images.
Amberg et al. [5] use a combination of a morphable model for shape and a PCA model for
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expression difference vectors from the mean face to alter the 3D face shape. Neumann et
al. [103] use a sparse PCA model that allows editing the facial shape locally.

Vlasic et al. [132], Dale et al. [42], and Yang et al. [135] use a multilinear model to re-
construct 3D face shape from 2D motion sequences. Vlasic et al. and Dale et al. use the
reconstruction to transfer expressions between images and videos; Yang et al. use the recon-
struction to alter face shapes or expressions in videos.



Chapter 3
Basic definitions

“Trying to analyze a situation without enough data was like looking at a photo-
graph of a ball in flight and trying to gauge its direction. Is it going up, down,
sideways? Is it about to collide with a baseball bat? Is it moving at all, or is
something on the blind side holding it in place? A single frame didn’t mean a
thing. Patterns were based on data. With enough datapoints, you could predict
just about anything.”

– Marcus Sakey

This chapter gives some background on data and techniques used throughout this thesis.
First, we describe some 3D face databases used for training and evaluation of our techniques.
Further, we give some technical details of statistical face models, namely linear face models
and multilinear face models. The multilinear face models in particular are heavily used in the
remainder of the thesis to model human faces in varying expressions. Further, this chapter
introduces the wavelet transformation of surfaces and the combination of wavelet transforma-
tions and linear face models to obtain a localized linear face model.
Notation: The notation for the wavelet decomposition and the linear wavelet face model is
similar to the notation used in our survey [29] and the notation by Brunton et al. [30]. The
notation for the multilinear face models resembles the notation used by Vlasic et al. [132].

3.1 Face databases
This section describes some 3D face databases used throughout this thesis, namely the Bospho-
rus database [116], the BU-3DFE database [139], and the BU-4DFE database [138].
Bosporus: The Bosphorus database contains scans of 105 subjects, 45 female and 60 male,
mostly Caucasians, with up to 35 expressions, 4 variations of facial occlusions, and up to
13 head poses. The expression scans consist of a neutral expression, the six prototypical ex-
pressions anger, disgust, fear, happiness, sadness, and surprise, and 28 FACS. The occlusions
contain occlusions of the mouth and eye, and occlusions by glasses and hair. For each face
scan 24 facial landmarks are manually selected.
BU-3DFE: The BU-3DFE database contains scans of 100 subjects, 56 female and 44 male, of
different ethnicities in neutral expressions and the six prototypical expressions. Each of the

15



16 CHAPTER 3. BASIC DEFINITIONS

expressions occurs in four intensity levels, ranging from low intensity to high intensity. For
each face scan 83 facial landmarks are manually selected.
BU-4DFE: The BU-4DFE database contains motion data of 101 subjects, 58 female and 43
male, of different ethnicities, each performing the prototypical expressions. Each motion se-
quence starts with a neutral expression, then goes to high intensity, and back to the neutral
expression. Each motion sequence consists of about 100 frames.

3.2 Linear face model
Blendshape model: Blendshape models [88] are widely used to generate facial animations.
Blendshape models are linear face models defined by a set of m + 1 face meshes bi ∈ R3n

all in full vertex correspondence. The mesh b0 typically represents a neutral face shape, while
each of the bi with i > 0 represent a semantically meaningful expression.

The blendshape model represents a 3D face f ∈ R3n by the affine transformation

f = b0 + Bw, (3.1)

where the i-th column of B is bi − b0, and w ∈ Rm contains the blendshape coefficients.
Note that blendshape models are not statistical shape models as usually no statistical prior
is used. Unlike statistical methods, each coefficient of the blendshape model corresponds
to a semantically meaningful expression. Statistical models, in contrast, aim to describe the
data variability with a low number of coefficients, and hence lack an intuitive mapping to se-
mantically meaningful expressions. The mapping to semantic information causes blendshape
models to be overcomplete, where different coefficients produce the same expression. Further,
the combination of different expressions may produce unlikely facial expressions.
Principal component analysis: The most common linear model for statistical analysis is
PCA [45, Chapter 5]. Given some data, PCA is an unsupervised method that learns a linear
subspace of the data. For 3D face modeling, given a set of d registered and spatially aligned 3D
face scans, each face is represented by a vector x = (x1, y1, z1, · · · , xn, yn, zn)T that consists
of n vertices (xi, yi, zi)

T . PCA is an orthogonal linear basis transformation from R3n to Rm

with m ≤ 3n that maximizes the variance of the projection along each axis ua, a ∈ {1, ...,m}
in the projected space. Hence, the axes ua are chosen to maximize

∑m
a=1

∑d
i=1 ((xi − x) ua)2,

where x = 1
d

∑d
i=1 xi denotes the mean over all training faces, and the ua are constrained to

be orthogonal. The axes ua are the principal axes or principal components of the data. The
subspace spanned by the ua is called shape space or model space.

The basis of the shape space can be computed as the eigenvectors corresponding to the first
m non-increasing eigenvalues λa of the data covariance matrix

D =
1

d

d∑

i=1

(xi − x) (xi − x)T . (3.2)

PCA reduces the dimensionality of the data if m < 3n. If the original data contain redun-
dancies, the dimensionality reduction is lossless if m = rank(D), where rank(D) is the rank
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Figure 3.1: Variations of three principal components of the PCA model learned from all neutral
scans of the registered BU-3DFE database. The magnitude of the vertex displacements from
the mean face is color coded from blue (zero) to red (maximum).

of D. Note that due to the centering of the data, the rank of D is at most min(3n, d − 1). If
m < rank(D), information is lost by the dimensionality reduction. The amount of lost infor-
mation can be estimated with prior knowledge about the multivariate distribution of the train-
ing face. Assuming a multivariate Gaussian distribution, each eigenvalue λa of D measures
the variability of the training data captured by ua. The PCA model captures 100 ·

∑m
a=1 λa∑rank(D)

a=1 λa
%

of the variability of the training data, while the rest is lost.
Assuming a multivariate Gaussian distribution, the PCA model is a generative statistical

model that represents a registered 3D face f ∈ R3n by the affine transformation

f = x + Uw, (3.3)

where the columns of the projection matrix U ∈ R3n×m are the ua, and w ∈ Rm contains the
coefficients in parameter space, namely the principal components.

The PCA model represents the high-dimensional differences of each shape and the mean
shape in a low-dimensional shape space. Within this shape space, each principal component
potentially affects each vertex coordinate. Statistical models with this global influence are
referred to as global models.

Figure 3.1 visualizes the variations of three principal components of a PCA model learned
from 100 registered 3D face scans of the BU-3DFE with neutral expressions. The variation
along each principal component is in the range of±3σ, where σ denotes the standard deviation
of the principal component.
Quality measures: The quality of linear statistical models is widely evaluated by the measures
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compactness, generalization, and specificity [43, Chapter 9.2]: the model should ideally be
compact, general and specific.

Compactness measures the amount of variability of the training data captured by the sta-
tistical model. The compactness of the model for m components is computed by C (m) =∑m

a=1 λa∑rank(D)
a=1 λa

, where λa denotes the a-th eigenvalue of the data covariance matrix D, computed

as described above.
Generalization measures the ability of the statistical model to represent shapes of the same

class that are not part of the training. The generalization error is measured in a leave-one-
out fashion, where each shape is excluded once from training and the resulting model is used
to reconstruct the excluded shape. The error is then measured as the distance between the
reconstruction and the excluded shape. A high generalization error indicates that the statistical
model overfits the training data.

Specificity measures the ability of the statistical model to represent only valid shapes of the
object class. The model space is randomly sampled and the sample shapes are reconstructed
using Equation 3.3. The specificity error is then computed as the distance of the sample shape
from the closest training shape.

3.3 Linear wavelet face model

Wavelet transform: The wavelet transform is a basis transformation into a set of spaces
spanned by scaled and shifted versions of a scaling function and a wavelet function. The
wavelet decomposition is local in frequency and due to the local support of the scaling and
wavelet functions, variations of coefficients only affect the surface locally and hence the
wavelet decomposition is local in space or time [96, Chapter 2.2]. Originally the wavelet
transform was defined on regularly sampled 1D signals or 2D images [98]. For 2D surfaces
imbedded in 3D the wavelet transform can be computed on a subdivision representation of
the surface that defines a hierarchical multi-resolution representation of the surface [96]. Sub-
division techniques for polyhedral surfaces such as Loop subdivision [95], butterfly subdi-
vision [46], or Catmull-Clark subdivision [37] recursively refine the surface according to a
specific scheme by inserting new vertices and possibly moving existing ones.

The wavelet transform decomposes a surface into multiple levels of scale, with low-frequen-
cy parts represented by scaling coefficients, and higher-frequency parts represented by wavelet
coefficients. This makes it possible to denoise [67] and compress [12] geometry by using only
coefficients up to a certain scale, while the coefficients of higher scales are discarded. The
multiresolution nature of wavelets makes it possible to define the basis functions of a certain
level by a finite linear combination of the basis functions of a higher (finer) level. This allows
the wavelet transform for biorthogonal wavelets to be computed efficiently in linear time using
a lifting scheme [124, 119]. The lifting scheme reduces the number of algebraic operations by
predicting coefficients from neighbors in the subdivision grid. Bertram et al. [12] extend the
lifting scheme for generalized B-spline wavelets for surfaces with quadrilateral subdivision
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hierarchy obtained by Catmull-Clark subdivision.
The inverse wavelet transform reconstructs the surface f from scaling coefficients vk ∈ R3

and wavelet coefficients wk ∈ R3 at the grid point tb ∈ R2 by

vb (f) =
∑

k∈V (0)

φ0
k(tb)vk +

J−1∑

j=0

∑

k∈W (j)

ψjk(tb)wk, (3.4)

where vb (f) ∈ R3 denotes the b-th vertex of f corresponding to tb, J is the number of subdi-
vision levels, φ0

k(t) is the scaling function of the coarsest resolution level centered at the k-th
vertex, ψjk(t) denotes the wavelet function of level j centered at the k-th vertex, V (j) is the
set of vertices in the j-th subdivision step, and W (j) is the set of vertices added in the j-th
subdivision step; therefore, V (j + 1) = V (j) ∪W (j).
Linear wavelet face model: The linear wavelet face model proposed by Brunton et al. [30]
combines wavelet transform and PCA to obtain a statistical model that better models fine-scale
details than a global PCA model. Given a set of d registered and spatially aligned 3D face scans
x, each face is decomposed into its scaling coefficients vk and wavelet coefficients wk. For the
scaling function and the wavelet function Brunton et al. use linear B-spline basis functions,
and the coefficients are computed with the lifting scheme of Bertram et al. [12]. Let cki ∈ R3

denote the scaling or wavelet coefficient indexed by k of face i. For each coefficient we
compute PCA independently over all training faces, more formally on the sets of coefficients{

cki |1 ≤ i ≤ d
}

for all k, equivalent to Section 3.2.
Each of these wavelet PCA spaces indexed by k can be computed as the eigenvectors

corresponding to the three non-increasing eigenvalues of the covariance matrix

Dk =
1

d

d∑

i=1

(
cki − ck

) (
cki − ck

)T
, (3.5)

where ck = 1
d

∑d
i=1 cki denotes the mean of coefficient k over all training faces.

Let uka denote the a-th eigenvector of Dk. From the wavelet PCA spaces scaling or wavelet
coefficients can be reconstructed equivalent to Equation 3.3 by the affine transformation

ck = ck + Ukrk, (3.6)

with the 3 × 3 projection matrix Uk =
(
uk1,uk2,uk3

)
and the coefficients rk ∈ R3 in wavelet

PCA space.
To reconstruct the 3D face shape f ∈ R3n from wavelet PCA space coefficients rk for all k,

first all scaling and wavelet coefficients must be reconstructed using Equation 3.6. The vertices
of f can then be reconstructed with Equation 3.4.

The linear wavelet face model represents the high-dimensional shape vectors by sets of
3-dimensional shape spaces. Within these shape spaces, each principal component potentially
affects localized regions defined by the support of the corresponding basis function. Statistical
models with this localized influence are referred to as local models.
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d3
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x:jk xi:k xij:

X

Figure 3.2: Tensor fibers for a 3-mode tensor (figure adapted from Vlasic et al. [132]). From
left to right: 3-mode tensor X , mode-1 fibers x:jk, mode-2 fibers xi:k, and mode-3 fibers xij:.

3.4 Multilinear face model

This section introduces the basic concepts of higher-order tensors and tensor decompositions.
For a more comprehensive overview of tensors and tensor decompositions, see the thesis of
De Lathauwer [83] or the survey by Kolda and Bader [80].
Tensor algebra: Higher-order tensors are multidimensional arrays that generalize vectors
(one-dimensional arrays) and matrices (two-dimensional arrays) to higher dimensions. The
order of a tensor denotes the number of tensor dimensions. N th-order tensors are also called
N -mode or N -way tensors. Hence, tensor algebra denotes the generalization of linear algebra
to N -mode tensors with N ≥ 3.

Let X ∈ Rd1×d2×...×dN denote a real-valued N -mode tensor with elements {xi1i2...iN} in-
dexed by N indices ij ∈ {1, . . . , dj}, one index per mode. Varying only one index while
keeping all other indices fixed extracts the data of the tensor along this mode. These mode
vectors are known as mode fibers, which generalize the concept of rows and columns of ma-
trices to higher dimensions. Figure 3.2 visualizes the fibers of a 3-mode tensor for each mode.
We denote a fiber of mode n by xi1...in−1:in+1...iN ∈ Rdn , where the n-th index is replaced by a
colon. Mode fibers extracted from a tensor are by definition column vectors in Rdn .

The mode fibers allow for a straightforward description of the reordering of the elements of
an N -mode tensor into a matrix. This tensor-to-matrix transformation is known as unfolding,
flattening or matricization of a tensor. The dn ×

∏
k 6=n dk matrix X(n) denotes the mode-

n unfolding of the N -mode tensor X . There, all mode-n fibers of X form the columns of
X(n). Formally, the tensor element xi1i2...iN maps to row in and column j of X(n), where
j = 1 +

∑
k 6=n(ik − 1)jk, with jk =

∏
m∈{1,...,k−1};m 6=n dm.

The n-mode product ×n defines the multiplication of a tensor with a matrix in mode n.
The n-mode product Y = X ×n Un of tensor X with a matrix Un ∈ Rmn×dn left multiplies
each n-mode fiber of X with Un. All transformed n-mode fibers of X form the n-mode fibers
of the resulting tensor Y ∈ Rd1×...×dn−1×mn×dn+1×...×dN . Hence, the n-mode product relates to
the matrix multiplication of the tensor unfoldings as

Y = X ×n Un ⇔ Y(n) = UnX(n). (3.7)
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Formally, the n-mode product is defined by the elementwise multiplication

(X ×n Un)i1...in−1jin+1...iN =
dn∑

in=1

xi1...iNujin , (3.8)

where ujin denotes the element of Un in the j-th row and in-th column. For multiple mode
products of distinct modes the multiplication order is arbitrary, i.e.

(X ×m Um)×n Un = (X ×n Un)×m Um (m 6= n), (3.9)

while for mode products of the same mode, the mode matrices are multiplied before processing
the mode product, i.e.

X ×n Un ×n Vn = X ×n (Vn · Un) . (3.10)

Tensor decompositions: Multidimensional data are modeled in tensors to analyze the struc-
ture of the data. These multidimensional data are usually represented in a high-dimensional
space, but form only a low-dimensional subspace due to a high amount of redundancies within
the data. Tensor decompositions are common methods to reduce the dimensionality of multidi-
mensional data while preserving the structure of the data. Two common tensor decompositions
are the canonical polyadic decomposition (CP decomposition) [65] and the Tucker decompo-
sition [130, 76]. The CP decomposition is also often referred to as canonical decomposition
(CANDECOMP) [36] or parallel factors (PARAFAC) decomposition [61].

The CP decomposition decomposes an N -mode tensor X into a sum of rank-1 tensors as

X ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦ . . . ◦ u(N)
r , (3.11)

where the operator “◦” denotes the outer product of the vectors u(j)
r ∈ Rdj . As for matrices,

tensors spanned by a set of vectors are defined to be of rank one. In general, the rank of a
tensor is defined as the smallest R of all exact CP decompositions (the left and right sides of
Equation 3.11 are equal). The rank of X is denoted by rank(X ). While for matrices it is easy
to compute the rank, for N -mode tensors (N ≥ 3), the rank computation is NP-hard [63].

The Tucker decomposition decomposes anN -mode tensorX into a product of a potentially
lower-dimensional tensor and N matrices as

X = C ×1 U1 ×2 U2 × . . .×N UN , (3.12)

with the so-called core tensor C ∈ Rm1×...×mN and the factor matrices Un ∈ Rdn×mn . Each
Un defines a transformation of C along mode n. The columns of the Un can be interpreted as
the basis vectors of mode n, and the elements of C describe the influence of the basis vectors.
This becomes clear when writing the Tucker decomposition as linear combination of rank-1
tensors as

X =

m1∑

i1=1

m2∑

i2=1

. . .

dN∑

iN=1

ci1i2...iN u(1)
i1
◦ u(2)

i2
◦ . . . ◦ u(N)

iN
, (3.13)



22 CHAPTER 3. BASIC DEFINITIONS

where ci1i2...iN is an element of tensor C, and u(j)
i denotes the i-th column of Uj . This also re-

veals that the CP decomposition (Equation 3.11) is a special case of the Tucker decomposition
if C is superdiagonal. The Tucker2 decomposition used in this thesis is another special case of
the Tucker decomposition, where U1 is the identity matrix.

By the rules of the n-mode product (Equations 3.9 and 3.10) it follows that the Tucker
decomposition is not unique as a linear transformation of the n-mode factor matrix along with
mode-multiplying the core tensor with the inverse linear transformation results in another valid
Tucker decomposition. Formally, this is

C ×n Un =
(
C ×n T−1

)
×n (UnT) . (3.14)

The Un are often enforced to be orthogonal. To compute a Tucker decomposition with im-
posed orthogonality constraints, Kolda and Bader describe three methods, namely higher-order
singular value decomposition (HOSVD) [83], higher-order orthogonal iteration (HOOI) [83],
and a Newton-Grassmann optimization approach [49]. All these methods compute a Tucker
decomposition for given maximum mode ranks m2 and m3.

HOSVD extends the matrix singular value decomposition (SVD) to N -mode tensors. For
each mode n, X is unfolded and a matrix SVD is computed as X(n) = UnSnVT

n . HOSVD
allows the data in mode n to be compressed by using only the first mn columns of Un to
compute C. This dimensionality reduction is called truncated HOSVD. HOSVD is exact if
mn = rank(X(n)) for all n; otherwise HOSVD approximates the data. In contrast to matrix
SVD, HOSVD does not give the best approximation of the data.

HOOI iteratively optimizes the Tucker decomposition initialized by HOSVD. Within each
iteration, both factor matrices are updated by fixing one and updating the other. That is, for
a fixed mode-2 factor matrix, a tensor X = X ×2 UT

2 is computed, and U3 is updated by the
m3 left singular vectors of X(3). A similar computation is performed for a fixed mode-3 factor
matrix. While HOOI gives a better approximation of X than HOSVD, it does not necessarily
find a stationary point.

The Newton-Grassmann optimization approach iteratively optimizes the Tucker decompo-
sition initialized by HOSVD. The Newton-Grassmann optimization approach constrains each
factor matrix to a Grassmannian manifold, an equivalence class of orthogonal matrices. The
Tucker decomposition is then computed by a non-linear Newton method on the product of two
Grassmannian manifolds. This method converges to a stationary point.
Multilinear face model: This section introduces the multilinear face model [132] as we use
it throughout this thesis. The multilinear face model is a statistical 3D face model that gener-
alizes the concepts of PCA to 3D faces with multiple sources of variation. Possible sources
of variation are shape differences of different identities and facial deformations e.g. from fa-
cial expressions or speech-related articulations. In the following we use a set of registered
and spatially aligned 3D face scans of d2 identities, each with d3 expressions, where every
face x = (x1, y1, z1, · · · , xn, yn, zn)T consists of n vertices (xi, yi, zi)

T . We center each face
by subtracting the mean over all training faces x. Let xie denote face i in expression e. We
arrange the centered faces as mode-1 fibers in a 3-mode tensor X ∈ R3n×d2×d3 such that the
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Identity

Expression

Vertices

Figure 3.3: Data tensor for registered face scans of the BU-3DFE database, where the different
identities align with mode 2, and the different expressions with mode 3.

different identities align with mode 2, and the different expressions with mode 3. The Tucker2
decomposition with orthogonality constraints of X with HOSVD

X ≈M×2 U2 ×3 U3 (3.15)

results in a tensor M ∈ R3n×m2×m3 called a multilinear model, which is the mode-1 multi-
plication of the core tensor and the identity matrix. There, m2 and m3 denote the number of
columns of U2 and U3, respectively. The columns of U2 span the mode-2 subspace, called
identity space, and the columns of U3 span the mode-3 subspace, called expression space.
Each row of U2 represents an identity in identity space, and each row of U3 represents an
expression in expression space.

Assuming a multivariate Gaussian distribution in identity and expression space, the multi-
linear model is a generative statistical model, as is the PCA model. It represents a registered
3D face f ∈ R3n by

f = x +M×2 wT
2 ×3 wT

3 , (3.16)

where w2 ∈ Rm2 and w3 ∈ Rm3 are the identity and expression coefficients.
Figure 3.3 shows an example of a 3-mode tensor for registered 3D scans of the BU-3DFE

database, where the faces are arranged as mode-1 fibers, the different identities align with
mode 2, and the different expressions with mode 3. Note that this is only a symbolic visual-
ization, as we arrange the centered faces in the tensor rather than the registered face scans.

Figure 3.4 visualizes the variations of three principal components of identity mode (left)
and expression mode (right) for a multilinear model learned from the registered BU-3DFE
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Figure 3.4: Variations of three principal components of the multilinear model learned from the
registered BU-3DFE database. The magnitude of the vertex displacements from the mean face
is color coded from blue (zero) to red (maximum). Left: Identity mode. Right: Expression
mode.

database. The variation along each principal component for both modes is in the range of
±3σ, where σ denotes the standard deviation of the principal component.



Chapter 4
Statistical motion analysis

“Nothing happens until something moves.”

– Albert Einstein

This chapter describes how to statistically analyze dynamic 3D face data. As discussed in
Chapter 2, statistical methods require the data to be in correspondence. Performing statistical
analysis of 3D motion data is a challenging problem, since it requires a robust registration
method that establishes spatial and temporal correspondence for motion sequences of differ-
ent identities performing different expressions. This is difficult since different identities have
different face shapes and each face undergoes strong geometric deformations in the course of
different expressions. While it is possible to apply the previously mentioned facial registration
methods (see Section 2.3) for each frame of the sequence individually, these methods do not
preserve the temporal coherence of the motion.

To robustly compute a spatial and temporal registration, we jointly process entire motion
sequences. Figure 4.1 shows an overview of our method. To be robust to fast motions, we
need a good initialization for our motion registration. For this, we fully automatically predict
landmarks for an entire motion sequence using a MRF-based method. We then use a learned
multilinear model as statistical prior for a fully automatic dense registration of the motion
sequences. To be independent of illumination changes, our overall approach depends only
on geometric information, but texture information could be added using a higher-dimensional
multilinear model.

After registration, each motion sequence is represented by a vector of coefficients for iden-
tity and a high-dimensional curve for expression. This representation allows to use standard
techniques to perform statistical analysis on 3D faces in motion. We apply our framework to
four applications. Namely, we propose different ways to synthesize new motion sequences,
and we recognize dynamic expressions.

4.1 Landmark prediction for sequence data
This section describes a MRF-based method that predicts facial landmarks for entire motion
sequences. Given a sequence s1, · · · sF of F face scans, the method predicts for each frame of
the sequence L facial landmarks that are in correspondence across the entire sequence.

25
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Motion Synthesis

In: Static Scan + Expression

Out: Best Fitting Sequence

+ Angry

Out: Animated Sequence

Statistical Analysis

Expression Recognition

Figure 4.1: Overview of our proposed method. Left: training of landmark graph (top) and mul-
tilinear model (bottom). Middle: landmark prediction (top) and motion sequence registration
(bottom). Right: statistical analysis.

si

si+1

Figure 4.2: Markov networks. Left: Selected landmarks (red) and landmark graph (black) for
single frame. Right: Temporal edges (red) between corresponding landmarks of consecutive
frames.

A MRF consists of a set of random variables lj with probability distributions φj(lj) and
pairwise connections between random variables lj and lk with pairwise probability distribu-
tions ψj,k(lj, lk). Within a MRF, the random variables are represented by nodes and the pair-
wise connections between random variables by edges. The landmark prediction method of
Salazar et al. [114] makes it possible to find landmarks on static 3D face shapes by learning
the statistical distributions of a descriptor on known landmarks and by training a MRF to learn
geometric properties of these landmarks. We extended this approach to motion sequences, as
described in the following.

4.1.1 Learning of landmark graph
We manually define an anatomically meaningful MRF for all landmarks across the entire se-
quence. For each of the F frames, we predict L landmarks. Let lij denote the j-th landmark
of i-th frame of the sequence. Each landmark lij is represented by a node and each connec-
tion between two landmarks by an edge within the MRF. Figure 4.2 (left) shows the landmark
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Figure 4.3: Initial alignment computation.

graph for one frame; Figure 4.2 (right) shows the temporal edges between corresponding land-
marks of consecutive frames. During training, we learn the node potentials φj and the edge
potentials ψj,k for edges between nodes of one frame, and the edge potentials ψj,j for temporal
edges between corresponding nodes of consecutive frames. The joint probability of all nodes
and edges is

p(l11, ..., l
F
L) =

1

Z

∏

i

∏

j

φj(lij)
∏

j,k

ψj,k(lij, l
i
k)
∏

j,j

ψj,j(lij, l
i+1
j ), (4.1)

where Z is a normalization factor. We assume all node and edge potentials to be multivariate
Gaussian distributed. We use the mean curvature, Gaussian curvature, and shape index to com-
pute the multivariate Gaussian distribution φj = N

(
µlj ,Σlj

)
for the node potential, where

µlj is the mean vector and Σlj the covariance matrix computed over landmark lj on the train-
ing data. Here, we compute over all training faces for landmark lj the vector (Hlj , Klj , SIlj)

T ,
where Hlj denotes the mean curvature, Klj denotes the Gaussian curvature, and SIlj denotes
the shape index at lj . For the edge potentials, we compute two multivariate Gaussian distribu-

tions ψj,k = N
(
µlj lk ,Σlj lk

)
and ψj,j = N

(
0,Σlj

)
. Here, µlj lk and Σlj lk are the mean vector

and the covariance matrix of edge lengths and orientations on edge (lj, lk) over all training
faces.

4.1.2 Landmark tracking
We want to predict facial landmarks for a sequence of scanned frames, showing a face in
motion. We assume that expressions change smoothly, and hence adjacent frames are similar.
Our landmark prediction method for entire motion sequences consists of three parts. First, we
compute a rigid transformation that aligns si with the landmark graph (Figure 4.3). Second, we
select for each node a possible set of labels within each frame (Figure 4.4). Third, we predict
landmarks for an entire sequence using the selected label sets.

To compute a rigid alignment, we compute correspondences between the mean face f of
the training data and the first frame of every sequence using the spin-image-based method of
Johnson and Hebert [74]. A spin image describes the local neighborhood of an oriented point
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Figure 4.4: Consecutive selection of the label sets for each node. For the first frame we select
label sets based on the learned Gaussian distributions of the node potentials. For all other
frames, we select label sets based on a sphere around the predicted landmarks of the previous
frame.

with respect to the local coordinate system of the point. For an oriented point x, each nearby
vertex is assigned two parameters, which encode its relative position in the local coordinate
system of x. The spin image of x collects all assigned 2D values of vertices within a specified
neighborhood and is represented by an image. Spin images of different oriented points can be
compared, grouped, and finally used to establish correspondences between two meshes. The
use of local coordinate systems ensures that spin images are invariant under rigid transforma-
tions. While the correspondence we determine this way can contain incorrect matches and
outliers, we use RANdom SAmple Consensus (RANSAC) [52] to get a good rigid alignment.
RANSAC randomly selects four points as a minimum point set defining a valid rigid alignment
with the assumption that these points are inliers. This initial set is extended by all consistent
points. The solution computed by RANSAC is based on only one of the consistent point sets
with few outliers. We refine the resulting rigid transformation using ICP.

We aim to find landmark positions lij that maximize Equation 4.1. For this we need to se-
lect a set of possible labels for each landmark. To select this label set, we process a sequence
in consecutive order and independently predict the landmarks for each si with respect to the
landmarks predicted for the last frame. For the first frame, we select as a label set all vertices
xlj that are within one standard deviation of the mean of N

(
µlj ,Σlj

)
. To predict the land-

marks of a single frame, we maximize Equation 4.1 without temporal edges using loopy belief
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propagation [137]. This belief propagation iteratively finds a maximum of Equation 4.1 by
passing messages between connected nodes. Since expression changes between consecutive
frames are small, predicted landmarks of adjacent frames need to be close. Therefore, we se-
lect all points within a sphere of radius r centered at the predicted landmarks of the previous
frame as the label set of the current frame.

With the selected label sets of the entire motion sequence, we perform a loopy belief prop-
agation for the entire sequence. The temporal edges keep the landmarks of adjacent frames
close.

4.2 Multilinear space of face identity and expression
This section describes how the multilinear model can be used as statistical prior for model
fitting, and introduces appropriate error measurements to evaluate the trained model.

4.2.1 Multilinear model as statistical prior
If we have shapes of only one identity (or one expression), the multilinear model reduces to
PCA. For PCA, the data are modeled by a multivariate Gaussian distribution N (0,Σ). That
is, all shapes are centered and the centered shape space is rotated such that the major axes of
N (0,Σ) are aligned with the directions of maximal variance. Using a Gaussian distribution
as statistical prior to constrain the shape in parameter space is described in [43, Chapter 2.2].
The data are then normalized, such that Σ = I. This allows the use of N (0, I) as a statistical
prior.

A face is represented as f (w), where w is the set of coefficients in PCA space. The PCA
model can be fitted to a new face scan s by finding w, such that f (w) is close to s. This
problem is commonly solved using two energy terms that are optimized simultaneously. The
first term measures how closely f (w) resembles s. The second term measures the negative
log-probability of w with respect to N (0, I). This choice has the disadvantage of introducing
a bias towards the model mean. One way to avoid this bias is to optimize the first energy
term only while restricting w to stay within the learned probability distribution. Ideally, this
restriction would find the best w inside a hypersphere of radius c centered at the origin. Here,
the parameter c controls the amount of variability. In practice, a simpler restriction is to find
the best w inside a centered axis-aligned hypercube of side length 2c. This restricts each
component of w independently, which allows the use of efficient constrained optimization
algorithms.

If we have multiple identities in multiple expressions, we search for coefficients w2 and
w3, such that f (w2,w3) is close to s. We outline how the previously discussed method can
be extended to this scenario. Note that unlike in the case of PCA, this is a non-linear model
that treats identity and expression spaces independently. In the following, we focus on identity
space, and similar arguments apply to expression space. If f were equal to the mean of all
identities, the multilinear model would model identity space by a standard normal distribution.
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Figure 4.5: Compactness, generalization, and specificity of identity mode (top) and expression
mode (bottom).

However, since this is not the case in general, lettingN (µ2,Σ2) denote the Gaussian fitted to
identity space, µ2 6= 0 and Σ2 6= I. In practice, we expect the distribution not to deviate too far
from a standard normal distribution. Hence, for simplicity, we set Σ2 = I. However, setting
µ2 = 0 is problematic, as 0 is a singularity in identity space: if w2 = 0, then f (w2,w3) = f,
independently of the value of w3. For this reason, we use the correct mean in our fitting
approach. As each row of the matrix U2 represents one identity of the training data, the mean
identity µ2 = w̄2 is computed as the average of all rows of U2. This allows us to fit the
model to the data while restricting w2 to lie in the hypercube of side length 2c2 centered at w̄2.
Similarly, w3 is restricted to lie in the hypercube of side length 2c3 centered at w̄3.

4.2.2 Evaluation of multilinear model

We use a multilinear model to separate identity and expression for human faces. To ensure that
the multilinear model is applicable for our face data, we evaluate it for the registered training
database. For details regarding the training data used, see Section 4.5.

We quantitatively evaluate the quality of the optimization with the widely-used measures
compactness, generalization, and specificity (see Section 3.2) that we extend to the multilin-
ear case. For a good multilinear model, the identity and expression spaces should ideally be
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compact, general, and specific. This evaluation also allows us to pick a number of compo-
nents for identity (m2) and expression (m3) that preserves a high amount of variability without
overfitting the training data. Fig. 4.5 visualizes the results.
Compactness: We independently measure the compactness of the model for identity and
expression space as C(k) =

∑k
i=1 λi∑rank(D)

i=1 λi
, where k ∈ {1, . . . , d2} or k ∈ {1, . . . , d3}, and λi

denotes for each mode the i-th eigenvalue of D = 1
d3

X(2)XT
(2) or D = 1

d2
X(3)XT

(3), respectively.
Generalization: The generalization error is measured in a leave-one-out fashion. For the
identity mode, each subject is once fully excluded from training and the resulting model is used
to reconstruct all excluded scans. The error is then measured as the average Euclidean vertex
distance between all corresponding vertices. We perform this measurement for all subjects,
and report mean and standard deviation of the distances. The error for the expression mode is
computed accordingly by excluding once each expression.
Specificity: To measure the specificity of the model, we randomly choose 10000 Gaussian
distributed samples in identity and expression space, and reconstruct a face f for each sample
using Eq. 3.16. For each sample, we compute the minimum of the average Euclidean vertex
distance over the training data. We then consider the mean and standard deviation over all
samples.

To evaluate generalization and specificity of the model for identity mode, the number of
expression components is fixed to 7, which gives 85% compactness. Similarly, while evaluat-
ing the expression mode, the number of identity components is fixed to 30, which gives 86%
compactness.

Our identity and expression space should ideally be compact, general and specific. Based
on the analysis shown in Fig. 4.5, we choose m2 = 30 and m3 = 7.

4.3 Registration of motion data
In this section, we discuss how to register motion sequences of faces. Our method uses a
learned multilinear model as statistical prior. We make some assumptions about the motion
data for the proposed registration method. First, the identity stays fixed for an entire sequence.
Second, every motion sequence starts and ends in a neutral expression. Third, expressions
change smoothly, and hence are similar in adjacent frames. To statistically analyze faces in
motion, the motion sequences need to be spatially and temporally registered.

4.3.1 Spatial registration
To fit the multilinear model to a sequence s1, · · · sF of F face scans, we minimize the energy
E : Rm2+Fm3 → R

E = ED + wLEL + wTET , (4.2)

with respect to the coefficients w2 for identity, and w3,1, ...,w3,F for expression. The energy
E is composed of the energy ED to fit the model to the scan geometry, EL to fit the model to
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given landmarks, and ET to keep the changes between consecutive coefficients in expression
space small. The parameter wL controls the influence of the given landmarks, and the param-
eter wT controls the trade-off between the accuracy of the geometric fitting and the temporal
smoothness of the m3-dimensional curve in expression space.
Data: The data term measures the distance between the model and the data for each frame of
the sequence. The data term is

ED =
F∑

i=1

1
n∑
j=1

bij

n∑

j=1

bij ‖vj (fi)− nnj‖2, (4.3)

where fi = x +M×2 wT
2 ×3 wT

3,i denotes the reconstruction of frame i (Eq. 3.16), vj (fi)
denotes the j-th vertex of fi, and nnj is the nearest neighbor of vj (fi) in si computed using a
point-to-plane distance measure. We use binary weights bij ∈ {0, 1} to control whether a point
is considered for fitting. To lower the influence of outliers, we only consider nearest neighbors
that are closer than 10mm and with an angle between the normals smaller than 45 degrees.
Landmarks: The landmark energy for L given landmarks is defined as

EL =
1

L

F∑

i=1

L∑

j=1

∥∥vrj (fi)− lj
∥∥2, (4.4)

where lj ∈ R3 is the j-th landmark and rj the index of corresponding vertex on the statistical
face model.
Temporal smoothness: The temporal smoothness term measures the similarity of adjacent
frames and the distance of the start and endpoint of the expression curve to the neutral expres-
sion. The temporal smoothness term is

ET =
1

m3

(
‖w3,1 − wne

3 ‖2 + ‖w3,F − wne
3 ‖2 +

F−1∑

i=1

‖w3,i − w3,i+1‖2

)
, (4.5)

where wne
3 is the vector describing the training data in the neutral expression (in expression

space).

4.3.2 Optimization
The energy E in Equation 4.2 is non-linear. One way to solve this system is by linearizing
the problem. This can be done by fixing the coefficients of all but one mode and solving for
the remaining mode [132, 42, 135]. Since this linearization does not consider identity and
expression simultaneously, it can lead to a solution that is not a local minimum over com-
bined identity and expression space. As the objective function E is analytically differentiable
with respect to the coefficients w2 and w3,1, ...,w3,F , to remedy this, we solve the non-linear
problem using L-BFGS [92], a quasi-Newton method with linear constraints.
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Figure 4.6: Overview of the initialization process.

Computational complexity: We evaluate the computational complexity for one iteration step
of our spatial registration method. We build a k-d tree for each frame of the target sequence
with m vertices. The complexity of building a k-d tree is O(m logm) [85]. Computing the
nearest neighbors for all n template vertices takes O(nm

2
3 ) time. A single evaluation step

of Equation 4.3 takes O(Fn), and a single evaluation of its gradient O((m2 + Fm3)n) time.
Evaluating Equation 4.4 takes timeO(L), and a single evaluation of its gradient takesO((m2+
Fm3)L)) time. Evaluating Equation 4.5 and its gradient takes O(Fm3) time.

Let tc denote the number of optimization steps required to reach a local minimum. As-
suming L to be a small constant with L � n and L � m, the overall time complexity is
O(F (m logm+ nm

2
3 ) + tc(m2 + Fm3)n).

Initialization: Since E is non-linear, we need a good initialization for the optimization. To fit
a multilinear model to a sequence of 3D faces, a spatial rigid alignment and initial coefficients
w2 and w3 are needed. While other methods manually initialize the spatial alignment or the
coefficients [132, 42], our method is fully automatic. Figure 4.6 gives an overview of our
initialization approach.

We start by computing the transformation from the local coordinate system of each scan
of the sequence into the local coordinate system of the multilinear model. To compute the
rigid transformation, we use the automatically predicted landmarks. To be less affected by
expression changes, we just use the landmarks placed at eyes and nose to compute the rigid
alignment. To minimize the influence caused by noise at the landmarks, rigid ICP is performed.
After initialization, the rigid alignment computed for each si is fixed.

We compute initial coefficients w2,i and w3,i by fitting the multilinear model to each frame
of the motion sequence via minimizing E. For these fitting steps, all available landmarks are
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used. To register a single frame, for the first frame w2,1 is initialized to the mean of the identity
w2, and for the first and last frames, w3,1 and w3,F are initialized to the neutral expression wne

3 .
For all other frames, we use the result of the previous frame to initialize the coefficients, since
we assume adjacent frames to be similar. The initial w2 are computed by averaging all w2,i,
since the identity stays fixed across the sequence.

Multi-resolution optimization: To register an entire motion sequence, we perform several
iterations of minimizing E. To increase the computational performance, a multi-resolution
approach that iteratively optimizes E is employed (Equation 4.2) in different resolution lev-
els. The low-resolution steps aim to establish the rough overall shape together with a good
initialization of the performed expression. The high-resolution step aims to pick up finer mesh
details. This step leads to a significant improvement in the running time of the method.

4.3.3 Temporal registration

After spatial registration, a motion sequence is represented by identity coefficients w2 and an
ordered set of coefficients for expression w3,i. The ordered set of coefficients for an expression
can be seen either as a point (∈ RFm3) or as a high-dimensional curve (∈ Rm3). To perform
statistics on registered motion sequences, they need to be in correspondence. While all faces
already spatially correspond, we also need to establish a temporal coherence. Since the motion
sequences differ in frame number and speed of performed expression, the maximum expres-
sion magnitude is reached at different times, and resampling with respect to number of frames
does not yield a good registration.

One method to temporally register motion sequences is to use dynamic time warping
(DTW) [112]. DTW uses dynamic programming to align temporal sequences by computing a
mapping between both sequences that minimizes the dissimilarity. While DTW could be used
to align pairs of registered facial motion sequences, it is computationally expensive. Zhou and
De la Torre [140] extend DTW to minimize the sum of pairwise distances between multiple se-
quences. In contrast to DTW, this generalized time warping (GTW) is of linear computational
complexity as it is optimized using a Gauss-Newton method. While GTW is computationally
efficient, it requires solving a non-convex optimization, and hence our proposed method is
much simpler.

Since we temporally register the entire registered motion database, we use a resampling
method instead. Specifically, the expression curve w3,i is resampled according to its arc length.
The resampling of the expression curve leads to a good temporal correspondence, since ET
forces large expression changes to be represented by large changes in expression space, and
since each motion sequence starts and ends neutral. In the following, w3,i denotes the coeffi-
cients of the resampled expression curve.
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4.4 Statistical analysis of motion data

This section outlines how to perform statistical analysis on registered motion data and shows
four applications. Namely, different ways to synthesize new motion sequences are discussed,
by morphing between existing expressions, by exploring learned PCA spaces of identity co-
efficients and expression curves, and by animating static face scans. Furthermore, we outline
how to perform expression recognition.

4.4.1 Expression morphing
One way to generate new motion sequences is to morph between a start and an end frame of
the same subject. For this, we select two arbitrary frames of the same subject, possibly from
different (registered) motion sequences. These frames are represented by one identity and one
expression coefficient each. Let ws

2, ws
3 and we

2, we
3 denote the coefficients of the start and end

frames, respectively. Since the identity is the same for both sequences, the identity coefficients
ws

2 and we
2 are similar. Hence, the identity coefficient of the new sequence is chosen as the

average of ws
2 and we

2 and the expression coefficients of the new motion sequence linearly
interpolate between ws

3 and we
3.

4.4.2 Combined PCA of identity and expression for synthesis
To synthesize new motion sequences of one expression, we learn a PCA space of all identity
coefficients ∈ Rm2 and a PCA space on all expression curves ∈ RFm3of a particular expres-
sion. To obtain new motion sequences, we combine samples from both learned PCA spaces.
Choosing a sample from the identity coefficients PCA space gives a new identity coefficient
within the identity space of the learned multilinear model. A sample from the expression curve
PCA space gives a new expression curve within the expression space of the multilinear model.
This allows the generation of new motion sequences by combining the sampled identity coef-
ficients and expression curve.

4.4.3 Static scan animation
A more challenging problem is to animate a static (unregistered) scan s in a neutral expres-
sion to perform a specified motion sequence. This application is related to the problem of
transferring a given motion from one given subject to another, which is considered in the lit-
erature [132, 42]. Note, however, that our application of animating a given input scan from
scratch is more challenging than performing motion transfer, as we need to find the best subject
to transfer the motion from in a fully automatic way.

To synthesize a motion sequence for s, we find the subject in the registered database that
performs the specified motion sequence and that best matches s. Let w2, w3,i denote the
weights of said motion sequence. To animate s, we fix the expression coefficient ws

3,1 of s
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to w3,1, initialize the identity coefficient ws
2 of s to w2, and fit the multilinear model to s by

minimizing ED (Eq. 4.3). The resulting ws
2, together with w3,i, represent s in motion.

It remains to discuss how to find the sequence that best matches s automatically. We
perform the fitting described above for each sequence with the specified motion in the database
and measure the dissimilarity of the sequence and s as the distance between w2 and ws

2. To
compute the distance, we weigh each component of identity space by the amount of variability
captured by said component (i.e. the singular value of the mode covariance matrix). The best
match is the sequence that has the lowest dissimilarity.

4.4.4 Expression recognition

Since the multilinear model separates variations due to different identity from variations due
to expression changes, expression recognition is a natural application of our shape space. The
right side of Figure 4.1 shows a plot of the expression space obtained by performing multi-
dimensional scaling (MDS). Note that different expressions form clusters.

We use a method to perform expression recognition of motion sequences of faces that
is designed to evaluate the quality of the spatial and temporal registration of the motion se-
quences. To this end, we classify the motion sequences using a method to perform static 3D
facial expression recognition that is based on landmarks. More specifically, we use a sparse
set of landmark positions to measure the distance between two faces as the sum of the squared
Euclidean distances between corresponding landmarks. This distance measure is then used in
a maximum likelihood classification framework to estimate the likelihood of each expression
class, as in Mpiperis et al. [102].

This method first needs to find the frame of the sequence that exhibits the highest level
of expression, and second uses landmark positions on this frame for the classification. Since
each motion sequence is registered temporally, the frame with the highest expression level can
be found as the midpoint of the expression curve. Furthermore, since each frame is registered
spatially, the extraction of a predefined set of landmarks is straightforward.

Note that while this simple method is designed to evaluate the quality of the spatial and
temporal registration, we will show that it leads to results comparable to those of state-of-the-
art dynamic expression recognition techniques.

4.5 Evaluation

This section evaluates our registration pipeline.
Training data: For training the landmark graph and for training and evaluation of the mul-
tilinear model, we use models of the BU-3DFE database [139]. For details on the database,
see Section 3.1. We use the template fitting method of Salazar et al. [114], based on pro-
vided ground truth landmarks of the database, to register all models. The template we use for
registration consists of 5996 vertices.



4.5. EVALUATION 37

Figure 4.7: Result of landmark prediction on sequences.

Figure 4.8: Challenging models of the BU-4DFE database. Left: Visible tongue. Middle:
Scanner noise. Right: Smooth geometry.

Test data: To evaluate our registration framework we use motion sequences of the BU-4DFE
database [138]. A more detailed explanation of the data is given in Section 3.1.
Reproducibility: Our approach is implemented in C++, using OpenCV [107], ANN [8], and
LBFGSB [92]. We publish the statistical multilinear face model learned from the registered
BU-3DFE database and code to fit the multilinear model to static input face scans [18].

4.5.1 Landmark prediction

We predict landmarks for all 606 motion sequences. The initial alignment computation using
spin images is successful for 599 sequences (98.8%). Strong geometric differences between
consecutive frames of a motion sequence, caused by scanner noise (middle of Figure 4.8),
are one reason for failure. Due to the absence of ground truth landmarks, to evaluate the
landmark prediction, we visually inspect the predicted landmark positions. The landmarks are
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Figure 4.9: Cumulative error plot (left) and color-coded face of median distance per vertex
(right) in mm.

successfully predicted for 561 sequences (93.7%). Cases where the landmark prediction fails
are where the lip is geometrically not discriminative (Figure 4.8, right), or sequences where
the tongue is tracked instead of the lip due to similar curvature (Figure 4.8, left). Figure 4.7
shows frames of sequences where the landmarks are successfully tracked.

4.5.2 Spatial registration

Since some of the motion sequences violate the assumption that motions start and end in
neutral expression, we remove them manually. We use the remaining 501 sequences for our
further experiments. To minimize E, we choose wL = 0.2 during initialization, and wL = 0.0
and wT = 10000 while registering the motion sequence. Two resolution levels are used to
register the motion sequences. The optimization performs 6 low-resolution steps (using about
10% of the vertices), and 3 high-resolution steps (using the full mesh resolution).

To evaluate the spatial registration, we compare the registration result to the scanned mo-
tion sequences. For 470 sequences (93.8%), the spatial registration is successfully computed.
Reasons for failure are erroneously predicted landmarks, or problems with tracking the lips due
to a non-descriptive geometry. To measure the quality of the spatial registration, the nearest
neighbor distance between the registration result and the data is computed for each registered
face. Figure 4.9 shows the cumulative error for all vertices of all 470 successfully registered
faces. Furthermore, Figure 4.9 shows the median of all errors per vertex. Note that 56% of
all vertices have a distance of less than 1 mm to the data, and the per-vertex median error is
lower than 1 mm for 73% of the vertices. Reasons for facial parts with lower accuracy are the
smoothness of the scanned motion sequences (e.g. left and right subnosal), or noise near the
facial border.

Additionally, Figure 4.10 visualizes scanned motion sequences and registration results.
The sequences are chosen to show the performance of different expressions. Note that the
overall shape of the registration result and the face scans is similar and the expressions are
well captured.

We also compare the result of our spatial registration to the template-fitting method of
Salazar et al. [114], applied to motion sequences frame by frame using our predicted land-
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Figure 4.10: Comparison to a template-fitting method [114] applied to each frame individually
for two motion sequences. Rows 1 and 4: Frames of motion sequences. Rows 2 and 5:
Template-fitting result. Rows 3 and 6: Our result.
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Figure 4.11: Comparison of a template-fitting method [114] applied to each frame individually,
vs. our method. Cumulative point movements between consecutive frames are computed over
six motion sequences.

marks. Figure 4.10 shows the result of the template-fitting method for two sequences. While
for the upper sequence, the shape of the mouth is fitted well, the noise close to the border
of the face is reconstructed. The registration for the same sequence by our registration ap-
proach looks more realistic. For the second row of Figure 4.10, the template-fitting method
fails, while our method gives a good registration result. Furthermore, fitting each frame in-
dividually breaks the temporal coherence of the motion sequence, which causes drift. To get
a quantitative measurement for this drift, we measure the distance of corresponding vertices
of consecutive frames, since differences due to expression changes of consecutive frames are
small. Figure 4.11 shows a cumulative plot for all differences for 6 randomly chosen motion
sequences (which include the two sequences shown in the top rows of Figure 4.10.), registered
with the template-fitting method and our method. For our method, 98% of the distances are
below 1 mm, while for the template fitting method less than 70% of the distances are below 1
mm. This indicates that our method better preserves the temporal coherence.

The spatial registration is forced to start and end neutral due to the terms of ET pulling to-
wards wne

3 for first and last frames, and the initialization of w3,1 and w3,F to wne
3 . Without these

terms of the temporal smoothness energy and without initializing to the neutral expression, the
sequence registration can be used for sequences without neutral start and end frames.

4.5.3 Temporal registration

To evaluate the quality of the temporal registration, we compare the temporal correspondence
of different motion sequences before and after temporal registration. The left of Figure 4.12
shows spatially registered motion sequences, resampled according to the number of frames
(left). These motion sequences do not reach their maximum intensity of the performed expres-
sion at the same time. After temporal registration, the motion sequences reach the maximum
intensity of the performed expression at the middle of the sequence.
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Figure 4.12: Uniformly sampled expression curve (parametrized between 0 and 1) with respect
to frame number (left) and with respect to arc length of expression curve (right).

4.5.4 Expression morphing
For the synthesis of new motion sequences, we first show results for the expression morphing.
While for one subject, any pair of frames can be used for the expression morphing, we choose
two frames with a high-intensity expression from different motion sequences. This ensures
that the new motion sequence has a significant expression change. Figure 4.13 shows selected
starting (left) and ending (right) key frames, and uniformly sampled frames of the resulting
motion sequences (middle). For both sequences, the originally selected key frames look simi-
lar to starting and ending frames of resulting sequences, and the deformation over time looks
realistic.

4.5.5 Combined PCA of identity and expression for synthesis
To generate new motion sequences for one particular expression, we obtain new identity co-
efficients by sampling the PCA space learned over all identity coefficients. To obtain new
expression curves, we sample the PCA space learned over all expression curves of a particular
expression. Combining new identity coefficients with new expression curves produces new
motion sequences. To obtain the happy motion sequences shown in Figure 4.14, we combine
the mean of the identity coefficients PCA space with variations of the expression curve along
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Figure 4.13: Expression morphing between frames of different motion sequences. Left/Right:
Resulting frame of registration. Middle: Synthesized motion sequence. Top: disgusted to
happy. Bottom: sad to happy.

Figure 4.14: New happy motion sequences for average identity, generated by varying the
expression curves along the first principal component within the PCA space of all happy ex-
pression curves. Variation: Top: +3σ. Middle: 0. Bottom: −3σ.
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Figure 4.15: New identities in average happy motion, generated by varying the identity coef-
ficients along the first principal component within the PCA space of all identities. Variation:
Top: +3σ. Middle: 0. Bottom: −3σ.

the first principal component of the learned expression curves PCA space. The variation along
the first principal component is within −3σ and +3σ, where σ is the singular value of the
happy expression curves covariance matrix, associated with the first principal component. In
this case, the variation along the first principal component controls the intensity of the per-
formed happy expression.

To generate happy motion sequences for different identities, we combine new identity
coefficients with the average expression curve. Figure 4.15 shows new identities that are ob-
tained by variation along the first principal component of the PCA space, learned over the
identity coefficients of all motion sequences. The variation along the first principal compo-
nent is within −3σ and +3σ, where σ is the first singular value of the covariance matrix of
all motion sequence identity coefficients. In this case, all rows show happy motion sequences
for different face shapes. While the overall face shape changes, the variation along the first
principal component especially affects the nose shape and the shape of the forehead.
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Figure 4.16: Motion synthesis. Left: scan. Right: synthesized motion. Top: angry motion.
Bottom: surprised motion.

4.5.6 Static scan animation
We show results for synthesizing motion sequences for a static input scan from scratch. As
input, we use scans of different subjects of the Bosphorus database [116], which captures
static scans of different subjects performing different facial expressions. While it would be
possible to use the method described in Section 4.1 to establish the initial alignment, we use
the provided landmarks to remove one possible source of error. Figure 4.16 shows the target
faces of two identities (left) and uniformly sampled frames of the synthesized motion for the
angry and surprised expressions. Since we use a global multilinear model for synthesis, the
result resembles the global shape of the input scan, but does not contain all fine-scale details.
Nevertheless, for all examples, the fitting result is similar to the target face and the synthesized
motion looks realistic. We furthermore compare the result of the motion sequence with the
recorded sequence present in the BU-4DFE database. Figure 4.17 shows a registered motion
sequence (top) and a synthesized motion sequence (bottom). The expression of the motion
sequence that is selected to transfer the motion from is more expressive than the acquired
sequence, which results in an expressive synthesized motion sequence. Note that while the
result of the motion synthesis differs from the acquired motion sequence, both performed
expressions look realistic.

4.5.7 Expression recognition
For expression recognition, we use the expression subsets anger, happiness, surprise and hap-
piness, sadness, surprise to get values comparable to the ones in prior works [115, 50, 84]. We
use the registered BU-3DFE database for training, and perform expression recognition for reg-
istered motion sequences of the BU-4DFE database. Our classification rate for the expressions
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Figure 4.17: Motion synthesis and acquired sequence. Top: Original registered motion se-
quence. Bottom: Synthesized motion sequence for start frame of original motion sequence.

Ours AN HA SU [50] AN HA SU
AN 90.14 4.23 5.63 AN 97.32 2.68 0.00
HA 3.95 89.47 6.58 HA 2.00 96.33 1.67
SU 3.80 3.80 92.41 SU 2.54 1.00 96.46

Table 4.1: Expression recognition for the expressions anger, happiness, and surprise. Left: our
method with classification rate of 90.71%. Right: method of Fang et al.[50] with classification
rate of 96.71%.

Ours HA SA SU
HA 90.79 1.32 7.89
SA 2.53 87.34 10.13
SU 5.06 1.27 93.67

[50] / [84] HA SA SU
HA 97.32 / 95.00 1.43 / 3.33 1.25 / 1.67
SA 1.11 / 1.67 98.89 / 91.67 0.00 / 6.67
SU 4.61 / 0.00 4.36 / 10.00 91.03 / 90.00

Table 4.2: Expression recognition for the expressions happiness, sadness, and surprise. Top:
our method with classification rate of 90.60%. Bottom: methods of Fang et al. [50] and Le et
al. [84] with classification rates of 95.75% and 92.22%.
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anger, happiness, and surprise is 90.71% (see Table 4.1). Sandbach et al. [115] achieve for the
same expressions 81.93% (they do not provide the full confusion matrix), and Fang et al. [50]
96.71%. For the expressions happiness, sadness, and surprise, we recognize 90.60% (see Ta-
ble 4.2) correctly, while Le et al. [84] recognize 92.22%, and Fang et al. 95.75%. Compared
to the other methods, our recognition method is more general. While our method performs the
training on a different database than the classification, the other methods use the 4D motion
sequences for training and prediction. Note that our method still has a similar performance,
which indicates that our spatial and temporal registration are of high quality.

4.5.8 Influence of landmarks and multi-resolution registration

Source BASE BASE-MultiRes BASE-Lmks Combined

Figure 4.18: Registered sequences for different methods. From left to right: BASE, BASE-
MultiRes (use of a multi-resolution approach to minimize the BASE energy), BASE-Lmks
(combination of BASE with landmarks without using a multi-resolution approach), and our
combined approach. Top: Successfully registered due to multi-resolution fitting. Bottom:
Successfully registered by influence of landmarks.

This section shows the influence of landmarks and a multi-resolution optimization on the
registration. Let BASE denote the optimization of the energy

EBASE = ED + wTET , (4.6)

withED andET as defined in Equations 4.3 and 4.5. In contrast to BASE, our method has two
major algorithmic differences. First, our approach uses a multi-resolution framework during
optimization, and second, we predict landmarks for motion sequences and use these landmarks
during registration.
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Method BASE BASE-MultiRes BASE-Lmks Combined
# Sequences 412 (82.2%) 455 (90.8%) 437 (87.2%) 470 (93.8%)

Table 4.3: Number of successfully registered sequences for different methods. From left to
right: BASE, BASE-MultiRes (use of a multi-resolution approach to minimize the BASE
energy), BASE-Lmks (combination of BASE with landmarks without using a multi-resolution
approach), and our combined approach.

Influence of multi-resolution optimization: To show the influence of a multi-resolution
optimization, we use a multi-resolution approach to optimize EBASE and call this BASE-
MultiRes. Table 4.3 shows that BASE successfully registers 412 motion sequences, while
BASE-MultiRes successfully registers 455 motion sequences. Running BASE-MultiRes for a
sequence with 95 frames, using a non-optimized single-threaded implementation on a standard
PC takes approximately 37 minutes. Running BASE with the same number of iteration steps,
but always using the full resolution, takes approximately 104 minutes. Using a multi-resolution
optimization improves the quality of the registration and leads to a significant speed-up of the
algorithm.
Influence of landmarks: To show the influence of landmarks, we combine the optimization
of BASE with landmarks, by minimizing E (see Eq. 4.2) without using a multi-resolution
approach, and call this BASE-Lmks. Table 4.3 shows that BASE-Lmks successfully registers
437 motion sequences, compared to 412 motion sequences with BASE. The use of landmarks
during fitting makes the algorithm more robust to fast motions, where the expression difference
between consecutive frames is large.
Combination: Our approach, which combines BASE with a multi-resolution approach and the
use of landmarks, successfully registers 470 motion sequences, compared to 412 (BASE), 455
(BASE-MultiRes), and 437 (BASE-Landmarks). Hence, the combination of multi-resolution
and landmarks for fitting performs best. Figure 4.18 shows two sequences that are successfully
registered by our combined approach, while BASE fails.

4.6 Summary
In this chapter we presented a general and robust approach to fully automatically register
3D faces in motion. The resulting representation is used to perform statistical analysis. Our
proposed method predicts landmarks for 3D facial motion sequences and uses these landmarks
to initialize our sequence registration. We use a global multilinear model for registration that
represents each motion sequence by a vector of coefficients for identity and a high dimensional
curve for expression. We use this representation to synthesize new motion sequences and to
recognize expressions. We show that the resulting registration result is of high quality, where
56% of all vertices are at most 1 mm away from the input data. We demonstrate the use of
our method to synthesize new motion sequences, by generating arbitrary artificial new motion
sequences for static face scans of different identities. Furthermore, we achieve classification
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rates of 90.71% to recognize the expressions anger, happiness, and surprise and 90.60% to
recognize the expressions happiness, sadness, and surprise.

While the global multilinear model used for registration preserves the global facial shape
well, it fails to capture fine-scale details. To capture more fine-scale details while being robust
to noise and occlusions, we combine wavelet transform and multilinear models to obtain a
multilinear wavelet model in Chapter 5.

Further limitations of multilinear face models are that the model quality degrades if the
vertex correspondence is inaccurate, if not every person is captured in every expression, if
face scans are noisy or partially occluded, or if expressions are erroneously labeled. Groupwise
optimization methods make it possible to overcome these limitations. In Chapter 6 we present
a groupwise correspondence optimization method; in Chapter 7 we propose a framework to
robustly learn a multilinear model from 3D face databases with missing data, corrupt data,
wrong semantic correspondence, and inaccurate vertex correspondence.

A further application for registered facial motion sequences is the design of gear that fits
well despite varying facial expressions. In Chapter 8, we introduce a general framework to
generate a sizing system for any kind of 3D motion data applied to face mask design.



Chapter 5
Multilinear wavelets

“Animation offers a medium of story telling and visual entertainment which can
bring pleasure and information to people of all ages everywhere in the world.”

– Walt Disney

This chapter introduces a statistical 3D face model that consists of multiple localized,
decorrelated multilinear models. In Chapter 4 we used a global multilinear face model to
register 3D facial motion sequences. While the global multilinear face model reconstructs the
overall face shape well, it is unable to capture fine-scale details. On the other hand, linear
wavelet models as described in Section 3.3 are able to reconstruct fine-scale details but they
lack a proper handling of facial expressions. In this chapter, we combine the advantages of
both methods.

Our model decomposes each shape of a training database into its wavelet coefficients us-
ing a discrete wavelet transform, and learns a multilinear model for each coefficient across all
training data. This localized statistical model robustly reconstructs 3D face shape from noisy
and corrupt data in various expressions. The localized hierarchical structure of the wavelet
decomposition makes it possible to capture fine-scale geometric details in a way that is com-
putationally more efficient than can be done with global statistical face models, while retaining
robustness to various sources of noise and facial occlusions.

The decoupling of identity and expression variations within the multilinear wavelet model
makes it possible to describe motion sequences by varying only the expression while keeping
the identity fixed.

5.1 Multilinear wavelet model
This section describes the training of the multilinear wavelet model from a registered and
spatially aligned 3D face database containing face scans of d2 identities with d3 expressions
each. Figure 5.1 depicts the training process of the multilinear wavelet model that is similar to
the training of the linear wavelet face model described in Section 3.3.

Let xie denote face i in expression e. Instead of computing a global multilinear face model
on the vertices of all xie, we compute many localized, decorrelated multilinear models on the
wavelet coefficients of all xie. First, we decompose each xie into its wavelet coefficients ckie
(middle of Figure 5.1) using a discrete wavelet transform [12] as discussed in Section 3.3.
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Training Data Wavelet Decomposition Localized Multilinear Models

Shape Space

Figure 5.1: Overview of the training. Left: Training data with highlighted impact of the
basis function. Middle: Wavelet decomposition of each face of the training data. Right:
Corresponding wavelet coefficients and learned multilinear model shape spaces.

Here k ∈ {1, · · · , n} denotes the index of the wavelet coefficient. Then, we learn for each
ckie a multilinear model over all training faces (right side of Figure 5.1). Due to the consistent
subdivision subsampling of each xie, the ckie are in correspondence across the training data.
The left side of Figure 5.1 shows the regions influenced by two wavelet coefficients across
different identities and different expressions.

We center each ckie by subtracting the mean ck = 1
d2d3

∑d2
i=1

∑d3
e=1 ckie. We arrange the

centered ckie as mode-1 fibers in a 3-mode tensor Ck ∈ R3×d2×d3 such that the different identities
align with mode 2, and the different expressions with mode 3. HOSVD of Ck results in

Ck ≈Mk ×2 U2,k ×3 U3,k, (5.1)

where Mk ∈ R3×m2×m3 denotes the multilinear model of coefficient k, and U2,k ∈ Rd2×m2

and U3,k ∈ Rd3×m3 are the mode-2 and mode-3 factor matrices. Due to the low dimensionality
of Ck in the first mode (d1 = 3), we choose m2 = m3 = 3.

The surface f ∈ R3n is reconstructed from the multilinear model coefficients w2,k ∈ Rm3

for identity, and w3,k ∈ Rm3 for expression, as follows. First, each ck is reconstructed by
Eq. 3.16 as

ck = ck +Mk ×2 wT
2,k ×3 wT

3,k. (5.2)

Then, f is reconstructed from the ck using the inverse wavelet transform given by Equation 3.4.

5.2 Registration of static and dynamic data

This section describes how to fit the multilinear wavelet model to static face scans si or dy-
namic facial sequences s1, · · · sF .
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5.2.1 Multilinear objective function

We minimize the energy E : Rn(m2+m3) → R

E = wDED + wLEL + wRER + wTET , (5.3)

with respect to the multilinear model coefficients w2,k and w3,k. The energy E is composed of
the data term ED to fit the model to the scan, the landmark term EL to fit the model to given
landmarks, the regularization term ER to get a smooth surface, and a temporal smoothness
term ET to avoid jittering of vertices during motion. The influence of each term is controlled
by the corresponding weights, namely wD, wL, wR, and wT . We now describe all terms in
more detail.
Data: The data term measures the distance between the model and the data. The data term is

ED =
1
n∑
j=1

bj

n∑

j=1

bj ‖vj (f)− nnj‖2, (5.4)

where f ∈ R3n denotes the reconstruction from the model as detailed in Section 5.1, vj (f)
denotes the j-th vertex of f, and nnj is the nearest neighbor of vj (f) in si computed using a
point-to-plane distance measure. We use binary weights bj ∈ {0, 1} to control whether a point
is considered for fitting. To lower the influence of outliers, we consider only nearest neighbors
that are closer than 10mm. We further discard vertices that are used in EL corresponding to
provided landmarks.
Landmarks: The landmark term measures the distance between given landmarks and the
corresponding points of the model. The landmark term is

EL =
1

L

L∑

j=1

∥∥vrj (f)− lj
∥∥2, (5.5)

where lj ∈ R3 is the j-th landmark and rj the index of corresponding vertex on the statistical
face model.
Regularization: The regularization term measures the curvature difference of neighboring
vertices. The regularization reduces the visibility of patch boundaries and produces smooth
surfaces. The regularization term is

ER =
1

n

n∑

j=1

∥∥U2(vj(f))
∥∥2
, (5.6)

where vj(f) denotes the j-th vertex of shape f. The double-umbrella operator U2(p) is the
discrete bi-Laplacian approximation [79] computed by

U2(p) =
1

|N(p)|
∑

pr∈N(p)

U(pr)− U(p), (5.7)
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with U(p) = 1
|N(p)|

∑
pr∈N(p) pr − p, and N(p) denotes the set of neighbors of vertex p within

the mesh.
Since the regularization energy affects vertices across patch boundaries, the optimization

of E becomes less localized. While a high value of wR produces a visually smooth surface,
it does not accurately fit the surface. Hence, the choice of wR is a trade-off between getting a
smooth surface for high values of wR and closely resembling si along with a fast optimization
for low values of wR. For a more detailed evaluation see Section 5.3. We choose wR = 100
and wR = 0 throughout our experiments.
Temporal smoothness: The temporal smoothness term measures for motion sequences the
distance between corresponding vertices of consecutive frames. The temporal smoothness
term is

ET =
n∑

j=1

‖vj(fi)− vj(fi−1)‖2, (5.8)

where fi−1 denotes the reconstruction of the previous frame si−1, and fi denotes the reconstruc-
tion of the current frame si.

The temporal smoothness term is a trade-off between accurately tracking the facial motion
and avoiding jittering. In Chapter 4 we enforce temporal smoothness directly in expression
space (Eq. 4.5) since for global multilinear face models, the dimension of the expression space
is much lower than the dimension of f (m3 � 3n). For the multilinear wavelet model, instead,
the combined dimensions of all expression spaces equal the dimension of the surface. We
therefore enforce the temporal smoothness directly in vertex space, since operating in expres-
sion space rather than in vertex space does not increase the efficiency of the optimization.

5.2.2 Optimization

The objective function E (Eq. 5.3) is non-linear. Figure 5.2 visualizes the fitting process of
the multilinear wavelet model to si with additional landmarks. We first minimize E using the
given landmarks to initialize the rigid pose of the model and all w2,k and w3,k. We then use
all vertices of si to refine the fitting. The lower middle of Figure 5.2 illustrates the result after
initialization, while the lower right shows the result of the full surface fitting.

We optimizeE in a coarse-to-fine manner. First, we minimizeE for the multilinear models
of the coarse-scale wavelet coefficient to get a coarse approximation of the overall shape. Then,
we iteratively refine the result by minimizing E for the models of the finer-scaled wavelet
coefficients. As E is analytically differentially with respect to the coefficients w2,k and w3,k,
we minimize E using L-BFGS [92].

As for the global multilinear model, we use a statistical prior to restrict the shape to stay
in the learned shape space as described in Section 4.2.1. This statistical prior ensures the
robustness of the model to noisy and corrupt data. During optimization, we enforce all w2,k and
w3,k to stay in hypercubes of side lengths 2c2 and 2c3 centered at the mean identity coefficients
w2,k and the mean expression coefficients w3,k.
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Localized Multilinear Models

Input Face Initialize Fit Surface

Figure 5.2: Overview of the fitting. Top: Localized multilinear models. Bottom, left to right:
input face scan, result after initialization, result of full surface fitting.

Initialization: Since E is non-linear, we require a good initialization for the optimization.
To fit the multilinear wavelet model to a 3D face scan, a spatial rigid alignment and initial
coefficients w2,k and w3,k are needed. We use the provided landmarks for initialization.

We iteratively optimize the rigid alignment and the initialization of w2,k and w3,k. For the
first iteration, we choose w2,k = w2,k and w3,k = w3,k for all k. To compute the initial rigid
alignment, we reconstruct f from the model and compute the rigid alignment that minimizes
EL for the given landmarks. The multilinear model coefficients w2,k and w3,k are computed
by minimizing E for the provided landmarks with regularization (wD = wT = 0). This
deforms the model to closely resemble the given landmarks. We refine the rigid alignment
after optimizing each level of the wavelet coefficients.

Since we assume the landmarks to be placed in non-occluded areas, we allow more varia-
tions for the initialization and choose c2 = c3 = 1.
Static registration: After initialization we refine the model to fit the data by minimizing E
while setting wT = 0. The nearest neighbors are recomputed after optimizing each level of the
wavelet.

To be robust to noise and partial occlusions, we restrict the variations to c2 = c3 = 0.5
during shape refinement.
Dynamic registration: To register motion sequences, we fit identity and expression coeffi-
cients to the first frame of the sequence. For the remaining sequence we keep the identity
coefficients fixed, and only optimize for the expression coefficients. This ensures that the
shape deformation over time is described by expression variations only. To enforce temporal
consistency, we optimize E with temporal smoothness enabled (wT = 1).
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Computational complexity: Since the dimension of the search space is the dominant factor
during optimization, fitting multiple localized multilinear models is more efficient than fitting
one global multilinear model. During optimization, a quasi-Newton optimizer estimates in
each iteration the Hessian. For d = m2+m3 variables, the Hessian is of size Ω(d2). This favors
solving many small problems rather than one big problem, even if the number of variables
increases. Section 5.3 experimentally confirms the increased efficiency.

5.3 Evaluation
This section evaluates the robustness of the multilinear wavelet model registration to noisy or
partially occluded data, and the registration quality for facial motion sequences. Due to the
lack of ground-truth registration of the face scans, we measure the error as Euclidean distance
to the data. All error measures are in millimeters.
Training data: We train the multilinear wavelet model on scans of the BU-3DFE database
[139]. We use the template fitting method of Salazar et al. [114], based on provided ground
truth landmarks of the database, to register all models.
Test data: The robustness to noisy data is evaluated on 120 face scans (20 identities with
up to seven expressions) of the Bosphorus database [116]. The robustness to corrupt data is
evaluated on 80 face scans (20 subjects in up to four types of occlusions) of the Bosphorus
database. We use the landmarks provided with the database.

The registration of motion sequences is evaluated for sequences of the BU-4DFE database
[138]. We use landmarks automatically predicted by our method as described in Section 4.1.2.
Comparison: We qualitatively and quantitatively compare the multilinear wavelet model to a
global multilinear face model and to a linear wavelet model in terms of fitting quality. We use
the same training data for all three models. Since the linear wavelet model is unable to handle
expression variations, we compute for each expression an individual linear wavelet model. We
refer to these multiple linear wavelet models as local multiple PCA models. To reconstruct
an expression face scan, an expression-specific linear wavelet model is used. The multilinear
wavelet model and the global multilinear model use the provided landmarks for fitting.
Performance: Our approach is implemented in C++, using OpenCV [107], ANN [8] and
LBFGSB [92]. We evaluate the performance on a 3.3 GHz Intel Xeon E31245 workstation.
Fitting the multilinear wavelet model (single-threaded) to a static face scan with about 35000
vertices takes on average 5.37s without regularization (wR = 0.0), and 14.76s with regulariza-
tion (wR = 100). Compared to this, fitting a global multilinear model takes on average about
2 min, while fitting a linear wavelet model takes about 5 min due to the subspace sampling
during optimization.

Fitting the multilinear wavelet model to motion sequences with about 35000 vertices per
frame takes on average 4.35s per frame without regularization (wR = 0.0), and 11.14s with
regularization (wR = 100).
Reproducibility: We publish the multilinear wavelet model learned from the registered BU-
3DFE database and code to fit the model to static input face scans [18].



5.3. EVALUATION 55

Scan LMPCA GMM MWM (wR = 0) MWM (wR = 100)

Figure 5.3: Robustness to noisy data. Top: Full face visible. Bottom: Close-up of the nose
region. From left to right: Scan, local multiple PCA (LMPCA), global multilinear model
(GMM), multilinear wavelet model (MWM) without regularization (wR = 0), and MWM
with regularization (wR = 100).

5.3.1 Robustness to noisy data

This section evaluates the ability of our multilinear wavelet model to capture fine-scale details
for data with scanner noise, missing data, and facial hair. Since the scans are from 20 identities
with up to seven expressions each, the data contain identity and expression variations.

The Figures 5.3 and 5.4 qualitatively compare the local multiple PCA method, the global
multilinear model, and the local multilinear model for face scans of three different subjects
with three different expressions. Compared to both other models, the multilinear wavelet
model captures more fine-scale details. This leads to better reconstructions of nose, mouth,
and chin regions. The top two rows of Fig. 5.4 further show that the multilinear wavelet model
is able to capture the asymmetric raise of the eyebrow while the global multilinear model only
captures the global face shape. Since the expressions of the training data are symmetrically
performed, the global multilinear model is unable to capture asymmetric expressions.

Figure 5.3 further shows the effect of the regularization by optimizing the multilinear
wavelet model without (wR = 0) and with regularization (wR = 100). The regularization
reduces the effect of grid artifacts in the reconstructed face shape that appear between wavelet
patches due to the independent optimization.

To quantitatively evaluate the robustness to noisy data, we measure the reconstruction error
over all test data. Figure 5.5 shows the median reconstruction error per vertex. For the local
multiple PCA models and the global multilinear model 63.2% and 62% of the vertices have a
median error < 1mm, compared to 72.4% (wR = 0) and 71.6% (wR = 100) for the multilinear
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Scan LMPCA GMM MWM

Figure 5.4: Robustness to noisy data in different expressions with full face visible and in
close-ups. From left to right: Scan, LMPCA, GMM, MWM.

LMPCA GMM MWM (wR = 0) MWM (wR = 100)

Figure 5.5: Median per vertex reconstruction error for noisy data. From left to right: LMPCA,
GMM, MWM without regularization (wR = 0), MWM with regularization (wR = 100).
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Figure 5.6: Cumulative error for noisy data measured for valid facial regions. Left: Face mask
of region used for error measure (red). Right: Cumulative error plot.

Scan LMPCA GMM MWM

Figure 5.7: Robustness to different partially occluded data. From left to right: Face scan,
LMPCA, GMM, MWM.

wavelet model. Figure 5.6 further shows the cumulative error (right) measured for the char-
acteristic facial regions (left). For the local multiple PCA models and the global multilinear
model 60.4% and 58.0% of the vertices in the characteristic facial regions are < 1mm, com-
pared to 72.7% (wR = 0) and 70.2% (wR = 100) for the multilinear wavelet model. Hence,
while all three statistical models are robust to noise, our multilinear wavelet model reconstructs
more fine-scale details, especially in characteristic facial regions like the eye, nose, and mouth
regions.

5.3.2 Robustness to corrupt data
This section evaluates the robustness of our multilinear wavelet model to corrupt data. The data
corruptions are given in form of 3D face scans with eye, glasses, hair, and mouth occlusions.
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Figure 5.8: Cumulative error for partially occluded data measured for different valid facial
regions for eye, glasses, hair, and mouth occlusions. The vertices used for error measure are
highlighted in red.

Figure 5.7 qualitatively compares the local multiple PCA method, the global multilinear
model, and the multilinear wavelet model for face scans of two different subjects, one with an
eye occlusion, one with a mouth occlusion. All three statistical face models produce a plausible
face shape and are hence robust to the facial occlusions. Compared to both other methods, the
multilinear wavelet model better reconstructs facial details in non-occluded regions (e.g. at the
nose and the chin in the top row, and at the nose in the bottom row).

To quantitatively evaluate the robustness to corrupt data, we measure the reconstruction
error for all test data. Since the distance to the data is only a valid measure in non-occluded
areas, we define for each type of occlusion the non-occluded area. The left side of Figure 5.8
highlights these regions for eye, glasses, hair, and mouth occlusions in red. The right of Fig-
ure 5.8 shows the cumulative error measured in these non-occluded areas only. The multilinear
wavelet model has the lowest error in these regions compared to both other statistical face mod-
els. Hence, our model better represents fine-scale details even in the presence of heavy facial
occlusions.

5.3.3 Registration of motion data
This section evaluates the registration of motion sequences. Figure 5.9 shows two motion
sequences performing different expressions sampled at four frames. Our multilinear wavelet
model accurately reconstructs the face shape for both sequences and tracks the facial expres-
sion. Since the landmarks are automatically predicted, the registration process of the motion
sequences is fully automatic.

5.4 Summary

This chapter presented a new statistical 3D face model that consists of multiple decorrelated
multilinear models. This model allows robust reconstruction of the 3D face shape from noisy
and corrupt face scans. In contrast to existing statistical face models, our model handles facial
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expressions and better reconstructs fine-scale geometric details while retaining robustness to
noise and partial occlusions. The multi-scale nature of the wavelet decomposition we used
leads to a more efficient optimization. The decoupling of identity and expression variations
allows efficient tracking of facial motion sequences.

The decorrelated localized structure allows the fitting for each level of the wavelet coeffi-
cients to be parallelized, and an optimized GPU implementation could potentially run in real
time. A detailed real-time tracker has various applications as mentioned in Section 2.5.

To obtain a high-quality wavelet face model, the quality of the registration of the training
data is essential. Establishing a dense correspondence for databases of 3D human faces of
different identities performing multiple expressions is challenging. Existing methods that aim
to register 3D faces (see Section 2.3) introduce drift in the registration. To obtain a high-
quality registration that suits the needs of statistical face models, we introduce a multilinear
correspondence optimization framework in the following chapter.
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Figure 5.9: Registration results for facial motion sequences performing different expressions.
Top: Happy expression. Bottom: Fear expression.



Chapter 6
Registration optimization

“You can never solve a problem on the level on which it was created.”

– Albert Einstein

This chapter introduces a method to jointly optimize a multilinear model and the regis-
tration of a 3D face database in a groupwise fashion. As discussed in Chapter 2, to compute
statistics of a class of shapes requires all shapes to be in correspondence. Given a good registra-
tion, a statistical face model can be learned. Statistical face models can be used to reconstruct
the 3D geometry from noisy or partially occluded face scans (see e.g. our review [29]) and
are therefore directly applicable for registration. Summing up, this is a chicken-and-egg prob-
lem: given a good registration, a statistical model can be learned, and given a representative
statistical model, a good registration can be computed. This motivates the formulation of the
statistical face model learning as a groupwise optimization framework that aims to learn a
statistical face model while at the same time optimizing the training data.

Since the variations in databases of human faces from different identities performing dif-
ferent expressions cannot be modeled well using a linear space, the existing methods are not
suitable for optimizing the correspondence of human faces. As shown in the two previous
chapters, human faces in various expressions can be modeled well using a multilinear model.

This motivates us to propose a fully automatic groupwise correspondence optimization ap-
proach for multilinearly distributed 3D face data. The correspondence is optimized based on
the MDL principle, which leads to a sparse multilinear model. A key advantage of extending
MDL to multilinear models is a reduced parameter space, which can be optimized more effi-
ciently and leads to correspondences of higher quality than existing PCA-based optimization
methods.

6.1 Groupwise correspondence optimization
This section introduces the concept of groupwise correspondence optimizations and describes
our approach for multilinearly distributed data. Given a set of shapes in correspondence,
groupwise correspondence optimization minimizes an objective function that measures the
quality of the correspondence depending on all shapes. Using a statistical model that de-
scribes the variation of the shapes, the objective function measures favorable properties of the
model.
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Registered Shapes
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Model Evaluation

EC + wRER
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Figure 6.1: Overview of the iterative multilinear registration.

For PCA models, Kotcheff and Taylor [81] choose the objective function to be the determi-
nant of the covariance matrix, which explicitly favors the induced linear statistical model being
compact. The compactness of a linear statistical model can be maximized by minimizing the
variability of the model, measured by the trace of the covariance matrix.

Compactness (see Section 3.2) measures the variability captured by a model. A compact
model can describe instances of a given dataset with the minimum number of parameters and
has minimal variance. For models of different compactness that describe the same data, the
model with higher compactness and hence lower variance is favorable. It has been shown
that minimizing the variance of a PCA model performs similarly to information-theoretic ap-
proaches that aim at minimizing the description length of the model [56].

Inspired by these previous works, we develop the first MDL-based optimization approach
for multilinear models. This extension is challenging because the notion of compactness needs
to be extended to multilinear models, where optimal tensor approximation is NP-hard [63].
For 3D face data, a further challenge arises from manifold boundaries. Figure 6.1 gives an
overview of our multilinear optimization approach. Given a set of 3D faces of d2 different
identities performing d3 different expressions with an initial correspondence, we iteratively
optimize the correspondence. We compute a multilinear model on the registered data, and
iteratively improve the model. In each iteration, the quality of the model is measured using
a groupwise objective function (Section 6.1.1). The registered shapes are represented using a
continuous parametrization (Section 6.1.2), and the objective function is optimized in param-
eter space with a quasi-Newton method (Section 6.1.3).
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6.1.1 Multilinear objective function
Our groupwise objective function consists of two parts: a compactness energy EC , and a
regularization energy ER. We therefore aim to minimize

E = EC + wRER, (6.1)

where wR is a weight that controls the influence of the regularization. We now describe both
terms in more detail.
Compactness: The compactness of a multilinear model can be measured as the percentage of
data variability captured in the first k components of each mode, where k = 1, . . . ,max (d2, d3).
Compactness is maximized by a sparse model that captures all of the variability in few com-
ponents. To encourage a sparse model, we introduce an energy on the variability of the iden-
tity and expression subspaces. Like Kotcheff and Taylor [81], we choose a log-sum penalty
function, as log-sum functions are known to encourage sparsity by heavily punishing small
values [32]. That is, we aim to minimize

EC =
1

d2

d2∑

i=1

ln(λ
(2)
i + δ2) +

1

d3

d3∑

i=1

ln(λ
(3)
i + δ3), (6.2)

where λ(n)
i denotes the i-th eigenvalue of the mode-n covariance matrix. Small regulariza-

tion constants δn are used to avoid singularities of EC for vanishing eigenvalues. Equiva-
lent to HOSVD, the mode-2 and mode-3 covariance matrices are computed as 1

d3
X(2)XT

(2) and
1
d2

X(3)XT
(3).

The energyEC is minimized by moving points within the continuous surface of each shape.
Since the computation of the covariance only considers a discrete number of points instead of
the continuous surface, EC can be minimized by moving points away from complex geometric
regions with high variability.
Regularization: To avoid undersampling in these regions, Davies et al. [43] approximate the
integral of the continuous covariance matrix by weighting the points by their surrounding sur-
face area. Since this does not always prevent the undersampling [56], as done in Burghard et
al. [31], we use a regularization within the objective function. As in Chapter 5, the regulariza-
tion term for each shape is a bi-Laplacian of the form

ER =
1

n

n∑

k=1

∥∥U2(vk(x))
∥∥2
, (6.3)

where vk(x) denotes the k-th vertex of shape x. The double-umbrella operator U2(p) is the
discrete bi-Laplacian approximation [79] as described in Section 5.2.1.

Despite using the same regularizer as in Section 5.2.1, the effect of ER on the objective
function during optimization is different. In Section 5.2.1, the objective function is optimized
in vertex space. Optimizing ER on the object’s surface encourages the resulting surface to
be visually smooth. Optimizing the objective function in the 2D parameter domain, as done
in this section, encourages the points to be regularly distributed over the mesh and prevents
fold-overs.
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Figure 6.2: Initial surface parametrization of the 3D face template. Left: 2D parameter do-
main. Right: 3D parametrization.

Figure 6.3: Parametrization for one shape. Left: initialization. Middle: thin-plate spline.
Right: (u, v)-parameter lines.

6.1.2 Parametrization

The registration is optimized by moving points in the surface of each face. Since the surface of
the face is 2-dimensional, moving points within the surface can be done by re-parametrization.
This requires an initial parametrization together with a continuous mapping from parameter
space to the surface of each face. We compute an initial registration for a database of 3D faces
using template fitting, and additionally unwrap the 3D template mesh in 2D parameter space
to compute an initial discrete parametrization with parameters ti ∈ R2. The embedding in 2D
is chosen to minimize distortions of angles and areas. Each parameter ti is mapped to the mesh
vertex vi = (xi, yi, zi) ∈ R3. Figure 6.2 visualizes the initial parametrization in 2D parameter
space (left) and mapped on the 3D surface (right). Due to the full correspondence of all face
shapes, this discrete parametrization is the same for all shapes of the database.

With this discrete embedding in parameter space, a continuous mapping Φ is computed
that maps parameters α = (u, v) ∈ R2 into the surface of the shape. A thin-plate spline [45]
defines this mapping, computed as

Φ(α) = c + Aα+ WT (σ(α− t1), . . . , σ(α− tn))T , (6.4)

where c ∈ R3, A ∈ R3×2, and W ∈ Rn×3 are the parameters of the mapping, and where
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σ : R2 → R is the function

σ(h) =

{
‖h‖2 log(‖h‖) ‖h‖ > 0,

0 ‖h‖ = 0.
(6.5)

The surface of Φ interpolates all vertices of the shape (Φ(ti) = vi) and gives the surface
with the minimum bending energy. Figure 6.3 shows one initially registered shape (left) to-
gether with the computed continuous thin-plate spline visualized as densely approximated
mesh (middle) and (u, v)-parameter lines (right). The evaluation of Φ at parameters α, where
u (respectively v) is fixed and v (respectively u) is varied by a fixed discrete step size, gives
one (u, v)-parameter line. While the spline interpolates the geometry of the initial shape, it
gives a reasonable extrapolation of the shape beyond the outer border of the face.

6.1.3 Optimization
The objective function E in Equation 6.1 is non-linear. Due to the choice of the parametriza-
tion, E is analytically differentiable with respect to α. Appendix A.1 gives the full analytical
gradient. We minimize E using L-BFGS [92]. These linear constraints allow for each vertex
in parameter space to specify a valid rectangular area.
Boundary constraints: For meshes with boundaries, EC is minimized if the entire surface
collapses into a single point. Hence, boundary conditions need to be enforced. Face shapes
have two boundaries, an inner boundary at the mouth and an outer boundary at the end of the
acquired scan. Since landmarks are used during the initial registration, the inner boundary
at the mouth is registered well. To avoid points that move from the lower to the upper lip
or vice versa, we fix the points in the 1-ring neighborhood of the mouth boundary during
optimization. Since the outer boundary is not registered well, as scans in the database are
cropped inconsistently, we allow limited movement for points in the 1-ring neighborhood of
the outer boundary. Specifically, the movement is restricted to at most 20 mm.
Optimization schedule: Optimizing for the parameters of all shapes at the same time is not
feasible for a large population of shapes due to the large number of parameters (d2d32n).
Instead, we only optimize the parameters of each shape individually, as proposed by Davies
et al. [43, Chapter 7.1.1]. This optimization is performed for all shapes of the database during
each iteration. Note that E still depends on all shapes for this shape-wise optimization, and
the method therefore still optimizes the groupwise correspondence. To avoid bias towards any
shape, the order of the shapes is randomly permuted for each iteration step. Since the rigid
alignment of the shapes depends on the correspondence, during optimization of one shape, the
alignment is updated after a few optimization steps.
Computational complexity: The computational complexity is O(nd2

2d3 +nd2d
2
3) of one opti-

mization step (see Appendix A.2 for details). As shown in the following section, our approach
is significantly more efficient than existing PCA-based MDL approaches.

While the multilinear correspondence optimization is computationally more efficient than
previous linear methods, due to the groupwise objective function, the computational complex-
ity is still high. Our experiments show that only a low number of iterations are necessary to get
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significant improvements. Note that the registration can be seen as pre-processing that only
needs to be done once. Application to larger datasets would require the use of a compute clus-
ter to exploit the full potential of the parallelizability of the method (especially the gradient
computation).

6.2 Evaluation

This section evaluates three different tensor decompositions and our model optimization ap-
proach.
Data: For evaluation, we use models of the BU-3DFE [139] and Bosphorus [116] databases.
A more detailed explanation of both databases is given in Section 3.1. Since both databases
are acquired with different scanner systems, the resulting scans have different resolution and
noise characteristics. We register both databases with a template fitting method [114] using
the provided landmarks.

For BU-3DFE we use 50 randomly chosen identities with seven expressions: neutral and
the highest intensity level of each expression. For Bosphorus we use all 65 identities that are
present in all seven expressions. In the following, we call these subsets the BU-3DFE set and
the Bosphorus set, respectively.
Model quality: We quantitatively evaluate the quality of the optimization with the widely-
used measures compactness, generalization and specificity extended to the multilinear case as
described in Section 4.2.2.
Reproducibility: To facilitate evaluating the model for different applications, we make our
optimization code and the optimized statistical model available [23].

6.2.1 Tensor decompositions

We evaluate the different tensor decomposition methods described in Section 3.4, namely
HOSVD, HOOI, and a Newton-Grassmann optimization approach, by fitting the resulting mul-
tilinear models to unseen 3D face scans. We use the code by Nigmetov [105]. For this, we use
a 10-fold cross-validation on the registered BU-3DFE scans. We split the database randomly
into ten groups, each with the same ratio of male and female subjects, where all scans of one
identity belong to the same group. The error is measured as the distance between a vertex
in the fitting result and its closest point in the face scan. The error distribution of all three
methods is nearly identical. The median vertex error is 1.145 mm for HOSVD, 1.144 mm for
HOOI, and 1.144 mm for the Newton Grassmann method. Since all methods perform almost
the same, we compute the decomposition with HOSVD in the following as it is the simplest
method.
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Figure 6.4: Artifacts obtained by optimizing EC without regularization (wR = 0). Left: initial
registration. Right: result.

6.2.2 Influence of regularization
This section evaluates the influence of the regularization ER on the BU-3DFE set. The opti-
mization is performed twice, once optimizing only EC without ER and once optimizing only
ER without EC . As discussed in Section 6.1.1, the regularizer is needed to avoid undersam-
pling in regions with high variability and fold-overs. Figure 6.4 shows the result for one
face after only five iterations of optimizing EC . When minimizing only EC , the optimization
moves points away from the eyebrows and around the nose, resulting in sparsely sampled re-
gions. Furthermore, fold-overs at the mouth cause visual artifacts. Optimizing ER leads to
regularly sampled meshes. However, EC increases in this case. Minimizing E is therefore a
trade-off between getting a compact model and a regular mesh structure. In the following, we
empirically choose wR = 0.5.

6.2.3 Influence of initialization
This section evaluates the robustness to noise in the initialization. State-of-the-art registration
methods for faces, as used for the initialization of our method, are able to fit the facial surface
well with sub-millimeter accuracy, but the result is likely to contain drift within the surface.
To simulate noise with regard to these methods, we use the initial parametrization and add
two different levels of noise in the parameter domain. The parameter values of each shape
of the BU-3DFE set are disturbed by random Gaussian noise. Since the 1-ring neighborhood
of the mouth boundary is fixed during optimization, these vertices are left without noise. For
both noise levels we choose noise with mean zero and standard deviation f times the average
3D edge length. For the lower noise level we choose f to be 0.25, and for the higher 0.75,
respectively.

The optimization is performed on the BU-3DFE set, initialized with the noisy registration.
The top of Figure 6.5 shows an example of the database without noise (left), the lower level
of noise (middle) and the higher level of noise (right). The average 3D vertex distance of the
initial shapes to the noisy shapes over the entire database is 1.11 mm for the lower and 2.50
mm for the higher noise level.

Adding random noise within the surface to each vertex increases the variance in 3D po-
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Figure 6.5: Noise example of the database before (top) and after (bottom) optimization. Left
to right: no, low, and high noise.
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Figure 6.6: Influence of the initialization for different levels of noise. Left: compactness.
Middle: generalization. Right: specificity. Top: identity mode. Bottom: expression mode.
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Figure 6.7: Visual comparison of template fitting [114] (red) and our result (blue) for one
subject in four expressions (overlap in gray).

sitions and therefore increases the variability of the data. As expected, Figure 6.6 shows that
the compactness of identity mode and expression mode decreases with increasing noise, since
the multilinear model captures less variability with the same number of components. Further,
the multilinear model becomes less general and less specific. After 15 iterations, the average
compactness increases by 3.8% for the low noise level, and by 8.7% for the high noise level,
respectively. The average generalization error decreases by 0.58 mm and 1.65 mm for the low
and high noise level; the average specificity decreases by 0.43 mm and 1.26 mm for the low
and high noise level. After optimization, the model quality for both levels of noise is compara-
ble to the optimization of the data without noise. Hence, our optimization method effectively
reduces variability caused by drift.

6.2.4 Comparison

This section compares our approach to two state-of-the-art registration methods for 3D faces
based on template fitting [114] and PCA-based groupwise correspondence [43].
Template fitting: We compare our optimization to template fitting on the BU-3DFE and
Bosphorus sets. For the two subsets, Figures 6.8 and 6.9 show the compactness, generaliza-
tion, and specificity for template fitting and after 15 iterations of the multilinear optimization.
For the BU-3DFE set, the average compactness increases by 3.0%, and the average general-
ization and specificity decrease by 0.25 mm and 0.32 mm, respectively. For the Bosphorus
set, the average compactness increases by 1.7%, and the average generalization and specificity
decrease by 0.15 mm and 0.16 mm, respectively.

Figure 6.7 visually compares the template fitting (red) to our result (blue) for one subject
of the BU-3DFE set. Before optimization, the shape of the outer boundary differs. The opti-
mization decreases the face area for the first and fourth expressions at the cheek, for the second
expression at the jaw, and for the third expression at the forehead. Expressions one, two, and
three are extended at the forehead. After 15 iterations, the outer boundaries are similar.

To demonstrate the ability of our method to optimize over large sets of shapes, we consider
a second subset of the Bosphorus database consisting of 39 identities performing 26 action
units each, leading to a total of over 1000 shapes. To keep 95% of the data variability after
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Figure 6.8: Comparison of template fitting [114], PCA optimization [43] (PCA opt.) and
multilinear model optimization (MM opt.) on BU-3DFE set. Left: compactness. Middle:
generalization. Right: specificity. Top: identity mode. Bottom: expression mode.

template fitting, a total of 27 components are necessary, while after 15 iterations of our opti-
mization, 20 components suffice. As for the other subsets, generalization and specificity also
improve after optimization. To the best of our knowledge, this is the first time a registration
optimization based on MDL has been applied to such a large set of shapes.

For all three datasets the model improves significantly during optimization, leading to a
more compact model with improved generalization and specificity.
PCA: For brevity, we abbreviate PCA optimization as PCA opt. and our method as MM opt.
during the discussion of the comparison. We start by comparing the computational complexity
of the two methods. In Appendix A.2, we show that one optimization step for PCA opt. has
complexity O(nd2

2d
2
3), while one optimization step of MM opt. has complexity O(nd2

2d3 +
nd2d

2
3). For the BU-3DFE set our non-optimized implementation takes about 16.2h for MM

opt. and about 21.5h for PCA opt. for one iteration when executed on a standard PC.
Figure 6.8 quantitatively compares PCA opt. and MM opt., both after 15 iterations. While

MM opt. gives significant improvements, PCA opt. only slightly improves the correspon-
dence. For small subsets PCA opt. gives significant improvements within few iterations. Our
experiments suggest that for an increasing number of shape space parameters, an increasing
number of iterations is required. Since MM opt. models identity and expression indepen-
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Figure 6.9: Comparison of template fitting [114] and MM opt. on Bosphorus set. Left: com-
pactness. Middle: generalization. Right: specificity. Top: identity mode. Bottom: expression
mode.

dently, the number of shape space parameters is d2 + d3, while for PCA opt. the number of
shape space parameters is d2d3.

Hence, our method gives better improvements after the same number of iterations and is
computationally faster than existing linear optimization methods.

6.3 Summary

This chapter presented the first method for multilinearly distributed data that jointly improves
a given registration and a multilinear model. A continuous representation of each shape al-
lows the registration to be optimized with a quasi-Newton method. We have evaluated our
method on scans of two databases and have demonstrated that our method is robust to noise
in the initial registration. A key advantage of our approach over existing linear MDL methods
is its increased computational efficiency, which makes it possible for the first time to apply
an approach based on MDL to databases containing over 1000 shapes. We have shown that
using the efficient HOSVD method to compute the multilinear model performs similarly when
reconstructing unseen face data to more elaborate tensor decompositions. To facilitate exper-
iments for different application scenarios, we make our optimization code and the optimized
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statistical model available.
Our method is generally applicable to other classes of multilinearly distributed data. The

geometry of the shapes can contain no or multiple holes as long as the boundaries of the
holes are constrained. The regularization energy prevents fold-overs around these holes. Fur-
thermore, the extension of our method to more modes is straightforward, e.g. for faces to
associate the fourth mode with viseme or age.

Our proposed method optimizes the correspondence by re-parametrizing the shapes guided
by the optimization of a multilinear compactness objective function. This re-parametrization
requires a continuous representation of the surface for each shape. While any kind of con-
tinuous mapping can be used, we establish this by a thin-plate spline. For other continuous
mappings, the gradient changes, and therefore depending on the mapping (e.g. for mappings
without analytical gradients) a different optimization must be used.

Computing this continuous surface mapping assumes the original face scans to be regularly
densely sampled with points that are within the surface of the scan. To get this sampling, any
existing template fitting method can be used. For face scans with partial occlusions or strong
distortions, template fitting methods fail, since they are unable to estimate the real face surface
in these regions. To optimize the registration for scans with strong distortions, we would
either need another initialization that gives a reasonable surface estimation within the occluded
and noisy regions (e.g. by using the multilinear wavelet model proposed in Chapter 5), or
the optimization must be allowed to leave the surface of the disturbed scan guided by the
underlying multilinear model as done in the following chapter.

While our approach is purely geometry based, additionally using texture information is
known to be helpful to establish an anatomically meaningful correspondence, as a high-quality
texture makes it possible to establish correspondence between multiple scans of the same iden-
tity by using freckles and pores as features [26]. Texture information could be used throughout
the optimization by adding an additional term to E that measures the difference between these
texture features.

Using a multilinear compactness term requires the full Cartesian product of all facial at-
tributes (i.e. all identities need to be present in all expressions), and all scans must be in
semantic correspondence (i.e. the expressions must be correctly labeled). To overcome these
limitations, the following chapter introduces a framework to robustly learn a multilinear model
from 3D face databases with missing data, corrupt data, wrong semantic correspondence, and
inaccurate vertex correspondence.



Chapter 7
Robust multilinear model learning

“An experiment is a question which science poses to Nature and a measurement is
the recording of Nature’s answer.”

– Max Planck

This chapter introduces a framework to robustly learn a multilinear model from 3D face
databases with missing data, corrupt data, wrong semantic correspondence, and inaccurate
vertex correspondence. The methods to learn a multilinear face model as used throughout
Chapters 4, 5, and 6 degrade if not every person is captured in every expression, if face scans
are noisy or partially occluded, or if expressions are erroneously labeled.

Missing data occur if not all available identities are present in all expressions, i.e. some
identities are only captured in a subset of the expressions. Missing data are caused by subjects
being unable to perform certain expressions spontaneously, or by the extension of an existing
database by additional expressions with some subjects being unavailable for further scanning.
Corrupt data arise if the facial geometry is noisy or partially occluded. Wrong semantic corre-
spondences arise if a subject has difficulties in performing specific expressions correctly and
mixes up certain expressions, or due to erroneous classifications of the performed expressions.
These limitations impose requirements on the training data that disqualify large amounts of
available 3D face data from being usable to learn a multilinear model.

If a multilinear face model is given, it is able to complete missing data (e.g. [35]), recon-
struct corrupt data (e.g. Chapter 5), to label expressions (e.g. [102]), or to optimize correspon-
dence as described in Chapter 6, all of which is necessary to build up a database that fulfills the
needs of a multilinear model. In the spirit of the groupwise multilinear correspondence opti-
mization method from Chapter 6, this motivates us to formulate the multilinear model learning
as a groupwise optimization framework that aims to learn a multilinear face model while at
the same time correcting the data.

In this chapter, we show that our framework achieves a data completion accuracy that is
comparable to state-of-the-art tensor completion methods; our method reconstructs corrupt
data more accurately than state-of-the-art methods, and improves the quality of the learned
model significantly for erroneously labeled expressions.

73



74 CHAPTER 7. ROBUST MULTILINEAR MODEL LEARNING
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RMM
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Identity Expression
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Figure 7.1: Overview of our RMM learning framework that is robust to missing data (purple),
corrupt data (brown), wrong semantic correspondence (green), and inaccurate vertex corre-
spondence (gray).

7.1 Groupwise multilinear model learning
This section describes our robust multilinear model (RMM) learning framework as outlined
in Figure 7.1 that is robust to missing data, corrupt data, wrong semantic correspondence and
erroneous vertex correspondence. To achieve this robustness to erroneous training data, RMM
jointly learns a multilinear model and corrects the data. First, we describe the groupwise mul-
tilinear objective function that minimizes multilinear compactness in Section 7.1.1. Second,
we describe how to optimize the objective function to complete and clean up an incomplete
database and correct for wrong semantic correspondence, making it possible to build a multi-
linear model as described in Section 3.4.

7.1.1 Multilinear objective function
Our objective function consists of three parts: a compactness energy EC , a data energy ED,
and a regularization energy Eµ

R as

E(X , wD, wR, µ) = EC + wDED + wRE
µ
R, (7.1)

where the weights wD and wR control the influence of the data and regularization terms, re-
spectively. The parameter µ specifies the influence of the regularization target. We now de-
scribe all terms in more detail.
Compactness: The multilinear compactness term (Eq. 6.2) used for registration optimization
in Chapter 6 aims to minimize the mode ranks of X by minimizing the ranks of X(2) and X(3).
Minimizing EC implicitly favors compact multilinear models as

EC =
1

d2

ln(det(D2 + δ2Id2)) +
1

d3

ln(det(D3 + δ3Id3)), (7.2)
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where D2 = 1
d3

X(2)XT
(2) and D3 = 1

d2
X(3)XT

(3) are the mode-2 and mode-3 covariance ma-
trices, and Idi ∈ Rdi×di is the identity matrix. The small regularization constant δn avoids
singularities of EC for mode covariance matrices without full rank.

Note that while the notation differs, Equations 7.2 and 6.2 are equivalent. The eigenvalues
in Equation 6.2 are used to show the relation to the compactness measure, and to derive the
analytic gradient of the compactness term in Appendix A.1.2. In this chapter, however, we
omit explicitly defining the eigenvalues for simplicity.
Data: The data term measures the distance of a corrupt shape x in X (aligned with the first
mode of X ) to a corresponding unregistered face scan s. The data energy is

ED =
1

n

n∑

k=1

min(‖vk(x)− nnk‖2 , ρ), (7.3)

where nnk denotes the nearest neighbor of vk(x) in s computed by a point-to-plane distance
measure, and ρ is a truncation threshold to be robust to outliers.
Regularization: The regularization term for each shape x in X is a bi-Laplacian of the form

Eµ
R =

1

n

n∑

k=1

∥∥U2(vk(x))− µU2(vk(x̃))
∥∥2
, (7.4)

where vk(x) and vk(x̃) denote the k-th vertex of shape x and the fixed reference shape x̃,
respectively. The energy Eµ

R measures the deformation energy of x relative to x̃. The pa-
rameter µ ∈ [0, 1] controls the regularization influence of x̃. Minimizing Eµ

R forces x to be
locally smooth, and the local geometry of x to be similar to x̃. Note that E0

R (i.e. µ = 0) re-
sembles the regularization from Section 6.1.1. The operator U2(p) approximates the discrete
bi-Laplacian [79] as described in Section 5.2.1.

7.1.2 Optimization
RMM minimizes E (Eq. 7.1) to jointly learn a compact multilinear model, complete and clean
up an incomplete database, and improve semantic correspondence, as outlined in Algorithm 1.
The input of RMM is a set of k ≤ d2d3 shapes ΩX = {xie} with i ∈ {1, · · · , d2} and
e ∈ {1, · · · , d3}. All shapes in ΩX are required to be in full per-vertex correspondence, which
is possibly inaccurate due to drift. The remaining d2d3−k shapes xie /∈ ΩX are either corrupt or
missing. In contrast to the registered shapes (in ΩX), for corrupt shapes only partial, possibly
noisy data are available that cannot be registered easily. For each corrupt xie, we require as
input an unregistered face scan sie ∈ ΩS that is rigidly aligned with the xie ∈ ΩX . The indices
(ie) of xie ∈ ΩX and sie ∈ ΩS define the initial semantic correspondence. For the remaining
shapes (not given in ΩX ∪ ΩS) no further information is provided. These shapes are called
missing shapes.

After initialization, RMM first optimizes the semantic correspondence as described in
Alg. 2. Then, RMM optimizes E for each shape in X individually as previously described
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in Section 6.1.3. That is, each iteration of the optimization processes all shapes of the database
in random order to avoid bias towards specific shapes. This shape-wise optimization of E
makes it possible to independently handle missing data, corrupt data, and inaccurate vertex
correspondence as shown in Alg. 1. Finally, the multilinear modelM is built from X after all
shapes in X are fixed.

Algorithm 1: RMM
Data: ΩX ; ΩS

Result:M
1 Initialization;
2 for M iterations do

/* Opt. semantic corr. (Alg. 2) */

3 min
π
E(X , 0, 0, 0)

/* Shape-wise optimization */

4 for each shape do
5 if x is missing then

/* Estimate missing shape */

6 min
x
E(X , 0, wR, 1)

7 else if x is corrupt then
/* Reconstruct corrupt shape */

8 min
x
E(X , wD, wR, 1)

9 else
/* Vertex corr. opt. (Chapter 6) */

10 Φ(min
α
E(X , 0, wR, 0))

11 end
12 end
13 end
14 ComputeM (Eq. 3.15)

Initialization: All registered shapes are initially parametrized as described in Section 6.1.2.
For each registered shape xie ∈ ΩX a thin-plate spline [45] defines a continuous mapping from
2D parameter space to the surface of xie. The thin-plate spline is computed from a discrete
mapping between parameters αk ∈ R2 and vertices vk(xie) of xie. Let Φie(α) = xie denote
the mapping of α = (α1, . . . ,αn)T to xie.

Each missing and corrupt shape xie /∈ ΩX is initialized by the mean over the registered
shapes of the same identity i and expression e. Let Ωi := {xie|∀e ∈ {1, . . . , d3} : xie ∈ ΩX}
and Ωe := {xie|∀i ∈ {1, . . . , d2} : xie ∈ ΩX} denote the set of registered shapes of identity i,
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Algorithm 2: Semantic correspondence opt.
Data: X ; threshold τ
Result: X relabeled

1 for each identity i do
2 τi = τ
3 πi := {πi(1), . . . , πi(d3)} = {1, . . . , d3}
4 πbest = πi; Ebest = Ei = E(X , 0, 0, 0)
5 for Nt iterations do
6 for Ns iterations do
7 Locally change πi randomly to π∗
8 X ∗ = X
9 x∗ie = xiπ∗(e) ∀e ∈ {1, . . . , d3}

10 E∗ = E(X ∗, 0, 0, 0)
11 if E∗ < Ei + τi then
12 πi = π∗; Ei = E∗

13 end
14 if E∗ < Ebest then
15 πbest = π∗; Ebest = E∗

16 end
17 end
18 τi = 0.5 · τi
19 end
20 xie = xiπbest(e) ∀e ∈ {1, . . . , d3}
21 end
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and expression e, respectively. The shape xie is initialized as

xie = 0.5

(
1

|Ωi|
∑

x∈Ωi

x +
1

|Ωe|
∑

x∈Ωe

x

)
, (7.5)

where |Ωi| and |Ωe| denote the cardinality of Ωi and Ωe, respectively. We call this initialization
technique the averaging scheme (AVS) in the following. We use the result of AVS as reference
shape x̃ in ER.
Semantic correspondence optimization: To optimize semantic correspondence, RMM min-
imizes E(X , 0, 0, 0) = EC . Jointly optimizing the semantic correspondence over all data is
infeasible due to the large number of parameters (m2m3). Further, as multiple expressions
should be permuted, shape-wise optimizing E is impossible. Instead, we use a strategy in-
spired by the shape-wise optimization that optimizes E for each identity individually. Note
that as for the shape-wise optimization, E still depends on all shapes, and hence the method
remains a groupwise optimization. To avoid any bias towards specific identities, the order of
the processed identities in each iteration is chosen randomly.

For each identity i we search for the permutation πi = {πi(1), . . . , πi(d3)} with πi(e) ∈
{1, . . . , d3} of the expressions of i that minimizes E. Note that πi only changes the labeling of
the expressions for each identity; the geometry of the shapes remains unchanged. Due to the
domain of πi, this is an integer problem.

Integer problems are often solved by discretization, i.e. instead of the integer problem
π ⊆ Z a discretized problem π ⊆ R is optimized. The optimization of the discretization of
E with a local method such as L-BFGS like in the other RMM optimization steps fails due to
many local minima.

Instead, we directly solve the integer problem approximatively. We optimize E with a
threshold accepting (TA) method [106] as outlined in Algorithm 2. Given an initial threshold
τ , the iteratively decreasing τ equates to the cooling schedule of simulated annealing. TA uses
two iterations, one to lower the threshold, and one for optimization for a certain threshold. TA
stores the minimum Ebest of E together with the corresponding best permutation πbest. In one
optimization iteration, πi is randomly altered to π∗ by permuting 10% of the elements of πi, the
expressions of i in X are permuted accordingly to X ∗, and E is evaluated for X ∗. Depending
on τi, π∗ is used as the starting point for the next iteration. If a new minimum is found, Ebest
and πbest are updated. Finally, the expressions of i in X are permuted by πbest. The threshold
τ can be chosen automatically.
Vertex correspondence optimization: The vertex correspondence is optimized as described
in Section 6.1.3. To optimize the vertex correspondence of xie ∈ ΩX , RMM minimizes
E(X , 0, wR, 0) = EC + wRE

0
R by reparametrizing xie. As the energy E is analytically differ-

entiable with respect to the parameters α of xie (see Appendix A.1 for the derivatives), E is
minimized as in Chapter 6. The optimized shape xie is updated as xie = Φie(α).
Missing data estimation: To estimate a missing shape xie /∈ ΩX , sie /∈ ΩS , RMM minimizes
E(X , 0, wR, 1) = EC + wRE

1
R. In contrast to the vertex correspondence optimization, E is

minimized in Euclidean vertex space using L-BFGS [92] rather than in parameter space. That
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is, during optimization each vertex of the missing shape moves in R3 to minimize E. This is
required as the geometry of the missing shape is unknown.
Corrupt data estimation: To estimate the shape from a corrupt face scan s ∈ ΩS , RMM min-
imizesE(X , wD, wR, 1) = EC+wDED+wRE

1
R. To be robust to erroneous initial alignments,

the alignment of s is refined using an iterative closest point algorithm. As for the missing data
estimation, E is minimized in Euclidean vertex space using L-BFGS [92].

7.2 Evaluation
This section evaluates the robustness of RMM to missing data, to corrupt data, and to wrong
semantic correspondence.
Data: We evaluate RMM on the BU-3DFE database [139] and the Bosphorus database [116].
Both databases are initially registered with an automatic template fitting method [114] that
uses the landmarks provided with the databases. For BU-3DFE we use the same subset, called
the BU-3DFE set as in Chapter 6. For Bosphorus we randomly choose 30 identities and use 17
action units and call this subset the Bosphorus set. Note that the Bosphorus set contains more
expressions for fewer subjects than the Bosphorus set used in Chapter 6.

The robustness of RMM to missing data is evaluated on the BU-3DFE set and the Bospho-
rus set, each with randomly removed shapes. For evaluation, we use, for both datasets, config-
urations with 1%, 5%, 10%, 25%, and 50% of the shapes missing.

The robustness of RMM to corrupt data is evaluated on the BU-3DFE set and the Bospho-
rus set, each with subsets of corrupt data due to simulated and real partial occlusions. While
the BU-3DFE set is only corrupted by simulated occlusions, the Bosphorus set contains noisy
and partially occluded face scans, which we use to substitute the complete scans in our ex-
periments. The occlusions are selected to affect the facial regions shown in the top row of
Figure 7.4. We use, for both datasets, configurations with 1%, 5%, 10%, 25%, and 50% cor-
rupt shapes during evaluation.

The robustness of RMM to wrong semantic correspondence is evaluated on the BU-3DFE
set and the Bosphorus set, each with a subset of randomly generated erroneously labeled ex-
pressions. To simulate erroneously labeled expressions, the wrong semantic correspondence
subsets consist of randomly chosen identities, where the expressions are randomly permuted.
We use for both datasets configurations with randomly permuted expression labelings of 5%,
10%, 25%, 50%, and 100% of the identities.
Parameter settings: For our experiments, all parameters are fixed for all experiments on two
different databases and with varying degrees of missing data, corrupt data, and wrong semantic
correspondence. The parameters wD and wR (Eq. 7.1) control the influence of the data and
regularization terms, respectively. We choose wD = 1e − 3 and wR = 20 to reconstruct
missing and corrupt data, and wR = 0.5 to optimize vertex correspondence. For databases
that contain less corrupt data than in our experiments, wD could be set higher and wR could
be set lower to allow the recovery of more facial detail. The parameters δ2 and δ3 are used to
avoid singularities of EC (Eq. 7.2), and we choose them as δ2 = δ3 = 0.01 as in Chapter 6.
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GT AVS HaLRTC RMM

Figure 7.2: Comparison of robustness to missing data. From left to right: Ground truth (GT).
Averaging scheme (AVS). HaLRTC [93].

The parameter ρ (Eq. 7.3) relates directly to the size of the face, and can be fixed at 5 mm.
The parameters M (Alg. 1), Nt (Alg. 2), and Ns (Alg. 2) control the number of iterations
performed, and allow a trade-off between running time and accuracy. We choose them as
M = 15, Nt = 10, and Ns = 200.

7.2.1 Robustness to missing data
Objective function: To study the influence of ER on E for missing data completion, we
optimize E with (wD = 1e − 3) and without (wD = 0) regularization. During optimization,
each shape has only limited influence on E. We observed that the shape-wise optimization
of EC overcompensates for the limited influence of few shapes and may produce unlikely
shapes. The regularization successfully prevents this overcompensation, as it penalizes strong
local distortions.
Comparison: We compare our RMM to the ground-truth shape, to AVS, and to the result
of the state-of-the-art tensor completion method HaLRTC [93]. Figure 7.2 visually compares
the completed shapes. While HaLRTC and RMM result in a better estimation of the missing
shape than AVS, they perform rather similarly. Figure 7.3 shows the median error, measured
as the distance of all completed shapes to the ground truth for all configurations. HaLRTC and
RMM perform better than AVS if up to 10% of the data are missing. While for the Bosphorus
set RMM performs slightly better than HaLRTC, the overall performance of the two methods
is similar.

Summing up, given a dataset with missing data, RMM reconstructs the missing data well.
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Figure 7.3: Median error of HaLRTC [93] and AVS for different missing data configurations
compared to RMM. Left: BU-3DFE set. Right: Bosphorus set.

7.2.2 Robustness to corrupt data

Objective function: To show the individual influence of each term of E to reconstruct corrupt
data, we optimizeE with different combinations of energy terms. Figure 7.5 visually compares
the results for the different combinations. The optimization of ED closely reconstructs s in
non-corrupt regions, but corrupt regions produce strong artifacts, and the expressions are not
always well reconstructed. The optimization of EC + wDED reconstructs the shape and the
expression of s well in non-corrupt regions, and gives a reasonable prediction of the shape
for corrupt regions, but corrupt regions contain artifacts. Note that EC is unable to regularize
ED sufficiently as (even strong) local distortions in the reconstruction only have a negligible
influence onEC . The optimization ofwDED+wRER avoids the artifacts in corrupt regions, but
the facial expression is not reconstructed well. The full optimization ofE (RMM) reconstructs
the facial expression well and is robust to corrupt data.
Comparison: As statistical face models are known to be robust to partial occlusions and noise
(see e.g. Chapter 5), we compare RMM to a multilinear model reconstruction of the corrupt
data. Since the multilinear face model requires a complete data tensor for training, the data
tensor is completed using HaLRTC [93]. A multilinear face model is trained that keeps 95%
of the identity and expression variations on the completed data, and all corrupt shapes of the
dataset are reconstructed. We call this combination of existing methods HaLRTC+MM in the
following. In contrast to RMM, HaLRTC+MM gets facial landmarks for fitting to initialize
the expression.

Figure 7.6 visually compares HaLRTC+MM and RMM for 10% corrupt data. While both
methods are robust to corrupt data, RMM better reconstructs the facial expression. Further,
RMM is better at reconstructing the facial shape, e.g. at the nose. Since the distance-to-data
measure is only a valid error measure in non-occluded regions, we define for each type of
occlusion a valid region as visualized in the bottom of Figure 7.4. The error measure then only
uses vertices within the valid regions. Figure 7.7 shows the cumulative error plots for both
datasets with 10% corrupt data. For both datasets RMM performs better than HaLRTC+MM.
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Figure 7.4: Samples of corrupt data and corresponding valid regions (red) for each type of
occlusion used for error measure. Top: Simulated occlusions. Bottom: Real occlusions in the
Bosphorus database.
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a) b) c) d) e)

Figure 7.5: Influence of each term in E (Eq. 7.1) to reconstruct corrupt data (10% corrupt).
From left to right: a) Corrupt scan s. Optimization of: b) ED. c) EC + wDED. d) wDED +
wRER. e) RMM. Top: BU-3DFE set. Bottom: Bosphorus set.

For most other configurations RMM performs better than HaLRTC+MM as shown in Fig-
ure 7.8. For the BU-3DFE set with 50% corrupt data, RMM reconstructs a few expressions
incorrectly due to the sparse sampling of the data, while HaLRTC+MM more successfully
reconstructs the expressions thanks to the additionally provided landmarks. To reconstruct
corrupt data, RMM assumes AVS to give a reasonable initialization of the expression of s as
the iterative nearest neighbor terms ED is known to only converge locally. This requires the
expression of s to be similar to the expressions in ΩX . Using landmarks for initialization could
help RMM to reconstruct extreme expressions more reliably.

Summing up, given a dataset with corrupt data, RMM provides a reconstruction that pre-
serves facial details while being robust to partial occlusions and noise.

7.2.3 Robustness to wrong semantic correspondence
We quantitatively evaluate the optimized semantic correspondence using compactness, gen-
eralization, and specificity extended to the multilinear case as described in Section 4.2.2.
Figure 7.9 shows the influence of wrong semantic correspondence on compactness, gener-
alization, and specificity (identity mode) for the BU-3DFE set (top) and the Bosphorus set
(bottom) for randomly distorted expression labelings of 50% of the identities. Compared to
the ground truth (GT), the model with wrong semantic correspondence (Init) is less compact,
less general, and more specific. After optimization (RMM) the model becomes significantly
more compact, more general, and less specific, comparable to the ground truth. Hence, after
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s HaLRTC + MM RMM

Figure 7.6: Comparison with combination of HaLRTC [93] and multilinear model (MM) to
reconstruct corrupt data (10% corrupt). Top: BU-3DFE set. Bottom: Bosphorus set.
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Figure 7.7: Cumulative error of combination of HaLRTC [93] and multilinear model for 10%
corrupt data compared to RMM. Left: BU-3DFE set. Right: Bosphorus set.
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Figure 7.8: Median error of combination of HaLRTC [93] and multilinear model for different
corrupt data configurations compared to RMM. Left: BU-3DFE set. Right: Bosphorus set.
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Figure 7.9: Comparison to ground truth (GT) for randomly permuted labeling of 50% of the
identities before (Init) and after optimization (RMM). Left: Compactness. Middle: General-
ization: Right: Specificity. Top: BU-3DFE set. Bottom: Bosphorus set.
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GT Init RMM

Figure 7.10: Expression variations of two expression components (rows) for randomly per-
muted labeling of 50% of the identities for the BU-3DFE set. The magnitude of the vertex
displacement is color coded from blue (zero) to red (maximum). Left: GT. Middle: Init.
Right: RMM.
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Figure 7.11: Number of components needed to keep 90% of the data variability before (Init)
and after optimization (RMM). Left: BU-3DFE set. Right: Bosphorus set.
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optimizing the semantic correspondence, the model requires fewer components to capture the
same variability of the data.

When 50% of the data are permuted, to keep 90% of the data variability before optimiza-
tion, a total of 26 and 25 components are necessary for the BU-3DFE and Bosphorus sets,
respectively, while after optimization 20 and 15 components suffice for the BU-3DFE and
Bosphorus sets, respectively. Figure 7.10 shows the variations of two expression components.
The variations of the model increase significantly after optimization. For the other configura-
tions RMM also gives significant improvements as shown in Figure 7.11.

Summing up, given a dataset with wrong semantic correspondence, RMM improves the
semantic correspondence, and results in a more compact model.

7.3 Summary
This chapter presented a groupwise multilinear model learning framework that is robust to
missing data, corrupt data, wrong semantic correspondence, and inaccurate vertex correspon-
dence. This allows highly accurate multilinear face models to be built from existing 3D face
databases. We have evaluated our framework on two databases with multiple levels of missing
data, corrupt data caused by noise and partial occlusions, and erroneously labeled expressions.
We have shown that our framework completes data comparably to state-of-the-art tensor com-
pletion methods, that it reconstructs corrupt data better than state-of-the-art methods, and that
the quality of the learned model increases significantly for erroneously labeled expressions.



Chapter 8
Motion sizing system

“It is the common wonder of all men, how among so many millions of faces, there
should be none alike.”

– Sir Thomas Browne

This chapter presents one possible application of the shape space-based registration meth-
ods developed in this thesis. More specifically, Chapters 4 and 5 described methods to fully
automatically register entire 3D facial motion sequences. This chapter introduces a general
framework to compute a sizing system by leveraging such registered motion data.

For the design of mass-produced wearable objects for a population it is important to find a
small number of sizes, called a sizing system, that will fit well on a wide range of individuals
in the population. To obtain a sizing system that incorporates the shape of an identity along
with its motion, we introduce a general framework to generate a sizing system for dynamic
3D motion data. Based on a registered 3D motion database a sizing system is computed for
task-specific anthropometric measurements and tolerances, specified by designers.

8.1 Motivation
Face masks and respirators exist in many different types and sizes and are widely used by the
military (e.g. for pilots’ oxygen masks [86]), by public safety departments (e.g. respirators
for firefighters [9]), and for medical (e.g. aerosol face masks [7]) and automotive applications
(e.g. paint respirators). Depending on the type of face mask, it is designed to supply oxygen or
filter air. For most kinds of face masks it is important to fit many different kinds of face shapes.
Leakage could cause, for aerosol face masks, a contamination of the caregiver’s area, and for
respirators, an inhalation of harmful gases and particles, which could cause lung diseases or
other health problems. Furthermore, loosely fitting oxygen masks with leakage towards the
eyes are uncomfortable to wear. A tight fit without leakage is therefore crucial for the design
of an effective face mask.

In ergonomics, many works exist that aim at creating sizing systems based on anthropo-
metric measurements for the design of face masks [7, 86, 9, 60], helmets [134], gloves [82],
or more generally, for apparel [99]. The aim of generating a sizing system with a low num-
ber of different sizes is that a designed product should fit a wide range of individuals in the

89
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Figure 8.1: Representation of the anthropometric measurements face length (purple) and lip
width (blue) for motion sequence. Left: 3D motion sequence. Right: Resulting curve in
parameter space.

population it is designed for. To generate a sizing system, design-specific anthropometric mea-
surements are gathered for a population and groups are formed, where identities with similar
measurements are within the same group. Each group is then represented by a size within the
sizing system.

Currently, the design of face masks only considers the shape of neutral faces. Since face
masks are worn for long periods, it is likely that a wearer will move his or her face while
wearing the mask, e.g. by talking or changing facial expressions. Therefore, a tight fit of
the face mask is also necessary in the presence of facial motion, to avoid leakage caused by
motion.

Given a registered motion database, the input for our framework is the specification of
the anthropometric measurements used. Furthermore, an ordered set of tolerances must be
specified for each dimension, and the number of sizes that should be computed must be given
(otherwise a sizing system is found that fits for all input data). These input parameters are
specific to the designed product and must be specified by designers. Given these parame-
ters, our framework outputs a sizing system with the specified number of sizes, together with
representative 3D shape models for each size.

Given a set of problem-specific anthropometric measurements, each shape in the database
of 3D motion data is represented by a point in high-dimensional parameter space. A sizing
system is then computed by solving a stabbing problem in parameter space.

8.2 Parameter space for dynamic motion data

In this section, we introduce a parameter space of anthropometric measurements for dynamic
data, and describe a method to fully automatically compute a sizing system for this parameter
space. Given a database of 3D faces in motion in full correspondence, we extract an ordered
set of d anthropometric measurements from each scan. For each scan si of a motion sequence,
the set of measurements is denoted by pi ∈ Rd. The set of all measurements of all scans
defines the high-dimensional parameter space P ⊆ Rd. Since each frame of a motion sequence
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Figure 8.2: Given some tolerances ti and tj and some gear designed for measurements repre-
sented by a point p in parameter space, all points within a parameter box B centered at p are
fit by the gear.

gives a point in P, an entire sequence is represented by a curve in P. Figure 8.1 shows two
measurements extracted from a motion sequence, resulting in a curve in P. Since for each
identity, multiple motion sequences may exist, one identity is represented by a set of curves,
one for each motion sequence.

The designer can specify a tolerance ti along each dimension i that specifies the amount
of stretch supported by the specific gear. For the specified tolerances, a d-dimensional axis-
aligned parameter box B is defined, where the length of the side in dimension i is ti. Some
gear designed to fit for some measurements p ∈ P therefore also fits to all points in P within
a translated copy of B centered at p (see Figure 8.2). A sizing system can then be computed
by covering the parameter space using translated copies Bi of B. Since our goal is to design a
sizing system for motion data, where the gear fits for an identity through various motions, all
curves of one identity must be contained within the same box Bi.

8.3 Covering of parameter space using box stabbing

All curves of one identity need to be covered by the same box. The greedy box covering
method by Wuhrer et al. [134] repeatedly selects the box centered at a point in parameter
space that covers the most uncovered points. This greedy covering method cannot be applied
to dynamic data, since a box centered at one point does not necessarily cover all curves of the
identity.

Instead, we transform the problem into a d-dimensional stabbing problem as shown in
Figure 8.3. First, we compute, for each identity, the area Iid, where a box Bi can be centered
to cover all curves of that identity. Figure 8.4 shows the construction of Iid for three selected
points of one identity. For each point pi from one identity (for one identity, each frame of
each motion sequence is represented by pi ∈ P) we define Ii to be the area within a copy of
B, centered at pi. By construction, any Bi with center within Ii contains pi. We obtain Iid by
intersecting all Ii of one identity. For each identity the area Iid defines a region where each
point chosen as the center of Bi covers all points pi belonging to one identity. If a point within
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Figure 8.3: Computation of box covering using box stabbing. Left: Multiple points in param-
eter space from different identities (one color per identity) that should be covered. Center:
Identity boxes together with a stabbing point (black). Right: Parameter box centered at the
computed stabbing point that covers all points of different identities.
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Figure 8.4: Computation of the identity box Iid for points of one identity. The box Iid bounds
the area, where each point chosen as center of Bi covers all points of the identity in parameter
space.

the intersection of multiple Iid is chosen as the center of Bi, Bi contains multiple identities.
To get a covering of the parameter space we now search for the minimum set of points

such that each Iid is stabbed by at least one point. Each stabbing point represents the center of
a cover box in parameter space. We use the method by Nielson [104] to compute this stabbing.

8.3.1 Full stabbing of dynamic identity boxes

To compute the optimal stabbing of 1-dimensional intervals and axis-parallel d-dimensional
boxes, Nielson [104] proposes two divide-and-conquer algorithms. While the 1-dimensional
stabbing can be solved optimally, computing a d-dimensional stabbing for d ≥ 2 is NP-
complete [53]. The proposed algorithm to compute the d-dimensional stabbing gives a bounded
approximation of the optimal solution.

To get an optimal 1-dimensional stabbing, the rightmost lower interval point is selected
and all intervals that are stabbed by this point are removed. This is repeated until all intervals
are stabbed. This stabbing is computed using the following output-sensitive algorithm. The
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input set of n intervals I is recursively split into right and left subsets of intervals, with respect
to the median of all lower interval endpoints. If a subset contains only one interval, the lower
endpoint of the interval is chosen as a stabbing point. All intervals stabbed by the chosen
stabbing point are removed from further processing. The algorithm stops once all intervals
are stabbed. The time complexity of this stabbing is Θ(n log c∗(I)), where c∗(I) denotes the
minimum number of stabbing points necessary to stab all intervals.

To compute a stabbing of a set I of n d-dimensional axis-parallel boxes, the input set of
boxes is separated into three subsets. For dimension d of the boxes, a stabbing is computed
for the 1-dimensional intervals and the median stabbing point is used to separate the input set
of boxes into three subsets: all boxes that intersect the median stabbing point, the subsets to
the left, and the subset to the right of the median stabbing point. The right and left subsets
are then recursively separated into three subsets. For the intersecting subset, the stabbing
median value is fixed for dimension d and the stabbing of the (d − 1)-dimensional boxes is
computed recursively. The method outputs c(I) points in time O(dn log c(I)), where c(I) ≤
b∗(I)(1 + log2 b

∗(I))d−1 with b∗(I) is the maximum number of pairwise disjoint boxes.

8.3.2 Stabbing with a fixed number of points
For the design of wearables for large populations, it is not desirable to create a sizing system
with a large number of different sizes that fits the entire population. Instead, a sizing system
with a fixed number of sizes that fit the maximum number of individuals is sought. We there-
fore search for a fixed number of stabbing points that stab the maximum number of identity
boxes. We use a greedy approach to solve this. We first compute the full stabbing of the
parameter space using the method described in Section 8.3.1. We then iteratively select the
stabbing points that stab the most unstabbed identity boxes.

8.4 Representation of covering
After computing a sizing system for the parameter space, we aim at computing a representative
3D face model for each of the sizes. This representative face model can be used for fabrication.
One possibility is to compute the full Procrustes mean [45] of all identities covered by the
box. To compute the full Procrustes mean of a set of shapes in correspondence, we iteratively
compute the mean over all shapes, and each of the shapes is rigidly aligned to the mean shape.
This is also used by Wuhrer et al. [134] to compute a representative model.

Another possibility is to select the model that is closest in parameter space to the cover box
center as used by Han et al. [60] and Lee [86]. For data that are dense in parameter space, the
model closest to the cover box center is expected to give a good representation of the box.

A further method to compute a representative model for the cover box is feature analysis by
Allen et al. [3] as used by Wuhrer et al. [134]. Wuhrer et al. compute a linear mapping between
the parameter space and a linear PCA space of 3D faces to reconstruct 3D faces for given sets
of measurements in parameter space. In contrast to our approach, their method only uses faces
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Figure 8.5: Important measurements for face mask design. Left: Two important measurements
for the design of aerosol face masks [7]. Right: Six measurements classified as being of high
importance for the design of oxygen masks [86].

in one neutral expression, and the variations of the data can therefore be modeled using a linear
PCA model. Since our data contain variations due to motion and shape differences of different
identities, the variations cannot be modeled using a linear space. Therefore, a linear mapping
between the parameter space and the non-linear model space does not lead to representative
3D face models.

8.5 Evaluation

This section evaluates the proposed space covering using measurements associated with the
design of face masks. The motion data are from the BU-4DFE database [138], registered
using the method described in Chapter 4. Based on the temporal registration of the motion
sequences, we automatically select five representative frames of each sequence that cover the
full range of motion. In the following, each sequence is therefore represented by five points in
parameter space.

In our experiments we show how well the computed sizing system fits for a given dataset,
and its generalization to unseen data. To this end, we randomly divide the motion sequences
into a training and a test set, each containing about 50% of the data, with the same ratio of male
and female subjects. For our experiments we do not consider the surprised facial expression,
since many of the surprise motion sequences are performed in an artificial fashion by fully
opening the mouth, which we think would be an unnatural behavior for a person wearing a
face mask. Hence, for each identity up to five motion sequences are used, which gives us up to
25 points in parameter space for each identity. Overall we use 390 dynamic motion sequences
from 98 identities.

8.5.1 Anthropometric measurements for face mask design

For the design of face masks, different measurements are important, depending on the type
of mask and its application area. Amirav et al. [7] use two measurements (shown in the left
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Measurement Face length Lip width
Mean 10.87 8.05
Standard deviation 3.35 3.05
Median 10.98 8.08
Maximum 19.43 14.40

Table 8.1: Statistics in mm computed over the maximum measurement range over all identities
for the 2D parameter space (for measurements see Figure 8.5, left).

Measurement 1 2 3 4 5 6
Mean 10.47 10.87 1.47 1.07 4.68 8.05
Standard deviation 3.32 3.35 0.56 0.50 1.80 3.05
Median 10.2 10.98 1.52 1.02 4.66 8.08
Maximum 18.59 19.43 2.91 2.34 8.28 14.40

Table 8.2: Statistics in mm computed over the maximum measurement range over all identities
for the 6D parameter space (for measurements see Figure 8.5, right).

of Figure 8.5) for the design of aerosol face masks. Lee [86] classifies 22 facial measure-
ments according to their importance for the design of oxygen masks. The six facial measure-
ments shown at the right in Figure 8.5 are classified as being of high importance for oxygen
masks. We use two different sets of measurements to evaluate our approach: first, the two
measurements used by Amirav et al. leading to a 2D parameter space, and second, the six
measurements by Lee, leading to a 6D parameter space.

8.5.2 Dynamic data analysis

This section evaluates the variations within the training data caused by motion. For each
identity, we compute the axis-aligned bounding box covering all points in parameter space.
This axis-aligned bounding box is computed as the difference of maximum and minimum
values along each measurement dimension over all points of the identity in parameter space.
For each identity the axis-aligned bounding box is the smallest possible parameter box that is
able to cover the identity. Since for static data each identity consists of only a single point in
parameter space, the side length of an axis-aligned bounding box for static data would be zero.
The side length of the box measures the influence of the motion for dynamic motion data.
We analyze the variation of the measurements due to motion by computing mean, standard
deviation, median and maximum of the side lengths of the axis-aligned bounding boxes over
all identities (see Table 8.1 for the 2D parameter space, and Table 8.2 for 6D, respectively).
For both tables, the maximum values describe the minimum parameter box size necessary for
a full covering of the parameter space to be computed.
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Space dimension 3 boxes 5 boxes
2D 94.0 100.0
6D 74.0 82.0

Table 8.3: Percentage of covered training data with a fixed number of parameter boxes for 2D
and 6D parameter space.

8.5.3 Space covering of training data

80 100 120
40

50

60

70

Face Length

L
ip

 W
id

th

80 100 120
40

50

60

70

Face Length

L
ip

 W
id

th

80 100 120
40

50

60

70

Face Length

L
ip

 W
id

th

80 100 120
40

50

60

70

Face Length

L
ip

 W
id

th

Figure 8.6: Overview of our parameter space covering approach. Upper left: Points in 2D
parameter space. Upper right: Computed identity boxes Iid. Lower left: Full stabbing of
identity boxes with 5 stabbing points. Lower right: Resulting covering in parameter space.

Given a fixed number of boxes, we want to get a good covering of the parameter space
of the training data. We therefore choose the tolerances for the size of the box B based on
the analysis of the training data from Section 8.5.2. For the covering of the 2D parameter
space (at left in Figure 8.5) we choose tolerances of 20 mm for the face length and 17 mm
for the lip width. Figure 8.6 shows the different steps of our covering method for the training
data. The upper left of Figure 8.6 shows the training data in parameter space, where each
identity is represented by up to 25 points. The upper right shows the identity boxes computed
as described in Section 8.3. The lower left then shows the stabbing points for the identity
boxes from Section 8.3.1. The lower right shows the resulting covering. For the covering of
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Figure 8.7: Representation of the motion space covering. Top: Procrustes mean shape for
the five cover boxes for the 2D parameter space of the training data. Bottom: Faces from the
training data closest to the box center in parameter space for the 2D parameter space of the
training data.

the 6D parameter space, spanned by the measurements at the right in Figure 8.5, we choose
the tolerances 1 = 20 mm, 2 = 20 mm, 3 = 5 mm, 4 = 5 mm, 5 = 10 mm, and 6 = 17 mm.

For both parameter spaces, we compute a covering with three and five boxes and measure
the number of identities that are fully covered by these boxes (see Table 8.3). With three boxes,
94% of the identities in 2D parameter space are covered, and 74.0% of the 6D parameter space.
With five boxes, all identities of the 2D parameter space are covered, and 82.0% of the 6D
parameter space. Since for the 6D case the same number of points is embedded in a higher-
dimensional parameter space, it is expected that more boxes are needed to cover the full space
and that the same number of boxes cover a lower percentage of the data. Computing the full
covering of both parameter spaces takes less than a second, running on a standard PC.

For each of the computed 2D cover boxes, we compute representative 3D face shapes as
described in Section 8.4. First, for each box, we compute the full Procrustes mean over all
identities fully covered by the box. The top of Figure 8.7 shows the full Procrustes mean for
the five 2D cover boxes. Computing the full Procrustes mean leads to a good representation
if the mean of the shapes used for computation is close to the box center. For our dynamic
motion data a large amount of variation in parameter space is caused by the motion rather than
by shape differences between different identities. Since identities need to be fully covered by
boxes, the sizes of the boxes need to be large for data with large motion variations. With large
boxes the overlap between different boxes is also large, and some identities are covered by
multiple boxes. This causes the Procrustes mean shapes of different boxes to be similar.

Second, we find, for each box, the shape within the training database that is closest to the
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Space dimension 3 boxes 5 boxes
2D 81.4 91.7
6D 58.3 64.6

Table 8.4: Generalization of the covering. Percentage of covered test data with the covering
computed for the training data for 2D and 6D parameter space.

center of the box in parameter space. The bottom of Figure 8.7 shows the face shapes closest
to the box centers in parameter space. Compared to the Procrustes mean shape, they are more
distinctive and give a representative 3D geometry for the boxes.

8.5.4 Generalization of space covering
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Figure 8.8: Covering applied to unseen data. Upper left: Midpoints of first three greedily
selected cover boxes (stabbing points). Upper right: First three greedily selected cover boxes.
Lower left: Midpoints of full training covering (stabbing points). Lower right: Full training
covering.

In this section we evaluate how well the space covering computed for the training data from
Section 8.5.3 generalizes to unseen data. Figure 8.8 shows in 2D parameter space the covering
computed on the training data applied to the test data. The top row of Figure 8.8 shows the first
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three greedily selected stabbing points (left) and cover boxes (right); the bottom row shows
the stabbing points (left) and cover boxes (right) of the full training covering.

To compute the generalization capability, we check, for each identity of the test data,
whether it is fully covered by one of the training parameter boxes. An identity is fully covered
by a parameter box if for that identity, all its points in parameter space are within the same
box. Table 8.4 shows the covering rates for the test data. For three cover boxes, 81.4% of
the test data identities are covered in 2D parameter space, and 58.3% in 6D parameter space.
For five cover boxes, 91.7% of the test data identities are covered in 2D parameter space, and
64.6% in 6D parameter space. As for the covering of the training data, it is expected that the
same number of boxes covers a lower percentage of the data in 6D than in 2D.

8.6 Summary
This chapter presented a general framework to compute a sizing system for dynamic motion
data. This framework is one application of the registration methods developed in this thesis.
We compute a covering of the low-dimensional parameter space with translated copies of
a box of fixed size, defining the tolerances of a designed product along each measurement
dimension. The covering is computed using a d-dimensional box stabbing method. We apply
our framework to sets of anthropometric measurements used for the design of face masks, and
evaluate our sizing system in terms of its ability to fit unseen data. For each size of the sizing
system created, we compute a representative 3D geometry that can be used by designers to
produce a prototype model.

While the sizing system computation in our framework is generally applicable for all kinds
of measurements, our overall framework has some limitations. Our framework uses a regis-
tered database to compute a representative 3D face for each size. The registration methods
developed throughout this thesis filter out effects of facial hair or other partial occlusions as
caused e.g. by glasses. If the sizing system needs to consider facial hair or glasses, further
data and different registration techniques are required.

Furthermore, we assume the tolerances for each measurement dimension to be independent
and therefore to form a box in parameter space. If the tolerances are not independent, e.g. they
form any other convex shape Ii in parameter space covering pi, the region Iid for each identity
is given by an arbitrarily shaped convex object (intersection of Ii of all points). To obtain a
sizing system for these tolerances, we would need to compute the stabbing of arbitrary-shaped
convex shapes.

One very important point to test the benefit of our framework for designers would be to
produce a real prototype of a face mask based on our computed sizing system for dynamic
data. Producing a real prototype together with a user study to evaluate its quality in a real-
world application is left for future work, since this would require an interdisciplinary study.



100 CHAPTER 8. MOTION SIZING SYSTEM



Chapter 9
Conclusion

“I did then what I knew how to do. Now that I know better, I do better.”

– Maya Angelou

This chapter briefly summarizes the main contributions of this thesis and discusses some
open problems and future work.

Closing remarks
This thesis has presented methods to statistically analyze static and dynamic 3D face data. The
fundamental principle of our techniques is to exploit redundancies in the data for shape pro-
cessing. The framework from Chapter 4 makes it possible to fully automatically register large
databases of facial motion sequences. Due to the multilinear model used as statistical prior, the
registration approach is robust to data corruptions, and it results in a compact representation
of each motion sequence that is used for statistical analysis of the motion data.

While these global multilinear models represent the global face shape well, they are unable
to represent geometric fine-scale details. To overcome this limitation, Chapter 5 introduced a
novel localized multilinear model that effectively combines wavelet transform and multilinear
models. This localized multilinear model preserves more fine-scale geometric details than
global multilinear models do, while retaining robustness to various data corruptions when
reconstructing static or dynamic face data.

These global and local multilinear models require all training faces to be in full correspon-
dence. On the other hand, once such a multilinear model is learned, it can be used to register
new face scans. Inspired by the minimum description length principle, Chapter 6 presented a
groupwise multilinear correspondence optimization method that jointly optimizes vertex cor-
respondence and learns a multilinear face model. Compared to existing PCA-based optimiza-
tion methods this multilinear correspondence optimization method leads to correspondences
of higher quality and is computationally more efficient, which makes it possible for the first
time to apply an approach based on MDL to databases containing over 1000 shapes.

Previous methods to learn a multilinear model further degrade if not every person is cap-
tured in every expression, if face scans are noisy or partially occluded, or if expressions are
erroneously labeled. To overcome these limitations, the groupwise framework from Chapter 7
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makes it possible to robustly learn a multilinear face model from 3D face databases with miss-
ing data, corrupt data, wrong semantic correspondence, and inaccurate vertex correspondence.
This robust model learning framework makes it possible to build highly accurate multilin-
ear face models from databases that otherwise would not be usable for learning a multilinear
model.

Finally, we presented an application of the registration methods developed throughout this
thesis. Chapter 8 leveraged registered dynamic 3D face data to generate a sizing system appli-
cable for the design of face masks. Our framework computes for each size a representative 3D
shape that can be used by designers to produce a prototype model.

Open problems
This section summarizes some open problems and future research directions that relate to this
thesis.
Open problem 1: Throughout this thesis we describe the deforming faces using multilinear
models. It has been shown that such multilinear models can be used to capture facial per-
formance from monocular video input [120]. Reconstructing a photorealistic 3D avatar from
monocular video has recently attracted a lot of attention (see Section 2.5). The “Digital Emily
Project” [2] creates a photorealistic digital virtual avatar with extensive manual effort. De-
spite the substantial advances in automating this process that have been achieved lately, the
problem of capturing the entire facial performance (i.e. including the eyes and inner mouth
region) from monocular video in real time in photorealistic quality remains unsolved to our
knowledge.
Open problem 2: The multilinear models used throughout this thesis require full vertex corre-
spondence across face shapes of different identities and different expressions. For one subject
a dense correspondence can be defined naturally on pore-level resolution by tracking pores and
freckles across multiple expressions [26]. However, a very dense correspondence across differ-
ent subjects may not be semantically meaningful, as different subjects have different numbers
of pores, freckles, etc. A similar observation has been made for human body shapes [17]. The
global and local multilinear models proposed in this thesis have a resolution that is far from
pore-level accuracy. To increase the accuracy of our methods to pore-level details or beyond
therefore poses additional scientifically interesting questions and is not just a matter of increas-
ing resolution. The reason is that it remains unclear how to obtain a high-quality registration
with the required resolution.
Open problem 3: While the theoretical background of our methods is general, we only focus
on 3D faces in this thesis. Hence, one open question is the performance of our methods on
other data. Since our methods rely heavily on multilinear models, the data are assumed to be
multilinearly distributed. This requires data with one or multiple sources of variations, where
each source of variation can be modeled linearly. It has been shown that multilinear models
can also be used e.g. to describe medical data like the prostate [73]. Our methods should work
in these cases as well.



Chapter A
Appendix

“It is the story that matters not just the ending.”

– Paul Lockhart

This chapter provides further details on the multilinear correspondence optimization ap-
proach proposed in Chapter 6. Section A.1 provides more details on how the objective function
that measures the model quality depending on correspondences is optimized. Further, the com-
putation complexities of the multilinear model and existing linear approaches are compared in
Section A.2.

A.1 Formulation of registration optimization
The objective function E in Equation 6.1 is analytically differentiable with respect to the 2D
shape parameters α. Let xie ∈ R3n denote the face of identity i in expression e that consists
of n vertices. To simplify notation, whenever a fixed shape is used, we omit the subscripts ie.

For a fixed shape x, the gradient ∂E
∂αk
∈ R2 ofE with respect to the parametersαk of vertex

vk(x) is
∂E

∂αk
=

∂x
∂αk

∂EC
∂x

+ wR
∂x
∂αk

∂ER
∂x

. (A.1)

In the following, we provide derivations for these partial derivatives. Section A.1.1 derives
∂ER

∂x and gives the result in Equation A.4, Section A.1.2 derives ∂EC

∂x and gives the result in
Equation A.5, and Section A.1.3 derives ∂x

∂αk
and gives the result in Equation A.17.

A.1.1 Regularization derivative
This section gives the derivative of ER (Eq. 6.3) with respect to the shape x. To compute the
derivative ∂ER

∂x , we first define a block matrix S ∈ R3n×3n. One submatrix Sjk ∈ R3×3 of S is
defined as

Sjk =





−I j = k
1

|N(pj)|I pk ∈ N(pj)

0 otherwise,

(A.2)
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where I ∈ R3×3 denotes the identity matrix.
The energy ER can then be expressed as

ER =
1

n
(SSx)T (SSx) . (A.3)

The derivative ∂ER

∂x is then

∂ER
∂x

=
2

n
(SS)T (SS) x. (A.4)

A.1.2 Compactness derivative
This section gives the derivative of EC (Eq. 6.2) with respect to the shape x. For PCA mod-
els, the compactness energy is measured by the trace of the covariance matrix. Instead of
minimizing the trace of the covariance matrix, Kotcheff and Taylor [81] minimize the loga-
rithm of the determinant of the covariance matrix. They show that minimizing the logarithm
of the determinant of the covariance matrix leads to a better model than minimizing the trace
of the covariance matrix. This observation can be explained because the resulting energy is
a log-sum penalty function on the eigenvalues of the covariance matrix, which is known to
encourage sparsity [32] as small eigenvalues are heavily punished.

Due to the different centering, the extension of the PCA compactness gradient to the mul-
tilinear case is not straightforward. The derivative of EC with respect to the shape x is by the
chain rule

∂EC
∂x

=
1

d2

d2∑

a=1

∂λ
(2)
a

∂x︸ ︷︷ ︸
Eq. A.10

∂E
(2)
C,a

∂λ
(2)
a︸ ︷︷ ︸

Eq. A.6

+
1

d3

d3∑

a=1

∂λ
(3)
a

∂x︸ ︷︷ ︸
Eq. A.13

∂E
(3)
C,a

∂λ
(3)
a︸ ︷︷ ︸

Eq. A.12

, (A.5)

with different partial derivatives for the identity mode and the expression mode.
Mode-2: The derivative for mode-2 is

∂E
(2)
C,a

∂λ
(2)
a

=
1

λ
(2)
a + δ2

, (A.6)

and by the chain rule
∂λ

(2)
a

∂x
=

d2∑

j=1

d2∑

k=1

∂D(2)[j, k]

∂x
∂λ

(2)
a

∂D(2)[j, k]
, (A.7)

where D(2)[j, k] ∈ R denotes the element of row j and column k of the mode-2 covariance
matrix D(2).

It follows from infinitesimal considerations [43, Appendix B.2] that the partial derivative
of the eigenvalue λ(2)

a with respect to the element of the covariance matrix D(2)[j, k] is

∂λ
(2)
a

∂D(2)[j, k]
= e(2)

a [j]e(2)
a [k], (A.8)
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where e(2)
a [j] denotes the j-th element, and e(2)

a [k] the k-th element of the corresponding eigen-
vector of λ(2)

a .
The partial derivative of the element of the covariance matrix D(2)[j, k] with respect to the

shape x is computed with the chain rule as

∂D(2)[j, k]

∂x
=

d2∑

l=1

d3∑

m=1

∂clm
∂x

∂D(2)[j, k]

∂clm
. (A.9)

This leads to the overall partial derivative of the eigenvalue λ(2)
a with respect to the shape

xie. That is,
∂λ

(2)
a

∂xie
=

2

d2d3d3

d2∑

j=1

(
e(2)
a [j]

d2∑

k=1

(
e(2)
a [k]

d3∑

m=1

Ψem
ik cjm

))
, (A.10)

where

Ψem
ik =

{
d2d3 − 1 i = k and e = m

−1 otherwise,
(A.11)

and where e(2)
a [j] denotes the j-th element, and e(2)

a [k] the k-th element of the corresponding
eigenvector of λ(2)

a .
Mode-3: The derivative for mode-3 is

∂E
(3)
C,a

∂λ
(3)
a

=
1

λ
(3)
a + δ3

, (A.12)

and using a similar argument as above,

∂λ
(3)
a

∂xie
=

2

d2d3d2

d3∑

j=1

(
e(3)
a [j]

d3∑

k=1

(
e(3)
a [k]

d2∑

m=1

Ψek
imcmj

))
, (A.13)

where

Ψek
im =

{
d2d3 − 1 i = m and e = k

−1 otherwise,
(A.14)

and where e(3)
a [j] denotes the j-th element, and e(3)

a [k] the k-th element of the corresponding
eigenvector of λ(3)

a .

A.1.3 Parametrization derivative

This section derives ∂x
∂αk

. Recall that any kind of continuous mapping can be used to parametrize
the shape x in 2D. We establish a continuous mapping from a 3D face to a 2D unit square by
a thin-plate spline [45]. For other mappings, the term ∂x

∂α
∈ R2n×3n of the derivative changes,

while the rest of the gradient stays unchanged.
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A thin-plate spline is computed for each shape as

Φ(α) = c + Aα+ WT (σ(α− t1), . . . , σ(α− tn))T , (A.15)

where c ∈ R3, A ∈ R3×2, and W ∈ Rn×3 are the parameters of the mapping, and where
σ : R2 → R is the function

σ(h) =

{
‖h‖2 log(‖h‖) ‖h‖ > 0,

0 ‖h‖ = 0,
(A.16)

where ‖h‖ is the Euclidean length of h.
To find the derivative ∂x

∂αk
, we can compute ∂vb(x)

∂αk
for every vertex vb(x) and combine the

resulting derivatives. It is

∂vb(x)

∂αk
=
∂Φ(αb)

∂αk
=

{
AT + (∂σ(αb)−t1)

∂αk
· · · ∂σ(αb)−tn)

∂αk
)W xk = xb

0 xk 6= xb
(A.17)

with
∂σ(α− tl)

∂α
=

{
(α− tl)(2 log ‖α− tl‖+ 1) ‖α− tl‖ > 0

0 ‖α− tl‖ = 0.
(A.18)

A.2 Comparison of computational complexities
This section gives the computational complexities for the correspondence optimization for the
multilinear case and the linear case (d3 = 1). For both cases, we use that computing the
singular values and singular vectors of a m× n matrix takes O(mn2 + n3) time [129, Chapter
31].

A.2.1 Multilinear registration optimization

Derivative: The partial derivatives of the eigenvalues λ(2)
a and λ(3)

a with respect to the shape
xie (Equations A.10 and A.13) can be reformulated as

∂λ
(2)
a

∂xie
=

2

d3

e(2)
a [i]

d2∑

j=1

e(2)
a [j]cje

︸ ︷︷ ︸
O(nd2)

− 2

d2d3d3

(
d2∑

k=1

e(2)
a [k]

)

︸ ︷︷ ︸
O(d2)

(
d2∑

j=1

d3∑

m=1

e(2)
a [j]cjm

)

︸ ︷︷ ︸
O(nd2d3)

, (A.19)

and

∂λ
(3)
a

∂xie
=

2

d2

e(3)
a [e]

d3∑

j=1

e(3)
a [j]cij

︸ ︷︷ ︸
O(nd3)

− 2

d2d3d2

(
d3∑

k=1

e(3)
a [k]

)

︸ ︷︷ ︸
O(d3)

(
d3∑

j=1

d2∑

m=1

e(3)
a [j]cmj

)

︸ ︷︷ ︸
O(nd2d3)

. (A.20)
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Computational complexity: The gradient of EC with respect to the shape x (Equation A.5)
can therefore be computed in time O(nd2

2d3 + nd2d
2
3). Computing the eigenvalues and eigen-

vectors of the mode-2 and mode-3 covariance matrices D(2) and D(3) takes O(nd2
2d3 + d3

2)
and O(nd2d

2
3 + d3

3) time, respectively. This leads to the overall computational complexity of
O(nd2

2d3 + nd2d
2
3 + d3

2 + d3
3).

Assuming n� d2, d3 the complexity becomes O(nd2
2d3 + nd2d

2
3).

A.2.2 Linear registration optimization
Derivative: Most previous methods use a linear model for correspondence optimization (see
e.g. Davies et al. [43, Chapter 4]). Note that the linear model is a special case of our multilinear
approach, where the multilinear model degenerates to the linear model for d2 = 1 or d3 = 1.
We use a consistent notation to previous sections but omit the subscripts and superscripts for
mode 2 and mode 3, since only one mode is present in the linear case.

Let d denote the number of shapes, where xj ∈ R3n denotes the j-th shape, and cj ∈ R3n

denotes the j-th centered shape. The derivative of EC with respect to the shape x is

∂EC
∂x

=
1

d

d∑

a=1

∂λa
∂x

∂EC,a
∂λa

. (A.21)

From the centering of the data (
∑d

j=1 cj = 0) follows

d∑

j=1

ea[j] = 0. (A.22)

The partial derivative of the eigenvalue λa with respect to the shape xj is therefore

∂λa
∂xj

= 2ea[j]
d∑

k=1

ea[k]ck. (A.23)

Computational complexity: The partial derivative of λa with respect to xj (Equation A.23)
can be computed in time O(nd). The gradient of EC with respect to x (Equation A.21) can
therefore be computed in timeO(nd2). Computing the eigenvalues and eigenvectors of the co-
variance matrix D takes O(nd2 + d3) time. This leads to the overall computational complexity
of O(nd2 + d3).

Assuming n� d the complexity becomes O(nd2).

A.2.3 Comparison
For both existing linear methods and our method, the minimum description length optimization
is non-linear and solved with the help of optimizers that require an explicit gradient computa-
tion in each iteration. Hence, the computational complexity of the gradient computation has a
strong influence on the overall run time of the optimization.
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For the same number of shapes d = d2d3, it takes time O(nd2
2d

2
3) to compute a gradient

for existing linear methods. Our multilinear model, where a gradient computation takes time
O(nd2

2d3 + nd2d
2
3), is significantly more efficient if both d2 and d3 are large.
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