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Abstract

Short Abstract

The functional correctness of multicore systems can be shown through pervasive formal veri-
fication, which proves the simulation between the system software computation and the corre-
sponding hardware computation. In the implementation of the system software, the sequential
consistency (SC) of memory is usually assumed by the system programmers. However, most
modern processors (x86, Sparc) provide the total store order (TSO) memory model for greater
efficiency. A store buffer reduction theorem was presented by Cohen and Schirmer [CS10a]
to bridge the gap between the SC and the TSO. Nevertheless, the theorem is not applicable to
programs that edit their own page tables. The reason is that the MMU can be treated neither as
a part of the program thread nor as a separate thread. This thesis contributes to generalize the
Cohen-Schirmer reduction theorem by adding the MMUs.

As the first contribution of this thesis, we present a programming discipline which guarantees
sequential consistency for the TSO machine with MMUs. Under this programming discipline,
we prove the store buffer reduction theorem with MMUs.

For the second contribution of this thesis, we apply the theorem to the ISA level and the C
level. By proving a series of simulation theorems, we apply our store buffer reduction theo-
rem with MMU to the ISA named MIPS-86. After that, we introduce the multicore compiler
correctness theorem to map the programming discipline to the parallel C level.

Kurzzusammenfassung

Die funktionale Korrektheit von Mehrkern-Systemen kann durch durchgängige formale Ver-
ifikation sichergestellt werden, in welcher die Simulation zwischen Berechnungen der Sys-
temsoftware und der entsprechenden Hardwareberechnungen bewiesen wird. Für die Imple-
mentierung der Systemsoftware wird vom Systemprogrammierer im Normalfall das Berech-
nungsmodell der Sequentiellen Konsistenz (SC) zugrundegelegt. Die meisten modernen Prozes-
soren (x86, Sparc) bieten jedoch aus Effizienzgründen stattdessen das Berechnungsmodell der
Totalen-Schreibzugriff-Ordnung (TSO) an. Cohen und Schirmer [CS10a] präsentieren ein Schreib-
pufferreduktionstheorem, welches die Lücke zwischen SC und TSO schließt. Dieses Theorem
kann allerdings nicht auf Programme angewendet werden, die ihre eigenen Seitentabellen bear-
beiten. Der Grund dafür ist, dass die Speicherverwaltungseinkeit (SVE) weder als Teil des
Programmfadens noch als separater Faden behandelt werden kann. Diese Dissertation liefert
einen Beitrag zur Verallgemeinerung des Cohen-Schirmer Reduktionstheorems, in dem die SVE
hinzugenommen wird.

Als ersten Beitrag dieser Dissertation präsentieren wir eine Programmierdisziplin welche
Sequentielle Konsistenz auf einer TSO Maschine mit SVE garantiert. Unter dieser Program-
mierdisziplin beweisen wir das Schreibpufferreduktionstheorem mit SVE.

Als zweiten Beitrag dieser Dissertation wenden wir das Theorem auf der Ebene der Be-
fehlssatzarchitektur und der C Ebene an. Durch eine Reihe von Simulationstheoremen wen-
den wir unser Schreibpufferreduktionstheorem mit SVE auf die Befehlssatzarchitektur MIPS-86

iv



an. Danach führen wir ein Mehrkern-Compiler Korrektheitstheorem ein, welches die Program-
mierdisziplin auf die Ebene von parallelem C abbildet.
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1 Introduction

Sequential consistency (SC) [Lam79] is an intuitive and widely used memory model in parallel
programming. However, processor designers often apply hardware optimizations for higher
performance. A common optimization illustrated in Fig 1.1 is to introduce a FIFO store buffer
(SB) between the processor and the shared memory system. When the processor executes a store
instruction, the store first enters the SB. This store is visible to other processors only after it exits
the SB and is applied to the shared memory. For greater efficiency, loads forward from the most
recent store of the same address in the SB if possible. This kind of memory model is called
total store order (TSO) because each processor sees the same global ordering of stores. In the
following example, we will present that the TSO execution violates the sequential consistency.
Initially, a1 and a2 are both 0.

T1: a1:=1 T2: a2:=1
if(a2==0) if(a1==0)
critical section critical section

In an SC execution, only one thread is allowed to enter the critical section. However, under
TSO, if the updating of a1 and a2 both reside in their SBs then both threads are allowed to enter
the critical section.

Another complication arises when we consider the programs that modify the page tables. In
this case, the memory management units (MMU) are visible and race with processors. The
MMU can not be modeled as a processor because:

• it communicates with the processor via the Translation Lookaside Buffer (TLB) which is
a local component of the processor. However, processors communicate with each other
through shared memory.

SB

Shared memory

Program thread

Figure 1.1: Abstract view of TSO.
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• it bypasses the SB to access the memory directly.

The following example is from our paper [CCK14]. It shows the presence of MMU violates the
SC. Assuming the page table entry (PTE) pte1 points to the PTE pte2, the present bit in both
entries is set, and the access bit of pte1 is 0. t0 and t1 are read temporaries in T1 and MMU1
respectively.

T1: MMU1:
1: pte2.p:=0 3: pte1.a:=1
2: t0:=pte1.a 4: t1:=pte2

Consider a TSO execution where the steps of the T1 are executed before the steps of the MMU1,
and the write to pte2 resides in the SB. After the execution, t0 is 0 and the MMU reads pte2
with the present bit set. As a result, the MMU gets an address translation that goes through pte1
and pte2. However, such a TSO execution can not be reproduced under SC. In an SC execution,
if we step the MMU1 before T1, the execution ends with t0 = 1. However, if we step the T1
before MMU1, since the present bit of pte2 is 0 and can not be used for address translation, the
execution ends with a page fault. To find an SC execution which ends with t0 equals to 0 and
pte2 is 1, the statement 4 needs to be executed before the statement 1 and the statement 2 needs
to be executed before the statement 3 while maintaining the programming order. It is impossible
to find such an SC execution.

The problems presented above create a gap in multicore system verification. As stated in
[CPS13], the correctness theorem of the multicore system includes a simulation theorem be-
tween the system implementation and the execution as well as the functional correctness of the
system implementation. Most multicore systems are implemented in concurrent C plus assembly
code. The multicore compiler correctness theorem in [Bau14] gives the simulation between the
implementation and a simplified instruction set architecture (ISA) execution. In the simplified
ISA, architectural details like MMUs and SBs should be transparent, and concurrent programs
should see sequentially consistent memory. We call this kind of ISA ISA-u (the user’s perspec-
tive of ISA). During the execution, the complied code runs on an ISA with MMUs and SBs,
which we call ISA-sp (the system programmer’s perspective of ISA). A TSO memory is pro-
vided by ISA-sp. Based on the previous arguments, there exists a gap in the simulation between
ISA-u and ISA-sp.

The main goal of this thesis is to find a simulation theorem between ISA-u and ISA-sp. We
made the following contributions:

• Propose a programming discipline that guarantees SC for TSO machine with MMU.

• Under the programming discipline, prove a simulation theorem between TSO machine
with MMU and SC machine with MMU.

• Apply the SB reduction theorem with MMU to an ISA named MIPS-86.

• Map the programming discipline to parallel C level for user programs.

Chapter 2 of this thesis is a joint work with Ernie Cohen and Mikhail Kovalev. Ernie Cohen
and Mikhail Kovalev contributed to building the programming discipline, the machine models



and extending the ownership theorem in [CS10a]. Mikhail Kovalev and the author of this the-
sis extracted the full paper-and-pencil proof of the SB reduction theorem in [CS10a] from the
Isabelle code. The proof in Chapter 2 is largely based on that proof. To adapt to other works
in this thesis, the author also changed the notations by adding an explicit ownership generation
function to the model and attaching the ownership annotations to volatile operations and read
modify writes.

Our initial goal was not only to map the programming discipline for the parallel C user pro-
grams but also for the system program that is written in parallel C and modifies the page table.
However, currently, we do not have the multicore compiler correctness theorem with MMU. As
a consequence, we regard the mapping of programming discipline to system code as our possible
future work.

1.1 Related Work

1.1.1 System Software Formal Verification

A survey of operating system verification [Kle09] was published by Klein. The first attempt in
pervasive system verification is the CLI stack project [BHMY89]. Since the correct execution
of a program depends on the correct translation between high-level language and the machine
code, several system components were verified: a code generator for a high-level language, an
assembler and linking loader, an operating system kernel, and a microprocessor design.

The Verisoft [Ver07] and VerisoftXT [Ver10] aims at formally verify of an entire computer
system from the hardware level up the application software level. [HP08] gives an overview of
the verification technology and approach. For the hardware, in [BJK+06] Beyer et al. designed
and functionally verified a sequential processor named VAMP. The verification had been carried
out in the theorem proving system PVS [ORS92]. In order to bridge the gap between the soft-
ware and the verified hardware in the Verisoft project, in [LP08] Leinenbach et al. implemented
and formally verified a non-optimizing C0 compiler which supports mixing inline assembly
with C0 code. In [GHLP05a, APST10], Paul et al. implemented and formally verified a generic
operating system kernel called CVM (Communicating Virtual Machines) which formalizes con-
current user processes interacting with an operating system kernel. According to [Kle09], the
Verisoft projects demonstrated the most comprehensive and detailed implementation correctness
statement of the system software. They made substantial progresses in pervasive verification.

The L4.verified project [KEH+09] focuses on a machine-checked verification of the seL4
microkernel [EKD+07] from an abstract specification down to its C implementation. The goal
of the project is to formally guarantee the functional correctness of the C implementation, which
means the implementation always fulfills the specification. Instead of the pervasive verification,
the correctness of compiler, assembly code, and hardware are assumed.

1.1.2 Weak Memory Model

The sequential consistent (SC) memory model as the most intuitive memory model for a multi-
core machine was defined in [Lam79] by Lamport. After that, much research has been done in
the field of memory models. The survey paper [AG96] focuses on consistency models proposed



for hardware-based shared memory systems. It also describes the models in terms of program
behavior. One of the memory model presented in [AG96] is the TSO model. The TSO model
was first introduced in [WG94] SPARC V8 processor. In [OSS09], Owens et al. formally de-
scribed a TSO memory model for x86 named x86-TSO. However, their model did not cover the
MMU and the page-table changes.

[CS10b] is the starting point of this thesis. In [CS10b], Cohen et al. presented a programming
discipline for concurrent programs and have formally proven that it ensures sequential consis-
tency on TSO machines. Instead of applying lock-based techniques, they classify the memory
with the ownership sets (shared, read-only and owned). The store buffer should be flushed be-
tween a shared write and a subsequent shared read. Based on the above programming discipline,
they proved the simulation theorem between TSO computations and the SC computations in
Isabelle [NPW02].

[GMY12] considers a way to reason formally about the interoperability between a data-race
free (DRF) client and a library written for the TSO memory model. They provide a simulation
relation named TSO-to-SC linearizability to fix the correspondence between the TSO execution
and an SC execution of the library. They also proved that the properties of a client are preserved
by replacing the TSO library with a TSO-to-SC linearized SC library. In order to get the lin-
earized SC library, the shared variable reads and flushes of the SB are required to be protected
by locks 1 which introduce more SB flushes than the programming discipline in [CS10b]. At
the end of the paper, they proved a more flexible rule that if a program is quadrangular-race free
(QRF) then it is sequentially consistent. The QRF requires fewer SB flushes than our program-
ming discipline, but they did not consider the MMU. Also, the QRF can not be used to simplify
establishing TSO-to-SC linearizability, because transforming a QRF TSO trace into an SC one
can break the linearizability.

Oberhauser [Obe] improved the programming discipline in [CS10b] to avoid the unnecessary
SB flush in the following case: let x be a shared address then

T1: store x T2: store x
load x

Oberhauser also gives a short proof (less than 30 pages without dealing the MMU). At the end
of [Obe], Oberhauser gives a sketch on how to treat MMUs.

1.2 Outline

Note that in this thesis, we introduce four kinds of ISAs.

• First, to apply the SB reduction theorem with MMU to ISA level, we introduce an ISA
named MIPS-86, which is a MIPS core extended with x86/x64 like architecture features
(with MMU and SB).

• After applying the SB reduction theorem with MMU to MIPS-86, we get an ISA without
SB but with MMU. We call it the SB reduced MIPS-86.

1The shared variable reads and flushes occur within a lock..unlock block. The lock suspends other CPU’s execution
until the unlock command and the unlock flushes the SB.



• When we apply the SB reduction theorem to parallel C level for user programs, we first ap-
ply the SB reduction theorem to ISA level, then apply the multicore compiler correctness
theorem to map the programming discipline to the parallel C level. Since, the MMU and
interrupts are invisible to user programs, we need an ISA without MMU and interrupts.
We call it SB MIPS, which is MIPS-86 without MMU and interrupts.

• After applying the SB reduction theorem on SB MIPS, we get an ISA without MMU, SB
and interrupts. We call it the MIPS ISA.

The remainder of this dissertation is structured as follows.
In Chapter 2, we will first introduce the programming discipline, the ownership policy and

formally define the models of store buffer machine and abstract machine as well as the safety
conditions for the abstract machine, which makes the reduction theorem to go through. Then,
we will introduce the coupling relation, invariants and the SB reduction theorem with MMU. At
the last portion of Chapter 2, we will present the full paper-and-pencil proof of the theorem.

In Chapter 3, first, we will introduce the MIPS-86 ISA as well as the SB reduced MIPS-
86 ISA. Then, we will instantiate our abstract machine model and SB machine model with an
ISA, which is very alike to MIPS-86. The main difference is that in the instantiated machine
models, the execution of one instruction is divided up to five phases, however, in MIPS-86, the
execution of each instruction is atomic. As a consequence, to apply the SB reduction theorem
with MMU to MIPS-86, we need to prove the two simulation theorem: (i) each computation of
the MIPS-86 machine can be simulated by a computation of the instantiated SB machine. This
simulation theorem is trivial and omitted in this thesis because the instantiated SB machine has
more interleavings. (ii) Each computation of the instantiated abstract machine can be simulated
by a computation of an SB reduced MIPS-86 machine. This simulation will be proved in the
Chapter 4.

In Chapter 4, we will apply the SB reduction theorem with MMU to MIPS-86 level. The
main portion of this chapter is proving the second simulation theorem mentioned in the last
paragraph. Since the ownership is included in the semantics of the abstract machine and the
SB machine, first, we need to provide the semantics with ownership to the SB reduced MIPS-
86 machine. We introduce a model named Cosmos which gives us the abstract semantics with
ownership. Then, we will instantiate the Cosmos model with SB reduced MIPS-86. Because
the instantiated abstract machine has more interleavings than the Cosmos SB reduced MIPS-
86 machine, before proving the simulation, we will reduce the number of interleavings of the
instantiated abstract machine by reordering each execution phase of the same instruction into one
block. At last, we will prove a simulation theorem between the instantiated abstract machine and
the SB reduced MIPS-86 Cosmos machine. Moreover, we have to maintain the safety conditions
in the simulation theorem.

In Chapter 5, we will apply the SB reduction theorem to parallel C level for user programs.
Since the interrupts and address translations are invisible for the user program, we will first
introduction the two simplified ISAs without MMU and interrupt. The one with SB is called SB
MIPS ISA, and the other one without SB is called MIPS ISA. Then, we will simplify the SB
reduction theorem to get rid of MMUs. We overload the name SB machine and abstract machine
in this chapter. Analogous to Chapter 3, we instantiate the abstract machine and the SB machine
model with an ISA very alike to MIPS. Also analogous to Chapter 4, we simplify the Cosmos



model to get rid of the MMU steps and instantiate it with MIPS ISA. We will prove a simulation
theorem between the instantiated abstract machine and the MIPS Cosmos machine. In the last
portion of this thesis, we will apply the multicore compiler correctness theorem and map the
programming discipline to parallel C level. The multicore compiler theorem is defined base
on the Cosmos model and consists two part: (i) the order reduction theorem that reorders the
arbitrary-interleaved ISA computation into a block-scheduling computation. Each block starts
with a compiler consistency point. (ii) the sequential compiler correctness theorem. First, we
will introduce the order reduction theorem. Then, we will introduce the C intermediate language
(C-IL) and the sequential compiler correctness theorem of C-IL. Moreover, we instantiate the
Cosmos machine with C-IL and simulate the MIPS Cosmos machine with the C-IL Cosmos
machine, which is the application of the multicore compiler correctness theorem.

1.3 Notation

In the scope of this document we use the following notations from [Sch13] and [Bau14].

1.3.1 Basic Notation

• Numbers
The set of integers is denoted by Z. The set of natural numbers is denoted by N and the
set of boolean values {0,1} by B. Given a Boolean value A ∈ B and values x, y ∈ N ∪ Z,
the value of the ternary operator is defined as follows:

A?x : y =

x A = 1
y A = 0

• Records
Let A be a set which is the Cartesian product of sets A1, A2, ..., Ak and let n1, n2, ..., nk be
names for the individual tuple elements of A. Then, given a tuple

c ∈ A = A1 × A2 × . . . × Ak

c = (a1, a2, . . . , ak)

c.ni is used to refer to ai – the i-th name refers to the i-th record field of the tuple. The
term record is used to refer to such a named tuple. Records c ∈ A is also introduced by
defining

c = (c.n1, c.n2, . . . , c.nk)

followed by a definition of the types of record fields of c. A record update is denoted as

c[ni := v] = c′

where ∀ j , i : c′.n j = c.n j and c′.ni = v. If k = 2, the record c = (a1, a2) is also called a
pair. We define the following functions to get the first and second component of a pair.

f st(c) = c.a1

snd(c) = c.a2



• Lists
Let l = [x0x1x2...xn−1] then

hd(l) = x0

tl(l) = [x1x2...xn−1]

last(l) = xn−1

hd and last are used to return the first element and last element of a list respectively. tl
returns the list without the first element. The i-th element of the list l is identified by

l[i] =

xi i ∈ [0 : n − 1]
⊥ otherwise

l[i] can also be written as l[i] in this thesis. The length of list l is defined as follows:

|l| =

n l = [x0x1...xn−1]
0 l = []

The concatenation of two lists is defined as follows:

a ◦ b = l

where:

l[i] =


a[i] i ∈ [0 : |a| − 1]
b[i − |a|] i ∈ [|a| : |a| + |b| − 1]
⊥ otherwise

Let l1 = [x0x1...xn−1] and l2 = [y0y1...yn−1] then the combination of l1 and l2 is defined as:

〈l1, l2〉
de f
= l

where:

l[i] =

(xi, yi) i ∈ [0 : n − 1]
⊥ otherwise

Two lists can be combined only if they have identical length.

• Sets
Given a set A, the Hilbert-choice-operator ε chooses an element from A:

εA ∈ A

This is particularly useful when the set consists of a single element, i.e.

ε{x} = x

or when a definition does not depend on the specific element chosen. Given a set A,

2A = {B | B ⊆ A}

denotes the power set of A, i.e. the set of all subsets of A.



• Functions
Given two sets A and B,

f ∈ A ⇀ B

denotes that f is a partial function from set A to set B, i.e. ∃A′ ⊆ A. f ∈ A′ → B. Given
g ∈ A→ B and X ⊆ A, the restriction of g to X is defined as :

g�X= λx ∈ X. g(x)

The function g at entry x ∈ A can be updated with a new value v ∈ B as follows:

g(x 7→ v)
de f
= λy ∈ A.

v y = x
g(y) otherwise

The composition of partial functions f , f ′ : A ⇀ B with disjoint domains is denoted by
f ] f ′, where dom( f ) ∩ dom( f ) = ∅ and dom( f ] f ′) = dom( f ) ∪ dom( f ′).

f ] f ′ = λa ∈ dom( f ) ∪ dom( f ′).

 f (a) : a ∈ dom( f )
f ′(a) : a ∈ dom( f ′)

By adding “⊥” to the image set in order to denote undefined results, any partial function
f : A ⇀ B can be turned into a total function f : A→ B ∪ {⊥}, given that ⊥ < B.

1.3.2 Automaton

Given

• a set Z of states,

• a set A of input alphabet symbols,

• a transition function δ ∈ Z × A→ Z,

• a non-empty set Z0 ⊆ Z of initial states,

• a non-empty set ZA ⊆ Z of accepting states, and

we consider the tuple M = (Z, A, δ,Z0,ZA) as an automaton. The automaton starts from an
arbitrary state z0 ∈ Z0. δ(z, a) = z′ means a transition from state z to state z′ with input a. The
current state can be applied to arbitrarily chosen possible transitions and results in a new result
state.

In this thesis the hardware is modeled as an automaton. We define the hardware transition
by splitting it into smaller transitions, each of which can happen nondeterministically. For each
transition we provide:

• label: The name of the transition.

• input parameters: Inputs from the external world.



• precondition: The guard of the transition i.e. the transition may occur only if it is satisfied.
Free variable declarations inside the transition are also contained in the precondition.

• postcondition: The effect of the transition.

1.3.3 Binary Arithmetic

When introducing our MIPS-86 ISA we will need to argue about arithmetics on bit strings. Bit
strings are finite sequences of bits from set B and we write down the bits from highest to lowest
index. The lowest bit has index zero.

∀a ∈ Bn. a[n − 1 : 0] = an−1an−2 · · · a0

Then any bit string a ∈ Bn can be interpreted as a binary number with the following value in N.

〈a[n − 1 : 0]〉 =

n−1∑
i=0

ai · 2i

Similarly we can interpret any bit string as an integer that is encoded in two’s-complement
representation. The two’s-complement value of a bit string is defined as follows.

[a[n − 1 : 0]] = −an−1 · 2n−1 + 〈a[n − 2 : 0]〉

It can be shown that in modular arithmetic 〈a〉 and [a] are congruent modulo 2n. See Section
2.2.2 in [MP00] for more information on two’s complement numbers. For conversion of numbers
into bit strings we use the bijections

binn : [0 : 2n)→ Bn and twocn : [−2n−1 : 2n−1)→ Bn

with the following properies for all a ∈ Bn.

binn(〈a〉) = a twocn([a]) = a

As a shorthand we allow to write Xn instead of binn(X) for any natural number X ∈ N. We define
binary addition and subtraction modulo 2n of bit strings a, b ∈ Bn.

a +n b = (binn+1(〈a〉 + 〈b〉))[n − 1 : 0] a −n b = (twocn+1([a] − [b]))[n − 1 : 0]

Note above that the representative of a binary or two’s complement number modulo 2n can be
obtained by considering only its n least significand bits. Also, since binary and two’s comple-
ment values of a bit string are congruent modulo 2n, we could have defined addition using two’s
complement numbers and subtraction using binary representation of the operands. However we
stick to the definitions presented above which look most natural to us.

Besides addition and subtraction we can also apply bitwise logical operations on bit strings.
Let a, b ∈ Bn, then we can extend any binary bitwise operator • : B×B→ B to an n-bit operator
•n : Bn × Bn → Bn, such that for all i < n:

(a •n b)[i] = ai • bi



In this thesis we will use • ∈ {∧,∨,⊕,∨}, where ⊕ stands for exclusive OR (XOR) and ∨
represents negated OR (NOR). We omit the subscript n where it is unambiguous.

For a bit-string a ∈ B8k, k ∈ N and 0 ≤ i < k, we define

byte(i, a) = a[(i + 1) · 8 − 1 : i · 8]

to denote the i-th byte in a. We define for a ∈ Bn and n, k ∈ N, k > n

zxtk = 0k−na

the zero-extended bit-string of length k for a and

sxtk = ak−n
n−1a

to mean the sign-extended bit-string of length k for a. We use the equivalence relation ≡ mod k
defined as follows for a, b ∈ Z, k ∈ N \ {0}:

a ≡ b mod k ⇔ ∃z ∈ Z : a − b = z · k

The modulo-operator is then defined by

a mod k = ε{x | a ≡ x mod k ∧ x ∈ {0, . . . , k − 1}}
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2
Store Buffer Reduction with
MMU – Theorem and Proof

In this chapter we introduce the store buffer (SB) reduction theorem with MMU which gener-
alizes previous work by Cohen and Shirmer [CS10b]. In order to reduce the SB, the memory
addresses are partitioned into ownership sets. Our model extends Cohen-Shirmer ownership
sets with page table sets. We use the identical program discipline as in [CS10b] based on our
extended ownership sets. Memory accesses are governed by the program discipline .

We will first introduce the programming discipline and formally define the models of abstract
machine and store buffer machine. Then we will introduce the coupling relation, invariants and
the store buffer reduction theorem. In the last portion of this chapter, we will present the full
paper-and-pencil proof of the theorem.

This chapter is based on the paper [CCK14] and the technical report [CCK13] by the author of
this thesis, Ernie Cohen and Mikhail Kovalev. In order to apply our programming discipline both
in instruction set architecture (ISA) level and C level, we have to (i) instantiate the SB reduction
theorem with an ISA; (ii) apply the simulation theorem [Bau14] between the ISA level and C
level. Therefore, we modify our model to fit to the simulation theorem. One major modification
is that the ownership transfers are only performed as side effects of volatile1 instructions. It is
helpful when one acquires a lock and wants to obtain the ownership of the memory protected by
the lock. In [CCK14] and [CCK13] we also perform the ownership transfer by a non-blocking
ghost instruction. The intuition of the modification is that the ghost instruction is not instantiable
in any ISA. Jonas Oberhauser proved that these 2 types of ownership transfer are equal in his
on going work. We also perform the ownership annotation generation while the instruction is
executing.

2.1 Programming Discipline

The programming discipline introduced here is an extension of the programming discipline from
[CS10b] and is based on ownership sets, which have to be maintained explicitly by the user. It
contains 2 parts: memory access rules and a flushing rule.

All memory accesses can be either shared (volatile) or local and must be safe i.e., obey the
rules of the programming discipline. Semantically there is no difference between both types of

1We rely on a C-idiom, where shared portions of memory are identified by a volatile tag. The volatile tag
prevents a compiler from applying certain optimizations to shared accesses which could cause undesired behavior,
e.g., store intermediate values in registers instead of writing them to the memory. Shared memory accesses are
also called volatile.
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the accesses, but we enforce different rules on volatile and non-volatile memory operations. The
interlocked accesses, i.e. those memory accesses which flush the SB as a side effect, follow the
same rules as volatile accesses. We distinguish between the following ownership sets of memory
addresses:

• Shared, unowned read-write addresses: used for implementing locks [HL09], lock-free
algorithms or shared page tables. Every thread can perform volatile reads and writes to
these addresses and MMU of every thread is allowed to read and write this memory.

• Shared, unowned read-only addresses: used for static data. Every thread can perform
volatile and non-volatile reads from these addresses.

• Shared, owned read-write addresses: used for single-writer-multiple-readers data struc-
tures. Every thread can perform volatile reads, but only the (unique) owner is allowed to
do volatile writes to these addresses.

• Unshared, owned read-write addresses: used for thread-local data or for data protected
by a lock. The owner is allowed to write and read the data with volatile and non-volatile
accesses.

• Owned page table addresses: used for local page tables. The owning thread is allowed to
read and write these addresses with volatile accesses. The MMU of the owning thread is
allowed to read and write this memory.

Note, that we require the translated physical addresses, rather than the untranslated virtual
addresses, to adhere to our programming discipline. Showing that the translated physical ad-
dresses of memory accesses are safe can be done if one keeps track of the set of all possible
address translations for a given thread.

Note, that the set of addresses which can be accessed by the MMU of a thread is actually
defined by the set of reachable PTEs from page table origin (PTO), which is stored in a register.
Hence, our discipline requires every reachable PTE address to be either in the set of local page
table addresses or to be in the set of shared, unowned read-write addresses. The latter is useful
in situations when several concurrent threads are sharing the same set of page tables for address
translation. Moreover, a local page table can point to a page table shared by MMUs of several
threads, which allows to split the address space of a thread into local and shared parts. The other
direction is also possible, i.e. a page table located in the shared memory can contain a link to
a local page table. In this case any thread can write the shared page table, but only the MMU
of the thread which owns the local page table should be able to access both of them. If another
MMU would have an access to the “shared” page table, it would automatically be able to access
all page tables linked to it, which violates the safety of the MMU access.

Ownership is transferred as a side effect of a volatile or interlocked write operation. A thread is
allowed to acquire ownership of an unowned address and to release the ownership of an owned
address. When a thread acquires an unowned address, it can either make it owned unshared,
owned shared or an owned page table address. When releasing an owned address a thread
decides whether to make it shared read-write or shared read-only. It also can make a shared
address which it already owns unshared.

12



Program thread

Shared memory

MMUSB

Figure 2.1: Abstract view of x86-TSO with the address translation.

The flushing rule of our programming discipline stays unchanged from [CS10b]: an SB has
to be flushed before every volatile read if this read was preceded by a volatile write. This
guarantees, that the thread always makes its updates of the shared state visible to others, before
it reads a shared variable. In order to implement the flushing rule, we maintain a dirty bit in the
ghost state. It is set when executing a volatile write and cleared when flushing the SB. Local
page tables in this sense are considered as shared state between a thread and its MMU. Safety of
a volatile read makes sure that the read is performed only when the dirty flag is not set.

2.2 Formalization

In our computational model the machine contains multiple threads. With the presence of ad-
dress translation, every thread communicates with a user-visible MMU component (Fig. 3.1).
Threads and MMUs also communicate with each other via accessing shared memory. During
a computation instructions are issued and appended to the instruction sequence for bookkeep-
ing. Instructions retire from the instruction sequence and enter the store buffer (SB) or apply to
shared memory. Instructions emerge from SB and apply to memory. At the same time, MMUs
also access the shared memory. When a thread is running in translated mode, a memory access
can be executed only when the MMU can provide a suitable address translation for the virtual
address of the access.

Before introducing the computational model we define some uninterpreted signatures:

Definition 2.1 (Basic Signatures) The computational model is defined based on the following
signatures.

• A,V - The set of memory addresses and the set of memory values. The memory is mod-
eled as a function m : A→ V.

• P - The set of program states which can be interpreted as the content of a set of registers
and some auxiliary flags for denoting the execution phase and page faults.

• U - The set of MMU states which contains the TLB state and the current value of the page
table origin register.

• T - The set of temporaries which is used to store results of reads.
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• R - The set of all possible access rights for address translation.

• BW - The set of byte write signals.

• EEV - The set of external input.

2.2.1 MMU Abstraction

The MMU component can perform non-deterministic steps fetching a page table entry (PTE)
from the memory or writing the memory (setting control bits in a PTE). Every read of a PTE
can change the state of the MMU, extending the set of translations cached in a TLB. The exact
state of the MMU is never known to the user, because MMUs are allowed to perform speculative
address translations and to cache them in the TLBs.

A single page table entry occupies a single cell in the memory and has the same type V as all
other memory values. Our MMU model relies on the following (uninterpreted) functions:

• atran(mmu, va,mode, r) ∈ 2A.
Given an MMU state mmu ∈ U, a virtual address va ∈ V, translation mode mode ∈ B (1
- translated mode, 0 - untranslated mode) and the set of access rights r ∈ R, the function
returns the set of translated physical addresses for the specified access. In case there are
no available translations the returned set is empty. For the untranslated mode function
atran should return {va}. We use this function to obtain an address translation when an
instruction is being executed.

• can-access(mmu, pa) ∈ B.
For a physical address pa ∈ A, the predicate denotes that the MMU can perform an access
to a PTE located at address pa. This is the case when the MMU has fetched or has found
in the TLB a valid PTE, which has the access and the present bits set and which points to
the PTE located at address pa or when pa belongs to the top-level page table. We use this
predicate as a guard for MMU read and MMU write steps.

• δcrtw(mmu, va) ∈ U.
This function creates a new walk for virtual address va and returns a new MMU state.

• δmmur(mmu, pa, pte) ∈ 2U.
For page table entry pte ∈ V located at address pa the function returns the possible set of
MMU states after the MMU has processed pte. After this step MMU can have complete
or incomplete translations through pte buffered in the TLB. We use this function to obtain
the new state of the MMU after the MMU read step.

• δmmuw(mmu, pa, pte) ∈ 2V.
This function returns the set of possible PTE values which can be written by the MMU at
address pa, given that pte is the current value of the PTE located at address pa. This step
models setting of access and dirty bits in a page table entry. We use this function when
performing an MMU write step.
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• can-page- f ault(mmu, va, r, pa, pte) ∈ B.
This predicate denotes that the MMU can signal a page fault for the virtual address va
and access rights r. The condition for the page fault 2 must be present in the page table
entry pte located at address pa and the MMU must already have an incomplete address
translation leading to pte buffered in the TLB.

• δ f lush(mmu, F) ∈ U.
For the set of (virtual) addresses F ∈ 2A the function performs a TLB flush, removing
translations for addresses in F from the TLB, and returns the new MMU state after the
flush is performed.

• δwpto(mmu, v) ∈ U.
The function performs a complete SB flush and sets the new value v ∈ V for the page table
origin (PTO).

We assume monotonicity of the MMU i.e., after MMU performs a read of a PTE or walk
creation its set of address translations which can be provided by the MMU can only grow. We
let mmu′ = {δcrtw(mmu, va), ε(δmmur(mmu, pa, pte))} then:

atran(mmu, va,mode, r) ⊆ atran(mmu′, va,mode, r).

2.2.2 Instructions

Definition 2.2 (Memory Instruction) The set of memory instructions I is defined with the fol-
lowing constructors:

I = {Read vol va t r ext bw p | vol ∈ B, va ∈ A, t ∈ T, r ∈ R, bw ∈ BW, p ∈ P}

∪ {Write vol va (D, f ) r cb bw p | D ∈ 2T, f ∈ (T⇀ V)→ V}

∪ {RMW va t (D, f ) cond r p | cond ∈ (T⇀ V)→ B}

∪ {INVLPG F | F ∈ 2A}

∪ {SWITCH mode | mode ∈ B}

∪ {WPTO v | v ∈ V}

∪ {FENCE}

In which:

ext ∈ V × BW→ V cb ∈ V × V × BW→ V

Parameter vol denotes whether the memory access is volatile.

2 The page fault can be signalled if the present bit in a PTE is not set, or there is an access rights violation or some
of the reserved validity bits in a PTE have inadequate values.
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• The read instruction loads the value from virtual address va and the translated address
pa into temporary t. bw represents the byte write signal and ext represents the extension
function (zero extend or sign extend). r denotes the access permissions, which will be
used for the address translation of va. If the volatile flag is set then the instruction is
allowed to perform an ownership transfer.

We put some constrains on the uninterpreted parameter bw and ext. First we introduce an
uninterpreted equivalence relation =bw ∈ V×V→ Bmeaning that 2 values are equal with
respect to the given byte write signal bw. Thus we have:

v1 = v2 → v1 =bw v2

We overload the ≤ as an uninterpreted relation for byte write signals ≤ ∈ BW×BW→ B.
Then we introduce the following properties as constraints on bw and ext:

bw2 ≤ bw1 ∧ v1 =bw1 v2 → v1 =bw2 v2

It means if 2 values are equal with respect to a given byte write signal then they are also
equal with respect to any byte write signals which are not greater than the given one.

v1 =bw v2 → ext(v1, bw) = ext(v2, bw)

It means if 2 values v1 and v2 are equal with respect to a given byte write signal bw then
the result of extension function with parameter bw does not rely on the choice of first
parameter between v1 and v2.

• The write instruction stores the value computed by function f at the virtual memory ad-
dress va. Function f takes as a parameter the map from temporaries to pairs of value and
physical address and returns a value. D specifies the set of temporaries on which func-
tion f operates. Function cb combines the old value and new value (computed by f ) at
virtual address va according to the byte write signal bw. If the volatile flag is set then the
instruction performs the ownership transfer.

We also put a constraint on the uninterpreted function cb.

v1 =bw v2 → cb(v1, v, bw) =bw v2

This property means the value combination according to the byte write signal bw main-
tains the relation =bw.

• The read modify write instruction (RMW) first loads the value from virtual address va
as well as the translated address pa into temporary t. Then it computes the value of the
predicate cond on the updated set of temporaries and performs a write to va if the test
succeeds. It also performs the ownership transfer.

• The invlpg instruct removes translations for the virtual addresses in F from the TLB.

• The mode switch instruction changes the translation mode to mode ∈ B.
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• The write to PTO instruction updates the page table origin with value v.

• The fence instruction flushes the SB when executed by the SB machine.

When executed by the SB machine instructions RMW, mode switch, invlpg and write to PTO
also flush the SB as a side effect.

To distinguish between different kinds of instructions we introduce predicates R(I), W(I),
RMW(I) - for read, write, RMW instructions respectively and FENCE(I), S WITCH(I), INVLPG(I),
WPTO(I) - for fence, mode switch, invlpg and write to PTO instructions. Volatile and non-
volatile reads and writes are distinguished by predicates vR(I), vW(I) and nvR(I), nvW(I) re-
spectively.

2.2.3 Abstract Machine

The abstract machine with sequentially consistent memory and with address translations does
not have SBs. It maintains additional ghost information which allows to enforce the ownership-
based programming discipline both for instructions and for MMU memory accesses. We call an
execution which maintains this programming discipline safe. The abstract machine also contains
the ghost release sets, which accumulate history information about the addresses released by
volatile read instructions. These sets do not influence the execution of the machine and are not
used to specify the programming discipline. Hence, one can simply omit them when instantiating
the abstract machine. In Sect. 2.3.3 we use these sets to refine the safety criteria.

Configuration

Definition 2.3 (Thread-local Configuration of Abstract Machine) Thread-local configuration
c.ts[i] of thread i is defined as a tuple:

c.ts[i] = (p, is, ϑ,mmu,D,O, pt,mode, rlsl, rlss, rlspt) ∈ K

where:

• p ∈ P is the (uninterpreted) program state of the thread,

• is ∈ I∗ is the instruction list,

• ϑ ∈ T⇀ V is the set of read temporaries (a read buffer),

• mmu ∈ U is the MMU state,

• D ∈ B is the (ghost) dirty flag,

• O ∈ 2A is the (ghost) thread-local ownership set,

• pt ∈ 2A is the (ghost) set of local page table addresses,

• mode ∈ B is the translation mode (translated or untranslated),
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Figure 2.2: Ownership transfer.

• rlsl, rlss, rlspt ∈ 2A are the (ghost) release sets for local, shared and page table addresses
respectively.

Definition 2.4 (Abstract Machine Configuration) Configuration of the abstract machine c is
defined as a tuple:

c = (m, shared, ro, ts) ∈ M

where np ∈ N is the number of threads, ts ∈ [0 : np − 1] → K is the list of thread-local
configurations of thread i, m ∈ A→ V is the shared memory of the machine, shared ∈ 2A is the
(ghost) set of shared addresses and ro ∈ 2A is the (ghost) set of read-only addresses.

For components X of thread local configuration c.ts[i] we abbreviate c.X[i]. By c.ghst[i] we
abbreviate the ghost information of thread i (except the dirty flag) and the shared ghost informa-
tion:

c.ghst[i] = (c.O[i], c.pt[i], c.rlsl[i], c.rlss[i], c.rlspt[i], c.shared, c.ro)

For the union of all release threads of thread i we abbreviate c.rls[i]:

c.rls[i] = c.rlsl[i] ∪ c.rlss[i] ∪ c.rlspt[i]

Ownership Transfer

The ghost ownership annotations annot consist of the following sets of addresses: acquired ad-
dresses A, the local fraction of acquired addresses L, released addresses R, the writable fraction
of released addresses W, acquired page table addresses Apt and released page table addresses
Rpt. The ownership transfer is performed by volatile write, volatile read and read-modify-write
(RMW) instructions. The possible effect of the ownership transfer is given in Fig. 2.2.

Definition 2.5 (Ownership Transfer) Let ghst = (O, pt, rlsl, rlss, rlspt, shared, ro) be the ghost
information of thread i and annot = (A, L,R,W, Apt,Rpt) is the ownership annotation. Then the
ownership transfer performed by volatile read, volatile write or RMW instruction I is defined as:

otran(ghst, I, annot) = (O′, pt′, rls′l , rls′s, rls′pt, shared′, ro′)
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where the ownership sets change according to Fig. 2.2 and the release sets accumulate released
addresses if vR(I) and are cleared otherwise:

ro′ = ro ∪ (R \W) \ (A ∪ Apt) O′ = O ∪ A \ R

shared′ = shared ∪ R ∪ Rpt \ (L ∪ Apt) pt′ = pt ∪ Apt \ Rpt

rls′s = vR(I) ? rlss ∪ (R ∩ shared) : ∅ rls′pt = vR(I) ? rlspt ∪ Rpt : ∅

rls′l = vR(I) ? rlsl ∪ (R \ shared) : ∅

Semantics

The computation of the abstract machine is a sequence of abstract machine configurations. Each
configuration is obtained by applying a non-deterministic transition relation to the previous con-
figuration. Applying the transition relation once is also called one step of computation. Every
step is either a program step, a memory step, an MMU step or a page fault step of thread i.

A program step of thread i applies (uninterpreted) function δp to the program state, the set of
temporaries, the mode flag, the MMU state, the instruction sequence and the external inputs of
the thread to obtain a new program state and newly generated instructions. These instructions
are then appended to the instruction list. For a newly generated read or RMW instruction I we
assume the read temporary I.t to be fresh i.e., every read has to be done to a new temporary3.
We also assume every program state is unique. These assumptions are formalized in Sect. 2.3.5.

Definition 2.6 (Program Step) The semantics of program steps is defined as follows eev is the
external inputs:

(p′, is′) = δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev)

c
p

==⇒i
eev

c[p[i] := p′, is[i] := c.is[i] ◦ is′]

In which

∀I ∈ is′. W(I) ∨ R(I) ∨ RMW(I)→ I.p = c.p[i]

A memory step of thread i is defined by a case split on the instruction I = hd(c.is[i]) to be
executed. In case of a read, write or RMW instruction we first translate the virtual address I.va
using the current MMU state and chose a physical address pa from the set of available address
translations provided by function atran. Hence, to execute such an instruction there has to be
at least one possible address translation available. For a read instruction we update the value of
temporary I.t with the read result v and the translated address pa. The value v is computed by
function I.ext with the read value c.m(pa) and I.bw. In case of a volatile read we perform the
ownership transfer according to the result of the (uninterpreted) og function. og is an ownership
annotation generation function which takes the program state and read temporaries and returns
the ownership annotation (A, L,R,W, Apt,Rpt).

3When instantiating the model one can easily discharge this assumption by attaching a time stamp to every read
destination.
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Definition 2.7 (Memory Step for Reads) The semantics of volatile read and non-volatile read
are defined as:

nvR(I) pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)

v = I.ext(c.m(pa), I.bw)

c
m
==⇒i c[ϑ[i] := c.ϑ[i](I.t 7→ v), is[i] := tl(c.is[i])]

vR(I) pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r) v = I.ext(c.m(pa), I.bw)

ϑ′ = c.ϑ[i](I.t 7→ v) ghst′ = otran(c.ghst[i], I, og(I.p, ϑ′))

c
m
==⇒i c[ϑ[i] := ϑ′, ghst[i] := ghst′, is[i] := tl(c.is[i])]

For a write instruction we obtain the write value by applying I.cb to the value I. f (ϑ[i]), c.m(pa)
and I.bw. Then we store the write value at memory address pa. In case of a volatile write we
also perform the ownership transfer and set the dirty bit. As descried in section 2.1, the dirty bit
is a flag used to implement our SB flushing rule.

Definition 2.8 (Memory Step for Writes) The semantics of volatile write and non-volatile read
are defined as:

nvW(I) pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)

v = I.cb(I. f (ϑ[i]), c.m(pa), I.bw)

c
m
==⇒i c[m := c.m(pa 7→ v), is[i] := tl(c.is[i])]

vW(I) pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)

v = I.cb(I. f (ϑ[i]), c.m(pa), I.bw) ghst′ = otran(c.ghst[i], I, og(I.p, c.ϑ[i]))

c
m
==⇒i c[m := c.m(pa 7→ v), ghst[i] := ghst′,D[i] := 1, is[i] := tl(c.is[i])]

An RMW instruction first performs a read of memory cell c.m(pa) and the physical address
pa into temporary I.t and then checks condition I.cond on the updated set of temporaries. If
the test succeeds we obtain the write value by applying I. f to the updated set of temporaries
and store this value at address pa. Independent on the test result we reset the dirty bit, clear the
release sets and perform the ownership transfer.

Definition 2.9 (Memory Step for RMW) The semantics of RMW is defined as:

RMW(I) pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)

ϑ′ = c.ϑ[i](I.t 7→ c.m(pa)) ghst′ = otran(c.ghst[i], I, og(I.p, ϑ′))

m′ = I.cond(ϑ′) ? c.m(pa 7→ I. f (ϑ′)) : c.m

c
m
==⇒i c[m := m′, ϑ[i] := ϑ′, ghst[i] := ghst′,D[i] := 0, is[i] := tl(c.is[i])]
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Fence instructions do not update the non-ghost part of the state (except reducing the length of
the instruction list). For a fence instruction we clear the release sets and reset the dirty bit. Mode
switch, INVLPG and write to PTO instructions also clear the release sets and reset the dirty bit
as a side effect. In case of a mode switch we change the translation mode to I.mode. Invlpg
instruction removes the invalidated translation from the MMU using function δ f lush and a write
to PTO instruction applies function δwpto to the current MMU state.

Definition 2.10 (Memory Step for Fence, Mode Switch, Invlpg and Write to PTO) The seman-
tics of FENCE, SWITCH, INVLPG and WPTO are defined as:

FENCE(I)

c
m
==⇒i c[D[i] := 0, is[i] := tl(c.is[i]), rls[i] := ∅]

S WITCH(I)

c
m
==⇒i c[mode[i] := I.mode,D[i] := 0, is[i] := tl(c.is[i]), rls[i] := ∅]

INVLPG(I) mmu′ = δ f lush(c.mmu[i], I.F)

c
m
==⇒i c[mmu[i] := mmu′,D[i] := 0, is[i] := tl(c.is[i]), rls[i] := ∅]

WPTO(I) mmu′ = δwpto(c.mmu[i], I.v)

c
m
==⇒i c[mmu[i] := mmu′,D[i] := 0, is[i] := tl(c.is[i]), rls[i] := ∅]

MMU of thread i can either perform a read from the page tables updating the MMU state or
a write setting control bits in the page tables. In case of a read the new MMU state is chosen
from the set of MMU states provided by function δmmur and in case of a write we chose the
value to be written to the memory from the set of values provided by function δmmuw. A page
fault step is triggered when we are running in translated mode, in the head of the instruction
list there is an instruction which requires address translation and the page fault for the address
of the instruction can be signalled. As an effect of the page fault we (i) update the program
state using (uninterpreted) function δpf which loads the information about the faulty translation
to the program state, (ii) flush all translations for the faulty virtual address from the MMU and
(iii) clear the instruction list. As a side effect we also empty the release sets and reset the dirty
bit.

Definition 2.11 (MMU Step and Page Fault Step) The semantics of MMU step and page fault
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step are defined as:

c.mode[i] mmu′ = δcrtw(c.mmu[i], va)

c
muc
==⇒i c[mmu[i] := mmu′]

c.mode[i] can-access(c.mmu[i], pa) mmu′ ∈ (δmmur(c.mmu[i], pa, c.m(pa)))

c
mur
==⇒i c[mmu[i] := mmu′]

c.mode[i] can-access(c.mmu[i], pa) v′ ∈ (δmmuw(c.mmu[i], pa, c.m(pa)))

c
muw
==⇒i c[m := c.m(pa 7→ v′)]

c.mode[i] can-access(c.mmu[i], pa) I = hd(c.is[i]) (R(I) ∨W(I) ∨ RMW(I))

can-page- f ault(c.mmu[i], I.va, I.r, pa, c.m(pa))

p′ = δpf (c.p[i], c.mode[i], I.va) mmu′ = δ f lush(c.mmu[i], {I.va})

c
pf
==⇒i c[is[i] := [], p[i] := p′,mmu[i] := mmu′,mode[i] := 0,D[i] := 0, rls[i] := ∅]

c
mu
==⇒i c′ ≡ c

muc
==⇒i c′ ∨ c

mur
==⇒i c′ ∨ c

muw
==⇒i c′

Note, that reading a faulty entry, signalling a page fault, and jump to the interrupt service
routine is done in a single atomic transition, i.e. the MMU is not allowed to pre-fetch a faulty
PTE first and then use it for signalling a page fault some time later. This forbids to model
silent rights granting in page tables i.e., when the user grants more rights in a PTE without a
consequent TLB flush, and setting of present bit in a PTE without TLB flushing. In a real TLB
of the x86 machine the same behavior can be achieved by performing a fresh re-walk of page
tables in case of a page fault [Adv11]

Definition 2.12 (One Step Computation of Abstract Machine) Every step of abstract machine
is either a program step, a memory step, an MMU step or a page fault step of thread i:

c =⇒i
eev

c′ ≡ c
p

==⇒i
eev

c′ ∨ c
m
==⇒i c′ ∨ c

mu
==⇒i c′ ∨ c

pf
==⇒i c′

One step of abstract machine is defined as:

c =⇒
eev

c′ ≡ ∃i. c =⇒i
eev

c′

By c =⇒
k

eev
c′ we denote that state c′ is reachable from c in exactly k step and by c =⇒*

eev
c′

we denote the reflexive transitive closure of =⇒
eev

. We also use the same kind of notation when

arguing about executions of thread i and executions which consist only of certain kinds of steps
(e.g., only memory steps).
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Safety Condition

Safety condition for instruction I in thread i restricts the sets of translated physical addresses
which can be accessed by read, write and RMW instructions and defines the rules for the owner-
ship transfer. A translated physical address of the volatile read instruction can be either owned
by the thread, or shared, or can belong to local page tables. Moreover, we have to make sure
that the dirty bit is cleared before we can execute a volatile read. A non-volatile read can only
be performed to an owned or read-only address. In case of a volatile write we require the target
address to be not present in the ownership and page table sets of other threads and to be excluded
from the read only addresses. A non-volatile write can only be performed to owned unshared
addresses. For RMW instructions we split cases depending on the result of the RMW test. We
treat RMW as a volatile read if the test fails and as a volatile write if the test succeeds. For
instructions performing the ownership transfer we require (i) the local fraction L of acquired
addresses to be a subset of the acquired addresses A, (ii) acquired addresses A∪Apt to be disjoint
with the ownership and page table sets of other threads, (iii) released addresses R to be a subset
of the addresses owned by the thread and released page table addresses Rpt to be a subset of the
local page table addresses, (iv) acquired addresses A to be a subset of owned, shared and released
page table addresses, (v) acquired page table addresses Apt to be a subset of page table, shared
and released addresses, (vi) acquired addresses A must be disjoint with released addresses R and
acquired page table addresses must be disjoint with released addresses Rpt and (vii) acquired
addresses A must be disjoint with the acquired page table addresses Apt.

Definition 2.13 (Safety Condition for Ownership Transfer of Volatile Instruction) Let annot =

(A, L,R,W, Apt,Rpt) then the safety condition for ownership transfer of volatile instruction in
thread i is defined as:

sa f e-instr-otran(c, i, annot) ≡ ∀ j , i. L ⊆ A ∧ (A ∪ Apt) ∩ (c.O[ j] ∪ c.pt[ j]) = ∅ ∧

R ⊆ c.O[i] ∧ Rpt ⊆ c.pt[i] ∧ A ⊆ c.O[i] ∪ c.shared ∪ Rpt ∧ A ∩ R = ∅ ∧

Apt ⊆ c.pt[i] ∪ c.shared ∪ R ∧ Apt ∩ Rpt = ∅ ∧ Apt ∩ A = ∅

We need some auxiliary definition before defining the safety condition for instruction. For
any abstract machine configuration c and instruction I we define

ϑ′ =


c.ϑ[i](I.t 7→ c.m(pa)) RMW(I)
c.ϑ[i](I.t 7→ v) vR(I)
c.ϑ[i] otherwise

In which: pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r) v = I.ext(c.m(pa), I.bw)

Definition 2.14 (Safety Condition for Instructions) Let annot = og(I.p, ϑ′) then the safety
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condition for instruction I in thread i is defined as:

sa f e-instr(c, i, I, annot) ≡ (∀pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r).

(vR(I)→ pa ∈ c.O[i] ∪ c.shared ∪ c.pt[i] ∧ ¬c.D[i]) ∧

(nvR(I)→ pa ∈ c.O[i] ∪ c.ro) ∧

(vW(I)→ ∀ j , i. pa < c.O[ j] ∪ c.pt[ j] ∧ pa < c.ro) ∧

(nvW(I)→ pa ∈ c.O[i] ∧ pa < c.shared) ∧

(RMW(I) ∧ ¬I.cond(ϑ′)→ pa ∈ c.O[i] ∪ c.shared ∪ c.pt[i]) ∧

(RMW(I) ∧ I.cond(ϑ′)→ ∀ j , i. pa < c.O[ j] ∪ c.pt[ j] ∧ pa < c.ro)) ∧

(vW(I) ∨ vR(I) ∨ RMW(I)→ sa f e-instr-otran(c, i, annot))

An MMU step reading or writing physical address pa is safe if pa belongs a local page table
or to the shared portion of the memory which is not owned by anyone and which does not belong
to the read only memory.

Definition 2.15 (Safety Condition for MMU Step) The safety condition for MMU step in thread
i is defined as:

sa f e-mmu-acc(c, pa, i) ≡pa ∈ c.pt[i] ∪ c.shared ∧ pa < c.ro ∧ ∀ j. pa < c.O[ j]

Configuration c of the abstract machine is safe if first instructions in the instruction lists of all
threads are safe and all MMU steps as well as the page fault step, which can be performed from
c are safe:

Definition 2.16 (Safety Condition for Machine State) Let I = hd(c.is[i]) and annot = og(I.p, ϑ′)
then the safety condition for machine state c with respect to function og is defined as:

sa f e-state(c, og) ≡ ∀i. sa f e-instr(c, i, I, annot) ∧

∀i, pa. can-access(c.mmu[i], pa)→ sa f e-mmu-acc(c, pa, i)

Predicate sa f e-reach(c, n, og) denotes that any configuration reachable from configuration c
in at most n steps is safe. If we omit the number of steps, then the predicate denotes that any
configuration reachable from c is safe.

Definition 2.17 (Safety Condition for Reachable Machine State) The safety condition for ev-
ery abstract machine states reachable from configuration c within n steps is defined as:

sa f e-reach(c, n, og) ≡ sa f e-state(c, og) ∧

∀c′. ∀k ≤ n. c =⇒
k

eev
c′ → sa f e-state(c′, og)

The safety condition for every abstract machine state reachable from configuration c is defined
as:

sa f e-reach(c, og) ≡ ∀n. sa f e-reach(c, n, og)
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When execution of a abstract machine starts from the initial state and maintains the safety
condition, we can be sure that certain relations between various ownership sets are maintained.
We gather these properties in the following predicate:

dis joint-osets(c) ≡ c.ro ⊆ c.shared ∧ ∀i. ∀ j , i.

c.O[i] ∩ c.O[ j] = ∅ ∧ c.O[i] ∩ c.ro = ∅ ∧

c.O[i] ∩ c.pt[ j] = ∅ ∧ c.pt[i] ∩ c.pt[ j] = ∅ ∧

c.O[i] ∩ c.pt[i] = ∅ ∧ c.pt[i] ∩ c.shared = ∅

initial(c) ≡ dis joint-osets(c) ∧ ∀i. c.rls[i] = ∅ ∧ c.is[i] = []

2.2.4 Store Buffer Machine

Our SB machine contains all the components from the abstract machine plus thread-local SBs.
The ghost fields carried from the abstract machine configuration are used to simplify the proof,
particularly they allow to specify properties of the stores present in the SB without referring
to the corresponding configuration of the abstract machine. Store buffers are used not only to
buffer memory stores, but also to collect history information about the executed memory and
program steps. The ghost fields carried from the abstract machine do not influence the execution
of the SB machine. The history information which is recorded in the SB also does not have
any influence on the non-ghost components (except of the length of the SB when the history
information retires). Hence, proving simulation between an SB machine without the ghost and
history components and with them is a trivial task and we omit it here.

The thread-local SB is a FIFO queue of SB instructions sb ∈ I∗sb.

Definition 2.18 (SB Instruction) The set of SB instruction Isb is defined as:

Isb = {Readsb vol va t r ext bw p annot pa v | pa ∈ A, v ∈ V}

∪ {Writesb vol va (D, f ) r cb bw p annot pa v | v ∈ V}

∪ {Progsb p1 p2 is1 is2 eev | p1, p2 ∈ P, is1, is2 ∈ I
∗, eev ∈ EEV}

The only SB instruction with a non-ghost effect is Writesb, which stores value v to memory
address pa when it leaves the SB. The other fields of Writesb collect the history information
and are carried over from the corresponding Write instruction, when it is executed and is put
to the SB. When read or program steps are executed we also record the ghost information for
them in the SB. In case of a read we additionally record physical address pa from where the
read was performed and value v that was read. For program steps we record program state p1
of the thread configuration before the step and program state p2 after the step together with the
instruction sequence is1 before the step and the newly generated instruction sequence is2.

We overload predicates R(I), W(I), etc., to work also on SB instructions and introduce predi-
cate P(I) for the recorded program step.

We define some auxiliary functions to convert the format of instructions. Function

sbins ∈ I × A × V × (2A)6 → I∗sb
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converts a read or write instruction to a corresponding SB instruction:

sbins(I, pa, v, annot) =
[Readsb I.vol I.va I.t I.r I.ext I.bw I.p annot pa v] R(I)
[Writesb I.vol I.va I.(D, f ) I.r I.cb I.bw I.p annot pa v] W(I)
[] otherwise

The function ins ∈ Isb → I
∗ performs conversion in the other direction:

ins(I) =


[Read I.vol I.va I.t I.r I.ext I.bw I.annot] R(I)
[Write I.vol I.va I.(D, f ) I.r I.cb I.bw I.annot] W(I)
[] otherwise

We define an overloaded version of the function ins which operates on a list of SB instructions:

ins(sb) =


[] sb = []
ins(tl(sb)) P(hd(sb))
ins(hd(sb)) ◦ ins(tl(sb)) otherwise.

The history information for reads and program steps allows to keep track of instructions which
have been executed in the store buffer machine after the preceding write instruction is executed,
but before it leaves the SB. We use this information in Sect. 2.3.1 to couple the state of SB and
abstract machines in the simulation theorem. The history information for writes keeps track of
the store values and the physical address chosen for the address translation. This information
is coupled with the current state of the SB machine with the help of additional invariants (Sect.
2.3.4). These invariants together with the coupling relation guarantee, for instance, that we can
chose the same address translation when executing the corresponding instruction in the abstract
machine and that the store value of that instruction in the abstract machine will be the same as
in the SB machine.

Configuration

Definition 2.19 (Thread-local Configuration of SB Machine) Thread-local configuration csbh.ts[i]
has all components from the local configuration of the abstract machine plus an SB component:

csbh.ts[i] = (p, is, ϑ,mmu, pt,mode,D,O, rlsl, rlss, rlspt, sb) ∈ Ksbh

For components X of thread local configuration csbh.ts[i] we simply write X[i] if configuration
csbh is clear from the context.

Definition 2.20 (SB Machine Configuration) Configuration of the SB machine csbh has the
same components as configurations of the abstract machine:

csbh = (m, shared, ro, ts) ∈ Msbh
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For X ∈ {shared, ro,m} we write X as a shorthand for csbh.X. X′ or X′[i] denotes the corre-
sponding component of c′sbh. Note, that we completely omit the configuration identifier only for
the SB machine, and always write it for the abstract machines in order to avoid confusion. As
in the case of the abstract machine, we abbreviate by rls[i] the union of all release sets of thread
i and by ghst[i] we denote the ghost information of thread i (excluding the dirty flag) and the
shared ghost information.

Semantics

The computation of the SB machine is a sequence of SB configurations. Each configuration
is obtained by applying a non-deterministic transition relation to the initial configuration itera-
tively. Every computation step of SB machine is either a program step, a memory step, an MMU
step, a page fault step or SB setp of thread i.

A program step of the SB machine has the same effect as in the abstract machine and is
recorded as history information in the SB:

Definition 2.21 (Program Step) The semantics of program step is defined as following in which
eev is external inputs:

(p′, is′) = δp(p[i], ϑ[i],mode[i],mmu[i], is[i], eev)

I = PROGsb p[i] p′ is[i] is′ eev

csbh
p

==⇒i
eev

csbh[p[i] := p′, sb[i] := sb[i] ◦ I, is[i] := is[i] ◦ is′]

In which

∀I ∈ is′. W(I) ∨ R(I) ∨ RMW(I)→ I.p = p[i]

MMU read, write and walk creation steps of the SB machine have exactly the same semantics
as in the abstract machine. The page fault step can occur only when the SB is empty:

Definition 2.22 (Page Fault Step) The semantics of page fault step is defined as:

mode[i] can-access(mmu[i], pa) I = hd(is[i]) (R(I) ∨W(I) ∨ RMW(I))

can-page- f ault(mmu[i], I.va, I.r, pa,m(pa)) sb[i] = []

p′ = δpf (p[i],mode[i], I.va) mmu′ = δ f lush(mmu[i], {I.va})

csbh
pf
==⇒i csbh[is[i] := [], p[i] := p′,mmu[i] := mmu′,mode[i] := 0, rls[i] := ∅]

Predicate sbehit(I, a) denotes whether there is a store buffer hit for the given entry I and
address a:

sbehit(I, a) = W(I) ∧ I.pa = a.

Predicate sbhit(sb, a) denotes whether there is a store buffer hit for the given address a:

sbhit(sb, a) = ∃ j < |sb|. sbehit(sb[ j], a).
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Function maxhit(sb, a) computes the last index of the store buffer entry which hit the given
address a or returns ⊥ if there is no such index:

maxhit(sb, a) =

max{ j | sbehit(sb[ j], a)} sbhit(sb, a)
⊥ otherwise.

A memory step of thread i is defined by a case split on the instruction I = hd(c.is[i]) to be exe-
cuted. The read instruction performs the read and is recorded to the SB as history information.
The read value is obtained with the partial function f wd(sb[i],m, pa, bw), which forwards the
last store value to pa in the SB or returns the memory value m(pa) if there are no writes to pa
in the SB. If the read access can not be serviced by one store buffer entry (e.g. we have a partial
store buffer hit on the last store value to pa) the f wd returns ⊥. Let j = maxhit(sb, pa) then

f wd(sb,m, pa, bw) =


m(pa) j = ⊥

sb[ j].v j , ⊥ ∧ bw ≤ sb[ j].bw
⊥ otherwise.

The read instruction updates the value of temporary I.t with the read result v, which is com-
puted by function I.ext with the value forwarding from sb[i] and I.bw. It is recorded in the SB as
the ghost history information. Note that in the semantics we forbid partial forwarding form the
SB.

Definition 2.23 (Memory Step for Read) The semantics of read is defined as:

R(I) pa ∈ atran(mmu[i], I.va,mode[i], I.r) v1 = f wd(sb[i],m, pa, I.bw)

v1 , ⊥ v = I.ext(v1, I.bw) ϑ′ = ϑ[i](I.t 7→ v) annot = og(I.p, ϑ′)

csbh
m
==⇒i csbh[ϑ[i] := ϑ′, sb[i] := sb[i] ◦ sbins(I, pa, v, annot), is[i] := tl(is[i])]

The write instruction is not executed immediately, but is buffered in the SB together with the
ghost history information.

Definition 2.24 (Memory Step for Write) The semantics for write is defined as:

W(I) pa ∈ atran(mmu[i], I.va,mode[i], I.r)

D′ = vW(I) ∨D[i] annot = og(I.p, ϑ[i])

csbh
m
==⇒i csbh[sb[i] := sb[i] ◦ sbins(I, pa, I. f (ϑ[i]), annot), is[i] := tl(is[i]),D[i] := D′]

The read modify write, fence, mode switch, invlpg and write to PTO instructions can be exe-
cuted only when SB is empty and have the same semantics as defined for the abstract machine.
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Definition 2.25 (Memory Step for RMW, FENCE, SWITCH, INVLPG and WPTO)

RMW(I) pa ∈ atran(mmu[i], I.va,mode[i], I.r)

ϑ′ = ϑ[i](I.t 7→ m(pa)) ghst′ = otran(ghst[i], I, og(I.p, ϑ′))

sb[i] = [] m′ = I.cond(ϑ′) ? m(pa 7→ I. f (ϑ′)) : m

csbh
m
==⇒i csbh[m := m′, ϑ[i] := ϑ′, ghst[i] := ghst′,D[i] := 0, is[i] := tl(is[i])]

FENCE(I) sb[i] = []

csbh
m
==⇒i csbh[rls[i] := ∅,D[i] := 0, is[i] := tl(is[i])]

S WITCH(I) sb[i] = []

csbh
m
==⇒i csbh[mode[i] := I.mode, rls[i] := ∅,D[i] := 0, is[i] := tl(is[i])]

INVLPG(I) sb[i] = [] mmu′ = δ f lush(mmu[i], I.F)

csbh
m
==⇒i csbh[mmu[i] := mmu′, rls[i] := ∅,D[i] := 0, is[i] := tl(is[i])]

WPTO(I) sb[i] = [] mmu′ = δwpto(mmu[i], I.v)

csbh
m
==⇒i csbh[mmu[i] := mmu′, rls[i] := ∅,D[i] := 0, is[i] := tl(is[i])]

The SB collects read, write and program instructions. Among those instructions only writes
contain non-ghost data and perform an update of the non-ghost part of the configuration when
they leave the SB. An SB step of thread i is defined by a case split on I = hd(sb[i]). When a
write instruction leaves the SB, then it deliverers a buffered store to the memory and performs
an ownership transfer if the write is volatile. A read instruction only performs an ownership
transfer. Program instructions are simply skipped. We overload the ownership transfer function
as

∀I ∈ Isb. otran(ghst, I) = otran(ghst, ins(I), I.annot)

Definition 2.26 (SB Step) The semantics of an SB step is defined as:

W(I) v = I.cb(I.v,m(I.pa), I.bw)

ghst′ = (nvW(I) ? ghst[i] : otran(ghst[i], I))

csbh
sb
==⇒i csbh[m := m(I.pa 7→ v), ghst[i] := ghst′, sb[i] := tl(sb[i])]

R(I) ghst′ = (nvR(I) ? ghst[i] : otran(ghst[i], I))

csbh
sb
==⇒i csbh[ghst[i] := ghst′, sb[i] := tl(sb[i])]

P(I)

csbh
sb
==⇒i csbh[sb[i] := tl(sb[i])]

The computation of the SB machine is defined by a non-deterministic transition relation
csbh =⇒

eev
c′sbh
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Definition 2.27 (One Step Computation of SB Machine) Every step of SB machine is either
a program step, a memory step, an SB step, an MMU step or a page fault step of thread i:

csbh =⇒i
eev

c′sbh ≡ csbh
p

==⇒i
eev

c′sbh ∨ csbh
m
==⇒i c′sbh ∨ csbh

sb
==⇒i c′sbh ∨ csbh

mu
==⇒i c′sbh ∨ csbh

pf
==⇒i c′sbh

One step of SB machine is defined as:

csbh =⇒
eev

c′sbh ≡ ∃i. csbh =⇒i
eev

c′sbh

2.3 Store Buffer Reduction

The main property we have to prove is that the reads (including the MMU reads) performed
in both machines get the same value. As a result, the crucial role plays the scheduling of the
abstract machine. The most straightforward approaches one could think about are (i) executing
an instruction on the abstract machine when this instruction is executed on the SB machine and
(ii) executing an instruction on the abstract machine when this instruction leaves the SB (i.e.,
delaying the abstract machine until this point). The history information recorded in the SB
in this case helps to reconstruct the instructions which yet have to be executed in the abstract
machine. However, both of these approaches do not work. In the first case we get a problem
when thread i executes a volatile write and puts it to the store buffer and then thread j executes
a volatile read. In the abstract machine the result of the write will already be committed to the
memory and thread j will read the new value, while in the SB machine thread j will get the old
value, because the write is still present in the store buffer of thread i. The same example also
rules out the second approach: if we delay a volatile read of thread j in the abstract machine,
then it might be scheduled after the volatile write of thread i leaves the SB, and the abstract
machine will again read the new value.

Hence, to guarantee the consistency of read results in both executions we have to schedule the
abstract machine in such a way, that

• a volatile write must be delayed in the abstract machine until the volatile write exits the
SB in the SB machine,

• a volatile read must be executed simultaneously in both machines. Our programming
discipline guarantees that when a volatile read is executed there can be no volatile writes
in the SB of the SB machine.

As a result, the shared portion of the memory will be always consistent between the machines.
The page tables in that sense are also considered as part of the “shared” memory, even if these
page tables are thread-local. Indeed, if the content of local page tables would be inconsistent
between the machines, then MMU reads in the abstract machine would either read different
values (due to the absence of SB forwarding for MMU reads) or would have to be delayed until
the competing volatile writes to local page tables leave the SB. However delaying MMU reads in
the virtual machine is also not feasible, because that would force us to delay subsequent MMU
writes. These MMU writes might be performed to shared page tables (we do allow a local PTE
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MMUstep

head head

vWsb[i]

c.is[i]

is[i]

MMUstep

Figure 2.3: Reordering of MMU steps.

to point to a shared PTE), which would lead to inconsistent shared memory. As a result, we
have to execute all MMU steps simultaneously in both machines. Together with the possible
delay in instruction execution this leads to reordering of MMU steps with respect to executed
instructions in a given thread, but this reordering is always done to the left of the instruction
sequence (Fig. 2.3). This behaviour is fine, because the monotonicity property of our MMU
model guarantees that once added the address translations are never removed from the MMU. In
the abstract machine some address translations will be added to the MMU earlier than in the SB
machine (if one counts time by the number of executed instructions), but they will still remain
there when the instructions which might rely on these address translations are executed. In the
following section we define the coupling relation csbh ∼ c which captures the essence of our
scheduling policy.

2.3.1 Coupling Relation

The part of the SB after and including the first volatile write is called suspended, because these
steps are not yet executed on the abstract machine. The part of the SB before the first volatile
write (or the whole SB if it does not have any volatile writes) is called executed, since the abstract
machine has already performed these steps. We introduce the functions exec(sb) and susp(sb),
which return the executed and the suspended parts of the SB respectively:

exec(sb) =

sb[0 : k − 1] k = min{ j | vW(sb[ j])}
sb no vW in sb.

susp(sb) =

sb[k : |sb| − 1] k = min{ j | vW(sb[ j])}
[] no vW in sb.

In contrast to a non-deterministic memory transition due to non-deterministic address trans-
lation, an SB step is always deterministic. To simplify the notation we introduce a function δsb,
which computes the next state of the SB machine after an SB step of thread i or returns the
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unmodified machine state in case the SB of thread i is empty:

δsb(csbh, i) =

c′sbh sb[i] , [] ∧ csbh
sb
==⇒i c′sbh

csbh sb[i] = [].

Configuration of the machine after executing k steps of the SB of thread i is defined inductively
as:

δk
sb(csbh, i) =

csbh k = 0
δsb(δk−1

sb (csbh, i), i) otherwise.

Function ∆sb(csbh, i) executes all instruction in the SB of thread i and function ∆exec
sb (csbh, i)

executes all instructions before the first volatile write:

∆sb(csbh, i) = δ
|sb[i] |

sb (csbh, i)

∆exex
sb (csbh, i) = δ

|exec(sb[i])|
sb (csbh, i).

We overload functions ∆sb(csbh) and ∆exec
sb (csbh) (leaving out the thread id) to compute the ma-

chine configuration after consecutive execution of instructions from SBs of all threads, starting
with thread id 0:

∆sb(csbh) = ∆sb(...∆sb(∆sb(csbh, 0), 1)..., np − 1)

∆exec
sb (csbh) = ∆exec

sb (...∆exec
sb (∆exec

sb (csbh, 0), 1)..., np − 1).

We define ∆sb[,i](csbh) and ∆exec
sb[,i](csbh) to do the same computation but excluding steps of thread

i.
With this notation we can now define the coupling relation csbh ∼ c (Definition 2.28).

• To get shared component X ∈ {shared, ro,m} of the abstract machine we take the cor-
responding component of the SB machine and execute all instructions in the executed
portions of SBs of all threads. Note, that since the executed parts of SBs do not con-
tain volatile writes, the content of the shared memory is always consistent between two
machines,

• For thread-local components X ∈ {O, pt, rlsl, rlss, rlspt} of thread i we take the correspond-
ing component of the SB machine and execute all instructions in the executed portion of
the SB of thread i.

• To couple the instruction list (Fig. 2.4) we first observe, that the instruction list in the
abstract machine should contain all instructions from the suspended part of the SB (with
the exception of the history information for program steps) plus the instructions from
the instruction list of the SB machine. Note however, that some of the instructions in
the SB machine might be generated by the program steps, which are suspended in the
virtual machine. Instead of removing these instructions from the instruction list of the SB
machine, in the coupling relation we append them to the instruction list of the abstract
machine. The function ins(susp(sb[i])) removes the program steps from the suspended
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Figure 2.4: Instruction list coupling.

portion of the SB and converts the instructions recorded in the store buffer into regular
memory instructions by throwing away the additional history information. The function
p-ins(susp(sb[i])) extracts instructions generated by the program steps recorded in the
suspended portion of the SB:

p-ins(sb) =


[] sb = []
is2 ◦ p-ins(tl(sb)) hd(sb) = Progsb p1 p2 is1 is2 eev
p-ins(tl(sb)) otherwise

• The set of temporaries of thread i of the abstract machine is obtained by removing all
the temporaries used for reads in the suspended part of the SB, done by the function
del-t(ϑ[i], sb)

del-t(ϑ, sb) = ϑ �dom(ϑ)\loadt(sb) .

where:
loadt(sb) =

⋃
{sb[k].t | k < |sb| ∧ R(sb[k])}

Since we assume all temporaries in the newly generated instructions to be fresh, we can
be sure that we do not remove the temporaries which have been used for already executed
reads.

• The program state in the abstract machine is obtained by function

hd-p(p[i], susp(sb[i]))

which takes the recorded pre-state of the first program instruction in the suspended portion
of the SB or simply takes the current program state in the SB machine if there are no
suspended program instructions:

hd-p(p, sb) =


p sb = []
p1 hd(sb) = Progsb p1 p2 is1 is2 eev
hd-p(p, tl(sb)) otherwise.
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• The address translation mode and the MMU state are always equal between the machines.

• The dirty bit in the SB machine is set iff it is also set in the abstract machine or if there is
a volatile write in the (suspended part of the) SB.

Definition 2.28 (Coupling Relation)

csbh ∼ c ≡ ∀X ∈ {shared, ro,m}. c.X = ∆exec
sb (csbh).X ∧

∀i. ∀X ∈ {O, pt, rlsl, rlss, rlspt}. c.X[i] = ∆exec
sb (csbh, i).X[i] ∧

c.is[i] ◦ p-ins(susp(sb[i])) = ins(susp(sb[i])) ◦ is[i] ∧

c.ϑ[i] = del-t(ϑ[i], susp(sb[i])) ∧ c.p[i] = hd-p(p[i], susp(sb[i])) ∧

c.mode[i] = mode[i] ∧ c.mmu[i] = mmu[i] ∧

((c.D[i] ∨ ∃I ∈ sb[i]. vW(I))↔ D[i])

Note that the coupling relation defined here gives the full consistency between all components
only when all the SBs are empty. As a result, one has to require the execution to end with a
configuration where SBs are empty in order to use the SB reduction theorem (Theorem 2.29)
to transfer all the results of the execution of the SB machine to the abstract machine. However,
intermediate configurations, for instance those where only SBs of some threads are empty, can be
also used to transfer partial execution results (e.g., for the memory content owned by a thread).

2.3.2 Reduction Theorem

Our main result is a simulation theorem between the SB machine and the abstract machine.

Theorem 2.29 (SB Reduction)

csbh =⇒*
eev

c′sbh ∧ csbh ∼ c ∧ initial(c) ∧ sbempty(csbh) ∧ sa f e-reach(c)→

∃c′. c =⇒*
eev

c′ ∧ c′sbh ∼ c′

We consider only executions which start with empty SBs:

sbempty(csbh) = ∀i. csbh.sb[i] = [].

We do the proof of Theorem 2.29 on step by step basis i.e., for every step of the SB machine we
find a (possibly empty) corresponding sequence of steps of the abstract machine in such a way,
that the coupling relation is maintained.

Note, that the scheduling for instructions performing local memory accesses is not so crucial,
because our programming discipline guarantees that these accesses never race with memory
accesses of other threads and with memory accesses performed by MMUs, including the MMU
of the executing thread itself. By a race here we understand two competing accesses where at
least one of them is a write.

The following scheduling policy satisfies all the conditions stated above:
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• when a volatile write is executed in the SB machine, the abstract machine is delayed and
does not make any steps,

• when a volatile read is executed in the SB machine, the abstract machine executes the
same step,

• when a non-volatile memory access or a program step of thread i is executed in the SB
machine we make a case split on whether the SB of thread i contains a volatile write or
not. In case it does, then execution of thread i in the abstract machine is already suspended
(it is waiting until the volatile write will leave the SB) and we do not make any steps. In
case it does not, then the abstract machine executes the same step of thread i,

• all the other instructions and the page fault step require the SB to be empty before they
can be executed. Hence, we execute these steps simultaneously in both machines,

• when a volatile write exits the SB, the abstract machine executes this volatile write and all
instructions and program steps recorded in the SB until the next volatile write (or until the
end of the SB, if there are no other volatile writes there),

• when a read, non-volatile write, a ghost instruction or the recorded program step exits the
SB, the abstract machine does not perform any steps, because it has already performed the
corresponding step before,

• MMU steps are always executed simultaneously in both machines.

As a result of the rules stated above, the abstract machine is on-parallel or behind the SB
machine in terms of executed memory steps (instructions) and program steps and it is always
on-par with the SB machine in terms of executed MMU steps. However, in terms of the stores
committed to the memory the abstract machine is either on-parallel or ahead of the SB machine.

2.3.3 Safety of the Delayed Release

Our programming discipline essentially only allows races between volatile accesses of different
threads and between MMU accesses. Practically, this means that (i) while the reads are present
in the suspended portion of the SB, the read results can not be invalidated by other threads and
by MMUs and (ii) when a volatile read or an MMU read is executed in the SB machine, there
can be no (non-volatile) writes to the same address in the executed portions of other threads. In
the proof this for instance manifests in the following proof obligation: when a volatile write to
pa leaves the SB of thread i, there are no (non-volatile) reads to pa in the suspended portions
of SBs of other threads. We prove this by contradiction, assuming that such a read exists in the
SB of thread j. In the corresponding configuration of the abstract machine this read is not yet
executed. Hence, we forward thread j in the virtual machine configuration until the point where
this read is at the head of the instruction list. From safety of all reachable traces of the virtual
machine, we know that the resulting state is safe. Moreover, we can prove that for all reachable
safe states of the abstract machine disjointness of the ownership sets is preserved. This implies
a contradiction, because the safety of thread j requires pa to be either owned or read-only and
the safety of thread i requires pa to be not owned by other threads and not read-only.
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However, for some races the strategy described above does not work. Consider a case when
thread i starting with an empty SB performs a non-volatile write to pa and then a volatile read
release of pa. Since the SB of thread i does not contain any volatile writes, these steps are
immediately executed in the abstract machine. After that, MMU of thread i performs a read from
pa. In the current trace of the abstract machine this operation is safe, since the address pa is not
owned by any thread at the time of the MMU step. However, the read results in two machines
will be inconsistent, because in the abstract machine the store to pa is already committed to the
memory and in the SB machine it is still present in the SB of thread i. To rule out this situation,
we have to construct another unsafe trace of the abstract machine, which deviated from the
current trace somewhere in the past. For the given example this means that we have to consider
a trace where the MMU step is performed before the release takes place. Construction of these
deviated traces is not feasible in the step-by-step proof of Theorem 2.29, because there we only
have safety of reachable traces starting from the current state of the abstract machine. To solve
this problem we observe that the complications arise only when the addresses are released by
volatile read instructions. Information about these releases is collected into the (ghost) release
sets. We use these sets to define safety of the delayed release, which can be used to rule out the
described situation.

Definition 2.30 (Safety Condition of Delayed Release for Instructions) Safety condition of the
delayed release for an instruction I in thread i and for an MMU access to address pa in thread i,
where og(I.p, ϑ′) = (A, L,R,W, Apt,Rpt)

sa f e-instrd(c, i, I, og(I.p, ϑ′)) = sa f e-instr(c, i, I, og(I.p, ϑ′)) ∧

∀pa. ∀ j , i. pa ∈ atran(c.mmu[i], I.va, c.mode[i])→

(vR(I) ∨ (RMW(I) ∧ ¬I.cond(ϑ′))→ pa < c.rlsl[ j] ∪ c.rlspt[ j]) ∧

(nvR(I) ∨ vW(I) ∨ (RMW(I) ∧ I.cond(ϑ′))→ pa < c.rls[ j]) ∧

(vW(I) ∨ vR(I) ∨ RMW(I)→ (A ∪ Apt) ∩ c.rls[ j] = ∅)

sa f e-mmu-accd(c, a, i) = sa f e-mmu-acc(c, a, i) ∧ a < c.rlsl[i] ∧ ∀ j , i. a < c.rls[ j]

Definition 2.31 (Safety Condition of Delayed Release for Machine State) Let I = hd(c.is[i])
then

sa f e-stated(c, og) = ∀i. sa f e-instrd(c, i, I, og(I.p, ϑ′)) ∧

(∀i, pa. can-access(c.mmu[i], pa)→ sa f e-mmu-accd(c, pa, i))

Definition 2.32 (Safety Condition of Delayed Release for Reachable Machine State)

sa f e-reachd(c, n, og) = sa f e-stated(c, og) ∧ ∀c′.∀k ≤ n. c =⇒
k

eev
c′ → sa f e-stated(c′, og)

sa f e-reachd(c, og) = ∀n. sa f e-reachd(c, n, og)
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2.3.4 Invariants

In this section we define invariants inv(csbh) on the SB machine, which we later use in the
simulation proof. We start with giving some auxiliary definitions.

The set of all addresses acquired (resp. released) by instructions in store buffer sb is defined
as

acq(sb) =
⋃
{sb[k].A | k < |sb| ∧ (vR(sb[k]) ∨ vW(sb[k]))}

rels(sb) =
⋃
{sb[k].R | k < |sb| ∧ (vR(sb[k]) ∨ vW(sb[k]))}

The set of all PT addresses acquired (resp. released) by all instructions in store buffer sb is
defined as

acqpt(sb) =
⋃
{sb[k].Apt | k < |sb| ∧ (vR(sb[k]) ∨ vW(sb[k]))}

relspt(sb) =
⋃
{sb[k].Rpt | k < |sb| ∧ (vR(sb[k]) ∨ vW(sb[k]))}

As counterparts to the safety condition in the abstract machine, we defined the following
predicates for the SB machine. The subsequent one checks whether ownership annotations of a
given instruction I ∈ Isb are safe with respect to a given state of the machine and a given thread
ID i. In which, we write

sa f e-annot(csbh, i, I) = vR(I) ∨ vW(I) →

I.A ⊆ shared ∪ I.Rpt ∪ O[i] ∧ I.L ⊆ I.A ∧ I.A ∩ I.Apt = ∅ ∧

I.A ∩ I.R = ∅ ∧ I.R ⊆ O[i] ∧ I.Apt ⊆ shared ∪ pt[i] ∪ I.R ∧

I.Apt ∩ I.Rpt = ∅ ∧ I.Rpt ⊆ pt[i]

Another predicate collects some basic safety properties for the ownership transfer of instruc-
tion I ∈ Isb, which are needed for reordering of this transfer after an SB step of other thread:

sa f e-otran(csbh, i, I) = (vW(I) ∨ RMW(I) ∨ vR(I)) ∧

I.L ⊆ I.A ∧ I.R ⊆ O[i] ∪ acq(sb[i]) ∧ I.Rpt ⊆ pt[i] ∪ acqpt(sb[i]) ∧

(∀ j , i. (I.A ∪ I.Apt) ∩ (O[ j] ∪ acq(sb[ j])) = ∅) ∧

(∀ j , i. (I.A ∪ I.Apt) ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅)

Sets of temporaries used for reading by instructions in instruction list is , store buffer sb or ϑ
are defined as

loadt(is) =
⋃
{is[k].t | k < |is| ∧ (R(is[k]) ∨ RMW(is[k]))}

A store operation (D, f ), where the function f maps temporaries to a value and D specifies
the subset of temporaries, is valid iff f only depends on the temporaries specified by D:

valid-sop((D, f )) = ∀ϑ. D ⊆ dom(ϑ)→ f (ϑ) = f (ϑ �D)
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Ownership Invariants

oinv1. For every thread non-volatile writes in SB must refer to the owned memory. Reads in
the suspended part of the SB have to be owned or refer to read-only memory. Note, that in the
executed part of the SB reads do not always satisfy this property. Let I = sb[i][k], then:

oinv1(csbh) = ∀i. ∀k < |sb[i]|. (nvW(I)→ I.pa ∈ δk
sb(csbh, i).O[i]) ∧

(nvR(I) ∧ k ≥ |exec(sb[i])| → I.pa ∈ δk
sb(csbh, i).O[i] ∪ δ

k
sb(csbh, i).ro)

oinv2. Every outstanding volatile write is neither owned by any other thread and nor in other
thread’s PT set:

oinv2(csbh) = ∀i. ∀I ∈ sb[i]. vW(I)→

I.pa <
⋃
j,i

(O[ j] ∪ acq(sb[ j]) ∪ pt[ j] ∪ acqpt(sb[ j]))

oinv3. In the suspended part of the store buffer outstanding accesses to read-only memory are
not in the accumulated ownership sets of others. Note, that in the executed part of the SB reads
do not always satisfy this property. Let I = sb[i][k], then

oinv3(csbh) = ∀i. ∀ j , i. ∀k. k < |sb[i]| ∧ k ≥ |exec(sb[i])| ∧ nvR(I) ∧

I.pa ∈ δk
sb(csbh, i).ro→ I.pa < (O[ j] ∪ acq(sb[ j]) ∪ pt[ j] ∪ acqpt(sb[ j]))

oinv4. The ownership sets of every two different threads are distinct:

oinv4(csbh) = ∀i. ∀ j , i. (O[i] ∪ acq(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅

Sharing Invariants

sinv1. All outstanding non-volatile writes are unshared. Let I = sb[i][k], then

sinv1(csbh) = ∀i. ∀k < |sb[i]|. nvW(I)→ I.pa < δk
sb(csbh, i).shared

sinv2. All unshared addresses are owned or are in PT sets:

sinv2(csbh) = ∀a < shared → ∃i. a ∈ O[i] ∪ pt[i]

sinv3. No thread owns read-only memory and read-only memory is shared:

sinv3(csbh) = ro ⊆ shared ∧ ∀i. O[i] ∩ ro = ∅
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sinv4. The ownership annotations of outstanding ghost and volatile write operations are con-
sistent:

sinv4(csbh) = ∀i. ∀k < |sb[i]|. sa f e-annot(δk
sb(csbh, i), i, sb[i][k])

sinv5. There are no outstanding writes to read-only memory:

sinv5(csbh) = ∀i. ∀k < |sb[i]|. W(sb[i][k])→ sb[i][k].pa < δk
sb(csbh, i).ro

Invariants on Temporaries

tinv1. The temporaries used for loads in the instruction list are distinct:

tinv1(csbh) = ∀k < |is[i]|. loadt(is[i][0 : k]) ∩ loadt(is[i][k + 1 : |is[i]| − 1]) = ∅

tinv2. The temporaries used for loads in the store buffer are distinct:

tinv2(csbh) = ∀k < |sb[i]|. loadt(sb[i][0 : k]) ∩ loadt(sb[i][k + 1 : |sb[i]| − 1]) = ∅

tinv3. The temporaries used for loads in an instruction list are fresh, i.e., are not in the domain
of ϑ.

tinv3(csbh) = ∀i. loadt(is[i]) ∩ dom(ϑ[i]) = ∅

Data Dependency Invariants

dinv1. Every store (D, f ) in the instruction list or the store buffer is valid according to valid-sop:

dinv1(csbh) = ∀i. ∀I ∈ sb[i] ◦ is[i]. (W(I) ∨ RMW(I))→ valid-sop(I.(D, f ))

dinv2. Domain D of a store instruction in the instruction list is a subset of previous read
temporaries. Let I = is[i][k], then

dinv2(csbh) = ∀i. ∀k < |is[i]|. (W(I) ∨ RMW(I))→ I.D ⊆ dom(ϑ[i]) ∪ loadt(is[i][0 : k])

39



head head
PROGsb . . . is2 eev2

sb is

l1

I

l2sb′

is1 ◦ is2
PROGsb . . . is1 eev1

Figure 2.5: Store buffer and instruction list layout in hinv5.

History Invariants

hinv1. In the suspended part of the SB the value stored for a non volatile read is the same as the
last write to the same address in the SB or the value in memory, in case there is no hitting write
in the buffer. Note, that in the executed part of the SB reads do not always satisfy this property.
Let I = sb[i][k], then

hinv1(csbh) = ∀i. ∀k < |sb[i]|. k ≥ |exec(sb[i])| ∧ nvR(I)→

I.v = I.ext(δk
sb(csbh, i).m(I.pa), I.bw).

hinv2. There are no volatile reads in the suspended part of the store buffer:

hinv2(csbh) = ∀i. ∀I ∈ susp(sb[i]). ¬vR(I)

hinv3. For every read the recorded value and physical address coincide with the corresponding
value in the temporaries.

hinv3(csbh) = ∀i. ∀I ∈ (sb[i]). R(I)→ (I.v, I.pa) = ϑ[i](I.t)

hinv4. For every write in a store buffer the recorded value v coincides with f (ϑ[i]) and domain
D is a subset of previous read temporaries. Let I = sb[i][k], then

hinv4(csbh) = ∀i. ∀k < |sb[i]|. W(I)→ I. f (ϑ[i]) = I.v ∧

I.D ⊆ dom(ϑ[i]) \ loadt(sb[k + 1 : |sb[i]| − 1])

hinv5. History information for program steps in the store buffer is consistent.
Let I = sb[i][k], sb′ = sb[i][k + 1 : |sb[i]| − 1], l1 = ins(sb[i][k : |sb[i]| − 1]) ◦ is[i] and
l2 = p-ins(sb[i][k : |sb[i]| − 1]) (see Fig. 2.5) then

hinv5(csbh) = ∀i. ∀k < |sb[i]|. P(I)→ I.p2 = hd-p(p[i], sb′) ∧

δp(I.p1, del-t(ϑ[i], sb′),mode[i],mmu[i], I.is1, I.eev) = (I.p2, I.is2) ∧

I.is1 = l1[0 : |l1| − |l2| − 1]
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head head
PROGsb . . . is2 eev2

is1 ◦ is2k

sb is

PROGsb . . . is1 eev1

Figure 2.6: Relating generated instructions with instructions in the store buffer and in the in-
struction list.

hinv6. Any suffix of the store buffer concatenated with the instruction list contains the instruc-
tions generated by the program steps in this suffix (see Fig. 2.6). Let sb′ = sb[k : |sb[i]| − 1],
then

hinv6(csbh) = ∀i. ∀k < |sb[i]|. ∃is′. ins(sb′) ◦ is[i] = is′ ◦ p-ins(sb′)

hinv7. Ownership annotations of volatile write instructions in the store buffer are consistent.
Let I = sb[i][k] and sb′ = sb[i][k : |sb[i]| − 1] then

hinv7(csbh) = ∀i, k. vW(I)→ I.annot = og(I.p, del-t(ϑ[i], sb′))

MMU Invariant

minv1. In translated mode the physical address of an instruction in the store buffer is present in
the current address translation set:

minv1(csbh) = ∀i. ∀I ∈ sb[i]. (R(I) ∨W(I))→ I.pa ∈ atran(mmu[i], I.va,mode[i], I.r)

Page Table Invariants

pinv1. Page table sets of different threads do not overlap:

pinv1(csbh) = ∀i, j. i , j→ (pt[i] ∪ acqpt(sb[i])) ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅

pinv2. Page table sets and ownership sets of different threads do not overlap:

pinv2(csbh) = ∀i, j. i , j→ (pt[i] ∪ acqpt(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅

pinv3. Page table sets and the shared set do not overlap:

pinv3(csbh) = ∀i. pt[i] ∩ shared = ∅

pinv4. Page table set and ownership sets of one thread are disjoint:

pinv4(csbh) = ∀i. pt[i] ∩ O[i] = ∅
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2.3.5 Assumptions on Program Steps

We introduce a number of assumptions on program steps, which guarantee that the read tem-
poraries are always fresh for every new read instruction. Let δp(p[i], ϑ[i], is[i], eev) = (p′, is′),
then

1. load temporaries in is′ are distinct:

∀k < |is′|. loadt(is′[0 : k]) ∩ loadt(is′[k + 1 : |is′| − 1]) = ∅

2. load temporaries in is′ are distinct from load temporaries in is[i] and ϑ[i]

loadt(is′) ∩ (loadt(is[i]) ∪ dom(ϑ[i])) = ∅

3. store instructions in is′ are valid and their domains only depend on the previously gener-
ated load temporaries:

∀k < |is′|. I = is′[k] ∧ (W(I) ∨ RMW(I))→ valid-sop(I.(D, f )) ∧

I.D ⊆ loadt(is′[0 : k]) ∪ loadt(is[i]) ∪ dom(ϑ[i])

2.3.6 Proof Strategy

We split the proof of Theorem 2.29 into two parts. In the first part we assume safety of the
delayed release and in step-by-step fashion show that the coupling invariant is maintained after
every step of the SB machine.

Theorem 2.33 (SB Simulation)

csbh =⇒
eev

c′sbh ∧ csbh ∼ c ∧ sa f e-reachd(c, og) ∧ inv(csbh)→

inv(c′sbh) ∧ (∃c′. c =⇒*
eev

c′ ∧ c′sbh ∼ c′)

The proof of Theorem 2.33 is also split into two parts. In Sect. 2.4 we show that invariants are
maintained after every step of the SB machine and in Sect. 2.5 we prove the simulation. When
proving that invariants and the coupling relation are maintained, we show only those properties,
which can possibly get broken by the step. Those invariants and parts of the coupling relation
which we do not consider explicitly are trivially maintained after the step. Note, that all invari-
ants we defined talk about the content of the SB and trivially hold in the initial configuration, i.e.
in the case when SBs of all threads are empty.

In the second part of the proof of Theorem 2.29 we show that safety of the delayed release
can be derived from regular safety of the abstract machine.

Theorem 2.34 (Safety)

initial(c) ∧ sa f e-reach(c, og)→ sa f e-reachd(c, og)

This proof is given in Sect. 2.6.
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2.4 Maintaining Invariants

In this section we show that the invariants are maintained after every step of the SB machine.
We define the accumulated ownership set of thread i as:

accownpt[i] = O[i] ∪ acq(sb[i]) ∪ pt[i] ∪ acqpt(sb[i])

acc′ownpt[i] = O′[i] ∪ acq(sb′[i]) ∪ pt′[i] ∪ acqpt(sb′[i])

2.4.1 SB Steps

Lemma 2.35 (accumulated ownership sets shrink after δsb)

csbh
sb
==⇒i c′sbh ∧ inv(csbh)→ acc′ownpt[i] ⊆ accownpt[i]

Proof We do a case split on the SB step. If it does not perform the ownership transfer then the
lemma is trivially concluded. Otherwise we let I = hd(sb[i]) then from the semantics:

O′[i] = O[i] ∪ I.A \ I.R

pt′[i] = pt[i] ∪ I.Apt \ I.Rpt

From the definition of acq and acqpt we have:

acq(sb[i]) = acq(sb′[i]) ∪ I.A

acqpt(sb[i]) = acqpt(sb′[i]) ∪ I.Apt

We can get:

O′[i] ∪ acq(sb′[i]) = (O[i] ∪ I.A \ I.R) ∪ acq(sb′[i])

= (O[i] \ I.R ∪ I.A) ∪ acq(sb′[i]) (sinv4(csbh) implies I.A ∩ I.R = ∅)

= O[i] \ I.R ∪ (I.A ∪ acq(sb′[i])) (associativity)

= O[i] \ I.R ∪ (acq(sb′[i]) ∪ I.A) (commutativity )

= O[i] \ I.R ∪ acq(sb[i])

⊆ O[i] ∪ acq(sb[i])

(2.36)

With identical steps we can also get:

pt′[i] ∪ acqpt(sb′[i]) ⊆ pt[i] ∪ acqpt(sb[i]) (2.37)

The lemma is concluded by (2.36) and (2.37). �

Lemma 2.38 (invariants maintained by δsb)

∀i. inv(csbh)→ inv(δsb(csbh, i))
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Proof We let I = hd(sb[i]) and c′sbh = δsb(csbh, i). From the semantics of the SB step we have

sb′[i] = tl(sb[i]) and is′[i] = is[i].

We consider only the invariants which are affected by the SB step. For all invariants except
hinv6, hinv1 and hinv4 we only consider case vR(I) ∨ vW(I). For hinv1 we only consider case
W(I). For hinv4 we consider cases W(I) and R(I).

• oinv1. Let I = sb[ j][k], then from oinv1(csbh) we have for all threads j

∀k < |sb[ j]|. (nvW(I)→ I.pa ∈ δk
sb(csbh, j).O[ j]) ∧

(nvR(I) ∧ k ≥ |exec(sb[ j])| → I.pa ∈ δk
sb(csbh, j).O[ j] ∪ δ

k
sb(csbh, j).ro).

For case j = i the property is trivially maintained. For j , i the first statement of the
invariant also cannot be broken by a step of thread i. For the second statement we have to
show for non-volatile reads I j = sb[ j][k] that

I j.pa ∈ δk
sb(csbh, j).ro→ I j.pa ∈ δk

sb(c′sbh, j).ro.

From oinv3(csbh) that
I j.pa < accownpt[i]

Hence,
I j.pa ∈ δk

sb(csbh, j).ro→ I j.pa < I.A ∪ I.Apt

I j.pa can not be acquired by thread i and remains in the read only set.

• oinv2. From oinv2 we have for all threads j

∀I ∈ sb[ j]. vW(I)→ I.pa <
⋃
k, j

accownpt[k]

For case j = i the property is trivially maintained. For j , i from lemma 2.35 we have

acc′ownpt[i] ⊆ accownpt[i]

which implies ⋃
k, j

acc′ownpt[k] ⊆
⋃
k, j

accownpt[k]

Thus, we have

∀I ∈ sb[ j]. vW(I)→ I.pa <
⋃
k, j

acc′ownpt[k]

44



• oinv3. From oinv3(csbh) we have for all threads j:

∀ j′ , j. |exec(sb[ j])| ≤ k < |sb[ j]| ∧ R(I) ∧ I.pa ∈ δk
sb(csbh, j).ro→ I.pa < accownpt[ j′]

For case j = i the property is trivially maintained. For j , i let I j = sb[ j][k] and

R(I j) ∧ I j.pa ∈ δk
sb(c′sbh, j).ro.

From lemma 2.35 we can conclude of SB steps we know that

∀ j′. acc′ownpt[ j′] ⊆ accownpt[ j′]

Hence, all we have to show is

I j.pa ∈ δk
sb(csbh, j).ro. (2.39)

If I j.pa < c′sbh.ro, then it is released by thread j later and (2.39) trivially holds. If I j.pa ∈
c′sbh.ro and I j.pa < csbh.ro, then

I j.pa ∈ I.R ⊆ O[i].

From oinv1(csbh) and hinv2(csbh) we know that

I j.pa ∈ O[ j] ∪ acq(sb j) ∪ δk
sb(csbh, j).ro.

If I j.pa ∈ O[ j]∪acq(sb j), we get a contradiction from oinv4(csbh). Hence, we can conclude

I j.pa ∈ csbh.ro ∨ I j.pa ∈ δk
sb(csbh, j).ro.

With I j.pa ∈ δk
sb(c′sbh, j).ro, (2.39) obviously holds.

• oinv4. From oinv4(csbh) we have:

∀ j , i. (O[i] ∪ acq(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅

From the definition of acq and semantics of the SB step, we have:

O′[i] ⊆ O[i] ∪ I.A

⊆ O[i] ∪ acq(sb[i])

acq(sb′[i]) ⊆ acq(sb[i]).

Thus, we can conclude:

∀ j , i. (O′[i] ∪ acq(sb′[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅.

Since the configuration of other threads is unchanged in c′sbh, we get

oinv4(c′sbh).

45



• sinv1. From sinv1(csbh) we have for all threads j

∀k < |sb[ j]|. I = sb[ j][k] ∧ nvW(I)→ I.pa < δk
sb(csbh, j).shared.

For case j = i the property is trivially maintained. For j , i let I j = sb[ j][k] and nvW(I j).
We have from oinv1(csbh)

I j.pa ∈ δk
sb(csbh, j).O[ j] ⊆ O[ j] ∪ acq(sb[ j]).

From oinv4(csbh) and pinv2(csbh) we can conclude:

(O[i] ∪ acq(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅ ∧

(pt[i] ∪ acqpt(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅

From sinv4(csbh) and the semantics of SB steps we get

δk
sb(c′sbh, j).shared ⊆ δk

sb(csbh, j).shared ∪ I.R ∪ I.Rpt

⊆ δk
sb(csbh, j).shared ∪ O[i] ∪ pt[i].

Hence, the step of thread i can not make address I j.pa shared and the invariant is main-
tained.

• sinv2. From sinv2(csbh) we have

∀a < shared → ∃ j. a ∈ O[ j] ∪ pt[ j].

We do a case split:

– a < shared ∧ a < shared′. Hence,

∃ j. a ∈ O[ j] ∪ pt[ j].

If j , i, then the statement is trivially maintained. If j = i, we assume

a < O′[i] ∪ pt′[i]

and prove by contradiction.

* if a ∈ O[i], then we have from the semantics and from sinv4(csbh)

a ∈ I.R ∧ a < I.A ∧ a < I.L ∧ a < I.Apt,

which implies a ∈ shared′ and gives a contradiction.

* if a ∈ pt[i], then

a ∈ I.Rpt ∧ a < I.Apt ∧ a < I.A ∧ a < I.L,

which again implies a ∈ shared′ and gives a contradiction.
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– a ∈ shared ∧ a < shared′. Using sinv4(csbh) we get

a ∈ I.L ∪ I.Apt ⊆ I.A ∪ I.Apt ⊆ O
′
[ j] ∪ pt′[ j].

• sinv3. From sinv3(csbh), we have

∀ j. O[ j] ∩ ro = ∅ ∧ ro ⊆ shared.

From the semantics, we have:

ro′ = ro ∪ (I.R \ I.W) \ (I.A ∪ I.Apt)

⊆ ro ∪ (I.R \ I.W) \ I.A

O′[i] = O[i] ∪ I.A \ I.R

⊆ O[i] ∪ I.A \ (I.R \ I.W)

From sinv4(csbh) we have I.A ∩ I.R = ∅. Thus, we can conclude

O′[i] ⊆ O[i] \ (I.R \ I.W) ∪ I.A

We can also conclude:

(ro ∪ (I.R \ I.W) \ I.A) ∩ (O[i] \ (I.R \ I.W) ∪ I.A) = ∅

which gives us
ro′ ∩ O′[i] = ∅

We instantiate k in sinv4(csbh) with 0 and can get

I.R ⊆ O[i] ∧ I.L ⊆ I.A

With oinv4(csbh) we get

∀ j , i. O[i] ∩ O[ j] = ∅,

which implies
I.R ∩ O[ j] = ∅

From the semantics we have O[ j] = O′[ j]. Therefore, we can get

I.R ∩ O′[ j] = ∅

We can conclude
∀ j. O′[ j] ∩ ro′ = ∅.

For the shared set we have from the semantics

shared′ = shared ∪ I.R ∪ I.Rpt \ (I.L ∪ I.Apt)

⊇ share ∪ (I.R \ I.W) \ (I.A ∪ I.Apt)

⊇ ro ∪ (I.R \ I.W) \ (I.A ∪ I.Apt)

= ro′
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• sinv4. From sinv4(csbh) we have

∀ j. ∀k < |sb[ j]|. sa f e-annot(δk
sb(csbh, j), j, sb[ j][k]).

For case j = i the invariant is trivially maintained. For j , i let I j = sb[ j][k] and vW(I j) ∨
vR(I j). The local ownership sets of thread j remain unchanged. Hence, all we have to
show is

I j.A ∩ δk
sb(csbh, j).shared = I j.A ∩ δk

sb(c′sbh, j).shared, (2.40)

I j.Apt ∩ δ
k
sb(csbh, j).shared = I j.Apt ∩ δ

k
sb(c′sbh, j).shared. (2.41)

We first show (2.40). From the semantics of SB steps we have

shared′ = shared ∪ I.R ∪ I.Rpt \ (I.L ∪ I.Apt)

∀ j. ∀I j ∈ sb[ j] we write X j as a shorthand to I j.X. From sinv4(csbh) we can conclude

∀I j. ∈ sb[ j]. L j ⊆ A j ∧ (A j ∪ A j
pt) ⊆ accownpt[ j] ∧ (R j ∪ R j

pt) ⊆ accownpt[ j] (2.42)

With oinv4(csbh), pinv1(csbh) and pinv2(csbh) we can get the accumulated ownership set
of thread i and thread j are disjoint.

accownpt[i] ∩ accownpt[ j] = ∅ (2.43)

Thus, the ownership annotation (A, L,R,W, Apt,Rpt) of every instruction in sb[i] and sb[ j]
do not overlap. We can reorder the ownership transfer of thread i after the ownership
transfer of thread j. That concludes:

δk
sb(c′sbh, j).shared = δk

sb(csbh, j).shared ∪ I.R ∪ I.Rpt \ (I.L ∪ I.Apt)

From (2.42) and (2.43) we get

I j.A ∩ (I.L ∪ I.Apt) = ∅

I j.A ∩ (I.R ∪ I.Rpt) = ∅.

Moreover we conclude (2.40). The proof of (2.41) is completely analogous if one takes
pinv1(csbh) instead of oinv4(csbh).

• sinv5. From sinv5(csbh) we have

∀ j. ∀k < |sb[ j]|. W(sb[ j][k])→ sb[ j][k].pa < δk
sb(csbh, j).ro.

For case j = i the invariant is trivially maintained. For j , i let I j = sb[ j][k] and W(I j).
We have from the semantics of SB steps and sinv4(csbh)

δk
sb(c′sbh, j).ro ⊆ δk

sb(csbh, j).ro ∪ I.R

⊆ δk
sb(csbh, j).ro ∪ O[i].

We consider cases:
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– nvW(I j). With oinv1(csbh) we have

I j.pa ∈ O[ j] ∪ acq(sb[ j]).

From oinv4(csbh) we conclude

O[i] ∩ (O[ j] ∪ acq(sb[ j])) = ∅ ∧ I j.pa < O[i]

Hence,
I j.pa < δk

sb(c′sbh, j).ro.

– vW(I j). The proof as before follows from oinv2(c′sbh).

• hinv1. From hinv1(csbh) we have:

∀ j. ∀k < |sb[ j]|. k ≥ |exec(sb[ j])| ∧ I = sb[ j][k]∧

nvR(I)→ I.v = I.ext(δk
sb(csbh, j).m(I.pa), I.bw).

For case j = i the invariant is trivially maintained. For j , i let I j = sb[ j][k] and nvR(I j).
From oinv1(csbh) we have

I j.pa ∈ δk
sb(csbh, j).O[ j] ∪ δ

k
sb(csbh, j).ro.

The only step of thread i which can change the memory content is W(I).

We now do a case split on I j.pa and show that I.pa , I j.pa.

– I j.pa ∈ δk
sb(csbh, j).O[ j]. Hence,

I j.pa ∈ O[ j] ∪ acq(sb[ j]).

We do case split on I.

* nvW(I). From oinv1(csbh) we get

I.pa ∈ O[i] ∪ acq(sb[i])

From oinv4(csbh) we get

(O[i] ∪ acq(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅

Thus,
I.pa < O[ j] ∪ acq(sb[ j])

* vW(I). From oinv2(csbh) we can get

I.pa < O[ j] ∪ acq(sb[ j])

In both cases we can get I.pa , I j.pa.

– I j.pa ∈ δk
sb(csbh, j).ro. In this case we do a further case split on I.

49



* nvW(I). From oinv3(csbh) we get

I j.pa < (O[i] ∪ acq(sb[i]) ∪ pt[i] ∪ acqpt(sb[i])).

From oinv1(csbh) we have

I.pa ∈ O[i] ∪ acq(sb[i]).

Hence, I.pa , I j.pa

* vW(I). If I j.pa ∈ csbh.ro, from sinv5(csbh) we can get

I.pa < csbh.ro.

If I j < csbh.ro, we can conclude

I j.pa ∈ O[ j] ∪ acq(sb[ j]).

From oinv2(csbh), we get I.pa , I j.pa.

Finally, we can get

δk
sb(csbh, j).m(I j.pa) = δk

sb(c′sbh, j).m(I j.pa)

and concludes the proof.

• hinv6. From hinv6(csbh) we have for all k < |sb[i]|:

∃is. ins(sb[i][k : |sb[i]| − 1]) ◦ is[i] = is ◦ p-ins(sb[i][k : |sb[i]| − 1]).

For all k′ < |sb′[i]| we get for all prefixes is:

ins(sb′[i][k
′ : |sb′[i]| − 1]) ◦ is′[i] = ins(sb[i][k′ + 1 : |sb[i]| − 1]) ◦ is[i]

is ◦ p-ins(sb′[i][k
′ : |sb′[i]| − 1]) = is ◦ p-ins(sb[i][k′ + 1 : |sb[i]| − 1]).

Hence, we instantiate k in hinv6(csbh) with k′ + 1 and get the proof for hinv6(c′sbh).

• pinv1. From pinv1(csbh), we have:

∀ j , i. (pt[i] ∪ acqpt(sb[i])) ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅.

From the definition of acqpt and the semantics of the SB step, we have:

pt′[i] ∪ acqpt(sb′[i]) ⊆ pt[i] ∪ acqpt(sb[i]).

Since the configuration of other threads is unchanged in c′sbh, we get

pinv1(c′sbh)
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• pinv2. From pinv2(csbh), we have:

∀i.∀ j , i.(pt[i] ∪ acqpt(sb[i])) ∩ (O[ j] ∪ acq(sb[ j])) = ∅.

With similar prove steps in lemma 2.35 we can get

pt′[i] ∪ acqpt(sb′[i]) ⊆ pt[i] ∪ acqpt(sb[i])

O′[i] ∪ acq(sb′[i]) ⊆ O[i] ∪ acq(sb[i]),

which implies pinv2(c′sbh).

• pinv3. From pinv3(csbh), we have:

∀ j. pt[ j] ∩ shared = ∅.

From the semantics we get

pt′[i] = pt[i] ∪ I.Apt \ I.Rpt

shared′ ⊆ shared ∪ I.R ∪ I.Rpt \ I.Apt.

From sinv4(csbh) and pinv4(csbh) we know that

pt[i] ∩ I.R = ∅.

Hence, all new addresses which are added to the shared set are not present in pt′[i]. Ad-
dresses I.Apt which are added to the pt set, are excluded from the shared set. Therefore,
we have

pt′[i] ∩ shared′ = ∅.

For j , i we have from sinv4(csbh), pinv1(csbh) and pinv2(csbh)

pt[ j] ∩ I.R = pt[ j] ∩ I.Rpt = ∅.

Thus,

pt′[ j] ∩ shared′ = ∅.

• pinv4. From pinv4(csbh), we have:

pt[i] ∩ O[i] = ∅.

For vR(I) ∨ vW(I) we get

pt′[i] = pt[i] ∪ I.Apt \ I.Rpt

O′[i] = O[i] ∪ I.A \ I.R

By instantiating k in sinv4(csbh) with 0 we can get:

I.Apt ∩ I.Rpt = I.A ∩ I.R = ∅
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Thus we can have

pt′[i] = pt[i] \ I.Rpt ∪ I.Apt

O′[i] = O[i] \ I.R ∪ I.A

We let

A = pt[i] \ I.Rpt

B = I.Apt

C = O[i] \ I.R

D = I.A

then

pt′[i] ∩ O
′
[i] = (A∪B) ∩ (C ∪D)

= ((A∪B) ∩ C) ∪ ((A∪B) ∩D) (distributivity)

= ((A∩ C) ∪ (B ∩ C)) ∪ ((A∩D) ∪ (B ∩D)) (distributivity)

= (A∩ C) ∪ (B ∩ C) ∪ (A∩D) ∪ (B ∩D) (associativity)

With pinv4(csbh) we can conclude
A∩ C = ∅

With pinv2(csbh) we can conclude

B ∩ C = A∩D = ∅

By instantiating k in sinv4(csbh) with 0 we get

B ∩D = ∅

and conclude the proof.

�

2.4.2 Commutativity of SB Steps

The following function applies the ownership transfer of instruction I in thread i to the provided
configuration of the SB machine:

otran-sbh(csbh, i, I) = csbh[ghst[i] := otran(csbh.ghst[i], I)].

Lemma 2.44 (ownership transfer commute)

inv(csbh) ∧ sa f e-otran(csbh, i, I) ∧ i , j→

δsb(otran-sbh(csbh, i, I), j) = otran-sbh(δsb(csbh, j), i, I)
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Proof The case |sb[ j]| = 0 is trivial. Otherwise, let I j denote the first instruction in sb[ j]:

I j = sb[ j][0].

For I j.A, I j.R, . . . we abbreviate A j,R j, . . . and for I.A, I.R, . . . we write A,R, . . .. We set

c′sbh = δsb(otran-sbh(csbh, i, I), j) and c′′sbh = otran-sbh(δsb(csbh, j), i, I).

• For components csbh.X, where X ∈ {shared, ro} we only have to consider cases when
vR(I j) ∨ vW(I j). From definitions of δsb and the ownership transfer we have:

c′sbh.shared = shared ∪ Rpt ∪ R \ (L ∪ Apt) ∪ R j
pt ∪ R j \ (L j ∪ A j

pt)

c′sbh.ro = ro ∪ (R \W) \ (A ∪ Apt) ∪ (R j \W j) \ (A j ∪ A j
pt).

We define:
accownpt[ j] = O[ j] ∪ acq(sb[ j]) ∪ pt[ j] ∪ acqpt(sb[ j])

From sinv4(csbh) and definitions of acq and acqpt we can conclude

L j ⊆ A j ∧ (A j ∪ A j
pt) ⊆ accownpt[ j] ∧ (R j ∪ R j

pt) ⊆ accownpt[ j] (2.45)

From oinv4(csbh), pinv1(csbh) and pinv2(csbh) we know that the accumulated ownership
sets accownpt[i] and accownpt[ j] are disjoint. Predicate sa f e-otran(csbh, i, I) guarantees that
release sets of instruction I (i.e. R ∪ Rpt) and acquire sets of instruction I (i.e. A ∪ Apt)
do not overlap with accownpt[ j]. Hence we can conclude that acquire and release sets of
instructions I and I j do not overlap:

(L ∪ A ∪ Apt) ∩ (R j ∪ R j
pt) = ∅ (2.46)

(L j ∪ A j ∪ A j
pt) ∩ (R ∪ Rpt) = ∅

(R ∪ Rpt) ∩ (R j ∪ R j
pt) = ∅

Hence,

c′sbh.shared = shared ∪ Rpt ∪ R ∪ R j
pt ∪ R j \ (L ∪ Apt ∪ L j ∪ A j

pt)

= shared ∪ R j
pt ∪ R j ∪ Rpt ∪ R \ (L j ∪ A j

pt ∪ L ∪ Apt)

= c′′sbh.shared

c′sbh.ro = ro ∪ (R \W) ∪ (R j \W j) \ (A ∪ Apt) \ (A j ∪ A j
pt)

= ro ∪ (R j \W j) ∪ (R \W) \ (A j ∪ A j
pt) \ (A ∪ Apt)

= c′′sbh.ro
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• For thread local components of configurations csbh.ts only the release sets might get af-
fected by the reordering in case vR(I j) ∨ vW(I j). We first consider case vR(I) ∧ vR(I j).
For the shared release set we have

c′sbh.rlss[i] = rlss[i] ∪ (R ∩ shared)

c′′sbh.rlss[i] = rlss[i] ∪ (R ∩ (shared ∪ R j ∪ R j
pt \ (L j ∪ A j

pt)))

c′sbh.rlss[ j] = rlss[ j] ∪ (R j ∩ (shared ∪ R ∪ Rpt \ (L ∪ Apt)))

c′′sbh.rlss[ j] = rlss[ j] ∪ (R j ∩ shared)

Hence, with (2.46) we have

c′sbh.rlss[ j] = rlss[ j] ∪ (R j ∩ shared)

= c′′sbh.rlss[ j]

c′′sbh.rlss[i] = rlss[i] ∪ (R ∩ shared)

= c′sbh.rlss[i].

For case (vW(I) ∨ RMW(I)) ∧ vR(I j) we conclude

c′sbh.rlss[ j] = rlss[ j] ∪ (R j ∩ (shared ∪ R ∪ Rpt \ (L ∪ Apt)))

= rlss[ j] ∪ (R j ∩ shared)

= c′′sbh.rlss[ j]

c′sbh.rlss[i] = c′′sbh.rlss[i] = ∅.

For case (vW(I) ∨ RMW(I)) ∧ vW(I j) we obviously get

c′sbh.rlss[i] = c′′sbh.rlss[i] = ∅

c′sbh.rlss[ j] = c′′sbh.rlss[ j] = ∅.

For case vR(I) ∧ vW(I j) we conclude

c′sbh.rlss[i] = rlss[i] ∪ (R ∩ shared)

= rlss[i] ∪ (R ∩ (shared ∪ R j ∪ R j
pt \ (L j ∪ A j

pt)))

= c′′sbh.rlss[i]

c′sbh.rlss[ j] = c′′sbh.rlss[ j] = ∅.

The proof for the equality of the local and page table release sets is completely analogous.

�

Lemma 2.47 (ownership transfer safe for SB instruction)

inv(csbh)→ sa f e-otran(csbh, i, hd(sb[i]))
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Proof The proof immediately follows from sinv4(csbh), oinv4(csbh), pinv1(csbh) and pinv2(csbh)
as well as definition of acq and acqpt. �

Lemma 2.48 (δsb commute)

inv(csbh) ∧ ¬vW(hd(sb[i]))→ δsb(δsb(csbh, i), j) = δsb(δsb(csbh, j), i)

Proof The case when one of the SBs is empty or i = j is trivial. Otherwise, for k ∈ {i, j} let Ik

denote the first instruction in sb[k]:
Ik = sb[k][0].

We set
c′sbh = δsb(δsb(csbh, i), j) and c′′sbh = δsb(δsb(csbh, j), i).

With Lemma 2.47 we conclude
sa f e-otran(csbh, i, Ii).

Applying Lemma 2.44 we get the equality of all ownership and release sets in configurations c′sbh
and c′′sbh. Hence, the only part which is left to show is the equality of the memory component.
The only interesting case here is nvW(Ii)∧W(I j). We show that Ii.pa , I j.pa. From oinv1(csbh)
we can conclude:

Ii.pa ∈ O[i].

We now do a case distinctions on I j. In case nvW(I j) we conclude from oinv1(csbh) and
oinv4(csbh)

I j.pa ∈ O[ j] and I j.pa < O[i].

In case vW(I j) we use oinv2(csbh) to directly conclude:

I j.pa < O[i].

�

Lemma 2.49 (δk
sb
, ∆exec

sb
commute)

∀k ≤ |sb[i]|. inv(csbh)→ δk
sb(∆exec

sb (csbh, j), i) = ∆exec
sb (δk

sb(csbh, i), j)

Proof For case |exec(sb[ j])| = 0 or k = 0 the proof is trivial. Otherwise, let

c′sbh = δsb(∆exec
sb (csbh, j), i).

Lemma 2.38 guarantees that invariants are maintained by any number of SB steps. Applying
Lemma 2.48 we can reorder the last step of thread j after the first step of thread i:

c′sbh = δsb(δsb(δ|exec(sb[ j])−1|
sb (csbh, j), i), j).

Performing the same action |exec(sb[ j])| times we move the step of thread i before all steps of
thread j:

c′sbh = ∆exec
sb (δsb(csbh, i), j).

To reorder all k steps of thread i we have to repeat this procedure k times, resulting in k ×
|exec(sb[ j])| applications of lemma 2.48. �
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headhead

is′

sb[i] is[i]

I ′sb′[i] is′[i]

Figure 2.7: Program step

Lemma 2.50 (∆exec
sb

commute)

∀i. inv(csbh)→ ∆exec
sb (csbh) = ∆exec

sb (∆exec
sb (csbh, i)) ∧

∆exec
sb (csbh) = ∆exec

sb (∆exec
sb[,i](csbh), i) ∧

∆exec
sb (csbh) = ∆exec

sb[,i](∆
exec
sb (csbh, i)) ∧

∆sb(∆exec
sb (csbh), i) = ∆exec

sb (∆sb(csbh, i)) ∧

∀k ≤ |sb[i]|. δ
k
sb(∆exec

sb[,i](csbh), i) = ∆exec
sb[,i](δ

k
sb(csbh, i))

Proof The proof follows directly from lemmas 2.49 and 2.38. �

2.4.3 Program Step

Lemma 2.51 (invariants maintained by program step)

inv(csbh) ∧ csbh
p

==⇒i
eev

c′sbh → inv(c′sbh)

Proof Let I′ = PROG p[i] p′[i] is[i] is′ eev then from the semantics we have sb′[i] = sb[i] ◦ I′ and
is′[i] = is[i] ◦ is′ (see Fig. 2.7).

• Invariants dealing with temporaries (i.e., tinv1, tinv3, dinv1, dinv2) are easily maintained
using the assumptions on the program state.

• hinv5. From hinv5(csbh) we have

∀k < |sb[i]|. P(I)→ I.p2 = hd-p(p[i], tl(sb1)) ∧

δp(I.p1, del-t(ϑ[i], tl(sb1)),mode[i],mmu[i], I.is1, I.eev) = (I.p2, I.is2) ∧

I.is1 = l1[0 : |l1| − |l2| − 1]

where: I = sb[i][k], sb1 = sb[i][k : |sb[i]| − 1], l1 = ins(sb1) ◦ is[i] and l2 = p-ins(sb1).
For the newly recorded program step we have

I′.p2 = p′[i] = hd-p(p′[i], []) ∧

δp(p[i], ϑ[i],mode[i],mmu[i], is[i], eev) = (p′[i], is
′) = (I′.p2, I′.is2) ∧

is[i] = is′[i][0 : |is′[i]| − |is
′| − 1]
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and the required property holds. Since no new read instruction are added to the store
buffer, we have ϑ[i] = ϑ′[i] and

∀k < |sb[i]|. loadt(sb[i][k + 1 : |sb[i]| − 1]) = loadt(sb′[i][k + 1 : |sb′[i]| − 1]).

Hence, the second statement of the invariant is maintained for all program steps, that were
in the store buffer before the step. Let sb2 = sb′[i][k : |sb′[i]| − 1], l′1 = ins(sb2) ◦ is′[i] and
l′2 = p-ins(sb2) then from the semantics of program step we can conclude:

l′1 = l1 ◦ is′ ∧ l′2 = l2 ◦ is′

Thus, we can conclude

∀k ≤ |sb[i]|. P(sb[i][k])→ l1[0 : |l1| − |l2| − 1] = l′1[0 : |l′1| − |l
′
2| − 1]

We now consider cases:

– case I is the last program instruction in sb[i]. Then we have

I.p2 = hd-p(p[i], sb[i][k + 1 : |sb[i]| − 1])

= p[i]

= hd-p(p′[i], sb′[i][k + 1 : |sb′[i]| − 1]).

– case I is not the last program instruction in sb[i]. Then we have

I.p2 = hd-p(p[i], sb[i][k + 1 : |sb[i]| − 1])

= hd-p(p′[i], sb[i][k + 1 : |sb[i]| − 1])

= hd-p(p′[i], sb′[i][k + 1 : |sb′[i]| − 1]).

This concludes the proof for hinv5.

• hinv6. From hinv6(csbh) we have for all k < |sb[i]|:

∃is. ins(sb[i][k : |sb[i]| − 1]) ◦ is[i] = is ◦ p-ins(sb[i][k : |sb[i]| − 1])

After adding a program step to the store buffer we have for all k < |sb[i]|:

ins(sb′[i][k : |sb′[i]| − 1]) = ins(sb[i][k : |sb[i]| − 1])

is′[i] = is[i] ◦ is′

p-ins(sb′[i][k : |sb′[i]| − 1]) = p-ins(sb[i][k : |sb[i]| − 1]) ◦ is′

and the invariant holds if we choose the same prefix is, as we had before the step. For
k = |sb[i]| we have

ins(sb′[i][k : |sb′[i]| − 1]) = []

is′[i] = is[i] ◦ is′

p-ins(sb′[i][k : |sb′[i]| − 1]) = is′

and the invariant holds if we set is = is[i]. This concludes the proof for hinv6.

�
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2.4.4 Memory Steps

In case of FENCE, INVLPG, mode switch and write to PTO memory steps the store buffer
of thread i is empty. Hence, invariant minv1 is trivially maintained. Other invariants can not
possibly be broken by the step.

Lemma 2.52 (safe execution maintains disjoint sets on abstract machine)

dis joint-osets(c) ∧ c =⇒*
eev

c′ ∧ sa f e-reach(c, og)→ dis joint-osets(c′)

Proof We prove this lemma by induction on the length of the computation. If c = c′ there is
nothing to prove. Otherwise, we assume

dis joint-osets(c) ∧ sa f e-reach(c, og)

as the induction hypothesis and have to prove

∀c′, i. c =⇒i
eev

c′ → dis joint-osets(c′).

If we do not perform the ownership transfer, it is trivially true. Otherwise, we assume that
I = hd(c.is[i]) performs the ownership transfer. Let og(I.p, c′.ϑ[i]) = (A, L,R,W, Apt,Rpt) then
from sa f e-reach(c, og) we conclude sa f e-state(c, og) which infers:

L ⊆ A.

With the definition of the ownership transfer we have:

c′.ro = c.ro ∪ (R \W) \ (A ∪ Apt)

c′.shared = c.shared ∪ R ∪ Rpt \ (L ∪ Apt).

With the induction hypothesis we can conclude:

c′.ro ⊆ c′.shared.

From dis joint-osets(c) we trivially get for all j , i and k , i

j , k → c′.O[k] ∩ c′.O[ j] = ∅ ∧ c′.O[k] ∩ c′.pt[ j] = ∅

c′.pt[k] ∩ c′.pt[ j] = ∅ ∧ c′.O[k] ∩ c′.pt[k] = ∅.

From sa f e-state(c, og) we have:

R ⊆ c.O[i] ∧ Rpt ⊆ c.pt[i].

With the induction hypothesis, we can get:

∀k , i. c′.O[k] ∩ c′.ro = ∅ ∧ c′.pt[k] ∩ c′.shared = ∅.
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From the definition of the ownership transfer we also have:

c′.O[i] = c.O[i] ∪ A \ R

c′.pt[i] = c.pt[i] ∪ Apt \ Rpt.

From sa f e-state(c, og), we have:

∀ j , i. (A ∪ Apt) ∩ (c.O[ j] ∪ c.pt[ j]) = ∅.

With the induction hypothesis we can conclude:

∀ j , i. c′.O[i] ∩ c′.O[ j] = ∅ ∧ c′.O[i] ∩ c′.pt[ j] = ∅ ∧

c′.pt[i] ∩ c′.pt[ j] = ∅.

From sa f e-state(c, og) we also have:

Apt ∩ A = ∅.

Thus, with the induction hypothesis we can conclude:

c′.O[i] ∩ c′.pt[i] = ∅.

With the definition of ownership transfer we can also conclude:

c′.O[i] ∩ c′.ro = ∅ ∧ c′.pt[i] ∩ c′.shared = ∅.

�

Lemma 2.53 (coupling implies disjoint sets)

csbh ∼ c ∧ inv(csbh)→ dis joint-osets(c)

Proof Lemma 2.38 implies
inv(∆exec

sb (csbh)).

The statement of the lemma follows immediately from the coupling relations and from invariants
oinv4, pinv1, pinv2, pinv3, pinv4, and sinv3. �

In the following proof, we will use a proof technique that advances the computation of the
abstract machine till a certain instruction in the instruction sequence of thread i. During the
advancing, the step performed by abstract machine depends on the history information in the
susp(sb[i]). To show the consistency of ownership annotations between the abstract machine
and the SB machine during the advancing, we define the intermediate coupling relation.
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Definition 2.54 (Intermediate Coupling Relation)

sim(c, csbh, i, k) =

∀X ∈ {shared, ro,m}. n = k + |exec(sb[i])| ∧ c.X = δn
sb(∆exec

sb[,i](csbh), i).X ∧

∀ j. c.mode[ j] = mode[ j] ∧ c.mmu[ j] = mmu[ j] ∧

((c.D[ j] ∨ ∃I ∈ sb[ j]. vW(I))↔ D[ j]) ∧ ∀X ∈ {O, pt, rlsl, rlss, rlspt}.

( j , i→ c.X[ j] = ∆exec
sb (csbh, j).X[ j] ∧

c.is[ j] ◦ p-ins(susp(sb[ j])) = ins(susp(sb[ j])) ◦ is[ j] ∧

c.ϑ[ j] = del-t(ϑ[ j], susp(sb[ j])) ∧ c.p[ j] = hd-p(p[ j], susp(sb[ j]))) ∧

( j = i→ c.X[ j] = δn
sb(csbh, j).X[ j] ∧

c.is[ j] ◦ p-ins(sb[ j][n : |sb[ j]| − 1]) = ins(sb[ j][n : |sb[ j]| − 1]) ◦ is[ j] ∧

c.ϑ[ j] = del-t(ϑ[ j], sb[ j][n : |sb[ j]| − 1]) ∧

c.p[ j] = hd-p(p[ j], sb[ j][n : |sb[ j]| − 1]))

In case k = 0, relation sim(c, csbh, i, 0) ≡ csbh ∼ c. In case k = 1, relation sim(c, csbh, i, 1)
couples the states of the SB machine and after the volatile write instruction is executed in the
virtual machine. Note that if n > |sb[ j]| − 1 in case j = i, sb[ j][n : |sb[ j]| − 1] becomes [].

In Lemma 2.55, Lemma 2.56, Lemma 2.59 and Lemma 2.60 we prove that in the executed por-
tion of sb[ j] there is no non volatile write to the target address of read operation in the suspended
portion of sb[i]. Thus, the read value is consistent in both machines because the generation of
ownership annotations only depend on the read values and the instructions. We could prove that
the ownership annotations are consistent.

Lemma 2.55 (instruction list not empty)

c.is[i] ◦ p-ins(sb[i][k : |sb[i]| − 1]) = ins(sb[i][k : |sb[i]| − 1]) ◦ is[i] ∧

k < |sb[i]| ∧ hinv6(csbh) ∧ ¬P(sb[i][k])→ c.is[i] , []

Proof If k = |sb[i]| − 1 then we get

c.is[i] = ins(sb[i][k]) ◦ is[i]

and the lemma trivially holds. Otherwise we prove by contradiction. Let I = sb[i][k] and
c.is[i] = []. Then we conclude

p-ins(sb[i][k + 1 : |sb[i]| − 1]) = p-ins(sb[i][k : |sb[i]| − 1])

= ins(sb[i][k : |sb[i]| − 1]) ◦ is[i]

= ins(I) ◦ ins(sb[i][k + 1 : |sb[i]| − 1]) ◦ is[i].

From hinv6(csbh) we know that there exists is′ such that

ins(sb[i][k + 1 : |sb[i]| − 1]) ◦ is[i]

= is′ ◦ p-ins(sb[i][k + 1 : |sb[i]| − 1])

= is′ ◦ ins(I) ◦ ins(sb[i][k + 1 : |sb[i]| − 1]) ◦ is[i],
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which gives a contradiction. �

Lemma 2.56 (unowned nvW is in local release set)

∀ j, k, n, pa. k < |exec(sb[ j])| ∧ n ≤ |susp(sb[i])| ∧ inv(csbh) ∧

(csbh ∼ c ∨ sim(c, csbh, i, n) ∧ i , j) ∧ nvW(sb[ j][k]) ∧

pa = sb[ j][k].pa ∧ (pa < c.O[ j] ∨ pa ∈ c.shared)→ pa ∈ c.rlsl[ j]

Proof From oinv1(csbh) and sinv1(csbh) we have:

pa ∈ δk
sb(csbh, j).O[ j] ∧ pa < δk

sb(csbh, j).shared.

The coupling relations for thread j gives us

pa < ∆exec
sb (csbh, j).O[ j] ∨ pa ∈ ∆exec

sb (csbh).shared. (2.57)

or
pa < ∆exec

sb (csbh, j).O[ j] ∨ pa ∈ δn+|exec(sb[i])|
sb (∆exec

sb[,i](csbh), i).shared (2.58)

depending of what kind of simulation relation holds. From oinv4(csbh) and pinv2(csbh) it follows
for all threads l , j:

pa < accownpt[l]

Hence, with sinv4(csbh) we can conclude that pa is not released by any instruction in sb[l]. Thus,
from (2.57) we get

pa < ∆exec
sb (csbh, j).O[ j] ∨ pa ∈ ∆exec

sb (csbh, j).shared

• Let pa < ∆exec
sb (csbh, j).O[ j]. In sb[ j][k : |exec(sb[ j])| − 1] there must be an instruction,

which removes pa from the owns set of thread j. When an address is removed from the
ownership set, it is added to one of the release sets. In order to be added to the shared
release set, the address has to be shared at the time of the ownership transfer. We have
already shown that no thread other than j can make pa shared. The only way for thread
j to make an owned unshared address shared, is by releasing it, which puts the address to
the local release set.

• Let pa ∈ ∆exec
sb (csbh, j).shared. In sb[ j][k : |exec(sb[ j])| − 1] there has to be an instruction,

which releases pa and adds it to the local release set.

Hence, we can conclude

pa ∈ ∆exec
sb (csbh, j).rlsl[ j] = c.rlsl[ j]

For case (2.58) we do analogous prove and conclude the lemma. �

Lemma 2.59 (sim implies disjoint sets)

∀i, k. k ≤ |susp(sb[i])| ∧ sim(c, csbh, i, k) ∧ inv(csbh)→ dis joint-osets(c)
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Proof For thread i we have to prove:

c.O[i] ∩ c.ro = ∅

c.pt[i] ∩ c.shared = ∅.

Let n = k+|exec(sb[i])| then with the help of the intermediate coupling relation this is transformed
to

δn
sb(csbh, i).O[i] ∩ δ

n
sb(∆exec

sb[,i](csbh), i).ro = ∅

δn
sb(csbh, i).pt[i] ∩ δn

sb(∆exec
sb[,i](csbh), i).shared = ∅.

With Lemma 2.50 we have:

δn
sb(∆exec

sb[,i](csbh), i).ro = ∆exec
sb[,i](δ

n
sb(csbh, i)).ro

δn
sb(∆exec

sb[,i](csbh), i).shared = ∆exec
sb[,i](δ

n
sb(csbh, i)).shared.

From the semantics we can conclude:

∆exec
sb[,i](δ

n
sb(csbh, i)).ro ⊆ δn

sb(csbh, i).ro
⋃
∀ j,i

rels(exec(sb[ j]))

∆exec
sb[,i](δ

n
sb(csbh, i)).shared ⊆

δn
sb(csbh, i).shared

⋃
∀ j,i

rels(exec(sb[ j])) ∪ relspt(exec(sb[ j])).

With sinv3(csbh), pinv3(csbh) and Lemma 2.38 we have:

δn
sb(csbh, i).O[i] ∩ δ

n
sb(csbh, i).ro = ∅

δn
sb(csbh, i).pt[i] ∩ δn

sb(csbh, i).shared = ∅.

With oinv4(csbh) we can get:

∀ j , i. δn
sb(csbh, i).O[i] ∩ (O[ j] ∪ acq(exec(sb[ j]))) = ∅.

With sinv4(csbh) we can conclude:

rels(exec(sb[ j])) ⊆ (O[ j] ∪ acq(exec(sb[ j])))

We can conclude:
∀ j , i. δn

sb(csbh, i).O[i] ∩ rels(exec(sb[ j])) = ∅

With sinv4(csbh), pinv1(csbh) and pinv2(csbh) we can also get in an analogous way that:

∀ j , i. δn
sb(csbh, i).pt[i] ∩ (rels(exec(sb[ j])) ∪ relspt(exec(sb[ j]))) = ∅.

Thus, with the intermediate coupling relation we can conclude:

c.O[i] ∩ c.ro = ∅

c.pt[i] ∩ c.shared = ∅.
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For thread j , i we have to prove:

c.O[ j] ∩ c.ro = ∅,

c.pt[ j] ∩ c.shared = ∅.

With the help of the intermediate coupling relation this is transformed to

∆exec
sb (csbh, j).O[ j] ∩ δ

n
sb(∆exec

sb[,i](csbh), i).ro = ∅

∆exec
sb (csbh, j).pt[ j] ∩ δ

n
sb(∆exec

sb[,i](csbh), i).shared = ∅.

We prove this case by contradiction. Assume

∃a, a′. a ∈ ∆exec
sb (csbh, j).O[ j] ∩ δ

n
sb(∆exec

sb[,i](csbh), i).ro ∧

a′ ∈ ∆exec
sb (csbh, j).pt[ j] ∩ δ

n
sb(∆exec

sb[,i](csbh), i).shared.

With Lemma 2.50 we can get:

∆exec
sb (csbh).ro ⊆ ∆exec

sb (csbh, j).ro
⋃
∀k, j

rels(exec(sb[k]))

∆exec
sb (csbh).shared ⊆

∆exec
sb (csbh, j).shared

⋃
∀k, j

rels(exec(sb[k])) ∪ relspt(exec(sb[k])).

With Lemma 2.38, sinv3(csbh) and pinv3(csbh)

∆exec
sb (csbh, j).O[ j] ∩ ∆exec

sb (csbh, j).ro = ∅

∆exec
sb (csbh, j).pt[ j] ∩ ∆exec

sb (csbh, j).shared = ∅.

With analogous step of the previous case we can conclude:

∀k , j. ∆exec
sb (csbh, j).O[ j] ∩ rels(exec(sb[k]) = ∅

∆exec
sb (csbh, j).pt[ j] ∩ (rels(exec(sb[k])) ∪ relspt(exec(sb[k]))) = ∅

After that we can conclude:

∆exec
sb (csbh, j).O[ j] ∩ ∆exec

sb (csbh).ro = ∅

∆exec
sb (csbh, j).pt[ j] ∩ ∆exec

sb (csbh).shared = ∅.

With Lemma 2.50 and sinv4(csbh) we can conclude

a ∈ acq(sb[|exec(sb[i])| : n]) ∧ a′ ∈ acqpt(sb[|exec(sb[i])| : n]).

This contradicts to oinv4(csbh) and pinv1(csbh). Thus, using the intermediate coupling relation
again we can conclude:

c.O[ j] ∩ c.ro = ∅

c.pt[ j] ∩ c.shared = ∅.

The remaining properties follow immediately from Lemma 2.38, the intermediate coupling re-
lation and and invariants oinv4(csbh), pinv1(csbh), pinv2(csbh), pinv4(csbh) and sinv3(csbh). �
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Lemma 2.60 (no nvW to a read address)

∀i, pa. (R(hd(c.is[i])) ∨ RMW(hd(c.is[i]))) ∧ n ≤ |susp(sb[i])| ∧

pa ∈ (atran(c.mmu[i], hd(c.is[i]).va, c.mode[i], hd(c.is[i]).r)) ∧

(csbh ∼ c ∨ sim(c, csbh, i, n)) ∧ sa f e-reachd(c, og) ∧ inv(csbh) →

∀ j , i. ∀k < |exec(sb[ j])|. ¬(nvW(sb[ j][k]) ∧ sb[ j][k].pa = pa)

Proof By contradiction. Assume

∃ j , i. ∃k < |exec(sb[ j])|. sb[ j][k] = Writesb False va (D, f) r cb bw p annot pa v.

Applying Lemma 2.56 we get

pa < c.O[ j] ∨ pa ∈ c.shared → c.rlsl[ j].

From the safety for reads and RMWs we get

pa ∈ c.O[i] ∪ c.shared ∪ c.ro ∪ c.pt[i] ∧ ∀ j , i. pa < c.rlsl[ j].

Hence, we can conclude
pa ∈ c.O[ j] ∧ pa < c.shared.

Applying Lemma 2.53 or Lemma 2.59 we conclude

pa < c.O[i] ∪ c.pt[i] ∪ c.ro.

and get a contradiction. �

Lemma 2.61 (simulating execution of sb inductive)

∀k. 0 ≤ k < |susp(sb[i])| ∧ sim(c, csbh, i, k) ∧ inv(csbh) ∧

sa f e-reachd(c, og)→ ∃c′. c
p,m
==⇒i
eev

c′ ∧ sim(c′, csbh, i, k + 1)

Proof For the base case, we have to prove:

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) →

∃c′. c
p,m
==⇒i
eev

c′ ∧ sim(c′, csbh, i, 1)

From Lemma 2.55 we conclude
c.is[i] , [].

Let I = hd(susp(sb[i])) from the definition of susp we can get vW(I) then from the coupling
relation we have

hd(c.is[i]) = ins(I).
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From the coupling relation and from minv1(csbh) we conclude

I.pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r).

Let c′′ be configuration of the abstract machine after the step:

c
m
==⇒i c′′.

For the temporaries and the program state we obviously have

c′′.ϑ[i] = c.ϑ[i]

= del-t(ϑ[i], susp(sb[i]))

= del-t(ϑ[i], sb[i][|exec(sb[i])| + 1 : |sb[i]| − 1])

Let I′ = hd(c.is[i]) then from hinv7(csbh) and the coupling relation we can conclude:

I.annot = og(I.p, del-t(ϑ[i], sb[i][|exec(sb[i])| : |sb[i]| − 1]))

= og(I.p, del-t(ϑ[i], sb[i][|exec(sb[i])| + 1 : |sb[i]| − 1])) (vW does not change the temp)

= og(I′.p, c′′.ϑ)

Hence, we can always execute the volatile write from the head of the instruction list and choose
the same translated address as we have previously chosen for the corresponding step of the
SB machine. The ownership transfer of abstract machine is also performed according to the
ownership annotations recorded in the corresponding instruction of the SB machine.

From the coupling relation and the semantics of abstract and SB machines we get for X ∈
{shared, ro,m}:

c′′.X = δsb(∆exec
sb (csbh), i).X

= δ
|exec(sb[i])|+1
sb (∆exec

sb[,i](csbh), i).X (Lemma 2.50)

For X ∈ {O, pt, rlspt} we get:

c′′.X[i] = δ
|exec(sb[i])|+1
sb (csbh, i).X

The SB machine only accumulates local up-dates on shared set when computing the release local
and release shared set. However the abstract machine with delayed release accumulates global
updates on shared set while computing the corresponding components. Hence, the coupling
relation for release shared and release local set can get broken. We have to prove:

c′′.rlss[i] = δ
|exec(sb[i])|+1
sb (csbh, i).rlss[i]

From the semantics of the abstract machine we have:

c′′.rlss[i] = c.rlss[i] ∪ (I.R \ c.shared)

= ∆exec
sb (csbh, i).rlss[i] ∪ (I.R \ ∆exec

sb (csbh).shared) (coupling relation)
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From the semantics of the store buffer machine we have:

δ
|exec(sb[i])|+1
sb (csbh, i).rlss[i]

= δ
|exec(sb[i])|
sb (csbh, i).rlss[i] ∪ (I.R \ δ|exec(sb[i])|

sb (csbh, i).shared)

= ∆exec
sb (csbh, i).rlss[i] ∪ (I.R \ ∆exec

sb (csbh, i).shared) (defintion of ∆)

Thus, we have to prove the following equation:

I.R ∩ ∆exec
sb (csbh).shared = I.R ∩ ∆exec

sb (csbh, i).shared (2.62)

From the sinv4(csbh) we can conclude:

∆exec
sb (csbh).shared ⊆ ∆exec

sb (csbh, i).shared ∪

(
⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j]))))

∆exec
sb (csbh).shared ⊇ ∆exec

sb (csbh, i).shared \

(
⋃
∀ j,i

(acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))))

With sinv4(csbh), oinv4(csbh) and the definition of acq and acqpt, we can conclude:

I.R ∩
⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j]))) = ∅

I.R ∩
⋃
∀ j,i

(acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))) = ∅

Thus, we can conclude:

I.R ∪ ∆exec
sb (csbh).shared ⊆ I.R ∩ ∆exec

sb (csbh, i).shared

I.R ∪ ∆exec
sb (csbh).shared ⊇ I.R ∩ ∆exec

sb (csbh, i).shared

which implies (2.62).
For the instruction sequence we conclude with the help of the coupling relation:

c′′.is[i] ◦ p-ins(sb[i][|exec(sb[i])| + 1 : |sb[i]| − 1])

= tl(c.is[i]) ◦ p-ins(susp(sb[i]))

= tl(c.is[i] ◦ p-ins(susp(sb[i]))) (def of tl)

= tl(ins(susp(sb[i])) ◦ is[i]) (coupling relation)

= tl(ins(susp(sb[i]))) ◦ is[i] (def of tl)

= ins(sb[i][|exec(sb[i])| + 1 : |sb[i]| − 1]) ◦ is[i] (def of tl)
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c′′.p[i]

= c.p[i] (semantics)

= hd-p(p[i], susp(sb[i])) (coupling relation)

= hd-p(p[i], sb[i][|exec(sb[i])| + 1 : |sb[i]| − 1]) (def of hd-p and vW(I))

From the intermediate coupling relation we getD[i]. From the semantics of the memory step we
also get c′′.D[i]. This implies

(c′′.D[i] ∨ ∃I ∈ sb[i]. vW(I))↔ D[i].

For induction step we assume following induction hypothesis:

∀k. 0 ≤ k < |susp(sb[i])| ∧ sim(c, csbh, i, k) ∧ inv(csbh) ∧ sa f e-reachd(c, og)

Let n = |exec(sb[i])| + k then for induction step, we do a case split on I = sb[i][n] and execute
either a memory or a program step of thread i depending on sb[i][n]:

• case ¬P(I). From Lemma 2.55 we conclude

c.is[i] , [].

Hence, from the coupling relation we have

hd(c.is[i]) = hd(ins(sb[i][n : |sb[i]| − 1])) = ins(I).

If I is a read or a write instruction, then from sim(c, csbh, i, k) and from minv1(csbh) we get

I.pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r).

Hence, as the induction base case we can always execute the instruction from the head
of the instruction list by choosing the same translated address and performing the same
ownership transfer as we have previously chosen for the corresponding step of the SB
machine. Let c′ be the configuration of the abstract machine after the step:

c
m
==⇒i c′.

For the instruction sequence after the step we obviously get

c′.is[i] ◦ p-ins(sb[i][n + 1 : |sb[i]| − 1])

= tl(c.is[i]) ◦ p-ins(sb[i][n : |sb[i]| − 1])

= tl(c.is[i] ◦ p-ins(sb[i][n : |sb[i]| − 1]))

= tl(ins(sb[i][n : |sb[i]| − 1]) ◦ is[i])

= tl(ins(sb[i][n : |sb[i]| − 1])) ◦ is[i]

= ins(sb[i][n + 1 : |sb[i]| − 1]) ◦ is[i]

The coupling for mode, dirty flag, MMU state and program state is trivially maintained,
as well as the coupling for threads other than i. For the remaining parts of the coupling
relation we do a further case split:
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– W(I). From the semantics we get

c′.m(I.pa) = I.cb(I. f (c.ϑ[i]), c.m(I.pa), I.bw).

From hinv4(csbh) we know that

I.v = I. f (ϑ[i]).

From hinv4(csbh), dinv1(csbh) and the coupling relation we get

I. f (ϑ[i]) = I. f (del-t(ϑ[i], sb[i][n : |sb[i]| − 1]))

= I. f (c.ϑ[i]).

From sim(c, csbh, i, k) we get

c.m(I.pa) = δn
sb(∆exec

sb[,i](csbh), i).m(I.pa)

Hence, we can conclude

c′.m(I.pa) = δn+1
sb (∆exec

sb[,i](csbh), i).m(I.pa)

which implies
c′.m = δn+1

sb (∆exec
sb[,i](csbh), i).m

and concludes the proof for the memory coupling. For vW(I) we have to prove the
coupling of release set and the identity of the ownership annotations. This can be
proved by the similar prove technique in the induction base.

– nvR(I). In this case the coupling for the temporaries can get broken. From the
semantics we get

c′.ϑ[i] = c.ϑ[i](I.t 7→ (I.ext(c.m(I.pa), I.bw), I.pa)).

From hinv1(csbh) we know that

I.v = I.ext(δn
sb(csbh, i).m(I.pa), I.bw).

With Lemma 2.60 we get for all j , i:

∀k < |exec(sb[ j])|. ¬(nvW(sb[ j][k]) ∧ sb[ j][k].pa = I.pa)

Hence, with the intermediate coupling relation we have

I.ext(c.m(pa), I.bw) = I.ext(δn
sb(∆exec

sb[,i](csbh), i).m(pa), I.bw)

= I.ext(δn
sb(csbh, i).m(I.pa), I.bw)

= I.v

From invariant hinv3(csbh) we have

ϑ[i](I.t) = (I.v, I.pa)
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From the semantics and from the coupling relation we now conclude

c′.ϑ[i] = c.ϑ[i](I.t 7→ (I.v, I.pa))

= del-t(ϑ[i], sb[i][n : |sb[i]| − 1])(I.t 7→ (I.v, I.pa))

= del-t(ϑ[i], sb[i][n + 1 : |sb[i]| − 1]).

which concludes the proof.

From hinv2 we can conclude ¬vR(I).

• Case P(I). Let sb1 = sb[i][n : |sb[i]| − 1], l1 = ins(sb1) ◦ is[i] and l2 = p-ins(sb1) then we
have from the coupling relation and hinv5(csbh):

c.ϑ[i] = del-t(ϑ[i], sb1)

c.is[i] = l1[0 : |l1| − |l2| − 1] = I.is1

c.p[i] = hd-p(p[i], sb1)

c.mode[i] = mode[i]

c.mmu[i] = mmu[i]

From the intermediate coupling relation we have:

hd-p(p[i], tl(sb1)) = I.p2

From the definition of hd-p we can conclude

c.p[i] = hd-p(p[i], sb1) = I.p1

Observing that the program step does not change the temporaries

c.ϑ[i] = del-t(ϑ[i], sb1) = del-t(ϑ[i], tl(sb1))

we get from hinv5(csbh):

δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], I.eev) = (I.p2, I.is2)

I.p2 = hd-p(p[i], sb[i][n + 1 : |sb[i]| − 1])

Hence, we execute the program step from configuration c:

c
p

==⇒i
og,I.eev

c′.

For the program state the coupling is maintained because

c′.p[i] = I.p2 = hd-p(p[i], sb[i][n + 1 : |sb[i]| − 1]).

From hinv5(csbh) and the coupling relation we can conclude:

c′.is[i] = c.is[i] ◦ I.is2.
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For the instruction sequence we get from the semantics of the abstract machine and from
the coupling relation:

c′.is[i] ◦ p-ins(sb[i][n + 1 : |sb[i]| − 1])

= c.is[i] ◦ I.is2 ◦ p-ins(sb[i][n + 1 : |sb[i]| − 1])

= c.is[i] ◦ p-ins(sb[i][n : |sb[i]| − 1])

= ins(sb[i][n : |sb[i]| − 1]) ◦ is[i]

= ins(sb[i][n + 1 : |sb[i]| − 1]) ◦ is[i],

which concludes the proof for the coupling relation.

�

RMW

Lemma 2.63 (invariants maintained by RMW)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧

hd(is[i]) = RMW va t (D, f) r cond p→ inv(c′sbh)

Proof Since the store buffer of thread i is empty when we perform the step, invariant hinv6
is trivially maintained. Let (A, L,R,W, Apt,Rpt) = og(p, ϑ′[i]) then invariants which might get
broken by the RMW step are considered below.

• oinv1. We proceed the same way as in the proof of oinv1 in Lemma 2.38. We have to
show for j , i for all non-volatile reads I = sb[ j][k] in the suspended part of the SB, that

I.pa ∈ δk
sb(csbh, j).ro→ I.pa < A ∪ Apt. (2.64)

Let c′ be the configuration of the abstract machine after we execute the RMW step of
thread i:

c
m
==⇒i c′.

The reasons why this step can be executed with the same ownership transfer and why the
result of the RMW test is the same as in the SB machine are given in the proof of lemma
2.94 which does not have inv(c′sbh) as hypothesis. After the step we obviously have

A ⊆ c′.O[i] and Apt ⊆ c′.pt[i].

Let x be the number of instructions up to instruction k in the suspended part of store buffer
j:

x = k − |exec(sb[ j])|.

We execute x steps of thread j in the abstract machine starting from configuration c′.
The choice of the steps to be executed (program or memory) depends on the type of the
store buffer instructions under consideration. From hinv2(csbh) we can get that there is no
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volatile read in the suspended portion of sb[ j]. We refer to the resulting configuration as
c′′:

c′
p,m
==⇒

x
j

eev
c′′.

From the proof of Lemma 2.61 we know the ownership transfer in the abstract machine
is performed according to the ownership annotations recorded in the corresponding SB
instructions. We can also choose the same translated address as the one recorded in the
corresponding SB instruction. Since the steps of thread j do not affect the ownership sets
of thread i we still have

A ⊆ c′′.O[i] and Apt ⊆ c′′.pt[i].

Since c′′ is a configuration reachable from c it follows

sa f e-reachd(c′′, og).

Hence, instruction I in thread j still has to be safe, which implies

I.pa ∈ c′′.O[ j] ∪ c′′.ro.

With lemmas 2.53 and 2.52 we conclude (2.64).

• oinv2. Let I = sb[ j][k] be a volatile write in store buffer j. To maintain the invariant after
the step of thread i we have to show

I.pa < A ∪ Apt.

As in the proof of oinv1 we execute the step of thread i and steps of thread j up to instruc-
tion I and get configurations c′ and c′′ respectively, where

A ⊆ c′′.O[i] and Apt ⊆ c′′.pt[i].

Instruction I in thread j still has to be safe, which implies

I.pa < c′′.O[i] ∪ c′′.pt[i].

and concludes the proof.

• oinv3. Let I = sb[ j][k] be a read instruction in the suspended part of store buffer j, such
that

I.pa ∈ δk
sb(c′sbh, j).ro.

Reusing the proof of oinv3 from Lemma 2.38 we get

I.pa ∈ δk
sb(csbh, j).ro.

To maintain the invariant it is left to show that

I.pa < A ∪ Apt.

We have already shown this in the proof for oinv1.
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• oinv4. We need to show:

∀ j , i. A ∩ (O[ j] ∪ acq(sb[ j])) = ∅.

From the safety condition for RMW we have:

∀ j , i. A ∩ (c.O[ j] ∪ c.rlsl[ j] ∪ c.rlss[ j]) = ∅.

From the semantics of SB steps and the coupling relation we can conclude:

O[ j] ∪ acq(exec(sb[ j])) ⊆ c.O[ j] ∪ c.rlsl[ j] ∪ c.rlss[ j].

Thus, we can conclude:

∀ j , i. A ∩ (O[ j] ∪ acq(exec(sb[ j]))) = ∅.

It is left to show
∀ j , i. A ∩ (acq(susp(sb[ j]))) = ∅.

We prove this by contradiction. Assume

∃a ∈ A. ∃ j , i. ∃k ≥ |exec(sb[ j])|. I = sb[ j][k] ∧ vW(I) ∧ a ∈ I.A.

Let c′ be configuration of the abstract machine after we execute the RMW step of thread
i:

c
m
==⇒i c′

Let x be the number of instructions up to instruction k in the suspended part of store buffer
j:

x = k − |exec(sb[ j])|

We execute x steps of thread j in the abstract machine. The choice of the steps to be
executed (program or memory) depends on the type of the store buffer instructions under
consideration. All these instructions can be executed in the abstract machine for the same
arguments as in the proof of oinv1. We refer to the resulting configuration as c′′:

c′
p,m
==⇒

x
j

eev
c′′.

All these instructions can be executed in the abstract machine for the same arguments as
in the proof of oinv1. From the semantics we can get

a ∈ c′′.O[i].

Configuration c′′ is safe. Hence, the volatile write step of thread j still has to be safe,
which implies

∀i , j. a < c′′.O[i]

and gives a contradiction.
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• sinv1. The proof is identical to the proof of sinv1 from Lemma 2.38 if one uses sa f e-reachd(c, og)
instead of sinv4(csbh) to conclude

R ⊆ O[i] and Rpt ⊆ pt[i].

• sinv2. The proof is identical to the proof of sinv2 from Lemma 2.38 if one uses sa f e-reachd(c, og)
instead of sinv4(csbh) to conclude the safety properties of the ownership transfer.

• sinv3. From the coupling invariant and sa f e-reachd(c, og) we have

R ⊆ O[i].

With oinv4(csbh) we get
∀ j , i. R ∩ O[ j] = ∅,

which implies
∀ j. O′[ j] ∩ ro′ = ∅.

The rest of the proof is identical to the proof of sinv3 from Lemma 2.38.

• sinv4. Let I = sb[ j][k] be a volatile read or a volatile write in store buffer j. In the proof
of oinv4 we have already shown that

I.A ∩ A = ∅.

Later in the proof of pinv1 we also show

I.A ∩ Apt = ∅.

The rest of the proof is identical to the proof of sinv4 from Lemma 2.38 just use sa f e-reachd(c, og)
instead of sinv4(csbh).

• sinv5. Let I = sb[ j][k] be a write in store buffer j. We can reuse the proof of sinv5 from
Lemma 2.38 if we show

I.pa < R.

From safety of the RMW step and from the coupling relation we get R ⊆ O[i]. With
identical proof of sinv5 in Lemma 2.38 we conclude the proof.

• tinv2 and tinv3. Invariant hinv3(csbh) guarantees that all read temporaries in SBs are
present in dom(csbh.ϑ). The invariants are now trivially maintained with tinv1(csbh),
tinv2(csbh) and tinv3(csbh).

• dinv2. The property is obviously maintained since for all k ≤ |is′[i]| it holds

dom(csbh.ϑ) ∪ loadt(is[i][0 : k]) = dom(c′sbh.ϑ) ∪ loadt(is′[i][0 : k − 1])
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• hinv1. Let I = sb[ j][k] be a read in the suspended part of store buffer j. We can reuse
the proof of hinv1 from Lemma 2.38 if we show that addresses of instruction I and of the
RMW instruction of thread i are distinct:

I.pa , pa.

From oinv1(csbh) we have

I.pa ∈ δk
sb(csbh, j).O[ j] ∪ δ

k
sb(csbh, j).ro.

We split cases

– I.pa ∈ δk
sb(csbh, j).O[ j]. Let x be the number of instructions up to instruction k in the

suspended part of store buffer j:

x = k − |exec(sb[ j])|.

We execute x steps of thread j in the abstract machine starting from configuration c.
The choice of the steps to be executed (program or memory) depends on the type of
the store buffer instructions under consideration. From hinv2(csbh) we can get that
there is no volatile read in the suspended portion of sb[ j] We refer to the resulting
configuration as c′′:

c
p,m
==⇒

x
j

eev
c′′.

Resulting from x applications of Lemma 2.61 we get:

sim(c′′, csbh, j, x)

With the intermediate coupling relation we have:

c′′.O[ j] = δk
sb(csbh, j).O[ j].

Configuration c′′ is safe. Hence, the RMW step of thread i still has to be safe, which
implies

pa < c′′.O[ j].

– I.pa ∈ δk
sb(csbh, j).ro. From oinv3(csbh) we know that there are no acquires of I.pa

in the executed parts of SBs of other threads. Hence,

I.pa ∈ δk
sb(∆exec

sb[, j](csbh), j).ro

If we take x = k − |exec(sb[ j])| we can rewrite this as

I.pa ∈ δx
sb(∆exec

sb (∆exec
sb[, j](csbh), j), j).ro

Applying Lemma 2.50 we get

I.pa ∈ δx
sb(∆exec

sb (csbh), j).ro.
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As in the previous case, we execute x instructions of thread j in the abstract ma-
chine starting from configuration c and get configuration c′′. From the intermediate
coupling relation it follows

c′′.ro = δx
sb(∆exec

sb (csbh), j).ro.

From the safety of the RMW step in configuration c′′ we get

pa < c′′.ro,

which concludes the proof.

• pinv1. To maintain the invariant it is enough to show for all threads j , i:

Apt ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅.

From the semantics of SB steps and the coupling relation we can conclude:

pt[ j] ∪ acqpt(exec(sb[ j])) ⊆ c.pt[ j] ∪ c.rlspt[ j] .

Thus, we can conclude from the safety of RMW:

Apt ∩ (pt[ j] ∪ acqpt(exec(sb[ j]))) = ∅.

It is left to show
Apt ∩ (acqpt(susp(sb[ j]))) = ∅.

We prove this by contradiction. Assume

∃a ∈ Apt. ∃k ≥ |exec(sb[ j])|. I = sb[ j][k] ∧ vW(I) ∧ a ∈ I.Apt.

As in the proof of oinv4 we execute RMW instruction from configuration c to obtain c′ and
execute instructions of thread j starting from configuration c′ until we executed instruction
k. The resulting configuration c′′ is safe and we have

a ∈ c′′.pt[i].

From the safety of the volatile write step in c′′ and the coupling we derive

a < c′′.pt[i]

and get a contradiction.

• pinv2. To maintain the invariant it is enough to show for all threads j , i:

A ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅.

The proof of that is completely analogous to the proof of pinv1.

• pinv3. From the safety of the RMW step, the coupling relation and pinv4(csbh) we have

pt[i] ∩ R = ∅.

Hence, we can conclude the proof as we do in the proof of pinv3 from Lemma 2.38 by
replacing sinv4(csbh) with sa f e-reachd(c, og).

• pinv4. The proof trivially follows from the safety of the RMW step.

�
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Read and Write

Lemma 2.65 (invariants maintained by vW)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧

hd(is[i]) = Write True a (D, f) r cb bw p→ inv(c′sbh)

Proof If the suspended part of SB i is empty, then c′ = c. Otherwise, to get c′ we execute all
instructions of thread i from the suspended part of the SB:

n = |susp(sb[i])| and c
p,m
==⇒

n
i

eev
c′

All these instructions can be executed in the abstract machine, because from the proof of Lemma
2.61 we know the ownership transfer in the abstract machine is performed according to the
ownership annotations recorded in the corresponding SB instruction. We can also choose the
same translated address as the one recorded in the corresponding SB instruction. Since c′ is a
configuration reachable from c it follows

sa f e-reachd(c′, og)

From hinv2(csbh) we can get that there is no volatile read in the suspended portion of sb[ j]. By
apply Lemma 2.61 n times we can also get

sim(c′, csbh, i, n)

which implies

c′.is[i] ◦ p-ins([]) = ins([]) ◦ is[i]

c′.ϑ[i] = del-t(ϑ[i], [])

We can conclude

hd(c′.is[i]) = hd(is[i]) ∧ c′.ϑ[i] = ϑ[i]

Since the write operation does not change the temporaries, we can derive that the abstract ma-
chine configuration c′ must use identical ownership annotations when stepping thread i. We now
consider invariants which might get broken by the step:

• oinv2. First, we show that this property is maintained for volatile writes of threads j , i.
Let I = sb[ j][k] be a volatile write in store buffer j. We have to show

I.pa < A ∪ Apt.

The proof of that is identical to the proof of oinv2 from Lemma 2.63 if one starts to execute
steps of abstract machine from configuration c′, where all instructions from the suspended
part of the sb[i] are already executed.
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Second, we maintain the property for thread i. If vW(hd(is[i])) we also have to show that
the property holds for the new volatile write added to the sb[i]. For all threads j , i it must
hold

pa < O[ j] ∪ acq(sb[ j]) ∪ pt[ j] ∪ acqpt(sb[ j]).

From the semantics of SB steps and the coupling relation we can conclude:

pt[ j] ∪ acqpt(exec(sb[ j])) ⊆ c′.pt[ j] ∪ c′.rlspt[ j]

O[ j] ∪ acq(exec(sb[ j])) ⊆ c′.O[ j] ∪ c′.rlsl[ j] ∪ c′.rlss[ j].

From the safety of the volatile write in configuration c′ we conclude

pa < pt[ j] ∪ acqpt(exec(sb[ j])) ∪ O[ j] ∪ acq(exec(sb[ j])).

It is left to show
pa < acqpt(susp(sb[ j])) ∪ acq(susp(sb[ j])).

We show this by contradiction. Let I = susp(sb[ j])[k] be an instruction in the suspended
part of store buffer j such that pa ∈ I.A ∪ I.Apt. We execute k + 1 program/memory steps
of thread j starting from configuration c′. The choice of the steps to be executed depends
on the type of the store buffer instructions under consideration. We refer to the resulting
configuration as c′′:

c′
p,m
==⇒

k + 1
j

eev
c′′.

We have

I.A ⊆ c′′.O[ j] and I.Apt ⊆ c′′.pt[ j].

Configuration c′′ is safe. Hence, the memory step of thread i still has to be safe, which
implies

pa < c′′.O[ j] ∪ c′′.pt[ j]

and gives a contradiction.

• oinv3. The proof is completely analogous to the proof of oinv3 from Lemma 2.63 if one
starts executing steps from configuration c′, where all instructions from the suspended
part of sb[i] are already executed.

• oinv4. The proof is completely analogous to the proof of oinv4 from Lemma 2.63 if one
considers c′ as the initial configuration of the abstract machine.

• sinv4. The property is trivially maintained for old instructions in SBs. For the newly
added instruction we conclude from the safety condition of c′:

A ⊆ c′.shared ∪ c′.O[i] ∪ Rpt \ Apt ∧ L ⊆ A ∧

A ∩ R = ∅ ∧ R ⊆ c′.O[i] ∧ Apt ∩ Rpt = ∅ ∧

Apt ⊆ c′.shared ∪ c′.pt[i] ∪ R \ A ∧ Rpt ⊆ c′.pt[i].
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From the intermediate coupling relation we have:

c′.shared = ∆sb(∆exec
sb (csbh), i).shared

c′.O[i] = ∆sb(csbh, i).O[i]

c′.pt[i] = ∆sb(csbh, i).pt[i].

To get the desired property it is left to show that:

∀a ∈ Apt ∪ A. a ∈ c′.shared → a ∈ ∆sb(csbh, i).shared. (2.66)

From Lemma 2.50 we get

∆sb(∆exec
sb (csbh), i).shared = ∆exec

sb (∆sb(csbh, i)).shared.

From the definition of ∆exec
sb and ∆sb we can conclude:

∆exec
sb (∆sb(csbh, i)).shared ⊆

∆sb(csbh, i).shared
⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j])))

From the intermediate coupling relation we have:

rels(exec(sb[ j])) ⊆ c′.rlss[ j] ∪ c′.rlsl[ j]

relspt(exec(sb[ j])) ⊆ c′.ts[ j].rlspt.

From the safety condition of c′ we have:

(A ∪ Apt) ∩
⋃
∀ j,i

(c′.rlss[ j] ∪ c′.rlsl[ j] ∪ c′.ts[ j].rlspt) = ∅,

which implies (2.66).

• sinv5. We only consider thread i. We have to show that:

pa < ∆sb(csbh, i).ro. (2.67)

With sa f e-reachd(c′, og), we can conclude:

pa < c′.ro.

From the construction of c′ and the coupling relation, we can get:

c′.ro = ∆sb(∆exec
sb (csbh), i).ro

From Lemma 2.50 we have:

∆sb(∆exec
sb (csbh), i).ro = ∆exec

sb (∆sb(csbh, i)).ro.
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From the semantics, we have:

∆exec
sb (∆sb(csbh, i)).ro ⊇

∆sb(csbh, i).ro \ (
⋃
∀ j,i

acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))).

With oinv2(csbh), we can get

pa <
⋃
∀ j,i

acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))

and concludes (2.67).

• hinv4. Since the volatile write does not change the temporaries and the result of loadt,
hinv4 is trivially maintained for the outstanding writes already in the SB. For the newly
added write in the SB, we let I be the newly added write instruction in the SB then from
the semantics

I. f (ϑ′[i]) = I.v

With dinv2(csbh) we have

I.D ∈ dom(ϑ[i]) ∪ loadt(is[i][0]) = dom(ϑ[i])

From the semantics we can conclude

I.D ∈ dom(ϑ′[i])

which implies hinv4(c′sbh).

• hinv6. From hinv6(csbh) we have for all k < |sb[i]|:

∃is. ins(sb[i][k : |sb[i]| − 1]) ◦ is[i] = is ◦ p-ins(sb[i][k : |sb[i]| − 1]).

From the semantics of the SB machine we get for all prefixes is:

ins(sb′[i][k : |sb′[i]| − 1]) ◦ is′[i] = ins(sb[i][k : |sb[i]| − 1]) ◦ is[i]

is ◦ p-ins(sb′[i][k : |sb′[i]| − 1]) = is ◦ p-ins(sb[i][k : |sb[i]| − 1]).

For k = |sb[i]| we get

ins(sb′[i][k]) ◦ is′[i] = is[i]

p-ins(sb[i][k]) = [].

Hence, the invariant is maintained.

• hinv7. In this case since a volatile write does not change the temporaries when execut-
ing, we only consider the newly added volatile write store buffer instruction. From the
semantics and the definition of del-t we can prove that hinv7 is trivially maintained.
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• pinv1 and pinv2. The proof of these invariants is completely analagous to the proof of
pinv1 and pinv2 from Lemma 2.63 if one considers c′ as the initial configuration of the
abstract machine.

�

Lemma 2.68 (invariants maintained by nvW)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧

hd(is[i]) = Write False a (D, f) r cb bw p→ inv(c′sbh)

Proof We first obtain configuration c′, where all suspended instruction of thread i are executed,
the same way as we do in lemma 2.65. We now consider invariants which might get broken by
the step:

• oinv1. Following the proof in Lemma 2.65, we can choose the same translated address pa
of a corresponds to that of the store buffer machine. From the safety of configuration c′

we have
pa ∈ c′.O[i].

From the intermediate coupling relation we have:

c′.O[i] = ∆sb(csbh, i).O[i].

Hence, the desired property for the instruction added to the SB holds.

• sinv1. Let pa be the translated address of a. From the safety of configuration c′ we have

pa < c′.shared.

From the intermediate coupling relation we have:

c′.shared = ∆sb(∆exec
sb (csbh), i).shared

From Lemma 2.50 we get

∆sb(∆exec
sb (csbh), i).shared = ∆exec

sb (∆sb(csbh, i)).shared.

Our goal is to prove
pa < δ|sb[i] |

sb (c′sbh, i).shared (2.69)

The the execution of non-volatile write does not influence the ownership sets. As a con-
sequence, we have

δ
|sb[i] |

sb (c′sbh, i).shared = ∆sb(csbh, i).shared

80



From the semantics and sinv4(csbh) we have

∆exec
sb (∆sb(csbh, i)).shared ⊇ ∆sb(csbh, i) \ (

⋃
∀ j,i

acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j])))

With oinv1(c′sbh), the semantics and the definition of acq we have

pa ∈ δ|sb[i] |

sb (c′sbh, i).O[i] = ∆sb(csbh, i).O[i] ⊆ O[i] ∪ acq(sb[i])

From oinv4(csbh) and the definition of acq we can conclude

∀ j , i. pa < O[ j] ∪ acq(exec(sb[ j]))

From pinv2(csbh) and the definition of acqpt we can conclude

∀ j , i. pa < pt[ j] ∪ acqpt(exec(sb[ j]))

After that we can conclude

pa <
⋃
∀ j,i

acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))

which implies
pa < ∆sb(csbh, i)

and gives us (2.69).

• sinv5. The proof follows immediately from sinv1(c′sbh) and Lemma 2.38.

• hinv4 is trivially maintained with dinv2(csbh).

• hinv6. The proof is identical to the proof of hinv6 in Lemma 2.65.

�

Lemma 2.70 (vR implies no vW in SB)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧

hd(is[i]) = Read True a t r ext bw p→ susp(sb[i]) = []

Proof From the coupling relation for the dirty flag we have

(c.D[i] ∨ ∃I ∈ sb[i]. vW(I)) = D[i].

We prove by contradiction. Assume

∃I ∈ sb[i]. vW(I).

We obtain configuration c′, where all suspended instruction of thread i are executed, the same
way as we do in lemma 2.65. Since there is a volatile write I in the suspended part of the store
buffer we can conclude

c′.D[i].

But this contradicts to the safety of the volatile read in configuration c′. �
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Lemma 2.71 (invariants maintained by R)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧

hd(is[i]) = Read vol a t r ext bw p→ inv(c′sbh)

Proof We first obtain configuration c′, where all suspended instruction of thread i are executed,
the same way as we do in lemma 2.65. Let |susp(sb[i])| = n then we can get

sim(c′, csbh, i, n) ∧ sa f e-reachd(c′, og)

From the intermediate coupling relation we can conclude that the identical translated address pa
can be used in both machines. From Lemma 2.70 and the coupling relation we can conclude:

vR(hd(is[i]))→ n = 0 ∧ c′ = c ∧ hd(is[i]) = hd(c.is[i]).

For volatile read we let og(p, ϑ′[i]) = (A, L,R,W, Apt,Rpt). First we need to prove the abstract
machine c must use identical ownership annotations when stepping thread i in case of a volatile
read. In order to prove that we only need to prove the identity of temporaries after reading in
both machines. From the coupling relation we have

c.ϑ[i] = ϑ[i]

c.m = ∆exec
sb (csbh).m

= ∆sb(∆exec
sb[,i](csbh), i).m

By Lemma 2.60 we know

∀ j , i. ∀k < |exec(sb[ j])|. ¬(nvW(sb[ j][k]) ∧ sb[ j][k].pa = pa)

which implies

c.m(pa) = ∆sb(csbh, i).m(pa)

We let
v = f wd(sb[i],m, pa, bw)

then from the semantics
v , ⊥

What we need to prove becomes

ext(v, bw) = ext(c.m(pa), bw) (2.72)

We let l = maxhit(sb[i], pa) and I′ = sb[i][l] then from the definition of f wd we can get:

l = ⊥ ∨ l , ⊥ ∧ bw ≤ I′.bw

We do a case split on l:
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• l = ⊥. From the defintion of maxhit we know there are no store buffer hit for address pa.
That means:

c.m(pa) = ∆sb(csbh, i).m(pa) = m(pa) = v

which implies (2.72)

• l , ⊥ ∧ bw ≤ I′.bw. From the definition of f wd in this case v = I′.v. From the semantics
of step buffer step, we can get

∃v′. c.m(pa) = ∆sb(csbh, i).m(pa) = I′.cb(v, v′, I′.bw)

From the property of combination function cb we can conclude

I′.cb(v, v′, I′.bw) =I′.bw v

From the property of bw we can get

I′.cb(v, v′, I′.bw) =bw v

Finally from the property of ext we can conclude

I.ext(v, bw) = I.ext(I′.cb(v, v′, I′.bw), bw)

which also implies (2.72).

As a consequence, we must use identical ownership annotations to step volatile read in both
machines. We now consider invariants which might get broken by the step:

• oinv1. If vR(hd(is[i])) the invariant is trivially maintained. Otherwise we need to show for
the newly added non-volatile read:

pa ∈ ∆sb(csbh, i).O[i] ∪ ∆sb(csbh, i).ro.

From the safety of configuration c′ we have

pa ∈ c′.O[i] ∪ c′.ro.

From the intermediate coupling relation we have:

c′.O[i] = ∆sb(csbh, i).O[i]

c′.ro = ∆sb(∆exec
sb (csbh), i).ro.

To get the desired property it is left to show that:

pa ∈ c′.ro→ pa ∈ ∆sb(csbh, i).ro (2.73)

From Lemma 2.50 we get

∆sb(∆exec
sb (csbh), i).ro = ∆exec

sb (∆sb(csbh, i)).ro.
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From the definition of ∆exec
sb and ∆sb we can conclude:

∆exec
sb (∆sb(csbh, i)).ro ⊆

∆sb(csbh, i).ro
⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j])))

From the construction of c′ and the coupling relation we have:

rels(exec(sb[ j])) ⊆ c′.rlss[ j] ∪ c′.rlsl[ j]

relspt(exec(sb[ j])) ⊆ c′.rlspt[ j].

From the safety condition of c′ we have:

pa <
⋃
∀ j,i

(c′.rlss[ j] ∪ c′.rlsl[ j] ∪ c′.rlspt[ j]).

which implies (2.73).

• oinv2. The proof is identical to the proof of oinv2 for Lemma 2.63.

• oinv3. For the case of volatile read there is nothing to show because of Lemma 2.70. For
a non-volatile read we need to show for all j , i:

pa ∈ ∆sb(c′sbh, i).ro→ pa < (O′[ j] ∪ acq(sb′[ j]) ∪ pt′[ j] ∪ acqpt(sb′[ j])).

From the construction of c′ and the coupling relation we have

c′.O[ j] = ∆exec
sb (csbh, j).O[ j]

c′.pt[ j] = ∆exec
sb (csbh, j).pt[ j]

c′.ro = ∆sb(∆exec
sb (csbh), i).ro.

From the safety condition of c′ we have:

pa ∈ c′.O[i] ∪ c′.ro

pa <
⋃
∀ j,i

(c′.rlss[ j] ∪ c′.rlsl[ j] ∪ c′.ts[ j].rlspt).

Applying lemmas 2.53 and 2.52 we get

pa < c′.O[ j] ∪ c′.pt[ j].

From the semantics of SB steps and the coupling relation we can conclude:

O′[ j] ∪ acq(exec(sb′[ j])) ⊆ c′.O[ j] ∪ c′.rlsl[ j] ∪ c′.rlss[ j]

pt′[ j] ∪ acqpt(exec(sb′[ j])) ⊆ c′.pt[ j] ∪ c′.rlspt[ j].

Hence, all it is left to show

pa < acq(susp(sb′[ j])) ∪ acqpt(susp(sb′[ j])).

We have already done this kind of proof for invariant oinv2 in Lemma 2.65. For a volatile
read the proof is analogous to the proof of oinv3 for Lemma 2.63.
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• oinv4. For volatile read the proof is completely analogous to the proof of oinv4 from
Lemma 2.63. For non-volatile read there is nothing to prove.

• sinv4. For volatile read the proof is completely analogous to the proof of sinv4 from
Lemma 2.65. For non-volatile read there is nothing to prove.

• tinv2 and tinv3. Invariant hinv3(csbh) guarantees that all read temporaries in SBs are
present in dom(ϑ[i]). The invariants are now trivially maintained with tinv1(csbh), tinv2(csbh)
and tinv3(csbh).

• dinv2. The property is obviously maintained since for all k ≤ |is′[i]| it holds

dom(ϑ[i]) ∪ loadt(is[i][0 : k]) = dom(ϑ′[i]) ∪ loadt(is′[i][0 : k − 1])

• hinv1. For the case of volatile read there is nothing to show because of Lemma 2.70. We
only need to consider the newly added non-volatile read. For the newly added non-volatile
read instruction I, we have to prove:

I.ext( f wd(sb′[i],m
′, I.pa, I.bw), I.bw) = I.ext(δ|sb[i] |

sb (c′sbh, i).m(I.pa), I.bw) (2.74)

Since the proof of (2.72) can also be adapted to the non-volatile case, we can derive (2.74)
by (2.72).

• hinv2. Invariant is easily maintained with Lemma 2.70.

• hinv3. For the newly added read the property is trivially maintained. For old reads in the
SB the property follows from tinv3(csbh).

• hinv4. Invariant is trivially maintained with tinv3(csbh).

• hinv6. The proof is identical to the proof of hinv6 in Lemma 2.65.

• hinv7. Let sb1 = sb[i][k : |sb[i]| −1] and sb2 = sb′[i][k : |sb′[i]| −1] then in this case we need
to prove the following equation holds:

del-t(ϑ[i], sb1) = del-t(ϑ′[i], sb2)

which is trivially proved with the semantics and the definition of del-t.

• pinv1 and pinv2. For volatile read the proof of these invariants is identical to the proof
of pinv1 and pinv2 for Lemma 2.63. For non-volatile read these invariants are trivially
maintained.

�

85



2.4.5 MMU and PF Steps

Lemma 2.75 (invariants maintained by MMU)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
mu
==⇒i c′sbh → inv(c′sbh)

Proof The only invariants which might get broken by MMU steps are hinv1 and minv1.

• hinv1(csbh). This invariants can only get broken by the MMU write step. Let pa be the
address written by the MMU. From hinv1(csbh) we have

∀k < |sb[ j]|. k ≥ |exec(sb[ j])| ∧ nvR(I)→

I.v = I.ext(δk
sb(csbh, j).m(I.pa), I.bw),

where I = sb[ j][k]. To maintain the invariant we have to show

∀k < |sb[ j]|. k ≥ |exec(sb[ j])| ∧ nvR(I)→ I.pa , pa.

For case j , i the proof is analogous to the proof of hinv1 in Lemma 2.63 if we consider
the safety condition of mmu step instead of the safety condition of RMW. For case j = i
we prove this lemma by contradiction. We assume:

∃k < |sb[i]|. k ≥ |exec(sb[i])| ∧ I = sb[i][k] ∧ nvR(I) ∧ I.pa = pa.

Let x be the number of instructions up to instruction k in the suspended part of store buffer
i:

x = k − |exec(sb[i])|

We execute x program/memory steps of thread i in the abstract machine starting from
configuration c. The choice of the steps to be executed depends on the type of the store
buffer instructions under consideration. We refer to the resulting configuration as c′:

c
p,m
==⇒

x
i

eev
c′.

Since we do not do any MMU steps in this execution, it holds

c′.mmu[i] = c.mmu[i] = mmu[i].

Hence, we can execute the MMU write to address pa in configuration c′ and this write has
to be safe, because configuration c′ is safe. This implies

pa < c′.ro ∪ c′.O[i].

At the same time, instruction I, which is at the head of the instruction list of thread i in
configuration c′, also has to be safe, which implies:

pa ∈ c′.O[i] ∪ c′.ro

and gives a contradiction.
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• minv1. We conclude the proof with the monotonicity property for MMU reads and walk
creations.

�

Lemma 2.76 (invariants maintained by page fault)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
pf
==⇒ c′sbh → inv(c′sbh)

Proof The only invariant which might get broken is

• hinv6. Because the store buffer and the instruction sequence are both flushed after the
page fault step, the invariant is trivially maintained.

�

2.5 Proving Simulation

In this section we prove simulation between the SB and the virtual machines.

2.5.1 SB Steps

Lemma 2.77 (coupling maintained when R, nvW exits SB)

csbh ∼ c ∧ inv(csbh) ∧ hd(sb[i]) = I ∧ ¬vW(I) ∧

c′sbh = δsb(csbh, i)→ c′sbh ∼ c

Proof Since the suspended part of SB i is unchanged, the coupling for the instruction sequence,
program state and temporaries is trivially maintained. The coupling for the dirty flag, translation
mode and MMU state also can not be broken.

For the other parts of the coupling relation we first observe that

∆exec
sb (csbh, i) = ∆exec

sb (c′sbh, i).

Hence, for X′ ∈ {O, pt, rlsl, rlss, rlspt} we trivially get

c.X′[i] = ∆exec
sb (csbh, i).X′[i] = ∆exec

sb (c′sbh, i).X
′
[i].

With Lemma 2.38 we get inv(c′sbh). For X ∈ {shared, ro,m} we conclude

c.X = ∆exec
sb (csbh).X (coupling)

= ∆exec
sb[,i](∆

exec
sb (csbh, i)).X (lemma 2.50)

= ∆exec
sb[,i](∆

exec
sb (c′sbh, i)).X

= ∆exec
sb (c′sbh).X. (lemma 2.50)

�
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When a volatile write exits SB, the virtual machine executes not only this volatile write, but
also all local instructions recorded in the SB after the volatile write. To show that the coupling
relation is maintained after all these steps, we define another intermediate coupling relation

sim′(c, csbh, i, k),

which has to hold after k local instructions of thread i are executed in the virtual machine. In
case k = 0, relation sim′(c, csbh, i, 0) couples the states after the volatile write is committed
to the memory in the SB machine and after the volatile write instruction is executed in the
virtual machine. After we execute all local steps before the next volatile write and have k =

|exec(csbh.sb[i])| then
sim′(c, csbh, i, k) ≡ csbh ∼ c.

Definition 2.78 (Intermediate Coupling Relation 2)

sim′(c, csbh, i, k) =

k ≤ |exec(sb[i])| ∧ ∀X ∈ {shared, ro,m}. c.X = δk
sb(∆exec

sb[,i](csbh), i).X ∧

∀ j. c.mode[ j] = mode[ j] ∧ c.mmu[ j] = mmu[ j] ∧

(c.D[ j] ∨ ∃I ∈ sb[ j]. vW(I)↔ D[ j]) ∧ ∀X ∈ {O, pt, rlsl, rlss, rlspt}.

( j , i→ c.X[ j] = ∆exec
sb (csbh, j).X[ j] ∧

c.is[ j] ◦ p-ins(susp(sb[ j])) = ins(susp(sb[ j])) ◦ is[ j] ∧

c.ϑ[ j] = del-t(ϑ[ j], susp(sb[ j])) ∧ c.p[ j] = hd-p(p[ j], susp(sb[ j]))) ∧

( j = i→ c.X[ j] = δk
sb(csbh, j).X[ j] ∧

c.is[ j] ◦ p-ins(sb[ j][k : |sb[ j]| − 1]) = ins(sb[ j][k : |sb[ j]| − 1]) ◦ is[ j] ∧

c.ϑ[ j] = del-t(ϑ[ j], sb[ j][k : |sb[ j]| − 1]) ∧

c.p[ j] = hd-p(p[ j], sb[ j][k : |sb[ j]| − 1]))

The following lemmas are similar to the corresponding lemmas for intermediate coupling
relation sim.

Lemma 2.79 (unowned nvW is in local release set for sim’)

∀ j, k, pa. k < |exec(sb[ j])| ∧ i , j ∧ sim′(c, csbh, i, n) ∧ inv(csbh) ∧ nvW(sb[ j][k]) ∧

pa = sb[ j][k].pa ∧ (pa < c.O[ j] ∨ pa ∈ c.shared)→ pa ∈ c.rlsl[ j]

Proof The proof is similar to proof of Lemma 2.56. The only difference is from the intermediate
coupling relation 2 we get

pa < ∆exec
sb (csbh, j).O[ j] ∨ pa ∈ δn

sb(∆exec
sb[,i](csbh), i).shared

The reset of the proof is identical to that of Lemma 2.56. �
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Lemma 2.80 (sim’ implies disjoint sets)

∀i. sim′(c, csbh, i, n) ∧ inv(csbh)→ dis joint-osets(c)

Proof From the intermediate coupling relation 2 we can get:

∀X ∈ {share, ro}. c.X = δn
sb(∆exec

sb[,i](csbh), i).X

∀Y ∈ {O[i], pt[i]}. c.Y = δn
sb(csbh, i).Y

The rest of the proof is identical to that of Lemma 2.59. �

Lemma 2.81 (no nvW to a read address sim’)

∀i, pa. (R(hd(c.is[i])) ∨ RMW(hd(c.is[i]))) ∧ sim′(c, csbh, i, n) ∧ sa f e-reachd(c, og) ∧

pa ∈ (atran(c.mmu[i], hd(c.is[i]).va, c.mode[i], hd(c.is[i]).r)) ∧ inv(csbh) →

∀ j , i. ∀k < |exec(sb[ j])|. ¬(nvW(sb[ j])[k] ∧ sb[ j][k].pa = pa)

Proof The proof is similar to that of Lemma 2.60. In the proof instead of applying Lemma 2.56
and Lemma 2.59 we apply Lemma 2.79 and Lemma 2.80. he rest of the proof is identical to that
of Lemma 2.60. �

Lemma 2.82 (sim’ vW exits sb inductive)

sim′(c, csbh, i, k) ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧

k < |exec(sb[i])| ∧ ∀k′ < |exec(sb[i])|. I = sb[i][k′] ∧ ¬vR(I) ∧

(R(I)→ I.v = I.ext(δk′
sb(csbh, i).m(I.pa), I.bw)) →

∃c′. c =⇒i
eev

c′ ∧ sim′(c′, csbh, i, k + 1)

Proof We let I = sb[i][k] then execute either a memory or a program step of thread i on the
abstract machine depending on I.

• ¬P(I). In this case the proof is similar to the induction step of Lemma 2.61. Instead of
apply hinv1(csbh) to get the consistency of the read value we use the precondition. From
the definition of sim′ we do not need to consider the case when vW(I).

• P(I). In this case we let sb1 = sb[i][k : |sb[i]| − 1] then the rest of the proof is identical to
the corresponding proof of Lemma 2.61. �

Lemma 2.83 (simulating vW exits sb)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ I = hd(sb[i]) ∧ vW(I)∧

csbh
sb
==⇒i c′sbh → ∃c′. c =⇒i

eev
* c′ ∧ c′sbh ∼ c′
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Proof From Lemma 2.55 we conclude

c.is[i] , [].

Hence, from the coupling relation we have

hd(c.is[i]) = ins(I).

From the coupling relation and from minv1(csbh) we conclude

I.pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r).

Hence, we can always execute the volatile write from the head of the instruction list and choose
the same translated address as we have previously chosen for the corresponding step of the SB
machine. From the coupling relation we have

c.ϑ[i] = del-t(ϑ[i], susp(sb[i]))

From hinv7(csbh) we have

I.annot = og(I.p, del-t(ϑ′[i], susp(sb[i])))

= og(I.p, c.ϑ[i])

Thus, we can transfer the ownership on the abstract machine according to the same ownership
annotation we previously recorded in I. Let c′′ be configuration of the abstract machine after the
step:

c
m
==⇒i c′′.

From the coupling relation and the semantics of abstract and SB machines we get for X ∈
{shared, ro,m}:

c′′.X = δsb(∆exec
sb[,i](csbh), i).X

= ∆exec
sb[,i](c

′
sbh).X (Lemma2.50)

For X ∈ {O, pt, rlspt} we get:

c′′.X[i] = δsb(csbh, i).X = c′sbh.X[i]

For X ∈ {rlss, rlsl} we have to prove:

I.R ∩ ∆exec
sb[,i](csbh).shared = I.R ∩ csbh.shared (2.84)

From the sinv4(csbh) we can conclude:

∆exec
sb[,i](csbh).shared ⊆ csbh.shared

⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j])))

∆exec
sb[,i](csbh).shared ⊇ csbh.shared \ (

⋃
∀ j,i

(acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))))
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With sinv4(csbh), oinv4(csbh) and the definition of acq and acqpt, we can conclude:

I.R ∩
⋃
∀ j,i

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j]))) = ∅

I.R ∩
⋃
∀ j,i

(acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j]))) = ∅

which implies (2.84).
For the instruction sequence we conclude with the help of the coupling relation:

c′′.is[i] ◦ p-ins(sb′[i]) = tl(c.is[i]) ◦ p-ins(susp(sb[i]))

= tl(ins(susp(sb[i]))) ◦ is[i]

= ins(sb′[i]) ◦ is′[i].

For the temporaries and the program state it obviously holds

c′′.ϑ[i] = c.ϑ[i]

= del-t(ϑ[i], sb[i])

= del-t(ϑ′[i], sb′[i])

c′′.p[i] = c.p[i] = hd-p(p[i], sb[i])

= hd-p(p′[i], sb′[i]).

From the coupling relation we get D[i], which implies D′[i]. From the semantics of the memory
step we also get c′.D[i]. This implies

(c′.D[i] ∨ ∃I ∈ sb[i]. vW(I))↔ D′[i].

Hence, we have sim′(c′′, c′sbh, i, 0). Let n be the length of the executed part of SB i in configura-
tion c′sbh:

n = |exec(sb′[i])|.

With hinv1(csbh) we can conclude the consistency of the read value the SB machine. From
hinv2(csbh) we know that no volatile read instruction exists in sb[i]. Then we apply Lemma 2.82
n − 1 times and execute steps of thread i accordingly. Finally we get configuration c′, such that

c′′ =⇒i
eev

* c′ and sim′(c′, c′sbh, i, n).

To get the coupling c′sbh ∼ c′ from sim′(c′, c′sbh, i, n) we only have to show

∆exec
sb (∆exec

sb[,i](c
′
sbh), i) = ∆exec

sb (c′sbh),

which we easily get with Lemma 2.38 and Lemma 2.50. �
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2.5.2 Program Step

For a program step we make a case distinction on whether there is an outstanding volatile write
in the SB. When there is a volatile write in the SB, the abstract machine does not perform any
steps. Otherwise, both machines make the same step.

Lemma 2.85 (simulating program step with vW)

∀i. csbh ∼ c ∧ (∃k. vW(sb[i][k])) ∧ csbh
p

==⇒i
eev

c′sbh → c′sbh ∼ c

Proof From the coupling relation and the semantics of the program step we have

c.p[i] = hd-p(p[i], susp(sb[i]))

= hd-p(p[i], susp(sb[i]) ◦ PROGsbh p[i] p′[i] is[i] is′)

= hd-p(p[i], susp(sb′[i])).

In susp(sb′[i]) there is now at least one program instruction. Hence, we have

hd-p(p[i], susp(sb′[i])) = hd-p(p′[i], susp(sb′[i])),

and the coupling relation for the program state is maintained. For the coupling relation of the
instruction sequence we let I = hd(is[i]) and is′ be the newly generated instructions by the
program step.

c.is[i] ◦ p-ins(susp(sb′[i]))

= c.is[i] ◦ p-ins(susp(sb[i])) ◦ is′ (def.
p

==⇒i
eev

)

= ins(susp(sb[i])) ◦ is[i] ◦ is′ (coupling)

= ins(susp(sb′[i])) ◦ is′[i]. (def.
p

==⇒i
eev

)

All the other parts of the coupling relation are trivially maintained. �

Lemma 2.86 (simulating program step without vW)

∀i. csbh ∼ c ∧ (∀k. ¬vW(sb[i][k])) ∧ csbh
p

==⇒i
eev

c′sbh ∧ c
p

==⇒i
eev

c′ → c′sbh ∼ c′

Proof Observing that
susp(sb[i]) = susp(sb′[i]) = []

we get from the coupling relation

c.p[i] = hd-p(p[i], susp(sb[i])) = p[i]

c.ϑ[i] = del-t(ϑ[i], susp(sb[i])) = ϑ[i]

c.is[i] = c.is[i] ◦ p-ins(susp(sb[i])) = is[i]

c.mode[i] = mode[i]

c.mmu[i] = mmu[i].
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Hence, the resulting program state and the generated instruction sequence in both machines are
the same:

δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev)

= δp(p[i], ϑ[i],mode[i],mmu[i], is[i], eev) = (p′, is′).

For the coupling of the program state we trivially get

p′ = c′.p[i] = p′[i] = hd-p(p′[i], susp(sb′[i])).

Coupling for the instruction sequence we have

c′.is[i] ◦ p-ins(susp(sb′[i]))

= c.is[i] ◦ is′ ◦ p-ins(susp(sb[i])) (def.
p

==⇒i
eev

)

= c.is[i] ◦ p-ins(susp(sb[i])) ◦ is′ (no vW)

= ins(susp(sb[i])) ◦ is[i] ◦ is′ (coupling)

= ins(susp(sb′[i])) ◦ is′[i]. (def.
p

==⇒i
eev

)

All the other parts of the coupling invariant are trivially maintained. �

2.5.3 MMU and PF Steps

In case of any MMU step the same action is performed in both machines.

Lemma 2.87 (no nvW to page tables)

∀i, a. csbh ∼ c ∧ inv(csbh) ∧ sa f e-mmu-accd(c, a, i)→

(∀ j, k. k < |exec(sb[ j])| ∧ nvW(sb[ j][k])→ sb[ j][k].pa , a)

Proof We prove this lemma by contradiction. Let I = sb[ j][k] and

∃ j. ∃k < |exec(sb[ j])|. nvW(I) ∧ I.pa = a

Lemma 2.56 gives us
(a < c.O[ j] ∨ a ∈ c.shared)→ a ∈ c.rlsl[ j]

It implies
a ∈ c.O[ j] ∪ c.rlsl[ j]

which contradicts to sa f e-mmu-accd(c, a, i). �

As an important consequence of Lemma 2.87 we get the equality of the shared and local page
table memory contents in SB and abstract machines in case the coupling relation holds.
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Lemma 2.88 (simulating MMU and PF steps)

∀i, csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ (csbh
mu
==⇒i c′sbh ∨ csbh

pf
==⇒i c′sbh) →

∃c′. (c
mu
==⇒i c′ ∨ c

pf
==⇒i c′) ∧ c′sbh ∼ c′

Proof We consider cases depending on the type of the step:

• Walk creation for address va. In this case we have

mmu′[i] = δcrtw(mmu[i], va) (semantics of SB machine)

= δcrtw(c.mmu[i], va) (coupling relation)

= c′.mmu[i] (semantics of abs machine)

• MMU read from address a. In this case we have

mmu′[i] = δmmur(mmu[i], a,m(a)) ∧ can-access(mmu[i], a).

Let c′ be the configuration after c performs a MMU read step. From the semantics of the
MMU step we have

c′.mmu[i] = δmmur(c.mmu[i], a, c.m(a)).

From the coupling relation we have

mmu[i] = c.mmu[i]

mode[i] = c.mode[i]

Hence, we know that
can-access(c.mmu[i], a)

holds and from the safety of the abstract machine we get

sa f e-mmu-accd(c, a, i).

With Lemma 2.87 we conclude m(a) = c.m(a). Hence,

mmu′[i] = c′.mmu[i].

• MMU write to address a. We have

c′sbh.m(a) = x ∧ x ∈ δmmuw(mmu[i], a,m(a)) ∧ can-access(mmu[i],mode[i], a).

As in the previous case, we conclude

sa f e-mmu-accd(c, a, i).
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From the coupling relation we have

mmu[i] = c.mmu[i]

mode[i] = c.mode[i]

With Lemma 2.87 we conclude m(a) = c.m(a). After that we know

x ∈ δmmuw(c.mmu[i], a, c.m(a))

Hence, we perform the same step in the abstract machine and get

c′.m(a) = x = c′sbh.m(a).

With Lemma 2.87 we conclude the proof for the memory coupling.

• Page fault at address pa. As in previous case, we can get

can-access(c.mmu[i], pa) ∧ sa f e-mmu-accd(c, pa, i)

With Lemma 2.87, we can conclude m(pa) = c.m(pa). We have sb[i] = []. With the
coupling relation, we can conclude:

c.is[i] = is[i] ∧ c.p[i] = p[i]

Let I = hd(is[i]) = hd(c.is[i]), we have:

can-page- f ault(c.mmu[i], I.va, I.r, pa, c.m(pa))

For mmu state of thread i, we have:

mmu′[i] = δ f lush(mmu[i], {I.va}) (semantics)

= δ f lush(c.mmu[i], {I.va}) (coupling)

= c.mmu′[i] (semantics)

For program state of thread i, we have:

p′[i] = δpf(p[i], ϑ[i], is[i], eev) (semantics)

= δpf(c.p[i], c.ϑ[i], c.is[i], eev) (coupling)

= c′.p[i] (semantics)

With sb′[i] = [], we can conclude:

c′.p[i] = hd-p(p′[i], susp(sb′[i]))

From the semantics, we also have:

is′[i] = c′.is[i] = [] ∧ rls′[i] = c′.rls[i] = ∅ ∧ ¬D′[i] ∧ ¬c′.D[i]

Coupling relation is trivially maintained.

�
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2.5.4 Memory Steps

Lemma 2.89 (coupling for instructions maintained with vW)

csbh ∼ c ∧ csbh
m
==⇒i c′sbh ∧ susp(sb′[i]) , []→

c.is[i] ◦ p-ins(susp(sb′[i])) = ins(susp(sb′[i])) ◦ is′[i]

Proof Let I = hd(is[i]) then we conclude:

c.is[i] ◦ p-ins(susp(sb′[i])) = c.is[i] ◦ p-ins(susp(sb[i])) (def.
m
==⇒i )

= ins(susp(sb[i])) ◦ is[i] (coupling)

= ins(susp(sb′[i])) ◦ is′[i]. (def.
m
==⇒i )

�

Lemma 2.90 (coupling for instructions maintained without vW)

csbh ∼ c ∧ csbh
m
==⇒i c′sbh ∧ c

m
==⇒i c′ ∧ susp(sb′[i]) = []→

c′.is[i] ◦ p-ins(susp(sb′[i])) = ins(susp(sb′[i])) ◦ is′[i]

Proof Let I = hd(is[i]). We conclude

c′.is[i] ◦ p-ins(susp(sb′[i]))

= tl(c.is[i]) ◦ p-ins(susp(sb′[i])) (def.
m
==⇒i )

= tl(c.is[i]) ◦ p-ins(susp(sb[i]))

= tl(c.is[i] ◦ p-ins(susp(sb[i]))) (def. tl)

= tl(ins(susp(sb[i])) ◦ is[i]) (coupling)

= tl(is[i]) (no vW)

= ins(susp(sb′[i])) ◦ is′[i]. (def.
m
==⇒i )

�

FENCE, INVLPG, SWITCH and WritePTO

Lemma 2.91 (simulating FENCE, INVLPG, SWITCH, WPTO)

I = hd(is[i]) ∧ (FENCE(I) ∨ INVLPG(I) ∨ S WITCH(I) ∨WPTO(I)) ∧

csbh ∼ c ∧ csbh
m
==⇒i c′sbh ∧ c

m
==⇒i c′ → c′sbh ∼ c′

Proof In order for a step to be scheduled, the SB has to be empty:

sb′[i] = sb[i] = [].
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Since the instruction lists are equal in both machines, we know that hd(c.is[i]) = I. The coupling
for the instruction list is maintained with Lemma 2.90. For the dirty flag and for the release sets
rlsX , where X ∈ {l, s, pt} we have

c′.D[i] = D′[i] = False

c′.rlsX[i] = rls′X[i] = ∅.

Since the store buffer of thread i in configuration c′sbh is empty, the coupling for the dirty flag
and for the release sets obviously holds.

In case I = INVLPG F we get for the MMU coupling:

c′.mmu[i] = δ f lush(c.mmu[i], F) = δ f lush(mmu[i], F) = mmu′[i].

In case I = WritePTO v we also get

c′.mmu[i] = mmu′[i]

with the same argument as in the INVLPG case.
In case I = Switch mode for the mode bit coupling we get

mode′[i] = c′.mode′[i] = mode

All the other parts of the coupling relation can not be possibly broken by a step. �

RMW

Lemma 2.92 (ownership transfer safe after SB step)

inv(csbh) ∧ sa f e-otran(csbh, i, I) ∧ i , j→ sa f e-otran(δsb(csbh, j), i, I)

Proof Let c′sbh = δsb(csbh, j). From the semantics of the SB step we have

pt′[ j] ∪ acqpt(sb′[ j]) ⊆ pt[ j] ∪ acqpt(sb[ j])

O′[ j] ∪ acq(sb′[ j]) ⊆ O[ j] ∪ acq(sb[ j]),

and conclude the proof. �

Lemma 2.93 (ownership transfer, ∆sb commute)

inv(csbh) ∧ sa f e-otran(csbh, i, I) ∧ sb[i] = []→

∆exec
sb (otran-sbh(csbh, i, I)) = otran-sbh(∆exec

sb (csbh), i, I)

Proof We apply Lemma 2.44 as many times as necessary to reorder all executed SB steps of
all threads behind the ownership transfer. After every SB step we use lemmas 2.38 and 2.92 to
make sure that invariants are maintained after the step and the ownership transfer of instruction
I in thread i is still safe. �
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Both machines perform the same step when RMW(hd(is[i])).

Lemma 2.94 (simulating RMW)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ csbh
m
==⇒i c′sbh ∧ c

m
==⇒i c′∧

hd(is[i]) = RMW va t (D, f) cond r p→ c′sbh ∼ c′

Proof The coupling for the instruction list, for the dirty flag and for the release sets is maintained
with the same arguments as in case of the fence memory step. Since we know that sb[i] is empty,
we also get

c.is[i] = is[i]

c.ϑ[i] = ϑ[i].

Let I = hd(is[i]) and I′ = hd(c.is[i]) then we have

I = I′

Invariant tinv3(csbh) guarantees that temporary t is fresh. Hence,

c.ϑ[i](t) = ϑ[i](t) = ⊥.

From the coupling relation we also have

c.mmu[i] = mmu[i]

c.mode[i] = mode[i]

Therefore we can choose identical physical addresses for address translation. Let

pa ∈ (atran(mmu[i], va,mode[i], r))

Applying Lemma 2.60 we know that there are no writes to pa in the executed parts of SBs:

∀ j. ∀k < |exec(sb[ j])|. ¬(nvW(sb[ j][k]) ∧ sb[ j][k].pa = pa). (2.95)

This implies
c.m(pa) = m(pa).

Hence, we read the same value and have the same physical address into temporary t on both
machines and the coupling for temporaries is maintained.

c.ϑ′[i] = ϑ′[i]

Thus, we have
og(I.p, ϑ′[i]) = og(I′.p, c′.ϑ[i])

which means we can perform the identical ownership transfers in both machines. Moreover, we
can conclude:

cond(c.ϑ[i](t 7→ (c.m(pa), pa))) = cond(ϑ[i](t 7→ (m(pa), pa))).
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From the coupling relation, the safety of the RMW instruction and invariants sinv4(csbh) oinv4(csbh),
pinv1(csbh) and pinv2(csbh) we can conclude

I.L ⊆ I.A ∧ I.R ⊆ O[i] ∧ I.Rpt ⊆ pt[i] ∧

(∀ j , i. (I.A ∪ I.Apt) ∩ (O[ j] ∪ acq(sb[ j])) = ∅) ∧

(∀ j , i. (I.A ∪ I.Apt) ∩ (pt[ j] ∪ acqpt(sb[ j])) = ∅).

Hence, we get
sa f e-otran(csbh, i, hd(is[i])).

Lemma 2.93 now guarantees that the coupling for the local components of all threads. For the
shared and read only sets we need to prove

∀X ∈ {shared, ro}. c′.X = ∆exec
sb (c′sbh).X

Since the SB steps do not change the temporaries, we have:

∆exec
sb (c′sbh).X = ∆exec

sb (otran-sbh(csbh, i, I)).X

= otran-sbh(∆exec
sb (csbh), i, I).X (Lemma 2.93)

= otran-sbh(c, i, I).X (coupling relation)

= c′.X (def. of otran-sbh)

Thus, the coupling is also maintained for shared and read only sets. In case the RMW test fails
and no write is performed the memory coupling can not be possibly broken. Otherwise, we have
to show that the coupling for memory is maintained. The coupling for memory cells other than
pa is obviously maintained. For pa we get

c′.m(pa) = f (c.ϑ[i](t 7→ (c.m(pa), pa)))

= f (ϑ[i](t 7→ (m(pa), pa)))

= c′sbh.m(pa)

The store buffer of thread i is still empty after the step. (2.95) guarantees that no other SBs have
a write to pa. Hence, the memory coupling for pa is maintained. �

Read and Write

Lemma 2.96 (simulating R,W with vW)

csbh ∼ c ∧ I = hd(is[i]) ∧ (R(I) ∨W(I)) ∧ susp(sb′[i]) , [] ∧

csbh
m
==⇒i c′sbh → c′sbh ∼ c.

Proof The coupling for the instruction list is maintained with Lemma 2.89. If we execute vW(I),
then the dirty flag is set and we get

∃k. vW(sb′[i][k])↔ (D′[i] = True)

otherwise the dirty flag is unchanged. The coupling for the dirty flag is maintained. For the other
parts of the coupling invariant we consider cases:
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• susp(sb[i]) , []. If R(I) then we from tinv3(csbh) we know that I.t is fresh:

ϑ[i](t) = ⊥.

Hence, we conclude from the coupling relation and from the semantics of a memory step:

c.ϑ[i] = del-t(ϑ[i], susp(sb[i]))

= del-t(ϑ′[i], susp(sb[i]) ◦ I)

= del-t(ϑ′[i], susp(sb′[i])).

All the other parts of the coupling relation are trivially maintained because

exec(sb[i]) = exec(sb′[i]).

• susp(sb[i]) = []. This implies vW(I). Since the volatile write is always added to the
suspended part of the SB (even if it was empty before) we have

exec(sb[i]) = exec(sb′[i]).

and all parts of the coupling relation are trivially maintained.

�

A memory step is deterministic for a given translated address pa. We introduce a function δm

to compute the next state of the SB machine after a memory step of thread i. Let I = hd(is[i])
then

δm(csbh, i, pa) ≡ c′sbh

In order to guarantee the parameter pa is the physical address used for execution we have fol-
lowing constraints:

csbh
m
==⇒i c′sbh ∧ pa ∈ (atran(mmu[i], I.va,mode[i], I.r))∧

(RMW(I)→ ϑ′[i](I.t) = m(pa)) ∧ (W(I) ∨ R(I)→ last(sb′[i]).pa = pa)

where:

last(l) = l[|l| − 1]

With this hypothesis we can prove the following lemma. In the following lemma we let I =

hd(is[i]), c′sbh = ∆exec
sb (csbh, i), c′′sbh = ∆exec

sb (csbh) and c′′′sbh = ∆exec
sb[,i](csbh).

Lemma 2.97 (vR result consistent)

csbh ∼ c ∧ sa f e-reachd(c, og) ∧ inv(csbh) ∧ susp(sb[i]) = [] ∧ vR(I) ∧

pa = ε(atran(mmu[i], I.va,mode[i], I.r)) ∧ v = f wd(sb[i],m, pa, I.bw) ∧ v , ⊥ →

δm(csbh, i, pa).ϑ[i] = δm(c′sbh, i, pa).ϑ[i] = δm(c′′sbh, i, pa).ϑ[i] = δm(c′′′sbh, i, pa).ϑ[i]
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Proof From the semantics, we can conclude that the SB steps does not affect the mmu state,
address translation mode and the temporaries. Thus, we can use the same pa as the physical
address to perform the memory step. We can get

ϑ[i] = ϑ′[i] = ϑ′′[i] = ϑ′′′[i]

Let

v′ = f wd(sb′[i],m
′, pa, I.bw)

v′′ = f wd(sb′′[i],m
′′, pa, I.bw)

v′′′ = f wd(sb′′′[i] ,m
′′′, pa, I.bw)

then we need to prove:

I.ext(v, I.bw) = I.ext(v′, I.bw) = I.ext(v′′, I.bw) = I.ext(v′′′, I.bw)

which can be concluded from:

∃R ∈ {=,=bw},∀x1, x2 ∈ {v, v′, v′′, v′′′}. x1 R x2 (2.98)

Applying Lemma 2.60 we can conclude:

∀ j , i. ∀k < |exec(sb[ j])|. ¬(nvW(sb[ j][k]) ∧ sb[ j][k].pa = pa) (2.99)

As a consequence, in configuration c′′sbh, c′′′sbh the modifications on address pa is issued only from
sb[i]. Let l = maxhit(sb[i], pa) and I′ = sb[i][l] then we do a case split on l:

• l = ⊥. From the definition of f wd we know that pa will not be updated by SB steps of
thread i. That implies

m(pa) = v = v′ = v′′ = v′′

• l , ⊥ ∧ I.bw ≤ I′.bw. We have

v′′′ = v = I′.v (def. of f wd)

v′′ = m′′(pa) (susp(sb[i]) = [] and def. of f wd)

= m′(pa) (2.99)

= ∆sb(csbh, i).m(pa) (susp(sb[i]) = [] and def. of ∆)

= I′.cb(I′.v, δl
sb(csbh).m(pa), I′.bw) (def. of ∆)

=I′.bw I′.v

With the property of =bw we can conclude (2.98).

�
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Lemma 2.100 (∆exec
sb

, δm step commute)

csbh ∼ c ∧ sa f e-reachd(c, og) ∧ inv(csbh) ∧ I = hd(is[i]) ∧ (vR(I) ∨ nvW(I)) ∧

pa = ε(atran(mmu[i], I.va,mode[i], I.r)) ∧ susp(sb[i]) = [] ∧ inv(csbh) →

∆exec
sb (δm(csbh, i, pa), i) = δsb(δm(∆exec

sb (csbh, i), i, pa), i) ∧

∆exec
sb (δm(csbh, i, pa)) = δsb(δm(∆exec

sb (csbh), i, pa), i)

Proof From the definition of ∆exec
sb and ∆exec

sb[,i] we can get

X ∈ {mmu,mode, ϑ}. X[i] = ∆exec
sb[,i](csbh).X[i] = ∆exec

sb (csbh, i).X[i] = ∆exec
sb (csbh).X[i]

Thus, we can use the same pa for memory step of csbh, ∆exec
sb (csbh, i) and ∆exec

sb (csbh) in thread
i. If vR(I) then by applying Lemma 2.97 we can get the identity of temporaries and the same
ownership annotation is recorded as history information for

δm(csbh, i, pa),

δm(∆exec
sb (csbh, i), i, pa),

δm(∆exec
sb (csbh), i, pa),

δm(∆exec
sb[,i](csbh), i, pa).

Adding a volatile read instruction or a non-volatile write to the sb[i] does not affect other
instructions in sb[i] and does not change the local state of the thread except the temporaries
and the length of sb[i]. Hence, we can first execute old instructions in the sb[i], then execute a
memory step adding the instruction to the empty SB, and finally perform an SB step executing
newly added instruction. This concludes the first statement of the lemma.

Since the invariants are maintained by memory steps, for the second statement we can apply
Lemma 2.50 and conclude

∆exec
sb (δm(csbh, i, pa)) = ∆exec

sb (∆exec
sb[,i](δm(csbh, i, pa)), i).

Putting an instruction to the store buffer i only affects the component ts[i]. Hence, we can reorder
it with the store buffer steps of other threads:

∆exec
sb (∆exec

sb[,i](δm(csbh, i, pa)), i) = ∆exec
sb (δm(∆exec

sb[,i](csbh), i, pa), i).

We already proved that the SB steps maintain the invariants and the coupling relation. Then
applying the first statement of the lemma we get

∆exec
sb (δm(∆exec

sb[,i](csbh), i, pa), i) = δsb(δm(∆exec
sb (∆exec

sb[,i](csbh), i), i, pa), i).

By applying once again Lemma 2.50 we conclude the second statement of the lemma. �

Lemma 2.101 (simulating R,W without vW)

csbh ∼ c ∧ inv(csbh) ∧ sa f e-reachd(c, og) ∧ I = hd(is[i]) ∧ (W(I) ∨ R(I))∧

susp(sb′[i]) = [] ∧ csbh
m
==⇒i c′sbh → ∃c′. c

m
==⇒i c′ ∧ c′sbh ∼ c′
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Proof Let I = hd(is[i]). Since the suspended part of sb[i] is empty we have

hd(c.is[i]) = I.

If I is a read or a write instruction, then from the coupling relation we have

atran(c.mmu[i], I.va, c.mode[i], I.r) = atran(mmu[i], I.va,mode[i], I.r).

Hence, we can always execute the instruction from the head of the instruction list of the abstract
machine and choose the same translated address as we do in the step of the SB machine . Let c′

be configuration of the abstract machine after this step:

c
m
==⇒i c′.

The coupling for the instruction list is maintained with Lemma 2.90. We now do a case split on
the type of the step and consider other parts of the coupling relation which might get broken by
this step:

• R(I). Let pa be the translated address chosen in both the SB and the abstract machine.
Lemma 2.60 guarantees that there are no writes to pa in the executed parts of store buffers
other than i. With the proof of equation (2.72) in Lemma 2.71 and the coupling for tem-
poraries we can conclude

c′.ϑ[i] = c.ϑ[i](t 7→ (I.ext(c.m(pa), I.bw), I.pa))

= ϑ[i](t 7→ (I.ext( f wd(sb[i],m, pa, I.bw), I.bw), I.pa))

= ϑ′[i].

Thus, we can conclude for vR(I) the ownership transfer is performed in abstract machine
according to the ownership annotation recorded in the newly added instruction in sb′[i].
We let og(I.p, ϑ′[i]) = (A, L,R,W, Apt,Rpt). For vR(I) the coupling relation for ghost com-
ponents might get broken. Coupling for the ownership sets of threads j , i is trivially
maintained. Let X ∈ {O, pt, rlspt}. From the coupling invariant and the semantics of the
memory step of the abstract and the SB machine we get

c′.shared = c.shared ∪ (R ∪ Rpt) \ (L ∪ Apt)

= ∆exec
sb (csbh).shared ∪ (R ∪ Rpt) \ (L ∪ Apt) (coupling relation)

= δsb(δm(∆exec
sb (csbh), i, pa), i).shared (semantics)

c′.ro = c.ro ∪ (R \W) \ (A ∪ Apt)

= ∆exec
sb (csbh).ro ∪ (R \W) \ (A ∪ Apt) (coupling relation)

= δsb(δm(∆exec
sb (csbh), i, pa), i).ro (semantics)

c′.X[i] = δsb(δm(∆exec
sb (csbh, i), i, pa), i).X[i] (semantics)

With Lemma 2.65 we get inv(c′sbh). Applying Lemma 2.100 we get

δsb(δm(∆exec
sb (csbh), i, pa), i) = ∆exec

sb (c′sbh)

δsb(δm(∆exec
sb (csbh, i), i, pa), i) = ∆exec

sb (c′sbh, i)
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which concludes the coupling for shared, read-only and thread local ownership sets.
For release local and release shared set, we have to prove

R ∩ c.shared = R ∩ csbh.shared (2.102)

From the coupling invariants, we have:

c.shared = ∆exec
sb (csbh).shared

With the semantics, we can conclude:

∆exec
sb (csbh).shared ⊆

csbh.shared
⋃
∀ j

(rels(exec(sb[ j])) ∪ relspt(exec(sb[ j]))),

∆exec
sb (csbh).shared ⊇

csbh.shared \ (
⋃
∀ j

(acq(exec(sb[ j])) ∪ acqpt(exec(sb[ j])))).

With sinv4(csbh), oinv4(csbh) and the semantics we can conclude:

I.R ∩ c.shared ⊆ R ∩ csbh.shared,

I.R ∩ c.shared ⊇ R ∩ csbh.shared.

which concludes (2.102).

• nvW(I). Let I = Write False a (D, f) r g bw p and pa be the translated address chosen in
both the SB and the abstract machine. From the coupling invariant and the semantics of
the memory step of the abstract and the SB machine we get

c′.m = δsb(δm(∆exec
sb (csbh), i, pa), i).m.

With Lemma 2.68 we get inv(c′sbh). Applying Lemma 2.100 we conclude

δsb(δm(∆exec
sb (csbh), i, pa), i) = ∆exec

sb (c′sbh).

�

2.6 Proving Safety of the Delayed Release

So far we have used safety of the delayed release of the virtual machine to prove SB reduction
theorem. Now we have to show that if all possible executions of the virtual machine satisfy the
regular safety, then they also satisfy safety of the delayed release.
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thread i thread j
vR pa (A,L, {pa},W,Apt,Rpt) —

MMUW pa′ —
— vW pa ({pa},L′,R′,W′,A′pt,R

′
pt)

(a) Violation of delayed release safety.
thread i thread j

MMUW pa′ —
— vW pa ({pa},L′,R′,W′,A′pt,R

′
pt)

(b) Violation of regular safety.

Figure 2.8: Ruling out safety of the delayed release violation: Example 1.

2.6.1 Intuition

If a trace satisfies regular safety, but does not satisfy safety of the delayed release, then the safety
violation is due to a clash with release sets of some thread i. This clash happen between (i) an
instruction in the head of the instruction list of thread j , i, which can access or acquire an
address from release sets of thread i, or (ii) an MMU of thread j , i which can access an address
from release sets of thread i, or (iii) an MMU of thread i which can access an address from its
own local release set. We do a proof by contradiction: we show that if some execution does not
satisfy safety of the delayed release, then there exists another execution, which does not satisfy
regular safety. We can obtain such an execution by “undoing” steps of thread i until we reach
a point when the conflicting address was released. The steps of thread i which are removed
can only be program steps or memory steps executing reads and non-volatile writes (since all
the other instructions are clearing the release sets). After removing these steps of thread i we
continue our execution until we get the safety violation. Since in the new execution thread i has
not put the conflicting address to the release thread yet, it will be either in the owns or in the
PT set of thread i. Thus, we will get violation of the regular safety. We also might end up in
a situation when we encounter violation of the regular safety earlier in the new execution. This
is also fine, since we assume all traces to satisfy regular safety. Note, that we are not removing
the MMU steps of thread i, because MMUs are allowed to write the shared memory and can
possibly affect the execution flow of other threads. Below we consider a few examples.

Example 1 Let address pa be in the ownership set of thread i:

pa ∈ c.O[i].

Let thread i execute a volatile read which releases the address pa and an MMU write. After that
thread j performs a volatile write acquiring address pa (Fig. 2.8a).

This behaviour satisfies regular safety, because at the time when thread j acquires pa it is not
present in the ownership set of thread i. Yet, it is present in the release set of thread i, which
means that safety of the delayed release is violated. To rule out this situation we consider another
trace, where we “undo” the read operation of thread i (Fig. 2.8b).

The read operation of thread i do not affect execution of thread j (i.e. thread j can execute
before the read operation of thread i). Moreover, since we allow only volatile writes to page
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thread i
vW pa′ (A,L, {pa},W,Apt,Rpt)

MMUR pa

(a) Violation of delayed release safety.

thread i
MMUR pa

—

(b) Violation of regular safety.

Figure 2.9: Ruling out safety of the delayed release violation: Example 2.

tables, the read operation also cannot affect the MMU steps of thread i. Hence, we can simply
postpone execution of the read, execute the MMU write immediately and then perform the step
of thread j. In this case address pa is present in the ownership set of thread i, attempt to acquire
it by thread j violates the regular safety of the virtual machine.

Example 2 Let address pa again be in the ownership set of thread i:

pa ∈ c.O[i].

Let thread i execute a volatile write and release of address pa. After that MMU of thread i
attempts to perform a read from pa. (Fig. 2.9a).

This behaviour again satisfies regular safety, because at the time when MMU performs a read
the address pa is shared and is not owned by any thread. Yet, it is present in the release set of
thread i, which means that safety of the delayed release is not satisfied. To rule out this situation
we “undo” the last memory step of thread i (Fig. 2.9b) and get a trace which violates regular
safety.

2.6.2 “Undoing” a Step

We define a simulation relation, which is supposed to hold between the states of the original
execution and the states of the execution where a step of thread i has not been performed:

simd(c, d, i) ≡ ∀ j , i. c.ts[ j] = d.ts[ j] ∧

c.mmu[i] = d.mmu[i] ∧ c.mode[i] = d.mode[i] ∧

c.rlsl[i] ⊆ d.rlsl[i] ∪ (d.O[i] \ d.shared) ∧

c.rlss[i] ⊆ d.rlss[i] ∪ d.O[i] ∧ c.rlspt[i] ⊆ d.rlspt[i] ∪ d.pt[i] ∧

∀a. a < d.O[i] ∨ a ∈ d.shared. c.m(a) = d.m(a).

Lemma 2.103 ensures that we can “undo” a step of thread i. This means that relation simd
holds between the states before and after a step of thread i, if this step is a program step or a
memory step executing a read or a non-volatile write.

Lemma 2.103 (undoing a step)

(c
p

==⇒i
eev

c′ ∨ c
m
==⇒i c′ ∧ I = hd(c.is[i]) ∧ (nvW(I) ∨ R(I))) ∧

sa f e-state(c, og)→ simd(c′, c, i)
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Proof Since the step of thread i can not affect the local configuration of threads j , i we
obviously get

c′.ts[ j] = c.ts[ j].

For vR(I) we let og(I.p, c′.ϑ[i]) = (A, L,R,W, Apt,Rpt). If a step of thread i is a memory step
performing ownership transfer we have

c′.rlsl[i] = c.rlsl[i] ∪ (R \ c.shared)

c′.rlss[i] = c.rlss[i] ∪ (R ∩ c.shared)

c′.rlspt[i] = c.rlspt[i] ∪ Rpt.

From sa f e-state(c, og) we have

R ⊆ c.O[i] and Rpt ⊆ c.pt[i].

Hence, we get

c′.rlsl[i] ⊆ c.rlsl[i] ∪ (c.O[i] \ c.shared)∧

c′.rlss[i] ⊆ c.rlss[i] ∪ c.O[i]∧

c′.rlspt[i] ⊆ c.rlspt[i] ∪ c.pt[i].

If a step of thread i is a memory step executing a non-volatile write instruction I, then from the
safety of configuration c we have for all physical addresses pa:

pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)→ pa ∈ c.O[i] \ c.shared.

This implies
∀a. a < c.O[i] ∨ a ∈ c.shared. c′.m(a) = c.m(a)

and concludes simd(c′, c, i). �

The following lemma guarantees that if simd(c, d, i) holds and we perform a step from config-
uration c which is neither a program , memory step nor a page fault step of thread i, then we can
also perform a step from configuration d, such that the simulation relation is maintained after
the step.

Lemma 2.104 (simd maintained)

simd(c, d, i) ∧ dis joint-osets(d) ∧ sa f e-state(d, og)∧

(c
mu
==⇒i c′ ∨ c =⇒ j

eev
c′ ∧ j , i)→ ∃d′. d =⇒

eev
d′ ∧ simd(c′, d′, i)

Proof We split cases on the kind of a step from c to c′.
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• A step from c to c′ is a memory step of thread j , i. From simd(c, d, i) we get

c.ts[ j] = d.ts[ j].

Hence, we can execute the (same) first instruction I of thread j with the same address
translation and the same ownership transfer in both machines. Let d′ be the configuration
after we execute this instruction from configuration d:

d
m
==⇒ j d′.

If this instruction is doing a read (either R(I) or RMW(I)) from address pa then from
sa f e-state(d, og) and dis joint-osets(d) we conclude:

pa < d.O[i] ∨ pa ∈ d.shared.

Hence, simd(c, d, i) guarantees that we are reading the same value in both machines. This
implies

c′.ts[ j] = d′.ts[ j].

If instruction I is performing ownership transfer or write to memory (W(I) or vR(I) or
RMW(I)) then we let (A, L,R,W, Apt,Rpt) be the ownership annotations. From sa f e-state(d, og)
we get

R ⊆ d.O[ j] ∧ Rpt ⊆ d.pt[ j].

With dis joint-osets(d) we have

R ∩ d.O[i] = Rpt ∩ d.O[i] = ∅.

Configuration of thread i is not changed during a step. Hence,

d′.O[i] \ d′.shared = d.O[i] \ d′.shared

= d.O[i] \ (d.shared ∪ (R ∪ Rpt) \ (L ∪ Apt))

⊇ d.O[i] \ (d.shared ∪ (R ∪ Rpt))

= d.O[i] \ d.shared

which together with simd(c, d, i) implies

c′.rlsl[i] ⊆ d′.rlsl[i] ∪ (d′.O[i] \ d′.shared).

If instruction I is writing the memory, then we are writing the same value for both config-
urations. Moreover, we observe that

∀a. a < d.O[i] ∨ a ∈ d.shared ↔ a < d′.O[i] ∨ a ∈ d′.shared

which concludes simd(c′, d′, i). For other cases the lemma is trivially maintained.
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• A step from c to c′ is a program step of thread j , i. From simd(c, d, i) we get

c.ts[ j] = d.ts[ j],

which means that we can perform the same program step for both configurations and get
simd(c′, d′, i).

• A step from c to c′ is an MMU step of thread i accessing address pa. Thus, we have

can-access(c.mmu[i], pa).

From simd(c, d, i) we know that

c.mmu[i] = d.mmu[i] and c.mode[i] = d.mode[i].

Hence, we have
can-access(d.mmu[i], pa).

Safety of configuration d ensures
pa < d.O[i].

Hence, from simd(c, d, i) we get

c.m(pa) = d.m(pa).

This implies that we can perform the same kind of MMU step from both configurations
resulting with the same MMU configuration:

c′.mmu[i] = d′.mmu[i].

If MMU step is writing the memory, then we write the same value for both configurations
and get

c′.m(pa) = d′.m(pa),

which concludes simd(c′, d′, i).

• A step from c to c′ is an MMU step of thread j , i to address pa. From simd(c, d, i) we
get

c.ts[ j] = d.ts[ j].

We easily conclude simd(c′, d′, i) the same way as in case of the MMU step of thread i.

• A step from c to c′ is an page fault step of thread j , i. Thus, we have

can-access(c.mmu[ j], pa) ∧ can-page- f ault(c.mmu[ j], I.va, I.r, pa, c.m(pa))

As in the case of the MMU step of thread i we get

c.m(pa) = d.m(pa) and can-access(d.mmu[ j], pa)

109



Therefore we can also have

can-page- f ault(d.mmu[ j], I.va, I.r, pa, d.m(pa))

This implies that we can perform the identical page fault step from both configurations
resulting with the same program state and MMU configuration:

c′.p[ j] = d′.p[ j] ∧ c′.mmu[ j] = d′.mmu[ j]

which concludes the proof.

�

The following lemma guarantees that we can continue execution of the machine after we
“undo” a step of thread i.

Lemma 2.105 (simd computation)

n > 0 ∧ c0 =⇒
n

eev
cn ∧ ∀k < n.¬(ck p,m

==⇒i
eev

ck+1 ∨ ck pf
==⇒i ck+1) ∧

sa f e-reach(d0, og) ∧ dis joint-osets(d0) ∧ simd(c0, d0, i) →

∃dn. d0 =⇒
n

eev
dn ∧ simd(cn, dn, i)

Proof We will prove an inductive statement, which trivially implies the postcondition of the
lemma:

∀l ≤ n. ∃dl. simd(cl, dl, i) ∧ (l > 0→ d0 =⇒
l

eev
dl).

Proof by induction on l. For induction base l = 0 we obviously take n = 0 and have from the
preconditions:

simd(c0, d0, i).

For the induction step l→ l + 1 we have from the induction hypothesis

∃dl. simd(cl, dl, i) ∧ (l > 0→ d0 =⇒
l

eev
dl).

Step l in the original computation is either an MMU step of thread i or is an arbitrary step of
thread j , i. With Lemma 2.52 we get

dis joint-osets(dl).

Hence, we can apply Lemma 2.104 to find configuration dl+1, where

dl =⇒
eev

dl+1 and simd(cl+1, dl+1, i).

�
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2.6.3 Reconstructing Safety Violation

The following predicate denotes that in configuration c there exists a safety violation due to a
clash with release sets of thread j. Let

ϑ′ =

c.ϑ[i](I.t 7→ c.m(pa)) R(I) ∨ RMW(I)
c.ϑ[i] otherwise

I = hd(c.is[i])

og(ϑ′[i], I.p) = (A, L,R,W, Apt,Rpt)

then

unsa f e-release(c, j, og) ≡

(∃i , j. ∃pa ∈ atran(c.mmu[i], I.va, c.mode[i]).

(vR(I) ∨ (RMW(I) ∧ ¬I.cond(ϑ′)) ∧ pa ∈ c.rlsl[ j] ∪ c.rlspt[ j]) ∨

(nvR(I) ∨W(I) ∨ (RMW(I) ∧ I.cond(ϑ′)) ∧ pa ∈ c.rls[ j]) ∨

(vW(I) ∨ vR(I) ∨ RMW(I) ∧ (A ∪ Apt) ∩ c.rls[ j] , ∅))∨

(∃pa, i. can-access(c.mmu[i], pa) ∧

(pa ∈ c.rls[ j] ∧ i , j ∨ pa ∈ c.rlsl[i])).

Lemma 2.106 ensures that we can reconstruct a safety violation after we “undo” a step of
thread i and execute all the remaining steps in such a way, that relation simd holds between the
faulty state of the original computation and the end state of the new computation.

Lemma 2.106 (reconstructing safety violation)

simd(c, d, i) ∧ unsa f e-release(c, i, og) ∧ dis joint-osets(d)→ ¬sa f e-stated(d)

Proof From simd(c, d, i) we know that

∀m , i. c.ts[m] = d.ts[m] (2.107)

c.mmu[i] = d.mmu[i]

c.mode[i] = d.mode[i]

c.rlsl[i] ⊆ d.rlsl[i] ∪ (d.O[i] \ d.shared)

c.rlss[i] ⊆ d.rlss[i] ∪ d.O[i]

c.rlspt[i] ⊆ d.rlspt[i] ∪ d.pt[i].

We split cases:

• MMU safety violation for address pa in thread m , i:

can-access(c.mmu[m], pa) ∧ pa ∈ c.rls[i]

From (2.107) we get

can-access(d.mmu[m], pa) ∧ pa ∈ d.rls[i] ∪ d.O[i] ∪ d.pt[i].
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If pa ∈ d.rls[i] ∪ d.O[i], then configuration d does not satisfy safety of the delayed release
and we are done. If pa ∈ d.pt[i], then dis joint-osets(d) ensures

pa < d.pt[m] ∪ d.shared,

which also gives safety violation and concludes the proof.

• MMU safety violation for address pa in thread i:

can-access(c.mmu[i], pa) ∧ pa ∈ c.rlsl[i].

As in the previous case we use (2.107) to get

can-access(d.mmu[i], pa) ∧ pa ∈ d.rlsl[i] ∪ d.O[i],

which violates safety and concludes the proof.

• Instruction safety violation in thread m , i. Let I = hd(c.is[m]) be the faulty instruction.
We prove this by contradiction. Assuming sa f e-stated(d) safety violation can be caused
either by a physical address of the instruction being present in the release sets of thread i
or by a clash between the acquire sets of instruction I and the release sets of thread i. For
the first class of violations let

pa ∈ atran(c.mmu[m], I.va, c.mode[m], I.r)

be the faulty address. From (2.107) we immediately get

pa ∈ atran(d.mmu[m], I.va, d.mode[m], I.r).

If instruction I is a read or an RMW instruction, then from sa f e-stated(d) and dis joint-osets(d)
we conclude:

pa < d.O[i] ∨ pa ∈ d.shared.

Hence, simd(c, d, i) guarantees that the result of a read in configurations c and d is the
same:

c.m(pa) = d.m(pa).

We consider sub-cases, where ϑ′ = c.ϑ[m](I.t 7→ c.m(pa)) and identical ownership anno-
tations must be used in c and d.

– (vR(I) ∨ (RMW(I) ∧ ¬I.cond(ϑ′)) ∧ pa ∈ c.rlsl[i] ∪ c.rlspt[i]). From (2.107) we get

pa ∈ d.rlsl[i] ∪ (d.O[i] \ d.shared) ∪ d.rlspt[i] ∪ d.pt[i].

If pa is present in one of the release sets:

pa ∈ d.rlsl[i] ∪ d.rlspt[i],

then configuration d is unsafe and we are done. If

pa ∈ (d.O[i] \ d.shared) ∪ d.pt[i]
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then with dis joint-osets(d) we get

pa < d.O[m] ∪ d.shared ∪ d.pt[m]

and conclude the proof.

– (nvR(I) ∨ nvW(I)) ∧ pa ∈ c.rls[i]). From (2.107) we get

pa ∈ d.rls[i] ∪ d.O[i] ∪ d.pt[i].

With dis joint-osets(d) we get

pa ∈ d.rls[i] ∨ pa < d.O[m] ∪ d.ro ∪ d.pt[m]

and conclude the proof.

– (vW(I) ∨ (RMW(I) ∧ I.cond(ϑ′)) ∧ pa ∈ c.rls[i]). From (2.107) we get

pa ∈ d.rls[i] ∪ d.O[i] ∪ d.pt[i],

which already gives us safety violation.

– vW(I) ∨ vR(I) ∨ RMW(I) ∧ (A ∪ Apt) ∩ c.rls[i] , ∅. From (2.107) we get

(A ∪ Apt) ∩ (d.rls[i] ∪ d.O[i] ∪ d.pt[i]) , ∅.

which also gives us safety violation and concludes the proof.

�

2.6.4 Simulation Theorem

In the intuitive explanations which we gave in the beginning of this section we are constructing a
new trace by undoing all steps of the conflicting thread until we reach a point when the conflict-
ing address is being released. Nevertheless, we do here a simpler proof. We state an induction
hypothesis that all traces up to length n satisfy safety of the delayed release. On the induction
step we prove by contradiction and assume there exists a trace of length n + 1 which does not
satisfy safety of the delayed release. We undo only a single step of the conflicting thread i.e., the
last memory or program step. We then continue the execution and show that the shorter trace
will also violate safety of the delayed release (we assume the regular safety to be always satisfied
by all possible traces). Since existence of such a trace contradicts to our induction hypothesis,
we conclude that all traces of length n + 1 satisfy safety of the delayed release.

Lemma 2.108 (safety ind)

initial(c) ∧ sa f e-reach(c, og)→ ∀k ≤ n. sa f e-reachd(c, k, og)
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Proof By induction on n. For case n = 0 the statement trivially holds since all release sets are
empty. For the induction step n→ n + 1 we do a proof by contradiction. Assume

sa f e-reach(c, og) ∧ ¬(∀k ≤ n + 1. sa f e-reachd(c, k, og)).

Our induction hypothesis guarantees that all configurations up to step n are safe:

∀k ≤ n. sa f e-reachd(c, k, og).

Hence, there must exist a trace with n + 1 steps starting from configuration c, where the first
n steps are safe and the last step is not safe. We denote the states in this computation by
c0, . . . , cn, cn+1, where c0 = c, ci =⇒

eev
ci+1 and

¬sa f e-stated(cn+1, og) ∧ ∀k ≤ n. sa f e-stated(ck, og).

From the precondition of the function we know that state cn+1 satisfies regular safety of the
virtual machine:

sa f e-state(cn+1, og).

Hence, the safety violation is due to a clash with release sets of some thread i:

unsa f e-release(cn+1, i, og).

In this case we aim at “undoing” the last program or memory step of thread i and arguing
that a (shorter) trace without this steps would still be unsafe, which contradicts to our induction
hypothesis. Note, that after the last program or memory step of thread i there can be no page
fault steps of thread i, since this step would empty the release sets.

Let k be the state before the last program or memory step of thread i in the computation:

ck p,m
==⇒i
eev

ck+1 ∧ ∀m ∈ [k + 1 : n − 1]. ¬(cm p,m
==⇒i
eev

cm+1 ∨ cm pf
==⇒i cm+1).

If this step is a memory step, then it can execute a read or a non-volatile write, since all other
instructions empty the release sets. Hence, we can apply Lemma 2.103 to get

simd(ck+1, ck, i).

From initial(c0) we have
dis joint-osets(c0).

With Lemma 2.52 we get
dis joint-osets(ck).

From sa f e-reach(c0) we have sa f e-reach(ck). We now split cases:

• if k = n then we are removing the last step in our execution sequence and we have

simd(cn+1, cn, i).

Hence, we apply Lemma 2.106 to reconstruct the safety violation in configuration cn and
get

¬sa f e-stated(cn),

which contradict to our induction hypothesis.
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• if k < n then we apply Lemma 2.105 (we instantiate d0 = ck, c0 = ck+1, n = (n − k)) and
get

∃dn−k. d0 =⇒
n-k

eev
dn−k ∧ simd(cn+1, dn−k, i)

Since k + (n − k) < n + 1, the constructed sequence is shorter than the original one. With
Lemma 2.52 we get dis joint-osets(dn−k). Hence, we apply Lemma 2.106 to reconstruct
the safety violation in configuration dn−k and get

¬sa f e-stated(dn−k, og),

which contradicts to our induction hypothesis.

�

The proof of Theorem 2.34 now simply follows from Lemma 2.108.
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3
Instantiation of Store Buffer

Machine Model

In order to apply our SB reduction theorem with MMU at the ISA level, we will instantiate
our abstract machine model in this chapter and prove the simulation between the instantiated
machine and an ISA machine named MIPS-86 [Sch13] in next chapter. MIPS-86 is a MIPS
processor core extended with x86-64 like architecture features (in particular memory system).

In the first section of this chapter, we will introduce the MIPS-86 ISA. In the second section,
we will instantiate the machine models in Chapter 2. During the instantiation, we will discharge
all assumptions and constraints.

In our model in Chapter 2, the page table entry pte and the memory value v have identical
type V. From the specification of MIPS-86 [Sch13] we have pte ∈ B32. Thus, we instantiate
the type V with B32. In order to adapt to the memory in Chapter 2, which is a map A → V, we
change the byte-addressable memory in [Sch13] to a word addressable memory with byte write
signals.

3.1 MIPS ISA

A MIPS-86 machine configuration consists of multiple processors and a shared sequential con-
sistent memory. Each processor has three components: an SB, a TLB, and a processor core. In
the processor core there are a general purpose register file (gpr), a special purpose register file
(spr) and a program counter (pc). In the remaining portion of this section, we will introduce
the formal specifications of all these components. We copy this section from [Sch13] with the
following modifications: (i) We use a word addressable memory with byte write signals instead
of a byte-addressable memory. (ii) We introduce extra SB flushes, when

* an interrupt happens;

* executing an instruction which is an read modify write instruction, TLB flush instruction,
return from exception instruction or an instruction which moves data from the gpr to mode
or pto in the spr.

We introduce the extra SB flushes to make our SB reduction theorem from Chapter 2 applicable
to the MIPS-86 ISA. (iii) In order to keep the instantiated model small, we do not consider
caches, devices, and inter-processor interrupts.
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Table 3.1: MIPS-86 Special Purpose Registers.

i synonym
0 sr status register (contains masks to enable/disable maskable interrupts)
1 esr exception sr
2 eca exception cause register
3 epc exception pc (address to return to after interrupt handling)
4 edata exception data (contains effective address on pfls)
5 pto page table origin
6 mode mode register ∈ {0311, 032}

7 emode exception mode register (saves mode in case of interrupt)

3.1.1 Processor Core

Definition 3.1 (Processor Core Configuration of MIPS-86) A MIPS-86 processor core con-
figuration c = (c.pc, c.gpr, c.spr) ∈ Kcore consists of

• a program counter: c.pc ∈ B30,

• a general purpose register file: c.gpr : B5 → B32, and

• a special purpose register file: c.spr : B5 → B32. The available special purpose registers
of MIPS-86 are listed in table 3.1.

In MIPS-86 ISA, there are three types of instructions: I-type instructions, J-type instructions
and R-type instructions. I-type instructions are instructions that operate with two registers and
a so-called immediate constant, J-type instructions are absolute jumps and R-type instructions
rely on three register operands.

The instruction-layout of MIPS-86 depends on the type of instruction. In the subsequent
definition of the MIPS-86 instruction layout, rs, rt and rd specify registers of the MIPS-86
machine.

I-type instruction layout

Bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
Field Name opcode rs rt immediate constant imm

R-type instruction layout

Bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . 6 5 . . . 0
Field Name opcode rs rt rd shift amount sa function code f un

J-type instruction layout
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Bits 31 . . . 26 25 . . . 0
Field Name opcode instruction index iindex

Instruction Layout Overview

A quick overview of available instructions is given in tables 3.2 (for I-type), 3.3 (for J-type) and
3.4 (for R-type). Note that these tables – while giving a general idea what is available and what
it approximately does – are not comprehensive. In particular, note that for all instructions whose
mnemonic ends with ”u”, register values are interpreted as binary numbers whereas in all other
cases they are interpreted as two’s-complement numbers.

Auxiliary Definitions for Instruction Execution

In what follows, we make auxiliary definitions in order to define the processor core transitions
that deal with instruction execution. In order to execute an instruction, the processor core needs
to read values from the memory. Of relevance to instruction execution is the instruction word
I ∈ B32 and, if the instruction I is a read or rmw instruction, we need the value R ∈ B32 read
from memory.

Instruction Decoding Formalizing the tables given in subsection 3.1.1, we define the fol-
lowing shorthands for the fields of the MIPS-86 instruction layout:

• instruction opcode
opc(I) = I[31 : 26]

• instruction type
rtype(I) ≡ opc(I) = 06 ∨ opc(I) = 0104

jtype(I) ≡ opc(I) = 0410 ∨ opc(I) = 0411

itype(I) ≡ ¬(rtype(I) ∨ jtype(I))

• register addresses
rs(I) = I[25 : 21]

rt(I) = I[20 : 16]

rd(I) = I[15 : 11]

• shift amount
sa(I) = I[10 : 6]

• function code (used only for R-type instructions)

f un(I) = I[5 : 0]
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Table 3.2: I-Type Instructions of MIPS-86.

opcode Mnemonic Assembler-Syntax d Effect
Data Transf(I)er
100 000 lb lb rt rs imm 1 rt = sxt(m)
100 001 lh lh rt rs imm 2 rt = sxt(m)
100 011 lw lw rt rs imm 4 rt = m
100 100 lbu lbu rt rs imm 1 rt = 024m
100 101 lhu lhu rt rs imm 2 rt = 016m
101 000 sb sb rt rs imm 1 m = rt[7:0]
101 001 sh sh rt rs imm 2 m = rt[15:0]
101 011 sw sw rt rs imm 4 m = rt
Arithmetic, Logical Operation, Test-and-Set
001 000 addi addi rt rs imm rt = rs + sxt(imm)
001 001 addiu addiu rt rs imm rt = rs + sxt(imm)
001 010 slti slti rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 011 sltui sltui rt rs imm rt = (rs < zxt(imm) ? 1 : 0)
001 100 andi andi rt rs imm rt = rs ∧ zxt(imm)
001 101 ori ori rt rs imm rt = rs ∨ zxt(imm)
001 110 xori xori rt rs imm rt = rs ⊕ zxt(imm)
001 111 lui lui rt imm rt = imm016

opcode rt Mnemonic Assembler-Syntax Effect
Branch
000 001 00000 bltz bltz rs imm pc = pc + (rs < 0 ? imm00 : 4)
000 001 00001 bgez bgez rs imm pc = pc + (rs ≥ 0 ? imm00 : 4)
000 100 beq beq rs rt imm pc = pc + (rs = rt ? imm00 : 4)
000 101 bne bne rs rt imm pc = pc + (rs , rt ? imm00 : 4)
000 110 00000 blez blez rs imm pc = pc + (rs ≤ 0 ? imm00 : 4)
000 111 00000 bgtz bgtz rs imm pc = pc + (rs > 0 ? imm00 : 4)

Here, m = md(ea(c, I)).

Table 3.3: J-Type Instructions of MIPS-86

opcode Mnemonic Assembler-Syntax Effect
Jumps
000 010 j j iindex pc = bin32(pc+4)[31:28]iindex00
000 011 jal jal iindex R31 = pc + 4 pc = bin32(pc+4)[31:28]iindex00
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Table 3.4: R-Type Instruction of MIPS-86.

opcode fun Mnemonic Assembler-Syntax Effect
Shift Operation
000000 000 000 sll sll rd rt sa rd = sll(rt,sa)
000000 000 010 srl srl rd rt sa rd = srl(rt,sa)
000000 000 011 sra sra rd rt sa rd = sra(rt,sa)
000000 000 100 sllv sllv rd rt rs rd = sll(rt,rs)
000000 000 110 srlv srlv rd rt rs rd = srl(rt,rs)
000000 000 111 srav srav rd rt rs rd = sra(rt,rs)
Arithmetic, Logical Operation
000000 100 000 add add rd rs rt rd = rs + rt
000000 100 001 addu addu rd rs rt rd = rs + rt
000000 100 010 sub sub rd rs rt rd = rs − rt
000000 100 011 subu subu rd rs rt rd = rs − rt
000000 100 100 and and rd rs rt rd = rs ∧ rt
000000 100 101 or or rd rs rt rd = rs ∨ rt
000000 100 110 xor xor rd rs rt rd = rs ⊕ rt
000000 100 111 nor nor rd rs rt rd = rs ∨ rt
Test Set Operation
000000 101 010 slt slt rd rs rt rd = (rs < rt ? 1 : 0)
000000 101 011 sltu sltu rd rs rt rd = (rs < rt ? 1 : 0)
Jumps, System Call
000000 001 000 jr jr rs pc = rs
000000 001 001 jalr jalr rd rs rd = pc + 4 pc = rs
000000 001 100 sysc sysc System Call
Synchronizing Memory Operations
000000 111 111 rmw rmw rd rs rt rd’ = m

m’ = (rd = m ? rt : m)
000000 111 110 mfence mfence
TLB Instructions
000000 111 101 flush flush flushes TLB
000000 111 100 invlpg invlpg rd flushes TLB translations

for addr. rd
Coprocessor Instructions
opcode rs fun Mnemonic Assembler-Syntax Effect
010000 10000 011 000 eret eret Exception Return
010000 00100 movg2s movg2s rd rt spr[rd] := gpr[rt]
010000 00000 movs2g movs2g rd rt gpr[rt] := spr[rd]
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• immediate constants (for I-type and J-type instructions, respectively)

imm(I) = I[15 : 0]

iindex(I) = I[25 : 0]

For every MIPS-Instruction, we define a predicate on the MIPS-configuration which is true
iff the corresponding instruction is to be executed next. The name of such an instruction-decode
predicate is always the instruction’s mnemonic (see MIPS ISA-tables at the beginning). For-
mally, the predicates check for the corresponding opcode and function code. E.g.

lw(I) ≡ opc(I) = 100011

. . .

add(I) ≡ rtype(I) ∧ f un(I) = 100000

The instruction-decode predicates are so trivial to formalize that we do not explicitly list all
of them here. Let

ill(I) = ¬(lw(I) ∨ . . . ∨ add(I))

be the predicate that formalizes that the opcode of instruction I is illegal by negating the dis-
junction of all instruction-decode predicates. Note that, encountering an illegal opcode during
instruction execution, an illegal instruction interrupt will be triggered.

Arithmetic and Logic Operations The arithmetic logic unit (ALU) of MIPS-86 behaves
according to the following table:

alucon[3:0] i alures ovf
0 000 * a +32 b 0
0 001 * a +32 b [a] + [b] < T32
0 010 * a −32 b 0
0 011 * a −32 b [a] − [b] < T32

0 100 * a ∧32 b 0
0 101 * a ∨32 b 0
0 110 * a ⊕32 b 0
0 111 0 ¬32(a ∨32 b) 0
0 111 1 b[15 : 0]016 0
1 010 * 031([a] < [b]?1 : 0) 0
1 011 * 031(〈a〉 < 〈b〉?1 : 0) 0

Based on inputs a, b ∈ B32, alucon ∈ B4 and i ∈ B, this table defines alures(a, b, alucon, i) ∈ B32

and ov f (a, b, alucon, i) ∈ B. To describe whether a given instruction I ∈ B32 performs an
arithmetic or logic operation, we define the following predicates:

• I-type ALU instruction: compi(I) ≡ itype(I) ∧ I[31 : 29] = 001

• R-type ALU instruction: compr(I) ≡ rtype(I) ∧ I[5 : 4] = 10
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• any ALU instruction: alu(I) ≡ compi(I) ∨ compr(I)

Following the instruction set architecture tables, we formalize the right and left operand of an
ALU instruction I ∈ B32 based on a given processor core configuration c ∈ Kcore as follows:

• left ALU operand: lop(c, I) = c.gpr(rs(I))

• right ALU operand: rop(c, I) =


c.gpr(rt(I)) rtype(I)
sxt32(imm(I)) /rtype(I) ∧ /I[28]
zxt32(imm(I)) otherwise

We define the ALU control bits of an instruction I ∈ B32 as

alucon(I)[2 : 0] =

I[2 : 0] rtype(I)
I[28 : 26] otherwise

alucon(I)[3] ≡ rtype(I) ∧ I[3] ∨ /I[28] ∧ I[27]

The ALU result of an instruction I executed in processor core configuration c ∈ Kcore is then
given by

compres(c, I) = alures(lop(c, I), rop(c, I), alucon(I), itype(I))

Jump and Branch Instructions Jump and branch instructions affect the program counter of
the machine. The difference between branch instructions and jump instructions is that branch
instructions perform conditional jumps based on some condition expressed over general purpose
register values. The following table defines the branch condition result bcres(a, b, bcon) ∈ B, i.e.
whether for the given parameters the branch will be performed or not, based on inputs a, b ∈ B32

and bcon ∈ B4:

bcon[3:0] bcres(a, b, bcon)
001 0 [a] < 0
001 1 [a] ≥ 0
100 * a = b
101 * a , b
110 * [a] ≤ 0
111 * [a] > 0

We define the following branch instruction predicates that denote whether a given instruction
I ∈ B32 is a jump or successful branch instruction given configuration c ∈ Kcore:

• branch instruction: b(I) ≡ opc(I)[5 : 3] = 03 ∧ itype(I)

• jump instruction: jump(I) ≡ j(I) ∨ jal(I) ∨ jr(I) ∨ jalr(I)

• jump or branch taken:

jbtaken(c, I) ≡ jump(I) ∨ b(I) ∧ bcres(c.gpr(rs(I)), c.gpr(rt(I)), opc[2 : 0]rt(I)[0])
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We define the target address of a jump or successful branch instruction I ∈ B32 in a given
configuration c ∈ Kcore as

btarget(c, I) ≡


c.pc +32 sxt30(imm(I))00 b(I)
c.gpr(rs(I)) jr(I) ∨ jalr(I)
(c.pc +32 432)[31 : 28]iindex(I)00 j(I) ∨ jal(I)

Shift Operations Shift instructions perform shift operations on general purpose registers. For
a[n − 1 : 0] ∈ Bn and i ∈ {0, . . . , n − 1} we define the following shift results (∈ Bn):

• shift left logical: sll(a, i) = a[n − i − 1 : i]0i

• shift right logical: srl(a, i) = 0ia[n − 1 : i]

• shift right arithmetic: sra(a, i) = ai
n−1a[n − 1 : i]

Note that, for MIPS-86, we will use the aforementioned definitions only for n = 32. We define
the result of a shift operation based on inputs a ∈ Bn, i ∈ {0, . . . , n − 1}, and s f ∈ B2 as follows:

slures(a, i, s f ) =


sll(a, i) s f = 00
srl(a, i) s f = 10
sra(a, i) s f = 11

We define a predicate that, given an instruction I ∈ B32, expresses whether the instruction is a
shift instruction by a simple disjunction of shift instruction predicates:

su(I) ≡ sll(I) ∨ srl(I) ∨ sra(I) ∨ sllv(I) ∨ srlv(I) ∨ srav(I)

Given a shift instruction I ∈ B32 and a processor core configuration c ∈ Kcore, we define the
following shift operands:

• shift distance: sdist(c, I) =

〈sa(I)〉mod 32 f un(I)[3] = 0
〈c.gpr(rs(I))[4 : 0]〉mod 32 f un(I)[3] = 1

• shift left operand: slop(c, I) = c.gpr(rt(I))

The shift function of a shift instruction I ∈ B32 is given by

s f (I) = I[1 : 0]

Memory Accesses We define auxiliary functions that we need in order to define how val-
ues are read/written from/to the memory in the overall system’s transition function. Given an
instruction I ∈ B32 and a processor core configuration c ∈ Kcore, we define the effective address,
access width and byte write signal of a memory access:

• extended effective address: ea(c, I) =

c.gpr(rs(I)) +32 sxt32(imm(I)) itype(I)
c.gpr(rs(I)) rtype(I)
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• access width: d(I) =


1 lb(I) ∨ lbu(I) ∨ sb(I)
2 lh(I) ∨ lhu(I) ∨ sh(I)
4 sw(I) ∨ lw(I) ∨ rmw(I)

• byte write signal: bw(c, I) =



0001 lb(I) ∨ lbu(I) ∨ sb(I) ∧ ea(c, I)[1 : 0] = 00
0010 lb(I) ∨ lbu(I) ∨ sb(I) ∧ ea(c, I)[1 : 0] = 01
0100 lb(I) ∨ lbu(I) ∨ sb(I) ∧ ea(c, I)[1 : 0] = 10
1000 lb(I) ∨ lbu(I) ∨ sb(I) ∧ ea(c, I)[1 : 0] = 11
0011 lh(I) ∨ lhu(I) ∨ sh(I) ∧ ea(c, I)[1] = 0
1100 lh(I) ∨ lhu(I) ∨ sh(I) ∧ ea(c, I)[1] = 1
1111 lw(I) ∨ sw(I) ∨ rmw(I)

In ea(c, I) the ea(c, I)[31 : 2] is the effective address and ea(c, I)[1 : 0] is used to compute
the byte write signal. The access width is the number of bytes that are read, or, respectively,
written. The byte write signal is a flag denoting the location of the target value. We define the
misalignment on fetch predicate as follows:

mal f (c) ≡ c.pc[1 : 0] , 00

For an instruction I ∈ B32 and a processor core configuration c ∈ Kcore, we define the misalign-
ment on load/store predicate as follows:

malls(c, I) ≡ (lw(I) ∨ sw(I) ∨ rmw(I)) ∧ ea(c, I)[1 : 0] , 00

∨(lhu(I) ∨ lh(I) ∨ sh(I)) ∧ ea(c, I)[0] , 0

that describes whether the memory access is misaligned. Note that misaligned memory access
triggers the corresponding interrupt. In order to denote whether a given instruction I ∈ B32 is a
load or store instruction, we define the following predicates:

• load instruction: load(I) ≡ lw(I) ∨ lhu(I) ∨ lh(I) ∨ lbu(I) ∨ lb(I)

• store instruction: store(I) ≡ sw(I) ∨ sh(I) ∨ sb(I)

Given a value v ∈ B32 and an instruction I ∈ B32, we define the shift for load function

s4l(v, I) =


srl(v, 8 · i) (lb(I) ∨ lbu(I)) ∧ bw(c, I)[i]
srl(v, 16) (lh(I) ∨ lhu(I)) ∧ bw(c, I)[3]
v otherwise

The value read from memory R ∈ B32 is given as an input to the transition function of the
processor core. In order to write this value to a general purpose register, depending on the
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memory instruction used, we either need to sign-extend or zero-extend this value:

zxt32(v) = 032−|v| ◦ v

sxt32(v) = v[0]32−|v| ◦ v

lv(R, I) =



zxt32(s4l(R, I)[7 : 0]) lbu(I)
zxt32(s4l(R, I)[15 : 0]) lhu(I)
sxt32(s4l(R, I)[7 : 0]) lb(I)
sxt32(s4l(R, I)[15 : 0]) lh(I)
R otherwise

Given an instruction I ∈ B32 and a value v ∈ B32, we define the shift for store function

s4s(v, I) =


sll(v, 8 · i) sb(I) ∧ bw(c, I)[i]
sll(v, 16) sh(I) ∧ bw(c, I)[3]
v otherwise

Given an instruction I ∈ B32 and a processor core configuration c ∈ Kcore, the store value is
given by the last d(I) bytes taken from the general purpose register specified by rt(I):

sv(c, I) = s4s(c.gpr(rt(I)), I)

General Purpose Register Updates The predicate

gprw(I) ≡ alu(I) ∨ su(I) ∨ lw(I) ∨ rmw(I) ∨ jal(I) ∨ jalr(I) ∨ movs2g(I)

describes whether a given instruction I ∈ B32 results in a write to some general purpose register.
We define the result destination of an ALU/shift/coprocessor/memory instruction I ∈ B32 as the
following general purpose register address:

rdes(I) =

rd(I) rtype(I) ∧ /movs2g(I)
rt(I) otherwise

For an instruction I ∈ B32, the address of the general purpose register which is actually written
to is defined as

cad(I) =

15 jal(I) ∨ jalr(I)
rdes(I) alu(I) ∨ load(I) ∨ rmw(I)

We define the value written to the general purpose register specified above based on the instruc-
tion I ∈ B32 and a given processor core configuration c ∈ Kcore as

gprdin(c, I,R) =



c.pc +32 432 jal(I) ∨ jalr(I)
lv(R, I) load(I) ∨ rmw(I)
c.spr(rd(I)) movs2g(I)
alures(lop(c, I), rop(c, I), alucon(I)) alu(I)
sures(slop(c, I), sdist(c, I), s f (I)) su(I)
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Definition of Instruction Execution

Based on the auxiliary functions defined in the last subsection, we give the definition of instruc-
tion execution in closed form:

Definition 3.2 (Non-Interrupted Instruction Execution) We define the transition function for
non-interrupted instruction execution

δinstr : Kcore × Σinstr ⇀ Kcore

where
Σinstr = B32 × (B32 ∪ {⊥})

as

δinstr(c, I,R) =

⊥ (load(I) ∨ rmw(I)) ∧ R = ⊥

c′ otherwise

where

• c′.pc =


btarget(c, I) jbtaken(c, I)
c.spr(epc) eret(I)
c.pc +32 432 otherwise

• c′.gpr(x) =

gprdin(c, I,R) x = cad(I) ∧ gprw(I)
c.gpr(x) otherwise

• c′.spr(x) =


c.gpr(rt(I)) rd(I) = x ∧ movg2s(I)
c.spr(emode) x = mode ∧ eret(I)
c.spr(esr) x = sr ∧ eret(I)
c.spr(x) otherwise

Auxiliary Definitions for Triggering of Interrupts

MIPS-86 provides the following interrupt types that are ordered by their priority (interrupt level):
Note that the all continue interrupts are either triggered by the execution of ALU operations with
overflow or execution of the system call instruction.

Here external event signals are provided as input eev ∈ B256 , in which the eev[0] is the reset
signal and eev[1 : 255] is the device interrupt triggered by signals from the environment of
the processor, to the processor core transition function. The page-fault signals pff, pfls ∈ B are
provided by the MMU of the processor to the processor core transition function. In hardware,
one interrupt can only happen either in the fetch phase (f) or in the execute phase (x). In the last
column of Table 3.5 we show at which phase the corresponding interrupt can take place in the
hardware. The priority of interrupts is based on the following rules:

• External interrupts have the highest priority. The reason is that unlike internal interrupts
which can be reproduced by repeating computation steps, the external interrupts are in-
puts from the environment and can not be reproduced. Also, external interrupts have the
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Table 3.5: MIPS-86 Interrupt Types and Priority.

level shorthand int/ext type maskable description phase
0 reset eev abort 0 reset f
1 dev eev repeat 1 devices f
2 malf iev abort 0 misaligned fetch f
3 pff iev repeat 0 page fault fetch f
4 ill iev abort 0 illegal instruction x
5 sysc iev continue 0 system call x
6 ovf iev continue 1 overflow x
7 malls iev abort 0 misaligned load/store x
8 pfls iev repeat 0 page fault load/store x

abort type which means the computation is ended or repeat type which can reproduce the
internal interrupts after the external one is handled. Since for one step of MIPS, there is
only one eev, we can assume them are handled in the fetch phase

• Interrupts which can only happen in the fetch phase must have the higher priority than the
interrupts which an only happen in the execute phase.

• Misalignment interrupts have higher priority than corresponding page fault interrupts. Be-
cause if a misalignment happen, there can not be any memory accesses to the misalign-
ment address.

• Illegal instruction interrupt has the highest priority among all the interrupts which can
only happen in the execute phase.

To simplify the proof in Chapter 4, we assume the page fault interrupts have the lowest priority
in corresponding phases.

Definition 3.3 (Cause and Masked Cause of an Interrupt on Fetch Phase) We define the cause
on fetch ca f ∈ B

32 of an interrupt and masked cause on fetch mca f ∈ B
32 of an inerrupt based

on the current core configuration c ∈ Kcore to be executed, the external event vector eev ∈ B256

and the page-fault on fetch signals pff ∈ B as follows:

• cause of an interrupt on fetch:

ca f (c, eev, pff)[ j] ≡



eev[0] j = 0∨255
i=1 eev[i] j = 1

c.pc[1 : 0] , 00 j = 2
pff j = 3
0 otherwise
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• masked cause of an interrupt on fetch:

mca f (c, eev, pff)[ j] ≡

ca f (c, eev, pff)[ j] ∧ c.spr(sr)[ j] j = 1
ca f (c, eev, pff)[ j] otherwise

Only interrupt level 1 is maskable on the fetch phase; the corresponding mask can be
found in special purpose register sr (status register) and is applied to the cause of interrupt
to obtain the masked cause.

Definition 3.4 (Cause and Masked Cause of an Interrupt on Execution Phase) We define the
cause cax ∈ B

32 of an interrupt on execution and masked cause mcax ∈ B
32 of an interrupt on

execution based on the current processor core configuration c ∈ Kcore, the instruction I ∈ B32

to be executed, the external event vector eev ∈ B256 and the page-fault on load/store signals
pfls ∈ B as follows:

• cause of interrupt:

cax(c, I, pfls)[ j] =

ill(I) ∨ c.spr(mode)[0] ∧ (movs2g(I) ∨ movg2s(I) ∨ eret(I)) j = 4
sysc(I) j = 5
ov f (lop(c, I), rop(c, I), alucon(I), itype(I)) j = 6
ea(c, I)[1 : 0] < {00,⊥} j = 7
pfls j = 8
0 otherwise

• masked cause:

mcax(c, I, pfls)[ j] =

cax(c, I, pfls)[ j] ∧ c.spr(sr)[ j] j = 6
cax(c, I, pfls)[ j] otherwise

Note that only interrupt levels 1 and 6 are maskable.

To denote that in a given configuration c ∈ Kcore, external event signals eev ∈ B256 and page-fault
signals pff ∈ B an interrupt is triggered during fetch, we define the predicate

jisr f (c, eev, pff) ≡
∨

j

mca f (c, eev, pff)[ j]

Given a configuration c ∈ Kcore, an instruction I ∈ B32, external event signals eev ∈ B256 and
page-fault signals pfls ∈ B an interrupt is triggered during execution, we define the predicate

jisrx(c, I, pfls) ≡
∨

j

mcax(c, I, pfls)[ j]

The overall interrupt predicate is defined as

jisr(c, I, eev, pff, pfls) ≡ jisr f (c, eev, pff) ∨ jisrx(c, I, pfls)
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Note that in a MIPS machine, at most one of the predicates among jisrx and jisr f can be true.
To determine the interrupt level of the triggered interrupt on fetch phase, we define the function

il f (c, eev, pff) = min{ j | mca f (c, eev, pff)[ j] = 1}

To determine the interrupt level of the triggered interrupt on execute phase, we define the func-
tion

ilx(c, I, pfls) = min{ j | mcax(c, I, pfls)[ j] = 1}

The predicate
continue(c, I, pfls) ≡ ilx(c, I, pfls) ∈ {5, 6}

denotes whether the triggered interrupt is of continue type.

Definition of Interrupt Execution

Definition 3.5 (Interrupt Execution Transition Function) We define δ jisr f (c, eev, pff) = c′ and
δ jisrx(c, I, eev, pfls) = c′′ where I ∈ B32 is the instruction to be executed, eev ∈ B256 are the exter-
nal event signals and pff, pfls ∈ B are the page-fault signals provided by the processor’s MMU.

Let k = min{ j | eev[ j] = 1}.

• c′.pc = c′′.pc = 032

• c′.spr(x) =



032 x = sr
032 x = mode
c.spr(mode) x = emode
c.spr(sr) x = esr
mca f (c, eev, pff) x = eca
c.pc x = epc
bin32(k) x = edata ∧ il f (c, eev, pff) = 1
c.spr(x) otherwise

• c′′.spr(x) =



032 x = sr
032 x = mode
c.spr(mode) x = emode
c.spr(sr) x = esr
mcax(c, I, pfls) x = eca
c.pc x = epc ∧ ¬continue(c, I, pfls)
δinstr(c, I,⊥).pc x = epc ∧ continue(c, I, pfls)
ea(c, I) x = edata ∧ ilx(c, I, pfls) = 8
c.spr(x) otherwise

• c′.gpr = c.gpr
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• c′′.gpr =

c.gpr ¬continue(c, I, pfls)
δinstr(c, I,⊥).gpr otherwise

Processor Core Transition Function

Definition 3.6 (Processor Core Transition Function)

δcore : Kcore × Σcore → Kcore

In which:

Σcore = B32 × (B32 ∪ {⊥}) × B256 × B × B

δcore(c, I,R, eev, pff, pfls) =


δ jisr f (c, eev, pff) jisr f (c, eev, pff)
δ jisrx(c, I, pfls) jisrx(c, I, pfls)
δinstr(c, I,R) otherwise

3.1.2 Memory

In MIPS-86 ISA we have a word addressable shared memory with byte write signals:

m ∈ B30 → B32 = Km

The function cb(v1, v2, bw) ∈ B32 is used to combine two values v1, v2 ∈ B
32 according to the

byte write signal bw ∈ B4:

cb(v1, v2, bw) = data

where:

byte(i, data) =

byte(i, v2) bw[i]
byte(i, v1) otherwise

Definition 3.7 (Memory Transition Function) The memory transition function is defined as:

δm ∈ Km × Σm → Km

where:

Σm = B30 × B32 × B4 ∪ B32 × B30 × B32

Here,

• (a, v, bw) ∈ B30 × B32 × B4 – describes a write access to address a with value v and the
byte write signal bw, and
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• (c, a, v) ∈ B32 × B30 × B32 – describes a read-modify-write access to address a with
compare-value c and value v to be written in case of success.

We have:

δm(m, in)(x) =


cb(m(a), v, bw) in = (a, v, bw) ∧ x = a
v in = (c, a, v) ∧ m(a) = c ∧ x = a
m(x) otherwise

3.1.3 Store Buffer

A store buffer is a FIFO queue between the processor core and the shared memory. It accumu-
lates outgoing processor stores and, if available, forwards requested data on processor loads.

Definition 3.8 (Store Buffer Configuration) The store buffer entry configuration is defined as:

Ksbe = {(a, v, bw) | a ∈ B30 ∧ v ∈ B32 ∧ bw ∈ B4}

The store buffer configuration is defined as follows:

Ksb = K∗sbe

We define some auxiliary function for store buffer forwarding. The transitions of store buffer
are formalized in the processor transition relation - we do not provide an individual transition
relation for the store buffer. Given a store buffer entry (a, v, bw) ∈ Ksbe and a word address
x ∈ B30, we define the predicate:

sbehit((a, v, bw), x) ≡ x = a

The function maxsbhit(sb, x) ∈ N computes the index of the newest entry of the store buffer
sb ∈ Ksb for which there is a hit at address x ∈ B30.

maxsbhit(sb, x) = max{ j | sbehit(sb[ j], x)}

The following predicate sbhit(sb, x) denotes whether there is a store buffer hit in sb ∈ Ksb at
address x ∈ B30.

sbhit(sb, x) ≡ ∃ j. sbehit(sb[ j], x)

3.1.4 Translation Lookaside Buffer

In MIPS-86, we proved the virtual memory to implement the memory isolation for each thread.
By performing address translation from virtual memory addresses to physical memory addresses
(i.e. regular memory addresses of the machine’s memory system), the notion of a virtual memory
is established-if this translation is injective, virtual memory has regular memory semantics (i.e.
writing to an address affects only this single address and values being written can be read again
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later). Processors tend to provide a mechanism to activate and deactivate address translation-
usually by writing some special control register. In the case of MIPS-86, a special purpose
register mode is provided which decides whether the processor is running in system mode, i.e.
without address translation, or in user mode, i.e. with address translation.

The MIPS-86 applies a 2 level page table hierarchy. One advantage of this is that multi-
level page tables tend to require less memory space: only the necessary part of the page table
is provided. The disadvantage for the multi-level page table is that more memory lookups are
introduced for each memory reference. In order to increase the speed of address translation, we
introduce a shared cache called translation lookaside buffer (TLB) between the processor core
and the MMU. The purpose of a TLB is to cache address translations done by the MMU and to
reuse them later without performing additional memory accesses to page tables. A modern TLB
caches not only address translations themselves, which could by considered as complete page
table traversals, but also intermediate states of such traversals, which we call walks.

Definition 3.9 (TLB Configuration) The set of TLB configuration is defined as follow:

Ktlb = 2Kwalk

where the set of walk configuration is given by:

Kwalk = B20 × {0, 1, 2} × B20 × B3 × B

A walk w ∈ Kwalk consists the following components:

• w.va ∈ B20. The virtual page address to be translated.

• w.level ∈ {0, 1, 2}. The current level of the walk. If it is 0, we call w a complete walk.
Otherwise w.level is the number of remaining walk extensions to obtain a complete walk.

• w.ba ∈ B20. The pointer to the target physical page if w.level = 0 otherwise to the next
level of page table.

• w.r ∈ B3. The accumulated request rights. w.r = (wr ∈ B, us ∈ B, ex ∈ B) stands for write
permission, user mode access permission and execute permission respectively.

• w. f ault ∈ B. The page fault flag.

Since MIPS-86 is a 32-bit architecture with a word addressable memory, each page consists
of 210 consecutive words and a page address consists of 20 Bits. The first level page table
translates the first 10 Bits of a page address and the second level translates the remaining 10
Bits.

Definition 3.10 (Page Index and Base Address) Given an address a ∈ B30 we have:

a = a.px2 ◦ a.px1 ◦ a.px0

In which
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• a.px2 ∈ B
10. The second-level page index.

• a.px1 ∈ B
10. The first-level page index.

• a.px0 ∈ B
10. The offset within a page.

The base address for a is defined as:

a.ba = a.px2 ◦ a.px1

Definition 3.11 (Page Table Entry) A page table entry pte ∈ B32 consists of

• pte.ba = pte[31 : 12]. The base address of the next page table or, if the page table is a
terminal one, the resulting physical page address for a translation,

• pte.p = pte[11]. The present bit,

• pte.r = pte[10 : 8]. The access rights for pages accessed via a translation that involves
the page table entry,

• pte.a = pte[7]. The accessed flag that denotes whether the MMU has already used the
page table entry for a translation, and

• pte.d = pte[6]. The dirty flag that denotes whether the MMU has already used the page
table entry for a translation that had write rights. This particular field is only used for
terminal page tables.

For a base address ba ∈ B20 and an index i ∈ B10, we define the corresponding page table entry
address as

ptea(ba, i) = ba ◦ 010 +32 020i

The page table entry address needed to extend a given walk w ∈ Kwalk is then defined as

ptea(w) = ptea(w.ba, (w.va ◦ 010).pxw.level)

Given a memory m ∈ Km and a walk w ∈ Kwalk, we define the page table entry needed to extend
a walk as

pte(m,w) = m(ptea(w))

Definition 3.12 (Walk Creation) We define the function

winit : B20 × B20 → Kwalk

which, given a virtual base address va ∈ B20, the base address pto ∈ B20 of the page table origin
and returns the initial walk for the translation of va.

winit(va, pto) = w

is given by

134



w.va = va w.level = 2 w.ba = pto
w.r = 111 w. f ault = 0

Note that in our specification of the MMU, the initial walk always has full rights (w.r = 111).
However, in every translation step, the rights associated with the walk can be restricted as needed
by the translation request made by the processor core.

Definition 3.13 (Sufficient Access Rights) For a pair of access rights r, r′ ∈ B3, we use

r ≤ r′ ≡ ∀ j ∈ [0 : 2] : r[ j] ≤ r′[ j]

to describe that the access rights r are weaker than r′, i.e. rights r′ are sufficient to perform an
access with rights r.

Definition 3.14 (Walk Extension) We define the function

wext : Kwalk × B
32 → Kwalk

which extends a given walk w ∈ Kwalk using a page table entry pte ∈ B32 in such a way that

wext(w, pte) = w′

is given by

w′.va = w.va w′. f ault = ¬pte.p ∨ ¬w.r ≤ pte.r

w′.level =

w.level − 1 pte.p
w.level otherwise

w′.ba =

pte.ba pte.p
w.ba otherwise

w′.r =

w.r ∧ pte.r pte.p
w.r otherwise

Definition 3.15 (Complete Walk) A walk w ∈ Kwalk with w.level = 0 is called a complete
walk:

complete(w) ≡ w.level = 0

Definition 3.16 (Setting Accessed/Dirty Flags of a Page Table Entry) Before extending a walk
w the MMU sets access and dirty bits in the page table entry used to extend w. Given a page
table entry pte ∈ B32 and a walk w ∈ Kwalk, we define the function

set-ad(w, pte) =

pte[a := 1, d := 1] w.r[0] ∧ w.level = 1 ∧ pte.r[0]
pte[a := 1] otherwise

which returns an updated page table entry in which the accessed and dirty bits are updated when
walk w is extended using pte. Extending a walk with write access right using a terminal page
table results in the dirty flag being set for the page table entry. Otherwise, only the accessed flag
is set.
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Definition 3.17 (Translation Request) A translation request

trq = (trq.va, trq.r) ∈ B30 × B3

is a pair of

• virtual address trq.va ∈ B30, and

• access rights trq.r ∈ B3.

Definition 3.18 (Walk Match) When a walk w only matches a translation request trq in the
virtual address, we call this a walk match:

match(trq,w) ≡ w.va = trq.va[29 : 10]

Definition 3.19 (Walk Hit) When a walk w matches a translation request trq in terms of virtual
address and access rights, we call this a walk hit:

hit(trq,w) ≡ w.va = trq.va[29 : 10] ∧ trq.r ≤ w.r

Note that a hit or a match may occur with an incomplete walk.

Definition 3.20 (Faulty Walk) A page fault for a given walk would result if: (i) during a walk
extension the page table entry needed to extend is not present or the walk would require more
access rights than the page table entry provides, (ii) the matched translation request requires
more rights than the walk provides. To denote this, we define the predicate

f ault(pte, trq,w) ≡ /complete(w) ∧ wext(w, pte). f ault ∨ match(trq,w) ∧ ¬hit(trq,w)

Note that a page fault may occur at any translation level. However, the TLB will only store
non-faulty walks (this is an invariant of the TLB) – page faults are triggered by a faulty walk
extension or a violation of access rights.

In the top-level transition function of MIPS-86, the transition request hit is introduced as a
precondition. The page faults are triggered as follows: the processor core always chooses walks
from the TLB non-deterministically to either obtain a translation, or, to get a page-fault when
the chosen walk has a faulty walk extension or the access rights are violated. Note that, when a
page-fault for a given virtual address occurs, MIPS-86 flushes all faulty walks from the TLB.

Definition 3.21 (Transition Function of the TLB) We define the transition function of the TLB
that states the transitions of the TLB

δtlb : Ktlb × Σtlb → Ktlb

where
Σtlb = {flush} × B20 ∪ {add-walk} × Kwalk

as a case distinction on the given input:

• flushing a virtual address for a given address space identifier:

δtlb(tlb, (flush, va)) = {w ∈ tlb | w.va , va}

• adding a walk:
δtlb(tlb, (add-walk,w)) = tlb ∪ {w}
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3.1.5 Sequential MIPS

In order to apply the SB reduction theorem to the MIPS-86 ISA, in addition to the MIPS-86
machine, we also need to define the machine without SB. We call it the SB reduced MIPS-
86 machine. In this section, we will give the definition of sequential MIPS-86 machine and
sequential SB reduced MIPS-86 machine.

Configuration

Definition 3.22 (Processor Configuration) The set of processor configurations is defined as
follows:

Kpro = Kcore × Ksb × Ktlb

A processor p = (p.core, p.sb, p.tlb) ∈ Kpro contains a processor core, a store buffer and a
translation lookaside buffer.

Definition 3.23 (SB Reduced Processor Configuration) The set of SB reduction processor con-
figuration is defines as follows:

Ksbr-pro = Kcore × Ktlb

An SB reduced processor psbr = (psbr.core, psbr.tlb) ∈ Ksbr-pro contains a processor core and a
translation lookaside buffer.

Definition 3.24 (Sequential MIPS-86 Machine Configuration)

Kseq = Kpro × Km

A sequential MIPS-86 machine configuration c = (c.p, c.m) ∈ Kseq consists of a processor and a
memory.

Definition 3.25 (SB Reduced Sequential MIPS-86 Machine Configuration)

Ksbr-seq = Ksbr-pro × Km

An SB reduced sequential MIPS-86 machine configuration csbr = (csbr.psbr, csbr.m) ∈ Ksbr-seq

consists of an SB reduced processor and a memory.

Transition Function

Definition 3.26 (Memory System) The results of read accesses performed by the processor
core are described in terms of a memory system that takes into account the store buffer and
the memory. We define a function ms that, given these components, returns the merged memory
view seen by the processor core:

ms(sb,m)(x, bw) =


m(x) ¬sbhit(sb, x)
sb[ j].v maxsbhit(sb, x) = j ∧ bw ≤ sb[ j].bw
⊥ otherwise
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Definition 3.27 (Input of Processor Transition Function)

Σseq = {core} × Kwalk × Kwalk × B
256

∪ {tlb-create} × B20

∪ {tlb-extend} × Kwalk

∪ {tlb-accessed-dirty} × Kwalk

∪ {sb}

• in = (core,wI ,wR, eev) ∈ Σseq. The processor performs a core step using walks wI and
wR. wR is ignored if not necessary.

• in = (tlb-create, ba) ∈ Σseq. The MMU, which is implicitly modeled in the processor,
performs a TLB step to create a walk for base address ba.

• in = (tlb-extend,w) ∈ Σseq. The MMU performs a TLB step to extend the walk w.

• in = (tlb-accessed-dirty,w) ∈ Σseq. The MMU sets the access and dirty bit of a page
table entry needed to extend w.

• in = (sb) ∈ Σseq. The processor performs an SB step to update the memory.

Definition 3.28 (Input of SB Reduced Processor Transition Function)

Σsbr-seq = {core} × Kwalk × Kwalk × B
256

∪ {tlb-create} × B20

∪ {tlb-extend} × Kwalk

∪ {tlb-accessed-dirty} × Kwalk

Since the SB reduced processor does not make an SB step, the input of the SB reduced processor
transition function do not have sb as a parameter.

Definition 3.29 (Sequential MIPS-86 Transition Function)

δseq : Kseq × Σseq ⇀ Kseq

δseq(c, in) = c′

We make a case split on in.

• in = (core,wI ,wR, eev). In this case we define some shorthands:

– ∀X ∈ {gpr, spr, pc}. p.X = c.p.core.X.

– ∀Y ∈ {sb, tlb}. p.Y = c.p.Y .

– mode ≡ p.gpr(mode)[0].
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– trqI = (p.pc[31 : 2], 011). The translation request for instruction fetch.

– pff ≡ mode ∧ f ault(pte(c.m,wI), trqI,wI). Signals whether there is a page-fault-on-
fetch for the given walk wI and the translation request trqI.

– pmaI =

wI .ba ◦ p.pc[11 : 2] mode
p.pc[31 : 2] otherwise

. The physical memory address for in-

struction fetch of processor core i (which is only meaningful if no page-fault on
instruction fetch occurs),

– I = c.m(pmaI). The instruction fetched from memory. Because the self-modifying
code is forbidden, we can directly read from memory (in case of a page-fault-on-
fetch the value of I has no further relevance).

– switch(I) ≡ movg2s(I) ∧ 〈rd(I)〉 = 6.

– wpto(I) ≡ movg2s(I) ∧ 〈rd(I)〉 = 5.

– sbf(I) ≡ rmw(I)∨m f ence(I)∨ invlpg(I)∨ f lush(I)∨ eret(I)∨wpto(I)∨ switch(I).

– trqEA = (ea(p.core, I)[31 : 2], (store(I)∨ rmw(I)) ◦ 10). The translation request for
the effective address.

– pfls ≡ mode∧ f ault(pte(c.m,wR), trqEA,wR)∧¬pff∧ (store(I)∨ load(I)∨ rmw(I)).
The page-fault-on-load-store signal.

– pmaEA =

wR.ba ◦ ea(p.core, I)[11 : 2] mode
ea(p.core, I)[31 : 2] otherwise

. the physical memory address

for the effective address.

– R =

⊥ pff ∨ pfls
ms(p.sb, c.m)(pmaEA, bw(p.core, I)) otherwise

. The value read from the

memory system.

c′ is defined iff:

– mode→ hit(wI , trqI). The walk wI must match the translation request for instruction
fetch.

– mode→ (store(I)∨ load(I)∨ rmw(I))∧¬pff→ hit(wR, trqEA). If there is a read or
write instruction and no page-fault on fetch has occurred, the walk wR must match
the translation request for the effective address.

– ¬pff → complete(wI). If there is no page-fault on fetch, walk wI is complete, and
thus, provides a translation from virtual to physical address.

– ¬pfls → complete(wR). If there is no page-fault on load/store, walk wR is complete,
and thus, provides a translation from virtual to physical address.

– sbf(I) ∨ jisr(p.core, I, eev, pff, pfls) → p.sb = []. The store buffer is flushed by an
interrupt and an instruction can only be executed when the store buffer is empty if it
is

* a read modify write instruction, or
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* a fence instruction, or

* a TLB flush instruction (partially or totally), or

* an instruction which updates the special purpose register mode or pto.

Then the c′ is defined as:

c′.p.core =


δcore(p.core, I,R, eev, pff, pfls) (load(I) ∨ rmw(I))
δcore(p.core, I,⊥, eev, pff, pfls) (¬load(I) ∧ ¬rmw(I))
p.core otherwise

c′.p.sb =

p.sb ◦ (pmaEA, sv(p.core, I), bw(p.core, I)) store(I)
p.sb otherwise

c′.p.tlb =



∅ f lush(I)
δtlb(p.tlb, (flush, p.gpr(rd(I)).ba)) invlpg(I)
δtlb(p.tlb, (flush, p.pc.ba)) pff

δtlb(p.tlb, (flush, ea(p.core, I).ba)) ¬pff ∧ pfls
p.tlb otherwise

c′.m =

δm(c.m, (p.gpr(rd(I)), pmaEA, sv(p.core, I))) rmw(I)
c.m otherwise

• in = (tlb-create, va). A new walk for virtual address va is created in TLB. c’ is defined iff

– mode. The TLB only create walk when the processor is running in user mode.

c′.p.tlb = p.tlb ∪ winit(va, p.spr(pto).ba)

Creating a new walk in the TLB is a step that affects only the TLB.

• in = (tlb-set-accessed-dirty,w). Accessed and dirty bits of the page table entry needed
to extend walk w in TLB are set appropriately

c′ is defined iff:

– mode. Page table flags can only be set in translated mode.

– w ∈ p.tlb∧¬complete(w). We only set dirty and accessed bits for incomplete walks.

– pte(c.m,w).p = 1. The MMU can only set accessed/dirty flags for page table entries
which are actually present.
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Then,

c′.m = δm(c.m, (ptea(w), set-ad(w, pte(c.m,w)), 14))

Setting the page table entry flags only affects the corresponding page table entry in mem-
ory. In this model, the MMU non-deterministically sets accessed and dirty flags – enabling
walk extension using the given page table entry.

• in = (tlb-extend,w). An existing walk in TLB is extended

We let pte = pte(c.m,w) then c′ is defined iff:

– mode. The MMU can only extend a walk in translated mode.

– w ∈ p.tlb. The walk to be extended is contained in the TLB.

– ¬complete(w). The walk is not yet complete.

– pte.a ∧ pte.p ∧ (w.level = 1 ∧ w.r[0] ∧ pte.r[0] → pte.d). The present and ac-
cessed/dirty flags are set appropriately.

– ¬wext(w, pte). f ault. The walk extension does not result in a faulty walk.

Then,

c′.p.tlb = δtlb(p.tlb, (add-walk,wext(w, pte))}

Walk extension only affects the TLB, note, however, that in order to perform walk exten-
sion, the corresponding page-table entry is read from memory.

• in = (sb). A memory write exits the store buffer.

c′ is defined iff p.sb , []. The store buffer can only make a step when it is not empty.
Then,

c′.p.sb = tl(p.sb)

c′.m = δm(c.m, p.sb[0])

Store buffer steps never change processor core configurations and TLB configurations.
The oldest write in the store buffer is submitted to the memory. Note that here the self-
modifying code is forbidden.

Definition 3.30 (SB Reduced Sequential MIPS-86 Transition Function) The definition of SB
reduced sequential MIPS-86 transition function is very similar to Definition 3.29. There are two
differences: (i) instead of buffering store operations in the SB, all memory updates directly ap-
ply to the memory and (ii) instead of SB forwarding, the load operation directly read from the
memory.

δsbr-seq : Ksbr-seq × Σsbr-seq ⇀ Ksbr-seq
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δsbr-seq(csbr, insbr) = c′sbr

We make a case split on insbr.

• insbr = (core,wI ,wR, eev). In this case we define all the shorthands analogously as in
Definition 3.29 by substitute the sequential MIPS machine configuration c with csbr except
the read value R. The read value is defined as:

R =

⊥ pff ∨ pfls
csbr.m(pmaEA) otherwise

Under the same guard conditions as the first 4 in the first case of Definition 3.29, we can
define c′sbr as:

c′sbr.psbr.core =


δcore(psbr.core, I,R, eev, pff, pfls) (load(I) ∨ rmw(I))
δcore(psbr.core, I,⊥, eev, pff, pfls) (¬load(I) ∧ ¬rmw(I))
psbr.core otherwise

c′sbr.psbr.tlb =



∅ f lush(I)
δtlb(psbr.tlb, (flush, psbr.gpr(rd(I)).ba)) invlpg(I)
δtlb(psbr.tlb, (flush, psbr.pc.ba)) pff

δtlb(psbr.tlb, (flush, ea(psbr.core, I).ba)) ¬pff ∧ pfls
psbr.tlb otherwise

c′sbr.m =


δm(csbr.m, (psbr.gpr(rd(I)), pmaEA, sv(psbr.core, I))) rmw(I)
δm(csbr.m, (pmaEA, sv(psbr.core, I), bw(psbr.core, I))) store(I)
csbr.m otherwise

• In the remaining cases, the definition is completely analogous to Definition 3.29.

3.1.6 Multicore MIPS-86

Definition 3.31 (Multicore MIPS-86 Machine Configuration) The multicore MIPS-86 machine
consists of np identical processors and a shared memory

KMIPS = ([0 : np − 1]→ Kpro) × Km

h = (cmul,m) ∈ KMIPS in which cmul is a map from the processor index to the processor config-
uration.

Definition 3.32 (Multicore MIPS-86 Transition Function)

δh : KMIPS × ΣMIPS ⇀ KMIPS
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In which ΣMIPS = Σseq × [0 : np − 1].

δh(h, (in, i)) = h′

where:

h′.cmul( j) =

δseq(h.cmul(i), in).p i = j
h.cmul( j) otherwise

h′.m = δseq(h.cmul(i), in).m

Definition 3.33 (Multicore SB Reduced MIPS-86 Machine Configuration) The multicore SB
reduced MIPS-86 machine consists of np identical SB reduced processors and a shared memory

Ksbr-MIPS = ([0 : np − 1]→ Ksbr-pro) × Km

hsbr = (csbr-mul,m) in which csbr-mul is a map from the processor index to the SB reduced proces-
sor configuration.

Definition 3.34 (Multicore SB Reduced MIPS-86 Transition Function)

δhsbr : Ksbr-MIPS × Σsbr-MIPS ⇀ KMIPS

In which Σsbr-MIPS = Σsbr-seq × [0 : np − 1].

δhsbr (hsbr, (insbr, i)) = h′sbr

where:

h′sbr.csbr-mul( j) =

δsbr-seq(hsbr.csbr-mul(i), insbr).p i = j
hsbr.csbr-mul( j) otherwise

h′sbr.m = δsbr-seq(hsbr.csbr-mul(i), insbr).m

3.2 Instantiation

In this section, we will instantiate our model from Chapter 2. First, we assume the program
code resides in the read-only memory, and we will give the formal definition of the assumption
at the end of this chapter. To distinguish between the fetch and execution phase, we add a fetch
flag to the program state. According to the assumptions in Chapter 2, we should maintain the
freshness of the temporaries. Thus, we also add a counter n to the program state as the time
stamp. Moreover, for the initial configuration c0, we constraint that

∀i. c0.p[i].fetch ∧ c0.p[i].n = 0 ∧ c0.is[i] = [] ∧ ∀t ∈ T. c0.ϑ[i](t) = ⊥

Note that, in our model in Chapter 2, we make the mode as a separate component in the thread-
local machine configuration and the page table origin as an implicit part in the MMU state. As a
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Figure 3.1: The state transitions in an instantated machine

consequence, we need a partial special-purpose-register file that does not contain mode and pto.
We call it sprp.

Also, note that for a non-page-fault interrupt must be signaled in a program step. However,
a page fault interrupt must be signaled in a page fault step. The semantics of jisr in a program
step and a page fault step are also different. In a page fault step, the pc, sprp and mode are
updated automatically when an interrupt happens. Nevertheless, in an interrupted program step,
only the pc and sprp are updated, and a mode switch memory instruction is generated to update
the mode.

We need to instantiate the program step like that to maintain our proof in Chapter 2. In
the proof, the abstract machine and the SB machine always perform the identical MMU steps
simultaneously. To accomplish this, the value of mode should always be consistent in both
machines. Since the program step does not flush the SB, we can not guarantee the simultaneous
execution of a program step in both machines. As a consequence, our semantics in Chapter 2
forbid to change mode by program steps. Therefore, in an interrupted program step, a mode
switch instruction needs to be generated, which is executed simultaneously on both machines,
to update the mode.

As depicted in Figure 3.1, the execution of one instruction in the MIPS-86 machine can be
divided into the following phases: Initially, we have

c.p[i].fetch

1. Program Step. In this step, the machine clears the fetch flag and

• If no interrupts happen, the machine generates a non-vol read (because the code
resides in the read-only portion of memory) to fetch from memory and makes the
transition (1). The next step of thread i will be a phase 2 memory step.

• If an interrupt happens, the machine updates pc and sprp, and generate a mode switch
memory instruction (transition (2)). The next step of thread i will be a phase 4
memory step. Note that, since the machine has not fetched from memory yet, the
only possible interrupts can happen here are non-page-fault interrupts on fetch.

After the program step we get a new machine configuration c′.

¬c′.p[i].fetch
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2. Memory Step or Page Fault Step. We make a further case split:

• Page Fault Step. If a page fault happens here, the machine performs a page fault
step. Note that, for the same reason as the previous phase, it should be a page fault
on fetch. The machine updates pc, sprp and mode, and sets the fetch flag to start the
next round of execution (transition (3)). The next step of thread i will be a phase 1
program step. After the phase 2 we have

c′′.p[i].fetch

• Memory Step. If no page fault happen, we let I′ = hd(c′.is[i]) then nvR(I′) should be
generated by an uninterrupted phase 1 program step. With the non-vol read memory
instruction, the machine fetches an ISA instruction by making the transition (4). In
the next step of thread i, it will perform a phase 3 program step. After the phase 2
we have

¬c′′.p[i].fetch

3. Program Step. In this step, to get the new configuration c′′′, the machine sets the fetch
flag. We make a further case split here:

• No interrupt happens. This case consists of two sub-cases depending on the fetched
ISA instruction from a previous non-page-fault phase 2 execution:

– No need to generate a memory instruction (e.g. if an add instruction was fetched
in the last phase 2, the program step generates no instruction). The machine
executes the fetched ISA instruction and makes the transition (6) as well as
updates the corresponding pc, sprp and gpr. The next step of thread i will be a
phase 5 program step.

– Otherwise. The machine generates a memory instruction to access the memory
or update other components. The machine also updates the pc with the next pc
value and also updates the sprp. Note that, in this case, the machine does not
update the gpr. The reason is that gpr should be updated with the read value
from memory in this case, but the corresponding memory read operation has not
been executed yet. The gpr will be updated in subsequent steps. The machine
makes the transition (5). The next step of thread i will be a phase 4 memory
step.

• A non-page-fault interrupt happens. Based on the previous argument, interrupts
on fetch were signaled in the previous phase 1 program step or phase 2 page fault
step. The only possible interrupt here is a non-page-fault interrupt on execute. In
this case, the machine updates the pc, sprp and gpr (for a continue interrupt). The
machine generates a mode switch memory instruction to update mode and makes the
transition (5). The next step of thread i will be a phase 4 memory step.

After phase 3 we have
c′′′.p[i].fetch

4. Memory Step or Page Fault Step.
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• If no page fault happens, the machine performs a memory step. Here, we make a
further case split:

– If the instruction in the instruction sequence is a mode switch instruction gener-
ated by an interrupted program step, then the machine makes the transition (8).
The next step of thread i will be a phase 1 program step.

– Otherwise, the machine makes the transition (7). The next step of thread i will
be a phase 5 program step.

• If a page fault happens, with analogous reasons as in phase 3, the page fault is a
page fault on load/store. It updates the pc, sprp and mode, and sets the fetch flag
(transition (8)). The machine will perform a phase 1 program step in next step of
thread i.

c4.p[i].fetch

5. Program Step. This step increases the counter in program state and updates the corre-
sponding gpr if the last phase 4 memory step is a read or rmw. The next step of thread i
will be a phase 1 program step. Note that this phase is only entered for non-interrupted
instruction execution.

c5.p[i].fetch

Note that since in one round of abstract machine execution, every phase corresponds to one
identical ISA instruction. For each MIPS step, there is only one eev. Therefore, in one round
of execution, every program step have identical eev. Also, note that in the phase 5 program
step, the interrupts are ignored. For external interrupts which have the highest priority should be
handled in the previous program step. For internal interrupts can be handled in the subsequent
the program step.

3.2.1 Instantiation of Basic Signatures

• A,V. The memory is a word-addressable memory with 230 addresses.

A = B30 V = B32

• P. The program state is defined as a tuple which contains a counter (or time stamp)
n ∈ N to maintain the uniqueness of temporaries, a program counter pc ∈ B32, a previous
program counter ppc ∈ B32 which will be useful in later proofs, a general purpose register
file gpr ∈ B5 → B32 , a partial special purpose register file sprp ∈ B

5\{bin5(5), bin5(7)} →
B32 which is a special purpose register file without mode and pto, and a flag fetch ∈ B.
Moreover, it contains an auxiliary component jisr ∈ B which is useful in the simulation
proof in Section 4.3.2. The jisr flag is set when an interrupt happens.
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The set of program states is defined as:

P = N × B32 × B32 × (B5 → B32) × (B5 \ {bin5(5), bin5(7)} → B32) × B × B

For all p ∈ P. p = (p.n, p.pc, p.ppc, p.gpr, p.sprp, p.fetch, p. jisr). We define partial spe-
cial purpose register file as: sprp = spr �B5\{bin5(5),bin5(7)}. Note that, the initial value of
ppc is equal to pc.

• T. The temporary is instantiated as a tuple which contains a name ε{I,R} and a counter
(or time stamp) n ∈ N to make the temporary unique. In the instantiated semantics (sec-
tion 3.2.3) of the program step, the value of the counter is always increased. Thus each
temporary is unique. In the rest of this thesis we write the temporary (I, n) and (R, n) as In

and Rn for short. The set of temporaries is defined as:

T = {I,R} × N

• R. The set of access rights for address translation is defined as a 3-bit string. For all
r ∈ R the r[0] stands for write permission, r[1] for user mode access and r[2] for execute
permission.

R = B3

• BW. The set of byte write signals is defined as a subset of B4.

BW = {0000, 0001, 0010, 0100, 1000, 0011, 1100, 1111}

• U. The MMU state consists of a TLB tlb ∈ 2Kwalk and a value of page table origin pto ∈
B32.

U = 2Kwalk × B32

• EEV. The external input is defined as a 256 bit string. For all eev ∈ EEV the component
eev[0] is the reset signal, and eev[1 : 255] is the device interrupt triggered by signals from
the external environment of the processor.

EEV = B256

3.2.2 Instantiation of Auxiliary Functions, Predicates, and Relations

Casting Functions In order to reuse the auxiliary functions defined in section 3.1.1 we need
the following type cast functions: The function cast(p,mode, pto) ∈ Kcore takes a program state
p ∈ P, mode, pto ∈ B32 and returns a MIPS-86 processor core configuration.

cast(p,mode, pto) = c[gpr := p.gpr, pc := p.pc, spr := spr′]

where:

spr′ = p.gprp(bin5(5) 7→ pto)(bin5(7) 7→ mode)
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Some auxiliary functions do not depend on the value of mode or pto. Thus, we overload the
typecast function:

cast(p,mode) = cast(p,mode, 032)

cast(p) = cast(p, 032, 032)

In the remaining part of this chapter, we let I = ϑ(Ip.n) and R = ϑ(Rp.n) then the auxiliary
functions and predicates are defined as follows.

• f . The write value calculation function f ∈ (T⇀ V)→ V is defined as:

f (ϑ) =

s4s(p.gpr(rt(I)), I) store(I)
p.gpr(rd(I)) rmw(I)

• D is instantiated as:

D = {Ip.n}

• cond. The condition predicate cond ∈ (T⇀ V)→ B for read modify write is instantiated
as:

cond(ϑ) ≡ p.gpr(rd(I)) = R

• cb. The combination function cb ∈ V × V × BW → V for a write operation is used to
compute the value to be stored in memory according to the byte write signal. This function
is defined identically as the combination function in section 3.1.2.

• ≤. The relation ≤ ∈ BW × BW → B is defined similarly as the overloaded ≤ relation in
section 3.1.4.

bw1 ≤ bw2 ≡ ∀i. bw1[i] ≤ bw2[i]

• =bw. The byte writes equality relation =bw ∈ V×V→ B is used to check if 2 data is equal
according to a given byte write signal bw.

v1 =bw v2 ≡ bw[i]→ byte(i, v1) = byte(i, v2)

148



3.2.3 Instantiation of Transition Functions

MMU Model

• can-access(mmu, pa) ∈ B. The predicate denotes weather the MMU in state mmu ∈ U
can access a page table entry located at pa ∈ A.

can-access(mmu, pa) ≡ ∃w ∈ mmu.tlb. ptea(w) = pa ∧ ¬complete(w)

• can-page- f ault(mmu, va, r, pa, pte) ∈ B. The predicate denotes weather the MMU in
state mmu ∈ U can signal a page fault during the virtual address va ∈ A translation. The
page fault can be signaled if we can choose a walk w from the mmu.tlb and obtain a faulty
walk by extending w with pte ∈ V in address pa ∈ A or the access rights r ∈ R is violated
by r. Let trq = (va, r) then

can-page- f ault(mmu, va, r, pa, pte) ≡ ∃w ∈ mmu.tlb. f ault(pte, trq,w)

• δmmur(mmu, pa, pte) ∈ 2U. The MMU read function fetches a page table entry pte ∈ V
from the physical address pa ∈ A and returns a set of possible MMU states according to
the MMU state mmu ∈ U. We first define the safety condition for walk extensions.

sa f e-wext(w, pte) ≡¬complete(w) ∧ pte.a ∧ pte.p ∧

(w.level = 1 ∧ w.r[0] ∧ pte.r[0]→ pte.d)

Let δmmur(mmu, pa, pte) = A then A is defined as:

A = {(mmu.pto, mmu.tlb ∪ {wext(w, pte)}) |

w ∈ mmu.tlb ∧ ptea(w) = pa ∧ sa f e-wext(w, pte)}

• δmmuw(mmu, pa, pte) ∈ 2V. The MMU write function takes a page table entry pte ∈ V
located at physical address pa ∈ A and returns a set of values. The result of the MMU
write function is a set of values because whether we should update the dirty bit of pte
depends on the walk non-deterministically chosen from the mmu.tlb.

δmmuw(mmu, pa, pte) = {set-ad(w, pte) | w ∈ mmu.tlb ∧

pte.p ∧ ptea(w) = pa ∧ ¬complete(w)}

• δ f lush(mmu, F) ∈ U. The TLB flush function takes the MMU state mmu ∈ U and a set
of addresses F ∈ 2A and removes certain walks from the TLB. The Walk w ∈ mmu.tlb is
removed from TLB if there exists a ∈ F and a.ba = w.va.

δ f lush(mmu, F) = mmu′

where:

mmu′ = (mmu.pto,mmu.tlb \ {w | ∃a ∈ F. a.ba = w.va})
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• δwpto(mmu, v) ∈ U. The page table origin update function takes the MMU state mmu ∈ U
and a value v ∈ B32 returns an updated MMU state.

δwpto(mmu, v) = mmu[pto := v, tlb := mmu.tlb ∪ {winit(va, v) | va ∈ B20}]

• δcrtw(mmu, va) ∈ U. The walk creation function creates a new walk for address va and add
it to the TLB.

δcrtw(mmu, va) = mmu[tlb := tlb′]

in which
tlb′ = mmu.tlb ∪ {winit(va.ba,mmu.pto[31 : 2].ba)}

• δpf(p,mode, va) ∈ P. The page fault function jumps to the interrupt service routine when
a page fault happens. It takes a program state p ∈ P, a mode flag mode and a virtual
effective address va, and returns an updated program state.

δpf (p,mode, va) = p′

where we let

mcapff = 031028 mcapfls = 081023

then
p′.pc = 032 p′.ppc = p.pc p′.n = p.n + 1
p′.fetch = 1 p′.gpr = p.gpr p′. jisr = 1

p′.sprp(x) =



032 x = sr
031 ◦ mode x = emode
p.sprp(sr) x = esr
mcapff x = eca ∧ ¬p.fetch
mcapfls x = eca ∧ p.fetch
p.ppc x = epc ∧ p.fetch
p.pc x = epc ∧ ¬p.fetch
va ◦ 00 x = edata ∧ p.fetch
p.sprp(x) otherwise

Note that, according to the argument at the beginning of this section, the page fault can
only happen in a phase 2 or phase 4 page fault step. In order to enter the phase 2 page
fault step, our semantics guarantee that no other interrupts on fetch in previous phase 1
program step happened (Otherwise, the machine will enter phase 4 to execute the mode
switch instruction). Thus, the masked cause for page fault on fetch can be set to 031028.
Analogously, the masked cause for page fault on load/store can be set to 081023.
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Also note that, if a page fault happens in phase 2, from the semantics we know that the
fetch flag was cleared by the previous phase 1 operation. However, since the machine has
not performed the corresponding fetch yet, the page fault is a page fault on fetch inter-
rupt. Similarly, a true fetch flag indicates that the page fault is a page fault on load/store
interrupt.

Moreover, in page fault step, the current pc value should be store in the special purpose
register epc. For a phase 4 page fault step, because the next pc value was computed in the
previous phase 3 program step, the p.pc value is actually next pc value. Thus, we store
the ppc into epc in the phase 4 page fault step.

• atran(mmu, va,mode, r) ∈ 2A. The address translation function takes an MMU state
mmu ∈ U, a virtual address to be translated va ∈ A, a mode ∈ B denotes whether we
are in system mode or user mode, and a r ∈ R for the access rights of the translation
request. It returns a set of possible translated physical addresses.

atran(mmu, va,mode, r) =

{ba ◦ 010 +30 020 ◦ va.px0 | ba ∈ PBA} mode = 1
{va} mode = 0

where:

PBA = {w.ba | w ∈ mmu.tlb ∧ complete(w) ∧ hit((va, r),w)}

Transition Function δp in Program Step

The transition function δp is used to generate instructions and update the program state. In order
to generate the correct instructions, the shared memory access instructions should be distin-
guished. We can collect the virtual address of these instructions in a set Aio which only depends
on the compiler. At the ISA level, we treat it as an external parameter from the environment.

Auxiliary Functions

ca f (p, eev) ≡ ca f (cast(p), eev, 0)

cax(p,mode, I) ≡ cax(cast(p, zxt32(mode)), I, 0)

Note that the page fault flags are set to 0, because the page faults should be handled later in page
fault steps. It is fine since page faults have the lowest priority. We overload the mca f , mcax, il f ,
ilx, jisr f and jisrx as:

mca f (p, eev)[ j] ≡

ca f (p, eev)[ j] ∧ p.sprp(sr)[ j] j = 1
ca f (p, eev)[ j] otherwise

mcax(p,mode, I)[ j] ≡

cax(p,mode, I)[ j] ∧ p.sprp(sr)[ j] j = 6
cax(p,mode, I)[ j] otherwise
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il f (p, eev) = min{ j | mca f (p, eev)[ j] = 1}

ilx(p,mode, I) = min{ j | mcax(p,mode, I)[ j] = 1}

continue(p,mode, I) ≡ ilx(p,mode, I) ∈ {5, 6}

jisr f (p, eev) ≡
∨

j

mca f (p, eev)[ j] ∧ p.fetch

jisrx(p,mode, I) ≡
∨

j

mcax(p,mode, I)[ j] ∧ ¬p.fetch

We define the jisr predicate as follows:

jisr(p,mode, ϑ, eev) ≡ jisr f (p, eev) ∨ jisrx(p,mode, I)

We overload the transition function δ jisr f as follows:

δ jisr f (p,mode, ϑ, eev) = p′

in which we let c′ = δ jisr f (cast(p, zxt32(mode)), eev, 0) then:
p′.pc = c′.pc p′.ppc = p.pc p′.sprp = c′.sprp p′.n = p.n + 1
p′.jisr = 1 p′.gpr = c′.gpr p′.fetch = 1

We overload the transition function δ jisrx as follows:

δ jisrx(p,mode, ϑ) = p′

in which we let
c′ = δ jisrx(cast(p, zxt32(mode)), I, 0))

then:
p′.pc = c′.pc p′.ppc = p.pc p′.sprp = c′.sprp p′.n = p.n + 1
p′.gpr = c′.gpr p′.fetch = 1 p′.jisr = 1

We define the following predicate to check whether the machine is in the phase 1 program
step.

f etch(p, ϑ, eev) ≡ p.fetch ∧ ¬ jisr f (p, eev) ∧ I = ⊥

We define the following predicate to check whether the machine is in the phase 3 program step.

execute(p, ϑ,mode) ≡ ¬p.fetch ∧ ¬ jisrx(p,mode, I)

We define the following predicate to check whether the machine is in the phase 5 program step.

post(p, ϑ) ≡ p.fetch ∧ I , ⊥

Note that, according to our previous description, the phase 5 program step behaves as an epilogue
of an instruction execution, which increases the counter and updates the gpr if needed. Thus,
this step ignores all the interrupts.
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Instruction Generation Function

Definition 3.35 (Instruction Generation) The instruction generation function

ins-gen(p, ϑ,mode) ∈ I∗

generates a sequence of instructions according to the value of temporary:

ins-gen(p, ϑ,mode) = l

l =



[Read vol ea(cast(p), I)[31 : 2] Rp.n 010 ext bw p] load(I)
[Write vol ea(cast(p), I)[31 : 2] (D, f ) 110 cb bw p] store(I)
[RMW ea(cast(p), I)[31 : 2] Rp.n (D, f ) cond 110 p] rmw(I)
[INVLPG F] invlpg(I) ∨ f lush(I)
[SWITCH p.sprp(emode)[0]] eret(I)
[SWITCH p.gpr(rt(I))[0]] switch(I)
[WPTO p.gpr(rt(I))] wpto(I)
[FENCE] m f ence(I)
[] otherwise

where:

vol↔ p.pc[31 : 2] ∈ Aio F =

p.gpr(rd(I))[31 : 2] invlpg(I)
B30 f lush(I)

bw = bw(cast(p), I) ext(data, bw) = lv(data, I)

With the definitions of ext, cb,≤ and =bw the constraints in Section 2.2.2 on bw, ext and cb can
be trivially discharged.

Definition of δp

Definition 3.36 (Transition Function in Program Step) The transition function

δp(p, ϑ,mode,mmu, is, eev) = (p′, is′)

takes a program state p ∈ P, temporaries ϑ ∈ T ⇀ V × A, a mode ∈ B, an instruction sequence
is ∈ I∗ and an external input eev and returns an updated program state p′ ∈ P as well as a
sequence of newly generated instructions is′ ∈ I∗. (p′, is′) is defined iff is = []. We let c′ =

δinsr(cast(p, zxt32(mode),mmu.pto), I, 032). Note that we use the dummy value 032 to execute
the instruction I and get a MIPS core configuration c′. We only use the c′ to update the pc, sprp

and gpr for an uninterrupted phase 3 program step if it is no need to access the memory, the new
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value computation of these components do not depend on the read results. The updating of gpr
with the memory read result is postponed to the phase 5 program step.

p′ =



p[fetch := 0, jisr := 0] f etch(p, ϑ, eev)
pexec execute(p, ϑ,mode)
ppost post(p, ϑ)
δ jisr f (p,mode, ϑ, eev) jisr f (p, eev) ∧ I = ⊥

δ jisrx(p,mode, ϑ) jisrx(p,mode, I, eev)

is′ =


[Read False p.pc[31 : 2] Ip.n 011 ext 1111 p] f etch(p, ϑ, eev)
ins-gen(p, ϑ,mode) execute(p, ϑ,mode)
[] post(p, ϑ)
[SWITCH 0] otherwise

where:
pexec.pc = c′.pc pexec.sprp = c′.sprp pexec.ppc = p.pc pexec.fetch = 1 pexec.n = p.n
pexec.jisr = 0

pexec.gpr =

p.gpr is′ , []
c′.gpr otherwise

and

updategpr(I, x) ≡ (load(I) ∧ rt(I) = x) ∨ (rmw(I) ∧ rd(I) = x)

ppost.gpr(x) =

R updategpr(I, x)
p.gpr(x) otherwise

ppost.n = p.n + 1

∀X ∈ {pc, ppc, sprp, fetch, jisr}. ppost.X = p.X
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4
Applying Store Buffer
Reduction to MIPS-86

In Chapter 3, we instantiate the SB reduction theorem with MMU at the ISA level. In this
chapter, we will apply the SB reduction theorem with MMU to MIPS-86 ISA. Thus, we need
the model stack in Figure 4.1. The bottom of the stack is the MIPS-86 ISA, which can be trivially
simulated by the instantiated SB machine. We omit the trivial simulation theorem in this thesis.
The SB machine can be simulated by the abstract machine with the SB reduction theorem in
Chapter 2. After that, we need a theorem to simulate the abstract machine with the SB reduced
MIPS-86 ISA.

First, we need to define the semantics of SB reduced MIPS-86 ISA with ownership. We in-
troduce a model named Concurrent system with shared memory and ownership (Cosmos model)
from [Bau14] as the top layer of the model stack in Figure 4.1. To define the safety condition
for the MMU access, we extend the ownership in [Bau14] with local page table sets for each
threads and the corresponding acquire and release sets of local page tables. Then we instantiate
the Cosmos model with SB reduced MIPS-86 ISA. Moreover, we will prove a simulation theo-
rem between the instantiated abstract machine and the SB reduced MIPS-86 Cosmos machine.
At last, we will prove that the ownership and safety is correctly transfered from SB reduced
MIPS-86 Cosmos machine to the abstract machine.

4.1 Cosmos Model

The Cosmos model is a generic model for machines that are concurrently accessing a shared
memory. The memory accesses of Cosmos model is governed by an ownership policy which is
a simplified version of the ownership in Chapter 2. The only difference is that, instead of a dy-
namic read-only set in Chapter 2, a static set for read-only portion of memory is considered. The
read-only memory contains the region where the machine code of the system program resides.
Therefore, the intuition behind the static read-only set is that we only consider an unswappable
code region in our system. In this section, we (i) extend the ownership model with the local page
tables (ii) add the acquire and release sets for local page table (iii) extend the safety condition
for the new ownership model (iv) reprove Lemma 4.13 and Lemma 4.18. The remaining portion
of this section is copied form [Bau14].
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Figure 4.1: Concurrent model stack

4.1.1 Signatures and Instantiation Parameters

We define the Cosmos model by introducing a Cosmos machine which is a concurrent system
of abstract automata operating on a shared memory. We call the different automata computation
units, or short units. They can be instantiated by, e.g., processors, devices, or the semantics of a
higher level program. In this work, however, we assume for simplicity that all units are instan-
tiated with the same kind of automaton. Units are only communicating via a shared memory.
However we have external input signals to allow for the treatment of external communication
and non-determinism.

Definition 4.1 (Cosmos model Machine Signature) A Cosmos machine S is given by a tuple

S = (A,V,R, nu,U,E, reads, δ,IO,IP) ∈ S

with the following components:

• A,V - set of memory addresses and set of memory values, any function m : A → V is
called a memory, any partial function m : A⇀ V is a partial memory.

• R ⊆ A - set of read-only addresses (part of the ownership state)

• nu - the number of computation units in the machine

• U - set of computation unit states

• E - set of external inputs for the units

• reads : U × (A → V) × E → 2A - the set of memory addresses read by the next step
from the given unit configuration, global memory, and external input. This set is called
the reads-set.
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• δ : U × (A⇀ V) × E → U × (A⇀ V) - the transition function for the units; takes unit
state, a partial memory, and external input; results in a new unit state as well as another
partial memory. As the input partial memory, we will provide the shared memory being
restricted to the reads-set of the step. The output partial memory represents the updated
part of memory for the step.

• IO : U × (R → V) × E → B - denotes whether the next step of the unit is an IO
step. IO steps represent synchronized interactions with the environment (i.e., all other
computation units). Consequently, they include (but are not limited to) all atomic accesses
to concurrently accessed data structures in memory, e.g., locks and other synchronization
mechanisms. Whether the next step of a unit is an IO step, may depend on memory but
only on the read-only portion.

• IP : U × (R → V) × E → B - specifies the desired interleaving-points for the units,
i.e., states of the computation before which we allow steps of other units to be interleaved.
Whether a unit is in an interleaving-point, may depend on memory but only on the read-
only portion.

In order to give an intuition for the intended meaning of the components, we consider an
instantiation with a 32-bit multiprocessor system running in untranslated mode. For a word-
addressable memory, we set A = B30 and V = B32. The read-only set R contains the region
where the machine code of the system program resides. The unit stateU contains all processor
core registers, and we use E to model external device interrupt signals. The reads-set always
contains the address pointed to by the program counter (or instruction pointer, respectively).
Moreover in case of a load instruction, the targeted addresses also contribute to the reads-set.
The δ-function then encodes the semantics of the underlying instruction set architecture (ISA).
The IO steps are defined as the shared memory accesses.

Note that in the Cohen-Schirmer theory and Chapter 2 IO memory instructions are denoted
as volatile accesses. However to avoid confusion with the notion of volatile accesses on the C
level we rename the concept here.

4.1.2 Configurations

Definition 4.2 (Machine State) The machine state M of a Cosmos machine S is a pair

M = (u,m) ∈ MS

where u : [0 : nu − 1]→ U maps unit indices to their unit states and m : A → V is the state of
the memory.

Definition 4.3 (Ownership State) The ownership state G (ghost state) of a Cosmos machine S
is a tuple

G = (O,Pt,S) ∈ GS

where O : [0 : nu − 1] → 2A maps unit indices to the corresponding units’ sets of owned
addresses (owns-set), Pt : [0 : nu − 1] → 2A maps unit indices to the corresponding units’ sets
of local page table addresses and S ⊆ A is the set of shared writable addresses.
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Now we can define the configuration of the overall Cosmos machine.

Definition 4.4 (Cosmos Machine Configuration) A configuration C of Cosmos model S is
given as a pair

C = (M,G) ∈ KS

consists of machine state M ∈ MS and ownership state G ∈ GS .

For p ∈ [0 : nu − 1] and unit ∈ {core,mu} we use the following shorthands:

C.up ≡ C.M.u(p) C.m ≡ C.M.m

C.Op ≡ C.G.O(p) C.S ≡ C.G.S

C.Ptp ≡ C.G.Pt(p)

readsp(C, in) ≡ readsp(C.M, in) ≡ reads(C.M.u(p),C.M.m, in)

IOp(C, in) ≡ IOp(C.M, in) ≡ IO(C.M.u(p),C.M.m|R, in)

IPp(C, in) ≡ IPp(C.M, in) ≡ IP(C.M.u(p),C.M.m|R, in)

Moreover, for defining the semantics, we need to know which addresses are written in a step of
the Cosmos machine.

Definition 4.5 (Writes-set of a machine step) For a given Cosmos model S with configuration
C ∈ MS and an input in ∈ E we can determine the set of written addresses in the corresponding
step of machine p from the result of the delta function. This so-called writes-set of machine p
is obtained with the following function.

writesp(C, in) = dom(m′) where (u′,m′) = δ(C.up,C.m|readsp(C,in), in)

Note that the writes-set only depends on the part of memory that is read in the step. If readsp(C, in) =

∅ then writesp(C, in) = ∅.

4.1.3 Restrictions on Instantiated Parameters

Not all parameters of a Cosmos model can be instantiated arbitrarily. In order to obtain a mean-
ingful model, there is one constraint on the reads-set of Cosmos model computation units.

Definition 4.6 (Instantiation Restriction for reads) By the predicate instar we require that the
reads-set contains all addresses upon whose memory contents it depends. For any Cosmos
machine S let u ∈ U be a computation unit state, m,m′ ∈ (A → V) shared memories, and
in ∈ E be a suitable input for a step of the unit. If the memory contents agree on reads-set
Read = S .reads(u,m, in), then also the reads-set wrt. m′ agrees with R.

instar(S ) ≡ ( m′|Read = m|Read → S .reads(u,m′, in) = Read )

This property is needed for instantiations that incorporate a series of read accesses in one unit
step. There the first reads can influence which addresses are read in later parts of the step,
as in the processor instantiation example above. The reads-set must thus include all relevant
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addresses to determine which addresses are read. That means conversely that it only depends on
the portion of memory that was read.

In order to be able to deduce that a machine performs the same step after reordering (by
exploiting that the content of the memory region given by the reads-set is unchanged and thus
also the same addresses are read), the property on the reads-set is crucial because same steps
perform same update to the memory region given by the writes-set.

Thus, from now on, when we mention a Cosmos model S , we always assume that restriction
instar(S ) holds.

4.1.4 Semantics

Units of the Cosmos machine execute according to their transition functions. A scheduling
input decides which machine performs the next step. We assume ownership inputs that specify
changes to the ownership state. These ownership inputs are given by the verification engineer
annotating the program.

Definition 4.7 (Cosmos Model Transition Function) For a Cosmos machine S , we define tran-
sition function

∆ : KS × [0 : nu − 1] × E × (2A)5 → MS

which takes a configuration C, a scheduling input p, an external input in ∈ E, the set A of
acquired addresses, the set L of acquired local addresses (which should be a subset of A), the
set R of released addresses, the set Apt of acquired address for local page table and the set Rpt

of released address from local page table to perform a step of unit p on its state, the common
memory, and the ownership state. First, however, we consider the transition on the machine and
ownership states separately.

With (u′,m′) = δ(M.u(p),M.m|reads(M.u(p),in), in) and munchanged = M.m|A\dom(m′) we define
transition function

∆t(M, p, in) = (M.u[p 7→ u′],m′′)

on the machine state. In which we have

m′′(x) =

m′(x) x ∈ dom(m′)
munchanged otherwise

Moreover with

O′ = G.Op ∪ A \ R

Pt′ = G.Ptp ∪ Apt \ Rpt

S′ = G.S ∪ R ∪ Rpt \ (L ∪ Apt)

we define the ownership transfer function:

∆o(G, p, (A, L,R, Apt,Rpt)) ≡ (G.O[p 7→ O′],G.O[p 7→ Pt′],S′)

Now the overall transition function for Cosmos machine configurations is defined by:

∆(C, p, in, (A, L,R, Apt,Rpt)) ≡ (∆t(C.M, p, in),∆o(C.G, p, (A, L,R, Apt,Rpt))
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The scheduling parameter p determines which unit is going to perform a computation step ac-
cording to transition function δ consuming external input in, updating the written part of memory
accordingly. The ownership transfer inputs (A, L,R, Apt,Rpt) are used to update the owned ad-
dresses and local page table of p and the set of shared-writable addresses.

4.1.5 Computations and Step Sequence Notation

In this section, we describe a computation not by the sequence of states it produces but by
the executed sequence σ of steps from a certain alphabet. In our case, the alphabet contains
transition information and ownership annotation defined as follows.

Definition 4.8 (Step Information) We define the set ΣS of step information of a Cosmos ma-
chine S where

α = (s, in, io, ip, A, L,R, Apt,Rpt) ∈ ΣS

describes a Cosmos machine step, containing the following transition information

• α.s ∈ [0 : nu − 1] - the scheduling parameter

• α.in ∈ E - the external input for the step

• α.io ∈ B - marks the step as an IO operation

• α.ip ∈ B - marks the step as interleaving point of the reordered computation

for which we introduce the type:

ΘS = [0 : nu − 1] × E × B × B

Additionally, we have the following ownership transfer information for the step:

• α.A ⊆ A - the set of acquired addresses

• α.L ⊆ A - the set of acquired local addresses

• α.R ⊆ A - the set of released addresses

• α.Apt ⊆ A - the set of acquired page table addresses

• α.Lpt ⊆ A - the set of released page table addresses

Ownership transfer information is of type:

ΩS = (2A)5

Below we define projections, mapping step information α to transition information and owner-
ship transfer information.

α.t = (α.s, α.in, α.io, α.ip) α.o = (α.A, α.L, α.R, α.Apt, α.Rpt)
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Note that the step information α contains not only the necessary inputs for the Cosmos machine
step but also the flags α.ip and α.io which will be used as history information for bookkeeping
in the order reduction proof. For t ∈ ΘS , M ∈ MS and X ∈ {IO,IP} we define shorthands
X(M, t) = X(M.u(t.s),M.m|R, t.in).

Definition 4.9 (Step Notation) The notation M
t
7→ M′ denotes that transition t ∈ ΘS is executed

from machine state M, resulting in M′. Additionally t.io corresponds to the values of the IO
predicate and t.ip corresponds with the value of the IP predicate.

M
t
7→ M′ ≡ M′ = ∆t(M, t.s, t.in) ∧ IO(M, t) = t.io ∧ IP(M, t) = t.ip

For steps α ∈ ΣS which include ownership transfer information we define a similar notation for
the Cosmos machine transition from configuration C into C′.

C
α
7→ C′ ≡ C.M

α.t
7→ C′.M ∧C′.G = ∆o(C.G, α.s, α.io)

The definitions naturally extend to step sequences ρ ∈ Σ∗S ∪ Θ∗S by induction:

X
ρ
−→ X′ ≡ (∃X′′, τ, α. ρ = τα ∧ X

τ
−→ X′′

α
7→ X′) ∨ (ρ = ε ∧ X = X′)

We use σ ∈ Σ∗S , θ ∈ Θ∗S , and o ∈ Ω∗S to tell step sequences from transition sequences and
ownership transfer sequences. A computation of Cosmos machine S can be performed with
or without the ownership information since this is ghost, or specification state, respectively. A
pair (X, ρ) ∈ (KS × Σ∗S ) ∪ (MS × Θ∗S ) is then considered a Cosmos machine computation iff the
following predicate holds:

comp(X, ρ) ≡ ∃X′ ∈ KS ∪MS . X
ρ
−→ X′

We extend our step projection functions to step sequences, by mapping sequences of step infor-
mation σ to transition and ownership transfer sequences.

σ.t ≡ σ0.t · · ·σ|σ|−1.t σ.o ≡ σ0.o · · ·σ|σ|−1.o

For converting a pair of transition sequence θ and ownership transfer sequence o into a step
sequence σ we use the construct 〈θ, o〉 which gives us a sequence σ such that |σ| = |θ| = |o| and
σ.t = θ ∧ σ.o = o. In particular then σ = 〈σ.t, σ.o〉 holds.

4.1.6 Ownership Policy

In this subsection, we present a simplified version, compared to the one in Chapter 2, of own-
ership model and safety condition. All the access policy are identical to the corresponding one
defined in the safety condition in section 2.2.3 except that we do not consider the page table set
pt or the ownership transfer related to the read-only set.

Definition 4.10 (Ownership Memory Access Policy) Given a bit io ∈ B, a reads-set Read, a
writes-set Write, a set of owned addresses O, a set of local page table address Pt, the set of
shared addresses S, the set of read-only addresses R, and the set of addresses owned by other
machines O, we enforce the following ownership memory access policy given by the predicate
policyacc(io,Read,Write,O,Pt,S,R,O):
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1. local steps (i) read only owned or read-only addresses and (ii) write only owned unshared
addresses

/io→ (i) Read ⊆ O ∪ R
(ii) Write ⊆ O \ S

2. IO-steps may (i) read owned, shared and read-only addresses while they (ii) may write
owned addresses and shared addresses which are not owned by another machine.

io→ (i) Read ⊆ O ∪ S ∪ Pt ∪ R
(ii) Write ⊆ O ∪ Pt ∪ (S \ O)

Definition 4.11 (Ownership Transfer Policy) Given a bit io ∈ B, a set of owned addresses O,
the set of shared addresses S, the set of addresses owned by other machines O, as well as the
updated sets for the owned and shared addresses O′ and S′, we restrict ownership transfer by the
predicate policytrans(io,O,Pt,S,O, (A, L,R, Apt,Rpt)).

1. The ownership-state may not be changed by local steps.

/io→ A = ∅ ∧ L = ∅ ∧ R = ∅ ∧ Apt = ∅ ∧ Rpt = ∅

2. For IO-steps, the ownership-state is allowed to change as long as the step (i) acquires
addresses which are shared unowned or already owned by the executing unit or released
addresses from its local page table set and (ii) releases only owned addresses. And (iii)
the acquired local addresses must be a subset of the acquired addresses and (iv) one may
not acquire and release the same address at a time. Moreover (v) the page table acquired
addresses are shared and unowned or already in the executing unit’s local page table set or
released from its owned set and (vi) it is disjoint with the acquired set. (vii) The released
page table set is a subset of local page table set of the executing unit and (viii) disjoint
with the acquired page table set.

io→ (i) A ⊆ S \ O ∪ O ∪ Rpt

(ii) R ⊆ O

(iii) L ⊆ A

(iv) A ∩ R = ∅

(v) Apt ⊆ S \ O ∪ Pt ∪ R

(vi) Apt ∩ A = ∅

(vii) Rpt ⊆ Pt

(viii) Rpt ∩ Apt = ∅

Definition 4.12 (Ownership Invariant) We state an ownership invariant inv on ownership state
G ∈ GS of a Cosmos model, requiring (i) the owns-sets and the local page table sets of different
units to be mutually disjoint and the owns-set and the local page table set of the same unit also
to be disjoint and (ii) that read-only addresses may not be owned or in a local page table set or
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shared-writable and the local page table sets are not shared. Moreover (iii) the complete address
space is partitioned into the ownership sets as well as shared writable and read-only addresses.
Moreover we set inv(C) ≡ inv(C.G) for all C ∈ KS .

inv(C) ≡ (i) ∀p, q. p , q→ G.Op ∩ G.Oq = ∅ ∧

G.Ptp ∩ G.Ptq = ∅ ∧

G.Ptp ∩ G.Oq = ∅ ∧

G.Ptp ∩ G.Op = ∅

(ii) ∀p. G.Op ∩ R = ∅ ∧ G.Ptp ∩ R = ∅ ∧

G.S ∩ R = ∅ ∧ G.S ∩ G.Ptp = ∅

(iii) A =
⋃

p∈[0:nu−1]

G.Op ∩ G.Ptp ∪ G.S ∪ R

Lemma 4.13 (Ownership Transfer Properies) Given a configuration C ∈ CS of a Cosmos
machine S where the ownership invariant holds. Let C′ = ∆(C, p, in, (A, L,R, Apt,Rpt)) for given
step information (p, in, io, ip, A, L,R, Apt,Rpt) ∈ ΣS . If the step obeys policytrans and inv(C), we
can show (i) that addresses are only transferred between the owned addresses of p and the shared
addresses, (ii) the new set of addresses owned by p is disjoint from the set of addresses owned by
all other units, (iii) the new set of addresses owned by of p is disjoint from the local page table
sets of all other units, (iv) the new local page table set of p is disjoint from the set of addresses
owned by all other units, (v) the new local page table set of p is disjoint from the local page
table sets of all other units, and (vi) the new local page set of p is disjoint from the new set of
addresses owned by p. We let O =

⋃
q,p C.Oq and Pt =

⋃
q,p C.Ptq then

(i) C′.Ptp ∪C′.Op ∪C′.S = C.Ptp ∪C.Op ∪C.S

(ii) O ∩C′.Op = ∅

(iii) Pt ∩C′.Op = ∅

(iv) O ∩C′.Ptp = ∅

(v) Pt ∩C′.Ptp = ∅

(vi) C′.Ptp ∩C′.Op = ∅

Proof: By definition of ∆ we have:

∀X ∈ {O,Pt}, q , p. C′.Xq = C.Xq

C′.Op = C.Op ∪ A \ R

C′.Ptp = C.Ptp ∪ Apt \ Rpt

C′.S = C.S ∪ R ∪ Rpt \ (L ∪ Apt)
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• Claim (i). First, we consider C′.Op ∪C′.S.

C′.Op ∪C′.S = C.Op ∪ A \ R ∪C.S ∪ R ∪ Rpt \ (L ∪ Apt)

= C.Op ∪ A \ R ∪ R ∪C.S ∪ Rpt \ (L ∪ Apt)

= C.Op ∪ A ∪C.S ∪ Rpt \ (L ∪ Apt)

Then, we have:

C′.Ptp ∪C′.Op ∪C′.S = C.Ptp ∪ Apt \ Rpt ∪C.Op ∪ A ∪C.S ∪ Rpt \ (L ∪ Apt)

= C.Ptp ∪ Apt \ Rpt ∪ Rpt ∪C.Op ∪ A ∪C.S \ (L ∪ Apt)

= C.Ptp ∪ Apt ∪C.Op ∪ A ∪C.S \ (L ∪ Apt)

= C.Ptp ∪ Apt ∪C.Op ∪ A ∪C.S \ L \ Apt

With policytrans, we have:
L ⊆ A ∧ A ∩ Apt = ∅ (4.14)

Thus, we can conclude:

C′.Ptp ∪C′.Op ∪C′.S = C.Ptp ∪ Apt ∪C.Op ∪ A ∪C.S \ L \ Apt

= C.Ptp ∪C.Op ∪ A ∪C.S \ L ∪ Apt \ Apt

= C.Ptp ∪C.Op ∪ A ∪C.S \ L

With (4.14), we can get:

C.Ptp ∪C.Op ∪ A ∪C.S \ L ⊆ C.Ptp ∪C.Op ∪ A ∪C.S

C.Ptp ∪C.Op ∪ A ∪C.S \ L ⊇ C.Ptp ∪C.Op ∪ A ∪C.S \ A

= C.Ptp ∪C.Op ∪C.S

Also, with policytrans, we have:

A ⊆ C.S \ O ∪C.Op ∪ Rpt

⊆ C.S \ O ∪C.Op ∪C.Ptp

⊆ C.S ∪C.Op ∪C.Ptp

We can conclude:

C.Ptp ∪C.Op ∪ A ∪C.S \ L ⊆ C.Ptp ∪C.Op ∪ A ∪C.S

⊆ C.Ptp ∪C.Op ∪C.S

As a consequence, we have:

C′.Ptp ∪C′.Op ∪C′.S = C.Ptp ∪C.Op ∪C.S

164



• Claim (ii). For the claim (ii), we need to use the invariant about the disjointness of own-
ership sets in C, in particular we have O ∩C.Op = ∅. Then it follows:

O ∩C′.Op = O ∩ (C.Op ∪ A \ R)

= O ∩ ((C.Op \ R) ∪ A)

= (O ∩ (C.Op \ R)) ∪ (O ∩ A)

From policytrans, we can get:

A ⊆ C.S \ O ∪C.Op ∪ Rpt

⊆ C.S \ O ∪C.Op ∪C.Ptp

With inv(C), we can conclude:

A ∩ O = ∅

Thus, we have:

O ∩C′.Op = O ∩ (C.Op \ R)

⊆ O ∩C.Op

= ∅

• Claim (iii).

Pt ∩C′.Op = Pt ∩ (C.Op ∪ A \ R)

= Pt ∩ ((C.Op \ R) ∪ A)

= (Pt ∩ (C.Op \ R)) ∪ (Pt ∩ A)

From policytrans, we can get:

A ⊆ C.S \ O ∪C.Op ∪ Rpt

⊆ C.S \ O ∪C.Op ∪C.Ptp

With inv(C), we can conclude:

A ∩ Pt = ∅

Thus, we have:

Pt ∩C′.Op = Pt ∩ (C.Op \ R)

⊆ Pt ∩C.Op

= ∅
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• Claim (iv).

O ∩C′.Ptp = O ∩ (C.Pt ∪ Apt \ Rpt)

= O ∩ ((C.Pt \ Rpt) ∪ Apt)

= (O ∩ (C.Pt \ Rpt)) ∪ (O ∩ Apt)

From policytrans, we can get:

Apt ⊆ C.S \ (C.Op ∪ O) ∪C.Ptp ∪ R

Also with inv(C), we can get:

O ∩ Apt = ∅

Thus, we have:

O ∩C′.Ptp = O ∩ (C.Ptp \ Rpt)

⊆ O ∩C.Ptp

= ∅

• Claim (v). This claim can be proved with analogous steps of previous cases.

• Claim (vi).

C′.Ptp ∩C′.Op = (C.Ptp ∪ Apt \ Rpt) ∩ (C.Op ∪ A \ R)

⊆ (C.Ptp ∪ Apt) ∩ (C.Op ∪ A)

With policytrans and inv(C), we can get:

C.Ptp ∩C.Op = ∅ ∧ Apt ∩ A = ∅

We need to prove:
Apt ∩C.Op = A ∩C.Ptp = ∅ (4.15)

From policytrans, we can get:

Apt ⊆ C.S \ (C.Op ∪ O) ∪C.Ptp ∪ R

A ⊆ C.S \ O ∪C.Op ∪ Rpt

With inv(C) we can conclude (4.15).

�

We subsume both the ownership access policy as well as the ownership transfer policy in a
single predicate.
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Definition 4.16 (Ownership-Safety of a Step) We consider a step of a Cosmos machine S from
configuration C ∈ MS with step information α ∈ ΣS to be safe with respect to the ownership
model (ownership-safe) when for

Read = core-reads(C.u(α.s),C.m, α.in)

Write = core-writes(C.u(α.s),C.m, α.in)

and O =
⋃

q,α.s C.Oq the following predicate is fulfilled.

sa f estep(C, α) ≡ policyacc(α.io,Read,Write,C.Oα.s,C.Ptα.s,C.S,R,O) ∧

policytrans(α.io,C.Oα.s,C.S,O, α.o)

Note that we will instantiate the core-reads and core-writes in the next section. The inductive
extension of the notation for step sequences σ ∈ Σ∗S is straight forward.

Definition 4.17 (Ownership-Safety of a Computation) For a configuration C of a Cosmos model
S , and τ ∈ Σ∗S , α ∈ ΣS we define

sa f e(C, ε) ≡inv(C)

sa f e(C, τα) ≡sa f e(C, τ) ∧ ∃C′,C′′. C
τ
−→ C′

α
7→ C′′ ∧ sa f estep(C′, α)

Lemma 4.18 (Ownership-Safe Steps Preserve the Ownership Invariant) For configurations
C,C′ ∈ CS of a Cosmos model and step sequence σ ∈ Σ∗S , we have:

sa f e(C, σ) ∧C
σ
7−→ C′ → inv(C′)

Proof: By induction on n = |σ|. For n = 0 we have σ = ε and C = C′. By definition sa f e(C, ε)
collapses to inv(C) hence inv(C′) follows directly.

In the induction step we extend σ from length n − 1 to n. We introduce the intermediate
configuration C′′ as follows.

C
σ[0:n−1)
−→ C′

σn−1
7→ C′′

Induction hypothesis yields inv(C′). The ownership invariants can only be broken by an unsafe
modification of the ownership state in step σn−1. In particular we need to consider the set of
shared addresses C′.S, the sets of owned addresses C′.Op and the local page table sets C′.Ptp

for all machine p. Note that by construction a machine can only modify its own ownership set,
thus we have:

∀q , σn−1.s. C′.Oq = C′′.Oq ∧C′.Ptq = C′′.Ptq

Moreover the modification of the ownership configuration is regulated by the policytrans predi-
cate which is part of the definition of sa f estep(C′, σn−1). The sets C′.S and C′.Oσn−1.s may not
be changed by local steps, then invariants hold by induction hypothesis. For IO steps of σn−1.s
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by Lemma 4.13 we obtain the following two necessary requirements for safe ownership transfer.

(i) C′.Ptp ∪C′.Op ∪C′.S = C′′.Ptp ∪C′′.Op ∪C′′.S

(ii) O ∩C′′.Op = ∅

(iii) Pt ∩C′′.Op = ∅

(iv) O ∩C′′.Ptp = ∅

(v) Pt ∩C′′.Ptp = ∅

(vi) C′′.Ptp ∩C′′.Op = ∅

Here O =
⋃

q,σn−1.s C′.Oq and Pt =
⋃

q,σn−1.s C′.Ptq denotes the set of addresses owned by all
other machines and the local page tables of all other machines in configuration C′. As explained
above O and Pt is not affected by σn−1. We now prove the parts of ownership invariant inv(C′′)
one by one.

1. We need to prove:

∀p, q. p , q→C′′.Op ∩C′′.Oq = ∅

C′′.Ptp ∩C′′.Ptq = ∅

C′′.Ptp ∩C′′.Oq = ∅

C′′.Ptp ∩C′′.Op = ∅

If neither p nor q equals σn−1.s the claim follows immediately from ∀X ∈ {O,Pt},Y ∈
{p, q}. C′.XY = C′′.XY , and inv(C′). Otherwise we assume wlog. that p = σn−1.s, thus by
C′.Xq = C′′.Xq and the definition of X we get C′′.Xq ⊆ X . From requirement (ii) to (vi)
we can conclude this claim.

2. ∀p.C′′.Xp∩R = ∅ - If p , σn−1.s we have C′′.Xp = C′.Xp and by invariant C′.Xp∩R = ∅,
hence C′′.Xp∩R = ∅ holds. Otherwise, for p = σn−1.s, from necessary requirement (i) we
get C′′.Xσn−1.s ⊆ C′.Oσn−1.s∪C′.S∪C′.Ptσn−1.s, however by ownership invariant C′.Xσn−1.s

and C′.S are disjoint from R. Therefore also C′′.Xσn−1.s is disjoint from R.

3. C′′.S∩R = ∅ - This follows with the same argumentation as in the second part of the case
above for C′′.S instead of C′′.Xσn−1.s.

4. C′′.S ∩C′′.Ptp = ∅ -From the semantics, we have:

∀q , σn−1.s. C′′.Ptq = C′.Ptq
C′′.Ptσn−1.s = C′.Ptσn−1.s ∪ Apt \ Rpt

C′′.S = C′.S ∪ R ∪ Rpt \ (L ∪ Apt)

with inv(C′) and policytrans, we can imply C′′.S ∩C′′.Ptp = ∅.

5. A =
⋃

p∈Nnp C′′.Ptp ∪ C′′.Op ∪ C′′.S ∪ R - The invariant says that all addresses of A
are read-only, shared-writable, owned by some machine or in some machine’s local page
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table. Using X =
⋃

q,σn−1.s C′.Xq =
⋃

q,σn−1.s C′′.Xq this notion can be reformulated as
follows:

R ∪C′′.S ∪C′′.Oσn−1.s ∪ O ∪C′′.Ptσn−1.s ∪ Pt = A

We already have R ∪ C′.S ∪ C′.Oσn−1.s ∪ O ∪ C′.Ptσn−1.s ∪ Pt = A by inv(C′). By (i) on
the ownership transfer we have

C′.S ∪C′.Oσn−1.s ∪C′.Ptσn−1.s = C′′.S ∪C′′.Oσn−1.s ∪C′′.Ptσn−1.s

and the invariant on C′′ stated above follows immediately. �

We show not only the ownership-safety but also the arbitrary verified safety properties on the
concurrent system. In general, safety properties constrain finite behavior of a Cosmos machine
and must hold in every traversed state of a Cosmos machine computation. Thus we can represent
them as an invariant P : CS → B on the Cosmos machine configuration. We extend our safety
predicate accordingly:

sa f eP(C, σ) ≡ sa f e(C, σ) ∧ ∀C′. C
σ
−→ C′ → P(C′)

Then we have the following predicates denoting the verification of properties for a particular
Cosmos model.

Definition 4.19 (Verified Cosmos machine ) We define the predicate safety(C, P) which states
that for all Cosmos machine computations starting in C we can find an ownership annotation
such that the computation is safe and preserves the given property P.

safety(C, P) ≡ ∀θ. comp(C.M, θ) → ∃o ∈ Ω∗S . sa f eP(C, 〈θ, o〉)

4.2 SB Reduced MIPS-86 Instantiation

In this section we will instantiate the Cosmos model model with the SB reduced MIPS-86 ISA.
The instantiation needs to refine the components of a Cosmos machine S ∈ S, which we list
again below as a reminder.

S = (A,V,R, nu,U,E, reads, δ,IO,IP)

Moreover for the instantiation we have do discharge instantiation restriction instar(S ) on the
reads-function which determines the reads-set for a step of a computation unit.

• S n
MIPS-86.A = B30 and S n

MIPS-86.V = B32 — The memory is word-addressable and con-
tains 230 memory cells.

• S n
MIPS-86.R = Aphy-code — We assume that all code to be executed lies in an area Aphy-code ⊆

A and we set the read-only addresses to be identical with this area. Thus, the self-
modifying code can be excluded by the ownership access policy.

• S n
MIPS-86.nu = np — We have the as many computation units as the number of threads in

the abstract machine and the SB machine in Chapter 2.
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• S n
MIPS-86.U = Ksbr-pro ×N×B× (T⇀ V) — Every computation unit consists a sequential

MIPS processor p, a counter n, a dirty bitD and a temporary ϑ which is a partial function
from {I,R} × N to a 30-bit address a. For all X ∈ {I,R} in (X, n) we write Xn for short.
Initially, all Xn map to ⊥. For all Y ∈ {pc, gpr, spr} we simply write u.p.Y instead of
u.p.core.Y .

• S n
MIPS-86.E = Σsbr-seq —The input of processor transition function. Recall that the input is

defined as:

Σseq = {core} × Kwalk × Kwalk × B
256

∪ {tlb-create} × B20

∪ {tlb-extend} × Kwalk

∪ {tlb-accessed-dirty} × Kwalk

Note that, depending on the input, the computation unit of a Cosmos machine can make a:

– core step to execute an instruction or interrupt.

– TLB create step to create a new walk.

– TLB extend step to extend an existing walk.

– TLB set access-dirty step to set the access and dirty bits of a PTE.

• S n
MIPS-86.reads — Before defining the reads set, we have to define some auxiliary predi-

cates and shorthands when in = (core,wI ,wR, eev).

– mode ≡ u.spr(mode)[0]

– trqI = (u.pc[31 : 2], 011). Translation request for instruction fetch.

– pff ≡ f ault(pte(m,wI), trqI,wI). Signals whether there is a page-fault-on-fetch for
the given walk wI and the translation request trqI.

– pmaI =

wI .ba ◦ u.pc[11 : 2] mode
u.pc[31 : 2] otherwise

. The physical memory address for in-

struction fetch of processor core i (which is only meaningful if no page-fault on
instruction fetch occurs),

– I = m(pmaI). The instruction fetched from memory. Because the self-modifying
code is forbidden, we can directly read from memory (in case of a page-fault-on-
fetch the value of I has no further relevance).

– trqEA = (ea(u.p.core, I)[31 : 2], (store(I) ∨ rmw(I)) ◦ 10). The translation request
for the effective address.
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– pfls ≡ mode ∧ f ault(pte(m,wR), trqEA,wR) ∧ ¬pff ∧ (store(I) ∨ load(I) ∨ rmw(I)).
The page-fault-on-load-store signal.

– pmaEA =

wR.ba ◦ ea(u.p.core, I)[11 : 2] mode
ea(u.p.core, I)[31 : 2] otherwise

. The physical memory ad-

dress for the effective address.

The jump to interrupt service routine predicate is defined as:

jisr f (u, eev, pff) ≡ jisr f (u.p.core, eev, pff)

jisrx(u, I, eev, pfls) ≡ jisrx(u.p.core, I, eev, pfls)

jisr(u, I, eev, pff, pfls) ≡ jisr f (u, eev, pff) ∨ jisrx(u, I, eev, pfls)

Depending on the executed instructions and the interrupt level different sets of addresses
are loaded from memory.

core-reads(u,m, in)

=



{pmaI, pmaEA} in = (core,wI ,wR, eev)∧
¬ jisr(u, I, eev, pff, pfls) ∧ (load(I) ∨ rmw(I))

{pmaI} in = (core,wI ,wR, eev) ∧ ¬ jisr(u, I, eev, pff, pfls)∧
¬(load(I) ∨ rmw(I))

{pmaI} in = (core,wI ,wR, eev) ∧ jisrx(u, I, eev, pfls) ∧
¬ jisr f (u, eev, pff)

∅ otherwise

S n
MIPS-86.reads(u,m, in)

=


core-reads(u,m, in) in = (core,wI ,wR, eev)
{ptea(w)} in = (tlb-extend,w)
{ptea(w)} in = (tlb-accessed-dirty,w)

We need to prove the predicate instar(S n
MIPS-86) is for our instantiation. Let

Read = S n
MIPS-86.reads(u,m, in)

then

m|Read = m′|Read → S n
MIPS-86.reads(u,m′, in) = Read

Proof Let Read′ = S n
MIPS-86.reads(u,m′, in). From the definition of S n

MIPS-86.reads we
can conclude that Read and Read′ only depend on the computation unit u and external
input in. As a consequence, Read trivially equals to Read′. �
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• S n
MIPS-86.δ — As in Chapter 3, Aio is the set of shared memory access instruction virtual

addresses. In the Cosmos machine the δ-function of the computation units gets only a
partial memory as an input, that is determined by the reads-set. However the δm is defined
for a memory that is a total function. Nevertheless we can transform any partial memory
function m : B30 ⇀ B32 into a total one by filling in dummy values.

dme = λa ∈ B30.

032 : m(a) = ⊥

m(a) : otherwise

In the definition we let

R =

⊥ pff ∨ pfls
m(pmaEA) otherwise

then define u′ and m′ as:

u′.p = δsbr-seq((u.p, dme), in).p

u′.n = u.n + 1

u′.D =


True in = (core,wI ,wR, eev) ∧ store(I) ∧ u.pc[31 : 2] ∈ Aio

False in = (core,wI ,wR, eev) ∧ sbf (I) ∨ jisr(u, I, eev, pff, pfls)
u.D otherwise

u′.ϑ =



ϑ′ in = (core,wI ,wR, eev) ∧
¬ jisr(u, I, eev, pff, pfls) ∧ (load(I) ∨ rmw(I))

u.ϑ(Iu.n 7→ I) in = (core,wI ,wR, eev) ∧ ¬ jisr f (u, eev, pff) ∧
(¬ jisrx(u, I, eev, pfls)→ ¬load(I) ∧ ¬rmw(I))

u.ϑ otherwise

m′ = δsbr-seq((u.p, dme), in).m

where:

ϑ′ = u.ϑ(Iu.n 7→ I)(Ru.n 7→ lv(R, I))

sbf (I) ≡ rmw(I) ∨ m f ence(I) ∨ eret(I) ∨ invlpg(I) ∨ f lush(I) ∨ switch(I) ∨ wpto(I)

We define the set of written addresses W(u,m, in). A write operation is performed if
predicate wr(u,m, eev) holds.

wr(u,m, eev) ≡ (store(I) ∨ rmw(I) ∧ m(pmaEA) = u.p.gpr(rd(I))) ∧

¬ jisr(u, I, eev, pff, pfls)

core-writes(u,m, in) =

{pmaEA} in = (core,wI ,wR, eev) ∧ wr(u,m, eev)
∅ otherwise

W(u,m, in) =


core-writes(u,m, in) in = (core,wI ,wR, eev)
{ptea(w)} in = (set-accessed-dirty,w)
∅ otherwise
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We can define the transition function for MIPS computation units which returns the same
new core configuration and the updated part of memory. We define:

S n
MIPS-86.δ(u,m, in) = (u′,m′|W(u,dme,in))

• S n
MIPS-86.IO — Unlike the C level, in which the IO steps are the accesses to volatile

variables or calls to synchronization primitives (for example rmw), the choice IO steps
on ISA level are made by the verification engineer. We collect the virtual addresses of
the IO instructions in a set Aio. Then the definition of the IO steps on the ISA level is
straight forward.

S n
MIPS-86.IO(u,m, in) ≡

in = (core,wI ,wR, eev) ∧ ¬ jisr(u, I, eev, pff, pfls) ∧ u.pc[31 : 2] ∈ Aio

• S n
MIPS-86.IP— Similarly, what are the IP steps depends on the compiler and can not be

determined in the ISA level. We also collect the virtual address of the IP instructions in
a set Acp which is given by the verification engineer.

S n
MIPS-86.IP(u,m, in) ≡

in = (core,wI ,wR, eev) ∧ ¬ jisr(u, I, eev, pff, pfls) ∧ u.pc[31 : 2] ∈ Acp

Note that we assume an invariant on computations of Cosmos machine S n
MIPS-86, stating that

Aphy-code has the intended meaning, namely, that we only fetch instructions from this set of
addresses.

Definition 4.20 (Initial Configuration of SB reduced MIPS-86 Cosmos machine) For the ini-
tial configuration C0, we have

∀t, i ∈ [0 : np − 1]. C0.ui.n = 0 ∧C0.ui.ϑ(t) = ⊥

Definition 4.21 (Code Region Invariant) We define the invariant codeinv(C, Aphy-code) which
states that in all system states reachable from Cosmos machine configuration C ∈ KS n

MIPS-86

instructions are only fetched from code region Aphy-code ⊆ B
30.

∀τ,C′. C
τ
−→ C′ → ∀α. α.in = (core,wI ,wR, eev) ∧

¬ jisr f (C′.uα.s, eev, pff) ∧ pmaI′ ⊆ Aphy-code

in which

pmaI′ =

wI .ba ◦C′.uα.s.p.pc[11 : 2] C′.uα.s.p.spr(mode)[0]
C′.uα.s.pc[31 : 2] otherwise
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4.3 Application of SB Reduction with MMU to MIPS-86

In this section, we will prove the simulation between the instantiated abstract machine and the
SB reduced MIPS-86 Cosmos machine. First, we reduce the interleaving of the abstract machine.
Second, we instantiate the safety property P in the safety condition of the Cosmos machine in
Definition 4.19. Then, we introduce the coupling relation. Moreover, we prove the simulation
theorem.At last, we prove that the safety condition is transferred from the SB reduced MIPS-86
Cosmos machine to the abstract machine for the following reason: (i) in the model stack (Fig.
4.1), the ownership safety of low level should follow that of the high level. (ii) the transfer of
safety condition enables the application of SB reduction on the abstract level.

Note that, in this section, we only consider the simulation of finite computations because in
reality, every computation is finite.

4.3.1 Interleaving Reduction of Abstract Machine Computation

For the same reason as in Section 4.1, we restrict that the read-only set of the abstract machine
can not be changed. The restriction can simplify the following reordering proof in this section.
Also, we restrict that the read-only memory can not be written.

Definition 4.22 (Read-Only Invariant)

(c0 =⇒*
eev

c→ c0.ro = c.ro) ∧

(I = hd(c.is[i]) ∧ (W(I) ∨ RMW(I) ∧ I.cond(ϑ′)) ∧

pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r)→ pa < c.ro) ∧

(c
muw
==⇒i c′ → a < c.ro)

in which ϑ′ is defined in Definition 2.13 and a is the target address of the MMU write step of
thread i (

muw
==⇒i ).

We define the following shorthands for the rest of this section: nx = cx.p[i].n, Ix
isa = cx.ϑ[i](Inx),

Rx
isa = cx.ϑ[i](Rnx) and Ix = hd(cx.is[i]). Recall that according to our instantiation in Section

3.2.3, the execution of one instruction in the abstract machine without interruption can be divided
into the following phases: Initially, we have

Iisa = ⊥ ∧ c.is[i] = [] ∧ c.p[i].fetch

After the phase 1 program step, we get a new machine configuration c′.

I′isa = ⊥ ∧ ¬c′.p[i].fetch ∧ |c′.is[i]| = 1 ∧ nvR(I′)

After the phase 2 memory step we have a new machine configuration c′′ which satisfies:

I′′isa , ⊥ ∧ c′′.is[i] = [] ∧ ¬c′′.p[i].fetch

After the phase 3 program step, the new machine configuration c′′′ satisfies:

I′′′isa = I′′isa , ⊥ ∧ c′′′.p[i].fetch ∧

(¬gen-ins(I′′isa)→ c′′′.is[i] = []) ∧ (gen-ins(I′′isa)→ |c′′′.is[i]| = 1)
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where

gen-ins(Iisa) ≡load(Iisa) ∨ store(Iisa) ∨ rmw(Iisa) ∨ f lush(Iisa) ∨ m f ence(Iisa) ∨

eret(Iisa) ∨ switch(Iisa) ∨ wpto(Iisa) ∨ invlpg(Iisa)

Depending on weather c′′′.is[i] = [], the next step of thread i either performs a phase 4 memory
step or a phase 5 program step.

• c′′′.is[i] , []. After the phase 4 memory step we have a new machine configuration c4:

I4
isa = I′′isa , ⊥ ∧ c4.is[i] = [] ∧ c4.p[i].fetch

Then, after the following phase 5 program step, we get c5 which satisfies:

I5
isa = ⊥ ∧ c5.is[i] = [] ∧ c5.p[i].fetch

• c′′′.is[i] = []. After the phase 5 program step we reach a machine configuration c5′ :

I5′
isa = ⊥ ∧ c5′ .is[i] = [] ∧ c5′ .p[i].fetch

We define following auxiliary predicates to check the phase of a configuration.

phase1(c, i) ≡ c.p[i].fetch ∧ c.is[i] = [] ∧ Iisa = ⊥

phase2(c, i) ≡ ¬c.p[i].fetch ∧ c.is[i] , [] ∧ Iisa = ⊥

phase3(c, i) ≡ ¬c.p[i].fetch ∧ c.is[i] = [] ∧ Iisa , ⊥

phase4(c, i) ≡ c.p[i].fetch ∧ c.is[i] , []

phase5(c, i) ≡ c.p[i].fetch ∧ c.is[i] = [] ∧ Iisa , ⊥

Note that these predicates also hold when interrupts happen. From the semantics, we have that
after an interrupted program step, a mode switch instruction is generated and the fetch flag is
set. The next step of the same thread will be a phase 4 memory step. With the definition of
the predicates, we also have phase4. After a page fault step, the machine sets the fetch flag and
increases the counter. It means that the value of the temporary with respect to the current counter
is undefined. The page fault step also clears the instruction sequence. With the definition of the
predicates, we have phase1. According to the semantics, the next step of the same thread will
be a phase 1 program step.

We also define a function to check the thread i of an abstract machine configuration c is in
which phase:

phase(c, i) =



1 phase1(c, i)
2 phase2(c, i)
3 phase3(c, i)
4 phase4(c, i)
5 phase5(c, i)
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According to the definition of phase1,...,phase5, for a given c and i only one of the predicates
can be true and must be true. Thus, the function phase is well-defined.

Also, we define the code region invariant for the abstract machine. To reduce the overhead,
we do not want the instruction fetch operations to flush the SB. Thus, the instruction fetches are
performed by non-volatile reads. We assume that the physical address of pc is in the read-only
memory to maintain the ownership policy. From the semantics of the abstract machine, we know

Definition 4.23 (Code Region Invariant) We let I = hd(c.is[i]) then

∀c. phase(c, i) = 2→ atran(c.mmu[i], I.va, c.mode[i], I.r) ∈ c.ro

In this section, we will reduce the set of possible interleaving of the abstract machine compu-
tation. That means, we want to reorder the steps of abstract machine computation such that the
steps belong to the same round (from one phase 1 step until but not including the next phase 1
step. For detail see Section 3.2.) execute consecutively and maintain the thread-local order. We
call the consecutive execution of steps belong to the same round an interleaving block.

Every interleaving block can be a complete block or incomplete block. We give the formal
definition of complete and incomplete interleaving blocks.

Definition 4.24 (Complete Interleaving Block) c =⇒i
eev

* c′′ is a complete interleaving block of

thread i iff it satisfies one of the following:

• c
mu
==⇒i c′′. The block contains only one MMU step.

• ¬∃c1, c2. ¬(c1 = c ∧ c2 = c′′) ∧ c =⇒i
eev

* c1 mu
==⇒i c2 =⇒i

eev
* c′′. The block contains no MMU

steps at all. In this case, we also require:

1. ∀ j. phase(c, j) = 1. The block starts with a configuration in phase 1 of every thread.

2. ∀ j. phase(c′′, j) = 1. The block ends with a configuration in phase 1 of every thread.

3. ¬∃c′ < {c′′, c}. phase(c′, i) = 1 ∧ c =⇒i
eev

* c′ =⇒i
eev

* c′′. Between c and c′′ there exists

no configuration in phase 1 of thread i.

Definition 4.25 (Incomplete Interleaving Block) c =⇒i
eev

* c′′ is a incomplete interleaving block

of thread i iff it satisfies all of the following conditions:

• ∀ j. phase(c, j) = 1. The block starts with a configuration in phase 1 of every thread.

• phase(c′′, i) , i ∧ ∀ j , i. phase(c′′, j) = 1. The block ends with a configuration other
than phase 1 of thread i. Since the steps of thread i does not change the phases of other
threads , the phase of thread j , i is unchanged (Lemma 4.37).

• ¬∃c1, c2. ¬(c1 = c ∧ c2 = c′′) ∧ c =⇒i
eev

* c1 mu
==⇒i c2 =⇒i

eev
* c′′. The block contains no MMU

steps at all.
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• ¬∃c′ < {c′′, c}. phase(c′, i) = 1 ∧ c =⇒i
eev

* c′ =⇒i
eev

* c′′. Between c and c′′ there exists no

configuration in phase 1 of thread i.

To get the interleaving blocks, we reorder the computation in the following way: we do not
touch the MMU steps, the page fault steps, the phase 3 program steps which do not generate
instructions, and the phase 4 memory steps. We collect the steps which belong to the same
round together by moving them towards the untouched step. The semantics guarantee that there
exists only one untouched step in each round. After reordering, the order of interleaving blocks
is identical to the order of the untouched steps in the original computation.

To reorder the computation, we keep traversing the computation from the initial configuration
till the end configuration, for each configuration c if it makes a step of thread i, we do a case
split:

1. phase(c, i) = 1. In this case, we postpone the step as long as possible until we reach
another non-MMU step of thread i. According to the semantics, this step is a phase 2
memory step or a phase 4 memory step. The phase 1 program step can be postponed
because it only depends on the thread-local components, which can not be changed by
the steps of others or the MMU step of thread i. Also, the program step does not change
the global components and thread-local components of other threads as well as the MMU
state of thread i. After the postponing, we start to handle the next configuration reachable
via the postponed step.

2. phase(c, i) = 2. In this case, from the semantics we know that the machine can perform a
memory step or a page fault step. Then we do a further case split:

• If the machine makes a memory step. From the semantics, we can get the machine
fetches an instruction in this step. As in the previous case, we also postpone this
step as long as possible until we reach another non-MMU step of thread i, which is
a phase 3 program step according to the semantics. Because of the TLB, which is
also a thread-local component and can not be modified by other threads, we can get
the same address translation. By Definition 4.23 and Definition 4.22, the translated
address is in the static read-only memory. Thus, it also can not be modified by other
threads. After the postponing, the machine can also fetch the same instruction.

• If the machine makes a page fault step. According to semantics, this step is the last
step in the current interleaving block. We do not reorder this step.

After that, we start to handle the next configuration reachable via the possibly postponed
phase 2 step.

3. phase(c, i) = 3. In this case, we make a case split on whether the program step generates
instructions or not.

• If no instruction is generated. We do not reorder this step. In this case, we directly
start to handle the next configuration.

• Otherwise. Analogous to the rule 1, the phase 3 program step is postponed until the
next non-MMU step of thread i. After that, we start to handle the next configuration
reachable via the postponed phase 3 step.
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4. phase(c, i) = 4. In this case, we do not reorder this step and directly start to handle the
next configuration.

5. phase(c, i) = 5. In this case, we move the phase 5 program step forward until the previous
non-MMU step of thread i. The moving is possible for the same reason as in rule 1. After
that, we start to handle the next configuration reachable via the advanced phase 5 step.

6. We do not reorder other steps (i.e. the MMU steps).

We iteratively traverse and reorder the whole finite computation until there is no step to reorder.
To inductively prove the reordering gives us an equivalence computation. We need to prove

the following:

• The execution of one instruction in thread i is serialized. For example, the thread i of the
abstract machine first performs a phase 1 program step, then a phase 2 memory step for
fetching and so on.

• The phase can not be affected by other threads or MMU steps.

• A program step can be move one step forward or backward and does not affect the com-
putation if the corresponding neighboring step is not a non-MMU step of thread i.

• A phase 2 memory step can be postponed one step and do not affect the computation if
the next step is not a non-MMU step of thread i.

In the following lemmas, we prove that the execution of each thread is serialized by phases.
According to the definition in Section 3.2, for the initial abstract machine configuration we have:

∀i. phase(c0, i) = 1

The following series of lemmas can be trivially proved by the semantics and the definition of
phase.

Lemma 4.26 (Uninterrupted Phase 1 Program Step Leads to Phase 2)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev)→ phase(c′, i) = 2 ∧ ¬c′.p[i]. jisr

Lemma 4.27 (Interrupted Phase 1 Program Step Leads to Phase 4)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 1 ∧ jisr f (c.p[i], eev)→ phase(c′, i) = 4 ∧ c′.p[i]. jisr

Lemma 4.28 (Phase 2 Memory Step Leads to Phase 3)

c
m
==⇒i c′ ∧ phase(c, i) = 2→ phase(c′, i) = 3 ∧ ¬c′.p[i]. jisr

Lemma 4.29 (Phase 2 Page Fault Step Leads to Phase 1)

c
pf
==⇒i c′ ∧ phase(c, i) = 2→ phase(c′, i) = 1
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Lemma 4.30 (Uninterrupted Phase 3 Program Step Gen Instr Leads to Phase 4)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 3 ∧ ¬ jisrx(c.p[i], c.mode[i], Iisa) ∧ gen-ins(Iisa) →

phase(c′, i) = 4 ∧ ¬c′.p[i]. jisr

Lemma 4.31 (Uninterrupted Phase 3 Program Step No Instr Gen Leads to Phase 5)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 3 ∧ ¬ jisrx(c.p[i], c.mode[i], Iisa) ∧ ¬gen-ins(Iisa) →

phase(c′, i) = 5 ∧ ¬c′.p[i]. jisr

Lemma 4.32 (Interrupted Phase 3 Program Step Leads to Phase 4)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 3 ∧ jisrx(c.p[i], c.mode[i], Iisa → phase(c′, i) = 4 ∧ c′.p[i]. jisr

Lemma 4.33 (Non Jisr Phase 4 Memory Step Leads to Phase 5)

c
m
==⇒i c′ ∧ phase(c, i) = 4 ∧ ¬c.p[i]. jisr → phase(c′, i) = 5

Lemma 4.34 (Jisr Phase 4 Memory Step Leads to Phase 1)

c
m
==⇒i c′ ∧ phase(c, i) = 4 ∧ c.p[i]. jisr → phase(c′, i) = 1

Lemma 4.35 (Phase 4 Page Fault Step Leads to Phase 1)

c
pf
==⇒i c′ ∧ phase(c, i) = 4→ phase(c′, i) = 1

Lemma 4.36 (Phase 5 Program Step Leads to Phase 1)

c
p

==⇒i
eev

c′ ∧ phase(c, i) = 5→ phase(c′, i) = 1

In the following two lemmas, we prove the phase of the thread i can not be changed by other
threads and the MMU steps of thread i.

Lemma 4.37 (Phase Maintained by Other’s Step)

c =⇒ j
eev

c′ → ∀i , j. phase(c, i) = phase(c′, i)

Proof The phase of thread i in machine configuration c only depends on the program state,
instruction sequence and the temporary that are all thread-local components and can not be
affected by the execution of other threads. �

Lemma 4.38 (Phase Maintained by MMU Step)

c
mu
==⇒i c′ → phase(c, i) = phase(c′, i)
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Proof From the semantics of the MMU step, we know that MMU steps only change the MMU
state and the memory (for MMU writes). The phase of each thread only depends on the program
state, instruction sequence and the temporary. Thus, the phase can not be changed by the MMU
steps of thread i. �

With Lemma 4.26 to Lemma 4.36, we can get the execution of the abstract machine is serial-
ized. With Lemma 4.37 and Lemma 4.38, we know that reordering does not affect the phases.
Thus, after reordering, we can still perform the steps of the same phase.

In the following, we prove the one step reordering lemmas.

Lemma 4.39 (Program Steps Switchable with Others) In the first case, in configuration c,
the thread i performs a program step and the thread j performs a step, which can be all kinds of
possible steps, and get a configuration c′′. In the second case, in configuration c, the thread j
performs an identical step as in the previous case, then the thread i performs a program step, and
get a configuration c2. We need to prove that c′′ = c2

∀i , j, x ∈ {m, p,muc,muw,mur}. c
p

==⇒i
eev

c′
x

==⇒ j
eev’

c′′ ∧ c
x

==⇒ j
eev’

c1 p
==⇒i
eev

c2 → c′′ = c2

Proof From the semantics of program step we have:

c′.p[i] = δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).p

c′.is[i] = c.is[i] ◦ δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).is

For other thread-local components of thread i and the global components, we have

∀Y ∈ {ϑ,mmu,D,O, pt,mode, rlsl, rlss, rlspt}. c.Y[i] = c′.Y[i]

∀l , i. ∀X ∈ {m, shared, ro, ts[l]}. c.X = c′.X

Thus, we can have the thread-local configuration of thread j ts[ j] satisfies:

c′.ts[ j] = c.ts[ j]

We can conclude that if the thread j performs a memory step from c′ to c′′ then thread j also
execute the same instruction and can have the same address translation from c to c1. If the
instruction is RMW, we can also get that the condition is equal. Also from the definition of
og function, we can get that c′ and c can use the same ownership annotations to transfer the
ownership in this case. If the thread j performs a program step from c′ to c′′ then thread j
also perform the same program step from c to c1 and get the same program state and the new
instruction sequence. Analogously, for a page fault step and an MMU step, we can get the same
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results. After that, we can have

c′′.ts[ j] = c1.ts[ j]

c′′.m = c1.m

c′′.ro = c1.ro

c′′.shared = c1.shared

Since the step of thread j or i does not affect the thread-local components of other threads, we
also have

∀k < { j, i}. c.ts[k] = c′′.ts[k] = c2.ts[k]

and

c′.ts[i] = c′′.ts[i]

c.ts[i] = c1.ts[i]

c1.ts[ j] = c2.ts[ j] = c′′.ts[ j]

In the following we have to prove:

c′′.ts[i] = c2.ts[i]

c′′.m = c2.m

c′′.ro = c2.ro

c′′.shared = c2.shared

From the semantics of the program step of thread i, we have

c2.p[i] = δp(c1.p[i], c1.ϑ[i], c1.mode[i], c1.mmu[i], c1.is[i], eev).p

= δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).p

= c′.p[i]

= c′′.p[i]

c2.is[i] = δp(c1.p[i], c1.ϑ[i], c1.mode[i], c1.mmu[i], c1.is[i], eev).is

= δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).is

= c′.is[i]

= c′′.is[i]

c2.Y[i] = c1.Y[i] = c′′.Y[i]

c2.m = c1.m = c′′.m

c2.ro = c1.ro = c′′.ro

c2.shared = c1.shared = c′′.shared
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This concludes the proof. �

Lemma 4.40 (MMU Step Switchable with Program Step) In configuration c, the thread i first
makes a program step then makes an MMU step, which equals the thread i first makes an iden-
tical MMU step with identical address then makes an identical program step as before.

∀x ∈ {muc,mur,muw}. c
p

==⇒i
eev

c′
x

==⇒i c′′ ∧ c
x

==⇒i c1 p
==⇒i
eev

c2 → c′′ = c2

Proof From the semantics of the program step, we have:

c′.p[i] = δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).p

c′.is[i] = c.is[i] ◦ δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).is

∀Y ∈ {ϑ,mmu,D,O, pt,mode, rlsl, rlss, rlspt}. c.Y[i] = c′.Y[i]

∀ j , i. ∀X ∈ {m, shared, ro, ts[ j]}. c.X = c′.X

Then we make a case split on the type of MMU step:

• Walk creation. From the semantics, we have

c′′.mmu[i] = δcrtw(c′.mmu[i], va)

= δcrtw(c.mmu[i], va)

= c1.mmu[i]

From the semantics, we also have:

c.mmu[i].pto = c′.mmu[i].pto

= c′′.mmu[i].pto

= c1.mmu[i].pto

For other components of thread i, we have

∀Z ∈ {ϑ,D,O, pt,mode, rlsl, rlss, rlspt}.

c′′.Z[i] = c′.Z[i] = c.Z[i] = c1.Z[i]

c.p[i] = c1.p[i]

c.is[i] = c1.is[i]

c.mode[i] = c1.mode[i]

c′.p[i] = c′′.p[i]

c′.is[i] = c′′.is[i]

c′.mode[i] = c′′.mode[i]
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For the global components we have:

c′′.X = c′.X = c.X = c1.X

From the semantics of the program step, we have:

c2.p[i] = δp(c1.p[i], c1.ϑ[i], c1.mode[i], c1.mmu[i], c1.is[i], eev).p

c2.is[i] = c1.is[i] ◦ δp(c1.p[i], c1.ϑ[i], c1.mode[i], c1.mmu[i], c1.is[i], eev).is

With the definition of δp in Section 3.2.3, we know that the execution of program step
does not depend on the TLB. Thus, we can conclude:

c2.p[i] = δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).p

= c′.p[i] = c′′.p[i]

c2.is[i] = c.is[i] ◦ δp(c.p[i], c.ϑ[i], c.mode[i], c.mmu[i], c.is[i], eev).is

= c′.is[i] = c′′.is[i]

c2.Z[i] = c1.Z[i] = c′′.Z[i]

The lemma is concluded in this case.

• MMU read. From the semantics, we have:

c′′.mmu[i] ∈ δmmur(c′.mmu[i], pa, c′.m(pa))

c1.mmu[i] ∈ δmmur(c.mmu[i], pa, c.m(pa))

We also have:

δmmur(c′.mmu[i], pa, c′.m(pa)) = δmmur(c.mmu[i], pa, c.m(pa))

Thus, we can choose the proper MMU state such that:

c′′.mmu[i] = c1.mmu[i]

By analogous steps of the previous case, we can conclude the lemma in this case.

• MMU write. From the semantics, we have

v′ ∈ δmmw(c′.mmu[i], pa, c′.m(pa))

v1 ∈ δmmw(c.mmu[i], pa, c.m(pa))

We also have

δmmw(c′.mmu[i], pa, c′.m(pa)) = δmmw(c.mmu[i], pa, c.m(pa))
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Thus, we can choose the proper value v such that:

v′ = v1

Also, we have
c′.m = c.m

Then we can get

c′′.m = c′.m(pa 7→ v′)

= c′.m(pa 7→ v1)

= c.m(pa 7→ v1)

= c1.m

= c2.m (semantics of program step)

By the semantics of the program step and the MMU write step, for the MMU state of
thread i, we have:

c.mmu[i] = c′.mmu[i] = c′′.mmu[i] = c1.mmu[i] = c2.mmu[i]

With analogous steps of the previous cases, we can prove the equivalence of other com-
ponents and concludes the lemma.

�

Lemma 4.41 (Phase 2 Memory Step Switchable with Others) In configuration c, the thread i
first performs a phase 2 memory step then the thread j performs a step that equals to the thread j
first performs an identical step as before and then the thread i performs a phase 2 memory step.

∀i , j, x ∈ {m, p,muc,mur,muw}. phase(c, i) = 2 ∧

c
m
==⇒i c′

x
==⇒ j
eev’

c′′ ∧ c
x

==⇒ j
eev’

c1 m
==⇒i c2 → c′′ = c2

Proof In the proof, the only interesting case is when the thread j performs a memory step to
update the memory, or an MMU write step. We make a case split here:

• c′
m
==⇒ j c′′. With semantics of the abstract machine, we know that the phase 2 memory step

of thread i does not change the thread-local component of thread j and the memory. As
a consequence, from c to c1, the thread j can make the same step with the same physical
address and the same condition for RMW. In this case, we let

I j = hd(c′.is[ j]) = hd(c.is[ j])

Ii = hd(c.is[i]) = hd(c1.is[i])

pa j ∈ atran(c′.mmu[ j], I j.va, c′.mode[ j], I j.r)

= atran(c.mmu[ j], I j.va, c.mode[ j], I j.r)
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From the previous argument, we have

W(I j) ∨ RMW(I j) ∧ I j.cond(c′.ϑ[ j](I j.t 7→ c′.m(pa j)))

and
I j.cond(c.ϑ[ j](I j.t 7→ c.m(pa j))

From Definition 4.22, we have
pa j < c′.ro

With Definition 4.23, we know

atran(c.mmu[i], Ii.va, c.mode[i], Ii.r)

= atran(c1.mmu[i], Ii.va, c1.mode[i], Ii.r)

∈ c1.ro

With Definition 4.22, we have

c1.ro = c′.ro

Thus, we can conclude that the phase 2 memory step of thread i and the thread j step
are data race free. We can switch them and get the same read result. The proof of the
equivalence of other components is trivially proved by the semantics.

• c′
muw
==⇒ j c′′. We let the target address of MMU write be a. From the Definition 4.22, we

have:

a < c′.ro

With analogous prove steps as the previous case, we can conclude this lemma.

Lemma 4.42 (Phase 2 Memory Step Postpone After MMU Step) Each phase 2 memory step
can be postponed after MMU steps of the same thread.

∀x ∈ {muc,muw,mur}. c
m
==⇒i c′

x
==⇒i c′′ ∧ phase(c, i) = 2→ c

x
==⇒i c1 m

==⇒i c′′

Proof Since the phase 2 memory step does not affect the mode and MMU state mmu. The same
MMU step can be advanced. We make a case split on the type of MMU steps.

• c′
muc
==⇒i c′′ ∨ c′

mur
==⇒i c′′. Because of the monotonicity, the postponed phase 2 memory step

can choose the same translated address as the physical address. The equivalence of other
components is trivially maintained by the semantics.

• c′
muw
==⇒i c′′. Analogous to last case in the proof of Lemma 4.41, we can get that the phase

2 memory step and the MMU write step are data race free. We can postpone the phase 2
memory step after the MMU write step and get the same configuration.

�
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According to the argument of reordering, we iteratively apply Lemma 4.39, Lemma 4.40,
Lemma 4.41 and Lemma 4.42 to reorder the executions of the abstract machine into interleaving
blocks. According to the semantics of the abstract machine (For detail see Section 3.2.), we
have the following types of complete interleaving block of thread i. Note that, each block either
contains only one MMU step or starts with a phase 1 program step.

1. c
mu
==⇒i c′. Each MMU step is an individual block.

2. c
p

==⇒i
eev

c′
m
==⇒i c′′. The thread i of the abstract machine first performs a phase 1 interrupted

program step; then it performs a phase 4 memory step to switch the mode to 0. We have

phase(c, i) = 1 ∧ jisr f (c.p[i], eev) ∧ phase(c′, i) = 4 ∧ phase(c′′, i) = 1

3. c
p

==⇒i
eev

c′
pf
==⇒i c′′. The thread i of the abstract machine first performs an uninterrupted

phase 1 program step then a page fault on fetch happens and performs a page fault step.
Also, we have

phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ phase(c′, i) = 2 ∧ phase(c′′, i) = 1

4. c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4. The thread i of the abstract machine first performs an

uninterrupted phase 1 program step, then perform a phase 2 memory step for fetching.
After that, the machine performs an interrupted phase 3 program step of thread i. At last,
the machine performs a memory step to switch the mode to 0. According to the semantics,
we have:

phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ phase(c1, i) = 2 ∧

phase(c2, i) = 3 ∧ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧

phase(c3, i) = 4 ∧ phase(c4, i) = 1

5. c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 pf
==⇒i c4. The thread i of the abstract machine first performs an

uninterrupted phase 1 program step, then perform a phase 2 memory step for fetching.
After that, the machine performs an uninterrupted phase 3 program step of thread i. At
last, the machine performs a phase 4 page fault step. According to the semantics, we have:

phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ phase(c1, i) = 2 ∧

phase(c2, i) = 3 ∧ ¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧

phase(c3, i) = 4 ∧ phase(c4, i) = 1

6. c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 p
==⇒i
eev

c4. The thread i of the abstract machine first performs an

uninterrupted phase 1 program step and phase 2 memory step as in the previous case, then
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performs an uninterrupted phase 3 program step and do not generate memory instructions.
At last, the machine performs a phase 5 program step. We have:

phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ phase(c1, i) = 2 ∧

phase(c2, i) = 3 ∧ ¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧

phase(c3, i) = 5 ∧ phase(c4, i) = 1

7. c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 p

==⇒i
eev

c5. As in the previous case, the machine first

performs an uninterrupted phase 1 program step, phase 2 memory step, and uninterrupted
phase 3 program step. A memory instruction is generated in the phase 3 program step. In
the next step, a phase 4 memory step is performed to execute the instruction. At last, the
machine performs a phase 5 program step. We have:

phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ phase(c1, i) = 2 ∧

phase(c2, i) = 3 ∧ ¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧

phase(c3, i) = 4 ∧ phase(c4, i) = 5 ∧ phase(c5, i) = 1

8. Other complete interleaving blocks are forbidden by the semantics.

For simplicity, we assume that in the interleaving-reduced abstract machine computation, only
exists complete interleaving blocks. We will discuss the simulation of incomplete blocks at the
end of this section.

In the remaining of this thesis, we call these blocks type 1 block,...,type 7 block. In the next
section, we will prove that each block can be simulated by one step of SB reduced MIPS-86
Cosmos machine.

4.3.2 Simulation Theorem Between Abstract Machine and Cosmos Machine

In this subsection, we will prove the simulation between a reordered abstract machine compu-
tation and an SB reduced MIPS-86 Cosmos machine. First, we instantiate the safety property P
in the safety condition of the Cosmos machine in Definition 4.19. Then, we will introduce the
coupling relation and prove the simulation theorem. At last, we prove that the safety condition
is transferred from the SB reduced MIPS-86 Cosmos machine to the abstract machine.

Safety Property Instantiation

In order to make the simulation go through, we should prove that the safety properties are trans-
fered from the Cosmos machine to the abstract machine. Compare with the safety condition of
the Cosmos machine, the safety properties of the abstract machine contains two extra proper-
ties: (i) the flushing policy: the dirty bit should be cleared before a volatile read. (ii) the safety
property for MMU steps: the MMU steps should only access the corresponding local page table
and shared-writable memory. In this subsection, we will complement the safety condition of the
Cosmos machine by instantiate the predicate P in safety(C, P) in Definition 4.19.
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Moreover, to prove the safety transferred from the Cosmos machine computation to the ab-
stract machine computation, we should obtain the ownership annotations for the abstract ma-
chine from the ownership annotations for the Cosmos machine. Since the ownership annotations
in the abstract machine computation are generated by ownership annotation generation function
og, we need to give the definition of og. For a certain annotated program, the ownership an-
notations are fixed. Thus, the ownership annotation only depends on the program counter and
read result in ISA level. The ownership generation functions can be regarded as abstractions
of the fixed ownership annotations. The pc in the processor core gives us the location of the
program, and the temporary gives us the read result. The idea of ownership generation comes
from [CS10b], in which the ownership annotation is generated out of program states and tempo-
raries. Hence, it is hard to find out a formula which describes og. Instead, we define the function
og constructively, i.e. we define the value of og for every reachable abstract machine configura-
tion. In the instantiation of the predicate P, we introduce a function ogMIPS

cos which takes a SB
reduced MIPS-86 core configuration and a temporary, and returns a tuple of ownership annota-
tion for the SB reduced MIPS-86 Cosmos machine. We use the value of ogMIPS

cos to define the
value of og of the abstract machine. The details of the og definition is stated in Lemma 4.64 and
the transfer of safety property is proved in Theorem 4.66.

Let i = α.s and α.annotcos = (α.A, α.L, α.R, α.Apt, α.Rpt) then

PogMIPS
cos

(C) ≡

(α.io ∧ α.in = (core,wI ,wR, eev) →

(i) (load(Iisa)→ ¬C.ui.D) ∧

(ii) α.annotcos = ogMIPS
cos (C.ui.core, ϑ′cos)) ∧

(∃w ∈ C.ui.tlb. ¬complete(w) →

(iii) ptea(w) ∈ C.Pti ∪C.G.S ∧ ∀ j. ptea(w) < C.O j)

where Iisa is the instruction execute in step α.

ϑ′cos = S n
MIPS-86.δ(C.ui,C.m, α.in).ui.ϑ

(i), (ii) together with Cosmos machine machine ownership policy corresponds to sa f e-instr in
Definition 2.14. (iii) is a counter part to sa f e-mmu-acc in Definition 2.15. Note that, we only
cache non-faulty walks in the TLB, therefore, only non-faulty walks are considered in (iii).

Coupling Relation

In this section, we define the coupling relation between the abstract machine configuration and
the Cosmos machine configuration. In the coupling relation, each component of the abstract
machine equals to the corresponding component of the Cosmos machine.

Definition 4.43 (Coupling Relation Between Abstract Machine and Cosmos machine) We de-
fine the coupling relation c ∼ C for an abstract machine configuration c and a Cosmos machine
configuration C.
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• For global components, we have:

c.m = C.m

c.shared \ c.ro = C.S

c.ro = R

• For thread-local components, ∀i ∈ [0 : np − 1] we have:

∀X ∈ {n, pc, gpr, sprp}. c.p[i].X = C.ui.X

c.ϑ[i] = C.ui.ϑ

c.mmu[i].pto = C.ui.spr(pto)

c.mmu[i].tlb = C.ui.tlb

c.mode[i] = C.ui.spr(mode)[0]

c.D[i] = C.ui.D

c.O[i] = C.Oi

c.pt[i] = C.Pi

Simulation Theorem

To prove the simulation between an interleaving-reduced abstract machine computation and a
Cosmos machine computation inductively, we have to prove the simulation theorem for each
block. Then, we prove that the safety condition is transferred from the Cosmos machine compu-
tation to the abstract machine computation.

According to the argument in Section 4.3.1, we have 6 kinds of complete blocks. The follow-
ing series of lemmas give us the simulation between one block of abstract machine execution
and one step of Cosmos machine execution.

Coupling Maintained by Type 1 Block

Lemma 4.44 (Type 1 Block Simulate By Cosmos machine) Each type 1 block, which only con-
tains one MMU step, can be simulated by a step of Cosmos machine.

c
mu
==⇒i c′ ∧ c ∼ C → ∃α. C

α
7→ C′ ∧ c′ ∼ C′

Proof Since the abstract machine makes an MMU step, from the semantics, we can conclude
that:

c.mode[i]

From the coupling relation, we can also conclude:

C.ui.spr(mode)[0]

We do a case split on the type of the MMU step.
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• A walk creation step for address va ∈ B30. In this step, the MMU creates a walk for
address va. We also have

C.ui.spr(mode)[0]

Thus, the Cosmos machine can perform a tlb-create step to creating the same walk. From
the coupling relation, we also have

c.mmu[i].pto = C.ui.spr(pto)

We let
α = (i, (tlb-create, va.ba), io, ip, ∅, ∅, ∅, ∅, ∅)

in which
io = IOi(C, α.in) ∧ ip = IPi(C, α.in)

In the remaining of this chapter, the io and ip flags are always defined as above with
respect to the specific α and C. From the semantics of the abstract machine, we have the
new walk

w = winit(va.ba, c.mmu[i].pto[31 : 12])

= winit(va.ba,C.ui.spr(pto)[31 : 12])

which is also the new walk of the Cosmos machine. Thus, coupling for TLB is maintained
and for other components are trivially maintained.

• An MMU read step. In this step, the MMU non-deterministically choose a walk w to
extend. Let pte = pte(c.m,w) then from the definition of can-access and δmmur, we have

∃w ∈ c.mmu[i].tlb. ¬complete(w) ∧ pte.p ∧

pte.a ∧ (w.level = 1 ∧ w.r[0] ∧ pte.r[0]→ pte.d)

With the coupling relation we have pte = pte(C.m,w) and

w ∈ C.ui.tlb. ¬complete(w) ∧ pte.p ∧

pte.a ∧ (w.level = 1 ∧ w.r[0] ∧ pte.r[0]→ pte.d)

Thus, in the Cosmos machine, we can choose the same walk to perform the same walk
extension. We let

α = (i, (tlb-extend,w), io, ip, ∅, ∅, ∅, ∅, ∅)

From the semantics of the abstract machine and the Cosmos machine, the coupling for
TLB is maintained. For other components, the coupling relation is trivially maintained.

• An MMU write step. In this step, the MMU non-deterministically choose an incomplete
walk w and set the access and dirty bit for c.m(ptea(w)). From the definition of can-access
and δmmuw, we have

∃w ∈ c.mmu[i].tlb. ¬complete(w) ∧ pte(c.m,w).p
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With the coupling relation we have:

w ∈ C.ui.tlb. ¬complete(w) ∧ pte(C.m,w).p

Thus, we can choose the same walk w from TLB in the Cosmos machine to set the access
and dirty bit at the address for PTE c.m(ptea(w)). With the coupling relation we have

c.m(ptea(w)) = C.m(ptea(w))

We let
α = (i, (tlb-set-accessed-dirty,w), io, ip, ∅, ∅, ∅, ∅, ∅)

From the semantics of the abstract machine and the Cosmos machine, the coupling for
memory is maintained. For other components, the coupling relation is trivially maintained.

�

Coupling Maintained by Type 2 Block In a type 2 block, the thread i of the abstract machine
first performs an interrupted phase 1 program step then makes a phase 4 memory step. This kind
of block can be simulated by one step of the Cosmos machine. To prove the simulation, we have
to prove that the same level of interrupt also can happen in the Cosmos machine.

Lemma 4.45 (Ca on Fetch Identical)

c ∼ C → ca f (c.p[i], eev) = ca f (C.ui.p.core, eev, 0)

Proof With the coupling relation we have

C.ui.pc = c.p[i].pc

From the definition of ca f , we can conclude this lemma. �

Lemma 4.46 (Mca on Fetch Identical)

c ∼ C → mca f (c.p[i], eev) = mca f (C.ui.core, eev, 0)

Proof The coupling relation gives us:

c.p[i].sprp(sr) = C.ui.sprp(sr)

This lemma can be concluded by the definition of mca f and Lemma 4.45. �

Lemma 4.47 (Interrupt on Fetch Occur in Both Machines)

c
p

==⇒i
eev

c′ ∧ phase1(c, i) ∧ c ∼ C ∧ jisr f (c.p[i], eev)→ jisr f (C.ui, eev, 0)

Proof This lemma can be proved by the definition of jisr f and Lemma 4.46. �
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Lemma 4.48 (Interrupt Level on Fetch Identical)

c
p

==⇒i
eev

c′ ∧ phase1(c, i) ∧ c ∼ C ∧ jisr f (c.p[i], eev) →

il f (c.p[i], eev) = il f (C.ui.core, eev, pff)

Proof From Lemma 4.46, we know that

mca f (c.p[i], eev) = mca f (C.ui.core, eev, 0)

With the definition of jisr f , we can conclude:

mca f (c.p[i], eev) = mca f (C.ui.core, eev, 0) , 032

Since the page fault on fetch has the lowest priority among the interrupts in fetch phase, accord-
ing to the definition of il f , for any flag pff, the abstract machine and the Cosmos machine handles
the same level of interrupt. �

Lemma 4.49 (Type 2 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c′
m
==⇒i c′′ ∧ phase(c, i) = 1 ∧ jisr f (c.p[i], eev) ∧

phase(c′, i) = 4 ∧ phase(c′′, i) = 1 ∧ c ∼ C →

∃α. C
α
7→ C′ ∧ c′′ ∼ C′

Proof With Lemma 4.27 and Lemma 4.34, we have

phase(c′, i) = 4 ∧ phase(c′′, i) = 1

We can get the above computation of abstract machine is a type 2 interleaving block. We let

α = (i, (core,⊥,⊥, eev), io, ip, ∅, ∅, ∅, ∅, ∅)

With Lemma 4.47, we know that the Cosmos machine is also interrupted by make a step α. With
the definition of the page fault on fetch flag pff in Definition 3.29, we know that pff = 0. With
Lemma 4.48, we have:

il f (c.p[i], eev) = il f (C.ui.core, eev, 0)

From the semantics of the abstract machine, we let

p′ = δ jisr f (cast(c.p[i], zxt32(c.mode[i])), eev, 0)

then

c′.p[i].pc = p′.pc = 032

= C′.ui.pc

c′.p[i].n = c.p[i].n + 1

= C.ui.n + 1 (coupling relation)

= C′.ui.n (semantics of Cosmos machine)

c′.p[i].sprp = p′.sprp
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in which let k = min{ j | eev[ j] = 1} then

p′.sprp(x) =



032 x = sr
zxt32(c.mode[i]) x = emode
c.p[i].sprp(sr) x = esr
mca f (c.p[i], eev) x = eca
c.p[i].pc x = epc
bin32(k) x = edata ∧ il f (c.p[i], eev) = 1
c.p[i].sprp(x) otherwise

=



032 x = sr
C.ui.spr(mode) x = emode
C.ui.spr(sr) x = esr
mca f (C.ui.core, eev, 0) x = eca
C.ui.pc x = epc
bin32(k) x = edata ∧ il f (C.ui.core, eev, 0) = 1
C.ui.sprp(x) otherwise

= C′.ui.sprp(x)

The above equation can be trivially obtained via the semantics of the Cosmos machine, the
coupling relation, Lemma 4.46 and Lemma 4.48. With the semantics of the abstract machine,
we have

c′.is[i] = [SWITCH 0]

and
c′′.mode[i] = 0 ∧ c′′.is[i] = []

Other components of c′′ equals to the corresponding components of c′. By the semantics of
Cosmos machine, we have

C′.ui.spr(mode)[0] = 0 = c′′.mode[i]

The coupling of other components is trivially maintained by the semantics. �

Coupling Maintained by Type 3 Block In a type 3 block, the thread i of the abstract machine
first performs an uninterrupted phase 1 program step then makes a phase 2 page fault step. This
kind of block can be simulated by one step of the Cosmos machine. To prove the simulation,
first, we have to prove that when the abstract machine makes a phase 2 page fault step, then the
Cosmos machine can also have a page fault on fetch.

Lemma 4.50 (Page Fault On Fetch Sync) We let trqI = (C.ui.pc[31 : 2], 011) in

c
p

==⇒i
eev

c′
pf
==⇒i c′′ ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ c ∼ C →

∃wI ∈ C.ui.tlb. C.ui.spr(mode)[0] ∧ f ault(pte(C.m,wI), trqI,wI)
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Proof With the semantics of the page fault step of the abstract machine, we have

c′.mode[i]

Since the program step does not change the mode component, we have

c′.mode[i] = c.mode[i]

= C.ui.spr(mode)[0] (coupling relation)

From semantics of the abstract machine, we let I = I′ then

nvR(I) ∧ I.va = c.p[i].pc[31 : 2] ∧ I.r = 011

With the definition of can-page- f ault we have

∃w ∈ c′.mmu[i].tlb. f ault(pte(c′.m,w), (I.va, 011),w)

According to the semantics of the abstract machine, the program step does not change the MMU
state and the memory. Thus, we have

c′.mmu[i] = c.mmu[i]

c′.m = c.m

From the coupling relation we have

C.ui.pc = c.p[i].pc

C.ui.tlb = c.mmu[i].tlb

C.m = c.m

Thus, we can conclude

w ∈ C.ui.tlb. C.ui.spr(mode)[0] ∧ f ault(pte(C.m,w), trqI,w)

�

Lemma 4.51 (Type 3 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c′
pf
==⇒i c′′ ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ c ∼ C →

∃α. C
α
7→ C′ ∧ c′′ ∼ C′

Proof With Lemma 4.26 and Lemma 4.29, we have:

phase(c′, i) = 2 ∧ phase(c′′, i) = 1

Thus, we can get the above abstract machine computation is a type 3 interleaving block. By the
definition of jisr f and phase(c, i) = 1, we can conclude:∨

j

mca f (c.p[i], eev)[ j] = 0
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With Lemma 4.46, we can conclude:

mca f (C.ui.core, eev, 0) = 032

Which means all the interrupts with higher priority than page fault on fetch can not occur in the
Cosmos machine. With Lemma 4.50, we can choose the same walk wI to signal a page fault on
fetch in the abstract machine and the Cosmos machine. We let

α = (i, (core,wI ,⊥, eev), io, ip, ∅, ∅, ∅, ∅, ∅)

From the semantics of the abstract machine, we have

c′.mode[i]

Also, the phase 1 program step does not change the mode. Then, we have

c′.mode[i] = 1

= c.mode[i]

= C.ui.spr(mode)[0] (coupling relation)

Thus, the page fault on fetch flag pff in the Cosmos machine is 1. By the definition of mca f , we
have

mca f (C.ui.core, eev, 1) = 031028

We also have
jisr f (C.ui.core, eev, 1) = 1 ∧ il f (C.ui.core, eev, 1) = 3

Therefore, both machine can have the same level of interrupt. From the semantics of the abstract
machine, we have

c′′.p[i].pc = 032

= C′.ui.pc (semantics of Cosmos machine)

c′′.p[i].n = c.p[i].n + 1

= C.ui.n + 1 (coupling relation)

= C′.ui.n (semantics of Cosmos machine)

c′′.p[i].gpr = c.p[i].gpr

= C.ui.gpr (coupling relation)

= C′.ui.gpr (semantics of Cosmos machine)

c′′.mode[i] = 0

= C′.ui.spr(mode)[0] (semantics of Cosmos machine)

c′′.p[i].sprp = spr′p
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in which

spr′p(x) =



032 x = sr
031 ◦ c′.mode[i] x = emode
c′.p[i].sprp(sr) x = esr
031028 x = eca
c′.p[i].pc x = epc
c′.p.sprp(x) otherwise

Since the uninterrupted phase 1 program step does not change the sprp, pc and mode, we can
get

spr′p(x) =



032 x = sr
031 ◦ c.mode[i] x = emode
c.p[i].sprp(sr) x = esr
031028 x = eca
c.p[i].pc x = epc
c.p.sprp(x) otherwise

With the coupling relation, we can have

spr′p(x) =



032 x = sr
031 ◦C.ui.spr(mode)[0] x = emode
C.ui.spr(sr) x = esr
031028 x = eca
C.ui.pc x = epc
C.ui.sprp(x) otherwise

= C′.ui.sprp(x)

The fault walks are erased from the TLB.

c′′.mmu[i].tlb = δ f lush(c′.mmu[i], {c′.p[i].pc}) (semantics of abs)

= c′.mmu[i].tlb \ {w | w.va = c′.p[i].pc[31 : 12]} (def. of δ f lush)

= c.mmu[i].tlb \ {w | w.va = c.p[i].pc[31 : 12]} (semantics of abs)

= C.ui.tlb \ {w | w.va = C.ui.pc[31 : 12]} (coupling relation)

= δtlb(C.ui.tlb, (flush,C.ui.pc[31 : 12])) (def. of δtlb)

= C′.ui.tlb (semantics of cosmos)

The coupling of other components is trivially maintained. �
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Coupling Maintained by Type 4 Block In a type 4 block, the abstract machine first performs
an uninterrupted phase 1 program step, then perform a phase 2 memory step for fetching. After
that, the machine performs an interrupted phase 3 program step of thread i. At last, the machine
performs a memory step to switch the mode to 0.

To prove the simulation, we first have to prove that the abstract machine and the Cosmos
machine fetch the same instruction.

Lemma 4.52 (Instruction Identical in Translated Mode) We let

pacos
f = wI .ba ◦C.ui.pc[11 : 2]

then

c
p

==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧ c ∼ C ∧ c.mode[i] →

∃wI ∈ C.ui.tlb. complete(wI) ∧ hit((C.ui.pc[31 : 2], 011),wI) ∧ I2
isa = C.m(pacos

f )

Proof With Lemma 4.26, we have

phase(c1, i) = 2

From the semantics of phase 1 program step of the abstract machine, we have

nvR(I1) ∧ I1.va = c.p[i].pc[31 : 2] ∧ I1.t = In ∧

I1.r = 011 ∧ c1.mode[i] ∧ c.mmu[i] = c1.mmu[i]

From the semantics of the phase 2 memory step of the abstract machine, we have

∃pmaI2
isa ∈ atran(c1.mmu[i], I1.va, c1.mode[i], I1.r). I2

isa = c1.m(pmaI2
isa)

From the definition of atran and the coupling relation, we have:

atran(c1.mmu[i], I1.va, c1.mode[i], I1.r)

= {w.ba ◦ I1.va[9 : 0] | w ∈ c1.mmu[i].tlb ∧ complete(w) ∧ hit((I1.va, I1.r),w)}

= {w.ba ◦ c.p[i].pc[11 : 2] | w ∈ c.mmu[i].tlb ∧ complete(w) ∧ hit((c.p[i].pc[31 : 2], 011),w)}

= {w.ba ◦C.ui.pc[11 : 2] | w ∈ C.ui.tlb ∧ complete(w) ∧ hit((C.ui.pc[31 : 2], 011),w)}

Thus, we can choose a complete walk wI from C.ui.tlb, which satisfies

hit((C.ui.pc[31 : 2], 011),wI),

such that pmaI2
isa = pacos

f . Since the phase 1 program step does not modify the memory, we
have

c1.m = c.m

With the coupling relation, we have

I2
isa = C.m(pacos

f )

�
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Lemma 4.53 (Instruction Identical in Untranslated Mode)

c
p

==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ c ∼ C ∧ ¬c.mode[i] ∧

¬ jisr f (c.p[i], eev)→ I2
isa = C.m(C.ui.pc[31 : 2])

Proof With Lemma 4.26, we have

phase(c1, i) = 2

From the semantics of phase 1 program step of the abstract machine, we have

nvR(I1) ∧ I1.va = c.p[i].pc[31 : 2] ∧ I1.t = In ∧ I1.r = 011 ∧ ¬c1.mode[i]

From the semantics of the phase 2 memory step of the abstract machine, we have

∃pmaI2
isa ∈ atran(c1.mmu[i], I1.va, c1.mode[i], I1.r). I2

isa = c1.m(pmaI2
isa)

From the definition of atran we have:

¬c1.mode[i] → pmaI2
isa = c1.p[i].pc[31 : 2]

By the semantics of the abstract machine, the uninterrupted program step does not change the
pc and the memory. Therefore, we have:

pmaI2
isa = c.p[i].pc[31 : 2]

c1.m = c.m

With the coupling relation and the semantics of the abstract machine, we have:

I2
isa = c1.m(pmaI2

isa)

= c.m(c.p[i].pc[31 : 2])

= C.m(C.ui.pc[31 : 2])

�

Then, we need to prove the same level of interrupt happens in both machines.

Lemma 4.54 (Ca on Execute Identical)

∀I′isa ∈ B
32. c

p
==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

c ∼ C → cax(c2.p[i], c2.mode[i], I′isa) = cax(C.ui.core, I′isa, 0)
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Proof With Lemma 4.26, we have:

phase(c1, i) = 2

By the definition of cax, we have

cax(c2.p[i], c2.mode[i], I′isa)[ j] =

ill(I′isa) ∨ c2.mode[i] ∧ (movs2g(I′isa) ∨ movg2s(I′isa) ∨ eret(I′isa)) j = 4
sysc(I′isa) j = 5
ov f (lop(cast(c2.p[i]), I′isa), rop(cast(c2.p[i]), I′isa), alucon(I′isa), itype(I′isa)) j = 6
ea(cast(c2.p[i]), I′isa)[1 : 0] < {00,⊥} j = 7
0 otherwise

Since the result of lop, rop and ea only depend on the gpr value and the instruction. The phase
1 program step and the phase 2 memory step do not change the gpr value as well as the mode
value. Thus, we have

cax(c2.p[i], c2.mode[i], I′isa)[ j] =

ill(I′isa) ∨ c.mode[i] ∧ (movs2g(I′isa) ∨ movg2s(I′isa) ∨ eret(I′isa)) j = 4
sysc(I′isa) j = 5
ov f (lop(cast(c.p[i]), I′isa), rop(cast(c.p[i]), I′isa), alucon(I′isa), itype(I′isa)) j = 6
ea(cast(c.p[i]), I′isa)[1 : 0] < {00,⊥} j = 7
0 otherwise

With the coupling relation, we have:

cax(c2.p[i], c2.mode[i], I′isa)[ j] =

ill(I′isa) ∨C.ui.spr(mode)[0] ∧ (movs2g(I′isa) ∨ movg2s(I′isa) ∨ eret(I′isa)) j = 4
sysc(I′isa) j = 5
ov f (lop(C.ui.core, I′isa), rop(C.ui.core, I′isa), alucon(I′isa), itype(I′isa)) j = 6
ea(C.ui.core, I′isa)[1 : 0] < {00,⊥} j = 7
0 otherwise

= cax(C.ui.core, I′isa, 0)

�

Lemma 4.55 (Mca on Execute Identical)

∀I′isa ∈ B
32. c

p
==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

c ∼ C → mcax(c2.p[i], c2.mode[i], I′isa) = mcax(C.ui.core, I′isa, 0)
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Proof With Lemma 4.54, we have:

cax(c2.p[i], c2.mode[i], I′isa) = cax(C.ui.core, I′isa, 0)

From the semantics of the abstract machine we have

c2.p[i].sprp(sr) = c.p[i].sprp(sr)

= C.ui.spr(sr) (coupling relation)

By the definition of the mcax, we can conclude this lemma. �

Lemma 4.56 (Interrupt on Execute Occur in Both Machines)

∀I′isa ∈ B
32. c

p
==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

c ∼ C → jisrx(c2.p[i], c2.mode[i], I′isa) = jisrx(C.ui, I′isa, 0)

Proof This lemma can also be proved by the definition of jisrx and Lemma 4.55. �

Lemma 4.57 (Interrupt Level on Execute Identical)

∀I′isa ∈ B
32. c

p
==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

c ∼ C → ilx(c2.p[i], c2.mode[i], I′isa) = ilx(C.ui.core, I′isa, 0)

Proof This lemma can be proved by the definition of ilx and Lemma 4.55. �

In the following, we prove a type 4 interleaving block can be simulated by a Cosmos machine
step.

Lemma 4.58 (Type 4 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

jisrx(c2.p[i], c2.mode[i], I2
isa) ∧ c ∼ C → ∃α. C

α
7→ C′ ∧ c4 ∼ C′

Proof With Lemma 4.26, Lemma 4.28, Lemma 4.32and Lemma 4.34, we have

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 4 ∧ phase(c4, i) = 1

Thus, we can conclude that the above abstract machine computation is a type 4 interleaving
block. We let

α = (i, (core,wI ,⊥, eev), io, ip, ∅, ∅, ∅, ∅, ∅)

in which the wI is chosen in the following manner: If c.mode[i] then wI is chosen analogously to
Lemma 4.52. Since wI is complete and no rights violation, we do not have page fault on fetch in
the Cosmos machine. Otherwise, we let wI be ⊥.
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Also, because we give the ⊥ value to the walk used for memory access, the page fault on
load/store can not happen in Cosmos machine according to the semantics. Thus, the pfls flag is
0.

By Lemma 4.52 if c.mode[i] or Lemma 4.53 otherwise, we can conclude that the Cosmos
machine fetches the same instruction as I2

isa.
With Lemma 4.56, we have

jisrx(C.ui, I2
isa, 0)

With Lemma 4.57, we have

ilx(c2.p[i], c2.mode[i], I2
isa) = ilx(C.ui.core, I2

isa, 0)

From the semantics of the abstract machine, we have

c4.p[i].n = c3.p[i].n

= c2.p[i].n + 1

= c1.p[i].n + 1

= c.p[i].n + 1

= C.ui.n + 1 (coupling relation)

= C′.ui.n (semantics of Cosmos machine)

c4.p[i].pc = 032

= C′.ui.pc (semantics of Cosmos machine)

Also, from the semantics of the abstract machine, we know an interrupted phase 3 program step
generates a mode switch memory instruction to set the mode to 0. Thus, we can conclude:

c4.mode[i] = 0

= C′.ui.spr(mode)[0] (semantics of Cosmos machine)

For the temporary, according to the semantics of the abstract machine, we have:

c4.ϑ[i] = c3.ϑ[i]

= c2.ϑ[i]

= c1.ϑ[i](In2 7→ I2
isa)

= c.ϑ[i](In 7→ I2
isa)

= C.ui.ϑ(IC.ui.n 7→ I2
isa) (coupling relation)

= C′.ui.ϑ (semantics of Cosmos machine)
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For the sprp, according to the semantics of the abstract machine, we have:

c4.p[i].sprp = c3.p[i].sprp

= spr′p
in which

spr′p(x) =



032 x = sr
032 x = mode
c2.mode[i] x = emode
c2.p[i].sprp(sr) x = esr
mcax(c2.p[i], c2.mode[i], I′isa) x = eca
c2.p[i].pc x = epc ∧ ¬continue(c2.p[i], c2.mode[i], I2

isa)
c2.p[i].pc +32 432 x = epc ∧ continue(c2.p[i], c2.mode[i], I2

isa)
ea(cast(c2.p[i]), I2

isa) x = edata ∧ ilx(c2.p[i], c2.mode[i], I2
isa) = 8

c2.p[i].sprp(x) otherwise

From the semantics of the abstract machine, we have that an uninterrupted phase 1 program step
and a phase 2 memory step does not change the gpr, sprp, pc and mode. Thus, we have

spr′p(x) =



032 x = sr
032 x = mode
c.mode[i] x = emode
c.p[i].sprp(sr) x = esr
mcax(c2.p[i], c2.mode[i], I′isa) x = eca
c.p[i].pc x = epc ∧ ¬continue(c2.p[i], c2.mode[i], I2

isa)
c.p[i].pc +32 432 x = epc ∧ continue(c2.p[i], c2.mode[i], I2

isa)
c.p[i].sprp(x) otherwise

Since we already proved that both machines have same level of interrupt, then

continue(c2.p[i], c2.mode[i], I2
isa)↔ continue(C.ui.core, I2

isa, 0)

With the coupling relation, we have

spr′p(x) =



032 x = sr
032 x = mode
C.ui.spr(mode)[0] x = emode
C.ui.sprp(sr) x = esr
mcax(C.ui.core, I2

isa, 0) x = eca
C.ui.pc x = epc ∧ ¬continue(C.ui.core, I2

isa, 0)
C.ui.pc +32 432 x = epc ∧ continue(C.ui.core, I2

isa, 0)
C.ui.sprp(x) otherwise

= C′.ui.sprp(x)
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Let
gpr′ = δinstr(cast(c2.p[i], zxt32(c2.mode[i]), c2.mmu[i].pto), I2

isa,⊥).gpr

then according to the semantics of the abstract machine, we have:

gpr′ = δinstr(cast(c.p[i], zxt32(c.mode[i]), c.mmu[i].pto), I2
isa,⊥).gpr

= δinstr(C.ui.core, I2
isa,⊥).gpr

For the gpr, according to the coupling relation, semantics of the abstract machine and the Cos-
mos machine, we have

c4.p[i].gpr = c3.p[i].gpr

=

c2.p[i].gpr ¬continue(c2.p[i], c2.mode[i], I2
isa)

gpr′ otherwise

=

c.p[i].gpr ¬continue(c2.p[i], c2.mode[i], I2
isa)

gpr′ otherwise

=

C.ui.gpr ¬continue(C.ui.core, I2
isa, 0)

gpr′ otherwise

= C′.ui.gpr

The coupling for other components is trivially maintained. �

Coupling Maintained by Type 5 Block In a type 5 block, the abstract machine first performs
an uninterrupted phase 1 program step, then perform a phase 2 memory step for fetching. After
that, the machine performs an uninterrupted phase 3 program step of thread i. At last, the
machine performs a page fault step.

To prove the simulation, we first prove that the page fault can also happen in the Cosmos
machine.

Lemma 4.59 (Page Fault On Execute Sync) We let

trqEA = (ea(C.ui.core, I2
isa)[31 : 2], store(I2

isa) ∨ rmw(I2
isa) ◦ 10)

in

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 pf
==⇒i c4 ∧ phase(c, i) = 1 ∧

¬ jisr f (c.p[i], eev) ∧ ¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧ c ∼ C →

∃wR ∈ C.ui.tlb. C.ui.spr(mode)[0] ∧ f ault(pte(C.m,wR), trqEA,wR)

Proof With the semantics of the page fault step in the abstract machine, we have

R(I3) ∨W(I3) ∨ RMW(I3)
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Thus, we can conclude the program step from c2 to c3 generates an instruction. With Lemma
4.26, Lemma 4.28 and Lemma 4.30, we have

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 4

From the semantics of the page fault step in the abstract machine, we also have

c3.mode[i] ∧ ∃w ∈ c3.mmu[i].tlb. f ault(pte(c3.m,w), (I3.va, I3.r),w)

By the semantics of the abstract machine and the coupling relation, we have

I3.va = ea(cast(c2.p[i]), I2
isa)[31 : 2]

= ea(cast(c.p[i]), I2
isa)[31 : 2]

= ea(C.ui.core, I2
isa)[31 : 2]

I3.r = store(I2
isa) ∨ rmw(I2

isa) ◦ 10

c3.m = c.m

= C.m

c3.mode[i] = 1

= c.mode[i]

= C.ui.spr(mode)[0]

c3.mmu[i].tlb = c.mmu[i].tlb

= C.ui.tlb

Thus, we have:

w ∈ C.ui.tlb. C.ui.spr(mode)[0] ∧ f ault(pte(C.m,w), trqEA,w)

Moreover, concludes the lemma. �

Then, we prove the simulation of type 5 block.

Lemma 4.60 (Type 5 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 pf
==⇒i c4 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧ c ∼ C → ∃α. C

α
7→ C′ ∧ c4 ∼ C′

Proof Analogous to the proof of Lemma 4.59, we can get

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 4

With Lemma 4.35, we can get

phase(c4, i) = 1
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Thus, the above computation is a type 5 block. By the semantics of the page fault step in the
abstract machine, we have

c3.mode[i] = 1

= c.mode[i]

We let
α = (i, (core,wI ,wR, eev), io, ip, ∅, ∅, ∅, ∅, ∅)

In α, the wI is chosen in the same manner as in Lemma 4.52. Also, with wI , the Cosmos machine
fetches the same instruction as I2

isa. Since according to Lemma 4.52, the wI can not cause the
page fault on fetch. Thus, the flag pff is 0. The wR is chosen according to the Lemma 4.59,
which guarantees that the Cosmos machine has a page fault on load/store. That is pfls = 1.

With Lemma 4.47 and Lemma 4.56, we can get

¬ jisr f (C.ui, eev, 0) ∧ ¬ jisrx(C.ui, Iisa, 0)

As a consequence, we can conclude that in the Cosmos machine only the page fault on load/store
interrupt happens. With the definition of mcax, we have

mcax(C.ui.core, I2
isa, 1) = 081023

From the semantics of the abstract machine, we have

c4.mode[i] = 0

= C′.ui.spr(mode)[0] (semantics of Cosmos machine)

c4.p[i].pc = 032

= C′.ui.pc (semantics of Cosmos machine)

c4.p[i].gpr = c.p[i].gpr

= C.ui.gpr (coupling relation)

= C′.ui.gpr (semantics of Cosmos machine)

c4.p[i].n = c2.p[i].n + 1

= c1.p[i].n + 1

= c.p[i].n + 1

= C.ui.n + 1 (coupling relation)

= C′.ui.n (semantics of Cosmos machine)

c4.ϑ[i] = c2.ϑ[i]

= c1.ϑ[i](In1 7→ I2
isa)

= c.ϑ[i](In 7→ I2
isa)

= C.ui.ϑ(IC.ui.n 7→ I2
isa) (coupling relation)

= C′.ui.ϑ (semantics of Cosmos machine)
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For sprp, according to the semantics, we have

c4.p[i].sprr = spr′p

in which we let I3 = I3 then

spr′p(x) =



032 x = sr
031 ◦ c3.mode[i] x = emode
c3.sprp(sr) x = esr
081023 x = eca
c3.p[i].ppc x = epc
I3.va ◦ 00 x = edata
c3.p[i].sprp(x) otherwise

From the semantics, we can get

I3.va = ea(cast(c2.p[i]), I2
isa)[31 : 2]

= ea(cast(c.p[i]), I2
isa)[31 : 2]

= ea(C.ui.core, I2
isa)[31 : 2] (coupling relation)

Since we do not have misalignments on execute, the last 2 bits of effective address is 00.

ea(cast(c.p[i]), I2
isa) = ea(C.ui.core, I2

isa)[1 : 0] = 00

Also, from the semantics of the abstract machine, we can conclude:

spr′p(x) =



032 x = sr
031 ◦ c.mode[i] x = emode
c.sprp(sr) x = esr
081023 x = eca
c.p[i].pc x = epc
ea(cast(c.p[i]), I2

isa) x = edata
c.p[i].sprp(x) otherwise

With the coupling relation and the semantics of the Cosmos machine, we can get:

spr′p(x) =



032 x = sr
031 ◦C.ui.spr(mode)[0] x = emode
C.ui.spr(sr) x = esr
081023 x = eca
C.ui.pc x = epc
ea(C.ui.core, I2

isa) x = edata
C.ui.sprp(x) otherwise

= C′.ui.sprp(x)
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For the TLB, the fault walks are erased.

c4.mmu[i].tlb = δ f lush(c3.mmu[i], {I3.va}).tlb (semantics of abs)

= c3.mmu[i].tlb \ {w | I.va.ba = w.va} (def. of δ f lush)

= c.mmu[i].tlb \ {w | I.va.ba = w.va} (semantics of abs)

= C.ui.tlb \ {w | ea(C.ui.core, I2
isa)[31 : 12] = w.va} (coupling relation)

= δtlb(C.ui.tlb, (flush, ea(C.ui.core, I2
isa)[31 : 12])) (def. of δtlb)

= C′.ui.tlb (semantics of cosmos)

The coupling relation for other components is trivially maintained. �

Coupling Maintained by Type 6 Block The thread i of the abstract machine first performs
an uninterrupted phase 1 program step and phase 2 memory step as in the previous case, then
performs an uninterrupted phase 3 program step and do not generate memory instructions. At
last, the machine performs a phase 5 program step.

Lemma 4.61 (Type 6 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 p
==⇒i
eev

c4 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧ ¬gen-ins(I2

isa) ∧ c ∼ C →

∃α. C
α
7→ C′ ∧ c4 ∼ C′

Proof With Lemma 4.26, Lemma 4.28, Lemma 4.31 and Lemma 4.36, we have

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 5 ∧ phase(c4, i) = 1

Thus, the above abstract computation is a type 6 interleaving block. We choose a walk wI in the
same manner as we did in the proof of Lemma 4.58. Thus, the Cosmos machine can fetch the
same instruction as I2

isa. Then, we let

α = (i, (core,wI ,⊥, eev), io, ip, ∅, ∅, ∅, ∅, ∅)

Note that, since we have ¬gen-ins(I2
isa), according to the definition of gen-ins and the semantics

of the Cosmos machine, the I2
isa does not require memory accesses in the Cosmos machine. As

a consequence, we give a ⊥ value to the wR which is used for the address translation for the
load/store.

From the semantics, we have:

∀X ∈ {gpr, sprp, pc}. c4.p[i].X = δinstr(cast(c.p[i], zxt32(c.mode[i]), c.mmu[i].pto), I2
isa, 0

32).X

The execution of I2
isa does not need the read result from memory to update the gpr. Thus, we

use a dummy value 032 as the read result, which does not affect the execution of I2
isa. With the

coupling relation, we can conclude:

cast(c.p[i], zxt32(c.mode[i]), c.mmu[i].pto) = C.ui.core
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Thus, we have

c4.p[i].X = δinstr(C.ui.core, I2
isa, 0

32)

= C′.ui.X

For the counter and temporary, we have

c4.p[i].n = c3.p[i].n + 1 (semantics of the abstract machine)

= c1.p[i].n + 1 (semantics of the abstract machine)

= c.p[i].n + 1 (semantics of the abstract machine)

= C.ui.n + 1 (coupling relation)

= C′.ui.n (semantics of the Cosmos machine)

c4.ϑ[i] = c1.ϑ[i](In1 7→ I2
isa) (semantics of the abstract machine)

= c.ϑ[i](In 7→ I2
isa) (semantics of the abstract machine)

= C.ui.ϑ(IC.ui.n 7→ I2
isa) (coupling relation)

= C′.ui.ϑ (semantics of the Cosmos machine)

The coupling of other components is trivially maintained. �

Coupling Maintained by Type 7 Block As in the previous case, the machine first performs
an uninterrupted phase 1 program step, phase 2 memory step, and uninterrupted phase 3 program
step. A memory instruction is generated in the phase 3 program step. In the next step, a phase
4 memory step is performed to execute the instruction. At last, the machine performs a phase 5
program step.

First, we need to prove that the Cosmos machine can use the same target physical address as
in the abstract machine.

Lemma 4.62 (Physical Memory Address Identical in Translated Mode) In this lemma, we
prove that the Cosmos machine can have the same address translation as the abstract machine
for memory access instruction.

The abstract machine makes an uninterrupted phase 1, phase 2 memory step to fetch. If the
fetched instruction is a load, store or rmw instruction, then another memory access is required.
In the next step of the abstract machine, it makes an uninterrupted phase 3 program step to
generated a memory instruction. Then, the abstract machine makes a phase 4 memory step that
executes the memory instruction.

We let

ea = ea(C.ui.core, I2
isa)

rights = store(I2
isa) ∨ rmw(I2

isa) ◦ 10

trqEA = (ea[31 : 2], rights)

then prove that for every possible translated address paex in the phase 4 memory step of the
abstract machine, we can find a complete walk wR in the Cosmos machine’s TLB such that

208



• There is a hit for the effective address ea and the walk wR.

• paex is the physical address of ea with respect to wR.

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 ∧ phase(c, i) = 1 ∧

¬ jisr f (c.p[i], eev) ∧ ¬ jisrx(c2.p[i], c2.mode, I2
isa) ∧ c ∼ C ∧

c.mode[i] ∧ (load(I2
isa) ∨ store(I2

isa) ∨ rmw(I2
isa)) ∧

paex ∈ atran(c3.mmu[i], I3.va, c3.mode[i], I3.r) →

∃wR ∈ C.ui.tlb. complete(wR) ∧ hit((ea[31 : 2], rights),wR) ∧

paex = wR.ba ◦ ea[11 : 2]

Proof With load(I2
isa) ∨ store(I2

isa) ∨ rmw(I2
isa), we can conclude:

gen-ins(I2
isa)

With Lemma 4.26, Lemma 4.28, Lemma 4.30, we have

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 4

From the semantics of the abstract machine, we have:

I3.r = rights

I3.va = ea(cast(c2.p[i]), I2
isa)[31 : 2]

= ea(cast(c.p[i]), I2
isa)[31 : 2]

= ea[31 : 2]

c.mode[i] = c3.mode[i]

atran(c3.mmu[i], I3.va, c3.mode[i], I3.r) = atran(c.mmu[i], I3.va, c.mode[i], I3.r)

With the definition of atran, we have:

paex ∈ atran(c.mmu[i], I3.va, c.mode[i], I3.r)

⇒ paex ∈ {w.ba ◦ I3.va[9 : 0] | w ∈ c.mmu[i].tlb ∧ complete(w) ∧ hit((I3.va, I3.r),w)}

⇒ paex ∈ {w.ba ◦ I3.va[9 : 0] | w ∈ C.ui.tlb ∧ complete(w) ∧ hit((I3.va, I3.r),w)}

⇒ paex ∈ {w.ba ◦ ea[11 : 2] | w ∈ C.ui.tlb ∧ complete(w) ∧ hit((ea[31 : 2], rights),w)}

The lemma is concluded. �

Lemma 4.63 (Physical Memory Address Identical in Untranslated Mode) We prove an anal-
ogous lemma for the untranslated case. In this lemma, we reuse all the shorthands in the last
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lemma.

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 ∧ phase(c, i) = 1 ∧

¬ jisr f (c.p[i], eev) ∧ ¬ jisrx(c2.p[i], c2.mode, I2
isa) ∧ c ∼ C ∧

¬c.mode[i] ∧ (load(I2
isa) ∨ store(I2

isa) ∨ rmw(I2
isa)) ∧

paex ∈ atran(c3.mmu[i], I3.va, c3.mode[i], I3.r)→ paex = ea[31 : 2]

Proof This lemma can be proved by analogous steps as Lemma 4.62. The only difference is the
definition of atran. With the definition of atran in the untranslated case, we have:

paex ∈ atran(c.mmu[i], I3.va, c.mode[i], I3.r)

⇒ paex ∈ {I3.va}

⇒ paex ∈ {ea[31 : 2]}

The lemma is concluded. �

Then, we prove that the type 7 interleaving block can be simulated by one Cosmos machine
step.

Lemma 4.64 (Type 7 Block Simulate by Cosmos machine)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 p

==⇒i
eev

c5 ∧ phase(c, i) = 1 ∧ ¬ jisr f (c.p[i], eev) ∧

¬ jisrx(c2.p[i], c2.mode[i], I2
isa) ∧ gen-ins(I2

isa) ∧ c ∼ C ∧ safety(C, PogMIPS
cos

) →

∃α. C
α
7→ C′ ∧ c4 ∼ C′

Proof With Lemma 4.26, Lemma 4.28, Lemma 4.30 and Lemma 4.33, we have

phase(c1, i) = 2 ∧ phase(c2, i) = 3 ∧ phase(c3, i) = 4 ∧ phase(c4, i) = 5 ∧ phase(c5, i) = 1

Thus, the above abstract machine computation is a type 7 block. We let

α = (i, (core,wI ,wR, eev), io, ip, annotMIPS
cos )

in which

• wI . If c.mode[i] we apply Lemma 4.52 and choose the walk wI to perform address trans-
lation for fetching. Otherwise, we apply Lemma 4.53 and wI = ⊥. The Lemma 4.52 and
Lemma 4.53 also guarantee that the Cosmos machine fetches identical instruction as I2

isa.

• wR. If c.mode[i] ∧ (load(Iisa) ∨ store(Iisa) ∨ rmw(Iisa)) we apply Lemma 4.62 and choose
the walk wR such that the Cosmos machine accesses the same physical memory address as
the abstract machine in the phase 4 memory step. If ¬c.mode[i]∧ (load(Iisa)∨ store(Iisa)∨
rmw(Iisa)) we apply Lemma 4.63 and let wR = ⊥. In this case, the Cosmos machine
also accesses the same physical memory address as the abstract machine in the phase 4
memory step. Otherwise, no memory accesses are required by I2

isa. Thus, we let wR = ⊥.
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• annotMIPS
cos . The ownership annotations are defined as:

annotMIPS
cos =

ogMIPS
cos (C.ui.core, ϑ′cos) α.io

(∅, ∅, ∅, ∅, ∅) otherwise

where:

ϑ′cos = S n
MIPS-86.δ(C.ui,C.m, α.in).ui.ϑ

From the semantics of the abstract machine we know I3 is the memory instruction generated
according to I2

isa. In the following proof, we make a case split on I2
isa.

• ¬(load(I2
isa) ∨ store(I2

isa) ∨ rmw(I2
isa)). With gen-ins(I2

isa), we can conclude

m f ence(I2
isa) ∨ switch(I2

isa) ∨ eret(I2
isa) ∨ wpto(I2

isa) ∨ invlpg(I2
isa) ∨ f lush(I2

isa)

According to the semantics of the abstract machine, I3 clears the dirty bit. Thus, we have:

c5.D[i] = c4.D[i]

= 0

= C′.ui.D (semantics of Cosmos machine)

For the temporary, from the semantics and the coupling relation, we have:

c5.ϑ[i] = c4.ϑ[i]

= c3.ϑ[i]

= c2.ϑ[i]

= c1.ϑ[i](In1 7→ I2
isa)

= c.ϑ[i](In 7→ I2
isa)

= C.ui.ϑ(IC.ui.n 7→ I2
isa)

= C′.ui.ϑ

Thus, if m f ence(I2
isa) then the coupling is maintained. We do a further case split on I2

isa.

– switch(I2
isa). From the semantics of the abstract machine, we have:

I3 = SWITCH c2.p[i].gpr(rt(I2
isa))[0]

With the semantics of the abstract machine, we have:

c5.mode[i] = c4.mode[i]

= c2.p[i].gpr(rt(I2
isa))[0]

= c.p[i].gpr(rt(I2
isa))[0]

= C.ui.gpr(rt(I2
isa))[0] (coupling relation)

= C′.ui.spr(mode)[0] (sematics of Cosmos machine)

The coupling is maintained in this case.
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– eret(I2
isa). From the semantics of the abstract machine, we have:

I3 = SWITCH c2.p[i].sprp(emode)[0]

Thus, according to the semantics of the abstract machine, we have:

c5.mode[i] = c4.mode[i]

= c2.p[i].sprp(emode)[0]

= c.p[i].sprp(emode)[0]

= C.ui.sprp(emode)[0] (coupling relation)

= C′.ui.spr(mode)[0] (sematics of Cosmos machine)

The coupling is maintained in this case.

– wpto(I2
isa). From the semantics of the abstract machine, we have:

I3 = WPTO c2.p[i].gpr(rt(I2
isa))

With the semantics of the abstract machine, we have:

c5.mmu[i].pto = c4.mmu[i].pto

= c2.p[i].gpr(rt(I2
isa))

= c.p[i].gpr(rt(I2
isa))

= C.ui.gpr(rt(I2
isa)) (coupling relation)

= C′.ui.spr(pto) (sematics of Cosmos machine)

The coupling is maintained in this case.

– invlpg(I2
isa) ∨ f lush(I2

isa). From the semantics of the abstract machine, we have:

I3 = INVLPG F

in which

F =

c2.p[i].gpr(rd(I2
isa))[31 : 2] invlpg(I2

isa)
B30 f lush(I2

isa)

With the semantics of the abstract machine, the semantics of the Cosmos machine
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and the coupling relation, we have:

c5.mmu[i].tlb

= c4.mmu[i].tlb

= δ f lush(c3.mmu[i], F)

= c2.mmu[i].tlb \ {w | ∃a ∈ F. a[29 : 10] = w.va}

=

c2.mmu[i].tlb \ {w | c2.p[i].gpr(rd(I2
isa))[31 : 12] = w.va} invlpg(I2

isa)
∅ f lush(I2

isa)

=

c.mmu[i].tlb \ {w | c.p[i].gpr(rd(I2
isa))[31 : 12] = w.va} invlpg(I2

isa)
∅ f lush(I2

isa)

=

C.ui.tlb \ {w | C.ui.gpr(rd(I2
isa))[31 : 12] = w.va} invlpg(I2

isa)
∅ f lush(I2

isa)

=

δtlb(C.ui.tlb, (flush,C.ui.gpr(rd(I2
isa))[31 : 12])) invlpg(I2

isa)
∅ f lush(I2

isa)

= C′.ui.tlb

The coupling is maintained in this case.

• (load(I2
isa)∨ store(I2

isa)∨ rmw(I2
isa)). With the semantics of the abstract machine, we have

R(I3) ∨W(I3) ∨ RMW(I3)

and

I3.va = ea(cast(c2.p[i]), I2
isa)

= ea(cast(c.p[i]), I2
isa) (semantics of abstract machine)

= ea(C.ui.core, I2
isa) (coupling relation)

I3.bw = bw(cast(c2.p[i]), I2
isa)

= bw(cast(c.p[i]), I2
isa) (semantics of abstract machine)

= bw(C.ui.core, I2
isa) (coupling relation)

If c.mode[i] we apply Lemma 4.62, otherwise we apply Lemma 4.63. After that, we can
get that the abstract machine and the Cosmos machine access the same physical address
in the memory with the same byte write signals. We let the physical address be pa. Then,
for the load and rmw instructions, we have to prove the read value is identical. We let the
read value be v.

v = lv(c3.m(pa), I2
isa)

= lv(c.m(pa), I2
isa)

= lv(C.m(pa), I2
isa)
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From the semantics of the abstract machine and Cosmos machine, and the coupling rela-
tion, we also have:

c5.p[i].gpr(x) =

v updategpr(I2
isa, x)

c4.p[i].gpr(x) otherwise

=

v updategpr(I2
isa, x)

c.p[i].gpr(x) otherwise

=

v updategpr(I2
isa, x)

C.ui.gpr(x) otherwise

= C′.ui.gpr(x)

For the temporary, from the semantics and the coupling relation, we have:

c5.ϑ[i] = c4.ϑ[i]

=

c3.ϑ[i](Rc3.p[i].n 7→ v) load(I2
isa) ∨ rmw(I2

isa)
c3.ϑ[i] otherwise

=

c2.ϑ[i](Rc2.p[i].n 7→ v) load(I2
isa) ∨ rmw(I2

isa)
c2.ϑ[i] otherwise

=

c1.ϑ[i](Ic1.p[i].n 7→ I2
isa)(Rc1.p[i].n 7→ v) load(I2

isa) ∨ rmw(I2
isa)

c1.ϑ[i](Ic1.p[i].n 7→ I2
isa) otherwise

=

c.ϑ[i](Ic.p[i].n 7→ I2
isa)(Rc.p[i].n 7→ v) load(I2

isa) ∨ rmw(I2
isa)

c.ϑ[i](Ic.p[i].n 7→ I2
isa) otherwise

=

C.ui.ϑ(IC.ui.n 7→ I2
isa)(RC.ui.n 7→ v) load(I2

isa) ∨ rmw(I2
isa)

C.ui.ϑ(IC.ui.n 7→ I2
isa) otherwise

= C′.ui.ϑ

For the rmw instruction, we have:

I3.cond(c4.ϑ[i]) ≡ c3.p[i].gpr(rd(I2
isa)) = c3.m(pa)

↔ c.p[i].gpr(rd(I2
isa)) = c.m(pa) (semantics of abstract machine)

↔ C.ui.gpr(rd(I2
isa)) = C.m(pa) (coupling relation)

Thus, the condition value for rmw is also consistent in both machines. For store and
rmw instructions, we also have to prove the store value is equal in both machines. In the
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abstract machine, we store value is defined as:

I3. f (c3.ϑ[i]) =

s4s(c3.p[i].gpr(rt(I2
isa)), I2

isa) store(I2
isa)

c3.p[i].gpr(rt(I2
isa), I2

isa) rmw(I2
isa)

=

s4s(c.p[i].gpr(rt(I2
isa)), I2

isa) store(I2
isa)

c.p[i].gpr(rt(I2
isa), I2

isa) rmw(I2
isa)

=

s4s(c.p[i].gpr(rt(I2
isa)), I2

isa) store(I2
isa)

c.p[i].gpr(rt(I2
isa), I2

isa) rmw(I2
isa)

=

s4s(C.ui.gpr(rt(I2
isa)), I2

isa) store(I2
isa)

C.ui.gpr(rt(I2
isa), I2

isa) rmw(I2
isa)

According to the semantics, the store value of the abstract machine is equal to the store
value of the Cosmos machine. Thus, for the store and rmw instructions, we apply the same
update to the memory of the abstract machine and Cosmos machine. We can get

C′.m = c4.m

= c5.m (semantics of abstract machine)

If ¬I3.vol then the coupling is maintained. Otherwise, from the semantics we have:

c2.p[i].pc[31 : 2] ∈ Aio

⇒ c.p[i].pc[31 : 2] ∈ Aio

⇒ C.ui.pc[31 : 2] ∈ Aio

Thus, we can conclude that the io flag in step information α is set in this case. For the
dirty bit, we have

c5.D[i] = c4.D[i] (semantics of abstract machine)

=


1 vW(I3)
0 RMW(I3)
c.D[i] otherwise

From the semantics of the abstract machine, we have:

vW(I3)↔ store(I2
isa) ∧ c2.p[i].pc[31 : 2] ∈ Aio

RMW(I3)↔ rmw(I2
isa)

Thus, with the coupling relation and the semantics of the Cosmos machine, we can con-
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clude:

c5.D[i] =


1 store(I2

isa) ∧ c.p[i].pc[31 : 2] ∈ Aio

0 rmw(I2
isa)

c.D[i] otherwise

=


1 store(I2

isa) ∧ α.io
0 rmw(I2

isa)
C.ui.D otherwise

= C′.ui.D

From the definition of safety(C, PogMIPS
cos

), we have

(A, L,R, Apt,Rpt) = ogMIPS
cos (C.ui.core,C′.ui.ϑ)

We define the value of og(I3.p, c4.ϑ[i]) with

(A, L,R,R, Apt,Rpt)

To maintain the coupling relation, we do not change the read-only set ro in the abstract
machine. Thus, all the addresses belong to the released set are writable. Note that the
pair (I3.p, c4.ϑ[i]) can be computed from the abstract machine configuration c and the pair
(C.ui.core,C′.ui.ϑ) also can be computed from the Cosmos machine configuration C and
α. From the coupling relation, we know that for all c there exists a unique C such that
c ∼ C. Thus, the function og in the abstract machine is well defined. From the semantics
of both machines and the coupling relation, the abstract machine performs identical own-
ership transfer on identical ghost information as the Cosmos machine, coupling relation
for the ghost information is maintained.

�

Theorem 4.65 (Simulation Theorem Between Abstract Machine and Cosmos machine) With
the above one block simulation, we can inductively prove the simulation theorem between an
interleaving-reduced abstract machine computation, which consists only complete interleaving
blocks, and an Cosmos machine computation.

c =⇒*
eev

c′ ∧ c ∼ C ∧ safety(C, PogMIPS
cos

)→ ∃τ. C
τ
−→ C′ ∧ c′ ∼ C′

Incomplete Block Simulation Note that, since the execution of the abstract machine is se-
rialized within each block by the semantics, every incomplete block can be completed. Each
step within a block is deterministically executed1 except the page fault step. The reason is that
if there exists a faulty walk in the TLB, the machine can use the walk to signal a page fault or

1Here for deterministically we mean that the type of next steps is fixed by the current configuration and thread id.
Since for the address translation in memory steps, the non-determinism still exists.
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continue execution by choosing another non-faulty walk if possible. We proved the simulation
of both cases.

Another interesting case is when we complete a block with a phase 4 memory step, in which
the ownership transfer is required. In this case, we need to choose the proper ownership anno-
tations. Since the incomplete block can only be the last block of each thread, without loss of
generality, we assume in the computation c =⇒*

eev
c′, only the last interleaving block is incomplete.

c =⇒*
eev

c′ ∧ ∀ j , i. phase(c′, j) = 1 ∧ phase(c′, i) = 4 ∧ (vR(I′) ∨ vW(I′) ∨ RMW(I′))

We assume that c1 is the start machine configuration of the last interleaving block. Then c1 is
also the end configuration of the previous interleaving block. Thus, we have:

∀ j. phase(c1, j) = 1

Applying Theorem 4.65, we can get

∃τ. C
τ
−→ C1 ∧ c1 ∼ C1

We can define the step information α1 analogously as in Lemma 4.64. Thus, we can also choose
the ownership annotations as we did in the proof of Lemma 4.64.

Safety Transfer

At last we need to prove the safety property is correctly transferred.

Theorem 4.66 (Safety Maintenance)

c ∼ C ∧ safety(C, PogMIPS
cos

)→ sa f e-reach(c, og)

Proof We prove this theorem by contradiction. We assume

∃c′. c =⇒*
eev

c′ ∧ ¬sa f e-state(c, og)

With the definition of sa f e-state(c, og), let

ϑ′ =


c′.ϑ[i](I′.t 7→ c′.m(pa)) RMW(I′)
c′.ϑ[i](I′.t 7→ I′.ext(c′.m(pa), I′.bw)) R(I′)
c′.ϑ[i] otherwise

annot = og(I′.p, ϑ′)

then we have

∃i. ¬sa f e-instr(c′, i, I′, annot)

or

∃i, pa. can-access(c′.mmu[i], pa) ∧ ¬sa f e-mmu-access(c′, pa, i)

Thus, we make a case split.
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• ∃i. ¬sa f e-instr(c′, i, I′, annot). With the definition of sa f e-instr, we know that only the
memory steps can violate the safety condition in this case. Thus, we have

phase(c′, i) ∈ {2, 4}

First, we perform interleaving order reduction in the computation c =⇒*
eev

c′. Since each

incomplete blocks can be completed, without loss of generality, we assume the last inter-
leaving block is the only incomplete block in the interleaving-reduced computation from
c to c′. We also assume that c1 is the start machine configuration of the last interleaving
block. Then c1 is also the end configuration of the previous interleaving block. Thus, we
have:

∀ j. phase(c1, j) = 1

Applying Theorem 4.65, we can get

∃τ. C
τ
−→ C1 ∧ c1 ∼ C1

With the definition of safety(C, PogMIPS
cos

), we can also have:

safety(C1, PogMIPS
cos

)

We let the physical address of memory access be pa then make a further case split here:

– phase(c′, i) = 2. Then, from the semantics of the abstract machine, we can have:

c1 p
==⇒i
eev

c′

Also from the semantics, we have

pa ∈ atran(c′.mmu[i], I.va, c′.mode[i], I.r)

The code region invariant (Definition 4.23) guarantees that

pa ∈ c′.ro

which can not violate the safety condition.

– phase(c′, i) = 4. Then, from the semantics of the abstract machine, we can have:

∃c2, c3. c1 p
==⇒i
eev

c2 m
==⇒i c3 p

==⇒i
eev

c′

We let the step information for next Cosmos machine step from C1 be α1

α1 = (i, (core,wI ,wR, eev), io, ip, annotcos)

in which the wI and wR are chosen analogously as in Lemma 4.64. The manner of
choosing wI and wR guarantee that the Cosmos machine fetches the same instruction
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I′isa and accesses the same memory address as the abstract machine. We can also
conclude

vR(I′) ∨ vW(I′) ∨ RMW(I′)→ IOi(C1, α1.in)

With the definition of og in Lemma 4.64, we also know that the same ownership
transfer is performed in the Cosmos machine as in the abstract machine. With the
coupling relation we can conclude:

¬sa f e-instr(c′, i, I, annot)→ ¬safety(C1, PogMIPS
cos

)

which gives us a contradiction.

• ∃i, pa. can-access(c′.mmu[i], pa) ∧ ¬sa f e-mmu-access(c′, pa, i). Since each incomplete
interleaving block can be completed, we assume the computation c =⇒*

eev
c′ can be re-

ordered into a computation consists of complete interleaving blocks. With Theorem 4.65,
we can have

∃τ. C
τ
−→ C′ ∧ c′ ∼ C′

From the definition of can-access we have

can-access(c′.mmu[i], pa) ≡ ∃w ∈ c′.mmu[i].tlb. ptea(w) = pa ∧ ¬complete(w)

From the coupling relation, we can get

w ∈ C′.ui.p.tlb. ¬complete(w)

With PogMIPS
cos

(C′) we have

ptea(w) ∈ C′.Pti ∪C′.G.S ∧ ∀ j. ptea(w) < C′.O j

which implies
sa f e-mmu-access(c′, pa, i)

Moreover, contradicts the assumption.

�
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5
Applying Store Buffer

Reduction to C-IL

One goal of this thesis is to provide a programming discipline such that a verifier for sequentially
consistent C can verify the user program that is written in C code and running on a TSO machine.
Since the MMU is invisible for a user program, in this chapter we only need an SB reduction
theorem without MMU. Note that, in the remaining part of this chapter, we call the simplified SB
machine and simplified abstract machine the SB machine and the abstract machine respectively.
For the simplified SB reduction theorem, we also call it the SB reduction theorem.

In Figure 5.1, we present the model stack. At the bottom layer of the stack is the MIPS
machine, which is a simplified MIPS-86 machine without the TLB and MMU. It can be triv-
ially simulated by the SB machine, which resides at the second layer. With the SB reduction
theorem, we can use an abstract machine, which is the third layer of model stack, to simulate
the SB machine. After that, for every MIPS machine computation, we have a corresponding
arbitrary-interleaved (i.e. processors take steps one after another in an arbitrary order) sequen-
tially consistent computation, which obeys our programming discipline. However, our goal is
mapping the programming discipline to the C level by applying the multicore compiler cor-
rectness theorem, which consists of two theorems: (i) an order reduction theorem to reorder the
arbitrarily-interleaved ISA computation into a block-scheduling computation (i.e. processors ex-
ecute blocks of steps); (ii) a sequential compiler correctness theorem to simulate each ISA block
with a C block. As a consequence, we introduce the order reduction theorem in [Bau14]. After
the reordering, we can apply the sequential simulation on each execution block. The MIPS Cos-
mos machine is regarded as the fourth layer of the model stack. At last, we apply the multicore
compiler correctness theorem from [Bau14] to simulate a MIPS Cosmos machine computation
with a C Intermediate Language 1 Cosmos machine computation. The C-IL Cosmos machine is
the top layer of our model stack.

In the first section of this chapter, we will introduce the Simplified MIPS ISA, which is a
subset of MIPS-86 without the TLB and MMU. Then, we will present the SB reduction theorem
without MMU and the instantiation. The first four sections are simplifications of the previous
portion of this thesis. Moreover, we will present the order reduction theorem from [Bau14] and
the Cosmos machine with MIPS instantiation and C-IL instantiation. In the last section, we will
present the simulation theorem from [Bau14]. In the last three sections, we make the following
technical contributions:

• introducing the dirty bit and temporaries in the MIPS Cosmos machine and C-IL Cosmos

1C-IL, which was developed by S. Schmaltz [SS12] to justify the C verification approach of the verifier VCC [Mic]
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Figure 5.1: Pervasive concurrent model stack

machine.

• extending the simulation relation by adding the simulation relation for the dirty bit.

• overloading the ownership annotation generation function ogMIPS
cos for MIPS Cosmos ma-

chine and introducing ogC−IL
cos C-IL Cosmos machine.

• defining ogMIPS
cos with ogC−IL

cos .

In this chapter, we assume the user programs run in virtual memory. Further more, we restrict
that the page tables are properly set up such that the address translation is always a bijective
mapping.

5.1 Simplified ISA

To verify the user program, in which the address translation is invisible, we introduce a simplified
MIPS-86 ISA called SB MIPS. The configuration of an SB MIPS processor consists a core ∈
Kcore and an sb ∈ Ksb. In the semantics, there are three main differences in the transition
function of processor core: (i) The sysc, invlpg and f lush instructions only update the pc in
the core configuration. (ii) Since the SB MIPS is an ISA for the user program, no interrupt
occurs in the SB MIPS machine. (iii) The semantics of movg2s, movs2g and eret are undefined.
We redefine the transition function of processor core δcore defined in Definition 3.6 as a partial
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function:

δcore(c, I,R) =

⊥ movg2s(I) ∨ movs2g(I) ∨ eret(I)
δinstr(c, I,R) otherwise

The rest of the semantics are completely analogous to the semantics of MIPS-86 when mode = 0.
Note that since the address translation is a bijective mapping, we can use the δm, which updates
at most one memory cell at each step, as the transition function for memory.

As an ISA for the user program after applying the SB reduction, we obtain an ISA named
MIPS, which does not have the SB and TLB. The MIPS processor configuration pmips-pro ∈

Kmips-pro only consists of a core ∈ Kcore. In the semantics, the sequential transition function
δmips-seq is defined analogously to δsbr-seq in Definition 3.30 using the overloaded δcore and the
semantics when mode = 0. The rest of the semantics are completely analogous to the semantics
of SB reduced MIPS-86 when mode = 0.

5.2 SB Reduction Theorem

In this section, we introduce a simplified version of the SB reduction theorem, which do not
consider the MMU and is very similar to the Cohen-Schirmer theorem in [CS10b]. We make an
assumption that the user program runs in virtual memory and can not change the special purpose
register mode and pto, and the TLB is invisible, compare with the theorem in Chapter 2, there
are the following main differences: In the simplified SB reduction theorem, we do not have

• MMU steps and page fault steps,

• address translation, and

• INVLPG, SWITCH, WPTO instructions.

The machine configurations, safety condition and the invariants are also changed to adapt to the
simplification. In the remainder of this chapter, by SB reduction theorem we mean the simplified
version.

5.2.1 Instructions, Machine Configurations and Semantics

We define the set of instructions as a subset of Definition 2.2.

Definition 5.1 (User Memory Instruction) The set of user memory instructions Iusr is defined
with the following constructors:

Iusr = I \ A

in which

A = {INVLPG F | F ∈ 2A}

∪ {SWITCH mode | mode ∈ B}

∪ {WPTO v | v ∈ V}
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The constructors have the same meaning as in Definition 2.2.

Since the page tables are invisible to user programs, in each thread-local abstract machine
configuration (Definition 2.3) and thread-local SB machine configuration ( Definition 2.19), the
local page table set pt is set to ∅.

In the semantics, we define the address translation function atran as:

atran(mmu, va,mode, r) = {va}

because the address translation is transparent to the user, the address translation function returns
the original address va. To make the local page table sets invisible, we also impose the following
constraint to the ownership annotation generation function og such that the acquired page table
addresses Apt and released page table addresses Rpt are empty sets:

og(p, ϑ) = (A, L,R,W, ∅, ∅) = (A, L,R,W)

In the semantics, we also get rid of the MMU steps and the page fault steps. We also restrict
that in each program step of both the SB machine and the abstract machine, the newly generated
instruction sequence is′ ∈ Iusr. As a consequence, in each configuration of the abstract machine
and the SB machine, the mode and the MMU state mmu can be ignored. The rest of semantics
of the abstract machine and the semantics of the SB machine are analogous to what we defined
in Chapter 2.

In the coupling relation, we also ignore the coupling of pt, mode and mmu.

5.2.2 Safety Conditions

In the simplified model, we do not have MMU steps, we simplify the safety condition for ma-
chine state c as following:

sa f e-state(c, og) ≡ ∀i. sa f e-instr(c, i, I, annot)

in which

I = hd(c.is[i])

v = I.ext(c.m(I.va), I.bw)

ϑ′ =


c.ϑ[i](I.t 7→ c.m(va)) RMW(I)
c.ϑ[i](I.t 7→ v) vR(I)
c.ϑ[i] otherwise

annot = og(I.p, ϑ′)

The remaining safety conditions are analogous to the corresponding definitions in Section 2.2.3.
The rest of the SB reduction theorem and the proof are analogous to what we had in Chapter 2.
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5.3 Instantiation

In this section, we will instantiate the model in Section 5.2. This section is a simplified version
of Chapter 3.

Because we only consider the user program which do not have interrupts, there are only 2
kinds of execution rounds in the instantiated machine. For the execution of each instruction, the
machine first performs an uninterrupted phase 1 program step, then a phase 2 memory step for
fetch. After that, the machine performs an uninterrupted phase 3 program step. Depending on
whether an instruction is generated, the machine either performs a phase 5 program step when
no instruction is generated or performs a phase 4 memory step and a phase 5 program step. In
this section, we reuse most of the definitions in Chapter 3 to define the new δp.

Note that, since interrupts are invisible to the user program, the eev is always instantiated to
0256.

5.3.1 Transition Function δp in Program Step

We overload the instruction generation function as follows:

Definition 5.2 (Instruction Generation Function) As in Chapter 3, we define I = ϑ(I, p.n)
as the value of temporary I with respect to the counter p.n. switch(I) is true if I is a movg2s
instruction and updates the SPR mode. wpto(I) is satisfied if I is a movg2s instruction and update
the SPR pto. All the auxiliary definitions can be found in Chapter 3.

ins-gen(p, ϑ) =

[] eret(I) ∨ invlpg(I) ∨ f lush(I) ∨ switch(I) ∨ wpto(I)
ins-gen(p, ϑ, 1) otherwise

We also overload the auxiliary predicates f etch and execute. The parameter eev in predicate
f etch and the parameter mode in predicate execute are only used to check if there are inter-
rupts. Since we do not consider interrupts, we give dummy value 0256 and 1 to eev and mode
respectively. The full definition of f etch and execute also can be found in Chapter 3.

f etch(p, ϑ) ≡ f etch(p, ϑ, 0256)

execute(p, ϑ) ≡ execute(p, ϑ, 1)

Definition 5.3 (Transition Function in Program Step) The transition function

δp(p, ϑ, is, 0256) = (p′, is′)

takes a program state p ∈ P, temporaries ϑ ∈ T ⇀ V × A, an instruction sequence is ∈ I∗usr
and an external input 0256, and returns an updated program state p′ ∈ P as well as a se-
quence of newly generated instructions is′ ∈ I∗usr. (p′, is′) is defined iff is = []. We define
c′ = δcore(cast(p), I, 032) in which δcore is defined in Section 5.1. Note that we use the dummy
value 032 to execute the instruction I and get a MIPS core configuration c′. We only use the c′ to
update the pc, sprp and gpr for an uninterrupted phase 3 program step if it is no need to access
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the memory, the new value computation of these components do not depend on the read results.
The updating of gpr with the memory read result is postponed to the phase 5 program step.

p′ =


p[fetch := 0, jisr := 0] f etch(p, ϑ)
pexec execute(p, ϑ)
ppost post(p, ϑ)

is′ =


[Read False p.pc[31 : 2] Ip.n r ext 1111 p] f etch(p, ϑ)
ins-gen(p, ϑ) execute(p, ϑ)
[] post(p, ϑ)

where we let Iisa = ϑ(Ip.n) in
pexec.pc = c′.pc pexec.sprp = p.sprp pexec.ppc = p.pc pexec.fetch = 1 pexec.n = p.n
pexec.jisr = 0

pexec.gpr =

p.gpr is′ , []
c′.gpr otherwise

and ppost are defined in Section 3.2.3. Note that the r field in the Read memory instruction is
the rights for address translation. It is useless since we do not consider the address translation.
We keep it for maintaining the consistency of the memory instruction format.

The rest of instantiation as well as the initial configuration constraint are analogous to what
we defined in Chapter 3.

5.4 Apply SB Reudction Theorem on MIPS

This section is a simplified version of Chapter 4. In this section, we first state the simplification
of the Cosmos model and instantiate the simplified Cosmos model with MIPS ISA. Then, we
apply the interleaving reduction and the simulation theorem to prove the simulation between the
MIPS Cosmos machine and the instantiated abstract machine.

5.4.1 Simplified Cosmos Model

Since the page tables are invisible to user program, in the machine configuration of the simplified
Cosmos model, we do not have local page table sets. We also simplify the ownership policy in
Section 4.1.6, the definition of the step information and the ownership transfer function.

Configurations

Definition 5.4 (Ownership State) The ownership state G (ghost state) of a Cosmos machine S
is a pair

G = (O,S) ∈ GS

where O : [0 : nu − 1] → 2A maps unit indices to the corresponding units’ sets of owned
addresses (owns-set) and S ⊆ A is the set of shared writable addresses.
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Now we can define the configuration of the overall Cosmos machine.

Definition 5.5 (Cosmos Machine Configuration) A configuration C of Cosmos model S is
given as a pair

C = (M,G) ∈ KS

consists of machine state M ∈ MS in Definition 4.2 and ownership state G ∈ GS . We also reuse
all the shorthands defined in Section 4.1.

Semantics and Step Information

Definition 5.6 (Cosmos Model Transition Function) For a Cosmos machine S , we define tran-
sition function

∆ : KS × [0 : nu − 1] × E × (2A)3 → MS

which takes a configuration C, a scheduling input p, an external input in ∈ E, the set A of
acquired addresses, the set L of acquired local addresses (which should be a subset of A) and the
set R of released addresses to perform a step of unit p on its state, the common memory, and the
ownership state. First, however, we consider the transition on the machine and ownership states
separately. The transition ∆t on the machine sates is defined in Definition 4.7. The transition on
the ownership sates is defined as following: let

O′ = G.Op ∪ A \ R

S′ = G.S ∪ R \ L

we define the ownership transfer function:

∆o(G, p, (A, L,R)) ≡ (G.O[p 7→ O′],S′)

Now the overall transition function for Cosmos machine configurations is defined by:

∆(C, p, in, (A, L,R)) ≡ (∆t(C.M, p, in),∆o(C.G, p, (A, L,R))

The follow definition is a counterpart of Definition 4.8 with simplified ownership annotations.

Definition 5.7 (Step Information) We overload the set ΣS of step information of a Cosmos
machine S where

α = (s, in, io, ip, A, L,R) ∈ ΣS

Each component has the same meaning as in Definition 4.8. Ownership annotation is of type:

ΩS = (2A)3

Below we define projections, mapping step information α to transition information and owner-
ship transfer information.

α.t = (α.s, α.in, α.io, α.ip) ∈ ΘS α.o = (α.A, α.L, α.R) ∈ ΩS
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5.4.2 MIPS Instantiation

In a later section, we will present a simulation of the MIPS Cosmos machine. Therefore, in this
section, we present the full instantiation of the Cosmos model S with the MIPS ISA.

S = (A,V,R, nu,U,E, reads, δ,IO,IP)

• ∀X ∈ {A,V, nu}. S n
MIPS.X = S n

MIPS-86.X— The memory and the number of computational
units are defined as in S n

MIPS-86.

• S n
MIPS.R = Acode — We assume that all code to be executed lies in an area Acode ∈ A and

we set the read-only addresses to be identical with this area.

• S n
MIPS.U = Kmips-pro ×N × B × (T⇀ V) — Every computation unit consists a sequential

MIPS processor p, a counter n, a dirty bitD and a temporary ϑ which is a partial function
from {I,R} × N to a 32-bit value v. For all X ∈ {I,R} in (X, n) we write Xn for short.
Initially, for all Xn maps to ⊥. For all Y ∈ {pc, gpr, spr} we simply write u.p.Y instead of
u.p.core.Y .

• S n
MIPS.E = ε —The input of processor transition function.

• S n
MIPS.reads — The reads set. We let Iisa = m(u.p.pc[31 : 2]) then

core-reads(u,m, in)

=

{u.p.pc[31 : 2], ea(u.p.core, Iisa)} load(Iisa) ∨ rmw(Iisa)
{u.p.pc[31 : 2]} otherwise

S n
MIPS.reads(u,m, in) = core-reads(u,m, in)

The constraint on reads set is discharged analogously as in Section 4.2.

• S n
MIPS.δ — As in Chapter 3, Aio is the set of shared memory access instruction virtual

addresses. In the definition we let

Risa = m(ea(u.p.core, Iisa))

then we define u′ and m′ as:

u′.p = δmips-seq((u.p, dme), in).p

u′.n = u.n + 1

u′.D =


True store(Iisa) ∧ u.pc[31 : 2] ∈ Aio

False m f ence(Iisa) ∨ rmw(Iisa)
u.D otherwise

u′.ϑ =

ϑ′ load(Iisa) ∨ rmw(Iisa)
u.ϑ(Iu.n 7→ Iisa) otherwise

m′ = δmips-seq((u.p, dme)).m
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where:

ϑ′ = u.ϑ(Iu.n 7→ Iisa)(Ru.n 7→ lv(Risa, Iisa))

We define the set of written addresses W(u,m, in). A write operation is performed if
predicate wr(u,m) holds.

wr(u,m) ≡ (store(Iisa) ∨ rmw(Iisa) ∧

m(ea(u.p.core, Iisa)) = u.gpr(rd(Iisa)))

core-writes(u,m, in) =

{ea(u.p.core, Iisa)} wr(u,m)
∅ otherwise

W(u,m, in) = core-writes(u,m, in)

We can define the transition function for MIPS computation units which returns the same
new core configuration and the updated part of memory. We define:

S n
MIPS.δ(u,m, in) = (u′,m′|W(u,dme,in))

• S n
MIPS.IO— The definition of IO steps of the Cosmos machine are defined as:

S n
MIPS.IO(u,m, in) ≡ u.pc[31 : 2] ∈ Aio

• S n
MIPS.IP— Similarly, the definition of IP steps of the Cosmos machine are defined as:

S n
MIPS.IP(u,m, in) ≡ u.pc[31 : 2] ∈ Acp

Analogous to Section 4.2, we define the initial configuration and the code region invariant.

Definition 5.8 (Initial Configuration of SB reduced MIPS-86 Cosmos machine) For the ini-
tial configuration C0, we have

∀t, i ∈ [0 : np − 1]. C0.ui.n = 0 ∧C0.ui.ϑ(t) = ⊥

Definition 5.9 (Code Region Invariant 2) We define the invariant codeinv2(C, Acode), which is
a counter part of Definition 4.21. It states that in all system states reachable from initial Cosmos
machine configuration C ∈ KS n

MIPS
instructions are only fetched from code region Acode ⊆ B

30.

∀τ,C′. C
τ
−→ C′ → ∀α. C′.uα.s.p.pc[31 : 2] ⊆ Acode

5.4.3 Application on MIPS

In this section, we prove the simulation theorem between the abstract machine and the MIPS
Cosmos machine. As in Section 4.3, we first perform the interleaving reduction on the abstract
machine computation. Then, we prove the simulation theorem.
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Interleaving Reduction

As a counter part to Definition 4.22, we define the following invariant on the abstract machine.
The abstract machine does not make MMU steps, we simplify the read-only invariant as:

Definition 5.10 (Read-Only Invariant 2) Let I = hd(c.is[i]) then

(c0 =⇒*
eev

c→ c0.ro = c.ro) ∧ (W(I) ∨ RMW(I) ∧ I.cond(ϑ′))→ I.va < c.ro)

in which ϑ′ is defined in Definition 2.13.

In order to prove the interleaving reduction, we use the same strategy and the analogous
lemmas as in Section 4.3 with respect to the simplified abstract machine model in Section 5.2.
Compare with Section 4.3.1, the reordered abstract machine only can consist type 6 and type
7 complete interleaving blocks because we do not consider interrupts. As in Section 4.3.1,
we also assume that in the interleaving-reduced abstract machine computation, only complete
interleaving blocks exists. The incomplete blocks are handled in the same manner as in Section
4.3.1.

Simulation Between Abstract Machine and MIPS Cosmos Machine

In this subsection, we will prove the simulation between a reordered abstract machine compu-
tation and an MIPS Cosmos machine. First, we instantiate the safety property P in the safety
condition of the Cosmos machine in Definition 4.19. Then, we will introduce the coupling rela-
tion and prove the simulation theorem. At last, we prove that the safety condition is transferred
from the SB reduced MIPS Cosmos machine to the abstract machine.

Safety Property Instantiation Analogous to Section 4.3.2, we instantiate the safety property
P in safety(C, P) with the overloaded predicate PogMIPS

cos
, which takes a MIPS Cosmos machine

configuration as parameter. Because the MIPS Cosmos machine does not make MMU steps and
it does not need external inputs other than the scheduling information, we simplify the definition
in Section 4.3.2 as follows: Let

i = α.s

Iisa = C.m(C.ui.pc[31 : 2])

ϑ′cos = S n
MIPS.δ(C.ui,C.m, α.in).ui.ϑ

α.annotcos = (α.A, α.L, α.R)

then

PogMIPS
cos

(C) ≡ α.io→ (load(Iisa)→ ¬C.ui.D) ∧ α.annotcos = ogMIPS
cos (C.ui.core, ϑ′cos)

By the predicate PogMIPS
cos

, we guarantee that (i) the dirty bit is cleared before an IO read; (ii) the
ownership annotations only depend on local components.
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Coupling Relation Since compared with Definition 4.43, we do not consider the interrupts
and address translation, the following definition of the coupling relation does not have the cou-
pling of local page table set, mode, pto and TLB.

Definition 5.11 (Coupling Relation Between Abstract Machine and Cosmos machine 2) We
define the coupling relation c ∼ C for an abstract machine configuration c and a Cosmos machine
configuration C.

• For global components, we have:

c.m = C.m

c.shared \ c.ro = C.S

c.ro = R

• For thread-local components, ∀i ∈ [0 : np − 1] we have:

∀X ∈ {n, pc, gpr, sprp}. c.p[i].X = C.ui.X

c.ϑ[i] = C.ui.ϑ

c.D[i] = C.ui.D

c.O[i] = C.Oi

Simulation Theorem To prove the simulation between an interleaving-reduced abstract ma-
chine computation and a Cosmos machine computation inductively, we have to prove the simu-
lation theorem for each block. Then, we prove that the safety condition is transferred from the
Cosmos machine computation to the abstract machine computation.

According to the argument in Section 4.3.1, we have 2 kinds of complete blocks. The follow-
ing series of lemmas gives us the simulation between one block of abstract machine execution
and one step of Cosmos machine execution.

We define

I2
isa = c2.ϑ[i](Ic2.p[i].n)

io = S n
MIPS.IO(C.ui,C.m, α.in)

ip = S n
MIPS.IP(C.ui,C.m, α.in)

and gen-ins is redefined as:

gen-ins(Iisa) ≡ load(Iisa) ∨ store(Iisa) ∨ rmw(Iisa) ∨ m f ence(Iisa)

In order to prove the simulation, we only need the following three lemmas because we only
have type 6 and type 7 block in the interleaving reduced computation. Lemma 5.12 is a counter-
part to Lemma 4.53. Since we do not consider mode and interrupts, the corresponding precon-
ditions are dropped in the following lemma. The proof is identical to the proof of Lemma 4.53.

231



Lemma 5.12 (Instruction Identical 2)

c
p

==⇒i
eev

c1 m
==⇒i c2 ∧ phase(c, i) = 1 ∧ c ∼ C → I2

isa = C.m(C.ui.pc[31 : 2])

The following lemma is a counterpart to Lemma 4.61, the only difference in the proof is the
scheduling information α and the application of Lemma 5.12 instead of Lemma 4.53.

Lemma 5.13 (Type 6 Block Simulate by Cosmos machine 2)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 p
==⇒i
eev

c4 ∧ phase(c, i) = 1 ∧

¬gen-ins(I2
isa) ∧ c ∼ C → ∃α. C

α
7→ C′ ∧ c4 ∼ C′

Proof Let

α = (i, ε, io, ip, ∅, ∅, ∅)

Apply Lemma 5.12, we can conclude the Cosmos machine fetches I2
isa. The remaining proof is

analogous to the proof of Lemma 4.61. �

The following lemma is a counterpart to Lemma 4.64, in which we need to argue the well-
definedness of the function og. Note that compared with the og function in Chapter 2, we
imposed a constraint on the og function such that Apt = Rpt = ∅.

Lemma 5.14 (Type 7 Block Simulate by Cosmos machine 2)

c
p

==⇒i
eev

c1 m
==⇒i c2 p

==⇒i
eev

c3 m
==⇒i c4 p

==⇒i
eev

c5 ∧ phase(c, i) = 1 ∧

gen-ins(I2
isa) ∧ c ∼ C ∧ safety(C, PogMIPS

cos
)→ ∃α. C

α
7→ C′ ∧ c4 ∼ C′

Proof We let

α = (i, ε, io, ip, annotcos)

in which

annotcos =

ogMIPS
cos (C.ui.core, S n

MIPS.δ(C.ui,C.m, α.in).ui.ϑ) io
(∅, ∅, ∅) otherwise

Then, we make a case split on I2
isa. From the definition of safety(C, PogMIPS

cos
), we have

(A, L,R) = ogMIPS
cos (C.ui.core,C′.ui.ϑ)

We define the value of og(I3.p, c4.ϑ[i]) with

(A, L,R,R)

By the same reason as in the proof of Lemma 4.64, the function og is well-defined. The remain-
der of the proof is analogous to the proof of Lemma 4.64. �

The simulation and the safety transfer can be proved analogously as in Section 4.3.2.
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5.5 Order Reduction

In order to reduce the interleaving of units and justify the block scheduling, we will present the
order reduction theorem in this section. We will first formally define the notion of interleaving-
point (IP) schedules. We will also state the order reduction theorem which is: arbitrary sched-
ules can be reduced to IP schedules. Memory safety and other properties are preserved, mean-
ing that if we prove them for all interleaving-point schedules and a given start configuration,
they hold for all possible computations originating from this state. The only prerequisite is
that for any computation, between two IO-points of the same unit, this unit passes at least one
interleaving-point and that in the initial state all units are in interleaving-points. This section is
copied from [Bau14] and we omit all the proofs and some intermediate lemmas.

Compared with the interleaving reduction in Section 5.4.3, the order reduction theorem is
more general. It can reorder an arbitrarily-interleaved Cosmos machine steps into a block sched-
ule. The reason why we do not apply the order reduction theorem to reorder our abstract machine
computation is that the order reduction theorem can not transfer the Cosmos machine safety
safety(C, P) to the abstract machine safety sa f e-reach(c, og).

5.5.1 Interleaving Point Schedules

We want to consider schedules consisting of interleaved blocks of execution steps, where each
block contains only steps of some unit of the Cosmos model. At the start of each such block, the
executing unit is in an interleaving-point with respect to its IP predicate. Such blocks we call
interleaving-point blocks or IP blocks. Having a schedule interleaving only such IP blocks
is convenient for Multiprocessor ISA units when we want to apply simulation theorems, e.g.,
use compiler consistency and go up to the C level, later on. In this case, we would choose the
interleaving-points to be exactly the compiler consistency points for the unit under consideration.

Definition 5.15 (Interleaving-Point Schedule ) For ρ ∈ Σ∗S ∪ Θ∗S ∧ α, β ∈ ΣS ∪ ΘS we define
the predicate

IPsched(ρ) ≡ ( ρ = ρ′αβ→ IPsched(ρ′α) ∧ ((α.s = β.s) ∨ β.ip) )

that expresses whether the sequence exhibits an interleaving-point schedule.

This means an IP schedule ρ′α can be extended by adding a step β of

1. the same currently running unit α.s or

2. another unit which is currently at an interleaving-point.

Thus, in the steps of the schedule are interleaved in blocks of steps by the same unit and every
block starts in an interleaving-point of its executing unit. The only exception is the first block
which need not start in an interleaving-point.

We need to introduce the notions of step sub-sequences and equivalent schedule reordering in
our step sequence notation.

233



Definition 5.16 (Step Subsequence Notation) For any step or transition information sequence
ρ, τ ∈ Σ∗S ∪ Θ∗S , α ∈ ΣS ∪ ΘS and unit index p we define the subsequence of steps of unit p as
follows:

ρ|p ≡


ατ|p : ρ = ατ ∧ α.s = p
τ|p : ρ = ατ ∧ α.s , p
ε : otherwise

In the same way, we introduce the IO step subsequence of ρ.

ρ|io ≡


ατ|io : ρ = ατ ∧ α.io
τ|io : ρ = ατ ∧ /α.io
ε : otherwise

Based on the subsequence notation, we state what it means that two step sequences are equiv-
alently reordered.

Definition 5.17 (Equivalent Reordering Relation) Given two steps or transition information
sequences ρ, ρ′ ∈ Σ∗S ∪ Θ∗S , we consider them equivalently reordered when the IO-step subse-
quence and the step subsequences of all units are the same:

ρ =̂ ρ′ ≡ ρ|io = ρ′|io ∧ ∀p ∈ [0 : nu − 1]. ρ|p = ρ′|p

We also say that ρ′ is an equivalent reordering of ρ and, for any starting configuration C, that
(C, ρ′) is an equivalently reordered computation of (C, ρ). Note that =̂ is an equivalence relation,
i.e., it is reflexive, symmetric, and transitive.

In a given instantiation of a Cosmos model, interleaving-points can be defined independently
of the definition of IO operations. However in the reordering theorem we have the requirements
that following condition holds.

Definition 5.18 (IOIP Condition) For any sequence ρ ∈ Σ∗S ∪ Θ∗S , predicate IOIP(ρ) de-
notes that every unit p starts in an interleaving-point, and there is least one interleaving-point
between any two IO-points of p.

IOIP(ρ) ≡ ∀π, p. π = ρ|p , ε →

π1.ip ∧ (∀τ, α, ϕ, β, ω. π = ταϕβω ∧ α.io ∧ β.io→ ∃i. ϕi.ip)

Interleaving-points must be chosen by the verification engineer instantiating the model so that
they fulfill this condition. To understand the necessity of its second part, it is helpful to consider
the dual of the statement which says that between two interleaving-points, there is at most one
IO step. This reflects the well-known principle that the steps of a non-atomic operation in a
concurrent program can be merged into an atomic step, as long as the operation contains at most
one shared variable access [OG76].

In the following sections, we will introduce the order reduction theorem. It contains two
portion:

1. for every transition sequence which fulfills the IOIP condition, we can find an equivalent
IP schedule;

2. the equivalent reordering maintains the safety condition.
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5.5.2 Reordering into Interleaving-Point Schedules

In this section, we will state the existence of equivalent IP schedule by proving the following
lemma.

Lemma 5.19 (Interleaving-Point Schedule Existence) For every step or transition sequence θ
that fulfills the IO-interleaving-point condition, we can find an interleaving-point schedule θ′

which is an equivalent reordering of θ:

∀θ ∈ Θ∗S . IOIP(θ)→ ∃θ′. θ′ =̂ θ ∧ IPsched(θ′)

Since the =̂ only depend on the scheduling information (i.e. s and io) of each step, we can
extend lemma 5.19 to the case when θ ∈ Σ∗S ∪ Θ∗S .

5.5.3 Equivalent Reordering Preserves Safety

In this section, we will state and prove our central reordering theorem which will allow us to re-
order arbitrary schedules to interleaving-point schedules preserving the effect of the correspond-
ing computation. For safe computations, we have that all equivalently reordered computations
are also safe and lead into the same configuration.

Lemma 5.20 (Safety of Reordered Computations) Let C,C′ ∈ KS be Cosmos model config-
urations and let σ,σ′ ∈ Σ∗S be step sequences with C

σ
−→ C′ and σ =̂ σ′ then

safe(C, σ) → safe(C, σ′) ∧C
σ′

−→ C′

We have shown that ownership-safety and the effects of safe Cosmos machine computations are
preserved by equivalent reordering. Before, we already presented that any step sequence can be
equivalently reordered into an interleaving-point schedule. Thus, every safe Cosmos machine
computation is represented by an equivalent interleaving-point schedule computation and the
reasoning about systems in verification can be reduced accordingly.

5.5.4 Order Reduction Theorem

In the reduction theorem, the safety of all traces originating from a given starting configuration
C ∈ KS must be deduced from the safety of all interleaving-point schedules starting in the same
configuration. As a counterpart to Definition 4.19 for the Cosmos machine in Section 5.4.1, we
have the following predicates:

Definition 5.21 (Verified Cosmos machine ) We define the predicate safetyIP(C, P) which ex-
presses the same notion of verification for all IP schedule computations:

safetyIP(C, P) ≡ ∀θ. IPsched(θ) ∧ comp(C.M, θ)→ ∃o ∈ Ω∗S . safeP(C, 〈θ, o〉)

Additionally all IP schedules starting in C need to fulfill the IOIP condition.

IOIPIP(C) ≡ ∀θ. IPsched(θ) ∧ comp(C.M, θ)→ IOIP(θ)
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Using the definitions from above the interleaving-point schedule reduction theorem can then
be stated as follows.

Theorem 5.22 (IP Schedule Order Reduction) For a configuration C of a Cosmos machine
S where all IP schedule computations originating in C fulfill the IOIP condition, we can
deduce safety property P and ownership-safety on all possible computations from the verification
of these properties on all IP schedules.

safetyIP(C, P) ∧ IOIPIP(C)→ safety(C, P)

Note that we only require safety on the order-reduced Cosmos model. The proof of the theorem
can be found in [Bau14]. Note that to prove Theorem 5.22, we need the lemma named coverage
(Lemma 24) in [Bau14]. In the proof of Lemma 24, Jonas Oberhauser found a gap in page 58
and fixed it in his on going work [PO].

5.6 C-IL Language and Cosmos Model Instantiation

In order to instantiate our Cosmos model with a higher-level language, in this section we intro-
duce semantics for a simplified version of C. We present the C Intermediate Language (C-IL)
that was developed by S. Schmaltz [SS12] in order to justify the C verification approach applied
in the Verisoft XT hypervisor verification project [Sch13]. Here, for brevity, we do not give a
full definition of the C-IL semantics and omit technical details like type and expression evalu-
ation, that can be looked up in the original research documents. Instead we concentrate on the
parts which are relevant for stating a compiler consistency relation and a simulation theorem
between a C-IL computation and a MIPS implementation. Such a compiler consistency relation
and simulation theorem was already stated by A. Shadrin for the VAMP ISA [Sha12] and we
adapt it to the MIPS architecture defined above. Moreover we fix the architecture-dependent
environment parameters of C-IL according to our MIPS model.

In what follows we first define the syntax and semantics of C-IL, then we instantiate a Cosmos
machine with the C-IL semantics obtaining a concurrent C-IL model. The compiler consistency
relation and the simulation theorem will be introduced in the subsequent chapter. Applying the
Cosmos model order reduction theorem then allows to establish a model of structured parallel
C-IL, where C program threads are interleaved only at volatile variable accesses. This section
is also an almost literally representation of [Bau14] with the following main differences: (i)In
order to simplify the compiler consistency relation, instead of a byte-addressable memory as
in [Sch13] and [Bau14], the C-IL memory is defined as a word-addressable memory. (ii) To
get rid of the non-determinism transition for normal function call (not external function call or
compiler intrinsics), we give the default values to the local variables. (iii) We add m f ence as a
compiler intrinsic.

5.6.1 C-IL Syntax and Semantics

As C-IL is an intermediate representation of C, C-IL programs are not written by a program-
mer but rather obtained from a C program by parsing and translation. This allows us to focus
only on essential features of a high-level programming language and disregard a large portion

236



of the “syntactic sugar” found in C. In essence, a C-IL program consists of type declarations,
variable declarations, and a function table. The body of each function contains C-IL statements
which comprise variable assignments (that may make use of pointer arithmetic), label-based
control-flow commands, and primitives for function calls and returns. Before we can give a
mathematical definition of C-IL programs, we need to introduce C-IL types, values, and expres-
sions. Moreover, there are some environment parameters for C-IL program execution.

Environment Parameters

C-IL is not defined for a certain underlying architecture, nor a given class of programs, nor a
particular compiler. Thus, there are many features of the environment, e.g., the memory type,
operator semantics, the composite type layout, or global variable placement, that must be seen
as a parameter to program execution. In [Sch13] this information is collected in the environment
parameter θ ∈ paramsC-IL. Here we do not list the components of θ in their entirety. On the
one hand, we fix some of the environment parameters for our MIPS-based version of C-IL. This
means, in particular, that:

• the endianness of the underlying architecture is little endian (θ.endianness = little),

• pointers consist of 1 word, i.e., they are bit strings of length 322 (θ.sizeptr = 1),

• we only consider one compiler intrinsic function3 for executing the MIPS rmw and m f ence
instructions (θ.intrinsics to be defined later), and

• we only use the 32-bit primitive types and the empty type4(θ.TP = {i32,u32, void}).

On the other hand, as we do not present the technical details of expression evaluation, a lot of
the environment information is irrelevant to us. Still the dependency of certain functions on the
environment parameters will be visible by taking θ as an argument. In such cases, we will give
explanations on what kind of environment parameters the functions are depending. Nevertheless,
we will not disclose all the technical details which can be found in [Sch13].

For defining the C-IL values and transition function, however, we will need to refer to 3
environment parameters in θ specifically:

• a mapping θ.Fadr from the set of function names to memory addresses. This compiler-
dependent function is used to convert function pointers to bit strings and store them in
memory, which can be useful for, e.g., setting up interrupt descriptor tables in MIPS-86
systems.

• a mapping θ.Rextern which returns a C-IL state transition relation for external procedures
which are declared but not implemented within the C-IL program. A call to such a function
then results in a non-deterministic transition according to the transition relation.

2The last 2 bits are ignored in the pointer value.
3According to [Sch13], compiler intrinsics are pre-defined functions whose bodies are inlined into the program

code instead of creating a new stack frame, when compiling function calls. Intrinsics are external functions that
are implemented in assembly language.

4The empty type void is used as a return type for functions that do not return any value.
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• a mapping θ.allocgv which takes a global variable name and returns its address in the
global memory. This is a partial function that needs to be defined for every global variable
the program accesses. An important restriction is that the global variable base addresses
specified here result in non-overlapping memory ranges for the declared global variables.

A more detailed description of these components shall be given when they are used.

Types

In general C-IL is based on the following sets of names.

• VC-IL — names of variables

• TC — names of composite (struct) types

• F— names fields in composite (struct) type variables

• Fname — names of functions

Then we allow the following types in C-IL.

Definition 5.23 (C-IL Types) The set TC-IL of all possible C-IL types constructed inductively
according to the case split below. For any t ∈ TC-IL one of the following conditions holds.

• t ∈ {void, i32,u32}— t is a primitive type

• ∃t′ ∈ TC-IL. t = ptr(t′) — t is a pointer to a value of type t′

• ∃t′ ∈ TC-IL, n ∈ N. t = array(t′, n) — t is an array of values with type t′

• ∃t′ ∈ TC-IL,T ∈ (TC-IL \ {void})∗. t = funptr(t′,T ) — t is a function pointer to a function
which takes a list of input parameters with non-empty types according to list T and returns
a value with type t′

• ∃tC ∈ TC . t = struct tC — t is a composite type with name tC

For composite types, we do not store the detailed structure but just the name of the struct. As
we will see later, the field definitions for all structs is part of the C-IL program and can thus
be looked up there during type evaluation. Moreover the environment information θ contains
a parameter to determine the offsets of struct components in memory. However, we did not
formally introduce this parameter as we will not use it explicitly in the frame of this thesis.

Besides the types listed above we also have type qualifiers which give hints to the compiler
how accesses to variables with a certain qualified type shall be compiled and what kind of opti-
mizations can be applied.

Definition 5.24 (C-IL Type Qualifiers) The set of C-IL type qualifiers is defined as follows:

Q = {volatile, const}
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The type qualifier volatile is used in the type declaration of a variable to denote that this vari-
able can change its value independent of the program, therefore we also use the name volatile
variables. In particular other processes in the system like concurrent threads, interrupt handlers
or devices can also access such variables. Consequently the compiler has to take care when
compiling accesses to volatile variables in order to make sure that updates are actually visible to
the other processes, and that read accesses do not return stale data. In other words, the value of
a volatile variable should always be consistent with its implementation in shared memory. This
implies that all accesses to volatile variables must be implemented by atomic operations. Thus
there are limitations on the kind of optimizations the compiler can possibly apply on volatile
variable accesses.

On the other hand, variables that are declared with a const type qualifier (constant variables)
are supposed to keep their value and never be modified. Thus the compiler can perform more
aggressive optimizations on accesses to these variables.

We need to extend our type definition to qualified types because in non-primitive types we
might have different qualifiers on the different levels of nesting.

Definition 5.25 (Qualified C-IL Types) The set TQ of all qualified types in C-IL is constructed
inductively as follows. For (q, t) ∈ TQ we have the following cases.

• The empty type is not qualified: (q, t) = (∅, void)

• Qualified primitive type: q ⊆ Q ∧ t ∈ {i32,u32}

• Qualified pointer type: q ⊆ Q ∧ ∃t′ ∈ TQ. t = ptr(t′)

• Qualified array type: q ⊆ Q ∧ ∃t′ ∈ TQ, n ∈ N. t = array(t′, n)

• Qualified function pointer type:

q ⊆ Q ∧ ∃t′ ∈ TQ,T ∈ (TQ \ {(∅, void)})∗. t = (q, funptr(t′,T ))

• Qualified struct type: q ⊆ Q ∧ ∃tC ∈ TC . t = (q, struct tC)

Thus qualified types are pairs of a set of qualifiers (which may be empty) and a type which
may be constructed using other qualified types. For qualified struct types, again, the qualified
component declaration will be given elsewhere. Before we can define the C-IL values we need
some shorthands to determine the class of a type t ∈ TC-IL.

isint(t) = t ∈ {i32,u32}
isptr(t) = ∃t′. t = ptr(t′)

isarray(t) = ∃t′, n. t = array(t′, n)

isfunptr(t) = ∃t′,T. t = funptr(t′,T )
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Values

In this section we define sets of values for variables of the different C-IL types defined above.
Note that the possible values of a variable do not depend on type qualifiers. A qualified type can
be converted into an unqualified type by recursively removing the set of qualifiers leaving only
the type information. Let this be done by the following function:

qt2t : TQ → TC-IL

Definition 5.26 (Primitive Values) We define the set valprim which contains all values for vari-
ables of primitive type.

valprim =
⋃

b∈B32

{val(b, i32), val(b,u32)}

Primitive values consist of the constructor val and a 32 bit string as well as the type informa-
tion whether that bit string should be interpreted as a signed (two’s complement) or unsigned
binary number. Note that this definition is a simplified version of the corresponding definition
in [Sch13] since we only need to consider 32 bit values in our MIPS-based C-IL semantics. Ob-
serve also, that we do not define a set of values for the primitive type void because this type is
used to denote that no value is returned by a function. Consequently in C-IL we cannot evaluate
values of type void.

Definition 5.27 (Pointer and Array Values) The set valptr of values for pointers and arrays is
defined as follows.

valptr =
⋃

t∈TC-IL∧(isptr(t)∨isarray(t))

{val(a, t) | a ∈ B32}

Here we merge the values for pointers and arrays because we treat array variables as pointers
to the first element of an array. Accesses to fields of an array are then resolved via pointer
arithmetic in expression evaluation. References to components of local variables of a function
are represented by the following values.

Definition 5.28 (Local Variable Reference Values) Let VC-IL be the set of all variable names,
then the set of values for local variable references is defined as follows.

vallref =
⋃

t∈TC-IL∧(isptr(t)∨isarray(t))

{lref((v, o), i, t) | v ∈ VC-IL ∧ o, i ∈ N0}

Local variables are modeled as small separate memories, i.e., lists of words, to allow for pointer
arithmetic on them. Therefore in order to refer to a component of a local variable the variable
name v and the component’s word offset o are saved in the lref value. Moreover one needs to
know the type t of the referenced component and the index of the function frame i in which the
local variable is contained.

Concerning function pointers we distinguish between two kind of values. The first kind valfptr
is used for pointers to those functions of which we know the corresponding memory address
according to θ.Fadr : Fname ⇀ B32. These function pointers can be stored in memory. For
function pointers to other functions f ∈ Fname where Fadr( f ) = ⊥ we use symbolic values from
the set valfun. Such pointers cannot be stored in memory but only be dereferenced, resulting in
a call of the referenced function.
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Definition 5.29 (Function Pointer Values) The two sets of values valfptr and valfun for C-IL
function pointers are defined as follows.

valfptr =
⋃

t∈TC-IL∧isfunptr(t)

{val(a, t) | a ∈ B32}

valfun = {fun( f , t) | f ∈ Fname ∧ isfunptr(t)}

According to the MIPS specification in Section 5.1, the memory is word-addressable with
230 addresses. As a consequence, in an implementation of the C-IL to MIPS compiler can left
the least significant 2 bits of the pointer value (including non-symbolic function pointers value
and array values) unused. The two extra bits can be used to contain additional data, such as an
indirection bit or reference count. The pointer associated with extra data is called tagged pointer.
We provide the following function to transform the value of a pointer to an address:

ptrv2addr(p) =


a[31 : 2] p = val(a,ptr(t)) ∨ p = val(a, array(t, n)) ∨

p = val(a, funptr(t))
⊥ otherwise

Finally the set val of all C-IL values is the union of primitive, pointer, local variable reference,
and function pointer types.

val = valprim ∪ valptr ∪ vallref ∪ valfptr ∪ valfun

Note that we do not have values for structs, since we can only evaluate the components of struct
variables but not the complete struct.

Expressions

Expressions in C-IL are used on the left and right side of variable assignments, as conditions in
control-flow statements, as function identifiers and input parameters, to determine the variable
where to store the returned value of a function, as well as the return value itself. A successful
evaluation of an expression returns a values from val. Thus expressions encode primitive val-
ues, pointers, local variable references and function pointers. In C-IL expressions we can use
the following unary mathematical operators from the set O1 for arithmetic, binary, and logical
negation.

O1 = {−,∼, !}

The set O2 comprises all available binary mathematical operators.

O2 = {+,−, ∗, /,%, <<, >>, <, >, <=, >=,==, ! =,&, |, ˆ ,&&, ||}

From left to right these symbols represent addition, subtraction5, multiplication, integer division,
modulo, binary left shift, right shift, less, greater, less or equal, greater or equal, equal, unequal,
binary AND, OR, and XOR, as well as logical AND, and OR. Other C operators, e.g., for taking
the address of a variable or pointer-dereferencing, are not considered mathematical operators.
They are treated in the following definition of the structure of C-IL expressions.

5Note that the same symbol is used for unary and binary minus, however in the definition of expressions they are
used unambiguously.
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Definition 5.30 (C-IL Expression) The set E contains all possible C-IL expressions and is de-
fined inductively. Every e ∈ E obeys one of the following rules.

• e ∈ val — e is a constant C-IL value.

• e ∈ VC-IL — e identifies a C-IL variable by its name. In expression evaluation, local
variables take precedence over global variables with the same name.

• e ∈ Fname — e identifies a C-IL function by its name. Such expressions are used both for
calling a function as well as creating function pointers.

• ∃e′ ∈ E,	 ∈ O1. e = 	e′ — e is obtained by applying a unary operator on another
expression.

• ∃e′, e′′ ∈ E,⊕ ∈ O2. e = (e′ ⊕ e′′) — e is obtained by combining two other expressions
with a binary operator.

• ∃c, e′, e′′ ∈ E. e = (c ? e′ : e′′) — e consists of three sub-expressions that are combined
using the ternary conditional operator. If c evaluates to a value other than zero, then e
evaluates to the value of e′, otherwise the value of e′′ is returned.

• ∃e′ ∈ E, t ∈ TC-IL. e = (t)e′ — e represents a type cast of expression e′ to type t.

• ∃e′ ∈ E. e = ∗(e′) — e is the value obtained from dereferencing the pointer that is encoded
by expression e′

• ∃e′ ∈ E. e = &(e′) — e is the address of the sub-variable denoted by expression e′.
Sub-variables are either variables or components of variables.

• ∃e′ ∈ E, f ∈ F. e = (e′). f — e represents the component with field name f of a struct-type
variable described by expression e′

• ∃t ∈ TQ. e = sizeof(t) — e evaluates to the size in bytes of a variable with type t.

• ∃e′ ∈ E. e = sizeof(e′) — e evaluates to the size in bytes of the type of expression e′.

Note that not all expressions that can be constructed using this scheme are meaningful. For
instance, an expression e ∈ VC-IL might reference a variable that does not exist, or an expression
e′ in e = &(e′) might encode a constant instead of a sub-variable. The well-formedness of
expressions is checked during expression evaluation.

Note moreover that E does not provide a dedicated operation for accessing fields of array
variables. This is because the common notation a[i] for accessing field i of an array variable a
is just syntactic sugar for the expression ∗((a + i)). Similarly if a is a pointer to a struct-type
variable then the common shorthand a→ f for accessing field f of the referenced struct can be
represented by the expression (∗(a)). f .
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Programs

Before we can define the structure of C-IL programs, we need to introduce the statements of the
C Intermediate Language.

Definition 5.31 (C-IL Statements) The set IC-IL contains all C-IL statements and is defined
inductively. For s ∈ IC-IL, we have the following cases.

• ∃e, e′ ∈ E. s = (e = e′) — s is an assignment of the value encoded by expression e′ to the
sub-variable or memory location represented by expression e.

• ∃l ∈ N. s = goto l — s is a goto statement which redirects control-flow to label l in the
current function.

• ∃e ∈ E, l ∈ N. s = ifnez e goto l — s is a conditional goto statement which redirects
control-flow to label l in the current function if e evaluates to a non-zero value.

• ∃e, e′ ∈ E, E ∈ E∗. s = (e′ = call e(E)) — s represents a function call to the function
identified by expression e (which must evaluate to a function pointer value), passing the
input parameters according to expression list E. The value returned by the function is
assigned to the sub-variable of memory location identified by expression e′.

• ∃e ∈ E, E ∈ E∗. s = call e(E) — s is a function call without return value.

• ∃e ∈ E. s = return e — s is a return statement. Executing s returns from the current
function with the return value denoted by expression e.

• s = return — s is a return statement without return value. This variant is used for
functions with return type void.

Note that above we renamed the set of statements S from [Sch13] to IC-IL in order to avoid
collision with our set S of Cosmos machine signatures. The statements listed above make up the
body of every C-IL function. All relevant information about the particular functions of a C-IL
program is stored in a function table.

Definition 5.32 (C-IL Function Table Entry) The function table entry fte of a C-IL function
has the following structure of type FunT .

fte = (rettype, npar,V, P) ∈ FunT

Here the components of fte have the following meaning:

• rettype ∈ TQ — the type of the function’s return value (return type)

• npar ∈ N— the number of input parameters for the function

• V ∈ (VC-IL × TQ)∗ — a list of parameter and local variable declarations containing pairs
of variable name and type, where the first npar entries represent the input parameters
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• P ∈ I∗C-IL ∪ {extern}— either the function body containing a list of C-IL statements that
will be executed upon function call, or the keyword extern which marks the function
as an external function. The effect of external functions is specified by the environment
parameter θ.Rextern.

Now a C-IL program is defined as follows.

Definition 5.33 (C-IL Program) A C-IL program π has type progC-IL

π = (VG,TF ,F ) ∈ progC-IL

with components:

• VG ∈ (VC-IL × TQ)∗ — declaration of global variables

• TF : TC ⇀ (F × TQ)∗ — a type table for struct types, containing the type for every field
of a given struct type name

• F : Fname ⇀ FunT — the function table, containing the function table entries for all
functions of the program

Because we have the type table π.TF for struct types t we can represent a struct with name tC
simply by the construction t = struct tC without need to save the concrete structure of the struct
in the type. This is useful to break the cyclical definitions in many common data structures
which may contain pointers to variables of their type. For instance in linked lists, a list item
usually contains a pointer to the next list item. Instead of having a cyclical definition like

tlist = struct((v, i32) ◦ (next,ptr(tlist)))

one can then separately define the name and structure of the list item type:

tlist = struct item π.TF(item) = (v, i32) ◦ (next,ptr(tlist))

With the type table of program, we can also define the default value of each type. The default
value is used to initialize the variables of type t that are created without an immediate assignment
of their value. The default value for a composite type is the concatenation of the default value
of each component. We let typei = qt2t(snd(π.TF(t)i)) and n = |π.TF(t)| then

dft(t) =

val(032, t) isint(t) ∨ isptr(t) ∨ isfunptr(t) ∨ isarray(t)
dft(type0) ◦ ... ◦ dft(typen−1) otherwise

Naturally there are a lot of well-formedness conditions on C-IL programs, for instance, that
only declared sub-variables may be used, or that goto statements may only target labels within
the bounds of the current function. In [Sch13], most of the possible faults in a C-IL program are
captured as run-time errors during type evaluation, expression evaluation, and application of the
C-IL transition function. However, there are a few conditions missing concerning control-flow
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statements. We introduce the following predicate to denote that s ∈ IC-IL is a C-IL control-flow
statement which is targeting a label l ∈ N.

ctrl(s, l) ≡ s = goto l ∨ ∃e ∈ E. s = ifnez e goto l

Now we can define the well-formedness conditions on C-IL programs that are not covered by
the run-time error definitions of [Sch13], which will be given later.

Definition 5.34 (C-IL Program Well-formedness) We consider a C-IL program π to be well-
formed if it obeys the conditions that (i) every control-flow instruction targets only labels within
the corresponding function and that (ii) only functions with return type void omit returning a
value.

wfprogC-IL(π) ≡ ∀ f ∈ Fname, s ∈ IC-IL. π.F ( f ) , ⊥ ∧ s ∈ π.F ( f ).P→
(i) ctrl(s, l)→ l ∈ [0 : |π.F ( f ).P| − 1]
(ii) s = return→ π.F ( f ).rettype = void

Note that according to [Sch13] it is allowed to use a statement return e for some expression
e ∈ E to return from a function with return type void. The returned value is simply ignored then.

Configurations

Finally, we can define the configurations of the C-IL model. A C-IL configuration consists
of a global memory and the current state of the stack. The stack models contain all the local
information that is needed for the execution of C-IL functions. For every new function call, a
stack frame with the following structure is put on the stack.

Definition 5.35 (C-IL Stack Frame) A C-IL stack frame s is a record

s = (ME, rds, f , loc) ∈ frameC-IL

containing the components:

• f ∈ Fname — the name of the function, to which the stack frame belongs.

• ME : VC-IL ⇀ (B32)∗ — the memory for local variables and parameters. The content of
a local variable or parameter is represented as a list of words, thus allowing for pointer
arithmetic within the variables.

• rds ∈ valptr∪vallref∪{⊥}— the return destination for function calls from f , which contains
a reference to the sub-variable where to store the return value of a called function. If the
called function has return type void we set rds to ⊥.

• loc ∈ N— the location counter, indexing the next statement in the function body of f to
be executed.

Then the definition of a C-IL configuration is straight-forward.
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Prettype
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032

Figure 5.2: Illustration of the C-IL configurations and where pointers and local references are
pointing to. This figure is copied from [Sch13] and adapted to our setting and notation. In
particular, here top = |c.s| − 1.

Definition 5.36 (C-IL Configuration) A C-IL configuration c is a record

c = (M, s) ∈ conf C-IL

containing the components:

• M : B30 → B32 — the global word-adressable memory,

• s ∈ frame∗C-IL — the C-IL stack, containing C-IL stack frames, where the top frame is at
the end6 of the list.

See Fig. 5.2 for an illustration. In most cases, the execution of a step of a C-IL program depends
only on the top-most frame of the stack and the memory. The location pointer of the stack frame
points to the statement in the corresponding function’s body that shall be executed next. Global
variables are located in the global memory. Moreover, there are the local variables and parame-
ters contained in the local memory of each stack frame. Local variables and parameters obscure
global variables with the same name. By using variable identifiers one can only access global
memory and the local memory of the top-most frame, however using local references one can
also update local memories of the lower frames in the stack. The flat word-addressable global
memory can also be accessed by dereferencing plain memory addresses (pointer-arithmetic).
Note, however, that, while, in fact, the stack is implemented in a part of the global memory, C-IL
does not allow to access local variables or other components of the stack via pointer-arithmetic.
Location and layout of stack frames are undisclosed and in the simulation theorem we will have
software conditions prohibiting explicit memory accesses to the stack region.

6Here we differ from [Sch13] where the top frame is the head of c.s.
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An important part in the execution of C-IL steps is the evaluation of types and expressions,
where the first is useful to define the second. However, the detailed definitions of the evaluation
functions are quite technical. They can be found in Section 5.8 of [Sch13]. Here we only declare
and use them.

Definition 5.37 (C-IL Type and Expression Evaluation) We introduce the C-IL type evalua-
tion function τQ

π,θ
c which returns the type for a given C-IL expression wrt. C-IL configuration c,

program π, and environment parameters θ.

τQ
·,·
·

(·) : conf C-IL × progC-IL × paramsC-IL × E⇀ TQ

Similarly, we introduce the C-IL expression evaluation function [[·]]π,θc which returns the for a
given C-IL expression.

[[·]]·,·· : conf C-IL × progC-IL × paramsC-IL × E⇀ val

Both functions are defined by structural induction on the given expression. They are partial
functions because not all expressions are well-formed and can be evaluated properly for a given
program and C-IL configuration. In such cases the type and value of an expression e are unde-
fined and we have τQ

π,θ
c (e) = ⊥, and [[e]]π,θc = ⊥ respectively.

A typical case of an erroneous expression is a reference to a variable name that is not declared.
The type evaluation of a pointer dereferencing ∗(e) fails if e is not of the type pointer or array.
Similarly, the type of an address &(e) of an expression e is only defined if e describes a sub-
variable or a dereferenced pointer.

In expression evaluation we have the same restrictions as above, i.e., referencing undeclared
variables or function names results in an undefined value. For dereferencing a pointer there is a
case distinction on the type of the pointer, thus if the type of some expression ∗(e) is undefined
so is its value. In the evaluation, it is distinguished whether the pointer points to a primitive value
or an array. In the first case, one simply reads the referenced memory address, in the latter case
the array itself is returned. We cannot reference or dereference complete struct-type variables,
but only their primitive or array fields.

The evaluation functions depend on the environment parameters for several reasons. First the
type returned by the sizeof operator is defined in θ. In expression evaluation, one has to know
the offset of the fields in the memory representation of composite variables, which is also a
compiler-dependent environment parameter. For evaluating function pointers, we need to check
θ.Fadr in order to determine which of the two function pointer values should be used. Moreover,
the effects of mathematical operators and type casts are also compiler-dependent.

Before we can define the C-IL transition function, we need to make a few more definitions.
Up to now we have not defined the size of types in memory. It is computed by a function

sizeθ : TC-IL → N

which returns the number of words occupied in memory by a value of a given type. Its defini-
tion is based on θ because the layout of struct types in memory is depending on the compiler.
However for primitive and pointer types t we have sizeθ(t) = 1, as expected. Moreover if t is
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an array of n elements with type t′ then sizeθ(t) = n · sizeθ(t′). The complete definition can be
found in [Sch13]. Using the type evaluation and type size functions, we can define the following
well-formedness conditions for C-IL configurations.

Definition 5.38 (Well-formedness of C-IL Configurations) To be well-formed we require for
any configuration c ∈ conf C-IL, program π ∈ progC-IL, and environment parameter θ ∈ paramsC-IL
that in every stack frame (i) the function belongs to this frame is defined, (ii) the sizes of local
memories correspond to the variable declarations of the corresponding functions, (iii) below the
top frame the type of the return destination agrees with the return type of the called function in
the frame above (with higher index), and (iv) the current location never leaves the function body.
Moreover (v) the program is well-formed. Given a stack s ∈ frame∗C-IL we first define:

wfsC-IL(s, π, θ) ≡ ∀i ∈ [0 : |s| − 1].
(i) π.F (s[i]. f ) , ⊥
(ii) ∀(v, t) ∈ π.F (s[i]. f ).V →

s[i].ME(v) , ⊥ ∧ |s[i].ME(v)| = sizeθ(qt2t(t))
(iii) i < |s| − 1→ τQ

π,θ
c (s[i].rds) = π.F (s[i + 1]. f ).rettype

(iv) s[i].loc ∈ [0 : |π.F (s[i]. f )| − 1]

and set wf C-IL(c, π, θ) ≡ wfprogC-IL(π) ∧ wfsC-IL(c.s, π, θ) according to (v).

Thus, the well-formedness of C-IL configurations depends only on the stack but not on the global
memory. As we have introduced C-IL configurations, we can also complete the definition of the
environment parameter θ.Rextern.

Definition 5.39 (External Procedure Transition Relations) We use the environment parame-
ter θ.Rextern to define the effect of external procedures whose implementation is not given by the
C-IL programs. It has the following type

θ.Rextern : Fname ⇀ 2val∗×conf C-IL×conf C-IL

where for an external procedure x, such that π.F (x).P = extern, the set θ.Rextern(x) contains
tuples ((i0, . . . , in−1), c, c′) with the components:

• i0, . . . , in−1 — the input parameters to the external procedure

• c, c′ — the pre- and post state of the transition

In case an external procedure x is called with a list of input parameters from a C-IL configuration
c, the next configuration c′ is determined by non-deterministically choosing a fitting transition
from θ.Rextern(x).

Closely related to external procedures are the compiler intrinsic functions that are defined
by θ.intrinsics : Fname ⇀ FunT . Intrinsics are predefined functions that are provided by the
compiler to the programmer, usually to access certain system resources that are not visible in
pure C. As anounced before the only intrinsic function considered in our scenario is rmw and
mfence, which are wrapper functions for the rmw and m f ence assembly instruction. We define
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θ.intrinsics(rmw) = ftermw, θ.intrinsics(mfence) = ftemfence in the subsequent paragraphs. For all
other function names f < {rmw,mfence} we have θ.intrinsics( f ) = ⊥.

The function table entry of m f ence is defined as:

ftemfence.rettype = (∅, void)

ftemfence.npar = 0

ftemfence.V = ε

ftemfence.P = extern

The intrinsic function mfence is implemented by the assembly instruction m f ence and thus an
external function. It does not take any parameters and only increase the loc in the C-IL config-
uration because after the SB reduction, the SB is not visible in ISA level. We need the mfence
intrinsic to clear the dirty bit in our Cosmos C-IL machine configuration. Before defining the
transition relation of mfence, we provide a function incloc : conf C-IL ⇀ conf C-IL to increment
the location counter of the top stack frame. It is undefined if the stack is empty, otherwise:

incloc(c) = c[s := c.s[top 7→ (c.s[top])[loc := c.s[top].loc + 1]]]

The transition relation θ.Rextern(m f ence) is defined as:

ρmfence = {((), c, c′) | c′ = incloc(c)}

The function table entry of rmw is defined as:

ftermw.rettype = (∅, void)

ftermw.npar = 4

ftermw.V = (a, (∅,ptr({volatile}, i32))) ◦ (u, (∅, i32))

◦ (v, (∅, i32)) ◦ (r, (∅,ptr(∅, i32)))

ftermw.P = extern

The intrinsic functions rmw is also implemented in assembly and an external function. It takes
4 input arguments a,u,v, and r, where a is a pointer to the volatile memory location that shall
be swapped, u is the value with which the memory location referenced by a is compared, and
v is the value to be swapped in. The content of the memory location pointed to by a is written
to the subvariable referenced by the fourth parameter7 r. Since the intrinsics are provided by
the compiler, they are not part of the program-based function table. We define the combined
function table F θ

π as follows.
F θ
π = π.F ] θ.intrinsics

Knowing the semantics of the rmw instruction of MIPS, we would also like to define the ex-
ternal procedure transition relation Rextern(rmw). However, we first need some more nota-
tion for updating a C-IL configuration. When writing C-IL values to the global or some lo-
cal memory, they have to be broken down into sequences of bytes. First we need a function

7Note that the rmw instruction of the MIPS ISA has only three parameters. Thus in the implementation of rmw an
additional write instruction is needed to update the memory location referenced by r. The parameter r is used as
the destination of the rmw return result.
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bits2words : B32n → (B32)n convert a bit string whose length is a multiple of 32 into a word
string.

bits2words(x[m : 0]) =

bits2words(x[m : 32]) ◦ (x[31 : 0]) : m > 31
(x[m : 0]) : otherwise

Then the conversion from C-IL values to words is done by the following partial function.

val2wordsθ(v) =

bits2words(b) : v = val(b, t)
⊥ : otherwise

Note that this definition excludes local variable references and symbolic function pointers. For
these values, the semantics does not provide a binary representation because for local subvari-
ables and functions f where θ.Fadr( f ) = ⊥, the location in memory is unknown. Also, note that
val2wordsθ depends on the environment parameter θ because the conversion to word strings de-
pends on the endianness of the underlying memory system. As our MIPS ISA uses little endian
memory representations we simplified the definition of val2wordsθ which contains a case dis-
tinction on θ.endianness in [Sch13]. We still keep the θ though, to keep the notation consistent.

Now we can introduce helper functions to write the global and local memories of a C-IL
configuration. We copy the following three definitions from Section 5.7.1 of [Sch13], with
the modifications that we fix the pointer size to 1 word, the global memory becomes word-
addressable, and the values are 32-bits.

Definition 5.40 (Writing Word-Strings to Global Memory) We define the function

writeM : (B30 → B32) × B30 × (B32)∗ → (B30 → B32)

that writes a word-string B to a global memoryM starting at address a such that

∀x ∈ B30. writeM(M,a,B)(x) =

M(x) 〈x〉 − 〈a〉 < {0, . . . , |B| − 1}
B[〈x〉 − 〈a〉] otherwise

Definition 5.41 (Writing Word-Strings to Local Memory) We define the function

writeE : (VC-IL ⇀ (B32)∗) × VC-IL × N0 × (B32)∗ ⇀ (VC-IL ⇀ (B32)∗)

that writes a word-string B to variable v of a local memoryME starting at offset o such that

∀w ∈ VC-IL, i ∈ [0 : |ME(w)| − 1].

writeE(ME,v,o,B)(w)[i] =

ME(w)[i] w , v ∨ i < {o, . . . , o + |B| − 1}
B[i − o] otherwise

If, however, |B| + o > |ME(v)| or v < dom(ME), the function is undefined for the given parame-
ters.
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Definition 5.42 (Writing a Value to a C-IL Configuration) We define the function

write : paramsC-IL × conf C-IL × val × val ⇀ conf C-IL

that writes a given C-IL value y to a C-IL configuration c at the memory pointed to by pointer x
according to environment parameters θ as

write(θ,c,x,y) =

c[M := writeM(c.M, a′, val2wordsθ(y))] : x = val(a,ptr(t))
∧ y = val(b, t)

c′ : x = lref((v, o), i,ptr(t))
∧ y = val(b, t)

write(θ, c, val(a,ptr(t)), y) : x = val(a, array(t, n))
write(θ, c, lref((v, o), i,ptr(t)), y) : x = lref((v, o), i, array(t, n))
⊥ : otherwise

where a′ = ptrv2addr(x), c′.s[i].ME = writeE(c.s[i].ME, v, o, val2wordsθ(y))] and all other
parts of c′ are identical to c.

In the first case x contains a pointer to some value in global memory of type t, and we are
overwriting it with the primitive or pointer value y. When x is a local variable reference, we
update the referenced variable with y in the specified local memory, starting at the given offset.
Since arrays in C are treated as pointers to the first element of the array, any write operation to
an array is transformed accordingly. Observe that write checks for type safety, i.e., that value
y and the write target specified by x have the same type. Moreover, we cannot update c using
symbolic function pointers for x because these pointers are not associated with any resource in
c.

Now we can define the transition relation θ.Rextern(rmw) for the rmw compiler intrinsic func-
tion. It consists of two subrelations depending on whether the comparison in the rmw instruction
was successful or not. In the first case we let a′ = ptrv2addr(a) then:

ρ
swap
rmw = {((a, u, v, r), c, c′′′) | ∃b ∈ B32. u = val(b, i32) ∧ c.M(a′) = b ∧

∃c′, c′′ ∈ conf C-IL. c′ = write(θ, c, a′, v) ∧

c′′ = write(θ, c′, r, u) ∧ c′′′ = incloc(c′′) }

The memory location pointed to by a equals the test value u. Consequently it is updated with v
and its old value is stored in r. In addition, the current location in the top frame is incremented.
For the failed case, when u does not equal the referenced value of a, the memory location is not
updated. The rest of the transition is identical to the case above. We also let a′ = ptrv2addr(a)
then:

ρ
fail
rmw = {((a, u, v, r), c, c′′) | ∃b ∈ B32. u = val(b, i32) ∧ c.M(a′) , b ∧

∃c′, c′′ ∈ conf C-IL. c′′ = incloc(c′) ∧

c′ = write(θ, c, r, val(c.M(a′), i32))}
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Of course, the overall transition relation is the disjunction of both cases.

θ.Rextern(rmw) = ρ
swap
rmw ∪ ρ

fail
rmw

Before we can define the C-IL transition function, there are two more helper functions left to
introduce. The first function τ : VC-IL → T derives the type of values.

τ(x) =


t : x = val(y, t)
t : x = fun( f , t)
t : x = lref((v, o), i, t)

Last we define function zero(θ, x) : paramsC-IL × VC-IL ⇀ B which checks whether a given
primitive or pointer value equals zero.

zero(θ, x) =

(a = 032·sizeθ(t)) : x = val(a, t)
⊥ : otherwise

We finish the introduction of the C-IL semantics with the definition of the C-IL transition func-
tion in the next sub-section. It is in great portions a literal copy of Section 5.8.3 in [Sch13].

Transition Function

For given C-IL program π and environment parameters θ, we define a partial transition function

δπ,θC-IL : conf C-IL × ΣC-IL ⇀ conf C-IL

where ΣC-IL is an input alphabet used to resolve non-deterministic choice occurring in C-IL
semantics. Unlike in [Sch13] and [Bau14], there is only one kind of non-deterministic choice:
due to the possible non-deterministic nature of external function calls – here, one of the possible
transitions specified by relation θ.Rextern is chosen. To resolve these non-deterministic choices,
our transition function gets as an input in = η ∈ ΣC-IL containing a mapping η of transition
functions for computing the result of external function calls.

ΣC-IL ⊆ Fname ⇀ (val∗ × conf C-IL ⇀ conf C-IL)

The inputs are either an updated C-IL configuration c′ or a symbolic value ⊥ to denote deter-
ministic steps. However this opens up the possibility of run-time errors due to nonsensical input
sequences which do not provide the right inputs for the current statement, e.g., a ⊥ symbol in-
stead of the required updated configuration for external function calls. Also, the choice of inputs
depends on previous computation results, e.g., in case of external function calls for the previous
configuration. In our model, we always provide the necessary inputs to fix any non-deterministic
choice in the C-IL program execution, and we use an update function instead of an updated con-
figuration for handling external function calls. If we require inputs to contain only transition
functions for external function calls that implement state transitions according to θ.Rextern, then
we can exclude run-time errors due to a bad choice of inputs. The inputs for a computation can
thus be chosen independently of the C-IL configuration, and we will only get undefined results
due to programming errors. Below we formalize the restriction on ΣC-IL.
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Definition 5.43 (C-IL Input Constrains) We only consider input alphabets ΣC-IL that fulfill the
following restrictions. For any input, we demand that η is defined for all external functions and
for all arguments its result reflects the semantics specified by θ.Rextern.

ΣC-IL = { η | ∀ f ∈ Fname. F
θ
π ( f ).P = extern→ η( f ) , ⊥ ∧

∀(X, c) ∈ dom(η[ f ]). (X, c, η[ f ](X, c)) ∈ θ.Rextern }

In defining the semantics of C-IL, we will use the following shorthand notation to refer to infor-
mation about the topmost stack frame top = |c.s| − 1 in a C-IL-configuration c:

• local memory of the topmost frame: MEtop(c) = c.s[top].ME

• return destination of the topmost frame: rdstop(c) = c.s[top].rds

• function name of the topmost frame: ftop(c) = c.s[top]. f

• location counter of the topmost frame: loctop(c) = c.s[top].loc

• function body of the topmost frame: Ptop(π, c) = π.F ( ftop(c)).P

• next statement to be executed: stmtnext(π, c) = Ptop(π, c)[loctop(c)]

Below we define functions that perform specific updates on a C-IL configuration.

Definition 5.44 (Setting the Location Counter) The function

setloc : conf C-IL × N⇀ conf C-IL

defined as
setloc(c,l) = c[s := (c.s)[top 7→ (c.s[top])[loc := l]]]

sets the location counter of the top-most stack frame to location l.

Definition 5.45 (Removing the Topmost Frame) The function

dropframe : conf C-IL ⇀ conf C-IL

which removes the top-most stack frame from a C-IL-configuration is defined as:

dropframe(c) = c[s := c.s[0 : top)]

Definition 5.46 (Setting Return Destination) We define the function

setrds : conf C-IL × (vallref ∪ valptr ∪ {⊥}) ⇀ conf C-IL

that updates the return destination component of the top most stack frame as:

setrds(c, v) = c[s := (c.s)[top 7→ (c.s[top])[rds := v]]]
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Note that all of the functions defined above are only well-defined when the stack is not empty;
this is why they are declared partial functions. In practice, however, executing a C-IL program
always requires a non-empty stack.

Definition 5.47 (C-IL Transition Function) We define the transition function

δπ,θC-IL : conf C-IL × ΣC-IL ⇀ conf C-IL

by a case distinction on the given input:

• Deterministic step, i.e., stmtnext(π, c) , call e(E):

δπ,θC-IL(c, in) =

incloc(c′) : stmtnext(π, c) = (e0 = e1)
setloc(c, l) : stmtnext(π, c) = goto l
setloc(c, l) : stmtnext(π, c) = ifnot e goto l ∧ zero(θ, [[e]]π,θc )
incloc(c) : stmtnext(π, c) = ifnot e goto l ∧ ¬zero(θ, [[e]]π,θc )
c′′ : stmtnext(π, c) = return
c′′ : stmtnext(π, c) = return e ∧ rds = ⊥

write(θ, c′′, rds, [[e]]π,θc ) : stmtnext(π, c) = return e ∧ rds , ⊥

where c′ = write(θ, c, [[&(e0)]]π,θc [[e1]]π,θc ), c′′ = dropframe(c) and rds = rdstop(c′′). Note
that for return the relevant return destination resides in the caller frame. Also, in case any
of the terms used above is undefined due to run-time errors, we set δπ,θC-IL(c, in) = ⊥.

• Function call:

δπ,θC-IL(c, in), where all local variables are initialized with corresponding default values in
the called function, is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E)∨ stmtnext(π, c) = (e0 = call e(E)) — the next statement is a
function call (without or with return value),

– ([[e]]π,θc = val(b, funptr(t,T ))→ ∃ f . f = θ.F −1
adr(ptrv2addr(b))) ∨

∃ f . [[e]]π,θc = fun( f , funptr(t,T )) —the expression e evaluates to some function f or
to a function pointer which points to f ,

– |E| = F θ
π ( f ).npar ∧ ∀i ∈ [0 : |E| − 1]. F θ

π ( f ).V[i] = (v, t) → τQ
π,θ
c (E[i]) = t — the

types of all parameters passed match the declaration, and

– F θ
π ( f ).P , extern — the function is not declared as external in the function table.

Then, we define
δπ,θC-IL(c, in) = c′

such that
c′.s = incloc(setrds(c, rds)).s ◦ (M′

E
,⊥, f , 0)

c′.M = c.M
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where

rds =

[[&(e0)]]π,θc : stmtnext(π, c) = (e0 = call e(E))
⊥ : stmtnext(π, c) = call e(E)

and

M′
E

(v) =


val2bytesθ([[E[i]]]π,θc ) : ∃i. F θ

π ( f ).V[i] = (v, t) ∧ i < F θ
π ( f ).npar

dft(t) : ∃i. F θ
π ( f ).V[i] = (v, t) ∧ i ≥ F θ

π ( f ).npar
⊥ : otherwise

• External procedure call:

δπ,θC-IL(c, in) is defined if and only if all of the following hold:

– stmtnext(π, c) = call e(E) — the next statement is a function call without return value,

– ([[e]]π,θc = val(b, funptr(t,T ))→ ∃ f . f = θ.F −1
adr(b)) ∨

∃ f . [[e]]π,θc = fun( f , funptr(t,T )) — expression e evaluates to some function f ,

– |E| = F θ
π ( f ).npar ∧ ∀i ∈ [0 : |E| − 1]. F θ

π ( f ).V[i] = (v, t) → τQ
π,θ
c (E[i]) = t — the

types of all parameters passed match the declaration,

– in.η[ f ](([[E0]]π,θc , . . . , [[E|E|−1]]π,θc ), c) = c′ — the external transition function for f
allows a transition under given parameters E from c to c′,

– c′.s[0 : top) = c.s[0 : top) — the external procedure call does not modify any stack
frames other than the topmost frame,

– loctop(c′).loc = loctop(c)+1∧ ftop(c′) = ftop(c) — the location counter of the topmost
frame is incremented and the function is not changed,

– F θ
π ( f ).P = extern — the function is declared as extern in the function table.

Note that we restrict external function calls in such a way that they cannot be invoked with
a return value. However, there is a simple way to allow an external function call to return
a result: It is always possible to pass a pointer to some subvariable to which a return value
from an external function call can be written.8

Then,
δπ,θC-IL(c, in) = c′

C-IL Calling Convention

The call procedure in C-IL follows certain conventions that shall be described below. First of all
certain general purpose registers of the MIPS processor core have special meaning. The details
are depicted in Table 5.1. Note that this is a different setting than in [Sha12]. In particular the
stack and base pointers are now stored in registers 29 and 30. The number of registers used for
input parameters is limited to four, and the return value of a procedure call is stored in register
2. We omitted the possibility of 64-bit return values that would be stored in two registers.

8See the definition of the rmw compiler intrinsic for an example.
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Alias 〈Index〉 Usage
zero 0 always contains 032

t1 1 temporary values
rv 2 procedure return value
t2 3 temporary values
i1 . . . i4 4, . . . , 7 input arguments for procedure calls
t3 . . . t14 8 . . . 15, 24 . . . 27 temporary values
sv1 . . . sv8 16 . . . 23 callee-save registers
sp 29 stack pointer
bp 30 stack frame base pointer
ra 31 return address

Table 5.1: Intended usage of the 32 MIPS general purpose registers in function calls of C-IL

Also registers 26, 27 and 28 do not have any special meaning in the framework of this thesis.
We explicitly state which registers are the callee-save registers (16-23) that must be preserved
across procedure calls by the programmer.

Concerning the procedure call we have four calling conventions CC.1 to CC.4. They read as
follows.

CC.1 In a procedure call up to four input parameters may be passed through the general purpose
registers i1 to i4.

CC.2 Excess parameters must be passed via the caller’s lifo which is stack component used to
store temporary data and procedure input parameters in a last in first out manner. Param-
eters must be pushed on the stack in reverse order such that in the end the first excess
parameter, i.e., the fifth parameter, resides on the top of lifo. In the implementation of the
stack, there is space reserved for the input parameters passed through the four registers.
Thus the size of the memory region in the implementation devoted to storing the parame-
ters of the stack frame i is always equal to npari. All excess parameters that were pushed
on the stack when there were more than four inputs to procedure p are consumed (popped)
from the lifo by a call of p and become part of the parameter space of the new stack frame.

CC.3 Before the return from a called procedure p all callee-save registers of p must be restored
with the contents they had when p was entered. This must also be guaranteed for sp,
bp, and ra by every C-IL implementation. The C-IL compiler takes care of saving and
restoring these registers.

CC.4 The return value from a procedure call is passed through register rv.

Compilation and Stack Layout

We use the stack layout for C-IL from [Sha12], which is depicted in Fig. 5.3 and adhere to the
calling conventions CC.1 to CC.4. The C-IL stack layout exhibits the following properties.
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Temporary
Data
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Function
Arguments

base(i)32

base(top)32





not in top frame

rds(i)

sba

frame 0

Figure 5.3: The C-IL stack layout.

• A C-IL frame i in memory is identified by a frame base address base(i)32. The stack
grows downwards starting at a given stack base address which is not identical with the
frame base address of the first frame base(0)32.

• The parameters for the function call are stored in the high end of the stack frame. They
were stored here by the caller in reverse order. According to CC.1, the first four parameters
are passed via registers i1 to i4. Nevertheless, we also reserve space for them.

• Between parameter space and the base address of a frame resides the frame header which
contains the return address and the previous base pointer.

• The base pointer is stored in register bp and always points to the frame base address of the
topmost (lowest in memory) stack frame.

• Below the frame base address, we find the region of the stack frame where the local
variables are saved.

• Below the local variables the callee save registers are stored. In contrast to [Sha12] we
assume for simplicity that the C-IL compiler always stores all eight callee-save registers
sv1 to sv8 in ascending order (sv1 is at the highest memory address).

• Below that area the compiler stores temporary values in a last-in-first-out data structure.
The size of the temporary area may change dynamically during program execution. This
component is the lifo region mentioned in the calling convention.
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• The stack pointer is stored in register sp and always points on the lower end of the tempo-
rary data region of the topmost (lowest in memory) stack frame.

• In case a function is called, the compiler first stores the contents of the caller-save registers
in the region directly below the temporary values.

• Next, the return destination (where the returned value of a function call should be saved)
is stored by the caller. Parameters for the next frame are stored below.

• Caller-save registers, return destination, and the input parameters can be seen as an exten-
sion to the lifo-like temporary value area. Thus, we are obeying calling convention CC.2.
Upon a function call from frame i the parameters become a part of the next stack frame.
Thus, they are located above the base address base(i + 1)32.

• All components of the stack are word-aligned.

Before we can formalize this notion of the stack structure, we need some more information about
the compilation process. Therefore, we introduce a C-IL compiler information data structure
infoIL ∈ InfoTC-IL which have the following components for infoIL.

• infoIL.code : (B32)∗ — a list of MIPS instructions representing the assembled C-IL pro-
gram.

• infoIL.cp : Fname×N→ B— identifies the compiler consistency points for a given function
and program location.

• infoIL.off : Fname ×N⇀ N0 - A function calculating the offset in the compiled code of the
first instruction which implements a C-IL statement at the specified consistency point in
the given function. Note that the offset 0 refers to instruction infoIL.code[0].

• infoIL.fceo : Fname × N ⇀ N0 — the offset in the compiled code of the epilogue of a
function call in a given function at a given location (see explanation below)

• infoIL.lvr : V × Fname × N ⇀ B5 — specifies, if applicable, the gpr where a given word-
sized local variable of a given function is stored in a given consistency point

• infoIL.lvo : V × Fname ×N⇀ N0 — specifies the offset of local variables (excluding input
parameters) in memory relative to the frame base for a given function and consistency
point (number of words)

• infoIL.csro : Fname ×N×B
5 ⇀ N0 — specifies the offset within the caller-save area where

the specified register is saved by the caller during a function call in the given function and
consistency point (number of words, counting relative to upper end with higher address)

• infoIL.sizeCrS : Fname × N⇀ N0 — specifies the size of the caller-save region of the stack
for a given caller function and location of function call (number of words)

• infoIL.sizetmp : Fname × N ⇀ N0 — specifies the size of the temporary region of the stack
for a given function and consistency point (number of words)
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• infoIL.cba : B30 — the start address of the code region in memory

• infoIL.sba : B30 — the start base address

• infoIL.mss : B30 — the maximal size in words of the stack. We define shorthand mspIL ≡

infoIL.sba−30 infoIL.mss +30 130 to denote the minimal allowed value for the stack pointer.

For most of the components, it should be obvious why we need this information in order to define
the C-IL compiler consistency relation. The only exception is maybe the function call epilogue
offset fceo. A function call is not completed after the return statement is executed by the callee,
because the caller still has to update the return destination with the return value passed in register
rv. Also, the stack has to be cleared of the return destination, and caller-save registers need to
be restored. The code portion in the compiled code for a function call which is implementing
these tasks, we call the function epilogue. We need to know the start of the epilogue to define
the consistency relation for the return addresses.

In the following, we introduce notation for the frame base addresses and the distances between
them. First we introduce some shorthands for the components of the i-th stack frame, implicitly
depending on some C-IL configuration cIL ∈ conf C-IL.

∀x ∈ {ME, rds, f , loc}, i ∈ [0 : top]. xi = cIL.s[i].x

Moreover let zi ≡ π.F ( fi).z for z ∈ {V, npar} denote the local variable and parameter declara-
tion list, as well as the number of parameters for fi. The size needed for local variables and
parameters on the stack can then be computed as follows.

sizepar(i) =

npari−1∑
j=0

sizeθ(qt2t(Vi[ j].t))

sizelv(i) =

|Vi |−1∑
j=npari

sizeθ(qt2t(Vi[ j].t))

Here for a variable declaration v ∈ V × TQ, the notation v.t refers to the type component. Then
we can define the distance between base addresses, or between the base address of the top stack
and the base pointer respectively. It is depending on cIL, π, θ and infoIL.

dist(i) =


sizelv(i) + 8 + infoIL.sizetmp( fi, loci) : i = top
sizelv(i) + 8 + infoIL.sizetmp( fi, loci)
+ infoIL.sizeCrS( fi, loci) + 1 + sizepar( fi+1) + 2

: i < top

For the top frame, we only store the local variables, the eight callee-save registers and temporary
data in the area bounded by the addresses stored in base pointer and stack pointer. Lower frames
(with lower index and higher frame base address) are storing information for the function call
associated with the stack frame lying directly above (with higher index and lower frame base
address). This includes the caller-save registers, the return destination. The function input pa-
rameters and the next frame header are belonging to the callee frame. For simplicity, we do not
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make a case distinction whether a function returns a value or not. We reserve the space for the
return destination in both cases. Now the frame base addresses are easily defined recursively.

base(i) =

〈infoIL.sba〉 − sizepar( fi) − 1 : i = 0
base(i − 1) − dist(i − 1) : i > 0

5.6.2 C-IL Instantiation

In this section, we define a Cosmos machine S n
C-IL ∈ S which contains n C-IL computation units

working on a shared global memory. All C-IL units share the same program and environment
parameters, but they are running on different stacks since each unit can be in a different program
state. Hence, we have disjoint stack regions in memory with different stack base addresses
but the same length. In the Cosmos machine definition we need some information from the
compiler. The instantiation is thus based on the parameters π ∈ ProgC-IL, θ ∈ paramsC-IL and
infop

IL ∈ InfoTC-IL for p ∈ Nn. The compiler information is equal for all units except for the stack
base address.

∀q, r ∈ [0 : n − 1], c. q , r ∧ c , sba→ infoq
IL.c = infor

IL.c

Thus, we can refer to a common compiler information data structure infoIL which is consistent
with all infop

IL wrt. all components but sba. We define the shorthands for stack and code regions
below, adapting them to the C-IL setting.

CR = [infoIL.cba : infoIL.cba +30 bin30(|infoIL.code|) −30 130]

StRp = [infop
IL.sba −30 infoIL.mspIL +30 130 : infop

IL.sba]

Then required disjointness of stack frames in memory is denoted by:

∀q, r ∈ [0 : n − 1]. q , r → StRq ∩ StRr = ∅

Before, we already noted that the software conditions on C-IL enforce that no global variables
are allocated in the stack or code memory region. However, this is only guaranteed for global
variables that are accessed in the program. For the instantiation of our Cosmos model, we need
to make the requirement explicit. Let StR =

⋃n−1
p=0 StRp be the complete stack region and let

Aθgv(v, t) = [θ.allocgv(v) : θ.allocgv(v) +30 bin30(sizeθ(qt2t(t))) −30 130]

be the address range allocated for some global variable v ∈ VC-IL of qualified type t ∈ TQ. Then
we require:

∀(v, t) ∈ π.VG. Aθgv(v, t) ∩ (CR ∪ StR) = ∅

We now define the components of S n
C-IL one by one.

• S n
C-IL.A = {a ∈ B30 | a < CR ∪ StR} and S n

C-IL.V = B32 — we obtain the memory for the
C-IL system by cutting out the forbidden address ranges for the stack and code regions
from the underlying MIPS memory.

260



• S n
C-IL.R = {a ∈ B30 | ∃(v, (q, t)) ∈ π.VG. a ∈ Aθgv(v, (q, t)) ∧ const ∈ q ∨ a ∈ CR} — as

constants are supposed to never change their values, we should forbid writing them via
the ownership policy by including them in the read-only set. This way, ownership safety
guarantees the absence of writes to constant global variables, which cannot be detected
by static checks of the compiler. For simplicity, we exclude here constant subvariables of
global variables that are not constant. Nevertheless, note that the ownership policy cannot
exclude writes to local or dynamically allocated constant variables, because, on the one
hand, local variables are not allocated in the global memory and the ownership policy
only governs global memory accesses. On the other hand, the set of read-only addresses
is fixed in our ownership model. Thus, we cannot add new constant variables to R. We
also include the code region into the read-only set, since we neither consider a swappable
code region nor self-modifying codes for simplicity.

• S n
C-IL.nu = n — we have n C-IL computation units.

• S n
C-IL.U = frame∗C-IL ∪ ⊥ × N × B × (T ⇀ V) — each C-IL computation unit consists

4 components: (i) either in a run-time error state ⊥ or a C-IL stack component s upon
which it bases its local computations (ii) similar to the instantiation with MIPS ISA, we
also have a counter n (iii) a dirty bit D to maintain the program discipline of our store
buffer reduction theorem (iv) a temporary ϑ which is a partial function from {I,R}×N to a
32-bit value. For all X ∈ {I,R} in (X, n) we also write Xn for short. Initially, every Xn maps
to ⊥. From the definition of the Cosmos machine transition function in later paragraphs,
we will only update Rn and ∀n. In always maps to ⊥.

• S n
C-IL.E = ΣC-IL — The external input alphabet for the C-IL transition function is also

suitable for the C-IL Cosmos machine.

• S n
C-IL.reads — We need to specify the explicit read accesses to global memory that are

associated with the next C-IL step of a given unit. First we introduce a function to compute
the memory region occupied by referenced global subvariables.

Definition 5.48 (Footprint Function for Global Subvariables) Let a ∈ B30 be an ad-
dress that a pointer variable points to and t ∈ {ptr(t′), array(t′, n)} the type of that pointer.
Then the memory footprint of the referenced subvariable is computed by the following
function.

fpθ(a, t) =

[a : a +30 bin30(sizeθ(t′))) : /isarray(t′)
∅ : otherwise

Arrays cannot be accessed as a whole, we only read their elements using pointer arith-
metic. Therefore, we define the memory footprint of array variables to be empty.

Definition 5.49 (Global Memory Footprint of C-IL Expressions) Function

A·,·· (·) : conf C-IL × progC-IL × paramsC-IL × E⇀ 2[0:230)
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computes the set of global memory addresses that are accessed when evaluating a given C-
IL expression e wrt. some C-IL configuration c, program π, and environment parameters
θ as follows. Let sv(e) ≡ e ∈ V ∨ ∃e′ ∈ E, f ∈ F. e = (e′). f (i.e., e is a subvariable) in:

Aπ,θc (e) =



∅ : e ∈ val ∪ Fname ∨ ∃t ∈ TQ. e = sizeof(t)
∨ sv(e) ∧ [[&(e)]]π,θc ∈ vallref

∨ ∃e′ ∈ E. e ∈ {&(e′), sizeof(e′)} ∧ sv(e′)
fpθ(a, t) : sv(e) ∧ [[&(e)]]π,θc = p ∈ valptr

Aπ,θc (e′) : ∃	 ∈ O1, t ∈ TQ. e ∈ {	e′, e = (t)e′, e = &(∗(e′))}
∨ e = ∗(e′) ∧ [[e′]]π,θc ∈ vallref ∨ e = sizeof(∗(e′))

Aπ,θc (x) ∪ Aπ,θc (e′) : ∃e′′ ∈ E ∧ e = (x ? e′ : e′′) ∧ zero(θ, [[x]]π,θc )
Aπ,θc (x) ∪ Aπ,θc (e′′) : ∃e′ ∈ E ∧ e = (x ? e′ : e′′) ∧ /zero(θ, [[x]]π,θc )
Aπ,θc (e′) ∪ Aπ,θc (e′′) : ∃⊕ ∈ O2. e = e′ ⊕ e′′

Aπ,θc (e′) ∪ fpθ(a
′, t) : e = ∗(e′) ∧ [[e′]]π,θc = p′ ∈ valptr

⊥ : otherwise

where:

p = val(x, t) a = ptrv2addr(p)

p′ = val(x′, t) a′ = ptrv2addr(p′)

The definition is straight-forward for most of the cases. Unlike global subvariables, C-
IL values and function names are not associated with any memory address. The same
holds for local subvariables. Looking up addresses and type sizes does not touch memory
either. In order to dereference a pointer to a global memory location, one must evaluate
the address to be read, but also read the memory region referenced by that typed pointer.
We need another predicate to detect whether some expression encodes a reference to the
rmw intrinsic function or the mfence intrinsic function. Let the type signature of the rmw
intrinsic be denoted by trmw = funptr(void,ptr(i32)◦i32◦i32◦ptr(i32)). Then we define:

rmwπ,θ
c (e) ≡ ∃b ∈ B32. [[e]]π,θc = val(b, trmw) ∧ θ.F −1

adr(b) = rmw ∨ [[e]]π,θc = fun(rmw, trmw)

Let the type signature of the mfence intrinsic be denoted by tmfence = funptr(void, ε).
Then we define:

mfenceπ,θc (e) ≡ ∃b ∈ B32. [[e]]π,θc = val(b, tmfence) ∧ θ.F −1
adr(b) = mfence ∨

[[e]]π,θc = fun(mfence, tmfence)

Now the memory footprint of a C-IL statement is easily defined using the expression
footprint notation.

Definition 5.50 (Memory Footprint of C-IL statements) We overload the definition of
function Aπ,θc from above to cover also C-IL statements s ∈ IC-IL. Let AE =

⋃
e∈E Aπ,θc (e)
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for E ∈ E∗ as well as Armw = Aπ,θc (∗a) ∪ Aπ,θc (u) ∪ Aπ,θc (v) ∪ Aπ,θc (∗r) in:

Aπ,θc (s) =



∅ : s = return ∨ ∃l ∈ N. s = goto l ∨
s = call e() ∧ mfenceπ,θc (e)

Aπ,θc (e) : ∃l ∈ N. s = ifnez e goto l ∨
s = return e ∧ rds(top−1) ∈ vallref

Aπ,θc (e) ∪ fpθ(a, t) : s = return e ∧ rds(top−1) = p ∈ valptr

Aπ,θc (e) ∪ Aπ,θc (e′) : s = (e = e′)
Aπ,θc (e) ∪ AE : s = call e(E) ∧ /(rmwπ,θ

c (e) ∨ mfenceπ,θc (e))
Aπ,θc (e) ∪ Armw : s = call e(a, u, v, r) ∧ rmwπ,θ

c (e)
Aπ,θc (e) ∪ Aπ,θc (e′) ∪ AE : s = (e′ = call e(E))
⊥ : otherwise

where:

p = val(x, t) a = ptrv2addr(p)

For most statements, the footprint of the C-IL statements only depends on the expressions
they are containing. Only the return statement which returns a value writes additional
memory cells. In the special case of rmw we know from its semantics that also the memory
locations referenced by inputs a and r are accessed.

We introduce the reads-set function for C-IL statements

R·,·· (·) : conf C-IL × progC-IL × paramsC-IL × IC-IL ⇀ 2[0:230)

which defined similarly to the memory footprint of C-IL statements but excludes write
accesses. Note that the global memory is only updated by variable assignments, return
statements with a return value and the rmw primitive. For all other statements, we can use
the memory footprint function defined earlier.

In case of a rmw intrinsic function call of rmw(a, u, v, r), also the memory location refer-
enced by a is read but the target of r is only written.

For the return statements, we simply exclude the memory location referenced by the rds
component of the previous stack frame to determine the corresponding reads-set.

For assignments, we need to exclude the written memory cells which are specified in
the left-hand side of the assignment. However, we cannot simply exclude the left-hand
side expression from the computation of the reads-set since there might be read accesses
necessary in order to evaluate it. Therefore we perform a case distinction on e in s = (e =

e′):

1. e is a plain variable identifier — Then no additional global memory cells need to be
read in order to obtain the variable’s address in memory.
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2. e is dereferencing a pointer expression — Then there might be further memory reads
necessary in order to evaluate the pointer expression. However, the referenced mem-
ory location is not added to the reads-set explicitly. It still might occur in the reads-
set though if it contributes to the evaluation of the pointer expression.

3. e contains either a redundant &-∗-combination or references a field of a subvari-
able — In the first case expression evaluation simply discards the redundant &-∗-
combination. In the latter case, one first has to evaluate the referenced subvariable
before the address of the field can be computed. In both cases, the expression eval-
uation step does not require memory accesses. Hence, we continue to compute the
reads-set recursively with the inner sub-expression which must specify a subvariable.

Using A′rmw = Aπ,θc (∗a) ∪ Aπ,θc (u) ∪ Aπ,θc (v) ∪ Aπ,θc (r) we define these ideas formally:

Rπ,θc (s) =



Aπ,θc (e′) : ∃e ∈ V. s = (e = e′)
Aπ,θc (e′) ∪ Aπ,θc (e′′) : s = (∗(e′′) = e′)
Rπ,θc ((e = e′)) : ∃ f ∈ F. s ∈ {(&(∗(e)) = e′), ((e). f = e′)}
Aπ,θc (e) : s = return e
Aπ,θc (e) ∪ A′rmw : s = call e(a, u, v, r) ∧ rmwπ,θ

c (e)
Aπ,θc (s) : otherwise

Remember that C-IL configurations cIL = (M, s) consist of a memory M : B30 → B32

and a stack s ∈ frame∗C-IL, thus a pair (dme, u.s) consisting of a completed partial Cosmos
machine memory m : A ⇀ V and the stack component in a unit configuration u.s rep-
resents a proper C-IL configuration. Now the reads function of the Cosmos machine can
easily be instantiated.

S n
C-IL.reads(u,m, in) = Rπ,θ(dme,u.s)(stmtnext(π, (dme, u.s)))

• S n
C-IL.IO — There are two kinds of IO steps in C-IL. We consider the use of the rmw

mechanism as an IO step. Moreover, we include accesses to volatile variables. First
we define a predicate to recursively detect if there is a volatile pointer dereference in
expression e which is evaluated in the context of a function f of C-IL program π wrt.
environment parameter θ

Definition 5.51 (Expression Contains Volatile Pointer Dereference)

derefvolπ,θf (e) ≡

derefvolπ,θf (e′) : (∃	 ∈ O1. e = 	e′) ∨ e = &(∗(e′))

∨e = sizeof(e′) ∨ e = (t)e′

∨∃ f ′ ∈ F. e = e′. f ′

derefvolπ,θf (e′) ∨ derefvolπ,θf (e′′) : ∃⊕ ∈ O2. e = e′ ⊕ e′′

c : e = (e′ ? e′′ : e′′′)
q′ = volatile : e = ∗(e′) ∧ τQ

π,θ
f (e′) = (q′,ptr(q, t))

False : otherwise

264



where

c ≡ derefvolπ,θf (e′) ∨ derefvolπ,θf (e′′) ∨ derefvolπ,θf (e′′′)

Similarly, we can define another predicate to detect accesses to volatile variables in ex-
pression e.

Definition 5.52 (Expression Contains Volatile Variables)

volπ,θf (e) ≡

volatile = q : e ∈ V ∧ τQ
π,θ
f (e) = (q, t)

volπ,θf (e′) : (∃	 ∈ O1. e = 	e′) ∨ e = &(∗(e′))

∨ e = sizeof(e′) ∨ e = (t)e′

volπ,θf (e′) ∨ volπ,θf (e′′) : ∃⊕ ∈ O2. e = e′ ⊕ e′′

volπ,θf (e′) ∨ volπ,θf (e′′) ∨ volπ,θf (e′′′) : e = (e′ ? e′′ : e′′′)

volatile = q ∨ volπ,θf (e′) : e = ∗(e′) ∧ τQ
π,θ
f (e′) = (q′,ptr(q, t))

∨ e = (e′). f ′ ∧ τQ
π,θ
f (e) = (q, t)

False : otherwise

Note that the evaluation of constants, function names, addresses of variables, and type
casts do not require volatile variable accesses, in general. For most of the other cases,
the above definition meets what one would expect intuitively. Nevertheless, there are two
cases worth mentioning.

First, as pointer dereferencing may involve two accesses to memory, there are also two
possibilities for a volatile access. Both the pointer as well as the referenced subvariable
might be volatile. Considering field accesses, we also have several possibilities. On the
one hand, the field itself might be declared volatile. On the other hand, the contained
struct may be volatile, or the evaluation of the reference to that containing struct variable
may involve volatile accesses, respectively.

Note that according to the definition, a C-IL statement may contain more than one volatile
variable access. Nevertheless, as updates to volatile variables must be implemented as
atomic operations, for simplicity we restrict that there may be at most one volatile variable
access per C-IL statement. We set up the following rules which will be enforced by the
ownership discipline when defining the IO predicate accordingly.

– Volatile variables may only be accessed in assignment statements or by the intrinsic
function rmw.

– Per assignment statement there may be only one access to a volatile variable.

– The right-hand side of assignments with a volatile read is either a volatile variable
identifier or it is dereferencing a pointer expression which is either volatile or point-
ing to a volatile variable.
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– The left-hand side of assignments is a volatile read only when it contains a volatile
pointer dereference sub-expression.

– The left-hand side of assignments with a volatile write, is either a volatile variable
identifier or it is dereferencing a non-volatile pointer expression which is pointing to
a volatile variable.

For an expression e, we define the predicate no2volπ,θf (e) to exclude multiple volatile ac-
cess.

no2volπ,θf (e) ≡

False : e ∈ V ∧ τQ
π,θ
f (e) = (q, t)

no2volπ,θf (e′) : (∃	 ∈ O1. e = 	e′) ∨ e = &(∗(e′))

∨e = sizeof(e′) ∨ e = (t)e′

∨∃ f ′ ∈ F. e = e. f ′

c2 : ∃⊕ ∈ O2. e = e′ ⊕ e′′

c3 : e = (e′ ? e′′ : e′′′)
¬(q = volatile ∧ q′ = volatile) : e = ∗(e′) ∧ τQ

π,θ
f (e′) = (q′,ptr(q, t))

where:

c2 ≡¬(volπ,θf (e′) ∧ volπ,θf (e′′)) ∧ no2volπ,θf (e′) ∧ no2volπ,θf (e′′)

c3 ≡no2volπ,θf (e′) ∧ no2volπ,θf (e′′) ∧ no2volπ,θf (e′′′) ∧

¬(volπ,θf (e′) ∧ volπ,θf (e′′)) ∧

¬(volπ,θf (e′) ∧ volπ,θf (e′′′)) ∧

¬(volπ,θf (e′′) ∧ volπ,θf (e′′′))

We define a similar predicate for evaluating expressions in the top frame of configuration
cIL.

no2volπ,θcIL
(e) ≡ no2volπ,θftop(cIL)(e)

Below we can now define another predicate to statically detect volatile variable read or
write accesses in C-IL assignment statements of a given program.

Definition 5.53 (Statement Accesses Volatile Variables) Given a C-IL statement s that
is executed in the context of a function f of C-IL program π wrt. environments parameters
θ. Then f accesses a volatile variable in case the following predicate is fulfilled.
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volrπ,θf (s) ≡

derefvolπ,θf (e) ∨ volπ,θf (e′) : s ≡ (e = e′)

False : otherwise

volwπ,θ
f (s) ≡

¬derefvolπ,θf (e) ∧ volπ,θf (e) : s ≡ (e = e′)

False : otherwise

volπ,θf (s) ≡ volrπ,θf (s) ∨ volwπ,θ
f (s)

Above, we already introduced the predicate volπ,θf which scans expressions of a C-IL func-
tion f recursively for volatile variable accesses. We derive a similar predicate for evaluat-
ing expressions and statements in the top frame of configuration cIL.

volrπ,θcIL
(s) ≡ volπ,θftop(cIL)(s)

volwπ,θ
cIL

(s) ≡ volπ,θftop(cIL)(s)

volπ,θcIL
(s) ≡ volπ,θftop(cIL)(s)

volπ,θcIL
(e) ≡ volπ,θftop(cIL)(e)

Now we can define the IO predicate, formalizing the rules stated above.

S n
C-IL.IO(u,m, in) = 1 ←→

∃e, e′, e′′ ∈ E, E ∈ E∗.
stmtnext(π, (dme, u.s)) = call e(E) ∧ rmwπ,θ

(dme,u)(e)
∨ stmtnext(π, (dme, u.s)) ∈ {(e = e′), (e′ = e)}

∧/volπ,θcIL (e) ∧ volπ,θcIL (e′) ∧ no2volπ,θcIL (e′)

Note that any access to shared memory which does not obey the rules above will not be
considered an IO step and thus be unsafe according to the ownership memory access
policy.

• S n
C-IL.δ — We simply use the C-IL transition function δπ,θC-IL in the instantiation of the tran-

sistion function for the C-IL computation units. Again, we need to fill the partial memory
that is given to the S n

C-IL.δ as an input with dummy values, so that we can apply δπ,θC-IL on
it. Moreover, we need to define the writes-set for a given C-IL statement s because the
output memory of the transition function needs to be restricted to this set. As noted above,
only assigments, rmw, and certain return statements may modify the global memory. Let
X = ([[a]]π,θcIL , [[u]]π,θcIL , [[v]]π,θcIL , [[r]]π,θcIL ) in the predicate

rmwπ,θ
cIL

(s, a, u, v, r, ρ, in) ≡ s = call e(a, u, v, r) ∧ rmwπ,θ
cIL

(e)

∧ (X, cIL, in.η[rmw](X, cIL)) ∈ ρ
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which denotes that statement s is a call to the rmw intrinsic function with the specified
input parameters, and that the external function call has an effect according to transition
relation ρ ∈ θ.Rextern. Thus we define the writes-set for a given C-IL statement.

Wπ,θ
cIL (s, in) =

fpθ(a, t) : ∃e, e′ ∈ E. s = (e = e′) ∧ [[&(e)]]π,θcIL = p ∈ valptr

∨ s = return e ∧ rdstop−1 = val(z, t) ∈ valptr

fpθ(p1, t) ∪ fpθ(p2, t) : ∃a, u, v, r ∈ E. rmwπ,θ
cIL (s, a, u, v, r, ρswap

rmw , in)
∧ [[a]]π,θcIL = val(x, t) ∧ [[r]]π,θcIL = val(y, t) ∧ t = ptr(i32)

fpθ(p1,ptr(i32)) : ∃a, u, v, r ∈ E. rmwπ,θ
cIL (s, a, u, v, r, ρswap

rmw , in)
∧ [[a]]π,θcIL = val(x,ptr(i32)) ∧ [[r]]π,θcIL ∈ vallref

fpθ(p2,ptr(i32)) : ∃a, u, v, r ∈ E. rmwπ,θ
cIL (s, a, u, v, r, ρfail

rmw, in)
∧ [[r]]π,θcIL = val(y,ptr(i32))

∅ : otherwise

where

a = ptrv2addr(val(z, t))
p1 = ptrv2addr(val(x,ptr(i32)))

p2 = ptrv2addr(val(y,ptr(i32)))

In the first case either execution is returning from a function call with a return value that
is written to the memory cells specified by the return destination of the caller function
frame, or we have an assignment to a memory location. The remaining cases deal with the
various outcomes of a rmw intrinsic function call. If the comparison was successful, the
targeted shared memory location is written. Also, we must distinguish whether the value
read for comparison is returned to a local or global variable. Only in the latter case the
variable update contributes to the writes-set.

Now we can define the transition function for C-IL computation units with the following
case distinction. Let stmt = stmtnext(π, (dme, u.s) and W = Wπ,θ

(dme,u)(stmt, in) in:

S n
C-IL.δ(u,m, in) = (m′|W , u′)

In which the m′ and u′ are defined as

m′ = δπ,θC-IL((dme, u.s).M

u′.s = δπ,θC-IL((dme, u.s).s

u′.n = u.n + 1

u′.D =


False : volwπ,θ

cIL (stmt)
True : stmt = call e(a, u, v, r) ∧ rmwπ,θ

cIL (e)
∨ stmt = call e() ∧ mfenceπ,θcIL (e)

u.D : otherwise

u′.ϑ = u.ϑ(Ru′.n 7→ v)
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where we let

a′ =

base(top) − Σk−1
j=npartop

sizeθ(qt2t(Vtop[ j].t)) − o : ∃k. Vtop[k].v = v

⊥ : otherwise

in

v =


m(ptrv2addr(p)) : stmt = (e = e′) ∧ [[&e′]]π,θcIL = p ∈ valptr∨

rmwπ,θ
cIL (stmt, a, u, v, r, ρ, in) ∧ [[a]]π,θcIL = p

m(bin30(a′)) : stmt = (e = e′) ∧ [[&e′]]π,θcIL = lref((v, o), top, t)
⊥ : otherwise

S n
C-IL.δ(u,m, in) =

(M′|W , s′) : δπ,θC-IL((dme, u.s), in) = (M′, s′)
⊥ : δπ,θC-IL((dme, u.s), in) = ⊥

Note that in contrast to the C-IL semantics, we do not update the complete memory for
external function calls, because doing so would break the ownership memory access pol-
icy. Instead, we only update the relevant memory portions according to the semantics of
the particular external function, i.e., of rmw, in this case. This approach is sound because
we have defined the external transition function input η in such a way, that it implements
the semantics specified by θ.Rextern.

• S n
C-IL.IP— Again we could choose the interleaving-points to be IO points to allow for an

easier verification of concurrent C-IL code. Later, we want to show a simulation between
the concurrent MIPS and the concurrent C-IL model, so we have to choose consistency
points as interleaving-points such that in the Cosmos model we interleave blocks of code
that are executed by different C-IL units and each block starts in a consistency point.

S n
C-IL.IP(u,m, in) = infoIL.cp( ftop(dme, u), loctop( ftop(dme, u)))

With this definition of IO steps and interleaving-points we can make sure by the veri-
fication of ownership safety, that shared variables are only accessed at a few designated
points in the program, which are chosen by the programmer. This allows on the one hand
for the efficient verification of concurrent C-IL programs, on the other hand, it enables us
to justify the concurrent C-IL model, using our order reduction theorem.

In order to do so we would first need to determine those above set Aio of the underlying
MIPS Cosmos machine (cf. Sect. 5.4.2). Since all assignments contain only one access
to a volatile variable, the compiler can ensure the same for the compiled code. We can
determine the address of the memory instruction implementing the access with the help
of infoIL.cba, infoIL.off , and the code compilation function because there is a consistency
point before every assignment that includes a volatile variable. We collect all these in-
struction addresses in Aio. The set Acp, which contains the addresses of all consistency
points in the machine code, can easily be defined using infoIL.cba, infoIL.off , and infoIL.cp.
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Thus, we have instantiated our Cosmos machine with the C-IL semantics obtaining a concur-
rent C-IL model. However, we still need to discharge instar(S n

C-IL) which demands the following
property of our reads function instantiation. We have to prove that if the memories of two C-
IL machines (dme, u.s) and (dm′e, u.s) agree on reads-set R = S n

C-IL.reads(u,m, in) of the first
machine, then both machines are reading the same addresses in the next step.

m|R = m′|R → S n
C-IL.reads(u,m′, in) = R

We need the following lemma to discharge instar(S n
C-IL).

Lemma 5.54 (C-IL Reads-Set Agreement) Given are a C-IL program π, environment param-
eters θ and two C-IL configurations c, c′ that agree on their stack, i.e., c.s = c′.s, and a C-IL
statement stmt. If the memories of both machines agree on reads-set of stmt wrt. configuration
c, the reads-sets of stmt agree in both configurations. Let R = {a ∈ B32 | a ∈ Rπ,θc (stmt)} in:

c.M|R = c′.M|R → Rπ,θc (stmt) = Rπ,θc′ (stmt)

For the proof of lemma 5.54 can be found in [Bau14].

Proof of instar(S n
C-IL): Let sπ(u) = (stmtnext(π, (dme, u.s))). For reads-set

R = Rπ,θ(dme,u.s)(sπ(u))

and partial memories m,m′ such that m|R = m′|R (hence dme|R = dm′e|R) we have by definition
and Lemma 5.54:

S n
C-IL.reads(u,m, in) = Rπ,θ(dme,u.s)(sπ(u)) L5.54

= Rπ,θ(dm′e,u.s)(sπ(u))

= S n
C-IL.reads(u,m′, in) �

5.7 Simulation Theorem for Cosmos machine

In this section, we will almost literally represent Chapter 5 in [Bau14]. The main different is that
at the end of this section, we argue about the definition of ogMIPS

cos with ogC−IL
cos . We omit all the

proofs, some corollaries and lemmas which are only used in proofs. The full version of proof
can be looked up in [Bau14].

Based on our order reduction theory we now want to explore how to apply local simulation
theorems in a concurrent context. Our goal is to state and prove a global Cosmos model simu-
lation theorem which argues that the local simulation theorems still hold on computation units.
In particular we want the simulation relation to holding for a unit when it reaches a consistency
point. Moreover from the verification of the ownership safety on the higher level, memory safety
on the lower level should follow. First we introduce a variation of the Cosmos model semantics
tailored to the formulation of such a simulation theorem. Then we introduce sequential simula-
tion theorems in a generalized manner. Building on the sequential theorems we then formulate
and prove a concurrent simulation theorem between Cosmos machines, stating the necessary
requirements for the sequential simulations to be composable with each other.
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In the concurrent simulation, we will profit from the Cosmos model order reduction theorem
presented before. For every computation unit of the simulating Cosmos machine we set up
the interleaving-points to be consistency points wrt. the sequential simulation relation. This
enables us to conduct a simulation proof between IP schedules of Cosmos machines, applying
the sequential simulation theorem separately on each IP block. In such a scenario, where the
interleaving-points are also consistency points wrt. a given simulation relation we speak of
consistency blocks instead of IP blocks.

Now a sequential simulation theorem can be applied on any consistency block on the simu-
lated level in order to obtain the simulated abstract consistency block executed by the same unit.
However, there is a technicality to be solved, namely that the given concrete block may not be
complete in the sense that it does not lead to another consistency point. Then one has to find an
extension of that incomplete block so that the resulting complete concrete block is simulating
an abstract block. We have to formulate the generalized sequential simulation theorem in a way
that allows for this kind of extension. Nevertheless, later we will show for the transfer of verified
safety properties that it suffices to consider schedules where each consistency block is complete.

5.7.1 Block Machine Semantics

Since we may assume IP schedules for safe Cosmos machine execution, semantics can be
simplified. For introducing simulation theorems on Cosmos models, it is convenient to define
the semantics where we consecutively execute blocks starting in interleaving-points (IP blocks).
Also for now we do not need to consider ownership. Therefore, it is sufficient to model the
transitions on the machine state. We call the machine implementing such semantics the IP
block machine or short the block machine.

We define the block machine semantics for a Cosmos machine S . The block machine executes
one IP block in a single step. To this end, it gets a schedule κ ∈ (Θ∗S )∗ as a parameter which
is a sequence of transition sequences representing the individual blocks to be executed. To
distinguish blocks and block schedule, we will always use λ for transition sequences and κ for
block sequences. Naturally not all block sequences are valid block machine schedules. Each
block in the block machine schedule needs to be an IP block.

Definition 5.55 (IP Block) A transition sequence λ ∈ Θ∗S is called an IP block of machine
p ∈ S .nu if it (i) contains only steps by that machine, (ii) is empty or starts in an interleaving-
point, and (iii) does not contain any further interleaving-points.

blk(λ, p) ≡ (i) ∀α ∈ λ. α.s = p

(ii) λ , ε→ λ1.ip

(iii) ∀α ∈ tl(λ). /α.ip

Thus, we require the IP blocks to be minimal in the sense that they contain at most one
interleaving-point. For technical reasons, empty blocks are also considered IP blocks. We
define the appropriate predicate Bsched which denotes that a given a block sequence κ ∈ (Θ∗S )∗

is a block machine schedule.

Bsched(κ) ≡ ∀λ ∈ κ.∃p ∈ Nnu. blk(λ, p)
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Note that this implies that the flattening concatenation bκc = κ1 · · · κ|κ| of all blocks of κ form an
IP schedule.

Lemma 5.56 The flattening concatenation of all blocks of any block machine schedule κ ∈
(Θ∗S )∗ is an IP schedule.

Bsched(κ)→ IPsched(bκc)

Instead of defining a transition function for the block machine we extend our step sequence
notation to block sequences as follows.

Definition 5.57 (Step Notation for Block Sequences) Given two machine states M,M′ ∈ MS

and a block machine schedule κ ∈ (Θ∗S )∗, we denote that M′ is reached by executing the block
machine from state M wrt. schedule κ by the following notation.

M
κ
7−→ M′ = M

bκc
7−→ M′

Then a pair (M, κ) is a computation of the block machine, if there exists a machine state M′ that
can be reached via schedule κ from M, i.e., M

κ
7−→ M′. Furthermore we need to introduce safety

for the block machine wrt. the ownership policy and some safety property P. Similar to safety
and safetyIP defined earlier, the verification of all block machine computations running out of
configuration C wrt. ownership and some Cosmos machine safety property P is denoted by the
following predicate.

safetyB(C, P) ≡
∀κ ∈ (Θ∗S )∗. Bsched(κ) ∧ comp(C.M, bκc) → ∃o ∈ Ω∗S . safeP(C, 〈bκc, o〉)

In order to justify the verification of systems using block machine schedules instead of IP
schedules, we need to introduce another reduction theorem. However, since the two concepts
are so closely related this is a rather easy task.

Theorem 5.58 (Block Machine Reduction) Let C be a configuration of Cosmos machine S
and P be a Cosmos machine safety property. Then if all block machine computations running
out of C are ownership-safe and preserve P, the same holds for all IP schedules starting in C.

safetyB(C, P)→ safetyIP(C, P)

The complete proof can be found in [Bau14].

5.7.2 Generalized Sequential Simulation Theorems

The computer systems can be described in several layers of abstractions, e.g. on the ISA level
and the level of C-IL or even higher levels of abstraction [GHLP05b]. Between different levels,
there are sequential simulation theorems. Such simulation theorems are proven for sequential
execution traces where no environment steps are interleaved. However, it is desirable to have
the simulation relation hold also in the context of the concurrent system. Thus we need to
be able to apply sequential simulation theorems in a system wide simulation proof between
two Cosmos model instantiations S d, S e ∈ S where the interleaving-points are instantiated to
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be the consistency points wrt. the corresponding simulation relation. Recall that we speak of
consistency blocks instead of IP blocks then.

In the sequel we develop a generalized theory of sequential simulation theorems. We consider
the simulation between computations (d, σ) ∈ MS d × Θ∗S d

and (e, τ) ∈ MS e × Θ∗S d
considering

only the machine state of these Cosmos machines. We also speak of S d as the concrete and of S e

as the abstract simulation layer, where computations of S d are simulated by S e. For simplicity
we assume that the two systems have compatible memory types. Also both systems have the
same number of computation units. Using the shorthands xd and xe for components S d.x and
S e.x we demand:

Ad ⊇ Ae Vd = Ve nud = nue = nu

Observe that the memory address range of S d might be larger than that of S e. This means that
the latter may abstract from certain memory regions in the former. For example, this is useful
when we abstract a stack of local memories from a stack memory region when we consider
compilation of C-IL programs as we have seen before. The stack region is then excluded from
the shared memory. As we aim for a generalized theory about concurrent simulation theorems,
we first define a framework for specifying sequential simulation theorems in a uniform way.

Definition 5.59 (Sequential Simulation Framework) We introduce a type Rbb for simulation
frameworks RS d ,S e which contain all the information needed to state a generalized simulation
theorem relating sequential computations of units of Cosmos machines S d and S e.

RS d ,S e = (P, sim,CPa,CPc,wfa, sc,wfc, suit,wb) ∈ Rbb

In particular we have the following components where Lx ≡ (Ux × (Ax → Vx)) with x ∈ {d, e}
is a shorthand for the type of a local configuration of Cosmos machine S x containing the state
of one computation unit and shared memory:

• P— the set of simulation parameters, which is {⊥} if there are none,

• sim : Ld × P × Le → B— a simulation relation between local configurations of compu-
tation units of S d and S e, depending on a simulation parameter from P,

• CPa : Ue × P → B— a predicate to identify consistency points of the abstract Cosmos
machine S e,

• CPc : Ud × P → B— a predicate to identify consistency points of the concrete Cosmos
machine S d,

• wfa : Le → B — a well-formedness condition for a local configuration of the abstract
Cosmos machine S e,

• sc : MS e × ΘS e × P → B — software conditions that enable a simulation of sequential
computations of Cosmos machine S e, here defined for a given step,

• wfc : Ld → B — well-formedness condition for a local configuration of the concrete
Cosmos machine S d, required for the simulation of sequential computations of S e,
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• suit : ΘS d → B— a predicate to determine whether a given step by the concrete Cosmos
machine is suitable for simulation.

• wb : MS d × ΘS d × P → B — a predicate that restricts the simulating computations of
S d. We say that a simulating step in a computation of S d is well-behaved iff it fulfills this
restriction.

We give some intuitions on how to instantiate the components in the simulation framework.
Formal instantiations will be introduced in the subsequent section. Here we interpret S e as the
C-IL Cosmos machine and S d as the MIPS Cosmos machine. The simulation relation can be
instantiated as the C-IL compiler consistency relation. The consistency points in C-IL level are
program locations (i) at function entry, (ii) directly before and after function calls (including
external functions), (iii) at volatile variable accesses, (iv) directly before return statements. In
MIPS level, the consistency points are defined as program locations correspond to C-IL consis-
tency points. The well-formedness condition for C-IL local configuration consists 2 portion: the
C-IL program well-formedness (Definition 5.34) and the C-IL configuration well-formedness
(Definition 5.38). The C-IL software condition can be interpreted as the execution next step
may (i) not produce a run-time error, (ii) not result in a stack overflow, (iii) not explicitly ac-
cess the stack or code region and that (iv) the code region fits into memory and is disjoint from
the stack region. The suitability and good behavior (i.e., being well-behaved) were somewhat
indiscriminate, and we want to highlight the difference between the two concepts. While the
suitability is a necessary condition on the schedule of the concrete Cosmos machine for the sim-
ulation to work, good behavior is a property that is guaranteed for simulating computations by
the simulation theorem. These properties become important in a stack of simulation properties
where they should imply the software conditions on the abstract layer of the underlying simu-
lation theorem. In our instantiation, wfc, suit and wb ensure that no interrupts are triggered and
that instructions are fetched from the code region.

The consistency point predicates CPa and CPc are used later to define the interleaving-points
in the concurrent Cosmos machine computations.

As mentioned before we need to be able to apply the sequential simulation theorem on in-
complete consistency blocks. Thus, we consider a given consistency block ω ∈ Θ∗S d

as the basis
for the simulating concrete computation. We have to extend ω into a complete non-empty con-
sistency block σ which is simulating some abstract consistency block. Formally the extension
of some transition sequence is denoted by the relation ω Bblk

p σ which is saying that σ extends
ω without adding consistency points to the block. Alternatively we can say that ω is a prefix of
the consistency block σ

ω Bblk
p σ = ∃τ. σ = ωτ , ε ∧ blk(σ, p) ∧ blk(ω, p)

In order to be able to integrate the sequential simulation theorems into the concurrent system
later on, there is an additional proof obligation in the sequential simulation below. It is there to
justify the IOIP condition of the underlying order reduction theorem which demands that there
is at most one IO step between two subsequent interleaving-points of the same computation unit.
This property has to be preserved by the concrete implementation of the abstract specification
level. Moreover, there should be a one-to-one mapping of IO steps on the abstract level to
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the IO steps on the concrete level. That means that in corresponding blocks Cosmos machine
S d may only perform an IO step when S e does and vice versa. If this would not be the case
we could not couple the ownership state of S d and S e later, because at IO steps we allow for
ownership transfer. Transferring ownership on one level but not on the other then may lead to
inconsistent ownership configurations. We denote the requirements on IO points in consistency
blocks by the overloaded predicate oneIO. For a single transition sequence σ it demands that
σ contains only one IO step. For a pair (σ, τ) it demands that they contain the same number of
IO steps but at most one.

oneIO(σ) ≡ ∀i, j ∈ N|σ|. σi.io ∧ σ j.io→ i = j

oneIO(σ, τ) ≡ (τ|io = ε↔ σ|io = ε) ∧ oneIO(σ) ∧ oneIO(τ)

Moreover we introduce the following shorthands for d ∈ MS d , e ∈ MS e , p ∈ Nnu, par ∈ RS d ,S e .P,
ω ∈ ΘS d , and τ ∈ ΘS e .

P ≡ RS d ,S e .P

simp(d, par, e) ≡ RS d ,S e .sim((d.u(p), d.m), par, (e.u(p), e.m))

CPp(e, par) ≡ RS d ,S e .CPa(e.u(p), par)

CPp(d, par) ≡ RS d ,S e .CPc(d.u(p), par)

wf p(e) ≡ RS d ,S e .wfa(e.u(p), e.m)

sc(e, τ, par) ≡ ∀θ, α, θ′, e′. τ = θαθ′ ∧ e
θ
7−→ e′ → RS d ,S e .sc(e′, α, par)

wf p(d) ≡ RS d ,S e .wfc(d.u(p), d.m)

suit(ω) ≡ ∀α ∈ ω. RS d ,S e .suit(α)

wb(d, ω, par) ≡ ∀θ, α, θ, d′. ω = θαθ′ ∧ d
θ
7−→ d′ → RS d ,S e .wb(d′, α, par)

Note that we overload CPp and use both for machine states of type MS d and MS e . In the same
way, we have overloaded wf p. In what follows we will always use letter d to represent concrete
machine states and letter e for abstract ones.

The generalized sequential simulation theorem is stated such that it allows for completing in-
complete consistency blocks on the concrete abstraction layer. Given a concrete machine com-
putation (d, ω), where the simulation relation simp holds between initial machine state d and an
abstract state e for some computation unit p and ω is an incomplete consistency block executed
by p. We need to be able to extend ω into a transition sequence σ that leads into a consistency
point, obtaining a complete consistency block for which there is a simulated computation (e, τ)
on the abstract level (cf. Fig. 5.4).

The ability to extend incomplete blocks into complete ones is important in the proof of the
concurrent simulation theorem where we need to find a simulated abstract computation for a con-
current concrete block machine computation, where most of the consistency blocks are probably
incomplete. In this situation, we can use the generalized sequential simulation theorem for com-
pleting the concrete blocks and finding the simulated abstract consistency blocks. Formally the
theorem reads as follows.
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Figure 5.4: Illustration of the generalized sequential simulation theorem. Here σ extends con-
sistency block ω of unit p, i.e., ω Bblk

p σ, such that the computation reaches another consistency
point and simulates abstract computation (e, τ).

Theorem 5.60 (Generalized Sequential Simulation Theorem) Given are two starting machine
states d ∈ KS d , e ∈ KS e , a simulation parameter par ∈ RS d ,S e .P and a transition sequence
ω ∈ Θ∗S d

. If for any computation unit p ∈ Nnu (i) d and e are well-formed and (ii) consistent wrt.
par, (iii) ω is a possibly incomplete consistency block of unit p that is suitable for simulation
and executable from d, and (iv) all complete consistency blocks of unit p which are starting in e
are obeying the software conditions for S e and lead into well-formed configurations,

∀d, e, par, ω, p. (i) wf p(d) ∧ wf p(e)

(ii) simp(d, par, e) ∧ CPp(d, par) ∧ CPp(e, par)

(iii) blk(ω, p) ∧ suit(ω) ∧ ∃d′. d
ω
7−→ d′

(iv) ∀π, e′. e
π
7−→ e′ ∧ blk(π, p) ∧ CPp(e′, par)→ sc(e, π, par) ∧ wf p(e′)

then we can find sequences σ ∈ Θ∗S d
, τ ∈ Θ∗S e

and configurations d′′ ∈ KS d , e′′ ∈ KS e such that
(i) σ is a suitable schedule and a consistency block of unit p extending the given block ω, τ is
a consistency block of unit p, and σ and τ contain the same amount of IO steps but at most
one. Moreover (ii) (d, σ) is a well-behaved computation with leading into well-formed state d′′

and (iii) executing τ from e leads into well-formed configuration e′′. Finally (iv) d′′ and e′′ are
consistency points of unit p and consistent wrt. simulation parameter par:

→ ∃σ, τ, d′′, e′′. (i) ω Bblk
p σ ∧ suit(σ) ∧ blk(τ, p) ∧ oneIO(σ, τ)

(ii) d
σ
7−→ d′′ ∧ wb(d, σ, par) ∧ wf p(d′′)

(iii) e
τ
7−→ e′′ ∧ wf p(e′′)

(iv) simp(d′′, par, e′′) ∧ CPp(d′′, par) ∧ CPp(e′′, par)

Note that for the simulated computation (e, τ) we only demand progress (i.e., τ , ε) in case σ
contains IO steps. Then τ , ε follows from oneIO(σ, τ). In contrast, by ω Bblk

p σ we only
consider such computations (d, σ) that are progressing in every simulation step, i.e., σ , ε. This
setting rules out trivial simulations with empty transition sequences σ and τ in case ω = ε.

For proving the theorem for C-IL and MIPS Cosmos machine one needs to know the code
generation function of a given optimizing C-IL compiler and prove the correctness of the gen-
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erated code for statements between consistency points. Then using code consistency one argues
that only the correct generated code is executed, eventually leading to another consistency point.

Additionally, note that the sequential simulation theorem does not restrict the ownership state
in any way. All predicates depend only on the machine state of a Cosmos machine. However for
proving our concurrent simulation theorem, we will need an assumption on the ownership-safety
of the simulated computation.

5.7.3 Instantiation of Sequential Simulation Framework

In this section, we will instantiate the sequential simulation framework as RS n
MIPS,S

n
C-IL

. First
we will define the compiler consistency points and the compiler consistency relation. Note
that we will not provide a compiler for C-IL but just state a compiler consistency relation that
couples a MIPS implementation with the C-IL language level and use the consistency relation to
establish a simulation theorem between a C-IL Cosmos machine and a MIPS Cosmos machine,
thus justifying the notion of structured parallel C, which is assumed by C code verification tools.
Then we will give the definition of C-IL software condition. Moreover, we will state the well-
formedness of MIPS configuration, the suitability and the well-behaving of MIPS computations.

Compiler Consistency Points and Compiler Consistency Relation

We aim for a theory that is also applicable for optimizing compilers. In non-optimizing com-
pilers, the compilation is a function mapping one C statement to a number of implementing
assembly statements. An optimizing compiler applies optimizing transformations to the com-
piled code of a sequence of C-IL statements, typically with the aim of reducing redundancy
and the overall code execution time. Typical optimizations are, e.g., saving intermediate re-
sults of expression evaluation to reuse them for the implementation of subsequent statements, or
avoiding to store frequently used data in main memory, because accesses to registers are much
faster. This means however that variables are not consistent with their memory representations
for most of the time. There are only a few points in a C program where the consistency relation
holds with the optimized implementation, and we call these points compiler consistency points
or short consistency points. For C-IL, we assume that certain locations in a function are always
consistency points. These consistency points are, in particular:

• at function entry

• directly before and after function calls (including external functions)

• between two consecutive volatile variable accesses

• directly before return statements

Definition 5.61 (Required C-IL Compiler Consistency Points) Given a compiler information
infoIL for a C-IL program π and environment parameter θ, the following predicate holds, iff
there are compiler consistency points (i) at the entry of every function, (ii) before and after func-
tion calls, (iii) between any two consecutive volatile variable accesses, and (iv) before return
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statements. Let s f ,i = π.F ( f ).P[i], call(s) = ∃e, e′, E. s ∈ {call e(E), (e′′ = call e(E))}, and
ret(s) = ∃e. s ∈ {return, return e} in:

reqCP(π, θ, infoIL) ≡ ∀ f ∈ Fname, i ∈ N. π.F ( f ).P , extern ∧ i ≤ |π.F ( f ).P| →
(i) infoIL.cp( f , 0)
(ii) call(s f ,i) → infoIL.cp( f , i) ∧ infoIL.cp( f , i + 1)

(iii) volπ,θf (s f ,i) ∧ (∃ j < i. volπ,θ(s f , j)) → ∃k ∈ ( j : i). infoIL.cp( f , k)

(iv) ret(s f ,i) → infoIL.cp( f , i)

The C-IL compilation function now is mapping a block of C-IL statements between consis-
tency points to blocks of assembly instructions. However as the optimizations depend on the
program context we rather model the code generation as a function depending on the C-IL pro-
gram, the function, and the location of the consistency point starting the block which should be
compiled.

cpl : progC-IL × Fname × N⇀ (B32)∗

This means that a C-IL program is compiled by applying the compilation function cpl subse-
quently on every consistency block of the program. The function cpl compiles each volatile
access instruction into a sequence of instructions which contains exactly one shared memory
access. The compiled code for the program contains the compiled code for every function posi-
tioned in a way so that jumps between functions are linked correctly.

Now we will define the compiler consistency relation that links a C-IL computation to its
implementation on the MIPS ISA level. We want to relate a C-IL configuration cIL = (s,M) to
an ISA state cMIPS = (p,m) that implements the program π using the environment parameters θ
and compiler information infoIL. Note that for all X ∈ {pc, gpr, spr}. cMIPS.p.X we write cMIPS.X
for short. Formally we thus define a simulation relation

consisC-IL(cIL, π, θ, infoIL, cMIPS)

stating the consistency between these entities. The relation is supposed to hold only in com-
piler consistency points, which are identified by a function name and a location according to
the infoIL.cp predicate. We define the following predicate which holds iff cIL is currently in a
consistency point.

cp(cIL, infoIL) ≡ infoIL.cp( ftop(cIL), loctop(cIL))

The compiler consistency relation is split in two sub-relations covering control and data consis-
tency. The first part talks about control-flow and is thus concerned with the program counter and
the return address. Let the following function compute the start address of the compiled code
for the C-IL statements starting from a consistency point loc in function f .

adr(infoIL, f , loc) ≡ infoIL.cba +30 infoIL.off ( f , loc)30

Again we define shorthands for return address, previous base pointer, and also the return
destination, depending on some ISA configuration cMIPS.

∀i ∈ [0 : |cIL.s| − 1]. ra(i) ≡ cMIPS.m((base(i) + 1)30)

∀i ∈ [0 : |cIL.s| − 1). rds(i) ≡ cMIPS.m((base(i) + 2 + sizepar(i))30)

∀i ∈ [0 : |cIL.s| − 1]. pbp(i) ≡ cMIPS.m(base(i)30)
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Note that rds(i) is the return destination of function belongs to frame i + 1.

Definition 5.62 (C-IL Control Consistency) We define control consistency sub-relation for C-
IL consiscontrol

C-IL , which states that (i) the program counter of the MIPS machine must point to the
start of the compiled code for the current statement in the C-IL machine which is at a compiler
consistency point. In addition (ii) the return address of any stack frame is pointing to the be-
ginning of the function call epilogue for the function call statement in the previous frame (with
lower index).

consiscontrol
C-IL (cIL, infoIL, cMIPS) ≡

(i) cp(cIL, infoIL) → cMIPS.pc = adr(infoIL, ftop, loctop)
(ii) ∀i ∈ [1, |cIL.s| − 1]. ra(i) = infoIL.cba +30 infoIL.fceo( fi−1, loci−1 − 1)30

According to the C-IL semantics, the current location of a caller frame already points to the
statement after the function call (which is a consistency point). To obtain the location of the
function call we, therefore, have to subtract one from that location. When control returns to the
caller frame, on the ISA level first the function call epilogue is executed before the consistency
point is reached.

Data consistency is split into several parts covering registers, the global memory, local vari-
ables, the code region as well as the stack structure. The register consistency relation covers
only the stack and base pointers.

Definition 5.63 (C-IL Register Consistency) The C-IL register consistency relation demands,
that (i) the base pointer points to the base address of the top frame, while (ii) the stack pointer
points to the top-most element of the temporary values (growing downwards) in the top frame.

consisregs
C-IL(cIL, π, θ, infoIL, cMIPS) ≡ (i) cMIPS.gpr(bp) = bin30(base(top)) ◦ 00

(ii) cMIPS.gpr(sp) = bin30(base(top) − dist(top)) ◦ 00

In the code consistency relation we also need to couple π with the compiled code.

Definition 5.64 (C-IL Code Consistency) For C-IL code consistency we require that (i) the
compiler consistency points were selected by the compiler according to our requirements, (ii)the
compiled code in the compiler information is actually corresponding to the C-IL program, and
that (iii) the compiled code is converted to binary format and resides in a contiguous region in
the memory of the MIPS machine starting at the code base address.

consiscode
C-IL(cIL, π, θ, infoIL, cMIPS) ≡
(i) reqCP(π, θ, infoIL)
(ii) ∀ f ∈ dom(π.F ), l. infoIL.cp( f , l) →

∀i ∈ [0 : |cpl(π, f , l)| − 1]. infoIL.code[infoIL.off (p, l) + i] = cpl(π, f , l)[i]
(iii) ∀ j ∈ [0 : |infoIL.code| − 1].

infoIL.code[ j] = cMIPS.m(infoIL.cba +30 bin30( j))
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Now we demand memory consistency for all addresses but the code region and the stack
region, because these addresses may not be accessed directly in C-IL programs.

consismem
C-IL(cIL, in f oIL, cMIPS) ≡ ∀ad ∈ B30. 〈ad〉 < CR ∪ StR→ cMIPS.m(ad) = cIL.M(ad)

Note that this definition includes the consistency for global variables since they are always allo-
cated in the global memory c.M. The allocated address for a given global variable is determined
by a global variable allocation function θ.allocgv : V ⇀ B30. We did not introduce it in the
C-IL semantics because it is only relevant for the definition of expression evaluation, which we
excluded from our presentation.

In contrast to global variables, local variables are allocated on the stack using offsets from
infoIL.lvo. Moreover top frame local variables and parameters may be kept in registers according
to the compiler information infoIL.lvr. In [Sha12] the local variable consistency relation did not
talk about the frames below the top frame (caller frames), however, such a compiler consistency
relation is not inductive in the sense that it cannot be used in an inductive compiler correctness
proof. When treating return instructions one cannot establish the local variable consistency for
the new top frame without knowing where the values of the local variables of that frame were
stored before returning.

In fact for the local variables and parameters of caller stack frames there are three possibilities
depending on where they are expected to be stored upon return from the called function. If
they are supposed to be allocated on the stack upon function return, then we demand that they
already reside in their dedicated stack location during the execution of the callee. If they are
to be allocated in caller-save registers, we require the caller to store them in its caller-save area
during the function call. Similarly, we demand the callee to store them in the callee-save area
if we expect their value to reside in callee-save registers after returning from the function call.
Below we give a correct definition of the C-IL local variable consistency relation.

Definition 5.65 (C-IL Local Variable Consistency) Compiler consistency relation consislv
C-IL

couples the values of local variables (including parameters) of stack frames with the MIPS ISA
implementation. Let

(vi, j, ti, j) ≡ Vi[ j]

ri, j ≡ infoIL.lvr(vi, j, fi, loci)

lvai, j ≡ bin30(base(i) − infoIL.lvo(vi, j, fi, loci))

parai, j ≡ bin30

(
base(i) + 2 +

∑ j−2

k=0
sizeθ(qt2t(ti,k))

)
crsbasei ≡ base(i) − (|Vi| − npari) − 8 − infoIL.sizetmp( fi, loci) − 1

crsai, j ≡ bin30
(
csrbasei − infoIL.crso( fi, loci, ri, j)

)
csai, j ≡ bin30

(
base(i) − (|Vi+1| − npari+1) − ε{k ∈ N32 | ri, j = svk}

)
where vi, j is the j-th local variable in frame i with type ti, j, that is allocated on the stack if ri, j is
undefined. Then it is stored at local variable address lvai, j or parameter address parai, j. In the
other case that ri, j is defined, variables of the top frame are stored in the corresponding registers.
Variables of other stack frames that are allocated in registers are stored either in the caller-save
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area starting from (upper) base address crsbasei at address crsai, j, or in the callee-save area of
the callee frame at address csai, j. Formally, with CS = {sv1, . . . , sv8}:

consislv
C-IL(cIL, π, θ, infoIL, cMIPS) ≡ ∀i ∈ Ntop, j ∈ N|Vi |.

→ MEi(vi, j) =



cMIPS.gpr(ri, j) : ri, j , ⊥ ∧ i = top
cMIPS.m(csai, j) : ri, j ∈ CS ∧ i < top
cMIPS.m(crsai, j) : ri, j ∈ B

5 \ CS ∧ i < top
cMIPS.msizeθ(qt2t(ti, j))(lvai, j) : ri, j = ⊥ ∧ j > npari

cMIPS.msizeθ(qt2t(ti, j))(parai, j) : otherwise

Note that we restricted the optimizing compiler by demanding that it always saves all eight
callee-save registers in the callee-save area. A lazier implementation might just keep them in
the registers if they are not modified. In the case of further function calls their values would be
preserved by the calling convention. Such a setting would lead to a much more complex situation
where local variables of caller frames on the bottom of the stack may be stored in much higher
stack frames or even the registers of the top frame. In order to keep the definitions simple, we did
not allow such optimizations here. The consistency relation for the remaining stack components
is stated below.

Definition 5.66 (C-IL Stack Consistency) The C-IL stack component is implemented correctly
in memory, if in every stack frame except the lowest one (i) the previous base pointer field con-
tains the address of the base of the previous frame (with higher index), and if (ii) the return
destination points to the correct address, according to the rds component of the C-IL function
frame i, in case it is defined. Let alv = bin32(base( j) − infoIL.lvo(v, f j, loc j) + o) in:

consisstack
C-IL (cIL, π, θ, infoIL, cMIPS) ≡ ∀i ∈ [0 : |cIL.s| − 1).

(i) pbp(i + 1) = base(i)

(ii) rdsi , ⊥ → rds(i) =

a : rdsi = val(a, t) ∈ valptr

alv : rdsi = lref((v, o), j, t) ∈ vallref

Now we can collect all sub-relations and define the overall compiler consistency relation be-
tween C-IL and MIPS configurations.

Definition 5.67 (C-IL Compiler Consistency Relation) The C-IL consistency relation com-
prises the consistency between MIPS and C-IL machine wrt. (i) program counter and return
addresses, (ii) the code region, (iii) stack and base pointer registers, (iv) the global memory re-
gion, (v) the local variables and parameters, as well as (vi) return destinations and the chain of
previous base pointers.

consisC-IL(cIL, π, θ, infoIL, cMIPS) ≡
(i) consiscontrol

IL (cIL, infoIL, cMIPS) (iv) consismem
IL (cIL, infoIL, cMIPS)

(ii) consisregs
IL (cIL, π, θ, infoIL, cMIPS) (v) consislv

IL(cIL, π, θ, infoIL, cMIPS)
(iii) consiscode

IL (cIL, π, θ, infoIL, cMIPS) (vi) consisstack
IL (cIL, π, θ, infoIL, cMIPS)
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Software Condition, Well-formedness, and Well-behaving

Definition 5.68 (C-IL Software Conditions) A C-IL program can be implemented if all reach-
able configurations obey the software conditions denoted by the following predicate. Given a
C-IL configuration cIL, programme π, environment parameters θ, and assembler information
infoIL, then the next step according to input in ∈ ΣC-IL may (i) not produce a run-time error,
(ii) not result in a stack overflow, and (iii) not explicitly access the stack or code region. Addi-
tionally, in (ii) we demand the minimal stack pointer value to be positive, and that (iv) the code
region fits into memory and is disjoint from the stack region.

scC-IL(cIL, in, π, θ, infoIL) ≡ (i) δπ,θC-IL(cIL, in) , ⊥

(ii) /stackovf (cIL, π, θ, infoIL) ∧ mspIL ≥ 0

(iii) Aπ,θcIL
(stmtnext(π, cIL)) ∩ (CR ∪ StR) = ∅

(iv) CR ⊆ [0 : 〈232〉) ∧ CR ∩ StR = ∅

Note that these restrictions imply that accessed global variables are not allocated in the stack or
code region by the compiler. Also, by (i) the software conditions exclude common programming
errors like out-of-bounds array accesses or dereferencing dangling pointers to local variables.

Another software condition one could think of is to limit the number of global variables so
that all fit in global memory. However, this is already covered here because of two facts. First,
in C-IL semantics there is an explicit allocation function θ.allocgv for global variables which
determine their addresses in global memory. Secondly, the absence of run-time errors ensures
that every global variable that is ever accessed is allocated. Thus, we cannot have too many
global variables in a program that is fulfilling the software conditions stated above.

Concerning the well-formedness of MIPS configurations and well-behaving of MIPS compu-
tations, they ensure that no external or internal interrupts are triggered and that instructions are
fetched from the code region. We let I = cMIPS.m(cMIPS.pc) then

suitC-IL
MIPS(eev) ≡ /eev[0]

wbC-IL
MIPS(cMIPS, eev) ≡ /jisr(cMIPS.p, I, eev, 0, 0) ∧ 〈cMIPS.pc〉 ⊆ CR

wf C-IL
MIPS(cMIPS) ≡ cMIPS.spr(sr)[dev] = 0

Instantiation

We define the sequential simulation framework RS n
MIPS,S

n
C-IL

. Let

cMIPS = (p,m) uMIPS = (cMIPS,DMIPS, ϑMIPS) ∈ LS n
MIPS

cIL = (s,M) uC-IL = (cIL,DIL, ϑIL) ∈ LS n
C-IL
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then

RS n
MIPS,S

n
C-IL
.



P = InfoTC-IL

sim(uMIPS, infoIL, uIL) = consisC-IL(cIL, π, θ, infoIL, cMIPS) ∧
DMIPS = DIL

CPa(s, infoIL) = infoIL.cp(s[|s| − 1]. f , s[|s| − 1].loc)
CPc(p, infoIL) = p.pc ∈ AC-IL

cp

wfa(cIL) = wf C-IL(cIL, π, θ)
sc(MIL, t, infoIL) = scC-IL((MIL.m,MIL.u(t.s)), t.in, π, θ, infoµ)
wfc(h) = wf C-IL

MIPS(h)
suit(α) = suitC-IL

MIPS(α.in)
wb(MMIPS, t, infoIL) = wbC-IL

MIPS((MMIPS.m,MMIPS.u(t.s)), t.in)

Here AC-IL
cp represents the instruction addresses of all consistency-points on the MIPS level and

was defined as follows.

AC-IL
cp ≡ {adr(infoIL, f , loc) | f ∈ dom(F θ

π ) ∧ loc ≤ |F θ
π .P| − 1 ∧ infoIL.cp( f , loc)}

For the definition of IO steps at the MIPS level, we again have to define the set Aio. We
need to collect all addresses of memory instructions which implement volatile variable updates.
However without the code generation function we do not know where the implementing memory
instruction is placed in the code memory region. To this end, we introduce the uninstantiated
function volma which returns the instruction address for a volatile memory access at a given
location loc of a C-IL function f in program π.

volma : ProgC-IL × paramsC-IL × InfoTC-IL × Fname × N⇀ B
32

To compute the function we naturally also need to know the code base address from the compiler
information and information on compiler intrinsics from environment parameter θ. We assume
that volma is defined for program locations where we expect volatile variable accesses and for
external functions in case they are supposed to update the shared memory.9 Then Aio is defined
as follows.

Aio = {volma(π, θ, infoIL, f , loc) | f ∈ dom(π.F θ
π ), loc < |π.F θ

π ( f ).P|} \ {⊥}

Again the theorem allows us to couple uninterrupted sequential MIPS ISA computations with
a corresponding C-IL computation. Any uninterrupted ISA computation of a big enough length,
that is running out of a consistency point, contains the simulating ISA computation from the
theorem as a prefix because without external inputs any ISA computation is only depending on
the initial configuration. Thus by induction on the number of consistency points passed one
can repeat this argument and find the C-IL computation that is simulated by the original ISA
computation.

Note that since we assumed an optimized compiler, the number of memory accesses might be
different before and after the compilation. As a consequence, we can not build the simulation
relations for temporaries.

9In case of external function rmw, volma returns for location loc = 0 the address of the rmw instruction implement-
ing the shared memory access. Note that there must exist only one such instruction.
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5.7.4 Cosmos Model Simulation

Using the sequential simulation theorems in an interleaved execution trace, we now aim to estab-
lish a system-wide simulation between two block machine computations (d, κ) and (e, ν). The
simulated (concrete) computation (d, κ) need not be complete. However (e, ν) is a complete
block machine computation. In Section 5.7.7 we will reduce reasoning to simulation between
complete block machine computations.

Consistency Blocks and Complete Block Machine Computations

We already introduced the notions of complete and incomplete consistency blocks informally.
Now we want to give a formal definition. Consistency blocks start in consistency points, i.e.
configurations of S d in which the sequential simulation relation holds wrt. some configuration
of S e and vice versa. Our concurrent simulation theorem is based on the application of our
order reduction theorem on S d where we choose the interleaving-points to be exactly the consis-
tency points as mentioned before. Similarly interleaving-points and consistency points of S e are
identical. These requirements on the instantiation of S d and S e are formalized in the following
predicate.

Definition 5.69 (Interleaving-Points are Consistency Points) Given a sequential simulation frame-
work RS d ,S e which relates two Cosmos machines S d and S e and a simulation parameter par ∈ P
we define a predicate denoting that in S d and S e the interleaving-points are set up to be exactly
the consistency points.

IPCP(RS d ,S e , par) ≡ ∀d ∈ MS d , α ∈ ΘS d . IPα.s(d, α.in)↔ CPα.s(d, par)

∧ ∀e ∈ MS e , β ∈ ΘS e . IPβ.s(e, β.in)↔ CPβ.s(e, par)

If these properties holds we speak of consistency blocks instead of IP blocks. This is reflected
in the definition of consistency block machine schedules κ ∈ (Θ∗S d

)∗ ∪ (Θ∗S e
)∗.

CPsched(κ, par) ≡ Bsched(κ) ∧ IPCP(RS d ,S e , par)

Given a Cosmos machine state d ∈ KS d and a simulation parameter par as above we can define
the set Uc of computation units of d that are currently in consistency points wrt. the simulation
parameter par.

Uc(d, par) ≡ {p ∈ NS d .nu | CPp(d, par)}

With the above setting of interleaving-points for par thus for any computation (d, α) with α.ip
we have α.s ∈ Uc(d, par). Now a complete block machine computation is a block machine
computation where all computation units are in consistency points in every configuration. This
is encoded in the following overloaded predicate.

CPschedc(d, κ, par) ≡ CPsched(κ, par) ∧ ∀κ′, κ′′, d′.

κ = κ′κ′′ ∧ d
κ′

7−→ d′ → ∀p ∈ Nnu. CPp(d′, par)

CPschedc(e, ν, par) ≡ CPsched(ν, par) ∧ ∀ν′, ν′′, e′.

ν = ν′ν′′ ∧ e
ν′

7−→ e′ → ∀p ∈ Nnu. CPp(e′, par)
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Note that we could prove the reduction of arbitrary consistency block machine schedules to com-
plete ones given that for every machine it is always possible to reach a consistency point again
(completability). However, the completability assumption needs to be justified by the simulation
running on the machine. In addition, the consistency points are only meaningful in connection
with a simulation theorem. Thus, it is useless to treat the reduction of incomplete blocks on
a single layer of abstraction. The safety transfer theorem for complete block schedules along
with our Cosmos model simulation theory will be presented in the subsequent sections. There
the verification of ownership-safety and a Cosmos model safety property P for all complete
block machine schedules running out of a configuration C ∈ KS d ∪ KS e is defined below with
Ω = ΩS d = ΩS e and Θ = ΘS d ∪ ΘS e .

safetycB(C, P, par) ≡ ∀κ ∈ (Θ∗)∗. CPschedc(C, κ, par) ∧ comp(C.M, bκc)
→ ∃o ∈ Ω∗. safetyP(C, 〈bκc, o〉)

Requirements on Sequential Simulation Relations

Now we define the overall simulation relation between two machine states d ∈ KS d and e ∈ KS e .
We demand that the local simulation relations hold for all machines in consistency points.

sim(d, par, e) ≡ ∀p ∈ Uc(d, par). simp(d, par, e)

We will later on require that the simulation relation holds between the corresponding machine
states of the consistent Cosmos machine computations. This means that there are units in the
concrete computation which are at times not coupled with the computation on the abstract sim-
ulation layer. More precisely, this is the case for units which have not reached a consistency
point again at the end of the computation, i.e., their last block in the block machine schedule is
incomplete. Only for complete block machine computations we have that units are coupled in all
intermediate machine states. In order to compose the simulations, we assume a certain structure
and properties of the simulation relations which enable the composition in the first place. We
introduce the following framework for concurrent simulation between S d and S e.

Definition 5.70 (Concurrent Simulation Framework) A concurrent simulation framework for
Cosmos machines S d and S e is a pair containing the sequential simulation framework RS d ,S e as
well as a shared memory and ownership invariant shared-inv (short: shared invariant) that is
coupling and constraining the shared memory and the ownership states of both systems. Let
Mx = Ax ⇀ Vx and Ox = Nnu → 2Ax in:

shared-inv : (Md × 2Ad × 2Ad × Od) × P × (Me × 2Ae × 2Ae × Oe)→ B

We introduce a shorthand that is asserting the shared invariant on two Cosmos machine config-
urations D and E. Let Gx(C) = (C.m|C.S∪S x.R,C.S, S x.R,C.G.O) in:

shared-inv(D, par, E) ≡ shared-inv(Gd(D), par,Ge(E))

Recall here that C.G.O is the mapping of units to ownership sets that is a part of the Cosmos
machine ghost state. Also, note that the shared-inv(D, par, E) depends only on the ownership
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Figure 5.5: Illustration of Assumption 1. The simulating computation 〈σ, oσ〉 must be
ownership-safe and preserve the shared invariant shared-inv.

state and the portion of memory covered by the shared addresses. Thus, ownership-safe local
steps are preserving the shared invariant since by the ownership-policy they do not modify the
ownership state nor shared memory.

The shared invariant is introduced as a common abstraction relation to the shared memory and
ownership model of S d and S e. IfAd = Ae, then shared-inv should be just an identity mapping
between the corresponding components of the concrete and abstract simulation levels. However,
as we allow to abstract from portions of the abstract memory, the shared invariant may be more
complex.

For instance in the C-IL scenario we abstract the function frames from the stack region in
memory. While these memory regions are invisible on the abstract level, we would like to
protect them via the ownership model from modification by other threads on the concrete level.

The shared invariant is then used to cover such resource abstraction relations and formulate
instantiation-specific ownership invariants. We will give examples for the shared invariant later
when we instantiate the concurrent simulation framework. Below we formulate constraints on
the predicates and the simulation relation introduced above, needed for an integration of the
sequential simulation theorems into a concurrent one. These assumptions must be discharged by
any instantiation of the concurrent simulation framework.

The most important assumption is stated first. On the one hand we require computation units
of S d and S e to maintain shared-inv according to the software conditions on computations of S e

and the definition of good behaviour for computations of S d.
Moreover, we need to assume an ownership-safety transfer theorem about the simulation

which is essential in the construction of a pervasive concurrent model stack using ownership-
based order reduction.

Assumption 1 (Safety Transfer and shared-inv Preservation) Consider a concurrent simula-
tion framework (RS d ,S e , shared-inv) and a complete consistency block computation (D.M, σ)
that is implementing an abstract consistency block (E.M, τ). We assume that (i) the concrete
computation is well-behaved, leading into state d′ ∈ MS d , σ is a consistency block of p, and
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both schedules contain the same number of IO steps but at most one. Moreover (ii) τ is also a
consistency block of p, the computation is safe according to ownership annotation oτ, and leads
into E′ ∈ MS e obeying the software conditions on S e. Finally (iii) the simulation relation for p
and the shared invariant holds between D.M and E.M, and the simulation relation holds also for
the resulting configurations.

∀D, d′, E, E′, σ, τ, oτ, p, par.

(i) D.M
σ
7−→ d′ ∧ blk(σ, p) ∧ oneIO(σ, τ) ∧ wb(D.M, σ, par)

(ii) E
〈τ,oτ〉
7−→ E′ ∧ blk(τ, p) ∧ safe(E, 〈τ, oτ〉) ∧ sc(E.M, τ, par)

(iii) simp(D.M, par, E.M) ∧ shared-inv(D, par, E) ∧ simp(d′, par, E′.M)

Then there exists an ownership annotation oσ for σ, such that the annotated concrete computa-
tion (i) results in d′ and a ghost state G′, (ii) it is ownership-safe, and (iii) preserves shared-inv.

→ ∃oσ ∈ Ω∗S d
,G′. (i) D

〈σ,oσ〉
7−→ (d′,G′)

(ii) safe(D, 〈σ, oσ〉)

(iii) shared-inv((d′,G′), par, E′)

See Fig. 5.5 for an illustration. For C-IL in order to discharge the assumption we would need
to show, e.g., that volatile accesses are compiled correctly such that the correct addresses are
accessed. Additionally we would need to prove that the memory accesses implementing stack
operations are only targeting the stack region and that ownership on the concrete level can be set
up such that these memory accesses are safe.

Note that above we do not restrict in any way the ownership transfer on S e. This means
conversely that shared-inv can in fact only restrict the ownership state of S d that is not covered
by Ae. Moreover, assumption safe(E, 〈τ, oτ〉) and the shared invariant between D and E imply
inv(D). The sequential simulation relation does not cover the ownership state but is needed for
technical reasons, too. We show this as a corollary.

Corollary 1 If two ghost configurations Gd and Ge are coupled by the shared invariant and the
simulation relation for any p, then the ownership invariant is transfered from Ge to Gd.

(∃Md,Me. shared-inv((Md,Gd), par, (Md,Ge)) ∧ simp(Md, par,Me)) ∧ inv(Ge)→ inv(Gd)

Proof: By σ = τ = ε the hypotheses of Assumption 1 applied for D = (Md,Gd) and E =

(Me,Ge) collapse to simp(D.M, par, E.M), shared-inv(D, par, E) and inv(E) which hold by our
hypothesis. Thus we have safe(D, ε) which in turn implies inv(D). �
Below we introduce another property which is needed to establish the sequential consistency
relations in a concurrent setting.

Assumption 2 (Preservation of simp) The sequential simulation relation for unit p only de-
pends on p’s local state and the memory covered by the shared invariant.

∀D,D′ ∈ KS d , E, E
′ ∈ KS e , par ∈ P, p ∈ Nnu.

simp(D.M, par, E.M) ∧ D ≈p D′ ∧ E ≈p E′ ∧ shared-inv(D′, par, E′)
→ simp(D′.M, par, E′.M)
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This assumption allows us to maintain the simulation during environment steps. Furthermore,
the well-formedness of machine states cannot be broken by safe steps of other participants in the
system if they were maintaining the shared invariant.

Assumption 3 (Preservation of Well-formedness) The well-formedness predicates only de-
pend on the local state of their respective units and the memory covered by the shared invariant.
For all D,D′ ∈ KS d , E, E′ ∈ KS e , par ∈ P, and p ∈ Nnu we have:

wf p(D.M) ∧ D ≈p D′ ∧ shared-inv(D′, par, E′) → wf p(D′.M)

wf p(E.M) ∧ E ≈p E′ ∧ shared-inv(D′, par, E′) → wf p(E′.M)

5.7.5 Simulation Theorem

With the assumptions stated above we can show a global Cosmos model simulation theorem,
given computations on the abstract level are proven to be safe wrt. ownership and a Cosmos
machine safety property P. We claim that it is enough to verify all complete block computa-
tions leaving starting state E. This is the crucial prerequisite to enable a safe composition of
computations. From a given consistency point, a sequential computation of some unit p into the
next consistency point must be safe. We do not treat property transfer for other safety properties
than ownership-safety for now. However, we instantiate the Cosmos machine safety property P
so that it implies the well-formedness of machine states of S e and that computations obey the
software conditions of the abstract simulation layer.

Since obeying the software conditions is a property of steps rather than of states, we extend
the unit states of S e with some history information, recording the occurrence of software condi-
tion violations. Thus we use a modified Cosmos machine S ′e where each unit gets an additional
boolean flag sc which is initially 1 and becomes 0 as soon as a step violates the software condi-
tions, i.e., for all α ∈ ΘS ′e , e, e′ ∈ MS ′e , par ∈ RS d ,S e .P and p ∈ NS e.nu we have:

e
α
7→ e′ → e′.u(p).sc = e.u(p).sc ∧ sc(e, α, par)

Assuming the generalized sequential simulation theorem to be proven and the simulation rela-
tions and predicates to be constrained as presented above, we can now show the desired concur-
rent simulation theorem.

Theorem 5.71 (Cosmos Model Simulation Theorem) Given are two Cosmos machine start
configurations D ∈ KS d and E ∈ KS e as well as block machine schedule κ and concurrent
simulation framework (RS d ,S ′e , shared-inv). We assume that (i) κ is a suitable consistency block
schedule without empty blocks, (ii) that κ is executable from D.M and at least one machine in
D is in a consistency point, that (iii) all complete block machine computations running out of
E are proven to obey ownership-safety and maintain Cosmos machine property P, and that (iv)
P implies that every computation unit of S ′e is well-formed and does not violate software con-
ditions. Moreover (v) units of D in consistency-points are well-formed. Finally we require that
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(vi) D and E are consistent wrt. simulation parameter par ∈ P and the shared invariant holds.

∀D, κ, E, par, P. (i) CPsched(κ, par) ∧ ∀λ ∈ κ. λ , ε ∧ suit(λ)

(ii) comp(D.M, bκc) ∧ ∃p ∈ Nnu. CPp(D.M, par)

(iii) safecB(E, P, par)

(iv) ∀E′ ∈ KS ′e , p ∈ Nnu. P(E′)→ wf p(E′.M) ∧ E′.up.sc

(v) ∀p ∈ Uc(D.M, par). wf p(D.M)

(vi) sim(D.M, par, E.M) ∧ shared-inv(D, par, E)

If these hypotheses hold we can show that there exists a block machine schedule ν such that (i) ν
is complete, has the same length as κ, and describes a Cosmos machine computation starting in
E.M. This computation is simulated by (D.M, κ) and for the resulting machine states M′d and M′e
we know that (ii) they are well-formed for all units of M′e and all units M′d in consistency points,
and (iii) the simulation relation. Moreover (iv) the simulating computation and well-behaved
and each corresponding pair of consistency blocks contains the same number of IO steps but
at most one. Finally (v) for any ownership annotation oν ∈ Ω∗S e

to computation (E.M, ν) that
is safe and producing a ghost state G′e, we can find a corresponding annotation oκ ∈ Ω∗S d

for
(D.M, κ) resulting (v.a) in ghost state G′d such that (v.b) the computation is ownership-safe and
(v.c) the shared invariant holds between the resulting Cosmos machine configurations.

∃ν,M′e. (i) CPschedc(E.M, ν, par) ∧ |ν| = |κ| ∧ D.M
κ
7−→ M′d ∧ E.M

ν
7−→ M′e

(ii) ∀p ∈ Nnu. wf p(M′e) ∧ ∀p ∈ Uc(M′d, par). wf p(M′d)

(iii) sim(M′d, par,M′e)

(iv) wb(D.M, bκc, par) ∧ ∀ j < |κ|. oneIO(κ j, ν j)

(v) ∀oν,G′e. E
〈bνc,oν〉
7−→ (M′e,G

′
e) ∧ safe(E, 〈bνc, oν〉) →

∃oκ,G′d. (v.a) D
〈bκc,oκ〉
7−→ (M′d,G

′
d)

(v.b) safe(D, 〈bκc, oκ〉)
(v.c) shared-inv((M′d,G

′
d), par, (M′e,G

′
e))

The simulation theorem is illustrated in Fig. 5.6. Note that we do not require that all units start
with consistency blocks. However, this is implicitly guaranteed for all units running in κ by the
definition of block machine schedules and the IPCP condition. If κ = ε then hypothesis (ii)
ensures that sim does not hold vacuously between D and E.

Furthermore, in the simulation theorem a possibly incomplete consistency block machine
computation of S d is simulating a complete consistency block machine computation by S ′e. For
the computation units whose final blocks are incomplete, i.e., who have not yet reached another
consistency point, the simulation relation is not holding. However in all intermediate states of
the block machine computation the shared invariant must hold. For the treatment of incomplete
blocks, we thus distinguish two cases.

On one hand, if the incomplete block contains only local steps we can simply omit it and
represent it by a stuttering step (i.e., an empty block) on the abstract simulation level, because it
does not affect the shared memory or ownership state.
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Figure 5.6: The Cosmos model simulation theorem. Computation (D, 〈bκc, oκ〉) is ownership-safe
and simulates an abstract computation (E, 〈bνc, oν〉).

On the other hand, if the incomplete block contains an IO step it may affect the shared mem-
ory or ownership state and in order to maintain the shared invariant the incomplete block must
be represented properly on the abstract level. To this end, we use the sequential simulation rela-
tion completing the block and obtaining the simulated consistency block of the abstract Cosmos
machine computation. These are the core ideas of the proof of the concurrent simulation.

Note that we need to find a safe annotation for (D.M, κ) for any given safe annotation on the
abstract level. It does not suffice to simply find one pair of safe annotations for the simulating
computations because such a formulation is not applicable in the inductive proof of ownership-
safety transfer. The full version of the proof can be looked up in [Bau14].

5.7.6 Applying the Order Reduction Theorem

Our order reduction theorem allows to transfer safety from safe IP schedules to arbitrarily
interleaved Cosmos machine schedules. Remember that this safety transfer theorem has two
hypotheses, namely that all IP schedule computations leaving configuration D are safe and ful-
fil the IOIP condition, saying that all units start in interleaving-points and that a unit always
passes an interleaving-point between two IO steps. Now it would be desirable if we could
use the Cosmos model simulation theorem proven above in order to obtain safetyIP(D, P) and
IOIPIP(D). However, we cannot prove these hypotheses of the order reduction theorem di-
rectly. Instead, we can derive two weaker properties from the simulation theorem. With θ ∈ Θ∗S d

,
o ∈ Ω∗S d

, the predicates

safety(D, P, suit) ≡ ∀θ. suit(θ) ∧ comp(D.M, θ) → ∃o. safeP(D, 〈θ, o〉)

safetyIP(D, P, suit) ≡ ∀θ. IPsched(θ) ∧ suit(θ) ∧ comp(D.M, θ)

→ ∃o. safeP(D, 〈θ, o〉)

IOIPIP(D, suit) ≡ ∀θ. IPsched(θ) ∧ suit(θ) ∧ comp(D.M, θ) → IOIP(θ)
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denote the safety and IOIP condition for all (IP) schedules that are suitable for simulation.
After that, we can show a stronger order reduction theorem that allows to transfer safety proper-
ties from the subset of suitable IP schedules down to suitable arbitrarily interleaved schedules.
We furthermore augment the machine states of S d with a history variable wb similar to the sc flag
of S ′e. The additional semantics for the extended machine S ′d with d, d′ ∈ MS ′d

, step α ∈ ΘS d ,
and parameter par ∈ P is given by:

d
α
7→ d′ → d′.u(p).wb = d.u(p).wb ∧ wb(d, α, par)

Now we define Cosmos machine safety property for a given parameter par that denotes good
behavior in the past (before D) for all computation units.

W : KS d → B W(D) ≡ ∀p ∈ Nnu. D.up.wb

Theorem 5.72 (IP Order Reduction for Suitable Schedules) Given a simulation framework
RS ′d ,S

′
e and a Cosmos model configuration D ∈ KS ′d

for which it has been verified that all suitable
IP schedules originating in D are safe wrt. ownership and a Cosmos machine property P.
Moreover, all suitable IP schedule computations running out of D obey the IOIP condition.
Then the ownership safety and P hold on all computations with a schedule suitable for simulation
that starts in D.

safetyIP(D, P, suit) ∧ IOIPIP(D, suit)→ safety(D, P, suit)

Note that for a trivial instantiation of suit(α) ≡ 1, the new order reduction theorem implies the
old one. The complete proof can be found in [Bau14].

5.7.7 Property Transfer and Complete Block Simulation

Above we have shown the existence of a simulation between any concrete consistency block
machine computation and a complete abstract block machine computation. Moreover, we have
proven property transfer for memory safety. For the transfer of other safety properties, it is
important to remember how the simulation proof was conducted.

The sequential simulation was proven to hold only for units that are in consistency points in
the computation of the concrete Cosmos machine. For all other units, no statement could be
made about their states and locally owned memory regions. However the shared invariant on
shared memory and the ownership state was proven to hold in all configurations of a simulating
computation.

This has an influence on the kind of properties we can transfer from the abstract down to
the concrete simulation level. We will have to distinguish between global and local proper-
ties. Moreover, safety properties proven on the abstract level do not translate one-to-one to the
concrete level because we are dealing with different Cosmos machine instantiations. The “trans-
lation” of the verified abstract safety properties to properties of the concrete machine is achieved
via the coupling relations between configurations of S ′d and S ′e, i.e., by the shared invariant
for global properties, and by the sequential simulation relation for local properties of units in
consistency points.
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This notion of simulated Cosmos machine properties is formalized below. We finish the sec-
tion by proving transfer of Cosmos machine safety properties for complete and incomplete block
machine schedules.

Simulated Cosmos machine Properties

As explained above we cannot directly transfer a verified Cosmos machine property P from the
abstract to the concrete simulation level. Naturally P is formulated in terms of S ′e and we cannot
apply it to configurations of S ′d. However we can translate P into a simulated Cosmos machine
property Q̂ which holds for D ∈ KS ′d

iff P holds in a completely consistent state E ∈ KS ′e .
Here we follow the approach of Cohen and Lamport for property transfer [CL98]. Nevertheless,
we cannot translate arbitrary properties. First, they must be divisible in global and local sub-
properties.

Definition 5.73 (Divisible Cosmos machine Safety Property) We say that P is a divisible Cos-
mos machine safety property on the abstract machine S ′e iff it has the following structure

∀E ∈ KS ′e . P(E) ≡ Pg(E) ∧ ∀p. Pl(E, p)

where Pg is a global property which depends only on shared resources and the ownership model
and Pl constitutes local properties for each unit of the system. Consequently they are constrained
as shown below for any E, E′ ∈ KS ′e .

E s
∼ E′ ∧ E o

∼ E′ → Pg(E) = Pg(E′)

∀p. E ≈p E′ → Pl(E, p) = Pl(E′, p)

The distinction between global and local properties is motivated by the simulation proof. Global
properties are only restricting the shared memory and ownership state, the part of the configu-
ration that is covered by the shared invariant which is holding at all times between simulating
computations. Conversely, local properties depend on the local configuration of a single unit,
which are only coupled with the implementation at consistency points. Thus, we can translate
global properties in all intermediate configurations using the shared invariant and translate local
properties in consistency-points using the simulation relation.

Arbitrary safety properties that couple shared memory with local data, or couple the local data
of several units, can in general not be translated because the involved computation units might
never be in consistency-points at the same time. Technically we forbid safety properties that are
stated as a disjunction of global and local properties. However, this is not a crucial restriction,
and we could without problems allow properties of the form Pg(C)∨Pl(C) if needed. The notion
of the property translation is formalized as follows.

Definition 5.74 (Simulated Cosmos machine Property) Let P be a divisible Cosmos machine
safety property on KS ′e and (RS ′d ,S

′
e , shared-inv) be a concurrent simulation framework between

machines S ′e and S ′d. Then for a given simulation parameter par ∈ P the simulated Cosmos
machine property Q̂[P, par] : KS ′d

→ B can be derived by solving the following formula, which
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states for any configuration E ∈ KS ′e being completely consistent with D ∈ KS ′d
that Q̂[P, par]

holds in D iff P holds in E.

∀D, E. shared-inv(D, par, E) ∧ ∀p. simp(D.M, par, E.M) → (Q̂[P, par](D) = P(E))

Note that Q̂[P, par] may be undefined for certain properties P.10 Moreover, as Q̂[P, par] should
be a divisible Cosmos machine property, we must be able to split it into global part Q̂[P, par]g

and local parts Q̂[P, par]l such that:

Q̂[P, par](D) = Q̂[P, par]g(D) ∧ ∀p. Q̂[P, par]l(D, p)

Consequently the following constraints must hold for Q̂[P, par].

∀D, E. Pg(E) ∧ shared-inv(D, par, E)→ Q̂[P, par]g(D)

∀D, E, p. Pl(E, p) ∧ simp(D.M, par, E.M)→ Q̂[P, par]l(D, p)

While it is desirable to have local properties hold for all units, we have seen that for config-
urations in incomplete consistency block machine computations there are units for which the
sequential simulation and thus local simulated properties do not hold. Therefore, we have to re-
lax the definition of simulated properties and introduce incompletely simulated Cosmos machine
properties.

Definition 5.75 (Incompletely Simulated Cosmos Machine Property) For a given Cosmos ma-
chine property P, concurrent simulation framework (RS ′d ,S

′
e , shared-inv), simulation parameter

par ∈ P, and configurations D ∈ KS ′d
, E ∈ KS ′e we define an incompletely simulated Cosmos

machine property Q[P, par] : Kd → B below.

Q[P, par](D) ≡ Q̂[P, par]g(D) ∧ ∀p ∈ Uc(D.M, par). Q̂[P, par]l(D, p)

Its definition uses the global and local parts of the simulated Cosmos machine property Q̂[P, par].
The global part should hold for all configurations in a block schedule D and the local properties
only if the corresponding machine is in a consistency point.

Property Transfer

In order to prove the transfer of safety properties from the abstraction simulation level down to
arbitrary consistency block schedules on the concrete level, we first define a shorthand for the
simulation hypotheses.

Definition 5.76 (Simulation Hypotheses) We define a predicate simh to denote the hypotheses
of the concurrent simulation theorem for a framework (RS ′d ,S

′
e , shared-inv), start configurations

D ∈ KS ′d
, E ∈ KS ′e , and a simulation parameter par ∈ P. We demand that (i) all units D in

consistency points are well-formed for all units, (ii) at least one unit is in a consistency point and

10This can be the case when P argues about components of S ′e that are not coupled with the concrete level S ′d via the
simulation relation and shared invariant. Typically ghost state components fall into this category if they do not
have counterparts in the ghost state of the implementation.
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for all units the wb flag is set to true, and (iii) consistent wrt. the simulation relation and shared
invariant. We assume to have proven the sequential simulation theorem according to RS ′d ,S

′
e

fulfilling the IPCP condition and Assumptions 1-3. Moreover (iv) memory safety is verified
for all complete block computations starting in E along with a property P that (v) implies that
computations running out of E obey the software conditions and preserve well-formedness.

simh(D, E, P, par) ≡ (i) ∀p ∈ Uc(D.M, par). wf p(D.M)

(ii) ∃p ∈ Nnu. CPp(D.M, par) ∧W(D)

(iii) sim(D.M, par, E.M) ∧ shared-inv(D, par, E)

(iv) safetycB(E, par, P) ∧ IPCP(RS ′d ,S
′
e , par)

(v) ∀E′ ∈ KS ′e , p ∈ Nnu. P(E′)→ wf p(E′.M) ∧ E′.up.sc

Finally, we prove the transfer of safety properties from the abstract simulation level down to
arbitrary consistency block schedules on the concrete level.

Theorem 5.77 (Simulated Safety Property Transfer) Given are a concurrent simulation frame-
work consistent (RS ′d ,S

′
e , shared-inv) with par ∈ P and start configurations D ∈ KS ′d

, E ∈ KS ′e
such that the simulation hypotheses are fulfilled. In particular if we have verified ownership-
safety and a Cosmos machine property P for all complete block machine computations starting
in E and P translates into the incompletely simulated Cosmos machine property Q[P, par], then
any suitable Cosmos machine schedule leaving D is safe wrt. ownership, Q[P, par] holds for all
reachable configurations, and all implementing computations are well-behaved.

simh(D, E, P, par) → safety(D,Q[P, par] ∧W, suit)

Thus, the incompletely simulated Cosmos machine property for any P is maintained on the
concrete level by the concurrent simulation. However in order the illustrate the usability of
our framework for reordering and simulation we will return to our Cosmos model instantiations
below and establish the concurrent simulation theorems between MIPS and C-IL.

5.7.8 Instantiations

In the previous chapters, we have introduced the Cosmos machines S n
MIPS and S n

C-IL which where
instantiated according to the MIPS and C-IL semantics presented earlier. We also defined se-
quential simulation relations for the C-IL resulting in programs running on the MIPS ISA level.
In the remainder of this chapter, we will instantiate our concurrent simulation framework ac-
cordingly. Since we already instantiated the sequential simulation framework, we only have to
instantiate the shared invariants and prove the safety transfer. Note that for the simulation we set
parameter Acode of the MIPS machine equal to {a ∈ A | 〈a〉 ∈ CR}.

Shared Invariant and Concurrent Simulation Assumptions

For establishing a concurrent simulation between MIPS and C-IL, we first of all need to de-
fine the invariant about the shared memory and the ownership state. In general we demand that
the shared memory, as well as the ownership configuration, is identical. Nevertheless, we need
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to take into account that for C-IL the code and stack region is excluded from the memory ad-
dress range. On the ISA level the stack region dedicated to unit p is always owned by p. By
construction, the code region lies in the set of read-only addresses.

Definition 5.78 (Shared Invariant for Concurrent MIPS–C-IL Simulation) Given memories
mh, mIL, read-only sets Rh, RIL, sets of shared addresses Sh and SIL, as well as ownership map-
pings Oh and OIL, we define the shared invariant for concurrent simulation of S n

C-IL by S n
MIPS

wrt. assembler information infoIL as follows. We demand (i) that memory contents are equal for
all but the stack and code regions, that (ii) the shared addresses are equal, that (iii) the read-only
addresses on the MIPS level contain all read-only addresses from C-IL plus the code region,
and (iv) that all units own the same addresses on the MIPS level as on the C-IL level plus the
individual stack region.

shared-invC-IL
MIPS((mh,Sh,Rh,Oh), infoIL, (mIL,SIL,RIL,OIL)) ≡

(i) mh|S n
C-IL.A

= mIL

(ii) Sh = SIL

(iii) Rh = RIL ∪ CR
(vi) ∀p ∈ Nnu. Oh(p) = OIL(p) ∪ StRp

Thus we obtain concurrent simulation framework (RS n
MIPS,S

n
C-IL
, shared-invC-IL

MIPS) for which As-
sumptions 1-3 are to be proven. Again, as we do not know the C-IL compilation function, the
part of Assumption 1 demanding that the compilation preserves safety wrt. the memory access
ownership policy cannot be discharged here. The proof of the preservation of shared-invC-IL

MIPS,
Assumptions 2 and 3 can be found in [Bau14].

Proving Safety Transfer

It remains to prove that for the MIPS simulation of an ownership-safe C-IL computation we can
also find a safe ownership annotation. In order to apply our programming discipline, we need to
instantiate the safety property P and Q. For all configuration cIL ∈ KS n

C-IL
, cMIPS ∈ KS n

MIPS
and

the step α we have the following axillary definitions. The corresponding local C-IL and MIPS
configuration is defined as

p = α.s

cILp = (dcIL.M.me, cIL.M.up.s) = (M, s)

cMIPSp = (dcIL.M.me, cMIPS.up.c) = (m, c)

The next instruction in the local MIPS configuration is defined as

I = cMIPSp .m(cMIPSp .pc)

The next statement in the local C-IL configuration is defined as

stmt = stmtnext(π, cILp)
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The value of the corresponding counter is defined as

nIL = cIL.M.up.n

nMIPS = cMIPS.M.up.n

Then we define the updated temporaries by read or rmw in both machines

vIL =


a : stmt = (e = e′) ∧ [[e′]]π,θcIL = val(a, t) ∧ a ∈ B32 ∨

rmwπ,θ
cILp

(stmt, a, u, v, r, p, in)

⊥ : otherwise

ϑ′IL(cIL, p) = cIL.M.up.ϑ(RnIL+1 7→ vIL)

ϑ′MIPS(cMIPS, p) = cMIPS.M.up.ϑ(InMIPS+1 7→ I)(RnMIPS+1 7→ lv(cMIPSp .m(ea(cMIPSp .c, I))))

Definition 5.79 (Safety Property at C-IL Level) If the next step is an IO step then (i) the dirty
bit should be cleared for volatile reads. (ii) the ownership annotations are generated by a function
ogC-IL

cos
11 with local components. The safety property PogC-IL

cos
is defined as

∀cIL ∈ KS n
C-IL
. PogC-IL

cos
(cIL) ≡ α.io→

(volrπ,θf (stmt)→ ¬cIL.up.D)∧

(α.Acq, α.Loc, α.Rel) = ogC-IL
cos (cILp .s, ϑ

′
IL(cIL, p))

We instantiate predicate P as following to fulfill the simulation hypothesis:

P(cIL) ≡ PogC-IL
cos

(cIL) ∧ wf p(cIL.M) ∧ cIL.up.sc

Definition 5.80 (Safety Property at MIPS Level) Since at the MIPS level we already defined
the safety property in the last section, we use it to instantiate the predicate Q.

Q(cMIPS) ≡ PogMIPS
cos

(cMIPS)

The instantiated safety property P and Q only depend on local components of the corre-
sponding configuration. Thus, we can transfer the property by theorem 5.77. Next, we want to
identically transfer the ownership annotations from C-IL to MIPS.

Ownership Identity Mapping Assuming we have one C-IL configuration cIL and one MIPS
configuration cMIPS. The following compiler consistency relation is satisfied.

consisC-IL(cILp , π, θ, infoIL, cMIPSp)

11The ownership annotation generation function ogC-IL
cos is an abstraction of specification codes (or ghost codes)

which are used to update the specification states (or ghost codes). In a C verifier like VCC, the code to be verified
is annotated with specification codes and specification states. The definition of ogC-IL

cos depends on the specific
annotated program and the specific C verifier.
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From the definition of C-IL control consistency consiscontrol
C-IL (cILp , infoIL, cMIPSp) we know that

cMIPSp .pc points to the start of the compiled code for the current statement in the C-IL machine.
If we keep stepping the unit p of both machines then from the property of cpl we know that each
IO point of C-IL machine has a counterpart in the MIPS machine. We let the corresponding
configurations be c′MIPS and c′IL. As a consequence, we have:

c′MIPSp
.pc = volma(π, θ, infoIL, ftop(c′ILp

), loctop(c′ILp
))

We define the value of ogMIPS
cos (c′MIPSp

.c, ϑ′MIPS(c′IL, p)) as

ogC-IL
cos (c′ILp

.s, ϑ′IL(c′MIPS, p))

In the remaining portion of this paragraph, we will state the function ogMIPS
cos is well defined.

What we need to prove is for

• an initial MIPS Cosmos machine c0
MIPS ∈ KS n

MIPS

• an initial C-IL Cosmos machine c0
C-IL ∈ KS n

C-IL

• a MIPS Cosmos machine computation κ

• a C-IL program π and a parameter infoC-IL

• an instantiated concurrent simulation framework and property

which fulfill the Cosmos model simulation theorem. We need to prove there exists a unique
C-IL Cosmos machine computation which simulations κ. The only non-determinism during the
execution might come from the intrinsic rmw. The input depends on the result of the comparing
between the read value and the compare value. Thus, the rmw does not introduce any non-
determinism, and the uniqueness of the execution trace is guaranteed.

Safety Transfer Since ownership state is extended identically going from C-IL to MIPS, us-
ing the following facts, we can justify that compiled safe code does not break the memory access
policy.

• The compiled code is placed in the code region, which is the only target of instruction
fetch for well-behaved code. Moreover, we do not have self-modifying code. Therefore,
only instructions generated by the C-IL compiler are executed.

• For any implementation of a C-IL statement only the stack and the memory footprints
of the involved expressions may be read or written. Note that this does not follow from
compiler consistency for intermediate computation steps.

• Local variables are allocated in the stack region which is owned by the executing compu-
tation unit. Therefore, if local variable accesses are compiled, so that they access only the
stack, the operation is ownership-safe.
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• Since there is at most one IO step per-consistency block where ownership can change,
the ownership state for the IO step and all previous local steps is the same and by the
shared invariant consistent with the ownership state on the C-IL level before the IO step.
Similarly, all successor steps of the IO operation are computed with the same ownership
state that is consistent by the shared invariant with the ownership state after the IO step
on the C-IL level.

• As the same shared memory addresses are accessed wrt. the same ownership state, the
ownership-safety of memory access can be transferred.

This finishes our instantiation of the concurrent simulation framework between MIPS and C-IL
as well as the chapter on concurrent simulation.
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6 Conclusion and Future Work

6.1 Conclusion

To the best of our knowledge, this thesis presents the first store buffer reduction theorem with
MMU, as well as the first application of the theorem on ISA level and C level. In this thesis,
we first proposed a programming discipline that guarantees the SC execution on a TSO machine
with MMU. We formally defined an SB machine model and an abstract machine model. Under
the programming discipline, we proved the store buffer reduction theorem with MMU, which is
a simulation theorem between the abstract machine and the SB machine. We also introduced the
ownership theory to make our proof go through. In the remainder of this thesis, we introduced
four kinds of ISAs.

• MIPS-86. To apply the SB reduction theorem to ISA level, An ISA named MIPS-86 is
introduced, which is a MIPS core with the x86/64 like memory system (including MMU
and SB).

• SB reduced MIPS-86. After applied the SB reduction theorem with MMU to MIPS-86,
we obtained the SB reduced MIPS-86, which is MIPS-86 without the SB.

• SB MIPS. This kind of ISA is introduced for user program in which the MMU and inter-
rupts are invisible. SB MIPS is MIPS-86 without the MMU and interrupts.

• MIPS. After applied the SB reduction theorem to SB MIPS, we got the MIPS ISA, which
is MIPS-86 without the SB, the MMU and interrupts.

In the next portion of this thesis, we applied the SB reduction theorem with MMU to the ISA
level. We introduced MIPS-86 as well as the SB reduced MIPS-86 ISA. We also instantiated the
abstract machine and the SB machine with an ISA very alike to MIPS-86. The main difference
is that in the instantiated machine, the execution of one instruction is divided up to five phases,
while in the MIPS-86 machine, each instruction is atomic. As a consequence, by applying we
mean that

1. simulate the MIPS-86 machine execution with an SB machine execution, which is trivial
and omitted in this thesis.

2. simulate the abstract machine execution with an SB reduced MIPS-86 machine execu-
tion. First, we need to provide the ownership semantics to the MIPS-86 machine. As a
consequence, we introduced the Cosmos model and instantiated it with the SB reduced
MIPS-86 machine (we called it the SB reduced MIPS-86 Cosmos machine) which gives
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us the semantics with ownership. Then, we proved a simulation theorem between the SB
reduced MIPS-86 Cosmos machine and the instantiated abstract machine.

In the last portion of the thesis, we applied the SB reduction theorem to the parallel C level for
user programs. Since the MMU is not visible for a user program, we tailored our previous results
for the machines without MMUs. We also introduced the C-IL and instantiated the Cosmos
machine with a C-IL machine. At last we presented a simulation between a MIPS Cosmos
machine1 and a C-IL Cosmos machine. With the series of the simulation theorems, we mapped
the programming discipline to the parallel C level.

The conclusion section is ended by revisiting the first two examples mentioned in Chapter
1. We apply the programming discipline to these examples with identical initial conditions and
argue that the SC is maintained.

T1: a1:=1 T2: a2:=1
FENCE FENCE
if(a2==0) if(a1==0)
critical section critical section

In the first example, a FENCE instruction is inserted between the shared variable write and read
according to the programming discipline. In this case, when the program reaches the if state-
ment, we can be sure that at least one of the stores already emerged from its SB which only
allow one thread to enter the critical section. The SC is maintained in this example.

T1: pte2.p:=0 MMU1: pte1.a:=1
FENCE t1:= pte2
t0:=pte1.a

Consider the same TSO execution as in Chapter 1 where the steps of the thread are executed
before the steps of the MMU. The inserted FENCE guarantees the updating of pte2.p is visible
to the MMU and results a page fault both in the SC execution and the TSO execution.

6.2 Future Work

As it is mentioned in Chapter 1, one initial goal of our thesis was to apply the SB reduction
theorem with MMU to the parallel C program that modifies the page table. We switched the goal
due to the lack of the multicore compiler correctness theorem with MMU. Thus, our possible
future work is to present and prove that theorem which includes:

• a reordering theorem with MMU. Unlike the local processor steps, the MMU steps can be
advanced but not postponed because of the monotonicity of TLBs. Also, both the global
order of MMU steps from different processors and the local order of the MMU steps from
one processor must be maintained during the reordering. We can use the same technology
as in Chapter 4 by postponing all the local processor steps as far as possible for finite
computations.

1A Cosmos machine instantiated with MIPS.
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• a sequential compiler correctness theorem with MMU. After reordering, we can obtain
this theorem by inserting new compiler consistency points before and after each MMU
step.
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==⇒i , 20

mod, 10
pf
==⇒i , 22

p
==⇒i
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sim, 59
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winit, 134
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κ
7−→, 272
Bblk

p , 274
[[·]]π,θc , 247
d·e, 172
b·c, 272
safety, 235
safetyIP, 235

Aπ,θcIL , 261
Acode, 169, 294
Acp, 283
Aθgv, 260
Aio, 283
adr, 278
allocgv, 280
ALU

(arithmetic logic unit), 122
array, 238
automaton, 8

bits2bytes, 250
blk, 271

rmwπ,θ
c , 262

codeinv, 173, 229
comp, 161
conf C-IL, 246
consisC-IL, 281

consiscode
C-IL, 279

consiscontrol
C-IL , 279

consislv
C-IL, 280

consismem
C-IL, 280

consisregs
C-IL, 279

consisstack
MASM, 281

cp, 278
CPsched, 284
CPschedc, 284
MS , 158, 227

δπ,θC-IL, 254
dirty bit, 13
dropframe, 253

E, 242

F, 238
F θ
π , 249

ftop, 253
Fadr, 237, 240
Fname, 238
fpθ, 261
frameC-IL, 245
fun, 241
funptr, 238
FunT , 243

GS , 157, 226

i32, 238
IC-IL, 243
immediate constant, 118
incloc, 249
infoIL, 258
InfoTC-IL, 258
instar, 158
intrinsics, 248
IOIPIP, 169, 235
IPCP, 284
IPsched, 233
ISA

(instruction set architecture), 2
ISA-sp
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(the system programmer’s perspective
of ISA), 2

ISA-u
(the user’s perspective of ISA), 2

isarray, 239
isfunptr, 239
isptr, 239

Ld, Le, 273
loctop, 253
lref, 240

m, 158, 227
MEtop, 253
MIPS-86, 2, 127
MMU

(memory management unit), 1

O, 157, 226
ΩS , 160, 227
oneIO, 275

Ptop, 253
page table entry address, 134
pair, 6
paramsC-IL, 237
Pg, 292
Pl, 292
policyacc, 161
policytrans, 162
progC-IL, 244
PTE

(page table entry), 2
PTO

(page table origin), 12
ptr, 238

Q, 238
Q[P, par], 293
Q̂[P, par], 292
qt2t, 240

Rbb, 273
RS d ,S e , 273
RS n

MIPS,S
n
C-IL

, 283

rdstop, 253
record, 6
record field, 6
reqCP, 277
Rextern, 237, 248
ρ|io, 234
ρ|p, 234
RMW

(read modify write), 16

S, 157, 226
S d, 272
S ′d, 291
S e, 272
S ′e, 288
sa f e, 167
sa f eP, 169
sa f estep, 167
safety, 169
safetyB, 272
safetycB, 285
safetyIP, 290
SB

(store buffer), 1
SC

(sequential consistency), 1, 2
scC-IL, 282
setloc, 253
setrds, 253
ΣC-IL, 252
ΣS , 160, 227
σ.t, σ.o, 161
sim, 285
simh, 293
sizeθ, 247
stmtnext, 253
struct, 238

TC-IL, 238
TC , 238
trmw, 262
TQ, 239
τQ

π,θ
c , 247

θ, 237
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ΘS , 160, 227
TLB

(translation lookaside buffer), 1, 121,
140, 141

TSO
(total store order), 1

u, 158, 227
u32, 238
Uc, 284

VC-IL, 238
val, 240, 241
val, 241
val2bytesθ, 250
valfptr, 241
valfun, 241

vallref , 240
valprim, 240
valptr, 240
void, 238
volπ,θcIL , 267
volatile, 11

W, 291
Wπ,θ

cIL , 268
wf C-IL, 248
wfprogC-IL, 245
write, 251
writeE, 250
writeM, 250

zero, 252
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