
Understanding Fundamental
Database Operations on Modern

Hardware

Stefan Schuh

Thesis for obtaining the title of
Doctor of Engineering

of the Faculties of Natural Sciences and Technology
of Saarland University

Saarbrücken, Germany
2015

Dean of the Faculty Prof. Dr. Markus Bläser
Day of Colloquium 18.12.2015

Examination Board:

Chairman Prof. Dr. Jörg Hoffmann
Adviser and First Reviewer Prof. Dr. Jens Dittrich
Second Reviewer Prof. Dr. Sebastian Michel
Academic Assistant Dr. Johannes Hoffart

iii

To my family

v

Acknowledgments

First and foremost, I want to thank my supervisor Prof. Dr. Jens Dittrich for his
guidance and support. This thesis would not exist without him. I also want to
thank Prof. Dr. Sebastian Michel for agreeing to review this thesis. I am also very
grateful to all my wonderful colleagues that also became great friends over the last
years, especially Stefan Richter, Endre Palatinus, and Felix Martin Schuhknecht.

The research work presented in this thesis was partially supported by the fund-
ing from the German Ministry of Education and Science (BMBF). Additionally,
the IBM Germany Research & Development laboratory Böblingen supported this
thesis with a joint project. Here I want to thank Christian Jacobi, Matthias Pflanz,
and Kai Weber for their valuable input over the course of the project.

vii

Abstract

We live in an interconnected digital society, where many companies like e.g. Google,
Facebook, and Twitter gather and manage tremendous amounts of data every day.
The ongoing rise of mobile computing and the availability of more and more sensor
data, e.g. from smart meters, increases the amount of data that is produced every
day. Several different architectures have evolved to cope with these vast amount of
data over the years. Traditionally, mainframes were used to handle huge amounts
of data. However, the mainframe has to renew itself to allow for modern data
analytics to be efficient and affordable. Advances in the main memory capacity
led to the development of in-memory databases architectures, run on many-core
non-uniform memory access (NUMA) machines that can handle terabytes of data
on a single machine. As another architecture Google developed MapReduce, a
distributed framework for data processing on hundreds or even thousands of com-
modity machines, to handle data that cannot be stored or processed by a single
machine, even if it has a capacity in the range of terabytes.

This thesis consists of three independent parts, as we investigate different fun-
damental database operations on three different hardware environments mentioned
before in three independent projects. In the first project we look at recently pub-
lished relational equi-join algorithms on modern many-core NUMA servers with
large main memory capacities and introduce our own variants of those algorithms.
Afterwards, in a second project we investigate how to introduce efficient static and
adaptive indexing into the open source Hadoop MapReduce framework, which runs
on a cluster of commodity machines. In that project we will also introduce and
investigate the Adaptive Index Replacement problem, a variant of the online In-
dex Selection problem. Finally, in the third project we investigate how to bring
analytical workloads to the IBM System Z mainframe and introduce a new hard-
ware component that allows us to accelerate filtering and aggregation on large
in-memory column stores.

ix

Zusammenfassung

Wir leben in einer vernetzten digitalen Gesellschaft, in der viele Unternehmen,
wie zum Beispiel Google, Facebook und Twitter, enorme Datenmengen sam-
meln und verwalten. Das anhaltende Wachstum des mobilen Computing und
die Verfügbarkeit von immer mehr Sensordaten, zum Beispiel von intelligenten
Stromzählern, erhöhen die täglich generierte Datenmenge. Um mit der immer
stärker wachsenden Datenflut fertig zu werden, haben sich verschiedene Archi-
tekturen entwickelt. Die älteste Architektur zur Handhabung großer Daten stellt
der Mainframe Computer dar. Allerdings muss sich der Mainframe neu erfin-
den, um die heutige Datenmenge effizient und vor allem auch zu einem be-
zahlbaren Preis nicht nur abzuspeichern, sondern auch zu analysieren. Stark
erhöhte Hauptspeicher-Kapazitäten haben zur Entwicklung einer neuen Archi-
tektur von In-Memory Datenbanken geführt, die typischerweise auf modernen
Vielkern-Servern ausgeführt werden. Um mehrere Terabytes an Hauptspeicher in
einem einzelnen Server anzubieten wird der Hauptspeicher an mehrere CPUs an-
geschlossen, was zu nicht-uniformen Speicherzugriffszeiten (NUMA) führt, da es
einen Unterschied in der Zugriffszeit zwischen lokalem und entfernten Speicher
gibt. Als eine weitere Architektur hat Google MapReduce entwickelt, ein verteiltes
System zur Datenverarbeitung auf hunderten oder sogar tausenden Servern.

Diese Thesis besteht aus drei unabhängigen Teilen, in denen wir verschiedene
fundamentale Datenbank-Operationen in drei unterschiedlichen Hardwareumge-
bungen untersuchen. In dem ersten Teil untersuchen wir kürzlich veröffentlichte
relationale Equi-Joins auf modernen Vielkern-Systemen mit NUMA und großen
Hauptspeicherkapazitäten. Zusätzlich stellen wir eigene Join Algorithmen vor. Im
zweiten Teil untersuchen wir, wie wir effizientes statisches und adaptives Indizieren
in das Open Source Framework Hadoop MapReduce integrieren können. In diesem
Teil untersuchen wir auch das Adaptive Index Replacement Problem, eine Varian-
te des Online Index Selection Problems. Im dritten und letzten Teil untersuchen
wir Möglichkeiten den System Z Mainframe von IBM für Datenanalyse interes-
sant zu machen und entwickeln eine neue Hardware-Komponente um Filter- und
Aggregationsanfragen auf großen In-Memory Column Stores zu beschleunigen.

xi

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Contributions and Publications . 2

1.2.1 Chapter 2 Multi-core NUMA-aware Main Memory Join Pro-
cessing . 2

1.2.2 Chapter 3 HAIL: Hadoop Adaptive Indexing Library 4
1.2.3 Chapter 4 AIR: Adaptive Index Replacement in Hadoop . . 7
1.2.4 Chapter 5 Smart Caches (not only) for Analytical Workloads 8

2 Multi-core NUMA-aware Main Memory Join Processing 11
2.1 Introduction . 11
2.2 Related work . 13
2.3 Fundamental Representatives of Main-Memory Join Algorithms . . 15

2.3.1 Partition-based Hash Joins 16
2.3.2 No-partitioning Hash Joins 16
2.3.3 Sort-merge Joins . 19

2.4 Black Box Comparisons . 19
2.5 White Box Comparisons . 20

2.5.1 Optimizing Radix Partitioning 21
2.5.2 Choice of Hash Method . 22

2.6 Optimizing Parallel Radix Join . 24
2.6.1 NUMA-aware Partitioning 24
2.6.2 NUMA-aware Scheduling . 27

2.7 Putting it All Together . 28
2.7.1 Settings . 29
2.7.2 Varying Page Sizes . 30
2.7.3 Scalability in Dataset Size 31

2.8 Skewed Data Distributions . 35
2.8.1 Scalability in number of threads 36
2.8.2 Holes in the key range . 37
2.8.3 Micro-architectural performance aspects 39

xiii

xiv

2.9 Effects on Real Queries . 40
2.9.1 Details on used Query . 43
2.9.2 Varying the Selectivity of the Selection in Q19 45
2.9.3 Further cost-breakdown of Q19 45

2.10 Lessons Learned . 47
2.11 Conclusions . 49

3 HAIL: Hadoop Adaptive Indexing Library 51
3.1 Introduction . 51

3.1.1 Motivation . 52
3.1.2 Research Questions and Challenges 55

3.2 Overview . 56
3.2.1 Hadoop and HDFS . 56
3.2.2 HAIL . 57
3.2.3 HAIL Benefits . 58

3.3 HAIL Zero-Overhead Static Indexing 58
3.3.1 Data Layout . 59
3.3.2 Static Indexing in the Upload Pipeline 60
3.3.3 HDFS Namenode Extensions 62
3.3.4 An Index Structure for Zero-Overhead Indexing 62

3.4 HAIL Job Execution . 63
3.4.1 Bob’s Perspective . 64
3.4.2 System Perspective . 66
3.4.3 HailInputFormat and HailRecordReader 67
3.4.4 Problem: Missing Static Indexes 68

3.5 HAIL Zero-Overhead Adaptive Indexing 68
3.5.1 HAIL Adaptive Indexing in the Execution Pipeline 69
3.5.2 AdaptiveIndexer . 70
3.5.3 Pseudo Data Block Replicas 72
3.5.4 HAIL RecordReader Internals 73

3.6 Adaptive Indexing Strategies . 75
3.6.1 Lazy Adaptive Indexing . 75
3.6.2 Eager Adaptive Indexing . 76
3.6.3 Selectivity-based Adaptive Indexing 78

3.7 HAIL Splitting and Scheduling . 79
3.8 Related Work . 80
3.9 Experiments . 83

3.9.1 Hardware and Systems . 83
3.9.2 Datasets and Queries . 84
3.9.3 Data Loading . 85
3.9.4 MapReduce Job Execution 89

CONTENTS xv

3.9.5 Impact of the HAIL Splitting Policy 94
3.9.6 HAIL Adaptive Indexing . 94

3.10 Conclusion . 100

4 AIR: Adaptive Index Replacement in Hadoop 103
4.1 Introduction . 103
4.2 Adaptive Index Replacement . 104
4.3 Related Work . 106
4.4 Cost Model . 109
4.5 LeastExpectedBenefit Algorithms 111
4.6 Evaluation . 114

4.6.1 Dataset and Query Distribution 114
4.6.2 Evaluated Algorithms . 115
4.6.3 Performance Results . 117
4.6.4 Robustness Results . 121
4.6.5 Experimental Results . 123

4.7 Conclusion and Future Work . 124

5 Smart Caches (not only) for Analytical Workloads 125
5.1 IBM System Z Mainframe . 125
5.2 Motivation for Smart Caches . 126
5.3 Computation on Cache Lines . 127
5.4 Memory Throughput . 128
5.5 Related Work . 130
5.6 Computation at the L4 Cache . 131
5.7 Instruction Design . 134

5.7.1 Example Use Case for CompareBetween 135
5.7.2 Example Use Case for Aggregate 136
5.7.3 Example Use Case for Vector Operations 138

5.8 Patent Application: Accelerator for Analytical Workloads 139
5.9 Conclusion . 144

A Additional Results of the ”New Workloads for the IBM Main-
frame System Z” Project 145
A.1 Algorithms . 145

A.1.1 Clustering . 146
A.1.2 Frequent Item-set Mining 148
A.1.3 Sorting . 150
A.1.4 Summary . 156

List of Figures 157

xvi

List of Tables 161

Bibliography 163

Chapter 1

Introduction

1.1 Overview

We live in an interconnected digital society, where many companies like e.g. Google,
Facebook, and Twitter gather and manage tremendous amounts of data every day.
The ongoing rise of mobile computing and the availability of more and more sensor
data, e.g. from smart meters, increases the amount of data that is produced every
day. Several different architectures have evolved to cope with these vast amount of
data over the years. Traditionally, mainframes were used to handle huge amounts
of data. However, the mainframe has to renew itself to allow for modern data
analytics to be efficient and affordable. Advances in the main memory capacity
led to the development of in-memory databases architectures, run on many-core
non-uniform memory access (NUMA) machines that can handle terabytes of data
on a single machine. As another architecture Google developed MapReduce, a
distributed framework for data processing on hundreds or even thousands of com-
modity machines, to handle data that cannot be stored or processed by a single
machine, even if it has a capacity in the range of terabytes.

This thesis consists of three independent parts, as we investigate different fun-
damental database operations on three different hardware environments mentioned
before in three independent projects. In the first project we look at recently pub-
lished relational equi-join algorithms on modern many-core NUMA servers with
large main memory capacities and introduce our own variants of those algorithms
(Chapter 2). Afterwards, in a second project we investigate how to introduce
efficient static and adaptive indexing into the open source Hadoop MapReduce
framework, which runs on a cluster of commodity machines (Chapter 3). In that
project we will also introduce and investigate the Adaptive Index Replacement
problem, a variant of the online Index Selection problem (Chapter 4). Finally,
in the third project we investigate how to bring analytical workloads to the IBM

1

2

System Z mainframe and introduce a new hardware component that allows us to
accelerate filtering and aggregation on large in-memory column stores (Chapter 5).

Additional work on the mainframe can be found in the Appendix.

1.2 Contributions and Publications

In this section I give a short overview of the main contributions contained in the
different chapters of this thesis and clearly mark my personal contributions in
contrast to contributions from my colleagues and co-authors.

1.2.1 Chapter 2 Multi-core NUMA-aware Main Memory
Join Processing

Contributions: In this chapter we look at the performance of several recently
published relational equi-join algorithms in the context of a modern many-core
NUMA server with a large main-memory capacity.

1. Black box Comparison. We start with the core join algorithms from
[62, 13, 72] which are already improved versions of join algorithms proposed
in [16, 60] or have been shown to outperform join algorithms proposed in [10].
We will start with a black box end-to-end comparison of these four principal
join algorithms in Section 2.4.

2. White box Comparison. We proceed by performing a white box compar-
ison. We enable all optimizations mentioned in prior work and explore their
effects on the runtime performance of the joins, see Section 2.5.1. We then
proceed by evaluating the effect of different hash-table implementations in
Section 2.5.2, for both NOP and PRB.

3. Optimizing Join Algorithms. In order to improve the join performance
on NUMA architectures, we optimize the different versions of the PRB join
algorithm. First, We will show how to make the partitioning phase NUMA-
aware in Section 2.6.1 and also see that we can improve over PRB by 20%.
Second, we will show in Section 2.6.2 that a NUMA-aware join task schedul-
ing can also improve the performance by roughly 20%. These improvements
are not cumulative as the NUMA-aware partitioning already makes use of
all NUMA nodes in the join phase and therefore does not profit from a
NUMA-aware scheduling.

4. Comprehensive Comparison of Joins. Finally, we will be in the position
to perform a comprehensive comparison of all join algorithms, see Section 2.7.

1.2. Contributions and Publications 3

First, we define a common workload for all methods. We also do a reality
check and use another meaningful baseline. For primary key columns it
is common sense to use automatically generated integer IDs. This leads
to a dense key domain of integers. For this distribution a simple array
rather than a hash table may be a surprisingly good choice. Though the
practicability of this approach may be questioned if the join key domain is
sparse, it serves at least as a baseline on how good a join algorithm may get
anyway. Additionally, for non-dense distributions a compressed array like
the recently suggested [72] may be a good choice to avoid using a full-blown
hash table.

Second, we proceed by evaluating the page size of the virtual memory man-
agement on all phases of the different joins. This parameter has a surprising
effect on runtime.

Third, we look at the scalability of the join methods in terms of the input
relation sizes. In this context we propose a strategy for choosing the right
number of bits for partitioning the input relations in radix-based joins.

Fourth, we explore the behavior of the join algorithms under moderately
skewed and highly skewed data (Section 2.8).

Fifth, we examine the scalability of the different joins in terms of the number
of threads and discuss possible reasons for the different scalability character-
istics (Section 2.8.1).

Sixth, we evaluate the feasibility of using array joins in moderately dense
domains (Section 2.8.2).

Seventh, we evaluate microarchitectural performance aspects (Section 2.8.3).

5. Effect on real queries. We will evaluate the effect of the choice of the join
algorithm in the context of a real TPC-H query in Section 2.9. We will start
with a simple single join query, TPC-H Q19. We will analyze the portion
of the query time spent in the actual join. We also provide an additional
experiment changing the selectivity of Q19’s predicates (see Section 2.9.2).
Additionally, see Section 2.9.1 and 2.9.3.

6. Key Lessons Learned. Finally, we conclude by identifying the key lessons
learned from our experimental study, see Section 2.10.

Personal Contributions: The work presented in this chapter is mainly my per-
sonal contribution. Xiao Chen helped me with implementing the experiments and
performed many micro-benchmarks, not present in this chapter, that guided us in
the study.
Publications: This work has been accepted at SIGMOD 2016.

4

• [86] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Compar-
ison of Thirteen Relational Equi-Joins in Main Memory. SIGMOD, 2016

1.2.2 Chapter 3 HAIL: Hadoop Adaptive Indexing Library

Contributions: In this chapter we propose HAIL (Hadoop Adaptive Indexing
Library), a static and adaptive indexing approach for MapReduce systems. The
main goal of HAIL is to minimize both (i) the index creation time when uploading
data and (ii) the impact of concurrent index creation on job execution times.

1. Zero-Overhead indexing. We show how to effectively piggy-back sorting
and index creation on the existing HDFS upload pipeline. This way no
additional MapReduce job is required to create those indexes and also no
additional read of the data is required at all. In fact, the HAIL upload
pipeline is so effective when compared to HDFS that the additional overhead
for sorting and index creation is hardly noticeable in the overall process.
Therefore, we offer a win-win situation over Hadoop MapReduce and even
over Hadoop++ [28]. We give an overview of HAIL and its benefits in
Section 3.2.

2. Per-Replica indexing. We show how to exploit the default replication of
Hadoop to support different sort orders and indexes for each block replica
(Section 3.3). Hence, for a default replication factor of three, up to three dif-
ferent sort orders and clustered indexes are available for processing MapRe-
duce jobs. Thus, the likelihood to find a suitable index increases and hence
the runtime for a workload improves. Our approach benefits from the fact
that Hadoop is only used for appends: there are no updates. Thus, once a
block is full, it will never be changed again.

3. Job Execution. We show how to effectively change the Hadoop MapRe-
duce pipeline to exploit existing indexes (Section 3.4). Our goal is to do this
without changing the code of the MapReduce framework. Therefore, we in-
troduce optional annotations for MapReduce jobs that allow users to enrich
their queries with explicit specifications of their selections and projections.
HAIL takes care of performing MapReduce jobs using normal data block
replicas or pseudo data block replicas (or even both).

4. HAIL Scheduling We propose a new task scheduling, called HAIL Schedul-
ing, to fully exploit statically and adaptively indexed data blocks (Section
3.7). The goal of HAIL Scheduling is twofold: (i) to reduce the scheduling
overhead when executing a MapReduce job, and (ii) to balance the indexing
effort across computing nodes to limit the impact of adaptive indexing.

1.2. Contributions and Publications 5

5. Zero-Overhead Adaptive indexing. We show how to effectively piggy-
back adaptive index creation on the existing MapReduce job execution
pipeline (Section 3.5). The idea is to combine adaptive indexing and zero-
overhead indexing to solve the problem of missing indexes for evolving or
unpredictable workloads. In other words, when HAIL executes a map re-
duce job with a filter condition on an unindexed attribute, HAIL creates
that missing index for a certain fraction of the HDFS blocks in parallel.

6. Adaptive Indexing Strategies. We propose a set of adaptive indexing
strategies that makes HAIL aware of the performance and the selectivity of
MapReduce jobs (Section 3.6). We present:

(a) lazy adaptive indexing, a technique that allows HAIL to adapt to
changes in users’ workloads at a constant indexing overhead.

(b) eager adaptive indexing, a technique that allows HAIL to quickly adapt
to changes in users’ workloads with a robust performance.

(c) We then show how HAIL can decide which data blocks to index based
on the selectivities of MapReduce jobs.

7. Exhaustive validation. We present an extensive experimental comparison
of HAIL with Hadoop and Hadoop++ [28] (Section 3.9). We use seven dif-
ferent clusters including physical and virtual EC2 clusters of up to 100 nodes.
A series of experiments shows the superiority of HAIL over both Hadoop and
Hadoop++. Another series of scalability experiments with different datasets
also demonstrates the superiority of using adaptive indexing in HAIL. In
particular, our experimental results demonstrate that HAIL: (i) creates clus-
tered indexes at upload time almost for free; (ii) quickly adapts to query
workloads with a negligible indexing overhead; and (iii) only for the very
first job HAIL has a small overhead over Hadoop when creating indexes
adaptively: all the following jobs are faster in HAIL.

Personal Contributions: Please note that this work was a big team effort of
the whole group at that time. I participated in the project from the middle of
2011 until the middle of 2013. As a member of the team developing HAIL I was
involved in almost all aspects of the system. I indicate my personal contributions
in Table 1.1.

Publications:

• [78] Stefan Richter. HAIL: Hadoop Aggressive Indexing Library. Master’s
thesis, Saarland University, Germany, 2012

6

Contribution Involvement Details

Zero-Overhead indexing. minor I was involved in the discussions
and was often co-piloting when peer-
programming or debugging with SR
and JQ.

Per-Replica indexing. minor see above
Job Execution. minor see above
HAIL Scheduling major I proposed the idea and implemented

this together with JQ.
Zero-Overhead Adaptive
indexing.

minor I was involved in the discussions and
was also often co-piloting when peer-
programming or debugging with SR
and JQ.

Lazy Adaptive Indexing
Strategy.

no Was implemented by SR.

Eager Adaptive Indexing
Strategy.

major I implemented this strategy and also
came up with the formal definitions
shown in Chapter 3.

Selectivity-based Adap-
tive Indexing Strategy.

minor I was only involved in the discussion

Exhaustive validation. major I conducted almost all experiments,
either alone or together with JQ. The
only exception are the experiments
run on the EC2 instances, which were
conducted by JS.

Table 1.1: Personal contributions to Chapter 3. Contributions by Stefan Richter
(SR), Jorge-Arnulfo Quiané-Ruiz (JQ), and Jörg Schad (JS) are mentioned in the
Details column.

• [29] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, and Jörg Schad. Only Aggressive Elephants are Fast Elephants.
PVLDB, 5(11):1591–1602, 2012

• [79] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens
Dittrich. Towards Zero-Overhead Adaptive Indexing in Hadoop. CoRR,
abs/1212.3480, 2012

• [80] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dit-
trich. Towards Zero-Overhead Static and Adaptive Indexing in Hadoop.
VLDB Journal, 23(3):469–494, 2013

1.2. Contributions and Publications 7

• Patent: Replicated data storage system and methods WO 2013139379 A1.

Initial results of the HAIL project were published in Stefan Richter’s Master
Thesis [78]. An extended version containing the HAIL Splitting strategy was
published in PVLDB [29]. Afterwards, we introduced adaptive indexing in Hadoop
and published the results in a technical report [79]. A combined article including
the description of the original HAIL system and the adaptive indexing of LIAH
was then published in the VLDB Journal [80]. An extended version of that journal
article is presented in Chapter 3 of this Thesis. I decided to include the full article,
as it is very hard to understand my personal contributions isolated from the rest of
the system and that article is also very important for the later chapter, Chapter 4,
as the adaptive index replacement is integrated into HAIL.

1.2.3 Chapter 4 AIR: Adaptive Index Replacement in
Hadoop

Contributions: In this chapter we investigate which indexes to create and/or
which indexes to replace in the scenario of HAIL with a given capacity constraint.

1. Adaptive Index Replacement problem. We formulate the Adaptive In-
dex Replacement problem, a variant of the Index Selection problem, tailored
to the adaptive indexing scenario. In contrast to previous work, our model
does not strictly divide the cost into the workload execution cost and the
reconfiguration cost; since in adaptive indexing the cost to reconfigure the
physical structures depend on the currently executed query. Furthermore,
we present a cost model for the adaptive indexing scenario in Hadoop.

2. MILP formulation of OPT. We present a Mixed Integer Linear Program
to find the optimal offline solution to the introduced AIR problem.

3. Buffer Replacement Adoption. We show how Buffer Replacement algo-
rithms can be used to tackle the AIR problem. Additionally, we show that
the straightforward use of those algorithms lead to (poor) performance that
might even defeat the purpose of indexing.

4. Adaptive Index Replacement algorithms. We present our Adaptive
Index Replacement algorithm LEB-K that is based on the LRU-K Buffer
Replacement algorithm [70]. We also present a variant of our algorithm
suitable for stable workloads called LEB-∞.

5. Extensive experimental study. We perform an extensive experimental
study, evaluating our algorithms against LRU-K as well as two online Index
Selection algorithms, namely SoftIndex [66] and BC [19]. We examine the

8

overall performance as well as the robustness of all algorithms with respect
to evolving workloads and abrupt shifts of focus. We validate our findings
using our cluster.

6. Flaws in related work. In the evaluation of the Adaptive Index Replace-
ment algorithms we uncover a small flaw in the BC algorithm. If the space
requirement would allow for creating many indexes, the BC algorithm leads
to poor performance in comparison to other algorithms in the append only
scenario of Hadoop.

Personal Contributions: All the above mentioned contributions are my own
personal contributions.
Publications:

• [87] Stefan Schuh and Jens Dittrich. AIR: Adaptive Index Replacement in
Hadoop. ICDE Workshops, pages 22–29, 2015

This chapter is an extended version of a workshop paper [87] published in
CLOUDDM 2015, an ICDE workshop.

1.2.4 Chapter 5 Smart Caches (not only) for Analytical
Workloads

Contributions: In this chapter we look at the characteristics of the IBM System
Z mainframe and investigate possible hardware optimizations that would enable
faster analytical computation on data stored in the mainframe.

1. Computation on Cache Lines. We evaluate the possible performance
gains by introducing computational power in the L1 cache lines (see Sec-
tion 5.3). As the cost to introduce computational power into the L1 cache is
most likely too high and as we also notice that the access of memory not res-
ident in the caches dominate the total cost, we decide to look at the memory
bandwidth of System Z.

2. Bandwidth analysis on System Z. System Z provides at least four dif-
ferent hardware instructions to move data from one location in the memory
to another location in memory. We analyze these move methods (see Sec-
tion 5.4) and discover that the MVCL, move character long, instruction has
the highest throughput. This is especially interesting as this instruction does
not use the CPU registers but only uses the last level cache to move the data.

3. Simulation of new hardware. We simulate the effect of a new hardware
component, that allows us to perform filter and aggregation on pages that
are moved through the last level cache (see Section 5.6).

1.2. Contributions and Publications 9

4. Instruction Design. We introduce several instructions in Section 5.7, that
make use of the new hardware component and show how these instructions
can be used to accelerate typical analytical queries.

5. Sample implementation. We give a sketch of a possible implementation
of the new hardware in Section 5.8.

Personal Contributions: All the above mentioned contributions are my own
personal contributions. IBM provided me with access to a System Z mainframe
and fruitful discussions.
Publications:

• Patent Application: Accelerator for analytics workload. USPTO No:
14/543319

Chapter 2

Multi-core NUMA-aware Main
Memory Join Processing

2.1 Introduction

Database research is full of traditions. One of our most prominent traditions
is to publish new join algorithms every year. And, yes, we mean equi-joins, on
relational data; not some fancy approximate similarity join on probabilistic JSON
data streams. Isn’t this kind of magic that after 40 years of database research,
there is still progress in an area that is at the core of almost every query plan?
Shouldn’t relational equi-join algorithms be a solved problem anyway? So, why
should we care?

When taking a deep look at the abundant recent related work on relational
equi-joins from 2011 to 2015 [16, 14, 62, 10, 72, 12, 13], it quickly turns out that
based on that literature it is surprisingly hard to decide which is the best join al-
gorithm. For instance, it seems clear from [12] that a hash-based approach outper-
forms sort based approaches, at least on current hardware with the limited SIMD
register width available today. However, for the different hash table-based join
implementations it is unclear if hardware-conscious partition-based algorithm (the
PRB-family of join algorithms) outperforms non-partitioning hardware-oblivious
algorithms (the NOP-family of join algorithms) anyway. For instance, in 2011,
the experiments in [16] show that NOP outperforms PRB. However, in 2013, the
experiments in [12] show exactly the opposite: PRB outperforms NOP. In another
work in 2013, [62] again, NOP outperforms PRB. So which algorithm is better?
In odd years it is NOP? In even years it is PRB? The answer is: we do not know.
The more interesting question is: why do those experiments report contradicting
results? There are several reasons:

1. different implementations were used, e.g. in [16] a very basic NOP im-

11

12

plementation was used where the concurrent chaining hash table was imple-
mented using linked lists and two separate arrays were used for locks and
head pointers. In contrast, [13] provided a more cache-efficient chaining hash
table implementation which used a single array for both locks and tuples and
removed head pointers. NOP from [62] implemented a lock free hash table by
using linear probing and Compare-and-Swap instructions. Another example
is PRB where [13] reimplemented the PRB algorithm from [16] since the im-
plementation from [16] had too many function calls and pointer dereferencing
in critical code paths.

2. different optimizations were applied to the different join algorithms,
e.g. in [12, 14] software-write combine buffers were used for PRB, in [62, 16]
they were not used, for [13] it is unclear wether software-write combine buffers
were used for the results presented in the paper. Moreover, [62] used a linear
probing hash-table as its hash-table implementation whereas [13, 12, 14] used
chained hashing. In addition, [16, 12] did not consider NUMA-aware join pro-
cessing at all, while in [62, 12] at least the join relations as well as working
memory is distributed over all NUMA nodes.

3. different performance metrics were used, e.g. different definitions of “join
throughput”, e.g. in [12] it is defined as the number of join results produced

per second, i.e. Throughput = |R ./ S|
|total runtime| . Notice, that this definition fo-

cusses on the amount of tuples output by the join algorithm. Hence, it
is sensitive to the join selectivity. In contrast, in [62] throughput is de-
fined as the ratio of the sum of the relation sizes and the total runtime,
i.e. Throughput = |R| + |S|

|total runtime| . This definition focusses on the input of the
join algorithms. Hence, this definition is independent of the join selectivity.
We will use the latter definition in our study.

4. different machines, e.g. the machine used in [16] is a single socket six-core
Intel Xeon X5650 Nehalem. In contrast, [13] reports the results for several
architectures with the best performance achieved on an eight-core Intel Xeon
E5-2680 server. In [62] the authors used four eight-core Intel Xeon X7560
Nehalem CPUs in their experiments. Similarly, [13] used four eight-core Intel
CPUs however with the Sandy Bridge architecture.

5. difference of micro-benchmarks and real queries, e.g. [16, 14, 13, 62,
10, 72, 12, 60] did not consider total query execution times of real world
(or at least TPC-H) queries, that include several attributes that have to be
considered for predicate evaluation after the join processing. However, simple
techniques like selection push-down may considerably reduce the input sizes
to a join algorithm (even though the unfiltered relations are huge). In such

2.2. Related work 13

a situation the choice of the join algorithm may become less crucial. In
addition, tuple reconstruction has been shown to have a substantial effect
on the overall runtime of a query [3]. Whether a join is run with or without
tuple reconstruction makes a huge difference in practice. However, none of
these effects were evaluated in those works.

Any of these differences alone may have a substantial effect on the runtime of
a join algorithm or its interpretation. Accumulating multiple of those differences
makes a comparison very hard. In particular, comparing results from different
papers becomes close to infeasible.

Therefore, we believe the time is ripe for a clean slate experimental comparison
of relational equi-joins. This chapter fills this gap. We will focus on hash-based
join algorithms as almost all recent works suggest that these algorithms are the
most promising ones. Still, we will use a modern sort-based approach as one
baseline [12]1. We do not further explore sort-based joins as the evidence from
recent work suggests that sort-based joins cannot match the performance of other
joins. We will evaluate all algorithms in the context of a modern NUMA (non-
uniform memory access) architecture.

The algorithms we evaluate in our study are based on algorithms published
in four recent papers [72, 12, 62, 13]. Notice that those papers in turn improve
upon several other older papers [60, 16, 10]. We will introduce several variants
of those algorithms. In total, in our study, we evaluate thirteen different join
algorithms.

2.2 Related work

We focus on papers that discuss in-memory joins on multicore systems; we are
aware that there is also a lot of related work on sorting, hashing or partitioning
in memory, which is of course highly related to join processing. That work will
be cited in other sections whenever appropriate. In the following we will discuss
related work in chronological order.

Kim et. al. [60] revisited the sort vs hash argument in the context of main
memory multi-core system by comparing a hash join and a sort-merge join that are
optimized for modern multi-core systems. The hash join algorithm they introduced
is called parallel radix hash join. Their experimental results showed that the
parallel radix hash join outperforms the sort-merge join by a factor of two. They
also developed an analytical model for the join performance and predicted that
the sort-merge joins will become faster with the following two future hardware
trends. First, Wider SIMD instructions : the sort-merge join algorithm scaled

1We also wanted to use a second sort-based baseline [62]. However, that code was not available.

14

near-linearly with the width of SIMD instructions in their models, while the hash
join algorithm hardly exploits the capability of SIMD instructions. Second, Limited
per-core bandwidth: the hash join algorithm needs at least two pass partitioning for
large data sets due to the limited number of TLB cache entries, which result in at
least three trips to main memory, while the sort-merge join only needs two. With
limited per-core bandwidth more memory trips would lead to worse performance.

Blanas et. al. [16] extended the categories of main memory multi-core join algo-
rithms by introducing no-partitioning hash join. Unlike partition-based algorithm
like parallel radix hash join [60], the no-partitioning hash join is a straightforward
parallellised version of canonical (simple) hash join without partitioning the data
at all. Blanas implemented the no-partitioning hash join with a lock-based con-
current chaining hash table and compared it with partition-based algorithms using
three different partitioning algorithms: shared partitioning, independent partition-
ing, and the radix partitioning from Kim et. al. [60]. Their experimental results
show that the no-partitioning hash join outperforms all partition-based hash joins
for almost all data distributions and is only slightly slower than parallel radix hash
join with uniform datasets.

A later work by Albutiu et. al. [10] on sort-merge join further extended the
design space of main memory join algorithms by giving focus on optimizing for
NUMA systems. The Massively Parallel Sort-Merge join (MPSM) proposed in
their paper uses a carefully tuned memory access pattern and avoids inter-thread
synchronization as much as possible. Their experimental results show that MPSM
runs much faster than no-partitioning hash join [16] and radix hash join [67] (the
latter implemented in Vectorwise on a 32-core, 4-socket machine). Unfortunately,
the authors did not make their code available to us. Hence, we will use the sort-
based algorithm from Balkesen et. al. [12] as the sort-based baseline as it is freely
available and additionally was also shown to be superior to MPSM.

Balkesen et. al. [13] investigated the parallel radix hash join and no-partitioning
hash join algorithms from Blanas et. al. [16] and proposed better variants for both
algorithms. They achieved higher throughputs by improving the cache efficiency
of the hash table implementations for both algorithms and adopting a better skew
handling mechanism for parallel radix hash join. We discuss this algorithm (called
PRB in this chapter) in more detail in Section 2.3. In their experimental results,
using their new implementations, the parallel radix hash join outperforms the
no-partitioning hash join for almost all architectures and workloads — except on
Niagara2, which has 8 threads per core, for a workload using a very large probe
relation. This result is contradicting the conclusions made by Blanas et. al. [16].

The picture changed again when Lang et. al. [62] published their NUMA-aware
no-partitioning hash join. In their results, their no-partitioning hash join method
outperforms the parallel radix hash join from Balkesen et. al. [13] by a factor of

2.3. Fundamental Representatives of Main-Memory Join Algorithms 15

more than two on a 4-socket machine with 64 hardware contexts. We discuss the
no-partition algorithm (called NOP in this chapter) from Lang et. al. in Section 2.3.

Another work by Balkesen et. al. [12] improved the sort-merge join from Kim
et. al. [60] and their own parallel radix join from [13]. Their sort-merge join
uses wider SIMD instructions and uses range partitioning to allow for efficient
multithreading without heavy synchronization. We discuss the proposed sort-
merge join (called MWAY in this chapter) in more detail in Section 2.3. In their
experimental results, in contrast to the prediction from Kim et. al. [60], wider
SIMD instructions did not yet make sort-merge join superior to parallel radix hash
join. In fact, in their experiments, parallel radix hash join still always outperforms
sort-merge join.

While all the previous research focused on the runtime of join algorithms, the
work from Barber [72] studied the memory-efficiency of hash join methods. They
proposed a highly memory efficient linear probing hash table called concise hash
table (CHT). We also discuss this algorithm (called CHTJ in this chapter) in more
detail in Section 2.3. They compared their method with the no-partitioning hash
join and the parallel radix hash join from [13]. Their experimental results show
that they can reduce the memory usage by one to three orders of magnitude while
maintaining competitive performance.

Finally, there has been work optimizing joins for specialized architectures in-
cluding GPUs, e.g. [57], hybrid CPU-GPU architectures, e.g. [44], and coprocessors
attached through PCI express cards like Intel’s Xeon Phi, e.g. [53, 76]. Though
these are all interesting works they are way beyond the scope of this chapter. We
will focus on modern server CPUs which are still abundant in many places.

2.3 Fundamental Representatives of Main-

Memory Join Algorithms

In summary, we can identify three fundamental classes of join algorithms into which
the most recently published join algorithms fall. Namely: (1) partition-based hash
joins, (2) no-partitioning hash joins, and (3) sort-merge joins.

In the following we will discuss one or two modern variants of each class in
more detail. This discussion will serve as the starting point of our study.

Table 2.1 shows this classification assigning the papers discussed in Section 2.2
to their corresponding class. Notice that some of those papers, e.g. [16], presented
algorithms from multiple classes.

16

Join Class
Modern Variants

Introduced in Paper

Partition-based
Hash Joins

[60],[16],[13],[12]

No-partitioning
Hash Joins

[16],[13],[62],[72]

Sort-merge Joins [60],[10],[12]

Table 2.1: Join algorithms from Section 2.2 and their assignment to classes

2.3.1 Partition-based Hash Joins

Core Idea: Partition-based Hash Joins partition the input relations into small
pairs of partitions (co-partitions) where one of the partitions typically fits into one
of the caches. The overall goal of this method is to minimize the number of cache
misses when building and probing hash tables.
PRB is the two-pass parallel radix hash join described in [13]. A problem with
partitioning joins is that different partitions will most likely reside on different
memory pages. Thus, randomly writing tuples to a large number of partitions
may cause excessive TLB misses. In order to fix this problem, PRB uses two-
pass partitioning to guarantee that the number of partitions does not exceed the
number of TLB entries. The first partitioning pass starts by assigning equal-sized
regions (chunks) to each thread. The algorithm precomputes the output memory
ranges of each target partition by building histograms. Hence, each thread knows
where and how much to write for each partition without the need for further
synchronization. After histograms have been built, each thread scans the input
relation and writes each tuple to its destination region. The first partitioning
pass already produces a considerable number of partitions. Therefore, in order to
perform the second partitioning pass, entire sub-partitions (rather than chunks of
a partition as done in the first partitioning pass) are assigned to worker threads
by using a task queue. If required, skew handling may be done to break up larger
partitions further by assigning multiple threads to an individual partition. In the
join phase, each thread takes one co-partition at a time and runs a textbook hash
join algorithm on it using a chained hash table.

2.3.2 No-partitioning Hash Joins

Core Idea: No-partitioning hash joins concurrently build a single global hash table.
Simultaneous multi-threading and out-of-order execution is used to hide cache miss
penalties automatically. In contrast to partition-based joins, no knowledge about
the hardware cache sizes or number of TLB entries is required for tuning.

2.3. Fundamental Representatives of Main-Memory Join Algorithms 17

Join Description Paper Code

Fundamental Classes of Join Algorithms (Section 2.3)
&Black box comparison (Section 2.4)

PRB
Basic two-pass parallel radix join
without software managed buffer and
non-temporal streaming

[13] Original

NOP No-partitioning hash join [62] Original

CHTJ Concise hash table join [72] Own

MWAY Multi-way sort merge join [12] Original

White box comparison (Section 2.5)

NOPA
Same as NOP except using an array
as the hash table

This Modified

PRO
One-pass parallel radix join with
software managed buffer and
non-temporal streaming

[13] Original

PRL
Same as PRO except using linear
probing hashing instead of bucket
chaining

This Modified

PRA
Same as PRO except using arrays as
hash tables

This Modified

Optimizing Parallel Radix Join (Section 2.6)

CPRL
Chunked parallel radix join with
software managed buffer and
non-temporal streaming

This Own

CPRA
Same as CPRL except using arrays as
hash tables

This Own

PROiS PRO with improved scheduling This Modified

PRLiS
Same as PROiS except using linear
probing hashing instead of bucket
chaining

This Modified

PRAiS PRA with improved scheduling This Modified

Table 2.2: reference table for the algorithms evaluated in this chapter

NOP is the no-partitioning hash join described in [62]. It uses a lock-free synchro-
nization mechanism for a linear probing hash table using compare-and-swap. The
algorithm starts by assigning equal-sized regions (chunks) to each thread. Each
thread then inserts its chunk of the build relation into the global hash table. After
all threads are done inserting, each thread starts probing its chunk of the probe
relation against the global hash table.

For inserts into the global hash table, each thread uses an atomic Compare-

18

and-Swap (CAS) operation. This is a transactional and conditional operation that
is only executed if the slot contains the empty key; in that case the empty key is
overwritten by the key to be inserted. Otherwise the operation returns false. As
entries are never removed or overwritten in a slot, the thread can copy the payload
to the bucket in an additional non-transactional operation. In addition to the lock-
free hash table, another optimization of NOP is to interleave hash table allocation
among all available NUMA nodes for better memory bandwidth utilization.

CHTJ is the concise hash table join described in [72]. At its core a Concise Hash
Table (CHT) consists of four major components. First, an array A of size n storing
all n inserted tuples without any additional empty slots. Second, a hash function
hash : Key 7→ [8 · n]2, where Key denotes the domain of the join keys and [8 · n]
denotes the set of all integers in the range from 1 to 8 · n. Third, a bitmap B
of size 8 · n. This bitmap marks if a certain hash bucket is occupied. Fourth,
a population count array PC of size n/4 with a running sum of the population
count of the bitmap, i.e. for for every 32 bits of the bitmap we count the number
of elements stored up to that point. A CHT is a static structure that is bulkloaded
once and then used for lookups only. Hence, this structure is very suitable for join
processing. Notice that Google sparse hash map [36] is very similar to CHT, but
additionally allows for inserts and deletes.

In a CHT, a lookup for a key works as follows: we first check if the bit
B(hash(key)) is set. If that is the case, this implies that array slot hash(key) is
occupied. In other words: there may be a result. In that case, from the population
count array PC we retrieve the population count from position bhash(key)/32c−1
and add it to the number of bits set in B within the range[

bhash(key)/32c · 32; hash(key)− 1
]
.

In order to speed up this process B and PC are physically interleaved in the same
structure.

CHTJ works as follows: first it radix-partitions the build input into a small
number of partitions very similar to PRB. Second, one global CHT is allocated
where each thread bulkloads its partition to a disjoint region in that CHT. Hence,
there is no need for additional synchronization at this point. Fourth, the probe
relation is handled similarly to NOP: each thread probes one chunk of the probe
relation against the global CHT. Again, as no inserts are performed in the CHT
at this point, there is no need for synchronization.

We classify CHTJ as a no-partition hash join even though the algorithm uses
partitioning on the build input. However, that partitioning is only used to build
the global CHT in parallel. Afterwards the algorithms is equal to NOP as discussed

2For simplicity we assume here that n is a power of 2.

2.4. Black Box Comparisons 19

above. Moreover, in CHTJ the partitioning is not used to run independent joins
on co-groups like in PRB.

2.3.3 Sort-merge Joins

Core Idea: Sort-merge joins belong to the oldest join methods used in databases.
The idea is to first sort both input relations on their join keys, if they are not
yet sorted, and to use an efficient merge step afterwards to find all matching tu-
ples. Sort-merge join algorithms can exploit and create so-called interesting orders.
Even if the performance of a single join in a complex multi-join query would be
suboptimal, the overall performance of the sort-merge join plan could be superior.
MWAY is the m-way sort merge join described in [12]. It is also very similar to
the method described in [60]. MWAY partitions the data very similar to PRB,
however using only a single partitioning phase and creating only few partitions. In
addition, software write-combine buffers (see Section 2.5.1) are used. After parti-
tioning, each partition will be merge-sorted independently by a separate thread.
The merge-sort is implemented with bitonic sorting- and merge-networks. Both
sort- and merge-networks are vectorized using SIMD instructions. In addition,
multi-way merging is used to save memory bandwidth.

2.4 Black Box Comparisons

In this section we want to compare the representatives of the fundamental join
algorithms that were also compared in prior work. We want to identify some of
the reasons for contradicting results in previous works. Table 2.2 lists all evaluated
join algorithms and the abbreviations used. The paper column refers to papers
where the specific algorithm was published and “this” means that the algorithm is
proposed in this chapter. The code column shows the implementation we used for
each algorithm. There are three values for this column: “Original” means we use
the implementation from authors of the paper, “Modified” means we modify the
original implementation to get the new variant and “Own” means we implemented
the algorithm from scratch.

For our experimental evaluations we use a setup that is similar to the one used
throughout all mentioned previous join papers. The tuples of the join relations
consist of two four byte attributes, namely the join key and the payload. Further-
more, the keys in the smaller relation are dense and unique, like in a primary key
column. Throughout this study we use the same 60 core machine, see Section 2.7.1
for details. Unless stated differently, all algorithms use at most 32 threads even
though our machine has 60 cores available. The reason is that the code of the
MWAY algorithm only works with a power of two number of threads. In Sec-

20

tion 2.8.1 we will increase the number of threads beyond 32 threads. We measure
the throughput of a join as (|R| + |S|)/tjoin, i.e. the total number of input tuples
of both relations divided by the algorithm runtime.

 0

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t
[M

 t
u

p
le

s
/s

]

MWAY CHTJ PRB NOP

Figure 2.1: Black box comparison of the fundamental join representatives using
32 threads and relation sizes |R| = 128M and |S| = 1280M.

Figure 2.1 shows the performance of this black box comparison in terms of
throughput. We use inputs of size 128 million and 1280 million tuples respectively.
These results are comparable to the results found in [62] and [72], but do not match
the findings in [12] as for instance in that study the performance of PRB was found
to be much better than MWAY.

To understand this inconsistency between results from prior work, we will take
a closer look at the parallel radix partitioning join in the next section.

2.5 White Box Comparisons

From the prior publications it is not always clear what optimizations were used
for the parallel radix join. We therefore take a closer look at different possible
optimization for the different methods to make them more comparable.

Let’s start by taking a closer look at the code for PRB provided by [2]. We see
at least two optimizations that can be enabled.

2.5. White Box Comparisons 21

2.5.1 Optimizing Radix Partitioning

NUMA-Awareness. The first option is the --basic-numa flag that equally
allocates the partition buffer on all NUMA nodes, as otherwise the buffer will be
allocated randomly over different NUMA regions. This option was most likely
enabled in all related work as otherwise the performance of the join algorithm
decreases considerably on NUMA machines. Turning on this option has another
important effect:

Memory Allocation Locality. Before running the actual join, all physical pages
will be allocated locally and mapped in the virtual memory table. Hence, we will
not trigger page faults and consequent allocations while running a join algorithm.
As database system always have a buffer manager anyways, we believe it is a fair
assumption that memory buffers were already physically allocated. We already
used this option in the previous section and we will also keep this option turned
on throughout all following experiments.

Software Write-Combine Buffers. The second option provided by the code
of [2] is the --enable-swwc-part flag3: this flag enables the use of software
write-combine buffers (SWWCB) and non-temporal streaming instructions for the
parallel partitioning algorithm. SWWCBs, aka software managed buffers, have
been known for quite some time [81]. The idea is to allocate a small local buffer for
each partition and first put tuples into buffers instead of directly flushing them to
the output. This is similar to buffered writes in disk-based partitioning, however,
the size of each buffer is only one cache line. SWWCB reduce the pressure on the

Algorithm 1: Partitioning with Software Write-Combine Buffers

1 for tuple ∈ relation do
2 partition ← hash(tuple.key);
3 pos ← slots[partition] mod TuplePerCacheline;
4 slots[partition]++;
5 buffer[partition].data[pos] = tuple;
6 if pos == TuplePerCacheline - 1 then
7 dest ← slots[partition] - TuplePerCacheline;
8 copy buffer[partition].data to output[dest];

TLB as the buffers are very likely to reside in cache and on very few pages while
only a full buffer is flushed to main memory. If a buffer can hold N tuples, then the

3To be fair with prior work that did not enable this feature in their comparisons. It is marked
as experimental and we applied some fixes that removed minor race conditions that did not
influence the performance.

22

number of TLB misses will be reduced by a factor of N . Algorithm 1 illustrates
how SWWCB works. Turning on this option has another important effect:

Non-temporal streaming. This is a technique allowing programmers to write
half a cache line to DRAM bypassing all caches. It prevents polluting the caches
with data that will never be read again. Recently, Schuhknecht et.al [89] performed
an in-depth study of the effects of using both software write-combine buffers and
non-temporal streaming on the single-threaded radix partitioning algorithm. We
follow the guideline provided in that paper.

After enabling all those features we obtain a much more efficient algorithm
called PRO (Parallel Radix with Optimized partitioning).

Single-pass Partitioning. The original PRO used two-pass radix-partitioning.
We ran micro-benchmarks on PRO comparing single-pass and two-pass partition-
ing and also determined the optimal number of partitions to use for partitioning.
Figure 2.2 shows that a single-pass partitioning using 14 bits leads to the highest
throughput. We will use this setting in the following for all variants of PRO.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
[M

 t
u

p
le

s
/s

]

Total number of bits

numPasses = 1 numPasses = 2

Figure 2.2: Throughput of PRO for different partition sizes and number of radix
bits for partitioning (total join including partitioning and join phase); the two-pass
algorithm divides the bits evenly over the two passes.

2.5.2 Choice of Hash Method

Linear vs Chained vs CHT. Another dimension that makes the available join
algorithms harder to compare is the usage of different hash table implementations

2.5. White Box Comparisons 23

in the algorithms. All presented hash join methods use different hash table im-
plementations. CHTJ of course uses a concise hash table; PRO uses a variant of
chained hashing while the NOP algorithm uses linear probing to implement the
hash table. We therefore also implemented a version of PRO that uses a linear
probing hash table and call that method PRL.
Arrays. When using unique and dense domains of join keys we can go one step
further and use an even simpler hash table implementation — a simple array. In-
stead of storing key value pairs in a hash table we can simply use the key as an
index in the array and store the value in that position. This assumption on the key
domain may sound unrealistic on first sight, however, often joins are performed
along 1:n or n:1 foreign key relationships using artificially created IDs (ID Inte-
ger PRIMARY KEY AUTOINCREMENT), this situation may occur frequently
in practice. It can also be identified easily by the query optimizer through the
available statistics. This simple array implementation can also be used in the
NOP-family of joins and hence we get two new hash join variants called No Par-
tition Array join (NOPA) and the Parallel Radix partition Array join (PRA).
These joins are of course not as widely applicable as the other hash joins. We will
also investigate the usefulness of these methods in the presence of holes in the key
domain in Section 2.8.2.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Figure 2.1

T
h

ro
u

g
h

p
u

t
[M

 t
u

p
le

s
/s

]

MWAY
CHTJ

PRB
NOP

NOPA
PRO

PRL
PRA

Figure 2.3: Join throughput including improved versions. We observe almost a
twofold performance improvement over the blackbox versions shown in Figure 2.1.

Performance Comparison. Considering the optimizations discussed in Sec-
tions 2.5.1 and 2.5.2, we take another look at the performance of the join algo-
rithms and show their throughput in Figure 2.3. We can see that PRO clearly

24

outperforms NOP and now the performance of PRO also resembles the results
presented in [12]. However, surprisingly, there is almost no difference in runtime
between PRA, PRO, and PRL. Therefore, we might conclude that the choice of
the hash method does not have an effect on the runtime; however, later on we will
learn that this conclusion would be wrong (see Section 2.6.2).

2.6 Optimizing Parallel Radix Join

We have observed in Figure 2.3 that the parallel radix partitioning joins PR* are
providing the highest throughput so far. We are therefore looking for ways to
further improve their performance. In the following, we will look at the partition
phase and the join phase separately.

2.6.1 NUMA-aware Partitioning

First we investigate the partitioning phase. The Parallel Radix Partitioning algo-
rithm is illustrated in Figure 2.4(a). It works as follows: (1) every thread sequen-
tially reads a horizontal chunk of the input relation to create a local histogram.
(2) a global thread merges the local histograms into a global histogram4. The goal
is to exploit this global histogram later on as an index to the target partitions.
To merge the local histograms, we need a synchronization barrier, as every thread
has to complete the local histogram before the final output positions can be com-
puted. (3) each thread reads again its horizontal local chunk of the input relation
and partitions the data into its corresponding SWWCB. Each thread keeps as
many SWWCB as it has target partitions. Whenever a SWWCB becomes full, it
is flushed to the final output position in its target partition using non-temporal
streaming. As the final output position of every partition was already determined
in phase (2), no further synchronization is necessary. For the probe relation,
phases (1)–(3) are executed similarly using the same partitioning function. Once
both inputs have been partitioned, each pair of corresponding partitions is joined
independently. This is done by building a hash table on the left input and probing
the right input against that hash table. Hence, from a high-level perspective this
join algorithm is a variant of Grace Hash Join applied to NUMA.

NUMA-partitioning is a task which triggers a considerable number of memory
reads and writes, especially when writing out tuples to their destinations. However,
in NUMA systems, careless memory access patterns can hurt the performance very
badly as remote memory accesses have higher latency and lower bandwidth than
local memory accesses. So we devoted our effort on analyzing memory access

4Technically, this may also be implemented by letting the threads merge their histogram
independently as in phase (3) each thread only requires a subset of the global histogram.

2.6. Optimizing Parallel Radix Join 25
s
c
a
n h
is
t

h
is
t

h
is
t

h
is
t

build

h
is
t

h
is
t

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

(1) (2) (3)

SWWC

Buffers

(a) Schematic view
on build relation par-
titioning of PRO

t0

socket 0

p0

socket 1

p1

t2

socket 2

p2

socket 3

p3

t1

t3

(b) NUMA write
pattern for PRO

h
is

t
h

is
t

h
is

t
h

is
t

union & build

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

SWWC

Buffers

(1) (3)

(c) Schematic view
on build relation par-
titioning of CPRL

t0

socket 0

p0 p1

t1

socket 1

p2 p3 p0 p1 p2 p3

t2

socket 2

p0 p1

t3

socket 3

p2 p3 p0 p1 p2 p3

(d) NUMA write
pattern for CPRL

Figure 2.4: High-level schematic view and NUMA write pattern: PRO vs CPRL

patterns of PRO and we found out that there are in particular random remote
memory writes that we can avoid in this algorithm.

Figure 2.4(b) depicts the NUMA access pattern in a simplified case with four
sockets, four threads, and four partitions when writing tuples to their target par-
titions. We see that the partitioning algorithm of PRO introduces many random
remote writes when writing tuples to their corresponding partitions. Based on
this observation, we propose the Chunked Parallel Radix partition (CPRL) algo-
rithm that eliminates remote writes when flushing tuples to partitions.

Figure 2.4(c) shows a high-level schematic view on our algorithm CPRL. No-
tice, that the histogram phase (1) is the same as in PRO. However in contrast
to PRO, in CPRL we leave out phase (2), i.e. we do not compute a global his-
togram. We proceed directly with phase (3), i.e. each thread partitions its data
locally within its chunk only based on its local histogram. On a high-level this can
be viewed as running a single-threaded histogram-based radix-partitioning inside
a chunk. For the probe relation phases (1)–(3) are executed similarly using the
same partitioning function. Once both inputs have been partitioned, each pair of
corresponding partitions, i.e. each co-partition, is joined independently. In con-
trast to PRO, at this point we neither have physically contiguous probe nor build
partitions available. Hence, we first have to read the different chunks belonging to
the build input from its (possibly NUMA-remote) sources. In that process, we di-
rectly load that data into a local hash table. Then we also read the different chunks
belonging to the probe input from its (possibly NUMA-remote) sources and probe
them directly against the hash table. Hence, from a high-level perspective this

26

 0

 200

 400

 600

 800

 1000

R
u

n
ti
m

e
 [

m
s
]

PRO PRL PRA CPRL CPRA

Figure 2.5: Runtime of PR* vs CPR*-algorithms. Relation sizes: |R| = 128M,
|S| = 1280M. Lighter colors denote the partition phase and darker colors denote
the join phase.

join algorithm is also a variant of Grace Hash Join applied to NUMA. However, in
contrast to PRO, we do not require the inputs to each join to be physically con-
tiguous in main memory. Therefore, CPRL trades small random writes to remote
memory for large sequential reads from remote memory. Notice that CPRL uses
the same linear probing hash table as PRL since it was easier to integrate our own
linear hash table implementation. In addition, the linear hash table also provided
a slightly better performance compared to the chained hash table implementation
by Balkesen et. al. When we use arrays rather than hash tables in the join phase
of the Chunked Parallel Radix join, we call it CPRA. Again, optimizations like
software write-combine buffers and non-temporal store instructions are also used
in this algorithm. The write pattern of CPRL is illustrated in Figure 2.4(d).

Let’s compare the performance of PRO, PRL, and PRA with our proposed
CPRL and CPRA. Figure 2.5 shows the end to end join processing time broken
down into partition and join phase. We see that the CPR*-algorithms outperform
the PR*-algorithms by ∼20%. We also observe that the partitioning times of the
CPR*-algorithms are indeed reduced as expected. However, surprisingly even the
join time is reduced. This is counterintuitive to what we expected as we traded
remote writes in the partitioning phase with remote reads from all sockets in the
join phase. We will investigate the reason for this in the next section.

2.6. Optimizing Parallel Radix Join 27

2.6.2 NUMA-aware Scheduling

All PR*- and CPR*-algorithms build co-partitions which eventually have to be
joined independently. How are those individual joins scheduled? What effect does
this schedule have on the overall performance of the join algorithms?

After partitioning, in both PR*- and CPR*-algorithms, all co-partitions are put
into a LIFO-task queue (which is actually a stack), to be processed by different
threads. Recall that the PR*-algorithms partitions an input array into p partitions
where for any two partitions i, j ∈ [0; p−1], i < j it holds that the starting address
of partition j is greater than the starting address of partition i. In other words,
the partition indices correlate with their virtual addresses. We observed that in all
PR*- and CPR*-algorithms, co-partitions are inserted into the queue in ascending
sequential indices order, i.e. for p co-partitions the insert order into the queue is
0, . . . , p − 1. However, recall, that before executing any join, one quarter of each
input relation is physically allocated on one of the NUMA-regions. In addition,
any additional memory required for partititioning or building hash tables is also
equally distributed across NUMA-regions. This memory allocation strategy was
already present in the code used by [13]. Assume that the number of threads is
considerably smaller than the number of partitions, i.e. t << p, typically p = 16384
and for our machine t = 60. This implies that the first d16384/60e = 274 partitions
reside on the same NUMA-region. Hence, all of the first 60 threads removing
tasks from the queue will have to read their input data from the same NUMA-
region. Moreover, for three quarters of those threads, i.e. 45 threads, this is a
remote NUMA-region. Similar bottlenecks can be observed for all other blocks of
274 partitions.

Figure 2.6 shows the bandwidth profile of PRO. We observe that most of the
time PRO uses only a single NUMA-region.

We can improve this by carefully reordering the join tasks. We fixed this by
changing the task scheduling strategy used by all PR*-algorithms as follows: we
insert co-partitions into the task queue in a round-robin manner. Specifically,
we first put a partition from the first NUMA region into the queue and then a
partition from the second NUMA region and so on. An alternative would be to
use a different queue for each NUMA-region. Like that it is very likely that all
memory controllers are utilized simultaneously.

Figure 2.6 shows a bandwidth plot of the original PRO, the variant of PRO
using improved scheduling, coined PROiS, as well as CPRL. In addition, we also
introduce variants of PRL and PRA using improved scheduling called PRLiS and
PRAiS. We observe that the improved scheduling of PROiS has a substantial
effect on the total bandwidth utilization, i.e. all NUMA nodes are used at the
same time. Even though the suboptimal scheduling is also used for CPRL, it does
not affect the bandwidth utilization, as every partition has to be read from all

28

P
R

O
Node 0 Node 1 Node 2 Node 3

P
R

O
iS

C
P

R
L

Figure 2.6: Bandwidth profiles for PRO, PROiS, and CPRL obtained with Intel
VTunes

NUMA nodes anyhow.
The improved scheduling results in a speedup of the join phase of PRL and

PRA by more than a factor of 2, see Figure 2.7. As expected in Section 2.6.1,
we can now observe that the join phase of the CPR*-algorithms is in fact slightly
more expensive than the one of the PR*iS-algorithms. However, still, in total
the CPR*-algorithms are slightly faster than the PR*iS-algorithms. Moreover, in
contrast to our results from in Figure 2.3, we can now clearly observe that different
hash table implementations have an effect on the runtime of the algorithms.

2.7 Putting it All Together

After our initial black box comparison (Section 2.4), after having analyzed the
effects of optimizing radix partitioning and using different hash tables (Section 2.5),
and after optimizing the NUMA memory allocation and NUMA access pattern of
the various radix algorithms (Section 2.6), we are finally in the position to perform
a comprehensive comparison of all join algorithms.

In this section we will perform a large-scale experimental study of all thirteen
algorithms mentioned above. Recall that Table 2.2 lists all algorithm abbrevi-

2.7. Putting it All Together 29

 0

 200

 400

 600

 800

 1000

R
u

n
ti
m

e
 [

m
s
]

PRO
PROiS

PRL
PRLiS

PRA
PRAiS

CPRL
CPRA

Figure 2.7: Runtime of PR* and CPR*-algorithms vs their variants with improved
scheduling (PR*iS-algorithms). Relation sizes: |R| = 128M, |S| = 1280M. Lighter
colors denote the partition phase and darker colors denote the join phase.

ations and their short descriptions. In the pdf of this thesis all occurrences of
algorithm abbreviations are hyperlinks pointing to their description. We evaluate
all algorithms in the same benchmarking framework.

2.7.1 Settings

All our experiments are performed on a server with half a terabyte of main memory
and four Intel Xeon E7-4870 v2 CPUs, clocked at 2.30 GHz (published in Q1 2014).
This CPU has 30 hardware contexts executed on 15 physical cores that share a
30 MB L3 cache. Each core has one private 32 KB L1 data, one 32 KB instruction
cache, and one 256 KB L2 data cache. Notice that the number of TLB entries
when using 4 KB page is 256. However, if we use 2 MB pages, we only have
32 TLB-entries! The operating system we used is a 64-bit Debian 7 server with
the kernel version of 3.2.0-4. The CPU supports AVX 1.0. Just like the original
studies [60, 12, 10, 62, 14], we also assume a column-oriented storage model and
adopt the configuration of using a <Key, Payload> pair as a tuple. We use a
4-byte integer key and a 4-byte integer payload to make a fair comparison between
all methods, since some available implementations only work for this key size. We
assume that the build relation follows a dense primary key distribution and the
keys of the probe relation have a foreign key relationship to the keys of the build
relation, if not mentioned otherwise. This setting was also used in the mentioned

30

previous studies.

In the following experiments, we use the implementations of PRO, PRB, NOP
from the original authors. PRA, PRL, PRAiS, PROiS, NOPA are implemented
based on the authors’ implementations. We implemented CPRL, CPRA, and
CHTJ ourself from scratch. Since the build relation has dense primary keys, we
use the identity hash function modulo the hash table size for all hash joins as it is
very effective and efficient in this setting and was also used in the previous studies.
Lang et. al. [62] additionally evaluated different hash functions like Murmur, CRC,
and multiplicative hashing. We are not evaluating the effect of different hash
functions on the join performance in this chapter. All software is implemented in
C/C++ and compiled by gcc/g++ version 4.7.2 with optimization level -O3.

2.7.2 Varying Page Sizes

The first dimension we want to explore is the page size of the virtual memory
used for the join algorithms. As partitioning is very sensitive to TLB misses,
this is a very important aspect. In the previous experiments we used huge page
sizes for all allocations, i.e. 2 MB. To study the effect of the page size on the
different algorithms we evaluate pages of 4 KB and 2 MB by switching the kernel
setting transparent_hugepage/enabled between never and always. We
also ensured that all allocations use the default malloc or posix_memalign
methods.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

T
h

ro
u

g
h

p
u

t
[M

 t
u

p
le

s
/s

]

MWAY
CHTJ

PRB
NOP

NOPA
PRO

PRL
PRA

CPRL
CPRA

PROiS
PRLiS

PRAiS

Figure 2.8: Performance of all thirteen join algorithms when using small (4 KB,
dark color) and huge pages (2 MB, light color)

2.7. Putting it All Together 31

Figure 2.8 shows the performance of all thirteen join algorithms when using
small (4 KB) and huge pages (2 MB). We observe that all algorithms except PRB
improve by using huge pages. PRB is the only algorithm that has a slightly worse
performance when using huge pages. This is due to the naive partitioning that
does not use any software write-combine buffers for the different partitions. In
each of the two radix passes PRB partitions along 7 bits = 128 partitions. The
entries for all those pages fit into the TLB-cache when using small pages. However,
when using huge pages, we only have 32 TLB-entries available. Hence, many write
operations to partitions lead to TLB-misses. This effect is mitigated when using
SWWCB as in PRO.

As some of the algorithms are clearly dominated by others, in the following,
we do not report for results for PRB, PRO, PRL, and PRA anymore. In addition,
for all following experiments we use huge pages.

2.7.3 Scalability in Dataset Size

The next dimension we will explore is the scalability in the size of the input data
to the joins. We will explore two workloads: (1) the probe relation is ten times the
size of the build relation. The factor ten is motivated by the typical ratio in the
TPC-H benchmark and the observation that in a star schema, often used in OLAP
applications, the dimension tables are typically much smaller than the fact table.
(2) both relations have the same size. This is close to a worst case for hash joins,
as the typically more expensive build phase is followed by a rather short probe
phase. If the build relation becomes smaller than the probe relation, the optimizer
should actually have switched the roles of the relations in the first place. At the
same time, this case is close to a best case for sort-based methods, as sorting has
super-linear costs and is therefore minimized if both relations have the same size.
Previous studies [12, 62] also used similar workloads.

Fine-tuning the partition-based joins. When we started benchmarking
the effects of scaling the input datasets, we quickly noticed that the radix-based
algorithms are very sensitive to the number of bits used for partitioning. Recall,
that in Section 2.5.1 we already explored this effect for a fixed-size input dataset.
Following the results of our micro-benchmark in Figure 2.2 we assumed that when
doubling the data size, we take one additional bit for partitioning and hence end
up with the same partition size and obtain good performance. But is that really
true? Let’s take a second look:

Figure 2.11 shows the average partitioning time per tuple for a varying number
of partitions and corresponding data set sizes. On the horizontal axis we use a log
scale doubling the number of partitions at every tic. The number of partitions is
chosen such that a chained hash table that is built on a single partition fits into
L2 cache.

32

 0

 0.5

 1

 1.5

(a)
H

T
 o

n
 p

a
rt

it
io

n
 f
it
s
 i
n
to

 L
2

PROiS PRAiS PRLiS CPRL CPRA

11 12
13 14

15

9 10 11
12

13
10 11 12

13 14
10 11 12

13 14
9

10 11 12
13

(b)

11 12
13 14 15

16

17

18

9 10 11
12 13 14 15

16

10
11

12
13 14 15

16

17

10
11 12

13 14 15

16

17

9

10 11
12

13 14 15

16

 0

 0.5

 1

 1.5

16M 32M 64M 128M 256M

(c)

o
p
t
p
a
rt

it
io

n
 s

iz
e

|R| = 10 * |S|

11 12
13 14

15

10 10 11
12

13
10 11 12

13 14
10 11 12

13 14
10 10 11 12

12

16M 32M 64M 128M 256M 512M 1024M 2048M

(d)

A
v
g
 T

o
ta

l
T

im
e
 p

e
r

p
ro

c
e
s
s
e
d
 t
u
p
le

 [
n
s
]

|R| [tuples] |R| = |S|

10
11 12

13 14 15

15
15

10 10 11
12 13 14 15

15

10
11

12
13 14 15

15
12

10
11 12

13 14 15
15

14

10
10 11

12 12 14 15
15

Figure 2.9: Average total time per tuple (partitioning and join) when varying the
number of radix-bits used for partitioning. The dark color marks the time for
partitioning; the light color marks the time for joining. In (a) and (b) we choose
the number of radix bits such that the hash table on a partition fits onto L2. In
contrast, in (c) and (d) we depict the number of radix bits leading to the lowest
overall runtime. In particular for |R| = |S| (right column) and |R| ≥ 512 M tuples
we see that our assumption, (a) and (b) diverges heavily from the optimal number
of bits, (c) and (d). Notice that we can observe in (b) that the partitioning costs
increase heavily whereas the join costs stay the same.

We observe that the average partition time per tuple stays almost constant up
to including 215 partitions. Starting with 216 partitions the performance deterio-
rates. This can be explained with the size of the software write-combine buffers.
Recall that we use 32 threads. If we create 215 partitions using a single cache
line per partition as an SWWCB, all SWWCBs together including other working
variables, e.g. histograms, still fit into the shared last level cache (LLC). However,
when using 216 partitions, this is no longer the case.

We conclude from this experiment that partitioning data into too many par-
titions might overshadow the performance gains obtained in the join phase. We
therefore micro-benchmarked the performance of all partition-based joins with a
varying number of bits used for partitioning and show these results in Figure 2.9.
In Figures 2.9(a)&(b) we choose the number of radix bits such that the hash table
on a partition fits onto L2. In contrast, in Figures 2.9(c)&(d) we depict the num-
ber of radix bits actually leading to the lowest overall runtime. We can see that
choosing the number of bits such that the partitions fit into L2 cache is close to
the optimal choice as long as the SWWCBs still fit into the shared LLC. However,
for larger datasets, we observe in Figure 2.9(b) that the partitioning costs increase
sharply. Hence, we conclude that for these input sizes it is better to balance the

2.7. Putting it All Together 33

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16 32 64 128 256

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

|R| [M tuples]
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

1 2 4 8 16 32 64 128 256 512 1024 2048

|R| [M tuples]
(b) |S| = |R|

Figure 2.10: Throughput of join algorithms when scaling input dataset sizes

 0

 0.5

 1

 1.5

 2

16M

2
11

32M

2
12

64M

2
13

128M

2
14

256M

2
15

512M

2
16

1024M

2
17

2048M

2
18

A
v
g

 p
a

rt
it
io

n
 t

im
e

 p
e

r
tu

p
le

 [
n

s
]

|R| and number of partitions

Chunked Partitioning
Partitioning

Figure 2.11: Scalability of the partition phase for chunked and non-chunked par-
titioning

partitioning cost with the join costs. The sweet spot for the number of bits used
in partitioning seems to be the minimal number of bits such that the partitions
still fit into the shared LLC.

Predicting the optimal number of radix bits. This leads to the following
formula for the number of bits for partitioning np. Given the size of R as |R|, the
size of a tuple of R as st, the intended load factor of the join hash tables l, the size
of a partition buffer as sb, the size of the L2 cache as L2, and the size per thread

34

of the last level cache as LLCt
5:

np(|R|) =


log2

(
|R|·st
l·L2

)
, |R|·sb·st

L2·l < LLCt

log2

(
|R|·st
l·LLCt

)
, otherwise

(2.1)

 0

 1

 2

 3

 4

 5

16M 32M 64M 128M 256M 512M 1024M 2048M

A
v
g
 T

o
ta

l
T

im
e
 p

e
r

 p
ro

c
e
s
s
e
d
 t
u
p
le

 [
n
s
]

|R| [tuples]

number of bits predicted by Equation (1)
number of bits in range [8;18]

Figure 2.12: Runtime of CPRL when set-
ting the number of partitioning bits ac-
cording to Equation (2.1)

Figure 2.12 shows the observed run-
time for CPRL6 when varying the num-
ber of radix bits from 8 to 18 bits
(black points) versus the performance
observed when setting the bits accord-
ing to Equation (2.1) (red line). We can
see that the number of bits computed
by Equation (2.1) leads in almost all
cases to the lowest runtime.

Back to Figure 2.9, we can also
make an additional observation: we see
that the different hash table implemen-
tations have an effect on the optimal
number of bits for partitioning. This is reasonable, as the different hash table
implementations differ in their space efficiency. For instance, array joins use a
tight array that only keeps the payload, the key however is implicitly represented
through the array index. In contrast, a linear probing hash table has to store the
key explicitly.

Based on these results, from now on, we will use Equation (2.1) to set the
bits of all PR*- and CPR*-algorithms and are in the position to evaluate the join
performance when scaling the sizes of the input datasets.

Scalability results. Finally, Figure 2.10 contains the performance results for
all join methods when scaling the input data size. For the partitioning joins we
observe that for very small input sizes, i.e. up to 4M tuples, the various algorithms
show similar performance. However, if we scale the input data to larger sizes, we
observe that the PR*- and CPR*-algorithms outperform the NOP*-algorithms,
CHTJ, and MWAY. In particular, for the NOP*-algorithms we can see from Fig-
ure 2.10 that the throughput is very good up to 4M. However, for larger inputs
the throughput decreases. This matches our expectation since no-partitioning join
methods need to build a big global hash table. With growing data sizes the global
hash table won’t fit into the LLC anymore, which in our case is just 30 MB. Hence,

5As the LLC is shared between cores, the available share per thread is dependent on the
number of concurrently running threads.

6Similar results for the other algorithms are not shown due to space constraints.

2.8. Skewed Data Distributions 35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.51 0.9 0.99

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

Zipf factor
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

 0.51 0.9 0.99

Zipf factor
(b) |S| = |R|

Figure 2.13: Throughput of join algorithms on skewed data. Relation size: |R| =
128M.

the bigger the build relation, the higher the probability for an LLC miss as well
a TLB-miss. This effect can be observed very well in Figure 2.10(a): up to an
input size for |R| =32 M tuples there is a decrease in performance. Afterwards
the performance does not deteriorate (visibly) anymore as almost all hash table
accesses trigger LLC and TLB misses anyway (due to lacking spatial proximity
in the caches). In other words, the NOP*-algorithms are already bound by this
bottleneck.

The inverse argument to this holds for the PR*- and CPR*-algorithms. These
algorithms perform more memory operations than the NOP*-algorithms. The un-
derlying assumption of these algorithms, however, is that memory accesses to indi-
vidual tuples may be very expensive, i.e. they may lead to a costly LLC miss. This
effect is similar to external memory algorithms trying to avoid individual seeks on
disk by bundling operations into larger granules. The PR*- and CPR*-algorithms
try to access (and implicitly cache) memory according to larger granules, i.e. par-
titions and/or memory pages. This algorithmic pattern does not have much of an
effect if the input data fits into LLC anyways (then, the underlying assumption
of the algorithms simply does not hold). However, once the underlying assump-
tion holds, i.e. the input data exceeds the size of the LLC, these algorithms can
efficiently avoid costly DRAM accesses to individual tuples.

Notice that among the NOP*-algorithms, CHTJ is very sensitive to the data
size as it needs at least two random accesses for every operation on its CHT.
MWAY sort-merge join is another very stable algorithm, it even outperforms the
CHTJ for large datasets.

2.8 Skewed Data Distributions

Until now we only looked at uniformly distributed data sets. In the next set
of experiments we use different skew factors for the probe relation. We used an

36

algorithm proposed by Gray et. al. in [40] to quickly generate large amounts of
skewed join keys. To achieve a more realistic distribution and to avoid that the
key occurring most often, i.e. the smallest keys, are all in a single partition, we
map the 10 smallest keys to random keys in the full domain. Figure 2.13 shows the
performance of all algorithms with different zipf factors θ ranging from zero to 0.99.
For every method we choose the number of threads such that the throughput was
the highest. This means the no-partition algorithms make use of all hyper threads
while the partition based algorithms only use a single thread per core to not pollute
the private caches. We can see that lower levels of skew have no real impact on
the performance of the algorithms.

When the skew factor is high we observe a shift in the throughput towards
methods that do not partition the input. This has two reasons. First, the partition
based methods have to handle skewed partition sizes, which is for now only handled
automatically by a task queue. This means that the threads responsible for larger
partitions are processing less partitions. We do not exploit the possibility to use
multiple threads to process the join on the largest partitions in parallel. Second,
a high skew factor makes the caches more effective, as the keys that are accessed
most often are likely to be cached. For the partition based algorithms this effect
is not helping, as the partitioning already makes the caches effective. We can see
that the partition based approaches are still competitive with the no partition
joins for the presented data size.

2.8.1 Scalability in number of threads

In this section we explore the scalability of the different join methods in terms
of multithreading. All previous experiments were run using 32 threads. As the
implementation of MWAY only works with a power of two many threads, we cannot
report numbers for MWAY with more than 32 threads7.

We take as a starting point four threads where each thread is assigned to one
of the four NUMA regions. From that starting point we increase the number of
threads distributing threads evenly across NUMA regions.

Figure 2.14 shows the results when scaling the number of threads from 4
to 120. All methods achieve good performance when using all physical cores,
i.e. 60 threads. All partitioned-based approaches perform worse when using hyper-
threading. This is understandable, as then even the private caches have to be
shared among the hyper-threads. Even for the NOP*-joins the benefit of hyper-
threading is minimal. This is also understandable for our fast hash function, as we
do not have many computations that could hide the memory latency. A more com-

7We also evaluated MWAY using 64 threads, but the results are not competitive and also not
fair, as only four out of 60 cores have to work on two threads.

2.8. Skewed Data Distributions 37

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 8 16 32 60 120

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

Threads
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

 4 8 16 32 60 120

Threads
(b) |S| = |R|

Figure 2.14: Throughput of join algorithms when scaling the number of threads.
Size of relation |R| = 128M tuples

putationally intensive hash function could also benefit more from hyper-threads.

Relative Speedup

Join
4

Threads
[M/s]

60
Threads
[M/s]

Total
Build or
Partition
Phase

Probe or
Join Phase

CHTJ 87.3 945.7 10.8 8.4 10.9

NOP 122.1 1291.2 10.6 9.4 10.7

NOPA 176.2 1859.5 10.6 6.8 11.2

CPRL 264.3 3105.4 11.7 12.1 10.6

CPRA 300.1 3545.1 11.8 12.4 10.1

PROiS 212.0 2522.9 11.9 11.3 13.2

PRLiS 263.7 2944.0 11.2 11.3 10.8

PRAiS 302.3 3168.0 10.5 10.7 9.8

Table 2.3: With |R| = 128M and |S| = 1280M

Tables 2.3 and 2.4 show a summary of the relative speedup for the join algo-
rithms. We calculate the relative speedup as runtime(T > 4 threads)/runtime(4
threads) where T is the number of threads used. Hence, the perfect speedup for
T = 60 threads would be 15. Of course no method scales to this theoretically
achievable perfect speedup, but CPRA and CPRL come close with a speedup of
almost 12.

2.8.2 Holes in the key range

All previous experiments used a dense key range. In this section we want to
study the effect of holes in the key range on the performance of the different join
algorithms, especially on the array-based methods. We generate the build relation
with a domain k times the size of |R| for increasing values of k. Figure 2.15 shows

38

Relative Speedup

Join
4

Threads
[M/s]

60
Threads
[M/s]

Total
Build or
Partition
Phase

Probe or
Join Phase

CHTJ 96.6 751.6 7.8 8.5 7.7

NOP 109.8 1043.7 9.5 9.7 9.3

NOPA 173.0 1413.1 8.2 7.1 9.8

CPRL 260.2 2207.9 8.5 8.5 8.4

CPRA 304.9 2790.2 9.2 9.2 9.1

PROiS 234.2 1971.2 8.4 7.3 12.9

PRLiS 263.5 2046.0 7.8 7.3 10.4

PRAiS 312.3 2422.4 7.8 7.3 9.6

Table 2.4: With |R| = |S| = 128M

the performance of the different join algorithms for varying domain sizes k · |R|.
We can see that the performance of the NOPA join is not influenced that much.
This is expected, even without any holes in the domain is it very unlikely that
neighboring elements in the array are probed in a short enough sequence for the
second tuple to still reside in the caches. This slight chance is simply eliminated in
the case of very large domains, as neighboring elements are very unlikely to even
be present at all. The size of the used array is of course growing linear with the
domain size and occupies a larger and larger part of the available memory for the
whole time of the join processing. The partition-based array joins on the other
hand suffer greatly from large domains, as the array does no longer fit into the
caches for larger and larger domains. A possible remedy for the partition-based
methods is to use more fine grained partitioning in the case of larger domains, such
that the array again fits into the cache. We applied this technique to PRAiS and
CPRA and depicted the performance as dashed lines in Figure 2.15. Please note,
that the main memory consumption of PRAiS and CPRA is much lower compared
to NOPA as we only construct temporary arrays on small partitions, that can be
freed after processing the co-partition join. On another note, all our hash table
implementations suffer a small performance hit when increasing the domain, as
now we can observe some collisions in the hash table when inserting and probing
the join keys.

From the results it looks like NOPA stays very competitive for arbitrary large
domains, as long as you are willing and able to pay the additional memory over-
head. PRAiS and CPRA can also deal with domains that are reasonably dense,
especially when adapting the partition strategy to the domain size.

2.8. Skewed Data Distributions 39

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
[M

 t
u

p
le

s
/s

]

k
Domain size = k*|R|

NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

Figure 2.15: Performance of join algorithms with increasing domain size. |R| =
128 M and |S| = 1280 M. The dashed lines for CPRA and PRAiS denote the
throughput when adapting the number of partitions to the domain size

2.8.3 Micro-architectural performance aspects

We also measured the performance of all presented join algorithms with respect to
the number of cache misses and the instructions per cycle (IPC) metric. Table 2.5
shows all measurements. The number of cache misses are measured in millions
while the instructions retired (IR) count is given in billions. We see that the

Sort or Build or Partition Phase Probe or Join Phase

Join
L2

Misses
[M]

L3
Misses
[M]

L2 Hit
Rate

L3 Hit
Rate

IR [B] IPC
L2

Misses
[M]

L3
Misses
[M]

L2 Hit
Rate

L3 Hit
Rate

IR [B] IPC

MWAY 430 388 0.64 0.10 260 1.36 10 10 0.01 0.04 17 1.78

CHTJ 559 353 0.20 0.37 15 0.40 1911 1561 < 0.01 0.18 29 0.25

PRB 558 555 < 0.01 0.01 65 0.33 59 40 0.98 0.33 30 1.46

NOP 394 393 0.38 < 0.01 8 0.36 957 955 0.39 < 0.01 20 0.39

NOPA 409 391 < 0.01 0.04 6 0.27 335 320 < 0.01 0.05 5 0.28

PRO 981 209 0.51 0.79 42 0.87 60 45 0.98 0.26 30 1.34

PRL 791 209 0.45 0.74 41 0.90 86 52 0.93 0.40 24 1.08

PRA 396 110 0.61 0.72 41 1.05 88 52 0.92 0.42 17 0.83

CPRL 730 193 0.47 0.74 43 1.06 72 25 0.94 0.65 29 2.26

CPRA 341 85 0.65 0.75 44 1.24 64 24 0.94 0.62 22 1.94

PROiS 976 209 0.51 0.79 40 0.83 31 13 0.99 0.59 30 2.10

PRLiS 788 209 0.45 0.73 40 0.87 55 23 0.95 0.58 24 2.28

PRAiS 398 110 0.61 0.72 40 1.00 63 31 0.94 0.50 17 1.80

Table 2.5: Performance counter for the join with |R| = 128M and |S| = 1280M
and 32 threads.

partition-based joins indeed lead to a dramatic reduction in cache misses and reach
a cache hit rate of up to 99% for the join phase. Furthermore, the CHTJ suffers

40

from roughly two times the number of cache misses compared to NOP, due to the
additional bitmap lookup, as expected. We can also observe that the partition-
based algorithms need more instructions to perform the join but they also have
a much higher IPC rate, that allows them to perform the join faster than the
no-partitioning joins. Please note, that the different amount of cache misses for
PRA, PRL, PRO in the partition phase stem from the fact that we use 12, 13, or
14 radix bits respectively according to Equation (2.1).

2.9 Effects on Real Queries

Up to now we focused on benchmarking raw performance of multithreaded joins.
Like that we followed the micro-benchmarking philosophy of previous work [16,
14, 13, 62, 10, 72, 12, 60]. However, micro-benchmarks always trigger the same
(and important) question: how big is the impact observed in micro-benchmarks in
a larger context, e.g. when joins are used inside a larger query or inside a system.

The development of a full-fledged multithreaded NUMA-aware query execution
engine is beyond the scope of this chapter. However, state-of-the-art main-memory
databases use code compilation anyways [68], i.e. at query time they translate
incoming SQL to machine code (a standalone program if you wish) and then
execute that program kind of independently from the remaining system (if you
do not require locking which is the case for us). Therefore we decided to simply
emulate a column store in C++. Similar to MonetDB we represent every column
as a separate array consisting of <virtual oid,value> pairs, where the virtual oid
is given implicit by the position of the value in the array. We choose TPC-H query
19 (Listing 2.1 as that query is the only query that contains a single join followed
by an aggregation without any subqueries. This query joins the Lineitem table
with the Part table.

Both tables are stored as a struct of arrays and additionally, we dictionary-
compress all string columns. We used float values instead of arbitrary precision
numeric values. All foreign and primary key columns are represented as <Key ,
Payload> pairs with the row ID as the payload, this made it easier to use the join
implementations with minimal modifications.

On a high-level we execute this query according to the query execution plan
depicted in Figure 2.16. We obtained this plan through textbook query optimiza-
tion. Notice that the same plan is also used by HyperDB according to the explain
functionality of their web interface 8. In this plan, the selection, that was pushed
down to the scan of the Lineitem table, has a selectivity of 3.57%. This means
that for scale-factor 100 the build relation Part has 20 M tuples and the probe

8http://hyper-db.de/interface.html

http://hyper-db.de/interface.html

2.9. Effects on Real Queries 41

Scan Scan

Hash

Join

σ

Aggregation

PART Lineitem

late
m
aterialization

la
te

m
at
er
ia
liz
at
io
n

latematerialization
σ

Figure 2.16: Optimized semi-physical query plan for TPC-H Q19 plus material-
ization strategy in the column store

relation Lineitem has 600 M tuples (600 M· 3.57% = 21.42 M tuples after filtering),
i.e. in the join both relations have roughly the same size.

For scale-factor=100 this corresponds to the results of our micro-benchmark
of Figure 2.10(b) for |R| ≈ 20 M tuples. Notice that the plan in Figure 2.16 is
actually only semi-physical as it does not specify when to reconstruct tuples. We
used late materialization, i.e. all attributes are only touched when required by an
operation9.

Figure 2.17 shows the runtime of Q19 for TPC-H for scale-factors 100. This
figure includes a cost breakdown where the colored bars represent the time spent
for the join. In contrast, the black bars represent the time spent in other parts
of the query. We obtained the numbers for the colored bars by executing each
join just like in the micro-benchmarks above, i.e. each of the four join algorithms
receives a build input of 20 M tuples and a pre-filtered (and pre-materialized)
probe input of 21.42 M tuples. The difference of the execution time of the query
and the join smicro-benchmark yields the black bars10.

We immediately observe that even for this relatively simple query a major part

9This strategy is also used by MonetDB.
10This method is not entirely fair as the join- and non-join parts of a query may overlap.

However, it gives a good indication on how much of the total query time is actually due to the
actual join.

42

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

100

R
u

n
ti
m

e
 [

s
]

TPC-H Scalefactor

NOP NOPA CPRL CPRA

Figure 2.17: Runtime of TPC-H Query 19, colored bars mark the fraction of the
time spent in the actual join; the black bars mark the time spent for the rest of
the query.

of the runtime is spent in the non-join parts of the query. The time spent in the
actual join is only about 10%–15% of the total runtime! In addition, for some
methods more time is spend outside the join than for others.

There are several reasons for this: First, the join key column is a primary
dense key and the Part table is even generated in sorted order according to
this key. This means that we have an ideal sequential access pattern for NOPA
when building the join array (also compare our discussion in Section 2.5.2 as well
as additional experimentation in Section 2.8.2). Second, scanning and filtering
600 M tuples from Lineitem down to 21.42 M tuples simply eats up some time.
Third, in contrast to the micro-benchmark experiments, for Q19 we have to access
several attributes other than the join key. This happens in multiple places: in
order to evaluate the complex predicate after the probe and to aggregate the final
result, i.e. we have to perform implicit positional joins (for tuple reconstruction).
In particular, In NOPA neither the Lineitem table nor the Part table have to be
partitioned. Therefore, all other attributes stay aligned with the join array and the
probe relation. This is especially beneficial for all attributes of the probe relation
since they are accessed sequentially when evaluating the complex join predicate.
In contrast, for the CPR*-algorithms those benefits do not apply. If we access
attributes that are not the join key, we have to follow the row ids contained in the
narrow join tuples. Those row-ids point to arbitrary locations after partitioning
the data. This means that we pollute our cache and TLB with data from other

2.9. Effects on Real Queries 43

attributes and lose locality in our accesses. Therefore, it would be beneficial to
explore tuple reconstruction strategies for CPR*-joins in more detail.

2.9.1 Details on used Query

Listing 2.1 contains the full SQL code of TPC-H query 19.

Listing 2.1: TPC-H Query 19

select
sum(l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t)) as revenue

from
l i n e i t em ,
part

where
(
p partkey = l p a r t k e y
and p brand = ’Brand#12’
and p conta ine r in (’SM CASE’ , ’SM BOX’ , ’SM PACK’ , ’SM PKG’)
and l q u a n t i t y >= 1 and l q u a n t i t y <= 1 + 10
and p s i z e between 1 and 5
and l sh ipmode in (’AIR’ , ’AIR REG’)
and l s h i p i n s t r u c t = ’DELIVER IN PERSON’
)
or
(

p partkey = l p a r t k e y
and p brand = ’Brand#23’
and p conta ine r in (’MED BAG’ , ’MED BOX’ , ’MED PKG’ , ’MED PACK’)
and l q u a n t i t y >= 10 and l q u a n t i t y <= 10 + 10
and p s i z e between 1 and 10
and l sh ipmode in (’AIR’ , ’AIR REG’)
and l s h i p i n s t r u c t = ’DELIVER IN PERSON’
)
or
(
p partkey = l p a r t k e y
and p brand = ’Brand#34’
and p conta ine r in (’LG CASE’ , ’LG BOX’ , ’LG PACK’ , ’LG PKG’)
and l q u a n t i t y >= 20 and l q u a n t i t y <= 20 + 10
and p s i z e between 1 and 15
and l sh ipmode in (’AIR’ , ’AIR REG’)
and l s h i p i n s t r u c t = ’DELIVER IN PERSON’
)

Listing 2.2: Data-structures to represent the Lineitem and Parts tables

struct LineitemTable {

44

s i z e t numTuples ;
float ∗ l e x t e n d e d p r i c e ;
float ∗ l d i s c o u n t ;
t u p l e t ∗ l p a r t k e y ;
unsigned int ∗ l q u a n t i t y ;
u i n t 8 t ∗ l sh ipmode ;
u i n t 8 t ∗ l s h i p i n s t r u c t ;

} ;

struct PartTable {
s i z e t numTuples ;
t u p l e t ∗p partkey ;
u i n t 8 t ∗p brand ;
u i n t 8 t ∗ p conta ine r ;
unsigned int ∗ p s i z e ;

} ;

Our simulated column store represents the TPC-H tables as structs of column
pointers as depicted in Listing 2.2. Please note, that we only represent the columns
accessed in TPC-H Q19. The type tuple t is a <key,payload> pair with the
rowID as the payload. We depict the filter predicate implementation in Listing 2.3.

Listing 2.3: Filter conditions

inline bool preJo in (LineitemTable ∗ l , s i z e t rowID) {
return (l−>l s h i p i n s t r u c t [rowID] == DELIVER IN PERSON &&

(l−>l sh ipmode [rowID] ==AIR | | l−>l sh ipmode [rowID] ==
AIR REG)) ;

}

inline bool postJo in (LineitemTable ∗ l , PartTable ∗p , s i z e t rowIDL ,
s i z e t rowIDP) {
u i n t 8 t p brand = p−>p brand [rowIDP] ;
u i n t 8 t p conta ine r = p−>p conta ine r [rowIDP] ;
auto l q u a n t i t y = l−>l q u a n t i t y [rowIDL] ;
auto p s i z e = p−>p s i z e [rowIDP] ;
return (p brand == BRAND12

&& (p conta ine r == SM CASE | | p conta ine r == SM BOX | |
p conta ine r == SM PACK | | p conta ine r == SM PKG)

&& l q u a n t i t y >= 1 && l q u a n t i t y <= 1 + 10
&& 1 <= p s i z e && p s i z e <= 5) | |

(p brand == BRAND23 &&
(p conta ine r == MED BAG | | p conta ine r == MED BOX | |

p conta ine r == MED PKG | | p conta ine r == MED PACK)
&& l q u a n t i t y >= 10 && l q u a n t i t y <= 10 + 10
&& 1 <= p s i z e && p s i z e <= 10) | |

(p brand == BRAND34 &&
(p conta ine r == LG CASE | | p conta ine r == LG BOX | |

p conta ine r == LG PACK | | p conta ine r == LG PKG)

2.9. Effects on Real Queries 45

&& l q u a n t i t y >= 20 && l q u a n t i t y <= 20 + 10
&& 1 <= p s i z e && p s i z e <= 15) ;

}

These predicates correspond one-to-one to the predicates in the SQL query
depicted in Listing 2.1.

Listing 2.4 shows the pseudo code for the Q19 implementation using the NOP
join. All threads build a hash table on p partkey concurrently. Afterwards,
every thread is responsible for a fixed chunk of tuples of the probe relation and
first accesses the necessary attributes in LineitemTable to evaluate the pre-
Join predicate. All passing tuples from the LineitemTable are probed against
the hash table and as soon as a join partner is found the postJoin predicate is
evaluated. If the matched tuples pass this predicate, the l extendedprice and
l discount attributes are immediately accessed and added to the final aggre-
gate. With this execution strategy it is not necessary to materialize a join index
for further processing. This execution strategy also corresponds to the strategy
described for the HyperDB system [68].

Listing 2.4: Q19 Pseudo code for NOP

1 q u e r y r e s u l t t
2 NOPQ19(LineitemTable ∗L , PartTable ∗P, int threadCount) {
3 p a r a l l e l B u i l d (P, threadCount) ;
4 p a r a l l e l for in chunks numTuples/ threadCount
5 for (int i =0; i < L−> numTuples;++ i) {
6 if (preJo in (L , i)) {
7 auto tup l e=probe (L−>l p a r t k e y) ;
8 if (postJo in (L ,P, i , tup l e . rowID)) {
9 r e s+=L−>l e x t e n d e d p r i c e [i] ∗ (1 . 0 − L−>l d i s c o u n t [i]) ;

10 }}}}

2.9.2 Varying the Selectivity of the Selection in Q19

We also measure the query performance with a varying selectivity on the probe
relation. Figure 2.18 shows that the partition based joins indeed outperform the
no partition based joins when the actual probe relation in the join becomes large.

2.9.3 Further cost-breakdown of Q19

We designed an additional experiment for NOP just to find out how much individ-
ual components of that query contribute to the overall runtime of that query. The
core idea of this experiment is to start with the “naked join”, i.e. the microbench-
mark, and then gradually morph the microbenchmark into TPCH-Q19. Like that
we see at each step the overhead introduced by that step.

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.0 % 20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%
T

im
e
 i
n
 [
s
]

Selectivity
 Build Phase or Partition Phase

NOP NOPA CPRL CPRA

20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%

Selectivity
 Probe Phase or Join Phase

20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%

Selectivity
 Total

Figure 2.18: Runtime of TPC-H Query 19 (sf=100) when varying the selectivity
of the pushed-down selection predicate

 0

 50

 100

 150

 200

 250

 300

32 60

R
u

n
ti
m

e
 [

m
s
]

Threads

(1): Microbenchmark with pre-filtered input tables
(2): like (1), but filtering input tables dynamically
(3): like (2) plus materializing a join index
(4): like (3) plus post-filtering and aggregating
(5): like (2 and 4) without using a join index

Figure 2.19: Additional cost-breakdown morphing a microbenchmark stepwise into
Q19.

From the results in Figure 2.19, we can already learn many things:

(1.) Tuple reconstruction is not the main culprit for the overheads. In fact, for
this query filtering the input rows eats up most of the additional time for both 32
and 60 threads.

(2.) Even writing out join results first into a join index and then doing all addi-
tional work like post-filtering, tuple reconstruction (in the same order as before!),

2.10. Lessons Learned 47

and aggregating is faster than running all of this in a pipeline! But only for
32 threads! For 60 threads this does not hold anymore and the results turn up-
side down: here the overheads for creating and using a join index do not pay off
anymore.

(3.) for 32 threads there is room for a tuple reconstruction algorithm, i.e. at most
∼20% performance improvement seem possible (for a tuple reconstruction running
in zero time).

2.10 Lessons Learned

(1.) Don’t use CPR* algorithms on small inputs. For input relations with
less than 8 million tuples we do not observe a benefit of partitioning local chunks
instead of the global relation. On the contrary, we even observe a performance
degradation. This is mainly due to two things: (1) the overhead of creating all
the threads does not pay off for the small input data. This is also true for all
other presented algorithms. (2) the size of a chunk becomes smaller than a page.
This leads to a random allocation of the pages to different NUMA nodes. Several
threads will have to read from and write to remote memory, even though the
main advantage of the CPR* algorithms over the PR* algorithms should be to
avoid remote writes. For very small inputs the NOP* algorithms become very
interesting, especially if the build relation starts to fit into the LLCs.

(2.) Clearly specify all options used in experiments. This sounds like com-
mon sense for any experimental study. Still, we list it here again as a gentle
reminder since we ran into this problem when we were trying to interpret results
from different papers. As the implementations provided by authors typically have
multiple optimization options, it is sometimes hard to understand which optimiza-
tions were actually used in a paper. Rather over-specify than under-specify your
experiments.

(3.) If in doubt, use a partition-based algorithm for large scale joins. In
this chapter, we have studied the performance of three variants of no-partitioning
algorithm and eight variants of partition-based algorithms with different workloads
by varying ratio between build and probe relations, data size, number of threads
and skewness. All Partition-based algorithms outperform all no-partitioning al-
gorithms in almost all except for only two cases. The first case is when the size
of input relations scales to 32 GB where the worst partition-based algorithm is a
little bit slower than the best no-partitioning algorithm. The second case is when
the probe relation is highly skewed such that partition-base algorithms suffer from
unbalanced loads between threads while no-partitioning algorithms have less cache
misses. No-partitioning algorithms start outperforming partition-based algorithms

48

only for a Zipf factor > 0.9.

(4.) Use huge pages. As we discussed in Section 2.7.2, all algorithms except PRB
benefit from using huge pages. Using huge pages means less pages are needed for
a certain amount of data, thus reduces the pressure on TLB system.

(5.) Use Software-write combine buffer. Software-write combine buffers are
a very effective technique to reduce the number of TLB misses. Hence, using
SWWCBs makes it possible to use single pass algorithm which significantly accel-
erates partition-based algorithms.

(6.) Use the right number of partition bits for partition-based algo-
rithms. Partition-based algorithms are very sensitive to choosing the right num-
ber of radix bits. For different data sizes, one has to choose different number of
partition bits to get the optimal performance. As shown in Figure 2.9, choosing
suboptimal number of bits can lead to performance degradation by up to a factor
of 2.5.

(7.) Use a simple algorithm when possible. In our study, simple ideas turned
out to be surprisingly efficient and effective. For instance, array joins are very
efficient in the case of dense primary key distributions. They outperform other
non-array variants under all workloads by up to 44%. Chunking is another simple
idea we used to create faster join algorithms. Chunking eliminates remote memory
writes in partition phase and improves the join performance by up to 26%.

(8.) Be sure to make your algorithm NUMA-aware. Back at the time
when PRO and PRB [13] were published, the authors ran experiments on sev-
eral single socket machines. These algorithms were designed for multicore systems
but not yet for NUMA systems. Directly running these algorithms on NUMA
systems will yield suboptimal performance. We evaluated chunking to eliminate
writes to remote memory and explored NUMA-aware scheduling to avoid band-
width saturation on a single memory controller. These two optimizations improve
the performance over non-NUMA-aware algorithms by up to 26% and 20%, re-
spectively.

(9.) Be aware that join runtime6=query time. Our experiments with a TPC-
H query clearly indicated that the join time may actually only be a 10%–15%
share of the total runtime of the query. We identified multiple reasons that lead
to interesting avenues for future work. However, already at this point it again
emphasizes that micro-benchmarks alone may be misleading in case we want to
understand performance in a bigger context, e.g. an entire query.

2.11. Conclusions 49

2.11 Conclusions

In this chapter, we evaluated thirteen main-memory join algorithms in a com-
mon setting. We resolved some contradicting results and showed that hardware-
conscious partition-based approaches typically outperform hardware-oblivious no-
partition based joins on modern multi-core NUMA architectures. At least this is
the case if the probe relation is not highly skewed; for very skewed data the unpar-
titioned hash table can match or even outperform the partition-based approaches.
We also presented new partition-based approaches, called CPRL and CPRA that
often outperform the PR*-algorithms from prior work. Overall CPRL and CPRA
achieve a remarkable join throughput of up to 3.4 billion input tuples per second.

So should we finally consider relational joins a solved problem? The bad news
is, we will probably never be able to label it 100% solved as there will always be
some fancy new SIMD instruction or whatever “new” hardware that may impact
the relative performance differences. The good news, with this study we believe
we made major steps forward in understanding the performance of state-of-the-art
join algorithms as of 2015. However, as stated above, almost all previous works,
e.g. [16, 14, 13, 62, 10, 72, 12, 60], evaluated micro-benchmarks only. We departed
from that and evaluated the runtime of the most promising join algorithms when
used in a simple TPC-H query. This initial experimentation already reveals that
only a fraction of the query runtime may be spent in the actual join, a majority
may be spent in other parts of the query including scanning, filtering, and tuple
reconstruction. Hence, as future work we would like to evaluate the cross product
of different join algorithms and the large space of tuple reconstruction algorithms,
in particular for the very promising CPR*-family of join algorithms.

Chapter 3

HAIL: Hadoop Adaptive Indexing
Library

3.1 Introduction

MapReduce has become the de facto standard for large scale data processing in
many enterprises. It is used for developing novel solutions on massive datasets
such as web analytics, relational data analytics, machine learning, data mining,
and real-time analytics [42]. In particular, log processing emerges as an important
type of data analysis commonly done with MapReduce [17, 65, 32].

In fact, Facebook and Twitter use Hadoop MapReduce (the most popular
MapReduce open source implementation) to analyze the huge amounts of web
logs generated every day by their users [91, 41, 64]. Over the last years, a lot
of research works have focused on improving the performance of Hadoop MapRe-
duce [24, 45, 52, 56]. When improving the performance of MapReduce, it is im-
portant to consider that it was initially developed for large aggregation tasks that
scan through huge amounts of data. However, nowadays Hadoop is often also used
for selective queries that aim to find only a few relevant records for further consid-
eration1. For selective queries, Hadoop still scans through the complete dataset.
This resembles the search for a needle in a haystack.

For this reason, several researchers have particularly focused on supporting
efficient index access in Hadoop [94, 28, 64, 54]. Some of these works have improved
the performance of selective MapReduce jobs by orders of magnitude. However,
all these indexing approaches have three main weaknesses. First, they require a
high upfront cost for index creation. This translates to long waiting times for users
until they can actually start to run queries. Second, they can only support one
physical sort order (and hence one clustered index) per dataset. This becomes

1A simple example of such a use case would be a distributed grep.

51

52

a serious problem if the workload demands indexes for several attributes. Third,
they require users to have a good knowledge of the workload in order to choose
the indexes to create. This is not always possible, e.g. if the data is analyzed in
an exploratory way or queries are submitted by customers.

3.1.1 Motivation

Let us see through the eyes of a data analyst, say Bob, who wants to analyze a large
web log. The web log contains different fields that may serve as filter conditions for
Bob like visitDate, adRevenue, sourceIP and so on. Assume Bob is interested in
all sourceIPs with a visitDate from 2011. Thus, Bob writes a MapReduce program
to filter out exactly those records and discard all others. Bob is using Hadoop,
which will scan the entire input dataset from disk to filter out the qualifying
records. This takes a while. After inspecting the result set Bob detects a series
of strange requests from sourceIP 134.96.223.160. Therefore, he decides to modify
his MapReduce job to show all requests from the entire input dataset having that
sourceIP. Bob is using Hadoop. This takes a while. Eventually, Bob decides to
modify his MapReduce job again to only return log records having a particular
adRevenue. Yes, this again takes a while.

In summary, Bob uses a sequence of different filter conditions, each one trigger-
ing a new MapReduce job. He is not exactly sure what he is looking for. The whole
endeavor feels like going shopping without a shopping list. This example illustrates
an exploratory usage (and a major use-case) of Hadoop MapReduce [17, 32, 69].
But, this use-case has one major problem: slow query runtimes. The time to exe-
cute a MapReduce job based on a scan may be very high: it is dominated by the
I/O for reading all input data [74, 54]. While waiting for his MapReduce job to
complete, Bob has enough time to pick a coffee (or two) and this happens every
time Bob modifies the MapReduce job. This will likely kill his productivity and
make his boss unhappy.

Now, assume the fortunate case that Bob remembers a sentence from one of his
professors saying “full-table-scans are bad; indexes are good”2. Thus, he reads all
the recent VLDB papers (including [54, 24, 45, 52]) and finds a paper that shows
how to create a so-called trojan index [28]. A trojan index is an index that may
be used with Hadoop MapReduce and yet does not modify the underlying Hadoop
MapReduce and HDFS engines.
Zero-Overhead indexing. Bob finds the trojan index idea interesting and hence
decides to create a trojan index on sourceIP before running his MapReduce jobs.
However, using trojan indexes raises two other problems:

1. Expensive index creation. The time to create the trojan index on sourceIP (or

2The professor is aware that for some situations the opposite is true.

3.1. Introduction 53

any other attribute) is even much longer than running a scan-based MapRe-
duce job. Thus, if Bob’s MapReduce jobs use that index only a few times,
the index creation costs will never be amortized. So, why would Bob create
such an expensive index in the first place?

2. Which attribute to index? Even if Bob amortizes index creation costs, the
trojan index on sourceIP will only help for that particular attribute. So,
which attribute should Bob use to create the index?

Bob is wondering how to create several indexes at very low cost to solve those
problems.

Per-Replica indexing. One day in autumn 2011, Bob reads about another
idea [56] where some researchers looked at ways to improve vertical partitioning in
Hadoop. The researchers in that work realized that HDFS keeps three (or more)
physical copies of all data for fault-tolerance. Therefore, they decided to change
HDFS to store each physical copy in a different data layout (row, column, PAX, or
any other column grouping layout). As all data layout transformation is done per
HDFS data block, the failover properties of HDFS and Hadoop MapReduce were
not affected. At the same time, I/O times improved. Bob thinks that this looks
very promising, because he could possibly exploit this concept to create different
clustered indexes almost invisible to the user. This is because he could create one
clustered index per data block replica when uploading data to HDFS. This would
already help him a lot in several query workloads.

However, Bob quickly figures out that there are cases where this idea still
has some annoying limitations. Even if Bob could create one clustered index
per data replica at low cost, he would still have to determine which attributes
to index when uploading his data to HDFS. Afterwards, he could not easily re-
vise his decision or introduce additional indexes without uploading the dataset
again. Unfortunately, it sometimes happens that Bob and his colleagues navi-
gate through datasets according to the properties and correlations of the data. In
such cases, Bob and his colleagues typically: (1.) do not know the data access
patterns in advance; (2.) have different interests and hence cannot agree upon
common selection criteria at data upload time; (3.) even if they agree which at-
tributes to index at data upload time, they might end up filtering records according
to values on different attributes. Therefore, using any traditional indexing tech-
nique [33, 22, 6, 20, 23, 94, 64, 28, 54] would be problematic, because they cannot
adapt well to unknown or changing query workloads.

Adaptive indexing. When searching for a solution to his problem with static
indexing, Bob stumbles across a new approach called adaptive indexing [47], where
the general idea is to create indexes as a side-effect of query processing. This is
similar to the idea of soft indexes [66], where the system piggybacks the index

54

creation for a given attribute on a single incoming query. However, in contrast to
soft indexes, adaptive indexing aims at creating indexes incrementally (i.e., piggy-
backing on several incoming queries) in order to avoid high upfront index creation
times. Thus, Bob is excited about the adaptive indexing idea since this could be
the missing piece to solve his remaining concern. However, Bob quickly notices
that he cannot simply apply existing adaptive indexing works [30, 47, 48, 38, 50, 43]
in MapReduce systems for several reasons:

1. Global index convergence. These techniques aim at converging to a global
index for an entire attribute, which requires sorting the attribute globally.
Therefore, these techniques perform many data movements across the en-
tire dataset. Doing this in MapReduce would hurt fault-tolerance as well
as the performance of MapReduce jobs. This is because the system would
have to move data across data blocks in sync with all their three physical
data block replicas. We do not plan to create global indexes, but focus on
creating partial indexes that in total cover the whole dataset. A small back
of the envelope calculation shows that the possible gains of a global index
are negligible in comparison to the overhead of the MapReduce framework.
For instance, if a dataset is uniformly distributed over a cluster and occupies
160 HDFS blocks on each datanode (like the dataset in our experiments in
Section 3.9) and we do not have a global index, then we need to perform 160
index accesses on each datanode. Since all datanodes can access their blocks
in parallel to each other, we assume that the overhead is determined by the
highest overhead per datanode. Overall, our approach requires at most 318
additional random reads in HDFS per datanode in this scenario, which in
turn cost roughly 15ms each. In total, this amounts to 4.77s overhead com-
pared to a global index stored in HDFS. However, even empty MapReduce
jobs, that do not read any data nor compute a single map function, run for
more than 10s.

2. High I/O costs. Even if Bob applied existing adaptive indexing techniques
inside data blocks, these techniques would end up in many costly I/O opera-
tions to move data on disk. This is because these techniques consider main-
memory systems and thus do not factor in the I/O-cost for reading/writing
data from/to disk. Only one of these works [38] proposes an adaptive merging
technique for disk-based systems. However, applying this technique inside
a HDFS block would not make sense in MapReduce since HDFS blocks are
typically loaded entirely into main memory anyways when processing map
tasks. One may think about applying adaptive merging across HDFS blocks,
but this would again hurt fault-tolerance and the performance of MapReduce
jobs as described above.

3.1. Introduction 55

3. Unclustered index. These works focus on creating unclustered indexes in the
first place and hence it is only beneficial for highly selective queries. One of
these works [48] introduced lazy tuple reorganisation in order to converge to
clustered indexes. However, this technique needs several thousand queries to
converge and its application in a disk-based system would again introduce a
huge number of expensive I/O operations.

4. Centralized approach. Existing adaptive indexing approaches were mainly
designed for single-node DBMSs. Therefore, applying these works in a dis-
tributed parallel systems, like Hadoop MapReduce, would not fully exploit
the existing parallelism to distribute the indexing effort across several com-
puting nodes.

Despite all these open problems, Bob is very enthusiastic to combine the above
interesting ideas on indexing into a new system to revolutionize the way his com-
pany can use Hadoop. And this is where the story begins.

3.1.2 Research Questions and Challenges

This chapter addresses the following research questions:
Zero-Overhead indexing. Current indexing approaches in Hadoop involve a
significant upfront cost for index creation. How can we make indexing in Hadoop
so effective that it is basically invisible for the user? How can we minimize the
I/O costs for indexing or eventually reduce them to zero? How can we fully utilize
the available CPU resources and parallelism of large clusters for indexing?
Per-Replica indexing. Hadoop uses data replication for failover. How can
we exploit this replication to support different sort orders and indexes? Which
changes to the HDFS upload pipeline need to be done to make this efficient?
What happens to the involved checksum mechanism of HDFS? How can we teach
the HDFS namenode to distinguish the different replicas and keep track of the
different indexes?
Job execution. How can we change Hadoop MapReduce to utilize different sort
orders and indexes at query time? How can we change Hadoop MapReduce to
schedule tasks to replicas having the appropriate index? How can we schedule map
tasks to efficiently process indexed and non-indexed data blocks without affecting
failover? How much do we need to change existing MapReduce jobs? How will
Hadoop MapReduce change from the user’s perspective?
Zero-Overhead Adaptive indexing. How can we adaptively and automatically
create additional useful indexes online at minimal costs per job? How to index big
data incrementally in a distributed, disk-based system like Hadoop as byproduct
of job execution? How to minimize the impact of indexing on individual job

56

execution times? How to efficiently interleave data processing with indexing? How
to distribute the indexing effort efficiently by considering data-locality and index
placement across computing nodes? How to create several clustered indexes at
query time? How to support a different number of replicas per data block?

3.2 Overview

In the following, we give an overview of HAIL by contrasting it with normal HDFS
and Hadoop MapReduce. Thereby, we introduce the two indexing pipelines of
HAIL. First, static indexing allows us to create several clustered indexes at upload
time. Second, HAIL adaptive indexing creates additional indexes as a byproduct
of actual job execution, which enables HAIL to adapt to unexpected workloads.
For a more detailed contrast to related work see Section 3.8.

For now, let’s consider again our motivating example: How can Bob analyze
his log file with Hadoop and HAIL?

3.2.1 Hadoop and HDFS

In HDFS and Hadoop MapReduce, Bob starts by uploading his log file to
HDFS using the HDFS client. HDFS then partitions the file into logical HDFS
blocks using a constant block size (the HDFS default is 64MB). Each HDFS block
is then physically stored three times (assuming the default replication factor).
Each physical copy of a block is called a replica. Each replica will sit on a different
datanode. Therefore, at least two datanode failures may be survived by HDFS.
Note that HDFS keeps information on the different replicas for an HDFS block in
a central namenode directory.

After uploading his log file to HDFS, Bob may run an actual MapReduce job.
Bob invokes Hadoop MapReduce through a Hadoop MapReduce JobClient, which
sends his MapReduce job to a central node termed JobTracker. The MapReduce job
consists of several tasks. A task is executed on a subset of the input file, typically
an HDFS block3. The JobTracker assigns each task to a different TaskTracker,
which typically runs on the same machine as an HDFS datanode. Each datanode
will then read its subset of the input file, i.e., a set of HDFS blocks, and feed
that data into the MapReduce processing pipeline which usually consists of a Map,
Shuffle, and a Reduce Phase (see [26, 28, 27] for a detailed description). As soon as
all results have been written to HDFS, the JobClient informs Bob that the results
are available. Notice that, the execution time of the MapReduce job is heavily

3Actually it is a split. The difference does not matter here. We will get back to this in
Section 3.4.2.

3.2. Overview 57

influenced by the size of the input dataset, because Hadoop MapReduce reads the
input dataset entirely in order to perform any incoming MapReduce job.

3.2.2 HAIL

In HAIL, Bob analyzes his log file as follows. He starts by uploading his log file
to HAIL using the HAIL client. In contrast to the HDFS client, the HAIL client
analyzes the input data for each HDFS block, converts each HDFS block directly to
a binary columnar layout, that resembles PAX [8] and sends it to three datanodes.
Then, all datanodes sort the data contained in that HDFS block in parallel using
a different sort order. The required sort orders can be manually specified by Bob
in a configuration file or computed by a physical design algorithm. For each HDFS
block, all sorting and index creation happens in main memory. This is feasible as
the HDFS block size is typically between 64MB (default) and 1GB. This easily
fits in the main memory of most machines. In addition, in HAIL, each datanode
creates a different clustered index for each HDFS block replica and stores it with
the sorted data. This process is called the HAIL static indexing pipeline.

After uploading his log file to HAIL, Bob runs his MapReduce jobs, that can
now immediately exploit the indexes that were created by HAIL statically (i.e., at
upload time). As before, Bob invokes Hadoop MapReduce through a JobClient
which sends his MapReduce jobs to the JobTracker. However, his MapReduce
jobs are slightly modified so that the system can decide to eventually use available
indexes on the data block replicas. For example, assume that a data block has
three replicas with clustered indexes on visitDate, adRevenue, and sourceIP. In
case that Bob has a MapReduce job filtering on visitDate, HAIL uses the replicas
having the clustered index on visitDate. If Bob is filtering on sourceIP, HAIL uses
the replicas having the clustered index on sourceIP and so on. To provide failover
and load balancing, HAIL may fall back to standard Hadoop scanning for some
of the blocks. However, even factoring this in, Bob’s queries run much faster on
average, if indexes on the right attributes exist.

In case that Bob submits jobs that filter on unindexed attributes (e.g., on
duration), HAIL again falls back to a standard full scan by choosing any arbitrary
replica, just like Hadoop. However, in contrast to Hadoop, HAIL can index HDFS
blocks in parallel to job execution. If another job filters again on the duration field,
the new job can already benefit from the previously indexed blocks. So, HAIL takes
incoming jobs, which have a selection predicate on currently unindexed attributes,
as hints for valuable additional clustered indexes. Consequently, the set of available
indexes in HAIL evolves with changing workloads. We call this process the HAIL
adaptive indexing pipeline.

58

3.2.3 HAIL Benefits

1. HAIL often improves both upload and query times. The upload is dra-
matically faster than Hadoop++ and often faster (or only slightly slower)
than with the standard Hadoop even though we (i) convert the input file
into binary PAX, (ii) create a series of different sort orders, and (iii) create
multiple clustered indexes. From the user-side, this provides a win-win situ-
ation: there is no noticeable punishment for upload. For querying, users can
only win: if our indexes cannot help, we will fall back to standard Hadoop
scanning; if the indexes can help, query runtimes will improve.

Why do we not have high costs at upload time? We basically exploit the
unused CPU ticks that are not used by standard HDFS. As the standard
HDFS upload pipeline is I/O-bound, the effort for our sorting and index cre-
ation in the HAIL upload pipeline is hardly noticeable. In addition, since we
parse data to binary while uploading, we often benefit from smaller datasets
triggering less network and disk I/O.

2. Even if we did not create the right indexes at upload time, HAIL can create
indexes adaptively at job execution time without incurring high overhead.

Why don’t we see a high overhead? We do not need to additionally load
the block data to main memory, since we piggyback on the reading of the
map tasks. Furthermore, HAIL creates indexes incrementally over several
job executions using different adaptive indexing strategies.

3. We do not change the failover properties of Hadoop.

Why is failover not affected? All data stays on the same logical HDFS block.
We just change the physical representation of each replica of an HDFS block.
Therefore, from each physical replica we may recover the logical HDFS block.

4. HAIL works with existing MapReduce jobs incurring only minimal changes
to those jobs.

Why does this work? We allow Bob to annotate his existing jobs with selec-
tions and projections. Those annotations are then considered by HAIL to
pick the right index. Like that, for Bob the changes to his MapReduce jobs
are minimal.

3.3 HAIL Zero-Overhead Static Indexing

We create static indexes in HAIL while uploading data. One of the main challenges
is to support different sort orders and clustered indexes per replica as well as to

3.3. HAIL Zero-Overhead Static Indexing 59

Network

Network

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

Network

...

forward
PCK

2

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata
0101001010111
0110010111010

c

b

a

PAX Block

PCK
1

PCK
2

PCK
1

append

HAILClient CL DataNode DN1
upload

2

4
5

6

7

check

acknowledge

reassemble

PCK
2

PCK
1

reassemble

8

HAIL Block
0010
1110

HAIL Block

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata

0010011101101
1101001101101

c

b

a

ACK 1
3 2 1

ACK 2
3 2 1

ACK 1
3

ACK 1
3 2 1

ACK 2
3 2forward

1

Bob

10
15

13

9

builda cb

1
preprocess

build

12

HDFS NameNode

Block directory HAIL Replica directory

14
registerregister

ACK 2
3

convert

11

notify

get location

3

OK

DataNode DN3

Index Metadata
Index

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata

0010011101101
1101001101101

c

b

a

Index Metadata
Index a c

Figure 3.1: The HAIL static indexing pipeline as part of uploading data to HDFS

build those indexes efficiently without much impact on upload times. Figure 3.1
shows the data flow when Bob uploads a file to HAIL. Let’s first explore the details
of the static indexing pipeline.

3.3.1 Data Layout

In HDFS, for each block, the client contacts the namenode to obtain the list of
datanodes that should store the block replicas. Then, the client sends the original
block to the first datanode, which forwards this to the second datanode and so on.
In the end, each datanode stores a byte-identical copy of the original block data.

In HAIL, the HAIL client preprocesses the file based on its content to consider
end of lines 1 in Figure 3.1. We parse the contents into rows by searching for
end of line symbols and never split a row between two blocks. This is in contrast
to standard HDFS which splits a file into HDFS blocks after a constant number
of bytes. For each block the HAIL client parses each row according to the schema
specified by the user4. If HAIL encounters a row that does not match the given
schema (i.e., a bad record), it separates this record into a special part of the data
block. HAIL then converts all HDFS blocks to a binary columnar layout that
resembles PAX 2 . This allows us to index and access individual attributes more
efficiently. The HAIL client also collects metadata information from each HDFS
block (such as the data schema) and creates a block header (Block Metadata) for
each HDFS block 2 .

Alternatively we could naively piggy-back on the existing HDFS upload pipeline

4Alternatively, HAIL can also suggest an appropriate schema to users through schema anal-
ysis.

60

by first storing the original block data as done in Hadoop and then converting it to
binary PAX layout in a second step. However, we would have to re-read and then
re-write each block, which would trigger one extra write and read for each replica,
e.g., for an input file of a 100GB we would have to pay 600GB extra I/O on the
cluster. This would lead to very long upload times. In contrast, HAIL does not
have to pay any of that extra I/O. However, to achieve this dramatic improvement,
we have to make non-trivial changes in the standard Hadoop upload pipeline.

3.3.2 Static Indexing in the Upload Pipeline

To understand the implementation of static indexing in the HAIL upload pipeline,
we first have to analyze the normal HDFS upload pipeline in more detail.
In HDFS, while uploading a block, the data is further partitioned into chunks
of constant size 512B. Chunks are collected into packets. A packet is a sequence
of chunks plus a checksum for each of the chunks. In addition some metadata is
kept. In total a packet has a size of up to 64KB. Immediately before sending the
data over the network, each HDFS block is converted to a sequence of packets. On
disk, HDFS keeps, for each replica, a separate file containing checksums for all of
its chunks. Hence, for each replica two files are created on local disk: one file with
the actual data and one file with its checksums. These checksums are reused by
HDFS whenever data is send over the network. The HDFS client (CL) sends the
first packet of the block to the first datanode (DN1) in the upload pipeline. DN1

splits the packet into two parts: the first contains the actual chunk data, the second
contains the checksums for those chunks. Then DN1 flushes the chunk data to a file
on local disk. The checksums are flushed to an extra file. In parallel DN1 forwards
the packet to DN2 which splits and flushes the data like DN1 and in turn forwards
the packet to DN3 which splits and flushes the data as well. Yet, only DN3 verifies
the checksum for each chunk. If the recomputed checksums for each chunk of a
packet match the received checksums, DN3 acknowledges the packet back to DN2,
which acknowledges back to DN1. Finally, DN1 acknowledges back to CL. Each
datanode also appends its ID to the ACK. Like that only one of the datanodes
(the last in the chain, here DN3 as the replication factor is three) has to verify the
checksums. DN2 believes DN3, DN1 believes DN2, and CL believes DN1. If any
CL or DNi receives ACKs in the wrong order, the upload is considered failed. The
idea of sending multiple packets from CL is to hide the roundtrip latencies of the
individual packets. Creating this chain of ACKs also has the benefit that CL only
receives a single ACK for each packet and not three. Notice, that HDFS provides
this checksum mechanism on top of the existing TCP/IP checksum mechanism
(which has weaker correctness guarantees than HDFS).
In HAIL, in order to reuse as much of the existing HDFS pipeline and yet to
make this efficient, we need to perform the following changes. As before, the

3.3. HAIL Zero-Overhead Static Indexing 61

HAIL client (CL) gets the list of datanodes to use for storing this block from the
HDFS namenode 3 . But rather than sending the original input, CL creates the
PAX block, cuts it into packets 4 , and sends it to DN1 5 . Whenever a datanode
DN1–DN3 receives a packet, it does neither flush its data nor its checksums to
disk. Still, DN1 and DN2 immediately forward the packet to the next datanode
as before 8 . DN3 will verify the checksum of the chunks for the received PAX
block 9 and acknowledge the packet back to DN2 10 . This means the semantics
of an ACK for a packet of a block are changed from “packet received, validated,
and flushed” to “packet received and validated”. We do neither flush the chunks
nor its checksums to disk as we first have to sort the entire block according to
the desired sort key. On each datanode, we assemble the block from all packets
in main memory 6 . This is realistic in practice, since main memories tend to
be >10GB for any modern server. Typically, the size of a block is between 64MB
(default) and 1GB. This means that for the default size we could keep about 150
blocks in main memory at the same time.

In parallel to forwarding and reassembling packets, each datanode sorts the
data, creates indexes, and forms a HAIL Block 7 , (see Section 3.3.4). As
part of this process, each datanode also adds Index Metadata information to each
HAIL block in order to specify the index it created for this block. Each datanode
(e.g., DN1) typically sorts the data inside a block in a different sort order. It
is worth noting that having different sort orders across replicas does not impact
fault-tolerance as all data is reorganized inside the same block only, i.e., data is
not reorganized across blocks. Hence, all replicas of the same HDFS block logi-
cally contain the same records with just a different order and therefore can still
act as logical replacements for each other. Additionally, this property helps HAIL
to preserve the load balancing capabilities of Hadoop. For example, when a datan-
ode containing the replica with matching sort order for a certain job is overloaded,
HAIL might choose to read from a different replica on another datanode, just like
normal Hadoop. To avoid overloading datanodes in the first place, HAIL employs
a round robin strategy for assigning sort orders to physical replicas on top of the
replica placement of HDFS. This means, that while HDFS already cares about dis-
tributing HDFS block replicas across the cluster, HAIL cares about distributing
the sort orders (and hence the indexes) across those replicas.

As soon as a datanode has completed sorting and creating its index, it will
recompute checksums for each chunk of a block. Notice that, checksums will differ
on each replica, as different sort orders and indexes are used. Hence, each datanode
has to compute its own checksums. Then, each datanode flushes the chunks and
newly computed checksums to two separate files on local disk as before. For DN3,
once all chunks and checksums have been flushed to disk, DN3 will acknowledge
the last packet of the block back to DN2 10 . After that DN3 will inform the HDFS

62

namenode about its new replica including its HAIL block size, the created indexes,
and the sort order 11 (see Section 3.3.3). Datanodes DN2 and DN1 append their
ID to each ACK 12 . Then they forward each ACK back in the chain 13 . DN2

and DN1 will forward the last ACK of the block only if all chunks and checksums
have been flushed to their disks. After that DN2 and DN1 individually inform
the HDFS namenode 14 . The HAIL client also verifies that all ACKs arrive in
order 15 .

Notice, that it is important to change the HDFS namenode in order to keep
track of the different sort orders. We discuss these changes in Section 3.3.3.

3.3.3 HDFS Namenode Extensions

In HDFS, the central namenode keeps a directory Dir block of blocks, i.e., a
mapping blockID 7→ Set Of DataNodes. This directory is required by any op-
eration retrieving blocks from HDFS. Hadoop MapReduce exploits Dir block for
scheduling. In Hadoop MapReduce whenever a split needs to be assigned to a
worker in the map phase, the scheduler looks up Dir block in the HDFS namenode
to retrieve the list of datanodes having a replica of the contained HDFS block.
Then, the Hadoop MapReduce scheduler will try to schedule map tasks on those
datanodes if possible. Unfortunately, the HDFS namenode does not differentiate
the replicas w.r.t. their physical layouts. HDFS was simply not designed for this.
Thus, from the point of view of the namenode all replicas are byte-equivalent and
have the same size.
In HAIL, we need to allow Hadoop MapReduce to change the scheduling pro-
cess to schedule map tasks close to replicas having a suitable index — otherwise
Hadoop MapReduce would pick indexes randomly. Hence, we have to enrich the
HDFS namenode to keep additional information about the available indexes. We
do this by keeping an additional directory Dir rep mapping (blockID, datanode)
7→ HAILBlockReplicaInfo. An instance of HAILBlockReplicaInfo contains detailed
information about the types of available indexes for a replica, i.e., indexing key, in-
dex type, size, start offsets, etc. As before, Hadoop MapReduce looks up Dir block
to retrieve the list of datanodes having a replica for a given block. However, in
addition, HAIL looks up the main memory Dir rep to obtain the detailed HAIL-
BlockReplicaInfo for each replica, i.e., one main memory lookup for each replica.
HAILBlockReplicaInfo is then exploited by HAIL to change the scheduling strat-
egy of Hadoop (we will discuss this in detail in Section 3.4).

3.3.4 An Index Structure for Zero-Overhead Indexing

In this section, we briefly discuss our choice of an appropriate index structure
for indexing at minimal costs in HAIL and give some details on our concrete

3.4. HAIL Job Execution 63

implementation.

Why Clustered Indexes? An interesting question is why we focus on clustered in-
dexes. For indexing with minimal overhead, we require an index structure that is
cheap to create in main memory, cheap to write to disk, and cheap to query from
disk. We tried a number of indexes in the beginning of the project — including
coarse-granular indexes and unclustered indexes. After some experimentation we
quickly discovered that sorting and index creation in main memory is so fast that
techniques like partial or coarse-granular sorting do not pay off for HAIL. Whether
you pay three or two seconds for sorting and indexing per block during upload is
hardly noticeable in the overall upload process of HDFS. In addition, a major
problem with unclustered indexes is that they are only competitive for very selec-
tive queries as they may trigger considerable random I/O for non-selective index
traversals. In contrast, clustered indexes do not have that problem. Whatever
the selectivity, we will read the clustered index and scan the qualifying blocks.
Hence, even for very low selectivities the only overhead over a scan is the initial
index node traversal, which is negligible. Moreover, as unclustered indexes are
dense by definition, they require considerably more additional space on disk and
require more write I/O than a sparse clustered index. Thus, using unclustered
indexes would severely affect upload times. Yet, an interesting direction for future
work would be to extend HAIL to support additional indexes that might boost
performance, such as bitmap indexes and inverted lists.

3.4 HAIL Job Execution

We now focus on general job execution in HAIL. First, we present from Bob’s
perspective how he can enhance MapReduce jobs to benefit from HAIL static
indexing (Section 3.4.1). We will explain how Bob can write his MapReduce jobs
(almost) as before and run them exactly as when using Hadoop MapReduce. After
that we analyze from the system’s perspective the standard Hadoop MapReduce
pipeline and then compare how HAIL executes jobs (Section 3.4.2). We will see
that HAIL requires only small changes in the Hadoop MapReduce framework,
which makes HAIL easy to integrate into newer Hadoop versions (Section 3.4.3).
Figure 3.2 shows the query pipeline when Bob runs a MapReduce job on HAIL.
Finally, we briefly discuss the case of selections on unindexed attributes, i.e., when
a job requests a static index that was not created, as motivation for HAIL adaptive
indexing (Section 3.4.4).

64

MapReduce PipelineHadoop MapReduce Pipeline

HDFSHDFS

TaskTrackerJobTrackerJobClient

Split Phase Scheduler Map Phase

for each block block {
 location =
 block .getHostWithIndex(@3);
 createInputSplit(location);
}

for each split split {
 allocate split to closest
 DataNode storing block
}

send
splits[]

allocate
Map Task

chose
computing

Node
read
blocki

DN3 DN4 DN5 DN6 DN7 DNnDN1

...
c ba

blocki blocki blocki

1

2

3

4 6

5

7 store
output

...
@HailQuery(
filter="@3 between(1999-01-01, 2000-01-01)",
projection={@1})
void map(Text k, HailRecord v) {
 output(v.getInt(1), null);
}
...

MapReduce Job
Main Class

map(...)

reduce(...)

write
Job

run
Job

Bob's Perspective System's Perspective

i i
i i

i

HAIL Annotation

Bob
HAILRecordReader

- Index access or full scan
- Post-filtering
- For each record invoke
 map(HailRecord)
- Adaptive indexing?

Figure 3.2: The HAIL query pipeline

3.4.1 Bob’s Perspective

In Hadoop MapReduce, Bob writes a MapReduce job, which includes a job
configuration class, a map function, and a reduce function.
In HAIL, the MapReduce job remains the same (see 1 and 2 in Figure 3.2),
but with three tiny changes:

(1) Bob specifies the HailInputFormat (which uses a HailRecordReader inter-
nally), instead of the default InputFormat, in the main class of the MapRe-
duce job. By doing this, Bob enables his MapReduce job to read HAIL
Blocks (see Section 3.3.2).

(2) Bob annotates his map function to specify the selection predicate and the
projected attributes required by his MapReduce job5. For example, assume
that Bob wants to write a MapReduce job that performs the following SQL
query (example from Introduction):

SELECT sourceIP
FROM U s e r V i s i t s
WHERE v i s i t D a t e BETWEEN ’1999-01-01’ AND ’2000-01-01’

To execute this query in HAIL, Bob adds to his map function a HailQuery
annotation as follows:

@HailQuery (f i l t e r="@3 between(1999-01-01,
2000-01-01)" , p r o j e c t i o n={@1})

5Alternatively, HAIL allows Bob to specify the selection predicate and the projected attributes
in the job configuration class.

3.4. HAIL Job Execution 65

void map(Text key , Text v) { . . . }

Where the literal @3 in the filter value and the literal @1 in the projection
value denote the attribute position in the UserVisits records. In this example
the third attribute (i.e., @3) is visitDate and the first attribute (i.e., @1) is
sourceIP. By annotating his map function as mentioned above, Bob indicates
that he wants to receive in the map function only the projected attribute
values of those tuples qualifying the specified selection predicate. In case
Bob does not specify filter predicates, HAIL will perform a full scan as the
standard Hadoop. At query time, if the HailQuery annotation is set, HAIL
checks (using the Index Metadata of a data block) whether an index exists
on the filter attribute. Using such an index allows us to speed up the job
execution. HAIL also uses the Block Metadata to determine the schema of
a data block. This allows HAIL to read the attributes specified in the filter
and projection parameters only.

(3) Bob uses a HailRecord object as input value in the map function. This allows
Bob to directly read the projected attributes without splitting the record
into attributes as he would do it in the standard Hadoop MapReduce. For
example, using standard Hadoop MapReduce Bob would write the following
map function to perform the above SQL query:

Map Function for Hadoop MapReduce (pseudo-code):

void map(Text key , Text v) {
St r ing [] a t t r = v . t oS t r i ng () . s p l i t (",") ;
if (DateUt i l s . isBetween (a t t r [2] ,

"1999-01-01" , "2000-01-01"))
output (a t t r [0] , null) ;

}

Using HAIL Bob writes the following map function:

Map Function for HAIL:

void map(Text key , HailRecord v) {
output (v . g e t In t (1) , null) ;

}

Notice that, Bob now does not have to filter out the incoming records, be-
cause this is automatically handled by HAIL via the HailQuery annotation
(as mentioned earlier). This annotation is illustrated in Figure 3.2.

66

3.4.2 System Perspective

In Hadoop MapReduce, when Bob submits a MapReduce job a JobClient in-
stance is created. The main goal of the JobClient is to copy all the resources needed
to run the MapReduce job (e.g. metadata and job class files). But also, the Job-
Client fetches all the block metadata (BlockLocation[]) of the input dataset. Then,
the JobClient logically breaks the input into smaller pieces called input splits (split
phase in Figure 3.2) as defined in the InputFormat. By default, the JobClient
computes input splits such that each input split maps to a distinct HDFS block.
An input split defines the input of a map task while an HDFS block is a horizontal
partition of a dataset stored in HDFS (see Section 3.3.1 for details on how HDFS
stores datasets). For scheduling purposes, the JobClient retrieves for each input
split all datanode locations having a replica of that HDFS block. This is done by
calling getHosts() of each BlockLocation. For instance, in Figure 3.2, datanodes
DN3, DN5, and DN7 are the split locations for split42 since block42 is stored on
such datanodes.

After this split phase, the JobClient submits the job to the JobTracker with the
set of input splits to process 3 . Among other operations, the JobTracker creates a
map task for each input split. Then, for each map task, the JobTracker decides on
which computing node to schedule the map task, using the split locations 4 . This
decision is based on data-locality and availability [26]. After this, the JobTracker
allocates the map task to the TaskTracker (which performs map and reduce tasks)
running on that computing node 5 .

Only then, the map task can start processing its input split. The map task
uses a RecordReader UDF in order to read its input data blocki from the closest
datanode 6 . Interestingly, it is the local HDFS client running on the node where
the map task is running that decides from which datanode a map task will read
its input — and not the Hadoop MapReduce scheduler. This is done when the
RecordReader asks for the input stream pointing to blocki. It is worth noticing
that the HDFS client chooses a datanode from the set of all datanodes storing a
replica of block42 (via the getHosts() method) rather than from the locations given
by the input split. This means that a map task might eventually end up reading its
input data from a remote node even though it is available locally. Once the input
stream is opened, the RecordReader breaks block42 into records and makes a call
to the map function for each record. Assuming that the MapReduce job consists
of a map phase only, the map task then writes its output back to the HDFS 7 .
See [28, 92, 27] for more details on the MapReduce execution pipeline.

In HAIL, it is crucial to be non-intrusive to the standard Hadoop execution
pipeline so that users run MapReduce jobs exactly as before. However, support-
ing per-replica indexes in an efficient way and without significant changes to the
standard execution pipeline is challenging for several reasons. First, the JobClient

3.4. HAIL Job Execution 67

cannot simply create input splits based only on the default block size as each HDFS
block replica has a different size (because of indexes). Second, the JobTracker can
no longer schedule map tasks based on data-locality and nodes availability only.
The JobTracker now has to consider the existing indexes for each HDFS block.
Third, the RecordReader has to perform either index access or full scan of HDFS
blocks without any interaction with users, e.g. depending on the availability of
suitable indexes. Fourth, the HDFS client cannot open an input stream to a given
HDFS block based on data-locality and nodes availability only anymore: it has
to consider index locality and availability as well. HAIL overcomes these issues
by mainly providing two UDFs: the HailInputFormat and the HailRecordReader.
Notice, that by using UDFs we allow HAIL to be easy to integrate into newer
versions of Hadoop MapReduce. We discuss these two UDFs in the following.

3.4.3 HailInputFormat and HailRecordReader

HAILInputFormat implements a different splitting strategy than standard In-
putFormats. This strategy allows HAIL to reduce the number of map waves per
job, i.e., the maximum number of map tasks per map slot required to complete
this job. Thereby, the total scheduling overhead of MapReduce jobs is drastically
reduced. We discuss the details of the HAIL Splitting strategy in Section 3.7.
HAILRecordReader is responsible for retrieving the records that satisfy the
selection predicate of MapReduce jobs (as illustrated in the MapReduce Pipeline
of Figure 3.2). Those records are then passed to the map function. For example
in Bob’s query of Section 3.4.1, we need to find all records having a visitDate
between 1999-01-01 and 2000-01-01. To do so, for each data block required by the
job, we first try to open an input stream to a block replica having the required in-
dex. For this, HAIL instructs the local HDFS Client to use the newly introduced
getHostsWithIndex() method of each BlockLocation so as to choose the closest
datanode with the desired index. Let us first focus on the case where a suitable,
statically created index is available so that HAIL can open an input stream to an
indexed replica. Once that input stream has been opened, we use the information
about selection predicates and attribute projections from the HailQuery annota-
tion or from the job configuration file. When performing an index-scan, we read
the index entirely into main memory (typically a few KB) to perform an index
lookup. This also implies reading the qualifying block parts from disk into main
memory and post-filtering records (see Section 3.3.4). Then, we reconstruct the
projected attributes of qualifying tuples from PAX to row layout. In case that no
projection was specified by users, we then reconstruct all attributes. Finally, we
make a call to the map function for each qualifying tuple. For bad records (see
Section 3.3.1), HAIL passes them directly to the map function, which in turn has
to deal with them (just like in standard Hadoop MapReduce). For this, HAIL

68

passes a record to the map function with a flag to indicate if a record is bad or
not.

3.4.4 Problem: Missing Static Indexes

Finally, let us now discuss the second case when Bob submits a job which filters
on an unindexed attribute (e.g. on duration). Here, the HailRecordReader must
completely scan the required attributes of unindexed blocks, apply the selection
predicate and perform tuple reconstruction. Notice that, with static indexing,
there is no way for HAIL to overcome the problem of missing indexes efficiently.
This means that when the attributes used in the selection predicates of the work-
load change over time, the only way to adapt the set of available indexes is to
upload the data again. However, this has the significant overhead of an addi-
tional upload, which goes against the principle of zero-overhead indexing. Thus,
HAIL introduces an adaptive indexing technique that offers a much more elegant
and efficient solution to this problem. We discuss this technique in the following
Section.

3.5 HAIL Zero-Overhead Adaptive Indexing

We now discuss the adaptive indexing pipeline of HAIL. The core idea is to cre-
ate missing but promising indexes as byproducts of full scans in the map phase
of MapReduce jobs. Similar to the static indexing pipeline, our goal is again to
come closer towards zero overhead indexing. Therefore, we adopt two important
principles from our static indexing pipeline. First, we piggyback again on a proce-
dure that is naturally reading data from disk to main memory. This allows HAIL
to completely save the data read cost for adaptive index creation. Second, as
map tasks are usually I/O-bound, HAIL again exploits unused CPU time when
computing clustered indexes in parallel to job execution.

In Section 3.5.1, we start with a general overview of the HAIL adaptive indexing
pipeline. In Section 3.5.2, we focus on the internal components for building and
storing clustered indexes incrementally. In Section 3.5.3, we present how HAIL
accesses the indexes created at job runtime in a way that is transparent to the
MapReduce job execution pipeline. Finally, in Section 3.6, we introduce three
additional adaptive indexing techniques that make the indexing overhead over
MapReduce jobs almost invisible to users.

3.5. HAIL Zero-Overhead Adaptive Indexing 69

Detail View of TaskTracker 5

AdaptiveIndexerHAILRecordReader

HAIL
Input
Split

5
m

Mapper

map(K, V)
{...}

3

map block

process

1

NameNode

TaskTracker 3

HDFS

Map
Reduce

...
Pseudo
Block 42
Replica

d

2 6

+

read
TaskTracker 5

pass to indexer

Block 42
Block Metadata
Index Metadata

Index a
0000000101...a
1101001101...b
1010101101...c
0111100111...d 4

7

...DN 3

c

DN 5 DN 7

b

Block 42
Replica

a

Block 42
Replica

Block 42
Replica

write
TaskTracker 7

register

Block 42
Block Metadata
Index Metadata

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d

Figure 3.3: HAIL adaptive indexing pipeline.

3.5.1 HAIL Adaptive Indexing in the Execution Pipeline

For our motivating example, let’s assume Bob continues to analyze his logs and
notices some suspicious activities, e.g. many user visits with very short duration,
indicating spam bot activities. Therefore, Bob suddenly needs different jobs for
his analysis that selects user visits with short durations. However, recall that
unfortunately he did not create a static index on attribute duration at upload
time which would help for these new jobs. In general, as soon as Bob (or one of his
colleagues) sends a new job (say jobd) with a selection predicate on an unindexed
attribute (e.g. on attribute duration, which we will denote as d in the following.),
HAIL cannot benefit from index scans anymore. However, HAIL takes these jobs
as hints on how to adaptively improve the repertoire of indexes for future jobs.
HAIL piggybacks the creation of a clustered index over attribute duration on the
execution of jobd. Without any loss of generality, we assume that jobd projects all
attributes from its input dataset.

Figure 3.3 illustrates the general workflow of the HAIL adaptive indexing
pipeline. The figure shows how HAIL processes map tasks of jobd when no suit-
able index is available (i.e., when performing a full scan) in more detail. As soon

70

as HAIL schedules a map task to a specific TaskTracker6, e.g. TaskTracker 5, the
HAILRecordReader of the map task first reads the metadata from the HAILInput-
Split 1 7. With this metadata, the HAILRecordReader checks whether a suitable
index is available for its input data block (say block42). As no index on attribute
d is available, the HAILRecordReader simply opens an input stream to the local
replica of block42 stored on DataNode 5. Then, the HAILRecordReader: (i) loads
all values of the attributes required by jobd from disk to main memory 2 ; (ii) re-
constructs records (as our HDFS blocks are in columnar layout); and (iii) feeds the
map function with each record 3 . Here lies the beauty of HAIL: an HDFS block
that is a potential candidate for indexing was completely transferred to main mem-
ory as part of the job execution process. In addition to feeding the entire block42
to the map function, HAIL can create a clustered index on attribute d to speed
up future jobs. For this, the HAILRecordReader passes block42 to the AdaptiveIn-
dexer as soon as the map function finished processing this data block 4 .8 The
AdaptiveIndexer, in turn, sorts the data in block42 according to attribute d, aligns
other attributes through reordering, and creates a sparse clustered index 5 .
Finally, the AdaptiveIndexer stores this index with a copy of block42 (sorted on
attribute d) as a pseudo data block replica 6 . Additionally, the AdaptiveIndexer
registers the new created index for block42 with the HDFS NameNode 7 . In
fact, the implementation of the adaptive indexing pipeline solves some interesting
technical challenges. We discuss the pipeline in more detail in the remainder of
this section.

3.5.2 AdaptiveIndexer

Adaptive indexing is an automatic process that is not explicitly requested by users
and therefore should not unexpectedly impose significant performance penalties on
users’ jobs. Piggybacking adaptive indexing on map tasks allows us to completely
save the read I/O-cost. However, the indexing effort is shifted to query time. As
a result, any additional time involved in indexing will potentially add to the total
runtime of MapReduce jobs. Therefore, the first concern of HAIL is: how to make
adaptive index creation efficient?

To overcome this issue, the idea of HAIL is to run the mapping and index-
ing processes in parallel. However, interleaving map task execution with indexing
bears the risk of race conditions between map tasks and the AdaptiveIndexer on
the data block. In other words, the AdaptiveIndexer might potentially reorder

6A Hadoop instance responsible to execute map and reduce tasks.
7That was obtained from the HAILInputFormat via getSplits().
8Notice that, all map tasks (even from different MapReduce jobs) running on the same node

interact with the same AdaptiveIndexer instance. Hence, the AdaptiveIndexer can end up by
indexing data blocks from different MapReduce jobs at the same time.

3.5. HAIL Zero-Overhead Adaptive Indexing 71

data inside a data block, while the map task is still concurrently reading the data
block. One might think about copying data blocks before indexing to deal with
this issue. Nevertheless, this would entail the additional runtime and memory
overhead of copying such memory chunks. For this reason, HAIL does not inter-
leave the mapping and indexing processes on the same data block. Instead, HAIL
interleaves the indexing of a given data block (e.g. block42) with the mapping phase
of the succeeding data block (e.g. block43), i.e. , HAIL keeps two HDFS blocks in
memory at the same time. For this, HAIL uses a producer-consumer pattern: a
map task acts as producer by offering a data block to the AdaptiveIndexer, via a
bounded blocking queue, as soon as it finishes processing the data block; in turn,
the AdaptiveIndexer is constantly consuming data blocks from this queue. As a
result, HAIL can perfectly interleave map tasks with indexing, except for the first
and last data block to process in each node. It is worth noting that the queue
exposed by the AdaptiveIndexer is allowed to reject data blocks in case a certain
limit of enqueued data blocks is exceeded. This prevents the AdaptiveIndexer to
run out of memory because of overload. Still, future MapReduce jobs with a se-
lection predicate on the same attribute (i.e., on attribute d) can at their turn take
care of indexing the rejected data blocks. Once the AdaptiveIndexer pulls a data
block from its queue, it processes the data block using two internal components:
the IndexBuilder and the IndexWriter. Figure 3.4 illustrates the pipeline of these
two internal components, which we discuss in the following.

The IndexBuilder is a daemon thread that is responsible for creating sparse clus-
tered indexes on data blocks in the data queue. With this aim, the IndexBuilder
is constantly pulling one data block after another from the data block queue, as
depicted in 1 . Then, for each data block, the IndexBuilder starts with sorting
the attribute column to index (attribute d in our example) 2 . Additionally, the
IndexBuilder builds a mapping {old position 7→ new position} for all values as a
permutation vector. After that, the IndexBuilder uses the permutation vector to
reorder all other attributes in the offered data block 3 . Once the IndexBuilder
finishes sorting the entire data block on attribute d, it builds a sparse clustered
index on attribute d 4 . Then, the IndexBuilder passes the newly indexed data
block to the IndexWriter 5 . The IndexBuilder also communicates with the In-
dexWriter via a blocking queue. This allows HAIL to parallelise indexing with the
I/O process for storing newly indexed data blocks.

The IndexWriter is another daemon thread and responsible for persisting indexes
created by the IndexBuilder to disk. The IndexWriter continuously pulls newly
indexed data blocks from its queue in order to persist them on HDFS 6 . Once
the IndexWriter pulls a newly indexed data block (say block42), it creates the
block metadata and index metadata for block42 7 . Notice that a newly indexed
data block is just another replica of the logical data block, but with a different

72

AdaptiveIndexer

IndexBuilderDaemon

Block 42

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d

IndexWriterDaemon

Block 42
Block Metadata
Index Metadata

Index a
0000000101...a
1101001101...b
1010101101...c
0111100111...d

Blocking Queue

offer take

Blocking Queue

put

1 5 7

8

1100101011...c
0101101000...b
0111010101...a

d 0000000011...
Sort + PV

Reorder

Index d

0111100111...d

1101001101...b
1010101101...c

0010011101...a

0➤23|1➤42|2➤7|…

Sparse Index

process

2

3

4

register

NameNode

Block 42
Block Metadata
Index Metadata

Index
0111010101...a
0101101000...b
1100101011...c
0000000011...d

d
take

9

DataNode 5

Blk 42

a
Blk 42

d

sto
re

Pseudo

BLK 42
DN1 : c
DN5 : a, d
DNn : b

6

Figure 3.4: AdaptiveIndexer internals.

sort order. For instance, in our example of Section 3.5.1, creating an index on
attribute d for block42 leads to having four data block replicas for block42: one
replica for each of the first four attributes. The IndexWriter creates a pseudo data
block replica 8 and registers the new index with the NameNode 9 . This allows
HAIL to consider the newly created indexes in future jobs. In the following we
discuss pseudo data block replicas in more detail.

3.5.3 Pseudo Data Block Replicas

The IndexWriter could simply write a new indexed data block as another replica.
However, HDFS supports data block replication only at the file level, i.e., HDFS
replicates all the data blocks of a given dataset the same number of times. This goes
against the incremental nature of HAIL. A pseudo data block replica is basically
a logical copy of a data block and allows HAIL to keep a different replication
factor on a block basis rather than on a file basis. Therefore, we store each pseudo
data block replica in a new HDFS file with replication factor one. Hence, the
NameNode does not recognise it as a normal data block replica and instead simply
sees the pseudo data block replica as another index available for the HDFS block.
To avoid shipping across nodes, each IndexWriter aims at storing the pseudo data
block replicas locally. The created HDFS files follow a naming convention, which

3.5. HAIL Zero-Overhead Adaptive Indexing 73

includes the block id and the index attribute, to uniquely identify a pseudo data
block replica.

As pseudo data block replicas are stored in different HDFS files than normal
data block replicas, three important questions arise:
How to access pseudo data block replicas in an invisible way for users? HAIL
achieves this transparency via the HAILRecordReader. Users continue annotat-
ing their map functions (with selection predicates and projections). Then, the
HAILRecordReader takes care of automatically switching from normal to pseudo
data block replicas. For this, the HAILRecordReader uses the HAILInputStream,
a wrapper of the Hadoop FSInputStream.
How to manage and limit the storage space consumed by the pseudo data block
replicas? This question is related to optimization problems from physical database
design, i.e. index selection. Given a certain storage budget, the question is which
indexes for an HDFS block to drop, to achieve the highest workload benefit without
exceeding the storage constraint? Solving this problem is beyond the scope of this
chapter and is subject of the following chapter, Chapter 4.
How does the amount of relatively small files created for pseudo data block replicas
impact HDFS performance? The metadata storage overhead for each file entry with
one associated block in the NameNode is about 150 bytes. This means, that given
6GB of free heap space on the NameNode and an HDFS block size of 256MB, HAIL
can support more than 10PB of data in pseudo block replicas. Additionally, future
Hadoop versions will support a federation of NameNodes to increase capacity,
availability, and load balancing. This would alleviate the mentioned problem even
further. Furthermore, sequential read performance of a file that is stored in pseudo
data block replicas matches the performance of normal HDFS files. This is because
the involved amount of seeks and DataNode hops for switching between pseudo
data block replicas is comparable to reading over block boundaries when scanning
normal HDFS files.

3.5.4 HAIL RecordReader Internals

Figure 3.5 illustrates the internal pipeline of the HAILRecordReader when pro-
cessing a given HAILInputSplit. When a map task starts, the HAILRecordReader
first reads the metadata of its HAILInputSplit in order to check if there exists a
suitable index to process the input data block (block42) 1 . If a suitable index is
available, the HAILRecordReader initialises the HAILInputStream with the selec-
tion predicate of jobd as a parameter 2 . Internally, the HAILInputStream checks
if the index resides in a normal or pseudo data block replica 3 . This allows the
HAILInputStream to open an input stream to the right HDFS file. This is because
normal and pseudo data block replicas are stored in different HDFS files. While all
normal data block replicas belong to the same HDFS file, each pseudo data block

74

Job

Selection

Projection
a|b|c|d

d == 23

HAILRecordReader
Open InputStream

Block 42
a

Replica 1

Block 43
a

Replica 1

Block 42
b

Replica 2
c

Replica 3

Block 42

Block 43
b

Replica 2
c

Replica 3

Block 43

/in/data1

Block 42
d

Pseudo
/ai/blk_42/d

Block 43
d

Pseudo
/ai/blk_43/d Ps

eu
do

 B
lo

ck
 R

ep
lic

as

HD
FS

 B
lo

ck
 R

ep
lic

as

HDFS

Index ?

HadoopInputStream

Any HDFS Replica

only Tuples 1024-2048

Matching
HDFS Replica

Matching
Pseudo Replica

No Yes

HAILInputStream

Adaptive?

offset = 0offset = 4711

HAILInputSplit

BID
42

OFF
4711

INDEX
[a,b,c]

/in/data1
PATH

PSEUDO[d]

Index
Metadata

Block
Metadata

 dIndex

Block
Metadata

all Tuples

1

3

4

6

 m
ap

m
Filter

d == 23

8
for each Tuple

01110101...a
01011010...b
11001010...c
00000000...d

0101a
1000b
1010c

d 00112

5

7

Figure 3.5: HAILRecordReader internals.

replica belongs to a different HDFS file 4 . In our example the index on attribute
d for block42 resides in a pseudo data block replica. Therefore, the HAILInput-
Stream opens an input stream to the HDFS file path /pseudo/blk 42/d 5 . As
a result, the HAILRecordReader does not care from which file it is reading, since
normal and pseudo data block replicas have the same format. Therefore, switching
between a normal and a pseudo data block replica is not only invisible to users,
but also to the HAILRecordReader. The HAILRecordReader just reads the block
and index metadata using the HAILInputStream 6 . After performing an index
lookup for the selection predicate of jobd, the HAILRecordReader loads only the
projected attributes (a, b, c, and d) from the qualifying tuples (e.g. tuples with
rowIDs in 1024 – 2048) 7 . Finally, the HAILRecordReader forms key/value-pairs
and passes only qualifying pairs to the map function 8 .

3.6. Adaptive Indexing Strategies 75

In case that no suitable index exists, the HAILRecordReader takes the Hadoop
InputStream, which opens an input stream to any normal data block replica, and
falls back to full scan (like standard Hadoop MapReduce).

3.6 Adaptive Indexing Strategies

In the previous section we discussed the core principles of the HAIL adaptive
indexing pipeline. Now, we introduce three strategies that allow HAIL to improve
the performance of MapReduce jobs. We first present lazy adaptive indexing and
eager adaptive indexing, two techniques that allow HAIL to control its incremental
indexing mechanism with respect to runtime overhead and convergence rate. We
then discuss how HAIL can prioritise data blocks for indexing based on their
selectivity. Finally, we introduce selectivity-based indexing, a technique to decide
which blocks to offer to the adaptive indexer based on job selectivity.

3.6.1 Lazy Adaptive Indexing

The blocking queues used by the AdaptiveIndexer allow us to easily protect HAIL
against CPU overloading. However, writing pseudo data block replicas can also
slow down the parallel read and write processes of MapReduce jobs. In fact,
the negative impact of extra I/O operations can be high, as MapReduce jobs are
typically I/O-bound. As a result, HAIL as a whole might become slower even if
the AdaptiveIndexer can computationally keep up with the job execution. So, the
question that arises is: how to write pseudo data block replicas efficiently?

HAIL solves this problem by making indexing incremental, i.e., HAIL spreads
index creation over multiple MapReduce jobs. The goal is to balance index creation
cost over multiple MapReduce jobs so that users perceive small (or no) overhead
in their jobs. To do so, HAIL uses an offer rate, which is a ratio that limits the
maximum number of pseudo data block replicas (i.e., number of data blocks to
index) to create during a single MapReduce job. For example, using an offer rate
of 10%, HAIL indexes in a single MapReduce job at maximum one data block
out of ten processed data blocks (i.e., HAIL only indexes 10% of the total data
blocks). Notice that, consecutive adaptive indexing jobs with selections on the
same attribute already benefit from pseudo data block replicas created during
previous jobs. This strategy has two major advantages. First, HAIL can reduce
the additional I/O introduced by indexing to a level that is acceptable for the user.
Second, the indexing effort done by HAIL for a certain attribute is proportional to
the number of times a selection is performed on that attribute. Another advantage
of using an offer rate is that users can decide how fast they want to converge to
a complete index, i.e., all data blocks are indexed. For instance, using an offer

76

rate of 10%, HAIL would require 10 MapReduce jobs with a selection predicate
on the same attribute to converge to a complete index (i.e. until all HDFS blocks
are fully indexed). Like that, on the one hand, the investment in terms of time
and space for MapReduce jobs with selection predicates on unfrequent attributes
is minimized. On the other hand, MapReduce jobs with selection predicates on
frequent attributes quickly converge to a completely indexed copy.

3.6.2 Eager Adaptive Indexing

Lazy adaptive indexing allows HAIL to easily throttle down adaptive indexing
efforts to an acceptable (or even invisible) degree for users (see Section 3.6.1).
However, let us make two important observations that could make a constant offer
rate not desirable for certain users:

1. Using a constant offer rate, the job runtime of consecutive MapReduce jobs
having a filter condition on the same attribute is not constant. Instead, they
have an almost linearly decreasing runtime up to the point where all blocks
are indexed. This is because the first MapReduce job is the only one to
perform a full scan over all the data blocks of a given dataset. Consecutive
jobs, even when indexing and storing the same amount of blocks, are likely
to run faster as they benefit from all indexing work of their predecessors.

2. HAIL actually delays indexing by using an offer rate. The tradeoff here
is that using a lower offer rate leads to a lower indexing overhead, but it
requires more MapReduce jobs to index all the data blocks in a given dataset.
However, some users might want to limit the experienced indexing overhead
and still desire to benefit from complete indexing as soon as possible.

Therefore, we propose an eager adaptive indexing strategy to deal with this
problem. The basic idea of eager adaptive indexing is to dynamically adapt the
offer rate for MapReduce jobs according to the indexing work achieved by previous
jobs. In other words, eager adaptive indexing tries to exploit the saved runtime
and reinvest it as much as possible into further indexing. To do so, HAIL first
needs to estimate the runtime gain (in a given MapReduce job) from performing
an index scan on the already created pseudo data block replicas. For this, HAIL
uses a cost model to estimate the total runtime, Tjob, of a given MapReduce job
(Equation 3.1). Table 3.1 lists the parameters we use in the cost model.

Tjob = Tis + tfsw · nfsw + TidxOverhead. (3.1)

We define the number of map waves performing a full scan, nfsw, as
dnblocks−nidxBlocks

nslots
e. Intuitively, the total runtime Tjob of a job consists of three

3.6. Adaptive Indexing Strategies 77

Table 3.1: Cost model parameters.

Notation Description
nslots The number of map tasks that

can run in parallel in a given
Hadoop cluster

nblocks The number of data blocks of a
given dataset

nidxBlocks The number of blocks with a rel-
evant index

nfsw The number of map waves per-
forming a full scan

tfsw The average runtime of a map
wave performing a full scan (with-
out adaptive indexing overhead)

tidxOverhead The average time overhead of
adaptive indexing in a map wave

TidxOverhead The total time overhead of adap-
tive indexing

Tis The total runtime of the map
waves performing an index scan

Tjob The total runtime of a given job
Ttarget The targeted total job runtime
ρ The ratio of data blocks

(w.r.t. nblocks) offered to
the AdaptiveIndexer

parts. First, the time required by HAIL to process the existing pseudo data block
replicas, i.e., all data blocks having a relevant index, Tis. Second, the time required
by HAIL to process the data blocks without a relevant index, tfsw ·nfsw. Third, the
time overhead caused by adaptive indexing, TidxOverhead.

9 This overhead depends
on the number of data blocks that are offered to the AdaptiveIndexer and the av-
erage time overhead observed for indexing a block. Formally, we define TidxOverhead
as follows:

TidxOverhead = tidxOverhead ·min
(
ρ ·
⌈
nblocks

nslots

⌉
, nfsw

)
. (3.2)

9It is worth noting that TidxOverhead denotes only the additional runtime that a MapReduce
job has due to adaptive indexing.

78

We can use this model to automatically calculate the offer rate ρ in order to keep
the adaptive indexing overhead acceptable for users. Formally, from Equations 3.1
and 3.2, we deduct ρ as follows:

ρ =
Ttarget − Tis − tfsw · nfsw
tidxOverhead · dnblocks

nslots
e

.

Therefore, given a target job runtime Ttarget, HAIL can automatically set ρ
in order to fully spent its time budget for creating indexes and use the gained
runtime in the next jobs either to speed up the jobs or to create even more indexes.
Usually, we choose Ttarget to be equal to the runtime of the very first job so that
users can observe a stable runtime till almost everything is indexed. However,
users can set Ttarget to any time budget in order to adapt the indexing effort to
their needs. Notice that, since already indexed pseudo data block replicas are
not offered again to the AdaptiveIndexer, HAIL first processes pseudo data block
replicas and measures Tis, before deciding what offer rate to use for the unindexed
blocks. The times tfsw (from Equation 3.1) and tidxOverhead (from Equation 3.2)
can be measured in a calibration job or given by users.

On the one hand, HAIL can now adapt the offer rates to the performance gains
obtained from performing index scans over the already indexed data blocks. On
the other hand, by gradually increasing the offer rate, eager adaptive indexing
prioritises complete index convergence over early runtime improvements for users.
Thus, users no longer experience an incremental and linear speed up in job perfor-
mance until the index is eventually complete, but instead they experience a sharp
improvement when HAIL approaches to a complete index. In summary, besides
limiting the overhead of adaptive indexing, the offer rate can also be considered
as a tuning knob to trade early runtime improvements with faster indexing.

3.6.3 Selectivity-based Adaptive Indexing

Earlier, we saw that HAIL uses an offer rate to limit the number of data blocks
to index in a single MapReduce job. For this, HAIL uses a round robin policy
to select the data blocks to pass to the AdaptiveIndexer. This sounds reasonable
under the assumption that data is uniformly distributed. However, datasets are
typically skewed in practice and hence some data blocks might contains more qual-
ifying tuples than others under a given query workload. Consequently, indexing
highly selective data blocks before other data blocks promises higher performance
benefits.

Therefore, HAIL can also use a selectivity-based data block selection approach
for deciding which data blocks to use. The overall goal is to optimize the use of
available computing resources. In order to maximize the expected performance

3.7. HAIL Splitting and Scheduling 79

improvement for future MapReduce jobs running on partially indexed datasets,
we prioritize HDFS blocks with a higher selectivity. The big advantage of this
approach is that users can perceive higher improvements in performance for their
MapReduce jobs from the very first runs. Additionally, as a side-effect of using
this approach, HAIL can adapt faster to the selection predicates of MapReduce
jobs.

However, how can HAIL efficiently obtain the selectivities of data blocks? For
this, HAIL exploits the natural process of map tasks to propose data blocks to the
AdaptiveIndexer. Recall that a map task passes a data block to the AdaptiveIn-
dexer once the map task finished processing the block. Thus, HAIL can obtain the
accurate selectivity of a data block by piggybacking on the map phase: when the
data block is filtered according to the provided selection predicate. This allows
HAIL to have perfect knowledge about selectivities for free. Given the selectivity
of a data block, HAIL can decide if it is worth to index the data block or not.
In our current HAIL prototype, a map task proposes a data block to the Adap-
tiveIndexer if the percentage of qualifying tuples in the data block is at most 80%.
However, users can adapt this threshold to their applications. Notice that with
the statistics on data block selectivities, HAIL can also decide which indexes to
drop in case of storage limitations. However, a discussion on an index eviction
strategy is out of the scope of this chapter.

3.7 HAIL Splitting and Scheduling

We now discuss how HAIL creates and schedules map tasks for any incoming
MapReduce job.

In contrast to the Hadoop MapReduce InputFormat, the HailInputFormat uses
a more elaborate splitting policy, called HailSplitting. The overall idea of HailSplit-
ting is to map one input split to several data blocks whenever a MapReduce job
performs an index scan over its input. In the beginning, HailSplitting divides all
input data blocks into two groups Bi and Bn. Where Bi contains blocks that have
at least one replica with a matching index (i.e., having a relevant replica) and Bn

contains blocks with no relevant replica. Then, the main goal of the HailSplitting
is to combine several data blocks from Bi into one input split. For this, HailSplit-
ting first partitions data blocks from Bi according to the locations of their relevant
replica in order to improve data locality. As a result of this process, HailSplitting
produces as many partitions of blocks as there are datanodes storing at least one
indexed block of the given input. Then, for each partition of data blocks, Hail-
Splitting creates as many input splits as there exists map slots per TaskTracker.
Thus, HAIL reduces the number of map tasks and hence reduces the aggregated
costs of initializing and finalizing map tasks.

80

The reader might think that using several blocks per input split may signifi-
cantly impact failover. However, this is not true since tasks performing an index
scan are relatively short running. Therefore, the probability that one node fails
in this period of time is very low [77]. Still, in case a node fails in this period
of time, HAIL simply reschedules the failed map tasks, which results only in a
few seconds overhead anyways. Optionally, HAIL could apply the checkpointing
techniques proposed in [77] in order to improve failover. We will study these in-
teresting aspects in a future work. The reader might also think that performance
could be negatively impacted in case that data locality is not achieved for several
map tasks. However, fetching small parts of blocks through the network (which is
the case when using index scan) is negligible [56]. Moreover, one can significantly
improve data locality by simply using an adequate scheduling policy (e.g. the
Delay Scheduler [95]). If no relevant index exists, HAIL scheduling falls back to
standard Hadoop scheduling by optimizing data locality only.

For all data blocks in Bn, HAIL creates one map task per unindexed data
block just like standard Hadoop. Then, for each map task, HAIL considers r
different computing nodes as possible locations to schedule a map task, where r
is the replication factor of the input dataset. However, in contrast to original
Hadoop, HAIL prefers to assign map tasks to those nodes that currently store less
indexes than the average. Since HAIL stores pseudo data block replicas local to
the map tasks that created them, this scheduling strategy results in a balanced
index placement and allows HAIL to better parallelize index access for future
MapReduce jobs.

3.8 Related Work

HAIL uses PAX [8] as data layout for HDFS block, i.e., a columnar layout inside
the HDFS block. PAX was originally invented for cache-conscious processing, but
it has been adapted in the context of MapReduce [24]. In our previous work [56], we
showed how to improve over PAX by computing different layouts on the different
replicas, but we did not consider indexing. This chapter fills this gap.

Static Indexing. Indexing is a crucial step in all major DBMSs [33, 22, 6, 20, 23].
The overall idea behind all these approaches is to analyze a query workload and
to statically decide which attributes to index based on these observations. Sev-
eral research works have focused on supporting index access in MapReduce work-
flows [94, 64, 28, 54]. However, all these offline approaches have three big disad-
vantages. First, they incur a high upfront indexing cost that several applications
cannot afford (such as scientific applications). Second, they only create a single
clustered index per dataset, which is not suitable for query workloads having se-
lection predicates on different attributes. Third, they cannot adapt to changes in

3.8. Related Work 81

workloads without the intervention of a DBA.

Online Indexing. Tuning a database at upload time has become harder as query
workloads become more dynamic and complex. Thus, different DBMSs started to
use online tuning tools to attack the problem of dynamic workloads [83, 18, 19, 66].
The idea is to continuously monitor the performance of the system and create (or
drop) indexes as soon as it is considered beneficial. Manimal [21, 52] can be used as
an online indexing approach for automatically optimizing MapReduce jobs. The
idea of Manimal is to generate a MapReduce job for index creation as soon as
an incoming MapReduce job has a selection predicate on an unindexed attribute.
Online indexing can then adapt to query workloads. However, online indexing
techniques, require us to index a dataset completely in one pass. Therefore, online
indexing techniques simply transfer the high cost of index creation from upload
time to query processing time.

Adaptive Indexing. HAIL is inspired by database cracking [47] which aims at
removing the high upfront cost barrier of index creation. The main idea of database
cracking is to start organising a given attribute (i.e., to create an adaptive index on
an attribute) when it receives for the first time a query with a selection predicate
on that attribute. Thus, future incoming queries having predicates on the same
attribute continue refining the adaptive index as long as finer granularity of key
ranges is advantageous. Key ranges in an adaptive index are disjoint, where keys
in each key range are unsorted. Basically, adaptive indexing performs for each
query one step of quicksort using the selection predicates as pivot for partitioning
attributes. HAIL differs from adaptive indexing in four aspects. First, HAIL
creates a clustered index for each data block and hence avoids any data shuffling
across data blocks. This allows HAIL to preserve Hadoop fault-tolerance. Second,
HAIL considers disk-based systems and thus it factors in the cost of reorganising
data inside data blocks. Third, HAIL parallelises the indexing effort across several
computing nodes to minimise the indexing overhead. Fourth, HAIL focuses on
creating clustered indexes instead of unclustered indexes. A follow-up work [48]
focuses on lazily aligning attributes to converge into a clustered index after a
certain number of queries. However, it considers a main memory system and hence
does not factor in the I/O-cost for moving data many times on disk. Other works
on adaptive indexing in main memory databases have focused on updates [49],
concurrency control [37], and robustness [43], but these works are orthogonal to
the problem we address in this chapter.

Adaptive Merging. Another related work to HAIL is the adaptive merging [38].
This approach uses standard B-trees to persist intermediate results during an ex-
ternal sort. Then, it only merges those key ranges that are relevant to queries.
In other words, adaptive merging incrementally performs external sort steps as a
side effect of query processing. However, this approach cannot be applied directly

82

for MapReduce workflows for three reasons. First, like adaptive indexing, this ap-
proach creates unclustered indexes. Second, merging data in MapReduce destroys
Hadoop fault-tolerance and hurts the performance of MapReduce jobs. This is
because adaptive merging would require us to merge data from several data blocks
into one. Notice that, merging data inside a data block would not make sense as
a data block is typically loaded entirely into main memory by map tasks anyways.
Third, it has an expensive initial step to create the first sorted runs. A follow-
up work uses adaptive indexing to reduce the cost of the initial step of adaptive
merging in main memory [50]. However, it considers main memory systems and
hence it has the first two problems.

Adaptive Loading. Some other works focus on loading data into a database in
an incremental [4] or in a lazy [46] manner with the goal of reducing the upfront
cost for parsing and storing data inside a database. These approaches allow for
reducing the delay until users can execute their first queries dramatically. In the
context of Hadoop, [4] proposes to load those parts of a dataset that were parsed
as input to MapReduce Jobs into a database at job runtime. Hence, consecutive
MapReduce Jobs that require the same data can benefit, e.g. from the binary
representation or indexes inside the database store. However, this scenario al-
ready involves an additional roundtrip of first writing the data to HDFS, reading
it from HDFS to then again store the data inside a database plus some over-
head for index creation. In contrast to these works, HAIL aims at reducing the
upfront cost of data parsing and index creation already when loading data into
HDFS. In other words, while these approaches aim at adaptively uploading raw
datasets from HDFS into a database to improve performance, HAIL aims at in-
dexing raw datasets directly in HDFS to improve performance, without additional
read/write cycles. NoDB, another recent work, proposes to run queries directly
on raw datasets [9]. Additionally, this approach (i) remembers the offsets of in-
dividual attribute values, and (ii) caches binary values from the dataset which
are both extracted as byproducts of query execution. Those optimizations allow
for reducing the tokenizing and parsing costs for consecutive queries that touch
previously processed parts of the dataset. However, NoDB considers a single node
scenario using a local file system, while HAIL considers a distributed environment
and a distributed file system. As shown in our experiments, writing to HDFS is
I/O bound and parsing the attributes of a dataset entirely can be performed in
parallel to storing the data in HDFS. Since data parsing does not cause notice-
able runtime overhead in our scenario, incremental loading techniques as presented
in [9] are not required for HAIL. Furthermore, NoDB does not consider different
sort orders or indexes to improve data access.

To the best of our knowledge, this work is the first work that aims at pushing
indexing to the extreme at low index creation cost and to propose an adaptive

3.9. Experiments 83

indexing solution suitable for MapReduce systems.

3.9 Experiments

Let’s get back to Bob again and his initial question: will HAIL solve his index-
ing problem efficiently? To answer this question, we need to run a first wave of
experiments in order to answer the following questions as well:

1. What is the performance of HAIL at upload time? What is the impact of
static indexing in the upload pipeline? How many indexes can we create
in the time the standard HDFS uploads the data? How does hardware
performance affect HAIL upload? How well does HAIL scale-out on large
clusters? (We answer these questions in Section 3.9.3).

2. What is the performance of HAIL at query time? How much does HAIL
benefit from statically created indexes? How does query selectivity affect
HAIL? How do failing nodes affect performance? (We answer these questions
in Section 3.9.4). How does HailSplitting improve end-to-end job runtimes?
(We answer this question in Section 3.9.5).

But, what happens if Bob did not create the right indexes upfront? How can Bob
adapt his indexes to a new workload that he did not predict at upload time? For
this, we need to evaluate the efficiency of HAIL to adapt to query workloads and
compare it with Hadoop and a version of HAIL, that only uses static indexing.
We present a second wave of experiments to answer the following main questions:

3. What is the overhead of running the adaptive indexing techniques in HAIL?
How fast can HAIL adapt to changes in the query workload? How much can
MapReduce jobs benefit from the adaptivity of HAIL? How well does each of
the adaptive indexing technique of HAIL allow MapReduce jobs to improve
their runtime? (We answer these questions in Section 3.9.6)

3.9.1 Hardware and Systems

Hardware. We use six different clusters. One is a physical 10-node cluster. Each
node has one 2.66GHz Quad Core Xeon processor running 64-bit platform Linux
openSuse 11.1 OS, 4x4GB of main memory, 6x750GB SATA HD, and three Gigabit
network cards. Our physical cluster has the advantage that the amount of runtime
variance is limited [82]. Yet, to fully understand the scale-up properties of HAIL,
we use three different EC2 clusters, each having 10 nodes. For each of these three
clusters, we use different node types (see Section 3.9.3). Finally, to understand

84

how well HAIL scales-out, we consider two more EC2 clusters: one with 50 nodes
and one with 100 nodes (see Section 3.9.3).
Systems. We compared the following systems: (1) Hadoop, (2) Hadoop++ as
described in [28], and (3) HAIL as described in this chapter. For HAIL, we disable
the HAIL splitting in Section 3.9.4 in order to measure the benefits of using this
policy in Section 3.9.5. All three systems are based on Hadoop 0.20.203 and are
compiled and run using Java 7. All systems were configured to use the default
HDFS block size of 64MB if not mentioned otherwise.

3.9.2 Datasets and Queries

Datasets. For our benchmarks we use two different datasets. First, we use
the UserVisits table as described in [74]. This dataset nicely matches Bob’s Use
Case. We generated 20GB of UserVisits data per node using the data generator
proposed by [74]. Second, we additionally use a Synthetic dataset consisting of
19 integer attributes in order to understand the effects of selectivity. Notice that,
this Synthetic dataset is similar to scientific datasets, where all or most of the
attributes are integer/float attributes (e.g., the SDSS dataset). For this dataset,
we generated 13GB per node.
Queries. For the UserVisits dataset, we consider the following queries as Bob’s
workload:

Bob-Q1 (selectivity: 3.1 x 10−2)

SELECT sourceIP FROM U s e r V i s i t s WHERE v i s i t D a t e
BETWEEN ’1999-01-01’ AND ’2000-01-01’

Bob-Q2 (selectivity: 3.2 x 10−8)

SELECT searchWord , durat ion , adRevenue
FROM U s e r V i s i t s WHERE sourceIP=’172.101.11.46’

Bob-Q3 (selectivity: 6 x 10−9)

SELECT searchWord , durat ion , adRevenue
FROM U s e r V i s i t s WHERE sourceIP=’172.101.11.46’
AND v i s i t D a t e=’1992-12-22’

Bob-Q4 (selectivity: 1.7 x 10−2)

SELECT searchWord , durat ion , adRevenue
FROM U s e r V i s i t s WHERE adRevenue>=1 AND adRevenue<=10

Additionally, we use a variation of query Bob-Q4 to see how well HAIL performs
on queries with low selectivities:

Bob-Q5 (selectivity: 2.04 x 10−1)

3.9. Experiments 85

SELECT searchWord , durat ion , adRevenue
FROM U s e r V i s i t s WHERE adRevenue>=1 AND adRevenue<=100

For the Synthetic dataset, we use the queries in Table 3.2. Notice that, for
Synthetic all queries use the same attribute for filtering. Hence, for this dataset
HAIL cannot benefit from its different indexes: it creates three different indexes,
yet only one of them will be used by these queries.

Table 3.2: Synthetic queries.

Query #Projected Attributes Selectivity

Syn-Q1a 19 0.10
Syn-Q1b 9 0.10
Syn-Q1c 1 0.10
Syn-Q2a 19 0.01
Syn-Q2b 9 0.01
Syn-Q2c 1 0.01

For all queries and experiments, we report the average runtime of three trials.

3.9.3 Data Loading

We strongly believe that upload time is a crucial aspect for adopting a parallel
data-intensive system. This is because most users (such as Bob or scientists) want
to start analyzing their data early. In fact, low startup costs are one of the big
advantages of standard Hadoop over RDBMSs. Thus, we exhaustively study the
upload performance of HAIL.

Varying the Number of Indexes

We first measure the impact in performance when creating indexes statically. For
this, we scale the number of indexes to create when uploading the UserVisits and
the Synthetic datasets. For HAIL, we vary the number of indexes from 0 to 3
and for Hadoop++ from 0 to 1 (this is because Hadoop++ cannot create more
than one index). For Hadoop, we only report numbers with 0 indexes as it cannot
create any index.

Figure 3.6(a) shows the results for the UserVisits dataset. We observe that
HAIL has a negligible upload overhead of ∼2% over standard Hadoop. Then,
when HAIL creates one index per replica the overhead still remains very low (at
most ∼14%). On the other hand, we observe that HAIL improves over Hadoop++
by a factor of 5.1 when creating no index and by a factor of 7.3 when creating
one index. This is because Hadoop++ has to run two expensive MapReduce jobs

86

0

3250

6500

9750

13000

0 1 2 3

1600155415291427

11212

7290

1398

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

(a) Upload time for UserVisits

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created indexes

Hadoop Hadoop++ HAIL

(b) Upload time for Synthetic

0

1075

2150

3225

4300

3 5 6 7 10

1700
12541089956717

3710

2712
2256

1773

1132

U
pl

oa
d

tim
e

[s
ec

]

Number of created replicas

Hadoop HAIL

(default)

Hadoop upload time with 3 replicas

(c) Varying replication for Synthetic

Figure 3.6: Upload times when varying the number of created indexes (a)&(b) and
the number of data block replicas (c)

for creating one index. For HAIL, we observe that for two and three indexes the
upload costs increase only slightly.

Figure 3.6(b) illustrates the results for the Synthetic dataset. We observe that
HAIL significantly outperforms Hadoop++ again by a factor of 5.2 when creating
no index and by a factor of 8.2 when creating one index. On the other hand, we
now observe that HAIL outperforms Hadoop by a factor of 1.6 even when creating
three indexes. This is because the Synthetic dataset is well suited for binary
representation, i.e., in contrast to the UserVisits dataset, HAIL can significantly
reduce the initial dataset size. This allows HAIL to outperform Hadoop even when
creating one, two, or three indexes.

For the remaining upload experiments, we discard Hadoop++ as we clearly
saw in this section that it does not upload datasets efficiently. Therefore, we focus
on HAIL using Hadoop as baseline.

3.9. Experiments 87

Varying the Replication Factor

We now analyze how well HAIL performs when increasing the number of replicas.
In particular, we aim at finding out how many indexes HAIL can create for a given
dataset in the same time standard Hadoop needs to upload the same dataset with
the default replication factor of three and creating no indexes. To do this, we
upload the Synthetic dataset with different replication factors. In this experiment,
HAIL creates as many clustered indexes as block replicas. In other words, when
HAIL uploads the Synthetic dataset with a replication factor of five, it creates five
different clustered index for each block.

Figure 3.6(c) shows the results for this experiment. The dotted line marks
the time Hadoop takes to upload with the default replication factor of three. We
see that HAIL significantly outperforms Hadoop for any replication factor by up
to a factor of 2.5. More interestingly, we observe that HAIL stores six replicas
(and hence it creates six different clustered indexes) in a little less than the same
time Hadoop uploads the same dataset with only three replicas without creating
any index. Still, when increasing the replication factor even further for HAIL,
we see that HAIL has only a minor overhead over Hadoop with three replicas
only. These results also show that choosing the replication factor mainly depends
on the available disk space. Even in this respect, HAIL improves over Hadoop.
For example, while Hadoop needs 390GB to upload the Synthetic dataset with 3
block replicas, HAIL needs only 420GB to upload the same dataset with 6 block
replicas! HAIL enables users to stress indexing to the extreme to speed up their
query workloads.

Cluster Scale-Up

In this section, we study how different hardware affects HAIL upload times.
For this, we create three 10-nodes EC2 clusters: the first uses large (m1.large)
nodes10, the second extra large (m1.xlarge) nodes, and the third cluster quadruple
(cc1.4xlarge) nodes. We upload the UserVisits and the Synthetic datasets on each
of these clusters.

We report the results of these experiments in Table 3.3(a) (for UserVisits) and
in Table 3.3(b) (for Synthetic), where we display the System Speedup of HAIL over
Hadoop as well as the Scale-Up Speedup for Hadoop and HAIL. Additionally, we
show again the results for our local cluster as baseline. As expected, we observe
that both Hadoop and HAIL benefit from using better hardware. In addition,
we also observe that HAIL always benefits from scaling-up computing nodes. Es-
pecially, using a better CPU makes parsing to binary faster. As a result, HAIL

10For this cluster type, we allocate an additional large node to run the namenode and job-
tracker.

88

Cluster Node Type Hadoop HAIL System Speedup

Large 1844 3418 0.54
Extra Large 1296 2039 0.64
Cluster Quadruple 1284 1742 0.74

Scale-Up Speedup 1.4 2.0

Physical 1398 1600 0.87

(a) Upload times for UserVisits when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup

Large 1176 1023 1.15
Extra Large 788 640 1.23
Cluster Quadruple 827 600 1.38

Scale-Up Speedup 1.4 1.7

Physical 1132 717 1.58

(b) Upload times for Synthetic when scaling-up [sec]

Table 3.3: Scale-up results

decreases (in Table 3.3(a)) or increases (Table 3.3(b)) the performance gap with
respect to Hadoop when scaling-up (System Speedup).

We see that Hadoop significantly improves its performance when scaling from
Large (1844 s) to Extra Large (1296 s) instances. This is thanks to the better I/O
subsystem of the Extra Large instance types. When scaling from Extra Large to
Cluster Quadruple instances we see no real improvement, since the I/O subsystem
stays the same and only the CPU power increases. In contrast, HAIL benefits from
additional and/or better CPU cores when scaling up. Finally, we observe that the
system speedup of HAIL over Hadoop is even better when using physical nodes.

Cluster Scale-Out

At this point, the reader might have already started wondering how well HAIL
performs for larger clusters. To answer this question, we allocate one 50-nodes
EC2 cluster and one 100-nodes EC2 cluster. We use cluster quadruple (cc1.4xlarge)
nodes for both clusters, because with this node type we experienced the lowest
performance variability. In both clusters, we allocated two additional nodes: one
to serve as Namenode and the other to serve as JobTracker. While varying the
number of nodes per cluster we keep the amount of data per node constant.

Figure 3.7 shows these results. We observe that HAIL achieves roughly the
same upload times for the Synthetic dataset. For the UserVisits dataset, we see
that HAIL improves its upload times for larger clusters. In particular, for 100

3.9. Experiments 89

0

550

1100

1650

2200

Syn UV Syn UV Syn UV

1486

633

1530

684

1742

600

1476

1026

1836

918

1284

827

U
pl

oa
d

Ti
m

e
[s

ec
]

Number of Nodes

Hadoop HAIL

10 nodes 50 nodes 100 nodes

Figure 3.7: Scale-out results

nodes, we see that HAIL matches the Hadoop upload times for the UserVisits
dataset and outperforms Hadoop by a factor up to ∼1.4 for the Synthetic dataset.
More interesting, we observe that, in contrast to Hadoop, HAIL does not suffer
from high performance variability [82]. Overall, these results show the efficiency
of HAIL when scaling-out.

3.9.4 MapReduce Job Execution

We now analyze the performance of HAIL when running MapReduce jobs. Our
main goal for all these experiments is to understand how well HAIL can perform
compared to the standard Hadoop MapReduce and Hadoop++ systems. With
this in mind, we measure two different execution times. First, we measure the
end-to-end job runtimes, which is the time a given job takes to run completely.
Second, we measure the record reader runtimes, which is dominated by the time a
given map task spends reading its input data. Recall that for these experiments,
we disable the HailSplitting policy (presented in Section 3.7) in order to better
evaluate the benefits of having several clustered indexes per dataset. We study
the benefits of HailSplitting in Section 3.9.5.

Bob’s Query Workload

For these experiments: Hadoop does not create any index; since Hadoop++ can
only create a single clustered index, it creates one clustered index on sourceIP for
all three replicas, as two very selective queries will benefit from this; HAIL creates
one clustered index for each replica: one on visitDate, one on sourceIP, and one
on adRevenue.

Figure 3.8(a) shows the average end-to-end runtimes for Bob’s queries. We
observe that HAIL outperforms both Hadoop and Hadoop++ in all queries. For
Bob-Q2 and Bob-Q3, Hadoop++ has similar results as HAIL since both systems

90

have an index on sourceIP. However, HAIL still outperforms Hadoop++. This
is because HAIL does not have to read any block header to compute input splits
while Hadoop++ does. Consequently, HAIL starts processing the input dataset
earlier and hence it finishes before.

Figure 3.8(b) shows the RecordReader times11. Once more again, we observe
that HAIL outperforms both Hadoop and Hadoop++. HAIL is up to a factor 46
faster than Hadoop and up to a factor 38 faster than Hadoop++. This is because
Hadoop++ is only competitive if it happens to hit the right index. As HAIL has
additional clustered indexes (one for each replica), the likelihood to hit an index
increases. Then, query runtimes for Bob-Q1, Bob-Q4, and Bob-Q5 are sharply
improved over Hadoop and Hadoop++.

Yet, if HAIL allows map tasks to read their input data by more than
one order of magnitude faster than Hadoop and Hadoop++, why do MapRe-
duce jobs not benefit from this? To understand this we estimate the over-
head of the Hadoop MapReduce framework. We do this by considering an
ideal execution time, i.e., the time needed to read all the required input data
and execute the map functions over such data. We estimate the ideal execu-
tion time Tideal = #MapTasks/#ParallelMapTasks × Avg(TRecordReader). Here
#ParallelMapTasks is the maximum number of map tasks that can be per-
formed at the same time by all computing nodes. We define the overhead as
Toverhead = Tend-to-end − Tideal. We show the results in Figure 3.8(c). We see that
the Hadoop framework overhead is in fact dominating the total job runtime. This
has many reasons. A major reason is that Hadoop was not built to execute very
short tasks. To schedule a single task, Hadoop spends several seconds even though
the actual task just runs in a few ms (as it is the case for HAIL). Therefore, re-
ducing the number of map tasks of a job could greatly decrease the end-to-end job
runtime. We tackle this problem in Section 3.9.5.

Synthetic Query Workload

Our goal in this section is to study how query selectivities affect the performance
of HAIL. Recall that for this experiment HAIL cannot benefit from its different
indexes: all queries filter on the same attribute. We use this setup to isolate the
effects of selectivity.

We present the end-to-end job runtimes in Figure 3.9(a) and the record reader
times in Figure 3.9(b). We observe in Figure 3.9(a) that HAIL outperforms both
Hadoop and Hadoop++. We see again that even if Hadoop++ has an index on
the selected attribute, Hadoop++ runs slower than HAIL. This is because HAIL
has a slightly different splitting phase than Hadoop++. Looking at the results

11This is the time a map task takes to read and process its input.

3.9. Experiments 91

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

602598598598601

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) End-to-end job runtimes

0

1000

2000

3000

4000

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

683
333

527573

28642917

5383

2776
24422470

21122156

3358

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop ++ HAIL

(b) Average record reader runtimes

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

(c) Hadoop scheduling overhead

Figure 3.8: Job runtimes, record reader times, and Hadoop MapReduce framework
overhead for Bob’s query workload filtering on multiple attributes

in Figure 3.9(b), the reader might think that HAIL is better than Hadoop++
because of the PAX layout used by HAIL. However, we clearly see in the results
for query Syn-Q1a that this is not true12. We observe that even in this case HAIL
is better than Hadoop++. The reason is that the index size in HAIL (2KB) is
much smaller than the index size in Hadoop++ (304KB), which allows HAIL to
read the index slightly faster. On the other hand, we see that Hadoop++ slightly
outperforms HAIL for all three Syn-Q2 queries. This is because these queries are
more selective and then the random I/O cost due to tuple reconstruction starts to
dominate the record reader times.

Surprisingly, we observe that query selectivity does not affect end-to-end job
runtimes (see Figure 3.9(a)) even if query selectivity has a clear impact on the
RecordReader times (see Figure 3.9(b)). As explained in Section 3.9.4, this is
due to the overhead of the Hadoop MapReduce framework. We clearly see this
overhead in Figure 3.9(c). In Section 3.9.5, we will investigate this in more detail.

12Recall that this query projects all attributes, which is indeed more beneficial for Hadoop++
as it uses a row layout.

92

0

175

350

525

700

a b c a b c

450446460473
517

572

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460
463

433
404 403 403 409

466
433 433 430 433

(a) End-to-end job runtimes

0

750

1500

2250

3000

a b c a b c

6078131139274
495

586074
282331

572

1610161516521708
1885

2116

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

(b) Average record reader runtimes

0

150

300

450

600

a b c a b c

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

Syn-Q1 Syn-Q2

(c) Hadoop scheduling overhead

Figure 3.9: Job runtimes, record reader times, and Hadoop scheduling overhead
overhead for Synthetic query workload filtering on a single attribute

Fault-Tolerance

In very large-scale clusters (especially in the Cloud), node failures are no more an
exception but rather the rule. A big advantage of Hadoop MapReduce is that it
can gracefully recover from these failures. Therefore, it is crucial to preserve this
key property to reliably run MapReduce jobs with minimal performance impact
under failures. In this section we study the effects of node failures in HAIL and
compare it with standard Hadoop MapReduce.

We perform these experiments as follows: (i) we set the expiry interval to
detect that a TaskTracker or a datanode failed to 30 seconds, (ii) we chose a node
randomly and kill all Java processes on that node after 50% of work progress, and

(iii) we measure the slowdown as in [28], slowdown =
(Tf−Tb)

Tb
· 100, where Tb is the

job runtime without node failures and Tf is the job runtime with a node failure.
We use two configurations for HAIL. First, we configure HAIL to create indexes
on three different attributes, one for each replica. Second, we use a variant of
HAIL, coined HAIL-1Idx, where we create an index on the same attribute for all
three replicas. We do so to measure the performance impact of HAIL falling back
to full scan for some blocks after the node failure. This happens for any map task

3.9. Experiments 93

0

375

750

1125

1500

Hadoop HAIL HAIL-1Idx

598598

1099

Jo
b

R
un

tim
e

[s
ec

]

Systems

Hadoop HAIL Slowdown

5.5 % slowdown10.5 % slowdown

10.3 % slowdown

Figure 3.10: Fault-tolerance results

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

6522151516

11451143

651705

1160 10991099
9421006

1094

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) Bob queries

0

175

350

525

700

a b c a b c

1723572863
127

450446460473
517

572

Jo
b

R
un

tim
e

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460 466 433 433 430 433

(b) Synthetic queries

0

1500

3000

4500

6000

Bob Synthetic

315133

2655

4804

2918

5240

To
ta

l R
un

tim
e

[s
ec

]

Workload

Hadoop Hadoop++ HAIL

(c) Total Workload

Figure 3.11: End-to-end job runtimes for Bob and Synthetic queries using the
HailSplitting policy

reading its input from the killed node. Notice that, in the case of HAIL-1Idx, all
map tasks will still perform an index scan as all blocks have the same index.

Figure 3.10 shows the fault-tolerance results for Hadoop and HAIL. Overall,
we observe that HAIL preserves the failover property of Hadoop by having almost
the same slowdown. However, it is worth noting that HAIL can even improve over

94

Hadoop. This is because HAIL can still perform an index scan when having the
same index on all replicas (HAIL-1Idx). We clearly see this when HAIL creates the
same index on all replicas (HAIL-1Idx). In this case, HAIL has a lower slowdown
since failed map tasks can still perform an index scan even after failure. As a
result, HAIL runs almost as fast as when no failure occurs.

3.9.5 Impact of the HAIL Splitting Policy

We observed in Figures 3.8(c) and 3.9(c) that the Hadoop MapReduce framework
incurs a high overhead in the end-to-end job runtimes. To evaluate the efficiency of
HAIL to deal with this problem, we now enable the HailSplitting policy (described
in Section 3.7) and run again the Bob and Synthetic queries on HAIL.

Figure 3.11 illustrates these results. We clearly observe that HAIL significantly
outperforms both Hadoop and Hadoop++. We see in Figure 3.11(a) that HAIL
outperforms Hadoop up to a factor of 68 and Hadoop++ up to a factor of 73
for Bob’s workload. This is mainly because the HailSplitting policy significantly
reduces the number of map tasks from 3, 200 (which is the number of map tasks
for Hadoop and Hadoop++) to only 20. As a result of HAIL Splitting policy, the
scheduling overhead does not impact the end-to-end workload runtimes in HAIL
(see Section 3.9.4). For the Synthetic workload (Figure 3.11(b)), we observe that
HAIL outperforms Hadoop up to a factor of 26 and Hadoop++ up to a factor of
25. Overall, we observe in Figure 3.11(c) that, using HAIL, Bob can run all his five
queries 39x faster than Hadoop and 36x faster than Hadoop++. We also observe
that HAIL runs all six Synthetic queries 9x faster than Hadoop and 8x faster than
Hadoop++.

3.9.6 HAIL Adaptive Indexing

In the previous experiments we focused on the performance of HAIL with static
indexing only, i.e., we deactivated HAIL adaptive indexing. For the following ex-
periments we now focus on the evaluation of the HAIL adaptive indexing pipeline.

In addition to the 10-node cluster (Cluster-A) we used in previous experiments,
we use an additional 4-node cluster (Cluster-B) in order to measure the influence
of more efficient processors. In Cluster-B, each node has: one 3.46 GHz Hexa Core
Xeon X5690 processors; 20GB of main memory; one 278GB SATA hard disk (for
the OS) and one 837GB SATA hard disk (for HDFS); two one Gigabit network
cards.

Since the results from previous experiments clearly showed the high superiority
of HAIL over Hadoop++, we decide to discard Hadoop++ and keep only Hadoop
and HAIL with no adaptive indexing activated as baselines. For HAIL using
the adaptive indexing techniques, we consider four different variants according

3.9. Experiments 95

to the offer rate ρ: HAIL (ρ = 0.1), HAIL (ρ = 0.25), HAIL (ρ = 0.5), and
HAIL (ρ = 1). Notice that HAIL with no adaptive indexing is the same as HAIL
(ρ = 0). Still, as in previous sections, we assume that HAIL creates one index on
sourceIP, one on visitDate, and one on adRevenue, for the UserVisits dataset. For
the Synthetic dataset, we assume that HAIL does not create any index at upload
time. Notice that, given the high Hadoop scheduling overhead we observed in
previous experiments, we increase the data block size to 256MB to decrease such
overhead for Hadoop.

Moreover, making use of the lessons learned from the first wave of experiments,
we slightly change our datasets and queries in order to stress and better evaluate
HAIL under bigger datasets and different query selectivities. We describe these
changes in the following.
Datasets. We again use the web log dataset (UserVisits) but scaled it to 40GB per
node, i.e., 400GB for Cluster-A and 160GB for Cluster-B. Additionally, the Syn-
thetic dataset has now six attributes and a total size of 50GB per node, i.e., 500GB
for Cluster-A and 200GB for Cluster-B. We generate the values for the first at-
tribute in the range [1..10] and with an exponential repetition for each value,
i.e., the values i ∈ [1..10] are repeated 10i−1times. We generate the other five
attributes at random. Then, we shuffle all tuples across the entire dataset to have
the same distribution across data blocks.
MapReduce Jobs. For the UserVisits dataset, we consider eleven jobs (JobUV1
– JobUV11) with a selection predicate on attribute searchWord and with a full
projection (i.e., projecting all 9 attributes). The first four jobs JobUV1 – JobUV4
have a selectivity of 0.4% (1.24 million output records) and the remaining seven
jobs (JobUV5 – JobUV11) have a selectivity of 0.2% (0.62 million output records).
For the Synthetic dataset, we consider other eleven jobs (JobSyn1 – JobSyn11)
with a full projection, but with a selection predicate on the first attribute. These
jobs have a selectively of 0.2% (2.2 million output records). All jobs for both
datasets select disjoint ranges to avoid caching effects.

Performance for the First Job

Since HAIL piggybacks adaptive indexing on MapReduce jobs, the very first ques-
tion that the reader might ask is: what is the additional runtime incurred by HAIL
on MapReduce jobs? We answer this question in this section. For this, we run job
JobUV1 for UserVisits and job JobSyn1 for Synthetic. For these experiments, we
assume that there is no block with a relevant index for jobs JobUV1 and JobSyn1.

Figure 3.12 shows the job runtime for five variants of HAIL for the UserVisits
dataset. In Cluster-A, we observe that HAIL has almost no overhead (only 1%)
over HAIL (ρ = 0) when using an offer rate of 10% (i.e., ρ = 0.1). Notice that
HAIL (ρ = 0) has no matching index available and hence behaves like normal

96

0

300

600

900

1200

1103

855
722

637630
785

Jo
b

ru
nt

im
e

[s
]

JobUV1

Hadoop HAIL (ρ=0) HAIL (ρ=0.1)
HAIL (ρ=0.25) HAIL (ρ=0.5) HAIL (ρ=1)

569
479447436398

547

JobUV1

Cluster A Cluster B

Figure 3.12: HAIL Performance when running the first MapReduce job over
UserVisits.

Hadoop with just the binary PAX layout to speed up the job execution. We can
also see that the new layout gives us an improvement of at most a factor of two in
our experiments. Interestingly, we observe that HAIL is still faster than Hadoop
with ρ = 0.1 and ρ = 0.25. Indeed, the overhead incurred by HAIL increases
along with the offer rate used by HAIL. However, we observe that HAIL increases
the execution time of JobUV1 by less than factor of two w.r.t. both Hadoop and
HAIL without any indexing, even though all data blocks are indexed in a single
MapReduce job. We especially observe that the overhead incurred by HAIL scales
linearly with the ratio of indexed data blocks (i.e., with ρ), except when scaling
from ρ = 0.1 to ρ = 0.25. This is because HAIL starts to be CPU bound only
when offering more than 20% of the data blocks (i.e., from ρ = 0.25). This changes
when running JobUV1 in Cluster-B. In these results, we clearly observe that the
overhead incurred by HAIL scales linearly with ρ. We especially observe that
HAIL benefits from using newer CPUs and have better performance than Hadoop
for most offer rates. HAIL has only 4% overhead over Hadoop when having ρ = 1.
Additionally, we can see that the adaptive indexing in HAIL incurs low overhead:
from 10% (with ρ = 0.1) to 43% (with ρ = 1).

Figure 3.13 shows the job runtimes for Synthetic. Overall, we observe that
the overhead incurred by HAIL continues to scale linearly with the offer rate. In
particular, we observe that HAIL has no overhead over Hadoop in both clusters,
except for HAIL (ρ = 1) in Cluster-A (where HAIL incurs a negligible overhead
of ∼3%). It is worth noting that when using newer CPUs (Cluster-B) adaptive
indexing in HAIL has very low overhead as well: from 9% to only 23%.

From these results, we can conclude that HAIL can efficiently create indexes at
job runtime while limiting the overhead of writing pseudo data blocks. We observe
the efficiency of the lazy adaptive indexing mechanism of HAIL to adapt to users’

3.9. Experiments 97

0

300

600

900

1200

990
785

674624554

961

Jo
b

ru
nt

im
e

[s
]

JobSyn1

Hadoop HAIL (ρ=0) HAIL (ρ=0.1)
HAIL (ρ=0.25) HAIL (ρ=0.5) HAIL (ρ=1)

483470438430393

864

JobSyn1

Cluster A Cluster B

Figure 3.13: HAIL Performance when running the first MapReduce job over Syn-
thetic.

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsUV

Hadoop HAIL (ρ=0) HAIL (ρ=1)
HAIL (ρ=0.5) HAIL (ρ=0.25) HAIL (ρ=0.1)

1 2 3 4 5 6 7 8 9 10 11

JobsUV

Cluster A Cluster B

Figure 3.14: HAIL performance when running a sequence of MapReduce jobs over
UserVisits.

requirements via different offer rates.

Performance for a Sequence of Jobs

We saw in the previous section that HAIL adaptive indexing techniques can scale
linearly with the help of the offer rate. But, which are the implications for a
sequence of MapReduce jobs? To answer this question, we run the sequence of
eleven MapReduce jobs for each dataset.

Figures 3.14 and 3.15 show the job runtimes for the UserVisit and Synthetic
datasets, respectively. Overall, we clearly see in both computing clusters that
HAIL improves the performance of MapReduce jobs linearly with the number of

98

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsSyn

Hadoop HAIL (ρ=0) HAIL (ρ=1)
HAIL (ρ=0.5) HAIL (ρ=0.25) HAIL (ρ=0.1)

1 2 3 4 5 6 7 8 9 10 11

JobsSyn

Cluster A Cluster B

Figure 3.15: HAIL performance when running a sequence of MapReduce jobs over
Synthetic.

indexed data blocks. In particular, we observe that the higher the offer rate, the
faster HAIL converges to a complete index. However, the higher the offer rate, the
higher the adaptive indexing overhead for the initial job (JobUV1 and JobSyn1).
Thus, users are faced with a natural tradeoff between indexing overhead and the
required number of jobs to index all blocks. But, it is worth noting that users
can use low offer rates (e.g. ρ = 0.1) and still quickly converge to a complete
index (e.g. after 10 job executions for ρ = 0.1). In particular, we observe that
after executing only a few jobs HAIL already outperforms Hadoop significantly.
For example, let us consider the sequence of jobs on Synthetic using ρ = 0.25
on Cluster-B. Remember that for this offer rate the overhead for the first job
compared to HAIL without any indexing is relatively small (11%) while HAIL
is still able to outperform Hadoop. With the second job HAIL is slightly faster
than the full scan and the fourth job improves over full scan in HAIL by more
than a factor of two and over Hadoop by more than a factor of five13. As soon as
HAIL converges to a complete index, HAIL significantly outperforms full scan job
execution in HAIL by up to a factor of 23 and Hadoop by up to a factor of 52.
For the UserVisits dataset, HAIL outperforms unindexed HAIL by up to a factor
of 24 and Hadoop by up to a factor of 32. Notice that, performing a full scan over
Synthetic in HAIL is faster than in Hadoop, because HAIL reduces the size of this
dataset when converting it to binary representation.

In summary, the results show that HAIL can efficiently adapt to query work-
loads with a very low overhead only for the very first job: the following jobs always
benefit from the indexes created in previous jobs. Interestingly, an important result
is that HAIL can converge to a complete index after running only a few jobs.

13Although HAIL is still indexing further blocks.

3.9. Experiments 99

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11

Jo
b

ru
nt

im
e

[s
]

JobsUV

HAIL (eager) HAIL (ρ=0.1) HAIL (ρ=1) HAIL (ρ=0)

Figure 3.16: Eager adaptive indexing vs. ρ = 0.1 and ρ = 1

Eager Adaptive Indexing for a Sequence of Jobs

We saw in the previous section that HAIL improves the performance of MapReduce
jobs linearly with the number of indexed data blocks. Now, the question that might
arise in the reader’s mind is: can HAIL efficiently exploit the saved runtimes for
further adaptive indexing? To answer this question, we enable the eager adaptive
indexing strategy in HAIL and run again all UserVisits jobs using an initial offer
rate of 10%. In these experiments, we use Cluster-A and consider HAIL (without
eager adaptive indexing enabled) with offer rates of 10% and 100% as baselines.

Figure 3.16 show the result of this experiment. As expected, we observe that
HAIL (eager) has the same performance as HAIL (ρ = 0.1) for JobUV1. However,
in contrast to HAIL (ρ = 0.1), HAIL (eager) keeps its performance constant for
JobUV2. This is because HAIL (eager) automatically increases ρ from 0.1 to
0.17 in order to exploit saved runtimes. For JobUV3, HAIL (eager) still keeps its
performance constant by increasing ρ from 0.17 to 0.33. Now, even though HAIL
(eager) increases ρ from 0.33 to 1 for JobUV4, HAIL (eager) now improves the job
runtime as only 40% of the data blocks remain unindexed. As a result of adapting
its offer rate, HAIL (eager) converges to a complete index only after 4 jobs while
incurring almost no overhead over HAIL. From JobUV5, HAIL (eager) ensures
the same performance as HAIL (ρ = 1) since all data blocks are already indexed,
while HAIL (ρ = 0.1) takes 6 more jobs to converge to a complete index, i.e., to
index all data blocks.

These results show that HAIL can converge even faster to a complete index,
while still keeping a negligible indexing overhead for MapReduce jobs. Overall,
these results demonstrate the high efficiency of HAIL (eager) to adapt its offer
rate according to the number of already indexed data blocks.

100

3.10 Conclusion

We presented HAIL (Hadoop Adaptive Indexing Library), a twofold approach
towards zero-overhead indexing in Hadoop MapReduce. HAIL introduced two
indexing pipelines that address two major problems of traditional indexing tech-
niques. First, HAIL static indexing solves the problem of long indexing times
which had to be invested on previous indexing approaches in Hadoop. This was a
severe drawback of Hadoop++ [28], which required expensive MapReduce jobs in
the first place to create indexes. Second, HAIL adaptive indexing allows us to au-
tomatically adapt the set of available indexes to previously unknown or changing
workloads at runtime with only minimal costs.

In more detail, HAIL static indexing allows users to efficiently build clustered
indexes while uploading data to HDFS. Thereby, our novel concept of logical repli-
cation enables the system to create different sort orders (and hence clustered in-
dexes) for each physical replica of a data set without additional storage overhead.
This means that in a standard system setup, HAIL can create three different in-
dexes (almost) for free as byproduct of uploading the data to HDFS. We have
shown that HAIL static indexing also works well for a larger number of replicas.
E.g. in our experiments HAIL created six different clustered indexes in the same
time HDFS took to just upload three byte-identical copies without any index.

With HAIL static indexing, we can already provide several matching indexes
for a variety of queries. Still, our static indexing approach has similar limitations
as other traditional techniques when it comes to unknown or changing workloads.
The problem is, that users have to decide upfront on which attributes to index and
it is usually costly to revisit this choice in case of missing indexes. We solve this
problem with HAIL adaptive indexing. Using this approach, our system can create
missing but valuable indexes automatically and incrementally at job execution
time. In contrast to previous work, our adaptive indexing technique again focuses
on indexing at minimal expense.

We have experimentally compared HAIL with Hadoop as well as Hadoop++
using different datasets and a number of different clusters. The results demon-
strated the high superiority of HAIL. For HAIL static indexing, our experiments
showed that we typically create a win-win situation: e.g. users can upload their
datasets up to 1.6x faster than Hadoop (despite the additional indexing effort!)
and run jobs up to 68x faster than Hadoop.

Our second set of experiments demonstrated the high efficiency of HAIL adap-
tive indexing to create clustered indexes at job runtime and adapt to users’ work-
loads. In terms of indexing effort, HAIL adaptive indexing has a very low overhead
compared to HAIL full scan (which is already 2x faster than Hadoop full scan).
For example, we observed 1% runtime overhead for the UserVisits dataset when
using an offer rate of 10% and only for the very first job. The following jobs already

3.10. Conclusion 101

run faster than the full scan in HAIL, e.g. ∼2 times faster from the fourth job,
with an offer rate of 25%. The results also show that, even for low offer rates, our
approach quickly converges to a complete index after running only a few number
of MapReduce jobs (e.g. after 10 jobs with an offer rate of 10%). In terms of
job runtimes, HAIL adaptive indexing improves performance dramatically. For a
sequence of previously unseen jobs on unindexed attributes, runtime improved by
up to a factor of 24 over HAIL without adaptive indexing and a factor of 52 over
Hadoop.

Chapter 4

AIR: Adaptive Index
Replacement in Hadoop

4.1 Introduction

Adaptive indexing has received quite some attention in the community and is
a very interesting approach to provide reasonably good performance when fac-
ing ever changing or evolving workload patterns, without requiring human in-
tervention. Several publications looked at adaptive indexing in main memory
databases [38, 43, 47, 59]. In our recent studies [88, 11] we present an overview
over the field and further explore directions in the adaptive indexing field in the
context of main memory and multi core architectures. We also introduced an
adaptive indexing algorithm into Hadoop MapReduce [80]. None of those works
consider a space constraint on how many indexes can be created. Even though
hard disk space can be considered cheap nowadays, we believe that it can be a
limiting factor in the context of big data; it is therefore important to efficiently
use the available resources. In the past years there has been extensive research
on physical database design advisors [25, 96, 7] that include space constraints,
but usually need a representative query sequence to provide meaningful advise
on the physical design of the database. More recent work looked at online index
tuning [83, 84, 19], an online approach to the Index Selection problem. That re-
search does not consider an adaptive indexing setting, where indexes are created
as byproducts of query execution.

In this chapter we investigate the Adaptive Index Replacement problem, i.e. our
formulation of the Index Selection problem in the adaptive indexing scenario.

The chapter is structured as follows. In Section 4.2 we define the Adaptive
Index Replacement (AIR) problem. Section 4.3 discusses related work in the field
of adaptive indexing, as well as indexing in Hadoop MapReduce, and Buffer Re-

103

104

placement algorithms. We then in Section 4.4 describe our cost model and a Mixed
Integer Linear Programming (MILP) formulation for the offline AIR problem. Sec-
tion 4.5 introduces our proposed algorithm, the LeastExpectetBenefit-K, to solve
the online AIR problem. Section 4.6 presents the evaluation of our algorithm us-
ing simulations and an experimental validation. Finally, Section 4.7 concludes this
chapter.

4.2 Adaptive Index Replacement

In this section we introduce the notation needed throughout the chapter and define
the Adaptive Index Replacement problem.

In a system that uses adaptive indexing we have the following situation: As
queries that would benefit from indexes on certain attributes arrive, new indexes
are created and stored. This leads to a growing space consumption for the queried
datasets. However, if the total space, or the space per dataset, is limited, it is
often not possible to simply create indexes on all queried attributes. As we reach
the storage limit, an algorithm has to decide for every query if some older indexes
should be dropped, or if no new index should be created.

When using adaptive indexing in Hadoop we create indexes not on the dataset
as a whole but on a more fine granular level. This comes naturally as the Hadoop
Distributed Filesystem (HDFS) stores the data in so called HDFS blocks. Those
HDFS blocks are horizontal partitions of the stored dataset and we do not reorder
records across those HDFS blocks in HAIL [80]. We instead use the replication
mechanism of HDFS to create different clustered indexes on the block level in the
different replicas of a given block. Therefore, we decide at the level of HDFS blocks,
rather than at dataset files, to create, drop, or simply keep an index. An index in
HAIL is just another replica of a logical HDFS block, that is sorted with respect to
an attribute and stored together with a very small coarse-granular lookup directory
in HDFS. This allows us to handle appends to the dataset efficiently as no old
indexes need to be maintained. Let B be the set of all stored logical blocks and A
the set of all attributes. We define a query q on Hadoop as follows:

Definition 1 A query q = (B, a, sel) is defined by a triple consisting of the set of
accessed blocks B ⊆ B, the attribute that might be used to perform an index access,
a ∈ A, and a mapping of the selectivity per block sel : B → [0, 1].

The cost of executing a query q highly depends on the current configuration c
of the system, which is defined as:

Definition 2 A configuration c ⊆ B × A represents the set of available indexes
in the system. An index on block b with respect to the attribute a is available iff

4.2. Adaptive Index Replacement 105

(b, a) ∈ c. Let κ ∈ N, the configuration c is called valid w.r.t. the capacity κ if
κ ≥ |c|. The set of valid configuration is denoted as Cκ = { c | κ ≥ |c|}.

Observe, that we could also use a multi set definition of configurations, i.e. to
allow for the replication of certain indexes in order to better balance the cluster
load in the presence of multiple concurrent jobs. We are focusing on a a single
user scenario and therefore use simple set semantics.

We denote the cost to execute a query q given the current configuration c as
QueryCost(q, c). The cost to create a new configuration c′ is dependent not only
on the current configuration c but also on the executed query q, as new indexes are
created while executing q. We therefore denote this cost by IndexCost(q, c, c′).
This is different to previous works [19, 83, 85], as those assume the cost to reorga-
nize a configuration to be independent of the current query q. In Section 4.4 we
will give precise definitions of these cost functions in the Hadoop scenario.

We now define the offline version of the AIR problem:

Definition 3 Given a start configuration c0, a query sequence Q = q0, . . . , qn−1,
and a capacity κ ∈ N, find the sequence C = c0, . . . , cn−1, ct ∈ Cκ, that minimizes
the total cost TC(Q,C), that is defined as:

TC(Q,C) =
n−1∑
t=0

QueryCost(qt, ct)

+
n−2∑
t=0

IndexCost(qt, ct, ct+1).

Observe that the optimal solution OPT (c0, Q, κ), that minimizes TC, provides
a lower bound for the cost of the solution of any online algorithm for the AIR
problem. The online version of the AIR problem can be defined as:

Definition 4 For every t, given configurations c0, . . . , ct and the partial query
sequence q0, . . . , qt, and a capacity κ ∈ N, provide ct+1 such that the total cost
TC(Q,C) becomes minimal.

This definition implies that online algorithms could use the whole sequence of
already seen queries to decide what index should be created or refined. Never-
theless real world solutions typically only take some of the previous queries and
the current configuration into account. The reason for this is twofold: First to
avoid storing all the information about previous queries, and second to adapt to a
changing workload pattern.

Definition 5 We call an AIR algorithm k-aware if its decisions are influenced by
k queries.

106

Database cracking algorithms, as well as HAIL, base their decision solely on
the current query and the current configuration, they are both 1-aware. This is
suboptimal if previous queries can provide hints on future queries.

In contrast to database cracking, an adaptive indexing technique for in memory
databases, it is easy to create an index on any attribute in HAIL1 independent
from the currently queried attribute. We will therefore focus on adaptive indexing
in Hadoop as proposed in HAIL [80].

4.3 Related Work

Adaptive indexing infrastructure. Our Hadoop Adaptive Indexing Library
(HAIL) [29, 80] extends the Hadoop distributed filesystem (HDFS) and allows
MapReduce jobs to access data blocks using clustered indexes. These clustered
indexes are created per HDFS block, either upfront while uploading [29] data
into HDFS or adaptively while executing [80] MapReduce jobs. HAIL creates
indexes while uploading without requiring additional storage space by exploiting
the existing replication of HDFS and storing every physical block replica in a
different sort order. A sorted physical block replica together with a very small
lookup directory is a coarse granular index in HAIL; whenever we talk about stored
indexes, we refer to these data structures. HAIL still needs additional space for
every adaptively created index. As HDFS is an append-only system, we cannot
modify existing indexes and need to create new physical block replicas with new
sort orders. The original works [80, 29] do not contain an algorithm to decide
which indexes to keep, if the storage capacity is reached. This work fills the gap.
Index Selection algorithms. The Index Selection problem has been extensively
studied in DBMSs. Commercial systems typically include physical design advisors
that propose indexes and other physical structures, like materialized views, in
order to speed up workload execution. These tools have to be invoked with a
representative query workload to decide on a suitable set of indexes. As index
creation is considered a rather costly operation, many physical design advisors
usually use a one shot solution; they provide a suitable set of indexes that should
be created before executing the workload.

Agrawal et. al. choose a different approach and modeled the query workload
as a sequence [7] and showed how this model helps to decide if indexes should be
created or dropped during the execution of the workload. That work still assumes
that a representative workload is provided offline. In their model, indexes should
be dropped if they incur high index maintenance costs and again created when
many read queries are expected. In this work we also model our workload as a

1Database cracking can only piggyback on comparisons with the requested predicate. HAIL
piggybacks on the data load of job execution and can create any index on the loaded block.

4.3. Related Work 107

sequence, but since we have no updates to the indexed data in the scenarios we
are looking at, we observe no index maintenance costs at all.

CoPhy [25] is an index advisor for large workloads. It uses a Binary Integer
Programming formulation of the Index Selection problem. The used BIP formula-
tion does not entail index creation costs since CoPhy follows an offline approach,
that does not allow for changing the indexes at runtime. We use a Mixed Integer
Linear Program (MILP) formulation to find the solution of the offline Adaptive In-
dex Replacement problem that is similar to the proposed BIP formulation in [25],
but our formulation allows for changing the index configuration at runtime. We
use the MILP formulation to compute a bound for the best possible performance
an online AIR algorithm could achieve, while the BIP is a core part of CoPhy.

Online index selection algorithms can be classified as either retrospective [19, 85]
or predictive [66, 83]. Retrospective algorithms only create new indexes after it
is clear that an index would have been beneficial. This means that only after
enough queries have been observed, so that the total benefit of the index is higher
than its creation cost, the index is created. In contrast, predictive algorithms try
to predict the future workload and create indexes that will be beneficial for that
predicted workload. Predictive online index selection algorithms can on the one
hand predict something completely wrong and spend time in creating new indexes
that are never used. On the other hand they can react much faster to workload
changes and therefore reach higher performance gains than retrospective online
index selection algorithms. Therefore, we can say that retrospective online index
selection algorithms are more conservative than predictive algorithms. We will see
that our approach can be classified as a predictive algorithm.

Nicolas Bruno and Surajit Chaudhuri introduced a retrospective online index-
ing approach [19]. Their approach keeps track of the accumulated benefit of every
index I at any time t, denoted by ∆t(I). As index maintenance can also incur
costs, ∆t(I) can become negative. To detect if an index has become beneficial,
they introduce ∆t,min(I) and ∆t,max(I) as watermarks. This means that ∆t,min(I)
stores the smallest accumulated benefit since the index I was last dropped and
∆t,max(I) stores the largest accumulated benefit since the index I was last created.
Those watermarks are used to decide whether an index should have been created
or dropped in the past. If ∆t(I)−∆t,min(I) is larger than the index creation cost,
the index should have been created. If ∆t,max(I)−∆t(I) is larger than the index
creation cost, the index should have been dropped. As we incur no index main-
tenance cost in our adaptive indexing scenario we notice that ∆t,max(I) = ∆t(I).
Therefore the algorithm would never drop an index because of index maintenance.
When it comes to the point where the algorithm has to decide what index should
be dropped due to space limitations, the algorithm relies on the size and observed
index maintenance costs of the materialized indexes. Since both properties are

108

the same for all indexes in our scenario we need another criteria to break the tie
between the materialized indexes. In order to use the proposed algorithm as a
baseline we chose to use the benefit as tie-breaker and we will drop the index with
the lowest benefit.

Another retrospective and more recent algorithm to solve the Online Index
Tuning problem is the WFIT [85] algorithm introduced by Karl Schnaitter and
Neoklis Polyzotis. The WFIT algorithm is very interesting as it can also incorpo-
rate feedback from the DBA in its optimization decisions. Unfortunately, WFIT
does not contain space constraints, but lets the DBA decide which and how many
indexes are materialized. We can therefore not compare our method against the
WFIT algorithm, as the decision which index to drop is the single most interesting
question in the Hadoop scenario.

Karl Schnaitter et. al. introduced a system called COLT [83] (Continues On-
Line Tuning). This system analyzes the current workload and optimizes the physi-
cal design of the database continuously. The query sequence is analyzed in epochs,
e.g. a batch of 10 queries, and the system optimizes after each epoch the total
runtime, by choosing the best set of single column indexes that fit in a given
space constraint. A very similar system was introduced by Martin Lühring et.
al. [66]. We call that system SoftIndex system, as it creates so called soft indexes.
Those soft indexes are materialized concurrently to query execution by using index
build scans. In contrast to adaptive indexing approaches like database cracking
or HAIL, COLT and the SoftIndex system use the information gathered in several
complete epochs to decide which indexes to create and not just the current query.
We reimplemented the SoftIndex algorithm and use it as a baseline.

Buffer Replacement algorithm. O’Neil et. al. introduced the LeastRecently
Used-K (LRU-K) [70] Buffer Replacement (BR) algorithm as a generalization of
the LRU algorithm. The LRU-K algorithm is an online algorithm to solve the
BR problem. In the BR problem we have a buffer that can hold up to m pages.
Whenever a page is requested that is not in the buffer, it has to be fetched into
the buffer. If the buffer is full and a new page has to be fetched, we have to select
a page from the buffer for eviction. The goal of a BR algorithm is to minimize the
number of buffer misses, e.g., the number of pages fetched into the buffer. The
LRU-K algorithm evicts the page with the highest LRU-K-age, where the LRU-
K-age of a page is the age of (or time since) the K-th latest access to the page2.
The rational behind this algorithm is that we can estimate the expected arrival
interval between two accesses of a page given the LRU-K-age, and evict the page
that is expected not to be accessed for the longest time. O’Neil et. al. have proven
the LRU-K algorithm to be optimal with respect to the Independent Reference

2If a page has not been accessed K times yet the LRU-K-age is ∞. If more than one page
has an LRU-K-age of ∞, LRU-(K-1)-age is used to break the tie and so on.

4.4. Cost Model 109

Model [71]. Here optimality was defined such that no other algorithm that bases
its decision on the last K accesses per page, and that has m − 1 buffer slots, is
expected to achieve less buffer misses than LRU-K with m buffer slots. We will
use the LRU-K-age together with query selectivities and a indexing threshold in
our LEB-K algorithm to decide what index to replace or to create.

4.4 Cost Model

In this section we introduce our cost model and show how to obtain the optimal
solution to the offline Adaptive Index Replacement problem. For simplicity we
discuss the cost model as if only one block existed. We therefore only consider
what attribute the query performs a selection on. The actual cost can then be
computed as the sum of all individual costs per block that are accessed by the
query. Our cost model considers the I/O-cost to read or write to disk and ignores
CPU consumption to create the index. The results in our HAIL paper [80] showed
that this is applicable for disk-bound operations, like simple analytics on large
data sets.

We first focus on the QueryCost. The I/O cost to answer the current query
depends on the arriving query q and the current configuration c. When a query q
arrives and no suitable index on the query attribute q.a is available in the current
configuration c, i.e. no block replica has the right sort-order, we have to read the
whole block and pay the FullScanCost = 1. If an index is available, we only
read the data needed by q from disk and pay the IndexScanCost(q.sel) = q.sel.
This cost model does not contain the cost to access the index or perform the index
lookup but focuses on the cost to sequentially read the needed data from disk.
We can make this simplification in the HAIL scenario, as the index itself is coarse
granular and therefore really small, in the size of only a few kilobyte, when using
an HDFS block-size of 256 MB. The cost model also omits the cost to write out
the result of the query, as this cost is independent of the current configuration.
We now define the QueryCost as follows:

QueryCost(q, c) =

{
1 q.a /∈ c,

q.sel q.a ∈ c.

As already explained in Section 4.2, the index creation cost IndexCost depends
on the current query q as well as the current configuration c and the next config-
uration c′. In our scenario the cost to create an index are the additional disk-I/O
costs to write the new block replicas. This is reasonable in HAIL, as we overlap
the in-memory sorting with the reading of the next block. Only the additional
write costs are observable in the end-to-end runtime. We therefore have to pay
the cost to write a block for every index, that was created, denoted by |c′ \ c|. If

110

a full scan was performed, the cost to read a block from disk is already accounted
for by the QueryCost. In case the query could perform an index scan and we still
decide to create a new index, we have to read the whole data from disk instead.
In our cost model we achieve this by adding the cost of reading the rest of the
data, that was not accounted for in the QueryCost. This leads to the following
indexing cost:

IndexCost(q, c, c′) = |c′ \ c|+
{

1− q.sel q.a ∈ c ∧ c′ 6⊆ c,
0 q.a /∈ c ∨ c′ ⊆ c.

As a side note, we observed that many systems, including HAIL, perform an
index scan whenever a suitable clustered index is available. The following example
query sequence shows that this is not necessarily optimal. Assume three different
query types q1, q2, and q3, accessing attributes q1.a = 1, q2.a = 2, and q3.a = 3
respectively, with selectivities q1.sel = 0.5, q2.sel = 0.1, and q3.sel = 0.1 and the
following query sequence:

Q = q1, q2, q1, q2, q1, q3, q3, q1, q1.

Assume further that up to two indexes can be kept on the system. For the first
five queries it is optimal to quickly build indexes on attributes 1 and 2, while for
the last four it is desirable to have indexes on attributes 1 and 3. An optimal
algorithm creates the following configuration sequence:

COPT = ∅, {1, 2}, {1, 2}, {1, 2}, {1}, {1, 3}, {1, 3}, {1}, {1}.

This configuration sequence has the following total cost:

TC(Q,COPT) = 1 + 2 + 0.1 + 0.5 + 0.1 + 1

+ 1 + 0.1 + 0.1 + 0.5 + 0.5 = 6.9

A pseudo-optimal algorithm that has to use an index, if it is available, would
produce the following sequence:

CP−OPT = ∅, {1, 2}, {1, 2}, {1, 2}, {1}, {1}, {1}, {1}, {1}.

with the following total costs:

TC(Q,CP−OPT) = 1 + 2 + 0.1 + 0.5 + 0.1 + 0.5

+ 1 + 1 + 0.5 + 0.5 = 7.2

Even though most data management systems, including HAIL, would use the
existing index on attribute 1 for the fifth query Q5 = q1, it is better to fully scan

4.5. LeastExpectedBenefit Algorithms 111

 0

 1

 2

 3

Q: q1 q2 q1 q2 q1 q3 q3 q1 q1

Write OPT
Read OPT

Write P−OPT
Read P−OPT

COPT: ∅ {1,2} {1,2} {1,2} {1} {1,3} {1,3} {1} {1}

CP−OPT: ∅ {1,2} {1,2} {1,2} {1} {1} {1} {1} {1}

Figure 4.1: Visualization of the cost to execute the example query sequence Q.

the block and create an index on attribute 3 for the upcoming queries. Figure 4.1
visualizes the cost to execute the query sequence Q. Instead of not using the index
on attribute 1 for Q5, one could either perform a full scan on Q4 = q3 or Q6 = q2
but both would incur even higher costs.

Given the cost functions from above we can now formulate the offline Adaptive
Index Replacement problem as a Mixed Integer Linear Program (MILP), depicted
in Listing 1. With this MILP formulation we can use an off-the-shelf solver to
compute the optimal offline solution. We will use this optimal solution as a baseline
in the experimental evaluation.

4.5 LeastExpectedBenefit Algorithms

In this section we introduce our LeastExpectedBenefit (LEB) algorithms to solve
the Adaptive Index Replacement problem, with respect to the provided cost model.
The core idea of the different LEB algorithms is to replace the index with the
lowest expected benefit. This expected benefit of an index can be estimated using
different statistics. When using a statistic that only takes the last K queries for
every attribute into account we talk about the LEB-K algorithm and if we take
all queries into account we call it the LEB-∞ algorithm.

Algorithm 2 shows the general LEB algorithm. Depending on the
statistics field the algorithm actually implements LEB-K, LEB-∞ or even
LRU-K. In the following we discuss how we can estimate the expected benefit of
an index, based on the last K queries for every block-attribute pair. We can use

112

We use the following variables:
• ct,i ∈ {0, 1} : Index i is available in the configuration ct.
• wt,i ∈ [0, 1] : Write cost to create index i at access t.
• rt ∈ [0, 1] : Read cost to read data at access t.
Our objective function is the total write and read cost.

minimize

|A|∑
i=1

n−1∑
t=0

wt,i +

n−1∑
t=0

rt

subject to the following constraints:
At most κ indexes are available at any time.

∀t :

|A|∑
i=1

ct,i ≤ κ

If no index is available, we have to pay the full scan cost.

∀t : rt + ct,qt.a ≥ 1

If an index is available at time t that was not available at time t− 1, we have to pay the creation
cost.

∀t > 1, i : ct−1,i + wt−1,i ≥ ct,i
We can piggyback index creation only on full scans.

∀t, i : rt ≥ wt,i

The scan cost is bound by the selectivity of the query and the full scan cost.

∀t : qt.sel ≤ rt ≤ 1.

Listing 1: The MILP formulation to find the optimal sequence of index configurations.

the LRU-K-age to estimate the arrival rate of queries accessing the block-attribute
pairs by K

LRU-K-age(b,a)
. These arrival rates in turn can be used to estimate the prob-

ability for the next query to hit a given block-attribute pair P (b, a), by normalizing
the sum of all arrival rates to one. We define the benefit of an index that was cre-
ated on a given block, with respect to a certain index attribute, as the amount
of I/O-cost that was avoided thanks to the index compared to the full scan costs.
If for example a query q accesses block b42 selecting on attribute q.a = 1 with a
selectivity of q.sel(b42) = 0.1, then the benefit of an index on b42 with respect to
attribute 1 would be Benefit(b42, 1) = 1−0.1 = 0.9. From the last K queries to
every block-attribute pair we compute the average benefit and use that to compute
the expected benefit of the index on that block, by multiplying the average benefit

4.5. LeastExpectedBenefit Algorithms 113

Algorithm 2: General LEB Algorithm

Statistics statistics;
double threshold;
public Conf getUpdatedConf(Query q, Conf oldConf) {
statistics.addNewQuery(q);
Conf newConf= new Conf(oldConf);
Index b = q.getSuitableIndex();
if (!newConf.contains(b)) {
if (newConf.size() >= capacity) {
Index leastBene =

statistics.findLeastBeneficialIndex(oldConf);
if (shouldReplace(b, leastBene)) {
newConf.replaceIndex(leastBene,b);
}
} else
newConf.addIndex(b);

}
return newConf;
}
public boolean shouldReplace(Index newIndex,

Index existingIndex) {
double benefit;
benefit = benefit(newIndex)-benefit(existingIndex);
return benefit > threshold;
}

with the arrival probability of a query hitting that block-attribute combination.

E(Benefit(b, a)) = avg(Benefit(b, a)) · P (b, a)

Finally we use the expected benefit of the index with the lowest expected benefit
and the expected benefit of the possible new index to decide if the new index
should be created and the least beneficial index should be dropped.

To incorporate the index creation cost we only create a new index, if its ex-
pected benefit is higher than the expected benefit of an existing index by a certain
threshold. If we choose a very low threshold, we will create an index early in the
hope that the query distribution does not change for a long time. If we choose for
example a threshold of 0.2, we will only create an index, if we expect the index
to have amortized not only its creation cost but also the expected benefit of the
dropped index in five queries.

We base our family of LEB algorithms on the family of LRU algorithms, be-
cause the Buffer Replacement (BR) problem is very similar to the AIR problem.
Nevertheless, there are some important differences that we will shortly discuss.
First we will see that it is rather straightforward to take any BR algorithm and
create an AIR algorithm out of it. As already explained we access pages in the BR
problem, whereas we access indexes in the AIR problem. An index can be iden-
tified by the attribute together with the block that is sorted with respect to the
attribute. Therefore, we can simply use the block-attribute pairs of every query

114

analogous to buffer page identifiers and ignore the provided selectivity. If the BR
algorithm is optimal, the resulting expected number of “index misses” is minimal.

In the following we will discuss the differences between the BR problem and
the AIR problem. Not all indexes are equal, some are hit by queries with high
selectivity some are not. We therefore want to incorporate the benefit of an index
in the decision which index to keep. Another important point that needs to be
considered are index creation costs. In contrast to the Buffer Replacement scenario,
where pages have to be buffered as soon as they are accessed, we do not have to
create an index to access the data. An AIR algorithm therefore has to decide if
a new index should be created at all. Some BR algorithms can be relaxed, such
that they not always create the missing index when used as an AIR algorithm. For
LRU-K this means, that we can choose to create the index based on its LRU-K-
age and only if the LRU-K-age of the missing index is lower than an existing
index, we create a new index. Based on the LRU-K algorithm we introduce
the LeastExpectedBenefit-K (LEB-K) algorithm. We choose the LRU-K as the
base algorithm, because it is very easy to steer the sensitivity of the algorithm
to workload changes by choosing different values of K and also because it is a
commonly used and efficient BR algorithm.

4.6 Evaluation

To evaluate our LEB algorithms we simulate the read and write costs for different
skewed workloads and experimentally validate our cost model on our cluster. This
Section is structured as follows: In Section 4.6.1 we describe the general setup
and the used workload patterns. Then in Section 4.6.2 we describe the algorithms
we want to evaluate. In Section 4.6.3 we discuss our findings with respect to the
overall performance of the different algorithms, while we discuss our robustness ex-
periments in Section 4.6.4. Finally Section 4.6.5 shows our experimental validation
of our cost model.

4.6.1 Dataset and Query Distribution

The query pattern in our experiments is called Evolving Pattern and changes
the focus of the queries after a fixed period of queries. It consists of 1000 queries
and every query is drawn from a pool of 20 queries with a Zipfian distribution
(i.e the first query is most likely to be drawn). We simulate a shift of focus, by
randomly permuting the set of available queries after every hundredth query (i.e.
if query 0 was drawn most often, afterwards maybe query 9 is drawn most often).
Additionally, we also evaluated all algorithms using the Stable Pattern, which
does not permute the the queries. Both patterns are visualized in Figure 4.2.

4.6. Evaluation 115

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

A
c
c
e

s
s
e

d
 A

tt
ri
b

u
te

Query

Evolving Pattern Stable Pattern

Figure 4.2: Attribute distribution of the first 300 queries.

We vary the distribution of the selectivities of the different queries to measure
the effect on the performance of the algorithms. The first distribution is called
Power Distribution. It is a skewed distribution and follows a power law. To
be precise, the queries on attribute i have a selectivity of 0.5i · 0.99. For the
Uniform Distribution we assign every attribute a selectivity chosen uniformly
at random between 0 and 0.5. We use the same selectivity for every query on a
certain attribute. Figure 4.3 visualizes the different selectivity distributions.

4.6.2 Evaluated Algorithms

To obtain the optimal solution for the Adaptive Index Replacement problem we
implemented OPT by solving the MILP representation from Listing 1 with IBM’s
ILOG CPLEX [1] solver. We use this lower bound on the cost to measure the
effectiveness of all tested online AIR algorithms.

We implemented the following ten algorithms and compared their performance
with respect to our cost model.

(1.) BC is our re-implementation of the algorithm presented by Bruno and Chaud-
huri in [19]. We extended the algorithm to use the accumulated benefit as tie-
breaker when deciding what index to drop.

(2.) HAIL uses a very simple algorithm that can be used by our system without
requiring any algorithmic decision. HAIL simply creates indexes until the storage
capacity is reached and does not throw away any of the created indexes.

116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

S
e

le
c
ti
v
it
y

Attribute

Power Distribution
Uniform Distribution

Figure 4.3: Selectivity distributions over the 20 attributes.

(3.) The LRU-1 algorithm creates a new index for every incoming queries, that
does not hit an index. If the capacity is reached, it will drop the index that was
least recently used.

(4.) The LRU-2 algorithm initially creates an index whenever a new attribute is
queried. After the capacity is reached, it will keep the indexes that were accessed
twice most recently. This means that new indexes are not always created, but only
if the LRU-2-Age of the current query is smaller than the LRU-2-Age of one of the
existing indexes.

(5.) The LEB-∞ algorithm estimates the expected benefit of all indexes by count-
ing for each attribute how often it was accessed and summing up the selectivities
of all queries that selected on the attribute. The algorithm then keeps the most
beneficial indexes. This algorithm corresponds to a benefit aware Least Frequently
Used (LFU) algorithm.

(6.) The LEB-2 algorithm is our implementation of the algorithm described in
Section 4.5, we use a threshold of 0.2. With this threshold the algorithm will only
create indexes if the index amortizes its creation cost in at most five queries.

(7.) The Random algorithm starts by creating an index whenever a new at-
tribute is queried. This continues until the capacity is reached. Afterwards the
algorithm decides uniformly at random which index to drop or if an index for the
new attribute should be created in the first place.

(8.) SoftIndex is our re-implementation of soft index management algorithm pre-
sented in [66] with a threshold of 1.8. The threshold was experimentally determined

4.6. Evaluation 117

to give the best overall performance.

(9.) The FullScan algorithm does not create any index and instead always reads
all blocks fully. No actual algorithm should perform worse than FullScan.

(10.) OPT is a theoretical lower bound of the total cost, obtained from the solu-
tion of the previously presented MILP. Recall, that this algorithm in contrast to
all other algorithms, knows the entire workload in advance.

4.6.3 Performance Results

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

200 %

2 4 6 8 10 12 14 16 18 20

E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Capacity
Power Distribution

Worse than FullScan
BC

HAIL
LEB−∞

LEB−2
LRU−1

LRU−2
Random

SoftIndex
FullScan

OPT
Infeasible Region

2 4 6 8 10 12 14 16 18 20

Capacity
Uniform Distribution

(a) Average read and write I/O cost per block after executing the whole workload

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

2 4 6 8 10 12 14 16 18 20

E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Capacity
Only Reading

BC HAIL LEB−∞ LEB−2 LRU−1 LRU−2 Random SoftIndex OPT

2 4 6 8 10 12 14 16 18 20

Capacity
Only Writing

BC HAIL LEB−∞ LEB−2 LRU−1 LRU−2 Random SoftIndex OPT

(b) Cost breakdown into the average read I/O and write I/O cost per block after executing the
whole workload using the Uniform distribution

Figure 4.4: Simulated I/O cost for all presented AIR strategies with varying ca-
pacities.

Figure 4.4(a) shows the total cost for both the Uniform Distribution as well
as the Power Distribution. On the y-axis we see the average I/O cost per data
block in percent. This means that if every block is always read fully from disk, the
average I/O cost is 100 %. If every block is read fully and written out again this
corresponds to the maximum of 200 %. The x-axis shows how many full copies of
the dataset can be stored. Since the dataset has 20 attributes, it is clear that we

118

can create an index for every attribute, if we can store 20 copies of the data. The
interesting area starts if the available space is greater or equal to three, as Hadoop
creates already three replicas by default.

The first thing to note is that both LRU algorithms perform rather poorly.
LRU-2 performs much better than LRU-1 but it fails to beat the other AIR al-
gorithms. The BC algorithm performs rather well if the available space is scarce,
but it does not reach the same level as the other algorithms when we can store
almost all indexes. This is caused by the way BC tries to prevent oscillating index
creation. Whenever an existing index is used by an incoming query, BC lowers
the accumulated benefit of all indexes that are not yet created. This leads to the
case that several indexes are never created, even though the space would allow for
creating more indexes.

We see that LEB-2 is slightly better than the LEB-∞ algorithm. But why does
the LEB-2 algorithm only slightly improve over the LEB-∞ algorithm and does
not outperform it clearly, even though the access pattern changes drastically after
every hundredth query? To explain this result we look at the breakdown of the
I/O cost depicted in Figure 4.4(b). Here we see, that the average read cost per
query of all algorithms is rather similar, with the LEB-2 and LRU-2 being a little
better for the Evolving Pattern. What we also notice is that the LRU algorithms
are very competitive in terms of read performance. Since the LRU algorithms are
very good at adapting to new query distributions, they manage to provide useful
indexes most of the time. This adaptivity comes at a cost as we see when looking
at the average write cost per query. This makes BR algorithms unsuitable for the
AIR problem. LRU-1 always has to create an index for every “index miss”, as this
attribute has the smallest LRU-1-age. LRU-2 performs a little better with respect
to write performance, as it does not always create a new index for every “index
miss”.

0 %

25 %

2 4 6 8 10 12 14 16 18 20

E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Capacity
Power Distribution

BC HAIL LEB−∞ LEB−2 LRU−1 LRU−2 Random SoftIndex FullScan

2 4 6 8 10 12 14 16 18 20

Capacity
Uniform Distribution

Figure 4.5: Additional I/O cost compared to OPT in absolut numbers (% of block
read and written additionally)

We notice that also the LEB-2 has higher write costs compared to the LEB-

4.6. Evaluation 119

∞ algorithm. LEB-2 adapts faster to the evolving workload as LEB-∞, but since
adapting means to change the set of available sort-orders more often, it has to write
more data. In contrast, LEB-∞ adapts only slowly to a new query distribution
and changes only slowly the set of available indexes. The additional write cost to
adapt faster diminishes the gain of the better indexes that are available with the
LEB-2 algorithm.

Figure 4.5 provides a zoom-in on the I/O overhead compared to the OPT
algorithm. Here the absolute overhead compared to OPT is depicted, i.e, the
average I/O an algorithm has to pay additionally for every query compared to the
OPT strategy. We see that the LEB-2 algorithm is our favorite for the evolving
workloads and both selectivity distributions.

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

200 %

0 50 100 150 200 250 300

 E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Query
Power Distribution

BC HAIL LEB−∞ LEB−2 LRU−1 LRU−2 Random SoftIndex OPT FullScan

0 50 100 150 200 250 300

Query
Uniform Distribution

Figure 4.6: Running-average I/O cost per query for the different patterns and
distributions

Until here we only looked at the overall performance of the different algorithms.
Now we want to look at the development of the performance while executing the
workload. Figure 4.6 depicts the running average I/O cost for all implemented al-
gorithms, query patterns, and selectivity distributions with a capacity constraint
of eight indexes. We see that the conservative algorithms benefit in the beginning,
as they do not incur the initial indexing costs. Please note that our HAIL imple-
mentation can limit the initial spike by setting a so called offer rate, that allows
only for a certain percentage of the blocks to be indexed.

In the next figure we will visualize the evolving indexes for four of the presented
AIR strategies, namely OPT, BC, LRU-2, and LEB-2. Figure 4.7 depicts the
accumulated benefit, or overhead respectively, for the different attributes. The
black boxes depict the existing indexes and the small crosses depict the accessed
attributes. The green color depicts the accumulated benefit over full scan, if we
hit the index, while the red color depicts the accumulated overhead over an index
scan, if we miss the index. We see that the OPT and LRU-2 strategies often change
the set of available indexes. In contrast BC and LEB-2 keep their indexes for a
relatively long period of time. We also notice that the green in the OPT strategy is

120

0

2

4

6

8

10

12

14

16

18

20
O

P
T

A
tt
ri
b
u
te

0

2

4

6

8

10

12

14

16

18

20

B
C

A
tt
ri
b
u
te

0

2

4

6

8

10

12

14

16

18

20

L
R
U

-2
A
tt
ri
b
u
te

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

14

16

18

20

Query

L
E
B
-2

A
tt
ri
b
u
te

Figure 4.7: Visualization of AIR strategies over an evolving workload, uniform
distribution, capacity of 8

4.6. Evaluation 121

not necessarily darker than the green in the other strategies, but there are almost
no traces of red visible. Keep in mind that OPT is only shown for reference — it
is the only algorithm knowing the future. BC accumulates high benefits on a few
attributes, however, it keeps most of the indexes over long periods of time, and
only one of the indexes is frequently adapted to the workload. In contrast, LEB-2
adapts all of its indexes more frequently and achieves overall a better performance.

4.6.4 Robustness Results

In this Section we investigate the robustness of the different AIR algorithms. We

0 %

20 %

40 %

60 %

80 %

100 %

2 4 6 8 10 12 14 16 18 20

E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Capacity
Power Distribution

HAIL LEB−∞ LEB−2 OPT Infeasible Region

2 4 6 8 10 12 14 16 18 20

Capacity
Uniform Distribution

Figure 4.8: Robustness: Average I/O cost on variations of the query sequence

noticed that the simple HAIL algorithm is performing rather competitive for the
randomly chosen query sequences. To show that the simple algorithm is highly
dependent on the very first queries, we choose to compute the I/O cost for two ad-
ditional query sequences. In both additional sequences we prepend twenty queries
on the twenty attributes to the previously described random query sequence. These
twenty queries are ordered with respect to the total benefit an index on that at-
tribute would have for the whole query sequence. One sequence starts with the
twenty queries in ascending benefit order, while the other sequence starts with the
twenty queries in descending benefit order. Figure 4.8 (a) shows the result for the
HAIL algorithm as well as both LEB algorithms. We see that the performance of
the simple algorithm has a very high variance while both LEB algorithms are not
influenced as much by the first queries. Please notice that none of the described
query sequences are yet the worst case sequence for the HAIL algorithm. An ad-
versary for the HAIL algorithm would first access a few attributes and force HAIL
to create indexes. As soon as no more indexes can be build, the initially accessed
attributes are no longer accessed. This makes the initially created indexes useless
for all following queries.

We can also learn from Figure 4.8 (a) that evolving workloads need evolving
indexes. The lower green line shows the result of creating the best indexes in the

122

beginning. We see that for the evolving pattern the gap between that lower green
line and the performance of OPT is still rather big.

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

200 %

2 4 6 8 10 12 14 16 18 20

E
v
o

lv
in

g
 P

a
tt

e
rn

A
v
e
ra

g
e
 I
/O

 c
o
s
t

Capacity
Power Distribution

Worse than FullScan
BC

HAIL
LEB−∞

LEB−2
LRU−1

LRU−2
Random

SoftIndex
FullScan

OPT
Infeasible Region

2 4 6 8 10 12 14 16 18 20

Capacity
Uniform Distribution

Figure 4.9: Robustness: Average I/O cost per query when the queries abruptly
shift their focus after 500 queries

Why do we not use worst case sequences when analyzing the performance of
the Index Replacement algorithms? It is textbook knowledge that all deterministic
Buffer Replacement algorithms have the same number of page misses in the worst
case. Similarly, if we cannot create indexes for all attributes, an adversary can
always force our algorithm to fully scan all blocks. If we can create some indexes
for all blocks, the perfect algorithm against an adversary is to balance the benefit
for all attributes. This means that we do not adapt to any query the adversary
provides, but create whatever index is necessary to balance the benefits between
all attributes. In the case that we cannot provide a benefit to all attributes at the
same time we should not create any index and always rely on full scan.

To further investigate the robustness of our LEB algorithms we perform another
set of simulations with a different workload pattern. In this new patterns we
divide the workload into two halves, in the fist half we only query attributes 0 to
9 and in the second half we only query attributes 10 to 19. Inside both halves
we again use the evolving pattern. In Figure 4.9 (b) we see that OPT as well as
LRU-1, 2, Random, and LEB-2 reach the optimal performance as soon as there
is enough space to store ten attributes. The BC algorithm does not reach the
optimal configuration of storing all indexes even if a capacity of 20 is given. That
problem again stems from the anti oscillation measures, the accesses on the first
attributes create a rather negative benefit for the remaining attributes and it takes
a while until the other attributes are considered for indexing. A similar effect can
be observed for the LEB-∞ algorithm, as the expected benefit only shifts slowly
toward the attributes that are requested in the second half.

4.6. Evaluation 123

4.6.5 Experimental Results

Finally, to validate our findings we perform an experiment on our cluster and mea-
sure the actual runtime of a query sequence using different replacement algorithms.

Hardware: Our cluster consists of nine nodes, each running the 64-bit version of
openSuSE 12.2 as OS. Each node has an eight-core Xeon E5-2407 with 2.2 GHz,
47 GB of RAM, 2x2 TB SATA HD, and one gigabit Network adapter.

Dataset: We generated a synthetic dataset on each node consisting of 10 GB
of data, so 90 GB in total. The generated dataset allows us to easily generate a
workload with the selectivity distribution described in the beginning of Section 4.6.
E.g., if the selectivity on an attribute should be 0.5 we generate only the values 0
and 1 for that attribute and distribute them uniformly at random over all tuples.

Workload: We use the first hundred queries of the presented query pattern as
our workload.

We upload the dataset to our Hadoop cluster using a replication factor of one
and do not create any indexes while uploading. We allow for up to eight adaptively
created indexes to exist in the cluster.

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

−
A

v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 i
n

 [
s
]

Query

HAIL measured
LEB−∞ measured
LEB−2 measured

FullScan measured

HAIL simulated
LEB−∞ simulated
LEB−2 simulated

FullScan simulated

Figure 4.10: Running average of the job runtime for all hundred queries

Figure 4.10 shows the running average of the end-to-end runtime for the whole
query sequence. The figure also shows the estimated runtime next to the actual
measured runtime. To estimate the runtime based on our cost model we first
multiplied the computed I/O cost with the per node dataset size. This yields
the average I/O cost per node. We measured the HDFS transfer rate using the
TestDFSIO tool that is included in Hadoop; the result is a transfer rate of 74 MB/s.
The actually measured runtime nicely fits the predicted runtime. This shows that
the I/O costs are indeed a good indicator for the actual performance and that our
simulations correspond to the actual performance on our cluster.

124

4.7 Conclusion and Future Work

We introduced the AIR problem and provided formal definition of the optimal so-
lution to the problem. We have seen that BR algorithms can be used to tackle the
AIR problem. However, without any modifications such algorithms work rather
poorly, as they do not incorporate the selectivity of the queries and ignore the
index creation cost. We discussed and implemented an algorithm based on the
LRU-K algorithm and saw in the evaluation that our LEB-K algorithm provides
strictly better results than the LRU-K algorithm. We also learned that our algo-
rithms perform as well, if not better, than both presented online Index Selection
algorithms from the literature. We also uncovered some flaws in the BC algorithm
that can make it unsuitable for the adaptive indexing scenario in Hadoop. The
LEB-2 algorithm provided better performance than all other algorithms. We have
seen that the I/O based cost model correctly predicts the actual runtime on our
cluster. In future work we want to investigate the AIR problem in the context of
main memory adaptive indexing. We are also further investigating how to adapt
the threshold for the LEB-K algorithm to the current workload.

Chapter 5

Smart Caches (not only) for
Analytical Workloads

In this chapter we will introduce a new hardware component that will allow us
to perform scan intensive, in contrast to compute intensive, queries faster. Such
queries are common in online analytical processing, especially if the analytical
queries are performed on the live data instead of predefined aggregates and ma-
terialized views. This new hardware component was developed in the context of
a joint project with the IBM Germany Research & Development laboratory in
Böblingen. In this project we investigate how to bring modern data-analytical
workloads to the IBM System Z mainframe machines.

5.1 IBM System Z Mainframe

The IBM System Z Mainframe, zEnterprise196 at the time of the project, is a very
potent machine with up to 96 cores running with a clock frequency of 5.2 GHz
and a total main-memory capacity of 3 TB. It is noteworthy that even though
these processors provide a very high clock rate, several features that are present in
modern server CPUs, e.g. from Intel, were not present in these mainframe cores at
the time of the project. For instance, out-of-order execution was just introduced
into the cores present in the zEnterprise196 mainframe and Simultaneous Mul-
tithreading (SMT) or Same Instruction Multiple Data (SIMD) instructions were
only recently introduced with the z13 architecture (2015).

Nevertheless, many organizations and companies use the System Z mainframe
architecture from IBM as a highly reliable and secure data store. Typically, all
business critical data is stored on the mainframe and, for some companies, has
to solely reside on the mainframe, for security reasons. Many of those companies
store and process their business critical transactions in databases that are tuned

125

126

for online transactional processing (OLTP). Those database systems can handle
insert or update-intensive short running transactions very well. Such workloads
are therefore well supported and often executed on IBM System Z mainframe
machines.

However, for decision makers it is also important to analyze the business data.
To protect the high throughput of the OLTP system, the state of the art solu-
tion is to bulk transfer the data from the OLTP system to a so called data ware-
house [90, 63]. This is done to keep long running analytical queries from degrading
the high throughput of the OLTP system. On the downside companies have to
perform these bulk transfers, maintain a second system, and work on stale data
from the time of the last bulk transfer. This also forces the data to be available
in an environment that is potentially less secure than the mainframe architecture.
Today, it is often required to have real time analytics on the live data. To enable
such real time analytics, in-memory databases are becoming more and more pop-
ular. For instance ,HyPerDB [58] is an in-memory database that allows for OLTP
and online analytical processing (OLAP) on the same data. Such databases are
developed for modern server CPUs but not necessarily for the mainframe. We
want to develop new hardware components for the mainframe that make it more
attractive for analytical processing on in-memory databases.

5.2 Motivation for Smart Caches

Todays memory architectures have several levels of caches to mitigate the widening
gap between memory access times and CPU cycle times. The difference in size
and speed between the different cache levels already reached several orders of
magnitude and led to the introduction of more and more cache levels. System Z
has four cache levels, where the first two are core local while the third and forth
are shared between four cores. Prefetching and sophisticated cache replacement
strategies are used to utilize the available cache space to the fullest. In scan once
patterns, that are common for analytical queries, caches are not helping at all. An
important observation is that all data needs to be brought into CPU registers to
perform even the simplest computation; This also often involves copying the data
into all cache levels. The question now is: How can we perform scan intensive
operations, that perform almost no computation, more efficiently? And how can
we make use of the otherwise useless caches in such queries?

5.3. Computation on Cache Lines 127

5.3 Computation on Cache Lines

Even though memory is byte-addressable, we cannot simply load a single byte
into a register from memory but instead we have to first load the whole cache line
into the L1 cache. In the Z architecture a cache line consists of 256 bytes. An
interesting approach to speed-up scan intensive queries is to perform computations
on the whole cache line at once. Such computations can be vector operations
between two cache lines, or aggregation functions, like computing the maximum
or the sum of all elements in a single cache line.

We performed an experiment to measure the possible gains of such an approach.
For the experiments we assumed that we want to sum up all longs of a large
array. However, instead of summing up all longs we gradually introduce larger
and larger strides, i.e. we only sum up every i-th long with increasing i. With
this we simulate that summing up all longs in a whole cache line boils down
to accessing and summing up a single or very few longs in the cache line. We
performed this experiment on an Intel CPU as well as the Z and observed some
interesting differences.

Figure 5.1(a) shows the observed behavior on Intel. The different colors repre-
sent different sizes of the data array. Smaller arrays are summed up several times,
such that the total number of elements brought into CPU is the same for each
array. This normalizes the runtime for different sized arrays and we can compare
the runtimes. When looking at large array sizes every accessed cache line needs
to be brought from memory into the L1 cache. In this case we can observe that it
has almost no impact on the runtime whether we access the loaded cache line only
once or several times. Smaller arrays are, at least to a large fraction, resident in
the cache hierarchy and we can observe that it makes indeed a difference if we have
to access a cache line once or several times. This indicates that the bottleneck for
our simple aggregation on a large array is not the computation power in the core
but the memory bandwidth from the main memory to the core.

The graph in Figure 5.1(b) shows the curves for the z196 CPU. This graph in-
dicates that fetching only every fifth element of a cache line would already improve
the total runtime significantly. More detailed examination showed that this speed-
up is not due to less computational overhead, but to parallel cache line prefetching,
that only occurred when the stride between the accesses is high enough, we ob-
served parallel prefetching as soon as the distance between two accesses is larger
than 32 bytes. This indicates that either manual prefetching instructions should be
inserted, or the prefetching of the System Z should be more aggressive to perform
optimal in those scenarios, where a large region of memory is accessed sequential.
In both architectures the possible performance gains, achieved by introducing com-
putation logic on cache lines in the L1 cache, are very limited for data that does
not fit into the caches. Unfortunately, analysts are often interested in summaries

128

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4 8 16 32 64 128 256 512

R
u
n
ti
m

e
 [
s
]

Stride [bytes]

64KB
512KB

1024KB
2MB
4MB
8MB

16MB
256MB
512MB

1GB

(a) Runtime on Intel with 64 byte cache lines

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 8 16 32 64 128 256 512

R
u
n
ti
m

e
 [
s
]

Stride [bytes]

64KB
512KB

1024KB
2MB
4MB
8MB

16MB
256MB
512MB

1GB

(b) Runtime on Z with 256 byte cache lines

Figure 5.1: Strided access experiment on Z and Intel CPU

of large tables that are unlikely to reside in caches. We therefore examine the
achievable memory throughput on System Z in the next section in more detail.

5.4 Memory Throughput

We observed in the previous section that the limiting factor when aggregating
large arrays is the available memory bandwidth. Additionally, on System Z we
have several instructions to choose from when moving content in memory. Table
5.1 lists the available move instructions. It is noteworthy that the implementation
of the move character (MVC) instruction performs the move operation in the
L1 cache while the move character long (extended) (MVCL(E)) instructions are

5.4. Memory Throughput 129

Instruction Description

LG — STG Load 64 bit from memory to a register
and store that register back into memory

LGM — STGM Load multiple registers from memory and
stores them back

MVC Moves 256 Byte in memory without using
the CPU registers

MVCL(E) Moves a memory page (4 KByte) in the
memory

Table 5.1: Instructions to move memory content on System Z

performed using only the L4 cache as a buffer – without bringing the data higher
in the cache hierarchy.

To determine the bandwidth of the different move instructions we measured
the time to move 512 MB in memory using the different instruction. The result
can be seen in Figure 5.2. Additionally to the move instructions we measured the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

T
h

ro
u

g
h

p
u

t
[G

B
/s

]

LG/STG
LGM/STGM

MVC
MVCL(E)

LG only

Figure 5.2: Throughput for moving data in memory using different instructions.

time to just load all array elements into a register to sum them up, without storing
the content back, the throughput is depicted by the yellow bar. We clearly see
that the MVCL instruction has a much higher throughput than all other move
instructions.

We are also interested in the multithreaded bandwidth of the move instructions,
especially since the mainframe offers many cores and we could already observe
the benefits of parallel prefetching in the previous section. Figure 5.3 shows the
runtime of the MVC and MVCL instructions when using a varying number of

130

threads. We performed the same experiment with different number of threads.
The throughput is depicted in Figure 5.3. Please note that only four physical
cores with a shared L4 cache were used in the experiment. When using several
threads to move the memory content we observe that the MVCL based move
clearly outperforms the MVC based move. However, the cache line move (MVC)
scales better compared to the page move (MVCL), namely by a factor of almost
three when using four threads instead of one compared to a factor of almost two
for the page move. This behavior can be explained with the fact that there exists

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
[G

B
/s

]

MVC MVCL(E)

Figure 5.3: Multithreaded move experiment

only one L4 cache and page move hardware for four cores while each core has its
own L1 cache and move character engine. Future generations of the System Z
could also incorporate more page move engines to improve the parallel executions
of page move operations.

5.5 Related Work

The widening gap between memory access latency and CPU cycle times has al-
ready been observed in the literature for many years. Researchers from Berkley
proposed a solution called intelligent RAM, IRAM for short [73]. Intelligent RAM
combines DRAM with processing power, this increases the bandwidth between
memory and processing elements by putting the processing elements very close
to the memory. Such memory components are typically very small and expen-
sive. One reason for the high price of such memory is the testing complexity,
that increases tremendously by introducing processing elements in the memory.
Todays business applications, especially in-memory databases, need huge amounts
of memory to store the ever-growing amount of data. Therefore, having all data

5.6. Computation at the L4 Cache 131

stored on intelligent RAM is not yet feasible and maybe never will be feasible.
Another approach, taken by e.g. Netezza, is to introduce field programmable

gate arrays (FPGAs) into the data path between disk and memory. With those
FPGAs it is possible to perform computations on the data before it is brought
into the memory hierarchy. Such computations can increase the payload that is
brought into memory in case of e.g. filtering, aggregation or compression. This
approach has two mayor drawbacks. One drawback is the energy efficiency of
those FPGA elements [61]. The other drawback only arises with the upcoming
in-memory databases — there simply is no need to load any data from disk to
answer queries.

5.6 Computation at the L4 Cache

The high throughput of the MVCL instruction led us to further investigations of
the hardware implementation of this instruction. The move of a whole memory
page is performed without bringing all cache lines into the L1, L2 or even the
L3 cache but instead 16 cache lines of the L4 are used as a buffer for the page
that needs to be fetched and stored back. This leads to the idea of performing
computations on this memory page while it is being moved from one page address
in memory to the other, without bringing any data into CPU registers.

To evaluate such a hardware we performed several simulations. The setup is
as follows: We use two arrays A and B, each filled with 512 MB of data, stored
in memory. These arrays correspond to columns in a column-store database and
we perform filtering and aggregation on those columns. As a baseline we perform
filtering and aggregation in the CPU only. Additionally we simulate the existence
of filter and aggregation hardware. We simulate the existence of such a hardware
component as follows: First, we create and store a bit mask of the qualifying
tuples upfront in memory. Afterwards, when the hardware should be used to filter
or aggregate a page, we simply move the page to a scratch area and use the upfront
created bit mask as if the move created that bit mask. The time measurement
of the simulated hardware filter and aggregation operations include the time to
perform page moves but not the time to create the bit mask in memory.

Listing 5.1 contains the C++ code that was used to count the qualifying entries
in the table. The first very simple query we look at just counts the number of qual-
ifying tuples with a simple equality predicate, SELECT COUNT(∗) WHERE A=0.
Figure 5.4 shows the simulated runtime when varying the selectivity of the filter
condition. We see that the move page instruction and therefore our expected filter
runtime is only half the time compared with the standard CPU filtering runtime.
When we compare the green line with the red line we also note that the cost to
count the set bits in the bit mask is rather small compared with the cost to create

132

Listing 5.1: Code for counting qualifying tuples in CPU

int queryForCount (EntryType query , EntryType∗ tab le , int t a b l e S i z e)
{

int count = 0 ;
for (int i = 0 ; i < t a b l e S i z e ; i++) {

count += (t a b l e [i] == query) ;
}
re turn count ;

}

��

�����

����

�����

����

�����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

�
�
�
���

�
�
��
�

�����������

����������������������������

�����������
��������
��������

Figure 5.4: Simulated Filter Performance

the bit mask. Nevertheless, this additional cost can be avoided by counting the
number of qualifying values already in the filter engine.

When we now look at a slightly more complex query, namely the query
SELECT SUM(B) WHERE A=0, we can perform this query in at least three different
ways. First, we can perform the aggregation in the CPU by reading elements from
the array A until we find a qualifying element and then read the corresponding
element of B and add it to the running sum. We see the code to perform the ag-
gregation fully in the CPU in Listing 5.2. Second, we can first compute a bit mask
by streaming A through the new page move engine and then either use this bit
mask in the CPU to decide what elements to load from B. Third, after computing
the bit mask by streaming A through the new page move engine, we also stream
the array B together with the bit mask through the page move engine, which now
performs an aggregation under mask operation.

5.6. Computation at the L4 Cache 133

Listing 5.2: Code for aggregating all qualifying tuples in CPU

EntryType sum B where A 0
(EntryType∗ colB , EntryType∗ colA , int t a b l e S i z e)

{
EntryType sum = 0 ;
for (int i = 0 ; i < t a b l e S i z e ; i++) {

i f (colA [i] == 0)
sum += colB [i] ;

}
re turn sum ;

}

��

�����

����

�����

����

�����

����

�����

����

�����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

�
�
�
���

�
�
��
�
�
�

�����������

�������������������������

�����������
�����������������

��������
��������������

Figure 5.5: Simulated Aggregation and Filter Performance

The runtime of those three approaches can be seen in Figure 5.5. The blue
line corresponds to the first option, using only the CPU, the green line to the
second, using the created bit mask as filter when performing the sumation in the
CPU, and the violet line correspond to the third option, creating the bit mask and
performing the aggregation in the smart cache. When the selectivity is very high,
i.e almost no elements qualify, it pays off to load only the needed elements into the
CPU instead of performing the aggregation in the Page Move Engine. The break
even point is around a selectivity of 5%.

134

5.7 Instruction Design

In this Section we will introduce three new instructions and illustrate their design
with several use cases. Those instructions use an extended Page Mover engine,
that allows to perform simple computations, like filtering, aggregation, and vector
computation on the elements contained in the moved page. As a running example
we will use the lineitem table from the TPC-H benchmark. The interesting
columns of this table and their types are listed in Table 5.2.

Table 5.2: lineitem schema

Name Type

...
...

price 64-bit double
discount 64-bit double
quantity 32-bit integer

shippingdate 64-bit unsigned integer

We assume the lineitem table to be stored in column layout in main memory.
This means that a column is stored sequentially as a vector of values in memory.
The address of the ith element of a column C can be computed given a start
address ad(C0) and a scalar type t(C) by the following formula:

ad(Ci) = ad(C0) + i · sizeof(t(C))

Those addresses are logical addresses and the physical addresses might jump after
translation at page boundaries. The database system should ensure that columns
are page aligned in memory, this means that a column starts at the beginning of
a page and that a page always contains an integral number of entries.

We introduce the following instructions with the help of several use cases in
the following subsections:

1. The CompareBetween instruction allows us to filter all values in a page ac-
cording to a range predicate. All qualifying values are also immediately
aggregated in a register.

2. The Aggregate instruction allows us to aggregate all values in a page, option-
ally using a bit map for masking qualifying values.

3. The VecOp instruction allows us to perform a vector operation with values
stored on one page with values stored on another page. Additionally, the
results of the vector operation are aggregated into a running aggregate that

5.7. Instruction Design 135

can be retrieved from a specified register. Optionally, the aggregation uses
only the qualifying vector entries specified by a bit mask.

5.7.1 Example Use Case for CompareBetween

Assume a data analyst is interested in the revenue of sales that lie in a certain
price range. To obtain that information he formulates the following SQL query.

Q1: SELECT SUM(p r i c e) AS rev mid FROM l i n e i t e m
WHERE p r i c e BETWEEN 100 .00 AND 2 ,000 .00

Without our Smart PageMover all price values need to be loaded into a register
before they can be compared against the values 100.00 and 2, 000.00. Whenever
a price value qualifies it is added onto a running sum, that is finally returned
in a register. With the Smart PageMover the price column can be streamed

Table 5.3: Inputs to CompareBetween to answer Q1

Parameter Value Comments

ad ad(price) the start address of the column; the address is updated
automatically after each invocation by adding the size of
one memory page

size |price| the number of elements to be compared; the value is up-
dated automatically after each invocation by subtracting
512

type 64-bit double the type of each element on the memory page
agg op sum operation used for aggregation

agg 0.00 this value is combined with the aggregated value of the
current pages and contains the result after all pages have
been processed

low 100.00 lower bound of qualifying elements
upp 2, 000.00 upper bound of qualifying elements

inclow true flag indicating if the lower bound should be included
incup false lag indicating if the upper bound should be included

mask ad 0 bit mask address; no mask is specified in this case
mask false no bit mask is read

invmask false bit mask is not inverted

through the PageMover using the CompareBetween instruction in a tight loop. A
memory page of 4 KB can hold 4·210

sizeof(t(price)) = 512 elements of the price column.

While all those elements stream through the Smart PageMover they are compared

136

against 100.00 and 2, 000.00. The qualifying elements are immediately added up
and the result is returned in a register. Meanwhile, the state of the bit mask is
also updated. Since we are not interested in the bit mask for this use case we will
specify how the bit mask is updated later. Table 5.3 contains all arguments passed
to the CompareBetween instruction to answer Q1.

We use the next use case to explain how the bit mask is updated and to
introduce the new Aggregate instruction.

5.7.2 Example Use Case for Aggregate

Let’s assume a data analyst wants to compute the total revenue rev by summing
up all price values.

Q2: SELECT SUM(p r i c e) AS rev FROM l i n e i t e m

To calculate this sum without the Smart PageMover the whole price column
needs to be brought into CPU registers and finally added up. With the Smart
PageMover hardware the Aggregate instruction can be used in a tight loop to
aggregate over one memory page at a time. Table 5.4 shows the parameter used
to answer Q2.

Table 5.4: Inputs to Aggregate to answer Q2

Parameter Value Comments

ad ad(price) see Table 5.3
size |price| see Table 5.3
type 64-bit double the type of each element on the memory page

agg op sum operation used for aggregation
agg 0.00 see Table 5.3

mask ad 0 no bit mask is specified
mask false no bit mask is used to filter

invmask false bit mask is not inverted

In Q1 the data analyst was interested in the revenue of all sales in a certain
price range, but what happens if he is interested in the revenue of a particular
year? Let’s say he wants to calculate the revenue of 1994 and uses the following
SQL query.

Q3: SELECT SUM(p r i c e) AS rev1994 FROM l i n e i t e m
WHERE sh ipp ingdate BETWEEN ’1994-01-01’ AND ’1995-01-01’

5.7. Instruction Design 137

Without any special index structures or sort orders we need to scan the
shippingdate column and test in the CPU for each entry if it qualifies. When-
ever a qualifying entry is found we need to fetch the corresponding price into CPU
registers to perform the aggregation. In contrast, our Smart PageMover allows us
to use the CompareBetween instruction to create a bit mask and the Aggregate
instruction to conditionally aggregate another column.

The start address of a bit mask can be specified by the mask ad parameter, an
address of 0 indicates that no bit map mask will be created or used. Otherwise, the
address is interpreted as the start address of bit map in memory and that bit map
is used to filter the input elements, iff the mask bit is set. If we would set the mask
bit to true we would be refining an existing bit map. However, here we want to
create a new bit map and therefore set the bit to false. CompareBetween modifies
the bit map according to the outcome of the comparisons between elements of the
column and the lower bound low and upper bound upp. The arguments to the
CompareBetween instruction to answer Q3 are listed in Table 5.5.

Table 5.5: Inputs to CompareBetween to answer Q3

Parameter Value Comments

ad ad(shippingdate) see Table 5.3
size |shippingdate| see Table 5.3
type 64-bit double the type of each element on the memory page

agg op nop no aggregation needed
agg 0 does not matter
low ’1994-01-01’ lower bound of qualifying elements
upp ’1995-01-01’ upper bound of qualifying elements

inclow true include the lower bound
incup false exclude the upper bound

mask ad 0x2000000 this address is automatically incremented
mask false we do not use the mask, but simply overwrite it

invmask false we do not invert the bit mask before writing

To make the caching of a bit mask effective, it is recommended to aggregate
on all pages of columns that correspond to the cached bit mask, before creating
the next bit mask and processing the next pages of the columns. The input to the
Aggregate instruction can be found in Table 5.6. An alternative instruction design
allows for several aggregation operations in the same instruction. This would allow
us to formulate, for example, the average calculation as a separate count and sum.

138

Table 5.6: Inputs to Aggregate to answer Q3

Parameter Value Comments

ad ad(price) see Table 5.3
size |price| see Table 5.3
type 64-bit double the type of each element on the memory page

agg op sum operation used for aggregation
agg 0.00 see Table 5.3

mask ad 0x2000000 bit mask starts at address 0x2000000
mask true mask is used to filter

invmask false mask is not inverted

5.7.3 Example Use Case for Vector Operations

Vector operations were already part of earlier ESA390 systems. We do not put
much focus on those operations. The main difference to the previous vector op-
erations in the ESA390 is that we don’t work inside of vector registers in the
CPU but perform computations while two or more pages are streamed through
the Smart PageMover , hence we do not bring the data into the CPU. Accessing
more than two pages simultaneously enables conditional aggregation on the result
of the vector operation or writing the result out without destroying one of the
inputs.

For example, assume we want to find out how much money the company gave
away by granting discounts.

Q4: SELECT SUM(p r i c e ∗ di scount) AS l o s t r e v FROM l i n e i t e m

To answer this query we use the VecOp instruction in a tight loop. Its param-
eters can be found in Table 5.7.

5.8. Patent Application: Accelerator for Analytical Workloads 139

Table 5.7: Inputs to VecOp to answer Q4

Parameter Value Comments

ad1 ad(price) see Table 5.3
ad2 ad(discount) start address of the second vector; see above
size |price| see Table 5.3
type 64-bit fix point the type of each element on the memory page

vec op multiply vector operation used
agg op sum operation used for aggregation

agg 0.00 see Table 5.3
mask ad 0 no mask is specified

mask N/A not used
invmask N/A not used

5.8 Patent Application: Accelerator for Analyt-

ical Workloads

The following figures show possible implementations of the operations, that were
introduced in the previous section.

The Filter Engine, shown in Figure 5.6, produces a bit mask that is stored in
memory. The Filter Engine consists of a Parallel Compare circuit, which performs
2 · k parallel comparisons between the k input elements from the L4 cache and
the lower bound as well as upper bound provided by the CPU instruction. The
outcome of those comparisons is given by k bits, which are fed into the MaskBuffer,
to create a bit mask, and additionally into an Incrementer to keep track of the
number of elements that passed the filter.

In the figure we see an instance of the Filter Engine with k = 4 and a scalar
width of 64 bit. Figure 5.7 shows the control sequence for the Filter Engine.

140

L4

32 B

Next
Fetch

Address

8 B

Fetch Address

8 B

Page Start Address

Filter Engine

Parallel Compare

8 B 8 B

L4

MaskBuffer

4 Bit

32 B

Next
Mask
Store

Address

8 B

Mask Fetch Address

8 B

Mask Address

Low
Buffer

High
Buffer

Upper bound
Lower bound

8 B 8 B

Bounds handling

2 Bit

Count
Buffer

4 bit
Incrementer

Count

Figure 5.6: Filter Engine

5.8. Patent Application: Accelerator for Analytical Workloads 141

Start

Software receives request to
filter a storage area

Software issues instruction to
filter a page

CPU send command to Filter
Engine

Filter Engine fetches line

Filter Engine compares all elements of
the line with the upper and lower bound

Filter Engine puts the results in the
bitmask buffer and increments count

Bitmask
 buffer full?

Filter Engine stores bit mask buffer at the bit
mask address and increments the address

Last Line in
Page?

Software adds count to running
sum

Last page in
storage area?

Stop

no

yes

yes

no

Next page

Filter Engine ensures no other CPU works
on the Cacheline of the bit mask address

no

yes

Figure 5.7: Filter Engine Process Flow

A bit mask, that was for example created by the Filter Engine, can be used
by the Aggregation under Mask Engine, see Figure 5.8, to aggregate all qualifying
entries of a memory page. This is achieved by loading the bit mask and chunks of

142

ResultBuffer

L4

32 B

8 B

8 B

8 B

Next
Fetch

Address

8 B

Fetch Address

8 B

Page Start Address Result

Aggregation
 under

Mask Engine

5 Way-Add64 under
mask

8 B 8 B

L4

MaskBuffer

4 Bit

32 B

Next
Mask
Fetch

Address

8 B

Mask Fetch Address

8 B

Mask Address

Figure 5.8: Aggregation under Mask Engine

the memory page into the engine. Afterwards aggregation operations, like finding
the maximum or summing up all qualifying values, are performed with respect
to the loaded bit mask. Figure 5.9 visualizes the process flow of the Aggregation
under Mask Engine.

It is interesting to note that the two engines could be operated interleaved
instead of sequential. This would allow to cache the bit mask in the engine and
could thereby reduce memory traffic for storing and loading the bit mask.

5.8. Patent Application: Accelerator for Analytical Workloads 143

Start

Software receives request to
conditionally sum up storage area

Software issues instruction to
conditionally sum up page

CPU send command to
Aggregation Engine

Aggregation Engine fetches
mask

Aggregation Engine fetches line

Aggregation Engine sums up all
qualifying elements of the line

Mask
exhausted?

Last Line in
Page?

Software adds page sum to
running sum

Last page in
storage area?

Stop

no

yes

yes

no

Next page

no

yes

Next mask

Figure 5.9: Aggregation under Mask Engine Process Flow

144

5.9 Conclusion

In this chapter we developed a new hardware approach to improve the runtimes
of many analytical queries. The idea to bring computational power closer to the
data, by introducing it into caches, is a promising compromise to intelligent RAM.
Not only filter and aggregation operations could be performed at the cache level,
but also vector operations and compression techniques can further increase the
payload that is brought into the upper levels of the cache hierarchy.

This idea also led to a patent application and will be hopefully used in next
generation mainframes to enable efficient in-memory databases and analytics as
the future workload for the IBM System Z.

Appendix A

Additional Results of the ”New
Workloads for the IBM
Mainframe System Z” Project

A.1 Algorithms

The survey paper Top Ten Algorithms in Data Mining [93] served as a starting
point to identify the most important problems and algorithms in data mining
workloads. Table A.1 lists those ten algorithms.

Algorithm Type

C4.5 Classification
k-means Clustering

Support Vector Machines Classification
Apriori Frequent Itemset Mining

Expectation-Maximation Clustering
PageRank Ranking
AdaBoost Classification

k-nearest neighboor Classification
CART Classification

Table A.1: Top Ten Algorithms in Data Mining

The performance of classification algorithms is not only measured with respect
to runtime but also the quality of the resulting model. The quality of a classifica-
tion model is not easy to measure. Therefore we decided to first look at improved
algorithms for clustering and frequent item set mining.

145

146

Additionally we took a look at sorting in the context of in-memory databases.
Since sorting is, especially for string data, one of the more expensive operations
performed in an in-memory database. For some algorithms sorting the data is a
necessary preprocessing step to achieve high performance.

A.1.1 Clustering

Two Clustering algorithm are present in the top 10 algorithms in data mining
[93]. This indicates the importance of clustering in data mining. Clustering algo-
rithms are used to cluster a set of data points into different compartments. Data
points are collections of features, where features can be different quantities such
as weight, height, income etc. The previous mentioned features are all continuous,
but you can also have features like gender or product category that are discrete.
A Compartment can be described by a centre point Ci and consists of all data
points that are closer to the center point Ci than to any other center point Cj.
Such compartments could then be used to classify future data points.

In most clustering algorithms the distance between two data points or between
data points and compartment centers need to be determined. In case of the IBM
clustering, called BlueClusterer, this involves many logarithm computation, for
the continuous features of the data points.

We analyzed the performance of the BlueClusterer algorithm on a z10 machine
using gprof [39]. We used the Abalone dataset from the UCI Machine Learning
Repository [34] as an input to the clustering algorithm. The resulting run time
break down can be seen in Figure A.1.

Runtime on Z/Linux

g++ -O3 Z/Linux g++ -O3 -ffast-math Z/Linux
0

5

10

15

20

25

30

35

Total Runtime Runtime of logf()

T
im

e
 i
n

 [
s
]

Figure A.1: Clustering runtime breakdown on Z/Linux

We can clearly see, that a large portion of the runtime is spent in the logarithm

A.1. Algorithms 147

calculation. On Intel and Power platforms exists a hardware log instruction, so
we decided to perform the same analysis on an Intel CPU. Figure A.2 shows the
breakdown.

Runtime on Intel

g++ -O3 Intel g++ -O3 -ffast-math Intel icpc -O3
0

5

10

15

20

25

30

Total Runtime Runtime of logf()

T
im

e
 i
n

 [
s
]

Figure A.2: Clustering runtime breakdown on Intel

The compiler option -ffast-math leads to the inlining of the log instruction
in the source code and the removal of all unnecessary checks before executing the
log instruction. Interestingly when using the Intel compiler icpc no hardware
log instruction is issued, but a software routine using SIMD (Same Instruction
Multiple Data elements) instructions is performed which performs even better then
the hardware instruction.

gfbnfghvhn

g++ -O3 -ffast-math hardware
g++ -O3 -ffast-math software

icpc -O3 hardware
icpc -O3 software

0

5

10

15

20

25

30

Total Runtime Runtime of logf()

T
im

e
 i
n

 [
s
]

Figure A.3: Clustering Runtime Software vs Hardware

148

To measure the effect of having a special log instruction in the architecture we
forced the compilers on the Intel machine to use the software logarithm routine
from the glibc. The result can be seen in Figure A.3.

Summary

We observe, that the runtime of the logarithm calculation is reduced by 33%
in case of the log instruction and by 45% in case of the SIMD routine of the
intel math library. We conclude that such speed-up could also be expected for
the Z architecture if either hardware logarithm instruction or even better SIMD
instruction would be introduced and we suggest to introduce SIMD instructions
in the system Z rather then developing special logarithm instructions.

A.1.2 Frequent Item-set Mining

A good introduction to the topic of frequent item set mining and clustering analysis
can be found in the book Data Mining Concepts and Techniques by Jiawei Han
and Micheline Kamber [55]. Frequent item-set mining was introduced by Agrawal
[5] as the computational expensive step in association rules mining. Association
rules mining, if applied to shopping transactions, tries to find patterns of the form:
If a customer bought milk and sugar he probably will also buy eggs. Such rules
can be used in many decision making processes, e.g. to decide product placement
in stores or advertisement.

The frequent item-set mining can be formulated as follows: Given a list of item
baskets B, basically the list off all shopping transactions, and a threshold θ, find
all sets of items that were bought together more then θ times.

The first algorithm to solve that problem was introduced by Agrawal and is
called APRIORI. It is based on the a priori knowledge that no set of items can be
frequent, if not all subsets are also frequent. The algorithms builds candidate sets
by combining frequent item-sets to larger item-sets and then prunes away all can-
didate sets, that are not frequent. We implemented an APRIORI algorithm that
was described in [5] as a baseline. Additionally we implemented a cache-oblivious
FP-Growth algorithm based on [35] and improved further on it by eliminating
unnecessary pointers in the trie data structure. Algorithm 3 presents the pseudo

A.1. Algorithms 149

code of the FP-Growth algorithm.

Algorithm 3: FPGrowth(Tree, α)

1: if Tree is single path then
2: output 2Tree + α with support = sup(α)
3: else
4: for all item αi ∈ Tree do
5: output pattern β = α + αi with support = sup(αi)
6: construct β’s conditional Tree Treeβ
7: if Treeβ 6= ∅ then
8: FPGrowth(Treeβ, β)
9: end if

10: end for
11: end ifFPTree

root

f : 4

c : 3

a : 3

m : 2

p : 2

b : 1

m : 1

b : 1

c : 1

b : 1

p : 1

item head of

node links

f

c

a

b

m

p

BID Items

1 f, c, a, m, p;

2 f, c, a, b, m;

3 f, b;

4 c, b, p;

5 f, c, a,m, p;

Figure A.4: Example FP-Tree

We see in Figure A.4 an example of an FP-Tree. The FP-Tree data structure
can be used to mine frequent item-sets very efficiently. We introduced a dense
representation of the data structure to further compress the data structure and to
make cache line prefetching more efficient.

Figure A.5 shows the dense representation for our example.

150
FPTree layout

root

f : 4

c : 3

a : 3

m : 2

p : 2

b : 1

m : 1

b : 1

c : 1

b : 1

p : 1

root

f

c

a

m

p

-3

b

m

-8

b

-11

c

b

p

Figure A.5: Dense array rep-
resentation of the example
tree.

Additionally we implemented an alternative to the
node links. In the traditional FP-Tree for every
item all nodes that contain the item are explicitly
linked, this leads to a considerable space consump-
tion for the link pointers. However, the algorithm
only needs to find all nodes containing the item that
is deepest in the tree and move upwards from there.
This can be done by only storing pointers to the leaf
nodes and sweeping through the tree.

Due to time constraints and as we were miss-
ing a representative large data-set as well as a state
of the art baseline implementation to report per-
formance results we stopped investigating the fre-
quent itemset mining algorithms. In interesting
starting point for further investigation is the Fre-
quent Itemset Mining Implementations Repository1

of the FIMI 03 and FIMI 04 workshops.

A.1.3 Sorting

Sorting is an important step in some database operations like the sort merge join
or the order by operator. Index creation almost always sorts data, except when
creating hash indexes. Analysts that are interested in top-k results or different
quantiles of the data also often simply sort the data set, or at least parts of it.

Sorting is a very well studied problem with well understood theoretical bounds.
To further improve sorting on modern and new hardware, we tried to make better
use of already existing hardware, e.g. caches and conditional loads and stores, and
also give ideas on new hardware that would support faster sorting algorithms.

Small Hardware Sorts

One approach to speed up sorting operations in memory is to introduce small
hardware sorts, that allow quick-sort or any partitioning sort to stop as soon as
the partition size is smaller then the hardware sort width.

To measure the effectiveness of such an approach we performed a simulation.
In this simulation we created a random sequence of 107 elements and sorted this
sequence using the quick-sort implementation used in the sun JDK 1.6. Whenever
a partition had less then k elements we stopped the recursion and assumed a
hardware sort would be performed on this partition. Figure A.6 shows the runtime

1http://fimi.ua.ac.be/

http://fimi.ua.ac.be/

A.1. Algorithms 151

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

Ti
m

e
in

 [s
]

Sorting width

QuickSort

Figure A.6: k wide hardware sort in Quick Sort

for different values of k. The possible gains are in the range of 10% to 30% for fixed
size data types. If such gains are enough to justify investing into the development
of new sorting hardware was not explored.

In-memory String Sort with Tournament Sort and UPT,CFC

Almost all business databases fit into the main memory of todays clusters and
mainframes [75]. Therefore we analyze the in-memory sorting performance of two
important string sorting algorithms.

Tournament Sort : External sort algorithm based on a so called loser tree, that
can be found in The Art of Computer Programming Volume 3 Searching and
Sorting by Donald E. Knuth [31]

Multi-key Quick-Sort: Quick-sort adaption for string sorting by Bentley and
Sedgewick [15], extended to use 64 bit comparisons

Additionally we improved the Multi-key Quick-Sort algorithm to better utilize
caches.

Multi-key Copy Quick-Sort: Multi-key quick-sort with improved cache local-
ity by copying parts of the string

Since the Z architecture already offers some hardware assist instructions, see [51],
to perform the tournament sort algorithm we compared it against multi key quick-
sort. The third algorithm is an improved version of the multi-key quick-sort,

152

coined multi-key copy quick-sort. In the multi-key copy quick-sort we copy the
currently compared part of the strings into an array and use this array to perform
the comparisons. Whenever a swap operation is performed, not only the string
pointer, but also the copied keys are swapped. This avoids costly cache misses
when chasing the string pointers to perform comparisons.

Our sorting benchmark is based on the input generator of the Sortbenchmak
website http://www.sortbenchmark.org. The input consists of ten million
records of size one hundred bytes. A record in turn consists of ten random bytes,
called the key, and a sequence number.

For all of the tested algorithms our benchmark starts by loading all records in
main memory, this is not part of the time measurement. The next step is the run
generation step. Each algorithm has an array of size slots to generate runs. In
case of the tournament sort the run length is expected to be 2 · slots and for the
two quick-sort variants the run length is always slots. Afterwards a merge phase
is executed in which all runs are merged into a single run. If only a single run
exists no merge phase is needed.

We compare the performance of the three sorting algorithms on a zGryphon+
with the performance on an Intel Xeon CPU. We can see in Figure A.7 that

 0

 1

 2

 3

 4

 5

 6

 7

24 26 28 210 212 214 216 218 220 222 224

R
u
n
ti

m
e
 [

se
c]

Slots

MKQuickSort
TournamentSort

MKCopyQuickSort

(a) Total runtime on Z

 0

 1

 2

 3

 4

 5

 6

 7

 8

24 26 28 210 212 214 216 218 220 222 224

R
u
n
ti

m
e
 [

se
c]

Slots

MKQuickSort
TournamentSort

MKCopyQuickSort

(b) Total runtime on Intel

Figure A.7: Total sort times, including run generation and merging, on random
data

tournament sort is the fastest, as long as we have to merge. In case of the normal
multi-key qick-sort we can observe that merging helps even in memory and not
only in an external sort. However, if we create a single sorted run we can see that
our multi key copy quick-sort has a superior runtime. This stems from the better
cache locality due to the partitioning. The curves look similar for System Z and
Intel, but the tournament sort has no real advantage over quick-sort on Intel. The
gap between the multi-key copy quick-sort and the other sorting approaches is also
wider on Intel.

http://www.sortbenchmark.org

A.1. Algorithms 153

 0

 1

 2

 3

 4

 5

 6

24 26 28 210 212 214 216 218 220 222 224

R
u
n
ti

m
e
 [

se
c]

Slots

MKQuickSort
TournamentSort

MKCopyQuickSort

(a) Total runtime with sorted input on Z

 0

 1

 2

 3

 4

 5

 6

24 26 28 210 212 214 216 218 220 222 224

R
u
n
ti

m
e
 [

se
c]

Slots

MKQuickSort
TournamentSort

MKCopyQuickSort

(b) Total runtime with sorted input on Intel

Figure A.8: Total sort times, including run generation and merging, on sorted data

To see the effect of sortedness we also performed the sorting algorithms on
already sorted data, the results can be seen in Figure A.8(a) and following. On
sorted input the advantage of tournament sort is evident. If the data is fully
sorted no merge phase is needed for the tournament sort. Even partially sorted
input sequences drastically reduce the number of produced runs. We can clearly
observe the smaller caches of the Intel CPU in Figure A.8(b).

What we can observe in our experiments is, that our improved multi-key quick-
sort is the fastest for unsorted string but the tournament sort can exploit presort-
edness.

Improvement of Tournament Sorting on the Mainframe

Since tournament sort is also used in IBM products, it is beneficial to improve
the hardware assist instruction, to gain better performance without rewriting any
client code.

Let us first have a closer look on how tournament sort works and how it is
supported by the IBM System Z mainframe. In tournament sorting we sort a set
of keys by creating runs and merging those runs. A run can be created by using
a so called loser tree. This loser tree is a binary tree. Let us assume 2n keys
fight in a tournament to find out who is the smallest. All keys are compared in
the first round with their neighbor. The 2n−1 losers are stored in the leaves while
the winners proceed to the next round. This is repeated till the last two keys are
compared with each other. The loser is stored in the root of the tree while the
absolute winner is stored separately. If we now want to insert a new key in the
tree and additionally find the next larger key then we just need to look at all keys
that lost to the previous winner. In a loser tree those keys all lie on the so called
winner path, i.e. the path starting with the loser of the first comparison going up
till the root. Figure A.9 shows a loser tree and highlights the winner path, notice

154

45365

65 46

45

46 4252231

23 52

42

3

1

Loser Tree

Winner:

Leafs:

To sort: [65 , 3 , 45 , 46 , 1 , 23 , 52 , 42 , 24 , …]

Figure A.9: Loser tree for the sequence : [65, 3, 45, 46, 1, 23, 52, 42]

that the leafs are only virtual, that means they are not stored in memory.

We are sorting strings instead of numerical values that fit into registers. This
can be solved by using codewords that fit into a register and encode a position and
parts of the string key. These codewords can often be used to perform comparisons
without touching the stored string. Sometimes, if two codewords are equal, the
two strings need to be touched, but in total every string will be loaded at most
once into CPU registers. For more details take a look in the description of the
CFC (compare and form codeword) instruction in the Principles of Operation or
in the COMAD paper [51].

We focus now on the update tree (UPT) instruction. The update tree instruc-
tion updates a loser tree in memory by comparing code words on the winner path
and swapping them if needed. This check if a swap is needed causes many branch
mispredictions if the input sequence is not sorted. To avoid those expensive mis-
predictions conditional loads and stores (LOC/STOC) can be used. Instead of
performing speculative execution and paying the price of rolling back the instruc-
tions a data stall is introduced.

The experimental evaluation of this idea can be seen in Figure A.10. The
runtime of the tournament sort can be reduced by roughly 25%. We observed
that the main gain was in the update tree instruction and almost no gain could
be observed by introducing the conditional loads and stores in the compare and
form codeword instruction.

A.1. Algorithms 155

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

24 26 28 210 212 214 216 218 220 222 224

R
u
n
ti

m
e
 [

se
c]

Slots

Base
LOC/STOC in UPT

LOC/STOC in CFC
LOC/STOC in CFC and UPT

Figure A.10: Runtime of Tournament Sort with LOC/STOC

In another experiment we could also observe that on a sorted sequence the
update tree instruction will perform worse with conditional loads and stores then
with branches. This is obvious, since for sorted inputs there are no branch mis-
predictions. In cases of low branch misprediction it is better to use branches, so it
would be interesting to only switch to conditional loads and stores if a high branch
misprediction rate was detected.

Another approach to speed up the update of the loser tree is to load the ele-
ments of the winner path in a predefined storage area. Afterwards the swapping
could be done very efficiently by a sequencer hardware similar to the sequencer
used in the move character (MVC) instruction. The resulting winner path needs
then to be stored back into the tree. We simulated hardware assistance for this
approach and the results can be seen in Figure A.11.

The simulated sequencer approach could not beat the normal software update
tree instruction in our simulations. For this we assume two main reasons. First,
the winner path is not adjacent in memory and needs to be fetched from different
places. This could be changed by clever prefetching, since the location of the
winner path is deterministic. Second, the software implementation does not always
load the whole winner path if an early stopping criterion is met. But even this
could be of minor importance, since the prefetched elements of the winner path are
still valid for the next update tree instruction, if it is used to sort strings. A real
implementation of the sequencer idea could therefore still improve on the current
UPT implementation.

156

















          











Figure A.11: UPT Sequencer Simulation

A.1.4 Summary

In this chapter we looked at some of the core problems and algorithms for data min-
ing. Namely clustering and frequent item set mining. We identified the logarithm
as a bottleneck for a class of clustering algorithms and proposed to implement
either hardware logarithm instruction or, even better, to provide SIMD instruc-
tions and a SIMD logarithm implementation. For the frequent item set mining
problem we implemented a cache oblivious version of the FP-Growth algorithm,
that contains no specific optimizations for System Z.

Afterwards we investigated sorting, especially string sorting. For in-memory
string sorting we proposed a new sort algorithm called Multi-key Copy Quick-
Sort, an improved version of Multi-key Quick-Sort. Additionally we propose some
improvements for the hardware assist instruction update tree (UPT) and estimate
the possible performance gains.

List of Figures

2.1 Black box comparison of the fundamental join representatives using
32 threads and relation sizes |R| = 128M and |S| = 1280M. 20

2.2 Throughput of PRO for different partition sizes and number of
radix bits for partitioning (total join including partitioning and join
phase); the two-pass algorithm divides the bits evenly over the two
passes. 22

2.3 Join throughput including improved versions. We observe almost a
twofold performance improvement over the blackbox versions shown
in Figure 2.1. 23

2.4 High-level schematic view and NUMA write pattern: PRO vs CPRL 25

2.5 Runtime of PR* vs CPR*-algorithms. Relation sizes: |R| = 128M,
|S| = 1280M. Lighter colors denote the partition phase and darker
colors denote the join phase. 26

2.6 Bandwidth profiles for PRO, PROiS, and CPRL obtained with Intel
VTunes . 28

2.7 Runtime of PR* and CPR*-algorithms vs their variants with im-
proved scheduling (PR*iS-algorithms). Relation sizes: |R| = 128M,
|S| = 1280M. Lighter colors denote the partition phase and darker
colors denote the join phase. 29

2.8 Performance of all thirteen join algorithms when using small (4 KB,
dark color) and huge pages (2 MB, light color) 30

157

158

2.9 Average total time per tuple (partitioning and join) when varying
the number of radix-bits used for partitioning. The dark color marks
the time for partitioning; the light color marks the time for joining.
In (a) and (b) we choose the number of radix bits such that the
hash table on a partition fits onto L2. In contrast, in (c) and (d)
we depict the number of radix bits leading to the lowest overall
runtime. In particular for |R| = |S| (right column) and |R| ≥ 512
M tuples we see that our assumption, (a) and (b) diverges heavily
from the optimal number of bits, (c) and (d). Notice that we can
observe in (b) that the partitioning costs increase heavily whereas
the join costs stay the same. 32

2.10 Throughput of join algorithms when scaling input dataset sizes . . . 33
2.11 Scalability of the partition phase for chunked and non-chunked par-

titioning . 33
2.12 Runtime of CPRL when setting the number of partitioning bits

according to Equation (2.1) . 34
2.13 Throughput of join algorithms on skewed data. Relation size: |R| =

128M. 35
2.14 Throughput of join algorithms when scaling the number of threads.

Size of relation |R| = 128M tuples 37
2.15 Performance of join algorithms with increasing domain size. |R| =

128 M and |S| = 1280 M. The dashed lines for CPRA and PRAiS
denote the throughput when adapting the number of partitions to
the domain size . 39

2.16 Optimized semi-physical query plan for TPC-H Q19 plus material-
ization strategy in the column store 41

2.17 Runtime of TPC-H Query 19, colored bars mark the fraction of the
time spent in the actual join; the black bars mark the time spent
for the rest of the query. 42

2.18 Runtime of TPC-H Query 19 (sf=100) when varying the selectivity
of the pushed-down selection predicate 46

2.19 Additional cost-breakdown morphing a microbenchmark stepwise
into Q19. 46

3.1 The HAIL static indexing pipeline as part of uploading data to HDFS 59
3.2 The HAIL query pipeline . 64
3.3 HAIL adaptive indexing pipeline. 69
3.4 AdaptiveIndexer internals. 72
3.5 HAILRecordReader internals. 74
3.6 Upload times when varying the number of created indexes (a)&(b)

and the number of data block replicas (c) 86

LIST OF FIGURES 159

3.7 Scale-out results . 89
3.8 Job runtimes, record reader times, and Hadoop MapReduce frame-

work overhead for Bob’s query workload filtering on multiple at-
tributes . 91

3.9 Job runtimes, record reader times, and Hadoop scheduling overhead
overhead for Synthetic query workload filtering on a single attribute 92

3.10 Fault-tolerance results . 93
3.11 End-to-end job runtimes for Bob and Synthetic queries using the

HailSplitting policy . 93
3.12 HAIL Performance when running the first MapReduce job over

UserVisits. 96
3.13 HAIL Performance when running the first MapReduce job over Syn-

thetic. 97
3.14 HAIL performance when running a sequence of MapReduce jobs

over UserVisits. 97
3.15 HAIL performance when running a sequence of MapReduce jobs

over Synthetic. 98
3.16 Eager adaptive indexing vs. ρ = 0.1 and ρ = 1 99

4.1 Visualization of the cost to execute the example query sequence Q. 111
4.2 Attribute distribution of the first 300 queries. 115
4.3 Selectivity distributions over the 20 attributes. 116
4.4 Simulated I/O cost for all presented AIR strategies with varying

capacities. 117
4.5 Additional I/O cost compared to OPT in absolut numbers (% of

block read and written additionally) 118
4.6 Running-average I/O cost per query for the different patterns and

distributions . 119
4.7 Visualization of AIR strategies over an evolving workload, uniform

distribution, capacity of 8 . 120
4.8 Robustness: Average I/O cost on variations of the query sequence . 121
4.9 Robustness: Average I/O cost per query when the queries abruptly

shift their focus after 500 queries 122
4.10 Running average of the job runtime for all hundred queries 123

5.1 Strided access experiment on Z and Intel CPU 128
5.2 Throughput for moving data in memory using different instructions. 129
5.3 Multithreaded move experiment . 130
5.4 Simulated Filter Performance . 132
5.5 Simulated Aggregation and Filter Performance 133
5.6 Filter Engine . 140

160

5.7 Filter Engine Process Flow . 141
5.8 Aggregation under Mask Engine . 142
5.9 Aggregation under Mask Engine Process Flow 143

A.1 Clustering runtime breakdown on Z/Linux 146
A.2 Clustering runtime breakdown on Intel 147
A.3 Clustering Runtime Software vs Hardware 147
A.4 Example FP-Tree . 149
A.5 Dense array representation of the example tree. 150
A.6 k wide hardware sort in Quick Sort 151
A.7 Total sort times, including run generation and merging, on random

data . 152
A.8 Total sort times, including run generation and merging, on sorted

data . 153
A.9 Loser tree for the sequence : [65, 3, 45, 46, 1, 23, 52, 42] 154
A.10 Runtime of Tournament Sort with LOC/STOC 155
A.11 UPT Sequencer Simulation . 156

List of Tables

1.1 Personal contributions to Chapter 3. Contributions by Stefan
Richter (SR), Jorge-Arnulfo Quiané-Ruiz (JQ), and Jörg Schad (JS)
are mentioned in the Details column. 6

2.1 Join algorithms from Section 2.2 and their assignment to classes . . 16
2.2 reference table for the algorithms evaluated in this chapter 17
2.3 With |R| = 128M and |S| = 1280M 37
2.4 With |R| = |S| = 128M . 38
2.5 Performance counter for the join with |R| = 128M and |S| = 1280M

and 32 threads. 39

3.1 Cost model parameters. 77
3.2 Synthetic queries. 85
3.3 Scale-up results . 88

5.1 Instructions to move memory content on System Z 129
5.2 lineitem schema . 134
5.3 Inputs to CompareBetween to answer Q1 135
5.4 Inputs to Aggregate to answer Q2 136
5.5 Inputs to CompareBetween to answer Q3 137
5.6 Inputs to Aggregate to answer Q3 138
5.7 Inputs to VecOp to answer Q4 . 139

A.1 Top Ten Algorithms in Data Mining 145

161

Bibliography

[1] IBM ILOG CPLEX Optimization Studio. http://www-03.ibm.com/
software/products/us/en/ibmilogcpleoptistud/.

[2] https://www.systems.ethz.ch/node/334.

[3] D.J. Abadi, D.S. Myers, D.J. DeWitt, and S.R. Madden. Materialization
Strategies in a Column-Oriented DBMS. ICDE, pages 466–475, 2007.

[4] Azza Abouzied, Daniel J. Abadi, and Avi Silberschatz. Invisible Loading:
Access-Driven Data Transfer from Raw Files into Database Systems. EDBT,
pages 1–10, 2013.

[5] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association
rules between sets of items in large databases. SIGMOD Rec., 22(2):207–216,
June 1993.

[6] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe,
Vivek R. Narasayya, and Manoj Syamala. Database Tuning Advisor for Mi-
crosoft SQL Server 2005. VLDB, pages 1110–1121, 2004.

[7] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic Physical Design
Tuning: Workload as a Sequence. SIGMOD, pages 683–694, 2006.

[8] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.
Weaving Relations for Cache Performance. VLDB, pages 169–180, 2001.

[9] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and
Anastasia Ailamaki. NoDB: Efficient Query Execution on Raw Data Files.
SIGMOD, pages 241–252, 2012.

[10] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively
Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems.
PVLDB, 5(10):1064–1075, 2012.

163

http://www-03.ibm.com/software/products/us/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/us/en/ibmilogcpleoptistud/
https://www.systems.ethz.ch/node/334

164

[11] Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, and Stefan Richter.
Main Memory Adaptive Indexing for Multi-core Systems. DaMoN, pages
3:1–3:10, 2014.

[12] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Ozsu. Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB, 7(1):85–96,
2013.

[13] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu. Main-
Memory Hash Joins on Multi-Core CPUs: Tuning to the Underlying Hard-
ware. ICDE, pages 362–373, 2013.

[14] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu. Main-
Memory Hash Joins on Modern Processor Architectures. TKDE, 27(7):1754–
1766, 2015.

[15] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and search-
ing strings. SODA, pages 360–369, 1997.

[16] Spyros Blanas, Yinan Li, and Jignesh M Patel. Design and Evaluation of
Main Memory Hash Join Algorithms for Multi-Core CPUs. SIGMOD, pages
37–48, 2011.

[17] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita,
and Yuanyuan Tian. A Comparison of Join Algorithms for Log Processing in
MapReduce. SIGMOD, pages 975–986, 2010.

[18] Nicolas Bruno and Surajit Chaudhuri. To Tune or not to Tune? A Lightweight
Physical Design Alerter. VLDB, pages 499–510, 2006.

[19] Nicolas Bruno and Surajit Chaudhuri. An Online Approach to Physical De-
sign Tuning. ICDE, pages 826–835, 2007.

[20] Nicolas Bruno and Surajit Chaudhuri. Physical Design Refinement: The
Merge-Reduce Approach. ACM TODS, 32(4), 2007.

[21] Michael J. Cafarella and Christopher Ré. Manimal: Relational Optimization
for Data-Intensive Programs. WebDB, 2010.

[22] Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. VLDB, pages 146–155, 1997.

[23] Surajit Chaudhuri and Vivek R. Narasayya. Self-Tuning Database Systems:
A Decade of Progress. VLDB, pages 3–14, 2007.

BIBLIOGRAPHY 165

[24] Songting Chen. Cheetah: A High Performance, Custom Data Warehouse on
Top of MapReduce. PVLDB, 3(1-2):1459–1468, 2010.

[25] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. CoPhy: A Scal-
able, Portable, and Interactive Index Advisor for Large Workloads. PVLDB,
4(6):362–372, 2011.

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing
Tool. CACM, 53(1):72–77, 2010.

[27] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient Parallel Data Process-
ing in MapReduce Workflows. PVLDB, 5, 2012.

[28] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing). PVLDB, 3(1):518–529, 2010.

[29] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, and Jörg Schad. Only Aggressive Elephants are Fast Elephants.
PVLDB, 5(11):1591–1602, 2012.

[30] Jens-Peter Dittrich, Peter M. Fischer, and Donald Kossmann. AGILE: Adap-
tive Indexing for Context-Aware Information Filters. SIGMOD, pages 215–
226, 2005.

[31] Donald E. Knuth. The Art of Computer Programming, volume 3 Sorting and
Searching. Addison Wesley, second edition, 1998.

[32] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla,
Aljoscha Krettek, and John McPherson. CoHadoop: Flexible Data Place-
ment and Its Exploitation in Hadoop. PVLDB, 4(9):575–585, 2011.

[33] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical
Database Design for Relational Databases. ACM TODS, 13(1):91–128, 1988.

[34] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[35] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun Kim,
Anthony D. Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-Conscious
Frequent Pattern Mining on modern and emerging Processors. VLDB Journal,
16(1):77–96, 2007.

[36] Google Inc. Google Sparse and Dense Hashes. https://code.google.
com/p/sparsehash/.

https://code.google.com/p/sparsehash/
https://code.google.com/p/sparsehash/

166

[37] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi A. Kuno, and Stefan Mane-
gold. Concurrency Control for Adaptive Indexing. PVLDB, 5(7):656–667,
2012.

[38] Goetz Graefe and Harumi A. Kuno. Self-selecting, Self-tuning, Incrementally
Optimized Indexes. EDBT, pages 371–381, 2010.

[39] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call
graph execution profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[40] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Pe-
ter J Weinberger. Quickly Generating Billion-Record Synthetic Databases.
SIGMOD, pages 243–252, 1994.

[41] http://engineering.twitter.com/2010/04/hadoop-at-twitter.html.

[42] Hadoop Users, http://wiki.apache.org/hadoop/PoweredBy.

[43] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores. PVLDB, 5(6):502–513, 2012.

[44] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache Query Co-processing
on Coupled CPU-GPU Architectures. PVLDB, 8(4):329–340, 2014.

[45] Herodotos Herodotou and Shivnath Babu. Profiling, What-if Analysis, and
Cost-based Optimization of MapReduce Programs. PVLDB, 4(11):1111–1122,
2011.

[46] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki.
Here are my Data Files. Here are my Queries. Where are my Results? CIDR,
pages 57–68, 2011.

[47] Stratos Idreos, Martin Kersten, and Stefan Manegold. Database Cracking.
CIDR, pages 68–78, 2007.

[48] Stratos Idreos, Martin Kersten, and Stefan Manegold. Self-organizing Tuple
Reconstruction In Column-stores. SIGMOD, pages 297–308, 2009.

[49] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a Cracked
Database. SIGMOD, pages 413–424, 2007.

[50] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. Merg-
ing What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
Memory Column-Stores. PVLDB, 4(9):586–597, 2011.

BIBLIOGRAPHY 167

[51] Balakrishna R Iyer. Hardware Assisted Sorting in IBM’s DB2 DBMS. CO-
MAD, 2005.

[52] Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic Opti-
mization for MapReduce Programs. PVLDB, 4(6):385–396, 2011.

[53] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung
Huynh. Improving Main Memory Hash Joins on Intel Xeon Phi Processors:
An Experimental Approach. PVLDB, 8(6):642–653, 2015.

[54] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The Performance of
MapReduce: An In-depth Study. PVLDB, 3(1):472–483, 2010.

[55] Jiawei Han and Micheline Kamber. Data Mining Concepts and Techniques.
Morgan Kaufmann, second edition, 2006.

[56] Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dittrich. Trojan Data
Layouts: Right Shoes for a Running Elephant. SOCC, 2011.

[57] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. GPU Join
Processing Revisited. DaMoN, pages 55–62, 2012.

[58] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP & OLAP
main memory database system based on virtual memory snapshots. ICDE,
pages 195–206, 2011.

[59] Martin Kersten and Stefan Manegold. Cracking the Database Store. CIDR,
pages 213–224, 2005.

[60] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D
Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep
Dubey. Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-
Core CPUs. PVLDB, 2(2):1378–1389, 2009.

[61] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.
FPGA, pages 21–30, 2006.

[62] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and
Alfons Kemper. Massively Parallel NUMA-aware Hash Joins. IMDM, pages
3–14, 2013.

[63] Thomas Legler, Wolfgang Lehner, and Andrew Ross. Data Mining with the
SAP Netweaver BI Accelerator. VLDB, pages 1059–1068, 2006.

168

[64] Jimmy Lin, Dmitriy Ryaboy, and Kevin Weil. Full-Text Indexing for Optimiz-
ing Selection Operations in Large-Scale Data Analytics. MapReduce Work-
shop, 2011.

[65] Dionysios Logothetis, Chris Trezzo, Kevin C. Webb, and Kenneth Yocum.
In-Situ MapReduce for Log Processing. USENIX, 2011.

[66] Martin Lühring, Kai-Uwe Sattler, Karsten Schmidt, and Eike Schallehn. Au-
tonomous Management of Soft Indexes. ICDE Workshops, pages 450–458,
2007.

[67] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing Main-
Memory Join on Modern Hardware. TKDE, 14(4):709–730, 2002.

[68] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[69] Chris Olston. Keynote: Programming and Debugging Large-Scale Data Pro-
cessing Workflows. SOCC, 2011.

[70] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-
K page replacement algorithm for database disk buffering. SIGMOD, pages
297–306, 1993.

[71] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. An optimality
proof of the LRU-K page replacement algorithm. JACM, pages 92–112, 1999.

[72] R Barber G Lohman I Pandis, V Raman R Sidle, G Attaluri N Chainani S
Lightstone, and D Sharpe. Memory-Efficient Hash Joins. PVLDB, 8(4):353–
364, 2014.

[73] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kim-
berly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick.
A Case for Intelligent RAM. IEEE Micro, 17:34–44, 1997.

[74] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A Comparison of Ap-
proaches to Large-Scale Data Analysis. SIGMOD, pages 165–178, 2009.

[75] Hasso Plattner. A common database approach for OLTP and OLAP using
an in-memory column database. SIGMOD, pages 1–2, 2009.

[76] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking
SIMD Vectorization for In-Memory Databases. SIGMOD, pages 1493–1508,
2015.

BIBLIOGRAPHY 169

[77] Jorge-Arnulfo Quiané-Ruiz, Christoph Pinkel, Jörg Schad, and Jens Dittrich.
RAFTing MapReduce: Fast recovery on the RAFT. ICDE, pages 589–600,
2011.

[78] Stefan Richter. HAIL: Hadoop Aggressive Indexing Library. Master’s thesis,
Saarland University, Germany, 2012.

[79] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dittrich.
Towards Zero-Overhead Adaptive Indexing in Hadoop. CoRR, abs/1212.3480,
2012.

[80] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dittrich.
Towards Zero-Overhead Static and Adaptive Indexing in Hadoop. VLDB
Journal, 23(3):469–494, 2013.

[81] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Vic-
tor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs and GPUs:
A Case for Bandwidth Oblivious SIMD Sort. SIGMOD, pages 351–362, 2010.

[82] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime Measure-
ments in the Cloud: Observing, Analyzing, and Reducing Variance. PVLDB,
3(1):460–471, 2010.

[83] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. COLT:
Continuous On-Line Tuning. SIGMOD, pages 793–795, 2006.

[84] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. On-Line
Index Selection for Shifting Workloads. ICDE Workshops, pages 459–468,
2007.

[85] Karl Schnaitter and Neoklis Polyzotis. Semi-Automatic Index Tuning: Keep-
ing DBAs in the Loop. PVLDB, 5(5):478–489, 2012.

[86] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. SIGMOD, 2016.

[87] Stefan Schuh and Jens Dittrich. AIR: Adaptive Index Replacement in Hadoop.
ICDE Workshops, pages 22–29, 2015.

[88] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The Uncracked
Pieces in Database Cracking. PVLDB, 7(2):97–108, 2013.

[89] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. On
the Surprising Difficulty of Simple Things: the Case of Radix Partitioning.
PVLDB, 8(9):934–937, 2015.

170

[90] Knut Stolze, Felix Beier, Kai-Uwe Sattler, Sebastian Sprenger, Carlos Ca-
ballero Grolimund, and Marco Czech. Architecture of a Highly Scalable Data
Warehouse Appliance Integrated to Mainframe Database Systems. BTW,
pages 628–639, 2011.

[91] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain,
Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. Data Warehousing
and Analytics Infrastructure at Facebook. SIGMOD, pages 1013–1020, 2010.

[92] Tom White. Hadoop: The Definitive Guide. O’Reilly, 2011.

[93] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg.
Top 10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37, 2008.

[94] Hung-Chih Yang and D. Stott Parker. Traverse: Simplified Indexing on Large
Map-Reduce-Merge Clusters. DASFAA, pages 308–322, 2009.

[95] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy,
Scott Shenker, and Ion Stoica. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. EuroSys, pages 265–
278, 2010.

[96] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. DB2 design advisor: integrated
automatic physical database design. VLDB, pages 1087–1097, 2004.

	Introduction
	Overview
	Contributions and Publications
	Chapter 2 Multi-core NUMA-aware Main Memory Join Processing
	Chapter 3 HAIL: Hadoop Adaptive Indexing Library
	Chapter 4 AIR: Adaptive Index Replacement in Hadoop
	Chapter 5 Smart Caches (not only) for Analytical Workloads

	Multi-core NUMA-aware Main Memory Join Processing
	Introduction
	Related work
	Fundamental Representatives of Main-Memory Join Algorithms
	Partition-based Hash Joins
	No-partitioning Hash Joins
	Sort-merge Joins

	Black Box Comparisons
	White Box Comparisons
	Optimizing Radix Partitioning
	Choice of Hash Method

	Optimizing Parallel Radix Join
	NUMA-aware Partitioning
	NUMA-aware Scheduling

	Putting it All Together
	Settings
	Varying Page Sizes
	Scalability in Dataset Size

	Skewed Data Distributions
	Scalability in number of threads
	Holes in the key range
	Micro-architectural performance aspects

	Effects on Real Queries
	Details on used Query
	Varying the Selectivity of the Selection in Q19
	Further cost-breakdown of Q19

	Lessons Learned
	Conclusions

	HAIL: Hadoop Adaptive Indexing Library
	Introduction
	Motivation
	Research Questions and Challenges

	Overview
	Hadoop and HDFS
	HAIL
	HAIL Benefits

	HAIL Zero-Overhead Static Indexing
	Data Layout
	Static Indexing in the Upload Pipeline
	HDFS Namenode Extensions
	An Index Structure for Zero-Overhead Indexing

	HAIL Job Execution
	Bob's Perspective
	System Perspective
	HailInputFormat and HailRecordReader
	Problem: Missing Static Indexes

	HAIL Zero-Overhead Adaptive Indexing
	HAIL Adaptive Indexing in the Execution Pipeline
	AdaptiveIndexer
	Pseudo Data Block Replicas
	HAIL RecordReader Internals

	Adaptive Indexing Strategies
	Lazy Adaptive Indexing
	Eager Adaptive Indexing
	Selectivity-based Adaptive Indexing

	HAIL Splitting and Scheduling
	Related Work
	Experiments
	Hardware and Systems
	Datasets and Queries
	Data Loading
	MapReduce Job Execution
	Impact of the HAIL Splitting Policy
	HAIL Adaptive Indexing

	Conclusion

	AIR: Adaptive Index Replacement in Hadoop
	Introduction
	Adaptive Index Replacement
	Related Work
	Cost Model
	LeastExpectedBenefit Algorithms
	Evaluation
	Dataset and Query Distribution
	Evaluated Algorithms
	Performance Results
	Robustness Results
	Experimental Results

	Conclusion and Future Work

	Smart Caches (not only) for Analytical Workloads
	IBM System Z Mainframe
	Motivation for Smart Caches
	Computation on Cache Lines
	Memory Throughput
	Related Work
	Computation at the L4 Cache
	Instruction Design
	Example Use Case for CompareBetween
	Example Use Case for Aggregate
	Example Use Case for Vector Operations

	Patent Application: Accelerator for Analytical Workloads
	Conclusion

	Additional Results of the ''New Workloads for the IBM Mainframe System Z'' Project
	Algorithms
	Clustering
	Frequent Item-set Mining
	Sorting
	Summary

	List of Figures
	List of Tables
	Bibliography

