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Abstract

The biological functions of the molecular components (genes, proteins, miRNAs,
siRNAs,..etc) of biological cells and mutations/perturbations thereof are tightly
connected with cellular malfunctions and disease pathways. Moreover, these molecular
elements interact with each other forming a complex interwoven regulatory machinery
that governs, on one hand, regular cellular pathways, and on the other hand, their
dysregulation or malfunction in pathological processes. Therefore, revealing these
critical molecular interactions in complex living systems is being considered as one of
the major goals of current systems biology.

In this dissertation, we introduce practical computational approaches implemented as
freely available software tools to integrate heterogeneous sources of large-scale
genomic data and unravel the combinatorial regulatory interactions between different
molecular elements. First, we present an automated GRN pipeline that constructs the
genomic regulatory machinery of a cell from expression, sequencing, and annotation
datasets through three modules implemented as separated software components
(plugins) and hosted by our software framework Mebitoo that aims at automation of
bioinformatics workflows. Then, we extended this pipeline to a general integrative
network-based approach that involves also post-transcriptional interactions and
reports the computational analysis of gene and miRNA transcriptomes, DNA
methylome, and somatic mutations. This workflow enables users to identify putative
disease drivers and novel targets for therapeutic treatment. Regarding the
incorporation of somatic mutations with other genomic data sets, a stand-alone pipeline
named “SnvDMiR” was implemented to explore possible genomic proximity
relationships between somatic variants and both differentially methylated CpG sites as
well as differentially expressed miRNAs. Along the same lines, but targeting the effects
of genomic mutations, we developed an NGS pipeline and applied it to two groups of
bacterial isolates (nasal and invasive) to investigate the phylogenetic positions of the
recently emerged t504 clone (Spa-type t504) in the Saarland province of Germany and
to better understand the infectivity mechanism of the invasive group. Motivated by all
of this, we developed TFmiR as a freely available web server for deep and integrative
downstream analysis of combinatorial regulatory interactions between TFs/genes and
miRNAs that are involved in the pathogenesis of human diseases.

In the frame of this thesis, we employed these approaches to investigate the molecular
mechanisms of cellular differentiation (namely hematopoiesis) as an example for
biological processes and human breast cancer and diabetes as examples for complex
diseases.

In summary, the work presented in this thesis has led to the development of interesting
computational approaches that have been made available as non-commercial software
toolkits. The provided topological and functional analyses of our approaches as
validated on cellular differentiation and complex diseases promotes them as reliable
systems biology tools for researchers across the life science communities.
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Deutsche Zusammenfassung

Die Funktionsweise verschiedener molekularer Elemente (Gene, Proteine, Mutationen,
miRNAs, siRNAs,... etc.) ist mit den darunterliegenden zelluldren Fehlfunktionen als auch
mit Krankheits-assoziierten zelluldren Signalwegen verkntipft. Dariiber hinaus interagieren
diese molekularen Elemente auch miteinander und bilden eine komplexe ineinander
verwobene regulatorische Maschinerie, die wiederum =zelluldre Signalwege oder auch
Krankheitsentwicklungen auf zellularer Ebene beeinflusst. Aufgrund dessen ist heutzutage
die Aufklarung dieser molekularen Interaktionen in komplexen lebenden Systemen eines
der Hauptziele der Systembiologie.

In dieser Dissertation stellen wir rechnerbasierte Ansiatze vor welche als Software frei
verfligbar sind und die Integration von groféen genomischen Datensatzen als auch eine
damit verbundene Aufkldrung der kombinatorischen Vielfalt dieser regulatorischen
Interaktionen zwischen den verschiedenen molekularen Elementen, ermdglichten. Dafiir
entwickelten wir anfangs eine automatisierte GRN Pipeline, welche die regulatorische
Maschinerie einer Zelle auf der Grundlage von Daten zur Genexpression, iiber
Sequenzierung als auch Annotierung von Datensatzen konstruiert. Diese Pipeline wurde in
drei separate Module aufgeteilt, die alle als Software plugins verfiigbar sind, und in unser
Framework Mebitoo, welches bioinformatische Arbeitsabldufe automatisiert, integriert
sind. Daraufhin erweiterten wir unser bisheriges Framework um einem allgemeinen und
integrativen Netzwerk-basierten Ansatz, welcher post-transkriptionelle Interaktionen
beriicksichtigt und die rechnerbasierte Analyse von Genen als auch miRNA
Transkriptomen, dem DNA Methylom und somatischen Mutationen mit einbezieht. Unser
Ziel war es, dabei vermeintliche Verursacher von Krankheitsbildern als auch neue Ziele fiir
die therapeutische Behandlung von Krankheiten zu identifizieren. Fiir die Integration
somatischer Mutationen wurde eine eigenstiandige Pipeline namens ,SnvDMiR" entwickelt,
welche die Analyse von moglichen genomischen Nachbarschaftsbeziehungen zwischen
somatischen Mutationen und differentiell methylierten CpG Positionen als auch differentiell
exprimierten miRNAs, ermoglicht. Fiir die Analyse von somatischen Mutationen
entwickelten wir zudem eine NGS Pipeline und wendeten diese auf zwei unterschiedliche
Gruppen von bakteriellen Isolaten (nasale und invasive) an, um einerseits die
phylogenetische Position des kiirzlich im Saarland aufgekommenen Klons t504 (Spa-type
t504) zu untersuchen, aber auch um den Mechanismus, der zu einer Infektion durch
invasive Stamme fiihrt, besser zu verstehen. All dies motivierte uns dazu TFmiR als frei
verfligbare Web-Applikation zu entwickeln, welche eine tief gehende integrative Analyse
von den kombinatorischen regulatorischen Interaktionen zwischen TFs/Genen und
miRNAs ermoglicht, die an der Krankheitsentwicklung im Menschen beteiligt sind.

Die entwickelten Methoden wurden auf die zelluldre Differenzierung (Hiamatopoese), als
Beispiel fiir einen biologischen Prozess, als auch auf Brustkrebs und Diabetes, als Beispiele
fir komplexe Krankheiten, angewendet um deren molekulare Mechanismen zu
untersuchen.

Zusammenfassend hat diese Arbeit zur Entwicklung von interessanten, rechnergestiitzten
Methoden gefiihrt, welche als nicht-kommerzielle Software publiziert wurden. Die
Validierung unserer Methoden anhand von topologischen und funktionsbasierten Analysen
sowohl in zelluldarer Differenzierung als auch komplexen Krankheiten, machen diese zu
verlasslichen  systembiologischen = Werkzeugen fiir Wissenschaftler aus den
unterschiedlichsten Naturwissenschaftsbereichen.
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“The soul is qf the qﬁ(air cf my lord. And mankind has not been given of Enow&c@e except a
[ittle”

“My Lord, Increase me in knowledge”

Quran ,Chiy, vers 85 , and Ch2o0, vers 114

VIII



IX



Table of Contents

1.

Introduction and biological background...........——————— 1
1.1 INErOAUCHION i AR 2
1.2 Gene Regulatory NetworKks (GRN) ....cccimsmnmnissmsmssisssisssssssssssssssssssssssssssssssssssssssssssssssens 2
1.3 Biological properties of GRN ... 3
1.4 CompleXity Of GRNS ..o s ss s s s sss s 4
1.5 Levels of gene regulation....... s 4

1.5.1 Transcriptional reQUIAtION ...ttt st s s ss s s 4

1.5.2  Post-transcriptional regUlation ... sese e sesssesssess s sasssssesns 9

1.5.3  Post-translational 1egUlatioN ... sess s ss e ssssss e ssssas 10

1.5.4 Other factors affecting the regulation MaChiNeTY ... eseesesesenne 11
1.6 Motivation and goal of the WOrK ... 11
1.7 Author cONtribUtiONS ... ————————————— 12

0 S 11 o] (o7 Um0 3 PP 12
1.8 Organization of the thesis ... ————————— 13

Theory and computational biology tools.........iiin———— 16
2.1 GRN reconstructing methods ... —————————— 18

2.1.1  B0O0lean NetWOrKS ... sss s s sssss s s sssssssssssssssssssses 18

2.1.2  DYNAMICAL INOAELS c.oureeienieereeeteeeseeeect st eese st sess s bbb 18

70 W TS 0 Yoo o = TS Uol= 01 0 ) 0 Uod o U300 PP 19

2.1.4  BayeSian NELWOTKS ...t sssessse e ess st sessse s ssse s s s bbb sss s sas 19
2.2 Biological data repoSitories ... ——————————————— 21

2.2.1 The Cancer Genome Atlas (TCGA) .o sssssssssssssssssssssssssssssssssssssssssssssseses 21

2.2.2  Gene Expression Omnibus (GEO) .....innnencnnsensnessssssssssssssssssssssssssssssssssssssssssssssseses 22
2.3 Biological knowledge databases..........uummsmsmnmssssmsmsmssis s ————— 22

2.3.1  GeNe ONLOLOZY (GO couureuieureerereeereeseesseesesssesssesssessse s ssssssasssesssassse s sssse bbb ss s sasssssssesns 22

2.3.2  KEGG i seess e ssseessssss s s sesss s sesss s sass s s8R R R 23

2.3.3 Molecular signature database (MSIZDB ... seesessssssssssesssssssesssssssesns 23

2.3.4 Regulatory interaction databases...... e ssssssssssessssssssssssessesns 23
2.4  Statistical toOIS.... i ————_—————— 23

2.4.1 Over representation analysis (ORA) ..eieneuneesneesseessssssessssssse s sssssssssessssssssssssssesns 23

2.4.2  HYPEIZEOMELIIC LEST. it reeeesres e rsseses e sseses s s s s s R 24

2.4.3  Kolmogorov-Smirnov teSt (KS tESt) ... ierreneerseeisessseessessssssse s sssssssssessssssesssssssesns 24

W S Y 10 Ut § o) (TR =Ty oo ot =Tt (o) o U PP 24

Approaches and Methods........ummimmmmm———————————————————— 26
3.1 The model of gene regulation ... ————————— 28
3.2 GRN construction pipeline ... s 28

3.2.1 Plugin 1: Weighted co-eXpression NEtWOTK .......cneeneeereeseesseeseesseesesssesssessssssessesssessaees 29

3.2.2 Plugin 2: Online query for regulating links and motif search ... 31

3.2.3 Plugin 3: learning the network topology using Bayesian networkK.........oeneereennees 33
3.3 Mebitoo: An extensible software framework hosting the pipeline plugins............ 34

1 T0C 700 B D 1Y od ) ] 0 (0 ) o 1PV PPV 34

3.3.2  Software design CONSIAEIAtION .. eeueereeeeeereesreisreeseieeesesess s sees s sesss s sssessss s ssssssssessaees 34
3.4 Integrative network-based approach ......in——————— 35

3.4.1 Data consiStenCy and PrePrOCESSING. ... miermirnmeerserseesssessesssessesssesssesssesssssssssssssssssssssessaees 36

3.4.2  Differential analySiS. .. sessseesssesse s ssssse st sssssesssssssessssesse s s st sessaees 36

3.4.3 Network construction using the GRN pipeline ... 37

3.4.4 Pruning the GRN using methylation and expression profiles..........nes 37

3.4.5 Constructing miRNA-MRNA INtEractionS....cceirreenmerneerreesseesseesseessessessesssssssesssssssssesssessees 37



3.4.6 Identifying the genetic key drivers/determinants........eeneenseesseenseesssessesseseseesees 38

3.4.7 Enrichment and druggability analySiS......inceeeseseessessessessssssssssssessesssessaees 38
3.5 SnvDMiR: Associating the genomic proximity of genetic variants with deregulated
miRNAs and differentially methylated regions ... —————— 38

1 TR0 S 053 0] 155 0 7<) o1 = 1 1o} o 00T 39
3.6 TFMIiR WED SEIVer .. s s 40

3.6.1  BACKEIOUNG ..coucteeeeeeeeeeeseeeteeese st seese s sesssessssssse s bbb s s s b bbbt senb s 41

3.6.2  DESCIIPLION cuvvereereererisissisee s sss s sess s s bbb 42

3.6.3 TFMIR USEr INPUL SCENATIOS weveierrereerersisisessesseressessesessssssssssessessesssssssssssessesssssssssssssssssssessssssssssnes 43

3.6.4 Functionality Of TFMIR ...t ess s sessssns s sesss s s s st sesssees 43

3.6.5 Identification of network key players (ROt SPOLS)...ceneereeseeseeseeseiseesseeseesseseseesees 45

3.6.6 Identification of TF-miRNA co-regulatory motifs.......emeenseensenseesseeseesseeeseesees 46

3.6.7 Functional NOMOGENEILY ...o.crierieeeereeerectreesseesseesse e ssese st s s ses s sesse bbb sesssees 48

3.6.8  CASE SEUAY wvvueercereeuseesreeseesseessesssssssessssssessse st sassse s s s s b bbb s E R R et b s 48

3.6.9 Comparison With Other tOO0IS ... sanees 50

3.6.10  COMCIUSION . .ccuuitreeeeereeeeesseesse et sees s sess s sse s bbb s R R bbbt s b s 51

3.0. 11T OULIOOK covueeeeect ettt ees et sees et sees s s b bbb R AR bbb b 52
B3 0 \ [0 031 5 1= 0 52

3.7.1  BACKEIOUNG ..coueteeieseeeeeeseesse e sese st sessse s sse s bbb bbbt senb s 52

3.7.2  Pipeline deSCriPtioN. .. ssssssssssssssssssssssssssssssssssssssssssssssesssssssssssssssssasees 52

4. Imprinted genes and cell differentiation..........ccmnn———— 56
2 1] 0 o= U 58
0 R 2 Tod <4 o/ 0110 ¢ Lo 58
7 2 | 1= ¥ 1 1 Yo L 59

4.2.1  GENE SEIECLION couceeeceeeeee ettt bbb b s ss s bbb s bR 59

4.2.2 Functional ENrichment ANalySis ... sesseesssssessssssesssssssssssssesssssssssssssssssssesns 59

4.2.3  Gene FUNCHiONAl ClUSTETIINZ ...iuiereereeeeeneeeetseessecseessessssesse s ssss st s s st sesssssssssssessssssesas 60

4.2.4 Transcription Factor Target ENriChment ... seessesssesssesssssssessseesseens 60
I T = 1 L 3 60

4.3.1 Imprinted genes are involved in developmental and regulatory functions................. 61

4.3.2 Maternally expressed genes dominate the role of imp genes in gene regulation .....63

4.3.3 Only few paternally expressed genes in human possess similar functions ................. 64

4.3.4 Enrichment analysis for the transcription factor targets......eneeneeneeseesseeneens 66
T T D 1T T 0 67

5. Regulatory role of imprinted and pluripotency genes in hematopoiesis......... 72
2 1] 0 o= U 74
LS T § 01 0 T L U0 ) o 74
LI/ (1 4 0 T 76

5.2.1  GENES SELECTION coueereeeeeeeeseeetstes ettt seese et sessse s ss s bbb s bbbt senb s 76

5.2.2  MICrOarTay aNalYSIS .oeeereersereeeseeseessesssesssesssesssssssessssssessssssssssesssssssssssssssesssssssssssssssssssssesssassaees 76

5.2.3 Reconstruction of an imprinted gene network (IGN) .....onereenmeenseenseenseesseeseesseseseesens 78

5.2.4 Functional enrichment and SIMIlarity ... seessessessess s 79
LS T £ LT T 79

5.3.1 Imprinted genes show similar expression patterns to pluripotency and

NEMATOPOIESIS GEIIES w.cvureriereiereeteetseesseesseesse e bbb bbb ss s s et s R e n e 79

5.3.2 All three gene sets contribute to hematopoietic lineage specificity......cmerneereenees 80

5.3.3 Large co-expressed module of imprinted, pluripotency, and hematopoietic genes 84

5.3.4 Putative transcriptional network involving imprinted genes.........nerneeneenees 84
LT I D ) T 011 7 U0 85

6. Application to breast invasive carcinoma ... ————— 90
2 1] 0 o= U 92
LS00 T 2 7= T £ €0 o0 1D U, 92

XI



L3072 7 (=1 o 4 o Yo 94

6.3 Results and diSCUSSION ....cvicvieiimisiri i e s s ssas s e ssnssanean 94
6.3.1  Differential analySiS ...t seessesssess s sss s s b s s s 94
LOC T2 N T o155 T D0 L 1= o= Lot 1 ) o PP 94
6.3.3 MIRNA-MRNA INTETACTIONS ot sss s sss e es s sssss st sssessssssssnsassasssnes 96
6.3.4 Proximity analysis of SOMatic MULAtIONS ....coveriereerneereerreeeseesseesseesseese e sseessssssesssssssessssessenns 98
6.3.5 Druggability analysis of protein products of the identified driver genes................ 101
6.3.6 Network validation and performance asseSSIMENT .......cocoverrnrernerrrssesnemessssssesesssssssseanes 101

L33 S 00 s Ul 11 ) 0 1 1 103

7. Application to diabetes in MOUSE......ccvrrismmmsmsmsmsmm s ——————— 106

72 X4 13 o = o N 108

7% SN 030 o0 X6 L1 (o ') o 108

7%\ (=1 4 10 T 109
7.2. 1 ANIINALS et e s b s e s 109
7.2.2  Group design and COMPATISONS ...cuerreeueesreesserseesessssseessesssesssesssesssesssesssessssssssssssssssesssssseses 109
7.2.3 DAt PrOCESSING ooiereureereesesserserssessessssssessessessesssessss s ssss s sssssses s ssssssss st sessss s s sssssesns 109
7.2.4 Differential eXpression analySis ... ssessse s sssssssssesssssssesss 110
7.2.5 Gene regulatory NetWork (GRIN ..ot sessse s sssessse st sssssessssssseses 110
7.2.6  Functional eNriChIMENT ... s s es s s s baes 111

72 T =T 1 1 111
7.3.1 Probes summarization and filtrationN ... 111
7.3.2 Differential eXpression analySis ... ssessse s ssssssssssesssssssesss 111
7.3.3  Gene Regulatory NETWOTK. .. e isseseiese st sesssesssesssessssssss st sssssessssssseses 112

W7 T D 131 ) T2 ) 1 113

8. WGS and DNA microarray phylotyping of MRSA Strains........un. 120

72 X 4 13 o = o N 122

2 70 T 2 7= T £ €0 o0 11D 1 122

207\ =T o 1 10 Y o 123
8.2.1 MRSA CC5 ISOLAtES. . s bbb b s b s s s s s 123
8.2.2 WHhole EN0ME SEQUENCING....ccurieureereereesreesserseesesesesessesssesssesssessss st s ssss s s sssssssesasesnns 124
8.2.3  PhylOgeny CONSIIUCTION ciuueeuceuceereeeeesreeseesseesse e sess st sesssessse st sss s ss s sasssnns 124
8.2.4 Genetic variations between invasive and nasal SAMPIES ......cccovrrvrrrnecnereesnesnesneessesnenns 124
8.2.5 DNA MiCroarray analySis ... eeneeserssesesessseesesssesssesssassssssssssssssssssssssssasssssssssssessssssns 124

20 T 2 =T 1 1 125
8.3.1 PhylogenetiC analySiS. .. ereeseesseeseissesesese s s sesssessse s ssss s s ssse s 125
B.3.2  SINP ANALYSIS ceoeeuueeureeueeureeseeseissesestsesseessessse st s s es s s s bR 125
8.3.3 Clustering based 0n DNA MICIOAITAY ...vveuerrremereeereeseesseesseessessssssssssssssssssssssssssesssssssssssesssssans 127

£ 2% TN D 1 £ ) 11 ) 1N 129

9. Conclusion and OULIOOK .....cccccuverimniminminiesserisssssss s sssssnsssessssssssssnssssssnsssanas 132

9.1 Accomplished WOTK. ... s s s sss s 134

9.2 Limitations of thisS WOTK.......urieminiemissesiniesssssssssss s ssssssssssssssssssssssssssasssns 136

L T T 0 11 U 0 T ) 137

Appendix A: Supplementary of Chapter 4 ... 139
Appendix B: Supplementary of Chapter 5 .....cccemimmmsmssmesesssssssssssssssssssssssens 142
Appendix C: Supplementary of Chapter 6 ... 146
Appendix D: Supplementary of Chapter 7 ... 149
Appendix E: Supplementary of Chapter 8 ........cccmeminmnmnmsemsssssssssssssssssssssssns 151
5100 00T g 07 1 0] 4 154




List of Figures

Figure 1-1 Regulation of gene tranSCription. ... eeeeesneesesseessessesssesessesssssssessesssessessseseees 3
Figure 1-2 Complexity of gene regulation machinery and reducing it into gene space.....5
Figure 1-3 Different levels of gene regulation SYSteML. ......coorerreeneereenreeneesseeseesseeeesseesesseesseseees 5
Figure 1-4 Epigenetic MOdifiCations. ...cooeeeneeneeneeseeseeseesssesesssessesseessessessesssessesssssssessssssessesssesssees 6
Figure 1-5 Altered DNA-methylation patterns in tUMOTIIZENESIS. wumererrrsissssssrssssessesssssssessens 7
Figure 1-6 Schematic of the reversible changes in chromatin organization.........ccoceeseennee. 8
Figure 1-7 post-transcriptional regulation by miRNA interactions........oomeemeeneeseenseeneens 10
Figure 2-1 Bayesian netWork repreSentation. ... eeenesnessesseessesssessesssessesssesseessssssesseens 20
Figure 2-2 Illustration of the TCGA barcode and its data element identifier. .........c.......... 22
Figure 3-1 GRN construction pipeline from heterogeneous sources of genomics data...29
Figure 3-2 Data loading panel in the co-expression plugin........eneneesseensesseessesneens 30
Figure 3-3 Preprocessing options of raw eXpression data. .......oeeeeneeneesseeseesseessesseens 30
Figure 3-4 visualizing the network and gene lists for each co-expression module........... 31
Figure 3-5 The integrated genomic resources in the GRN query plugin. .....ccceeeeneenreeeens 32
Figure 3-6 User control panel to set the parameters for the GRN query plugin. ................ 33
Figure 3-7 Results of the GRN qUErY PlUZIN. ..o eesssssseseens 33
Figure 3-8 SW architecture and design paradigms of the GRN pipeline. ......cccounrenrenrennee. 35
Figure 3-9 the integrative network-based approach. ... 36
Figure 3-10 The data model for the SnvDmiR proximity pipeline. .......omermeneerneenreeneens 40
Figure 3-11 A system level overview of the TFmiR architecture........nerncenneneens 42
Figure 3-12 TFmiR homepage showing user input parameters. ........ooeneneeseesseessesseens 44
Figure 3-13 Reconstructed networks from the input deregulated genes and miRNAs...45
Figure 3-14 Network visualization and key players identification in TFmiR........cccceneu.cc. 46
Figure 3-15 Schematic illustration of the four motif types detected in TFmiR................... 47
Figure 3-16 Co-targeted and co-regulated GENES........uereeneerreennesseessesseessessesseesseesesssssssesseens 49
Figure 3-17 A composite FFL motif involves the TF SPI1, has-mir-155, and FLI1............ 50
Figure 3-18. Cumulative distributions of GO functional semantic scores of gene pairs of

co-regulated genes (red) versus randomly selected genes (black)......cccocomeerrereenrerncens 51
Figure 3-19 NGS pipeline for identifying core-genome SNPs.......ccooneneenreneerneeneesneesnessenns 53

Figure 3-20 An example for mapping quality distribution after the alignment step........54
Figure 3-21 Masking genetic variants that occurred in mobile genetic islands or

repetitive SEQUENCE FEGIOMNS. ..t 54
Figure 3-22 Padding the unmapped regions with an N nucleotide. ......cccoonrenerreeneereenrerneens 55
Figure 3-23 Constructing the core-genome SNP matrix from consensus sequences........ 55
Figure 4-1 The most specific enriched GO terms of biological functions for the full set of

imprinted genes in human (green) and mouse (Drown). ......ooeeenneeneeseeseesseessesseens 63
Figure 4-2 Functionally related imprinted genes in human. ......ccooneoneenreneesneeneeseessesneens 64
Figure 4-3 Functionally related imprinted genes in MOUSE. .......ccouremeereerreeseeseesseessessessesseens 65
Figure 4-4 The enriched GO terms of biological functions for the maternally expressed

genes in human (green) and Mouse (DrOWN). ... seesseeeessesssesseens 66
Figure 4-5 The enriched GO terms of biological functions for the paternally expressed

GENES TN NUIMAN. oottt 67
Figure 4-6 Conserved transcription factors in the full set of imprinted genes................... 69
Figure 5-1 Venn diagram of the 3 sets: Imprinted, pluripotency, and hematopoietic genes..77
Figure 5-2 Heatmaps showing transient changes in expression profiles. ... 81

XIII



Figure 5-3 Heatmaps of differentially expressed imprinted SEnes. ......ormersersssesssesssessens 83
Figure 5-4 Co-expression analysis of imprinted, pluripotency and hematopoietic genes.......85

Figure 5-5 The expanded imprinted gene network (IGN).....cirmnsmseissessessessesens 86
Figure 6-1 Gene network modules of TF-gene interactions........coeeeneeneeseeseessesssesseens 97
Figure 6-2 Regulatory interactions of the 17 key driver genes identified from miRNA-

MRNA INEETACLIONS. o ——————— 98
Figure 6-3 Proximity analysis of the somatic mutations with the dysregulated miRNAs

and differentially methylated enes. ... sessessessesnas 100
Figure 6-4 The network inferred using the KDDN method. ... 102
Figure 6-5 The network modules inferred using the Diff COEx method......ccccocoveerreureeneene. 103
Figure 7-1 The differential network approach utilizing the GRN pipeline.......cccoruuunn.ne. 111
Figure 7-2 Venn diagrams showing overlapping differentially expressed genes............ 112
Figure 7-3 Heat maps of the microarray analysis results. ... 113
Figure 7-4 Gene regulatory network common to EPCs......conenennreneeneeneeseeseeseesneenee 114
Figure 7-5 A final gene regulatory network (GRN) module. ... 115
Figure 7-6 A gene network showing four EPC specific genes and their relationship to our

constructed diabetic EPC GRN....ccin s sesssssssssssssssssssssssssssssssssssssnes 119

Figure 8-1 Phylogenetic tree of 27 invasive and nasal S. aureus CC5 strains collected in
Saarland as well as four representative S. aureus reference isolates in Germany
based on the core-genome SNP approach. ......neneenseseeseeseesessessesssessesssennas 126

Figure 8-2 Heatmap showing the genetic variations between each pair of isolates...... 127

Figure 8-3 Manhattan Plot showing the genomic distribution of the 535 variants
between each Pair Of ISOlALES. ... ————————— 128

Figure 8-4 Dendrogram based on hierarchical clustering of DNA microarray................. 129

XIV



List of Tables

Table 3-1 The integrated databases and interaction types in TFmiR....ccconoenceirenecneenn. 43
Table 4-1 Conserved functional classes in imprinted genes in human and mouse............ 62
Table 5-1 Selected hematopoietic lineages and their developmental stages. .......ccceueueenn. 78
Table 5-2 Genes’ similarity scores statistical cCOMPariSON. .......oooreenreereeseensesseesesseesesseesseenns 80
Table 6-1 The key driver elements identified from TF-gene interactions and miRNA-

MRNA INTETACLIONS. ..ot 95
Table 6-2 The deregulated miRNAs in proximity to somatic mutations. .......ccueereereeereenne 99
Table 6-3 List of the identified driver mutations ordered by CHASM score.......ccccveeunene. 101
Table 7-1 The six possible comparisons (1-6) between the 4 groups of samples and the

significance of each comparison to the study analysis. .......ccorernenenenneeseesseeseeneens 110

Table 7-2 Selected highly significant (A) KEGG and (B) GO terms and their genes........ 117
Table 8-1 Association of phylogenetic clades to the known virulence factor genes and
the tWice MULAEd GENES ....cveereeceereeeerreeree s s 130

XV









1. Introduction and biological
background

Synopsis

In this chapter, we frame the problem of the multiple cellular factors affecting the
regulatory machinery inside the cell on different molecular levels such as transcription,
post-transcription, and post-translation and therefore the need for integrating
information from heterogeneous sources of genomic data. We discuss the biology of the
Gene Regulatory Network (GRN) and tackle its connection to biological processes as well
as to the pathology of diseases. Finally, we give an overview of the structure of this thesis,
the objectives of each chapter, and outline our contribution to the field.






Chapter 1 Introduction and biological background

1.1 Introduction

The ultimate goal of the genomic revolution and of modern systems biology is
elucidating the genetic causes and drivers behind cellular processes, disease pathways,
and phenotypic characteristics of organisms. This requires having a blueprint which
states the different conditions in which genetic molecules, such as genes, proteins, and
miRNAs, interact to make a complex living system [1]. In the past, these molecular
associations have been reported at a rather slow pace. For example, it took more than a
decade from the discovery of the well-known tumor suppressor gene p53 to conclude
that it formed a regulatory feedback loop with its key regulator MDM?2 [2]. Nowadays,
advances in sequencing and expression technologies enable the generation of large high
throughput data sets that allow for genome wide association studies. Indeed, this has
made at least a part of this goal closer within reach, namely that of unraveling the
underlying regulatory interactions between genes in a living system, or the so-called
gene regulatory network (GRN). The identification of regulatory networks will help in
identifying hundreds of genes that are responsible for most genetic diseases and that
could serve as a starting point for new therapeutic intervention [3].

1.2 Gene Regulatory Networks (GRN)

Gene regulation is a general name for the control of gene expression levels and
ultimately relates the specific quantity of a target gene product (protein) to the context
of biological processes in cellular organisms.

In general, when a regulator protein binds to the regulatory sites of a gene, an mRNA
transcript is produced that is in general translated into a specific protein or set of
proteins. These proteins are either structural ones that colonize themselves at the cell
membrane or enzymes that catalyze a certain reaction or regulators for the expression
levels of other genes. The last groups of proteins generally bind to DNA and are known
as transcription factors (TF), the main key players in the regulation machinery (Figure
1-1).

These proteins either activate or repress other genes by binding to their promoter
regions and in this way initiate or inhibit the production of other proteins, and so on.
Such multiple and concurrent cellular events lead to a complex and interwoven gene
regulation machinery.

A gene regulation system consists of group of target genes, regulatory genomic regions
(cis-regions), group of regulators, and their interactions. The regulators are often
proteins (TFs) if regulation occurs at the transcription level or small molecules such as
miRNAs and metabolites if regulation occurs at post-transcription or post-translation
levels, respectively.

The cis-regions serve as aggregators of the effects of all transcription factors involved in
gene regulation. Through protein-specific binding sites the cis-regions recruit and bring
in proximity single TFs or groups of TFs (TF complex) having specific regulatory
properties, with the purpose of inducing precisely when, where, and at what rate a gene
is to be transcribed [1].
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A gene regulatory network is typically represented as a graph in which the nodes are
genes and the edges between nodes represent gene interactions through which the
products of one gene affect those of another. These regulatory links can be inducting or
activating (the arrowheads), where an increase in the expression of one leads to an
increase in the other, or inhibitory/ repressing (the dull end), where an increase in one
leading to a decrease in the other. A series of edges indicates a chain of such
dependencies, with cycles corresponding to feedback loops [4].

REGULATE

TRANSCRIPTION
FACTOR GENE
—>
‘ ACAGTGA | |
T \ [
BINDING SITE

Figure 1-1 Regulation of gene transcription.

Schematic diagram illustrating how a transcription factor binds to the DNA at specific binding motifs in the promoter
region of a gene, and thereby regulates the activities (rate of transcription) of this gene. (b) Transcription of genes
into mRNA and translation of mRNA into amino acid chains (proteins). A cell’s DNA carries the instructions, or genes,
to make the proteins that are needed to build cell structures and to perform necessary functions. To make a protein,
the instructions in the DNA are transcribed, or copied, to a molecule of messenger RNA (mRNA). Other molecules in
the cell then help translating those instructions to assemble the protein by stringing together more than 20 different
kinds of amino acids in a specific sequence. Messenger RNA provides vital clues about the processes a cell uses to
survive, because it shows which genes are being used at a given time. Source:
https://sbi4u2013.wordpress.com/author/viceteacher/, and http://www.whoi.edu/news-
release/DeepBiosphere_mRNA.

1.3 Biological properties of GRN

Uncovering the architecture, dynamics, and the interwoven nature of the regulatory
machinery in biological cells depends on our knowledge of the biological properties of
gene networks. Noticeably more is known about the gene regulation circuitry today
than few years ago, which helped scientists to effectively model GRNs and powerfully
understand the underlying and controlled cellular behaviors of specific processes.

For example, one of the important properties of gene network topology (structure),
which defines the connections between nodes, is their sparseness. This means that each
gene is regulated only by relatively few other genes and consecutively; there is a small
number of edges per node, smaller than the total number of nodes [5]. The sparseness
property is often used to prune the search space and reduce the data dimensionality
during network inference using data portioning methods (clustering and biclustering
algorithms), as described later in chapter 3 of this thesis. It has been previously shown
that the degree centrality distribution of biological networks tends to be longer tailed

3



Chapter 1 Introduction and biological background

than the normal distribution [6]. The appropriate distribution seems to belong to the
so-called scale-free networks. This is a class of networks where the frequency P(N) of
nodes with N connections in the GRN graph (i.e. the degree of the node) depends on N

by a power-law P(N) = N -/, where y is some network specific constant. Such scale-free
networks exhibit one important characteristic that is the emergence of hubs, or highly
connected nodes in the network. Such hub nodes are extremely unlikely to happen in
standard random graphs. . These hub nodes correspond to highly central nodes in the
gene network, i.e. genes that contribute a large amount of the overall regulation [1].
They could in fact be potential candidates for master regulatory genes or essential
genetic determinants of cell fate or probable targets for new drugs and treatment of
complex diseases, as is demonstrated in chapter 6 and also in [7].

Another important feature of GRNs is the network modularity. GRNS are often
composed of inhomogeneous and different kinds of subcircuits or modules that each
have a specific kind of cellular function [8]. This concept is important, because it plays a
key role for designing gene networks in synthetic biology which aims at designing novel
biological circuits able to perform specific tasks (for example, the periodic expression of
a gene of interest) [3].

1.4 Complexity of GRNs

The complexity of gene regulatory systems goes back to the different cellular levels
(transcription, post-transcription, and post-translation) at which they can be modeled
as well as the huge number of genetic molecules (genes, proteins, metabolites,
miRNAs...) involved at each level. A widely used approach is to reduce or subsume the
regulatory system to the gene space at the transcription level for the sake of simplicity
and research feasibility (Figure 1-2). This also depends on the existing biological
knowledge and the availability of empirical data, as well as on the goal of the project,
which can be as simple as hypothesis testing, or as complex as quantitative network
modeling. Although modeling the GRN on the gene space is a common approach
nowadays, it remains insufficient to puzzle the complete picture of regulatory
mechanisms because other important genetic factors that affect the regulation system
at other levels are ignored. In turn, this will not help in fully elucidating the associated
biological processes and functions of genetic molecules. To this end, tackling this
problem was the spirit behind the work in this thesis.

1.5 Levels of gene regulation

There are three main levels of controlling gene expression in living cells as shown in
Figure 1-3. We summarize them as follows:

1.5.1 Transcriptional regulation

Transcriptional regulation is the most common type of regulation. It regulates which
genes are transcribed (from DNA to mRNA) and controls the rate of transcription or
levels of gene expression. Transcription regulation includes two main cellular events.
Firstly, the binding of a regulator molecule to the cis-regulatory region of a target gene
to initiate the transcription process as described above in section 1-2. Secondly and sole
importantly, are epigenetic modifications.
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Figure 1-2 Complexity of gene regulation machinery and reducing it into gene space.

Shown on the left are the multiple levels at which genes are regulated by other genes, proteins and metabolites. On
the right is a useful abstraction subsuming all the interactions into ones between genes only. The cis-regions are
shown next to the coding regions, which are marked with pattern fill and start at the bent arrows. The edges are
marked with the name of the molecule that carries the interaction. Some reactions represent transcription factor -
DNA binding, happen during transcription, and are localized on the cis-regions. In those cases the corresponding
protein-specific binding sites, or cis-elements, on the cis-regions are shown (colored polygons). Otherwise, the
interactions can take place during transcription or later (e.g. post-translational modifications) as may be the case
with Metabolite 2 interacting with Gene 4. The nature of the interactions is inducing (arrow) or repressing (dull end).
Source: modified from [1].
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Figure 1-3 Different levels of gene regulation system.
Source: modified from http://en.wikipedia.org/wiki/File:Gene_Regulation.svg

1.5.1.1 Epigenetic modifications

The term “epigenetics” refers to the study of the heritable alterations and modifications
in phenotypic expression that don’t involve changes in DNA sequence [9]. These
modifications were found to be highly correlated with the changes in DNA sequence
through evolution [10]. Furthermore, these epigenetic changes are essential for normal
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development, biological cellular processes such as cell differentiation, and are
increasingly recognized as being involved in genetic disorders or complex diseases like
cancer [11]. Epigenetic regulations can switch genes on or off and determine which
proteins are transcribed by specific genetic events other than an
individual's DNA sequence.

Figure 1-4 illustrates the epigenetic modifications of the genome of an organism. These
modifications include DNA methylation, histone modifications, and effects induced by
non-coding RNAs. The regulation effects of non-coding RNAs will be discussed in the
next section on post-transcriptional regulation events.

Figure 1-4 Epigenetic modifications. The
genome is prone to direct methylation of
DNA and histone modifications; which
include histone acetylation and methylation.
Other chromatin remodelers also come into
play. Additionally, noncoding RNAs play a
major role in DNA targeting by silencing or
different mechanisms. Source: modified
from [12].

\
\&\ Non-coding RNAs

Chromosome

1.5.1.1.1 DNA methylation

DNA methylation is the most extensively studied epigenetic modification that is being
increasingly recognized to play an important role in the regulation of gene expression
and is used as epigenetic marker for different disease pathways [13-16]. In mammals,
DNA methylation typically occurs in a CpG dinucleotide context that is often grouped in
clusters called CpG islands. More than half of the gene promoters in human are
associated with CpG regions and are usually unmethylated in normal cells, although
some of them become methylated in a tissue-specific manner during early development
[17]. DNA methylation is also believed to be a crucial reason behind genomic imprinting
(see next section), where hypermethylation at one of the two parental alleles leads to
monoallelic expression [17]. DNA methylation profiling unravels differentially
methylated regions (DMRs) that are in principle CpG sites altered during disease or
oncogenic processes [18, 19] as shown in Figure 1-5. Hypermethylation of CpG islands
located in promoter regions, for example, is involved in gene silencing at the
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transcriptional level [20] (Figure 1-6) and often leads to a high rate of C to T mutations
at these sites [21].

Normal cell

Mm L B | TlﬂTﬁ—Ha (R
« Tumour-suppressor gene with promoter CpG island » Locus with methylated 5™-regulatory region, « Repetitive sequences,
« ‘Open’ chromatin conformation e.g. germline-specific gene e.g. transposable element
Cancer cell l
1 RN TS (T TX PR PN
» CpG-island hypermethylation » DNA hypomethylation
« ‘Closed’ chromatin conformation » ‘Open’ or ‘relaxed’ chromatin conformation

! |

« Entry into cell cycle
» Avoidance of apoptosis
» Defects in DNA repair

* Angiogenesis

» Loss of cell adhesion

» Loss of imprinting and overgrowth
» Inappropiate cell-type expression
» Genome fragility

» Activation of endoparasitic sequences

\ Tumorigenesis /

Figure 1-5 Altered DNA-methylation patterns in tumorigenesis.

The hypermethylation of CpG islands of tumor suppressor genes is a common alteration in cancer cells, and leads to
the transcriptional inactivation of these genes and the loss of their normal cellular functions. This contributes to
many of the hallmarks of cancer cells. At the same time, the genome of the cancer cell undergoes global
hypomethylation at repetitive sequences, and tissue-specific and imprinted genes can also show loss of DNA
methylation. In some cases, this hypomethylation is known to contribute to cancer cell phenotypes, causing changes
such as loss of imprinting, and might also contribute to the genomic instability that characterizes tumors. E, exon.
Source: modified from [19].

I | Unmethylated CpG 9 Methylated CpG ‘

Genomic imprinting

One of the important epigenetic phenomena in mammals is genomic imprinting, by
which certain genes are expressed in a parent-of-origin-specific manner. If the allele
inherited from the father is imprinted, then it is silenced and the gene is called
maternally expressed, and vice versa [22]. To date, about 100 genes have been
experimentally confirmed to be imprinted in mammals. Thus, the imprinting
phenomenon affects a fairly small number of genes. Many studies showed that
imprinted genes are not only important during embryonic development but possess
also postnatal functions. Hence, the kinship theory with its focus on prenatal
development might explain some but not all aspects of the evolution of genomic
imprinting.

During postnatal development, genomic imprinting affects endocrinal networks, energy
metabolism, and behavior. Prominent examples for the functions of imprinted genes in
endocrinal pathways are the imprinted transcripts of the Gnas locus. In the human,
genetic and epigenetic aberrations in this region are associated with Albright hereditary
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osteodystrophy and pseudohypoparathyroidism type 1A or 1B [23]. Behavioral
abnormalities have been observed in human imprinting disorders and in various mouse
models in which imprinted genes have been mutated. For example, the obesity of
Prader-Willi-syndrome patients is, at least in parts, a result of an impaired eating
behavior. Knock-out studies in mouse showed that the two paternally expressed Peg1
and Peg3 genes have a clear behavioral phenotype [24]. Females that inherit a null allele
for these genes from their fathers behaved ‘deficiently’ with respect to maternal care
behavior including placentophagy and nest-building.

In this thesis, we will discuss the imprinting phenomena in details and investigate the
association of imprinted genes with cell differentiation processes, namely
hematopoiesis or blood cell development.

1.5.1.1.2 Histone modifications

Histones are proteins that act as a spool around which DNA can wind. When specific
amino acids of histones are modified with chemical tags (acetylation, methylation, and
phosphorylation), these tags can influence the physical shape of chromatin structure,
which in turn, determines the accessibility of the associated chromosomal segment for
binding to DNA-binding proteins (transcription factors) [11]. If chromatin is condensed
(heterochromatin structure), DNA transcription doesn’t occur and related genes will be
inactive. If chromatin is relaxed, DNA will be easily accessible and can be transcribed
and being active (Figure 1-6).

l Transcription possible l

Gene “switched on”

« Active (open) chromatin

+ Unmethylated cytosines
(white circles)

+ Acetylated histones

Gene “switched off”
+ Silent (condensed) chromatin
+ Methylated cytosines
(red circles)
+ Deacetylated histones

T Transcription impeded T

Figure 1-6 Schematic of the reversible changes in chromatin organization that influence gene expression.
Genes are expressed (switched on) when the chromatin is open (active), and they are inactivated (switched off) when
the chromatin is condensed (silent). White circles = unmethylated cytosines; red circles = methylated cytosines.
Source: modified from [25].
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1.5.2 Post-transcriptional regulation

Post-transcriptional regulation is the control of gene expression at the RNA level, i.e
after the transcription of a gene into mRNA and before the translation of RNA into a
protein. The cellular events occurring at that level of regulation rely on specific RNA-
protein interactions that either result in the targeted degradation of the mRNA or
inhibit the translation process to make proteins [26]. Gene expression can be controlled
at this level through the following mechanisms:

1.5.2.1 mRNA processing, stability, and degradation

Gene expression can be controlled by changes in pre-mRNA processing and alternative
splicing, which produces various mRNA forms by removing different combinations of
introns based on which proteins are needed by the cell. Also, changes in mRNA
stabilities contribute to the overall regulation of gene expression. Some mRNAs in
eukaryotic cells are stable and have half-lives of more than 10 hours. Many, however,
have half-lives of few minutes or less. These unstable mRNAs often code for regulatory
proteins, such as growth factors and transcription factors, whose production rates need
to change quickly in cells [27]. Cheadle et al.2005 investigated the effect of changes in
mRNA stability on gene expression during T cell activation using microarray
experiments. They concluded that regulation of mRNA stability contributes significantly
to the observed changes in gene expression in response to external stimuli [28]. In the
same context, by binding to certain regulatory molecules like RNA binding proteins
(RBP), mRNA will be directly or indirectly degraded or sequestrated in P-bodies for
storage.

1.5.2.2 Interaction with non-coding RNAs

Noncoding RNAs such as microRNA (miRNAs) and long non-coding RNA (IncRNAs) have
gained extensive attention in recent years as a potentially new and crucial layer of post-
transcriptional biological regulation [29].

miRNAs are small non-coding RNA molecules of about 22 nucleotides that have been
characterized in virtually all animals and plants. miRNAs are transcribed from different
genomic loci, which implies their regulation by other transcription factors [30]. These
genomic loci encode for long RNAs with a hairpin structure that when processed
(cleavage) by a series of enzymes (Drosha and dicer) synthesizes a miRNA duplex of 22
nucleotides [31]. miRNAs often repress target genes through translational silencing of
the mRNA or through degradation of the mRNA, via complementary binding to specific
sequences in the 3' UTR region of the target gene's transcript [32] (Figure 1-7).

A miRNA can target a plethora of mRNAs, creating a post-transcriptional regulatory
network [33] that has a critical role not only in cellular functions [34] but also in
pathological processes [35] especially in human cancerogenesis [33, 36-38]. A
considerable amount of literature has been published on miRNA-related mutations and
on the impact of somatic mutations on miRNA functions. These studies have reported
that genetic variants within miRNAs or their target sites can alter miRNA function in
cancers [39-43] and have been associated with cancer risk, treatment efficacy and
patient prognosis [39], as well as genomic phenotypes [44].
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With respect to cell differentiation, miRNAs are substantial components of the
molecular circuitry that controls blood cell differentiation and determines
hematopoietic lineage commitment [45].

Long non-coding RNAs (IncRNA) are non-protein coding transcripts longer than 200
nucleotides [29]. Similar to the regulatory role of miRNAs, IncRNAs control various
aspects of mRNA at the post-transcriptional level. IncRNAs have a repressing regulatory
effect when they bind to mRNA and facade key elements with mRNA required for
processing, splicing, and translation. In other inducing or activation scenarios, IncRNAs
can absorb and bind to the miRNA molecules enabling mRNA to be translated [46].

2 /fo . Pre-miRNA

miRNA
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Protein-coding region miRNA

of target gene mRNA M. YT
R A“%
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Figure 1-7 post-transcriptional regulation by miRNA interactions.

The illustration shows how a microRNA (miRNA) silences genes. It is cut out of a precursor hairpin-shaped pre-
miRNA to form a mature miRNA, which binds to the 3' untranslated region (3' UTR) of a target gene's messenger RNA
and turns off its activity. Source: http://www.laskerfoundation.org/awards/2008_b_description.htm.

Other non-coding RNAs such as piwi-interacting RNAs (piRNAs), endogenous siRNAs,
and intron-derived miRNAs (miRtrons), were recently discovered and, yet, their
regulatory roles were not deciphered. This will open new avenues of research in the
field of RNA biology and, hence, will have a significant role in better understanding
human development and complex diseases.

1.5.3 Post-translational regulation
Post-translational regulation refers to the control of the levels of active proteins during

and after protein biosynthesis and therefore limiting their functions and stability [47].
This is achieved using two mechanisms:
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1.5.3.1 Chemical modifications

Amino acid side chains may be chemically modified by attachment of chemical groups
such as phosphate, acetate, amide, or methyl. Their addition or deletion may have
severe effects on protein structure and function. The presence or absence of such
chemicals can put also proteins in inactive state.

1.5.3.2 Degradation

Degradation refers to the life span of a certain protein. Some proteins are used in cells
only for short times of e.g. a few minutes while others can last much longer. This is often
controlled by protein tags like ubiquitin, which is recognized by degradation
mechanisms.

These post-translational regulatory events are essential mechanisms used by
eukaryotic cells to diversify their protein functions. Imperfections in these post-
translational events can lead to numerous developmental disorders and human
diseases [48]. Recently, Wang et al. 2014 revealed the critical role of the post-
translational events (glycosylation, phosphorylation, acetylation and methylation) in
the regulation of the pluripotency state of human cells [48].

1.5.4 Other factors affecting the regulation machinery

In addition to the aforementioned cellular events and genetic factors affecting the
regulatory machinery, there are other extrinsic factors which take part in regulating
specific biological processes. For instance, hematopoiesis (the blood cell differentiation
process) is regulated in part by extrinsic signaling molecules including colony-
stimulating factors (CSFs) and interleukins (ILs) that activate intracellular signaling
molecules such as kinases and cytokines. These subsets of factors are known to
influence Hematopoietic Stem Cell (HSC) pluripotency, proliferation, and lineage
commitment (www.RnDSystems.com /HSC).

Moreover, it has been shown that biophysical properties including wettability, surface
topography, and surface chemistry, could also affect the biological performance of
human embryonic stem and induced pluripotent stem cells [49].

1.6 Motivation and goal of the work

Given the highly complex functional interdependencies between the molecular
components (such as genes, TFs, and miRNAs) and mutations thereof in a living cell,
biological processes as well as disease pathogenesis are rarely a consequence of the
activity of a single molecule, but typically reflect a combination of interactions between
the associated regulators (TFs and miRNAs) and their target genes [8, 50]. Such cellular
interactions occurring on multiple genomic levels compose a complex and densely
connected regulatory machinery. Uncovering the architecture, dynamics, and the
interwoven nature of the regulatory machinery on different levels of regulations
remains a challenging task and a focal point of modern systems biology.

Moreover, the correct identification of the combined regulatory interactions on
different levels of regulation, will not only help in labeling hundreds of genetic
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molecules that are responsible for diseases, but also in identifying disease-associated
cooperative functional modules of different genetic molecules. This would improve our
understanding of disease development, diagnosis, and in turn, would suggest novel
therapeutic strategies in disease treatment. However, this depends largely on
integrating information from biological knowledge bases and large-scale omics data
from different sources and experiments that capture the regulatory events occurring on
the levels of regulations.

To this end, we aim in this work at developing practical computational approaches that
integrate heterogeneous genomic datasets to unravel the combined regulatory
interactions between different molecular elements. Then, we applied these approaches
to omics data for human breast cancer as well as for hematopoiesis as a well-
established model for stem cell differentiation.

1.7 Author contributions

The contribution of this thesis is two-fold. First, we present integrative systems biology
approaches and bioinformatics frameworks that we have developed for reverse
engineering the gene regulatory networks at transcriptional and post-transcriptional
levels from heterogeneous genomic data sources. Second, we apply our approaches to
hematopoietic datasets as an example for cellular differentiation and to breast cancer as
well as diabetes datasets as examples for complex diseases. Then, we discuss our results
and the potential biological findings and conclusions.

The work presented in this dissertation has led to the following publications and
conference posters. At the beginning of each chapter, we list the corresponding
publication(s) on which it is based. Furthermore, the contributions of the co-authors are
reported in the text as well.

1.7.1 Publications

* Mohamed Hamed, Christian Spaniol, Maryam Nazarieh, and Volkhard Helms, TFmiR: A
web server for constructing and analyzing disease specific transcription factor and
miRNA co-regulatory networks. Nucleic Acids Research, 2015, doi:10.1093 /nar/gkv418

=  Mohamed Hamed, Christian Spaniol, Alexander Zapp, and Volkhard Helms, Integrative
network based approach identifies key genetic elements in breast invasive carcinoma.
BMC Genomics, 2015. 16 (Suppl 5): p. S2.

= Mohamed Hamed, Siba Ismael, Martina Paulsen, and Volkhard Helms, Cellular functions
of genetically imprinted genes in human and mouse as annotated in the Gene Ontology.
PLoS One, 2012. 7(11): p. e50285.

=  Mohamed Hamed, Daniel Patrick Nitsche, Ulla Ruffing, Matthias Steglich, Janina Dordel,
Duy Nguyen, Jan-Hendrik Brink, Gursharan Singh, Mathias Hermann, Ulrich Nubel,
Volkhard Helms, and Lutz von Muller, Whole Genome Phylotyping and Microarray
Profiling of nasal and blood stream Methicillin-Resistant Staphylococcus aureus isolates:
Clues to phylogeny and invasiveness. Infection, Genetics and Evolution, 2015.

= Mohamed Hamed, Jonathan Odul, Andrew Steven Miller, Koichi Kawakami, and
Kitamoto Asanobu. "NAS: Neuron Analyzer Suite for Automatic Analysis of Neuronal
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Activities from Calcium Imaging Data. International Journal of Pharma Medicine and
Biological Sciences (IJPmbs) Vol. 4, No. 3, July 2015.

= Christian Spaniol, Mohamed Hamed, Johannes Trumm and Volkhard Helms, Mebitoo: an
Extensible Software Framework for Bioinformatics Analysis Workflow Automatization
[BICoB-2015, 7th international conference on bioinformatics and computational
biology].

= Alexander Zapp, Volkhard Helms, and Mohamed Hamed, SnvDMiR: Associating the
genomic proximity of genetic variants with deregulated miRNAs and differentially
methylated regions. [[CABEE -2015, 2nd international conference on Advances in Bio-
Informatics and Environmental Engineering].

= Irhimeh M.R, Barthelmes D, Mohamed Hamed, Zhu L, Helms V, Gillies M.C, Shen W, Novel
Gene Regulatory Network in diabetic bone marrow-derived endothelial progenitor cells.
[In revision].

= QOther four manuscripts are either submitted or in preparation.

1.8 Organization of the thesis

This dissertation is organized in nine chapters, including this introduction chapter
(Chapter 1) and the conclusion (Chapter 9). At the beginning of each chapter, we list the
related scientific articles and a synopsis, which provides a general overview about the
chapter contents in the context of the thesis.

In chapter 2, we will discuss the state-of-the-art of existing methods that touch the
same research problem and we will briefly illustrate the used genomic data
repositories, the applied statistical methods, and the involved biological resources in
this work.

Chapter 3 presents the main body of software development achieved in this research
work. It focuses on the development of scalable computational approaches and
automated systems biology tools and pipelines to integrate experimentally acquired
and computationally derived omics data and unravel the combinatorial regulatory
interactions between different molecular elements.

First, we present an automated GRN pipeline that constructs the genomic regulatory
machinery of a cell from expression, sequencing, and annotation datasets through three
modules implemented as separated software components (plugins) that are hosted by
our software framework Mebitoo for automation of bioinformatics workflows. Then, we
further extended it to a general integrative network-based approach that involves also
post-transcriptional interactions and reports the computational analysis of gene and
miRNA transcriptomes, DNA methylome, and somatic mutations. This aimed at
identifying putative disease drivers and novel targets for therapeutic treatment. With
regard to the incorporation of somatic mutations with other genomic data sets, a stand-
alone pipeline named “SnvDMiR” was implemented to explore possible genomic
proximity relationships between somatic variants and both differentially methylated
CpG sites as well as differentially expressed miRNAs. With respect to genomic
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Chapter 1 Introduction and biological background

mutations, we also present an NGS pipeline and apply it to two groups of bacterial
isolates (nasal and invasive) to investigate the phylogenetic positions of the recently
emerged t504 clone (Spa-type t504) in the Saarland province of Germany and to better
understand the infectivity mechanism of the invasive group. Motivated by all of this, we
developed TFmiR as a freely available web server for deep and integrative downstream
analysis of combinatorial regulatory interactions between TFs/genes and miRNAs that
are involved in human disease pathogenesis.

In the second part of this thesis (from chapter 4 to chapter 8), we will demonstrate the
usefulness and applicability of the developed approaches and frameworks by applying
them to two different cellular activities: hematopoietic stem cell differentiation and
disease pathways.

In chapter 4, we discuss genomic imprinting as an epigenetic phenomenon that is
closely associated with cell development and cellular differentiation. We characterize
the role of imprinted genes during differentiation processes and comprehensively
investigate the cellular functions of the whole set of imprinted genes, paternally
expressed genes, and maternally expressed genes as well as the transcription factors
that are predicted to regulate the imprinted genes and their relatedness to cell
differentiation in both human and mouse. The findings of this chapter motivated the
study presented in chapter 5 regarding the nature and extent of the role of imprinted
genes in hematopoietic stem cell differentiation.

In chapter 6, we demonstrate the effectiveness of one of our developed approaches (the
integrative network-based approach) to identify genetic key elements that could
possibly drive the tumorigenesis in human breast cancer. Also in chapter 7, we will
consider the differential network analysis concept that makes use of our developed GRN
pipeline to elucidate the molecular mechanisms by which diabetes impairs Bone
marrow-derived endothelia progenitor cells (EPC) in mouse.

Chapter 8 concerns the role of genomic mutations. Here, we apply our implemented
NGS pipeline to identify core-genome SNPs and genetic variations between two
phenotypic groups in a similar analogy to somatic mutations between the healthy and
disease cohorts. This project involved two groups of MRSA bacterial isolates (nasal and
invasive) to investigate the phylogenetic positions of the recently emerged t504 clone
(Spa-type t504) in the Saarland province of Germany and to better understand the
infectivity mechanism of the invasive group as a prototype example for “from genotype
to phenotype” studies. In the last chapter (chapter 9), we summarize the results
achieved in this thesis and discuss the current limitations of the introduced approaches
and directions for further improvements and outlook. Finally the appendices A, B, C, D,
and E contain supplementary information for chapters 4, 5, 6, 7, and 8, respectively.

In summary, the work presented in this thesis has led to the development of interesting
computational approaches that are introduced to the scientific community as non-
commercial software toolkits. The provided topological and functional analyses of our
approaches as validated on cellular differentiation and complex diseases promote them
as reliable systems biology tools for researchers across different life science disciplines.
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2. Theory and computational
biology tools

Synopsis
In this chapter, we discuss the state-of-the-art of existing methods that touch the same

research problem. A brief description of some of the data repositories, statistical tools, and
biological resources used in this work is also provided here.
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2.1 GRN reconstructing methods

A gene regulatory network is typically represented as a graph in which the nodes are
target genes or regulators (TFs, miRNAs) and the edges between nodes represent gene
interactions through which the products of one gene affect those of another. These
regulatory links can be inducting or activating, where an increase in the expression of
one leads to an increase in the other, or inhibitory/ repressing, where an increase in one
leading to a decrease in the other. A series of edges indicates a chain of such
dependencies, with cycles corresponding to feedback loops.

By reconstructing the gene regulatory network (GRN) of a single cell or of a
multicellular system we mean here the process of unraveling the regulatory machinery
of this biological system and then studying its structure, function, and mode of
operation. Over the past years, several methods have been developed and applied to
reconstruct GRN topologies from high- throughput data sources. In the next section, we
provide an overview of these methods that are categorized according to the underlying
model of gene regulation.

2.1.1 Boolean Networks

Boolean networks are one of the oldest dynamical methods that generate experimental
time series for gene expression of gene circuits[51]. The state of each variable (genes) at
the next time step depends in a deterministic manner on the states of some other
variables at the current time step. These dependencies are encoded in the form of
matrix-like condition tables. Boolean networks are based on the assumption that binary
on/off switches in discrete time steps can describe important aspects of gene
regulation. In a boolean network, the network state can be defined as n-tuples of 0s and
1s describing which genes in the network are or are not expressed at a particular
moment. For a network of n genes, there are 2*n possible different states. As time
progresses, the network states transition through this ’state space’, switching from one
state to another. These states can be monitored to determine which states have been
reached and which (cycles between) states the network prefers to stay in once they are
reached (so-called attractors). Stochastic and probabilistic extensions to Boolean
networks were also proposed by Akutsu et al. [52] and Shmulevich et al. [53],
respectively.

2.1.2 Dynamical models

Dynamical models such as ordinary differential equations (ODE) are important classes
of GRN inference methods and probably the most-used formalism for modeling genetic
networks. In these models, the concentrations of genes, mRNAs, or proteins are
represented by continuous, time-dependent variables as follows:

dx;

=

where x; is the expression level of gene i and x is the state vector containing the
expression levels of all other genes. The so-called input functions f can be linear (first



order) or non-linear ODE functions. The linear model is the most commonly used
dynamical model for gene network inference due to its simplicity [54-56]. However, it
turned out that linear models often don’t provide plausible results when only mRNA
concentrations are modeled. Successful models often also requires considering the
process of protein translation via introducing protein concentrations as further
dynamical variables. On the other hand, methods of reconstructions using non-linear
models employ complicated numerical optimization techniques to fit experimental gene
expression data [57, 58]. Yip et al. presented in 2010 ODE models for knockout and
perturbation data sets to infer the topology of GRN networks and achieved the best
score in the Dream 3 challenge [59].

2.1.3 Stochastic approaches

Although differential equations allow predicting the exact concentrations of genes and
proteins, they assume that these molecular concentrations vary continuously and
deterministically. However, in real biological systems, cellular activities and regulatory
processes are stochastic processes subject to considerable noise [60, 61]. Especially
when the number of molecules in a certain cellular reaction is small, stochastic methods
can be efficient in modeling the underlying networks [62]. Due to the complexity
involved in estimating, solving and analyzing stochastic models, these are rarely used to
model real networks of more than two or three genes and therefore are not applicable
to high-throughput datasets of the sort considered in this thesis.

2.1.4 Bayesian Networks

Among the various kinds of computational methods that have been presented for
reconstructing gene networks, Bayesian network (BN) approaches have shown great
promise to infer causal relationships between genes based on their expression profiles.
BNs are in principal probabilistic graphical models that encode dependencies between
genes and represent the state of each gene as a joint probability distribution via a
product of terms [63].

Theoretically, Bayesian networks are graphical notation for conditional independence
assertions between random variables and hence for compact representation of full joint
distributions. Consider a finite set X = (X,, X,.... X,) of random variables (genes) and
their values refer to their gene expression measurements. The joint distributions over
the set X can be represented as a product of conditional probabilities, where each
variable X; is associated with a conditional probability P(X;/ Pa;) and Pa; C X is a set of
variables that are the parents of X, Thus, the values the X, are independent on the
values of the other variables given the parents of X; in other words, the parents of X,
directly influence the values for X; (an example is shown in Figure 2-1).

n
Pr(X1,X,...,X,) = [ [ Pr(X; | Pay).
i=1

The theory of learning Bayesian network structure from data can be formulated as
follows:
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Given a training set D = Xl, X2... XN of independent instances of X, find a network B =
(G, ©) that best matches D, where G is the network structure and © describes the
graph parameters of the conditional probability table for each random variable X.

Q P(C| A,B)
A Bl 0 1
@ O 0O 0/01 09
—
- 0 1|02 08
1 0]089 0.11
@ 1 11001 099

Figure 2-1 Bayesian network representation.

Left: acyclic directed graph showing a Bayesian network with five random variables, where nodes (4 to E) represent
genes and edges represent direct dependencies between them. Right: conditional probability distribution for the
gene C, where the expression level of its parents is discretized to a Boolean value. The product form specified by this
Bayesian networkis P (A, B, C, D, E) = P(A) P(B) P(C| A,B) P(D | A) P(E| C).

The common method of Bayesian structure learning is to start from an initial network
model (usually known as prior knowledge) and then adding nodes/genes using some
operators (add edge, reverse edge, and remove edge). At every iteration, cyclic
structures are removed and only candidate structures or models are subjected to the
next step. Then, a structure-scoring function is applied to find which model best fits the
data. Since the number of generated models is super-exponential in the number of
involved random variables (genes), an efficient search algorithm (e.g. greedy algorithm)
has to be employed to search the model space and find the model with the highest score.
The approach can be summarized in the following procedure:

-M measurements of a finite set of random variables D= X,, X,.... X,,.
-An initial network N,,,(V, E) where V € D.

o/P
-A directed Bayesian network B = (G, ©) that best matches D, where G is the network
structure and © describes the parameters of the conditional probability table for each X,.

Procedure:
For each variable X,€ D and & V':

Step 1: Add X; to N,,;, using the operators (add edge, reverse edge, and remove edge) and
generate a structure space S={ S,, S,, ........5,} that contains all possible candidate
structures.

Step 2: Remove cyclic structures.

Step 3: Apply a scoring function (ex: BDe) to all candidate structures.

Step 4: Search for the highest score structure S,,,, using an effective search algorithm.

Step 5: Update the initial network with the inferred best structure, N,,;, = S,



A commonly used scoring function for evaluating the candidate Bayesian models is
called Bayesian Dirichlet method (BDe) scoring metric which calculates the posterior
probability of a network G given data D [64]. The posterior probability of a graph given
the data is:

BDe(G : D) = log P(GID) =log P(D\G) + log P(G) + C

where P(DIG) is the marginal likelihood which averages the probability of the data D
over all possible parameter assignments to G, P(G) is the prior probability of network G,
and C is a constant independent of G [64].

An advantage of using Bayesian networks to model gene regulatory networks is that
they can readily handle the stochastic aspects of input data as well as noisy and
incomplete datasets. These problems are typical for gene expression data. Moreover,
Bayesian networks facilitate the combination of prior or domain knowledge and input
data. This allows making use of what is already known from regulatory interactions and
regulatory repositories to infer regulatory relationships between genes involved in
specific input data. Also, Bayesian networks encode the strength of causal relationships
with probabilities. Therefore, prior knowledge and data can be combined with well-
studied techniques from Bayesian statistics [65]. In addition, Bayesian methods offer an
efficient approach for avoiding the overfitting of data. There is no need to dedicate some
of the available data for testing. Using the Bayesian approach, models can be evaluated
or scored in such a way that all available data can be used for learning. On the other
hand, Bayesian networks don’t model the dynamical aspects of gene expression. Since
the Bayesian networks are directed acyclic graphs (DAGs), this doesn’t allow network
structures such as feedback loops or self-regulation links to be modeled, which is
actually the case for most human genes (that typically have a negative auto-regulatory
feedback resulting in a sigmoidal thresholding of their maximal expression levels).

2.2 Biological data repositories

2.2.1 The Cancer Genome Atlas (TCGA)

The TCGA portal [66] (http://cancergenome.nih.gov/) is a cancer-specific data
warehouse to search, download, and analyze consistent genome-scale datasets
generated from cancer patient samples by the TCGA consortium. The TCGA initiative
was established in 2005 in the context of the “war on cancer” initiative. Most data
samples are freely available to allow researchers around the world to analyze and make
predictions. In this thesis, TCGA healthy and tumor samples were analyzed using
different techniques such as gene expression profiling, genome wide DNA methylation,
miRNA profiling, and SNP genotyping. Every TCGA sample carries a unique barcode,
which is composed of a set of data element identifiers such as tissue source site, patient
name, and sample type (healthy or tumor). See Figure 2-2. In chapter 6, we applied our
computational pipeline to breast cancer data downloaded from the TCGA portal and
revealed strong associations between regulatory elements from different genomic data
sources.
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Figure 2-2 Illustration of the TCGA barcode and its data element identifier.
Source: National cancer institute (NCI), https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode.

2.2.2 Gene Expression Omnibus (GEO)

GEO (http://www.ncbi.nlm.nih.gov/geo/) is an international public genomic repository
maintained by NCBI to collect and freely disseminate raw and preprocessed microarray
and next generation sequencing datasets. GEO data are organized in three entities:
1- Platform: a platform is a list of probes related to an array technology provider.
2- Sample: a sample describes the set of molecules (here: genes) whose expression
profiles are measured in certain condition/tissue.
3- Series: a series groups samples into meaningful data sets, which make up an
experiment.
The hematopoiesis study presented in chapter 5 used expression profiles of blood cell
lines downloaded from GEO.

2.3 Biological knowledge databases

Biological databases are informative digital libraries collected from scientific
experiments, published literature, and computational analyses of high-throughput data.
These biological data are often structured and represented in tabular data, XML
formats, key-delimited records, ontology classes, well-established attributes, and
relationships. Various biological databases were tightly integrated in the tools and
approaches developed in this thesis. Below, we will briefly introduce some of them
below.

2.3.1 Gene Ontology (GO)

The Gene ontology [67] is a set of formal vocabularies and explicit specifications of gene
annotation terms that are used to describe the attributes of genes in an organism. GO is
composed of three sub ontologies on the biological processes (BP), molecular functions
(MF), and cellular components (CC) annotated to genes. The building blocks of GO are
the terms (also called functional classes or functional categories). Each GO term has a
unique ID and a textual name, Ex, GO: 0042660: positive regulation of cell
fate specification. A gene can be associated with one or more GO terms and may
belong to different GO sub ontologies. The terms of the GO database are organized in a
hierarchical structure where a few general terms such as developmental process are
linked to numerous more specific terms on the next hierarchical level. Note that cycles
are allowed. Recently, the developers team behind the David resource [68] has
established GO_FAT. This is a subset of the full set of GO terms so that the broadest
terms should not overshadow more specific terms.
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2.3.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a group of linked
comprehensive databases that store information about gene products, biological
pathways, drugs, diseases, and chemical substances as a knowledge base for systematic
analysis of genetic molecules [69]. The core of the KEGG suite is the KEGG PATHWAY
database that contains metabolic pathway maps integrating genes, proteins, miRNAs,
and chemical compounds as well as disease genes and drug targets.

Similar to the Gene Ontology, KEGG can be used to determine whether or not a set of
genes is functionally enriched. However, the term (enrichment) here is more related to
the biological pathways, in other words, the contributions of these genes in the
background of all chemical reactions occurring within the cell such as metabolism,
membrane transport, and signal transduction.

2.3.3 Molecular signature database (MSigDB )

MSigDB is a well-annotated gene set representing the universe of biological processes
and is used for interpretation of large-scale genomic data [70]. Genes are grouped into
annotated sets based on specific genomic properties among them such as shared
binding sites for transcription factor families (motif gene sets), associations with the
same GO functional terms (GO gene sets), or being involved in the same diseases
(oncogenic signature sets). Here, we incorporated the motif gene sets into our
developed tools and used them also to investigate whether binding sites for distinct TFs
are enriched in the promoter regions of imprinted genes (chapter 4).

2.3.4 Regulatory interaction databases

Several databases and online repositories have been developed in order to facilitate the
research on predicted and experimentally verified genome-wide transcriptional and
post-transcriptional regulatory interactions. For instance, TransFac [71] and MsigDB
[70] maintain interactions of TFs regulating genes (TF>gene). TransmiR [30] provides
information on which TFs regulate miRNAs (TF->miRNA). mirTarBase[72], TarBase
[73] and miRecords [74] comprise miRNAs and their target genes (miRNA->genes) in
different organisms. Although still little is known about miRNA-mediated miRNA
regulations, miRNA->miRNA interactions were computationally predicted and
maintained in the PmmR database [75]. An extensive study of the integration
mechanisms of such databases and further downstream analysis of the involved genetic
molecules and their pathways in cancer is described in Chapter 3.

2.4 Statistical tools

2.4.1 Over representation analysis (ORA)

The demand on computational biology for evaluating results of high-throughput data
analysis has led to the development of several popular tools and statistical approaches
[76]. ORA is a widely used statistical approach that increases the likelihood for
researchers to identify biological terms most relevant to their study. More specifically,
ORA compares a reference set of genes to a test set in terms of their associations with a
certain biological term. For instance, when considering a certain GO functional term,
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this method assesses whether this GO term is over-represented or under-represented in
the respective study set and estimates how likely this is to happen by chance. DAVID
[68] and WebGestalt [77] are famous examples for tools that have been developed for
the purpose of ORA analysis. ORA uses both parametric statistical tests (ex:
hypergeometric test) and non-parametric statistical tests (ex: Kolmogorov-Smirnov
test) to assess the significance of term enrichment. ORA was a central part in the study
of chapter 4 where we examined the cellular functions and motif enrichment of
imprinted genes and hence their regulatory roles in cellular differentiation and blood
cell development (chapter 5).

2.4.2 Hypergeometric test

The hypergeometric-based test estimates the discrete probability that describes the
number of successes in a sequence of n draws from a finite population without
replacement.

Given a set of N study genes, of which x belong to a functional category C, and a
population set of size M, of which k belong to C. Then, the probability of observing x
genes out of N by chance belonging to the C category containing k genes from a total
population of size M can be modeled as follows:

B I

= )

The closer the probability (p-value) is to 0, the more unlikely is the chance of error that
the majority of genes belong to that category C (enriched).

2.4.3 Kolmogorov-Smirnov test (KS test)

KS test is a non-parametric (distribution free) test for comparing a sample to a
reference probability distribution (one-sample KS test), or for comparing the
distributions of two samples (two-sample K-S test). The KS test computes the distance
between the empirical distribution function of a sample and the cumulative distribution
of the reference hypothesis (in case of the one-sample KS test) or between the empirical
distribution functions of two samples (in case of the two-sample KS test).

Due to its sensitivity to differences in both the location and shape of the empirical
distribution functions, the two-sample KS test is considered as one of the most useful
and most general nonparametric methods for comparing two samples. Therefore, we
incorporated the KS test in our developed TFmiR web server (Chapter 3) to compare
two distributions of gene pairwise functional similarity scores.

2.4.4 Multiple test correction
Since we are testing the enrichment of a set of genes with multiple biological categories,

several independent statistical tests are performed simultaneously. This leads to
increasing the probability for false positive predictions or what is a so-called “Type 1
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error’. The multiple testing corrections adjust p-values derived from multiple
hypothesis testing to correct for the occurrence of false positives. In gene expression
analysis, for example, false positives could be those genes that are found to be
statistically differentially expressed between two conditions, but are not in reality.

In our developed computational tools, we utilized the Benjamini and Hochberg (BH)
[78] False Discovery Rate (FDR) as a multiple testing correction approach. Instead of
controlling the probability of committing any type [ error by setting a more severe cut
off level as in the Bonferroni method, this BH method controls the expected proportion
of errors among the rejected null hypotheses.

number of falsely rejected null hypotheses>

FDR = E( .
number of rejected null hypotheses

Therefore, it is the least stringent of all corrections and keeps a good balance between
the discovery of statistically significant genes and limitations of the predictive power
due to the occurrence of false positives.
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3. Approaches and Methods

This chapter is based on the following publications:

¢ Mohamed Hamed, Christian Spaniol, Maryam Nazarieh, and Volkhard Helms, TFmiR: A web
server for constructing and analyzing disease specific transcription factor and miRNA co-
regulatory networks. Nucleic Acids Research, 2015, doi:10.1093 /nar/gkv418

¢ Mohamed Hamed, Christian Spaniol, Alexander Zapp, and Volkhard Helms, Integrative
network based approach identifies key genetic elements in breast invasive carcinoma. BMC
Genomics, 2015. 16 (Suppl 5): p. S2.

¢ Mohamed Hamed, Daniel Patrick Nitsche, Ulla Ruffing, Matthias Steglich, Janina Dordel, Duy
Nguyen, Jan-Hendrik Brink, Gursharan Singh, Mathias Hermann, Ulrich Nubel, Volkhard
Helms, and Lutz von Muller, Whole Genome Phylotyping and Microarray Profiling of nasal
and blood stream Methicillin-Resistant Staphylococcus aureus isolates: Clues to phylogeny
and invasiveness. Infection, Genetics and Evolution, 2015.

¢ Christian Spaniol, Mohamed Hamed, Johannes Trumm and Volkhard Helms, Mebitoo: an
Extensible Software Framework for Bioinformatics Analysis Workflow Automatization
[BICoB-2015, 7th international conference on bioinformatics and computational biology].

¢ Alexander Zapp, Volkhard Helms, and Mohamed Hamed, SnvDMiR: Associating the genomic
proximity of genetic variants with deregulated miRNAs and differentially methylated
regions. [ICABEE -2015, 2nd international conference on Advances in Bio-Informatics and
Environmental Engineering].

Synopsis

In this chapter, we present scalable computational approaches and automated pipelines that we
implemented as freely available software tools to integrate heterogeneous sources of large-scale
genomic data and to unravel the combinatorial regulatory interactions between different
molecular elements. We started with a GRN pipeline to reverse engineer the regulatory
interactions from gene expression and gene sequence data. Then, we expand it to a general
integrative network based approach involving miRNA expression, DNA methylation, and genetic
variants. An NGS pipeline was implemented to identify the core genome SNPs between two
different phenotype groups in analogy to the identification of somatic mutations between disease
and healthy samples. A standalone proximity pipeline was also implemented to study the vicinity
relationships between a significant set of gene promoters, miRNAs and genetic variations. Finally,
we developed TFmiR as a freely available comprehensive web server for deep and integrative
analysis of regulatory information between TFs/genes and miRNAs and their interwoven critical
roles in the pathology of human diseases.
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Chapter 3 Approaches and methods

In this chapter, we present the bioinformatics tools and approaches that were
implemented in the course of this thesis. The aim of these approaches is unraveling the
interwoven gene regulatory network between genetic molecules that are involved in
cellular functions and disease pathways. We applied these approaches to omics data of
human breast cancer as well as hematopoiesis as a well-established model for stem cell
differentiation.

3.1 The model of gene regulation

As shown in Chapter two, several complex approaches to reconstruct cellular networks
from gene expression data have been published over the last few years. Among these,
only Bayesian networks infer causal relationships between genes while making use of
known regulatory information that is already stored in regulatory databases. This
information is referred to here as a primary or prior knowledge. Hence, we adopted the
Bayesian approach in our implemented pipeline to reconstruct the GRN from
expression and gene sequence data.

In this thesis, we formulate the architecture of GRNs as follows, both target genes and
genes coding for transcription factors are represented as nodes in the network.
Regulatory interactions are represented as directed edges from TF or miRNA to target
genes. On the transcription level, if a gene is silenced while the methylation level of its
promoter was high, we assume that gene silencing results from the increase in
promoter methylation and is not due to TFs nor miRNA regulation [79]. In addition, we
assumed direct individual binding of transcription factors to the regulatory site of a
gene: in other words, regulation role of transcription factors complexes are not
considered here. On the post-transcriptional level, we only considered the regulation of
genes by miRNAs and ignored other degradation causes of mRNA transcripts. Finally,
although post-translational regulation is an important aspect in the regulatory
machinery in complex cellular systems, there was no chance to model it within the
scope of this work for lack of time. Nevertheless, it is discussed in the last chapter as a
high potential follow-up work to this dissertation.

3.2 GRN construction pipeline
The reconstruction pipeline consists of three steps:
1. Build a weighted co-expression network from gene expression data.
2. Query known regulatory interactions that are likely involved in the constructed
co-expression network and do motif search using sequencing data of network

genes.

3. Learn the network topology using Bayesian approach by utilizing information
from step 2 as a prior knowledge.

The first step outputs an undirected network G(V, E) with edge thickness representing
the correlation strength between the expression profiles of the connected genes. In the
second step, we examine the regulation directionality for each undirected edge e in the
co-expression network by connecting to transcriptional regulatory databases and
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Chapter 3 Approaches and methods

performing motif discovery analysis. If a directed interaction between the two
examined nodes is found in the regulatory databases or confirmed by motif search, the
corresponding undirected edge e will be updated accordingly to a directed edge e, The
resulting network of this step would contain both directed and undirected edges. Next,
the directed sub-network G,V,, E,) representing the constructed directed edges is
extracted and used as a prior knowledge to statistically learn the remaining network
structure via Bayesian approach in the third step. This last step takes two inputs: the
prior network constructed from step 2 as well as the expression dataset of genes V,,
that are still involved in undirected edges. This outputs a directed causal probabilistic
network that best fits the expression data of the involved genes.

Then, the final network topology is composed of directed interactions identified in step
2 as well as interactions confirmed by both step 1 (co-expression) and step 3 (Bayesian
learning). Each of these steps is detailed below; see Figure 3-1 for an overview for the
entire pipeline. The last block refers to the integrative network-based approach which
was developed as an extension to the GRN pipeline to process information from
epigenetic data and somatic mutations, see section 3.4. The three steps of the GRN
pipeline are implemented as separate software modules (plugins) and hosted by our
software framework Mebitoo for workflow automation (section 3.3). We note that
coupling the third module is still in progress.

Somatic mutations

Gene expression ,_l’luginl | Plugin 2 | | Plugin 3 l
st

Co- GRN- query Probabilistic > Integrative
expression/ | | rcgula.lor LA N mﬂ!lﬂdsj Ly- network-based |
methylation DB’s Bayesian Net approach

Network

Gene sequence data

DNA Methylation
mIiRNA interactions [

Figure 3-1 GRN construction pipeline from heterogeneous sources of genomics data.

The steps are as follows: (1) Build weighted co-expression network from gene expression data. (2) Query regulatory
interactions and do a search for binding motifs using sequencing data of network genes. (3) Learn the network
topology using Bayesian approach and utilizing information from step 2 as a prior knowledge. The last block refers to
the integrative network-based approach, which was developed as an extension to the GRN pipeline to process
information from epigenetic data and somatic mutations.

3.2.1 Plugin 1: Weighted co-expression network

Co-expression networks provide a widely applicable framework for assigning gene
cellular functions and identifying functional network modules [80]. Gene co-expression
concurs the functional similarity between genes based on gene ontology (GO)
annotations [67]. Co-expression networks are defined as undirected gene networks
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where nodes correspond to genes, and edges between genes are determined by the
pairwise similarity between gene expressions profiles and applying a particular cutoff

threshold.

Users can load raw or preprocessed expression data to this plugin to start generating
the co-expression network between genes (Figure 3-2). The tool offers routines for data
preprocessing such as background corrections, data normalization, and probe
summarization. The plugin also displays some plots such as expression heatmap, box
plot, histogram plot which hint at better exploring the data before and after the pre-
processing step (Figure 3-3).
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Figure 3-2 Data loading panel in the co-expression plugin.
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Figure 3-3 Preprocessing options of raw expression data.
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The plugin utilizes the WGCNA R package [81] to build a weighted co-expression
network from gene expression data. First, we measure the concordance between gene
expression profiles using Pearson correlation. Then, the pairwise correlation matrix is
subjected to power adjacency function to obtain a weighted correlation matrix which
emphasizes high correlations at the expense of low correlations as follows.

a; =| cor(x,,x,)|
where 4,is the weighted correlation that refers to the connection strength between
gene pairs ¥,,¥ ., while fis a coefficient that controls the soft threshold curvature and

its value is recommended by the tool for each dataset.

Next, we use average linking hierarchical clustering to cluster genes into co-expression
network modules. Finally, for each module we display the corresponding weighted co-
expression network and the list of involved genes. Results can be exported to network
files and used as input parameters for the next plugin (Figure 3-4).
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Figure 3-4 visualizing the network and gene lists for each co-expression module.

3.2.2 Plugin 2: Online query for regulating links and motif search

This plugin was designed by the author of this thesis and implemented by Mr. Johannes
Trumm during his M.Sc. thesis under the supervision of the PhD author. The co-
expression network constructed in the first plugin is subjected to plugin 2 as an input
parameter. This plugin matches the co-expression interactions with regulatory
information retrieved from the Transcriptional Regulatory Element Database (TRED)
[82], Molecular Signatures Database (MSigDB) [70], and JASPAR database [83]. Also the
tool utilizes the NCBI (http://www.ncbi.nlm.nih.gov/) and HGNC
(http://www.genenames.org/) repositories to download gene promoter sequences and
map the input gene names to unique identifiers, respectively. Figure 3-5 shows the
integrated genomic resources and software components in this plugin. Finally, the user
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has the option to set the parameters required for motif search and promoter region
identification via a user control panel (Figure 3-6). The matching process can be
summarized in the following steps:

1. Assigning transcription factors.
All genes involved in the co-expression network and listed in at least one of the
above databases to code for a transcription factor (TF) were marked as TFs.

2. Adding known regulatory interactions.
For each TF-gene link in the co-expression network, we searched whether the
databases contain a known regulation for this TF-target gene pair. In each of
these cases, a directed edge was added between the transcription factor and the
target gene.

3. Searching for known binding motifs.

Here, we used the Motif Statistics and Discovery (MoSDi) [84] software to
conduct a motif search for all known binding motifs of the TFs represented in the
co-expression network against the promoter regions of all genes in the network.
If a match was found, a new directed edge from the TF to the gene was added.
Finally, the constructed directed interactions are visualized in an interactive
display and can be exported to Cytoscape [85] or VisANT [86] network files
(Figure 3-7).
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Figure 3-5 The integrated genomic resources and SW components used in the GRN query plugin.
Source: M.Sc. thesis by Johannes Trumm.
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Figure 3-7 Results of the GRN query plugin- Interactive network visualization and export options.
Transcription factors involved in the input network are identified and marked in yellow while the remaining genes
are colored blue. The tool can expand the input network by adding additional transcription factors (marked in
orange) that are annotated as known regulators of the input genes and also by adding additional target genes
(marked in green) that are annotated to be regulated by the TFs in the input network.

3.2.3 Plugin 3: learning the network topology using Bayesian network

This plugin is still running as a script and needs to be coupled and integrated to Mebitoo
framework. In this step (plugin 3), we constructed a causal probabilistic Bayesian
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network from the co-expression modules where we used the directed edges obtained
from plugin 2 as a start search point to infer directionality between nodes.

As discussed in chapter two, learning of network structures using a Bayesian approach
requires a scoring function to assess how well a certain structure fits the input data and
a search algorithm to find structures with high scores. Here, we can adopt the greedy
algorithm as a search algorithm and the likelihood-equivalence Bayesian Dirichlet
(BDe) [87] method as a scoring function for assessing network topology, see chapter 2.

Instead of taking the best network structure that has the best score, we perform the
learning approach three times and select only edges that were inferred at least twice in
the three runs (edge confidence level = 66.6%).

3.3 Mebitoo: An extensible software framework hosting the pipeline plugins

3.3.1 Description

The Mebitoo framework has mainly been developed by Mr .Christian Spaniol who is
another PhD student in the Helms group. During the time line of this PhD thesis, the
author was involved in extending some functionalities of Mebitoo and in writing new
add-on modules and plugins.

Mebitoo is a software application suite written in Java that is based on the Netbeans
Rich-Client platform (RCP) project that can easily be extended with additional
functionality deployed as modules. Moreover, the software enables persistent storage
with an incorporated database engine, which supports XML files for customized data
structures. Since the Mebitoo framework implements a uniform plugin interface,
automated data processing can be invoked using a task execution interface in order to
queue multiple operations of different modules and process datasets in parallel.

Mebitoo is appropriate for inexperienced users, researchers without programming
knowledge as well as scientific programmers, and developers. Aiming at the first group,
an easy and friendly GUI is provided that guides the user to sequentially define his tasks
(every task represents a one-time running module) and gets the final results in one-
click press button. For advanced users with knowledge in Java programming, Mebitoo
can be used as a ready hosting workflow automation framework for coupling more new
bioinformatics add-on plugins or modules.

3.3.2 Software design consideration

As shown above, the three GRN steps were implemented as independent Java
modules/plugins of the Mebitoo framework. Figure 3-8 illustrates the system
architecture of the GRN plugins hosted by Mebitoo and the followed design paradigms.
The GRN pipeline is designed to support both thin and fat client paradigms. Currently, it
works on the fat client paradigm where all business logic and data processing occur in
the desktop version installed on the user machine. However, to achieve better
performance in data processing, these plugins could be easily switched to the thin client
paradigm once the fat server configuration (application server) is available.
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Figure 3-8 SW architecture and design paradigms of the GRN pipeline modules hosted by Mebitoo.

Business logic and data processing functions are implemented in R and located on the client version in case of fat
client model or located on application server in case of thin client model. The business logic functions are invoked by
plugins GUI through the Java-R interfaces JRI.

3.4 Integrative network-based approach

To date, a large number of various methods have been developed to investigate the
molecular basis of complex diseases and integrate heterogeneous sources of genomic
data. Due to the complexity of the disease pathways and the underlying biology, it is still
challenging to integrate and extract meaningful information from large genomic
datasets (See literature of chapter 6 for detailed examples). In this regard, we presented
a network-based approach [7] utilizing the GRN pipeline explained above to elucidate
the regulatory mechanisms of several disease pathways at the molecular transcriptional
and post-transcriptional level. Sofar, our approach reports the computational analysis
of gene and miRNA transcriptomes, DNA methylome, and somatic mutations to
highlight putative disease drivers and novel targets for treatment.

This approach was applied to breast cancer data downloaded from the TCGA portal [66]
and was able to reveal strong associations between regulatory elements from different
genomic data sources (see chapter 6). The integrated molecular analysis enabled by this
approach substantially expands our knowledge base of prospective genomic drivers of
genes, miRNAs, and mutations and highlighted candidates for further investigation in
the wet lab as novel targets for breast cancer treatment (chapter 6). The provided
network-based approach can be applied in a similar fashion to other cancer types,
complex diseases, or for studying cellular differentiation processes where such multi-
dimensional datasets are available. The integrative network-based approach illustrated
in Figure 3-9 currently is able to process four different genomic datasets: gene
expression, DNA methylation, miRNA expression, and somatic mutations from normal
and diseased cohorts.
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3.4.1 Data consistency and preprocessing

For consistency, we considered only samples that were common between all four
datasets. For both gene expression and methylation datasets, all probes containing NA
values or that were annotated to unknown or multiple genes were removed. Also,
probes values were merged by computing the mean of all probes related to single genes
within a single sample as previously described in [88].

From the DNA methylation data, we kept only those probes representing CpG sites in
the promoter regions of genes. For this, we used the transcription start sites (TSS) for
all human genes as annotated in the Eukaryotic Promoter Database EPD [89]. Promoter
regions were defined as an interval of #2kb around the TSS as described in [70]. Then
we selected only those CpG sites whose genomic coordinates are contained in that
interval.

3.4.2 Differential analysis

The differential expression/methylation analysis was performed using three methods:
1) Significance Analysis of Microarray (SAM) [90], 2) moderated t-test [91], and 3) area
under the curve of the receiver operator characteristics (AUC ROC) [91]. Genes that
were classified as differentially expressed/methylated genes by at least two of those
three methods were included in the list of differentially expressed/methylated genes.
The same procedure was applied to determine differentially expressed miRNAs
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Figure 3-9 the integrative network-based approach.

A schematic diagram describing data processing and integration of different data sources to detect major
determinants and key driver molecules.
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3.4.3 Network construction using the GRN pipeline

The GRN construction pipeline that consists of plugins 1 to 3 was applied to the
differentially expressed genes to obtain the GRN network involving DNA binding
proteins (TF) and target genes. Using plugin 1, we constructed from the identified
differentially expressed genes the co-expression network based on the pairwise
correlation as a distance measure.

The resultant co-expression networks were subjected to plugin 2 as input parameters.
Gene interactions suggested from the co-expression networks were connected to
regulatory information retrieved from the Transcriptional Regulatory Element
Database (TRED) [82], Molecular Signatures Database (MSigDB) [70], and JASPAR
database [83]. All genes involved in the co-expression network and listed in at least one
of the databases to code for a transcription factor (TF) were marked as TFs. Then, for
each TF-gene link in the co-expression network, we searched whether the databases
contain a known regulation for this TF-target gene pair. In each of these cases, a
directed edge was added between the transcription factor and the target gene. Also, we
used the Motif Statistics and Discovery (MoSDi) [84] software to conduct a motif search
for all known binding motifs of the TFs represented in the co-expression network
against the promoter regions of all genes in the network. If a match was found, a new
directed edge from the TF to the gene was added. In the last step (plugin 3), we
constructed a causal probabilistic Bayesian network from the co-expression modules
where we used the directed edges obtained from plugin 2 as a start search point to infer
directionality between nodes, see chapter 2 for more details.

As candidate set of the final directed interactions, we considered directed edges from
plugin 2 as well as directed edges confirmed by both plugin 1 and plugin 3.
Subsequently, the entire network containing both directed and undirected interactions
was exposed to the pruning step explained below. The GRN network was visualized
using the igraph [92] package in R as will be illustrated in chapter 6.

3.4.4 Pruning the GRN using methylation and expression profiles

GRN pruning was carried out based on the observation that some genes show increased
promoter DNA methylation levels coupled to a remarkable decline of their expression
[79]. In such cases, we assumed that the downregulation of gene expression results
from the increase in promoter methylation and not due to TFs or miRNAs regulation.
Thus, we removed regulatory interactions whose target genes had absolute anti-
correlation between their expression and methylation profiles above a selected
threshold of 0.65.

3.4.5 Constructing miRNA-mRNA interactions

The integrated association of the differentially expressed miRNAs and the differentially
expressed genes (mRNAs) involved three steps. First, for the set of differentially
expressed miRNAs, which were either up- or down-regulated between the tumor and
normal samples, we used miRTrail [93] via MicroCosm Targets V5
(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) to extract their target
mRNAs (regulated genes) and overlapped them with the identified differentially
expressed mRNAs. Second, we used the experimentally validated database TransmiR
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[30] to retrieve the regulatory genes (TFs) that potentially regulate the differentially
expressed miRNAs. In both steps, the hypergeometric test with a p-value threshold of
0.05 was applied to test the regulation dependencies between the differentially
expressed miRNAs and their target genes /their regulatory TFs. Finally, both miRNA—
mRNA (including TF genes) interaction pairs from step one and TF— miRNA interaction
pairs from step two were joined and merged to a final network.

3.4.6 Identifying the genetic key drivers/determinants

Key regulators in the constructed networks were identified by determining the minimal
set of nodes that regulate (i.e dominate) the entire network. This problem can be
modeled as the following optimization problem:

Let graph G(V,E) be a connected graph, n = /V/, adj is the adjacency matrix of G, and
adj(i, ) = 0, X is a binary array of size n, such that X(/) = 1 if node /i was marked as a key
node, and 0 otherwise. Then the objective function is:

n

min EX(i)
i=1
n

subjectto Vi ). adj(i,j).X() >= 1.

The last constraint guarantees that every node in the network must have at least one
key node in its neighborhood. To solve such an optimization problem, we used the
linear programming gplk solver [94] via the numerical optimization package OpenOpt
[95].

3.4.7 Enrichment and druggability analysis

For gene set enrichment analysis, KEGG pathways and GO functional categories were
identified using the DAVID [68] tool. Briefly, we determined which pathways/functional
terms were annotated to at least two genes and were statistically overrepresented in
the study gene set. Enrichment was evaluated through the hyper-geometric test using a
p-value threshold of 0.05 as explained in details in chapter 2. For the enrichment
analysis of the miRNAs set, we used the TAM tool [96] which also uses the hyper-
geometric test. Druggability analysis of the identified driver genes was performed using
the PharmGKB [97], CTD [98], and CancerResource [99] databases.

3.5 SnvDMiR: Associating the genomic proximity of genetic variants with
deregulated miRNAs and differentially methylated regions

Although next generation sequencing of diseased traits has unraveled thousands of DNA
alterations, the functional relevance of most of these mutations and how they relate to
other epigenetic mechanisms are still poorly understood. Alexander Zapp developed in
his M.Sc. thesis under the direction of the author of this PhD thesis a small tool SnvDMiR
as a freely-available R pipeline that conducts combinatorial proximity analysis between
disease-associated SNVs, deregulated miRNAs, and differentially methylated regions
(DMRs) to identify genomically adjacent SNV-miRNA pairs as well as SNV-DMR pairs.
These variants could be further investigated as putative candidates for driving
pathogenic processes in diseases. We demonstrated the usefulness of the SnvDMiR
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pipeline by applying it on a published set of breast cancer-related mutations,
deregulated miRNAs, and DMRs. Our pipeline characterized potential driver mutations
that are predicted to have damaging effects on related protein functions. Availability:
http://gepard.bioinformatik.uni-saarland.de/software.

Background

To further our understanding of human oncogenesis, high-throughput sequencing of
tumor genomes has uncovered thousands of DNA alterations such as somatic mutations
of single nucleotide variants (SNVs) that may be important for tumor initiation or
progression [100-106]. Nevertheless, it remains a pressing challenge to determine
which mutations are key drivers for tumor pathophysiology and which ones are
passengers with no functional effects. To address this need, several approaches have
been presented to characterize driver missense mutations [103, 107-109]. Most
straightforward is the annotation of non-synonymous mutations in oncogenes or tumor
suppressors. In contrast, relatively little attention has been paid to cases where driver
mutations could be in close genomic proximity to disease-related genes, miRNAs, or
methylated CpG sites.

Chapter 1 explained the importance of DNA methylation and the phenomenon of
differential methylation as well as miRNAs and their correlations to genetic mutations.
In this regard, the recent availability of disease-related genomic data such as somatic
mutations, associated DMRs and miRNAs calls for the development of integrative
genomic proximity-based approaches to better understand the functional relevance of
most of these mutations and how they relate to epigenetic marks. To this end, we
developed SnvDMiR as a freely-available R pipeline that is able to conduct
combinatorial proximity analysis between disease-associated SNVs, deregulated
miRNAs, and DMRs to identify genomically adjacent SNV-miRNA pairs as well as SNV-
DMR pairs. We demonstrated these features on breast cancer-related datasets and the
matched SNVs suggested putative driver mutations that could play a critical role in
breast cancerogenesis (chapter 6).

3.5.1 Implementation

SnvDMIiR is a computational pipeline implemented in R (Figure 3-10). Based on lists of
genomic variants, deregulated miRNAs, differentially methylated sites, and user defined
parameters (configurations), SnvDMiR investigates whether the significantly
deregulated miRNAs and differentially methylated sites are in close genomic vicinity to
the provided genomic variants and outputs matching entries in tabular and ideograms
plots. The user needs only to run the main script SnvDMiR.R which in turn loads the
required libraries/packages, carries out the analysis on the input data, and visualizes
the matched entries in genomic ideograms with circular layouts.

For matching miRNAs and somatic variants, the genomic coordinates of the significantly
deregulated miRNAs were downloaded from miRBase [110]. Then, SnvDMiR searches
for the miRNA sequences in a predefined genomic window (default is 250kb [111])
around each somatic variant. The window size can be set in the configuration file
attached with the SnvDMiR script. The matched miRNA-SNV pairs, where the miRNAs
occur within the window around the SNV location, are extracted into the som-miRNA-
matches.txt file in the output folder.

The second part of the SnvDMiR functionality is to explore whether differentially
methylated regions (usually CpG islands) are in the vicinity of somatic mutations. To
this end, our tool tests the occurrence of the SNV within a certain genomic distance

39



Chapter 3 Approaches and methods

(default is 3kb) from the genomic coordinates of the differentially methylated sites. The
default setting of the predefined distance in the configuration file (3kb) was based on
the maximum considered length of typical CpG islands, that is, 500bp [21] < CpG islands
< 3kb [112]. Moreover, the user has the option to investigate only the C->A, C->G, and C-
>T SNVs instead of all mutations via setting the parameter filter_Cytosine in the
configuration file. The matched entries are also exported to som-DMR-matches.txt file in
the output folder.

®R = @R ®R - ®

mMiRNA-SNV.R plot-miRNA.R DMR-SNV.R plot-DMR.R

|
|
|
I Output
|
|
|

Figure 3-10 The data model for the SnvDmiR proximity pipeline.
The pipeline is used to investigate the vicinity of genetic variants to the deregulated miRNAs and differentially
methylated regions. Source: modified from @ Alexander zapp M.Sc. thesis.

Finally, the SnvDmiR utilizes the circlize R package [113] to efficiently plot the related
ideogram and flexibly visualize the matched entries in a circular layout as well as the
entire input data (all SNVs and either all miRNAs or all DMRs) as genomic background.
This helps to better understand the genomic patterns behind the matched entries.

3.6 TFmiR web server

The TFmiR web server was developed in a collaborative fashion of the author of this
thesis together with Christian Spaniol and Maryam Nazarieh. The contribution of
Maryam was the design and computation of minimum connected dominating sets (see
below). The contribution of Christian was the design and implementation of the
presentation layer of the web server. The author of this thesis designed and
implemented the methodology of setting up integrated regulatory databases,
constructing all relative networks, performing statistical analysis as well as the down
stream network analysis (as explained below for the breast cancer case study).
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We developed TFmiR [114] as a freely available web server for deep and integrative
analysis of combinatorial regulatory interactions between TFs/genes and miRNAs that
are involved in disease pathogenesis. Since the biological function of molecular
components are highly connected with the underlying cellular malfunctions and disease
pathways, TFmiR helps to elucidate their cellular mechanisms on the molecular level
from a network perspective. The provided topological and functional analyses promote
TFmiR as a reliable systems biology tool for researchers across the life science
communities. TFmiR web server is accessible through the following URL:
http://service.bioinformatik.uni-saarland.de/tfmir.

3.6.1 Background

TFs and miRNAs frequently form Feed Forward Loops (FFLs) and other network motifs
to regulate gene transcription in a collaborative manner [115-118]. Therefore, utilizing
the combinatorial regulatory information on TFs and miRNAs and their target genes
could shed light on key driver genes and miRNAs in human diseases and, in turn,
suggests novel therapeutic strategies in disease treatment [7, 115].

Several databases have been developed in order to facilitate the research on
transcriptional and posttranscriptional interaction types between TFs/genes and
miRNAs. For instance, TransFac [71], OregAnno [119], and MsigDB [70] maintain
interactions of TFs regulating genes (TF->gene). TransmiR [30] provides information
on which TFs regulate miRNAs (TF->miRNA). mirTarBase[72], TarBase [73] and
miRecords [74] collect target genes of miRNAs (miRNA->genes) in different organisms.
Although still little is known about miRNA-mediated miRNA regulations, recent studies
have reported plausible evidences that miRNAs may regulate the expression of other
miRNAs as well as their target genes [120-124]. Thus, miRNA->miRNA interactions
were computationally predicted and maintained in the PmmR database [75].

Despite the general availability of such databases, generalized repositories integrating
different kinds of molecular interactions and intensively analyzing their contributions
to diseases are still missing. To this end, we developed TFmiR, a web server that allows
for integrative and comprehensive analysis of interactions between a set of deregulated
TFs/genes and a set of deregulated miRNAs within the relevant pathways of a certain
disease. It unravels the disease-specific co-regulatory network between TFs and
miRNAs and performs over representation analysis (ORA) for the involved TFs/genes
and miRNAs. Our web server also detects feed forward loops (FFLs) consisting of
miRNAs, TFs, and co-targeted genes (TF-miRNA co-regulatory motifs) and assesses the
functional homogeneity between the co-regulated targets in terms of their statistical
significance.

Furthermore, TFmiR utilizes 7 different methods for identifying key network players
that could possibly drive oncogenic processes of diseases and thus act as potential drug
targets. Especially when combined with experimental validation, these putative key
players as well as the novel TF-miRNA co-regulatory motifs could promote novel
insights to develop new therapeutic approaches for human diseases. Overall, TFmiR
presents a comprehensive analysis suite for studying the architecture and feature of the
TF-miRNA co-regulatory network.
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3.6.2 Description

TFmiR is a freely available web server that integrates genome-wide transcriptional and
post-transcriptional regulatory interactions to elucidate human diseases. Based on a
selected disease and user-supplied lists of deregulated genes/TFs and miRNAs, TFmiR
investigates four different types of interactions, TF->gene, TF->miRNA,
miRNA->miRNA, miRNA->gene. It also unravels the interplay circuitry between
miRNAs, TFs and target genes within the pathogenicity of the specified disease in a
systems biology approach. For each interaction type, TFmiR utilizes information
provided by well -established and finely-curated regulatory databases of both predicted
and experimentally validated interactions (Figure 3-11) whereby all repeated
interactions were removed. For TF->miRNA interactions, we also integrated manually
curated regulatory relationships from large numbers (~5000) of published papers
(PMID: 20584335) [125]. From the predicted miRNA->miRNA interactions in the
PmmR database [75], we considered only the best hits having score < 0.2 which is
computed as the normalized path length between the two involved miRNAs. The
incorporated predicted miRNA->gene interactions were retrieved from starBase [126]
by selecting only those predictions confirmed by three out of five prediction algorithms
(targetScan [127], picTar [128],RNA22 [129], PITA [130], and miRanda [131]). Table
3-1 lists the included databases and the number of regulations available for each
interaction type. In total, TFmiR integrates information on almost 10.000 genes, 1856
miRNAs, ~ 3000 diseases including subtypes, and more than 111.000 interactions.
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Figure 3-11 A system level overview of the TFmiR architecture.
This schematic diagram describes the incorporated databases, data flows and output downstream analysis.
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3.6.3 TFmiR user input scenarios

TFmiR can be called through two scenarios. If a user submits two RNA sets (a set of
deregulated mRNAs/genes and a set of deregulated miRNAs), the TFmiR web server
will return regulatory interactions based on the provided deregulated genes and
deregulated miRNAs. In the second scenario, a user submits only a set of deregulated
genes. In such a case, TFmiR identifies the set of miRNAs whose target genes as well as
regulator TFs are significantly enriched within the input deregulated genes using the
hypergeometric distribution function followed by the Benjamini-Hochberg (BH)
adjustment with a cutoff value of 0.001. Sample input files of the deregulated genes and
miRNAs are provided in the TFmiR web page. The user can optionally set the p-value
cutoff (default is 0.05) required later for over representation analysis (ORA) on the
resulting network nodes (genes / miRNAs), see chapter 2. Finally, the user can control
the evidence level (experimentally validated, predicted, or both) for the constructed
regulatory interaction that will be subjected later to further network analysis. See
Figure 3-12.

Table 3-1 The integrated databases and interaction types in TFmiR.
(P) means predicted interactions and (E) means experimentally validated interactions. All databases were
downloaded before August 2014.

Interaction IDatabases (P/E) * Genes miRNAs Edges Version /frozen date

TF-> gene TRANSFAC (E) [71] 1279 -- 2943 V11.4
OregAnno (E)[119] 1132 -- 1083 Nov 2010
TRED (P) [82] 3038 -- 6462 2007

TF-> miRNA TransmiR (E) [30] 158 175 567 V1.2, Jan 2013
PMID20584335 (E) [125] |58 56 102 Apr 2009
ChipBase (P) [132] 119 1380 33087 V1.1, Nov 2012

miRNA - gene miRTarBase (E)[72] 2244 551 5640 V4.5, Nov 2013
TarBase (E) [73] 422 79 492 V7.0
miRecords (E)[74] 543 157 780 Mar 2009
starBase (P)[126] 5720 249 56051 V2.0, Sept 2013

miRNA-> miRNA |PmmR (P) [75] -- 312 3846 Mar 2011

3.6.4 Functionality of TFmiR

The TFmiR web server pools all the four interactions types based on the significant
TF(gene)-miRNA pairs from the input deregulated genes and miRNAs and accordingly
generates an entire combinatorial regulatory network, see Figure 3-13. If a disease was
selected, TFmiR integrates the human miRNA disease database (HMDD) [133] as well as
DisGeNET (a database for gene-disease association) [134] as reliable sources for
disease-associated miRNAs and genes, respectively. Interactions whose target nodes or
regulator nodes are known to be associated with the disease are composing the putative
disease-specific network. As the next step, TFmiR offers a downstream analysis on three
different levels: (1) the regulatory subnetwork of each of the four interaction types, (2)
the combined network of all interaction types, and (3) the disease-specific network (if
disease was selected). For each interaction type subnetwork representing a set of
regulator = target links, we display the total number of targets and regulators in the
corresponding interaction databases, a Venn diagram depicting the overlap between the
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input deregulated targets (miRNAs/genes) and the targets of the input deregulated
regulators (genes/miRNAs) available from the database. The significance of overlap is
computed using the hypergeometric distribution test. To avoid the effect of false-
positives in the regulator - target databases and to account for a different number of
targets for the input deregulated regulators, a randomization test is conducted
(n=1000). Furthermore, the TFmiR web server -carries out statistical over
representation analysis (ORA) for both gene and miRNA sets comprising the interaction
subnetwork.

TFmiR ol
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M) CENTER FOR
disease-specific miRNAAranscription factor co-regulatory networks v1.0 ° 0 C BIOINFORMATICS
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2015 Mohamed Hamed, Christian Spaniol, Maryam Nazarieh, & Volkhard Helms, Chair of Computational Biology

Figure 3-12 TFmiR homepage showing user input parameters.

For gene set analysis, TFmiR employs DAVID [135] to check for enrichment of GO terms
(BP subcategory), KEGG pathways, and OMIM diseases as well as a clustering of genes
based on their functional similarities. For miRNA set analysis, we used the miRNA-
functional association data and miRNA-disease association data from HMDD to
statistically relate the functional and disease terms to the miRNA set. For levels 2 and 3,
the TFmiR web server calculates for each network the basic topological features,
relevance to the disease-associated genes/miRNAs by testing the overlap significance
with the network nodes, degree distribution plot, ORA analyses for both gene and
miRNA nodes, network key players (hot spots), and detects 3-node motifs. To measure
the strength of correlation between the potential disease-specific network, the input
disease, and the input deregulated genes and miRNAs, we compute a coverage ratio
(CR) between the nodes of the disease-specific network and the nodes of the entire
combined network.

Ny
Cp = —=
R= 3
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Here Nq represents the number of disease-specific network nodes, and N; represents the
total number of nodes in the entire network. We also calculate the CR ratio between the
edges of the two networks. Along with the aforementioned analysis, all resulting
networks are visualized using the interactive Cytoscape-web viewer [136].
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Figure 3-13 Reconstructed networks from the input deregulated genes and miRNAs.
Four interaction networks corresponding to the four interactions types as well as the entire interaction network and
disease-specific network.

3.6.5 Identification of network key players (hot spots)

To identify crucial network players that could possibly be critical drivers of disease
pathogenesis, TFmiR utilizes 7 different methods (Figure 3-14). The first six methods
use the well known topological centrality measures: degree centrality, closeness
centrality, betweenness centrality, eigenvector centrality as well as the common and
union sets of the key nodes identified by these four measures.

We defined the key nodes as the top 10% highest centrality nodes of the TFs, miRNAs,
and genes in the disease-specific and whole network. The last method is based on
determining the minimal set of nodes that regulate the entire network. We mapped this
problem into the Minimum Connected Dominating Set (MCDS) and employed the
algorithm presented by Rai et al. 2009 [137] to search for the minimum connected
dominating node set. This feature was the contribution of Maryam Nazarieh to the
TFmiR publication.
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Figure 3-14 Network visualization and key players identification in the TFmiR webserver.

3.6.6 Identification of TF-miRNA co-regulatory motifs

Feed Forward Loops (FFLs) are interconnection patterns that recur in many different
parts of a network and form key functional modules [115, 138]. They have been
demonstrated as one of the most important motif patterns in transcriptional regulation
networks [138] that govern many aspects of normal cell functions and diseases [139-
146]. Here, TFmiR identifies 4 types of 3-node motifs (3 FFLs and 1 co-regulation
motif) consisting of a TF, a miRNA, and their co-targeted gene that are considered as
TF-miRNA co-regulatory motifs (Figure 3-15). (1) The so-called Composite-FFL, which
includes TF regulation of both a miRNA and a target gene as well as miRNA suppression
of that TF and that target gene. (2) The so-called TF-FFL includes TF regulation of the
expression of both a miRNA and a target gene and it also includes miRNA repression of
that target gene. (3) The so-called miRNA-FFL includes miRNA repression of both a TF
and a target gene, as well as TF regulation of this target gene. (4) The so-called
Coregulation-FFL includes only TF regulation of a target gene as well as miRNA
repression of that target gene. TFmiR utilizes the following procedure in order to
identify the aforementioned motif types.

1-Identifying significant TF-miRNA co-occuring pairs

We identified statistically significant TF and miRNA pairs that cooperatively regulate
the same target gene using the hypergeometric distribution and calculated the p-values
as given in the following function:
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P—value =1 — i %

where k is the number of target genes regulated by a certain miRNA, N is the number of
genes regulated by a certain TF, x is the number of common target genes between this
TF and the miRNA, and M is the number of genes in the union of all human genes
targeted by human miRNAs combined with all human genes regulated by all human TFs
in our databases. Then, a multiple test correction was done by determining the FDR
according to the Benjamini and Hochberg (BH) [78] method and only those pairs with a
adjusted P-value less than 0.05 were selected as significant TF-miRNA pairs.

2- Construction of candidate TF-miRNA-gene FFLs

All interactions associated with the significant TF-miRNA pairs were represented as
connectivity matrix, M, such that Mij =1 if regulator i regulates target j where i € (TF,
miRNA), and j € (TF, miRNA, gene). Then, we scan all the 3*3 submatrices of M that
represent each type of the four considered FFL topologies (Figure 3-15).

(d) Composite-FFL (c) miRNA-FFL

@ oo c

(b) TF-FFL (a) Co-regulation-FFL

Figure 3-15 Schematic illustration of the four motif types detected in TFmiR.
All motifs contain a TF, a miRNA, and a common target gene.
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3-Significance of the FFL motifs

To evaluate the significance of each FFL motif type, we compared the number of times
they appear in the real network to the number of times they appear in randomized
ensembles preserving the same node degrees. The random networks were constructed
100 times and compared to the real network. A p-value is calculated as :

P—value = —
T
where N is the number of random times that a certain motif type is acquired more than
or equal to its number in the real network, and Nris 100. We also calculate the Z score
for each motif type to examine by how many standard deviations the observed real
motif occurred more often or less often than the mean of the random ones.

N, — N,
(9]

Here No is the number of motifs observed in the real network, while Nim, and o are the
mean and standard deviation of the motif occurrence in 100 random networks,
respectively.

Zscore =

3.6.7 Functional homogeneity

In order to evaluate the biological evidence of the identified TF-miRNA co-regulatory
motifs and better understand their functional roles, TFmiR allows the user to
investigate the GO semantic similarity for all pairs of co-targeted genes (genes targeted
by the same TF and miRNA pair) or for all pairs of co-regulated genes (all genes
regulated by the TF or the miRNAs of that TF-miRNA pair) (Figure 3-16). The
GoSemSim R package [147] is used to compute the semantic similarity scores according
to the GO annotations. GoSemSim package computes the similarity scores based on the
shared GO terms between each pair of genes.

Statistical significance is determined by a permutation test. For this, we randomly select
the same number of genes (co-targeted genes or co-regulated genes) from all Entrez
genes with Go annotations, and compute their similarity scores. The permutation
procedure is repeated 1000 times. Then, we run a Kolmogorov-Smirnov test (KS test) to
check whether the functional similarity scores of all gene pairs from the FFL motif are
significantly larger than that of randomly selected pairs of genes, see chapter 2 for more
details.

3.6.8 Case study

We applied TFmiR to datasets associated with several complex diseases such as cancer,
alzheimer and diabetes. In a study on breast cancer (chapter 6), we identified 1262
deregulated genes and 121 deregulated miRNAs using gene and miRNA expression data
from the TCGA portal (https://tcga-data.nci.nih.gov/tcga/). These two sets of deregulated
genes and miRNAs are in fact the default sample input files now provided with the
TFmiR web server. Next, TFmiR was used to reveal the co-regulation network between
the deregulated genes/TFs and deregulated miRNAs and to better understand the
pathogenic mechanisms associated with breast tumorigenesis. The wuser input
parameters were set as following: p-value cut off = 0.05, disease was selected to breast
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neoplasms, and the evidence level was set to both experimentally validated and
predicted interactions.

TFmiR constructed a total of 294 regulatory interactions comprising 172 nodes of
deregulated miRNAs and deregulated TFs/genes. The breast cancer-specific network
involves 216 interactions and 120 nodes of deregulated miRNAs and genes with node
and edge coverage ratios (CR) of 80.6%, and 80.8% respectively. This supports the
strong relation between the input deregulated genes and the input deregulated miRNAs
in the activity of the oncogenic processes of breast carcinoma. The provided ORA
analysis of the disease network nodes reveals their implications in many cancer types as
well as cancer-related KEGG pathways. For instance, the network gene nodes are also
significantly involved in pancreatic cancer, colorectal cancer, prostate cancer, and the
p53 signaling pathway, which is a tumor suppressor gene showing one of the largest
frequencies of SNPs among all human genes that have been related to cancer [148].
Moreover, ORA analysis of the network miRNAs shows their involvement in
cancerogenesis of multiple organs such as lung neoplasms, ovarian cancer, and
adenocarcinoma. Additionally, TFmiR identified 22 key network players (10 genes and
12 miRNAs) based on the union set of four centrality measures described above. These
key genes are E2F6, TP53, SPI1, TGFB1, SMAD4, ESR1, TERT, E2F3, BRCAZ, AKT1, and the
key miRNAs are hsa-mir-148a, hsa-mir-21, hsa-mir-93, hsa-mir-152, hsa-mir-106b, hsa-
mir-143, hsa-mir-200c, hsa-mir-27a, hsa-mir-23a, hsa-mir-22, hsa-mir-146a, hsa-mir-335.
Interestingly, some of the identified key genes such as BRCAZ2, ESR1, AKT1, and TP53
were previously implicated and significantly mutated in breast cancer samples [148].
More importantly, the protein products of the genes ESR1, TP53, TGFB1, AKT1, and
BRCAZ are binding targets for anti-breast cancer drugs [7].

Figure 3-16 Co-targeted and co-regulated genes.
(a) Co-targeted genes defined as genes that are targeted by the same TF and miRNA pair. (b) Co-regulated genes
defined as all genes regulated by the TF and the miRNA of this TF-miRNA pair.

It has been demonstrated that the E2F3 gene plays a critical role in the transcriptional
activation of genes that control the rate of proliferation of tumor cells [149-151].
Furthermore, Vimala et al. [152] recently showed that E2F3 is overexpressed in 11
breast cancer cell lines and siRNA-EZ2F3 based gene silencing facilitates the silencing of
E2F3 overexpression and limits the progression of breast tumors. This strongly matches
our findings using TFmiR that E2ZF3 may be a potential therapeutic target for human
breast cancer. The two identified key regulator miRNAs hsa-mir-143, and hsa-mir-200c
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are deregulated tumor suppressor miRNAs in many cancer types [153-155] and are
involved in chemotherapy resistance and showed promising insights in the
development and delivery of miRNA-based cancer therapeutics [156].

Next, we examined the TF-miRNA co-regulatory motifs that are significantly enriched in
the entire interaction network. We identified 53 FFL motifs (3 composite-FFLs, 2 TF-
FFLs, 6 miRNA-FFLs, and 42 coreg-FFLs). An interesting motif involves the TF SPI1, the
miRNA hsa-mir-155, and the target gene FLI1. This is an example for how FFL motifs
hint at better understanding the pathogenicity of breast cancer (Figure 3-17). Recent
studies reported that the oncogene SPI1 is involved in tumor progression and
metastasis [157-159]. However, the co-regulation of the oncogene FLI1 [160-162] by
both SPI1 and the oncomiR hsa-mir-155 was not reported before. However, we show
here that the co-regulated target genes of SPI1 and hsa-mir-155 have significantly more
cellular functions in common than randomly selected genes (Figure 3-18). Hence, this
FFL motif provides novel insights on how SPI1-and miRNA affect the cellular network in
breast cancer and suggests a cooperative functional role between SPI1 and potential
miRNA partners.

In conclusion, unlike the traditional separate analysis of gene expression profiles [163-
167] or the aberration of miRNA expression in cancer tissues [168-170], this integrated
molecular analysis of deregulated miRNAs and genes using TFmiR was able to uncover
important aspects of the TF/gene-miRNA interactomes, their co-regulation
mechanisms, and the underlying pathogenesis of human breast cancer

Co-regulated subnetwork for TF: SPI1, miRNA: hsa-mir-155, Gene: FLI1

FLI
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Figure 3-17 A composite FFL motif involves the TF SPI1, the miRNA has-mir-155, and the target gene FLI1.
The co-regulated nodes are also visualized and to be further tested for composing a cooperative functional module in
breast cancerogenesis.

3.6.9 Comparison with other tools

In comparison with the web interfaces of related databases such as Transmir [30],
ChIPBase [132], CircuitsDB [146], starBase [126], and miR2Disease [171], our TFmiR
web server has several distinctive features: 1- TFmiR performs integrative analysis of
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molecular interactions between a set of deregulated genes and a set of deregulated
miRNAs within or without the pathogenic pathways of a certain disease. In contrast, the
abovementioned web tools can only search the regulatory interactions of a single gene
or a single miRNA. 2- TFmiR performs a rich network analysis involving TF-miRNA co-
regulatory motif detection, plausible network visualization, statistical significance of the
extracted interactions, and ORA analysis for each interaction type, the combined
interaction network, and the disease network. Such an integrated analysis is not
provided by other web tools. 3- TFmiR allows the user to retrieve either experimentally
validated or predicted interactions or both. Such an option is not available using the
other tools. In a relatively similar fashion, DisTMGneT [172] was developed for
obtaining cancer-specific network based on user-selected sets of deregulated genes and
miRNAs. However, it lacks the downstream analysis, the varieties of user input
parameters, and it is limited to a predefined set of miRNAs and genes as well as cancer
disease. Also miRTrail [93] performs ORA and Gene Set Enrichment (GSEA) analyses of
interactions of genes and miRNAs based on expression profiles. However, it explores
only miRNA->gene interactions.
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Figure 3-18 Cumulative distributions of GO functional semantic scores of gene pairs of co-regulated genes in
the examined motif (red) versus randomly selected genes (black).The p-value was calculated using the
Kolmogorov-Smirnov test.

3.6.10 Conclusion

We developed TFmiR as a comprehensive web server for integrative analysis of the
molecular interactions between TFs/genes and miRNAs and their interwoven critical
roles in the pathology of human diseases. TFmiR shows advances over other related
web tools in terms of the extended downstream analysis, the varieties of user
parameters, use case scenarios, and in incorporating information from various well-
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established regulatory databases. TFmiR is based on user-provided sets of deregulated
genes and/or miRNAs regardless of the data producing technologies of either
microarray experiments, NGS, or PCR. The application of TFmiR on breast cancer-
related deregulated genes and mirNAs demonstrated the usefulness of TFmiR in
constructing the breast cancer-specific network and identifying literature-confirmed
core regulators as well as novel hub nodes of TFs/miRNAs that could be further
experimentally investigated as new potential drug targets. TFmiR was also able to
characterize important TF-miRNA co-regulatory motifs whose co-regulated genes form
cooperative functional modules in breast cancerogenesis.

3.6.11 Outlook

Besides the involved transcriptional and posttranscriptional regulatory interactions,
possible extensions are to integrate data for posttranslational events such as protein
phosphorylation and localization. Also enriching TFmiR with additional well-
established databases and extending the downstream analysis of the interaction
networks would be a valuable asset. Furthermore, an extra analysis module of detecting
4-nodes FFL motifs between TFs, miRNAs, and target genes can be coupled into TFmiR.
Finally, expanding the TFmiR to elucidate the regulatory mechanisms of cellular
processes (ex. stem cell differentiation) in addition to diseases would make TFmiR of
great interest to a wide range of researchers in the life science community.

3.7 NGS pipeline

3.7.1 Background

In collaboration with Dr. Ulrich Niibel at the Robert-Koch-Institute institute, we
developed a Whole Genome Sequencing (WGS) pipeline to identify core-genome SNPs
that can be effectively used to study the phylogenetic arrangements between bacterial
isolates as well as an additional module to elucidate phenotypic characteristics such as
virulence (Figure 3-19). The pipeline was written in a combination of shell scripting and
R language[173].

In a collaboration with Prof. Dr. Lutz von Miiller and Prof. Dr. Mathias Herrmann (both
medical faculty, Saarland University) and Dr. Patrick Nitsche (HZI Braunschweig), this
pipeline was applied to Methicillin-Resistant Staphylococcus Aureus (MRSA) genomes
to investigate the phylogenetic positions of the recently emerged t504 clone (Spa-type
t504) in the Saarland province of Germany in relation to the currently dominant clone
t003 in the surrounding areas of south Germany and Luxemburg. Following this, we
analyzed the differentially occurring genetic mutations between nasal and blood stream
(invasive) samples of the predominant CC5 with the aim of better understanding the
infectivity mechanism of the invasive group. The whole study is introduced in full detail
in Chapter 8.

3.7.2 Pipeline description
Whole genome sequencing of MRSA DNA was performed using an Illumina MiSeq

sequencer at the HZI in Braunschweig, Germany, producing paired-end reads of 251
basepair lengths with an average coverage of 110-fold.
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The first step in the pipeline is quality control of the input sequencing data. For this, the
pipeline utilizes the FastQC [174] tool to evaluate the efficacy of the short read data to
be involved in the analysis. Secondly reads are mapped against the complete reference
genome of interest using the short read alignment version of the Burrows-wheeler
Aligner (BWA) algorithm [175]. In our case study presented in chapter 8, we used S.
aureus CC5 strain NC_017340.1 (http://www.ncbi.nlm.nih.gov/nuccore/NC_017340) as
a reference genome. Once the short reads are mapped to the reference genome, we
reprocess the mapped reads and investigate the mapping quality distribution (Figure 3-
20) such that both duplicate reads and reads with low mapping quality (< 30) are

filtered out and the final alignments are sorted via samtools [176].

Paired-end short reads
Two isolates groups:
- 15 nasal samples Ref genome NC 017340.1
- 12 invasive samples

y

Quality control of samples
Tool: Fastqc

y

Multiple reads alignement /mapping
Tool: BWA

{

Filter reads <30 mapping quality and duplicate reads
Tool: samtools

\ 4

SNP calling and generating consensus sequence
Tool: Varscan

\ 4

Mask variations in repetitive sequences and mobile islands
Tool: R script
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Significance of genetic Get consensus
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Figure 3-19 NGS pipeline for identifying core-genome SNPs.

And detecting genetic differences between two sets of isolates, such as groups of invasive and nasal MRSA isolates.
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As a next step, genetic mutations of the consensus genotypes (SNPs, and INDELS) are
called using the VarScan2 [177] tool based on the number of aligned reads supporting
each allele.

I MAPQ >= 30 (76.8% , 1763410)

. MAPQ >= 20 (7.5% , 172730)

MAPQ >= 10 (0.1% , 2499)
B MAPQ >= 3 (1.4% , 33166)
B MAPQ < 3 (14.2% , 325203)
I Unmapped (0.0% , 0)

Figure 3-20 An example for mapping quality distribution after the alignment step.

To avoid false positives (phylogenetic mispositioning), the analysis was restricted to the
consensus sequence of the highly conserved core-genome. Therefore, variants that
occurred in mobile genetic islands as well as repetitive sequence regions were masked
by the same reference nucleotide (Figure 3-21). This step was performed using a list of
fast evolving regions assembled in the group of Dr. Ulrich Niibel. The reason for this is
that these specific genomic regions do evolve randomly in various rates within different
strains.

MGE / Repetitive sequence regions

Sample 1 A G G Sample 1 A G C G
Sample 2 A T C :> Sample 2 A G C G
Sample 3 C G A T Sample 3 C G C G

Figure 3-21 Masking genetic variants that occurred in mobile genetic islands or repetitive sequence regions.

Next, a consensus sequence with the same length of the reference genome is
constructed for each isolate by padding N nucleotides in the unmapped regions (Figure
3-22).
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Unmapped regions
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Sample 3 C G A G Sample 3 C G A G

Figure 3-22 Padding the unmapped regions with an N nucleotide to construct the consensus sequence.

In order to obtain a phylogenetic representative core-genome SNP matrix, we
considered the genomic positions where at least one variant was found in any of the
bacterial isolates (Figure 3-23).

Core-genome SNP array
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Figure 3-23 Constructing the core-genome SNP matrix from the consensus sequences.

Core-genome SNPs from coding and non-coding genomic regions were used to generate
a phylogenetic tree using the Maximum Likelihood method as implemented in the
SeaView tool [178]. This tree then can be displayed and annotated using FigTree
(http://tree.bio.ed.ac.uk/software/figtree/).

The pipeline identifies the genetic variations between each isolate pair (invasive and
nasal) in a similar way as the somatic mutations found between the healthy and disease
cohorts. The significance of the acquired genetic variations was evaluated by VarScan
on the basis of the sequence reads through Fisher’s exact test using a significance level
or p-value threshold of 0.05. Successfully passed variants were collected and annotated
to the corresponding genes in the reference genome. Subsequently, the variants were
grouped by position, and the occurrence of each variant was noted.

55



4. Imprinted genes and cell
differentiation

This chapter is a shortened version of the following publication:

¢ Mohamed Hamed, Siba Ismael, Martina Paulsen, and Volkhard Helms, Cellular functions
of genetically imprinted genes in human and mouse as annotated in the Gene Ontology.
PLoS One, 2012. 7(11): p. e50285.

Synopsis

Genomic imprinting is an epigenetic phenomenon that is closely associated with cell
development and cellular differentiation. In order to characterize the role of imprinted
genes during differentiation processes, the study presented in this chapter was set out to
comprehensively investigate the cellular functions of the whole set of imprinted genes,
paternally expressed genes, and maternally expressed genes in both human and mouse.
Additionally, we examined the transcription factors that are predicted to regulate the
imprinted genes and their relatedness to cell differentiation. The findings of this chapter
raised intriguing questions regarding the nature and extent of the role of imprinted genes
in hematopoietic stem cell differentiation, which will be covered in chapter 5.
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Abstract

By analyzing the cellular functions of genetically imprinted genes as annotated in the
Gene Ontology for human and mouse, we found that imprinted genes are often involved
in developmental, transport and regulatory processes. In human, paternally expressed
genes are enriched in GO terms related to the development of organs and of anatomical
structures. In mouse, maternally expressed genes regulate cation transport as well as G-
protein signaling processes. We noticed that the Gene Ontology currently only provides
a partial compilation of which genes are known to be genetically imprinted and what
their functions are. Furthermore, we investigated if imprinted genes are regulated by
common transcription factors. We identified 25 TF families that showed an enrichment
of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In
general, maternally and paternally expressed genes are not regulated by different
transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to
the enrichment of TF families. In mouse, genes that are maternally expressed in
placenta are enriched for AP1 binding sites. In human, we found that these genes
possessed binding sites for both, AP1 and SP1.

4.1 Background

Genomic imprinting is an epigenetic phenomenon observed in eutherian mammals. For
the large majority of autosomal genes, the two parental copies are both either
transcribed or silent. However, in a small group of genes one copy is turned off in a
parent-of-origin specific manner thereby resulting in monoallelic expression. These
genes are called 'imprinted' because the silenced copy of the gene is epigenetically
marked or imprinted in either the egg or the sperm [179].

Imprinted genes play important roles in development and growth both pre- and
postnatally by acting in fetal and placental tissues [180]. Interestingly, there appears to
exist a general pattern whereby maternally expressed genes tend to limit embryonic
growth and paternally expressed genes tend to promote growth. A model case for this
striking scenario is the antagonistic action of Igf2 and Igf2r in mouse. Deletion of the
paternally expressed IgfZ gene results in intrauterine growth restriction. On the other
hand, deletion of the maternally expressed gene IgfZr, results in overgrowth [181].

The observation that maternally and paternally expressed genes apparently act as
antagonists has inspired several evolutionary theories that aim to explain the origin of
genetic imprinting under the process of ‘natural selection’ [180]. The most scientifically
accepted theory is currently the kinship theory [182] and [183]. Briefly, this theory
suggests that in polygamous mammalian species, silencing of maternally derived
growth inhibiting genes results in increased growth of the embryo. This is associated
with an increased nutritional demand and thereby with an exploitation of maternal
resources at the cost of future off-spring that might be fathered by a different male.

The evolution of a gene regulatory mechanism that silences preferentially one parental
allele of a gene implies that paternally and maternally expressed genes experience
different selective pressures during evolution. This assumption is supported by the
finding that the two groups reveal different patterns of sequence conservation. Whereas
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the protein-encoding DNA sequences of paternally expressed genes are well conserved
among different mammalian species, maternally expressed genes are much more
divergent [184]. Whether paternally and maternally expressed genes differ also in
molecular functions and gene regulation is a question that has not yet been investigated
in detail.

As the phenomenon of genomic imprinting is an important evolutionary facet of
mammals with placentas, it is of great interest to identify which sorts of cellular and
developmental processes of developing and/or mature organisms are subject to control
by imprinted genes. We aimed in this study at characterizing the cellular roles of
imprinted genes in an unbiased, data-driven approach. For this, we used the gene
annotations of the Gene Ontology (GO) that consists of three structured and controlled
vocabularies for the biological processes, cellular components, and molecular functions
associated with particular genes. As it is of particular interest to analyze which of these
functions are controlled by the sets of maternally and paternally expressed genes, we
have also separately analyzed the enrichment of GO terms in these two groups.

4.2 Methods

4.2.1 Gene Selection

Imprinted genes of human and mouse were downloaded from the Catalogue of
Imprinted Genes and Parent-of-origin Effects in Humans and Animals (IGC) [180, 185].
The catalogue encompasses genes that were described as being imprinted in literature.
As the related experiments were done in many different labs, the experimental
procedures differed considerably. After reading the original publications, we manually
selected 64 imprinted genes that are imprinted without doubt in at least one of the two
species, see table A-1. This list was provided to us by our collaborator Dr.Martina
Paulsen. For the gene C150rfZ, the expressed allele is unknown since there is no
information on the parental origin of the alleles. Copg2, and ZimZ are paternally
expressed in the human, but maternally expressed in the mouse. Grb10 exhibits
isoform-specific imprinting effects, i.e. there are paternally expressed and maternally
expressed isoforms. The other 60 genes have been experimentally classified into
paternally and maternally expressed alleles in two equal halves. 25 genes are imprinted
in both species, for the remaining imprinted expression was proven only for one of the
two species. As control group for the human (mouse) imprinted genes we used all
human (mouse) genes that are annotated in the Gene Ontology.

4.2.2 Functional Enrichment Analysis

For analyzing significantly enriched functional categories, we used the functional
annotation tool available in the Database for Annotation, Visualization and Integrated
Discovery (DAVID) [135]. We determined which GO categories are statistically
overrepresented in different sets of genes. Enrichment was evaluated through the
Fisher Exact test using a significance level or p-value threshold of 0.05. We suspected
that some functional categories with a high statistical significance may show over-
representation even when annotated only to a single gene. In that case, it would not be
clear if this function is related to monoallelic expression of the gene in certain tissues, or
when it is biallelically expressed in other tissues. Therefore we required that each GO
term considered here is annotated to at least two human (mouse) genes.
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For the most specific GO terms, we ran the same enrichment analysis procedures by
using the biological process GO_FAT database instead of using the general GO
knowledgebase. The map enrichment plugin in Cytoscape [85] was used to visualize the
overrepresented functional terms and display the overlapping functional sets.

4.2.3 Gene Functional clustering

Clustering and grouping of the imprinted genes were performed using the DAVID gene
functional classification tool. This tool employs a set of fuzzy clustering techniques to
classify input genes into functionally related gene groups (or classes). This is done on
the basis of the co-occurrence of annotation terms by generating a gene-to-gene
similarity matrix based on shared functional annotation. This switches the functional
annotation analysis from a gene-centric analysis to a biological module-centric analysis
[135]. The similarity threshold was set to the minimum similarity threshold of 0.3
suggested by the DAVID consortium. This is then the minimum value to be considered
by the similarity-matching algorithm as biologically significant. Also, we set the
minimum gene number in a seeding group to 2. This would be the minimum size of each
cluster in the final results. All remaining parameters were kept to their default values.
The results of the functional classification tool are visualized as heat maps to show the
corresponding gene-annotation association across the clustered genes.

4.2.4 Transcription Factor Target Enrichment

The web-based gene set analysis toolkit WebGestalt [77] was used to analyze the
targets of transcription factors (TFs). This tool incorporates information from different
public resources such as NCBI Gene, GO, KEGG and MsigDB
(http://bioinfo.vanderbilt.edu/webgestalt/). Using the TF target analysis tool implemented
in WebGestalt, we analyzed whether a set of genes is significantly enriched with TF
targets (TFT). TFT's are specific sets of genes that share a common TF-binding site
defined in the TRANSFAC database [186]. TFT's are collected in the Molecular signature
Database (MsigDB) [187] and are retrieved by WebGestalt upon analysis request. The
examined promoter region has the size of -2kb, +2kb around the transcription start site.
Then enrichment was evaluated through the hypergeometric test using the 10 most
enriched terms with maximum significance level or p-value of 0.05. As we are testing
multiple TFT families at the same time, the p values need to be adjusted for the effects
of multiple testing, therefore we applied the sequential Bonferroni type procedure
method proposed by [78]. We only considered enrichment of TFT families that were
annotated for at least two genes. Finally, the results of the TFT enrichment analysis
were visualized as heat maps to identify the common principles and differences of the
enriched TF targets across the corresponding imprinted genes. This was done using the
statistical language R [188].

4.3 Results

In this study we addressed the question whether imprinted genes as a group fulfill
specific functions in mammalian organisms. For this, we tested if specific GO terms are
overrepresented in the group of imprinted genes in comparison to all genes in the
human or mouse genome. Of the 41 selected human imprinted genes, 38 are annotated
in the GO database that contains in total 14116 human genes. In contrast, all 48 mouse
imprinted genes are among the 14219 annotated mouse genes. One should note,
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though, that many genes are represented by more than one transcript in the GO
database.

4.3.1 Imprinted genes are involved in developmental, transport and regulatory functions

First, we analyzed which terms of the Gene Ontology are enriched in the full set of all
imprinted genes when compared to the set of all human genes or all mouse genes. We
concentrate in this analysis on GO terms that are shared by at least 2 different
imprinted genes. In this way, we assume to emphasize those cellular functions that
relate to the controlled mono-allelic expression of the set of genes studied here.

In the human, the term system development is the term with the lowest p-value. This
term is associated with 15 out of the 38 human imprinted genes. This corresponds to
2.6 fold enrichment in comparison to the annotation frequency in the group of all genes.
Cellular processes is the term which is associated with the largest number of imprinted
genes in the human: 32 imprinted genes (84.2% of all imprinted genes) are associated
with this term, whereas this is only the case for 74.6% of all genes. For comparison, the
imprinted genes in mouse showed a narrower range of 1.8 and 2 fold enrichment for
these two broad terms, and only for system development the p-value is below 0.05. As
shown in Table 4-1

Table 4-1, only the five generic GO terms, multicellular organismal development,
developmental process, neuron development, system development, and anatomical
structure development appear in both species with close to 2-fold enrichment (p<0.05,
Fisher exact test). Only neuron development is 5-fold enriched.

As terms such as system development and cellular processes are rather general terms, we
subsequently analyzed the enrichment of terms in the GO_FAT section of the DAVID
database. As shown in Figure 4-1, among the enriched specific terms in human and
mouse, some are linked to neuron development and differentiation and are intimately
related with the CDKN1C and NDN genes. Interestingly, the terms regulation of RNA
metabolic process, regulation of transcription, DNA-dependent, and regulation of
transcription are the terms that are associated with the largest numbers of human
imprinted genes (28.9, 28.9 and 34.2 %, respectively). Moreover, around 8.5% and
10.5% of the examined mouse imprinted genes are involved in the regulation process of
phosphorylation and positive regulation of molecular function, respectively. This group
includes the imprinted genes Igf2, Ins2, Kcnql, Htr2a, Grb10, Ndn, Tp73, Impact, Cdkn1c,
ZimZ2, and Plagl1.

The two GO terms Regulation of RNA metabolic process and the daughter node
Regulation of transcription, DNA-dependent are associated with processes involved in
the role of RNA synthesis regulation. Some of the encoded proteins are tumor proteins;
others are inhibitors of the cell cycle, thus inhibiting division. It is also worth
mentioning that the functional term regulation of gene expression by genetic imprinting
(this is abbreviated to ‘genetic imprinting’ in the DAVID database) is over-represented
as well although it is associated in the Gene Ontology only with the genes INS, IGF2, and
KCNQ1 (Note: INS and IGFZ2 are being interpreted by DAVID as a single locus which
includes two alternatively spliced read-through transcript variants and align to the INS
gene in the 5' region and to the IGF2 gene in the 3' region).
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Table 4-1 Conserved functional classes in imprinted genes in human (green) and mouse (brown) at adjusted
p-value of 0.05.

Term Species Count Percentage Fold Enrichment -Log (p-value)
G0:0007275 Human 16 42.1 INEEEEEEEEEee 2.3 IEEEEEEEEEEERERERr 2.8
~multicellular organismal
development Mouse 14 29.2 Hininnm - 1.9 NI 1.8
G0:0032502 Human 17 44.7 I 2.2 A s
~developmental process

Mouse 15 31.3 INEEEEEE 1.9 I 1.8
G0:0048666~neuron Human 4 10.5 IEEEREREREEREREREEEEEEE TR 4.8 I 1.3
development

Mouse 4 8.3 IEEEREEEREEREREEEEEEEEEEEE T 4.8 I 1.3
G0:0048731 ~system | Human 15 39.5 INEEEEEEEEEEEEEE T 2.6 INEEEEEEEEEEEREREEErnn 3.3
development

Mouse 12 25.0 IEEEEEERER 2.1 I 1.7
G0:0048856 ~anatomical | Human 15 39.5 INEEEEEEEEEEE 2.4 IEEEEEEEEEEERERERer 2.9
structure development

Mouse 12 25.0 INEEEEEE 1.9 I 2.5

These functional associations rely on publications about prominent imprinting control
elements in the vicinity of these genes [189] and about epigenetic abnormalities in the
IGF2/H19 region of Beckwith-Wiedemann syndrome patients [190]. Furthermore, the
GO term genetic imprinting that is a parent of the term regulation of gene expression by
genetic imprinting is also annotated to the well-known imprinted genes Gnas, NDN/Ndn
and Peg3. All in all, it is certainly fair to say that the coverage of genetically imprinted
genes in the Gene Ontology is currently quite low.

Some functions related to transport are enriched and associated with both human and
mouse imprinted genes. For instance, the Growth factor receptor-bound protein 10
(GRB10) is involved in the Negative regulation of transport. This gene interacts with
insulin receptors and insulin-like growth-factor receptors [191]. Overexpression of
some isoforms of GRBI0 inhibits tyrosine kinase activity and results in growth
suppression, e.g. by suppressing glucose import [192].

The two enriched GO terms Organic cation transport and Ion transport describe the
regulation of the directed movement of organic cations into, out of or within a cell, or
between cells, by means of some agent such as a transporter or pore. The associated
mouse imprinted genes SIc22a2 and SIc22a3 are polyspecific organic cation
transporters in the liver, kidney, intestine, and other organs.
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Figure 4-1 The most specific enriched GO terms of biological functions for the full set of imprinted genes in
human (green) and mouse (brown). Nodes represent the enriched Go terms and the thickness of the
interconnected links corresponds to the number of shared genes.

Grouping genes based on shared GO terms can highlight functional similarities of
different genes. For this, clustering algorithms were applied to a gene-to-gene similarity
matrix and imprinted genes were classified into highly related groups (see methods).
We identified one gene cluster in the human and two clusters in the mouse. The only
discovered cluster in human resembles the second cluster in mouse and encompasses
zinc finger protein genes such as PEG3, ZNF597 and ZNF331. Its members have a strong
association with regulatory and transcriptional tasks (Figure 4-2). For mouse, the first
cluster contains mostly genes that encode proteins that are involved in transport
processes (Figure 4-3a). As mentioned, the second group consists mostly of zinc finger
protein genes similar to the human one (Figure 4-3b).

4.3.2 Maternally expressed genes dominate the role of imprinted genes in transport and
gene regulation

In previous studies [184], Hutter et al. 2010 showed that maternally and paternally
expressed genes differ in the level of conservation of their DNA sequences. For this
reason, we analyzed whether maternally and paternally expressed genes differ also in
their biological and molecular functions.

For the 19 maternally expressed genes in human, only 3 broad functional terms were
found to be enriched, nervous system development, organ morphogenesis, and positive
regulation of osteoblast differentiation. For the last GO term, the maternally expressed
genes even showed a 59.4-fold enrichment although only two imprinted genes (DLX5
and GNAS) are associated with this term. Thus, the enormous enrichment likely reflects
that positive regulation of osteoblast is so far associated with very few genes in the full
genome.
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Figure 4-2 Functionally related imprinted genes in human.
The heat map view shows the gene-term association for those genes that share a high number of associated GO terms.
Marked in red on the left side are maternally expressed genes; marked in blue are paternally expressed genes.

In mouse, 24 genes are classified as maternally expressed. We found that 14 biological
functions are significantly associated with these genes. These 14 terms are dominated
by a group of relatively unspecific terms related to transport processes such as organic
cation transport, transmembrane transport, ion transport and organic cation transport.
Therefore, not surprisingly, the five maternally expressed genes Kcnk9, Kcnq1, Slca22a2,
Slca22a3 and Slca22al8 form a gene cluster that is associated with the same transport-
related GO terms. The second gene cluster is formed by TF genes including the
maternally expressed genes Kif4 and Zim1 (Figure 4-4).

4.3.3 Only few paternally expressed genes in human possess similar functions

The 17 paternally expressed genes in human are associated with fewer over-
represented GO terms (p<0.05) than the maternally expressed genes. Most of them
were already present in the over-represented terms for all imprinted genes (Figure
4-5). Thus we examined these genes on the basis of the GO_FAT knowledge base that
contains more specific terms. Only two terms, i.e. regulation of transcription, DNA-
dependent and regulation of RNA metabolic process are enriched for paternally
expressed genes. Both terms are associated with the genes PLAGL1, L3MBTL, IGF2, WT1,
ZIM2, and PEG3. Hence, both maternally and paternally expressed genes contain
prominent groups of genes that have regulatory roles. Paternally expressed genes in
mouse did not show any significant enrichment.
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Figure 4-3 Functionally related imprinted genes in mouse.

Heat maps showing the gene-term association for the first and second gene clusters in Mouse. Marked in red on the

left side are maternally expressed genes; marked in blue are paternally expressed genes.
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Figure 4-4 The enriched GO terms of biological functions for the maternally expressed genes in human
(green) and mouse (brown). Nodes represent the enriched Go terms and the thickness of the interconnected links
corresponds to the number of shared genes.

4.3.4 Enrichment analysis for the transcription factor targets

Mammalian genes are usually controlled by combinations of different TFs that bind to
distinct binding sites in regulatory regions such as the promoters of genes. We were
interested in the questions which TFs regulate imprinted genes and if paternally and
maternally expressed genes can be distinguished by their TFs.

In total, we identified 25 TF families that showed an enrichment of binding sites in the
set of imprinted genes in human (p<0.01, hyper-geometric test, see Methods). The
associations between these families and the corresponding genes are shown in Figure
A-1 (a) together with the expressed allele type. For mouse, binding sites for 40 TF
families are enriched in imprinted genes at the same significance level of 0.01, see
Figure A-1 (b). 19 transcription factor families possess binding sites that are enriched in
the imprinted genes in both species (Figure 4-6). In species, Nnat, KIf14, Blcap, Gnas, and
Ube3a are the genes that contribute most to the enrichment of transcription factor
binding sites.

Figure 4-6 shows that in mouse and human, imprinted genes form similar, but not
identical, clusters of genes that are regulated by the same transcription factor families.
For example, the potassium channel genes Kcnq1 and Kcnk9 show an enrichment of heat
shock factor 2 (HSF2) binding sites in human and mouse. Similarly, genes that are
maternally expressed in placenta, such as Slc22a18, Tfip2, and PhldaZ2, cluster together
in both species. In the mouse, this cluster is characterized by an enrichment of AP1
binding sites, whereas the prominent feature of the human gene cluster is a
combination of AP1 and SP1 sites. Finally, Figure 6 illustrates clearly that paternally and
maternally expressed genes do not cluster apart. This is also not the case if species-
specifically enriched transcription factor binding sites are included (data not shown).
Hence, paternally and maternally expressed genes are apparently not regulated by
distinct combinations of TFs. and cannot be distinguished on a general level.
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Figure 4-5 The enriched GO terms of biological functions for the paternally expressed genes in human.
Nodes represent the enriched Go terms and the thickness of the interconnected links corresponds to the number of
shared genes.

4.4 Discussion

This study analyzed enriched functional annotations of genetically imprinted genes
based on the "biological process" tree of the Gene Ontology. In their seminal review
[193], Tycko and Morrison concluded that the group of imprinted genes is
predominantly involved in controlling growth and neurobehavioral traits. Tycko and
Morrison pointed out that the numbers of paternally and maternally expressed genes
related to growth are almost identical. On the other hand, only one maternally
expressed gene (UBE3A) was linked to behavioral functions, in contrast to three
paternally expressed genes (SGCE, NDN, PWCR1), as well as the paternally expressed
genes PEG1 (MEST) and PEG3 that were related both to growth and behavior. Thus,
Tycko and Morrison argued that imprinting effects due to either maternally or
paternally expressed genes are related to growth whereas behavioral functions are
mostly controlled by paternally expressed genes. However, at the present stage, it is
unclear if imprinted genes act indeed in the control of behavior, or if the observed
behavioral abnormalities in mutant mice are caused by an impaired development of
neurons and brain structures.

Our study did reveal an association of imprinted genes with developmental processes
such as organ development in human and mouse. This indicates that these genes
function indeed during embryogenesis, but they are not necessarily growth-regulating
genes. The terms that are related to development in human as well as in mouse are
associated with 25% to 44.7% of all imprinted genes in the respective species. Hence, a
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large proportion of imprinted genes contribute to developmental processes. Imprinted
genes are also associated with GO terms that are related to neuronal development.
Interestingly, neuronal development is apparently not a function that is restricted to
paternally expressed genes. Furthermore, in comparison to developmental functions
only a rather small number of imprinted genes (7 genes) show a functional association
to the nervous system [194].

When paternally and maternally expressed genes are analyzed separately, mouse and
human show clearly different associations. In the human, several maternally expressed
genes (DLX5, GNAS, TP73, PHLDAZ2, CDKN1C, PPP1R9A, UBE3A) are associated with
organ morphogenesis, and more particularly with nervous system development and
oesteoblast differentiation. In the mouse, maternally expressed genes form two
functional networks that are clearly separated. One is related to transport processes,
and includes carrier proteins and channel proteins. Especially transport processes that
are a key feature of placenta function are specifically associated with maternally
expressed genes in the mouse. The second network consists of terms related to G
protein signaling. This network is clearly dominated by CALCR and SLC22A18.

For the paternally expressed genes, a functional network is only found in the human.
This network consists mostly of terms associated with development, and a few terms
that are related to gene regulation. Interestingly, several imprinted genes that encode
transcription factors (PLAGL1, L3MBTL, WT1, ZIMZ2, PEG3) seem to be key players in this
network. Nevertheless, also among the maternally expressed genes are genes that
regulate transcription. Thus, regulatory functions are not an exclusive feature of
paternally expressed genes.

In this context we will briefly consider possible biases and shortcomings in the results
obtained. While it is of course impossible to estimate how much we still don't know,
even the annotations stored in the Gene Ontology clearly only represent a fraction of all
knowledge in the original scientific literature. It is actually very difficult to provide an
estimate how large this fraction is. As an example for this, only three out of 41
imprinted genes studied here are actually annotated in the GO as being "regulated by
genetic imprinting" plus three that are related to "genetic imprinting". It is quite likely
that the GO gives a more complete picture about the cellular functions of genes that
have been studied intensely compared to the average gene. It is furthermore possible
that some of the known imprinted genes such as IGFZ belong to the group of intensely
studied genes so that their cellular functions are known to a larger extent than those of
less well studied genes and when compared to the average bi-allelically expressed gene.
In agreement with this idea, we found that the three well-known genes IGF2, INS, and
GRB10 (out of 30) tended to dominate the functional enrichments in the group of
paternally expressed genes. In contrast, the enrichments in the group of all imprinted
genes were stable even when we removed the well-known genes IGFZ, INS, and GRB10.

When grouping the imprinted genes by enriched GO annotations found for at least two
genes, we applied the lowest recommended threshold value of 0.3. In future, when more
complete functional associations will be available, it remains to be tested whether a
higher, more cautious threshold would be advantageous.
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Figure 4-6 Conserved transcription factors in the full set of imprinted genes in human (a) and mouse (b) at
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respectively. Genes that are imprinted in both species are marked in green. Pink are the genes shown to be imprinted
only in human, and brown are the genes shown to be imprinted only in mouse.
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We found that when applied to the currently available data, this threshold gave a good
compromise between coverage and specificity of the obtained results.

In the second part of the study, we were interested in the question if functionally
related gene groups such as the prominent groups of transcription factors, and
transport related proteins, are co-regulated by similar sets of transcription factor
families. This is obviously not the case. Interestingly, also maternally and paternally
expressed genes are not regulated by distinct sets of transcription factor families. In
general, a few genes, i.e. UBE3A, KLF14, BLCAP, NAP1L5, NNAT, and GNAS, show an over-
proportional enrichment of distinct transcription factor binding sites. Interestingly,
these genes possess rather diverse functions. For example, UBE3A seems to act in
neuronal development, whereas GNAS acts mostly in endocrinal pathways.

Although imprinted genes appear to be regulated by similar sets of transcription factors
in mouse and human, it is difficult to identify a typical transcription factor that regulates
imprinted genes. The most prominent factor appears to be SP1. This rather ubiquitous
factor might be responsible for the broad tissue spectrum of imprinted genes [195]. On
the other hand SP1 deficiency is to some extent associated with placental defects and
impaired ossification, that are typical features of defects in imprinting [196].

Varrault and co-workers have recently identified a network of co-regulated imprinted
genes involving the genes Plagll, Gtl2, H19, Mest, DIk1, Peg3, Grb10, lgf2, 1gf2r, Dcn,
Gnas, Gatm, Ndn, Cdknlc and Slc33a4 [197]. According to Fig. 6(b), E12 regulates four
genes from this list (Dlk1, Cdknlc, Igf2 and Gnas); SP1 regulates three genes (Peg3, Ndn
and Igf2) as well as AACTTT_UNKNOWN (Igf2r, DIk1 and Gnas). We suggest these three
transcription factors as candidates that may be responsible for the coregulation of this
imprinting network.

Berg and colleagues [198] recently analyzed the expression levels of ten of these genes
(Cdknlc, DIk1, Grb10, Gti2, H19, Igf2, Mest, Ndn, Peg3, and Plagl1) in mouse long-term
repopulating hematopoietic stem cells and in representative differentiated lineages.
Intriguingly, they found that most of the genes were severely down regulated in
differentiated cells. They noticed that their study is the first one that connected
imprinted genes that are known to be associated with embryonic and early postnatal
growth to the regulation of somatic stem cells. Consequently, they suggested that the
balancing forces of growth-promoting paternally expressed genes and of growth-
limiting maternally expressed genes may as well play a role in keeping stem cells in the
delicate balance of pluripotency. Along these lines, but in the opposite direction, our
above finding that the global transcription factors E12 and SP1 play key roles in the
regulation of imprinted genes fits to their well-known role in cell differentiation
processes [199, 200].
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5. Regulatory role of
imprinted and pluripotency
genes in hematopoiesis

This chapter is a shortened version of the following manuscript:

* Mohamed Hamed, Johannes Trum, Christian Spaniol, Mohammad R. Irhimeh, Martina
Paulsen, and Volkhard Helms, Expression of pluripotency genes and imprinted genes
during the onset of differentiation and during hematopoiesis [SUBMITTED].

Synopsis

The previous chapter discussed the functional roles of the imprinted genes and
interestingly reported that many imprinted genes are transcriptionally regulated by
hematopoiesis-related transcription factors such as NFAT, FOX04, E2A, and TCF3. This has
motivated the work presented in this chapter where we aimed at identifying regulatory
elements from imprinted, pluripotency, and hematopoiesis associated genes that are
putatively related to the transition of cells from the pluripotent stem-cell stage into the
onset of development and into hematopoietic lineage commitment. To this end, we applied
the GRN pipeline to gene expression data from three hematopoiesis-related datasets and
one non-hematopoiesis-specific data set as a control.
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Abstract

Maintenance of cell pluripotency, differentiation, and reprogramming are regulated by
complex gene regulatory networks including monoallelically expressed, imprinted
genes. Besides transcriptional control, epigenetic modifications such as DNA
methylation and histone marks are increasingly gaining attention with respect to
cellular differentiation. As a model system to study the onset of cell differentiation and
subsequent cellular specialization, we have selected hematopoiesis and supplemented
this with data from embryonic stem cell (ESC) lines. Using high throughput analysis of
gene expression in mouse, the expression profiles of pluripotency-associated and
imprinted genes were evaluated against known hematopoiesis-associated genes. We
found that more than half of the pluripotency and imprinted genes are clearly
upregulated in ESC and subsequently repressed. The remaining genes were either
upregulated in progenitor or in differentiated cells. Thus, the three gene sets each
consist of three similarly behaving gene groups with similar expression profiles in
various lineages of the hematopoietic system as well as in ESCs. Co-expressed genes
derived from the three gene sets were found to share gene ontology terms, which
suggests a functional connection of the three sets during differentiation. To explain this
coordinated behavior, we constructed a novel regulatory network of 32 imprinting-
related genes that are shared with pluripotency or hematopoiesis genes. This network
includes, among others, the genes Myc, Nfkb1, Sp1, Sp3, and Tgfb1, the regulatory gene
Oct4, and Wtl and SpZ2 that regulate other genes that control pluripotency and
hematopoiesis. This association suggests new aspects of the cellular regulation of the
onset of cellular differentiation and during hematopoiesis involving, on the one hand,
pluripotency-associated genes that were previously not discussed in the context of
hematopoiesis and, on the other hand, involve genes that are related to genomic
imprinting. These are new links between hematopoiesis and cellular differentiation and
the important field of epigenetic modifications.

5.1 Introduction

The maintenance of cellular pluripotency, the onset of differentiation as well as cellular
differentiation into particular lineages appear to be controlled by tightly regulated gene
regulatory networks (GRNs) that describe the interactions between transcription
factors (TCFs) and microRNAs and their target genes [201]. For mouse, Fiillen, Scholer
and co-workers have manually compiled from the original literature a dataset of genes
termed the PluriNetwork that are involved in the regulation of the pluripotent state
[202]. Besides transcriptional control, epigenetic modifications such as DNA
methylation and histone marks are increasingly gaining attention with respect to
cellular differentiation.

One of the hallmarks of epigenetics is the phenomenon of genomic imprinting, which
describes parent-of-origin mono-allelic expression [179]. As the importance of
epigenetic modes of gene regulation is particularly evident for imprinted genes, these
genes serve as common model systems. Therefore, we are focusing here on the
expression patterns and modes of regulation of the genes that have been shown to be
mono-allelically expressed in the mouse.

74



Chapter 5 Regulatory role of imprinted and pluripotency genes in hematopoiesis

Hematopoiesis describes the differentiation of hematopoietic stem cells (HSCs) into
lineage-committed progenitor cells. Recent transcriptomics studies have identified
important parts of the regulatory networks that control maintenance of HSCs [203] and
progenitors [201, 204, 205]. Despite the fact that HSCs share the hallmark properties of
long-term self-renewal and multi-lineage differentiation capacity, it has been shown
that their chromatin state and the expression patterns of TCFs do vary substantially
based on the location of HSCs in bone marrow, the origin (i.e embryo, adult, or aged)
and time of study [206]. Still, some parts of the GRN architecture are expected to be
conserved in the different hematopoietic lineages [206].

Not much is known about the imprinting status of imprinted genes during blood cell
differentiation. As an exception to this, maternal imprinting at the H19-Igf2 locus was
shown to maintain adult haemotopoietic stem cell quiescence [207]. Besides, several
lines of evidence do exist for the importance of imprinted genes during the transition
from the stem cell stage to differential commitment as well as during particular cell
lineages, namely hematopoiesis. For example, a network of 15 co-regulated imprinted
genes involved in embryonic growth has been identified [197]. 10 of these genes were
down regulated in terminally differentiated mouse cells compared to long-term
repopulating HSCs [198]. In multipotent progenitor cells, 13 out of 15 imprinted genes
were clearly downregulated compared to HSC whereas the two imprinted genes Gnas
and Gatm were upregulated in MPP3 and MPP4 relative to MPP1 and HSC [204].
Recently, we have identified 10 imprinted genes that are transcriptionally regulated by
the hematopoiesis related TCF NFAT. We also found 9 imprinted genes that are targets
of FOX04 TCF.[208] In CD34* cells, the imprinted maternally expressed gene p57
(Cdknlc) was the only cyclin-dependent kinase inhibitor to be rapidly up-regulated by
TGFB, a negative regulator of hematopoiesis [209]. Additionally, we found that
promoter regions around the transcription start sites of Mkrn3, IgfZ, and Gnas genes
contain DNA motifs that match to annotated binding site motifs for the TCFs E2A and
TCF3. The latter plays major roles in determining tissue-specific cell fate during
embryogenesis such as early B lymphopoiesis and germinal center B-cell development
[210]. Several studies from the Li group indicated that the expression of certain
imprinted genes changes in HSCs during differentiation from quiescent to multi-lineage
progenitors [211]. However, the transcriptional activity of imprinted genes and
imprinting-related genes that are regulators of imprinted genes in the onset and further
progression of cell differentiation (on the example of hematopoiesis) and the aspects of
their involvement have not been addressed in detail before.

In this study, we aim at identifying regulatory elements that are putatively related to the
transition of cells from the pluripotent stem-cell stage into the onset of development
and into lineage commitment. In order to characterize the involvement of imprinted
genes and pluripotency-associated genes during murine hematopoiesis in a systematic
way we have re-analyzed previously deposited microarray datasets from different
stages of hematopoiesis and from embryonic stem cells (ESC). The expression patterns
of imprinted genes and pluripotency-associated genes during these stages were
compared to the global expression patterns of hematopoiesis-associated genes and we
set out to explain how the similarity of the gene expression arises. Our results suggest
that imprinted genes, that are known to be associated with embryonic and early
postnatal growth, may as well play a collaborative role (i) in keeping stem cells in the
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delicate balance of pluripotency and (ii) during the onset of cell differentiation towards
hematopoiesis.

5.2 Methods

5.2.1 Genes selection

Three mouse gene lists were prepared (imprinted, pluripotency, and hematopoiesis).
Our selection of imprinted genes was not done manually as in chapter 4 and in the
thesis work of Barbara hutter [208, 212, 213] as the manually curated lists contained a
rather restricted number of genes. In this study, our selection was based on the overlap
of several well-known online catalogs of imprinted genes. Imprinted genes were
downloaded in July 2012 from four well-known catalogs [IGC database

(http://www.otago.ac.nz/1GC) [185], Geneimprint
(http://www.geneimprint.com/site/genes-by-species.Musmusculus), WAMIDEX
(https://atlas.genetics.kcl.ac.uk),[214] and MouseBook™

(http://www.mousebook.org/catalog.php?catalog=imprinting)]. Then a single list of 120
genes (called henceforth candidate imprinted genes) was created from the four catalogs
by including only genes that appeared in at least two catalogs and by filtering out genes
that have conflicting or unknown imprinting status in the various catalogs (i.e whether
they are maternally or paternally expressed). 86 imprinted genes were present on the
microarray chip. As this is a computational study, we did not verify experimentally
whether these genes are actually mono-allelically expressed.

The pluripotency list including 274 genes was obtained from the PluriNetWork [202], a
hand curated pluripotency-controlling gene network in mouse with 574 regulatory
interactions. To the best of our knowledge, no generally accepted GRN for the global
hematopoiesis system has been established. In the absence of such a model, we
considered as hematopoiesis genes the 615 genes that are annotated in the Gene
Ontology [67] for the GO term hematopoietic or lymphoid organ development
(GO:0048534). Not all genes in the three gene lists were annotated in the Affymetrix
array. Of the 120 imprinted genes only 86 were annotated (the rest were mostly non-
coding RNAs, which are thus not considered), whereas only 2 out of 274 pluripotency
genes and 53 out of the 615 hematopoietic genes were not annotated. The counts of
overlapping genes are shown in Figure 5-1.

5.2.2 Microarray analysis

Gene expression microarray data [three hematopoietic datasets (accession [Ds GSE6506
[215], GSE14833 [216], GSE34723 [217]) and one non-hematopoietic specific (control)
(GSE10246 [218]) that also contains ESC samples] generated with Affymetrix GeneChip
Mouse Genome 430 2.0 Array were downloaded from the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) [219].

Data normalization, model-based expression measurements, and annotation of the
imprinted and pluripotency genes to their corresponding probes in the four datasets
were done using the GC-RMA method and mouse 4302.db packages, respectively, by
using the Bio-conductor software [220] within the statistical programming language R
[188].
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Hematopoietic genes
(515)

Imprinted genes
(78)

Plurigenes |
(223) /‘

Figure 5-1 Venn diagram of the 3 gene sets involved in the analysis. Imprinted, pluripotency, and
hematopoietic genes.

A gene expression similarity score was calculated to test how similar the normalized
expression of an individual gene (in the chip including imprinted genes) is to the
distribution of normalized expression values for the sets of pluripotency and
hematopoiesis genes separately across the four datasets, see supplementary material.
When considering the similarity to pluripotency genes, for example, the expression
value of a gene g; in a cell sample s; was weighted by the number of pluripotency genes
having the same expression value in the same sample PDs;. This product was summed
over all samples to give a representative score for each gene.

cell samples
SimScore (gi) = E PD;;(gis;) where i € [1,imprinted genes count]
j=1

and j € [1,all cell samples per dataset]

Next, we separated the similarity scores of imprinted genes and non-imprinted genes
and examined with the Mann-Whitney U-test whether imprinted genes have a higher
gene expression similarity to pluripotency and hematopoiesis genes than the
background of all other genes. Additionally, we defined top scored genes as the highest
10% of the ranked genes and then applied the hyper-geometric test to investigate the
significance of having imprinted genes among the defined top scored genes.

For lineage specificity, six isometric lineages (three lymphoid and three myeloid) were
constructed from the four expression datasets by following the hematopoietic
differentiation model in [217] ( We looked at three main hematopoiesis developmental
stages: early progenitors (LTHSC and STHSC), intermediate progenitors (LMPP and
CLP), and terminally differentiated blood cells (MKE and GM). Then we used a
conservative differential expression approach based on moderated t-test to encode the
differences between the three stages.
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Table 5-1). We looked at three main hematopoiesis developmental stages: early
progenitors (LTHSC and STHSC), intermediate progenitors (LMPP and CLP), and
terminally differentiated blood cells (MKE and GM). Then we used a conservative
differential expression approach based on moderated t-test to encode the differences
between the three stages.

Table 5-1 Selected hematopoietic lineages and their stages of sequential cell development.

HSC, Hematopoietic Stem Cells; MPPa, Multipotent Progenitor state A; MPPb, Multipotent Progenitor state B; GMLPa,
Granulocyte Macrophage Lymphoid Progenitor state A; GMLPb, Granulocyte-Macrophage-Lymphoid Progenitor state
B; CLP, Common Lymphoid Progenitor; BLP, Earliest B Lymphoid Progenitor; PREPROB, Precursor of B-cells
Progenitor; FrB, Fraction B B-cell; FrC, Fraction C B-cell; FrD, Fraction D B-cell; FrE, Fraction E B-cell; iNK,
intermediate Natural Killer Cell; mNK, mature Natural Killer Cell; DN1, Double Negative T-cell 1, DN2, Double
Negative T-cell 2; DN3a, Double Negative T-cell 3a; DN3b, Double Negative T-cell 3b; DN4, Double Negative T-cell 4;
DPCD69-, Double Positive CD69- T-cell; DPCD69+, Double Positive CD69+ T-cell; CD4+CD69+, CD4+ CD69+ T-cell;
CD4+CD69-, CD4+ CD69- T-cell; MEP, Megakaryocyte/ Erythrocyte Progenitor; pMEP, pre of MEP; pCFU-E, pre of
CFU-E; sCMP, Strict Common Myeloid Progenitor; GMP, Granulocyte-Macrophage-Progenitor; pGMPa, pre of GMP
state A; pGMPD, pre of GMP state B; Mono, Monocytes; Gra, Granulocytes.

Lineage Sequential Cell Development

B-cell HSC> MPPa 2 MPPb—> GMLPa - GMLPb - CLP—> BLP> PREPROB > FrB—> FrC = FrD = FrE
NK-cell HSC—> MPPa > MPPb—> GMLPa > GMLPb—> CLP > iNK2> mNK

T-cell HSC—> MPPa > MPPb > GMLPa—> GMLPb—> CLP> DN1-> DN2-> DN3a—> DN3b—> DN4>

DPCD69 = DPCD69" > CD4'CD69" > CD4*CD69
Erythrocytes HSC> MPPa 2 pMEP = MEP =2 pCFU-E

Monocytes HSC = MPPa = sCMP—> pGMPa—=> pGMPb - GMP - Mono

Granulocytes HSC> MPPa 2 sCMP =2 pGMPa = pGMPb = GMP = Gra

P-values were adjusted using Benjamin- Hochberg procedure [78] to limit the false
discovery rate to 5%. In order to alleviate the typical loss of statistical power resulting
from performing multiple testing on a gene-by-gene basis, we performed non-specific
pre-filtering by selecting genes on the basis of variability before the differential analysis.
We removed 20% of all genes showing the least variability across lineages in the
datasets and kept only genes that showed higher variation across the lineage and are
thus potentially good candidates for differentially expressed genes [221].

Lineages that are constructed from GSE6506 dataset and contain only two stages (early
progenitors and terminally differentiated cells) were analyzed by setting on/off
expression threshold (similar to [215]) to identify uniquely expressed genes in each
stage of the cell development of each lineage. Finally, a gene was confirmed as
differentially expressed gene if it appeared in the same lineage in at least two different
datasets.

5.2.3 Reconstruction of an imprinted gene network (IGN)

Gene expression data of the four accession IDs were subjected to weighted gene co-
expression network analysis for describing the correlation patterns among genes across
the 67 considered microarray biological samples. The popular hierarchical clustering
(HCL) method was used for clustering taking Pearson correlation as a distance metric.
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The WGCNA package [81] was employed to map the strength of gene pair
interconnections to proportional edge weights and to produce a module centric co-
expression network. This co-expression network of imprinted genes was subsequently
expanded by (a) including additional genes coding for TCFs that regulate any of the
considered imprinted genes, and (b) by including target genes that are regulated by any
of the imprinted genes acting as TCFs themselves and then called "imprinted gene
network" (IGN).

5.2.4 Functional enrichment and similarity

The functional annotation tool in DAVID was used to identify significantly enriched
functional categories in gene sets [135]. We determined which GO categories that were
annotated to at least 2 genes and are statistically overrepresented in the co-expressed
genes against the full mouse genome (control). Enrichment was evaluated through the
Fisher Exact test using p-value threshold of 0.05. Functional similarity between each
pair of genes was measured by FunSimMat [222] (http:/funsimmat.bioinf.mpi-
inf.mpg.de/help8.php) and GO terms were visualized as a scatter plot by REVIGO [223].

5.3 Results

In this study, we re-analyzed published gene expression microarray data deposited in
GEO [219] [three hematopoietic datasets (accession IDs GSE6506 [215], GSE14833
[216], GSE34723 [217]) and one non-hematopoietic specific (control) (GSE10246
[218])]. As explained in the methods section, we established three gene lists of
imprinted, pluripotency-associated, and hematopoiesis-associated genes. In the
remainder of this chapter, we will use the short names "pluripotency genes" and
"hematopoiesis genes" while noting that, e.g. some genes in the pluripotency list might
be directly involved in maintaining the pluripotency of ES/iPS cells, whereas some
genes might have indirect and more general functionalities, such as cell cycle regulators
etc. From these lists, 86 imprinted, 272 pluripotency and 562 hematopoietic genes are
annotated on the microarray.

5.3.1 Imprinted genes show similar expression patterns to pluripotency and
hematopoiesis genes

To get an overview, Figure 5-2 shows clustered normalized expression profiles for two
ESC lines, three progenitor cell lines (Long Term HSC: LTHSC, Common Myeloid
Progenitor: CMP, and Granulocyte-Macrophage-Progenitor: GMP), and three terminally
differentiated cell lines (Nk-cells, B-cells, T-cells). Clustering as well as visual inspection
revealed three main classes of expression patterns, which are shared by most
imprinted, pluripotency and hematopoietic genes. The first class contains genes that
have high expression levels in ESC and have gradually decreasing expression levels
during the two stages of hematopoiesis (early and intermediate progenitors and
terminally differentiated blood cells). As expected, more than half of the imprinted
genes (left panel, green) and of the pluripotency genes (middle panel, blue) belong to
this class. Also, about one third of the hematopoiesis genes (right panel, orange) belong
to this class. Genes of the second class are characterized by over-expression in the early
and intermediate progenitors (more specifically in Common Lymphoid Progenitor: CLP)
and relatively lower levels in both ESC and terminally differentiated cells. The third
class includes genes that are predominantly upregulated in matured blood cells.
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Interestingly, the second and third classes contain genes from all three-gene sets. On the
basis of gene ontology (GO) annotation, we investigated the functional similarity of the
three genes sets among each other and with respect to randomly selected genes. This
analysis revealed that pluripotency genes and hematopoiesis genes share the highest
similarity of GO annotation. This is quite expected since the genes from both sets are
involved in regulating cell fate. No difference was found when the functional similarity
of pluripotency genes belonging to class 1 was compared to hematopoiesis genes also
belonging to class 1, or when comparing the similarity between mixed classes. In
comparison, the average functional similarity of imprinted genes with pluripotency
genes or with hematopoiesis genes was lower (about 0.6), but still clearly higher than
that with randomly selected genes.

To put this visual impression onto a quantitative basis, we then ranked all genes
according to their gene expression similarity score across all considered hematopoietic
samples. Notably, all p-values for the three hematopoietic datasets (that encompass
differentiation and cell development data only) were significant (between 0.001 and
0.01). Moreover, a large portion of imprinted genes belongs to the highest 10% of the
ranked genes in GSE6506 and GSE34723 datasets (66 % and 59 % respectively). In
contrast, no significant difference was found between the ranking of imprinted genes
and the background of all genes of the control (GSE10246; largely non-hematopoietic)
and the number of top ranked imprinted genes was lowest here.

Table 5-2 Genes’ similarity scores statistical comparison.

Mann-Whitney U-test was used to test if imprinted genes have a higher gene expression similarity to pluripotency
and hematopoiesis genes than the background of all other genes (non-imprinted genes). Then genes the ranked top
10% scoring genes were tested using hyper-geometric test to find out the significance of having imprinted genes
among the defined top scored genes. (*) Among the three consistent datasets, only the p-value of hyper-geometric
test for GSE14833 does not meet the significance threshold of 0.05.

Compared genes to Mann-Whitney Top Scored Hyper-geometric
Dataset

background U-Test Imprinted Genes Test

Pluripotency 0.006 55 0.006
GSE6506[215]

Hematopoietic 0.044 57 0.010

Pluripotency 0.004 50 0.004
GSE34723[217]

Hematopoietic 0.003 51 0.009

Pluripotency 0.003 18 0.195
GSE14833[216] -

Hematopoietic 0.006 24 0.214
GSE10246(218] Pluripotency 0.106 11 0.784
(Control) Hematopoietic 0.101 14 0.700

5.3.2 All three gene sets contribute to hematopoietic lineage specificity

To discover if there are proteins encoded by imprinted, pluripotency, and
hematopoietic genes that act during differentiation of particular lineages, we subjected
the selected microarray datasets to differential analysis. We studied genes that change
their expression patterns during the sequential stages of cell development of specific
lineages (Table 5-1)

80



Chapter 5

Regulatory role of imprinted and pluripotency genes in hematopoiesis

I
i

=

rm™ ,;,L,‘N r

Kirb1f
Igf2as
Kif14
Ins1
Nap1I5
Zrsr1
Cmah
Xist
Ube3a
Airn
Xirdc
Igf2r
Dher7
Ampd3
Magel2
Dcn
Cds1
Tnfrsf23
Asb4
Peg3
Th
Zim1
Calcr
Keng1
Ascl2
Sfmbt2
Copg2
Ano1
Gpr1
Ddc
Rian
Nespas

CoSgZasZ
Sgce
Ndn
Slc22a18
Blcap
Tsscd
Ppp1r9a
Zim3
Nap1l4
Peg12
Gatm
Slc22a3

qu}ﬂ

_ LT

1

A L, 0y e T

|

[

e A %TT”' L P & T A5 s e L ‘!Lh': -

&R NTA A

P T

[

&N

8

ke

fh.CohhanL

|1
i

L
|

[

Al :(m~.r h

|

i

&

1

|
.Jv.rfmetz

» -
i 3 i o B

[

Pi.n-rm b

I

[

uAﬂiM?m;%

#
_ LOC630164 |
) ( Kengiot1 [5
[ Tspan32 L LF
1 LOC100505359
- H13 £
[ Impact [t
: Gnas FE
-NOOM O r =
22233273 =
BEESO8RE % iy
I £
‘ >
- &
ST = i
20| 5agLL-=- g
RRETO0SEES ]
10 s %mk i
oo [’]
-1.0 Hj
'\
20 l %
&
P S I W W e |
OOnZzdoo
m&&owooo
— § m -

Figure 5-2 Heatmaps showing transient changes in expression profiles.

Different groups of ESC and hematopoietic cells (e.g stem cells, intermediate progenitors, and terminally differentiated
blood cells) from the GSE10246 dataset for (left panel) imprinted genes, (middle panel) pluripotency genes and (right panel)
hematopoietic genes were compared. Green spots represent down-regulated genes, and red spots represent up-regulated
genes. The order of genes is obtained by hierarchical clustering, which shows three similar pattern classes between
imprinted, pluripotency and hematopoietic genes.
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For the purpose of differential expression analysis, we divided cell samples into three
classes [early progenitors (e.g HSC and MPP), intermediate progenitors (e.g GMLP and
CLP), and terminally differentiated blood cells (e.g Monocytes and Nk-cells)]. This
analysis was now based on far more cell types than the global analysis of Figure 5-2.

Lineage-specific differentially expressed genes (here termed marker genes) found in the
three gene sets and the related expression heatmaps for NK-cells, monocytes, and
erythrocytes are shown in Figure 5-3 (heatmaps for the other 3 lineages are shown in
supplementary Figure B-1). The number of significant lineage markers varies between
23 genes (in granulocytes) and 193 genes (in B-cells). Only the three genes Rbp1 and
the two imprinted genes Sgce and Mkrn3 are shared by all myeloid branches
(erythrocytes, monocytes, and granulocytes) (Supplementary Table B-1). Additionally,
we identified 16 marker genes (e.g Lgals1, Gimap5, Pml, and Hoxa5) that are exclusively
differentially expressed in myeloid lineages (not in lymphoid). These 16 genes are
annotated for terms like GO0:0002317 "plasma cell differentiation", G0:0043011"
myeloid dendritic cell differentiation”, GO:0030099 “ myeloid cell differentiation”, and
G0:0045639 “positive regulation of myeloid cell differentiation”, respectively. Along the
same lines, the lymphoid markers contain 30 genes shared by all lymphoid peers (B-
cell, T-cell, and NK-cell) and 226 genes that were only detected for individual lymphoid
lineages (not myeloid) such as Tcf7, Lef1, and Rel, which plays a role in differentiation
and lymphopoiesis [224]. Remarkably, most differentially expressed genes in B-cells
(102 genes) and in T-cells (70 genes) belong to the pluripotency genes (Supplementary
Table B-1) and a large portion of them was imprinted (27, and 30, respectively),
whereas the large hematopoiesis set (516 genes) contributes only 64 and 53
differentially expressed genes, respectively.

Separate labeling of maternally and paternally expressed genes did not reveal a clear-
cut separation, which is consistent with previous findings [208]. Nevertheless, only
paternally expressed genes were differentially expressed in the erythrocyte lineage
(Figure 5-3). In contrast, the imprinted genes that are overexpressed during late stages
of hematopoiesis tend to be maternally expressed (e.g Cmah and Nap1l4 in B- and T-
cells, KIrb1f in monocytes and NK-cells, Th and Igf2r in T-cells) rather than paternally
expressed (Sp2, Mcts2, and Ddc only in B-cells and T-cells). Three imprinted genes (Ndn,
Peg3, and Pegl2) that were annotated by Chambers and colleagues [215] as HSC
specific genes were identified here as marker genes for differentiated lineages.
Consistent with the findings of Chambers et al., they are highly expressed in HSCs and
downregulated in differentiated states.

The postulated functional role of the identified lineage markers during hematopoiesis
was backed up by inspecting the mammalian phenotypes associated with
hematopoiesis abnormalities using the MGI database [225], Supplementary Table B-1.
Apparently, lineage-specific genes show deficiencies in either functionalities or
differentiation of a specific lineage, validating the used approach in identifying the
lineage markers. An example from the B-cell lineage is the knockout of the imprinted
gene CD81. This is reported to cause abnormal B cell morphology (MGI ID: MP:0004939),
decreased B-1 B cell number (MP:0004978), and instability in B cell proliferation
(MP:0005154, MP:0005093). More generally, the knockout of the imprinted gene
Cdkn1c leads to decreasing hematopoietic stem cell number (MP:0004810) and abnormal
hematopoietic stem cell physiology (MP:0010763). From the set of pluripotency genes,
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gene knockout of Relb exhibits also several abnormalities such as decreased B cell
number (MP:0005017), decreased B cell proliferation (MP:0005093), absent [ymph nodes
(MP:0008024), decreased pre-B cell number (MP:0008209), and extra-medullary
hematopoiesis (MP:0000240).
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Figure 5-3 Heatmaps of differentially expressed imprinted genes.

The order of genes is obtained by hierarchical clustering of three blood lineages (NK-cells, Monocytes, and Erythrocytes)
based on the GSE34723 dataset. Gene clustering color coding is (blue) for paternally expressed genes, (red) for maternally
expressed, (cyan) for pluripotency genes, and (orange) for hematopoietic genes. The other three lineages (B-cells, T-cells,
and granulocytes) are shown in the supplementary Figure B-1. Shared genes between the pluripotency and hematopoietic
gene sets are marked in black. Green spots represent down-regulated genes, and red spots represent up-regulated genes. The
clustering reveals that for every lineage, there exist imprinted as well pluripotency and hematopoietic genes showing similar
expression changes during cell development.

Finally, we analyzed the functional similarity of the identified imprinted genes either to
pluripotency or hematopoietic genes using the tool FunSimMat [222]. This was done
separately for each lineage in comparison to the similarity values of the background
genes that are not differentially expressed in the corresponding lineage. Interestingly,
we found that lineage specific genes from the gene set pairs (imprinted-pluripotency
and imprinted-hematopoietic) have an elevated functional similarity between 0.4 and
0.6 to each other for the biological process (BP) category in comparison to that between
the other genes in the two gene set pairs (Supplementary Figure B-2a). The functional
similarity scores between imprinted and hematopoietic genes were ~0.35 to 0.75 (p-
values 0.178 to 6.0E-237) (only in erythrocytes lineage, marker genes did not show a
significantly different functional similarity than the background genes). For imprinted
and pluripotency gene markers the scores were between 0.38 and 0.64 (P-values 0.006
to 4.5E-24) (Supplementary Figure B-2b). This strengthens our hypothesis that the
identified imprinted lineage-specific genes play a role in the development of lineage cell
states.
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5.3.3 Large co-expressed module of imprinted, pluripotency, and hematopoietic genes

To characterize the relationship between imprinted, pluripotency and hematopoietic
genes in diverging hematopoietic lineages and to gain insight into the structure of the
underlying gene interaction network, we performed a combined (clustering) co-
expression and functional analysis of the three gene lists. Interestingly, hierarchical
clustering (HCL) analysis of the expression patterns of the 868 genes yielded one large
core cluster (turquois) composed of 635 genes as well as four small clusters that occur
along the diagonal of the heatmap (Figure 5-4a). We found that the core cluster contains
79% of all pluripotency genes (215 genes), 84% of the imprinted genes (73 genes), and
69% of the hematopoietic genes (319). This again supports an important role of
imprinted genes in hematopoietic development and differentiation.

Next, we related the grouped genes of this core cluster to functional GO terms. The
color-coded scatter plot in Figure 5-4b shows the ten most significant GO terms (after
removing the child terms) that are enriched in this list of clustered genes. Some of the
most significant terms are cell differentiation, cellular developmental process, immune
system development and hematopoiesis. All biological processes listed in Figure 5-4b
involve considerable numbers of imprinted, pluripotency, and hematopoietic genes. For
instance, around 20% and 24% of the imprinted genes are involved in cell
differentiation and organ development, respectively.

5.3.4 Putative transcriptional network involving imprinted genes

After finding such similarities in gene expression and functional association between
major parts of the imprinted genes and pluripotency and hematopoiesis genes we asked
how this interconnectivity may be established in the cell. In the simplest scenario, many
imprinted genes would actually be part of the PluriNetWork or would belong to the
hematopoietic genes, what is not the case. In our analysis, only five imprinted genes
(Gab1, Ins1, Phf17, Tsix, and Xist) are present in the pluripotency list and three
imprinted genes (Axl, Calcr, and Gnas) belong to the hematopoietic list. However the
observed co-expression profiles might also be due to shared regulatory genes that
control imprinted genes as well as pluripotency and hematopoiesis genes. Alternatively,
imprinted genes might act as regulators of pluripotency and hematopoiesis genes. For
these reasons, we generated an expanded imprinted gene network (IGN) that includes
the annotated regulators of imprinted genes and genes that are regulated by imprinted
genes (see methods). The IGN consists of 169 nodes and 1818 edges, each representing
a direct interaction or regulation between two nodes. Hence, the IGN is highly
interconnected, and this seems to be due to a specific functional module within the IGN
(see next section) showing particularly high connectivity. Out of the 169 IGN genes, only
14 genes were not annotated on the microarray chip. Intriguingly, the IGN shares 32
genes (called IGN-shared genes) with either the pluripotency or hematopoietic genes;
most of them are highly interconnected in the IGN network. 20 genes (Ccnd1, Cdhl,
Cdknla, Crebl, Gabl, Ins1, Myc, Mycn, Nfkb1, Phf17, PouZ2f1, Oct4 (Pou5f1), Rela, Sp1, Sp3,
Tert, Tgfb1, Tsix, UbeZ2i, and Xist) are shared with the pluripotency genes and 17 genes
(Axl, Bcl2, Calcr, Cebpa, Egrl, Ets1, Gnas, Hoxa5, Jun, Junb, Myb, Myc, Nfkb1, Rara, Spl,
Sp3, Tgfb1) are shared with the hematopoietic genes. Markedly, five genes (Myc, Nfkb1,
Sp1, Sp3, and Tgfb1) appeared in both sets. Supplementary Table B-2 summarizes the
complete gene sets considered in the analysis.
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Figure 5-4 Co-expression and functional analysis of imprinted, pluripotency and hematopoietic genes.

A) On the left, heatmap depicting a gene interaction network based on the topological overlap matrix (TOM) [226] among
the three gene lists. The TOM describes the distance between two genes in the co-expression network and reflects their
similarity in terms of the commonality of the nodes they are connected to. A topological overlap of 1 between genes i and j
implies that they are connected to the same genes, whereas a 0 value indicates that i and j do not share co-expression links to
common genes. Each row and column of the heatmap corresponds to a single gene. Spots with light colors denote weak
interaction and darker colors strong adjacency interaction. The dendrograms on the upper and left sides show the hierarchical
clustering of genes. The turquoise, yellow, brown, blue, and grey colors represent the identified clusters and the black frame
highlights the main gene cluster in turquois. B) Right, A scatterplot visualizing the top 10 enriched GO terms in the main
(turquois) gene cluster in a two dimensional space of GO term semantic similarities. Node colors indicate the p-values for
the enrichment of terms. The scatter plot was generated using the web tool REVIGO similarity [223]. This tool uses multi
dimensional scaling to reduce the dimensionality of a matrix of the GO terms pairwise semantic similarity and projects the
GO terms on the two axes. The axes thus visualize the semantic similarity of GO terms, but have no intrinsic meaning.

We then explored the network modularity according to the topological feature edge
betweenness of the IGN network (Figure 5-5). Apparently, IGN-shared genes show a
high modularity in IGN as they are grouped in only four modules. Importantly, 75% (24
genes) belong to a single module (Figure 5-5, green). By extracting the BP terms that are
enriched in this gene module (excluding the 24 IGN-shared genes) we found many
statistically significant functional terms related to differentiation and cell development
such as GO0:0008283 “cell proliferation”, G0:0009887 “organ morphogenesis”,
G0:0030154 “cell differentiation”, and GO:0048863 “stem cell differentiation”.

5.4 Discussion

In this study we compared the expression patterns of 86 candidate imprinted genes and
272 pluripotency genes taken from the PluriNetWork [202] in ESC and during different
stages of hematopoiesis to the global expression pattern of hematopoietic genes. We
discovered that the three gene sets showed similar changes between pluripotent,
intermediate, and differentiated stages suggesting that these gene sets have partially
overlapping functions. Furthermore, we identified lineage markers from the three gene
sets for three lymphoid and three myeloid branches that were found to exhibit
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significant functional similarities. In a collaborative fashion, they seem to participate in
cellular differentiation and development in the corresponding lineages.

Interestingly, many imprinted genes shared very similar expression patterns with the
pluripotency and hematopoiesis sets (Figure 5-2) similar to observations made for a
smaller set of imprinted genes in murine HSCs [198]. This similarity was most
pronounced for genes belonging to expression class 1 that are overexpressed in ESC.
However, the functional similarity of imprinted genes and pluripotency and
hematopoiesis genes, respectively, does not quite reach the level that is seen for the
similarity between PluriNetWork and hematopoiesis genes. We attribute the
observation that particular imprinted genes show a high variability of expression
among the various stages of differentiation to the different roles played by these genes
in the cell.
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Figure 5-5 The expanded imprinted gene network (IGN) including all considered imprinted genes, transcriptions
factors that regulate imprinted genes, as well as target genes regulated by imprinted genes. The edges of this graph
may either indicate a significant degree of co-expression of two genes or a regulatory interaction. The IGN was clustered
based on edge-betweenness. The full network is decomposed into only 4 topological modules. Large nodes represent the 32
genes that are shared with the PluriNetWork or with the set of hematopoietic genes. 24 of them belong to the main module

(green).

Comparing the expression levels of known pluripotency with hematopoiesis genes
showed that the compiled PluriNetWork [202] contains not only the GRN that keeps
cells in the pluripotent state but appears also to be related to the regulation of the onset
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of cellular differentiation such as hematopoiesis. In fact, the GO terms hematopoietic or
lymphoid organ development, haemopoiesis, myeloid cell differentiation, leukocyte
differentiation are annotated to 44, 39, 27, and 23 pluripotency genes, respectively,
suggesting that a significant portion of the pluripotency genes is indeed involved in
hematopoiesis regulation. Moreover, Figures 1 and 2 demonstrate convincingly that the
full set of pluripotency genes displayed pronounced variations during different stages of
hematopoiesis and in individual cell lineages as well. These findings agree with previous
studies that discussed the role of pluripotency genes in determining cell fate and
controlling differentiation [227].

Different cell types showed pronounced differences in their gene expression profiles:
most prominent was the high number of differentially expressed genes in B-cells and T-
cells with a major contribution of pluripotency genes and to some extent also imprinted
genes. This expression profile is interesting as a substantial portion of B-cells and T-
cells serve as memory cells that can be induced by secondary infections to undergo
further cell divisions. NK-cells that have recently been shown to have some potential for
further cell divisions [228] tend also to have higher numbers of differentially expressed
genes compared to the differentiated myeloids. Most of the lineage markers identified in
this work were concordant with the findings of recently published studies. Generally,
the ten lineage markers (Cdknlc, Ndn, Gatm, PhldaZ2, Air, Igf2r, Slc22a3, H13, Sfmbt2, and
Peg12) that participate in most lineages were demonstrated to be differentially
expressed in the early onset of the hematopoietic process.[207, 229] More specifically,
the identified erythrocytes lineage markers Flil, Mpl, and GataZ were previously found
to determine the erythrocytes signature [204, 230-232].

In order to validate that the identified lineage markers indeed have functional roles in
the respective lineages, we have referred to their phenotypic gene knock-out
characteristics documented in the MGI repository [225] (Supplementary Table B-1).
Interestingly, knock-out of B-cell markers lead to abnormal B-cell differentiation and
abnormal B-cell morphology etc.

In order to get more insight into the putative association between imprinted genes and
their regulatory partners, we constructed an expanded IGN that is associated with
genomic imprinting effects although only half of its genes are actually imprinted.
Particularly, 32 IGN genes appeared in the pluripotency or hematopoietic sets. 24 of
them (75%) belong to one topological module (Figure 5-5) suggesting that this module
of 77 genes that are related to genomic imprinting due to their membership in IGN
affects maintenance of pluripotency and hematopoietic differentiation in a cooperative
manner. This module is also enriched in GO functional terms related to differentiation,
development and hematopoiesis. Of the 32 IGN-shared genes Oct4 and Myc are
considered strategic players in maintaining the induced pluripotent state. Five IGN-
shared genes (Myc, Nfkbl1, Sp1, Sp3, and Tgfb1) were shared among the three sets
indicating a regulatory role in cell differentiation and hematopoiesis. The TCF Myc
belongs to the four known Yamanaka factors that play a significant role in cell
reprogramming [233] and were shown to be sufficient for reprogramming
differentiated cells into induced pluripotent stem cells [234]. Myc is believed to regulate
expression of 15% of all human genes [235] and plays an important role in B-cell
proliferation [236]. Recently, Myc and the changes in its expression level have been
reported as a key player in embryonic stem cell development into megakarcocytes
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[237], and in erythropoiesis [238]. Tgfb1 is known to be involved in differentiation
processes and was identified as a key regulator for HSCs homeostasis [239]. Nfkbl1,
when knocked out in mice, caused significant reduction in granulocytic progenitors and
CFU-granulocytes [240] and it modulates proliferation and survival of erythroid
progenitors derived from CD34+ HSCs [241]. SpI and Sp3 control gene expression in
myeloid cells [242] and during erythrocyte maturation [243]. Therefore, these 5 genes
might be the major connectors between the IGN, pluripotency and hematopoiesis
networks.

In summary, the present analysis suggested new aspects of the cellular regulation of the
onset of cellular differentiation and during hematopoiesis. These involve, on the one
hand, genes that were previously not discussed in the context of hematopoiesis and, on
the other hand, involve genes that are related to genomic imprinting.
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6. Application to breast
invasive carcinoma

This chapter is a shortened version of the following publication:

* Mohamed Hamed, Christian Spaniol, Alexander Zapp, and Volkhard Helms, Integrative
network based approach identifies key genetic elements in breast invasive carcinoma.
BMC Genomics, 2015. 16 (Suppl 5): p. S2.

Synopsis

In this chapter, we demonstrate the usefulness of the integrative network-based approach
to identify genetic key elements that could possibly drive the tumorogenesis in human
breast cancer. The introduced approach was able to reveal strong associations between
regulatory elements from four consistent genomic data sources: gene expression, DNA
methylation, miRNA expression, and somatic mutations. Integrative screening of miRNAs,
mRNAs, and genetic variations can contribute to an improved understanding of human
diseases and hence to a better prognosis and treatment. Taken together, these findings
endorse the reliability of the proposed approach so that it can be applied in a similar
fashion to other cancer types, complex diseases, or for studying cellular functions where
such multi-dimensional genomic datasets are available.
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Abstract

Breast cancer is a genetically heterogeneous type of cancer that belongs to the most
prevalent types with a high mortality rate. Treatment and prognosis of breast cancer
would profit largely from a correct classification and identification of genetic key
drivers and major determinants driving the tumorigenesis process. In the light of the
availability of tumor genomic and epigenomic data from different sources and
experiments, new integrative approaches are needed to boost the probability of
identifying such genetic key drivers. We present here an integrative network-based
approach that is able to associate regulatory network interactions with the
development of breast carcinoma by integrating information from gene expression,
DNA methylation, miRNA expression, and somatic mutation datasets.

Our results showed strong association between regulatory elements from different data
sources in terms of the mutual regulatory influence and genomic proximity. By
analyzing different types of regulatory interactions, TF-gene, miRNA-mRNA, and
proximity analysis of somatic variants, we identified 106 genes, 68 miRNAs, and 9
mutations that are candidate drivers of oncogenic processes in breast cancer. Moreover,
we unraveled regulatory interactions among these key drivers and the other elements
in the breast cancer network. Intriguingly, about one third of the identified driver genes
are targeted by known anti-cancer drugs and the majority of the identified key miRNAs
are implicated in cancerogenesis of multiple organs. Also, the identified driver
mutations likely cause damaging effects on protein functions. The constructed gene
network and the identified key drivers were compared to well-established network-
based methods.

The integrated molecular analysis enabled by the presented network-based approach
substantially expands our knowledge base of prospective genomic drivers of genes,
miRNAs, and mutations. For a good part of the identified key drivers there exists solid
evidence for involvement in the development of breast carcinomas. Our approach also
unraveled the complex regulatory interactions comprising the identified key drivers.
These genomic drivers could be further investigated in the wet lab as potential
candidates for new drug targets. This integrative approach can be applied in a similar
fashion to other cancer types, complex diseases, or for studying cellular differentiation
processes.

6.1 Background

Breast cancer is one of the most common and predominant cancer types that affects
millions of cases and causes thousands of deaths every year [148, 244]. With an
individual probability of 12% to develop breast cancer, it is the most frequently
diagnosed cancer type among women and accounts for the second-highest number of
fatalities (15%) of female cancer patients besides lung cancer [245]. Due to its
complexity and heterogeneity [246], the molecular mechanism and regulatory patterns
underlying breast carcinoma have not been completely unraveled so far.

Treatment and prognosis of cancer development relies largely on a correct classification
of the histological grade and identification of the major determinants driving the
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tumorigenesis process. To better address this, many studies have attempted to build
predictive models by analyzing and integrating heterogeneous data sources. For
example, Cava et al. presented an effective discrimination of breast cancer types based
on a support vector machine classifier combining copy number variations, SNP data,
and the expression values of miRNAs, and mRNAs [247]. Also, miRNA-mRNA
interactions were combined with transcription factor (TF)-gene interactions to unravel
the combinatorial molecular regulations that facilitate progression of colorectal and
breast cancer [118, 172]. Along the same lines, the integration of gene expression data
with protein interaction networks into integrated weighted networks has already
proven fruitful in a variety of applications within cancer genomics [248-263]. In
general, the combination of microarray studies with mathematical models such as
network theory allows to define relationships between genes and to discover
interacting networks and pathways, improving the understanding of complex diseases
[264].

In recent years, novel network-based approaches have been introduced to improve the
understanding of complex human diseases from multiple perspectives. For instance,
differential network analysis attempts to better characterize disease phenotypes under
two different conditions by studying the changes in the related network interaction
patterns [248, 249, 257, 258, 265-269]. In cancer genomics, the differential network
approach was able to identify essential gene modules that lead to crucial novel

biological insights and significant implications for understanding tumorigenesis [249,
257, 258].

In the light of the recent availability of tumor genomic data and the complexity of the
related high throughput analysis, new integrative approaches are needed to boost the
probability of successfully identifying the associated genetic key drivers, the causal
regulators, the related mutations, biomarkers, and their molecular interactions that
potentially drive tumorigenesis. To this end, this study presents an integrative network-
based approach based on whole-genome gene expression profiling, DNA methylome,
miRNA expression, and genomic mutations of breast cancer samples from the TCGA
portal [66]. Based on this, we constructed a gene regulatory network that conforms to
the conditions of such biological data and we identified network modules of
dysregulated genes. Each module turned out to have distinct functional categories,
cellular pathways, as well as oncogene and tumor suppressor specificity. We also
extracted breast cancer specific subnetworks from the human genome regulatory
interactome induced by the dysregulated miRNAs and the dysregulated mRNAs.
Furthermore, we demonstrated a strong association between the different genetic
molecules in terms of the interchangeable regulatory effect and genomic proximity.
Then, we identified putative genetic key drivers/determinants from genes, miRNAs, and
somatic mutations that could possibly drive the oncogenic processes in breast cancer.

Our findings are strongly supported by independent evidences. For instance, the protein
products of about one third of the identified driver genes are known binding targets of
anti-breast cancer drugs, and most of the identified key miRNAs are implicated in
cancerogenesis of multiple organs. Moreover, all the identified driver mutations are
predicted to cause damaging effects on structures and functions of the related proteins.
The rest of the identified driver molecules represent novel potential candidates for new
drug targets and further experimental research is warranted to confirm these findings.
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6.2 Methods

See the integrative network-based approach presented in section 3.4.
6.3 Results and discussion

6.3.1 Differential analysis

We developed and applied an integrative network-based approach to conduct
combinatorial regulatory network analysis in the context of breast invasive carcinoma
with the aim of identifying the major genetic drivers that lead to tumorigenesis (Figure
3-9). We processed mRNA expression, DNA methylation, miRNA expression, and
somatic mutation datasets for 131 tumor samples and 20 control samples of healthy
tissues. The differential analysis of the mRNA expression, DNA promoter methylation,
and miRNA expression data gave 1317 differentially expressed genes, 2623
differentially methylated genes, and 121 differentially expressed miRNAs, respectively.

6.3.2 TF-gene interactions

The expression profiles of the 1317 identified differentially expressed genes were used
to compute the co-regulation strength between genes using the topological overlap
(TOM) measure. Then, we performed hierarchical clustering (HCL) to construct the
undirected co-expression network. HCL yielded 10 segregated network modules that
contain between 26 and 295 gene members (Table 6-1). For the seven smallest
modules, we collected the related directed regulatory interactions available in three
online regulatory databases (JASPAR [83], TRED [82], and MSigDB [70]) and used them
as a prior for a Bayesian learner to learn the causal probabilistic regulatory interactions
and to generate a directed network topology, (see methods for details). The three
largest modules (blue, brown, and turquoise) comprised too many nodes that exceeded
the complexity that can be handled by the Bayesian learning approach. Hence, we
deliberated the co-expression networks for these three modules by requiring a tighter
co-expression threshold and used the obtained network modules for further analysis. It
should be mentioned that the Bayesian approach prevents cyclic topology such as self-
regulation, which is the case for many genes. Therefore, we note that self-regulatory
interactions are not considered in this study. Next, the GRN network modules were
pruned in order to maximize consistency between gene expression profiles, methylation
fingerprints of gene promoters, and the inferred regulatory interactions. This helps to
contextualize the network to the biological experiments from which it was reverse
engineered. We removed 89 inferred interactions whose target genes are
downregulated and their expression profiles showed absolute anti-correlation measure
> 0.65 with their methylation profiles. In those cases we reasoned that downregulation
of these target genes was most likely due to their promoter methylation and not due to
TF binding [79].

By linking the network modules genes to GO and KEGG annotations via over
representation analysis (ORA), we identified the most significant metabolic processes
and functional categories that were enriched in each network module and showed
relevance to breast cancer, see Table 6-1.
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Table 6-1 The key driver elements identified from TF-gene interactions and miRNA-mRNA interactions.

For the 10 gene modules identified in TF-mRNA interactions, we list counts of the involved genes, the most significant
Similarly for the miRNA-mRNA
interactions, we list the key driver molecules of both genes and miRNAs. The driver genes, whose protein products
are known to be targeted by drugs, are underlined and marked in red.

GO and KEGG terms, and the identified key driver genes from each module.

Key
Module g)eun:t Top GO category Top KEGG categories driver Key drivers
count
black 41 Regulation of transcription Path.ways in cancer, Renal cell 5 SORBS3, ZNF43, ZNF681, RBMX,
carcinoma POU2F1
bluc 247 Ellfcclte;?g:e’an J nﬁiﬁ"jﬁf& Cell  cycle, Prostate cancer, | o AR, BRCAI, ESR1, JUN, MYB, RPNI,
. Melanoma E2F1, E2F2, PPARD
metabolic process
brown 195 Anatomical . structure Le?ukogyte transendothelial 5 TMOD3, CREBI, POUSF1, SP3, TERT
morphogenesis migration
B4GALT7, OS89, CDC34, MAN2CI,
Cellular macromolecule | Endometrial cancer, Insulin MYOIC, SH3GLB2, INPP5SE, PLXNBI,
green 110 metabolic process signaling pathway 15 USF2, PPPIR12C, CDK9, DAP, EA4Fl1,
E2F4, USF1
AHCTFI, NQO2, FGFR2, CCDCI130,
arey 148 Anatomical structure Sulfur metabolism 18 ABCG4, BIRC6, CA6, SP4, RNF2,
TF- mRNA development SPRR1B, Clé6orf65, DNAJC5G, SNCAIP,
. . GRIKS5, SLC6A4, SMADI1, DAD1, POU4F2
interactions - - - - —
magenta 2% Regulation of metabolic p§3 signaling pathway, Alzheimer's 3 ATF6, NGEF, POGK
process disease —
pink 30 Transcription initiation from | g o0 crintion factors 4 CCDC92, TMEM70, RNF139, E2F5
RNA polymerase II promoter
. Endometrial cancer, Neurotrophin ATPIBI, STATS, ABCBS, MYC, TGFBI,
red 93 Regulation of cellular process signaling pathway ’ 14 SP1, TP53, PCGF1, SUMF2, GTF3A,
1PO13, GMPPA, HTR6, TGIF1
turquoise | 295 Regulati.on of cellular | p53 signaling pathway, Pancreatic 5 UBLS, RNF111
metabolic process cancer, Apoptosis
APOCI1, CD2, CD79B, LRRC28, DAPKI,
Chemokine  signaling  pathway, FAMI124B, EML2, LAP3, TSPAN2, FCRL3,
yellow 132 Immune system process Natural  killer cell mediated | 19 ELMOI1, SLC7A7, RASSF5, SLC31A2,
cytotoxicity TRAF3IP3, GALNTI2, ITGA4, SPIl,
TFAP2A
Total 1317
Gene Key
count Top GO category Top KEGG categories driver Key drivers
Genes count
Regulation of macromolecule | Pathways in cancer, Pancreatic MYC, ATGA4C, TGFBL, NFKBI, AKTI,
869 metabolic process cancer, Prostate cancer ’ 17 EGRI, TP53, SOX10, SPII, MECP2, E2F3,
? CREBI, TCF3, TPP1, FLICE, LPS, PACSI1
. Key
::)ﬁTA Top functional categories Top HMDD categories driver Key drivers
count
mir-126, mir-609, mir-488, mir-191, mir-
miRNA- ZQOC, mir-ZQOa, mir-%()a, mir-3Qd, mir-33.5,
mRNA mir-190b, mir-223, mir-106b, mir-519¢, mir-
interactions 21.0, m1r-3.79, m1r-.203, m1§-205, m}r-708,
mir-29c¢, mir-29a, mir-182, mir-183, mir-127,
miRNAs miRNA tumor suppressors, Breast cancer (65), Neoplasms (58), m?r-187, m.ir-425, }et-7g, l.et-7d, m%r-152,
immune  response, Onco- Melanoma (56), Ovarian Neoplasms m¥r-155, m.lr-21, m1‘r-22, mlr.-758, m1r-921,
120 miRNA , cell death, human 2 68 mir-922, mir-375, mir-377, mir-181a-2, mir-
. (51), Pancreatic Neoplasms (38), . . . .
embryonic stem cells Prostatic Neoplasms (38) 657, mir-302d, mir-100, mir-10b, mir-10a,
regulation mir-625, mir-629, mir-92a-2, mir-26b, mir-

25, mir-145, mir-143, mir-141, mir-221, mir-
193b, mir-193a, mir-374a, mir-134, mir-
146a, mir-31, let-7a-2, mir-27a, mir-27b,
mir-133a-1, let-7i, mir-93, mir-23a, mir-
148a, mir-196a-2, mir-487b, mir-149

For instance, the red and green modules are enriched with the endometrial cancer
pathway, which is tightly associated with breast cancer and subsequent treatment
[270]. Also, the magenta and turquoise modules were significantly involved in the p53
signaling pathway, a tumor suppressor gene showing one of the largest frequencies of
SNPs among all human genes that have been related to cancer [148]. It has also
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important roles in diagnosis, in prognostic assessment and, ultimately, in treatment of
breast cancer [271-275]. The inferred network topologies for the first three modules
(red, green, and magenta) highlighting their identified driver genes are presented in
Figure 6-1. Other network modules are shown in Figure C-1. Then we utilized the gplk
solver [94] via OpenOpt [95] on the 10 inferred network modules to find the minimal
set of nodes that dominate and regulate all nodes in each network. In total, we identified
94 key dominating/driver genes in all network modules (Table 6-1). The follow-up
analysis of these driver genes is discussed below.

6.3.3 mMiRNA-mRNA interactions

To extract the breast cancer specific subnetworks from the human genome wide
regulatory interactome induced by miRNAs and mRNAs, we examined two possible
regulation types between the differentially expressed miRNAs and mRNAs: miRNAs
regulating target mRNAs and mRNA products (TFs) regulating expression of the
miRNAs. We relied on the experimentally validated interactions of both types in
building the two networks, (see methods for details). The identified miRNA—-mRNA
interactions consist of 65 unique miRNAs and 770 unique genes involved in 1949 links.
The TF-miRNA interactions include 112 unique TFs and 100 unique miRNAs
composing 336 links. A total of 869 genes (including TFs) and 120 miRNAs were
present in the combined miRNA—-mRNA and TF-miRNA interaction network. 13
mRNAs and 45 miRNAs were common in both interaction types. The 869 genes were
mostly involved in regulation of macromolecular metabolic processes and cancer
pathways of multiple organs (Table 6-1). Moreover, the HMDD (Human miRNA Diseases
Database) [133] analysis of the 120 miRNAs revealed their implication in
cancerogenesis of various organs (Table 6-1). Next, the two networks comprising the
dysregulated miRNAs and mRNAs as well as the interactions among them were
combined and further analyzed using OpenOpt [95] and gplk solver[94] to identify
genetic drivers and major regulators. This yielded in total 85 key dominating molecules
(68 miRNAs and 17 genes) that regulate the entire network nodes (Table 6-1). The
network topologies highlighting the dominating genes are shown in Figure 6-2.

Interestingly, some of the identified key driver genes such as MYC, AKT1, and TP53 were
previously implicated and significantly mutated in breast cancer samples [148]. Also the
TCF3 gene, a well-known TF controlling stem cell identity and self-renewal, is highly
expressed in tumor samples and has a central regulatory role in the onset of breast
cancer cell differentiation and tumor growth [276]. Additionally, many studies have
reported the aberrant expression patterns of the CREBI gene and its role in breast
tumor cell growth [277-280] suggesting its protein product as a worthwhile target for
anti-cancer drugs [281, 282].

It has been demonstrated that the E2F3 gene plays a critical role in the transcriptional
activation of genes that control the rate of proliferation of tumor cells [149-151].
Furthermore, Vimala et al. [152] recently showed that the E2F3 gene is overexpressed
in 11 breast cancer cell lines and siRNA-EZ2F3 based gene silencing facilitates the
silencing of EZF3 overexpression and limits the progression of breast tumors. This
strongly conforms to our findings and implies that E2ZF3 may be a potential therapeutic
target for human breast cancer. HMDD analysis of the 68 driver miRNAs revealed that
36 miRNAs are involved in breast neoplasms, and the rest are associated with various
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cancer types such as hepatocellular carcinoma, adenocarcinoma, and prostate cancer.
Also the identified key miRNA mir-29c as well as the key gene POU2F1 have recently
been characterized as common hub nodes for three types of breast cancer [118]. Thus,
unlike the traditional separate analysis of gene expression profiles [163-167] or the
aberration of miRNA expression in cancer tissues [168-170], this integrated molecular
analysis of the dysregulated miRNAs and mRNAs was able to uncover important aspects
of the miRNA-mRNA interactome, the co-regulation mechanisms, and the underlying
pathogenesis of human cancer.
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Figure 6-1 Gene network modules of TF-gene interactions.

(a) Topological overlap matrix (TOM) heatmap corresponding to the ten co-expression modules. Each row and
column of the heatmap represent a single gene. Spots with bright colors denote weak interaction whereas darker
colors denote strong interaction. The dendrograms on the upper and left sides show the hierarchical clustering tree
of genes. (b), (c), and (d) are the final GRN networks highlighting the identified key drivers genes for the green,
magenta, and red modules, respectively. Square nodes denote the identified driver genes that are targeted by drugs.
Networks were visualized using the Igraph package in R.
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Figure 6-2 Regulatory interactions of the 17 key driver genes identified from miRNA-mRNA interactions.
Large nodes represent key driver genes and small nodes represent miRNAs, which regulate or are regulated by these
driver genes. Square nodes are the identified driver genes that are targeted by drugs. The network was visualized
using the Igraph package in R.

6.3.4 Proximity analysis of somatic mutations

Although next generation sequencing of cancer genomes has unraveled thousands of
DNA alterations, the functional relevance of most of these mutations and how they
relate to other epigenetic mechanisms (such as DNA methylation and deregulation of
miRNAs) are still poorly understood [100]. To this end, we scrutinized whether the
significantly differentially expressed miRNAs are in genomic vicinity to the respective
somatic variants so that dys-regulation of miRNA expression due to carcinogenesis may
depend on the associated nearby somatic variants. We searched for the coding
sequences of the dysregulated miRNAs in a genomic window of 250 kb around the
somatic variants as previously described in [111]. We detected 21 cases of physical
proximity between somatic variants and the deregulated miRNAs (Table 6-2), which are
mostly located in chromosomes 1, 7, and 19 (Figure 6-3-a). These 21 cases encompass
15 distinct mutations and 20 distinct dysregulated miRNAs. To test the significance of
these cases, we performed 1000 Wilcoxon tests against random SNV positions
considering the same mutation frequency for each chromosome.
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Table 6-2 The deregulated miRNAs in proximity to somatic mutations.

21 cases of miRNA-SNV pairs were identified. The genomic distance between miRNAs and SNVs is reported in base
pairs. SNVs marked with (*) are the exclusive ones associated only with the dysregulated miRNAs and not with any of
the non-dysregulated miRNAs.

miRNA Chrom | SNP Position SNP occurring gene Genomic distance (in bp)
hsa-mir-181b-1 1 198711494 * PTPRC 116508
hsa-mir-181a-1 1 198711494 * PTPRC 116679
hsa-mir-1290 1 19186120  * TASIR2 37445
hsa-mir-9-1 1 156498803 * IQGAP3 -108670
hsa-mir-205 1 209605636 * MIR205HG -158
hsa-mir-3129 2 189928732 COL5A2 69030
hsa-mir-145 5 148730786 * GRPEL2 79423
hsa-mir-143 5 148730786 * GRPEL2 77695
hsa-mir-106b 7 99662436  * ZNF3 29180
hsa-mir-93 7 99662436  * ZNF3 28955
hsa-mir-25 7 99662436  * ZNF3 28747
hsa-mir-320a 8 22136963  * PIWIL2 -34488
hsa-mir-199b 9 131048299 SWIS5 -41299
hsa-mir-199b 9 131023779 GOLGA2 -16779
hsa-mir-152 17 46136186 NFE2L1 -21659
hsa-mir-520d 19 54254529 MIRS22 -31179
hsa-mir-519e 19 54254529 MIRS22 -71335
hsa-mir-1323 19 54254529 MIRS22 -79307
hsa-mir-199a-1 19 10870471 DNM2 57631
hsa-let-7f-2 X 53644041 HUWEI!1 -59888
hsa-mir-718 X 153278098 IRAK1 7273

The deregulated miRNAs identified in the 21 cases were significantly closer to their
somatic SNVs pairs in comparison to random SNV positions (p-value equals to 0.001).
We also checked whether the non-dysregulated miRNAs (925 miRNAs) are in genomic
proximity to the 15 somatic mutations involved in the 21 cases as well. We found that
52 non-dysregulated miRNAs (5.6%) were in vicinity to only 8 mutations so that the
other 7 mutations are exclusively associated with the dysregulated miRNAs (Table 6-2).

Similarly, we analyzed the somatic mutations that mainly occur at differentially
methylated CpG sites in promoter regions. Overall we identified 347 cases of SNV-
differentially methylated gene pairs. These are mostly located on chromosomes 1, 5,
and X (Figure 6-3-b). To address how changes in methylation levels caused by
tumorigenesis correlate with mutation rates of different mutation genotypes, we
separately analyzed the cases of up- and down-methylated genes. 234 cases involved
up-methylated genes, whereas only 113 were associated with down-methylated genes.
Generally, mutations in the promoter areas of up-methylated genes occur at a
remarkably higher rate than its peers in down-methylated genes especially the C->T
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genotypes (Figure C-2) since methylated cytosines are prone to thymine transitions by
via deamination. This result is in line with the findings of Xia et al. [21] who examined
the relationship between DNA methylation and mutation rate. Further, we examined
which of the above somatic mutations, which were identified on the basis of their
vicinity to either dysregulated miRNAs or differentially methylated genes, could
potentially drive tumor cell proliferation in breast cancer. For this, we applied the
random forest as a machine learning method implemented in the CHASM tool [100] to
distinguish between driver and passenger somatic mutations. As training set, we used
the breast cancer labeled data (BRCA) curated from the COSMIC database [283] and
provided by CHASM. We identified nine driver mutations (three from miRNA cases and
six from differentially methylated gene cases) suggesting their causative role in breast
tumorigenesis (Table 6-3). All these nine mutations are missense and lead to an amino
acid substitution. Next, we analyzed the possible impact of the resulting amino acid
substitution on structure and function of the respective protein using the PolyPhen
[284] and SIFT [285] prediction tools. Interestingly, both methods predict damaging
effects of these mutations on protein function conforming their role in driving cancer
(Table 6-3).
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Figure 6-3 Proximity analysis of the somatic mutations with the dysregulated miRNAs and differentially

methylated genes. Ideogram plots showing the genomic distribution for (a) the 21 cases of deregulated miRNAs
adjacent to somatic mutations. The outer green circle shows the entire dataset of miRNAs , whereas the next
highlighted red lines refer to the adjacent deregulated miRNAs (20 miRNAs where one miRNA is matched to 2 SNVs).
The inner blue circle represent the entire set of somatic SNVs and the next highlighted red lines depict the SNVs
matched to the 21 cases. (b) The 347 cases of somatic mutations occurring in the promoter regions of differentially
methylated genes. The outer green circle shows the entire set of differentially methylated genes, whereas the next
highlighted red lines refer to the identified cases adjacent to the somatic mutations. The inner blue circle represents
the entire set of somatic SNVs and the next highlighted red lines depict the SNVs matched to the identified cases. The
plot illustrates also the fractions of the three considered types of mutations (C->T, C->G and C->A) showing the
occurrence frequency for each one.
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6.3.5 Druggability analysis of protein products of the identified driver genes

As mentioned above, we identified 94 driver genes from the TF-mRNA interactions and
17 driver genes from the miRNA-mRNA interactions. The five well-known breast cancer
associated genes CREB1, MYC, TGFB1, TP53, and SPI1 were common in both sets. Hence,
in total 106 driver genes were identified. Also, we characterized 68 dominating miRNAs
from the miRNA-mRNA interactions, and nine driver mutations from the proximity
analysis.

To identify driver genes marked as anti-breast cancer drug-targets, we looked up the
drugs and the anti-neoplastic agents that target the proteins corresponding to the 106
driver genes based on the experimentally validated drug-targets reports (see methods).
We found that 31% (33 proteins) of the proteins belonging to the identified driver
genes are binding targets of at least one anti-breast cancer drug (Table C-2). These 33
genes are highlighted as square nodes in the network visualizations of TF-mRNA
interactions (Figure 6-1, and Figure C-1) and miRNA-mRNA interactions (Figure 6-2). The
remaining 73 driver genes were involved in the regulation of biological processes as
well as metabolic processes of cancerogenesis in multiple organs such as lung, prostate,
and bladder (Table C-1). This supports the hypothesis that products of the remaining 73
identified driver genes as well as the identified 68 driver miRNAs and the 9 driver
mutations may open up new avenues for novel therapeutic drugs.

Table 6-3 List of the identified driver mutations ordered by CHASM score.

The CHASM score is defined as the fraction of trees in the Random Forest that voted for the mutation being classified
as a passenger. Lower scores increase the confidence of driver mutations. P-values are calculated based on the null
score distribution. The table reports also the changes in the related codons and amino acids. The SIFT and PolyPhen
scores refer to the prediction of whether an amino acid substitution affects the function and structure of the human
proteins. The SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments
derived from closely related sequences (lower scores represent high impacts), whereas the PolyPhen prediction uses
physical and evolutionary comparative considerations (higher scores represent high impact and severe influence on
the protein function and structure).

Occurring | SNV CHASM Amino
Chrom | gene position score P-value Ref | Alt | acids Codons | SIFT score PolyPhen score
1 PTPRC 198711494 | 0.158 6.00E-04 G A E/K Gag/Aag | Deleterious (0) probably damaging (0.999)
8 TNKS 9413850 0.162 6.00E-04 C T S/F tCc/tTc Deleterious (0.01) Unknown (0)
X GRIA3 122319694 | 0.298 0.0119 C A F/L ttC/ttA Deleterious (0) probably damaging (0.996)
5 PCDHBI14 | 140604126 | 0.308 0.0134 C T S/L tCg/tTg | Deleterious (0.02) Benign (0.368)
X HUWEIL 53644041 0.31 0.0136 C A R/L cGa/cTa | Deleterious (0) probably damaging (1)
17 NFE2L1 46136186 0.326 0.0175 C T S/F tCc/tTc Deleterious (0.01) probably damaging (0.994)
9 NAIF1 130829249 | 0.336 0.0204 C G K/N aaG/aaC | Deleterious (0) probably damaging (0.995)
2 KLHL23 170592167 | 0.354 0.0251 C G R/G Cga/Gga | Deleterious (0) probably damaging (0.999)
12 KCNAIL 5021107 0.384 0.0406 C T /™M aCg/aTg | Deleterious (0) probably damaging (0.997)

6.3.6 Network validation and performance assessment

In order to validate the proposed approach and the constructed network topology [TF-
gene interactions only], we applied a peer knowledge-based differential network
method, KDDN (Knowledge-Guided Differential Dependency Network) [286] on the
same dataset. The same prior was used for KDDN. The networks predicted by our
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approach showed 61% edges overlap with the inferred differential KDDN interactions
due to tumorigenesis.

To assess the reliability of our predictions of key drivers, we further included another
differential network method, DiffCoEx (Differential Co-expression Modules) [268] for
identifying differential co-expression modules between two biological cohorts. As
mentioned above, 33 genes (31%) out of the total 106 driver genes suggested here are
known key drivers and are targeted by currently known drugs. In contrast, only 114
KDDN genes (~20%) out of 584 hot spot genes involved in the KDDN network, are
binding targets for anti-cancer drugs (Figure 6-4).

We detected an overlap of 44%, and 16% of the key genes identified by our approach
and those obtained by KDDN and DiffCoEx, respectively. DiffCoEx yielded five different
modules of genes in which the correlation of gene pairs within the module was
significantly different between normal and tumor samples (Figure 6-5). Only 151 genes
(17%) out of total 886 genes involved in these modules were marked as anti-cancer
drug targets. These percentages strongly support the reliability and robustness of our
strategy in identifying genomic drivers that could be further experimentally examined
as drug targets.
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Figure 6-4 The network inferred using the KDDN method.

For clarity, we visualized only the known drug target genes (red and labeled) and the genes connected to them

(green).
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6.4 Conclusions

The enormously increasing availability of transcriptomic and epigenomic data from
different biological experiments allow for deep and comprehensive integrative analysis.
To this end, this study provides new insights into the complex regulatory mechanisms
between gene expression, miRNA biomarkers, epigenetic modifications (represented at
the level of DNA methylation) and genetic variants that are associated with the human
breast cancer network.
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Figure 6-5 The network modules inferred using the DiffCoEx method.
Each network corresponds to the highlighted module color in the heatmap. For clarity, we visualized only the known
drug target genes (labeled and square nodes) and the genes connected to them

In this work, we demonstrated an integrative network-based approach to conduct
combinatorial regulatory network analysis and to identify genomic driver elements that
control breast carcinomas. Our results showed a strong association between the
regulatory elements of the heterogeneous data sources in terms of the mutual
regulatory influence and genomic proximity. By analyzing three different types of
interactions, TF-mRNA, miRNA-mRNA, and proximity analysis of somatic variants, we
were able to identify various key driver elements (106 genes, 68 miRNAs, and 9
mutations) that could possibly drive breast invasive carcinomas. We also unraveled
underlying regulatory interactions among these key drivers and other genetic elements
in the breast cancer network. Interestingly, anti-breast cancer drugs target protein
products of about one third of the key driver genes and most of the identified key
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miRNAs are involved in cancerogenesis of multiple organs. Also, the identified driver
mutations are predicted to cause damaging effects on protein functions and structures.

These results expand our knowledge base of prospective genomic drivers and provide
encouraging support that many of the novel identified genetic elements are potential
targets for new drugs. We note that these key drivers were identified based on the
presented computational framework and further wet lab work is warranted to confirm
their efficacy as putative anti-cancer drug targets. Especially when combined with
experimental validation, this network-based approach could promote novel insights on
cancer genomic data to develop new therapeutic strategies and thus better treatment.
Finally, this approach can be applied to other cancer types or complex diseases and
could be extended for studying cellular development as well.
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7. Application to diabetes in
mouse

This chapter is a shortened version of the following publication:

¢ Irhimeh M.R, Barthelmes D, Mohamed Hamed, Zhu L, Helms V, Gillies M.C, Shen W, Novel
Gene Regulatory Network in diabetic bone marrow-derived endothelial progenitor cells
[In revision].

Synopsis

Differential network analysis concept has been recently introduced to improve
understanding of cellular interactions of specific tissues and complex diseases. This
chapter discusses the molecular mechanisms by which diabetes impairs Bone marrow-
derived endothelia progenitor cells (EPC) in mouse using the differential network analysis
approach that makes use of the implemented GRN pipeline. We note that all
bioinformatics analysis in this study was performed by the author of this thesis.
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Abstract

Endothelial progenitor cells (EPCs) are a group of rare cells that originate from bone
marrow (BM) or the wall of blood vessels. They are believed to play an important role in
the repair of injured vascular endothelial cells and assisting in reperfusion of ischemic
tissue. Decreased production and/or loss of function of EPCs are associated with
diabetic vascular complications such as diabetic retinopathy, nephropathy and
cardiovascular disease. However, the molecular mechanisms by which diabetes impairs
EPCs remain unclear. In this study we conducted microarray analysis of the differential
gene expression between Akita diabetic mice and age-matched non-diabetic controls in
BM-derived Lin* cells and Lin-/VEGF-R2+* EPCs isolated from animals 18 weeks after
diabetes. EPCs were isolated using MACS technology based on hematopoietic lineage
depletion followed by enrichment for VEGF-R2+ cells to produce Lin-/VEGF-R2+ EPCs.
Lin* fractions were kept and used as non-hematopoietic cells for analysis. RNA was
extracted, processed and then hybridized to mouse WG-6 V2 beadchips, followed by
data analysis. In total, 11 differentially expressed genes were identified as specific to BM
EPCs including 3 genes (CLCNKA, PIK3C2A, PTF1A) with known association with
diabetic complications and 8 genes classified as transcription factors (PPARG, PPARA,
VDR, FOX01, AR, NFKB1, HNF4A, SREBF1). Further analysis led to establishing a novel
gene regulatory network specific to diabetic EPCs, which includes 11 main well
documented diabetic genes and 47 genes and transcription factors regulating/regulated
directly by those genes. Our results suggest that diabetes may influence specific
signature genes in BM EPCs altering their capacity to proliferate and differentiate.

7.1 Introduction

Chronic diabetes is associated with endothelial cells (ECs) injury, cells forming the inner
lining of blood vessels [287]. Such injury is believed to be repaired by resident
endothelial cells, which have limited regenerative capacity [288, 289], resident
endothelial progenitor cells (EPCs) [290, 291], and BM derived EPCs [292-294]. It has
been reported that diabetes is associated with impairment of EPC function [295-297].
Diabetic patients were shown to have reduced EPC numbers in the peripheral blood
(PB) [298, 299] and the ability of EPCs isolated from PB of people with diabetes to
proliferate, form tubes and adhere in vitro is impaired [300, 301]. Most importantly,
EPCs from diabetic individuals are less effective in repairing vascular injuries [300, 302,
303]. Several studies suggest that reduced number and/or dysfunction of EPCs in cell
mobilization, proliferation, adhesion and incorporation into the vasculature may
contribute to diabetic vascular complications [298, 300, 304].

Recently, our collaborators reported an impaired mobilization capacity of mouse BM
Lin-/VEGF-R2+ EPCs in diabetic mice [305]. EPCs are usually defined based on their
surface markers and proliferative and clonogenic potential and they are believed to be
lineage and functionally heterogeneous [290][293]. It has been suggested that an insult
to the stem cell niche might initiate or contribute to reduction in the numbers and
impairment of EPC function [306]. These EPCs play an important role in regenerating
the endothelium through migration, proliferation, differentiation and by secreting pro-
angiogenic cytokines [307]. BM Lin-/VEGF-R2* EPCs express VEGF-R2 and CD34 and
they do not express CD31, CD45, CD14 and CD115. They have typical EPCs properties
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such as formation of cobblestone colonies, Dil-acLDL uptake, lectin binding and can
incorporate into damaged blood vessels in vivo after intravitreal transplantation in eyes
subjected to the laser-induced retinal vascular injury[293, 308] in association with
differential expression of only two genes (SDF-1 (CXCL12) and SELE) in diabetic
Lin-/VEGF-R2+* EPCs [305].

The majority of molecular studies on the impairment of diabetic EPCs function have
been conducted on human EPCs isolated from the PB of people with a long history of
diabetes. Thus, little is known about the changes occurring in EPCs located within the
BM in the early stages of diabetes. In this study we isolated Lin* cells and Lin-/VEGF-
R2+ EPCs from Akita diabetic mice and age-matched non-diabetic controls. In order to
explore the molecular mechanisms by which early diabetes impairs the function of BM-
EPCs, we conducted microarray analysis to profile differential gene expression and their
regulatory interactions between diabetic and non-diabetic animals using well-
established data analysis methods [208, 309].

7.2 Methods

7.2.1 Animals

The Akita mouse carries a dominant point mutation in the Insulin 2 gene on
chromosome 7 resulting in the development of diabetes at approximately 4 weeks after
birth with almost 100% penetrance. As female mice develop diabetes more slowly and
less stably compared with males, only male mice heterozygous for the Ins24kita allele
(diabetic group) as well as male mice homozygous for the wild type Ins2 allele (non-
diabetic mice) were used in this study. Once diabetes was established (blood glucose
level>13.3mmol/L), mice were monitored weekly for changes in bodyweight and blood
glucose levels for 18 weeks. The blood glucose level was measured using Accu-Chek
Performa (Roche, Germany). No supplemental insulin was given. Only mice with blood
glucose levels consistently 2 13.3 mmol/L were used in this study. Nine diabetic mice
and age-matched non-diabetic controls were used in this study.

7.2.2 Group design and comparisons

Four experimental groups were established: 1) Lin* cells from non-diabetic mice, 2)
Lin* cells from diabetic mice, 3) Lin-/VEGF-R2+* EPCs from non-diabetic mice and 4) Lin-
/VEGF-R2* EPCs from diabetic mice. The Lin* cells were used as an internal reference to
identify differential gene expression occurring not exclusively in Lin-/VEGF-R2* cells.
Six different comparisons were conducted between the four groups (Table 7-1). This
setup allowed us to distinguish differential gene expression which specifically occurred
in diabetic BM derived Lin"/VEGF-R2+* EPCs from that occurring in other phenotypes of
hematopoietic lineage committed BM cells. Hence, only significant changes in gene
expression observed in diabetic versus non-diabetic Lin-/VEGF-R2* progenitor cells that
did not occur in the Lin* population were considered in the final analysis.

7.2.3 Data processing

Raw expression values were background corrected, log, transformed and quantile
normalized using the lumiR package [310] of the Bioconductor suite [220]. Expression
profiles of redundant probe sets were merged by computing the mean of all probes
related to single genes as reported before in [309]. Before the differential analysis, we

109



Chapter 7 Application to diabetes in mouse

removed the 25% of the genes that showed the least variability across the sample
groups. Genes with higher variation were considered as potentially good candidates to
be differentially expressed [221].

Table 7-1 The six possible comparisons (1-6) between the 4 groups of samples and the significance of each
comparison to the study analysis.

Comparison | Compared groups Significance/meaning
1 Non-diabetic Lin* vs diabetic | Effect of diabetes on Lin*
Lin*
2 Non-diabetic Lin* vs Non- | Difference between Lin* and EPC
diabetic EPC genes in healthy conditions
3 Diabetic Lin* vs diabetic EPC Difference between Lin* and EPC
genes in diabetic conditions
4 Non-diabetic EPC vs diabetic | Effect of diabetes on EPC
EPC
5 Lin* vs EPC Difference between Lin* and EPC
combined
6 Non-diabetic vs diabetic Difference between non-diabetic and
diabetic cells

7.2.4 Differential expression analysis

The six comparisons of samples were compared by differential expression analysis
using three methods: 1) Significance Analysis of Microarray (SAM) [90], 2) moderated t-
test,[221] 3) the area under the curve of the receiver operator characteristics (AUC
ROC) [221]. Genes that were classified as differentially expressed genes by at least two
of those three methods were included in the list of differentially expressed genes. We
focused on genes that are exclusively involved in the fourth comparison (non-diabetic
Lin'/VEGF-R2+ EPCs vs diabetes Lin"/VEGF-R2* EPCs) and not in any of the other
comparisons.

7.2.5 Gene regulatory network (GRN)

We applied the GRN pipeline presented in section 3.2 on the expression data of the
differentially expressed genes for the healthy and diseases samples separately. Then we
used the concept of the differential network analysis to infer the statistically significant
topological changes in transcriptional networks representing the two biological
samples (non-diabetic Lin-/VEGF-R2+* EPCs vs diabetes Lin-/VEGF-R2* EPCs). This gave
a differential network of 109 genes (including 25 differentially expressed genes and 84
TCFs) and 347 edges. Figure 7-1 depicts the differential network analysis approach
employing the GRN pipeline for data processing and constructing the diabetes-specific
grn for BM derived EPC cells.

We downloaded a list of 266 diabetic-associated genes from Mouse Genome Informatics
(MGI) database [225]. Out of these 109 genes, only 11 genes (3 differentially expressed
genes and 8 TCFs) belong to the diabetic associated gene list. The full list of genes in the
GRN is provided in supplementary Table D-1. To extract only the network module
related to the onset of diabetes, we removed unconnected nodes and considered only
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regulation links where either the “FROM” or “TO” nodes belong to the 11 diabetic genes
identified above. Expression heat maps and PCA plots were generated by R [188]. The
GRN network was visualized using the igraph package in R.

7.2.6 Functional enrichment

The functional enrichment and annotation analysis was conducted as reported before in
[208]. Briefly, enriched KEGG Pathways and GO functional categories were identified
using the DAVID tool [135]. We determined which pathways / functional terms were
annotated to at least 2 genes and were statistically overrepresented in the study gene
set against the full mouse genome (control). Enrichment was evaluated through the
hyper-geometric test using a p-value threshold of 0.05.
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Figure 7-1 The differential network approach utilizing the GRN pipeline.

7.3 Results

7.3.1 Probes summarization and filtration

One of the aims of this study was to identify genes that are differentially expressed
between 2 sample groups (diabetic and non-diabetic Lin-/VEGF-R2+* EPCs). Microarray
probes of mouse WG-6V2 beadchip (45,281 probes) were summarized by considering
the mean of the expression values of all probes related to each gene in each sample. This
yielded at the end 30,869 mouse genes instead of 45,281 probes. Then, non-specific pre-
filtering was performed removing the 25% of all genes showing the least variability
across the two sample groups before the differential analysis.

7.3.2 Differential expression analysis

To identify differentially expressed genes between non-diabetic and diabetic samples,
only the summarized 30,869 genes were used for comparisons. After applying the three
differential expression methods (SAM, moderated t-test, and AUC ROC) on each of the
six comparisons, genes that were identified as differentially expressed by at least two
out of the three methods were chosen for further analysis.
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Then, using Venn diagrams we identified those genes which were exclusively included
in the fourth comparison (between non-diabetic EPCs and diabetic EPCs) and not in any
of the other comparisons) as shown in Figure 7-2. This process identified 80 genes that
are specific to comparison 4 only.

Figure 7-2 Venn diagrams showing overlapping differentially expressed genes among the 6 comparisons.
See Table 1. (A) Comparisons 1-5, (B) comparisons 1-4 and 6. In both Venn diagrams the same 80 genes were found
specific to comparison 4 (non-diabetic EPCs versus diabetic EPCs).

This approach allowed us to identify those genes which might influence BM EPCs but
not hematopoietic lineage committed cells by targeting certain regulatory elements. To
further investigate changes in diabetic associated genes in BM EPCs, 266 diabetic
associated genes were downloaded from MGI[225] and then cross matched with the 80
identified genes. We found that the identified differentially expressed genes were
significantly associated with the list of diabetic associated genes (p-value 0.0319 using
hyper-geometric test) because the three genes CLCNKA (down-regulated) and PTFIA
and PIK3C2A (both up-regulated) were common between the two lists. A heat map was
generated to show the relative gene expression among the four sample groups (Figure
2A). Then we selected non-diabetic and diabetic EPCs groups to generate a heat map
for the relative expression of the 80 identified genes (Figure 7-3). To show how the
differentially expressed 80 genes are separated between non-diabetic EPCs and diabetic
EPCs, principle component (PCA) analysis was conducted. The PCA clustered the
differentially expressed genes into down-regulated and up-regulated genes based on
their relative expression levels.

7.3.3 Gene Regulatory Network

Compiling the GRN for the identified differentially expressed genes revealed 84 TCFs
that were regulating 25 out of the 80 differentially expressed genes. Figure 7-4 shows
an expanded GRN with 25 + 84 = 109 genes including the identified TCFs. Only 8 out of
the 84 TCFs (PPARG, PPARA, VDR, FOX01, AR, NFKB1, HNF4A, SREBF1) were classified as
diabetes related genes. Thus, a total of 11 (3 differentially expressed genes and 8 TCFs)
diabetic related genes were present in the expanded GRN network of 109 genes.
Interestingly, the hyper-geometric test conducted on the list of all the 109 GRN genes
showed a highly significant association with the diabetes related genes (P-value 1.138

112



Chapter 7 Application to diabetes in mouse

e-09). When considering only genes and TCFs that are connected to the 11 diabetic
related genes, a final GRN module, which includes 58 nodes that could potentially drive
and dissect the early diabetes and related dysfunctions in BM EPC cells, was compiled
and visualized in Figure 7-5. The details of the final 58 GRN genes and TCFs are listed in
supplementary Table D-1.
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Figure 7-3 Heat maps of the microarray analysis results.

Differentially expressed 80 core enrichment genes in comparison 4 (non-diabetic EPCs versus diabetic EPCs). Green
spots represent down-regulated genes, and red spots represent up-regulated genes. The order of genes is obtained by
hierarchical clustering. The orange color represents the non-diabetic EPCs while the blue color represents the
diabetic EPCs.
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7.4 Discussion

Previous studies have investigated EPCs in various diabetic complications. Although the
methods used have been quite different and subsets of the investigated EPCs were also
disparate, they all found significant dysfunction of diabetic EPCs.[290, 293, 305]
Numerous explanations for the dysfunction of diabetic EPCs have been proposed,

113



Chapter 7 Application to diabetes in mouse

including increased oxidative stress, NADPH oxidase activation, an altered nitric oxide
pathway and increases in inflammatory cytokines [311]. However, it is unlikely that the
dysfunction of diabetic EPCs could be explained by a single independent mechanism
when diabetes is known to be a complex patho-physiological syndrome that leads to
EPCs dysfunction and subsequently vascular damage at several levels. Thus we used a
microarray analysis approach and complemented that with powerful and well-
established data analysis methods [208, 309] to investigate genes and TCFs that are
potentially affected in diabetic EPCs and could be responsible for their dysfunction. We
were able to construct a novel gene regulatory network specific to BM EPCs that have
been exposed to short period of diabetes.
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Figure 7-4 Gene regulatory network common to EPCs.
The expanded diabetes gene regulatory network in EPCs including 109 genes (25 differentially expressed genes and
84 transcription factors that regulate them).

We previously demonstrated that BM Lin-/VEGF-R2* EPCs form cobblestone colonies in
culture, express surface markers such as VEGF-R2 and CD34, and are more primitive
than other described EPCs with a limited capacity to participate in vascular repair. It
appears that EPC function in the early stages of diabetes (18 weeks) is impaired, in
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particular their ability to mobilize, rather than their ability to proliferate, leading to
trapping of EPCs in BM [293, 305, 312]. Since the exact mechanism underlying this
impaired mobilization is still unknown, identifying the responsible genes through the
use of high throughput methods such as microarray may lead to valuable insights into
the pathogenesis of diabetic vascular disease. Most microarrays contain probes for
many more genes than are differentially expressed.
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Figure 7-5 A final gene regulatory network (GRN) module of the identified 11 diabetes-related genes and the
regulatory elements directly connected to them.

To alleviate the loss of power from the formidable multiplicity of gene-by-gene
hypothesis testing, we carried out a non-specific (done without reference to the
parameters or conditions of the tested RNA samples) pre-filtering step [309]. This
helped us remove from consideration a set of probes/genes that are not differentially
expressed under any comparison. We found it most useful to select genes on the basis of
variability [313]. Only the genes that show a noticeable variation across samples can
potentially be differentially expressed among our groups of interest. Usually, in
microarray analysis the coefficient of variation is used to filter the probes, then a
threshold is chosen (ie., 0.1) and all genes with coefficient of variance below the
threshold are removed from the analysis. In this study we applied instead a non-specific
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filter based on the variance itself and removed the 25% genes showing the lowest
variability across the samples, as previously described [208, 309].

Following the analysis of the differentially expressed genes, KEGG analysis of the 58
genes of the final GRN module revealed highly significant pathways (Table 7-2 A) such
as ‘maturity onset diabetes of the young’ and ‘peroxisome proliferator-activated
receptor (PPAR)’ signaling pathways. The PPAR pathway plays a critical role in the
regulation of diverse biologic processes. There are 3 main isotypes of PPAR gene (a,
and y). In our GRN two TCFs/genes (PPARa and PPARYy) are found as major players in
the diabetic EPCs network. Previously, PPARa has been implicated in the hepatic
metabolic response to diabetes mellitus. PPARy is expressed in all major cells of the
vasculature (e.g., endothelial and smooth muscles cells) and there mutations lead to
severe insulin resistant and type-2 diabetes [314]. More recently, PPARa was found to
play an important role in the regulation of EPC trafficking. Activation and over-
expression of PPARa both suppressed EPCs mobilization and homing induced by
hypoxia, which was shown to be through the inhibition of the HIF-1a/SDF-1 pathway
[315]. This supports our finding where PPARa was found to be up regulated in diabetic
EPCs, consistent with an anti-angiogenic role.

Another TCF that is part of the diabetic EPC network is FOX01 which plays a crucial role
in regulating gluconeogenesis and glycogenolysis by insulin signaling [316]. FOX01
regulates PIK3C2A, one of the major diabetic genes in the GRN, which encodes for the
PIK3C2A enzyme (PI3K family) that is activated by insulin. Thus, in diabetic conditions
the activity of PIK3C2A enzyme is expected to be suppressed, which may result in
upregulation of FOX01. Both PIK3C2A and PTF1A, which are the only two differentially
upregulated diabetic genes in the GRN, are found to be regulated by other identified
genes and TCF in the GRN. In other words, they do not regulate any of the identified
GRN genes and TCF leading to the assumption of them being the main and the most
important genes of the diabetic GRN and perhaps they interact directly with the system
(Figure 7-5).

The other mechanism by which FOXO regulates diabetic EPCs is via the oxidative stress
activated P66SHC-AKT-FOXO0 pathway [317]. P66SHC was reported to be involved in EPC
dysfunction due to hyperglycemia. When P66SHC was deleted in mice, the BM-derived
EPCs showed increased survival and more resistance to oxidative stress [318]. Based on
Figure 5 FOXO1 is linked directly with PIK3C2A. This may contribute to the dysfunction
of EPCs observed in diabetes through a negative effect of hyperglycemia-induced
oxidative stress on the PIK3C2A/FOX01 axis and the activation of P66SHC-AKT-FOXO
pathway. Another list of 26 highly significant functional terms that are relevant to our
cell type and injury were identified through GO analysis of the 58 genes of the final GRN
module (Table 7-2 B).

There is strong evidence that supports the concept of diabetes altering the number of
circulating EPCs [319, 320], which are likely trapped in the BM, and impairing their
vasoreparative potential resulting in premature senescence [298, 321]. In this study
there was an obvious dominance of pathways that involve insulin and glucose
metabolism, secretion, response and regulation (13 pathways) and progenitor cells and
epithelial cells differentiation, proliferation and development (13 pathways).
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Table 7-2 Selected highly significant (A) KEGG and (B) GO terms and the GRN genes that are involved in each

category.
A)
KEGG Subcategory name p-value Number of Gene IDs of test set in subcategory
genes
Pathways in cancer 8.82E-07 9 AR FOX01 RUNX1 PPARG TCF7 CEBPA NFKB1
MAX CASP3
Acute myeloid leukemia 4.76E-05 4 RUNX1 TCF7 CEBPA NFKB1
Maturity onset diabetes of the 8.65E-05 3 HNF4A HNF4G FOXA2
young
MAPK signaling pathway 2.18E-03 5 NFATC2 MEF2C NFKB1 MAX CASP3
Adipocytokine signaling 2.35E-02 2 PPARA NFKB1
pathway
Phosphatidylinositol signaling 3.09E-02 2 CDS1 PIK3C2A
system
PPAR signaling pathway 3.38E-02 2 PPARA PPARG
Apoptosis 4.14E-02 2 NFKB1 CASP3
B)
GO Subcategory name p-value Number of GenelDs of testsetin subcategory
genes
Cell differentiation 3.19E-12 21 TCF3 HNF4A MEF2C IKZF1 AR VDR
RUNX1 FOX]1 PPARG FOXAl1 FO0X04
CEBPA FOXD3 FOXA2 SRY ALX1 NKX6-2
ZEB1 NR2F2 CASP3 PTF1A
Regulation of cell proliferation 3.52E-07 10 HNF4A AR FOX01 FOXJ1 PPARG TCF7
F0X04 CEBPA ZEB1 CASP3
Regulation of cell differentiation 5.93E-08 10 IKZF1 AR VDR FOX]1 PPARG FOXA1
CEBPA FOXA2 NKX6-2 ZEB1
Cell fate commitment 1.61E-11 9 TCF3 MEF2C AR PPARG FOXA1 FOXA2
NKX6-2 CASP3 PTF1A
Negative regulation of cell Proliferation 2.46E-08 8 HNF4A AR FOX]1 PPARG FOX04 CEBPA
ZEB1 CASP3
Epithelium development 4.48E-07 8 AR VDR PPARG FOXA1 FOXA2 ALX1
ZEB1 CASP3
Positive regulation of cell differentiation 8.51E-06 6 IKZF1 PPARG FOXA1 CEBPA FOXAZ2
NKX6-2
Hemopoiesis 3.23E-05 6 TCF3 IKZF1 RUNX1 FOX]J1 CEBPA ZEB1
Epithelial cell differentiation 4.39E-07 6 AR PPARG FOXA1 FOXA2 ZEB1 CASP3
Negative regulation of cell Differentiation 8.33E-04 4 FOX]1 FOXA2 NKX6-2 ZEB1
Blood vessel development 2.61E-03 4 MEF2C FOX01 RUNX1 NR2F2
Response to insulin stimulus 5.18E-04 3 PPARA FOX01 SREBF1
Response to glucose stimulus 5.92E-05 3 HNF4A SREBF1 CASP3
Regulation of cell cycle 9.67E-03 3 HNF4A FOX04 CASP3
Glucose metabolic process 3.31E-03 3 PPARA HNF4A FOX01
Glucose homeostasis 9.52E-05 3 HNF4A FOXA1 ASPSCR1
Cellular carbohydrate metabolic process 2.67E-02 3 PPARA HNF4A FOX01
Wnt receptor signaling pathway 4.15E-02 2 TCF7 FOXL1
Regulation of insulin secretion 6.19E-03 2 HNF4A SREBF1
Regulation of glucose metabolic process 1.58E-03 2 HNF4A FOX01
Positive regulation of glucose metabolic 2.15E-04 2 HNF4A FOX01
process
Positive regulation of Gluconeogenesis 9.90E-06 2 HNF4A FOX01
Monosaccharide biosynthetic process 2.84E-03 2 HNF4A FOX01
Insulin secretion 1.19E-02 2 HNF4A SREBF1
Insulin receptor signaling pathway 2.97E-03 2 FOX01 SREBF1
Cellular response to insulin stimulus 6.19E-03 2 FOX01 SREBF1
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Thus, it is likely that diabetes influences the expression of EPC genes that are specific to
those pathways causing impairment in their vasoreparative potential. Based on the MGI
database [225] eNOS (NOS3), SDF-1, CXCR4, and SELE are all specific EPC genes yet they
were not differentially expressed in any of the six comparisons in this study. However,
we found that all of them were regulated by two TCFs that are identified in diabetic
EPCs GRN (USF1 and NFKB1). SELE appeared to be directly regulated by NFKBI
while CXCR4 is directly regulated by USF1, whereas SDF-1 and eNOS were indirectly
regulated by USF1. Thus, USF1, and NFKB1 might be driving the expression changes of
those genes during diabetes (Figure 7-6).

Dysfunction of eNOS signaling has also been implicated in EPC dysfunction in diabetes.
The dysfunction has been linked with decreased eNOS activity [322, 323] and the eNOS
deficient (NOS3-/-) mouse had impaired EPC mobilization and angiogenesis [322]. The
expression and phosphorylation of eNOS are essential for the survival, migration and
angiogenesis facilitated by EPCs and ECs [324, 325]. Human EPCs that overexpress
eNOS have increased migratory potential, increased ability to incorporate into tube-like
structures and to differentiate into endothelial spindle-like structures [326]. We did not
observe a significant change in eNOS expression in diabetic EPCs. Nevertheless, two of
the genes that were found to be differentially expressed in diabetic EPCs (NFKB1 and
USF1) regulate eNOS indirectly, which could explain previous reports. We have
previously reported that eNOS expression in BM Lin-/VEGF-R2* progenitor cells was
very low indicating that they are early progenitor cells [312] since late EPCs have
higher expression levels of eNOS [327].

Although there are many reports that diabetes causes reduction in PB EPC number
[300, 328], others have reported an increase in EPC number in the circulation in specific
animal models [329] while we did not find any significant effect of diabetes in mice
[308]. We previously reported down regulation of SDF-1 and SELE genes in diabetic
EPCs.[312] Since EPCs have the ability to produce SDF-1 [330] and SDF-1/CXCR4 is a
known EPC mobilization and maturation axis [331], this down regulation of SDF-1 may
contribute to the impaired mobilization of diabetic EPCs. Thus the observed decrease of
diabetic EPCs in PB could be attributed to the impaired mobilization ability from BM to
PB leading to EPC BM-trapping and not to the impaired proliferation. In this study
neither SDF-1 nor SELE were found differentially expressed but were found to be
closely regulated by two important diabetic genes NFKB1 and USF1. Circulating EPCs
have the ability to express SELE [332], a sign of EPC activation [333]. We observed
previously a 2.5 fold increase in the expression of SELE in diabetic EPCs. The up-
regulation of SELE in diabetic EPCs may be attributed to increased production of
interleukin 1 and tumor necrosis factors caused by the diabetic condition [334].

EPCs have a direct role in angiogenesis [288, 335]. We found that the same gene (USF1I)
that regulates eNOS indirectly through ETV4 and ESR1, regulates SDF-1 via ESR1 as well,
which is implicated in diabetes [336]. Thus ESR1 may have a direct role in impaired
diabetic EPCs. We also found that USF1 regulates CXCR4 directly, which indicates that
eNOS, SDF-1 and CXCR4 are all closely related and regulated by the same key
gene(USF1). Since ETV4 is a downstream target gene of FGF signalling pathway which
promotes tumour growth and angiogenesis [337], then such involvement in
angiogenesis could explain its role in EPC, which under diabetic conditions have
reduced potential to migrate, proliferate and form tubes [338]. Leading to the
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conclusion that USF1 is affected by diabetic environment and could be responsible for
EPC angiogenic activity.

Figure 7-6 A gene network showing four EPC specific genes and their relationship to our constructed diabetic
EPC GRN. The four genes: eNOS (NOS3), SDF-1 (CXCL12), CXCR4, and SELE are marked in green. The two TCFs from
the diabetic EPCs GRN regulating them are marked in yellow. Other TCFs regulated by the two TCFs (yellow) and also
regulating those 4 genes are marked in grey.

In conclusion we were able to detect specific genes that are affected by early stages of
diabetes in BM in"/VEGF-R2* progenitor cells. Microarray experiments complemented
by analysis methods were used in this study but no verification was performed, thus
further research is warranted to confirm the results. To our knowledge, this is the first
report that predicts and unravels a gene regulatory network that is specific to diabetic
endothelial progenitor cells in BM. This novel GRN consists of 11 main well documented
diabetic genes and 47 TCFs/genes that are regulating/regulated by those genes directly.
It appears that PIK3C2 and PTFIA are up regulated under diabetic conditions while
CLCNKA is down regulated. Such changes seem to be the results of diabetic TCFs mainly
FOX01, PPARa, PPARy, and NFKB1 that controls those three diabetic genes. These
findings may lead to novel therapeutic strategies for mobilization of EPCs and the
treatment of diabetic vascular complications such as diabetic retinopathy, nephropathy
and cardiovascular disease.
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8. WGS and DNA microarray
phylotyping of MRSA strains

This chapter is a shortened version of the following publication:

®* Mohamed Hamed, Daniel Patrick Nitsche, Ulla Ruffing, Matthias Steglich, Janina Dordel,
Duy Nguyen, Jan-Hendrik Brink, Gursharan Singh, Mathias Hermann, Ulrich Nubel,
Volkhard Helms, and Lutz von Muller, Whole Genome Phylotyping and Microarray
Profiling of nasal and blood stream Methicillin-Resistant Staphylococcus aureus isolates:
Clues to phylogeny and invasiveness. Infection, Genetics and Evolution, 2015.

Synopsis

On the genomic mutation regards, we also presented an NGS pipeline to identify core-
genome SNPs and genetic variations between two phenotypic groups in a similar analogy
to somatic mutations between the healthy and disease cohorts. Since Whole Genome
Sequencing data of tumor and healthy human samples were not accessible, the NGS
pipeline was utilized on two groups of MRSA bacterial isolates (nasal and invasive) to
investigate the phylogenetic positions of the recently emerged t504 clone (Spa-type t504)
in the Saarland province of Germany and to better understand the infectivity mechanism
of the invasive group as a prototype example for “from genotype to phenotype” studies.
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Abstract

Hospital-associated methicillin resistant Staphylococcus aureus (MRSA) is frequently
caused by predominant clusters of closely related isolates unresolvable by routine
diagnostic typing methods. Whole genome sequencing (WGS) and DNA microarray
(MA) now allow for better discrimination within a prevalent clonal complex (CC). This
single center exploratory study aims to distinguish invasive and non-invasive MRSA
isolates with similar genetic background into phylogenetic- and virulence-associated
genotypic subgroups by WGS and MA. A cohort of twelve blood stream and fifteen nasal
MRSA isolates of clonal complex 5 (CC5) (spa-types t003 and t504) was selected.

Rooted phylotyping based on core-genome SNP WGS data revealed the regional
clustering of two closely related CC5 isolate subgroups (clade t504 and cladel t003)
which could be discriminated from other regional t003 isolates and also from
geographically unrelated CC5 MRSA reference isolates. However, phylogenetic
subtyping was not associated with invasiveness when comparing blood stream and
nasal isolates.

Clustering of MA profiles was not concordant with WGS phylotyping of CC5 MRSA
isolates, but MA could discriminate subgroups of nasal and blood stream origin. Among
the new putative virulence associated genes identified by WGS, the strongest
association with invasiveness of blood stream infections was shown for ebhB gene.
Integrated analysis of core-genome in combination with accessory genome data enables
in depth analysis of highly related MRSA isolates with subtyping according to phylogeny
and presumable also to virulence and invasiveness in vivo.

8.1 Background

Approximately 20% of the healthy population is intermittently or persistently colonized
with Staphylococcus aureus which is a well-known facultative pathogen causing
localized and also generalized invasive infections [339]. Transition from colonization to
invasive infection is associated with disruption of barrier and immune functions and
also with the presence of bacterial virulence factors and mutations of its genetic
determinants [340]. Especially, infections due to methicillin-resistant S. aureus (MRSA)
cause a significant disease burden and also increased hospital costs [341, 342].
Prevention of MRSA infections requires early MRSA detection, decolonization, and
appropriate infection control policies. Since the 1990’s MRSA is further responsible for
a growing number of community-acquired infections [343, 344]. Most invasive MRSA
infections are related to previous colonization with the same strain [345], however,
detailed knowledge of the genetic background related to transition of nasal MRSA
carriage to invasive MRSA blood stream infections is still limited.

Various molecular typing methods have been developed to discriminate epidemic
strains for outbreak control, epidemiological surveillance, and also for prevention of
further transmission [346, 347]. Highly discriminative techniques are required for
detailed analysis of local outbreaks because MRSA infections are dominated in each
region by few phylogenetically related clones of the same clonal complex (CC) and
sequence type (ST) [348]. Phylogeny is regularly analyzed to the CC and ST level by
multilocus-sequence typing (MLST); however, this method is cumbersome and not
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discriminative between closely related strains. Alternatively, single locus sequence
typing, ie. spa-typing [349, 350], allows for discrimination of S. aureus isolates;
however, also spa-typing is not very discriminative for hospital-associated infections
and is not directly linked to phylogeny of isolates. The majority of MRSA isolates in
German hospitals were assigned to spa-type t003 isolates of CC5 [351, 352] which limits
application of standard typing methods for detailed epidemic investigation and the
indexing of variations for phylogenetic arrangements and population based
examination [353]. Recently, the appearance of a new highly prevalent CC5 spa-type
(t504) was detected apart from spa-type t003 in a hospital admission prevalence
screening study in the State of Saarland in Southwest Germany [354]. The structure of
repeat elements was similar between local t504 and t003 strains; however, the
phylogenetic relationship between the local t504 and other CC5 German isolates
remains still to be elucidated by more detailed broad-range phylogenetic analysis.

Compared to MLST and spa-typing, microarray (MA) and whole genome sequencing
(WGS) dramatically enhanced discriminatory power of genotyping, and recently both
technologies have become accessible also for larger scale typing purposes. For example,
WGS gives valuable insight into MRSA transmission chains e.g. in intensive care units
[355] and has already been used for the characterization of outbreaks [346, 356, 357].
[t can also be implemented for detection of phenotypic properties on a genotypic base
such as antibiotic resistance [358]. Although new broad-range genetic techniques may
now allow for virulence assignment of clinical isolates [359], the knowledge for defined
virulence-associated genotyping is still limited. MRSA virulence is caused by known and
presumably also by still unknown virulence determinants and also by regulatory
processes [360]. In particular, MRSA strains of the same CC may contain pathogenic
patterns in a very similar genetic context, and these genotypic differences may
contribute to variable virulence of invasive and non-invasive MRSA strains [361]. In
line, several virulence factor (VF) online catalogs (such as the PATRIC [362] and VFDB
[363] databases) were developed to affiliate information on the virulence factors in
numerous organisms, species and related strains with whole genome sequence analysis
of clinical isolates [364].

The goal of the present single center study was to compare nasal and blood stream
MRSA isolates of the predominant CC5 by genotyping using WGS and MA. The study
design included a dual approach using the core-genome single nucleotide
polymorphism (SNP) WGS approach [353, 365] as well as a MA approach with a specific
focus on the presence or absence of accessory gene signals. Application of WGS led to
the clear discrimination of regional phylogenetic clades distinct from geographically
unrelated strains of the same CC. However, invasiveness was not associated with
phylogeny but with mutations of virulence factors in the core and the accessory
genome.

8.2 Methods

8.2.1 MRSA CC5 isolates.

Fifteen nasal colonization isolates [366], and twelve invasive blood stream isolates from
patients of the University of Saarland Medical Center (subsequently referred to as nasal
[NAS] and invasive [INV] isolates, respectively) were included; WGS results were
compared also to four German CC5 t003 MRSA reference isolates provided by the
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German Reference Laboratory for Staphylococcus aureus infections; all clinical MRSA
isolates belonged to spa-types t003 and t504 of CC5.

8.2.2 Whole genome sequencing

Whole genome sequencing of MRSA DNA was performed using an [llumina MiSeq (HZI
in Braunschweig, Germany) producing paired-end reads of 251 basepair lengths with
an average coverage of 110-fold. In-depth bioinformatics analysis of this data was
performed using the developed automated pipeline described previously in chapter 3
(Figure 3-19). Briefly, reads were mapped against the complete reference genome of S.
aureus CC5 strain NC_ 017340.1 (http://www.ncbi.nlm.nih.gov/nuccore/NC_017340)
using the short read alignment version of the Burrows-wheeler Aligner (BWA)
algorithm [175]. Both duplicate reads and reads with low mapping quality (< 30) were
filtered out and the final alignments were sorted. Genetic mutations were called using
the VarScan2 tool [177]. Phylogenetic analysis was restricted to the consensus sequence
of the highly conserved core-genome. Therefore, variants that occurred in repetitive
sequences and mobile genetic regions were masked for phylogenetic analysis.

8.2.3 Phylogeny construction

Core-genome SNPs from coding and non-coding genomic regions were extracted from
the consensus sequences and a phylogenetic representative SNP matrix was generated.
Subsequently, a phylogenetic tree was constructed using the Maximum Likelihood
method as implemented in SeaView [178] and rooted using the CC5 ST5 reference
genome N315 (http://www.ncbi.nlm.nih.gov/nuccore/NC_002745). Trees were
displayed and annotated using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). For
comparison, four representative German CC5 isolates were also included for direct
comparison with the local strains and in order to enrich the phylogenetic tree. The
dendrograms of the DNA microarray were produced using the hierarchical clustering
algorithm using average linkage and Euclidian distance in the R suite [173].

8.2.4 Genetic variations between invasive and nasal samples

The significance of the genetic variations between each isolate pair (invasive and nasal)
was evaluated by VarScan on the basis of the sequence reads through Fisher’s exact test
using a significance level or p-value threshold of 0.05. Successfully passed variants were
collected and annotated to the corresponding genes in the reference genome.
Subsequently, the variants were grouped by position, and the occurrence of each
variant was noted. The identities of 548 known virulence-related genes were derived
from the virulence factor (VF) databases NIAID Pathogen Annotation Browser [367],
PATRIC [362] , and VFDB [363]. Over representation analysis for enrichment with
functional GO terms, KEGG pathways, and INTERPRO protein families was performed
using the DAVID tool [367].

8.2.5 DNA microarray analysis

DNA extraction (Qiagen, Hilden, Germany), and microarray analysis using IdentiBAC MA
(Alere, Jena, Germany) was performed according to the manufacturer’s instruction as
previously described [366]. Data processing and bioinformatics grouping according to
similarity of genetic profiles was done accordingly.
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8.3 Results

Whole genome sequencing produced paired-end reads of 251 bp length at about 110-
fold coverage. 81-87% of the sample reads could be mapped against the reference CC5
genome NC_017340.1 (http://www.ncbi.nlm.nih.gov/nuccore/NC_017340) (spa-type
t003) with a maximal possible mapping error of 0.1 %. By masking repetitive sequences
and mobile genetic regions, the first part of our analysis focused on the so-called core-
genome region and included reconstruction of the strain phylogeny and SNP analysis.

8.3.1 Phylogenetic analysis

Phylogenetic analysis based on the 1112 core-genome SNPs of WGS data showed that
all isolates with spa-type t504 clustered separately from type t003 forming a single
clade (Clade t504) (Figure 8-1). The phylogenetic distribution of t003 was generally
more diverse but cluster analysis revealed a distinct clade of nine local t003 isolates
(Cladel t003) without direct connection to geographical unrelated German reference
isolates. Also, the remaining eight local isolates without particular clustering were
distributed without direct link to the geographical unrelated German reference isolates
(Other t003). This confirms high diversity in phylogenetic arrangements of the t003
strain in geographically distinct regions [352, 353].

8.3.2 SNP analysis

SNP calling of the WGS data identified genetic variations in 535 unique genomic
positions outside of mobile genetic elements and repetitive sequences between all pairs
of the 12 invasive isolates and the 15 nasal ones. These 535 positions include 479 SNPs
and 56 Indels. Clade t504 (36 + 7 mutations) and cladel t003 (43 + 8) isolates contained
fewer mutations than other regional t003 isolates (56 *+ 11) (Figure 8-2). However, only
40% of genetic mutations occurred in annotated regions and involved 176 genes.
Among these genes, 18 genes containing 24 variants were previously characterized as
virulence-related genes in the VF catalogs (tcaAd, rnr, saeS, sasA, msrR, ssaA, capA, arls,
hlgB, sdrD, aur, hys4, isdE, isdF, hlb, essA, atl, and lip). Interestingly, all of these 18 known
virulence-related genes had variants in at least one invasive sample; yet, no such
variants were recorded in the nasal isolates with according genes. Twenty genes
showed variants in at least two invasive isolates, yet again, in genes from strains of
nasal origin these variations were absent. In the following, we will refer to such genes as
‘twice mutated genes’. Such twice mutated genes of invasive isolates include two known
virulence-related genes (atl, hlb) and 18 genes that have not been associated with
virulence so far (ebhB, pfoS/R, glpF, feoB, yvcP, sbnD, mutS2, prkC, mia4, thrC, trpD, gnd,
sodA, tagG, kdpD, metT, tcaB, opp-1F) (Supplementary Table E-2).

Yet, twice mutated gene variants of invasive versus nasal strains failed to reach
statistical significance (P-values of 0.20 and 0.07, Fisher’s exact test); only the gene ebhB
(coding for a putative Staphylococcal surface anchored giant protein) showed genetic
variations at 7 positions (1482083, 1484403, 1487821, 1491377, 1499271, 1502542,
1503065) thus covering most of the entire gene. Each of these mutations occurred in at
least 2 out of 12 invasive strains, but not in nasal strain. The difference of ebhB
mutations between invasive (7 out of 12 invasive strains) and nasal isolates (0 out of 15
nasal strains) was statistically highly significant (Fisher’s exact test, P-value = 0.0009).
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Figure 8-1 Phylogenetic tree of 27 invasive and nasal S. aureus CC5 strains collected in Saarland as well as
four representative S. aureus reference isolates in Germany based on the core-genome SNP approach. The
tree was rooted with the genome sequence from isolate N315 (ST5; NCBI accession no. NC_002745).

To get further insight in the genomic location of the twice mutated genes, we analyzed
their genomic distance to known virulence-associated genes by use of a Manhattan plot
(Figure 8-3). Mutations in genes of candidate virulence variants (twice mutated genes
marked in green) were significantly closer to variants in 18 known virulence genes
(marked in red) than to random SNP positions (P-value = 0.035).

The 18 at least twice mutated genes were related to metabolic pathways and functional
biological process terms of the Gene Ontology and tested their affiliation to protein
families using statistical term over representation analysis. The gene products of sbnD
and tcaB belong to protein family tetracycline resistance protein, TetA/multidrug
resistance protein MdtG (INTERPRO: IPR001958) that prevents the antibiotic
tetracycline from inhibiting bacterial protein synthesis. The genes trpD and kdpD take
part in the KEGG pathway two component system. However, the majority of these genes
are not characterized so far in the annotation databases (Supplementary Table E-1).
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Figure 8-2 Heatmap showing the number of genetic variations between each pair of isolates.
The highest similarity was found for clade t504 followed by t003 clade I. A direct comparison of groups revealed
higher similarity between t003 clade I and t504 as compared to t003 clade I and other t003 isolates.

8.3.3 Clustering based on DNA microarray

Hierarchical clustering analysis of the entire set of 330 MA probes yielded five major
clusters with at least three isolates (Figure 8-4a). Among them, cluster A1l contained
only invasive blood stream isolates (P-value =0.01, Fisher exact test) and was
characterized by positive signals of hsdSx.CC15 (allelic variant of type I site-specific
deoxyribonuclease subunit), and Q2YUB3 (unspecific efflux transporter). Cluster A2 (P-
value=0.23) contained only ccrB.4 positive (cassette chromosome recombinase) nasal
isolates whereas clusters A3 to A5 were without clear predisposition to invasive vs.
nasal isolates. When grouping was restricted to virulence genes annotated in the
virulence factor (VF) catalogues (174 genetic probes), six clusters were identified
(Figure 8-4, B1-6). B3 (P-value =0.08) is characterized by positive hybridization signals
of ssl01.set6_probe2_11 and ssl01.set6.MRSA252 (allelic variants of the staphylococcal
superantigen-like protein 1 termed set6) and encompasses only invasive strains. B2 (P-
value =0.66) and B4 (P-value =0.11) contain only nasal strains, whereas the remaining
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clusters represent both invasive and nasal isolates. For comparison, read counts for
these genes were related to those found in the WGS data.
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Figure 8-3 Manhattan Plot showing the genomic distribution of the 535 variants between each pair of
isolates. Related genes of 24 variants occurring in known virulence are marked in red. 54 variants that occur
exclusively in at least two virulent isolates are marked in green. By testing against randomized SNP positions, we

showed that mutated still undefined genes (green) are significantly closer to known virulence genes (red) than
expected by chance (P-value = 0.035).

Two out of these four genes (hsdSx.CC15, and Q2YUB3) were not annotated in the
reference genome. Gene set6 has 10 allelic variants; thus, a simple comparison of read
numbers across isolates was not helpful. Gene ccrB had on average an about two-fold
coverage in strains NAS22-NAS24 belonging to cluster A2 (maximal read coverage is
about 200, average read coverage is 176) compared to the strains INV4, INV6, and INV8
forming cluster B3 (maximal read coverage is about 120, average read coverage is 93).
This result matches the exclusively positive signal for this gene in strains of cluster A2
based on the MA experiment. Next, the interrelation between the phylogenetic clades,
dendrogram groups and mutations occurring in known virulence genes and at least
twice-mutated genes was addressed.

Table 8-1 reveals that the different phylogenetic clades are associated with mutations
occurring in known virulence genes as well as in twice-mutated genes but not with the
positive or negative hybridization signals for any of the DNA microarray genes.
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Figure 8-4 Dendrogram based on hierarchical clustering of DNA microarray (MA).

Invasive (INV) and nasal (NAS) isolates were indicated and also strain assignment by spa-typing and core-genome
SNP analysis into phylogenetic clades was indicated. (a) Genetic profiles of all MA genes/alleles were used (n = 330)
while (b) alternative analysis was restricted to 174 probes of annotated genes in the virulence catalogs.

8.4 Discussion

Here we confirm that WGS with core-genome SNP analysis is applicable for analyzing
the evolutionary distance between closely related CC5 MRSA strains. Using less
discriminatory methods the provenience of the recently evolved regional spa-type t504
strains remained elusive [354, 366]. Based on WGS we can now prove that the t504
strains were of clonal origin with common ancestors to the highly abundant t003 group.
Interestingly, a second clade of CC5 isolates was identified by WGS without direct
association to other t003 strains including German reference strains of other
provenience. Therefore we hypothesize that - similarly to the t504 clade - a second
clade of CC5 isolates evolved in the region of Saarland (t003 clade 1) which has not been
identified before by less discriminatory typing methods. In the present study regional
clades (t504 and t003 clade 1) were detected in the population during a hospital
admission study [354] and not following MRSA transmission in the same hospital [355].
The appearance of regional clades argues for MRSA spreading in regional health-care
associated networks. The phylogenetic tree revealed that the t003 strains were more
diverse than the t504 strains. However, the close distance between clade t504 and clade
t003 suggests that t504 strains might have evolved from common ancestors. CC5
isolates from other regions of Germany were highly distant according to cluster analysis
showing high phylogenetic diversity.
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Although WGS is able to determine genome sequences at fast pace and affordable costs
it has argued that bioinformatics techniques are still lacking that enable to extract
information about the true virulence potential of an organism from sequence data alone
[368]. As a possible means to detect functional relevant mutations, they proposed
setting up a virulence-assaying framework based on medium-throughput phenotypic
characterization of candidate strains, e.g. by assaying their adhesion to fibronectin or
cytolytic activity. Applying WGS to RN4220 strains could identify a number of SNPs
affecting the general fitness of the bacteria [369]. Most relevant to the present work
were the recent studies based on WGS who were able to associate the toxicity of 90
MRSA ST239 isolates with around 100 statistically significant SNPs [359] and studies
investigating the evolutionary dynamics of S. aureus during long-term carriage and
transition from nasal carriage to invasive infection [340, 360, 370, 371].

Table 8-1 Association of phylogenetic clades to the known virulence factor genes and the twice mutated
genes (that have variants in at least two invasive isolates but none in isolates of nasal origin)

Mutated genes detected by WGS

Phylogenetic groups (WGS) Known virulence genes Twice mutated genes

Cladel t003 sdrD, msrR, hysA, tcaA, ssaA, sasA

sbnD, mutS2, prkC, glpF, miaA, thrC, trpD, ebhB,
sodA,pfoS/R, tagG, kdpD, metT, tcaB, opp-1F,

Clade t504 essA, saeS, atl, isdF, hlb, lip yvcP
capA, rnr, isdE, arlS, hlb, hlgB, aur,
Other t003 sasA gnd, feoB

Here, we followed a similar strategy that is based on identifying genetic variations
occurring exclusively either in the group of invasive blood stream or in the group of
colonizing nasal isolates. We identified the genetic variations between all pairs of blood
stream and nasal isolates and we demonstrated that invasiveness was not associated
with phylotyping (core-genome SNP analysis) but with characteristic mutations of
known and presumed new candidate virulence genes.

We identified SNPs between blood stream and nasal isolates (twice mutated genes), but
for most mutated genes the difference was not significant presumably due to the limited
number of isolates in present exploratory study. However, a significant association with
invasiveness was detected for mutations in the giant protein ebhB gene. The ebh gene is
the largest open reading frame on the S. aureus (33kb) encoding for the Giant
Staphylococcal Surface Protein (GSSP) which is a membrane anchored protein capable
for binding of matrix components, to protect the cell against osmotic pressure changes
and to control agglutination [370, 372]. Analysis of ebhA and ebhB in some genomes
(Mu50, N315) showed that the original single open reading frame was disrupted by a
frameshift mutation leading to their permanent separation [373].

The genetic vicinity between known virulence factors and twice mutated genes of
unknown pathogenicity could be interpreted as a sign of functional relatedness in
respect to pathogenicity; however, this hypothesis remains to be confirmed by
experimental studies. Mutations in pathogenicity-associated genes may become
selected due to enhanced infectivity, increased virulence [374] or increased fitness and
better adaptation processes. Routine comparison of WGS data on blood stream and
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nasal CC5 MRSA was limited in the present study because SNP analysis was restricted to
mutations of the core genome due to technical reasons. It has been pointed out that
mobile genetic elements encoding for antibiotic resistance and virulence [372] may be
responsible for dynamic phenotypic changes. Hence, they were not covered in the
present SNP analysis focusing on virulence-associated mutations in the core-genome
[370].

In contrast to WGS with core-genome SNP approach, clustering of MA data did not allow
sub-clustering according to phylogenetic distances (Figure 4a-b). Instead, cluster
analysis based on MA apparently identified distinct clusters of invasive isolates
according to the presence of characteristic microarray hybridization profiles in
accessory genes outside the core-genome. However, discrimination of most MA based
subgroups was not significant presumably due to low number of isolates in the present
exploratory study. The presence of known and presumed virulence genes in related and
unrelated MRSA CC5 subgroups strengthens the hypothesis that MRSA virulence and
invasion was not associated with phylotyping but with characteristic mutations of
genome[359].

In conclusion, we have shown that whole-genome sequencing analyzed by phylogeny-
oriented mapping and SNP-analysis of the core-genome as well as DNA-hybridization
data detected by microarrays are able to provide important insight of complementary
nature into evolution and virulence of MRSA CC5. This approach identifies potential
new candidate virulence genes requiring confirmation by independent experimental
studies. We also demonstrated that increased virulence and invasiveness was not
associated with phylogeny. Coupled core- and accessory genome WGS analyses require
additional tools for better discrimination of infection associated and commensal MRSA
strains.
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Synopsis

In this chapter, we summarize the results achieved in this thesis and discuss the current
limitations of the introduced approaches and directions for further improvements.
Moreover, we shed light on possible implications for future research and follow-up work
for this thesis.
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9.1 Accomplished work

The enormously increasing availability of transcriptomic and epigenomic data from
different biological experiments allow for deep and comprehensive integrative analysis.
Functions of the molecular elements (genes, proteins, mutations, miRNAs, siRNAs,..etc)
that represent the entities of such genomic data are highly connected with the
underlying cellular malfunctions and disease pathways. Moreover, these molecular
elements interact with each other forming a complex interwoven regulatory machinery
that govern the cellular pathways of biological functions or the pathology of diseases.
Therefore, revealing these critical molecular interactions in complex living systems is
being considered as one of the major goals of the systems biology revolution nowadays.

In this dissertation, we have introduced practical computational approaches
implemented as freely available software tools to integrate heterogeneous sources of
large-scale genomic data and unravel the combinatorial regulatory interactions
between different molecular elements. These proposed approaches were applied to
investigate the molecular mechanisms of cellular differentiation as an example for
biological processes and human breast cancer, and diabetes as examples for complex
diseases.

First, the automated GRN pipeline constructs the genomic regulatory machinery of a cell
from expression, sequencing, and annotation datasets through three modules (Chapter
3). The GRN pipeline starts with building the weighted co-expression network, then
searches for TFs motifs in the sequences of the network genes as well as harvests the
known interactions whose source and end nodes are involved in the co-expression
networks. Next, the confirmed interactions between the two previous steps are
subjected as a prior network to a Bayesian learner module. The selection of the
Bayesian approach as a reconstruction method was based on the question of how to
infer interactions while making use of what is already known. Bayesian network
learning algorithms allow using initial network as a prior knowledge to guide the
learning process. Moreover, Bayesian networks enable dealing with noises that are
inherent in microarray data and to model hidden nodes in the network. Application of
the GRN pipeline on gene expression and sequence data of blood cell differentiation
(hematopoiesis, chapter 5), mouse diabetes samples (chapter 7), and human breast
cancer data (chapter 6) demonstrated its usefulness in unraveling the architecture and
features of the corresponding GRN network. We have also assessed the performance of
the GRN pipeline by benchmarking its results against two other statistical methods
(chapter 6) and found plausible overlaps that confirm the efficacy of the Bayesian
approach in learning the GRN topology. Nevertheless, we refer to important limitations
of Bayesian learning algorithms in the following section.

The three modules of the GRN pipeline are implemented as separated software
components (plugins) and hosted by our software framework Mebitoo for workflow
automation. We note that coupling the third module is still in progress. Mebitoo is a
software application suite written in Java that is based on the Netbeans Rich-Client
platform (RCP) project that can easily be extended with additional functionality
deployed as modules. Since the Mebitoo framework implements a uniform plugin
interface, automated data processing can be invoked using a task execution interface in

134



Chapter 9 Conclusion and outlook

order to queue multiple operations of different modules and process datasets in
parallel.

Mebitoo is appropriate for inexperienced users, researchers without programming
knowledge as well as scientific programmers, and developers. For the first group, we
provide an easy and friendly GUI that guides the user to sequentially define his tasks
(every task represents one-time running module) and gets the final results in one-click
press button. For advanced users with knowledge in java programming, Mebitoo can be
used as a ready hosting workflow automation framework for coupling more new
bioinformatics add-on plugins or modules.

While the capabilities of the GRN pipeline are limited to capture only gene interaction
information at the transcriptional level using gene expression and gene sequencing
data, we further extended it to a general integrative network-based approach that
involves also post-transcriptional interactions and reports the computational analysis
of gene and miRNA transcriptomes, DNA methylome, and somatic mutations. This
aimed at identifying putative disease drivers and novel targets for therapeutic
treatment. This approach has been applied to breast cancer data and was able to reveal
the strong association between regulatory elements from four different genomic data
sources. This integrated molecular analysis enabled by this approach substantially
expands our knowledge base of prospective genomic drivers of genes, miRNAs, and
mutations highlights candidates for further investigation in the wet lab as novel targets
for breast cancer treatment (Chapter 6). Also by benchmarking the provided approach,
it can be applied in a similar fashion to other cancer types, complex diseases, or for
studying cellular functions where such multi-dimensional datasets are available.

Regarding to the incorporation of somatic mutations with other genomic data sets, a
stand-alone pipeline named “SnvDMiR” was implemented to explore possible genomic
proximity relationships between somatic variants and both differentially methylated
CpG sites as well as differentially expressed miRNAs. Further analysis on somatic
variants that occur in close genomic vicinity to the deregulated miRNAs or CpG sites
revealed mutations that are candidate drivers of oncogenic processes in breast cancer.
With respect to the genomic mutations, we also presented an NGS pipeline to identify
core-genome SNPs and genetic variations between two groups in a similar analogy to
somatic mutations between the healthy and disease cohorts. Since Whole Genome
Sequencing data of tumor and healthy human samples were not accessible, the NGS
pipeline was utilized on two groups of MRSA bacterial isolates (nasal and invasive) to
investigate the phylogenetic positions of the recently emerged t504 clone (Spa-type
t504) in the Saarland province of Germany and to better understand the infectivity
mechanism of the invasive group as an example of a “from genotype to phenotype”
study (Chapter 8).

Motivated by this, we developed TFmiR as a freely available web server for deep and
integrative downstream analysis of combinatorial regulatory interactions between
TFs/genes and miRNAs that are involved in human disease pathogenesis. TFmiR helps
to better elucidate disease cellular mechanisms on the molecular level from a network
perspective. The TFmiR web server is based on user-provided sets of deregulated genes
and/or miRNAs regardless of the data producing technologies of either microarray
experiments, NGS, or PCR. The usefulness of TFmiR was confirmed by constructing the
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breast cancer-specific network and identifying literature-confirmed core regulators as
well as novel hub nodes of TFs/miRNAs that could be further experimentally
investigated as new potential drug targets. TFmiR was also able to characterize
important TF-miRNA co-regulatory motifs whose co-regulated genes form cooperative
functional modules in breast cancerogenesis. Our web server showed advances over
other related web tools in terms of the extended downstream analysis, the variety of
user parameters, user call scenarios, and in terms of incorporating information from
various well-established regulatory databases.

In summary, the work presented in this thesis has led to the development of interesting
computational approaches that are introduced to the scientific literature in non-
commercial software toolkits. The provided topological and functional analyses of our
frameworks as validated on cellular differentiation and complex diseases promotes our
frameworks as reliable systems biology tools for researchers across the life science
communities.

9.2 Limitations of this work

The GRN pipeline utilizing a Bayesian learner showed a remarkable potential to infer
the network topology. However, there are some inherent concerns that need to be
mentioned. For instance, the Bayesian approach doesn’t allow cycles or loops in the
inferred networks, whereas most genes have negative feedback effect on their own
expression. Furthermore, Bayesian inference algorithms require sophisticated
preprocessing procedures for the expression data such as normalization, data
denoising, missing value imputation, and discretization. We didn’t encounter such a
concern in any of our datasets because the data used were carefully preprocessed.
Another major problem of Bayesian networks is the computational difficulty and the
costly processing due to the dimensionality problem of the input microarray data. The
Bayesian learning algorithms are not generally suited for inferring larger networks with
hundreds or thousands of genes. However, assuming a sparse nature of the GRN where
each gene is regulated by relatively few genes, data partitioning methods such as
clustering and biclustering techniques have been introduced to group genes into
functionally homogenous clusters before applying the Bayesian learner.

As with any prediction method, the inferred interactions require experimental
verification such as the standard laboratory knock-out experiments, enforced
expression of the TF and monitoring the expression pattern of the target gene, and
Chipseq experiment to examine whether the binding motifs of the TF are close to the
TSS of the target gene. However, this was not established parallel to this work due to
lack of resources and time. The validation in this work was mainly based on literature-
confirmed evidences, other computational and statistical methods such as statistical
significance, functional similarity, reporting phenotypes due to gene knock-outs from
MGI database, and based on benchmarking and assessing the performance against
similar approaches. Unfortunately, gold standard networks for hematopoiesis or human
cancer were not available to systematically verify the constructed interactions using
AUC ROC and precision and recall curves.

As discussed in Chapter 6, the samples used as input for the integrative network based
approach are the matched and common ones between the four TCGA data sets (mRNA
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Expression, DNA Methylation, miRNA expression, and somatic mutations). This means
that data sets have to be consistent and belong to the same samples (cell lines/patients).
Otherwise, technical variations between different samples cultured in various labs
could lead to inappropriate results. A serious problem of this approach is the lack of
consistent data as was reviewed in the blood cell differentiation (chapter 5).
Apparently, to date not many genomic data repositories offer such consistent data for
developmental cell lines or diseases. Up to our knowledge, only the TCGA portal
provides consistent data for normal and tumor samples for various cancer types in
human.

9.3 Outlook

Although heterogeneous sources of genomic datasets have been incorporated in this
work to reverse engineer the complex regulatory networks, it is still not persuasively
sufficient to build realistic dynamic models from the acquired GRN networks. This is
due to the role of other cellular mechanisms, which are believed to contribute to the
regulatory machinery in the cell such as epigenetic mechanisms (histone modifications,
siRNA interference, regulated degradation of mRNA) and post-translational events (
protein phosphorylation, processing, or localization). Hence, there is abundant room for
further research on deciphering the regulatory roles of these cellular activities by
incorporating representing data sets to those introduced in this work. Along the same
line, the biophysics nature of the cell like the roughness characteristics of the surface
markers attached to the hematopoietic stem cells seemed to influence the
differentiation competency of stem cells. This opens up new avenues for future research
areas on assembling these biophysics properties into the full picture of the regulation
machinery. However, more deep research on the regulatory role of biophysics
characteristics of the cell needs to be undertaken in advance.

Once the roles of cellular mechanisms affecting the regulatory machinery are encoded
in the acquired network, it would be interesting to stimulate the network and study the
network dynamics to identify master regulatory elements that are responsible for most
genetic diseases and accordingly could serve as a commencing point for therapeutic
treatment. Similarly in cellular programming, this would help in identifying key driver
molecules and their interactions, which determine the conditions at which the cell
switches to the next cell stage.

On the other hand, it is fairly acceptable within the research community to classify
biological networks into gene regulatory networks, signal transduction network,
metabolic networks, and protein-protein interaction network. Though, to what extent
the transcriptional regulatory network can be decoupled from the other networks for
the sake of reducing the complexity of biological systems. Further research work needs
to examine more closely the links between the different biological networks.
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Table A-1: Imprinted Gene list. The last column indicates whether the maternal (M) or paternal (P) allele is
expressed. P/M means that the gene exhibits species or isoform-specific patterns of imprinting: human COPG2 was
reported to be paternally expressed, while this gene is maternally expressed in the mouse. Human ZIM2 is paternally
expressed, whereas the murine Zim2 gene is active on the maternal chromosome. GRB10 encodes maternally, and
paternally expressed isoforms. “?” in the imprinting column indicates genes for which the imprinting status is not

known.

Expressed Imprinting Description Gene Name
Mouse Human Human (Mouse)

Allele

M Y ? ankyrin repeat and SOCS box-containing 4 ASB4 (Asb4)

M Y ? achaete-scute complex homolog 2 | ASCL2 (Ascl2)
(Drosophila)

M ? Y ATPase, class V, type 10A ATP10A (Atp10a)

P Y brain-enriched guanylate kinase-associated | BEGAIN (Begain)
homolog (rat)

M Y Y bladder cancer associated protein Blcap

? (no ortholog) Y chromosome 15 open reading frame 2 C150RF2

M Y ? calcitonin receptor CALCR (Calcr)

M Y Y cyclin-dependent kinase inhibitor 1C (p57, [ CDKN1C (Cdknlc)
Kip2)

M Y N copper  metabolism  (Murrl) domain | COMMD1 (Commd1)
containing 1

P/M Y ? coatomer protein complex, subunit gamma 2 COPG2 (Copg2)

M ? Y carboxypeptidase A4 CPA4 (Cpa4)

P Y ? deiodinase, iodothyronine, type III DIO3 (Dio3)

P ? Y discs, large (Drosophila) homolog-associated | DLGAP2 (Dlgap2)
protein 2

P Y Y delta-like 1 homolog (Drosophila) DLK1 (DIk1)

M ? Y distal-less homeobox 5 DLXS5 (DIx5)

M Y Y GNAS complex locus GNAS (Gnas)

P/M Y Y growth factor receptor-bound protein 10 GRB10 (Grb10)

M Y ? histocompatibility 13 H13

M Y ? 5-hydroxytryptamine (serotonin) receptor 2A | HTR2A (Htr2a)

P Y Y insulin-like growth factor 2 IGF2 (Igf2)

M Y N insulin-like growth factor 2 receptor IGF2R (Igf2r)

P Y no ortholog Impact homolog (mouse) IMPACT (Impact)

P Y ? inositol polyphosphate-5-phosphatase F INPP5F (Inpp5f)

P Y Y insulin 2 INS (Ins2)

M Y Y potassium voltage-gated channel, KQT-like | KCNQ1(Kcnql)
subfamily, member 1

M Y Y Kruppel-like factor 14 KLF14 (KIf14)

M Y Y potassium channel, subfamily K, member 9 KCNK9 (Kcnk9)

P N Y lethal(3)malignant brain tumor-like protein- | L3MBTL (L3mbtl)
like

P N Y leucine rich repeat transmembrane neuronal | LRRTM1 (Lrrtm1)
1

Y Y MAGE-like 2 MAGEL2 (Magel2)

P Y Y malignant T cell amplified sequence 2 MCTS2 (Mcts2)

P Y Y mesoderm  specific transcript homolog [ MEST (Mest, Pegl)
(mouse)

P Y Y makorin ring finger protein 3 MKRN3 (Mkrn3)

P Y Y nucleosome assembly protein 1-like 5 NAP1L5 (Nap1l5)

P Y Y necdin homolog (mouse) NDN (Ndn)

P Y Y neuronatin NNAT (Nnat)
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P Y Y paternally expressed 3; PEG3 antisense RNA | PEG3 (Peg3)

(non-protein coding); zinc finger, imprinted 2
Y Y paternally expressed 10 PEG10 (Pegl0)

P Y no ortholog paternally expressed 12 (Peg12)

M Y Y pleckstrin homology-like domain, family A, | PHLDA2 (Phlda2)
member 2

P ? Y pleiomorphic adenoma gene-like 1 PLAGL1 (Plagll)

M Y Y protein phosphatase 1, regulatory (inhibitor) | PPP1R9A (Ppp1r9a)
subunit 9A

M ? Y primase, DNA, polypeptide 2 (58kDa) PRIM2 (Prim2)

P Y ? Ras protein-specific guanine nucleotide- [ RASGRF1 (Rasgrfl)
releasing factor 1

P Y Y sarcoglycan, epsilon SGCE (Sgce)

M Y Y solute carrier family 22, member 18 SLC22A18 (SIc22a18)

M Y ? solute carrier family 22 (organic cation | SLC22A2 (Slc22a2)
transporter), member 2

M Y ? solute carrier family 22 (extraneuronal | SLC22A3 (Slc22a3)
monoamine transporter), member 3

P Y ? solute carrier family 38, member 4 SLC38A4 (SIc38a4)

Y Y small nuclear ribonucleoprotein polypeptide [ SNURF-SNRPN

N; SNRPN upstream reading frame

M N Y transcription elongation factor B polypeptide | TCEB3C
3C-like;

M Y Y tissue factor pathway inhibitor 2 TFPI2 (Tfpi2)

M ? Y tumor protein p73 TP73 (Trp73)

P N ? transient receptor potential cation channel, | TRPM5 (Trpmb5)
subfamily M, member 5

M Y Y ubiquitin protein ligase E3A UBE3A (Ube3a)

P Y ? ubiquitin specific peptidase 29 USP29 (Usp29)

P ? Y Wilms tumor 1 WT1-Alt transcript (Wt1)

M Y no ortholog zinc finger, imprinted 1 (Zim1)

P/M Y Y paternally expressed 3; PEG3 antisense RNA | ZIM2 (Zim2)
(non-protein coding); zinc finger, imprinted 2

M Y ? zinc finger, imprinted 3 ZIM3 (Zim3)

P Y ? zinc finger protein 264 ZNF264 (Zfp264)

M ? Y zinc finger protein 331 ZNF331

M ? Y zinc finger protein 597 ZNF597 (Zfp597)
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Figure A-1: Heat map for the enriched transcription factor targets in the full set of imprinted genes in human

(a) and mouse (b) at p-value of 0.01. Marked in red and blue in the top line are the maternally and paternally
expressed genes, respectively.

141



Appendix B: Supplementary of Chapter 5

B cell

— . L P — e Y === | == et - = T
T g g [ (7T (G e o I (11 A 1| (B ] [ AL o i 1 A e o AL T | 1671

— e |
S | v T [ e i | TR 117 1 P
- - L - L]

=

mMMMMYILO O

Tcell
; )
s ——— 1 ——— =
S — —_— | L 1 = =T 1 e — L
[ PR (T T AT E‘NH‘ A1 rm o LA T % MTte Ar (A0 AT A ] [ e 717 1 [
LI [ ] - - LN T B TR - =

LOC100505358

Granulocytes

Exprassion
20 ]
SCMP 10

pGMPa 00

4P
PGMPb 10

GMP
20
Gra

Figure B-1 Heatmaps of differentially expressed imprinted genes (paternally expressed are in blue and
maternally expressed are in red), pluripotency genes (cyan), and hematopoietic genes (orange) along three
blood lineages (B cells, T cells, and granulocytes) based on GSE34723 dataset. Shared genes between
pluripotency and hematopoietic gene sets are marked in black. Green spots represent down-regulated genes, and red
spots represent up-regulated genes. The clustering reveals that for every developmental line, there exist imprinted as
well pluripotency and hematopoietic genes showing similar expression changes during development.
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Figure B-2: Functional similarity scores computed with the FunSimMat tool based on the biological process
GO category between: A) imprinted and hematopoietic differentially expressed genes (red) compared to the
similarity of the other genes in both gene sets (blue) and B) imprinted and differentially expressed pluripotency
genes (red) compared to the similarity of the other genes in both gene sets (blue). In A the differentially expressed
imprinted and hematopoietic genes show a significantly higher average functional similarity (~0.35 to 0.75) to each
other than the background of the other genes in the two gene sets (about 0.3). P-values vary between 0.178 and 6.0
E-237. In B the deferentially expressed imprinted and pluripotency genes show a significantly higher average
functional similarity (~0.38 to 0.64) to each other than the background (about 0.3). P-values vary between 0.006 and
4.5 E-24.
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Table B-1. List of lineage-specific imprinted, pluripotency, and hematopoietic genes in the investigated blood
lineages and the associated mammalian phenotypes due to gene knock outs according to the MGI database.

In order to backup the postulated functional role of the identified lineage markers during hematopoiesis, we checked

the MGI database for the mammalian phenotypes associated with abnormalities of hematopoiesis after knocking out

these gene alleles. This table lists important hematopoiesis-related phenotypes that are associated with each lineage

according to the MGI database. Apparently, multiple lineage-specific genes show deficiencies in either functionalities

or differentiation of a lineage, validating the used approach in identifying the lineage markers. An example from the

B-cell lineage is the knockout of the imprinted gene CD81. This is reported to cause abnormal B cell morphology (MGI
ID: MP:0004939), decreased B-1 B cell number (MP:0004978), and instability in B cell proliferation (MP:0005154,

MP:0005093). More generally, the knockout of the imprinted gene Cdknlc leads to decreasing hematopoietic stem

cell number (MP:0004810) and abnormal hematopoietic stem cell physiology (MP:0010763). From the set of

pluripotency genes, gene knockout of Relb exhibits also several abnormalities such as decreased B cell number
(MP:0005017), decreased B cell proliferation (MP:0005093), absent lymph nodes (MP:0008024), decreased pre-B
cell number (MP:0008209), and extra-medullary hematopoiesis (MP:0000240).

Impri . Hemato .
. nted Lineage-specific Plurig . . . pietic Lineage-specific hematopietic Lineage related phenotypes due to genes knock-
Lineage . . enes Lineage-specific plurigenes out
genes imprinted genes genes genes
count (Not complete)
count count
Beell 27 Ppplr9a, Ndn, Slc22a3, 102 Mpl, Smo, Cendl, Bmpr2, Relb, Gabl, 64 Cer7, Irf4, Meisl, Cd79a, MP:0002144-abnormal B cell differentiation
Pegl2, Sgee, Gatm, Arid3b, Ctbp2, Rel, Tle2, Sppl, Tecf3, Tmem176b, Fzd7, Tmem176a, MP:0004939-abnormal B cell morphology
Cdknlc, Gabl, Cmah, Mitf, Tcfeb, Leftyl, KIf2, Aktl, Crebl, Sox6, Hoxb3, Vnnl, Rbpl, MP:0004978-decreased B-1 B cell number
Asb4, Impact, Mkrn3, Hcfcl, Mef2d, Smadl, Klif4, Ewsrl, Hoxa9, Ikzf3, Tgfbr3, Nbeal2, MP:0005093-decreased B cell proliferation
Tspan32, Phlda2, Cd81, Pik3cd, Tgfbl, Irsl, Pou2fl, Lefl, Prtn3, Dtx1, Pbx1, Dnaja3, 1d2, MP:0008024-absent lymph nodes
Ddc, Mcts2, Tfpi2, Airn, Psenl, Axinl, Ren2, Dnmt3b, Pim3, Cd27, Polm, Pdgfrb, Dyrk3, MP:0008209-decreased pre-B cell number
Kenqlotl, Peg3, Sp2, Axl, Smarca4, Dhx9, Ehmt2, Mta2, Hrasl, Ccl5, 117r, Fut7, Relb, Cardll, MP:0000702-enlarged lymph nodes
Sfmbt2, Slc22al8, Napl14, Kat5, Rifl, Stk40, Rafl, Sgkl, Myc, Thsdl, Myole, KIfl, 1115, Rag2, MP:0002023-B cell derived lymphoma
Phf17 Zfx, Mbd3, Mapkl, Fgfrl, Hira, Cxcr5, Slc40al, Cebpa, Ahsp, MP:0002401-abnormal lymphopoiesis
Smarca2, Zfpl43, Carml, Parpl, Gfilb, Gprl83, Flt3, Ccl3, Lta, MP:0010763-abnormal hematopoietic stem cell
Acvrlb, Xpo4, Smarcadl, Ssrpl, P4hal, Cd83, Lilrb3, Chd7, I118rl, physiology
Pias4, Satb2, Id1, Dffa, Pafl, Mycn, Angptl, Tall, Gata3, Kit, Spib, MP:0008102-lymph node hyperplasia
Ocln, Pbrml, Rcor2, Wdr6l, Fgf4, Ifnz, Tek, Gata2, H2-Abl, MP:0004810-decreased hematopoietic stem cell
Wwp2, H3f3a, Smarccl, Rbbp7, Grb2, Hdac5, Cd34, Pf4, Thoc5, Srf, number
Med12, Mtf2, Dnmt3a, Sumol, Tcfe3, Clec2i, Hlx, Trf MP:0010763-abnormal hematopoietic stem cell
Ehmtl, Aes, Lyar, Smad4, Cdk2apl, physiology
Il6st, Terf2, Chd4, Kdmdc, Ddbl, MP:0002459-abnormal B cell physiology
Smarca5, Phfl7, Zfp57, Hdacl, Rela, MP:0008174-decreased follicular B cell number
Cdk2, Utfl, Hdac2, Grsfl, Ipo7, Smad2, MP:0008470-abnormal spleen B cell follicle
Dnmtl, Acvrl morphology
MP:0005154- increased B cell proliferation
MP:0004978- decreased B-1 B cell number
Erythrocytes 4 Sgee, Mkrn3, Kenqlotl, 8 Stat3, Ren2, Mpl, Satbl, Mef2c, 11 Tek, Add2, Flil, Crip2, Rbpl, MP:0008973-decreased erythroid progenitor cell
Sfmbt2 Acvrlb, Smadl, Hras1 Gata2, Satbl, Cd27, Ahsp, number
Mef2c, Acvrlb MP:0009395-increased nucleated erythrocyte cell
number
MP:0002875-decreased erythrocyte cell number
MP:0000245-abnormal erythropoiesis
MP:0002447-abnormal erythrocyte morphology
MP:0003656-abnormal erythrocyte physiology
MP:0003657-abnormal erythrocyte osmotic lysis
MP:0002416-abnormal proerythroblast
morphology
MP:0003131-increased erythrocyte cell number
MP:0003135-increased erythroid progenitor cell
number
Granulocytes 6 Ppplr9a, Sgce, Ndn, 3 Pml, Tert, Phcl 7 Hoxa5, Gfilb, Gata3, Rbpl, MP:0000334-decreased granulocyte number
Pegl12, Impact, Mkrn3 Angptl, Meis1, Csflr MP:0005072-abnormal  hair  follicle melanin
granule morphology
MP:0000322-increased granulocyte number
MP:0002396-abnormal  hematopoietic ~ system
morphology/development
MP:0002123-abnormal hematopoiesis
MP:0000715-decreased thymocyte number
Monocytes 9 Sgee, Pegl2, Ndn, 6 Mpl, Tle2, Tert, Phel, Rel, Smad7 19 Cebpa, Csflr, Egrl, Lgalsl, MP:0008112-abnormal monocyte differentiation
Ppplr9a, Impact, Klrblf, Hoxa5, Gfilb, Car2, Gata3, MP:0002445-abnormal mononuclear cell
Mkrn3, Phlda2, Cdknlc Rbpl, Angptl, Gimap5, Tgfbr3, differentiation
Pglyrpl, Meisl, Gata2, Semada, MP:0000220-increased monocyte cell number
Nrarp, Tek, Junb MP:0000223-decreased monocyte cell number
MP:0002123-abnormal hematopoiesis
Nkcell 12 Klrblf, Ppplr9a, Cdknlc, 16 Mpl, Tef7, Gabl, Relb, Lefl, Smo, Rifl, 45 Lck, Rbpl, Fzd7, Cer2, Cd28, MP:0008040-decreased NK T cell number

Gabl, Ndn, Slc22a3, Sgce,
Phlda2, Impact, Mkrn3,
Cd81, Ampd3

Mitf, Gatad2a, KIf2, Chd4, Rbl2, Spl,
Atrx, Axinl, Mycn

1d2, Card11, Tef7, Meisl, Txk,

Ifng, Vnnl, Tbx21, Sox6,
Eomes, Tesc, Cd3d, Ikzf3,
Bcellla, Prdml, Relb, Lefl,

MP:0002339-abnormal lymph node morphology
MP:0002123-abnormal hematopoiesis
MP:0008047-absent uterine NK cells
MP:0008038-abnormal NK T cell number
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Angptl, Tiparp, Kit, Ccl3, Tall,
Gata2, Semada, Zap70, Dyrk3,
Ccl5, Gab3, Lyl1, Hoxa9, Prtn3,
Tgfbr3, Tek, Chd7, Dtx1, H2-
Oa, Hdac9, Hlx, Polm, Rsad2

MP:0008044-increased NK cell number
MP:0008045-decreased NK cell number
MP:0008046-absent NK cells

Teell 30 Ndn, Ppplr9a, Sgce,
Pegl2, Gabl, Asb4,
Slc22a3, Mkrn3,

LOC100505359, Cdknlc,
Phlda2, Cmah, Gatm,
Impact, Igf2r, Tfpi2,
Slc22al8, Napl1l4, Sfmbt2,
Th, Peg3, Mcts2, Sp2,
Dher7, Plagll, Dde, H13,
Tspan32, Cd81, Xlrdc

70

Mpl, Tef7, Ctbp2, Sppl, Gabl, Mef2c,
Kdm6b, Zfp219, Tle2, Smad3, Leftyl,
Cendl, Ren2, Satbl, Smadl, Mitf, Lefl,
Crebl, Pias4, Psenl, Mef2d, Fgfrl,
Stk40, K12, Ocln, Socsl, Hrasl, Ewsrl,
Hdacl, Bmpr2, Mycn, Axinl, Ctcf, Aes,
Grb2, Mbd3, Piml, Ercc5, Hcfel,
Dnmt3b, Ehmt2, Pik3cd, Pafl, Mta2,
Dhx9, Terf2, Ddbl, Med12,
Gadd45gipl, Pim3, Smurfl, Tgfbl,
Arid3b, Cdk2, Hira, Id1, Prkaca, Foxd3,
Notchl, Hifla, Il6st, Leol, Tcf3,
Smad2, Kat5, Acvrlb, Trp53, Atf2,

Kdmo6a, Dnmt31

53

Lck, Fzd7, Rbpl, Tcf7, Gata2,
Dtx1, Prtn3, Tek, Tnfsfl1, 1115,
Meisl, Zap70, Bclllb, Cd3e,
Kit, Srf, Cd3d, Vnnl, Car2,
Tall, Dyrk3, Tirap, Lyll, Pf4,
Tesc, Semada, Anxal, Hoxa9,
Mef2c, Angptl, I1l7r, Gfilb,
Themis, Lta, Hdac9, Gata3, Itk,
Ctla4, Tnf, Cd34, Hhex, Hlx,
Gprl83, Cer7, Cd4, Tcra, Nkap,
Thoc5, I12ra, Trf, 114, Tbx21,
Eomes

MP:0002145-abnormal T cell differentiation
MP:0005018-decreased T cell number
MP:0008075-decreased  CD4-positive T cell
number

MP:0008079-decreased  CD8-positive T  cell
number
MP:0008083-decreased
number
MP:0002123-abnormal hematopoiesis
MP:0008051-abnormal memory T cell physiology
MP:0002024-T cell derived lymphoma
MP:0008070-absent T cells

single-positive T cell

Shared by all Lymphoid lineages:
Lefl, Axinl, Mycn

Ppplr9a, Ndn, Slc22a3, Sgce, Cdknle, Gabl, Impact, Mkrn3, Phlda2, Cd81, Meisl, Fzd7, Vnnl, Rbpl, Hoxa9, Prtn3, Dtx1, Dyrk3, Angptl, Tall, Kit, Tek, Gata2, Hlx, Mpl, Mitf, K1f2,

Shared by all Myeloid lineages:

Sgce, Mkm3, Rbpl

hoid Li

Exclusive in Ly

Slc22a3, Gatm, Gabl, Cmah, Asb4, Tspan32, Cd81, Ddc, Mcts2, Tfpi2, Airn, Peg3, Sp2, Axl, Slc22al8, Napl1l4, Phfl7, Ampd3, LOC100505359, Igf2r, Th, Dher7, Plagll, H13, Xlréc,

Cer7, Irf4, Cd79a, Tmem176b, Fzd7, Tmem176a, Sox6, Hoxb3, Vnnl, Hoxa9, Ikzf3, Nbeal2, Prtn3, Dtx1, Pbx1, Dnaja3, Id2, Polm, Pdgfrb, Dyrk3, Ccl5, 17, Fut7, Relb, Cardl1, Thsdl, Myole, KIfl, 1115, Rag2, Cxcr5,
Sle40al, Gprl83, Flt3, Ccl3, Lta, Cd83, Lilrb3, Chd7, 1118r1, Tall, Kit, Spib, Ifnz, H2-Abl, Hdac5, Cd34, Pf4, ThocS5, Srf, Clec2i, Hlx, Trf, Lck, Cer2, Cd28, Tcf7, Txk, Ifng, Tbx21, Eomes, Tesc, Cd3d, Bell la, Prdml, Lefl,
Tiparp, Zap70, Gab3, Lyll, H2-Oa, Hdac9, Rsad2, Tnfsf11, Bell1b, Cd3e, Tirap, Anxal, Themis, Itk, Ctla4, Tnf, Hhex, Cd4, Tcra, Nkap, 112ra, [14, Smo, Cend1, Bmpr2, Arid3b, Ctbp2, Sppl, Tcf3, Mitf, Tcfeb, Lefty1, KIf2,
Aktl, Crebl, Hefel, Mef2d, Kl1f4, Ewsrl, Pik3cd, Tgfbl, Irsl, Pou2fl, Psenl, Axinl, Dnmt3b, Pim3, Smarca4, Dhx9, Ehmt2, Mta2, Kat5, Rifl, Stk40, Rafl, Sgkl, Myc, Zfx, Mbd3, Mapkl, Fgfrl, Hira, Smarca2, Zfp143,
Carml, Parpl, Xpo4, Smarcadl, Ssrpl, P4hal, Pias4, Satb2, Id1, Dffa, Pafl, Mycn, Ocln, Pbrm1, Rcor2, Wdr61, Fgf4, Wwp2, H3f3a, Smarccl, Rbbp7, Grb2, Med12, Mtf2, Dnmt3a, Sumol, Tcfe3, Ehmtl, Aes, Lyar, Smad4,
Cdk2apl, 116st, Terf2, Chd4, Kdmd4c, Ddbl, Smarca5, Zfp57, Hdacl, Rela, Cdk2, Utfl, Hdac2, Grsfl, Ipo7, Smad2, Dnmtl, Acvrl, Gatad2a, Rbl2, Spl, Atrx, Kdmé6b, Zfp219, Smad3, Socsl, Ctcf, Pim1, Ercc5, Gadd45gipl,
Smurfl, Prkaca, Foxd3, Notchl, Hifla, Leol, Trp53, Atf2, Kdm6a, Dnmt31

Exclusive in Myeloid Lineages: Add2, Flil, Crip2, Hoxa5, Csflr, Egrl, Lgalsl, Gimap5, Pglyrp1, Nrarp, Junb, Stat3, Pml, Tert, Phcl, Smad7

Table B-2. Gene sets studied in this work.

Gene set Count Annotated in MS4302.0 array Description

Imprinted genes 120 86 Imprinted genes selected from the Imprinting catalogs as
described in methods

Pluripotency genes 274 272 Genes involved in the PluriNetwork

Hematopoietic genes 615 562 Genes annotated for GO:0048534: “hematopoietic or lymphoid
organ development”

Ign genes 169 155 Imprinted genes plus additional genes regulating the imprinted
genes

Ignpluri genes 20 20 Genes involved in both Ign and PluriNetwork

Ignhema genes 17 17 Genes involved in both Ign and hematopoietic genes

Ignshared genes 32 32 Combined list of genes shared between 1- Ign and
hematopoietic genes. And 2- Ign and pluripotency genes

Gene population (Total number of genes in the array) = 21390
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Figure C-1. The inferred regulatory networks for the black, pink, grey, and yellow gene modules.
For clarity, we visualized only the identified key driver genes and the nodes connected to them.
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Figure C-2. Proximity analysis of somatic mutations with the up-and down-methylated genes. Ideogram
plots showing the genomic distributions of the somatic mutations occurring at promoter regions of (a) the up-
methylated genes (234 cases), and (b) down-methylated genes (113 cases). The outer green circle shows the
entire set of differentially methylated genes, whereas the next highlighted red lines refer to the identified cases
adjacent to the somatic mutations. The inner blue circle represents the entire set of somatic SN'Vs and the next
highlighted red lines depict the matched SN'Vs in the identified cases. The plot illustrates also the fractions of
the three considered types of mutations (C->T, C->G and C->A) showing the occurrence frequency for each.
Obviously the C->T mutations for the up-methylated genes occur at a higher rate than its peers in the down-

methylated genes.

Table C-1. Ten most significant GO terms and KEGG pathways enriched in the list of the 73 candidate driver

genes.

Category Enriched term P-value
GO:0006357~regulation of transcription from RNA polymerase Il promoter 6.67E-09
GO:0006355~regulation of transcription, DNA-dependent 1.15E-07
G0:0006350~transcription 1.59E-07
GO:0051252~regulation of RNA metabolic process 1.75E-07

. G0:0045449~regulation of transcription 1.96E-07

GO  functional - -

terms G0:0034645~cellular macromolecule biosynthetic process 1.08E-06
GO:0019219~regulation of nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process 1.10E-06
GO:0010556~regulation of macromolecule biosynthetic process 1.24E-06
G0:0009059~macromolecule biosynthetic process 1.26E-06
GO:0051171~regulation of nitrogen compound metabolic process 1.33E-06
hsa05223:Non-small cell lung cancer 2.48E-03
hsa04110:Cell cycle 3.42E-03
hsa05215:Prostate cancer 1.01E-02

KEGG pathways hsa05219:Bladder cancer 1.91E-02
hsa05200:Pathways in cancer 2.32E-02
hsa05214:Glioma 4.06E-02
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Table C-2. A list of the 33 genes whose gene products are targeted by anti-cancer drugs, characterized from
the three considered drug databases, CTD, PharmGKB, and Cancer resource. (1) means that at least one drug
that targets this gene product is reported in this database, and (0) means no drugs are reported for the respective
gene in this database. Not included are substances that are known to be cancerogenous or mutagenic.

. . Cancer
Target gene | Drug and antineoplastic agents CTD PharmGKB Resource
ABCBS docetaxel; Cyclosporine; Progesterone 1 0 0
ABCG4 indole-3 carbinol; Methotrexate; exemestane; Vincristine 1 0 0
AHCTF1 Methotrexate; bisphenol A 1 0 0
AKTI U . 0126;tyrphostin AG 147.8; Ursgdeoxycholic Acid;Valproic 1 0 1
Acid;tyrphostin AG 1024; trametinib; Tretinoin
APOCI1 tanshinone; Quercetin; Fluorouracil; bexarotene; Cisplatin; Tamoxifen 1 0 1
AR Dihydrotestosterone; Acetylcysteine; celecoxib 1 0 0
ATF6 Nelfinavir; Tretinoin;bisphenol A; Cyclosporine; Curcumin 1 0 0
ATG4C epigallocatechin gallate 1 0 0
ATPIBI resveratrol; Ranitidine; vorinostat; Genistein; Progesterone; epigallocatechin 1 0 0
gallate
B4GALT7 Cytarabine; Cyclosporine 1 0 0
BIRC6 Digldrip;. Cycl‘osporine; . Cisplatip; Fluorouracil; Doxorubicin; 1 0 0
Epirubicin;Estradiol; zoledronic acid; bisphenol A
BRCA1 Tretinoin; trichostatin A; Estradiol; transplatin; troglitazone; Tunicamycin; 1 0 1
fulvestrant
CA6 Tretinoin;Carmustine 1 0 0
CCDC130 Quercetin; Tamoxifen;Cyclosporine;bisphenol A 1 0 0
CCDC(C92 Quercetin; Folic Acid 1 0 0
CD2 Dexamethasone; Methotrexate; Cyclophosphamide 1 0 0
CD79B Cyclophosphamide 1 0 0
CDC34 Estradiol; bortezomib; Fluorouracil; Tamoxifen 1 0 0
DAPKI1 paclitaxel;gemcitabine 0 1 0
EGRI Fluorouracil; gemcitabine 0 0 1
ESRI1 exemestane;tamoxifen 0 1 1
andrographolide;  cinnamic  aldehyde;  Daunorubicin;  decitabine;
JUN . . .. 0 0 1
Cisplatin;Doxorubicin
LRRC28 gemcitabine 0 0 1
MYB Fluorouracil;gemcitabine;Quercetin 0 0 1
MYC alitretionpip; Amsarcine; bicalutamide; Camtothecin; decitabine; Cisplatin; 0 0 1
Doxorubicin
NFKBI Curcumin; décitabine; Doqrubicin; Echinomycin; Fluorouracil; gefitinib; 0 0 1
indole-3-carbinol; parthenolide
NQO2 doxorubicin; cyclophosphamide 0 1 0
0S9 alitretionoin 0 0 1
SP1 Etoposide; indole-3-carbinol; lonidamine; Quercetin; Adaphostin 0 0 1
azaspirane; bisphenol A; Capsaicin; Fluorouracil; interferon alfacon-1;
STAT3 . . 0 0 1
resveratrol;sulindac sulfide; Tamoxifen
TGFBI1 Doxorubicin; Fluorouracil; Thalidomide; Entinostat; Hyaluronidase 0 0 1
TP53 4-bipheny1mine; 4 ‘ al.liin; Apigenin; 0 0 1
Atropine;bicalutamide;butylidenephthalide
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Table D-1: Final list of 58 GRN module genes and transcription factors.

Symbol Entrez Gene ID | Definition LFC (ratio) P-value Regulation

ABCC2 12780 Mus musculus ATP-binding cassette, sub-family C | 0.9920 0.0111 DOWN
(CFTR/MRP), member 2 (Abcc2), mRNA.

AHR 11622 Mus musculus aryl-hydrocarbon receptor (Ahr), mRNA. 1.0029 0.3787 upP

ALX1 216285 Mus musculus ALX homeobox 1 (Alx1), mRNA. 1.0025 0.2549 up

AP1S1 11769 Mus musculus adaptor protein complex AP-1, sigma 1 | 0.9886 0.3645 DOWN
(Ap1s1), mRNA.

AR 11835 Mus musculus androgen receptor (Ar), mRNA. 1.0027 0.4901 upP

ASPSCR1 68938 Mus musculus alveolar soft part sarcoma chromosome | 1.0093 0.0419 up
region, candidate 1 (human) (Aspscrl), transcript variant
2, mRNA.

BMF NA NA 1.0324 0.0001 up

CASP3 NA NA 0.9910 0.0208 DOWN

CCT7 12468 Mus musculus chaperonin containing Tcpl, subunit 7 (eta) | 0.9792 0.0020 DOWN
(Cct7), mRNA.

CDS1 74596 Mus musculus CDP-diacylglycerol synthase 1 (Cdsl), | 0.9952 0.7725 DOWN
mMRNA.

CEBPA 12606 Mus musculus CCAAT/enhancer binding protein (C/EBP), | 0.9868 0.3237 DOWN
alpha (Cebpa), mRNA.

CLCNKA 12733 Mus musculus chloride channel Ka (Clcnka), mRNA. 0.9908 0.0089 DOWN

DR1 13486 Mus musculus down-regulator of transcription 1 (Drl), | 0.9984 0.7765 DOWN
mMRNA.

FOXA1 15375 Mus musculus forkhead box Al (Foxal), mRNA. 0.9948 0.1571 DOWN

FOXA2 15376 Mus musculus forkhead box A2 (Foxa2), mRNA. 0.9991 0.6021 DOWN

FOXD3 15221 Mus musculus forkhead box D3 (Foxd3), mRNA. 1.0019 0.5498 upP

FOXF2 14238 Mus musculus forkhead box F2 (Foxf2), mRNA. 0.9998 0.9395 DOWN

FOXI1 14233 Mus musculus forkhead box I1 (Foxil), mRNA. 1.0043 0.0695 up

FOXJ1 15223 Mus musculus forkhead box J1 (Foxj1), mRNA. 0.9964 0.2217 DOWN

FOXJ2 60611 Mus musculus forkhead box J2 (Foxj2), mRNA. 1.0160 0.1175 up

FOXL1 14241 Mus musculus forkhead box L1 (FoxI1), mRNA. 1.0023 0.4621 upP

FOX01 NA NA 1.0125 0.3555 up

FOX04 54601 Mus musculus forkhead box 04 (Foxo4), mRNA. 1.0003 0.9086 upP

FOoXQ1 15220 Mus musculus forkhead box Q1 (Foxql), mRNA. 1.0081 0.3548 upP

GATA1 14460 Mus musculus GATA binding protein 1 (Gatal), mRNA. 0.9974 0.8083 DOWN

HNF4A 15378 Mus musculus hepatic nuclear factor 4, alpha (Hnf4a), | 0.9990 0.7515 DOWN
mMRNA.

HNF4G 30942 Mus musculus hepatocyte nuclear factor 4, gamma | 1.0041 0.1770 upP
(Hnf4g), mRNA.

IKZF1 22778 Mus musculus IKAROS family zinc finger 1 (lkzfl), | 1.0018 0.8153 up
transcript variant 1, mRNA.

MAX 17187 Mus musculus Max protein (Max), mRNA. 1.0166 0.3979 UpP

MAZ 17188 Mus musculus MYC-associated zinc finger protein (purine- | 0.9978 0.4452 DOWN
binding transcription factor) (Maz), mRNA.

MEF2C NA 1.0114 0.6041 up

NFATC2 18019 Mus musculus nuclear factor of activated T-cells, | 0.9993 0.6261 DOWN
cytoplasmic, calcineurin-dependent 2 (Nfatc2), transcript
variant 2, mRNA.

NFE2 18022 Mus musculus nuclear factor, erythroid derived 2 (Nfe2), | 1.0174 0.1184 upP
mMRNA.

NFKB1 NA 1.0048 0.6109 up

NFYA 18044 Mus musculus nuclear transcription factor-Y alpha (Nfya), | 0.9975 0.5666 DOWN
mMRNA.

NKX6-2 14912 Mus musculus NK6 homeobox 2 (Nkx6-2), mRNA. 0.9985 0.4802 DOWN

NR2F2 11819 Mus musculus nuclear receptor subfamily 2, group F, | 0.9998 0.8905 DOWN

member 2 (Nr2f2), transcript variant 2, mRNA.
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PIK3C2A
POUG6F1

PPARA

PPARG

PTF1A
RUNX1

SLC12A1
SLC16A4

SLC22A1

SPI15
SREBF1

SRY

TBP
TCF3

TCF7

TEF

VDR
ZEB1

E4BP4
TCF11IMAFG
AHRARNT

NA
19009

19013

19016

NA
12394

NA
229699

20517

NA
20787

21674

21374
21415

21414

21685

22337
21417

NA
NA
NA

NA

Mus musculus POU domain, class 6, transcription factor 1
(Pou6f1), mRNA.

Mus musculus peroxisome proliferator activated receptor
alpha (Ppara), mRNA.

Mus musculus peroxisome proliferator activated receptor
gamma (Pparg), mRNA.

NA

Mus musculus runt related transcription factor 1 (Runx1),
mMRNA.

NA

Mus musculus solute carrier family 16 (monocarboxylic
acid transporters), member 4 (Slc16a4), mRNA.

Mus musculus solute carrier family 22 (organic cation
transporter), member 1 (Slc22al), mRNA.

NA

Mus musculus sterol regulatory element binding factor 1
(Srebf1), mRNA.

Mus musculus sex determining region of Chr Y (Sry),
mMRNA.

Mus musculus TATA box binding protein (Tbp), mRNA.

Mus musculus transcription factor 3 (Tcf3), transcript
variant 1, mRNA.

Mus musculus transcription factor 7, T-cell specific (Tcf7),
mMRNA.

Mus musculus thyrotroph embryonic factor (Tef),
transcript variant 1, mRNA.

Mus musculus vitamin D receptor (Vdr), mRNA.

Mus musculus zinc finger E-box binding homeobox 1
(Zeb1), mRNA.

Unannotated in the microarray chip

Unannotated in the microarray chip

Unannotated in the microarray chip

1.0080
1.0155

1.0015

0.9966

1.0064
0.9954

1.0026
0.9898

1.0006

1.0020
0.9965

1.0003

0.9860
1.0010

0.9992

1.0029

1.0022
1.0110

NA
NA
NA

0.0003
0.0961

0.5671

0.2365

0.0099
0.5370

0.0054
0.0008

0.7509

0.4474
0.2896

0.9368

0.0673
0.6035

0.9032

0.4737

0.6336
0.4390

NA
NA
NA

up
up

up

DOWN

up
DOWN

up
DOWN

up

up
DOWN

up

DOWN
up

DOWN

up

up
up

NA
NA
NA
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Table E-1. List of the twice-mutated genes and the associated functional terms.

Gene Name Gene Symbol Description Functional / metabolic /protein family group
SA2981 1390 ebhB Putatlye Staphylococcal surface anchored protein; NA
- adhesin emb
SA2981 1815 pfoS/R Regulatory protein N.A
SA2981 1256 glpF Glycerol uptake facilitator protein N.A
SA2981_2486 feoB Ferrous iron transport protein B N.A
SA2981_2564 yvcP Two-component response regulator YvcP N.A
Tetracycline resistance protein, TetA (INTERPRO)
i i i i i tetracycline transport (GO:0015904
SA2981 0120 sbnD Siderophore staphylobactin biosynthesis protein - .V . port ( )

- SbnD antibiotic transport (G0:0042891)
drug:hydrogen antiporter activity (GO:0015307)
response to stimulus (GO:0050896)

SA2981_1100 mutS2 Recombination inhibitory protein MutS2 response to stimulus (GO:0050896)
SA2981 1178 prkC Serl'ne/threonlne protein kinase PrkC, regulator of NA
stationary phase
SA2981 1260 miaA tRNA delta(2)-isopentenylpyrophosphate NA
- transferase
SA2981 1284 thrC Threonine synthase N.A
SA2981 1323 trpD Anthranilate phosphoribosyltransferase Two-component system (KEGG)
SA2981 1468 gnd 6-phosphogllfconate dehydrogenase, NA
decarboxylating
SA2981 1511 | sodA Manganese ~superoxide —dismutase; Superoxide | 1 o\ ctimulus (GO:0050896)
dismutase (Fe)
SA2981 1826 tagG Teichoic acid translocation permease protein TagG N.A
SA2981 2019 kdpD Osmosensitive K+ channel histidine kinase KdpD Two-component system (KEGG:)
SA2981_2265 metT Methionine transporter MetT N.A
Tetracycline resistance protein, TetA (INTERPRO:)
i i i i tetracycline transport (GO:0015904
SA2981 2294 tcaB Telcoplamn resistance  associated membrane - .V : port ( )

- protein TcaB antibiotic transport (GO:0042891)
drug:hydrogen antiporter activity (G0O:0015307)
response to stimulus (GO:0050896)

SA2981 2400 opp-1F (F?rlljgtc;ri):ptlde transporter putative ATPase domain NA

Table E-2. List of the SNPs occurring in at least 2 invasive strains but in none of the nasal strains, their genes,
and the resulting amino acid change. For the amino acid change in the five cases of insertions, the original reading
frame (ORF) is shifted leading to a wide change in the amino acid chain.

Refe- Alter- Amino P-value of
Gene . SNP . .
Locus tag name Description osition rence | native acid the
P NT NT change variant
SA2981 0120 | sbnp | Siderophore  staphylobactin | )3, g5g G T W to C 4.05E-51
- biosynthesis protein SbnD
SA2981_0148 - 162408 T C none (D) 2.21E-50
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SA2981_0542 - 616048 A G none (G) 2.83E-52
SA2981_0561 - 631881 G A R to K 3.54E-53
SA2981_0710 - 783925 T C none (l) 1.36E-48
SA2981_0711 - 784904 A G QtoR 2.83E-61
ORF
SA2981_0724 - 797606 G GA . 1.81E-47
- shifted
SA2981_0874 - 921757 G A GtoD 2.97E-53
1035879 A G ltoV 4.15E-40
SA2981_0978 -
1036742 G A Mtol 1.86E-70
SA2981_1074 - 1131989 C T Ttol 3.51E-44
SA2981 1100 | muts2 | Recombination inhibitory | 4757594 C T none (S) | 9.61E-67
protein MutS2
Serine/threonine protein kinase
SA2981_1178 prkC | PrkC, regulator of stationary | 1237441 G T AtoS 2.81E-52
phase
SA2981_1251 - 1324647 C A TtoN 2.45E-37
sA2981 1256 | glpr | Glveerol uptake facilitator | 33935, c cT ORF 2.41E-29
protein shifted
tRNA delta(2)-
SA2981_1260 miaA | isopentenylpyrophosphate 1336837 A G DtoG 8.05E-45
transferase
SA2981_1284 thrC | Threonine synthase 1361487 C T StoF 1.61E-30
SA2981_1288 - 1365826 T C TtoA 1.59E-26
sA2981 1323 | trpp | Anthranilate 1409763 T C RtoR 2.78E-38
phosphoribosyltransferase
SA2981 1300 | ebhp | Putative Staphylococeal surface |-y 5n3065 | ¢ T StoN | 7.67E-41
- anchored protein; adhesin emb
sA2981 1468 | gnd | O-Phosphogluconate . 1585512 G A none (F) | 2.40E-23
dehydrogenase, decarboxylating
Manganese superoxide
SA2981_1511 sodA | dismutase; Superoxide | 1622766 C T GtoD 2.46E-33
dismutase (Fe)
SA2981_1815 | pfoS/R | Regulatory protein 1946895 C CAAT addR 1.93E-31
SA2981 1826 | tagg | Lcichoic acid  translocation | )q¢;q7, A T FtoY 2.88E-51
permease protein TagG
SA2981 2019 | kdpD | Osmosensitive K+ — channel | 5959346 G GA ORF 1.37E-53
histidine kinase KdpD shifted
SA2981 2265 | metT | Methionine transporter MetT 2394447 none (G) | 5.88E-62
SA2981_2284 - 2414503 G A AtoT 7.91E-77
Teicoplanin resistance
SA2981_2294 tcaB | associated membrane protein | 2424068 A G ItoT 1.70E-62
TcaB
SA2981_2329 - 2462332 C T none (L) 1.14E-59
SA2981_2366 - 2504026 G A PtoS 8.70E-67
SA2981_2367 - 2504949 ltoV 3.05E-58
ORF
SA2981_2370 - 2507139 C CA . 1.69E-24
- shifted
sA2081 2400 | °PP~ | Oligopeptide transporter | 5541654 c T AtoT | 4.11E-76
1F putative ATPase domain protein
SA2981_2486 feoB | Ferrous iron transport protein B 2637050 C T VtoM 3.31E-61
SA2981_2556 - 2710563 T C none (K) 2.77E-50
SA2981 2564 | yvcp | |Wo-component Tesponse | 5721091 G T PtoT 2.38E-71
regulator YvcP
SA2981_2642 - 2812721 G T Rtol 3.21E-48
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