
Data-driven Approaches for
Interactive Appearance Editing

Chuong H. Nguyen

Saarbrücken, Germany

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der

Naturwissenschaftlich-Technischen Fakultäten der
Universität des Saarlandes

December 2014

II

Betreuender Hochschullehrer – Supervisor
Prof. Dr. Hans-Peter Seidel

Gutachter – Reviewer
Dr. Tobias Ritschel
Prof. Dr. Hans-Peter Seidel
Prof. Dr. Holly Rushmeier

Dekan – Dean
Prof. Dr. Markus Bläser, Universität des Saarlandes, Saarbrücken, Germany

Kolloquium – Examination

Datum – Date:
22. June. 2015

Vorsitzender – Chair:
Prof. Dr. Philipp Slusallek, Universität des Saarlandes, Saarbrücken, Germany

Prüfer – Examiners:
Dr. Tobias Ritschel, MPI Informatik, Saarbrücken, Germany
Prof. Dr. Hans-Peter Seidel, MPI Informatik, Saarbrücken, Germany
Prof. Dr. Holly Rushmeier, Yale University, USA

Protokoll – Reporter:
Dr. Christian Richardt, MPI Informatik, Saarbrücken, Germany

Abstract

This thesis proposes several techniques for interactive editing of digital content and fast
rendering of virtual 3D scenes. Editing of digital content - such as images or 3D scenes
- is difficult, requires artistic talent and technical expertise. To alleviate these difficulties,
we exploit data-driven approaches that use the easily accessible Internet data (e. g., images,
videos, materials) to develop new tools for digital content manipulation. Our proposed
techniques allow casual users to achieve high-quality editing by interactively exploring the
manipulations without the need to understand the underlying physical models of appearance.

First, the thesis presents a fast algorithm for realistic image synthesis of virtual 3D scenes.
This serves as the core framework for a new method that allows artists to fine tune the
appearance of a rendered 3D scene. Here, artists directly paint the final appearance and the
system automatically solves for the material parameters that best match the desired look.
Along this line, an example-based material assignment approach is proposed, where the
3D models of a virtual scene can be "materialized" simply by giving a guidance source
(image/video). Next, the thesis proposes shape and color subspaces of an object that are
learned from a collection of exemplar images. These subspaces can be used to constrain
image manipulations to valid shapes and colors, or provide suggestions for manipulations.
Finally, data-driven color manifolds which contain colors of a specific context are proposed.
Such color manifolds can be used to improve color picking performance, color stylization,
compression or white balancing.

III

Kurzzusammenfassung

Diese Dissertation stellt Techniken zum interaktiven Editieren von digitalen Inhalten und
zum schnellen Rendering von virtuellen 3D Szenen vor. Digitales Editieren - seien es
Bilder oder dreidimensionale Szenen - ist kompliziert, benötigt künstlerisches Talent und
technische Expertise. Um diese Schwierigkeiten zu relativieren, nutzen wir datengesteuerte
Ansätze, die einfach zugängliche Internetdaten, wie Bilder, Videos und Materialeigenschaf-
ten, nutzen um neue Werkzeuge zur Manipulation von digitalen Inhalten zu entwickeln.
Die von uns vorgestellten Techniken erlauben Gelegenheitsnutzern das Editieren in hoher
Qualität, indem Manipulationsmöglichkeiten interaktiv exploriert werden können ohne die
zugrundeliegenden physikalischen Modelle der Bildentstehung verstehen zu müssen.

Zunächst stellen wir einen effizienten Algorithmus zur realistischen Bildsynthese von
virtuellen 3D Szenen vor. Dieser dient als Kerngerüst einer Methode, die Nutzern die Fein-
abstimmung des finalen Aussehens einer gerenderten dreidimensionalen Szene erlaubt.
Hierbei malt der Künstler direkt das beabsichtigte Aussehen und das System errechnet
automatisch die zugrundeliegenden Materialeigenschaften, die den beabsichtigten Eigen-
schaften am nahesten kommen. Zu diesem Zweck wird ein auf Beispielen basierender
Materialzuordnungsansatz vorgestellt, für den das 3D Model einer virtuellen Szene durch
das simple Anführen einer Leitquelle (Bild, Video) in Materialien aufgeteilt werden kann.
Als Nächstes schlagen wir Form- und Farbunterräume von Objektklassen vor, die aus
einer Sammlung von Beispielbildern gelernt werden. Diese Unterräume können genutzt
werden um Bildmanipulationen auf valide Formen und Farben einzuschränken oder Mani-
pulationsvorschläge zu liefern. Schließlich werden datenbasierte Farbmannigfaltigkeiten
vorgestellt, die Farben eines spezifischen Kontexts enthalten. Diese Mannigfaltigkeiten
ermöglichen eine Leistungssteigerung bei Farbauswahl, Farbstilisierung, Komprimierung
und Weißabgleich.

V

Summary

This thesis proposes several techniques for interactive editing of digital content and fast
rendering of virtual 3D scenes. Editing of digital content - such as images or 3D scenes
- is difficult, requires artistic talent and technical expertise. To alleviate these difficulties,
we exploit data-driven approaches that use the easily accessible Internet data (e. g., images,
videos, materials) to develop new tools for digital content manipulation. Our proposed
techniques allow casual users to achieve high-quality editing by interactively exploring the
manipulations without the need to understand the underlying physical models of appearance.

First, the thesis presents a fast algorithm for realistic image synthesis of virtual 3D scenes.
This serves as the core framework for a new method that allows artists to fine tune the
appearance of a rendered 3D scene. Here, artists directly paint the final appearance and the
system automatically solves for the material parameters that best match the desired look.
Along this line, an example-based material assignment approach is proposed, where the
3D models of a virtual scene can be "materialized" simply by giving a guidance source
(image/video). Next, the thesis proposes shape and color subspaces of an object that are
learned from a collection of exemplar images. These subspaces can be used to constrain
image manipulations to valid shapes and colors, or provide suggestions for manipulations.
Finally, data-driven color manifolds which contain colors of a specific context are proposed.
Such color manifolds can be used to improve color picking performance, color stylization,
compression or white balancing.

This work starts with an introduction in Chapter 1 that motivates the subjects, list the
contributions made and gives an outline of the thesis. Chapter 2 discusses some background
and reviews previous work, which are relevant for the thesis. The techniques proposed in
this thesis contribute to different building blocks of a common design pipeline, where artists
perform appearance editing using intuitive user interfaces and observe the result of either
a real-world photograph or synthesis image of a virtual 3D scene. Chapter 3 proposes a
fast rendering method that can be used for interactive visualization of different intuitive
appearance editing techniques proposed in Chapter 4–6. Furthermore, Chapter 7 proposes
a new user interface to improve both editing performance and quality. Chapter 8 concludes
the thesis and discusses some directions for future work.

Preconvolved Radiance Caching In computer graphics, digital reproduction of real-
world objects is done by means of virtual 3D scenes that contain geometries, materials,
lightings and textures. Rendering them can be considered as the simulations of light
transport to reproduce real-world appearance. Physically-based rendering, however, is
computationally expensive, therefore, improving rendering performance is neccesary to

VII

VIII

make it suitable for interactive applications. For realistic rendering of a virtual 3D scene,
the incident indirect light over a range of image pixels is often coherent. Two common
approaches to exploit this inter-pixel coherence to improve rendering performance are
Irradiance Caching and Radiance Caching. Both compute incident indirect light only
for a small subset of pixels (the cache), and later interpolate between pixels. Irradiance
Caching uses scalar values that can be interpolated efficiently, but cannot account for
shading variations caused by normal and reflectance variation between cache items , e. g.,
fine shading details due to bump mapping will be lost in Irradiance Caching. Radiance
Caching maintains directional information, e. g., to allow highlights between cache items,
but at the cost of storing and evaluating a Spherical Harmonics (SH) function per pixel. The
arithmetic and bandwidth cost for this evaluation is linear in the number of coefficients
and can be substantial. Chapter 3 proposes a method to replace it by an efficient per-cache
item pre-filtering based on MIP maps — such as previously done for environment maps —
leading to a single constant-time lookup per pixel. Additionally, per-cache item geometry
statistics stored in distance-MIP maps are used to improve the quality of each pixel’s lookup.
Cache items can be computed independently and in parallel on a Graphics Processing Unit
(GPU). The proposed technique is an order of magnitude faster than Radiance Caching
with Phong BRDFs and can be combined with Monte Carlo-raytracing, Point-based Global
Illumination or Instant Radiosity.

Surface Light Field Manipulation Chapter 4 addresses the challenge of intuitive ap-
pearance editing in scenes with complex geometric layout and complex, spatially-varying
indirect lighting. In contrast to previous work, that aimed to edit surface reflectance, the
new approach allows a user to freely manipulate the surface light field. It then finds the best
surface reflectance that “explains” the surface light field manipulation. Instead of classic
L2 fitting of reflectance to a combination of incoming and exitant illumination, a sparse L0
change of shading parameters is inferred. Consequently, no “diffuse” or “glossiness” brushes
or any such understanding of the underlying reflectance parametrization from the users is re-
quired. Instead, the system infers reflectance changes from scribbles made by a single simple
color brush tool alone: Drawing a highlight will increase Phong specular; blurring a mirror
reflection will decrease glossiness; etc. A sparse-solver framework operating on a novel
point-based, pre-convolved lighting representation proposed in Chapter 3 in combination
with screen-space edit upsampling allows to perform editing interactively on a GPU.

3D Material Style Transfer Not all 3D scenes come with assigned materials, e. g., some
scenes downloaded directly from the Internet were simply crafted without materials. When
assigned materials are not available or not appropriate, a manual assignment is tedious,
especially with complex scenes that contain a large number of objects. Chapter 5 proposes a
technique to transfer the material style or mood from a guide source such as an image or
video onto a target 3D scene. It formulates the problem as a combinatorial optimization
of assigning discrete materials extracted from the guide source to discrete objects in the
target 3D scene. The assignment is optimized to fulfill multiple goals: overall image mood
based on several image statistics; spatial material organization and grouping as well as
geometric similarity between objects that were assigned to similar materials. To be able
to use common uncalibrated images and videos with unknown geometry and lighting as

IX

guides, a material estimation derives plausible reflectance, i. e., diffuse color, specularity,
glossiness, and texture. Finally, results produced by the technique are compared to manual
material assignments in a perceptual study.

Shape and Color Subspaces While the option to change shape and color of an image
into any possible other shape or color sounds like a good idea at first, in practice too many
possible options actually decrease the human ability to make the right decision. Therefore,
the right balance between generality and reduction of choices has to be found. Chapter 6
proposes a system to restrict the manipulation of shape and color in an image to a valid
subspace which we learn from a collection of exemplar images. To this end, we automatically
align a collection of images and learn a subspace model of shape and color using principal
components. As finding perfect image correspondences for general images is not feasible,
we build an approximate partial alignment and improve bad alignments leveraging other,
more successful alignments. Our system allows the user to change color and shape in
real-time and the result is “projected” onto the subspace of meaningful changes. The change
in color and shape can either be locked or performed independently. Additional applications
include suggestion of alternative shapes or color.

Data-driven Color Manifolds Color selection is required in many computer graphics
applications, but can be tedious, as 1D or 2D user interfaces are employed to navigate in
a 3D color space. Until now the problem was considered a question of designing general
color spaces with meaningful, e. g., perceptual, parameters. Chapter 7 shows how color
selection usability can be improved by applying 1D or 2D color manifolds which predict the
most likely change of color in a specific context. A typical use case is manipulating the color
of a banana: instead of presenting a 2D+1D RGB, CIE Lab or HSV widget, a simple 1D
slider that captures the most likely change for this context is presented. Technically, for each
context, a lower-dimensional manifold with varying density from labeled Internet examples
is extracted. Finally, the increase in task performance of color selection is validated by
several user studies.

Zusammenfassung

Diese Dissertation stellt Techniken zum interaktiven Editieren von digitalen Inhalten und
zum schnellen Rendering von virtuellen 3D Szenen vor. Digitales Editieren - seien es
Bilder oder dreidimensionale Szenen - ist kompliziert, benötigt künstlerisches Talent und
technische Expertise. Um diese Schwierigkeiten zu relativieren, nutzen wir datengesteuerte
Ansätze, die einfach zugängliche Internetdaten, wie Bilder, Videos und Materialeigenschaf-
ten, nutzen um neue Werkzeuge zur Manipulation von digitalen Inhalten zu entwickeln.
Die von uns vorgestellten Techniken erlauben Gelegenheitsnutzern das Editieren in hoher
Qualität, indem Manipulationsmöglichkeiten interaktiv exploriert werden können ohne die
zugrundeliegenden physikalischen Modelle der Bildentstehung verstehen zu müssen.

Zunächst stellen wir einen effizienten Algorithmus zur realistischen Bildsynthese von virtu-
ellen 3D Szenen vor. Dieser dient als Kerngerüst einer Methode, die Nutzern die Feinabstim-
mung des finalen Aussehens einer gerenderten dreidimensionalen Szene erlaubt. Hierbei
malt der Künstler direkt das beabsichtigte Aussehen und das System errechnet automatisch
die zugrundeliegenden Materialeigenschaften, die den beabsichtigten Eigenschaften am
nahesten kommen. Zu diesem Zweck wird ein auf Beispielen basierender Materialzuord-
nungsansatz vorgestellt, für den das 3D Model einer virtuellen Szene durch das simple
Anführen einer Leitquelle (Bild, Video) in Materialien aufgeteilt werden kann. Als Nächstes
schlagen wir Form- und Farbunterräume von Objektklassen vor, die aus einer Sammlung
von Beispielbildern gelernt werden. Diese Unterräume können genutzt werden um Bildma-
nipulationen auf valide Formen und Farben einzuschränken oder Manipulationsvorschläge
zu liefern. Schließlich werden datenbasierte Farbmannigfaltigkeiten vorgestellt, die Far-
ben eines spezifischen Kontexts enthalten. Diese Mannigfaltigkeiten ermöglichen eine
Leistungssteigerung bei Farbauswahl, Farbstilisierung, Komprimierung und Weißabgleich.

Diese Arbeit beginnt mit einer Einführung in Kapitel 1, die die behandelte Thematik mo-
tiviert, die Beiträge auflistet und eine Gliederung der Arbeit aufführt. In Kapitel 2 wird der
Hintergrund der Arbeit diskutiert und relevante Arbeiten rezensiert.

Die in dieser Arbeit vorgestellten Techniken beschreiben verschiedenen Basiskomponenten
einer generischen Designpipeline, in der Künstler Erscheinungsänderungen mit Hilfe von
intuitiven Nutzerschnittstellen vornehmen und das Ergebnis in Form einer Fotografie oder
eines synthetischen Bildes einer virtuellen 3D Szene dargestellt wird. Kapitel 3 stellt eine
effiziente Renderingmethode vor, die die interaktiven Visualisierung verschiedener intui-
tiver Erscheinungsänderungen, vorgestellt in Kapiteln 4–6, ermöglicht. Weiterhin wird in
Kapitel 7 eine neuartige Nutzerschnittstelle vorgestellt, die die Qualität der Bildmanipula-
tion verbessert. Kapitel 8 beschließt die Arbeit und bespricht Möglichkeiten für zukünftige
Erweiterungen.

XI

XII

Preconvolved Radiance Caching Die Computergrafik behandelt die digitale Reproduk-
tion von Objekten der realen Welt durch virtuelle 3D Szenen, die Geometrie, Materialien,
Beleuchtung und Texturen enthalten. Rendering kann als Simulation des Lichttransports
zum Reproduzieren der Erscheinung der realen Welt angesehen werden. Allerdings ist
physikalisch-basiertes Rendering rechenintensiv und zum Ermöglichen interaktiver Anwen-
dungen ist daher eine Steigerung der Renderingperformance notwendig. Das einfallende
indirekte Licht von benachbarten Bildpixeln einer realistischen Synthese virtueller dreidi-
mensionaler Szenen ist häufig kohärent. Zwei bekannte Ansätze, um diese Kohärenz zwi-
schen den Pixeln zur Verbesserung der Renderingleistung zu nutzen, sind Irradiance Caching
und Radiance Caching. Beide berechnen das einfallende indirekte Licht nur für eine kleine
Untermenge an Pixeln (dem Cache) und interpolieren anschließend zwischen diesen. Irra-
diance Caching nutzt skalare Cacheeinträge, die effizient interpoliert werden können, kann
aber zwischen Cacheeinträgen keine durch Normalen- und Reflexionsfaktoränderungen
erzeugten Schattierungsvariationen darstellen. So gehen beispielsweise feine Schattierungs-
details aus der Verwendung von Bumpmapping beim Gebrauch von Irradiance Caching
verloren. Radiance Caching erhält gerichtete Informationen, z.B. um Glanzpunkte zwischen
Cacheeinträgen zu ermöglichen, erfordert allerdings die Speicherung und Auswertung einer
Spherical Harmonics-Funktion pro Pixel. Die arithmetischen Kosten und die Bandbreiten-
kosten dieser Evaluation sind linear in der Anzahl an Koeffizienten und können erheblich
sein. Kapitel 3 stellt eine Methode zum Ersetzen dieser Funktion durch eine Vorfilterung
pro Cacheeintrag unter Zuhilfenahme von MIP-Maps vor. Dies erlaubt die Berechnung in
konstanter Zeit mit einem einmaligen Lookup pro Pixel. Zudem werden pro Cacheeintrag in
Distanz-MIP-Maps gespeicherte Geometriestatistiken genutzt, um die Qualität der Lookups
pro Pixel zu verbessern. Die Cacheeinträge können unabhängig voneinander und paral-
lellaufend auf einer Graphics Processing Unit (GPU) berechnet werden. Die vorgestellte
Technik ist um eine Größenordnung schneller als Phong BRDFs und kann mit Monte Carlo
Raytracing, Point-based Global Illumination oder Instant Radiosity kombiniert werden.

Surface Light Field Manipulation Kapitel 4 bespricht Möglichkeiten intuitiver Er-
scheinungsänderungen in Szenen mit komplexem geometrischem Layout und komplexer,
räumlicher-variierender indirekter Beleuchtung. Im Gegensatz zu bisherigen Arbeiten, in
denen der Oberflächenreflexionfaktor editiert wird, erlaubt der neue Ansatz dem Nutzer das
Oberflächenlichtfeld frei zu manipulieren. Die Technik errechnet anschließend den Ober-
flächenreflexionfaktor, der das Oberflächenlichtfeld am besten erklärt. Anstatt einer klassi-
schen L2-Reflexionsfaktorangleichung an eine Kombination von ein- und ausgehender Be-
leuchtung, wird eine dünn besetzte L0-Änderung der Beleuchtungsparameter erstellt. Folg-
lich erfordert das System vom Nutzer kein tieferes Verständnis von Werkzeugen zum Malen
von diffusen oder glänzenden Bildbereichen oder vergleichbaren Konzepten des zugrunde-
liegenden Reflexionsfaktors. Änderungen des Reflexionsfaktors werden stattdessen anhand
von Annotationen mit einem einzelnen simplen Farbwerkzeug abgeleitet: Beispielsweise
erhöht das Malen eines Glanzpunktes den Phong Spiegelfaktor, das Verwischen einer Spie-
gelreflexion verringert den Glanz, usw. Die Technik erlaubt interaktive Änderungen durch
Verwendung einer GPU, auf der ein dünn besetztes Gleichungssystem gelöst wird, das auf
einer neuartige, punktbasierte, vorgefaltete Beleuchtungsrepräsentation basiert(Kapitel 3).

XIII

3D Material Style Transfer Nicht alle dreidimensionalen Szenen enthalten vordefinierte
Materialeigenschaften. So besitzen einige aus dem Internet geladene Szenen beispielsweise
keine oder nur unpassende Materialen. Ist dies der Fall, gestaltet sich eine manuelle Zu-
ordnung, besonders bei komplexen Szenen mit vielen unterschiedlichen Objekten, meist
mühsam. Kapitel 5 stellt hierfür eine Technik zum Transfer von Materialstil und -stimmung
anhand einer Bezugsquelle (Bild/Video) auf eine dreidimensionale Zielszene vor. Die
Technik formuliert das Problem als eine kombinatorische Optimierung der Zuordnung
von Materialien einer Bezugsquelle zu Objekten einer 3D Zielszene. Diese Zuweisung
wird für folgende Zielsetzungen simultan optimiert: Ähnlichkeit der gesamten Bildstim-
mung basierend auf unterschiedlichen Bildstatistiken, räumliche Materialorganisation und
-gruppierung sowie geometrische Ähnlichkeit zwischen Objekten, denen ähnliche Materia-
lien zugeordnet wurden. Um gewöhnliche unkalibrierte Bilder und Videos mit unbekannter
Geometrie und Beleuchtung als Bezugsquelle zu nutzen, werden die Materialparameter
wie Reflexionsfaktor, Reflexionsgrad, Glanz und Textur perzeptuell plausibel geschätzt.
Schließlich vergleicht eine perzeptuelle Studie die Ergebnisse der vorgestellten Technik
mit Ergebnissen einer manuellen Materialzuweisung.

Shape and Color Subspaces Obwohl es auf den ersten Blick erstrebenswert scheint,
Form und Farbe eines Bildes in jede mögliche andere Form und Farbe zu verändern, verrin-
gern in der Praxis zu viele Möglichkeiten die menschliche Entscheidungsfähigkeit. Folglich
muss die richtige Balance zwischen Generalität und Einschränkung der Auswahl gefunden
werden. Kapitel 6 stellt ein System zum Einschränken der Manipulationsmöglichkeiten von
Form und Farbe eines Bildes auf einen validen Unterraum vor, der aus einer Sammlung an
Beispielbildern gelernt wird. Zu diesem Zweck richten wir eine Sammlung von Bildern
automatisch aneinander aus und lernen einen Unterraum aus Form und Farbe unter Ver-
wendung der Hauptkomponentenanalyse. Da das Finden perfekter Bildkorrespondenzen
für allgemeine Bilder nicht umsetzbar ist, erstellen wir eine approximierende partielle
Ausrichtung und verbessern unbrauchbare Ausrichtungen durch Zuhilfenahme von anderen,
erfolgreicheren Ausrichtungen. Unser System erlaubt dem Nutzer die Form und Farbe in
Echtzeit zu verändern und das Ergebnis wird auf den Unterraum der plausiblen Änderungen
projiziert. Änderungen in Form und Farbe können gekoppelt oder unabhängig voneinander
durchgeführt werden. Weitere Anwendungsbeispiele sind automatisierte Vorschläge von
alternativen Formen oder Farben.

Data-driven Color Manifolds Eine Farbauswahl wird in vielen Computergrafikapplika-
tionen benötigt, kann aber mühsam sein, da ein- oder zweidimensionale Nutzerschnittstellen
verwendet werden um in einem dreidimensionalen Farbraum zu navigieren. Bisher wurde
dieses Problem als Frage des Entwurfes eines allgemeinen Farbraumes mit sinnvollen,
perzeptuellen Parametern angesehen. Kapitel 7 zeigt, wie die Nutzerfreundlichkeit einer
Farbauswahl verbessert werden kann, indem ein- oder zweidimensionale Farbmannigfaltig-
keiten verwendet werden, um die wahrscheinlichsten Farbänderungen in einem spezifischen
Kontext vorherzusagen. Ein typischer Anwendungsfall ist die Manipulation der Farbe eines
Gegenstandes, wie z.B. einer Banane: Anstatt ein 2D+1D RGB, CIE Lab oder HSV Widget
anzuzeigen, wird ein einfacher 1D Slider angezeigt, der die wahrscheinlichsten Farbän-
derungen für diesen Kontext erfasst. Aus technischer Sicht wird für jeden Kontext eine

XIV

niedrig-dimensionale Mannigfaltigkeit mit variierender Dichte aus annotierten Internetbei-
spielen extrahiert. Schließlich validiert eine Nutzerstudie die Verbesserung der Farbauswahl.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 4
1.3 Outline . 5

2 Background and Previous Work 7
2.1 Color . 7

2.1.1 Terminology . 7
2.1.2 Color Model . 8
2.1.3 Color Space . 9

2.2 Material . 10
2.2.1 Material Model . 10
2.2.2 Material Perception . 11

2.3 Rendering . 11
2.3.1 Rendering Equation . 11
2.3.2 Surface Light Fields (SLFs) . 12
2.3.3 Approximate Global Illumination 13

2.4 Appearance Editing . 16
2.4.1 Color Editing . 17
2.4.2 Light, Shadow and Material Editing 18
2.4.3 Edit Propagation . 19
2.4.4 Subspaces-aware Editing . 19
2.4.5 Style Transfer . 20
2.4.6 Appearance Manifolds . 22

2.5 Statistical Hypothesis Testing . 22
2.5.1 Hypothesis . 23
2.5.2 The p-value . 23
2.5.3 Statistical Test . 24
2.5.4 Post-hoc Test . 25
2.5.5 Effect Size . 26

3 Preconvolved Radiance Caching 27
3.1 Introduction . 28
3.2 Our Approach . 28

3.2.1 Pre-convolution . 28
3.2.2 Per-pixel Computation . 30

XV

CONTENTS XVI

3.2.3 Recursive Lookups . 31
3.2.4 Implementation . 31

3.3 Results . 32
3.4 Discussion . 32

4 Surface Light Field Manipulation in 3D Scenes 39
4.1 Introduction . 39
4.2 Problem Statement . 41
4.3 Surface Light Field Manipulations . 41

4.3.1 Tools . 41
4.3.2 Direct and Indirect Mode . 43
4.3.3 Edit Propagation . 44

4.4 Discretization . 45
4.4.1 Discrete Domain . 45
4.4.2 Discrete Operators . 46
4.4.3 Discrete Minimization . 46

4.5 GPU Implementation . 49
4.5.1 Pre-computed Visibility (G) . 50
4.5.2 Pre-convolved Radiance (K) . 51
4.5.3 Solver . 51
4.5.4 Rendering . 51
4.5.5 Upsampling . 51

4.6 Results . 53
4.7 Dicussion . 58

5 3D Material Style Transfer 61
5.1 Introduction . 61
5.2 Our Approach . 62

5.2.1 Definitions . 63
5.2.2 Material Extraction . 63
5.2.3 Material Assignment . 66
5.2.4 Optimization . 67
5.2.5 Implementation Details . 68

5.3 Results . 69
5.4 Discussion . 69

6 Shape and Color Subspaces 75
6.1 Introduction . 75
6.2 Our Approach . 76

6.2.1 Alignment . 79
6.2.2 Subspace Construction . 85

6.3 Applications and Results . 87
6.3.1 Shape and Color Manipulation 87
6.3.2 Shape and Color Suggestions . 93
6.3.3 Manipulation of Complex Images 94

6.4 Limitations . 95

XVII CONTENTS

7 Data-driven Color Manifolds 99
7.1 Introduction . 99
7.2 Our Approach . 100

7.2.1 Acquisition . 101
7.2.2 Density Estimation . 103
7.2.3 Dimensionality Reduction . 104

7.3 Algorithm Evaluations . 106
7.3.1 Algorithm Comparison . 106
7.3.2 Algorithm Analysis . 106
7.3.3 User Study . 113

7.4 Results . 118
7.4.1 Manifolds . 118
7.4.2 Applications . 121

7.5 Discussion and Limitations . 125

8 Conclusion 129
8.1 Closing Remarks . 129
8.2 Future Works . 131

8.2.1 Individuals . 131
8.2.2 Combinations . 132
8.2.3 General Outlook . 133

8.3 Message . 134

1
Introduction

This thesis proposes several new techniques for interactive appearance editing of images or
three-dimensional virtual scenes. In this first chapter, we motivate our research (Section 1.1),
present our main contributions (Section 1.2) and outline the whole thesis (Section 1.3).

1.1 Background

Digital appearance models are necessary to simulate real-world objects, ranging from
materials (e. g., human skin, trees, the sky), digital shapes of objects (e. g., 3D models of
building, trees, human) to digital captures of the real-world scenes (e. g., photographs, digital
paintings). With the advancement of the Internet technology, in recent years, more and
more content is created and shared everyday, e. g., images on photo-sharing websites (e. g.,
Flickr) and online social networks (e. g., Facebook), or 3D models on online open-source
repositories (e. g., 3D Warehouse). The increase in creative content demands for intuitive
editing tools for both artists and casual users. Digital content editing is difficult as it requires
a lot of manual work, experience, techical expertise and artistic talent. As the editing process
requires a lot of efforts, interactivity of editing tools is important during the trial-and-error
process. Still, it is difficult for casual users without training to produce high-quality results.
One possible solution to alleviate such difficulty is to use knowledge from existing data to
assist the editing process, as in data-driven approaches.

Appearance Modeling Modeling appearance dates back to pre-historic times when hu-
mans reproduced the appearance of the real world by paintings. Over time, artists developed
techniques seeking for visual impact through the use of colors in their paintings. Originating
in the Renaissance era, "chiaroscuro" is a technique that mimics the three-dimensional
volume by shading objects using light and shadow effects. Increased understanding of
colors at the time also allowed artists to create very complex paintings via realistic depiction
of real-world material appearance, e. g., by mixing six color palettes: red, yellow, blue,
green, black and white, combining with chiaroscuro and other techniques, Leonardo da
Vinci painted the Mona Lisa, which is considered as a masterwork of Renaissance painting

1

1. INTRODUCTION 2

[Feisner and Reed 2013]. Even though artists’ understanding of light and color at the
time might not align well with modern study, it set an important keystone in the history of
real-world appearance modeling.

Digital modeling of material appearance aims for realistic synthesis of computer gener-
ated images, either by empirical models inspired by physical observation [Phong 1975;
Blinn 1977] or by complex theoretical models [Cook and Torrance 1982]. These models, ei-
ther following the basic laws of physics or not, define a set of mathematical functions that can
be controlled by a set of parameters to simulate the appearance of materials. Recent research
accounts for physical correctness of light transport: The rendering equation [Kajiya 1986]
which is based on the principles of geometric optics describes physical behavior of light in a
vacuum filled with solid objects. Radiative transfer theory [Chandrasekhar 1960] describes
the spatial variation of radiance due to emission, in-scattering, absorption and out-scattering
in participating media.

Appearance models are used in engineering as a reliable source for predictive appearance.
RGB color images, having three channels: red, green, and blue that follow the color receptors
in the human eyes, are used as a standard in computer displays. Light and materials models
in virtual settings allow full three-dimensional simulations of real-world appearance and can
be used to assist designers, such as in an opera scene [Dorsey, Sillion and Greenberg 1991].
In general, appearance models set up the fundamental concepts for digital content editing
as to find the right set of parameters that achieves a specific target appearance.

Appearance Editing Appearance editing of digital content contains a wide variety of
tasks, ranging from modifying the colors of a photograph [Reinhard et al. 2001; Lischin-
ski et al. 2006; Pellacini et. al. 2007; An and Pellacini 2008], editing materials of objects
in images [Khan et al. 2006] or virtual 3D scenes [Ben-Artzi, Overbeck and Ramamoor-
thi 2006] to performing image [Schaefer, McPhail and Warren 2006] or geometry defor-
mation [Müller et al. 2005].

There are commercial software packages that assist the content editing process such as
Adobe Photoshop [Adobe Systems Incorporated 2014b] for image editing; AutoDesk Maya
[Autodesk Inc 2014], SketchUp [Trimble Navigation 2014] or Blender [Blender Founda-
tion 2014] for virtual 3D scenes, etc, yet, creating and editing of creative content are still
very challenging processes. Trained artists or casual users need to get inspiration from
real-world experiences such as cultural background, nature, historical events, etc., during
the editing process. One example case is to edit the colors of a bedroom image to make it
feel calm and serene. The psychological properties of colors and their mutual impact require
knowledge of interior design that is not easy to grasp for novice users.

While it is not easy for casual users to understand the underlying algorithms that modify
digital content appearance, existing programs provide intuitive interfaces to perform the
edits by tweaking the set of parameters. Understanding the set of parameters requires experi-
ence and certain knowledge about the software. To alleviate this difficulty, perceptual-based
parameter models were proposed, such as for glossy materials [Pellacini et. al. 2000] or
artist-friendly hair shading model [Sadeghi et al. 2010]. To further complicate the process,
the parameters lie in a high-dimensional space and their mutual impact on each other is
usually not intuitive. Nevertheless, users demand for intuitive editing techniques.

3 1.1. BACKGROUND

Interactivity If the computation is efficient enough to provide immediate feedback to
a user that adjusts the edits, interactivity is achieved. As content editing requires a lot of
trial and error with different parameter settings, digital content editors normally utilize
interactive manipulation and editing packages to assist their work flow. Interactivity allows
users to converge to their goals faster, to explore the design space and to discover new effects.
Interactive content editing is an active research area where new tools for different editing
tasks are being proposed over the years, e. g., relighting [Pellacini et. al. 2005], tone adjust-
ment [Lischinski et al. 2006] or shape deformation [Schaefer, McPhail and Warren 2006].
While some techniques require pre-computation [Sloan et. al. 2002; Ng, Ramamoorthi and
Hanrahan 2003; Ben-Artzi, Overbeck and Ramamoorthi 2006], interactivity during editing
is crucial as immediate visual feedback is required to confine the effect of manipulations
[Kerr and Pellacini 2010].

Data-driven Approaches Data-driven approaches model an activity by using data rather
than by intuition or personal experience. The major advantage of data-driven approaches is
that the modeling process is effectively guided by exploiting the mutual relationships inside
the data. On the other hand, data have to be available in order to extract a model.

Data-driven approaches have been used since the dawn of modern science. In the 18th
century, medical statistics have dealt with applications of statistics to medicine and the
health sciences. During the 1840s, statistician William Farr plotted cycles of temperature
and cholera deaths, believing that the illness was spread by "miasma" or bad air. While it was
actually spread by water-borne bacteria, Farr set up the first national system for collecting
statistics and pushed for a more data-driven approach to public health. The weather patterns
of the past from log books can be used to test the climate models [Wilkinson et al. 2011].

In computer vision, early work on data-driven approaches have been used in the construction
of a space of human faces, called Eigenfaces [Turk and Pentland 1991], which is then used
for recognition tasks. Blanz and Vetter [1999] later extended the idea by constructing a
morphable model for human faces, derived from a dataset of prototypical 3D scans of faces.
In computer graphics, data-driven approaches have been used to tackle different interesting
problems from cloth simulation [Wang, O’Brien and Ramamoorthi 2011; Miguel et al. 2012],
geometry modeling [Funkhouser et al. 2004], automatic generation of realistic indoor scenes
[Merrell, Schkufza and Koltun 2010; Yu et al. 2011] to shape manipulation [Zhou et al. 2010]
or appearance transfer [Reinhard et al. 2001; Wang et. al. 2010]. These kind of works are
particularly desired for subjective, artistic creation as they can enhance the ease of these
tasks while still providing users the freedom to control the creative process.

Preparing the data is a crucial step for data-driven approaches. Depending on the applica-
tions, data can be acquired in simple form such as a single photograph [Reinhard et al. 2001],
specific guidelines [Merrell et al. 2011] or by specialized measurements [Wang, O’Brien
and Ramamoorthi 2011; Blanz and Vetter 1999; Wang et. al. 2011]. In recent years, as the
amount of Internet data increases and becomes easier to access, they become an appealing
source for data-driven approaches. However, as these data might come from different unse-
cured sources, their reliability is limited and either fully or semi-supervised post processing
is required to refine them.

1. INTRODUCTION 4

Conclusion These observations suggest several important properties while developing
new appearance editing techniques that this thesis pursues:

• Interactivity: Interactivity is crucial for real-time feedback in a design session.
• Intuitiveness: Intuitiveness can be made possible by adopting interfaces that require less

knowledge of the underlying physical appearance models from the users.
• Practicability: In order to increase the practicability of our data-driven approaches,

Internet data (such as images, videos or materials) will be used in the scope of this thesis.

1.2 Contributions

This thesis addresses important observations outlined above and makes five contribu-
tions, based on the work published in [Scherzer et al. 2012; Nguyen et. al. 2012; Nguyen
et. al. 2013; Nguyen et. al. 2015b; Nguyen et. al. 2015].

The main contributions of Chapter 3 (based on [Scherzer et al. 2012]) are

• A novel, scalable GPU-based preconvolved radiance caching technique to efficiently
gather incident radiance in large and dynamic scenes.
• A shading scheme that re-uses the nearby pre-convolved radiance from a sparse set of

caches to shade all pixels

To this end, a new point-based, fast global illumination algorithm is proposed. This frame-
work allows interactivity in a design session and has served as the core of a new intuitive
appearance editing technique proposed in Chapter 4 (based on [Nguyen et. al. 2013]), of
which the main contributions are:

• A new user interface to manipulate surface light fields
• An approach to infer a sparse changes of reflectance from the manipulated surface light

fields
• A pre-convolved, point-based representation of a family of potential surface light fields,

that can be used for efficient manipulation, optimization and rendering

Compared to previous appearance editing approaches, the novel perspective of this work is to
permit direct manipulation of the target appearance. The system does not expose the shading
model and its parameters to the user and uses scribbles to infer the changes in reflectance.

The main contributions of Chapter 5 (based on [Nguyen et. al. 2012]) are:

• A heuristic algorithm to automatically extract materials from an image/video
• An optimization framework to optimize material appearance in a 3D scene

The proposed system advances as a new tool for automatic material assignment using casual
exemplars, e. g., Internet images.

The main contributions of Chapter 6 (based on [Nguyen et. al. 2015b]) are:

• Efficient partial alignment of images in casual image collections with varying appearance
• Completion of partial alignment to a global alignment for all images using an alignment

graph

5 1.3. OUTLINE

• A novel interactive user interface for shape and color subspace manipulation that preserves
detail

Built from casual image collections (such as images from the Internet), our shape and
color subspaces encode a valid space for an object class that can be used as a guidance for
interactive manipulations and suggestions.

Orthogonal to new methods for intuitive content editing, new user interfaces can greatly
improve content editing tasks, one such instance is the color picker which is one of the most
common interfaces used for image and video editing. The main contributions of Chapter 7
(based on [Nguyen et. al. 2015]) are:

• A class-specific color manifold
• An analysis of manifold construction using different non-linear and linear dimensionality

reduction methods
• User studies that confirm the usefulness of the proposed manifolds

Data-driven color manifolds are constructed from easily accessible data, e. g., Internet
images, thus, highly practical, and can be used as an alternative to classic color pickers in
order to improve performance and quality of color editing tasks.

1.3 Outline

This thesis is structured as follows. After this introduction, we discuss some background
and review previous work in Chapter 2. From Chapter 3 to Chapter 7, five novel techniques
are presented in detail. More specifically, Chapter 3 proposes a new interactive global
illumination rendering algorithm that is further used to develop a new material editing
scheme based on manipulation of surface light fields in Chapter 4. Next, we propose a
system to automatically materialize a virtual three-dimensional scene in Chapter 5. In
Chapter 6, shape and color subspace for an object class are proposed to improve image
manipulations. Finally, to improve color editing tasks, a data-driven approach to extract
color manifolds from a specific context is proposed in Chapter 7. The thesis is completed
by a conclusion in Chapter 8 which also contains a discussion of future work.

2
Background

and Previous Work

In this chapter, we recall some background and previous work in color and material, global
illumination rendering, appearance editing, as well as statistical hypothesis testing. First,
we review some background on color in Section 2.1 and material models in Section 2.2. Our
discussion of global illumination rendering will start in Section 2.3. Next, we review some
appearance editing techniques that are most related to our work in Section 2.4. Finally, we
briefly discuss some background on statistical hypothesis testing in Section 2.5.

2.1 Color

Perception of colors is a subjective process where the human visual system responds to
the stimuli that are produced when incoming light reacts with three types of cone photo
receptors in the eye: L, M and S cones. As the physical light consists of a continuous
spectrum of wavelengths, these names refer to the long-wavelength (L), middle-wavelength
(M), and short-wavelength (S) sensitive cones, respectively. Before discussions about color
models and color spaces, we first review some color terminology.

2.1.1 Terminology

Here we describe some common terminology used in color appearance modeling, as defined
in [Fairchild 2005], and will be used in this thesis. Detailed exemplars are given in Figure 2.1.

Hue is the degree to which an area appears to be similar to or different from one of the
perceived colors: red, yellow, green, and blue, (the unique hues) or to a combination of two
of them.

Brightness (luminance) is an attribute of a visual sensation according to which an area
appears to emit more or less light.

Lightness is the brightness of an area judged relative to the brightness of a similarly illu-

7

2. BACKGROUND AND PREVIOUS WORK 8

Figure 2.1: A scene consists of four boxes illuminated by an area light source is used to explain
different color terminology. The three cubes B, G, and R are of three different hues: blue, green,
and red. The W cube is white and thus achromatic, possessing no hue. For every cube, each
face is illuminated differently and has different brightness. However, all visible faces of each cube
have the same lightness as their brightness relative to the brightness of a similar illuminated white
object are identical (Equation 2.1). The faces of the cubes with stronger illumination exhibit greater
colorfulness, but the chroma is roughly constant within each cube (Equation 2.2). Finally, for each
cube, the saturations of all faces are approximately constant (Equation 2.3).

minated area that appears to be white or highly transmitting.

Lightness =
Brightness

Brightness(White)
(2.1)

Colorfulness is an attribute of a visual sensation according to which the perceived color
of an area appears to be more or less chromatic.

Chroma is the colorfulness of an area judged as a proportion of the brightness of a similarly
illuminated area that appears white or highly transmitting.

Chroma =
Color f ulness

Brightness(White)
(2.2)

Saturation is the colorfulness of a color in proportion to its brightness.

Saturation =
Color f ulness

Brightness
=

Chroma
Lightness

(2.3)

2.1.2 Color Model

A color model is a mathematical model which describes colors as tuples of numbers, typ-
ically as 3 (e. g., RGB, HSV, LAB) or 4 values (e. g., CMYK). Color model can be derived
based on the physics of light, color perception of the eyes or the color reproduction by inks.
Here we will discuss color models (Figure 2.2) that are normally used for color pickers and
image editing software (See Section 2.4.1).

9 2.1. COLOR

RGB is a color model that uses the three primary (red, green, blue) additive colors and their
mixtures to compose all other colors. The mixture of all three colors produces white. The
cyan, magenta, yellow and key (black) inks absorb colored light. CMYK is a substractive
color model, used in most commercial color printing (books, magazines, etc.). In the
CMYK model, white is the natural color of the paper or background in the absence of inks
while black is the full combination of colored inks. HSV describes colors in term of hue,
saturation and value (brightness). HSV uses the basic color concepts as its components and
is quite similar to the way human perceive colors. The CIEXYZ color model, created by
the International Commission on Illumination in 1931 [CIE 1931], is a mapping system that
uses tristimulus values to reproduce any color that a human eye can perceive. The CIEXYZ
model takes into account the chromatic response of different types of cones (in the retina
of the eyes) to different color and light. It is widely considered as the most accurate color
model. CIELAB is a perceptual-based color model designed to approximate human vision.
CIELAB use three components: lightness, and two opposing color channels red-green (a)
and yellow-blue (b) to represent the theoretical range of human vision.

Figure 2.2: RGB (1st col.), CYMK (2nd col.), HSV (3rd col.) and CIELAB (4th col.) color model.

2.1.3 Color Space

A color space is a specific implementation of a color model by adding a specific mapping
function between the color model and a reference color space (such as CIELAB or CIEXYZ
color spaces) to define the color gamut (certain complete subset of color) within the reference
color space. Note that, CIELAB and CIEXYZ are both a color model and a color space.

A vast choice of different physical color spaces such as sRGB, AdobeRGB based on the
RGB model, and perceptual color spaces such as CIE Lab and CIE XYZ or CIECAM02
[Moroney et al. 2002] were proposed over the years. The discussion of what space or what
model is best for which purpose is extensive; some are discussed in [Tkalcic and Tasic 2003].

Specialized Color Spaces In computer vision, some specialized color spaces have
been proposed by extracting statistics of colors. An example is the work of Hsu, Abdel-
Mottaleb and Jain [2002], who proposed a color space for human skin to be used for face
detection. They use the principal component analysis (PCA), which implies that the best
manipulation happens along a particular linear direction in RGB with equally-sized steps.
Image-dependent PCA has also been used to improve compression of color images [Clausen
and Wechsler 2000]. For a general survey of dimension-reduction techniques in color

2. BACKGROUND AND PREVIOUS WORK 10

science, where they are mostly applied to reducing high-dimensional spectral signals to
low-dimensional spaces, see Tzeng and Berns [2005]. The color science community has
addressed the deformation of space to fit to certain data for problems of linearization in agree-
ment to some measurement, e. g., hue [Lissner and Urban 2009]. Omer and Werman [2004]
use a set of 1D-subsets of a color space (lines) to detect and reduce distortions of colors in ac-
quisition and reproduction of images. They extract multiple disconnected 1D lines and do not
account for varying (perceptual) density of color distribution. While multiple disconnected
lines can serve as a regularization to restrict the set of colors to plausible ones, they do not
allow for an intuitive user interface as there is no obvious way how to embed a set of discon-
nected lines into a single slider. Finally, they do not capture two-dimensional relationships.

2.2 Material

In computer graphics, creating realistic images requires simulating and modeling of real
world materials. While the appearance of an object from a certain view in specific illumina-
tion settings can be represented by colors alone, it is not obvious to predict object appearance
under different views or different illuminations. In this case, material models can be used
as a predictive model for object appearance under arbitrary views and illumination settings.
Material models contain a higher number of dimensions compared to color models.

2.2.1 Material Model

Material models can (potentially) account for all effects of light scattering through surfaces
such as sub-surface scattering in translucent materials (e. g., milk, skin), wavelength-
dependent effects (e. g., fluorescence). Various material models with different levels of
complexity have been proposed over the years.

In this thesis, we consider a subclass of materials that only accounts for the reflection of
light within the upper hemisphere, modeled by the Bi-directional Reflectance Distribution
Function (BRDF). The BRDF is a four-dimensional function that defines how light is
reflected at an opaque surface.

In general, BRDF models can be classified into empirical models, often not physically-
correct, e. g., Phong [1975], Blinn [1977], and physically-based models, e. g., Cook and
Torrance [1982], Ward and Heckbert [1992], or intermediate models that stay between
empirical and physically-correct, e. g., Schlick [1994] or Ashikmin and Shirley [2000].
Empirical models are computationally efficient but lack the physical validity. Therefore,
they are used in applications where interactivity is important (e. g., interactive global il-
lumination). Physically-correct models involve higher computational costs are adapted
to applications that need physically-based rendering. In the scope of this thesis, we use
Phong model as it is widely used by artists, easier for artistic control and better suited to
our proposed interactive applications.

Recently, there are approaches that tried to extract material properties from captured data.
Materials shared by several surfaces can be acquired from a single image [Tominaga and
Tanaka 2000] or a clustered of images captured under controlled environment such as in

11 2.3. RENDERING

the work of Lensch et al. [2003] and Matusik et al. [2003], or via user interaction [Dong
et. al. 2011].

2.2.2 Material Perception

While material models are widely used in practice, “thinking” in terms of parameters such
as “gloss” does not map well to human perception. Even though some perceptual-motivated
material models were proposed [Pellacini et. al. 2000; Wills et al. 2009; Sadeghi et al. 2010],
dealing with material models in a perceptually meaningful way stays challenging. The
perceptual disambiguation of light and materials under direct [Land and McCann 1971] or
indirect [Langer 1999] illuminants further complicates the issue. Nishida and Shinya [1998]
report difficulties in matching gloss in the Phong model for height fields of different spatial
frequency and amplitude. The relation between measured specular gloss values and the
perceived gloss is highly non-linear, where the sensitivity for changes is higher at extreme
(low and high) scale values than in the middle [Obein, Knoblauch and Viéot 2004]. Doer-
schner, Maloney and Boyaci [2010] observe that background affects perceived gloss and
albedo markedly: they are higher for objects placed in front of a dark background than a
bright one. Fleming, Dror and Adelson [2003] showed that glossiness constancy is not
perfect in illumination conditions close to the real world, when captured HDR environment
maps are used to illuminate rendered scenes. Vangorp, Laurijssen and Dutré [2007] per-
formed experiments for even more complex, realistically rendered scenes, and observed
that identical materials may have different appearance for differently shaped objects. Also,
the detectability of perceived differences between materials with manipulated reflectance
parameters depends on the type of lighting and object shape. All those observations suggest
a weak material constancy under varying illumination, object shapes, surface structure,
different object layout, and viewing conditions. This may indicate that judging material
properties independently without taking all these factors into account might be difficult.

2.3 Rendering

Realistic synthesis of virtual 3D scenes can be considered as the simulations of light trans-
port. In this section, our discussion of global illumination rendering will start with some
theoretical background and basic notation in rendering (Section 2.3.1) that are later used
in Chapter 3 and Chapter 4. We then discuss computationally efficient rendering techniques
(Section 2.3.3) that are used in rendering and editing of physically-based illumination.

2.3.1 Rendering Equation

The rendering equation (RE) [Kajiya 1986] describes the radiance Lo leaving at location
x on a surface M ⊆ R3 in direction ωo as an integration over all incoming directions. In
the following, we will ignore the dependency on wavelength and assume all operations are
performed on all color channels.

Lo(x,ωo) = Le(x,ωo)+
∫
S2

Li(x,ωi)R(x,ωi,ωo)〈n(x),ωi〉+dωi,

2. BACKGROUND AND PREVIOUS WORK 12

where Le is the emitted radiance, Li is the radiance coming toward x from direction ωi,
n(x) is the normal at x, R(x,ωi,ωo) ∈M ×S2×S2→ R+ is the BRDF function from the
incoming direction ωi to the outgoing direction ωo.

Figure 2.3: The actions of G and K at a single point x. The operator G converts exitant surface
radiance (left) directed toward x into incoming radiance (middle), where it is again mapped into
exitant surface radiance by the reflection operator K (right).

Light reflection can be understood as a convolution of incoming radiance Li with the BRDF
R, we can rewrite the rendering equation in operator form [Arvo, Torrance and Smits 1994],
using the reflection operator K ∈ (M ×S2×S2)× (M ×S2)→M ×S2 (Figure 2.3),

K(R)Li(x,ωo) :=
∫
S2

Li(x,ωi)R(x,ωi,ωo)〈n(x),ωi〉+dωi

Next, we define a geometry operator G ∈M ×S2→M ×S2 produces the field of incident
radiance from a field of exitant radiance (Figure 2.3):

GLo(x,ω) := Lo(v(x,ω),ω),

where the raycasting function v(x,ω) returns the position that is closest to x along a ray from
x in direction ω . This operator includes the visibility and turns distance surface radiance
into local incident radiance. This allows to rewrite the RE as

Lo = Le +K(R)GLo,

Arvo, Torrance and Smits [1994] show that such equation can be solved using an infinite
Neumann series and the solution to the RE is

Lo = Le +K(R)GLe +K(R)GK(R)GLe +

Or shorter, using the i-bounce transport operator T

Ti(R) =
i

∑
j=1

(K(R)G) j−1 and T0(R) = I.

2.3.2 Surface Light Fields (SLFs)

Light field represents the radiance at a point x in space in a given direction ω . Light fields can
be used to reconstruct a faithful image-based rendering by densely sampling the plenoptic
function using a camera array [Levoy and Hanrahan 1996; Gortler et al. 1996].

13 2.3. RENDERING

Similar to light fields, SLFs [Miller, Rubin and Ponceleon 1998] map every location x on a
surface M and direction ω to the outgoing radiance Lo(x,ω) ∈M ×S2→ R+. We simply
define Lo(x) as the SLF at location x. In this thesis, we restrict the viewing directions to the
upper hemisphere. Intuitively, a SLF describes how a surface looks from different viewing
directions. Diffuse surfaces are invariant under changing of view directions. Little spheres
will be used in this thesis to visualize the SLF at a certain location (Figure 2.4). In Chapter 4,
we propose a new material editing approach that is based on the manipulation of SLFs.

More general than BRDF, SLFs can be combined, edited [Wood et al. 2000] and displayed
interactively [Horn and Chen 2007]. Regrettably, SLFs resulting from this approach are not
always physically meaningful or valid and manipulation is restricted to basic compositing.

2.3.3 Approximate Global Illumination

Solving the rendering equation for a given scene is the main target of realistic render-
ing. Unbiased techniques (e. g., path tracing, bidirectional path tracing [Lafortune and
Willems 1993], Metropolis light transport [Veach and Guibas 1997]) do not introduce any
systematic error into solving the RE. While these techniques generate physically correct
images, they are computationally expensive and not applicable for interactivity. In this
section, we review techniques that approximate global illumination, producing plausible
rendered images in a computational efficient manner.

Irradiance and Radiance Caching To approximate global illumination, the idea of
re-using illumination computation results between pixels dates back to work by Ward, Ru-
binstein and Clear [1988], where scalar irradiance incident on diffuse surfaces is computed
using raytracing for a subset of pixels and interpolated for the others. Several different ap-
proaches were proposed to place [Greger et al. 1998] and interpolate cache items, including
the idea of using gradients [Ward and Heckbert 1992].

Irradiance caching [Ward, Rubinstein and Clear 1988] turns reflection computation into a
mixture of irradiance computed for a number of discrete cache items

Lo(x,ωo) = ρd(x)
nc

∑
j=1

w(x,x j)E(x j),

where w(x,x j) ∈ R3 → [0,1] is a weighting function such as a Gaussian kernel where
∑

nc
j=1 w(x,x j) = 1 for a fixed x ∈ R3, E is the irradiance at cache location x j and ρd(x) the

diffuse albedo. Doing so, the costly irradiance computation is only required at a fixed,
low number nc of discrete cache locations x j which allows to pre-compute and store it. In
practice, the sum is iterated only over a low number of nearby cache items, where w is
non-zero. However, to shade at a pixel, several cache items have to be evaluated, i. e., the
reflectance operator must be applied. Although the method handles diffuse color bleeding
nicely, details on highly specular surfaces are often missing.

Radiance Caching [Křivánek et al. 2005] extends Irradiance Caching, in that it interpolates

2. BACKGROUND AND PREVIOUS WORK 14

GLe K(R)GLe GK(R)GLe K(R)GK(R)GLe

Le

R

L o

Lo

+

+

+

+
=

=
=

=

+

x

x0

x1

x2

x3

Figure 2.4: Steps of different operators at four different locations x0,x1,x2,x3 (rows). The first
column shows the location (x) in 3D. The second column shows the emitted radiance (Le) (top) and
a 2D slice of the BRDF (R) (bottom). Note that only x0 lies on a self-emitting area light source, it is
colored white (area light) and the others are colored black. Furthermore, x0,x1,x3 lie on diffuse sur-
faces, their BRDF slices are colored homogeneously, while the slice of R(x2) shows a specular white
highlight. In the third column, operator G turns distance surface radiance (colored arrows) into local
field (colored semicircle that gathers all the arrowheads). Scene frames are colored according to Le.
In the fourth column, scene frames are colored according to the diffuse color of BRDF; at every row,
operator K convolves local field radiance (colored semicircle from the third column) and BRDF to sur-
face radiance (dashed colored curves). Further bounces are traced by applying operator G (5st col.),
and K (6st col.) alternatively, again. The final column shows the surface light field as the outgoing
radiance Lo = K(R)GLe +K(R)GK(R)GLe at different outgoing direction ωo after 2 bounces.

15 2.3. RENDERING

the incoming light and performs the reflection every time a cache item is queried:

Lo(x,ωo) =
nc

∑
j=1

w(x,x j)
∫
S2

Li(x j,ωi)R(x,ωi,ωo)〈n(x),ωi〉+dωi.

If the incoming light field has fine details, the reflection can be a costly operation .

Radiance Caching represents incoming radiance Li(x,ωi) using the spherical harmonics
basis:

Li(x,ωi)≈
nd

∑
k=1

ck(x)Bk(ωi),

where c1, . . . ,cnd are nd coefficients and Bk(ωi) is the k-th SH basis function [Sloan et. al. 2002].
Similarly, the BRDF can be approximated with

R(x,ωi,ωo)≈
nd

∑
k=1

fk(x,ωo)Bk(ωi),

using nd coefficients f1, . . . , fnd . To reflect the incoming lighting using the BRDF R at
position x, only a dot product is required:

Lo(x,ωo) = (Li ∗R)(x,ωo)≈
nd

∑
k=1

ck(x) fk(x,ωo)

Computationally, for every pixel the evaluation requires interpolating the SH coefficients
of the incoming radiance, arithmetic operations for spherical harmonics rotation into the
local frame, and a loop over nd coefficients, that in each step performs a (texture-) read per
operation for ck and a multiplication with the BRDF coefficient fk. In short, the per-pixel
work again is linear in the number of coefficients, i. e., in the amount of directional detail
that can be represented.

Radiance Caching [Křivánek et al. 2005] overcomes the limitation to diffuse reflectance
by storing incoming radiance as a directional function, interpolating it between pixels and
convolving with the BRDF for every pixel. For highly specular surfaces, however, a high
number of SH coefficients has to be stored and evaluated per pixel i. e., a simple dot-product,
but on a high-dimensional vector. For alternative representations of the radiance function
[Gautron et. al. 2004] the quality can be improved, but the storage and computational
cost remain the same. A GPU friendly version of radiance caching is based on splatting
[Gautron et. al. 2005]: instead of finding the cache items that map to a pixel, cache items
are traversed and mapped to all pixels they affect. Vector irradiance allows to approximate
the lighting directionality of RC using a number of discrete directions but at a cost similar
to IC [Tabellion and Lamorlette 2004]. This works well if surfaces are moderately glossy
and lighting is dominated by a low number of dominant light directions.

Enviromentmap Pre-filtering To avoid computing the BRDF-lighting product in the
case of distant lighting, pre-convolved irradiance maps were used [Greene 1986; Heidrich
and Seidel 1999]. The idea to use MIP maps for this purpose is as old as MIP mapping itself
[Williams 1983]. Heidrich and Seidel [1999] generalize the original diffuse pre-convolution

2. BACKGROUND AND PREVIOUS WORK 16

to glossy reflections. Multiple reads from a MIP map can be used to approximate the
convolution with BRDF more faithfully [Kautz et al. 2000]. Alternatively, environment
maps can be stored in the frequency domain and convolved with BRDFs using dot products
[Ramamoorthi and Hanrahan 2001].

Pre-computed Radiance Transfer Pre-computed radiance transfer (PRT) methods [Sloan
et. al. 2002] address the issue of computing the convolution of BRDF and lighting, or in
the case of distant lighting the triple product of light, visibility and reflectance. Using
wavelets, the complexity of products can be reduced drastically [Ng, Ramamoorthi and
Hanrahan 2003] when exploiting sparseness. However, non-linear wavelet compression
requires irregular and dynamic data structures that do not map well to GPUs.

Point-based Global Illumination For complex local lighting and global illumination,
most PRT and environment map pre-filtering ideas do not apply. Instead, Instant Radiosity
[Keller 1997] (IR) or Point-based Global Illumination [Christensen 2008] (PBGI) are used,
in particular in interactive GPU-based solutions [Ritschel et. al. 2008; Ritschel et. al. 2009a].
In such methods, upsampling based on regular structures is pre-dominant [Sloan et. al. 2007],
e. g., using joint bilateral upsampling or edge-aware G-buffer blurs [Laine et al. 2007].

Voxel-based Global Illumination Earlier, Malgouyres [2002] approximated global il-
lumination by using a voxel-based representation for discrete radiosity solver; Haumont
and Warzée [2002] proposed a fast automatic method to convert polygonal scenes into
volumetric representation, however, it is still computationally heavy and not suitable for
realtime applications. Later, voxel scene representations have gained attention due to the
advance of powerful GPUs; it was shown how to efficiently exploit the rasterization pipeline
of graphics hardware to generate a voxelized grid of a polygonal scene in real-time [Dong
et. al. 2004; Eisemann and Décoret 2008] and even giga-voxel grids can be processed at
interactive rates [Crassin et. al. 2009]. Recently, Crassin et. al. [2011] used hierarchical
voxel octree representation of a scene, coupled with an approximate voxel cone tracing for
fast estimation of visibility and incoming energy; as a result, global illumination can be
computed interactively.

2.4 Appearance Editing

Appearance editing is a process where an artist seeks for a specific visual outlook of images
or virtual 3D scenes that matches a certain vision. Many methods were proposed over
the years, and in this section, we will only discuss some that are most related to our work.
Fundamental editing operations such as color editing in images is discussed in Section 2.4.1
and light, shadow, material editing in 3D scenes are discussed in Section 2.4.2. Next, two
instances of low-level editing techniques: edit propagation and subspace-aware editing
techniques, are discussed in Section 2.4.3 and Section 2.4.4, respectively. We recall some
work on style transfer, a high-level editing technique, in Section 2.4.5 and finally, appearance
manifold in Section 2.4.6.

17 2.4. APPEARANCE EDITING

2.4.1 Color Editing

Figure 2.5: Common color pickers. On the left are the HSV (a-c), RGB (d-f), LAB (g-i) color pickers.
On the right, from top to bottom are the HTML color chart, the color picker based on hue wheel
of QT and Photoshop’s color swatches. Finally, on the bottom right are several color schemes
from Adobe Color [Adobe Systems Incorporated 2014a].

Editing color in photographs is one of the most common digital content editing task. Color
editing is the process of replacing the original colors in a photograph by newly selected
colors from a color picker to alter image appearance, e. g., to re-color human skin in images.

Color Picker A color picker is an utility, usually found within graphics software, used
to choose colors or create color schemes. A color picker provides an interface to traverse
the higher dimensional color space in 2D. Color pickers can vary in interface, e. g., an HSV
color picker that uses the HSV color model (Section 2.1.2) has two rectangles to create a
range of colors, the thin rectangle on the right for one color component, such as hue, and
the square on the left for the remaining color components, such as saturation and value
(Figure 2.5 (a)). Adobe Photoshop provides RGB, HSV and LAB color pickers and many
color pickers exist on the World Wide Web that include features such as color harmonization,
or a collection of predefined color schemes (Figure 2.5).

Color Selection As a human-computer interaction, color selection has received only
little attention with the exception of work by Schwarz, Cowan and Beatty [1987] as well
as by Douglas and Kirkpatrick [1999]. They found that the choice of color space has only
little impact on performance when comparing different color spaces and visual feedback
is the most important usability factor. Performance of specialized color spaces for color
selection tasks [Hsu, Abdel-Mottaleb and Jain 2002; Omer and Werman 2004] are not well
studied. Shapira, Shamir and Cohen-Or [2009] present an exploratory interface to edit image
appearance interactively. Their approach is also concerned with modeling the distribution
of colors. Color distribution is modeled as mixture of Gaussians and used for manipulation.
A user can visually navigate the high-dimensional space of possible color manipulations by
transforming the Gaussian mixtures. Each pixel’s color follows its distribution accordingly.

2. BACKGROUND AND PREVIOUS WORK 18

Color Templates and Themes The relation of images to colors, called “Image Themes”
is extracted, transferred and enhanced in the works of [Wang et. al. 2010; Wang et. al. 2011].
Color templates are a pre-defined discrete selection of colors. Popular Internet sites, such as
Adobe Color [Adobe Systems Incorporated 2014a], provide a large collection of such color
templates. Templates are well-suited for picking a combination of colors, but less suited
to fine adjustment of colors. Hue templates were studied by Matsuda [1995] and later used
for color harmonization [Cohen-Or et al. 2006]. A perceptual study of such color templates
was conducted by ODonovan et. al. [2011].

2.4.2 Light, Shadow and Material Editing

Light, shadow and material editing approaches are basically classified into two main cat-
egories: forward and inverse. Forward methods allow the user to perform manipulation by
changing the parameters of light, shadow or material directly and provide interactive feed-
back. On the other hand, inverse approaches allow the user to specify a desired appearance
and the matching parameters of reflectance, light or geometry is found automatically.

Forward Approaches Interactive relighting techniques assume fixed geometry and ma-
terials. The user can change the light parameters and the relighting system interactively
re-lights the scenes. Pellacini et. al. [2005] used deferred shading to allow interactive
relighting for computer generated scenes. For complex environment maps, PRT-based
techniques were proposed for relighting [Ng, Ramamoorthi and Hanrahan 2004; Sloan
et. al. 2002] and all-frequency shadowing [Ng, Ramamoorthi and Hanrahan 2003]. While
early work only supported the direct illumination model, the support of indirect illumination
was proposed in later work [Hašan, Pellacini and Bala 2006; Cheslack-Postava et al. 2008].

Material editing frameworks focus on the direct manipulation of BRDF parameters. Intu-
itive editing of BRDFs under complex environment lighting, limited to direct illumination
is presented by Ben-Artzi, Overbeck and Ramamoorthi [2006]. Later work extended to
editing with global illumination [Ben-Artzi et al. 2008; Cheslack-Postava et al. 2008]. These
methods are based on PRT which takes long time (minutes to hours) for precomputation and
impose a fixation of the view point [Nguyen et. al. 2010] or the number of editable BRDFs
[Ben-Artzi et al. 2008].

Inverse Approaches Paint with light [Schoeneman et al. 1993] and Radio-optimization
[Kawai, Painter and Cohen 1993] are classic solutions to infer light settings from user
constraints. Pellacini et. al. [2002] propose an interactive system to design shadows and
lights, but decoupled from materials. Gingold and Zorin [2008] use painted changes in
light to define a change in shape. Intuitively repositioning shadows, caustics, and indirect
illumination using simple click-and-drag on surfaces is proposed by Ritschel et. al. [2010].
Mattausch, Igarashi and Wimmer [2013]’s system allows artist to directly edit the shadow
boundaries in the scene in an intuitive fashion similar to free-form curve editing.

Poulin and Fournier [1995] were the first to propose a system that infers material param-
eters for a surface directly lit by a point light seen from a single view point. Anjyo and

19 2.4. APPEARANCE EDITING

Hiramitsu [2003] proposed the interactive control of highlight shapes by painting, but this
technique is limited to the area of cartoon animations. User is provided with image manip-
ulation tools, to change shading, that is used in an optimization approach to fit a surface.
However, their work only addresses diffuse surfaces. Ritschel et. al. [2009b] introduce a
system for interactive reflections editing by directly specifying the reflection constraints.
Kerr and Pellacini [2010] evaluate user interfaces for material design, and identify color
editing as a main issue. A full survey of artistic lighting and material editing is discussed in
Schmidt et al. [2014].

2.4.3 Edit Propagation

In this section, we discuss some edit propagation techniques that build on propagation of
sparse manipulations of color, material or shape to the full image. To manipulate color, sparse
strokes, defining a certain color for some locations in an image, are propagated to the rest
of the image, either using edge-aware (local) [Levin, Lischinski and Weiss 2004; Lischin-
ski et al. 2006; Gastal and Oliveira 2011] or all-pairs propagation (global) approaches
[Pellacini et. al. 2007; An and Pellacini 2008] or a unification of both global and local meth-
ods [Xu, Yan and Jia 2013]. For example, a red ball is covered by a green stroke, and other red
and spatially close balls are changed to become green. The goal of the propagation often is to
fill smooth regions and stop propagation at edges. Chapter 4 generalizes these propagation
approaches by taking illuminant and geometry into account when propagating edits.

Appearance editing includes but is not limited to color and material editing. Other instances
of appearance editing are shape manipulation in 2D images or geometry modeling in 3D.
For manipulating shape, instead of making strokes, sparse control points are moved, and a
plausible deformation is propagated to the rest of the 2D image [Bookstein 1989; Alexa,
Cohen-Or and Levin 2000; Igarashi, Moscovich and Hughes 2005; Schaefer, McPhail and
Warren 2006] or 3D geometry [Cuno et al. 2007]. As an example, a user clicks two control
points such as the feet of a character in the image to remain fixed and places a third one on
the head. Moving the control point on the head, the latter follows the displacement, but
the feet remain in place. A key challenge is to produce an intuitive deformation response
and avoid shape distortion and overlap. Deformations that locally preserve distances are
of particular interest here [Alexa, Cohen-Or and Levin 2000; Igarashi, Moscovich and
Hughes 2005; Schaefer, McPhail and Warren 2006; Cuno et al. 2007].

2.4.4 Subspaces-aware Editing

For edit propagation approaches discussed in Section 2.4.3, the user either knows where
or how to change the image and the propagation is performed based solely on the image
and the user’s edits. In case we want to exploit more information from other sources (such
as data available on the Internet) to improve the propagation, subspace-aware editing is an
interesting alternative choice.

Subspaces Subspaces have a long history of use in computer graphics where they come
in form of Eigenfaces [Turk and Pentland 1991], morphable models [Blanz and Vetter 1999]

2. BACKGROUND AND PREVIOUS WORK 20

or active appearance models [Cootes, Edwards and Taylor 2001]. Their usages range from
faces [Blanz and Vetter 1999] over human body poses [Allen, Curless and Popović 2003]
to other objects such as demonstrated for sea animals by Cashman and Fitzgibbon [2013].
The difficulty is how to acquire such a space. Chapter 6 proposes shape and color subspaces
of an object, built from a collection of exemplar images available on the Internet, that can
be used to restrict manipulations.

Alignment The underlying difficulty in constructing subspaces is the requirement of
correspondences between training exemplars. Early work used either controlled condi-
tions to acquire the exemplars [Blanz and Vetter 1999] or manual alignment. Modern
semi-automatic approaches to align image pairs e. g., for morphing [Liao et al. 2014] often
combine a data and a smoothness term with user-defined constraints. Automatic alignment
has been done for 3D shapes [Sumner et al. 2005; Feng, Kim and Yu 2008] and deformations
limited to rigid parts [Kokkinos and Yuille 2007]. Optical flow algorithms [Lucas and
Kanade 1981; Tao et al. 2012; Lang et al. 2012] are designed to align video frames with their
temporally adjacent frames. However, they are not suitable for image pairs containing large
deformations, significant structural differences or changes in appearance. Recently, several
image alignment techniques such as SIFT flow [Liu, Yuen and Torralba 2011] or Patch Match
[Barnes et al. 2009] were proposed that are able to deal with drastically different scales and
would allow to align training images. While they are successful in producing plausible im-
ages by shuffling image patches, they do not yield meaningful deformation fields. Non-rigid
dense correspondence (NRDC) [HaCohen et al. 2011] is based on Patch Match and works
best for pairs of images depicting similar regions acquired by different cameras or under
different lighting conditions undergoing non-rigid deformations. The idea of co-aligning an
image collection is demonstrated in ImageWeb [Heath et al. 2010] which assumes a partial,
per-region affine transformation. That is great for browsing image collections with repeating
objects but does not capture smoothly varying deformations such as between two faces.
Furthermore, no considerations are made for the spatial placement of the regions themselves.

Cheng et al. [2010] use a boundary-band map to find repetitions of similar objects in single
images. Goldberg et al. [2012] present a semi-automatic system that leverages a collection
of aligned images to improve image manipulations. Manual intervention is used and the
alignment is limited to align the outer boundary using shape contexts [Belongie, Malik and
Puzicha 2000]. Furthermore, their approach does not create a space and cannot be used to
understand the variation of e. g., horses, as a whole. Outside of computer graphics, the most
successful alignment methods proposed in computer vision use involved learning and graph
matching machinery for alignments [Caetano et al. 2009]. Chapter 6 proposes an automatic
alignment approach that uses all structures that can be matched reliably, including internal
structures, such as the eyes of animals. Aligning these properly is essential for creating an
expressive space.

2.4.5 Style Transfer

Low-level appearance editing operations, such as edit propagation (Section 2.4.3) and
subspace-aware editing (Section 2.4.4), allow direct control from the user to fine tune the

21 2.4. APPEARANCE EDITING

final appearance. On the other hand, high-level editing methods, such as color transfer
[Reinhard et al. 2001] or scene attributes adjustment [Laffont et al. 2014], aim for more
global edit effects. In this section, we will discuss high-level style transfer within a single or
amongst different media, which has been a longstanding challenge in computer graphics.

Mood Perception Style transfer methods are concerned with style perception (i. e., its
mood), and how style can be extracted and transfered. Humans perform remarkably when
quickly categorizing natural images into a classes (its gist [Oliva and Torralba 2001]).
Possible cues include spatial organization of textures [Oliva and Torralba 2001; Walker
and Malik 2002], or color [Castelhano and Henderson 2010], but also the organization
of shapes, colors, spatial proximity [Berg 1948], congruence [Stroop 1935] and grouping
(e. g., the scene’s Gestalt) can influence the scene’s mood. Human observers are extremely
efficient in material categorization, which is a rapid effortless process; robust performance
was reported even for a 160 ms image display [Lavanya Sharan 2008], and only slightly
more for grey-leveled, blurred, or inverted-contrast stimuli.

Color Transfer Color transfer alters the appearance of an image to look natural by ad-
justing their content using the characteristic of another image [Reinhard et al. 2001; Irony,
Cohen-Or and Lischinski 2005; Luan et al. 2007; Liu et al. 2008; Wang et. al. 2010]. Chap-
ter 5 proposes a system for material style transfer from image to a target 3D scene. Trans-
ferring material style differs from of the classic color transfer problem as materials include
a much higher number of parameters (such as glossiness and textures) and the 3D scenes
contain geometry that can be used to make the transfer more reliable than it could be with
images only.

Texture Transfer Another important part of style are surface details often in form of
textures. Texture synthesis [Heeger and Bergen 1995] takes a statistical approach and
produces new instances from a training example or manual statistical settings. The Image-
Analogies framework of Hertzmann et al. [2001] can produce new exemplars with details
that fit specified content. In the context of 3D models, Mertens et al. [2007] model the
statistical relationship between local geometric properties, such as curvature and local
statistics of reflectance. Using this relation, a texture synthesis on a new object produces
shape-dependent textures that capture, e. g., weathering. In a similar fashion, Chajdas,
Lefebvre and Stamminger [2010] consider local geometric structure to assist the user in
assigning textures. Their transfer is from 3D to 3D and does not consider the resulting
perceived appearance, but solely statistical physical qualities. Extraction of a single texture
to be then assigned to a target 3D object is considered by Lagae et al. [2010]. The CG2Real
system [Johnson et al. 2010] uses large image collections to decorate a synthetic image with
details. Their results are image compositions and cannot be used easily for 3D scenes.

Color Compatibility Lalonde and Efros [2007] have analyzed color distributions of
typical classes of images. A distance measure between distributions can be used to assess
color compatibility of one image to a certain class or the compatibility of a foreground and a

2. BACKGROUND AND PREVIOUS WORK 22

background. Oskam et al. [2012] address the problem of global color balancing between
images using a sparse set of desired color correspondences by deforming the color space.

2.4.6 Appearance Manifolds

Multi-dimensional-scaling (MDS), as used in the Design Galleries framework [Marks
et. al. 1997], allows for embedding higher-dimensional qualia into lower-dimensional lay-
outs. Matusik et al. [2003] sample the even higher-dimensional space of BRDFs to create
a neighborhood graph that allows to move to nearby plausible BRDFs. Appearance man-
ifolds have been widely used in computer vision and computer graphics community. Wang
et. al. [2006] build appearance manifolds to capture time-variant appearance of materials
from data captured at a single instant in time. Xue et al. [2008] model the reflectance of
weathered surfaces from a single input image as a manifold and use it for interactive editing
of the weathering effects in an image. Recently, construction of font manifolds was proposed
[Campbell and Kautz 2014]. Chapter 7 proposes a data-driven color manifold, the com-
paratively low dimensionality of colors allows us to fit a parametric model with an explicit
dimensionality to the color distribution resulting in a smooth and continuous manipulation
and layout of the color structure. Furthermore, we have a density measure defined on the high
dimensional color data that is preserved as local area changes (Jacobian) of the embedding.

2.5 Statistical Hypothesis Testing

This section provides some basic background on statistical hypothesis testing for scientific
study. As many appearance editing techniques were proposed, a scientific validation is
required to clarify which method produces better results than others in a scientifc study, e. g.,
between subspace-aware color editing and edit propagation in a color manipulation task.

Inferential statistics are used because it allows to measure behavior in limited samples
and extrapolate to make a general conclusion about the behavior in groups that are often
too large or inaccessible [Gravetter and Wallnau 2013]. A statistical hypothesis test is a
method of inferential statistics using data from a scientific study. Important findings can be
obscured by biological variability and experimental imprecision, which makes it difficult to
distinguish real differences from random variation. In statistics, a result is called statistically
significant if it has been predicted as unlikely to have occurred by chance alone, according
to a pre-determined threshold probability: the significance level.

To illustrate, suppose we want to analyze the effects of different color pickers on the accuracy
of color adjustment task (more details are described in Section 7.3.3 of Chapter 7). To
perform statistical hypothesis testing, we first need to define the hypothesis (Section 2.5.1).
Next, the criteria for a decision is set (Section 2.5.2) and an appropriate statistical test
to compute the p-value is performed (Section 2.5.3). The conclusion is made about the
statistical significance of the hypothesis and in case of many observations, a post-hoc test
is performed to extract the pairwise relationship (Section 2.5.4). To further strengthen the
study, a quantitative measure of the strength of the observation - effect size - should be
provided to complement the statistical hypothesis testing (Section 2.5.5).

23 2.5. STATISTICAL HYPOTHESIS TESTING

2.5.1 Hypothesis

Null Hypothesis The null hypothesis (H0) is a statement of no difference and contains
the "equal to" (=) sign. If H0 is retained, the sample statistic and group parameter are not
significantly different from each other. This means that it is likely that the sample came
from the group described in H0.

Alternative Hypothesis The alternative hypothesis (Ha) is a statement of difference and
contains symbols implying direction or simply difference. If (H0) is rejected, the sample
statistic is significantly different from (or greater than, or less than) the group parameter.
This means that it is likely that the sample came from a group that is distinctly different from
the one described in H0.

For our example, the null hypothesis is that accuracies using different color pickers have
the same mean. When analyzing an experiment, the null hypothesis is usually the opposite
of the experimental hypothesis. The experimental hypothesis, the reason of the experiment,
that not all color pickers give the same accuracy, is the alternative hypothesis.

2.5.2 The p-value

Decisions

Truth Retain H0 Reject H0

H0 True
Correct Type-I Error
1−α α

H0 False
Type-II Error Correct

β 1−β

Table 2.1: Type-I and Type-II Errors

The Level of Significance α Type-I error is the probability of rejecting a null hypothesis
that is actually true. On the other hand, Type-II error, or β error, is the probability of
retaining a null hypothesis that is actually false (Table 2.1). Researchers directly control
for the probability of committing Type-I error.

An α level is the level of significance or criterion for a hypothesis test. It is the largest
probability of committing a Type-I error that we will allow and still decide to reject the null
hypothesis.

The p-value A p-value is the probability of obtaining a sample outcome, given that the
value stated in the null hypothesis is true. The p-value is compared to the level of significance
α . In practice, α is almost always set to 0.05 (an arbitrary svalue that has been widely
adopted).

If p < 0.05, the null hypothesis is rejected and the results are deemed to be statistically

2. BACKGROUND AND PREVIOUS WORK 24

significant. It means that the observation stated in the null hypothesis would happen less
than 5 % of the time.

If p≥ 0.05, the null hypothesis is retained. One can conclude that the observed results are
not inconsistent with the null hypothesis, and the difference is not statistically significant.
Note that it is incorrect to conclude that the null hypothesis is true. It is quite possible that
the null hypothesis is false, and that there really is a difference between the groups.

2.5.3 Statistical Test

Now, in order to perform the appropriate statistical test to compute the p-value, we briefly
introduce several test methods that are most suitable for the challenges encountered in this
thesis. More details of the methods can be found in statistics books [Siegel and Castel-
lan 1988; Cohen 1988; Gravetter and Wallnau 2013; GraphPad 2014].

Binomial Test The binomial test is an exact test, used when there are two possible
outcomes (called "success" and "failure"). For example, we want to test whether our
method or a competitor method performed better in a user study (more details in shape
and color manipulation study in Chapter 6). Subjects are asked to choose the preferred
results (generated using the two methods) in a two-alternative forced choice task. The null
hypothesis is that the results generated using the two methods are chosen equally.

Student t-test The student t-test is a statistical method that is used to decide if two
groups of data differ significantly. The method assumes that the results follow the normal
distribution (also called student’s t-distribution) if the null hypothesis is true.

In case the test contains more then two groups of data, such as in our example case of
many different color interfaces. Every time a t-test is conducted there is a chance, e. g.,
α = 5 %, that Type-I error would occur. By running two t-tests on the same data, the chance
of "making a mistake" is increased, e. g., to 10 %. This is called the multiple testing problem
that occurs when a set of statistical inferences is considered simultaneously [Miller 1966].
Different methods for multiple testing correction were proposed, one possible solution is
to use Analysis of Variance (ANOVA) for multiple testing scenarios.

Consider our example where we want to study the accuracy in color adjustment tasks of
different color pickers. The variable of interest is therefore the accuracy, measured by a
scale. The factor being studied is color picker. There is just one factor (color picker) and
hence the situation is appropriate for the one-way ANOVA.

One-way ANOVA The one-way ANOVA is used to determine whether there are any
significant differences between the means of three or more independent (unrelated) groups.
One-way ANOVA has several important assumptions:

• Normality: The dependent variable is normally distributed in each group that is being
compared. So, for our example, if we were comparing three color pickers (e. g., the

25 2.5. STATISTICAL HYPOTHESIS TESTING

RGB, LAB and HSV color picker), the accuracy of the color adjustment task (dependent
variable) would have to be normally distributed for these three color pickers.
• Homogeneity: The variances in each group are equal.
• Independence: It is to be assured, that the observations (in our example, the accuracy

of the color adjustment task) from the study are independent of the design of the study.
These may includes many factors, e. g., randomness in selection of subjects for the study,
the selection of a participant should not be dependent upon the selection of another
participant, or the treatment condition.

One-way ANOVA can tolerate data that are non-normal with only a small effect on the
Type-I error rate. However, the effect can be profound if the sample counts are small. In this
case, data can be transformed using various algorithms so that the shapes of the distributions
become normally distributed or alternatively, the non-parametric Kruskal-Wallis test (which
does not require the assumption of normality) is used.

Kruskal-Wallis Test The Kruskal-Wallis test is a non-parametric test that compares three
or more unpaired or unmatched groups. Unlike parametric tests, non-parametric tests make
no assumptions about the probability distributions of the variables being assessed. The
parametric equivalent of the Kruskal-Wallis test is the one-way ANOVA.

By selecting a non-parametric test, the normality assumption can be avoided, but there are
drawbacks to using a non-parametric test: if the groups are really normally distributed, the
non-parametric tests are less likely to detect a true difference, especially with small sample
sizes.

The Kruskal-Wallis test still assumes that the shapes of the distributions are identical. If
two groups have very different distributions, data are transformed to make the distributions
more similar.

In Chapter 7, we use Kruskal-Wallis for our hypothesis testing as our distributions are not
Gaussian and our sample size are moderate.

2.5.4 Post-hoc Test

ANOVA or Kruskal-Wallis test the overall difference between the groups, but they do not
test which specific groups differed. A post-hoc test is required to compute the pairwise
difference between two groups.

A post-hoc test should only be run when an overall significant difference in group means
is found (i.e., a significant one-way ANOVA or Kruskal-Wallis). Post-hoc tests attempt to
control the experiment-wise error rate, e. g., α = 5 %, in the same manner that the one-way
ANOVA or Kruskal-Wallis is used, instead of multiple t-tests.

A great number of different post-hoc tests were proposed. For one-way ANOVA, the Tukey’s
honestly significant difference (HSD) or Scheffe’s post-hoc can be used. Often, Tukey’s
HSD test is recommended by statisticians because it is not as conservative as the Scheffe
test [Maxwell and Delaney 2004]. For Kruskal-Wallis, Dunn’s multiple comparison test
can be used [Daniel 1990].

2. BACKGROUND AND PREVIOUS WORK 26

2.5.5 Effect Size

Hypothesis testing of different groups discussed earlier identifies whether an effect exists. A
decision to reject the null hypothesis means that an effect is important, however, hypothesis
testing does not inform how big the effect is. To determine this, the effect size is computed.
There are different measures of effect size, here we will only discuss the definition of
Cohen [1988], which will be used later in the thesis.

Cohen’s d Cohen [1988] defined effect size d as the degree to which the null hypothesis
is false. The effect size is measured between two groups. The larger the absolute value of d,
the larger the effect.

d =
µ1−µ2

σ

where

σ =

√
(n1−1)σ2

1 +(n2−1)σ2
2

n1 +n2

is the pooled standard deviation, n1,n2 are the sample counts, σ1,σ2 are the variance of the
two groups. The value of Cohen’s d is zero when there is no difference between two means
and increases as the differences get larger. Cohen’s effect size conventions are shown in
Table 2.2.

Description of effect Effect Size (d)

Small |d|< 0.2
Medium 0.2≤ |d| ≤ 0.8

Large |d|> 0.8

Table 2.2: Cohen’s effect size convention.

3
Preconvolved

Radiance Caching

Figure 3.1: A virtual 3D scene with highly specular global illumination rendered using our method
(1920×1080, 4 k caches, 50 ms radiance caching, 27 ms pre-convolution, Nvidia GeForce 560
Ti) (top). The bottom right image shows the sparse set of cache locations (colored circle). At every
location, one specular and one diffuse cache were constructed. The bottom left image shows
the specular and diffuse pre-convolved caches at one sample location.

27

3. PRECONVOLVED RADIANCE CACHING 28

3.1 Introduction

To deliver high-quality rendering results as fast as possible, the right simplifications have
to be made. One such simplification is, to not shade every pixel, but only a subset, and
re-use the shading of nearby pixels. Re-using scalar shading results (Irradiance Caching)
between pixels is computationally efficient, but cannot account for details in geometry and
reflectance resulting in blurred surface features and missing highlights. Re-using the full
incoming light (Radiance Caching) can result in much richer images, but is computationally
expensive. For interactive applications such as material design or architectural visualization
that require high-quality rendering of complex light, spatially varying material, specular
reflectance and detailed geometry, a combination of speed and quality is highly desirable. In
this chapter we propose a modification to Radiance Caching by shifting computations that
were done per-pixel before to the per-cache item stage to deliver almost the same quality,
but an order of magnitude faster for HD images (Figure 3.1).

3.2 Our Approach

Background on Irradiance and Radiance Caching are discussed in Section 2.3.3. Radiance
Caching requires a linear look up for every pixel. We extend the idea to a per-cache item pre-
convolution in Section 3.2.1 combined with constant time per-pixel pre-convolved lookups
(Section 3.2.2). Further, we will describe how to improve the lookups using recursion on dis-
tance information (Section 3.2.3) and finally provide implementation details in Section 3.2.4.

Our method, identical to Radiance Caching, takes a set of cache items and a deferred shading
buffer with position, normals and reflectance as input and produces a high-resolution image
with shading (Figure 3.2). Our approach is orthogonal to the way the cache items are placed
or filled; details for our choice of implementation are given in Section 3.2.4.

3.2.1 Pre-convolution

The above per-pixel reflection is fine if the number of coefficients nd is low, e. g., 9 for
diffuse reflectance [Ramamoorthi and Hanrahan 2001]. For glossy surfaces, a much
higher number of coefficients, e. g., nd = 200 are required [Ng, Ramamoorthi and Hanra-
han 2003; Křivánek et al. 2005].

In this case, for every pixel, more than 200 RGB-values have to be read from a texture
to evaluate one 15-th order SH per pixel, and the SH has to be transformed into the local
frame. This takes more than 7 s on a Nvidia Geforce 560 Ti at a resolution of 1920×1080.
Note, that every pixel is drawn many times, as the splats are overlapping. Consequently,
the number of SH evaluations and rotations is much larger than the number of pixels. Our
approach can perform a different computation leading to almost the same result at the
time-cost of 50 ms + 12 ms = 62 ms and the additional cost of only one third more memory
cost. This is achieved by converting per-pixel work to per-cache item work; 12 ms are spent
on per-cache item pre-filtering resulting in only 50 ms spend on per-pixel evaluation. We
will describe both the per-cache item and the per-pixel procedure in the following.

29 3.2. OUR APPROACH

Figure 3.2: Irradiance Caching, Radiance Caching and our approach all start (top) from a set of
cache items (blue circles) that are interpolated for an image pixel (orange circle). Differences lie
in the way a single cache item is evaluated at a location (bottom). Irradiance Caching (bottom, 1st
row) turns the incoming radiance into a scalar and interpolates only this value. Radiance Caching
(bottom, 2nd row) projects incoming radiance into the Spherical Harmonic (SH) basis, for every
pixel converts the BRDF into SH and performs a dot-product between two dense vectors per pixel.
Our approach (bottom, 3rd row) performs a pre-convolution per cache item using MIP mapping
which is queried using a BRDF- and normal-dependent lookup.

Per-cache Item Computation

Definition First, recall the definition of pre-convolution [Heidrich and Seidel 1999]: As-
suming physically-plausible Phong [1975], the outgoing radiance can be decomposed into
diffuse and specular outgoing radiance

Lo(x,ωo) = ρd(x)D(x,n(x))+ρs(x)S(x,ωr,g(x)),

where ρd(x) is the diffuse albedo, ρs(x) the specular albedo, g(x) the glossiness and
ωr = 2〈n(x),ωo〉n(x)−ωo is the reflection direction. The diffuse incident illumination
(irradiance)

D(x,n) =
∫

Li(x,ωi)〈n,ωi〉+dωi,

for a fixed position x only depends on the normal n and can be pre-convolved. The specular
incident illumination

S(x,ωr,g) =
∫

Li(x,ωi)〈ωr,ωi〉gdωi,

for a fixed location x, depends both on the outgoing direction ωo and the glossiness g. Similar
to diffuse, it can be pre-convolved for every outgoing direction ωo and every glossiness g.

3. PRECONVOLVED RADIANCE CACHING 30

Projection and Discretization In practice the pre-convolution has to be performed onto
discrete two-dimensional images that represent incoming radiance, irradiance and specular
incident illumination for every cache item.

First, while Li(xj,ωi) was oriented in world space it is transformed into a local space
aligned with the normal n(xj) using a transformation matrix R ∈ R3×3. To map image
locations to directions, we choose the bijective paraboloid [Heidrich and Seidel 1999]
projection p(y) : R2 ↔ S2

+ between the unit circle and the hemisphere. The resulting
solid angle for every pixel is similar and our implementation ignores the remaining vari-
ation. Second, the continuous directional function Li(xj,ωi) is discretized into an image
L̄i(xj,y) = Li(xj,R · p(y)) of resolution

√
nd×
√

nd. Only dealing with solid surfaces, we
restrict L̄i to the upper hemisphere. This avoids the difficulties for filtering near the equator
that challenges omnidirectional maps. In the case of PBGI or IR, L̄i is already produced
efficiently in this regular discretized form.

Pre-convolution The diffuse pre-convolution D̄(xj), of L̄i(xj) is stored in a 4×4 pixel
image. A 4×4 resolution is similar to the nine SH coefficients which were found to be
sufficient for diffuse irradiance [Ramamoorthi and Hanrahan 2001], i. e., using a higher
resolution we did not observe an improvement in accuracy. The specular pre-convolution
S̄(xj), of L̄i(xj) corresponds to a MIP map of L̄i(xj). Every MIP level maps to a different
glossiness: a highly glossy reflection (less blurred; more detailed) will look up a lower
MIP level; a lower gloss reflection will look up the average of a large number of pixels
[Kautz et al. 2000]. Note that the time cost per cache item for both pre-convolutions is
linear (the same as the one of a single SH projection) and parallel over all directions and
cache items. We used diffuse pre-convolution because its implementation is a single line
of shader code when already using specular pre-convolution. It does not give any significant
computational gain, as the dot product with constant, low-order SHs is efficient.

3.2.2 Per-pixel Computation

Here, instead of evaluating the dot product of nd SH basis functions as done in Radiance
Caching, a constant number i. e., two lookups in D̄(xj) and S̄(xj) are performed. First, the
diffuse reflection is fetched from D̄(xj) using the per-pixel (i. e., bump-mapped) normal
and multiplied with the per-pixel diffuse albedo. Second, the specular reflection is fetched
from S̄(xj) using the reflected (i. e., again, bump-mapped) view direction from a MIP level
corresponding to the per-pixel glossiness and multiplied with the specular albedo. Lafor-
tune BRDFs, that are a sum of nl simple lobes, can be supported using nl lookups in S̄(xj)
[Kautz et al. 2000].

Our method also scales well with spatially varying BRDFs with different glossiness per
pixel. The per-pixel operation is a single MIP map-lookup which is highly efficient on all
GPUs and scales well to high resolutions.

31 3.2. OUR APPROACH

Figure 3.3: Recursive lookups based on distance impostors for Radiance Caching: To query
direction r, e. g., the reflected view direction e at location x when a cache item was created
at x0 it is better to look up direction r0. Similarly, to look up r in x1, an improved direction
would be r1. The plane P is used to approximately improve the lookup directions. Please see
Szirmay-Kalos et al. [2005]’s work for an in-depth explanation in their case of local reflection maps.

3.2.3 Recursive Lookups

The approach of Szirmay-Kalos et al. [Szirmay-Kalos et al. 2005] allows to perform more
accurate queries of pre-convolved radiance cache items, as explained in Figure 3.3.

Different from their approach, we store distributions of positions over solid angle in a MIP
map, that is used to approximate P. Recursive lookups achieve a goal similar to irradiance
gradients [Ward and Heckbert 1992]: accounting for the change of incoming light over
space between cache locations. Please see Section 3.3 for a comparison between recursion
and no-recursion and the performance characteristics.

3.2.4 Implementation

Cache Generation We tested several implementations to generate caches: Instant Radios-
ity [Keller 1997], PBGI [Christensen 2008; Ritschel et. al. 2009a] and direct rasterization
of all triangles without any approximation. PBGI directly produces L̄i. For IR, each VPLs’s
contribution is splat additively into an initially black L̄i, including shadow maps for visi-
bility.s As we are not concerned with the quality or performance of the underlying cache
generation approach, all images in this chapter use the simple direct rasterization approach.
Note, that direct rasterization produces diffuse and specular shading when filling each cache
item, i. e., caustics (Figure 3.5). A combination with Monte Carlo-raytracing to produce
caches containing all light paths would certainly be possible in future work.

Pre-filtering All cache items are stored in a tiled layout in a large float-valued RGB-
texture read using bilinear filtering. A typical resolution for this texture is 2048×2048 for
a 4k cache with cache items of size 32× 32 . MIP maps of these textures are created in
hardware in 21.9 ms and require 32 MB of memory. Note, that the diffuse cache items only
need a size of 4×4 requiring only 0.5 MB.

For specular pre-convolution, we perform MIP map down-sampling, in parallel for all
cache items and in parallel over 4-tuples of directions in log2(nd) passes. For diffuse pre-
convolution, we use a suitable higher MIP map-level from the specular step to avoid comput-

3. PRECONVOLVED RADIANCE CACHING 32

ing the product of all directions with the geometric term for each direction, e. g., only use 8×8
instead. The diffuse convolution is performed in parallel for all cache items and all directions.

While every direction ω on the upper hemisphere maps to an image location y = p−1(ω),
not every image location y maps to a direction ω = p(y). To avoid undefined pixels when
reading low-resolution textures with bilinear filtering, we map undefined locations, i. e.,
outside the unit circle, where |y|> 1 to the closest defined location.

Cache Placement We place cache items according to a blue-noise distribution on the sur-
face in world space. Distributions in image space, — regular ones found in most interactive
GI systems, or adaptive ones found in offline rendering — are orthogonal to our approach.

Querying Caches using Splatting Our approach uses splatting of caches [Gautron
et. al. 2004] to a deferred shading buffer that stores per-pixel position, normals, and re-
flectance (diffuse color, specular color, and Phong exponent). Our cache items affect pixels
based on their spatial distance. We define a maximal spatial distance α and a maximal angle
β . First, a point is drawn for every item. A geometry shader creates a quad that covers all
pixels which are closer to the i-th cache location than α . For every pixel in this quad, the
cache item has to be evaluated.

3.3 Results

Our main result is a comparison to Irradiance and Radiance Caching. In summary, our
approach performs at a quality very similar to Radiance Caching, at a cost that is more
similar to Irradiance Caching, i. e., simple interpolation of scalar light. Radiance caching is
implemented by a per-pixel loop over all SH coeffcients stored in textures. We experimented
with combining diffuse and specular Irradiance caching, but finally decided to remove it
completely for the comparison, as excessive speckles appear when a cache happens to fall
on a specular highlight. In Figure 3.6, Figure 3.7 and Figure 3.8, we show equal time-equal
quality comparisons.

The plots in Figure 3.4 show, how our approach scales for the scenes in Figure 3.1 when
the amount of directional detail is changed. In Figure 3.5, we show an example of glossy
bounces and analyze the effect of recursive queries in Figure 3.10. Finally, we investigate
the difference of our approach and a reference, where 1000 directions were sampled for
every pixel in Figure 3.9.

3.4 Discussion

Drawbacks of this work include the typical one third-increase in required memory for a
MIP map [Williams 1983] and the slightly suboptimal signal reproduction compared to the
Fourier basis [Ramamoorthi and Hanrahan 2001]. Note, that both SH and our approach
need to store the cache coefficients, which can be a problem when scaling to scenes that

33 3.4. DISCUSSION

Figure 3.4: Computation time relative to lighting detail (number of SH coefficients, resp. number of
pixels). Left : Per-pixel cost of Radiance Caching scales linearly with detail, whereas our approach
remains almost constant, similar to Irradiance Caching. Right : The cost of the pre-convolution
is small, and scales linearly with the cache resolution.

Figure 3.5: A caustic LSDE path (different from the LDSE paths shown in the rest of the chapter)
using our approach (58 ms, 2048×2048, 4 k caches, each 64×64). Diffuse caches would ignore
highlights (left), highlights are present in specular caches (right). Please note, that the high contrast
of caustics is difficult for Radiance Caching where it causes SH ringing.

require a large number of caches. Nevertheless, nothing prevents RC or our approach from
creating cache items incrementally if the full cache does not fit into memory.

3. PRECONVOLVED RADIANCE CACHING 34

Figure 3.6: Comparison between Radiance Caching (RC) (top), Our Approach (middle) and
Irradiance Caching (IC) (bottom). At speed similar to IC (≈33 ms), our approach (≈50 ms) achieves
quality very similar to RC (>1 s). RC and our approach both produce fine shading details due
to bump mapping (side walls) or spatially-varying gloss (logo on the ground) that are lacking in
Irradiance Caching.

35 3.4. DISCUSSION

Figure 3.7: Comparison between Radiance Caching (RC) (top), Our Approach (middle) and
Irradiance Caching (IC) (bottom). At speed similar to IC (≈33 ms), our approach (≈50 ms) achieves
quality very similar to RC (>1 s). RC produces negative (1st inset, right) and overshot (2nd inset,
right) light due to SH ringing caused by the high contrast of the caustic. While IC does not capture
the specular bounce, our approach reproduces all effects.

3. PRECONVOLVED RADIANCE CACHING 36

Figure 3.8: Comparison between Radiance Caching (RC) (top), Our Approach (middle) and
Irradiance Caching (IC) (bottom). At speed similar to IC (≈33 ms), our approach (≈50 ms) achieves
quality very similar to RC (>1 s). RC and our approach show a similar reprodution of specular
shading details for a complex scene, such as the pear (1st inset, right) or the metallic skull (2nd
inset, right) which are missing for IC.

37 3.4. DISCUSSION

Figure 3.9: Comparison between a reference (left) and our solution (middle). Next are the ×4
difference between the images (right, bottom) and the insets (right, top).

Figure 3.10: None, as well as different numbers of recursion, (left to right) for an glossy ground
plane. It can be seen, that after no or one iterations, the lookups for the purpose of glossy reflections
in Radiance Caching are sufficiently accurate. Note, that the overlap between splats smoothes
out errors. Consequently, the error appears as blur, instead of noise or banding. A successful
lookup, such as ours, will result in sharp reflections.

4
Surface Light Field

Manipulation in 3D Scenes

4.1 Introduction

The appearance of materials is an important cue for human understanding of its surround-
ing, beginning with distinguishing between edible and rotten food for early humans, and
reaching up to today’s intuition about the price of a car by looking at the lacquer. Therefore,
material appearance is highly important in many computer graphics applications, ranging
from product visualization, to feature films or computer games and its proper depiction.
Acquisition and manipulation can be the key to achieving a desired goal. Recent studies
about material design [Kerr and Pellacini 2010] point out the difficulty of material design,
even under controlled and simple illumination and without spatial variation. However, in
many use-cases, e. g., feature film production, it is important how spatially-varying materials
appear in combination, in complex geometrical arrangements, with occlusions, and under
complex (global) illumination.

We propose a system to design materials under such settings where an artist performs in-
teractive appearance manipulation by painting strokes onto a “3D+2D canvas” (the surface
light field (SLF) of the scene) and the system finds the best reflectance to produce the desired
appearance (Figure 4.2).

Our work has two key motivations: Reflectance manipulation is too tedious to be effective,
and direct SLF manipulation is too general to be intuitive. Questions like “How and where
do I have to change glossiness of this ring over here to get a caustic that just is bright enough
to be visible and blurry enough over there?” are avoided using our system: The user paints
the bright spot and the system will find the required change. Second, direct manipulation
of a SLF is too tedious, has too many degrees of freedom, in particular when the viewer
moves and is not well supported by most rendering systems. Consider a user painting a
white dot onto a red sphere, which could either mean a highlight, or a white, diffuse dot. If
the intention was to draw a highlight, the user would need to move the camera, and draw
the highlight in a new position. This would need to continue for many, if not all possible
views, a prohibitively tedious process. Our system seeks to understand if the white dot is

39

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 40

Figure 4.1: An input 3D scene (a) is painted by view-dependent strokes manipulating its surface
light field. (b) A red stroke made on the wagon indicating a change of diffuse color. (c) A white stroke
changing highlight shapes on the plane. (d) Painting a white highlight on the wheel. Our system
finds the smallest change of shading parameters to produce a light field matching the strokes (e).

Figure 4.2: Overview of our approach (Please see text).

41 4.2. PROBLEM STATEMENT

meant to be a highlight, and if yes, to change the reflectance of the red sphere in a way that
generalizes to different viewpoints. Different from previous L2-solutions in graphics and
vision that match observations (i. e., a sampling of the SLF) with a reflectance model in
a least-squares sense, our L0-approach will find sparse changes of reflectance, i. e., it will
prefer changes in only one parameter that reflects the users intention.

4.2 Problem Statement

Section 2.3.1 and Section 2.3.2 discuss some background on rendering that will be used in
this chapter. This section introduces the required notation and states the continuous problem
that has to be solved. Table 4.2 and Table 4.1 ensemble the sets, constants and general
symbols used in the chapter.

Valid Surface Light Fields Let R be a set of reflectance fields, e. g., all physically-
plausible BRDFs RPhysical, or all BRDFs a rendering system supports, e. g., Phong RPhong.
We will call a SLF “valid” in respect to a surface M , an initial emissive lighting Le and a set
of BRDFs R if it is the solution of the RE for any reflectance R ∈ R . Our approach allows
the user to manipulate (Section 4.3) a valid SLF Lo to become a new, potentially invalid,
SLF Lm

o . Our system will seek to find a new reflectance Rm ∈ R resulting in a SLF after nb
bounces that is most similar to Lm

o . In a least squares sense, this is

Rm := argmin
R̂∈R

||Tnb(R̂)Le−Lm
o ||2, (4.1)

using an SLF norm

||L|| :=
√∫

M

∫
S2

L(x,ω)2dωdx.

4.3 Surface Light Field Manipulations

Manipulation is performed by selecting a tool, and painting strokes into the scene. A tool
(Section 4.3.1) changes the SLF (spatially under the stroke; directionally from the view it is
currently seen) into a new SLF. Tools can be used either direct, or indirectly (Section 4.3.2).
After the system has computed a change of reflectance it gets propagated to all surface
locations that are similar to the locations under the stroke (Section 4.3.3).

4.3.1 Tools

A tool is a manipulation operator M ∈M ×S2→M ×S2 that maps a SLF into an edited
SLF. Common image manipulations like “replace”, “clone”, “brighten”, “darken,” “blur”,
“sharpen” etc. can be used here (Figure 4.3). A “fixate” disallows changes to the SLF for
some regions.

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 42

Symbol Meaning

x,y Location
n Normal

n(x) Normal at position x
ω,ωi,ωo Direction; incoming, outgoing

R(x,ωi,ωo) Spatially varying BRDF (reflectance)
Li(x,ω)/Lo(x,ω) Incident/Outgoing radiance

G Geometry operator
K(R) Reflection operator
Ti(R) i-bounce transport operator
Le/Lm

o Emissive/Manipulated SLF
Rm New reflectance
M Manipulation operator

m(x,ω) Manipulation stroke function
lo(x, ·) SLF for position x
s(x,y) Similarity

∆R(x,y) BRDF difference function
∆r(x,ωi,ωo) Change of reflectance
Rf(x,ωi,ωo) Final reflectance

pi Element i
ωi, j Direction j of element i

le/lmo Discrete emissive/manipulated SLF
Kd Diffuse reflection matrix

Ks(fg) Specular reflection matrix
r Shading model parameter vector

rm New discrete reflectance
rd/rs/rg Diffuse/Specular/Glossy components of the parameter vector

rd,i/rs,i/rg,i Diffuse/Specular/Glossy components of element i
⊥(ω,n) Reflection function

G Discrete geometry matrix
K(fr) Discrete reflection matrix
Ti(fr) Discrete i-bounce transport matrix

rep(v,n) Creates a vector were each entry of v is repeated n times
diag(v) Creates a diagonal matrix out of v

W Diagonal weighting matrix
m stroke vector∈ {0,1}npnd

x̂ Least-squares fit for diffuse and specular shading parameters
α(X) Selects the element with smallest residual magnitude from a set

L2 Least-squared optimization
L0 Zero-norm optimization

x̂d/x̂s Least-squares fit for diffuse/specular if specular/diffuse is fixed
h index vector∈ Nnpnd

Table 4.1: Other symbols table

43 4.3. SURFACE LIGHT FIELD MANIPULATIONS

Symbol Meaning

M Surface domain
S2 Spherical surface domain
R Set of reflectance fields
P Set of locations of elements
R Set of discrete reflectance fields
g Set of glossiness values for optimization. |g|= nc
X Set of solutions for different glossiness values

np Number of elements
nd Number of directional bins
ns Dimension of shading model parameter vector

σs,σn,σr weight for position, normal, reflectance
nc Number of glossiness values for optimization
nb Number of bounces
σm Manipulation tool weight
gi Glossiness value i used for search

Table 4.2: Symbol table for sets and constants

Figure 4.3: Original SLFs Lo (Top) and the manipulated one MLo (Bottom). The first three change
the highlight size. The next two change its strength. The following five change the diffuse color
at the same time. The last two show more complex examples, under non-point lighting.

A manipulation stroke is a function m(x,ω) ∈M ×S2→{0,1}, which is 1 if the surface at
x seen from direction ω is affected by the tool and 0 otherwise. The new SLF is then given
by Lm

o := Lo +m · (MLo−Lo).

4.3.2 Direct and Indirect Mode

All tools can be used either in “direct” or “indirect” mode. In direct mode, they affect
the stroke and all similar regions, as defined above. In indirect mode, they do not affect
the area under the stroke, but those areas, that contribute radiance to the stroke, such that
Lm

o := Lo +T(R)(m · (MLo−Lo)) (Figure 4.4).

For the example of a mirror object, T “copies” into every outgoing direction the value
incoming in its mirrored direction, resulting in a “draw-across-the-mirror” behavior. The
same indirection works for glossy and diffuse appearance. The indirect mode, allows to
keep reflectance constant at one location, but changes appearance by changing reflectance
in another location of the scene. An example of indirect painting is to manipulate the color
of indirect lighting. The system will change the reflectance, of the object producing the
indirect light. Another example application is to paint a bright caustic-shaped stroke next
to a diffuse ring and the system detects that the ring should be turned metallic to achieve
a caustic. Note, that the reflectance at the location of the caustic is not changed, but at the

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 44

Figure 4.4: (From left to right): A user viewing from the left paints an orange stroke onto the
ground (a). Direct mode (b): The stroke and everything similar – in this case the entire ground –
changes reflectance. Indirect mode: When the ground is a mirror (c), the reflected location changes
its reflectance to match the stroke. A glossy (d) or diffuse (e) ground causes the change to be
distributed over many locations.

location of the object producing the caustic (Figure 4.5 and Figure 4.18).

Figure 4.5: Caustic example (left to right). (a) A user paints an indirect white stroke in the vicinity of
a diffuse blue wall. (b) The resulting similarity. (c) A second stroke disambiguates the manipulation
and the diffuse blue wall becomes specular. (d) Repeating the change makes the initially diffuse
wall increasingly metallic and the caustic becomes more pronounced.

4.3.3 Edit Propagation

After the stroke has finished, the system computes a change of appearance that is propagated
to all similar locations. The similarity s(x,y) ∈M 2→ R+ between a pair of points x and
y on the manifold is the sum of the weighted distance in position, normal, or reflectance

s(x,y) =
σs

||x−y||
+

σn 〈n(x),n(y)〉
1−〈n(x),n(y)〉

+
σr

∆R(x,y)

were the σ{s,n,r} are the weights and ∆R is a BRDF difference function (Figure 4.6).

The change of reflectance ∆r := Rm−R ∈ M ×S2×S2 → R+ is propagated from each
point to all other points, proportional to similarity, resulting in the final reflectance

Rf(x, ·, ·) := R(x, ·, ·)+
∫

M
s(x,y)∆r(y, ·, ·)dy

/∫
M

s(x,y)dy.

45 4.4. DISCRETIZATION

Figure 4.6: Similarity of two different locations x (Rows) and other locations y. Different
components (Columns, left to right): Position, normal, reflectance and a combination of all.

4.4 Discretization

This section will describe the discretization of the domain used and how different forms of op-
timizations can be performed in practice. Surface fields will be discretized into finite spatio-
directional elements stored in vectors (Section 4.4.1), and operators will take the form of
matrices or matrix-valued functions (Section 4.4.2), similar to non-diffuse radiosity [Immel,
Cohen and Greenberg 1986]. Using these entities, the discrete reflectance that best matches
the users manipulation is found in a non-linear optimization procedure (Section 4.4.3)

4.4.1 Discrete Domain

Figure 4.7: Discretization example (Left to right): Two elements p1 and p2 (blue diffuse; orange
specular) and their directional bins ω1,1, . . . ,ω2,4 . The reflectance r and its Phong components
rd,rs,rg. The operator G has one non-zero entry per row that links every element to another
visible element and its bin (arrow). The transport operator T(r) giving different weights to different
incoming directions. Assuming Phong, it can be decomposed into Kd and Ks(rg). The SLF lo which
the user manipulates into lmo .

The problem is discretized into point elements to obtain a solution numerically (Figure 4.7).
The scene surface M is assumed to be static. It is spatially discretized into a set of np
(typically thousands of) elements with locations P := {p1, . . . ,pnp} ∈ R3×np . Direction-
ally, each element is discretized into nd (typically 1024 = 32×32) directional bins with
directions ωi,1, . . . ,ωi,nd . Sampling into point elements decouples the problem from the
particular geometrical representation of M . The original SLF is represented as a vector
lo ∈ Rnpnd , the desired SLF as lmo ∈ Rnpnd and the initial emissive light field as a vector
le ∈ Rnpnd . Every elements’s reflectance can be parametrized by a ns-dimensional shading

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 46

model parameter vector. Over all elements this results in r ∈R, where R⊆ Rnp ns is the set
of potential BRDFs, a discrete version of R . We will discuss the case of ns = 3 for Phong
diffuse, specular and glossiness and write shorthand rd ∈ Rnp for the diffuse, rs ∈ Rnp for
the specular and rg ∈ Rnp for the glossy components of the parameter vector.

4.4.2 Discrete Operators

For more convenient notation, let up = u/nd the spatial index of row index u and vd =
v mod nd the directional index of column index v. Please, see Figure 4.7 for the interleaving
of indices.

Geometry The discrete version of the geometry operator G is the matrix G∈R(npnd)×(npnd).
For solid surfaces, G is zero in every column of row u and 1 in the column with the index
of the element visible from pup in direction ωup,vd .

Reflection The discrete reflection operator is a matrix-valued function K(r)∈R(npnd)×(npnd).
Assuming a reflectance model like Phong, it can be written as

K(r) = diag(rep(rd,nd))Kd +diag(rep(rs,nd))Ks(rg),

the sum of a diffuse reflection matrix, multiplied by diffuse reflection component rd and
a specular reflection matrix, depending on glossiness rg, multiplied by specular reflection
component rs. Both the diffuse and specular matrix are of the same size as K itself. Diffuse
reflection maps incoming light into a directionally-invariant constant exitant value

Kd,u,v := 〈n(pup),ωup,vd〉
+.

Specular reflection maps incoming light into directionally-dependent exitant values that
are both mirrored and blurred proportional to glossiness

Ks,u,v(rg) := 〈⊥(ωup,u mod nd ,n(pup)),ωup,vd〉
rg,up ,

where⊥(ω,n) = ω−2n〈ω,n〉 reflects direction ω at the normal n. Finally, the discrete
i-bounce transport matrix is

Ti(r) =
i

∑
j=1

(K(r)G) j−1 with T0 = I.

4.4.3 Discrete Minimization

The minimization seeks to find a discrete solution for the problem stated continuously in
Equation 4.1 by solving

rm := argmin
r̂∈R

||W(Tnb(r̂) le− lmo)||2, (4.2)

47 4.4. DISCRETIZATION

a reflectance, that after nb bounces, given the initial emissive lighting le, produces a SLF most
similar to the desired lmo . The diagonal matrix W = I+σm diag(m) is created from the stroke
vector m ∈ {0,1}npnd (a discrete version of m) and a fixed and tool-dependent constant σm.

The problem is non-linear because the matrix T depends on the Phong glossines in g in a
non-linear way. Furthermore, it is a constrained problem, as R is only a subset of possible
reflectance values that are valid, e. g., energy-preserving.

One-bounce Weighted Least-square Solution For simplicity, we will for now only
consider one bounce. In this case, the reflectance for every element i can be found inde-
pendently of all others. Still, the dependency of T on rg poses a non-linear problem, but
with only one remaining non-linear degree of freedom: glossiness. Therefore, our solution
iterates over nc (typically nc = 20) fixed and perceptually uniform [Pellacini et. al. 2000]
glossiness values g0, . . . ,gnc and solves the linear problem of finding the best specular and
diffuse reflectance for each (Figure 4.8).

Figure 4.8: Our fitting. In every column, from top to bottom are the given lighting (1st row), diffuse
component (2nd row), glossiness (left) and specular (left) component (3rd row), and the SLF (4th
row). Starting from a given lighting (1st col., 1st row) and desired SLF (2nd cols, 4th row), the
optimal reflectance is found by enumerating different glossiness levels (left, 3rd row, 3rd to 5th
col.), using a linear solution for the diffuse and specular reflectance at each.

In the remainder of this section we will introduce “local” identifiers (x,b,W,A, x̂,X) with
a dependency on i and j which is omitted in the notation for brevity. For element i and
glossiness j, finding r(i, j)d and r(i, j)s is a linear problem WAx = Wb. Here x is the unknown
diffuse and specular reflection coefficient of the current element and the current glossiness,
b = (lmo,(i+0)·nd

, . . . , lmo,(i+1)·nd
)T is the desired SLF and

A =

 (KdG le)i·nd (Ks(g j)G le)i·nd
...

...
(KdG le)i·nd+nd (Ks(g j)G le)i·nd+nd

 .

The first column in A is the reflected diffuse light, the second column the reflected specular
light for the current glossiness.

Let C ∈ R2×2 be ATWA and d ∈ R2 be ATWb. The closed-form solution for a least-squares
fit then is

x̂ =

(
C2,2 d1−C1,2 d2

C1,1 C2,2−C1,2 C2,1
,

C1,1 d2−C2,1 d1

C1,1 C2,2−C1,2 C2,1

)T

(4.3)

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 48

LetX := {(x̂(1),g1), · · · ,(x̂(nc),gnc)} be the set of different solutions for different glossiness
values. Finally, we pick ri := α(X), where

α(X) := Xk with k = argmin
1≤k≤|X|

‖|lmo −T(Xk) le|| (4.4)

is an operator to select the element from a set that produces the smallest residual magnitude.

The solution is constraint to x̂1 + x̂2 ≤ 1 for energy-preserving BRDFs. We do not solve
a constraint least-squares problem, but re-scale the solution to be energy-preserving, or to 0
if it is negative in any component. This might result in suboptimal solutions, but guarantees
energy preservation.

One-bounce Sparse Solution While the L2 solution explained before changes all shad-
ing parameters to match to the desired SLF, we will now extend it to a sparse solution,
which will aim to change only one or a few parameters inspired by L0 minimization in
compressed sensing [Donoho 2006]. Let ||x||0 := Rn→ N be the count of non-zero entries
in the vector x. We are looking for a new reflectance rm, such that ||rm− r||0 is np (the
number of elements), or in other words, such that only one shading parameter is changed
per element. At the same time, we want the solution to match the desired SLF. Please note,
that we are not looking for sparse shading parameters (which is hardly meaningful), but for
a sparse change of shading parameters. While L0 minimization is computational intractable
for large system, our problem is small enough to enumerate over the sensible solutions. To
this end, the solver explained before is extended to hold all shading parameters fixed except
one, and solve for the remaining parameter in the least squares sense. The closed-form
least-squares fit for holding diffuse or specular fixed, is

x̂d = (
C1,1(d1−C1,2rs)+C2,1(d2−C2,2rs)

C2
1,1 +C2

2,1
,rs)

T (4.5)

and

x̂s = (rd,
C1,2(d1−C1,1rd)+C2,2(d2−C2,1rd)

C2
1,2 +C2

2,2
,)T. (4.6)

The first solution answers, what diffuse reflectance will result in the remaining outgoing
radiance, when the specular part is fixed. The second solution is of similar nature: what
specular reflectance will best produce the outgoing radiance when the diffuse part is fixed?
In both, glossiness is fixed. To find the solutions for varying glossiness, we simply enumerate
in nc discrete steps, resulting in nc + 2 possible solutions: A diffuse change, a specular
change and many glossy changes:

X := {(x̂(rg,i)
d ,rg,i),(x̂

(rg,i)
s ,rg,i),(rd,i,rs,i,g1), . . . ,(rd,i,rs,i,gnc)}

Again, the tentative solution with the smallest residual error is picked using α from Equa-
tion 4.4

49 4.5. GPU IMPLEMENTATION

Figure 4.9: Sparse fitting. In every column, from top to bottom are the given lighting (1st row),
diffuse component (2nd row), glossiness (left) and specular (left) component (3rd row), and the SLF
(4th row). Starting from a given lighting (1st col., 1st row) and desired SLF (2nd cols, 4th row), the
optimal reflectance is found by solving "only" for either diffuse (2nd row, 3rd col.) or specular (right,
3rd row, 4th col.) or glossiness (left, 3rd row, 5th col.) while the remaining 2 components are fixed.

Mixed-Norm Solver A mixed solver computes changes in all (L2), in some (similar to
L0, but with mixed degrees of freedom instead of only 1), and in only one parameter (L0) at
the same time. We enumerate different glossiness in nc discrete steps and current glossiness,
in every glossiness iteration, we find the solution in case of fixing both, fixing diffuse only,
fixing specular only or fixing none, resulting in 4(nc +1) different solutions:

X := { (rd,i,rs,i,rg,i),(x̂(rg,i),rg,i),(x̂
(rg,i)
d ,rg,i),(x̂

(rg,i)
s ,rg,i)

(rd,i,rs,i,g1),(x̂(1),g1),(x̂
(1)
d ,g1),(x̂

(1)
s ,g1)

...

(rd,i,rs,i,gnc),(x̂(nc),gnc),(x̂
(nc)
d ,gnc),(x̂

(nc)
s ,gnc)}.

To this end, weights are given to the outcome of each solution, e. g., 1 to the sparse (fix 2
parameters out of 3), 5 to the mixed (fix 1 parameter out of 3) and 25 to the least squares
solver (fix none). The best solution is again picked using α from Equation 4.4.

n-bounce Because change in reflectance in the presence of multiple bounces also changes
the incoming light for every element, the above process is iterated. This approach smoothes
out the error, but in the presence of specular transport might not converge to the global
optimal reflectance. In practice we did not observe any problems with convergence towards
local minima.

4.5 GPU Implementation

We parallelize the solver over all elements. One thread is executed for every element and
all possible solutions X are enumerated and the best one returned by α . Still, computing
the elements of A is computationally expensive: the first column contains exitant diffuse
illumination for all directions, the second one stores exitant specular illumination for all
directions. To compute exitant illumination, first the geometry operator needs to be applied,

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 50

and second the convolution with one diffuse and with many specular kernels (one for each
glossiness) needs to be performed. Next we will introduce pre-computed visibility (Sec-
tion 4.5.1) and pre-convolved radiance (Section 4.5.2) to accelerate both steps. After this,
the final algorithm is explained, including pseudocode in Section 4.5.3 and an approach to
up-sample (Section 4.5.5) and render (Section 4.5.4) the solution found.

4.5.1 Pre-computed Visibility (G)

When dealing with solid surfaces, the operator G is a matrix with only one non-zero entry per
row. Let h ∈ Nnpnd be an integer vector storing the index of this non-zero entry of row u in
entry hu. A texture is used to store h, allowing to apply G to a vector le stored in a texture using
a single indirect texture read. The vector h is pre-computed in two passes (Figure 4.10).

Figure 4.10: Pre-computed visibility. (a) The finite element points P (circles) of the surface M
(polygons) and one particular point element p arrow. (b) View of the scene from p, including the
other elements. (c) The same view, but with the splat around every element. (d) Grey-coding of
the id j of the element p j, that was closest to the surface location under q.

Visibility from every point in every direction is resolved in a first pass. To this end, the
scene’s polygons are rasterized np times using paraboloid projection and depth-buffering
from each pi into a texture of size

⌈√
nd
⌉
×
⌈√

nd
⌉

that contains the nearest surface positions.

Second, the index of the element closest to each surface position in this texture is found.
This is achieved by drawing every element p j in P as a splat with a size that guarantees the
covering of M . For every pixel covered by this splat with surface position p found in the
first pass, the value j is written if, and only if, d = ||p j−p|| is smaller than the one of all
splats drawn before it. The conditional write is accomplished by using the distance d instead
of the real depth value in a z-buffer. This 5D variant of the Voronoi construction proposed
by Hoff III et al. [1999] takes less than a second for a typical scene such as Figure 4.1, and
consequently allows for near-interactive editing of dynamic scenes.

Discussion The parameters np limits the spatial and nd the angular resolution i. e., glossi-
ness of rendering and editing; nc limits the granularity of gloss control as shown in Fig-
ure 4.23 and Figure 4.24. Restricting G to be binary causes under-sampling, as multiple
elements project into one bin and all but one are lost; a common problem for the hemi-cube in
radiosity. If the emissive lighting is only from point lights, using h to apply G is replaced with
shadow maps that use a more efficient discretization from the light’s view in all our results.

51 4.5. GPU IMPLEMENTATION

4.5.2 Pre-convolved Radiance (K)

For a single element, applying Ks to li in order to compute all A’s would require as much
as ncn2

d operations: A loop that, for each glossiness level and each direction, visits every
other direction. This cost can be reduced to constant time 4/3 nd by making two observations:
First, applying Ks(g) behaves as a lowpass filter with a cutoff proportional to g. Second,
we need to know the result of applying all filters Ks(g0), . . . ,Ks(gnc) at the same time. Both
can be achieved using recursive filtering [Williams 1983], which was used for environment
maps [Heidrich and Seidel 1999] or radiance caching (Chapter 3). To this end, all that is
required is a MIP map of a mirrored version of the incoming light li, denoted as l̂o. On level
0, such a map contains the reflected light only, corresponding to a mirror. On higher levels,
increasingly blurred versions that correspond to lower glossiness values can be accessed
in constant time. Diffuse reflection Kd is an extreme lowpass which can be stored in a small
4×4 texture. Please note, that a different linear basis, such as Spherical harmonics will not
allow to perform the reflection faster either. Pre-convolved radiance caching will also be
used to render the final result in Section 4.5.4.

Figure 4.11: Pre-convolution of one lumitexel from Figure 4.1.

4.5.3 Solver

Listing 4.1 summarizes our system in pseudocode. We implemented our approach using
GLSL.

4.5.4 Rendering

Direct light is computed using common interactive rendering, e. g., shadow maps. To
compute indirect reflected light efficiently [Scherzer et al. 2012], the MIP map l̂o created in
the solver is used as well. For improved quality, the correction used for environment maps
by Szirmay-Kalos et al. [2005] is included. The rendering uses radiance cache splatting
[Gautron et. al. 2008] to propagate the reflected lumitexel to a deferred framebuffer.

All radiometric units are stored as full-precission RGB float values into textures. We use
a gamma tone-mapper that is applied forward when putting an image onto the screen and
backwards when specifying colors. 2×2 supersampling is applied to all results.

4.5.5 Upsampling

While the solution for a discrete set of elements can be efficiently computed, M and R
might contain fine details which are not represented well in P. To be able to propagate the

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 52

(P,rr) := sample(M)
h := precalcVisibility(P,M)
rf := rm := r
while user interacts {
for k := 0 to nb { // Bounces
for i := 0 to np in parallel { // Elements
li := lookupVisibility(h,le)
l̂o := createMIPMap(li)
lo := reflect(P,rf,i,l̂o)
b := tool(P,lo)
g := {g1,g2, ...,gnc ,rg,i}
X := {}
for j := 0 to ||g|| in parallel { // Gloss
A := (Kd*li, getMIPLevel(l̂o,g j))
C := AT

*W*A
d := AT

*W*b
X.add((sol_a(C, d), g j)) // Equation 4.3
X.add((sol_d(C, d), g j)) // Equation 4.5
X.add((sol_s(C, d), g j)) // Equation 4.6
X.add((rd,i,rs,i, g j))
}
rm

i := alpha(X, lo, l̂o) // Equation 4.4
}
rf := rm

}
}

Listing 4.1: Pseudo-code of the mixed-solver approach.

manipulation to such details, joint bilateral upsampling in the framebuffer is used. Let Q
be a frame buffer created by rasterizing the detailed scene. It typically contains millions of
elements. We upsample P to Q, using radial basis function (RBF) reconstruction, with two
important properties. First, we interpolate deltas in the form of differences of the original
reflectance and the new reflectance. This keeps fine details in Q instead of overwriting
them. Second, the distance in appearance is included in the reconstruction kernel: Elements
need have a similar original appearance to be changed in a similar way. Reconstruction is

Figure 4.12: (a) A scene detail with appearance discontinuities. (b) Five elements (circles)
change to pink. (c) Conventional upsampling according for normals and positions. (d) Including
appearance discontinuities preserves details.

performed using RBF splatting similar to the reconstruction used in rendering. At every
3D location p in P a screen-aligned quad is drawn, large enough to overlap with all similar
pixels q. The RGB color of every quad is constant and encodes the change of shading

53 4.6. RESULTS

parameters. The alpha value depends on the similarity between p and q. Additive blending
in RGBA is used to combine multiple splats. After all splats are drawn, the RGB component
in every pixel is divided by the alpha value for normalization.

4.6 Results

We report results in form of several use cases and a performance evaluation.

Usecases A basic manipulation is diffuse painting (Figure 4.13).

Figure 4.13: Diffuse manipulation. (a) A direct stroke in a shadow area and in the presence of GI.
(b) The reflectance is optimized resulting in a matching appearance under this complex illuminant.
A new direct stroke is applied outside the shadow. (c) The result again discounts for the illuminant.

In the presence of multiple bounces, we find our iterative approach to converge against a
minimum that is close to the desired result (cf. Figure 4.14). While this optimum is likely
not global, in our scenes a close local-minimum fit to the desired appearance was achieved.

Figure 4.14: Diffuse painting with multiple bounces. (a) Input. (b) A pale-blue stroke. (c) After
1 iteration, the color is too dark because multiple bounces are not accounted for. (d) Iterating the
solver three times with the newly optimized reflectance, the appearance converges against the
users prescription.

A more advanced usage of our system is the design of view-dependent appearance (Fig-
ure 4.15). To our knowledge, no attempts were made in previous work to “understand” the

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 54

intention of such an input, which likely was to change specularity. Our mixed-Lp solver will
detect that the best single change of material parameter is to adjust specularity.

Figure 4.15: Sketching specular reflectance: (a) Input. (b) A gray stroke over a highlight. (c)
A yellow stroke over the diffuse red ball. (d) The dragon has turned diffuse; the ball has turned
specular. (e) A white stroke on the highlight. (f) The ball now reflects more. (g) A change of highlight
shape. (h) The system inferred a change of glossiness; reflections are sharp, the highlight small.

Direct tuning of light color and reflectance of all surfaces that affect one surface location,
can be a tedious process. Especially for diffuse surfaces, many other locations affect a single
location. In Figure 4.16, the desired appearance of a location subject to indirect lighting
is changed and all other locations alter their reflectance to achieve the desired appearance.
Indirect painting generalizes also to specular (glossy) surfaces (Figure 4.17) .

Figure 4.16: Simple diffuse indirect painting. (a) Input. (b) An indirect green stroke. (c) Reflectance
of all other surfaces is changed to achieve the desired appearance.

Caustics are view-independent effects, but caused by light reflected from a specular object.
Our system allows to tweak caustic appearance in an indirect way (Figure 4.18). We do not
assume any particular type of lighting, all that is required is a vector le. This allows to design

55 4.6. RESULTS

Figure 4.17: Specular indirect painting. (a) Input (b) An indirect orange stroke is made in the input
scene onto the ground. (c) Reflectance is changed (right wall) where it contributes to the ground.

Figure 4.18: Caustic design session: (a) Input. (b) White indirect stroke. (c) Ambigue result. The
system performs a change of reflectance on many surfaces. (d) Two fixate strokes are made. (e)
Now, the best solution is to change the ring’s material to white specular.. (f) Yellow stroke on the
caustic. (g) The desired final appearance is achieved: a yellow caustic from a golden ring.

appearance under complex illumination, such as captured environment maps Figure 4.19.
In Figure 4.20, a geometricaly detailled scene with detailled textures and bump maps is
edited. Note how both material details are preserved, and manipulations are propagated to
regions of similar appearance in the proximity of the stroke.

Besides sketching brushes, global stylization can be applied to the SLF. The result is a scene
appearance, a valid reflectance, but yet with an unsharp-masked look (see Figure 4.21).

Analysis Figure 4.22 compares the results of L0, L1 and L2 optimization from the same
user input. Figure 4.23 and Figure 4.24 show the effect of increasing / decreasing spatial
resolution, directional resolution and gloss levels. Figure 4.25 shows how different brush
strokes results in different materials.

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 56

Figure 4.19: Editing under enviroment map lighting. (a) Input. (b) White stroke onto the teapot
interpreted as a highlight (c).

Figure 4.20: Editing detailed appearance. (a) Input and stroke with similarity marked using 2D
checkers (inset) (b) The change of specular. (c) and (d) The result from different views. Note the
specular highlight appearing as yellow, including the details from the bump map.

Performance For np = 10000 elements with a resolution of nd = 32×32 the solver takes
around 270 ms. Reflectance upsampling from discrete points to current view take roughly
150 ms for a 900×450 resolution view port, radiance cache splatting is around 75 ms. In
overall, our framework allows interactive feedback for a design session. A performance
breakdown is showed in Table 4.3.

Step Time (ms) Memory (MB)

Precomputed Vis. 870 31.64
MIP map creation 138 47.46
Tool 50 47.46
Solver 270 -
Upsampling 150 -
Radiance splatting 75 -

Table 4.3: Performance breakdown for Figure 4.1.

57 4.6. RESULTS

Figure 4.21: Stylization of a scene (a), using unsharp masking (b) by changing the original
reflectance (c,e,g) into the new reflectance (d,f,h), where (c,d) are diffuse components, (e,f) are
specular components and (g,h) are the glossiness components.

Figure 4.22: (a) Input image and (b) stroke. (c), (d), (e) show results produced by the L2,L0 and
“mixed” solvers respectively. The L2 solution turns object into a diffuse-only material to match user’s
input. The L0 solution gives better result by keeping both old diffuse and old glossiness, modifying
only specular color. The “mixed” solver further improves the result by keeping only the original
diffuse color and modifying both specular color and glossiness to match the user’s input.

4. SURFACE LIGHT FIELD MANIPULATION IN 3D SCENES 58

Figure 4.23: Effects on spatial and directional resolution. The original image (a) and the input user’s
stroke (b). The images in the matrix show how our system performs with different number of element
(np) and number of directional bins (nd). The searching of glossiness values is fixed to nc = 30

4.7 Dicussion

The result of our editing is scene-dependent, which is both a strength, but also a limitation
that e. g., disallows to simply transfer appearance to a different scene. Our approach is better
suited for adjusting, rather than creating something from scratch. The resulting surfaces
with reflectance can be used in the following steps of a common pipeline, and are in theory
even fabricable, which both is not the case when stylizing radiance alone. Transparent
surfaces, would require to exchange our pre-computed G with raytracing. There is a limit in
rendering and editing detail which can be achieve using the proposed regular discretization.
Beyond this limit, adaptive discretization would be required.

59 4.7. DICUSSION

Figure 4.24: Effects on gloss level and directional resolution. Scene and use input is the same
as in Figure 4.23. The matrix shows how our system performs with different nubmer of glossiness
values (nc) and directional bins (nd) given the same number of elements np = 6000

Figure 4.25: Effects of different brush size on the same object. The original image (a), painted
with different brush sizes (b), (d) results in (c) and (e).

5
3D Material Style Transfer

Figure 5.1: Automatic 3D material style transfer from different source images (top) to a target
3D scene (bottom) using our approach. In every column, the extracted materials from the source
images are shown as colored sphere (bottom).

5.1 Introduction

Not all 3D scenes come with assigned materials (i. e., reflectance properties); a 3D scanner
might not deliver colors or a model from the internet was simply crafted without. Images
rendered with such scenes do not appear realistic, as users expect certain materials for
certain objects.

When creating thumbnails to browse large databases materials are often a must. When
materials are not available, a manual assignment is tedious. Especially, when a high number

61

5. 3D MATERIAL STYLE TRANSFER 62

of objects and materials are involved, selecting, grouping, and navigating is challenging.
Further, deciding on an object’s material is not obvious, for example when colored light,
e. g., due to indirect illumination is involved. The resulting appearance depends on the
spatial context; a white object near a colored wall will exhibit color bleeding and not appear
white anymore. In other situations, non-obvious rules, that might even be unknown to the
user, should be applied, e.g., for architectural models, a common principle is to assign darker
materials to the floor than the walls to convey a feeling of higher ceilings. In particular,
when a number of design variants should be examined (Figure 5.1) from different view-
points, transferring mood from examples can serve as an inspiration. Similarly, organizing
material assignments according to a style, might be beyond the user’s capabilities, but can
be important, as humans make certain color assumptions depending on the context (i. e., the
Stroop [1935] effect for chroma). Automatically accounting for such expectations makes
scenes easier to understand and more pleasant.

Addressing these issues, this chapter proposes an automated system that extracts materials
from a guide source, such as an image or video and assigns them to a target 3D scene.
The material extraction approximately captures appearance from uncalibrated images of
unknown geometry and lighting using image-filtering heuristics. The material assignment is
formalized as an optimization problem that assigns discrete materials to discrete objects in
order to minimize a cost function that evaluates the perceptual difference to a guide source.
The cost function accounts for image differences as well as geometric matching between
objects in the target 3D scene and the guide source. Furthermore, to a certain extent, the
cost function grasps inter object relations including global illumination aspects. The user
can therefore, by providing a simple guide source, attribute plausible materials to an entire
3D scene fully automatically.

5.2 Our Approach

Our system consists of two key components: material extraction (Section 5.2.2) and ma-
terial assignment (Section 5.2.3). From a guide source, which can be an image or video,
a set of materials is extracted. Then the system finds the best assignment of these materials
to a target 3D scene (Figure 5.2).

Figure 5.2: Our approach extracts materials (2nd col.) from a 2D guide source (1st col.) and
assigns them to a target 3D scene (4th col.) so that its appearance preserves the style of the
source after globally illuminated (3rd col.).

63 5.2. OUR APPROACH

5.2.1 Definitions

Here, we introduce the basic definitions that our system builds upon: materials, objects,
material assignments and rendering.

We represent materials by (slightly modified) Phong coefficients [Phong 1975]: diffuse
color, monochromatic specular intensity and glossiness. Textures are represented using
anisotropic noise with a particular frequency spectrum [Perlin 1985] modulating the diffuse
color. We decided to not optimize for the number of materials, but assume it to be nm, a
user-controlled parameter.

A scene is hand-crafted and therefore usually segmented into meaningful entities, or it
needs to be segmented into objects that will receive the extracted materials. We assume a
segmentation into no objects a given.

A material assignment A := {ai ∈ N+|ai < nm, i < no} ∈ A is a mapping from every object
i to a material ai. It is neither assumed that every material is used, nor do we enforce that
it has to be used more than a certain number of times (or any other similar restriction).

We assume a set V of views on the scene which we will simply call “the views” for which the
assigned materials should be optimal. It can either be a set with only one element defining
a single camera position and orientation, a camera path, or a volume in space describing the
potential viewpoints. When the views fill the complete space, no view-specific optimizations
will be made.

Rendering in our context is an operator r(A,V) := A ×V → (R2 → R3) that converts
our fixed target 3D scene under some material assignment A and some views V into a
two-dimensional RGB image.

5.2.2 Material Extraction

Extracting physical materials from images is a very ill-posed problem that we try to avoid.
Instead, we extract plausible materials by splitting the image into several components that
map to different shading parameters: Diffuse color, specularity and texture (Figure 5.3).
First, the input image L̂ is (inverse-gamma) converted into linear units and white-balanced
to L. Then, L is split into a diffuse Ld and a specular scalar radiance Ls. For fast performance
and simplicity, the method of Yang, Wang and Ahuja [2010] is used, but others are possible.
Next, the diffuse radiance Ld is split into a base Lb and a texture part Lt. Bilateral filtering
[Durand and Dorsey 2002] is used to decompose Lb in Ld and Lt = Ld−Lb.

Accounting for a material’s specularity is challenging: highlights are only visible in some
parts (white dots in Figure 5.4) of an object although the specularity is the same everywhere
on the object. We make the assumption that a continuous diffuse base color Lb implies
the continuity of material (material segmentation). Conceptually, we can hereby asso-
ciate a highlight to all places where it could have appeared for a different combination of
light and viewpoint. The material segmentation is computed as follows: First, the CIE-
LAB values of all base diffuse pixels Lb are clustered using k-means [MacQueen 1967]
applying the CIEDE2000 [Sharma, Wu and Dalal 2005] color difference metric. Next,
disconnected k-means clusters are split into individual segments. Finally, to compensate

5. 3D MATERIAL STYLE TRANSFER 64

Figure 5.3: Our material extraction pipeline is shown from left to right, top to bottom. The input,
a single image, is decomposed into diffuse and specular radiance. Next, the diffuse radiance
is split into base- and detail diffuse reflectance. The latter will be represented as local statistics.
Finally, the full high-dimensional material info (diffuse reflectance, specular intensity, and the detail
statistics) is segmented into discrete clusters which are assigned to the target 3d scene.

Figure 5.4: From left to right: Starting from an input image L, with diffuse colors (yellow, blue) and
different highlights (white spots), the diffuse base color Lb is used for the material segmentation
to propagate specularity and glossiness.

for over-segmentation (e. g., large gradients in the background), neighboring segments are
merged if the average color difference on their boundary pixels is less than a certain threshold.

To extract texture information, we use a bilateral Laplacian pyramid [Fattal, Agrawala and
Rusinkiewicz 2007]. The pyramid is computed by convolving Lt with a bank of nb bilateral
filters and subtracting subsequent levels. Doing so, strong edges in Lt, are excluded from
the frequency response. In practice, we use nb = 4 levels. An additional filtering using a
5× 5 Gaussian filtering accounts for the local phase insensitivity of the HVS. This results
in a spatially varying map S : R2→ Rnb .

Using the material segmentation, the diffuse color, specularity and texture coefficients are
calculated within each segment using robust statistics [ODonovan et. al. 2011] resulting
in k′ materials. Depending on the scene structure, k′ might be very different from the
desired number of materials nc. Therefore, we interpret the the k′ materials once again as a
high-dimensional (8 D) point cloud and cluster it once more, resulting in the desired nc final
materials. In practice, segmenting into a handful of discrete materials is sufficient to well-
match the guide images. Figure 5.5 shows several material extraction using our approach.

65 5.2. OUR APPROACH

Figure 5.5: Several material extraction results. Input image (1st row) is decomposed into diffuse
(2nd row), specular (3rd row) and detail (4th row) components. Disconnected components are
clustered using k-means (5th row) and merged (6th row). The 7th row shows the color of the merged
clusters. Next are the results of the second k-means (8th row) and the extracted materials (9th row).

We also support other guide inputs, such as image sequences that are processed on a per-
frame basis and allow for direct sketching of a guide sources that we designed a simple user
interface for. The system then updates the scene according to sketched materials (e. g., a
red circle with a highlight and a blue square). To ease explanations, we will in the following
consider a single guide image as input.

5. 3D MATERIAL STYLE TRANSFER 66

5.2.3 Material Assignment

An appropriate assignment A is found by minimizing a cost function d(A,V). d is high, if
the guide source is perceptually different for the material assignment A under view V . The
cost is the sum of two components

d(A,V) = widi(r(A,V))+wgdg(A). (5.1)

A view-dependent image cost di compares the guide source to a rendered image using
the current view and assignment. A view-independent geometric cost dg verifies that the
assignment is consistent with the geometry. wi,wg determine the relative weighting between
di and dg respectively. We detail both components in the following, before showing how
to efficiently optimize for this cost function.

Image Cost di penalizes perceived difference of material appearance for all rendered
views with respect to the guide source. Histogram calculations are used to compare the
material mood of two images. To account for spatial variation, different local histograms are
used in different parts of the image. We use a grid of 3×3. The CIE LAB color space is used,
defining a 3D histogram with 10 bins in each dimension. Continuous bins are computed
using Parzen [1962] windows. Finally, the distance between two histograms is computed
using their intersection [Swain and Ballard 1991].

The final cost is then defined as the integral of the image cost over all views. We could
compute this integral using quadrature, i. e., computing it for a high number of views, but,
as shown later, picking just random views is a sufficient Monte Carlo approximation.

Geometry Cost dg penalizes geometrical differences between objects in the scene and
the guide source that share the same material. A simple example illustrates the idea: A
still-life-like guide source with a green apple and a yellow banana being is assigned to a
3D scene with an apple and a banana object. In terms of image costs, a green banana and
a yellow apple are as plausible as a green apple and a yellow banana. Nonetheless, it is more
intuitive to assign materials to similar shapes in the target and guide source, i. e., a yellow
material to banana-like and a green material to apple-like shapes. Formally, we define:

dg(A) =
1
no

no

∑
j=0

min
0≤i<n′o

(da(i, j,Ai,A′j))

with

da(i, j,Ai,A′j) :=

{
ds(i, j) if Ai = A′j and
floatmax else,

where no and n′o are the numbers of objects in the target and source, i and j are shapes of target
and source, A and A′ are the corresponding material assignments and ds is a shape difference
metric. To compute the difference between two shapes we employ a 2D Angular Radial
Transform (ART) [Bober 2001], and use the corresponding shape descriptor vector com-
posed of 35 elements. We use ART because of its simplicity, quick computation, and robust-
ness for shape-based geometry matching [Chen et al. 2003]. We use the minimal Euclidean

67 5.2. OUR APPROACH

distance between the descriptor vectors over a range of orthographic views [Chen et al. 2003].
To make sure only meaningful matches contribute to the geometry cost, we redefine dg(A) as

dg(A) =
1
no

no

∑
j=0

qρ(min(da(i, j,Ai,A′j)))
0≤i<n′o

(5.2)

where ρ is a constant to define the minimum requirement for meaningful shape matching and

qρ(x) :=

{
x if x≤ ρ and
1 else,

Note, that the geometric cost is view-independent.

If the guide source does not provide 3D shapes, i. e., for images and videos, the 2D shape is
directly used in the shape metric. The shape extraction makes use of a different segmentation
than can be deduced from the derived materials because, to use an example, two bananas in
a guide source might form one material cluster, yet their shape is still the one of two single
bananas, so nm = 1 while n′o = 2.

We use a multi-segmentation to decompose the guide source [Russell et al. 2006] because
no single parameter setting for a segmentation approach will be sufficient to produce all
meaningful segments. Mean shift [Comaniciu and Meer 2002] is used and the bandwidth
parameter is varied to three different values to produce a fine, a medium, and a coarse
segmentation. The resulting segments are different from the material segmentation, but only
used to calculcate the geometry cost (Equation 5.2).

5.2.4 Optimization

Given a cost function, we find the best assignment via simulated annealing (SA). SA is an
iterative improvement algorithm, in which permuted “neighboring” solutions are used to
evaluate the cost function and submitted to an acceptance test. Permutations leading to a
cost decrement are always accepted while permutations resulting in an increase are accepted
according to a probability based on the Boltzmann factor [Kirkpatrick, JR and Vecchi 1983].

In general, a cost function is sampled for the current solution ci = d(Ai,V) as defined in
Equation 5.1. Next, the current solution Ai is permuted to a neighboring solution B in a way
that depends on the cost. If the cost ci is high, a remote neighbor is chosen, if it is low, a
close neighbor is selected. Once, a neighboring B is chosen, the next solution Ai+1.

To apply this principle to materials, we have to define a neighborhood on our solution
domain, i. e., the space of material assignments A . Intuitively, we want remote neighbors
to change the material of many objects, and close neighbors to change the material of fewer
objects, formally

B j :=

{
p(Ai

j) if ci > ξ j

Ai
j, else,

where 0 < ξ j < cmax (a user parameter) is a random number and p(k) ∈ {1, . . . ,nm}2 a
material index permutation function to be defined next. The permutation 1 < p(k)< nm

5. 3D MATERIAL STYLE TRANSFER 68

maps a current material index k onto a new material index. In a simple implementation, p(k)
can be chosen to produce a random number between 1 and nm. Our more advanced imple-
mentation permutes material assignments while maintaining a similar cost (Figure 5.6). To

Figure 5.6: Left to right: Source image and target 3D scene; the cost matrix of assigning materials
to geometry; the cost p(k) of permuting a material k

find similar, i. e., nearby, materials, the metric of Pellacini et. al. [2007] is used; it computes
the average intensity difference over a high number of random incoming and outgoing
sampling directions. To accelerate the AS optimization, we can write the distance between
all materials as a nm×nm matrix M. For each material, a row Mk in this matrix represents the
similarity to all other materials. In the matrix F a row

Fk := (
l=nm

∑
l=1

Mk,l)
−1Mk

is a probability density function. Finally,

fk(x) := argminl

m=l

∑
m=1

Fk,l > x

is a cumulative density function. Using f , another random number 0 < ξ ′ < 1 allows us
to choose a similar material p(k) := fk(ξ

′) with a probability proportional to its similarity.

5.2.5 Implementation Details

Evaluating the cost function – which involves rendering the scene and computing global
illumination for every sample – naïvely, is far too costly. A GPU in combination with
pre-computation is used to accelerate this computation. First, a deferred buffer [Saito and
Takahashi 1990] storing position, normal and material ID for all views is pre-computed. As
described above, we pick a random view for every sampling. We use 4 views, each in a reso-
lution of 256×256 pixels. At runtime, only the assignment of materials to material IDs in the
buffer is changed. It is done in parallel over all views and all pixels using a simple shader pro-
gram. To simulate light transport, Instant Radiosity [Keller 1997] is used. 256 virtual point
lights with low-resolution shadow maps have shown to provide sufficient accuracy here. The
shadow maps for all VPLs are independent of the samples and can be pre-computed as well.

69 5.3. RESULTS

5.3 Results

Results produced by our system are shown in Figure 5.7. In the first and second rows, kitchen
scenes are stylized, notice how different guide sources result in different moods (column). In
the third row, the different combinations of specularity and texture frequency from the stones
in the guide source are captured and transferred to the target. The scene shows a strong
resemblance to the input photo despite the process being fully automatic. In the fourth row,
even though the scene is mostly lit by indirect lighting, our system successfully captures
the guide images’ mood. While in Figure 5.12 a guide painting is used, the construction
of our Phong BRDF ensures that materials stay realistic. Figure 5.8 uses a guide video.
Our algorithm managed to detect the round shape of the juggling balls and associated them
adequately to the scene. The results presented are produced without human intervention
and computed in under 2 minutes.

Our approach can also serve as the basis of a rough user sketch-based system (Figure 5.9).
By analyzing the drawn shapes, similarly shaped 3D objects are attributed the material
that is indicated by the user. By drawing specularities, the user can further modify the
specular coefficient. The process is interactive and the transfer on target scenes can facilitate
material attribution in 3D scenes. One can handle all similar objects can at once, or restrict
modifications to a given target view.

When our system is presented a guide source where ground truth material information is
available, it successfully recovers those materials to a large extent (Figure 5.10). The two
additional materials in our reconstruction, are due to shadows that were segmented into
additional individual materials.

5.4 Discussion

Perceptual Study To validate the performance of our approach, a perceptual study was
performed in two steps. In the first step (assignment tasks), human performance in terms
of quality and speed of assigning materials to a 3D scene according to a guide source was
analyzed. Using the free software “Blender”, 14 subjects were asked to assign materials to
a 3D scene according to a guide image. Both expert (computer graphics graduate students,
faster half) and non-expert (university graduate students, slower half) participated. The
subjects received instructions and training on how to perform assignments and their results
were captured after finishing (usually 20 minutes). There was a total of 13 assignment tasks
and on average every subjects performed 4 assignments. Figure 5.11 shows the assignment
task and several results edited by the subjects. At the end of the study, when asked “How
pleasant was the material assignment tasks?” the common answer was “Conveying mood
using material assignment is not intuitive, especially in case of dominant indirect lighting”.
There were a couple of comments indicating that material assignment task was really dif-
ficult, such as “I think, my results were not good enough but had no idea how to improve
them anymore, searching for the right colors was so difficult and tedious”.

In a second step (ranking tasks), 20 other subjects were asked to rank the result images
obtained in the first step. For each of the 13 assignment tasks we grouped our result and

5. 3D MATERIAL STYLE TRANSFER 70

Figure 5.7: 3D Material style transfer to different target scenes (2nd and 3rd, 5th, and 7th rows)
from different sources (1st, 4rd, and 6th rows).

71 5.4. DISCUSSION

Figure 5.8: Transfer from a video (left) to a target 3D scene (right). Note how the juggling balls
are mapped to the small spheres.

Figure 5.9: Four steps of user interaction. (a) A user draw two spheres in two colors, being mapped
to distinct shapes. (b) A highlight is added to the blue patch, resulting in highlights to appear on
blue shapes in the target. (c) An elongated yellow shape is added that is mapped to the banana.
(d) Noise on the yellow shape makes the banana appear textured.

Figure 5.10: (a) Our material extraction applied to (b) a rendering of a 3D scene where ground
truth materials are known.

all results of the manual assignment after 5 minutes (avg. group size: 5 images). Subjects
were then asked to “sort the images from best to worst in order of mood similarity to the
guide image”. Our algorithm can produce an assignment in less than 2 minutes, however,
64 % rank our automatic assignment best (84 % best or second-best). Asking the same
question for a different group of images that contained our result and all results of the final
assignment, 60 % rank our automatic result better than all other assignments (80 % best
or second-best). One conclusion from the relatively low improvement between 5 and over
20 minutes achieved by manual assignment is that, it is very hard to converge from an
acceptable initial result to a final, global illumination-compatible assignment that captures
the scene’s mood such as produced by our system. Figure 5.13 shows several assignments
that we asked subjects to perform the ranking task.

5. 3D MATERIAL STYLE TRANSFER 72

Figure 5.11: Our assignment tasks and several results obtained from the subjects. In every set,
the first column shows the guide source (1st col., 1st row) and the result using our system (1st
col., 2nd row). The second column and third column show the result of two arbitrary subjects after
5 minutes (1st row) and the final assignment (2nd row).

Figure 5.12: Comparison between using our combination of image and geometry cost (left), using
only the image cost (middle) and using only the geometric cost (right).

73 5.4. DISCUSSION

Figure 5.13: Several assignments showed to the subjects in the ranking tasks. In every set,
on the top left is the guide source. Next are two different sets: the 5 minutes (1st row) and final
assignments (2nd row).

5. 3D MATERIAL STYLE TRANSFER 74

Image and Geometry Cost Our cost function consists of an image and a geometry term.
Both play an important role and only the combination of the both aspects will lead to a
successful assignment results (Figure 5.12). Using only the image term will give a similar
image appearance, but wrong individual object materials. Only using the geometric term
will assign the right materials to objects, but with no consistent global organization.

Limitations and Assumptions While the system often succeeds in transferring the mood
from a source image onto a 3D scene, it is subject to several limitations. In summary, our
system performs best for input images and target 3D scenes, which can be well-segmented
with neutral directional lighting and similarities between source and target.

Certain assumptions about the image and the 3D scene have to be made. The target 3D
scene has to be segmented into meaningful objects, i. e., objects that can be assigned a
discrete material label. The source image has to be automatically segmented, which is a hard
problem and we can not expect it to always work. While material extraction works well with
imperfect segmentations, shape similarity is more sensitive. To circumvent this problem,
we use multiple segmentations. If no matches are found, the geometry cost (Equation 5.2)
will approach a constant for all assignments and optimizing Equation 5.1 will revert to
optimizing for the image cost alone.

Many limitations stem from the difficulty to robustly extract materials from images. We
focus on visually plausible materials in combination with an optimization based on simi-
larity to a guide image. Perfectly reconstructing physically-correct reflectance from a single
image is very difficult without extra assumptions on the object geometry and scene lighting
that we avoid. Nonetheless, our assumption of material appearance constancy might not
always hold; hard shadows or unusual highlights happen to be erroneously interpreted as
individual objects. Also, textures under strong perspective transformations are sometimes
grouped into different materials. Special materials like glass and other transparent materials
are not yet supported.

6
Shape and Color Subspaces

Figure 6.1: Our approach automatically aligns a set of images (a) showing instances of one object
class to a “reference image” (b) and constructs a subspace of shape and color (c). This subspace is
used to guide manipulations of a different image (d). When painting a colored stroke, our subspace
is used to propagate plausible colors to plausible locations (e, top) or to restrict shape deformations
to plausible shapes (e, bottom). Additionally, the space is used to suggest relevant shape and
color alternatives (f).

6.1 Introduction

The ability to manipulate digital images is a fascinating opportunity taken both by profes-
sional artists producing digital content as well as by casual users editing their home photo

75

6. SHAPE AND COLOR SUBSPACES 76

collection. While the option to change shape and color of an image into any possible other
shape or color sounds like a good idea at first, in practice too many possible options actually
decrease the human ability to make the right decision [Tversky and Kahneman 1981].
Therefore, the right balance between generality and reduction of choices has to be found.
We devise a computational way to automatically suggest such choices for a class of images.

One option to restrict manipulations in a meaningful way is the construction of subspaces
within the space of all possible images. Here, images are understood as points in a high-
dimensional space. Images from a certain class, such as faces, do not cover the entire space
but a lower-dimensional manifold which is likely related to the human mental representation
of this class [Seung and Lee 2000]. This idea was first proposed for human faces, both
in 2D [Turk and Pentland 1991; Cootes, Edwards and Taylor 2001] and 3D [Blanz and
Vetter 1999], 3D human bodies [Allen, Curless and Popović 2003] or other specialized
3D shapes [Cashman and Fitzgibbon 2013], where the manifold is approximated using
principal component analysis (PCA).

However, to construct subspaces, training data needs to be aligned manually by means of
careful selection of a template and intervention [Cootes, Edwards and Taylor 2001], such as
clicking correspondences [Blanz and Vetter 1999]. This excludes casual users, such as a hy-
pothetical biologists seeking to create a subspace of leaf images for a class of plants captured
in a collection of 1000 non-calibrated images or even non-professional users striving to
create a subspace of a special breed of dogs from a dozen of images. No simple and efficient
way exists to align a large collection of images allowing for the creation of subspaces.

In this work, we propose a simple alignment strategy applicable to casual image collections
such as images of butterflies. As finding perfect or even sufficiently correct correspondences
for all images in a large set is infeasible, we first build an incomplete partial alignment that
is later completed to align all images.

Our key application is shape and color manipulation in images as seen in Figure 6.1. Se-
lecting the right color for a fish and assigning it to the right spot is difficult as the selection
is from a high-dimensional appearance space. While selection of color alone is already
challenging, selecting shape and respecting the combination of shape and color are even
harder. Our system allows the user to change color or shape in real-time and the result is
restricted to meaningful changes by finding a close image in the subspace corresponding to
the image class. If desired, changes in color and shape can be locked to result in correlated
changes of both. As the images forming a subspace lack detail, our approach only captures
the change in shape and color and transfers this change to the image being edited.

6.2 Our Approach

Overview After acquiring a set of images, our approach proceeds in three steps: align-
ment of example data (Section 6.2.1), construction of a subspace from the aligned images
(Section 6.2.2) and application to novel user interfaces (Section 6.3). The first two steps
are performed offline while our user interfaces always provide real-time feedback. Table 6.1
and Table 6.2 show the sets, constants and general symbols used in alignment (Section 6.2.1)
and subspace manipulation (Section 6.2.2 and Section 6.3) respectively.

77 6.2. OUR APPROACH

Input of our system is a set of unaligned RGB images from one class (Figure 6.2). Those
images have to show instances in roughly the same pose on a constant background. If the
background is not constant, it has to be removed manually. The instances have different
appearance, slightly different pose and perspective and are centered. Our example classes
were collected from Internet image queries, manually removing outliers in terms of the
above requirements. No other manual intervention was performed.

The core of our approach automatically aligns every image to a reference image (Figure 6.3).
An alignment is a deformation field, that, when applied to the respective instance from the
set, produces an image with the same color but in the shape of the reference, i. e., shape
and color are factored out (Figure 6.4). From the aligned images and their deformation
fields, a subspace of color and shape is created which allows for novel image manipulation
interfaces. Such user interfaces constrain the result to be part of the subspace in terms of
color, shape, or both.

Symbol Meaning

General:
a,b Image a and b

Alignment graph:
d(a,b) Distance metric between images a and b

s Neighborhood size of the min-pooling
ε A small constant value to penalize longer paths
A Pairwise distance matrix Aa,b = d(a,b)

Alignment:
r Searching neighborhood size

fb,a(x) The best corresponding pixel in a for pixel x in b
Edat

b,a(x) The data term of the alignment cost
l Patch size of the data term

ws A spatial smoothness weighting function
σs The spatial smoothness parameter of the data term

Emag
b,a (x) The flow magnitude term of the alignment cost
wmag Weight for the flow magnitude term

Eb,a(x,y) The energy function of the pair x in b and y in a
∆b,a(x) Flow vector at x,∆b,a(x) =: ∆(x)
cb,a(x) The confidence of the flow x in b, cb,a(x) =: c(x)

κ The curvature of Eb,a(x, fb,a(x))
γ A parameter to control the agreement check

g(x) The blurred correspondence field
w(x,y) The modified blur kernel

σd The spatial smoothness parameter of w
σc The steepness of the confidence function in w

h(x) The locally-rigid regularization of g(x)

Table 6.1: Table of notations for alignment

6. SHAPE AND COLOR SUBSPACES 78

Symbol Meaning

Subspace construction:
n Number of pixels
m Number of basis vectors
α A weight to control the contribution of

shape/app.
{b j}m

j=1 The set of basis vectors
λ j The eigen value corresponding to the basis

vector b j

Shape and color manipulation:
u An image for manipulation
i An iterator over the number of pixels n
j An iterator over the number of basis vectors m
v A manipulated image vector
v̄ The closest projection of v in the subspace
x The coordinate of v̄ in the subspace
k The spatial weighting vector for subspace

reconstruction
µ A scalar regulating the prior’s contribution

Color transfer:
i An iterator over the number of pixel

in the query image u
j An iterator over a square patch around i

p j The source color at pixel j
q j The target color at pixel j
w j Weight depending on the distance between

j and i and the alpha channels
p̄ The weighted centroid of the p j

q̄ The weighted centroid of the q j

Ri The rotational component of the color
transformation at i

ti The translation component of the color
transformation at i

δ A regularization parameter

Shape and color suggestions:
nd The number of directions used for suggestion

Table 6.2: Table of notations for subspace construction and manipulation

79 6.2. OUR APPROACH

Figure 6.2: Some instances from the example class “Horses”.

Figure 6.3: All exemplars are aligned to a reference image, here shown for the case of a butterfly
class. In the 3rd column, the gradient-colored lines show the flow direction (from blue to orange)
that align (4th col.) the exemplar (2nd col.) to the reference (1st col.).

Figure 6.4: We separate shape and color of a collection of images (here shown on the diagonal)
to create a space that contains arbitrary, continuous re-combinations (off-diagonal elements).

6.2.1 Alignment

Alignment is difficult as our images are not taken under controlled conditions and vary
drastically in their appearance. These challenges are addressed as follows: First, we predict
how well each pair of images might align. Next, from this information, we identify a
reference image to which all other images might align well. The actual alignment to this
reference is performed as a concatenation of simple alignments along the shortest path in a
graph over the images. For each pair that needs to be aligned, we first find the best per-pixel

6. SHAPE AND COLOR SUBSPACES 80

Figure 6.5: Comparison between the alignment of source and target exemplars using either direct
or indirect of alignment. The alignment paths between exemplars are shown on the right.

correspondences and a measure of confidence, before we blur areas with low confidence
and regularize the resulting flow to locally rigid transformations. Each step will be detailed
in the following paragraphs.

Alignment Graph Directly aligning a large number of images with a reference image is
likely to fail as appearance of our input images show substantial variation. Establishing an
alignment between similar images however is routinely done. Regrettably, this does not
suffice to align every image with the reference image as required for our needs. As a solution,
we perform indirect alignment: We create an alignment graph, where similar images are
aligned directly and the alignment of dissimilar image pairs is found as a sequence of edge
hops (an alignment path) in this graph. This idea has been successfully applied to the
alignment of multi-view stereo images [Huber 2002] and 3D shapes [Huang et al. 2012].

To create the alignment graph, we first define a distance metric d between images. The
Gram matrix A of this metric, with Aa,b = d(a,b) holds in each entry the distance between
each pair a, b.

As image distance d, a robust measure is required since common metrics such as L2 or
perceptual ones such as SSIM [Wang et al. 2004] are not resilient to the, at this point unknown,
deformations. However, we would like to use a metric that reports a small difference, even if
the images differ by a small deformation, as long as their appearance is similar. Conversely,
a high value should be returned if the appearance is very different or the deformation is large.
Let, a,b ∈ [0..1]2→ R3 be images encoded in the LAB-color space. We define d by

d(a,b) =
∫

[0..1]2

min
y,z∈[−s..s]2

‖a(x+y)−b(x+ z)‖2 dx,

i. e., as the sum of the min-pooling LAB-color-difference in a neighborhood of size s = 0.01.
Similar spatial pooling is believed to be used by the human visual system too and has shown
to provide robustness in recognition [Serre et al. 2007].

81 6.2. OUR APPROACH

When viewed as an adjacency matrix, A implicitly defines a fully-connected graph with
the image distances as edge weights. We further add a small constant ε = 0.1 to each entry
of A to penalize longer paths in the graph. The reference image is chosen to be the one
with minimum total length of the shortest paths to all other images. To align each image
a with the reference, first, the shortest path to the reference according to A is found. Then,
the pairwise alignments along this path are performed as described in the next subsection
and finally concatenated. Figure 6.5 shows several examples where a concatenation of
alignments (indirect alignment) improves over a single direct alignment. In addition to these
“backward” alignments, we analogously compute the “forward” deformation fields, aligning
the reference to each respective image. The latter are later used to build the subspace of
shape variations (Section 6.2.2). Note that the shortest paths from the reference to other
images form the shortest-path tree (See Figure 6.6).

To improve the quality of the resulting subspace, we discard images that have a low
alignment-quality, which is judged by the SSIM image difference between the reference and
the backward-deformed image. Figure 6.12 shows the forward and backward alignments
for several classes.

Figure 6.6: The shortest-path tree of the "boot" class formed by the shortest paths from the
reference (highlighted in red) to all other images in the class. Every node (blue circle) represents
an image of the class and the undirected edges (gray lines) represent the connection between
two nodes. An alignment path from the reference to another image is defined by walking through
intermediate nodes using the edges in the graph.

6. SHAPE AND COLOR SUBSPACES 82

Figure 6.7: Alignment of exemplar b to exemplar a (1st col.) using different methods. As
our exemplars differ drastically, both, PatchMatch [Barnes et al. 2009] (2nd col.) and NRDC
[HaCohen et al. 2011] (3rd col.), failed to produce a reasonable flow. Optical flow methods based
on the assumptions of small disparity and image similarity such as Lucas Kanade [Lucas and
Kanade 1981] (4th col.) or Simple Flow [Tao et al. 2012] are not designed to work for our problem.
SIFT Flow [Liu, Yuen and Torralba 2011] (5th col.) allows robust matching between objects of
different appearance at the cost of only piecewise smooth flow. Our method (6th col.) works best
as it is specifically designed for images containing a single object.

Figure 6.8: Alignment of a source (1st row, 2nd col.) to a target image (1st col.) using Shape
Context [Belongie, Malik and Puzicha 2000] (3rd col.) and our approach (4th col.). The second row
shows blends of the respective image in the first row and the target image. Note how our method
improves the alignment of interior structures, e. g., of the red stripe on the wings of the butterfly
to the orange one, while Shape Context only aligns the outer boundary.

Alignment We seek to find a flow field that is smooth and aligns the images well but cannot
assume it is produced by a simple camera motion, even if it was 3D such as in alignment for
structure-from-motion. Possible techniques to deal with such problems are SIFT Flow [Liu,
Yuen and Torralba 2011], Patch Match [Barnes et al. 2009] or NRDC [HaCohen et al. 2011].
We found however that, while those techniques are good at aligning images that are different
in a plausible way, this comes at the cost of creating flow fields that are often close to
meaningless. E. g., in the case of our butterflies they are more successful than our approach
to transfer color from one exemplar to another, but at the price of a puzzle-like flow field that
reassembles image a using image b in a piecewise smooth manner (Figure 6.7). Silhouette-
based matching [Belongie, Malik and Puzicha 2000; Cheng et al. 2010] might succeed to
align boundaries (Figure 6.8) but fails to align internal structures (Figure 6.9). Finding a
plausible flow is a key requirement to capture the shape variation underlying our data, though.

83 6.2. OUR APPROACH

Figure 6.9: Given source and target images with different appearance (1st col.), we compute an
initial flow and its confidence (cf. Figure 6.10, 3rd col., bottom). This initial flow field is blurred using
the confidence as guidance and regularized to enforce locally rigid transformations (1st row, 2nd
to 4th col.). The second row shows the warped source using the respective flow from the first row.
The third row shows the blends between the warped source and the target.

To this end, we devise the following alignment (Figure 6.9) between two images a and
b which is computed for each pixel independently and in parallel: Each x ∈ [0..1]2 in
b searches over a two-dimensional neighborhood of size r ∈ [0..1]2 in a to find the best
corresponding pixel fb,a(x), i. e., the one with the lowest cost Eb,a:

fb,a(x) = argminy ∈ [x− r,x+ r]Eb,a(x,y), with

Eb,a(x,y) = Edat
b,a(x,y)+wmagEmag(x,y),

Edat
b,a(x,y) =

∫
[−l..l]2ws(z)‖b(x+ z)−a(y+ z)‖2 dz∫

[−l..l]2ws(z)dz
,

Emag(x,y) = ‖x−y‖2 /‖r‖2

where Edat
b,a is the data term defined as the sum of the weighted LAB-color difference of

the corresponding patches of size l in a and b, ws(z) = exp(−σs ‖z‖2
2 /(2l2)) is a spatial

smoothness weighting function, controlled by σs [Tao et al. 2012]. The flow magnitude
term Emag(x,y), weighted by wmag, constrains the flow vectors to be as small as possible.

Besides the corresponding pixel’s location fb,a(x), we also compute a measure of con-
fidence cb,a(x) as the product of two factors: The first is the curvature κ of the energy
function Eb,a(x, fb,a(x)), a common indicator of reliability in stereo correspondence prob-
lems [Tombari et al. 2008]. The second factor is an agreement check, to test if the flow
from a to b is the same as the flow from b to a: (1−‖∆b,a(x)+∆a,b(fb,a(x))‖2 /(2‖r‖2))

γ ,
where γ is a parameter to control the function and ∆b,a(x) = fb,a(x)−x. We then remove
all areas with confidence below a certain threshold. Figure 6.10 illustrates the effect of the

6. SHAPE AND COLOR SUBSPACES 84

two factors and the thresholding on our alignment. For brevity, we denote ∆b,a(x) by ∆(x)
and cb,a(x) by c(x) in the following.

Figure 6.10: Our alignment computes the confidence from the curvature of the matching quality (1st
col.), by an agreement check term (2nd col.) and by removing low-confidence areas (3rd col.). An
alignment using all three terms (4th col., top) improves over using only the first term (4th col., bottom).

The confidence c(x) is used to replace unreliable areas of ∆(x) by extrapolating from more
confident areas [Tao et al. 2012; Lang et al. 2012]. This is achieved by the following modified
blur filter:

g(x) = x+
∫
[0..1]2w(x,y)∆(y)dy∫

[0..1]2w(x,y)dy
,

w(x,y) = exp(−σd ‖x−y‖2
2) exp(−σcc(x)‖x−y‖2

2)c(y).

The first term of the blur kernel w is the spatial smoothness term, controlled by the parameter
σd. Furthermore, the blur kernel has a two-fold dependency on the confidence c: First,
pixels with a high confidence are less affected by other pixels (second term), σc controls
the steepness of the function. Second, pixels with a high confidence contribute more to the
value of other pixels (third term).

The resulting blurred flow field g is now smooth but might distort the shape. An improved
flow h is found by mapping the flow in a neighborhood of each pixel to the closest flow
in this neighborhood being a rigid transformation. This is done using the flow as point
correspondences and orthogonalization [Horn 1987; Schaefer, McPhail and Warren 2006].
In discrete settings, we use a neighborhood of size 32×32 pixels for our results. The final
output is a flow field that extrapolates from high-confidence areas to fill unreliable areas
by a smooth and locally-rigid deformation. Figure 6.11 shows how our orthogonalization
can be used to improve the flow field generated using other approaches, nevertheless, our
alignment achieves better quality.

Discussion Our method is simple but efficient for the difficult problem of aligning sub-
stantially different images that undergo non-rigid deformations without manual intervention.
At each step (Figure 6.9), the result for every pixel is computed independently and in parallel.
In a discrete setting, for a pair of images with size 256× 256 pixels, we set r = 80× 80

85 6.2. OUR APPROACH

Figure 6.11: Orthogonalization of the flow field generated using SIFT Flow (Figure 6.7, 2nd row,
5th col.). The two exemplars are shown in the first column of Figure 6.7. The first column shows
the orthogonalized flow. Next are the warped source (2nd col.) generated using this flow and its
blend with the target (3rd col.). Finally, we show the blend (4th col.) of our result (Figure 6.7, 1st
row, 6th col.) and the target.

pixels, l = 8 pixels, σs = 15,wmag = 0.1,γ = 5,σd = σc = 100 and the computation of the
deformation field takes 2 seconds. For a reef fish collection of 50 exemplars, it takes less
than 3 minutes to construct the alignment graph and to align the fish along the shortest paths.
This makes our method highly scalable for large image collections.

Similar to Lang et al. [2012], we use a set of confident areas to construct a flow field. How-
ever, different from their method, our initial flow and confidence are dense [Tao et al. 2012].
Furthermore, as their framework aims for scene flow, an edge stopping-based confidence
propagation was exploited to improve the quality; in our case, as images come from
drastically different sources, we propagate the flow solely based on the confidences. High-
confidence areas, including, but not limited to, the global boundary as for shape contexts
[Belongie, Malik and Puzicha 2000] are propagated to low-confidence areas. Yet, compared
to boundary-based approaches, we are also able to match more general internal features
(Figure 6.9) without manual intervention [Goldberg et al. 2012].

Still, our method has limitations. First, by using an alignment graph, we assume that the input
contains enough image pairs with similar appearance. Second, we use rotationally variant
features based on patch difference and flow magnitude. As a result, our method fails to align
drastically rotated objects. Those unsuccessful alignments however can be detected using
SSIM and removed from the construction of the subspace. Third, as for the construction
of our subspace we do not need pixel-accurate alignment (Section 6.2.2), we focus on a
simple approach aiming scalability. Further processing might be necessary for applications
requiring high quality alignment. Our confidence contains many false positives; although
we try to filter out those areas by an agreement check and thresholding, they strongly affect
the quality of the reconstructed flow. Last, finding the initial flow is the bottleneck of our
method’s performance. As our images are diverse in appearance, we need to search over large
neighborhoods (r = 80×80 pixels for all of our results) in a to search for fb,a(x), the best
corresponding pixel in a for x in b. Optimizing this step would greatly improve scalability.

6.2.2 Subspace Construction

Given the appearance, in form of the aligned images (Figure 6.12, the 3rd row of every class)
and shape variations, in form of the forward deformation fields, we compute subspaces using
PCA [Blanz and Vetter 1999]. An image with n pixels is considered a point (image vector)
in a 5n-dimensional space: 3 dimensions for RGB color and 2 for the forward deformation

6. SHAPE AND COLOR SUBSPACES 86

Fi
gu

re
6.

12
:

A
lig

nm
en

to
fd

iff
er

en
te

xe
m

pl
ar

s
(c

ol
um

ns
)f

ro
m

se
ve

ra
lc

la
ss

es
(r

ow
s)

.
Fo

re
ac

h
cl

as
s,

th
e

fir
st

co
lu

m
n

sh
ow

s
th

e
re

fe
re

nc
e

im
ag

e,
th

e
fir

st
ro

w
sh

ow
s

th
e

in
pu

t,
th

e
se

co
nd

ro
w

sh
ow

s
th

e
fo

rw
ar

d
al

ig
nm

en
to

ft
he

re
fe

re
nc

e
to

th
e

in
pu

ta
nd

th
e

th
ird

ro
w

sh
ow

s
th

e
ba

ck
w

ar
d

al
ig

nm
en

to
ft

he
in

pu
t

to
th

e
re

fe
re

nc
e.

T
he

co
lo

rb
el

ow
ea

ch
ex

em
pl

ar
in

di
ca

te
s

th
e

m
at

ch
qu

al
ity

de
te

rm
in

ed
by

S
S

IM
,c

f.
th

e
le

ge
nd

on
th

e
rig

ht
.S

m
al

le
rv

al
ue

s
in

di
ca

te
be

tte
r

al
ig

nm
en

tq
ua

lit
y.

In
st

an
ce

s
m

ar
ke

d
w

ith
a

tic
k

im
pr

ov
ed

by
us

in
g

in
di

re
ct

al
ig

nm
en

tw
hi

le
in

st
an

ce
s

m
ar

ke
d

w
ith

a
cr

os
s

w
er

e
ex

cl
ud

ed
be

ca
us

e
th

ei
ri

m
ag

e
di

ffe
re

nc
e

af
te

ra
lig

nm
en

tr
em

ai
ne

d
hi

gh
.

87 6.3. APPLICATIONS AND RESULTS

field, per pixel. For the color, if the input images come with an alpha channel, the RGB
values of transparent pixels are set to the average of the RGB values of all other images
where alpha is non-zero.

The PCA is performed on the set of all image vectors, resulting in a set of basis vectors which,
in combination with an average, captures the variation in shape and color best with respect
to the L2-norm. Each such “basis image” represents one direction of conjoint variation of
color and shape.

To control the relative importance of color and shape, the respective components in the
image vectors are multiplied by weights before the PCA (0 ≤ α ≤ 1 for color and 1−α

for shape). Alternatively, using the extreme cases where α ∈ {0,1}, we can also create
shape and color subspaces independently. In the following, we assume that this weighting
is performed before “projecting” any data to the subspace and, consequently, undone after
reconstruction from the subspace by dividing by the same respective weights.

For all classes shown, we observed that the first m = 10/20/30 basis vectors {b j} j=1..m
with the largest corresponding eigenvalues λ j contain more than 87 / 97 / 99% of the de-
formation and 72 / 85 / 93% of the appearance variation. We keep m = 20 basis vectors to
represent the space. A spatial resolution of n = 32×32 was found to be sufficient to capture
the amount of detail present in the data used. As the precision is limited by the alignment and
the number of exemplars per class, we cannot expect fine details to be reproduced in practice.

6.3 Applications and Results

Our approach allows for a range of novel user interactions when manipulating a query image
unknown at training time. The query image is to be aligned with the reference image, either
using our approach or manually. If the image comes with a segmentation in form of an alpha
matte, this matte is also used. The basic idea of all applications is to use the subspace to
restrict the options a user has to interact with an image to a few plausible ones.

6.3.1 Shape and Color Manipulation

Given a user-manipulated query image u in RGB space from a known class, with a known
deformation and appearance change, we can restrict the manipulation to become a plausible
one by constructing its image vector v ∈R5n (cf. Section 6.2.2) and finding the closest point
v̄ which can be represented in the subspace using numerical minimization.

All processing happens with respect to the reference shape, so u is first warped to the refer-
ence and then down-sampled to obtain the color components of v. The deformation compo-
nents correspond to the (down-sampled) deformation field of u w. r. t. the reference image.

We adopt an idea from geometric modeling using blend shapes [Seol et al. 2012]. The
image vector v̄ which we regard as the closest to v inside the subspace is the vector with

6. SHAPE AND COLOR SUBSPACES 88

Figure 6.13: Results of our method (“Our”) and other methods (“Other”) applied to images
from several classes (“Original”). Shape manipulation is compared to Schaefer, McPhail and
Warren [2006]’s rigid MLS approach, color manipulation to Gastal and Oliveira [2011]’s colorization
system. For every class, we show suggestions for color and shape. Please see Section 6.3.1 and
Section 6.3.2 for a discussion.

89 6.3. APPLICATIONS AND RESULTS

the coordinates x that minimizes

5n

∑
i=1

ki

∣∣∣∣∣
∣∣∣∣∣vi−

m

∑
j=1

x jb j,i

∣∣∣∣∣
∣∣∣∣∣
2

+µ

m

∑
j=1

x2
j

λ j
.

The first term is the data term, forcing the reconstruction of v̄ to be close to v, while the
second term is a prior term that gives more weight to coordinates x which are plausible in
the subspace [Seol et al. 2012]. The vector k is used for spatial weighting. For the color
components, we use a 20 times higher weight at the positions of the painted strokes than
for the rest of the image. This also allows us to apply our method to the colorization of gray
images by setting the weight of non-stroke pixels to 0, as demonstrated in Figure 6.21. We
also exclude pixels from optimization that are not part of the query image, i. e., have an
alpha value of zero, by assigning them zero weight. For the deformation components, we
use a smooth fall-off of the weights around the source controls of the user’s constraints. The
weights for both, color and deformation components, are normalized separately. Finally,
µ is a scalar regulating the prior’s contribution.

The resulting guidance v̄ is then transferred back to the original, high-resolution query image
u as follows. First, we up-sample the color and deformation components of v̄ separately using
bicubic up-sampling. The deformation, which is w. r. t. the reference image, is transformed to
be relative to the instance’s original shape before we apply it to the query image. As the defor-
mations are expected to be low-frequency, no special measures are taken during up-sampling.

Color Transfer We preserve high-frequency color details of the query image u which are
not captured in the subspace itself. To this end, at each pixel i of u, we find the moving least
squares (MLS) solution for the rigid transformation [Schaefer, McPhail and Warren 2006]
in color space that aligns the query image’s colors around i to best fit those of the guidance
v̄, similar to affine transformations used to transfer patch color [Shih et al. 2013].

These transformations can be computed independently and in parallel for each pixel i as
follows. Let p j,q j ∈ R3 be the query and guidance pixel’s colors, respectively, at pixels j
in a square patch around i. Let w j be Gaussian weights depending on the spatial distance
of j to i, which have been multiplied by the respective alpha values at j in the query and
guidance image and normalized such that ∑ j w j = 1. We find the rotational matrix Ri that

minimizes ∑ j wj
∥∥Ri(p j− p̄)− (q j− q̄)

∥∥2
2, where p̄ = ∑ j w jp j and q̄ = ∑ j w jq j are the

weighted centroids of p j and q j, respectively. We use a polar decomposition RiSi =Apq+δ I
where Apq = ∑ j w j (p j− p̄)(q j− q̄)> , similar to [Müller et al. 2005]. The parameter δ > 0
controls the regularization which is necessary to avoid singular matrices. Combining Ri

with the translation vector ti = q̄− p̄ yields the complete rigid transformation. Figure 6.14
compares our color transfer method to alternative approaches. We use a patch size of 32×32.
Figure 6.15 shows how our locally-rigid color transfer behaves with different patch sizes.

Most notable, manipulations in shape lead to changes in color and vice versa. If this is not
desired or required, manipulation of shape and color can also be performed independently
by using a subspace created from shape or color alone.

6. SHAPE AND COLOR SUBSPACES 90

Figure 6.14: Comparison of color transfer methods. For every set, the first column shows the
original with the user’s strokes (top) and the image reconstructed from the subspace (bottom).
Starting in the second column, the first row shows stroke-based colorization using the methods
of Levin, Lischinski and Weiss [2004], Gastal and Oliveira [2011], An and Pellacini [2008], Xu, Yan
and Jia [2013], Li, Ju and Hu [2010] and Adobe Photoshop’s “replace color” function, respectively.
On the second row, the second to the fifth column shows colorization given the subspace guidance
using the methods used on the first row, the sixth column shows guided image filtering [He, Sun and
Tang 2013] using subspace as guidance and finally our locally-rigid color transfer on the final column.

91 6.3. APPLICATIONS AND RESULTS

Figure 6.15: The first and second column show the original and target images, respectively. From
left to right are the results of our locally-rigid color transfer with increasing patch size.

Discussion Typical results for manipulation of shape and color are shown in Figure 6.13.
In the following, we will discuss a selection. The dolphin space is created from 29 exemplars.
Deforming the straight dolphin into a curved version using the common approach leads
to unnatural bending that is not found in our approach. The change of color in the reef
fish (a space created from 50 exemplars) propagates in a plausible way to all body parts
while the reference struggles with the subtle texture of the fish. Changing the posture of
the chicken (40 exemplars) is easy to accomplish using only two constraints which only
lead to rotation for the common approach. For the case of the butterfly, the preservation
of symmetry is particularly striking when using our manipulation tools. When moving the
eyes of the cat further apart, the nose will move up to keep cat-like proportions, while the
MLS deformed cat appears unnatural. Assigning an unlikely color to a horse (72 exemplars),
can still produce a reasonable result with our approach because of the subspace restriction
and regularization we use. Using our approach, we can easily create a realistic green pear
with a red spot (47 exemplars) while the common method fails to position the spot properly.
From the space of jeans, we can easily produce a classic stonewashed jeans whereas the
reference neither knows about the correct extent of the bright spots, nor about the symmetry.
Combined manipulation of shape and color is demonstrated in Figure 6.16.

All PCA-related computations are carried out on a standard CPU while still providing real-
time performance due to our modest subspace resolution. The image processing components
are computed on the GPU at interactive rates.

Study We compared subspace-aware against common shape and color manipulation
interfaces in a user study. Common manipulations were provided by means of Gastal and
Oliveira [2011]’s interactive colorization for color and a rigid MLS image deformation
[Schaefer, McPhail and Warren 2006] for shape. Color and shape manipulation tasks were
performed separately. For each task, 7 subjects were asked to adjust color (by painting color
strokes) or shape (by setting position constraints) of a source image to become visually

6. SHAPE AND COLOR SUBSPACES 92

Figure 6.16: Co-manipulation of color and shape: The subspace has captured the fact that smaller
pears tend to be more red than larger ones. When making a pear (c) smaller (d), its color changes
to reddish at the same time (e). Conversely, painting the pear with red and yellow (b) will also result
in a smaller pear (a).

similar to a target image; once using our and once using the common interfaces. Pairs of
source and target images, both not from the training set, from three classes (butterfly, pear,
fish) were presented to the subjects in combination with one of the interfaces in random order.
The task had to be finished either within a 20 second time budget or in an open-ended setting.

Figure 6.17: Our approach achieves meaningful deformations using a lower number of constraints.
Top row: A subspace is created from frames of a match animation (a). As we learned the most
important deformation, two constraints (c) on the match (b) will be enough to curve it (c). Using
MLS (d), more constraints (e) are necessary to achieve a smooth bending. Bottom row: Using
only two constraints on a butterfly (f), we achieve an interesting new shape (g). For MLS (h), more
constraints (i) are required to preserve symmetry.

In the open-ended setting, for color manipulation, the average time-to-finish was 42.5s
using our and 67.0s using a common interface (significant at p < .01, paired t-test; large
effect size: Cohen’s d = 0.9). For shape manipulation, the average time-to-finish was
40.0s (our) and 58.0s (common interface), the average number of constraints used was 2.95
(ours) and 4.57 (common interface), cf. Figure 6.17 (all significant at p < .01, paired t-test;
large effect sizes: Cohen’s d = 0.8 and 0.9). This indicates less effort with our approach
compared to the common one.

After verifying that our interface can indeed simplify manipulation, we were interested to
see if it could also improve the quality of the results. In a rating task, for each image pair
produced in the manipulation study, we asked a second group of 12 subjects to choose the
one they found visually more similar compared to the target image. The subjects preferred
our method in 84.6% (limited-time color), 83.0% (open-ended color), 77.9% (limited-time
shape) and 75.8% (open-ended shape) of the manipulation tasks. This indicates with sta-

93 6.3. APPLICATIONS AND RESULTS

tistical significance (p < .01, binomial test) that our shape and color interfaces outperform
common approaches in terms of quality, too.

In a final study, we tested whether the common colorization approach by Gastal and
Oliveira [2011] could be improved by using our subspace, independent of our suggested
locally-rigid color transfer. The average time-to-finish was 54.0s for this approach. The
difference to color manipulation without using a subspace is statistically significant (p < .01,
ANOVA), indicating that our subspace indeed improves task performance for color ma-
nipulation, independent of the transfer method used. Preference ratings by subjects lead
to a similar significant overall picture. Figure 6.18 and Figure 6.19 show the manipulated
results achieved by one subject for the color and shape manipulation tasks, respectively.
Figure 6.20 shows the results of our pairwise rating task. All differences are statistically
significant (p < .01, binomial test).

Figure 6.18: Images manipulated by a subject for the color manipulation tasks.

Figure 6.19: Images manipulated by a subject for the shape manipulation tasks.

6.3.2 Shape and Color Suggestions

The principal directions of variation of shape and color can also serve as suggestions for ma-
nipulations. This allows for an interface similar to “Design Galleries” [Marks et. al. 1997],
just that the parameter space is found automatically. We support suggestions for both shape
and color in combination or in isolation.

Suggestions are presented by showing potential positive and negative steps along the nd most
relevant eigen-directions. The number of interesting directions nd can be determined by

6. SHAPE AND COLOR SUBSPACES 94

Figure 6.20: Results of the pairwise rating tasks where each row shows the percentage of subjects
that preferred either interface. The top two rows show the results for shape manipulation in the
limited and open-ended settings. The bottom six rows show the results of the pairwise comparison
tasks for the different color manipulation methods in the limited and open-ended settings.

using heuristics based on the respective eigen values. In practice, we use the smallest number
of eigen vectors such that the sum of their eigen values is larger than a given percentage, e.g.,
70%, of the sum of all eigen values, adding them in decreasing order of their eigen values.

For determining a number of sufficiently diverse and specific suggestions, we found it
best to use the intercept points of lines, going through the initial point along the eigen
vectors, with an nd-dimensional sphere of a certain radius, which is scaled with respect to
the distance of the most-extreme image in the training set from the origin. We assume a
previous normalization of the eigen vectors and values. These guidance samples are then
transferred as done for manipulation and shown as altered copies of the original.

Discussion Typical results for suggestion of shape and color are showed in Figure 6.13.
For the dolphin, typical shapes like jumping or bent exemplars show up as shape suggestions.
The color suggestions for the given reef fish come up in a range between blue, orange and
gray. The most important shape changes for butterflies turn out to affect the size and shape
of the pair of wings, respectively, and are symmetrical like the butterflies themselves. For
horses, their postures is an important component, as well as their height and length. The
color space of pears nicely brings up all variants of more or less ripe pears while the shape
suggestions produce small, large or differently tilted fruits.

6.3.3 Manipulation of Complex Images

To apply our method to complex images, a user has to provide a mask for an instance of an
image class, e. g., for a dolphin in an underwater image (Figure 6.22, top). The segmented
object can then be aligned to the reference from the respective class using our automatic
alignment (by constructing the alignment graph and accumulating multiple alignments

95 6.4. LIMITATIONS

along the shortest path as described in Section 6.2.1) or manual alignment and both, manual
edits and suggestions, work the same as previously described. The altered instance is
then pasted in, either in place of the original or as an additional element. Figure 6.22 and
Figure 6.23 demonstrates both use cases. Figure 6.21 demonstrates how our subspace can
also be used for colorization of gray images.

Figure 6.21: For an intial gray scale image (a), a user provides a mask (inset) and paints green
strokes to colorize the grass. For this part, Levin’s colorization [Levin, Lischinski and Weiss 2004]
was used. The user then defines a mask (inset) for the chicken and paints some color strokes (b). (c)
shows the colorization results for Levin’s colorization method. (d) shows how our subspace-aware
color manipulation greatly helps the colorization process. (e) shows four suggestions computed
based on the masked chicken (b) provided by user.

6.4 Limitations

Our system is subject to several limitations. First, the use of PCA assumes that the de-
formation and color changes are linear. This however is only true for simple classes and
invalidated in the presence of strong perspective and occlusion. We are not able to deal
with multiple objects that appear in one image and always assume the image either shows
a single instance or that the latter has been manually selected beforehand. To be applicable
to an instance from one class in a general image, an alignment has to be available. Finally,
our method is not yet ready to change arbitrary objects appearing, for example, in a home
photo collection if the subspace of the object class is not available. Expanding the collection
of objects would greatly increase the practicability of our method.

6. SHAPE AND COLOR SUBSPACES 96

Figure 6.22: Subspace-supported manipulation in complex images. After a user has marked an
instance of the class (inset), it can be used for cloning with new shape, new color or both from
the space (1st and 3rd rows) or to constrain color manipulation (2nd and 4th rows).

97 6.4. LIMITATIONS

Figure 6.23: After a user has marked an instance of the class (inset) of an image (1st and 3rd
rows, left), it can be used for color suggestions from the subspaces of pear (1st and 2nd rows)
or horse (3rd and 4th rows).

7
Data-driven Color Manifolds

Figure 7.1: Our approach uses Internet image collections (1st row, 1st col., only subset shown)
to learn color manifolds. The 1D manifold for the class “Banana” with a single degree of freedom
(1st row, 2nd col., top) and as a patch for two degrees of freedom (1st row, 2nd col., bottom). The
same manifold shown as a 1D line (1st row, 3rd col.) or a 2D patch (1st row, 4th col.) in 3D color
spaces. The same two colors are marked as squares in all visualizations. A key application is
user interfaces where the manifold (here 1D) is used as a slider which show only the appropriate
colors (2nd row, 1st col.) instead of all colors as in common color pickers (2nd row, 2nd col.).

7.1 Introduction

The seemingly simple task of color selection is highly important in many computer graphics
applications, ranging from casual photo manipulation to professional 2D and 3D content cre-
ation. Despite being an often-used and important operation, exploring high-dimensional col-
ors using low-dimensional user interfaces such as linear or angular 1D slider or 2D widgets
that control parameters of a certain color space [Schwarz, Cowan and Beatty 1987; Douglas
and Kirkpatrick 1999] is often disappointing. Color selection using color templates (e. g.,
PANTONE), or more specific, hue templates [ODonovan et. al. 2011], is an alternative but

99

7. DATA-DRIVEN COLOR MANIFOLDS 100

does not scale well to many colors (too large palettes) and fine-tuning of colors (too coarse
palettes).

In this work, we seek to improve upon both paradigms in an example scenario as follows: A
user takes a picture of a wooden chair and wants to adjust its color using a single 1D sweep or
a single click on a mobile device. In any common color space, such a change is likely impossi-
ble: Going more red will require more saturation, going less red, will require less, otherwise
the result is a color, but not a wood color anymore. Our approach learns this relationship
from labeled exemplar data and present the user a single 1D slider to traverse the manifold
of plausible wood colors. Additionally, we want the manifold to compress the color space
in ranges that appear less frequently and to enlarge in frequently used areas. For the chair
examples, we will enlarge the brown-beige-red areas while we shrink the green or blue areas.

The technical challenge addressed in this chapter is to project a high-dimensional color space
with a density acquired from Internet data, to a lower-dimensional color space such that
neighborhood of important colors is preserved, and embedded area is proportional to density.

7.2 Our Approach

We will now describe our approach to create an n-dimensional color manifold from images
of a certain class represented in a m ≥ n-dimensional color space. We experiment with
values of n = 1 (line) or n = 2 (surface) and m = 3 (radiance, reflectance).

In future work, higher values of m could be used for spaces like spectral color; higher values
of n in other applications or 3D color selection. Every manifold belongs to an image class
like “sky”, “banana”, etc. We will not consider how to classify images and assume a state of
the art-classifier to be correct in many cases [Lazebnik, Schmid and Ponce 2006] in combi-
nation with a simple but effective background removal. The extraction of all manifolds for
each class is independent and performed for all possible classes in a pre-process step. As the
manifolds are smooth, they can be serialized into a file of a few hundred bytes. Exchanging
those files is sufficient for standardization, e. g., in print. As our manifold construction can
be performed at interactive rates, we optionally allow the user to create a set of images and
extract their color manifold on-the-fly.

Overview An overview of our approach for one class and manifold is given in Figure 7.2.
First, we acquire color samples from images or 3D models returned from an Internet query
(Section 7.2.1). Typically, this results in many millions of colors that are put into a m-
dimensional histogram in a certain high-dimensional source color space such as RGB
or CIE Lab (Section 7.2.2). Next, this histogram is thresholded and only the α % most
important colors are kept. On the remaining colors, we either use principal component anal-
ysis (PCA), multi-dimensional scaling (MDS) or self-organizing maps (SOM) to perform
dimensionality reduction (Section 7.2.3). Table 7.1 shows the sets, constants and general
symbols used in this chapter.

101 7.2. OUR APPROACH

Figure 7.2: Flow of our approach: The first two steps are always identical (left): Acquisition of color
statistics (Section 7.2.1) and density estimation (Section 7.2.2). The dimensionality reduction is
analyzed for three variants (right): PCA (Section 7.2.3), MDS (Section 7.2.3) or SOM (Section 7.2.3).

7.2.1 Acquisition

Color samples are acquired using 2D Internet image search and online 3D model reposi-
tories. For images, Google Image Search is used to acquire the top 100 images for one class.
Note that our input image set contains images with improper camera calibration (improper
photometric calibration, incorrect white balance) and different drawing styles. Figure 7.3
shows some sample images of several classes. We do not filter this set or compensate for any
different camera calibration or image style, which would likely further improve our results.
We will distinguish in our results between weakly supervised acquisition (where images
are used as they return from an Internet search) and strongly supervised acquisition (invalid
pixels are manually excluded by an alpha mask). Optionally, users can interactively remove
and add images. If not mentioned otherwise, all of our results are from weakly supervised
sources without user interaction.

The problem with 2D images is that they are acquired under unknown illumination and con-
tain shading. Consequently, images can be used better to study a luminance-free, 2D color
space of hue and saturation. Ideally, we would like to have a repository of true reflectance
data for the purpose of studying 3D color. For this, data from online 3D model repositories
are used (Figure 7.4). We assume that textures of such models do indeed have reflectance of
3D models. This is justified, as artists tend to use proper white balancing, shadow removal,
etc. on their textures. The only remaining difficulty is that textures contain areas with pixel
values that do not map to the surface and should be excluded as they are not part of the
reflectance we seek to sample. We solve this by setting alpha to zero in all textures and then
draw the UV mapping polygons with alpha set to one into the alpha channel. The result
is a 2D RGBA image that can be processed like other images. Unless stated otherwise,
2D images are used to study the full 3D color space and for results in this chapter, we use
manifolds of radiance and not of reflectance.

7. DATA-DRIVEN COLOR MANIFOLDS 102

Symbol Meaning

S Source color space (S = Rm)
m Input samples dimension
n Embedded manifold dimension
k Number of input samples
α The percentage of bins kept after density thresholding
l Number of compact samples (l� k)
a Set of input color samples (a ∈ S k)
b Set of compact color samples (b ∈ S l)
d Density of compact color samples d ∈ Rl

D Pairwise geodesic dist. mat. of samples (D ∈ Rl×l)
T Embedded space (T = Rn)
t Parameterized values, e. g., time, of input samples t ∈ Rk

PCA-specific:
µ Density-weighted mean of b (µ ∈ S)
C Density-weighted covariance matrix (C ∈ Rm×m)

MDS-specific:
c Set of embedded samples (c ∈ T l)

r(x,y) Radial basis function kernel
sm Smoothness parameter (sm ∈ R+)

SOM-specific:
h grid resolution
W Grid of weight nodes(W ∈ Shn

)
t Number of training steps (t ∈ N+)
i A particular training step (i ∈ N,1≤ i≤ t)
s Number of samples processed in each training step
p Training sample set (p ∈ S s·t)
r0 Smoothness (r0 ∈ N+,1≤ r0 ≤ h/2)

Table 7.1: Table of notations

Figure 7.3: Several image classes downloaded using Google Image Search.

103 7.2. OUR APPROACH

Figure 7.4: Several reflectance classes downloaded using Google Sketchup.

For a certain class, image search results contain a foreground object belonging to the class in
front of a background. We use a simple heuristic to remove this background. First, the image
is blurred using Bilateral filtering. Next, two neighbor pixels are connected only if their
CIEDE2000 color difference is less than a threshold. Finally, all connected components
that contain pixels on the image frame boundary are considered as background. Figure 7.5
shows several background-removed images. Our removal tends to be conservative and
while it potentially removes pixels that belong to the class, it rarely keeps background pixels,
as seen e. g., around the “Snow White” example.

Figure 7.5: Input images before (1st and 3rd col.) and after background removal where removed
pixels are marked as gray (2nd and 4th col.).

The acquired images are now in the RGB color space, with alpha channel used as a mask.
Pixels with an alpha value of zero are skipped from further consideration. If the source color
space S = Rm should be different, a conversion e. g., to CIE Lab is performed now. Finally,
we randomly sample k (e. g., four million) pixels from the m-D color space of our query
data into a vector a ∈ S k.

7.2.2 Density Estimation

The purpose of this step is to turn a large collection of samples that implicitly describe
the frequency of a certain color into a simple explicit representation of density, i. e., color
frequency. To this end, the source space is conceptually covered by a lattice of 16 bins along
each dimension, into which the k sampled pixels of a are inserted. We call the normalized bin
value the density of this color. We choose a regular grid instead of clustering for simplicity
and to allow for an efficient (i. e., interactive-rate) construction of manifolds with a user

7. DATA-DRIVEN COLOR MANIFOLDS 104

in the loop. Next, this histogram is thresholded and only the α % of bins with the highest
density are kept. An α = 15% is used to produce our results. This is done to eliminate
outliers that corrupt the manifold structure or colors that might not belong to the class. See
Section 7.3.2 for more details on our parameter choice. The result is a set b ∈ S l of l points
in the m-D source color space with a density vector d ∈Rl . We clamp the density d between
0.1 |d|/l and 2 |d|/l to avoid under- or over-estimated color importance. While the input
contained k i. e., millions of elements, the compact color point cloud b typically contains
l� k i. e., several hundreds of colors only.

7.2.3 Dimensionality Reduction

We explore several dimensionality reduction methods for our embedded manifolds: linear
PCA (Section 7.2.3), as well as MDS (Section 7.2.3) and SOM (Section 7.2.3) which are
non-linear methods.

Principal Component Analysis (PCA)

Let µ ∈ Rm be the density-weighted mean of b and C ∈ Rm×m the density-weighted covari-
ance matrix of the color distribution. The n eigenvectors of C with the highest eigenvalues
are a linear embedding into the n-dimensional space. Our method embeds a line (n = 1) or
plane (n = 2) in the m−dimensional source space with higher weight to high-density colors.

Multi-dimensional Scaling (MDS)

To embed colors using MDS, we establish color neighborhoods, optimize a layout to
keep those neighborhoods and finally optimize for smoothly and completely filling the
lower-dimensional space. The three steps are explained in the next paragraphs.

To extract the manifold structure, we create a graph with weighted edges. First, all colors
in b are interpreted as nodes and an edge is created between neighboring colors / nodes.
The neighborhood is still in the m-D source space and simple to find due to the regular
histogram structure. For the rare case, when the resulting set of points has several discon-
nected components, we discard all but the largest component. Next, we label each edge with
the average density (di +d j)/2 of the two nodes i and j it connects. Conceptually, edges
in dense areas get longer, edges in sparse areas get shorter. Finally, we approximate the
geodesic distance between all pairs of nodes (not just the neighbors) by shortest paths using
the Floyd-Warshall algorithm and insert it into a pairwise distance matrix D ∈ Rl×l . This
step is similar to the extension of Isomap [Tenenbaum, De Silva and Langford 2000] over
MDS, but using weighted edges instead.

The distance matrix D computed in the previous step is fed into a classic MDS [Cox and
Cox 2000]. The output are l new n-dimensional color points c ∈ T l (T = Rn) that preserve
the desired distance matrix D in the lower-dimensional space in the least-squares sense. As
an MDS solution is unique up to a rotation and a uniform scaling, we additionally normalize
it to the unit hypercube and rotate it, such that the direction of largest luminance variation
(found using PCA of the luminance of c) aligns with the first axis.

105 7.2. OUR APPROACH

While b was a regular grid of a simple structure in the host color space Rm, the embedding
c is an irregular point cloud in Rn. Therefore, it is not clear which, how many and if at
all an element in c maps to any coordinate location x in Rn. However, we would like
to use Rn for smooth navigation to enumerate Rm in a plausible way. To reconstruct a
smooth unique mapping f ∈ Rn→ Rm defined on the entire domain Rn, we employ radial
basis function (RBF) reconstruction: f (x) = ∑

l
j=1 r(c j,x)b j/∑

l
j=1 r(c j,x) where r is the

kernel r(x,y) = exp(−(sm ||x−y||)2) with a constant sm to control smoothness. Please see
Section 7.3.2 for different settings of the smoothness parameter sm.

Self-organizing Map (SOM)

Figure 7.6: Banana manifold construction (Figure 7.1) using SOM: The first and third row show the
colors in the evolving 1D and 2D manifold. The second and fourth row show the 1D and 2D color path
resp. patch in the 3D RGB cube. From left to right, the manifold is refined as new samples are added.

SOM produces a non-linear mapping from the m-dimensional space to an n-dimensional
grid of weight nodes W ∈ Shn

[Kohonen 1990], where h is the grid’s size.

The nodes of W are initialized to random values and updated in t training steps. In a training
step i (1 ≤ i ≤ t), the node with the minimum distance to a training sample is called the
best matching unit (BMU). The weight of the BMU and its neighbors are adjusted toward
the training sample. The magnitude of change and the neighborhood size from the BMU
decrease after each training step [Kohonen 1990]. Figure 7.6 shows the weight grid W
during the construction of the “Bananas” manifold at different training steps.

Let p ∈ S s·t be the training sample set where s is the number of training samples processed
in each training step. Note that s equals to 1 in the previous paragraph. The training sample
set p is constructed to contain colors from the compact color point cloud b with distribution
propotional to the density vector d.

In order to fully use the advantange of modern GPUs, at training step i, we process a set

7. DATA-DRIVEN COLOR MANIFOLDS 106

of s samples p(i−1)s+1, ...,pis in parallel as proposed in Batch SOM (Fig. 2 in [Lawrence,
Almasi and Rushmeier 1999]). The distances between the training samples and nodes are
calculated using the CIEDE2000 color difference. Nodes are then updated as described
in Lawrence, Almasi and Rushmeier [1999]. To enforce smoothness on the weight grid
W, we further constrain the neighborhood size to be bigger than a predefined smoothness
parameter r0 (r0 ∈ N+,1≤ r0 ≤ h/2).

For the 2D manifolds (n = 2), we empirically set the grid size h = 32, s = 64 training sam-
ples each step, the smoothness parameter r0 = 10 and t = 2000 training steps. For the 1D
manifolds (n = 1), we set h = 128, s = 64, r0 = 15 and t = 4000 respectively. Section 7.3.2
contains more details on our parameter choices.

7.3 Algorithm Evaluations

7.3.1 Algorithm Comparison

Figure 7.7 shows several dimensionality-reduced color spaces produced using SOM, MDS
and PCA respectively. PCA produces a line or plane in 3D that minimizes the variance of
the color distribution b. If the colors do not follow a plane or line, which is mostly the case,
many colors can not be addressed. While simple to compute and easy to store, PCA-based
color manifolds consistently perform worse, as also shown in our perceptual study. MDS
preserves intrinsic (geodesic) distances of the color distribution b and performs well if a
1D or 2D manifold exists. The bottom set of Figure 7.7 shows a typical failure case of MDS
where the distribution forms a cycle and geodesic distances fail to produce an embedding into
a 1D or 2D disk. Such cyclic paths are rare in color distributions but do exist. SOM naturally
handles cyclic distributions which can be an issue for MDS. Figure 7.38 shows more detailed
results for different classes using different dimensionality reduction approaches.

7.3.2 Algorithm Analysis

It is instructive to analyze the behavior of our algorithm with different parameter settings.
We perform some analyses on the manifolds generated using MDS and SOM described in
Section 7.2.

MDS Figure 7.8 shows the result of the MDS with different bin sizes. To further understand
MDS, Figure 7.9 shows our its results on analytical data with constant and varying density dis-
tribution of color. Finally, the effect of the smoothness parameter sm is shown in Figure 7.10.

SOM Figure 7.11 shows the SOM approach performed on analytical data with different
distribution of colors. Next, we show SOM results with different initializations of the weight
grid (Figure 7.12), different grid resolutions h (Figure 7.13), different histogram sizes
(Figure 7.14) and different smoothness parameters r0 (Figure 7.15). Finally, Figure 7.16
shows how SOM performs for different batch sizes s and training step counts t.

107 7.3. ALGORITHM EVALUATIONS

Figure 7.7: Different manifolds produced using different approaches of two different sets. In every
set, the 1st row, 1st column (“Input”) shows the high-dimensional input used. The 2nd row, 1st
column (“Samples”) shows the color distribution in 3D RGB space. The 2nd column shows the
1D and 2D manifolds (“Manifolds”) generated using SOM (1st row), MDS (2nd row) or PCA (3rd
row). Finally, we show these 1D manifolds (“1D in 3D”) (3rd column) and 2D manifolds (“2D in
3D”) (4th column) as paths and patches in 3D RGB space. The top set shows the results of the
“Bananas” class. The bottom set shows the results of an analytical color distribution. Here, SOM
outperforms both PCA and MDS.

7. DATA-DRIVEN COLOR MANIFOLDS 108

Figure 7.8: MDS approach: Comparison between using a bin size of 32× 32× 32 (1st row),
16×16×16 (2nd row) and 8×8×8 (3rd row). Input images returned by Google Image Search (1st
col., 1st row, only subset shown), color distribution in 3D RGB space (1st col., 2nd row), the discrete
histogram (2nd col.) and 1D as well as 2D manifolds (3rd col.) produced by MDS with different bin
size (rows) are shown. Finally, we show these 1D manifolds (4th col.) and 2D manifolds (5th col.)
as paths and patches in 3D RGB space. We chose bin size 16×16×16 (2nd row) as it gave results
similar to 32×32×32 while being faster to construct, on the other hand, 8×8×8 gave worse results.

Figure 7.9: MDS approach: Input points are generated according to the Swiss roll and sine wave
pattern with constant (1st/3rd row) and varying (2nd/4th row) density. Color distribution in 3D
RGB space (1st col.), the discrete histogram (2nd col.) and 1D as well as 2D manifolds (3rd
col.) produced by MDS with different input density (rows) are shown. Finally, we show these 1D
manifolds (4th col.) and 2D manifolds (5th col.) as paths and patches in 3D RGB space. In the bin
density images (2nd col.), larger spheres indicate a higher density. Note how our algorithm enlarges
the space of color with higher density and shrinks the space of color with less density (2nd/4th row).

109 7.3. ALGORITHM EVALUATIONS

Figure 7.10: MDS approach: A "Butterfly" manifold, reconstructed using increasing smoothness
sm, which will preserve high-frequency signals from the input data but lose the smoothness
property on the manifold. Input images returned by Google Image Search (1st col., 1st row, only
subset shown), discrete histogram (1nd col., 2nd row) and 1D (from 2nd col., 1 row) as well as
2D manifolds (from 2nd col., 3rd row) produced by MDS with different smoothness parameters
(from 2nd col. on) are shown. Finally, we show these 1D manifolds (from 2nd col., 2nd row) and
2D manifolds (from 2nd col., 4th row) as paths and patches in 3D RGB space. We empirically set
sm = 7.5 for the 1D manifold and 3.5 for the 2D manifold respectively as they gave a good balance
between preserving input data color and smoothness on the manifolds.

Figure 7.11: SOM approach: Input points are generated according to the Swiss roll pattern with
different density. Color distribution in 3D RGB space (1st col.), the discrete histogram (2nd col.)
and 1D as well as 2D manifolds (3rd col.) produced by MSD for different input density (rows) are
shown. Finally, we show these 1D manifolds (4th col.) and 2D manifolds (5th col.) as paths and
patches in 3D RGB space. In the bin density images (2nd col.), larger spheres indicate a higher
density. Our algorithm enlarges space of color with higher density (more important) and shrinks
space of color with less density (less important).

7. DATA-DRIVEN COLOR MANIFOLDS 110

Figure 7.12: SOM approach: SOM performs quite consistently with different initializations. Input
images returned by Google Image Search (1st col., 1st row, only subset shown), color distribution
in 3D RGB space (1st col., 2nd row), the initialized 1D as well as 2D manifolds (2nd col.) and the
final 1D as well as 2D manifolds (3rd col.) produced by SOM are shown. Finally, we show these
1D manifolds (4th col.) and 2D manifolds (5th col.) as paths and patches in 3D RGB space. The
first row shows a random initialization, the second and third show initialization using the results
from PCA and MDS approach respectively.

Figure 7.13: SOM approach: SOM for different grid resolutions. Input images returned by Google
Image Search (1st col., 1st row, only subset shown), color distribution in 3D (1nd col., 2nd row)
and 1D (from 2nd col., 1 row) as well as 2D manifolds (from 2nd col., 3rd row) produced by SOM
with different grid resolution (from 2nd col. on) are shown. Finally, we show these 1D manifolds
(from 2nd col., 2nd row) and 2D manifolds (from 2nd col., 4th row) as paths and patches in 3D RGB
space. In 1D, h = 128 gives results similar to h = 256 while being faster to construct. Similarly,
in 2D, h = 32 gives results similar to h = 64 but is faster to construct.

111 7.3. ALGORITHM EVALUATIONS

Figure 7.14: SOM approach: A "Banana" manifold for different bin sizes. Comparison between
using a bin size of 32×32×32 (1st row), 16×16×16 (2nd row) and 8×8×8 (3rd row). Input
images returned by Google Image Search (1st col., 1st row, only subset shown), color distribution
in 3D RGB space (1st col., 2nd row), the discrete histogram (2nd col.) and 1D as well as 2D
manifolds (3rd col.) produced by SOM with different bin size (rows) are shown. Finally, we show
these 1D manifolds (4th col.) and 2D manifolds (5th col.) as paths and patches in 3D RGB space.
We chose bin size 16×16×16 as it gave results similar to 32×32×32 but was faster to construct,
while 8×8×8 gave worse results.

Figure 7.15: SOM approach: A "Butterfly" manifold, reconstructed with decreasing smooth radius
parameter r0. Smaller r0 preserves high-frequency signals from the input data but loses the
smoothness property on the manifold. Input images returned by Google Image Search (1st col.,
1st row, only subset shown), discrete histogram (1nd col., 2nd row) and 1D (from 2nd col., 1 row)
as well as 2D manifolds (from 2nd col., 3rd row) produced by SOM with different smoothness
parameters (from 2nd col. on) are shown. Finally, we show these 1D manifolds (from 2nd col.,
2nd row) and 2D manifolds (from 2nd col., 4th row) as paths and patches in 3D RGB space. We
empirically set r0 = 15 for the 1D and r0 = 20 for the 2D manifold respectively as they give a good
balance between preserving input data color and smoothness on the manifolds.

7. DATA-DRIVEN COLOR MANIFOLDS 112

Figure 7.16: SOM approach: The top block shows results with different number of iterations and
processed samples s in every training step; more details, input images returned by Google Image
Search (1st col., 1st row, only subset shown), color distribution in 3D RGB space (1st col., 2nd row),
the reference 1D manifold produced with batch size s = 1 after t = 106 iterations and its path in
3D RGB space (1st col., 3rd row) are shown. From the second column, the 1D manifolds generated
with different training step t (row) and batch size (col.), and their paths in 3D RGB space are shown.
From the second column on, the final row shows the converged results at different training step
t when using different batch size s. Note that with s = 64 and t = 4000, the result is similar to
the convergence as s = 1, t = 106. In the bottom block, the left part shows the L2-differences
of the reference (s = 1, t = 106) and the manifolds generated using different training step t (col.)
and batch size s (colored bars), a lower bar indicates that the generated manifold is more similar
to the reference manifold. The performance plot on the right part shows their correspondence
performances, a higher bar indicates a slower performance.

113 7.3. ALGORITHM EVALUATIONS

7.3.3 User Study

Figure 7.17: Images used in our color adjustment study and their mask are defined manually. We
chose 10 different images from 10 classes: “brinjal”, “eeyore”, “grape”, “human skin”, “ladybug”,
“leaf”, “sky”, “sunflower” , “sunset” and “tulips”.

Figure 7.18: In the creation phase , images were edited by the same subject using 12 different
types of color pickers. In the ranking phase , other subjects were asked to sort the images in
increasing order of color appearance quality using Microsoft Powerpoint. The top row shows the
random layout that was presented to the subject. The second row shows the same set after sorting
by a random subject.

We evaluated the usefulness of the proposed color manifolds in a color adjustment and a
color exploration task.

Our subjects aged between 23 and 35 years old. All of them were graduate students in
engineering or art. None of them reported to have issues with color perception. First, the
subjects were introduced to the color pickers and interacting with picking the color. Then

7. DATA-DRIVEN COLOR MANIFOLDS 114

Figure 7.19: Details of our exploration study. The top row shows the original images used in the
study. We chose 5 different classes: “peacock”, “human skin”, “clownfish”, “wood” and “Donald”.
From the second row on, some of the edited images are shown in decreasing order of average
ranking from top to bottom.

they were given a training session to learn how to perform color adjustment using several
test cases until they felt comfortable to begin the study. We gave the subjects a short break
between the studies.

The studies were conducted on a desktop setup using a 24" LCD graphics display for visual
stimuli. The subjects were seated at approximately 60 cm distance to the screen and we
asked them to place the mouse on the table such that they felt comfortable.

In the color adjustment task, 13 subjects were asked to adjust the color of an image to match
a reference image using different interfaces. Images used for manifold construction were
excluded from the user study. Figure 7.17 shows the set of images used for our study. In
each trial, the participants were presented a color image and a second version of the same
image that had a random color assigned to a soft region defined by the authors. Subjects
were asked to adjust the color of the image back to the reference using a specific color picker
UI. Adjustment was performed by picking a color inside the color picker and the image was
modified by means of recoloring [Gastal and Oliveira 2011]. This objective is a typical color
selection task in everyday photo editing. The UI was randomly either a common RGB, Lab,
HSV (Figure 2.5 (a)-(j)), a “reduced” RGB, “reduced” Lab, “reduced” HSV where colors
outside the color distribution of the image class are grayed out as un-selectable as well as
our proposed 1D or 2D manifold interfaces, produced using either PCA, MDS or SOM. The
“reduced” color spaces acted as a control group to detect whether an increase of performance

115 7.3. ALGORITHM EVALUATIONS

Figure 7.20: User study results: (a) Adjustment task: Normalized CIEDE2000 error of several
adjustment UIs and their standard error of mean. Lower numbers are better (less error). (b)
Exploration task: Mean time, relative to common RGB (dotted line) and mean rank accompanied
by their standard error of mean. Lower time is better (faster). A higher rank indicates a better rating
from the subjects. Different experimental conditions for the same UI are encoded as different colors.

Figure 7.21: CIEDE2000 color difference of different color pickers over the editing time in different
study settings: a) 5 seconds, multiple clicks b) 5 seconds, two clicks c) open-ended, multiple clicks.

7. DATA-DRIVEN COLOR MANIFOLDS 116

Figure 7.22: Pairwise statistical significance and effect size of different interfaces. The top-right
of a and b show pairwise statistical significance with p < .05, while the bottom-left shows p < .01.
The top-right of c and d show a medium while the bottom left shows a large effect. A colored cell i, j
indicates a significance or an effect between the i-th and the j-th color selection interface. Different
experimental conditions are encoded as colors.

of color manifolds was only due to excluding irrelevant colors (e. g., “skin” does not include
blue). The task had to be finished either within a 5 second time budget with multiple mouse
clicks, by using two clicks or by multiple clicks in an open-ended setting. We measured
user performance as the average CIEDE2000 color difference of all pixels and all subjects
denoted in percentage of the maximal error. Figure 7.20a shows the performance of different
interfaces. Figure 7.21 shows the mean CIEDE2000 color difference over all pixels and all
subjects, denoted in percentage of the maximal error over editing time in 3 different cases:
5 second - multiple clicks, 5 seconds - 2 clicks and open-ended timing - multiple clicks
per trial. As the mean difference distribution was non-Gaussian (D’Agostino-Pearson), we
used the Kruskal-Wallis non-parametric test instead of ANOVA [Siegel and Castellan 1988].
Dunn’s multiple comparisons test was used to calculate the pairwise statistical significance
between different interfaces. Figure 7.22a shows that both our 1D/2D SOM manifolds
outperform classical color pickers and reduced color pickers with statistical significance
p < 0.05. Figure 7.22c shows pairwise Cohen’s effect size of the adjustment task. Table 7.2
shows the average CIEDE2000 color difference of the color adjustment tasks.

The color exploration task was performed in two phases where some participants created im-

117 7.3. ALGORITHM EVALUATIONS

1D 1D 1D 2D 2D 2D Re. Re. Re.
Setup PCA MDS SOM PCA MDS SOM RGB HSV LAB RGB HSV LAB

5s - .045 .041 .023 .031 .028 .018 .038 .048 .043 .042 .045 .054
(M) .004 .005 .002 .004 .004 .002 .004 .004 .005 .004 .005 .006

5s - .045 .038 .027 .033 .026 .019 .038 .056 .047 .048 .045 .053
(2) .005 .004 .003 .004 .003 .002 .004 .005 .005 .005 .004 .005

Open - .042 .034 .020 .026 .019 .013 .022 .022 .025 .022 .018 .031
(M) .005 .004 .002 .004 .002 .001 .002 .002 .003 .002 .001 .004

Time 0.54 0.68 0.59 0.51 0.69 0.64 1.04 1.12 1.62 1.00 1.09 1.51
0.06 0.09 0.08 0.07 0.10 0.12 0.13 0.15 0.26 0.00 0.17 0.24

Rank 5.32 5.71 6.02 6.52 6.43 6.75 5.21 4.87 5.74 4.21 4.78 4.39
0.30 0.42 0.34 0.39 0.38 0.45 0.48 0.31 0.33 0.32 0.45 0.40

Table 7.2: Table of statistics: From top to bottom are the results of the color adjustment tasks: 5
seconds - multiple clicks (5s-(M)), 5 seconds - two clicks (5s-(2)) and open-ended - multiple clicks
(Open-(M)). For the color adjustment tasks, we report the normalized-CIEDE2000 color difference
of different interfaces. Next are the results of the color exploration tasks: the relative finishing time
of the creation phase and the ranking of images generated using different interfaces in the ranking
phase. For every study, the first row shows the mean value and the second row shows the standard
error of the mean.

ages using different interfaces and other subjects ranked their images later on. In the creation
phase, subjects were asked to adjust the color of an image using different interfaces until
satisfied. Figure 7.19 shows the set images used for our study. Four expert users (computer
graphics hobbyists naïve to the purpose of the study) participated in this step performing 60
trials each. In every trial, participants were presented one out of five different images where
some parts needed to be colored using one out of 12 different color pickers from the first
experiment. Figure 7.20b shows the average finishing time of different color pickers relative
to using an RGB color picker for a given set and the average ranking for different color pick-
ers. The resulting images were used in a second ranking phase where we randomly chose 10
different sets of images. Every set contained 12 images edited by one specific expert user on
the same input image using 12 different interfaces. 10 other subjects (3 males and 7 females,
who did not participate in the creation phase) participated in the study. Every subject was
sequentially presented 10 Powerpoint slides where every slide contained a different set of im-
ages showed in random layout. For every slide, the subject was asked to sort the images from
left to right in increasing order of color appearance (Figure 7.18). An example set is showed
in Figure 7.18. Figure 7.19 shows the average ranking of some images used in the study. Sim-
ilar to the adjustment study, we used a Kruskal-Wallis test and Dunn’s post-hoc. Figure 7.22b
shows that our 1D and 2D SOM allows for significantly better exploration performance.
Figure 7.22d shows pairwise Cohen’s effect size of the exploration task. Table 7.2 shows the
average relative timing of the creation phase and the average ranking of the ranking phase.

Conclusion Our studies re-confirm that the choice of classical color pickers has only little
impact on the performance of a color selection interface. Our studies show that encoding
“class” information into classical color pickers, such as done in our “reduced” pickers,
does not improve the performance in both color adjustment and color exploration task.

7. DATA-DRIVEN COLOR MANIFOLDS 118

Our data-driven 1D or 2D manifolds outperform classical color pickers and reduced color
pickers in both color adjustment and exploration task. Furthermore, SOM is the best choice
compared to PCA and MDS. Unless stated otherwise, weakly supervised SOM was used
for further results shown in this chapter.

7.4 Results

7.4.1 Manifolds

This section shows 1D and 2D manifolds produced automatically for a certain class, for
classes with additional semantic parameters or by classes interactively composed by a user.

Figure 7.23: Input images returned by Google Image Search (1st col., only subset shown), color
distribution in 3D RGB space (2nd col.) and 1D as well as 2D manifolds (3rd col.) produced by
our weakly supervised SOM for different classes (rows). Finally, we show these 1D manifolds (4th
col.) and 2D manifolds (5th col.) as paths and patches in 3D RGB space.

1D and 2D Manifolds Manifolds generated for different classes are shown in Figure 7.23.
As images contain shading, true reflectance data as extracted from Internet 3D model reposi-
tories can be superior (Figure 7.24). If the class is not unique inside the image, we allow user
annotation (Figure 7.25) or make use of already annotated data such as the SUN database

119 7.4. RESULTS

Figure 7.24: Comparison of manifolds constructed from 2D images with shading returned by
Google Image Search (3rd col.) and reflectance from textures of 3D meshes acquired from Google
Sketchup (5th col.). The color distribution of the 2D images in 3D RGB space and the reflectance
from the textures are shown in the second and forth column, respectively.

Figure 7.25: Comparison of weakly and strongly supervised manifolds. Weakly supervised
manifolds (3rd col.) are constructed using input images returned by Google Image Search (1st
col., only subset shown). Next, image pixels that do not belong to the class are manually excluded
and the refined images are then used to construct the strongly supervised manifolds (5th col.).

Figure 7.26: Comparison of manifolds generated using different databases. The first column
shows a subset of the class from the OpenSurface database [Bell et. al. 2013]. Next are the
manifolds generated using the input images from the annotated database OpenSurface (2nd
col.), Sun [Xiao et al. 2010] (3rd col.), or weakly supervised images returned by Bing (4th col.)
and Google (5th col.) Image Search using the same keywords.

7. DATA-DRIVEN COLOR MANIFOLDS 120

[Xiao et al. 2010] or the OpenSurface database [Bell et. al. 2013]. Figure 7.26 shows
different manifolds generated using different databases. Figure 7.27 shows classes of our
1D and 2D manifolds compared to the classical color pickers. Manifolds are low-resolution
images of only a few kilobyte that are ready to be used in any application just by using any
smooth reconstruction filter. Figure 7.38 shows manifolds generated by weakly supervised
images with different dimensionality reduction algorithms.

Parametrized Families of Manifolds The range of colors found for a certain class some-
times depends on external conditions, such as the colors of a forest follow the seasons or
the sky’s color changes over the course of a day. Our approach naturally supports this obser-
vation by extending to families of manifolds gt(x), parametrized by a k-dimensional vector
t ∈ Rk. To this end, we acquire pairs (ai, ti) of image colors and parameter values, such as
when or where the image was taken. Then, we construct our manifold for every value of the
parametric domain,e. g., one 1D MDS manifold for every time of the day as in Figure 7.28.

Interactive Manifold Compositing The efficient implementation of the manifold cre-
ation allows to interactively specify a set of images and observe the resulting manifold
(Figure 7.30). Interactive manifold creation could be used to summarize or further refine
the color organization of a set of images produced on-demand, e. g., by an image search.

Figure 7.27: Several manifolds generated using weakly supervised data from the Internet images.
The final two sets on the bottom row (denoted as (S)) show the manifolds of two categories from
the SUN database.

Figure 7.28: Two 1D parametric families of 1D manifolds. Each vertical slice is a manifold in
color space that changes along the horizontal dimension depending on a (semantic) parameter.
Figure 7.29 shows a subset of the images used to construct the manifolds.

121 7.4. RESULTS

Figure 7.29: The images (subset shown) used for the parameterized manifolds shown in
Figure 7.28. The top row shows the datasets of forest in different seasons. The second row shows
the datasets of sky over different time in a day.

Figure 7.30: Interactive manifold creation in five steps. Starting from a single input image (1st
col.), a user interactively adds more images (2nd to 5th col.) to refine the “Butterfly” manifold. In
every screenshot, the left column shows the set of input images, the top right shows the color point
cloud in 3D and the bottom right shows the 1D and 2D manifolds.

7.4.2 Applications

Our manifolds allow for a range of applications, such as color editing, palettes, stylization,
compression and white balancing.

User Interaction Our primary application of color manifolds is continuous 1D or 2D
color slider (Figure 7.1). Instead of continuous variation of color, a discrete sampling leads
to meaningful recoloring suggestions (Figure 7.32) or when directly used as discrete palettes
(Figure 7.31). Compared to simpler alternatives like clustering, the discrete elements pro-
duced by our approach have a meaningful one- or two-dimensional ordering and can be
refined if required.

Color Stylization Our approach can be used to permute the hue value in an image, while
staying inside the manifold of plausible images (Figure 7.33). To this end, the image is

7. DATA-DRIVEN COLOR MANIFOLDS 122

Figure 7.31: Palettes produced by equally-spaced sampling of a 1D manifold. The pallettes cover
the space well and in a meaningful order.

Figure 7.32: Re-coloring suggestion galleries using the “Apples” (1st row), “Skin” (2nd row) and
“Sunset” (3rd row) manifold.

Figure 7.33: An original image (1st col.) and its hue permutations (2nd to 4th col.) using the
“Apples” manifold.

segmented manually, a new random hue from the manifold is assigned to every segment.

Compression Our approach can be used to compress color information. First, the im-
age is converted to CIE Lab. The luminance L is not compressed and the chrominance is
processed further. Second, a color manifold is chosen, and all colors are transformed into
the new space and compressed. Quantization of colors to a low number of bits is used to

123 7.4. RESULTS

Figure 7.34: Original (bottom left) and compression using our "Sunset" manifold (top right) and
using the RGB space (insets).

compress colors in our example, but other operations such as DCT or wavelets would be
possible. Additionally, we can quantize less important coordinates with 0 bits, skipping this
dimension, i. e., reducing a 2D color to a 1D color. For decompression they are transformed
back and combined with luminance (Figure 7.34). Our technique is especially useful to
compress a set of images from the same class.

White Balance White balance seeks to disambiguate the product a = Lr of a spatially-
invariant, unknown scalar RGB illuminant L and an unknown spatially-varying diffuse
RGB reflectance r. Humans are known to exploit knowledge of familiar i. e., plausible,
reflectance to disambiguate this product [Olkkonen, Hansen and Gegenfurtner 2008]. Our
manifolds encode such knowledge and can extend the popular “grey world assumption” to
an “on-manifold assumption”. This assumption defines the illuminant as the ratio of the
average color in a k pixel-image and grey Lgrey = ∑ai/k. In this framework, observing
a slightly pink image would result in a pink illuminant. If we, however, know that parts
of the image belong to the “human skin” class, pink might not be the illuminant, but the
reflectance and the illuminant is white. Along those lines, our manifolds can be used to
regularize plausible values for r as follows. First, the set of image pixels M that belong to
a known class are selected. Next, we solve for the best RGB illuminant L that minimizes
the cost function ∑i∈M

∥∥α f (
ai
L)−

ai
L

∥∥2 where α f (x) is the nearest color to x ∈ Rm on the
manifold f . The cost function optimizes for the manifold constraint that pixels in M after
white balancing should stay inside the manifold (Figure 7.35). While the cost is non-linear
due to the projection operation α f , the space is small enough (all possible colors) to be
enumerate exhaustively using a GPU-solver employing a 3D look-up table for α f .

The approach is limited in that it cannot disambiguate situations, where the product of
reflectance and illuminant, as well as the reflectance itself are close to the manifold: a slight
blue tint in a human face which is likely not reflectance, but illuminant; a brown shift might
be the reflectance (tanned skin) or it might be a brownish illuminant. The latter cannot be
disambiguated.

7. DATA-DRIVEN COLOR MANIFOLDS 124

Figure 7.35: White balancing (left to right): Original, grey-world assumption, Adobe Photoshop
CS6 Auto Tone, our approach, finally the mask and our illuminant. The manifolds used are: “Skin”,
“Donald”, “Bananas” and “Apples".

125 7.5. DISCUSSION AND LIMITATIONS

7.5 Discussion and Limitations

Discussion Our pipeline is specifically designed for high performance and each step
could be replaced to improve the quality of the constructed manifolds. During density
estimation (Section 7.2.2), colors are quantized into l bins instead of using a continuous
estimation over k colors such as RBF or moving least squares. This allows for higher
performance and provides a unified input for different dimensionality reduction methods
(Section 7.2.3), furthermore discrete histograms can be adapted easily to a simple out-
lier removal step by thresholding the bins. While robust statistics [Maronna, Martin and
Yohai 2006] in a continuous estimation will likely improve the quality of outlier removal,
it would further complicate our pipeline.

Limitations The main limitation of our work is the requirement of reliable classification,
both to construct the manifold and to use it. For construction, we found the quality of typical
search engine results to be sufficient, as indicated by our results. Typical failure modes are
ambiguous queries such as “apple”, which might refer to a fruit as well as to a brand of
computers. For weakly supervised manifolds, we do not perform any preprocessing on the
input image set. As images returned from Google Image Search might contain improper
camera calibration, color distortions or the inter-reflection between objects, they will likely
produce less sharp manifolds. Our simple background removal (Section 7.2.1) might fail
to remove background colors from several images in the set due to complex backgrounds or
objects with holes, etc. These parts normally occupy a small part of the images which could
be rectified by density thresholding (Section 7.2.2). In some cases, colors that do not belong
to the class such as green in the “ladybug” (Figure 7.25) are dominant. Even though these
outliers (colors) might greatly reduce the usability of our manifold, they are closely related
to the class semantically (leaves in the “ladybug”) and we believe that they can act as supple-
mentary colors for a specific class. While manifold construction faces all those challenges,
once the manifolds for a class are made available, they don’t need to be acquired again. For
manifold usage, the ideal classifier would also detect the object class for a location inside
the image or identify different classes if multiple classes are present in one image [Jia 2013].
Such classifiers are an active area of research in computer vision but not yet readily available
to computer graphics applications. If the entire image belongs to a single class or the class is
known a priori our manifolds are ready to use. For some classes, the dimensionality reduction
is not always possible in a satisfying manner. We are able to find potentially non-linear lower-
dimensional structures, but only if they are present. Classes that have a color distribution that
roughly follows a dominant line are well-described by 1D manifolds, classes that are roughly
distributed around a surface can be represented using 2D manifolds. However it is futile and
counterproductive, to organize an inherently 2D distributions of colors into a 1D curve. Fig-
ure 7.36 contains more results of man-made objects or objects with rich textures. Our method
might fail to produce the manifolds for these objects as they could have multiple dominant
colors over the surface and thus form multiple manifolds in color space. Figure 7.37 shows
additional results of man-made and textured objects generated using weakly-supervised
images downloaded from Google Image Search. Finally, perceptual organization of colors
into lightness, saturation, or the periodicity of hue would require additional considerations.

7. DATA-DRIVEN COLOR MANIFOLDS 126

Figure 7.36: Limitations: Colors of some man-made and textured objects that virtually exists in
all hues and shades and consequently should be used in 3D. The dimensionality reduction step
would try hard to find the best traversal in 3D, resulting in a desperate zig-zag enumeration of the
entire higher-dimensional space. Detailed explanations of this figure can be found in the caption
of Figure 7.23.

Figure 7.37: Manifolds of man-made or textured objects constructed using different dimensionality
reduction approaches. Detailed explanations of this figure can be found in the caption of Figure 7.7.

127 7.5. DISCUSSION AND LIMITATIONS

Figure 7.38: Manifolds constructed using different dimensionality reduction approaches. (S)
denotes annotated images taken directly from the SUN database. Detailed explanations of this
figure can be found in the caption of Figure 7.7.

8
Conclusion

We summarize the major contributions following the five main tracks: Preconvolved Ra-
diance Caching, Surface Light Field Manipulation, Material Style Transfer, Shape-Color
Subspaces, and Data-driven Color Manifolds in Section 8.1. In Section 8.2, we discuss
possible future work.

8.1 Closing Remarks

Appearance editing is a time-intensive process that requires a lot of effort from artists due to
the lack of tools and the long design cycle where they repeatedly tweak the parameters and
wait for the visualization until the desired look is achieved. The techniques proposed in this
thesis contribute to different blocks in the artist’s design pipeline ranging from rendering
over editing techniques to user interfaces. Preconvolved Radiance Caching (Chapter 3)
is a fast global illumination rendering technique used for interactive visualization of syn-
thetic virtual 3D scenes in Chapter 4 and Chapter 5. Surface Light Field Manipulation
(Chapter 4), Material Style Transfer (Chapter 5) and Shape Color Subspaces (Chapter 6)
are three techniques proposed for different appearance editing tasks. Finally, Data-driven
Color Manifolds (Chapter 7) are new user interfaces, and can be incorporated easily into
existing editing software packages.

A rendered 3D scene usually conveys a certain mood that the artists want to express. Ma-
terial Style Transfer, an example-based material assignment approach where the 3D models
of a virtual scene can be materialized simply by giving a guidance source (image/video),
can serve as an initial setting to achieve the desired mood. Results of our system can be
integrated easily into common design pipelines where further modification such as texture
mapping or material appearance editing could be performed.

While Material Style Transfer is a fast and fully automatic approach, direct control by the
artists is often mandatory, and usually further edits are required to converge to the final
solution. To better support fine tune editing of the rendered images, Surface Light Field
Manipulation allows artist to "paint" directly onto a virtual 2D canvas and the system finds the
best reflectance to produce the desired appearance. Different from classic approaches where

129

8. CONCLUSION 130

artists need to tweak the non-intuitive parameters, our painting interface allows direct control
over the final appearance where understanding of the underlying models is not necessary.

Tuning for a desired appearance, however, is not always an obvious task e. g., adjusting the
skin color of human faces (either in images or virtual 3D scenes) to make it look real requires
a lot of effort. To improve performance and quality of appearance editing in a design session,
Data-driven Color Manifolds can be used as an alternative to the classic color pickers, e. g.,
the "human skin" manifold, represented as 1D or 2D slider, captures only possible colors
of human skin should be used to adjust the skin color.

While Data-driven Color Manifolds encode most colors of a specific object, they do not
capture the spatially varying nature of objects’ colors, e. g., the comb of "chicken" is red, the
feet are yellow and the tail is usually black. To alleviate this limitation, a morphable model
of an object is constructed from an image collection. This model can be used to restrict the
manipulation of shape and color in an image to a valid subspace.

In Chapter 3 we proposed an improvement of Radiance Caching that substantially reduces
the linear cost of per-pixel reflection to a constant number of lookups (e. g., two for Phong)
when interpolating caches. Correct querying of cache items [Szirmay-Kalos et al. 2005]
has shown to be essential to our approach. This allows for reproduction of specular and
normal map details between caches, even in interactive applications that previously were
restricted to the (edge-aware) interpolation of scalar irradiance. The technique is used as
the core framework for our Surface Light Field Manipulation proposed in Chapter 4 and can
be used for interactive visualization of globally illuminated virtual 3D scenes in Chapter 5.

In Chapter 4 we proposed a system to manipulate a SLF by painting it from different views
and a solver that infers valid reflectance from this input. Our approach does not expose the
shading model and its parameters to the user at all and uses scribbles to infer changes in
reflectance. Different from previous work, we exploit a fast GPU-based approach using
pre-computed visibility and pre-convolved lumitexels on a point-based representation of
the 3D scene (Chapter 3), allowing to freely move the view point, arbitrary spatially varying
BRDFs and editing with fast pre-computation times.

Chapter 5 proposed a technique to transfer material style from a guide source to a target
3D scene. The problem was stated as a combinatorial optimization problem of assigning
discrete materials (approximately extracted from the guide source) to discrete objects in the
target according to an image and geometry cost function. We transfer materials that change
their impact on the final result depending on their spatial context. The guide source does
not only provide approximate material information, but the target 3D scene also provides
a similar gist even when it is seen from several different views that allows our assignment
to be more reliable than it could be when treating them as images only. Our system can
effectively capture materials in terms of highlights and diffuse detail textures and efficiently
apply them to a target scene or even whole databases in a meaningful and automatic way.

Chapter 6 proposed a system to restrict the manipulation of shape and color in an image
to the subspace of valid changes which we learn from a collection of exemplar images.
Different from previous approaches, we use an automatic alignment of exemplars to create
the subspace from sample images. We hope that our subspaces will substantially increase
the performance and quality of image editing tasks (as shown in our user study).

131 8.2. FUTURE WORKS

Chapter 7 proposed content-dependent color manifolds as a replacement for established
general color spaces by embedding a curve or surface into a 3D color space. This allows for
improved color selection, as validated by perceptual studies, color stylization, compression
and white balancing. We hope that our intuitive 1D or 2D manifolds will substantially
ease the navigation of color spaces (as shown in color adjustment study) and improve color
editing quality in general (as shown in color exploration study).

8.2 Future Works

In this section, possible future research avenues of each component are discussed (Sec-
tion 8.2.1), followed by their combinations (Section 8.2.2) and a general outlook to interest-
ing open problems (Section 8.2.3).

8.2.1 Individuals

In this section, we will discuss possible future work of each component in detail.

Preconvolved Radiance Caching Future work could investigate the effect of (adaptive)
cache item placement in 2D or 3D and its temporal coherence on rendering quality. While we
use simple MIP mapping for pre-convolution, advanced methods with different pre-filtering
can be used to approximate more complex BRDFs [Kautz et al. 2000], e. g., such BRDFs
that depend on more than a single (gloss) parameter. Handling many different classes of
BRDFs that all require different pre-convolution is an avenue of further investigation not
just for our approach but for pre-convolution in general. While we used pre-convolution
in combination with splatting (which does not fit modern GPUs well), it should also be
applicable to gathering-type upsampling [Laine et al. 2007] in future work. Furthermore,
we would like to generalize our idea to other phenomena that require integration, such as
antialiasing, motion blur or depth of field, by placing cache items in the spatial, temporal
or lens domain, performing pre-convolution and proper reconstruction.

Surface Light Field Manipulation Our system is only one instance from a class of ap-
proaches where users loosely manipulate rendered 3D images (e. g., using strokes) and the
system infers sparse and physically meaningful parameter changes. Extensions to other
physically-based rendering, such as depth-of-field, motion blur, participating media or binoc-
ular stereo are exciting avenues of future research. Here, the laws of physics are considered
not for the sake of accuracy, but act as a regularizer to make the users changes work together
and behave in a consistent and plausible way. Further research will be required to allow edit-
ing of shading models with multiple non-linear parameters. Currently, manipulated SLFs are
inferred from the user’s strokes, it would be interesting to support scanned SLFs as an alterna-
tive input. Finally, a user study comparing our approach to other alternatives, in the spirit of
[Kerr and Pellacini 2010], is mandatory to assess if the proposed interface is indeed intuitive.

8. CONCLUSION 132

Material Style Transfer Recently, stock 3D models were used to guide the manipulation
of images [Kholgade et. al. 2014], incorporating such semantics to constrain material proper-
ties of 3D objects would certainly improve the quality of material transfer. User-annotation
(such as labels) and structure information (such as symmetry) could be included in future
work. Support of more complex materials such as subsurface scattering, spatially varying
BRDF and textured objects would certainly improve the realism of the materialized scenes.
Finally, to simplify the optimization, lighting conditions are being fixed beforehand, it is
interesting to relieve this constraint by incorporating an optimization for lighting properties,
such as choosing a light fixture model from a light library, or different environment maps.

Shape and Color Subspaces Our alignment is currently limited to images that contain
a single object with similar perspective, this prevents us from using Internet images that
are downloaded directly from Google with certain keywords, such as "Horse". Relieving
this constraint would certainly improve the practicality of our subspaces. Solving for the
alignment problem in natural images, however, is a very challenging task. One possible
direction is to perform "co-alignment" in the spirit of image co-segmentation [Joulin, Bach
and Ponce 2010]. Furthermore, it would be interesting to generalize the approach to other
domains such as 3D meshes and video to cover the mutual relation of artistic style, texture,
reflectance, or other properties. Finally, while we preserve details of the target instance,
we would also like to use our alignment to construct non-linear subspaces to capture more
detailed variations in the subspaces.

Data-driven Color Manifolds In future work, we would like to extend this idea to very
high or infinite-dimensional input spaces such as spectral colors or BDRFs while keeping
smoothness, density and distance-preservation of our embedding. Another generalization
could address texture variation or materials. Besides, comparison to different elaborate
interfaces such as image galleries [Shapira, Shamir and Cohen-Or 2009] or color template
[ODonovan et. al. 2011] in color adjustment and exploration tasks is an interesting future di-
rection. Furthermore, to simplify the study, a detailed, soft selection is assumed to exist and
subjects were asked to modify the images by picking a single color. This can be generalized
in the spirit of “How do humans colorize images?” by allowing multiple color selections,
in a manner similar to Cole et al. [2008].

8.2.2 Combinations

Interactive global illumination (Preconvolved Radiance Caching), appearance editing tech-
niques (Surface Light Field Manipulation, Material Style Transfer, Shape Color Subspaces)
and user interfaces (Data-driven Color Manifolds) are orthogonal and form building blocks
in a design pipeline. Now we will discuss certain possible combinations in detail.

Inter-block Combinations Data-driven Color Manifolds could be used as a regularizer
for Material Style Transfer and Surface Light Field Manipulation. To this end, objects with
specified semantics are constrained to appearances of the relevant Data-driven Color Man-

133 8.2. FUTURE WORKS

ifolds, e. g., the "Apples" manifold. This would certainly improve the realism of Material
Style Transfer and the quality of Surface Light Field Manipulation.

Data-driven Color Manifolds and Shape Color Subspaces are highly related. While the
Shape Color Subspaces account for the spatial arrangement of colors (e. g., different parts of
a chicken have different colors) that Color Manifolds cannot preserve , subspaces are less in-
tuitive to explore compared to Color Manifolds. To alleviate this difficulty, subspace-aware
edit propagation was proposed (Chapter 6). It would be interesting to investigate more intu-
itive interfaces, such as perceptually motivated parameter spaces (in the spirit of our 1D or 2D
Data-driven Color Manifolds) and better parameter navigation schemes (in the spirit of im-
age galleries [Shapira, Shamir and Cohen-Or 2009] or design galleries [Marks et. al. 1997]).

Intra-block Combinations The techniques proposed for different appearance editing
tasks are closely related. As discussed earlier, Material Style Transfer can served as an
initial solution that is later used for Surface Light Field Manipulations. Surface Light Field
Manipulation can be complemented by Shape Color Subspaces to improve the editing
quality. Combinations of these techniques are also possible.

Recently, Material Memex [Jain et al. 2012] models the correlation of materials found on
3D objects and their parts by learning from a database of 3D objects and their materials.
This model can then be used to assign plausible materials to an object automatically or to
provide material suggestions. Such databases of 3D objects are, however, limited and not
easily accessible. In a similar manner, it is interesting to extract the correlation of shapes
and colors in the easier accessible 2D Internet image collections, such as done for Shape
Color Subspaces construction, and use them as a regularizer for Material Style Transfer.

8.2.3 General Outlook

Aside from the specific and combined directions for future research proposed in the preced-
ing sections, the presented techniques developed in this thesis open up interesting general
directions that need further investigation.

In the spirit of our color manifolds, intuitive appearance editing would benefit from pro-
jecting the high-dimensional space of content creation/editing algorithm parameters into a
perceptually motivated lower dimensional space, e. g., 1D or 2D slider. One particular exam-
ple is the recent work that aims for an intuitive exploration of fonts [ODonovan et. al. 2014].
We expect that the derivation of such models, if possible, requires robust regression from
large sampled data collections combined with user experience.

From the user interfaces point of view, different software provides different interfaces
for different editing purposes, e. g., Photoshop for 2D images and Maya or Blender for
modeling of 3D scenes. For some editing tasks, certain software packages are more intuitive
and easier to operate compared to others e. g., color editing of 2D images in Photoshop is
more intuitive than material editing of 3D scenes in Blender where artists need to tweak
more parameters and require understanding of material and lighting models; on the other
hand, controlling the shape of specular highlights in 3D scenes is easier in Blender. Our
Surface Light Field Manipulation is the first of its kind for material editing in 3D scenes that

8. CONCLUSION 134

supports an intuitive painting interface in a Photoshop-like manner, for future work, it would
be interesting to adapt other intuitive editing interfaces from 2D images to 3D scenes. On
the other hand, some editing tasks are easier to perform in 3D, recovering 3D information
from RGB or RGB-D images that can later be used for image editing is an active research
area [Khan et al. 2006; Karsch et al. 2011; Kholgade et. al. 2014].

From the data-collection point of view, automatic or semi-automatic annotated data, such as
semantics of segmented objects in image collections, would further improve our techniques.
This is an active research area in computer vision. Recently, data crowd sourcing has been
applied to improve automatic intrinsic image decomposition [Bell et. al. 2014], it would be
interesting to investigate whether a crowd sourcing approach would help in data annotation.

Finally, in the scope of this thesis, we only extracted plausible materials, colors and their
spatial distributions from Internet images, more high level information, such as the cor-
relation of shape and texture, are currently ignored. Such information, once successfully
extracted, would likely spark more interesting applications.

8.3 Message

This thesis argued, how appearance editing of digital content can benefit from more intuitive
approaches. Such approaches require further development of different components in a
design pipeline ranging from rendering over editing techniques to user interfaces. Most
applications of this work are targeting for novice users, who seek to edit their digital content.
Possible directions are to adopt more intuitive approaches from cross-domain software
packages or to exploit data-driven methodology, as the thesis pursued. Unlike most data-
driven approaches where data need to be acquired in a fully calibrated environment, in
this thesis, we opted to use Internet data in a semi-supervised manner that increases the
practicability of our approaches. We foresee that many other tools that benefit from using
Internet data will be developed in future work.

Bibliography (Own work)

NGUYEN, C. H., KYUNG, M.-H., LEE, J.-H. AND NAM, S.-W. (2010): A PCA Decom-
position for Real-time BRDF Editing and Relighting with Global Illumination. Comp.
Graph. Forum (Proc. EGSR), 4 (29), 1469–1478 18

NGUYEN, C. H., NALBACH, O., RITSCHEL, T. AND SEIDEL, H.-P. (2015b): Guiding
Image Manipulations using Shape-appearance Subspaces from Co-alignment of
Image Collections. Comp. Graph. Forum (Proc. EUROGRAPHICS) 2 (34) 4

NGUYEN, C. H., RITSCHEL, T., EISEMANN, E., MYSZKOWSKI, K. AND SEIDEL, H.-
P. (2012): 3D Material Style Transfer. Comp. Graph. Forum (Proc. EUROGRAPH-
ICS), 4 (29), 1469–1478 4

NGUYEN, C. H., RITSCHEL, T. AND SEIDEL, H.-P. (2015): Data-driven Color Manifolds.
ACM Trans. Graphs. (Presented at SIGGRAPH 2015) 2 (34) 4, 5

NGUYEN, C. H., SCHERZER, D., RITSCHEL, T. AND SEIDEL, H.-P. (2013): Material
Editing in Complex Scenes by Surface Light Field Manipulation and Reflectance
Optimization. Comp. Graph. Forum (Proc. EUROGRAPHICS), 2 (32), 185–194 4

SCHERZER, D., NGUYEN, C. H., RITSCHEL, T. AND SEIDEL, H.-P. (2012): Pre-
convolved Radiance Caching. Comp. Graph. Forum (Proc. EGSR 2012), 4 (31),
1391–1397 4, 51

I

Bibliography

ADOBE SYSTEMS INCORPORATED (2014a): Adobe Color. 〈URL: https://color.
adobe.com/create/color-wheel/〉 17, 18

ADOBE SYSTEMS INCORPORATED (2014b): Adobe Photoshop. 〈URL: http://www.
adobe.com/products/photoshop.html〉 2

ALEXA, M., COHEN-OR, D. AND LEVIN, D. (2000): As-rigid-as-possible shape interpo-
lation. In Proc. SIGGRAPH, 157–164 19

ALLEN, B., CURLESS, B. AND POPOVIĆ, Z. (2003): The space of human body shapes:
reconstruction and parameterization from range scans. ACM Trans. Graph. 22 (3),
587–594 20, 76

AN, X. AND PELLACINI, F. (2008): AppProp: All-pairs appearance-space edit propagation.
ACM Trans. Graph. (Proc. SIGGRAPH), 3, 40:1–40:9 2, 19, 90

ANJYO, K.-I. AND HIRAMITSU, K. (2003): Stylized Highlights for Cartoon Rendering
and Animation. IEEE Comput. Graph. Appl. 23 (4), 54–61 18, 19

ARVO, J., TORRANCE, K. AND SMITS, B. (1994): A framework for the analysis of error
in global illumination algorithms. In Proc. SIGGRAPH, 75–84 12

ASHIKMIN, M. AND SHIRLEY, P. (2000): An anisotropic Phong light reflection model.
Journal of Graphics Tools, 5, 25–32 10

AUTODESK INC (2014): AutoDesk Maya. 〈URL: http://www.autodesk.com/
products/maya/overview〉 2

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A. AND GOLDMAN, D. B. (2009):
PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing.
ACM Trans. Graph. (Proc. SIGGRAPH), 28 (3), 24:1–24:11 20, 82

BELL, S., BALA, K. AND SNAVELY, N. (2014): Intrinsic Images in the Wild. ACM Trans.
Graph. (Proc. SIGGRAPH), 33 (4), 159:1–159:12 134

BELL, S., UPCHURCH, P., SNAVELY, N. AND BALA, K. (2013): OpenSurfaces: A Richly
Annotated Catalog of Surface Appearance. ACM Trans. Graph. (Proc. SIGGRAPH),
32 (4), 111:1–111:17 119, 120

BELONGIE, S., MALIK, J. AND PUZICHA, J. (2000): Shape context: A new descriptor for
shape matching and object recognition. In NIPS Volume 2,, 3 20, 82, 85

III

https://color.adobe.com/create/color-wheel/
https://color.adobe.com/create/color-wheel/
http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview

Bibliography IV

BEN-ARTZI, A., OVERBECK, R. AND RAMAMOORTHI, R. (2006): Real-time BRDF
editing in complex lighting. ACM Trans. Graph. (Proc. SIGGRAPH), 25 (3), 945–
954 2, 3, 18

BEN-ARTZI, A., EGAN, K., DURAND, F. AND RAMAMOORTHI, R. (2008): A precom-
puted polynomial representation for interactive BRDF editing with global illumina-
tion. ACM Trans. Graph. 27 (2), 13:1–13:13 18

BERG, E. A. (1948): A simple objective technique for measuring flexibility in thinking. J
General Psychology, 39, 15–22 21

BLANZ, V. AND VETTER, T. (1999): A morphable model for the synthesis of 3D faces. In
Proc. SIGGRAPH, 187–194 3, 19, 20, 76, 85

BLENDER FOUNDATION (2014): Blender. 〈URL: http://www.blender.org〉 2

BLINN, J. F. (1977): Models of Light Reflection for Computer Synthesized Pictures.
SIGGRAPH Comput. Graph. 11 (2), 192–198 2, 10

BOBER, M. (2001): MPEG-7 visual shape descriptors. IEEE Circuits and Sys. Vid. Tech.
11 (6), 716–719 66

BOOKSTEIN, F. L. (1989): Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE PAMI, 11 (6), 567–585 19

CAETANO, T., MCAULEY, J., CHENG, L., LE, Q. V. AND SMOLA, A. (2009): Learning
graph matching. IEEE PAMI, 31 (6), 1048–1058 20

CAMPBELL, N. D. F. AND KAUTZ, J. (2014): Learning a Manifold of Fonts. ACM Trans.
Graph. (Proc. SIGGRAPH), 33 (4), 91:1–91:11 22

CASHMAN, T. J. AND FITZGIBBON, A. W. (2013): What Shape Are Dolphins? Building
3D Morphable Models from 2D Images. PAMI, 35 (1), 232–244 20, 76

CASTELHANO, M. S. AND HENDERSON, J. M. (2010): The influence of color on percep-
tion of scene gist. J Vision, 5 (8), 68–78 21

CHAJDAS, M. G., LEFEBVRE, S. AND STAMMINGER, M. (2010): Assisted texture
assignment. In Proc. I3D, 173 21

CHANDRASEKHAR, S. (1960): Radiative Transfer., Dover Books on Intermediate and
Advanced Mathematics 2

CHEN, D.-Y., TIAN, X.-P., SHEN, Y.-T. AND OUHYOUNG, M. (2003): On Visual Simi-
larity Based 3D Model Retrieval. Comp. Graph. Forum (Proc. EUROGRAPHICS),
22 (3), 223–232 66, 67

CHENG, M.-M., ZHANG, F.-L., MITRA, N. J., HUANG, X. AND HU, S.-M. (2010):
RepFinder: Finding Approximately Repeated Scene Elements for Image Editing.
ACM Trans. Graph. (Proc. SIGGRAPH), 29 (4), 83:1–83:8 20, 82

http://www.blender.org

V Bibliography

CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O. AND PELLACINI, F. (2008): Fast,
realistic lighting and material design using nonlinear cut approximation. ACM Trans.
Graph. (Proc. SIGGRAPH Asia), 27 (5), 128:1–128:10 18

CHRISTENSEN, P. (2008): Point-based approximate color bleeding. Pixar (08-01). – Tech-
nical report 16, 31

CIE (1931): Commission Internationale de l’Eclairage Proceedings, 1931. 9

CLAUSEN, C. AND WECHSLER, H. (2000): Color image compression using PCA and
backpropagation learning. Pattern Recognition, 33 (9), 1555–60 9

COHEN, J. (1988): Statistical power analysis for the behavioral sciences. 24, 26

COHEN-OR, D., SORKINE, O., GAL, R., LEYVAND, T. AND XU, Y. (2006): Color
harmonization. In ACM Trans. Graph. (TOG) Volume 25,, 624–630 18

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S., FINKELSTEIN, A.,
FUNKHOUSER, T. AND RUSINKIEWICZ, S. (2008): Where Do People Draw Lines?
ACM Trans. Graph. (Proc. SIGGRAPH), 27 (3), 88:1–88:11 132

COMANICIU, D. AND MEER, P. (2002): Mean shift: a robust approach toward feature
space analysis. IEEE PAMI, 24 (5), 603–19 67

COOK, R. L. AND TORRANCE, K. E. (1982): A Reflectance Model for Computer Graphics.
ACM Trans. Graph. 1 (1), 7–24 2, 10

COOTES, T. F., EDWARDS, G. J. AND TAYLOR, C. J. (2001): Active appearance models.
IEEE PAMI, 23 (6), 681–85 20, 76

COX, T. AND COX, M. (2000): Multidimensional scaling. Volume 88, 104

CRASSIN, C., NEYRET, F., LEFEBVRE, S. AND EISEMANN, E. (2009): GigaVoxels:
Ray-guided Streaming for Efficient and Detailed Voxel Rendering. In Proc. I3D,
15–22 16

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S. AND EISEMANN, E. (2011): Inter-
active Indirect Illumination Using Voxel Cone Tracing. In Proc. PG Volume 30,,
1921–1930 16

CUNO, A., ESPERANÇA, C., OLIVEIRA, A. AND CAVALCANTI, P. R. (2007): 3D as-
rigid-as-possible deformations using MLS. In Proc. CGI, 115–122 19

DANIEL, W. W. (1990): Applied nonparametric statistics. 25

DOERSCHNER, K., MALONEY, L. T. AND BOYACI, H. (2010): Perceived glossiness in
high dynamic range scenes. J. Vision, 10 (9), 11 〈URL: http://www.ncbi.nlm.
nih.gov/pubmed/20936748〉 11

DONG, Y., TONG, X., PELLACINI, F. AND GUO, B. (2011): AppGen: Interactive Material
Modeling from a Single Image. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 30 (6),
146:1–146:10 11

http://www.ncbi.nlm.nih.gov/pubmed/20936748
http://www.ncbi.nlm.nih.gov/pubmed/20936748

Bibliography VI

DONG, Z., CHEN, W., BAO, H., ZHANG, H. AND PENG, Q. (2004): Real-time voxeliza-
tion for complex polygonal models. In Proc. PG IEEE, 43–50 16

DONOHO, D. (2006): Compressed sensing. Inf. Theory, IEEE Trans. 52 (4), 1289–1306 48

DORSEY, J., SILLION, F. X. AND GREENBERG, D. P. (1991): Design and simulation of
opera lighting and projection effects. In Proc. SIGGRAPH, 41–50 2

DOUGLAS, S. AND KIRKPATRICK, A. (1999): Model and representation: the effect of
visual feedback on human performance in a color picker interface. ACM Trans. Graph.
18 (2), 96–127 17, 99

DURAND, F. AND DORSEY, J. (2002): Fast bilateral filtering for the display of high-
dynamic-range images. ACM Trans. Graph. (Proc. SIGGRAPH), 21 (3), 257–266 63

EISEMANN, E. AND DÉCORET, X. (2008): Single-pass GPU solid voxelization for real-
time applications. In Proc. Graphics Interface Canadian Information Processing
Society, 73–80 16

FAIRCHILD, M. (2005): Color appearance models. 7

FATTAL, R., AGRAWALA, M. AND RUSINKIEWICZ, S. (2007): Multiscale shape and
detail enhancement from multi-light image collections. ACM Trans. Graph. (Proc.
SIGGRAPH), 26 (3), 51–60 64

FEISNER, E. AND REED, R. (2013): Color Studies. 2

FENG, W.-W., KIM, B.-U. AND YU, Y. (2008): Real-time data driven deformation using
kernel canonical correlation analysis. ACM Trans. Graph. (Proc. SIGGRAPH), 27 (3),
91 20

FLEMING, R., DROR, R. AND ADELSON, E. (2003): Real-world illumination and the
perception of surface reflectance properties. J. Vision, 3 (5), 1–10 〈URL: http:
//www.journalofvision.org/content/3/5/3.short〉 11

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W., TAL, A.,
RUSINKIEWICZ, S. AND DOBKIN, D. (2004): Modeling by Example. ACM Trans.
Graph. (Proc. SIGGRAPH), 23 (3), 652–663 3

GASTAL, E. S. L. AND OLIVEIRA, M. M. (2011): Domain Transform for Edge-aware
Image and Video Processing. ACM Trans. Graph. (Proc. SIGGRAPH), 30 (4), 69:1–
69:12 19, 88, 90, 91, 93, 114

GAUTRON, P., KŘIVÁNEK, J., BOUATOUCH, K. AND PATTANAIK, S. (2008): Radiance
cache splatting: A GPU-friendly global illumination algorithm. In ACM SIGGRAPH
2008 Classes ACM, 78–88 51

GAUTRON, P., KŘIVÁNEK, J., PATTANAIK, S. AND BOUATOUCH, K. (2004): A novel
hemispherical basis for accurate and efficient rendering. In Proc. EGSR, 55–64 15, 32

http://www.journalofvision.org/content/3/5/3.short
http://www.journalofvision.org/content/3/5/3.short

VII Bibliography

GAUTRON, P., KŘIVÁNEK, J., BOUATOUCH, K. AND PATTANAIK, S. N. (2005): Radiance
Cache Splatting: A GPU-Friendly Global Illumination Algorithm. In Proc. EGSR,
55–64 15

GINGOLD, Y. AND ZORIN, D. (2008): Shading-based Surface Editing. ACM Trans. Graph.
(Proc. SIGGRAPH), 27 (3), 95:1–95:9 18

GOLDBERG, C., CHEN, T., ZHANG, F.-L., SHAMIR, A. AND HU, S.-M. (2012): Data-
Driven Object Manipulation in Images. Comp. Graph. Forum (Proc. EUROGRAPH-
ICS), 31 (2pt1), 265–274 20, 85

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R. AND COHEN, M. F. (1996): The
Lumigraph. In Proc. SIGGRAPH, 43–54 12

GRAPHPAD (2014): GraphPad Statistics Guide. 〈URL: http://www.graphpad.
com/guides/prism/6/statistics/〉 – visited on 03-10-2014 24

GRAVETTER, F. AND WALLNAU, L. (2013): Statistics for the behavioral sciences. 22, 24

GREENE, N. (1986): Environment mapping and other applications of world projections.
IEEE Computer Graphics and Applications, 6 (11), 21–29 15

GREGER, G., SHIRLEY, P., HUBBARD, P. AND GREENBERG, D. (1998): The irradiance
volume. IEEE Computer Graphics and Applications, 18 (2), 32–43 13

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B. AND LISCHINSKI, D. (2011): Non-
rigid Dense Correspondence with Applications for Image Enhancement. ACM Trans.
Graph. (Proc. SIGGRAPH), 30 (4), 70:1–70:10 20, 82

HAUMONT, D. AND WARZÉE, N. (2002): Complete polygonal scene voxelization. Journal
of Graphics Tools, 7 (3), 27–41 16

HAŠAN, M., PELLACINI, F. AND BALA, K. (2006): Direct-to-indirect Transfer for
Cinematic Relighting. ACM Trans. Graph. (Proc. SIGGRAPH), 25 (3), 1089–1097 18

HE, K., SUN, J. AND TANG, X. (2013): Guided Image Filtering. IEEE PAMI, 35 (6),
1397–1409 90

HEATH, K., GELFAND, N., OVSJANIKOV, M., AANJANEYA, M. AND GUIBAS, L. (2010):
Image webs: Computing and exploiting connectivity in image collections. In Proc.
CVPR, 3432–3439 20

HEEGER, D. J. AND BERGEN, J. R. (1995): Pyramid-based texture analysis and synthesis.
In Proc. SIGGRAPH, 229–238 21

HEIDRICH, W. AND SEIDEL, H. (1999): Realistic, hardware-accelerated shading and
lighting. In Proc. SIGGRAPH, 171–178 15, 29, 30, 51

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B. AND SALESIN,
D. H. (2001): Image analogies. In Proc. SIGGRAPH, 327–340 21

http://www.graphpad.com/guides/prism/6/statistics/
http://www.graphpad.com/guides/prism/6/statistics/

Bibliography VIII

HOFF III, K., KEYSER, J., LIN, M., MANOCHA, D. AND CULVER, T. (1999): Fast
computation of generalized Voronoi diagrams using graphics hardware. In Proc.
SIGGRAPH, 277–286 50

HORN, B. K. (1987): Closed-form solution of absolute orientation using unit quaternions.
JOSA A, 4 (4), 629–642 84

HORN, D. AND CHEN, B. (2007): LightShop: Interactive light field manipulation and
rendering. In Proc. I3D 13

HSU, R.-L., ABDEL-MOTTALEB, M. AND JAIN, A. (2002): Face detection in color
images. IEEE PAMI, 24 (5), 696 –706 9, 17

HUANG, Q.-X., ZHANG, G.-X., GAO, L., HU, S.-M., BUTSCHER, A. AND GUIBAS,
L. (2012): An optimization approach for extracting and encoding consistent maps in
a shape collection. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 31 (6), 167 80

HUBER, D. F. (2002): Automatic three-dimensional modeling from reality. Ph. D thesis,
Carnegie Mellon U, Pittsburgh 80

IGARASHI, T., MOSCOVICH, T. AND HUGHES, J. F. (2005): As-rigid-as-possible shape
manipulation. ACM Trans. Graph. (Proc. SIGGRAPH), 24 (3), 1134–41 19

IMMEL, D., COHEN, M. AND GREENBERG, D. (1986): A radiosity method for non-diffuse
environments. Proc. SIGGRAPH, 20 (4), 133–142 45

IRONY, R., COHEN-OR, D. AND LISCHINSKI, D. (2005): Colorization by Example. Proc.
EGSR, 1, 201–210 21

JAIN, A., THORMÄHLEN, T., RITSCHEL, T. AND SEIDEL, H.-P. (2012): Material Memex:
Automatic Material Suggestions for 3D Objects. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia 2012) 31 (5) 133

JIA, Y. (2013): Caffe: An open source convolutional architecture for fast feature embed-
ding. 125

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREEMAN, W. T. AND MATUSIK,
W. (2010): CG2Real: Improving the Realism of Computer Generated Images using a
Large Collection of Photographs. IEEE TVCG, 17, 1273–1285 21

JOULIN, A., BACH, F. AND PONCE, J. (2010): Discriminative clustering for image
co-segmentation. In Proc. CVPR IEEE, 1943–1950 132

KAJIYA, J. T. (1986): The Rendering Equation. Comput. Graph. (Proc. SIGGRAPH),
20 (4), 143–150 2, 11

KARSCH, K., HEDAU, V., FORSYTH, D. AND HOIEM, D. (2011): Rendering Synthetic
Objects into Legacy Photographs. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
30 (6), 157:1–157:12 134

KAUTZ, J., VÁZQUEZ, P., HEIDRICH, W. AND SEIDEL, H. (2000): A unified approach to
prefiltered environment maps. In Proc. EGWR Volume 6, 16, 30, 131

IX Bibliography

KAWAI, J. K., PAINTER, J. S. AND COHEN, M. F. (1993): Radioptimization: goal based
rendering. In Proc. SIGGRAPH, 147–154 18

KELLER, A. (1997): Instant radiosity. In Proc. SIGGRAPH, 49–56 16, 31, 68

KERR, W. B. AND PELLACINI, F. (2010): Toward evaluating material design interface
paradigms for noviceusers. ACM Trans. Graph. (Proc. SIGGRAPH), 29 (3), 35:1–
35:10 3, 19, 39, 131

KHAN, E. A., REINHARD, E., FLEMING, R. W. AND BÜLTHOFF, H. H. (2006): Image-
based material editing. ACM Trans. Graph. (Proc. SIGGRAPH), 25 (3), 654–662 2,
134

KHOLGADE, N., SIMON, T., EFROS, A. AND SHEIKH, Y. (2014): 3D Object Manipu-
lation in a Single Photograph Using Stock 3D Models. ACM Trans. Graph. (Proc.
SIGGRAPH), 33 (4), 127:1–127:12 132, 134

KIRKPATRICK, S., JR, C. D. G. AND VECCHI, M. P. (1983): Optimization by simmulated
annealing. Science, 220 (4598), 671–680, ISSN 10959203 67

KOHONEN, T. (1990): The self-organizing map. Proceedings of the IEEE, 78 (9), 1464–
1480 105

KOKKINOS, I. AND YUILLE, A. (2007): Unsupervised learning of object deformation
models. In Proc. CVPR, 1–8 20

KŘIVÁNEK, J., GAUTRON, P., PATTANAIK, S. AND BOUATOUCH, K. (2005): Radiance
caching for efficient global illumination computation. IEEE Trans. Vis. Comp. Graph.
11 (5), 550–61 13, 15, 28

LAFFONT, P.-Y., REN, Z., TAO, X., QIAN, C. AND HAYS, J. (2014): Transient Attributes
for High-level Understanding and Editing of Outdoor Scenes. ACM Trans. Graph.
(Proc. SIGGRAPH), 33 (4), 149:1–149:11 21

LAFORTUNE, E. P. AND WILLEMS, Y. D. (1993): Bi-Directional Path Tracing. In Proc.
Computational Graphics and Visualization Techniques, 145–153 13

LAGAE, A., VANGORP, P., LENAERTS, T. AND DUTRÉ, P. (2010): Procedural isotropic
stochastic textures by example. Computers & Graphics, 34 (4), 312–321 21

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J. AND AILA, T. (2007):
Incremental instant radiosity for real-time indirect illumination. In Proc. EGSR,
277–286 16, 131

LALONDE, J.-F. AND EFROS, A. A. (2007): Using color compatibility for assessing image
realism. In Proc. ICCV , 1–8 21

LAND, E. H. AND MCCANN, J. J. (1971): Lightness and retinex theory. J OSA, 61 (1),
1–11 11

Bibliography X

LANG, M., WANG, O., AYDIN, T., SMOLIC, A. AND GROSS, M. (2012): Practical
Temporal Consistency for Image-based Graphics Applications. ACM Trans. Graph.
(Proc. SIGGRAPH), 31 (4), 34:1–34:8 20, 84, 85

LANGER, M. S. (1999): When shadows become interreflections. J Comp. Vis. 34 (2),
193–204 11

LAVANYA SHARAN, R. R. . E. H. A. (2008): Rapid visual perception of material properties.
In Proc. Workshop on Object Perception, Attention & Memory 21

LAWRENCE, R. D., ALMASI, G. S. AND RUSHMEIER, H. E. (1999): A Scalable Paral-
lel Algorithm for Self-Organizing Maps with Applicationsto Sparse Data Mining
Problems. Data Min. Knowl. Discov. 3 (2), 171–195, ISSN 1384–5810 106

LAZEBNIK, S., SCHMID, C. AND PONCE, J. (2006): Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Proc. CVPR Volume 2,,
2169–78 100

LENSCH, H. P. A., KAUTZ, J., GOESELE, M., HEIDRICH, W. AND SEIDEL, H.-P. (2003):
Image-based reconstruction of spatial appearance and geometric detail. ACM Trans.
Graph. 22 (2), 234–257 11

LEVIN, A., LISCHINSKI, D. AND WEISS, Y. (2004): Colorization using optimization.
ACM Trans. Graph. 23 (3), 689–94 19, 90, 95

LEVOY, M. AND HANRAHAN, P. (1996): Light field rendering. In Proc. SIGGRAPH 12

LI, Y., JU, T. AND HU, S.-M. (2010): Instant Propagation of Sparse Edits on Images and
Videos. Comp. Graph. Forum (Proc. Pacific Graphics), 29 (7), 2049–2054 90

LIAO, J., LIMA, R., NEHAB, D., HOPPE, H., SANDER, P. AND YU, J. (2014): Automat-
ing image morphing using structural similarity on a halfway domain. ACM Trans.
Graphics, 33 (3), 1–14 20

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M. AND SZELISKI, R. (2006): Interac-
tive local adjustment of tonal values. ACM Trans. Graph. (Proc. SIGGRAPH), 25 (3),
646–653 2, 3, 19

LISSNER, I. AND URBAN, P. (2009): How Perceptually Uniform Can a Hue Linear Color
Space Be? In Proc. IST CIC, 97–102 10

LIU, C., YUEN, J. AND TORRALBA, A. (2011): SIFT flow: Dense correspondence across
scenes and its applications. IEEE PAMI, 33 (5), 978–994 20, 82

LIU, X., WAN, L., QU, Y., WONG, T.-T., LIN, S., LEUNG, C.-S. AND HENG, P.-
A. (2008): Intrinsic colorization. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
27 (5), 1–9 21

LUAN, Q., WEN, F., COHEN-OR, D., LIANG, L., XU, Y.-Q. AND SHUM, H.-Y. (2007):
Natural Image Colorization. In Proc. EGSR 21

XI Bibliography

LUCAS, B. D. AND KANADE, T. (1981): An Iterative Image Registration Technique with
an Application to Stereo Vision. In Proc. IJCAI, 674–679 20, 82

MACQUEEN, J. (1967): Some methods for classification and analysis of multivariate
observations. In Proc. Berkeley Symp. Math. Stat. Prob. Volume 1,, 14 63

MALGOUYRES, R. (2002): A discrete radiosity method. In Discrete Geometry for Computer
Imagery Springer, 428–438 16

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W., GIBSON, S., HODGINS,
J., KANG, T., MIRTICH, B., PFISTER, H., RUML, W., RYALL, K., SEIMS, J. AND

SHIEBER, S. (1997): Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proc. SIGGRAPH, 389–400 22, 93, 133

MARONNA, R. A., MARTIN, D. R. AND YOHAI, V. J. (2006): Robust Statistics: Theory
and Methods. 125

MATSUDA, Y. (1995): Color design. Asakura Shoten, 2 (4), 1–23 18

MATTAUSCH, O., IGARASHI, T. AND WIMMER, M. (2013): Freeform Shadow Boundary
Editing. Comp. Graph. Forum (Proc. EUROGRAPHICS), 32, 175–184, ISSN 1467–
8659 18

MATUSIK, W., PFISTER, H., BRAND, M. AND MCMILLAN, L. (2003): A Data-Driven
Reflectance Model. In Proc. SIGGRAPH, 759–768 11, 22

MAXWELL, S. E. AND DELANEY, H. D. (2004): Designing experiments and analyzing
data: A model comparison perspective. Volume 1, 25

MERRELL, P., SCHKUFZA, E. AND KOLTUN, V. (2010): Computer-generated Residential
Building Layouts. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 29 (6), 181:1–
181:12 3

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M. AND KOLTUN, V. (2011): Inter-
active furniture layout using interior design guidelines. ACM Trans. Graph. (Proc.
SIGGRAPH), 30 (4), 87–97 3

MERTENS, T., KAUTZ, J., CHEN, J. AND DURAND, F. (2007): Texture Transfer Using
Geometry Correlation. In Proc. EGSR 21

MIGUEL, E., BRADLEY, D., THOMASZEWSKI, B., BICKEL, B., MATUSIK, W., OTADUY,
M. A. AND MARSCHNER, S. (2012): Data-Driven Estimation of Cloth Simulation
Models. Comp. Graph. Forum (Proc. EUROGRAPHICS), 31 (2), 519–528 3

MILLER, G., RUBIN, S. AND PONCELEON, D. (1998): Lazy decompression of surface
light fields for precomputed global illumination. In Proc. EGWR, 281–292 13

MILLER, R. G. (1966): Simultaneous statistical inference. 24

MORONEY, N., FAIRCHILD, M. D., HUNT, R. W., LI, C., LUO, M. R. AND NEW-
MAN, T. (2002): The CIECAM02 color appearance model. In Color and Imaging
Conference Volume 2002, Society for Imaging Science and Technology, 23–27 9

Bibliography XII

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M. AND GROSS, M. (2005): Meshless
deformations based on shape matching. ACM Trans. Graph. (Proc. SIGGRAPH),
24 (3), 471–478 2, 89

NG, R., RAMAMOORTHI, R. AND HANRAHAN, P. (2003): All-frequency shadows using
non-linear wavelet lighting approximation. ACM Trans. Graph. (Proc. SIGGRAPH),
22 (3), 376–381 3, 16, 18, 28

NG, R., RAMAMOORTHI, R. AND HANRAHAN, P. (2004): Triple Product Wavelet Integrals
for All-frequency Relighting. ACM Trans. Graph. (Proc. SIGGRAPH), 23 (3), 477–
487 18

NISHIDA, S. AND SHINYA, M. (1998): Use of image-based information in judgments of
surface-reflectance properties. JOSA A, 15 (12), 2951–65 11

OBEIN, G., KNOBLAUCH, K. AND VIÉOT, F. (2004): Difference scaling of gloss: Nonlin-
earity, binocularity, and constancy. J Vision, 4 (9), 711–720 11

O’DONOVAN, P., AGARWALA, A. AND HERTZMANN, A. (2011): Color compatibility
from large datasets. ACM Trans. Graph. (Proc. SIGGRAPH), 30 (4), 1–11 18, 64, 99,
132

O’DONOVAN, P., LIBEKS, J., AGARWALA, A. AND HERTZMANN, A. (2014): Ex-
ploratory Font Selection Using Crowdsourced Attributes. ACM Trans. Graph. (Proc.
SIGGRAPH), 33 (4), 1–9 133

OLIVA, A. AND TORRALBA, A. (2001): Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope. Int. J. Computer Vision, 42 (3), 145–175 21

OLKKONEN, M., HANSEN, T. AND GEGENFURTNER, K. R. (2008): Color appearance of
familiar objects: Effects of object shape, texture, and illumination changes. J Vision,
8 (5), 1–16 123

OMER, I. AND WERMAN, M. (2004): Color lines: Image specific color representation. In
Proc. CVPR Volume 2,, II–946 10, 17

OSKAM, T., HORNUNG, A., SUMNER, R. AND GROSS, M. (2012): Fast and Stable Color
Balancing for Images and Augmented Reality. In Proc. 3DIMPVT , 49–56 22

PARZEN, E. (1962): On estimation of a probability density function and mode. Ann. Math.
Statist, 33, 1065–1076 66

PELLACINI, F., TOLE, P. AND GREENBERG, D. P. (2002): A user interface for interactive
cinematic shadow design. ACM Trans. Graph. 21 (3), 563–566 18

PELLACINI, F., FERWERDA, J. A. AND GREENBERG, D. P. (2000): Toward a
psychophysically-based light reflection model for image synthesis. In Proc. SIG-
GRAPH, 55–64 2, 11, 47

PELLACINI, F. AND LAWRENCE, J. (2007): AppWand: editing measured materials using
appearance-driven optimization. ACM Trans. Graph. (Proc. SIGGRAPH), 26 (3),
54 2, 19, 68

XIII Bibliography

PELLACINI, F., VIDIMČE, K., LEFOHN, A., MOHR, A., LEONE, M. AND WARREN,
J. (2005): Lpics: A Hybrid Hardware-accelerated Relighting Engine for Computer
Cinematography. ACM Trans. Graph. (Proc. SIGGRAPH), 24 (3), 464–470 3, 18

PERLIN, K. (1985): An image synthesizer. Computer Graphics (Proc. SIGGRAPH), 19 (3),
287–296 63

PHONG, B. (1975): Illumination for computer generated pictures. Communications of the
ACM, 18 (6), 311–317 2, 10, 29, 63

POULIN, P. AND FOURNIER, A. (1995): Painting surface characteristics. In Proc. EGWR,
160–9 18

RAMAMOORTHI, R. AND HANRAHAN, P. (2001): An efficient representation for irradiance
environment maps. In Proc. SIGRAPH, 497–500 16, 28, 30, 32

REINHARD, E., ASHIKHMIN, M., GOOCH, B. AND SHIRLEY, P. (2001): Color Transfer
between Images. IEEE Computer Graphics and Applications, 21 (5), 34–41 2, 3, 21

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H., KAUTZ, J. AND DACHS-
BACHER, C. (2009a): Micro-rendering for scalable, parallel final gathering. ACM
Trans. Graph. (Proc. SIGGRAPH Asia), 28 (5), 132–141 16, 31

RITSCHEL, T., GROSCH, T., KIM, M., SEIDEL, H., DACHSBACHER, C. AND KAUTZ,
J. (2008): Imperfect shadow maps for efficient computation of indirect illumination.
ACM Trans. Graph. (Proc. SIGGRAPH Asia), 27 (5), 129–137 16

RITSCHEL, T., OKABE, M., THORMÄHLEN, T. AND SEIDEL, H.-P. (2009b): Interactive
Reflection Editing. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 28 (5), 129:1–
129:7 19

RITSCHEL, T., THORMÄHLEN, T., DACHSBACHER, C., KAUTZ, J. AND SEIDEL, H.-
P. (2010): Interactive On-surface Signal Deformation. ACM Trans. Graph. (Proc.
SIGGRAPH), 29 (4), 36:1–36:8 18

RUSSELL, B., FREEMAN, W., EFROS, A., SIVIC, J. AND ZISSERMAN, A. (2006): Using
Multiple Segmentations to Discover Objects and their Extent in Image Collections.
In Proc. CVPR, 1605–1614 67

SADEGHI, I., PRITCHETT, H., JENSEN, H. W. AND TAMSTORF, R. (2010): An Artist
Friendly Hair Shading System. ACM Trans. Graph. (Proc. SIGGRAPH), 29 (4),
56:1–56:10 2, 11

SAITO, T. AND TAKAHASHI, T. (1990): Comprehensible rendering of 3-D shapes. Com-
puter Graphics (Proc. SIGGRAPH), 24 (4), 197–206 68

SCHAEFER, S., MCPHAIL, T. AND WARREN, J. (2006): Image deformation using moving
least squares. ACM Trans. Graph. (Proc. SIGGRAPH), 25 (3), 533–40 2, 3, 19, 84,
88, 89, 91

SCHLICK, C. (1994): An Inexpensive BRDF Model for Physically-based Rendering. Comp.
Graph. Forum (Proc. EUROGRAPHICS), 13 (3), 233–246 10

Bibliography XIV

SCHMIDT, T.-W., PELLACINI, F., NOWROUZEZAHRAI, D., JAROSZ, W. AND DACHS-
BACHER, C. (2014): State of the Art in Artistic Editing of Appearance, Lighting, and
Material. In Eurographics 2014 - State of the Art Reports 19

SCHOENEMAN, C., DORSEY, J., SMITS, B., ARVO, J. AND GREENBERG, D. (1993):
Painting with light. In Proc. SIGGRAPH, 143–146 18

SCHWARZ, M. W., COWAN, W. B. AND BEATTY, J. C. (1987): An experimental compari-
son of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans. Graph. 6 (2),
123–158 17, 99

SEOL, Y., LEWIS, J. P., SEO, J., CHOI, B., ANJYO, K. AND NOH, J. (2012): Spacetime
expression cloning for blendshapes. ACM Trans. Graph. 31 (2), 14 87, 89

SERRE, T., WOLF, L., BILESCHI, S., RIESENHUBER, M. AND POGGIO, T. (2007): Robust
object recognition with cortex-like mechanisms. IEEE PAMI, 29 (3), 411–426 80

SEUNG, H. S. AND LEE, D. D. (2000): The manifold ways of perception. Science,
290 (5500), 2268–69 76

SHAPIRA, L., SHAMIR, A. AND COHEN-OR, D. (2009): Image Appearance Exploration
by Model-Based Navigation. Comp. Graph. Forum (Proc. EUROGRAPHICS), 28 (2),
629–38 17, 132, 133

SHARMA, G., WU, W. AND DALAL, E. N. (2005): The CIEDE2000 color-difference for-
mula: Implementation notes, supplementary test data, and mathematical observations.
Color Research & Application, 30 (1), 21–30 63

SHIH, Y., PARIS, S., DURAND, F. AND FREEMAN, W. T. (2013): Data-driven Halluci-
nation of Different Times of Day from a Single Outdoor Photo. ACM Trans. Graph.
(Proc. SIGGRAPH Asia), 32, 200:1–200:11 89

SIEGEL, S. AND CASTELLAN, N. J. (1988): Nonparametric Statistics for The Behavioral
Sciences. 24, 116

SLOAN, P., GOVINDARAJU, N., NOWROUZEZAHRAI, D. AND SNYDER, J. (2007): Image-
based proxy accumulation for real-time soft global illumination. In Proc. Pacific
Graphics, 97–105 16

SLOAN, P., KAUTZ, J. AND SNYDER, J. (2002): Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. In ACM Trans.
Graph. (Proc. SIGGRAPH) Volume 21,, 527–536 3, 15, 16, 18

STROOP, J. R. (1935): Studies of interference in serial verbal reactions. J Exp. Psy.: General,
18 (6), 643–662 21, 62

SUMNER, R. W., ZWICKER, M., GOTSMAN, C. AND POPOVIĆ, J. (2005): Mesh-based
inverse kinematics. ACM Trans. Graph. (Proc. SIGGRAPH), 24 (3), 488–495 20

SWAIN, M. J. AND BALLARD, D. H. (1991): Color indexing. Int. J Computer Vision, 7 (1),
11–32 66

XV Bibliography

SZIRMAY-KALOS, L., ASZÓDI, B., LAZÁNYI, I. AND PREMECZ, M. (2005): Approxi-
mate Ray-Tracing on the GPU with Distance Impostors. Comp. Grap. Forum (Proc.
EUROGRAPHICS), 24 (3), 695–704 31, 51, 130

TABELLION, E. AND LAMORLETTE, A. (2004): An approximate global illumination
system for computer generated films. ACM Trans. Graph. (Proc. SIGGRAPH), 23 (3),
469–476 15

TAO, M., BAI, J., KOHLI, P. AND PARIS, S. (2012): SimpleFlow: A Non-iterative,
Sublinear Optical Flow Algorithm. Comp. Graph. Forum (Proc. EUROGRAPHICS),
31 (2pt1), 345–353 20, 82, 83, 84, 85

TENENBAUM, J., DE SILVA, V. AND LANGFORD, J. (2000): A global geometric framework
for nonlinear dimensionality reduction. Science, 290 (5500), 2319–23 104

TKALCIC, M. AND TASIC, J. (2003): Colour spaces: perceptual, historical and applica-
tional background. In EUROCON 2003. Computer as a Tool. The IEEE Region 8
Volume 1,, 304–308 vol.1 9

TOMBARI, F., MATTOCCIA, S., DI STEFANO, L. AND ADDIMANDA, E. (2008): Classifi-
cation and evaluation of cost aggregation methods for stereo correspondence. In Proc.
CVPR, 1–8 83

TOMINAGA, S. AND TANAKA, N. (2000): Estimating reflection parameters from a single
color image. IEEE Computer Graphics and Applications, 20 (5), 58–66 10

TRIMBLE NAVIGATION (2014): SketchUp. 〈URL: http://www.sketchup.com〉 2

TURK, M. AND PENTLAND, A. (1991): Eigenfaces for recognition. J Cog. Neuroscience,
3 (1), 71–86 3, 19, 76

TVERSKY, A. AND KAHNEMAN, D. (1981): The framing of decisions. Science, 211,
453–458 76

TZENG, D. AND BERNS, R. (2005): A review of principal component analysis and its
applications to color technology. Color Res. & App. 30 (2), 84–98 10

VANGORP, P., LAURIJSSEN, J. AND DUTRÉ, P. (2007): The influence of shape on the
perception of material reflectance. ACM Trans. Graph. (Proc. SIGGRAPH), 26 (3),
77 11

VEACH, E. AND GUIBAS, L. J. (1997): Metropolis Light Transport. In Proc. SIGGRAPH,
65–76 13

WALKER, L. L. AND MALIK, J. (2002): When is scene recognition just texture recognition?
J Vision, 2 (7), 255–264 21

WANG, B., YU, Y., WONG, T.-T., CHEN, C. AND XU, Y.-Q. (2010): Data-driven
image color theme enhancement. ACM Trans. Graph. (Proc. SIGGRAPH), 3, 146:1–
146:10 3, 18, 21

http://www.sketchup.com

Bibliography XVI

WANG, B., YU, Y. AND XU, Y.-Q. (2011): Example-based image color and tone style
enhancement. ACM Trans. Graph. (Proc. SIGGRAPH), 3, 64:1–64:12 3, 18

WANG, H., O’BRIEN, J. F. AND RAMAMOORTHI, R. (2011): Data-Driven Elastic Models
for Cloth: Modeling and Measurement. ACM Trans. Graph. (Proc. SIGGRAPH), 3,
71:1–71:11 3

WANG, J., TONG, X., LIN, S., PAN, M., WANG, C., BAO, H., GUO, B. AND SHUM, H.-
Y. (2006): Appearance manifolds for modeling time-variant appearance of materials.
ACM Trans. Graph. (Proc. SIGGRAPH), 3, 754–61 22

WANG, Z., BOVIK, A. C., SHEIKH, H. R. AND SIMONCELLI, E. P. (2004): Image
quality assessment: From error visibility to structural similarity. IEEE TIP, 13 (4),
600–612 80

WARD, G. AND HECKBERT, P. (1992): Irradiance gradients. In Proc. EGWR 10, 13, 31

WARD, G., RUBINSTEIN, F. AND CLEAR, R. (1988): A ray tracing solution for diffuse
interreflection. In Proc. SIGGRAPH Volume 22,, 85–92 13

WILKINSON, C., WOODRUFF, S. D., BROHAN, P., CLAESSON, S., FREEMAN, E.,
KOEK, F., LUBKER, S. J., MARZIN, C. AND WHEELER, D. (2011): Recovery
of logbooks and international marine data: the RECLAIM project. International
Journal of Climatology, 31 (7), 968–979 3

WILLIAMS, L. (1983): Pyramidal parametrics. Proc. SIGGRAPH, 17 (3), 1–11 15, 32, 51

WILLS, J., AGARWAL, S., KRIEGMAN, D. AND BELONGIE, S. (2009): Toward a percep-
tual space for gloss. ACM Trans. Graph. 28 (4), 103 11

WOOD, D., AZUMA, D., ALDINGER, K., CURLESS, B., DUCHAMP, T., SALESIN,
D. AND STUETZLE, W. (2000): Surface light fields for 3D photography. In Proc.
SIGGRAPH 13

XIAO, J., HAYS, J., EHINGER, K., OLIVA, A. AND TORRALBA, A. (2010): SUN database:
Large-scale scene recognition from abbey to zoo. In Proc. CVPR, 3485–92 119, 120

XU, L., YAN, Q. AND JIA, J. (2013): A Sparse Control Model for Image and Video Editing.
ACM Trans. Graph. (Proc. SIGGRAPH Asia), 32 (6), 197:1–197:10 19, 90

XUE, S., WANG, J., TONG, X., DAI, Q. AND GUO, B. (2008): Image-based Material
Weathering. Comp. Graph. Forum (Proc. EUROGRAPHICS), 27 (2), 617–626 22

YANG, Q., WANG, S. AND AHUJA, N. (2010): Real-time Specular Highlight Removal
Using Bilateral Filtering. In Proc. ECCV , 87–100 63

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D., CHAN, T. F. AND OSHER,
S. J. (2011): Make it Home: Automatic Optimization of Furniture Arrangement.
ACM Trans. Graph. (Proc. SIGGRAPH), 30 (4), 1–10 3

ZHOU, S., FU, H., LIU, L., COHEN-OR, D. AND HAN, X. (2010): Parametric Reshaping
of Human Bodies in Images. ACM Trans. Graph. (Proc. SIGGRAPH), 29 (3), 126:1–
126:10 3

	Introduction
	Background
	Contributions
	Outline

	Background and Previous Work
	Color
	Terminology
	Color Model
	Color Space

	Material
	Material Model
	Material Perception

	Rendering
	Rendering Equation
	Surface Light Fields (SLFs)
	Approximate Global Illumination

	Appearance Editing
	Color Editing
	Light, Shadow and Material Editing
	Edit Propagation
	Subspaces-aware Editing
	Style Transfer
	Appearance Manifolds

	Statistical Hypothesis Testing
	Hypothesis
	The p-value
	Statistical Test
	Post-hoc Test
	Effect Size

	Preconvolved Radiance Caching
	Introduction
	Our Approach
	Pre-convolution
	Per-pixel Computation
	Recursive Lookups
	Implementation

	Results
	Discussion

	Surface Light Field Manipulation in 3D Scenes
	Introduction
	Problem Statement
	Surface Light Field Manipulations
	Tools
	Direct and Indirect Mode
	Edit Propagation

	Discretization
	Discrete Domain
	Discrete Operators
	Discrete Minimization

	GPU Implementation
	Pre-computed Visibility (G)
	Pre-convolved Radiance (K)
	Solver
	Rendering
	Upsampling

	Results
	Dicussion

	3D Material Style Transfer
	Introduction
	Our Approach
	Definitions
	Material Extraction
	Material Assignment
	Optimization
	Implementation Details

	Results
	Discussion

	Shape and Color Subspaces
	Introduction
	Our Approach
	Alignment
	Subspace Construction

	Applications and Results
	Shape and Color Manipulation
	Shape and Color Suggestions
	Manipulation of Complex Images

	Limitations

	Data-driven Color Manifolds
	Introduction
	Our Approach
	Acquisition
	Density Estimation
	Dimensionality Reduction

	Algorithm Evaluations
	Algorithm Comparison
	Algorithm Analysis
	User Study

	Results
	Manifolds
	Applications

	Discussion and Limitations

	Conclusion
	Closing Remarks
	Future Works
	Individuals
	Combinations
	General Outlook

	Message

