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Abstract

In this thesis, we apply the Multiplicative Weights Update Method (MWUM) to the
design of approximation algorithms for some optimization problems in game-theoretic
settings.

Lavi and Swamy [LS05, LS11] introduced a randomized mechanism for combina-
torial auctions that uses an approximation algorithm for the underlying optimization
problem, so-called social welfare maximization and converts the approximation algo-
rithm to a randomized mechanism that is truthful-in-expectation, which means each
player maximizes its expected utility by telling the truth. The mechanism is powerful
(e.g., see [LS05, LS11, CEF10, HKV11] for applications), but unlikely to be efficient
in practice, because it uses the Ellipsoid method. In Chapter 2, we follow the gen-
eral scheme suggested by Lavi and Swamy and replace the Ellipsoid method with
MWUM. This results in a faster and simpler approximately truthful-in-expectation
mechanism. We also extend their assumption regarding the existence of an exact solu-
tion for the LP-relaxation of social welfare maximization. We assume that there exists
an approximation algorithm for the LP and establish a new randomized approximation
mechanism.

In Chapter 3, we consider the problem of computing an approximate saddle point,
or equivalently equilibrium, for a convex-concave functions F : X × Y → R, where
X and Y are convex sets of arbitrary dimensions. Our main contribution is the
design of a randomized algorithm for computing an ε-approximation saddle point
for F . Our algorithm is based on combining a technique developed by Grigoriadis
and Khachiyan [GK95], which is a randomized variant of Brown’s fictitious play
[Bro51], with the recent results on random sampling from convex sets (see, e.g.,
[LV06, Vem05]). The algorithm finds an ε-approximation saddle point in an ex-
pected number of O

(
ρ2(n+m)

ε2
log R

ε

)
iterations, where in each iteration two points

are sampled from log-concave distributions over strategy sets. It is assumed that X
and Y have inscribed balls of radius 1/R and circumscribing balls of radius R and
ρ = maxx∈X,y∈Y |F (x, y)|. In particular, the algorithm requires O∗

(
ρ2(n+m)6

ε2
logR

)
calls to a membership oracle, where O∗(·) suppresses polylogarithmic factors that de-
pend on n, m, and ε.



Zusammenfassung

In dieser Doktorarbeit verwenden wir die Multiplicative Weights Update Method
(MWUM) für den Entwurf von Approximationsalgorithmen für bestimmte Optimie-
rungsprobleme im spieltheoretischen Umfeld.

Lavi und Swamy [LS05, LS11] präsentierten einen randomisierten Mechanismus
für kombinatorische Auktionen. Sie verwenden dazu einen Approximationsalgorithmus
für die Lösung des zugrundeliegenden Optimierungsproblem, das so genannte Social
Welfare Maximization Problem, und wandeln diesen zu einem randomisierten Mecha-
nismus um, der im Erwartungsfall anreizkompatibel ist. Dies bedeutet jeder Spieler
erreicht den maximalen Gewinn, wenn er sich ehrlich verhält. Der Mechanismus ist
sehr mächtig (siehe [LS05, LS11, CEF10, HKV11] für Anwendungen); trotzdem ist
es unwahrscheinlich, dass er in der Praxis effizient ist, da hier die Ellipsoidmetho-
de verwendet wird. In Kapitel 2 folgen wir dem von Lavi und Swamy vorgeschla-
genem Schema und ersetzen die Ellipsoidmethode durch MWUM. Das Ergebnis ist
ein schnellerer, einfacherer und im Erwartungsfall anreizkompatibler Approximations-
mechanismus. Wir erweitern ihre Annahme zur Existenz einer exakten Lösung der
LP-Relaxierung für das Social Welfare Maximization Problem. Wir nehmen an, dass
ein Approximationsalgorithmus für das LP existiert und beschreiben darauf basierend
einen neuen randomisierten Approximationsmechanismus.

In Kapitel 3 betrachten wir das Problem für konvexe und konkave Funktionen
F : X × Y → R, wobei X und Y konvexe Mengen von beliebiger Dimension sind,
einen Sattelpunkt zu approximieren (oder gleichbedeutend ein Equilibrium). Unser
Hauptbeitrag ist der Entwurf eines randomisierten Algorithmus zur Berechnung einer
ε-Näherung eines Sattelpunktes von F . Unser Algorithmus beruht auf der Kombination
einer Technik entwickelt durch Grigoriadis und Khachiyan [GK95], welche eine zufalls-
basierte Variation von Browns Fictitious Play [Bro51] ist, mit kürzlich erschienenen
Resultaten im Bereich der zufälligen Stichprobennahme aus konvexen Mengen (siehe
[LV06, Vem05]). Der Algorithmus findet eine ε-Näherung eines Sattelpunktes im Er-
wartungsfall in O(ρ

2(n+m)6

ε2
log R

ε ) Rechenschritten, wobei in jedem Rechenschritt zwei
Punkte zufällig gemäß einer log-konkaven Verteilungen über Strategiemengen gezogen
werden. Hier nehmen wir an, dass X und Y einbeschriebene Kugeln mit Radius 1/R
und umschreibende Kugeln von Radius R besitzen und ρ = maxx∈X,y∈Y |F (x, y)|. Der
Algorithmus benötigt dabei O∗(ρ

2(n+m)6

ε2
logR) Aufrufe eines Zugehörigkeitsorakels,

hier versteckt O∗(·) polylogarithmische Faktoren, die von n,m und ε abhängen.
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1
Introduction

The design and analysis of efficient algorithms for optimization problems is a funda-
mental task in computer science. Due to the wide range of applications from economics
and game theory to extremal combinatorics and machine learning, several techniques
such as the simplex and interior point methods have been developed. Among the exist-
ing methods, the Ellipsoid is a powerful one developed by Shor, Nemirovsky and Yudin
and successfully applied for convex optimization problems (e.g., see [NN94]). Later
on, Khachiyan [Kha79] modified the Ellipsoid method to obtain the first polynomial
algorithm for linear programming. This caused great excitement in the community
and led to a large number of research papers in this area (see [BGT81] for a survey
about the Ellipsoid method and the first follow-up results). Although, the method
provides a rich framework for theoretical studies, it converges slowly to an optimal
solution in practice as its running time depends highly on the bit description of a
problem. Therefore, the design of faster algorithms for linear programming is a major
problem in computer science. Multiplicative Weights Update Method (MWUM) is a
fast and simple approximation scheme that has been applied in many fundamental
constrained problems such as convex optimization, packing, and covering linear pro-
gramming (e.g., see [PST91, GK98, GK04, KY07]). The method is quite general, and
it might be considered a potential candidate to replace the Ellipsoid method, where
an approximate solution suffices. It is usually explained as a learning process for solv-
ing a stock market prediction problem over time, which is defined as follows: There
is a decision maker who wants to predict a stock market at the beginning of each
day, and he has a set of n experts telling their predictions at the beginning of day,
and the value of each prediction is made known at the end of the day. The decision
maker’s goal is to design an algorithm to minimize his cost in a long run, which is
the consequence of his predictions. One of the first results for solving this problem is
from Freund and Schapire [FS99], who presented a weighted majority algorithm (see
Section A.1). They showed that the cost incurred by this algorithm is bounded from
above by the the cost of an algorithm that follows the best expert, who is unknown
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to the decision maker, with an additive error O(log n). When the method is applied
for linear programming, it iteratively combines the constraints into a single weighted
constraint, and then solves just one constraint. The weights get updated based on
the solution obtained in previous round, and increased when the solution satisfies the
constraint (see Section A.3).

One key idea that lies at the core of these algorithms is that the decision maker
maintains a list of weights for the experts. Then, according to the value of each ex-
pert’s prediction, he updates the experts’ weights with a multiplicative factor, say
1 + ε if an expert’s prediction is correct, or a factor 1− ε, if it is wrong, where ε > 0
is a given parameter to the algorithm. The decision maker then decides which expert
to follow based on new weights. Intuitively, the idea works because it adds higher
weights for experts with fewer mistakes in a long run. This simple idea is powerful
enough to give efficient algorithms for various kinds of problems. For instance, Garg
and Könemman [GK98] applied this framework for the multicommodity flows prob-
lems and designed a fast algorithm. More recently, Arora, Hazan, and Kale [AHK06]
unified these algorithms and presented them as a meta algorithm. Grigoriadis and
Khachiyan [GK95] introduced randomized fictitious play method for computing the
mixed strategies of a class of zero-sum games. The method can also be considered as
MWUM since in each round the probability distribution on the set of strategies gets
updated such that the better strategies are more likely to be picked.

In this thesis, we adopt the Multiplicative Weights Update Method for solving
some optimization problems arising in game theory and show the efficiency and im-
provements over previous works that applied the Ellipsoid method. We basically con-
sider two fundamental optimization problems that appear in algorithmic game theory,
namely, the social welfare maximization problem and computing an equilibrium for a
class of zero-sum games. We briefly discuss our results in the following sections.

1.1. Algorithmic Mechanism Design

Algorithmic mechanism design studies optimization problems in which part of the
input is collected from self-interested players who can manipulate the algorithm by
mis-reporting their parts of the input if that improves their own objective functions.
Combinatorial auctions are an important class of such problems in which the auction-
eer tries to design a mechanism for selling items to players such that (1) he motivates
players to reveal their true valuations, so-called truthful-mechanism, and (2) he max-
imizes the total valuations of players, called the social welfare maximization (SWM).
In this setting, a considerable volume of data is reported by the buyers, which are
valuations for every subset of items. The celebrated VCG mechanism is the only ever
known mechanism that is truthful and also maximizes the social welfare. Applying
VCG requires solving SWM exactly and then, according to the optimal solution, the
mechanism assigns to each player a subset of items. The mechanism also charges
each player according to a specific payment rule called VCG payment, which we will
explain in Chapter 2. Unfortunately, SWM is known to be NP-hard, and hence, the
VCG mechanism is intractable.

Formally speaking, a combinatorial auction consists of a set of m items, say [m], n
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players, and every player i ∈ [n] has a valuation function vi over the set of all subsets
of items. SWM is formulated as follows:

max
∑
i,S

vi(S)xi,S∑
S

xi,S 6 1 for all i ∈ [n]∑
i,S;j∈S

xi,S 6 1 for all items j ∈ [m]

xi,S ∈ {0, 1}

where xi,S = 1 indicates the assignment of S to the i-th player. Note that the first set
of constraints means that each player gets at most one subset of items, and the second
one is concerned with the disjointness of the allocated subsets to players.

Based on the VCG mechanism, Lavi and Swamy [LS05, LS11] introduced a ran-
domized mechanism for solving this problem. The mechanism approximates social
welfare within a factor α ∈ [0, 1] and guarantees truthfulness-in-expectation, which
means each player maximizes its expected utility by telling the truth.

Basically, their technique is based on two assumptions: the LP-relaxation of SWM
can be solved exactly, and an α-integrality gap verifier is available. The latter implies
that if one scales down the polytope of the relaxed version of SWM, say Q, by a factor
of α, then points in the new polytope are contained in the convex hull of the inte-
gral points in the original polytope. Therefore, any fractional point that maximizes
the social welfare within factor α can be written as a convex combination of integral
points, called the convex decomposition, which provides a distribution over a set of
integral points. So, the randomized mechanism picks an integral solution according
to the probability distribution and the rest of the mechanism almost follows the VCG
mechanism. The Lavi-Swamy mechanism uses the Ellipsoid method both for solving
the LP and for finding the convex decomposition, which are not efficient in practice.
Our results in Chapter 2 is concerned with the design and analysis of a combinatorial
algorithm for the Lavi-Swamy mechanism. Our contribution includes the design of a
faster algorithm for convex decomposition, and then we consider a more general prob-
lem in which we do not solve the LP-relaxation of SWM exactly but instead apply the
Multiplicative Weights Update Method for solving it and show that our mechanism is
approximately truthful-in-expectation. In the following, we briefly explain our results.

Convex Decomposition. Similar to the Lavi-Swamy’s framework, we first assume
that the LP-relaxation of social welfare maximization can be solved exactly and effi-
ciently and let x∗ denote the optimal solution of the LP-relaxation. Then, our problem
reduces to the design of a practical algorithm for the convex decomposition. Carr and
Vempala [CV02] showed how to construct a convex combination of integral points in
the polytope Q dominating x∗ using a polynomial number of calls to an α-integrality-
gap-verifier. The Lavi-Swamy mechanism [LS11] modified the construction to get
an exact convex decomposition. In fact, they use the Ellipsoid method to get such
a convex decomposition. We show how to replace the use of the Ellipsoid method
with the Multiplicative Weights Update Method and obtain a convex decomposition
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of αx∗/(1 + 4ε) for every ε > 0. We also derive an upper bound of O(sε−2 log s) for
the number of calls to the α-integrality-gap-verifier where s is the number of non zero
entries in x∗. Recently, Kraft, Fadaei, and Bichler [KFB14] considered the same prob-
lem and described an alternative method for finding a convex combination. However,
their construction is less efficient in two aspects. First, it requires O(s2ε−2) calls of the
α-integrality-gap-verifier. Second, the number of non-zero coefficients in the convex
decomposition might be as large as O(s3ε−2), while in our case it is O(sε−2 log s).

Faster Mechanism Design. We consider a more general problem, that is, we do not
want to solve LP-relaxation of SWM exactly and assume that there is an ε-approximation
algorithm for the LP-relaxation of SWM for every ε > 0, denoted by A. Garg and
Könemann [GK98] show how to modify the Multiplicative Weights Update Method
for packing linear programming and obtain an FPTAS for it; hence, our assump-
tion regarding the existence of A is valid. Using this, we show how to construct a
randomized mechanism and prove that for a given ε0, our mechanism is (1 − ε0)-
truthful-in-expectation, which means every player maximizes his expected utility up to
a factor of 1− ε0 by telling the truth. Note that this step is useful in particular, when
the dimension is exponential as is the case in combinatorial auction’s.

The results of Chapter 2 have been published in proceedings of the 8th International
Symposium on Algorithmic Game Theory, SAGT’15, [EMR15].

1.2. Approximating Saddle Points

Approximating a saddle point of a given function is an overarching and fundamental
problem that has various kinds of applications from economics and game theory to
dynamical systems and optimization, for example. Suppose that F : X × Y → R,
X ⊆ Rm and Y ⊆ Rn, is a function that is convex in X and concave in Y . Then the
saddle point (x∗, y∗) ∈ X × Y of F is defined as

F (x∗, y∗) = inf
x∈X

F (x, y∗) = sup
y∈Y

F (x∗, y).

Let us consider an important class of games, known as a 2-player zero-sum game, with
a payoff function F : X × Y → R in which a saddle point of F (or equivalently, an
equilibrium point) plays an important role. In this game, there are two players: one
is the minimizer who selects point x ∈ X, so-called strategy x, and the other selects
strategy y ∈ Y , and each is unaware of the choice of the other. Then, their choices
are made known and the minimizer pays the amount of F (x, y) to the maximizer. It
is not hard to check that any saddle point for F corresponds to a Nash equilibrium
because no player has an interest to change his current strategy, given that the other
player sticks to his current strategy. Hence, saddle points are translated to the optimal
strategies in a game-theoretical setting. The famous Saddle-Point Theorem (e.g., see
[Roc70]) says that when X and Y are closed convex sets, a saddle point for F exists.
However, computing the saddle point is not as clear as the existential result as it
depends on F and its domain, which might be quite challenging. In the 50s, Brown
[Bro51] introduced the fictitious play technique for computing the equilibrium of a
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2-player zero-sum game, with a payoff function F (x, y) = xTAy, where A ∈ Rm×n,
and the strategy sets are probability distributions over rows and columns, known as
mixed strategies. Here, the minimizer, row player, instead of choosing a point, selects
a probability distribution over rows; and the maximizer, column player, chooses a
distribution over columns, and xTAy is the expected payoff which the row player
should pay to the column player. The fictitious play method is a learning rule that
proceeds in rounds. In each round, each player updates his strategy by applying the
best response strategy to the current opponent’s strategy. Robinson [Rob51] showed
that if the number of rounds goes to infinity, then the fictitious play converges to
the optimal strategies for players. Due to the computation overhead and technical
reasons, the notion of an ε-approximation saddle point emerged: for every ε ∈ (0, 1),
point (x∗, y∗) ∈ X × Y is an ε-approximation saddle point of F : X × Y → R if we
have

sup
y∈Y

F (x∗, y) 6 inf
x∈X

F (x, y∗) + ε.

Based on fictitious play, Grigoriadis and Khachiyan [GK95] presented a random-
ized algorithm for computing ε-optimal strategies (or equivalently, the ε-approximation
saddle point) for a 2-player zero-sum game with a payoff function xTAy, where A ∈
[−1, 1]m×n. Generally speaking, in randomized fictitious play, each player takes a ran-
dom direction to update his strategy according to a given distribution which gives large
weight to good responses, instead of applying the best response. They also proved an
expected upper bound O((m + n) log(n + m)/ε2) for the running time of the algo-
rithm. When the strategy sets are convex sets, one can easily see that computing the
ε-approximation saddle point can be reformulated as a convex minimization problem
over a convex set, and hence, any algorithm for solving this class of problems, e.g., the
Ellipsoid method, can be used to compute them in time polynomial in the input size
and polylog(1

ε ) (see, e.g., [GLS93]). However, there has recently been an increasing in-
terest in finding simpler and faster approximation algorithms for this type of problem,
sacrificing the dependence on ε from polylog(1

ε ) to poly(1
ε ), in exchange for efficiency

in terms of other input parameters; see e.g. [AHK05, AK07, BBR04, GK92, GK95,
GK96, GKPV01, GK98, GK04, Kha04, Kal07, LN93, KY07, You01, DJ07, PST91]. In
Chapter 3 we show that it is possible to design a randomized algorithm for computing
an ε-approximation saddle point of convex-concave functions over the product of two
convex bounded sets. Our algorithm is based on combining a technique developed by
Grigoriadis and Khachiyan [GK95], which is a randomized variant of Brown’s fictitious
play [Bro51], with the recent results on random sampling from convex sets (see, e.g.,
[LV06, Vem05]). The algorithm finds an ε-approximation saddle point for a convex-
concave functions in an expected number of O

(
ρ2(n+m)

ε2
log R

ε

)
iterations, where in

each iteration two points are sampled from log-concave distributions over strategy
sets. It is assumed that X and Y have inscribed balls of radius 1/R and circum-
scribing balls of radius R and ρ = maxx∈X,y∈Y |F (x, y)|. In particular, the algorithm
requires O∗

(
ρ2(n+m)6

ε2
logR

)
calls to a membership oracle, where O∗(·) suppresses

polylogarithmic factors that depend on n, m, and ε.
The results of Chapter 3 have been published in the Journal of Algorithmica 2014

[EMMR14].
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2
Towards More Practical Algorithmic

Mechanism Design

Algorithmic mechanism design studies optimization problems in which part of the
input is not directly available to the algorithm; instead, this data is collected from
self-interested players who can manipulate the algorithm by mis-reporting their parts
of the input, if that improves their own objective functions. Algorithmic mechanism
design aims at polynomial-time algorithms that (approximately) optimize a global
objective function, subject to the strategic requirement that the best strategy for the
players is to truthfully report their part of the input. Such algorithms are called
truthful mechanisms.

Combinatorial auctions provide a general framework in game theory that consists
of m distinct items to be sold to a set of n players. Each player has a non-negative
(reported) valuation function over all subsets of items that has a non-decreasing prop-
erty and assigns zero to the empty set. In this setting, the objective function is called
social welfare and is defined as the total valuation of players for assigned items. The
goal is to design a mechanism that charges each player a price and allocates disjoint
subsets of items to the players such that social welfare is maximized and players are
motivated to declare their true valuations.

If the underlying optimization problem can be efficiently solved to optimality, the
celebrated VCG mechanism (see, e.g., [NRTV07]) achieves truthfulness, maximized
social-welfare, and polynomial running time.

In general, the underlying optimization problem is NP-hard and can only be solved
approximately. Lavi and Swamy [LS05, LS11] introduced a general technique that uses
an approximation algorithm of the underlying problem (social welfare) and converts it
to a randomized mechanism that is truthful-in-expectation, which means each player
maximizes its expected utility by telling the truth. Basically, their technique is based
on two assumptions, namely, the LP-relaxation of the underlying optimization problem
can be solved exactly and an α-integrality gap verifier is available. The latter implies
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that after scaling down any feasible fractional point by a factor α, it can be represented
as a convex combination of integral points, that is, a distribution over a set of integral
points.

It turns out that the Lavi-Swamy mechanism is a powerful method (e.g., see [LS05,
LS11, CEF10, HKV11] for applications), but is unlikely to be efficient in practice,
because the mechanism uses the Ellipsoid method both for solving the LP and for
finding the convex decomposition. In order to have a clearer picture of the mechanism,
we summarize the mechanism in three steps (more details in Section 2.2):

1. Let vi be the linear valuation function of the i-th player and v =
∑

i vi be the
accumulated valuation. Solve the LP-relaxation of social welfare with packing
polytope Q, i.e., find a maximizer x∗ = argmaxx∈Q v(x), and determine the
VCG price pi, for every i ∈ [n]. The allocation x∗ and the VCG prices are a
truthful mechanism for the fractional problem.

2. Write α·x∗ as a convex combination of integral solutions, i.e., α · x∗ =
∑

l∈N λlx
l,

where {xl : l ∈ N} is the set of integral points contained inQ, namelyQI , λl > 0,
and

∑
l∈N λl = 1.

3. Pick the integral solution xl with probability λl, and charge the i-th player the
price pivi(xl)/vi(x∗) if vi(x∗) > 0 and zero, otherwise.

The Lavi-Swamy mechanism approximates social welfare within a factor of α, called
α-social efficiency, and guarantees truthfulness-in-expectation, i.e., it converts a truth-
ful fractional mechanism into an truthful-in-expectation integral mechanism. With
respect to practical applicability, steps 1 and 2 are the two major bottlenecks. Step
1 requires solving a linear programming problem; an exact solution requires the use
of the Ellipsoid method (see e.g. [GLS88]), if the dimension is exponential. Further-
more, until recently, the only method known to perform the decomposition in Step 2 is
through the Ellipsoid method. An alternative method that avoids the use of the Ellip-
soid method was recently given by Kraft, Fadaei, and Bichler [KFB14]. We comment
on their result in the next section.

Our Results

Our result concerns the design and analysis of a combinatorial algorithm for the Lavi-
Swamy mechanism. We first consider the case where the LP-relaxation of social welfare
maximization, denoted by SWM, in Step 1 of the Lavi-Swamy mechanism can be
solved exactly and efficiently. Then, our problem reduces to the design of a practical
and combinatorial algorithm for the convex decomposition (i.e., Step 2).

Subsequently, we consider a more general problem, namely, the LP-relaxation in
Step 1 of the Lavi-Swamy mechanism cannot be solved exactly, and we only have an
approximate solution that maximizes the LP-relaxation within a factor of 1 − ε. We
now briefly explain our contribution.

Convex Decomposition. Suppose x∗ is an arbitrary point of polytope Q and let QI
be the set of integral points contained in Q. It is not hard to see that the convex
decomposition of αx∗ into points of QI can be formulated as an LP (see (2.2) in
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Section 2.2). Carr and Vempala [CV02] showed how to construct a convex combination
of points in QI dominating αx∗ using a polynomial number of calls to an α-integrality
gap verifier for QI . Lavi and Swamy [LS11] modified the construction to get an exact
convex decomposition:

αx∗ =
∑
i∈N

λlx
l.

Their construction uses the Ellipsoid method.
Over the past 15 years, simple and fast methods [BI06, GK95, GK98, Kha04,

KY07, PST91, You01] have been developed for solving packing and covering linear
programming problem within an arbitrarily small error guarantee ε. These methods
are based on the multiplicative weights update method (MWUM) [AHK06], in which
a very simple update rule is repeatedly performed until a near-optimal solution is
obtained. We show how to replace the use of the Ellipsoid method by the multiplicative
weights update method and obtain a convex decomposition of αx∗/(1 + 4ε) for every
ε > 0. Let s be the number of non-zero components of x∗. We also derive the upper
bound O(sε−2 log s) for both the number of calls to the α-integrality gap verifier and
the size of the decomposition which is the number of nonzero coefficients.

Kraft, Fadaei, and Bichler [KFB14] considered the same problem and describe
an alternative method for finding a dominating convex combination. However, their
construction is less efficient in two aspects. First, it requires O(s2ε−2) calls to the
α-integrality gap verifier. Second, the size of their convex decomposition might be as
large as O(s3ε−2). In the combinatorial auction problem, s = n+m.

Our fast convex decomposition algorithm, together with Steps 1 and 3 of the
Lavi-Swamy mechanism, implies a mechanism that is truthful-in-expectation and has
(α/(1 + 4ε))-social efficiency, that is, the expected social welfare is at least α/(1 + 4ε)
times the maximum possible social welfare value.

Approximately Truthful-in-Expectation Mechanisms. In contrast to the Lavi-Swamy
mechanism, let us assume that we do not want to solve the LP-relaxation of SWM
exactly, but instead we want to use an ε-approximation algorithm A for it. Garg
and Könemann [GK98] showed that there is an FPTAS for the packing problem, and
hence, such A exists for every ε > 0. Using this, we first show how to construct a
fractional randomized mechanism for given ε0 ∈ (0, 1/2] and ε = Θ(

ε50
n4 ) that satisfies:

1. No positive transfer (i.e., prices are non-negative).

2. Individually rational with probability 1 − ε0 (i.e., the utility of any truth-telling
player is non-negative with probability at least 1− ε0).

3. (1− ε0)-truthful-in-expectation (i.e., reporting the truth maximizes the expected
utility of a player up to a factor 1− ε0)

4. (1− ε)(1− ε0)-social efficiency.

Now, let us assume that x is a fractional allocation obtained from the above mecha-
nism. We apply our convex decomposition technique and Step 3 of the Lavi-Swamy
mechanism to obtain an integral randomized mechanism that satisfies the aforemen-
tioned conditions 1− 3 and has α(1− ε)(1− ε0)/(1 + 4ε)-social efficiency.
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Note that our fractional mechanism refines the one given in [DRVY11], where the
dependency of ε on n and ε0 is as ε = Θ(ε0/n

9). A recent experimental study of our
mechanism on Display Ad Auctions [EJ15] shows the applicability of these methods
in practice.

Outline. In Section 2.1, we formally define notations and state preliminary results
that are required in this chapter. In Section 2.2, we give an overview of the Lavi-Swamy
mechanism. In Sections 2.3 and 2.4, we present our main results concerning a fast
convex decomposition algorithm and the construction of an approximately truthful-
in-expectation integral mechanism, respectively.

2.1. Notations, Definitions, and Preliminaries

In this section, we provide notations, definitions and some results that are required.
We follow the standard notations in [NRTV07, Chapter 9].

Assume that we have a set of players [n] = {1, 2, . . . , n} and a set of all possible
outcomes, denoted by Ω. Every player has a preference list over the outcomes, which
is modeled by a valuation function vi : Ω → R+, where vi ∈ Vi and Vi is a set of all
possible valuation functions for player i. Note that for each player i ∈ [n], the reported
valuation function vi ∈ Vi, in general, may differ from his true valuation function
v̄i ∈ Vi. For example, in combinatorial auction, we have m items to be sold to a set of
n players. We consider the case when we have one copy of each item in our set. Here,
the set of outcomes Ω is the set of all possible allocations of items to the players such
that no two players share an item. In this setting, every player i ∈ [n] gives the same
value to any two outcomes that allocate the same subset to him. Thus, one can see vi
as specifying a value for each set S of items. A valuation function must be monotone,
i.e., for S ⊆ T we have vi(S) 6 vi(T ), and it should be normalized, i.e., vi(∅) = 0. Let
v = (v1, . . . , vn) be an n-dimensional vector; v−i = (v1, . . . , vi−1, vi+1, . . . , vn) denotes
an (n− 1)-dimensional vector in which the i-th coordinate is removed. Thus, we have
three different notations: v = (v1, . . . , vn) = (vi, v−i).

A mechanism (A, p) consists of an allocation function A : V1× · · ·×Vn → Ω and a
vector of payment functions p = (p1, . . . , pn), where pi : V1×· · ·×Vn → R is the amount
that player i ∈ [n] should pay. The mechanism first gets valuation v = (v1, . . . , vn)
from the players, then computes allocation A(v) and charges player i the payment
pi(v). The payments should be carefully chosen as to motivate all players to report
their valuation truthfully. However, each player i is selfish and wants to maximize his
own utility, which is

Ui(v) = v̄i(A(v))− pi(v),

where v̄i and vi denote the true and reported valuation of player i, respectively. A
mechanism (A, p) is called truthful if, for every player i and every v = (v1, . . . , vn), we
have

v̄i(A(v̄i, v−i))− pi(v̄i, v−i) > v̄i(A(vi, v−i))− pi(vi, v−i).

Intuitively, this means that every player would have no interest in misreporting his
true valuation to the mechanism, since misreporting would not give him higher utility.
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For a given allocation ω ∈ Ω,
∑

i∈[n] vi(ω) is called the social welfare, which is an
important quantity to measure the quality of the allocation ω.

Definition 2.1.1 (FPTAS). Suppose that A is an algorithm that solves an optimiza-
tion instance within (1 ± ε) factor of the optimum solution and its running time is a
polynomial in the size of the instance and 1/ε. Then A is called a fully polynomial
time approximation scheme, abbreviated as FPTAS.

2.1.1. VCG Mechanism

In this subsection we explain the celebrated VCG mechanism which is the only known
truthful mechanism for arbitrary valuation functions that also maximizes social wel-
fare.

Definition 2.1.2 (VCG Mechanism). Mechanism (A, p) is called a VCG mechanism,
if we have,

I. A(v) ∈ argmaxω∈Ω

∑
i vi(ω); that is, A maximizes social welfare.

II. For each i ∈ [n],
pi(v) = hi(v−i)−

∑
j 6=i

vj(A(v)),

where hi : V−i → R is a function which does not depend on vi.

Now, we state the famous Vickrey-Clarke-Groves theorem and its proof.

Theorem 2.1.3 (Vickrey-Clarke-Groves [NRTV07]). Every VCG mechanism is truth-
ful.

Proof. Fix i, v−i, vi and v̄i. We need to show that for player i with true valuation v̄i,
the utility when declaring v̄i is not less than the utility when declaring vi. Denote
ω̄ = A(v̄i, v−i) and ω = A(vi, v−i). The utility of player i, when declaring v̄i is

v̄i(ω̄) +
∑
j 6=i

vj(ω̄)− hi(v−i).

But when declaring vi, the utility will be

v̄i(ω) +
∑
j 6=i

vj(ω)− hi(v−i).

Since ω̄ maximizes social welfare with valuation function (v̄i, v−i) over all the alloca-
tions, we have,

v̄i(ω̄) +
∑
j 6=i

vj(ω̄) > v̄i(ω) +
∑
j 6=i

vj(ω).

Thus the same inequality holds when subtracting the same term hi(v−i) from both
sides.
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2.1.2. Clarke Pivot Rule

In this subsection, we define Clarke pivot rule which provides a method to find a right
function hi in VCG mechanism, for each i ∈ [n], such that the mechanism makes
more sense. Therefore, in order to have a realistic mechanism we assume that the
mechanism should satisfy following criteria.

No positive transfer. This means no player is ever paid money. Formally, for every
i ∈ [n] and v = (v1, . . . , vn) we have, pi(v) > 0.

Individual rationality. This means players do not lose anything by participating
truthfully in the mechanism, i.e., when every player i reports truth valuation he does
not receive negative utility. Formally, for every v = (v1, . . . , vn) we have

v̄i(A(v̄i, v−i))− pi(v̄i, v−i) > 0.

Now, we state the Clarke pivot rule and show the rule satisfies the above criteria.

Definition 2.1.4 (Clarke pivot rule). Set

hi(v−i) = max
ω∈Ω

∑
j 6=i

vj(ω).

Under this rule, we will have,

pi(v) = max
ω∈Ω

∑
j 6=i

vj(ω)−
∑
j 6=i

vj(ω
∗),

where ω∗ = A(v1, . . . , vn), is the allocation given by the VCG mechanism (A, p).

intuitively, the rule means the player i pays an amount equal to the total damage
that he causes the other players, the difference between the social welfare of the others
with and without i’s participation.

Lemma 2.1.5. [NRTV07, Lemma 9.20] A VCG mechanism with Clarke pivot payment
rule makes no positive transfers. If vi for every i is a positive function then it is also
individually rational.

Proof. Assume that (A, p) be a VCG mechanism with the Clarke pivot rule. Define
ω′ to be the allocation maximizing

∑
j 6=i vj(ω). To show the property of having no

positive transfers, by definition we have

pi(v) =
∑
j 6=i

vj(ω
′)︸ ︷︷ ︸

=hi(v−i)

−
∑
j 6=i

vj(ω
∗) > 0,

where the inequality follows from the fact that
∑

j 6=i vj(ω
′) >

∑
j 6=i vj(ω), for every

ω ∈ Ω including ω∗. Let ω̄ = A(v̄i, v−i) be the VCG allocation, then the utility of
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telling the truth for each player i, i ∈ [n], is

v̄i(ω̄)− pi(v̄i, v−i) = v̄i(ω̄)−
{∑
j 6=i

vj(ω
′)︸ ︷︷ ︸

hi(v−i)

−
∑
j 6=i

vj(ω̄)
}

> v̄i(ω̄) +
∑
j 6=i

vj(ω̄)−
∑
j 6=i

vj(ω
′)− v̄i(ω′) > 0,

where the first inequality follows from the assumption, which is v̄i(ω′) > 0. And the
second one follows from the fact that ω̄ maximizes the social welfare with valuation
(v̄i, v−i). Therefore, the mechanism is individually rational.

In this chapter we simply call the VCG mechanism with Clarke pivot payment rule
the VCG mechanism.

2.1.3. Randomized Mechanism Design

In this subsection we provide some definitions relating to randomized mechanisms. A
randomized mechanism flips coins to determine A(v) and pi(v), in which case A(v)
and pi(v) are random variables and a player’s utility is also a random variable. We
say a randomized mechanism is individually rational with probability 1− ε, for some
ε ∈ (0, 1), if the utility of any truth-telling player is non-negative with probability at
least 1− ε.

Definition 2.1.6 (Υ-social efficiency). A randomized mechanism is called Υ-social
efficiency if the expected social welfare is at least Υ times the maximum possible social
welfare.

Definition 2.1.7 (Truthful in Expectation). A randomized mechanism is truthful-
in-expectation if the expected utility of every player i, i ∈ [n], is maximized when he
declares his true valuation v̄i regardless of what others declare. That is, for any player
i, any valuation v−i ∈ V−i and any true valuation v̄i ∈ Vi

E[v̄i(A(v̄i, v−i))− pi(v̄i, v−i)] > E[v̄i(A(vi, v−i))− pi(vi, v−i)].

Also we define the notion of (1 − δ)-truthful-in-expectation, for every δ ∈ [0, 1), that
is,

E[v̄i(A(v̄i, v−i))− pi(v̄i, v−i)] > (1− δ)E[v̄i(A(vi, v−i))− pi(vi, v−i)].

2.2. The Lavi-Swamy Mechanism

In this section we present an overview of the Lavi-Swamy mechanism. The VCG mech-
anism is the only known truthful mechanism for general valuation functions that also
maximizes social welfare. However, this mechanism requires solving an optimization
problem (i.e., maxω∈Ω

∑
i vi(ω), where ω is a feasible allocation) that is NP-hard and

hence computationally intractable for general valuation functions. In general, this
underlying optimization problem (social welfare) can only be solved approximately.
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Lavi and Swamy ([LS05, LS11]) showed that how an approximation algorithm can
be turned into an approximation mechanism which is truthful-in-expectation. Their
method applies to integer programming problems of the packing type for which the
LP-relaxation can be solved exactly and an α-integrality gap verifier is available (for
a formal definition see below). Let Q ⊆ Rd>0, be a packing polytope, i.e., Q is the
intersection of finitely many half-spaces, and if y ∈ Q and x 6 y then x ∈ Q. Let us
formulate social welfare maximization (SWM) in a combinatorial auction as a packing
integer program. Suppose that xi,S ∈ {0, 1} is a variable taking one if subset S is
given to player i and zero otherwise. Then finding ω∗ ∈ argmaxω∈Ω

∑
i vi(ω) reduces

to solving the following integer programming:

max
∑
i,S

vi(S)xi,S (2.1)

∑
S

xi,S 6 1 for all i ∈ [n]∑
i,S;j∈S

xi,S 6 1 for all item j ∈ [m]

xi,S ∈ {0, 1}

Note that the first n constraints guarantee that each player receives at most one
subset of items and the next m constraints say that no two players share an item. The
polytope Q is obtained by replacing the integrality constraints for xi,S by 0 6 xi,S 6 1.
Note that the number of variables is d = n2m. We use QI := Q ∩ Zd for the set of
integral points in Q. In this example, Ω, the set of all possible outcomes of the
mechanism, is QI . For simplicity, we denote the relaxed version of (2.1) as follows:

max
x∈Q

V T · x,

where V ∈ Rd and V T · x =
∑

i,S vi(S)xi,S . We extend the definition of the valuation
function to fractional allocations and define vi(x) =

∑
S vi(S) · xi,S , for every x ∈ Rd.

Let us fix an arbitrary i ∈ [n] and set xi,S = 0 for all set S in the above LP. Then we
will get another packing polytope with a different objective function, which is denoted
by

max
x∈Q−i

V T
−i · x.

Definition 2.2.1 (α-integrality gap verifier). A polynomial time algorithm F is an
α-integrality gap verifier if for input V ∈ Rd and x∗ ∈ Q, F finds an integer solution
x ∈ QI such that

V T · x > αV T · x∗.

Throughout this section we assume that an α-integrality gap verifier for integer
program (2.1), exists. Lavy and Swamy ([LS05, LS11]) used the α-integrality gap
verifier to present an α-approximation randomized mechanism, their method is based
on the VCG mechanism and has three main steps:
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Step 1: Solving Packing LPs. In this step, the mechanism solves n+ 1 LPs; first it
solves the LP-relaxation of (2.1), i.e., finds a maximizer x∗ = argmaxx∈Q V

T ·x, which
gives a fractional VCG allocation. Then for determining VCG prices, it computes
x̂i ∈ argmaxQ−i V

T
−i · x, for every i ∈ [n]. Finally using the Clarke pivot rule, for each

player i ∈ [n] the VCG price pi is defined as follows:

pi =
∑
j 6=i

vj(x̂i)−
∑
j 6=i

vj(x
∗).

The allocation x∗ and the VCG prices are a truthful mechanism for the fractional
problem.

Step 2: Convex Decomposition. In this step, we explain how a given fractional
solution x∗ is represented as a convex combination of integral points contained in QI .
Let N be an index set of points in QI = {xl : l ∈ N}. Finding convex combination
can be formulated as the following LP :

min
∑
l∈N

λl (2.2)∑
l∈N

λlx
l
j = αx∗j for all j (2.3)∑

l∈N
λl > 1

λl > 0 l ∈ N

Since x∗ is an optimal fractional solution of relaxed integer programing (2.1), it is a
basic feasible solution and has n+m non-zero entries. Let us define a non-empty set

E := {j : x∗j > 0}.

Packing property allows us to restrict our attention to the constraints corresponding
to the elements of E, i.e., consider equality constraints (2.3) for all j ∈ E. Clearly,
the problem does not change, because we may replace any xl with xlj > 0 for some
j /∈ E by an xl′ for which this component is zero. LP (2.2) has exponential number of
variables, so we may consider its dual that has variables z and wj for j ∈ E.

max z + α
∑
j∈E

x∗jwj (2.4)

z +
∑
j∈E

xljwj 6 1 for all l ∈ N (2.5)

z > 0

We first argue that the optimal value of the dual is one, and hence by strong duality
the objective function in primal (2.2) also attains the same value. So an optimal
solution to (2.2) yields the convex decomposition coefficients. By setting z = 1 and
wj = 0 for every j ∈ E, we have a feasible solution for dual program for which the
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objective value is one. We claim that any feasible solution (z, w) has value at most
one. Assume that there is pair (z, w) for which

z + α ·
∑
j∈E

x∗jwj > 1.

Let us define vector W ∈ Rd, in which Wj = wj , for j ∈ E and Wj = 0, for j /∈ E.
Run the α-integrality gap verifier with vector W ; it produces an integral solution x
such that

W T · x =
∑
j∈E

xjwj > α ·W T · x∗ = α
∑
j∈E

x∗jwj > 1− z.

The above inequality shows that pair (z, w) violates the constraint (2.5) which con-
tradicts (z, w) is a feasible solution.

We may therefore add the constraint z+α
∑

j∈E x
∗
jwj 6 1 to the dual with affecting

the optimal solution. Lavi and Swamy [LS05, LS11] applied the Ellipsoid method to
solve the dual with above extra constraint. Now, we see how they use the α-integrality
gap verifier in the Ellipsoid method and this extra constraint. Let (z, w) be the current
center of the Ellipsoid. They consider two cases:

Case 1.
z + α

∑
j∈E

x∗jwj > 1.

Then, by calling the α-integrality gap verifier, (similar to the proof of the upper
bound for the objective function in the dual), we get an integral solution x so
that ∑

j∈E
xjwj > α

∑
j∈E

x∗jwj > 1− z,

and hence z+
∑

j∈E xjwj 6 1 is a violated inequality in the dual which is required
for the Ellipsoid method.

Case 2.
z + α

∑
j∈E

x∗jwj 6 1

Then, they use this constraint to half the current ellipsoid.

The Ellipsoid method makes polynomially many cuts. The cuts appeared in first case
provide polynomially many integral pints contained in QI . Solving the primal with
the variables for these integral points gives the desired convex combination.

Step 3: Mechanism. Using the VCG fractional allocation x∗ and prices pi obtained
in step 1 together with all λl computed in the previous steps, we state the Lavi-Swamy
randomized mechanism as follows:

For every l ∈ N , with probability λl do:
• pick xl

• charge player i the price pivi(xl)/vi(x∗) if vi(x∗) > 0 and zero otherwise.
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The Lavi-Swamy mechanism approximates social welfare within factor α and guar-
antees truthfulness-in-expectation, i.e., it converts a truthful fractional mechanism into
an α-approximately truthful-in-expectation integral mechanism. Here, for the sake of
completeness we sketch the proof.

Observation 2.2.2. The Lavi-Swamy Mechanism is truthful-in-expectation.

Proof. Let us fix some i ∈ [n]. By using the linearity of valuation function v̄i(x) and
the fact that αx∗ =

∑
l∈N λlx

l, we have

E[ui(v̄i, v−i)] =
∑
l∈N

λl

(
v̄i(x

l)− pi
v̄i(x

l)

v̄i(x∗)

)

= v̄i

(∑
l∈N

λlx
l

)
− piv̄i

(∑
l∈N

λlx
l

)
/v̄i(x

∗)

= v̄i(αx
∗)− piv̄i(αx∗)/v̄i(x∗)

= α(v̄i(x
∗)− pi).

and hence truthfulness-in-expectation follows from the truthfulness of the VCG mech-
anism for the fractional problem.

2.3. The Fast Algorithm for Convex Decompositions

In this section we present an algorithm to obtain an exact convex decomposition
αx∗ =

∑
i∈N λlx

l for the case of packing linear programmings. The Lavi-Swamy mech-
anism uses the Ellipsoid method to get these coefficients. We show an approximate
version that replaces the use of the Ellipsoid method by the multiplicative weights
update method (MWUM). In the following theorem, we state the main result of this
section.

Theorem 2.3.1. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q, and an
α-integrality gap verifier for QI , we can find a convex decomposition

α

1 + 4ε
· x∗ =

∑
l∈N

λlx
l.

The size of convex decomposition, i.e., number of nonzero λl, is at most s(1 + dε−2 log se),
where s is the size of the support of x∗, i.e., number of nonzero components. The al-
gorithm makes at most sdε−2 log se calls to the integrality-gap-verifier.

This section is structured as follows. We first review Khandekar’s FPTAS for cov-
ering linear programming (Subsection 2.3.1). Using the FPTAS and the α-integrality
gap verifier we construct a dominating convex combination for αx∗/(1 + 4ε), where
x∗ ∈ Q is arbitrary (Subsection 2.3.2). In Subsection 2.3.3, we show how to convert
a dominating convex combination into an exact convex decomposition. Finally, in
Subsection 2.3.4, we put the pieces together and prove the above theorem.
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2.3.1. An FPTAS for Covering Linear Programs

In this subsection, we present an FPTAS for covering LP’s and then show its correct-
ness and runtime. In general, a covering LP is formulated as follows:

min cTx (2.6)
s.t. Ax > b

x > 0

where A ∈ Rm×n>0 is an m× n matrix with non-negative entries, c ∈ Rn>0 and b ∈ Rm>0

are non-negative vectors. Note that a constraint with bi = 0 may be dropped since any
solution satisfying the remaining constraints will also satisfy it. Column j with cj = 0,
allows one to drop all rows i with aij > 0, because these constraints can be satisfied
by making xj sufficiently large. After deleting these rows, the j-th column contains no
non-zero entry and hence it and variable xj may be deleted. We may therefore assume
that c ∈ Rn>0 and b ∈ Rm>0 are positive vectors. We may also assume that each column
of A contains at least one positive entry as otherwise the corresponding variable can
be dropped and that each row of A contains at least one positive entry as otherwise
the problem is infeasible. The linear program does not have to be given explicitly.
Rather, we assume the availability of a κ-approximation oracle for some κ ∈ (0, 1],
denoted by Oκ(·) and defined as follows,

Oκ(z): Given z ∈ Rm>0, the oracle finds a column j of A that maximizes 1
cj

∑m
i=1

ziaij
bi

within a factor of κ:

1

cj

m∑
i=1

ziaij
bi

> κ · max
j′∈[n]

1

cj′

m∑
i=1

ziaij′

bi
(2.7)

For a given exact oracle (i.e., κ = 1), Khandekar [Kha04] gave an algorithm which
computes a feasible solution x̂ to the covering LP (2.6) such that cT x̂ 6 (1 + 4ε)z∗

where z∗ is the value of an optimal solution. The algorithm makes O(mε−2 logm)
calls to the oracle, where m is the number of rows in A.

We extend Khandekar’s algorithm and show that if the exact oracle is replaced
by a κ-approximation oracle, it computes a feasible solution x̂ ∈ Rn>0 to (2.6) such
that cT x̂ 6 (1 + 4ε)z∗/κ. The algorithm is given as Algorithm 1 and can be thought
of as the algorithmic dual of the FPTAS for multicommodity flows given in [GK98].
For completeness, we include a proof of correctness and an upper bound for the

number of iterations; our argument is slightly shorter than the Khandekar’s proof
since Khandekar actually solved a more general problem. In what follows we present
the algorithm.

Theorem 2.3.2. Let ε ∈ (0, 1
2 ] and let z∗ be the value of an optimum solution to (2.6).

Algorithm 1 terminates in at most mdε−2 logme iterations with a feasible solution x̂
of (2.6) of at most mdε−2 logme positive components. At termination, it holds that

cT x̂ 6
(1 + 4ε)

κ
z∗. (2.8)
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Algorithm 1. Covering(Oκ)

Require: a covering system (A, b, c) given by a κ−approximation oracle Oκ, where
A ∈ Rm×n>0 , b ∈ Rm>0, c ∈ Rn>0, and an accuracy parameter ε ∈ (0, 1/2]

Ensure: A feasible solution x̂ ∈ Rn>0 to (2.6) s.t. cT x̂ 6 (1+4ε)
κ z∗

1: x(0) := 0; t := 0; and T := logm
ε2

2: while M(t) < T do
3: t := t+ 1
4: Let j(t) := Oκ(p(t)/‖p(t)‖1)
5: xj(t)(t) := xj(t)(t− 1) + δ(t) and xj(t) = xj(t− 1) for j 6= j(t)
6: end while
7: return x̂ = x(t)

M(t)

Proof. We use Ai to denote the i-th row of A. The algorithm constructs vectors x(t) ∈
Rn>0, for t = 0, 1, . . . , until M(t) := mini∈[m]Aix(t)/bi becomes at least T := logm

ε2
.

Define the active list at time t by L(t) := {i ∈ [m] : Aix(t− 1)/bi < T}. For i ∈ L(t),
define

pi(t) := (1− ε)Aix(t−1)/bi , (2.9)

and set pi(t) = 0 for i 6∈ L(t), i ∈ [m]. At each time t, the algorithm calls the oracle
with the vector1 zt = p(t)/‖p(t)‖1, and increases the variable xj(t) by

δ(t) := min
i∈L(t) and ai,j(t) 6=0

bi
ai,j(t)

, (2.10)

where j(t) is the index returned by the oracle. Note that the RHS of (2.7) is pos-
itive for our choice of zt since every row of A contains a non-zero entry and hence∑

i∈L(t) pi(t)aij(t)/(bicj(t)) > 0. This conclude that there exist at least one i ∈ L(t)
which ai,j(t) is non zero and thus δ(t) > 0 always. In each iteration, some entry of x
is increased and hence the values Aix(t)/bi are non-decreasing. Thus L(t+ 1) ⊆ L(t)
for all t. At the end, we scale x(t) by M(t) to guarantee feasibility.

Let 1j denote the j-th unit vector of dimension n and B ∈ Rm×m be a diagonal
matrix with entries bii = bi. Feasibility is obvious since we scale by M(t). The
bound on the number of iterations is also obvious since in each iteration at least
one of the Aix/bi increases by one and we remove i from the active list once Aix/bi
reaches T . We conclude that the number of iterations is bounded by mdT e. Let
t0 be the number of iterations, i.e., vectors x(0), x(1), . . . , x(t0) are defined and
M(t0 − 1) < T 6 M(t0). In the t-th iteration exactly one entry of x is increased by
δ(t) and hence 1Tx(t0) =

∑
16t6t0 δ(t) and Aix(t)/bi 6 Aix(t− 1)/bi + 1 for i ∈ L(t).

1We could do without the normalization of p(t) by ‖p(t)‖1. However, for Corollary 3.4.2 the
normalization is convenient.
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To show (2.8), we analyze the decrease of ‖p(t)‖1. Let t 6 t0. Then∑
i∈L(t)

(1− ε)Aix(t)/bi =
∑
i∈L(t)

(1− ε)Aix(t−1)/bi+δ(t)Ai1j(t)/bi

=
∑
i∈L(t)

pi(t)(1− ε)δ(t)Ai1j(t)/bi

6
∑
i∈L(t)

pi(t)(1− εδ(t)Ai1j(t)/bi)

(using (2.10) conclude that δ(t)Ai1j(t)/bi 6 1 and

(1− ε)x 6 1− εx for all ε ∈ [0, 1), x ∈ [0, 1])

= ‖p(t)‖1

(
1−

εδ(t)p(t)TB−1A1j(t)

‖p(t)‖1

)

6 ‖p(t)‖1e
−εδ(t) p(t)T

‖p(t)‖1
B−1A1j(t) since 1− x 6 e−x. (2.11)

By using L(t+ 1) ⊆ L(t), we have

‖p(t+ 1)‖1 =
∑

i∈L(t+1)

(1− ε)Aix(t)/bi

6
∑
i∈L(t)

(1− ε)Aix(t)/bi (2.12)

and hence, applying inequalities (2.11) and (2.12) we get

‖p(t+ 1)‖1 6
∑
i∈L(t)

(1− ε)Aix(t)/bi 6 ‖p(t)‖1e
−εδ(t) p(t)T

‖p(t)‖1
B−1A1j(t) . (2.13)

Let i0 ∈ L(t0) be arbitrary. Then

(1− ε)Ai0x(t0)/bi0 6
∑

i∈L(t0)

(1− ε)Aix(t0)/bi0

6 ‖p(t0)‖1e
−εδ(t0)

p(t0)T

‖p(t0)‖1
B−1A1j(t0)

6 ‖p(0)‖1e
−ε

∑
16t6t0

δ(t)
p(t)T

‖p(t)‖1
B−1A1j(t) ,

where the second inequality uses (2.11) for t = t0 and the third inequality uses (2.13)
for 0 6 t < t0. Taking logs and using ‖p(0)‖1 = m, we conclude that

Ai0x(t0)/bi0 · log(1− ε) 6 logm− ε
∑

16t6t0

δ(t)
p(t)T

‖p(t)‖1
B−1A1j(t) (2.14)

We next relate the objective value cTx(t0) =
∑

16t6t0 cj(t)δ(t) at time t0 to the optimal
value z∗ by the following claim.

Claim 1.
∑

16t6t0 δ(t)
p(t)T

‖p(t)‖1B
−1A1j(t) >

κ·cT x(t0)
z∗ .
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Proof. Let x∗ ∈ Rn>0 be an optimal solution to (2.6). Since x∗ is feasible, B−1Ax∗ > 1,
and thus for any t,

p(t)TB−1Ax∗ > p(t)T1 = ‖p(t)‖1.

By the choice of the index j(t), we have that 1
cj(t)

p(t)TB−1A1j(t) >
1
cj
κp(t)TB−1A1j

for all j ∈ [n]. Since z∗ = cTx∗, we conclude further

z∗p(t)TB−1A1j(t) =
∑
j∈[n]

cjx
∗
jp(t)

TB−1A1j(t)

=
∑
j∈[n]

cj ·
cj(t)

cj(t)
x∗jp(t)

TB−1A1j(t)

>
∑
j∈[n]

cj ·
cj(t)

cj
x∗jκp(t)

TB−1A1j

= κcj(t)p(t)
TB−1Ax∗

> κcj(t)‖p(t)‖1.

Multiplying both sides of this inequality by δ(t)/‖p(t)‖1 and summing up over 1 6
t 6 t0 finishes the proof of the claim.

Using the claim above, we deduce from (2.14)

Ai0x(t0)/bi0 · log(1− ε) 6 logm− ε · κ · c
Tx(t0)

z∗

Dividing both sides by M(t0), arranging, and using M(t0) > T = (logm)/ε2 and

Ai0x(t0)/bi0 6 Ai0x(t0 − 1)/bi0 + 1 6 T + 1, and
log 1

1−ε
ε 6 1 + 2ε, valid for all

ε ∈ (0, 1
2 ], we obtain

κ · cT x̂
z∗

=
κ · cTx(t0)

M(t0)z∗
6

log 1
1−ε
ε

· Ai0x(t0)/bi0
M(t0)

+
logm

ε ·M(t0)

6 (1 + 2ε)
T + 1

T
+ ε 6 1 + 4ε.

We observe that the proof of Theorem 2.3.2 can be modified to give:

Corollary 1. Suppose b = 1, c = 1, and we use the following oracle O′ instead of O
in Algorithm 1:

O′(A, z): Given z ∈ Rm>0, such that 1T z = 1, the oracle finds a column j of A such
that zTA1j > 1.

Then the algorithm terminates in at most mdε−2 logme iterations with a feasible so-
lution x̂ having at most mdε−2 logme positive components, such that 1T x̂ 6 1 + 4ε.
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Proof. Recall (2.14):

Ai0x(t0)/bi0 · log(1− ε) 6 logm− ε
∑

16t6t0

δ(t)
p(t)T

‖p(t)‖1
B−1A1j(t).

With assumption b = 1, we have,

Ai0x(t0) · log(1− ε) 6 logm− ε
∑

16t6t0

δ(t)
p(t)T

‖p(t)‖1
A1j(t).

The vector zt = p(t)/‖p(t)‖1 satisfies 1T zt = 1. Apply oracle O′ with input vector
zt, it returns index j(t) such that we have p(t)T

‖p(t)‖1A1j(t) > 1. Thus, we have

Ai0x(t0) · log(1− ε) 6 logm− ε · 1Tx(t0).

Proceeding as in the proof of Theorem 2.3.2, we get the result.

2.3.2. Finding a Dominating Convex Combination

Recall that we use N to index the elements in QI . We assume the availability of an
α-integrality gap verifier F for QI . We will use the results of the preceding section
and show how to obtain for any x∗ ∈ Q and any positive ε a convex composition of
points in QI that covers αx∗/(1 + 4ε). Our algorithm requires O(sε−2 log s) calls to
the oracle, where s is the support of x∗.

Theorem 2.3.3. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q and an
α-integrality gap verifier F for QI , we can find a convex combination x̄ of integral
points in QI such that

α

1 + 4ε
· x∗ 6 x̄ =

∑
l∈N

λlx
l.

The convex decomposition has size (= number of non-zero λl) at most sdε−2 log se,
where s is the number of positive entries of x∗. The algorithm makes at most sdε−2 log se
calls to the integrality-gap-verifier.

Proof. The task of finding the multipliers λl is naturally formulated as a covering LP,
namely,

min
∑
l∈N

λl (2.15)

s.t.
∑
l∈N

λlx
l
j > α · x∗j for all j,∑

l∈N
λl > 1,

λl > 0.

Clearly, we can restrict our attention to the j ∈ S+ := {j : x∗j > 0} and rewrite the
constraint for j ∈ S+ as

∑
l∈N λlx

l
j/(α ·x∗j ) > 1. For simplicity of notation, we assume
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S+ = [1..s]. In the language of the preceding section, we have m = s + 1, n = |N |,
c = 1, b = 1 and the variable x = λ. The matrix A = (aj,i) is as follows (note that we
use j for the row index and i for the column index):

aj,i :=

{
xlj/(αx

∗
j ) 1 6 j 6 s, l ∈ N

1 j = s+ 1, l ∈ N

Thus we can apply Corollary 3.4.2 of Section 2.3.1, provided we can efficiently imple-
ment the required oracle O′. We do so using F .

Oracle O′ has arguments (A, z̃) such that 1T z̃ = 1. Let us conveniently write
z̃ = (w, z), where w ∈ Rs>0, z ∈ R>0, and

∑j=s
j=1wj + z = 1. Oracle O′ needs to find a

column l such that z̃TA1l > 1. In our case z̃TA1l =
∑s

j=1wjx
l
j/αx

∗
j + z, and we need

to find a column l for which this expression is at least one. Since z does not depend
on i, we concentrate on the first term. Define

Vj :=

{
wj
αx∗j

for j ∈ S+

0 otherwise.

Call algorithm F with x∗ ∈ Q and V := (V1, . . . , Vd). F returns an integer solution
xl ∈ QI such that

V Txl =
∑
j∈S+

wj
αx∗j

xlj > α · V Tx∗ =
∑
j∈S+

wj ,

and hence, ∑
j∈S+

wj
αx∗j

xlj + z >
∑
j∈S+

wj + z = 1.

Thus i is the desired column of A.
It follows by Corollary 3.4.2 that Algorithm 1 finds a feasible solution λ′ ∈ R|N |>0

to the covering LP (2.15), and a set Q′I ⊆ QI of vectors (returned by F), such
that λ′i > 0 only for l ∈ N ′, where N ′ is the index set returned by oracle O′ and
|N ′| 6 sdε−2 log se also Λ :=

∑
l∈N ′ λ

′
i 6 (1 + 4ε). Scaling λ′i by Λ, we obtain a set of

multipliers {λl = λ′l/Λ : l ∈ N ′}, such that
∑

l∈N ′ λl = 1 and∑
l∈N ′

λlx
l >

α

1 + 4ε
x∗. (2.16)

We may assume xlj = 0 for all j /∈ S+ whenever λl > 0; otherwise simply replace xl by
a vector in which all components not in S+ are set to zero; by using packing property
this is possible.

2.3.3. From Dominating Convex Combination to Exact Convex Decom-
position

In this subsection, we will show how to turn a dominating convex combination into an
exact decomposition. The construction is general and uses only the packing property.
Such a construction seems to have been observed in [LS05], but was not made ex-
plicit. Kraft, Fadaei, and Bichler [KFB14] describe an alternative construction. Their
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Algorithm 2. Changing a dominating convex decomposition into an exact decomposition
Require: A packing convex set Q and point x∗ ∈ Q and a convex combination∑

i∈N λlx
l of integral points in QI dominating x∗.

Ensure: A convex decomposition x∗ =
∑

i∈N ′ λlx
l with xl ∈ QI .

1: while there is an i ∈ N and a j such that λlxlj > 0 and
∑

h∈N λhx
h − λl1j > x∗

do
2: replace xl by xl − 1j .
3: end while
4: while ∆j :=

∑
i∈N λlx

l − x∗j > 0 for some j do
5: {for all i ∈ N and all j: if λlxlj > 0 then

∑
h∈N λhx

h − λl1j < x∗}
6: Let j be such that ∆j > 0 and let i be such that λlxlj > 0. Let B = {j ∈

S+ : xlj 6= 0 and ∆j > 0} and let b = |B|. Renumber the coordinates such that
B = {1, . . . , b} and ∆1/x

l
1 6 . . . 6 ∆b/x

l
b.

7: For k ∈ {0, . . . , b} define a vector yk by ykj = xlj for j 6 k and ykj = 0 for j > k.

8: Change the left-hand side of (2.17) as follows: replace λl by λl − ∆b/x
l
b; for

1 6 k < b, increase the coefficient of yk by ∆k+1/x
l
k+1 − ∆k/x

l
k; and increase

the coefficient of y0 by ∆1/x
l
1.

9: end while

construction may increase the size of the convex decomposition (= number of non-
zero λl) by a multiplicative factor |S+| and an additive factor |S+|2. In contrast, our
construction increases the size only by an additive factor |S+|.

Theorem 2.3.4. Let x∗ ∈ Q be dominated by a convex combination
∑

i∈N λlx
l of

integral points in QI , i.e., ∑
i∈N

λlx
l > x∗. (2.17)

Then Algorithm 2 achieves equality in (2.17). It increases the size of the convex com-
bination by at most s, where s is the number of positive components of x∗.

Proof. Let 1j be the j-th unit vector. As long as there is an i ∈ N and a j such
that λlxlj > 0 and replacing xl by xl−1j maintains feasibility, i.e., satisfies constraint
(2.17), we perform this replacement. Note that xl is an integer vector in QI , therefore
xl − 1j remains positive vector and with using packing property, it is also in QI .
We may therefore assume that the set of vectors indexed by N satisfy a minimality
condition which is for all l ∈ N and j ∈ S+ with λlxlj > 0∑

h∈N
λhx

h
j − λl1j < x∗j (2.18)

We will establish (2.18) as an invariant of the second while-loop.
For j ∈ S+, let ∆j =

∑
l∈N λlx

l
j − x∗j . Then ∆j > 0 and, by (2.18), for every j ∈ S+

and l ∈ N , with λl 6= 0 either xlj = 0 or ∆j < λl 6 λlx
l
j . If ∆j = 0 for all j ∈ S+,

we are done. Otherwise, choose j and l ∈ N such that ∆j > 0 and xlj > 0. Let
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B = {j ∈ S+ : xlj 6= 0 and ∆j > 0} be the indices in the support of xl for which ∆j

is non-zero. We will change the left-hand side of (2.17) such that equality holds for
all indices in B. The change will not destroy an already existing equality for an index
outside B and hence the number of indices for which equality holds increases by |B|.

Let b = |B|. By renumbering the coordinates, we may assume B = {1, . . . , b} and
∆1/x

l
1 6 . . . 6 ∆b/x

l
b. For j ∈ [b], we clearly have

λl −
∆j

xlj
= λl −

∆b

xlb
+

∆b

xlb
− ∆b−1

xlb−1

+ . . .+
∆j+1

xlj+1

− ∆j

xlj
.

Multiplying by xlj and adding zero a few times, we obtain

λlx
l
j −∆j =

(
λl −

∆b

xlb

)
xlj +

b−1∑
k=j

(
∆k+1

xlk+1

− ∆k

xlk

)
xlj

+

j−1∑
k=1

(
∆k+1

xlk+1

− ∆k

xlk

)
0 +

∆1

xl1
0.

For k ∈ {0, . . . , b − 1} define a vector yk by ykj = xlj for j 6 k and ykj = 0 for j > k.
Then xlj = ykj for k > j and 0 = ykj for k < j. Hence for all j 6 b

λlx
l
j −∆j =

(
λl −

∆b

xlb

)
xlj

+
b−1∑
k=1

(
∆k+1

xlk+1

− ∆k

xlk

)
ykj +

∆1

xl1
y0
j . (2.19)

Note that the coefficients on the right-hand side of (2.19) are non-negative and sum
up to λl. Also, by the packing property of Q, yk ∈ QI for 0 6 k < b. We now change
the left-hand side of (2.17) as follows: we replace λl by λl −∆b/x

l
b; for 1 6 k < b, we

increase the coefficient of yk by ∆k+1/x
l
k+1 −∆k/x

l
k; and we increase the coefficient

of y0 by ∆1/x
l
1. As a result, we now have equality for all indices in B. The ∆j for

j 6∈ B are not affected by this change.
We still need to establish that (2.18) holds for the vectors yk, 0 6 k < b, that have

a non-zero coefficient in the convex combination. Note first that ykj > 0 implies j ∈ B.
Also (2.17) holds with equality for all j ∈ B. Thus (2.18) holds.

Consider any iteration of the second while-loop. It adds up to b vectors to the
convex decomposition and decreases the number of nonzero ∆’s by b. Thus the total
number of vectors added to the convex decomposition is at most |S+|.

2.3.4. Fast Convex Decomposition

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Theorem 2.3.3 yields a convex combination of integer points
of QI dominating αx∗/(1 + 4ε). Theorem 2.3.4 turns this dominating convex combi-
nation into an exact combination. It adds up to |S| additional vectors to the convex
combination. The complexity bounds follow directly from the referenced theorems.
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Algorithm 3. Packing(Oκ)

Require: a packing system (A, b, V ) given by a κ-approximation-oracle Oκ, where
A ∈ Rm×n>0 , b ∈ Rm>0, V ∈ Rn>0, b > 0, and an accuracy parameter ε ∈ (0, 1)

Ensure: A feasible solution x̂ ∈ Rn>0 to (2.24) s.t. V T x̂ > 1−4ε
κ z∗

1: x(0) := 0; t := 0; and T := logm
ε2

2: while M(t) < T do
3: t := t+ 1
4: Let j(t) := Oκ(p(t))
5: xj(t)(t) := xj(t)(t− 1) + δ(t)
6: end while
7: return x̂ = x(t)

M(t)

2.4. Approximately Truthful-in-Expectation Mechanisms

In this section we assume that we do not want to solve the LP-relaxation of SWM
exactly and there is an FPTAS for it. Then we show how to construct a randomized
mechanism that satisfies the following assumptions for some ε > 0 and ε0 > 0,

No positive transfer. (2.20)
Individually rational with probability 1− ε0. (2.21)
(1− ε0)-truthful-in-expectation. (2.22)
Υ-social efficiency, where Υ depends on ε0 and ε. (2.23)

Our mechanism is based on constructing a randomized fractional mechanism and then
converting the mechanism into an integral mechanism that satisfies in the above con-
ditions. We state the main result of this section as the following theorem:

Theorem 2.4.1. Let ε0 ∈ (0, 1/2], ε = Θ(
ε50
n4 ) and Υ = α(1− ε)(1− ε0)/(1 + 4ε).

Then we obtain a randomized integral mechanism satisfying Conditions (2.20) to (2.23).

This section is structured as follows. In Subsection 2.4.1, we generalize the FPTAS
given by Garg and Könemann to solve LP-relaxation of SWM. Then in Subsection
2.4.2, we apply the FPTAS and design a randomized fractional mechanism and finally
in Subsection 2.4.3 we convert the fractional mechanism into a randomized integral
mechanism and prove the main result of this section.

2.4.1. An FPTAS for Packing Linear Programs

In this subsection we present FPTAS A for a packing linear program (Algorithm 3)
including LP-relaxation of SWM and show an upper bound for its runtime. Consider
a packing linear program:

max cTx (2.24)
s.t. Ax 6 b

x > 0
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where A ∈ Rm×n>0 is an m× n matrix with non-negative entries and c ∈ Rn>0, b ∈ Rm>0

are positive vectors. We may assume that each column of A contains a non-zero entry
as otherwise the problem is trivially unbounded. For every κ > 1 and z ∈ Rm>0, let
Oκ(z) denote an κ-approximation oracle that returns a j such that

1

cj

m∑
i=1

ziaij
bi

6 κ · min
j′∈[n]

1

cj′

m∑
i=1

ziaij′

bi
. (2.25)

It is easy to see that when κ = 1, the oracle returns a j minimizing 1
cj′

∑m
i=1 ziaij′/bi.

Garg and Könemann assume the availability ofO1(z), z ∈ Rm>0, and present an FPTAS.
Here, we assume the availability of oracle Oκ, for some κ > 1, and observe that their
algorithm and proof also works with κ-approximation-oracles with κ > 1.

Theorem 2.4.2 (Extension of [GK98] for κ > 1). Let T = ε−2 logm and let z∗ be value
of the optimal solution to (2.24). Procedure Packing(Oκ) in Algorithm 3 terminates
in at most mT iterations with a feasible solution x̂ of at most mT positive components
such that

cT x̂ >
(1− 3ε)

κ
z∗. (2.26)

It makes at most mT calls to the κ-approximation oracle Oκ.

Proof. Consider Algorithm 3. It constructs a sequence x(1), x(2), . . . , x(t0). Let
M(t) = maxi∈[m]Aix(t)/bi, where Ai is the i-th row of A. For i ∈ [m] let

pi(t) := (1 + ε)Aix(t−1)/bi . (2.27)

At each time t, the algorithm calls the oracle with the vector zt = p(t), and increases
the variable xj(t) by δ(t) := mini∈[m],ai,j(t) 6=0{ bi

ai,j(t)
}, where j(t) is the index returned

by the oracle. Note that there is always an i such that ai,j(t) > 0 by our assumption
on A. At the end, we scale x(t) by M(t) to guarantee feasibility. As in the proof of
Theorem 2.3.2, we can show that for all i ∈ [m]

Aix(t0)/bi · log(1 + ε) 6 logm+ ε

t0∑
t=1

δ(t)
p(t)T

‖p(t)‖1
B−1A1j(t). (2.28)

We will relate the objective value cTx(t0) =
∑t0

t=1 cj(t)δ(t) at time t to the optimal
value z∗ by the following claim.

Claim 2.
∑t0

t=1 δ(t)
p(t)T

‖p(t)‖1B
−1A1j(t) 6

κ·cT x(t0)
z∗ .

Proof. Let x∗ ∈ Rn>0 be an optimal solution to (2.24). Then by feasibility of x∗,
B−1Ax∗ 6 1, thus we have for any t,

p(t)T

‖p(t)‖1
B−1Ax∗ 6 1.
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By the choice of the index j(t), we have that 1
cj(t)

p(t)T

‖p(t)‖1B
−1A1j(t) 6

1
cj
κ p(t)T

‖p(t)‖1B
−1A1j

for all j ∈ [n]. Thus

z∗
p(t)T

‖p(t)‖1
B−1A1j(t) =

∑
j∈[n]

cjx
∗
j

p(t)T

‖p(t)‖1
B−1A1j(t)

=
∑
j∈[n]

cj
cj(t)

cj(t)
x∗jκ

p(t)T

‖p(t)‖1
B−1A1j

6
∑
j∈[n]

cj
cj(t)

cj
x∗jκ

p(t)T

‖p(t)‖1
B−1A1j

= κcj(t)
p(t)T

‖p(t)‖1
B−1Ax∗ 6 κcj(t).

Multiplying both sides of this inequality by δ(t) and summing up over 1 6 t 6 t0
finishes the proof.

Using the above claim, we can deduce from (3.3) that

Aix(t0)/bi · log(1 + ε) 6 logm+ ε · κ · c
Tx(t0)

z∗
for all i ∈ [m].

Dividing both sides by M(t0), arranging, and noting that at termination M(t0) > T ,
we get that for all i ∈ [m]

κ · cTx(t0))

M(t0)z∗
>

log(1 + ε)

ε
· Aix(t0)

biM(t0)
− logm

ε ·M(t0)

>
log(1 + ε)

ε
· Aix(t0)

biM(t0)
− logm

εT
.

In particular for the index i0 ∈ [m] such that M(t0) = Ai0x(t0)/bi0 , we have at
termination

κ · cT x̂
z∗

=
κ · cTx(t0)

M(t0)z∗
>

log(1 + ε)

ε
− logm

εT
.

Using T = logm
ε2

, we finally get

κ · cT x̂
z∗

>
log(1 + ε)

ε
− ε>1− 3ε,

where the last inequality follows from the fact that log(1+ε)
ε > 1 − 2ε, valid for all

ε ∈ (0, 1
2 ].

The bound on the number of iterations follows from the fact that
∑

iAix(t) grows
by at least one in each iteration.

Note that Theorem 2.4.2 can be extended to a certain class of packing convex
programs, we will show this result in Theorem A.4.8.
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2.4.2. Approximately Truthful-in-Expectation fractional Mechanisms

In this subsection we show how to construct a randomized fractional mechanism (Al-
gorithm 4) and prove the following theorem:

Theorem 2.4.3. Suppose that ε0 ∈ (0, 1/2], ε = Θ(
ε50
n4 ) and Υ = (1 − ε)(1 − ε0).

Given an ε-approximation algorithm for Q, Algorithm 4 defines a fractional random-
ized mechanism satisfying Conditions (2.20) to (2.23).

In what follows we present two useful lemmas related to the mechanism and prove
the main theorem. In order to present the mechanism, we make some assumption and
define some notation. Let us assume that the problem is separable that means the
variables can be partitioned into disjoint groups, one for each player, such that the
value of an allocation for a player depends only on the variables in his group, i.e.,

vi(x) = vi(xi),

where xi is the set of variables associated with player i. Formally, any outcome x ∈
Q ⊆ Rd can be written as x = (x1, . . . , xn) where xi ∈ Rdi and d = d1 + . . .+ dn. 2

We further assume that for each player i ∈ [n], there is an optimal allocation ui ∈ Q
that maximizes his value for every valuation vi, i.e.,

vi(u
i) = max

z∈Q
vi(z), (2.29)

for every vi ∈ Vi, where Vi denotes the all possible valuations of player i. For the case
of a combinatorial auction, the allocation ui allocates all items to player i. Let

Li :=
∑
j 6=i

vj(u
j) and βi := εLi. (2.30)

Note that Li does not depend on the valuation of player i. Let A be an FPTAS for
the LP relaxation of SWM. We use A(v, ε) to denote the outcome of A on input v and
ε. If ε is understood, we simply write A(v); A(v) is a fractional allocation in Q. In
the following, we will apply A to different valuations which we denote by v = (vi, v−i),
v̄ = (v̄i, v−i), and v′ = (0, v−i). Here vi is the reported valuation of player i, v̄i is his
true valuation and v′i = 0. We denote the allocation returned by A on input v (resp.,
v̄, v′) by x (resp., x̄, x′). Note that x, x̄, x′ are fractional allocations. Now we bound
the maximal change in social welfare induced by a change of the valuation of the i-th
player.

Lemma 2.4.4. Let ε > 0 and let A be an ε-approximation algorithm which returns
allocation x on input vector v. Let x̂ ∈ Q be an arbitrary point, then

v(x) > v(x̂)− βi − ε · vi(x̂). (2.31)

2In the combinatorial auction problem, variable xi comprises all variables xi,S and the value of an
allocation for player i depends only on the variables xi,S .
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Proof. We have

v(x) > (1− ε) max
x∈Q

v(x)

> (1− ε)v(x̂)

= v(x̂)− ε ·
∑
j 6=i

vj(x̂)− ε · vi(x̂)

> v(x̂)− βi − ε · vi(x̂),

where the first inequality follows from the fact that A is an ε-approximation algorithm,
and the last inequality follows from ε

∑
j 6=i vj(x̂) 6 ε

∑
j 6=i vj(u

j) = βi.

We use the following payment rule:

pi(v) := max{pVCG
i (v)− βi, 0} (2.32)

where
pVCG
i (v) := v−i(x

′)− v−i(x).

v−i(x) =
∑

j 6=i vj(x), x = A(v) and x′ = A(0, v−i). Observe the similarity in the
definition of pVCG

i (v) to the VCG payment rule. In both cases, the payment is defined
as the difference of the total value of two allocations to the players different from i.
The first allocation ignores the influence of player i (x′ = A(0, v−i)) and the second
allocation takes it into account (x = A(v)).

Let Ui(v) = v̄i(x) − pi(v) be the utility of player i for bid vector v. Note that
the value of the allocation x = A(v) is evaluated with the true valuation v̄i of player
i. Consider Ui(v̄) = v̄i(x̄) − pi(v̄) be the utility of player i for valuation vector v̄ =
(v̄i, v−i).

Lemma 2.4.5. Let ε > 0 and let A be an ε-approximation algorithms. Let M0 be
the mechanism with allocation function A(v) and the payment rule above. M0 is an
individually rational mechanism with no positive transfer, such that for all i,

Ui(v̄) > Ui(v)− ε · v̄i(x)− 3βi. (2.33)

Proof. By definition, pi(v) > 0 for all v and all x; so the mechanism has no positive
transfer.

We next address individual rationality. We have

Ui(v̄) = v̄i(x̄)− pi(v̄)

= v̄i(x̄)− pVCG
i (v̄) + βi

= v̄i(x̄) + v̄−i(x̄)− v̄−i(x′) + βi

= v̄(x̄)− v̄(x′) + v̄i(x
′) + βi

> (1− ε)v̄i(x′) > 0,

where the first inequality follows from Lemma 2.4.4 with v = v̄ and x̂ = x′.
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Finally, we address truthfulness. We have v′(x′) = v−i(x
′), v′(x) = v−i(x), and

v′i(x) = 0. Thus

pVCG
i (v) = v−i(x

′)− v−i(x)

= v′(x′)− v′(x) + ε · v′i(x).

Applying Lemma 2.4.4 for v = v′ and x̂ = x, we obtain

v′(x′)− v′(x) + ε · v′i(x) > −βi.

Therefore

pVCG
i (v) + βi > 0. (2.34)

To see (2.33), we consider two cases:

Case 1: pi(v) = 0. Then using (2.34)

Ui(v̄) = v̄i(x̄)− 0

> v̄i(x̄)− pVCG
i (v̄)− βi.

Case 2: pi(v) = pVCG
i (v)− βi.

Ui(v̄) = v̄i(x̄)− pi(v̄)

= v̄i(x̄)− pVCG
i (v̄) + βi

> v̄i(x̄)− pVCG
i (v̄)− βi,

where the last inequality follows from βi > 0. Therefore, in both cases we have

Ui(v̄) > v̄i(x̄)− pVCG
i (v̄)− βi.

Now by using the definition of pVCG
i and Lemma 2.4.4, we get

Ui(v̄) > v̄i(x̄)− pVCG
i (v̄)− βi

= v̄i(x̄) + v̄−i(x̄)− v̄−i(x′)− βi
= v̄(x̄)− v̄−i(x′)− βi
> v̄(x)− βi − εv̄i(x)− v̄−i(x′)− βi
= v̄i(x)− pVCG

i (v)− εv̄i(x)− 2βi

> v̄i(x)− pi(v)− βi − εv̄i(x)− 2βi

= Ui(v)− εv̄i(x)− 3βi.

Now we present Algorithm 4 that uses mechanism M0 to give a fractional random-
ized mechanism which is approximately truthful-in-expectation.
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Algorithm 4. The mechanism M of Theorem 2.4.3. The vectors ui are defined as in
(2.29) and the quantities Li are defined in (2.30). The definitions of q0, qj , active and
inactive players are given in the proof of Theorem 2.4.3.
Require: A valuation vector v ∈ V, a packing convex set Q and an approximation

scheme A.
Ensure: An allocation x ∈ Q and a payment p ∈ Rn
1: Let ε be defined as in the proof of Theorem 2.4.3.
2: Choose an index j ∈ {0, 1, . . . , n}, where 0 is chosen with probability q0 and
j ∈ {1, . . . , n} is chosen with probability qj = (1− q0)/n.

3: if j = 0 then
4: Use ε-approximation algorithmA to compute an allocation x = (x1, . . . , xn) ∈ Q

and compute payments with payment rule (2.32). For all inactive i, change xi
and pi to zero.

5: else
6: For every 1 6 i 6 n, set

xi = ui, pi = γ′Li if i = j and i is active,
xi = ui, pi = 0 if i = j and i is inactive,
xi = 0, pi = 0 if i 6= j.

7: end if
8: return (x, p)

Proof of Theorem 2.4.3. Define q0 = (1 − ε0
n )n, ε̄ = ε0/2, and qj = (1 − q0)/n for

1 6 j 6 n. Let γ = ε̄(1 − q0)2/n3, γ′ = γ/qj , and ε = γε̄(1 − q0)/(8n). Then using
q0 = (1− ε0

n )n > 1− ε0 and q0 = (1− ε0
n )n 6 1− ε0/2, we get

ε5
0

128n4
=
ε̄2(ε0/2)3

8n4
6 ε = γε̄(1− q0)/(8n) =

ε̄2(1− q0)3

8n4
6
ε̄2ε3

0

8n4
=

ε5
0

16n4
,

as stated in the Theorem. Let Ui(v) be the utility of player i obtained by the mecha-
nism M0 of Lemma 2.4.5. Following [DRVY11], we call player i active if the following
two conditions hold:

Ui(v) +
ε̄qi
q0
vi(u

i) >
qi
q0
γ′Li, (2.35)

vi(u
i) > γLi. (2.36)

We denote by T = T (v) the set of active players when the valuation is v = (v1, . . . , vn).
Note that Li does not depend on vi. Thus when we refer to conditions (2.35) and (2.36)
for v̄, we replace v and x by v̄ and x̄ on the left side and keep the right side unchanged.
Non-negativity of payments is immediate from the definition of mechanism M and
Lemma 2.4.5. Moreover, the utility of a truth-telling bidder i can be negative only if
it is allocated in step 5, i.e., at most with probability qi. It follows that the mechanism
is individually rational with probability at least 1−

∑n
i=1 qi = q0 = (1− ε0

n )n > 1− ε0.
Now we address truthfulness. Let us denote the expected utility of player i obtained

from the mechanism in Algorithm 4 on input v ∈ V by E[U ′i(v)]. Assume j = 0
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in Algorithm 4. We run ε-approximation algorithm A on v to compute allocation
x = (x1, . . . , xn). Then we change xi and pi to zero for all inactive i. Let x′ be the
allocation obtained in this way. The value for player i is vi(x′). When the i-th player
is active, this value is equal to vi(x) because vi depends only on the valuation in the
i-th group (separability property). Therefore in this case his utility is Ui(v). So we
have that

E[U ′i(v)] =

{
q0 · Ui(v) + qi(v̄i(u

i)− γ′Li) if i ∈ T (v),
qiv̄i(u

i) if i 6∈ T (v).
(2.37)

We first observe
E[U ′i(v̄)] > (1− ε̄)qi · v̄i(ui). (2.38)

Indeed, the inequality is trivially satisfied if i 6∈ T (v̄). On the other hand, if i ∈ T (v̄),
then (2.35) implies Ui(v̄) > qi

q0

(
γ′Li − ε̄v̄i(ui)

)
, therefore

E[U ′i(v̄)] = q0 · Ui(v̄) + qi(v̄i(u
i)− γ′Li)

> q0 ·
qi
q0

(
γ′Li − ε̄v̄i(ui)

)
+ qi(v̄i(u

i)− γ′Li)

= (1− ε̄)qi · v̄i(ui).

We now consider four cases:
Case 1: i ∈ T (v̄) ∩ T (v). Note that (2.36) for v̄ implies βi = εLi 6

εv̄i(u
i)

γ . Thus, by
Lemma 2.4.5, and using assumption (2.29) that v̄i(x) 6 v̄i(u

i), we have

Ui(v̄) > Ui(v)− ε(1 +
3

γ
)v̄i(u

i) > Ui(v)− 4ε

γ
v̄i(u

i). (2.39)

Hence by using (2.37) and (2.39), we have

E[U ′i(v)] = q0 · Ui(v) + qi(v̄i(u
i)− γ′Li)

6 q0(Ui(v̄) +
4ε

γ
v̄i(u

i)) + qi(v̄i(u
i)− γ′Li)

= q0Ui(v̄) + qi(v̄i(u
i)− γ′Li)︸ ︷︷ ︸

E[U ′i(v̄)]

+
4ε

γ
v̄i(u

i)

= E[U ′i(v̄)] + q0
4ε

γ
v̄i(u

i).

Now applying (2.38) in above inequality, we get

E[U ′i(v)] 6 E[U ′i(v̄)] + q0
4ε

γ
v̄i(u

i)

6

(
1 +

q0

(1− ε̄)qi
4ε

γ

)
E[U ′i(v̄)]

6 (1 + ε̄)E[U ′i(v̄)],

where the last inequality follows from the definition of ε. Note that (since q0 6 1 and
ε̄ 6 1/2)

ε
q0

(1− ε̄)qi
4

γ
6 ε

1

(1− ε̄)qi
4

γ
6
γε̄(1− q0)

8n

8

qiγ
= ε̄.
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Case 2: i 6∈ T (v). By (2.38), we have

E[U ′i(v)] = qiv̄i(u
i) 6

1

1− ε̄
E[U ′i(v̄)] 6 (1 + ε0)E[U ′i(v̄)].

Since,

1

1− ε̄
= 1 + ε̄(1 + ε̄+ ε̄2 + . . .) 6 1 + 2ε̄ = 1 + ε0.

Case 3: i ∈ T (v) \ T (v̄) and (2.36) does not hold for v̄. Since Ui(v) 6 v̄i(u
i), we have

E[U ′i(v)] = q0 · Ui(v) + qi(v̄i(u
i)− γ′Li)

6 (q0 + qi)v̄i(u
i)− qiγ′Li

< (q0 + qi − 1)v̄i(u
i)

6 0

6 qiv̄i(u
i)

= E[U ′i(v̄)],

where the second inequality holds because (2.36) does not hold for v̄ and qiγ′/γ = 1.
Case 4: i ∈ T (v) \ T (v̄) and (2.36) holds for v̄. Then (2.35) does not hold for v̄ and
hence

Ui(v̄) <
qi
q0

(
γ′Li − ε̄v̄i(ui)

)
. (2.40)

Since (2.36) holds for v̄, we have (2.39). Hence by (2.38), (2.39) and (2.40) we have

E[U ′i(v)] = q0 · Ui(v) + qi(v̄i(u
i)− γ′Li)

6 q0

(
Ui(v̄) +

4ε

γ
v̄i(u

i)

)
+ qi(v̄i(u

i)− γ′Li)

6 qiγ
′Li − qiε̄v̄i(ui) +

4ε

γ
v̄i(u

i) + qi(v̄i(u
i)− γ′Li)

= (1− ε̄)qi · v̄i(ui) +
4ε

γ
v̄i(u

i)

6

(
1 +

1

(1− ε̄)qi
4ε

γ

)
E[U ′i(v̄)]

6 (1 + ε̄)E[U ′i(v̄)],

where the last inequality follows from the definition of ε (see Case 1). We finally argue
about the approximation ratio. Note that for i 6∈ T (v), one of the inequalities (2.35) or
(2.36) does not hold. Also, Ui(v) > 0 by the individual rationality of the mechanism
M0 and hence vi(ui) < max{γ, γ′/ε̄}Li = γ′Li/ε̄. Since A returns allocation x that is
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(1− ε)-social efficiency and 3 qi − q0n
γ′

ε̄ > 0, it follows that for any v ∈ V,

E[v(x)] = q0

∑
i∈T (v),x=A(v)

vi(x) +
∑
i∈[n]

qivi(u
i)

> q0

∑
i∈[n],x=A(v)

vi(x)− q0

∑
i/∈T (v),x=A(v)

vi(x) +
∑
i∈[n]

qivi(u
i)

> q0v(x)− q0

∑
i/∈T (v)

vi(u
i) +

∑
i∈[n]

qivi(u
i)

> q0v(x)− q0
γ′

ε̄

∑
i 6∈T (v)

Li +
∑
i∈[n]

qivi(u
i)

= q0v(x)− q0
γ′

ε̄

∑
i 6∈T (v)

∑
j 6=i

vj(u
j) +

∑
i∈[n]

qivi(u
i)

> q0v(x)− q0
γ′

ε̄
n
∑
j 6=i

vj(u
j) +

∑
i∈[n]

qivi(u
i)

> q0v(x) +
∑
i∈[n]

(
qi − q0n

γ′

ε̄

)
vi(u

i)

> q0(1− ε) ·max
z∈Q

v(z)

> (1− ε0)(1− ε) ·max
z∈Q

v(z).

2.4.3. Proof of Theorem 2.4.1

In this subsection we prove the main result of this section. Let us define randomized
mechanism M ′ which returns an integral allocation. Let ε > 0 be arbitrary. First run
Algorithm 4 to obtain x and p(v). Then compute a convex decomposition of α

1+4εx,
i.e.,

α

1 + 4ε
x =

∑
l∈N

λxl x
l,

and finally with probability λxl (we used the superscript to distinguish the convex de-
compositions of x) return the allocation xl and charge i-th player, the price pi(v)vi(x

l)
vi(x) ,

if vi(x) > 0, and zero otherwise.

Proof of Theorem 2.4.1. Let M be a fractional randomized mechanism obtained in
Theorem 2.4.3. Since M has no positive transfer, M ′ does neither. M is individually
rational with probability 1−ε0, therefore for any allocation x̄, we have v̄i(x̄)−pi(v̄) > 0
with probability 1− ε0. So

v̄i(x
l)− pi(v̄)

v̄i(x
l)

v̄i(x̄)
= (v̄i(x̄)− pi(v̄))

v̄i(x
l)

v̄i(x̄)
> 0,

3q0n
γ′

ε̄
6 nγ

qiε̄
= n2ε̄(1−q0)2

(1−q0)ε̄n3 = 1−q0
n

= qi.
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hence M ′ is individually rational with probability 1− ε0. Now we prove truthfulness.
Let E[U

′′
i (v̄)] be the expected utility of player i when she inputs her true valuation

and let E[U
′′
i (v)] be her expected utility when she inputs vi. Then by definition of

E[U
′′
i (v̄)], we have

E[U
′′
i (v̄)] = Ex̄∼M(v̄)

[∑
l∈N

λx̄l

(
v̄i(x

l)− pi(v̄)
v̄i(x

l)

v̄i(x̄)

)]

= Ex̄∼M(v̄)

[(
v̄i(
∑
l∈N

λx̄l x
l)− pi(v̄)

v̄i(
∑

l∈N λ
x̄
l x

l)

v̄i(x̄)

)]
= Ex̄∼M(v̄)[

α

1 + 4ε
v̄i(x̄)− α

1 + 4ε
pi(v̄)]

=
α

1 + 4ε
Ex̄∼M(v̄)[v̄i(x̄)− pi(v̄)]

=
α

1 + 4ε
E[U ′(v̄)]

> (1− ε0)
α

1 + 4ε
E[U ′(v)]

= (1− ε0)
α

1 + 4ε
Ex∼M(v)[v̄(x)− pi(v)]

= (1− ε0)Ex∼M(v)[
α

1 + 4ε
v̄(x)− pi(v)

α

1 + 4ε
· vi(x)

vi(x)
]

= (1− ε0)E

[∑
l∈N

λxl

(
v̄i(x

l)− pi(v)
vi(x

l)

vi(x)

)]
= (1− ε0)E[U

′
i (v)].

Taking expectation with respect to x shows that the mechanism is α(1−ε0)(1−ε)
1+4ε -socially

efficient. This completes the proof of Theorem 2.4.1.

E[v(x )] = Ex∼M(v)

[∑
l∈N

λxl v(xl)

]

= Ex∼M(v)

[
v(
∑
l∈N

λxl x
l)

]

= Ex∼M(v)

[
v(

α

1 + 4ε
x)

]
=

α

1 + 4ε
Ex∼M(v)[v(x)]

>
α

1 + 4ε
(1− ε0)(1− ε)
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3
Randomized Fictitious Play for

Approximating Saddle Points

Approximating saddle points is an overarching and fundamental problem that has a
wide range of applications, from economics and game theory to dynamical systems,
optimization, and analytic combinatorics, for example. In this chapter, we mainly
focus on saddle points from a game theoretical point of view. Let us consider a
particular class of games called matrix games. In this game, there are two players:
one, called row player, selects a row, say i ∈ [m], and the other called column player,
selects a column, say j ∈ [n], of a given matrix A ∈ Rm×n, and each is unaware of the
choice of the other. Then, their choices are made known and the row player pays the
amount of A(i, j) to the column player, which is the (i, j)-th entry of A. Assuming
the players are rational, the row player wants to minimize his loss, and the column
player wants to maximize his gain. In such a game, entry A(i∗, j∗) is a saddle point
when it is a minimum number in the i∗-th row, and it is simultaneously a maximum
number in the j∗-th column. It is readily checked that if A contains a saddle point,
then the game has an equilibrium, because no player increases his benefit by changing
his chosen column (or row). The saddle points can also be considered in a larger class
of games called the 2-player zero-sum game in which the payoff function is specified
by a function F : X × Y → R, where X and Y are strategy sets for the players and
for a chosen strategy (x, y) ∈ X × Y , and the minimizer pays amount F (x, y) to the
maximizer. Pair (x∗, y∗) is called a saddle point if

F (x∗, y∗) = inf
x∈X

F (x, y∗) = sup
y∈Y

F (x∗, y).

Since the class of 2-player zero-sum games with a specified payoff function is a quite
general framework, it has received considerable attention. For instance, in social and
economical systems, there are plenty of situations where two decision makers inter-
act with each other. Understanding and predicting the behavior of such systems can
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usually be reduced to finding a pair of optimal strategies (or saddle points) for a cor-
responding 2-player zero-sum game. It turns out that computing saddle points is a
long-standing problem from both the theoretical and the practical perspective, and
hence, there is extensive literature on the existence of saddle points in this class of
games and its applications, see, e.g., [Dan63, Gro67, tKP90, McL84, Vor84, Roc70,
Sha58, Ter72, Wal45, Seb90, Bel97, DKR91, Was03]. In the 50s, Brown [Bro51] intro-
duced an iterative procedure, so-called fictitious play, for computing the equilibrium of
a 2-player zero-sum game, with a payoff function F (x, y) = xTAy, where A ∈ Rm×n,
and the strategy sets are probability distributions over rows and columns, known as
mixed strategies. The procedure proceeds in rounds. In each round: each player up-
dates his strategy by applying the best response strategy to the current opponent’s
strategy. (See Section 3.1 for more details.) Robinson [Rob51] showed that if the
number of rounds goes to infinity, then the fictitious play converges to the optimal
strategies for players. Very recently, Daskalakis and Pan [DP14] showed an exponen-
tial lower bound for the number of iterations in which the fictitious play converges to
an equilibrium.

For every ε ∈ (0, 1), point (x∗, y∗) ∈ X ×Y is an ε-approximation saddle point (or
equivalently, an ε-optimal strategy) of function F : X × Y → R if we have

sup
y∈Y

F (x∗, y) 6 inf
x∈X

F (x, y∗) + ε.

Based on fictitious play, Grigoriadis and Khachiyan [GK95] presented a randomized
algorithm, so-called randomized fictitious play for computing the ε-optimal strategies
for the 2-player zero-sum games with a payoff function xTAy, where A ∈ [−1, 1]m×n.
Generally speaking, in randomized fictitious play, each player chooses the response
update randomly from a distribution that gives large weight to good responses, but
concentrates not only on the best response. They also proved an expected upper bound
O((m+ n) log(n+m)/ε2) for the running time of the algorithm.

When the strategy sets are convex sets, one can easily see that computing the ε-
approximation saddle point (or ε-optimal strategies) can be reformulated as a convex
minimization problem over a convex set, and hence, any algorithm for solving this
class of problems, e.g., the Ellipsoid method, can be used to compute them in time
polynomial in the input size and polylog(1

ε ) (see, e.g., [GLS93]).

Our Results. Our main contribution is the design of a randomized algorithm for
computing an ε-approximation saddle point of convex-concave functions over the prod-
uct of two convex bounded sets. Our algorithm is based on combining a technique
developed by Grigoriadis and Khachiyan [GK95], which is a randomized variant of
Brown’s fictitious play [Bro51], with the recent results on random sampling from con-
vex sets (see, e.g., [LV06, Vem05]). The algorithm finds an ε-approximation saddle
point in an expected number of O

(
ρ2(n+m)

ε2
log R

ε

)
iterations, where in each iteration,

two points are sampled from log-concave distributions over strategy sets. In partic-
ular, the algorithm requires O∗

(
ρ2(n+m)6

ε2
logR

)
oracle calls, where O∗(·) suppresses

polylogarithmic factors that depend on n, m, and ε.
Even though the bounds for the running time of the algorithm are stated for general
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convex sets, note that these bounds may be improved for classes of convex sets for
which faster sampling procedures could be developed.

Our algorithm is superior to known methods when the width parameter ρ is small,
where ρ = maxx∈X,y∈Y |F (x, y)| and ε ∈ (0, 1) is a fixed but arbitrarily small constant;
see the comparison with sampling-based algorithms in Section 3.2. We believe that our
method presented in this paper will be useful for developing algorithms for computing
approximate equilibria for other classes of games.

Outline. In Section 3.1, we formally define the saddle point and approximation saddle
point and state some preliminary results. In Section 3.2, we briefly explain the results
that are most closely related to our work. In Section 3.3, we formally state our results
and the algorithm. In Section 3.4, we show its correctness and analyze the runtime of
the algorithm. Finally, in Section 3.5, we present some applications of our algorithm
in combinatorial optimization.

3.1. Definitions, Notations, and Preliminaries

In this section, we formally define the saddle point and ε-approximation saddle point,
some classical definitions in game theory, and the original fictitious play. Then, we
state some notation and technical assumptions.

Definition 3.1.1. For a given function F : X×Y → R, pair (x∗, y∗) is a saddle point
if we have

F (x∗, y∗) = inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y). (3.1)

Furthermore, for every ε ∈ (0, 1), pair (x∗, y∗) is an ε-approximation saddle point if
we have

sup
y∈Y

F (x∗, y) 6 inf
x∈X

F (x, y∗) + ε. (3.2)

Let f : X ⊆ Rn → R be a real-valued function, where X is a convex set. We say
f is a convex function if for every t ∈ [0, 1] and x, y ∈ X we have

f(t · x+ (1− t) · y) 6 tf(x) + (1− t)f(y).

And, f is a concave function if we have

f(t · x+ (1− t) · y) > tf(x) + (1− t)f(y).

We have that f is a log-concave if log f is concave. Let X ⊆ Rm and Y ⊆ Rn be
two bounded convex sets. Moreover, we say that F : X × Y → R is a convex-concave
function, that is, F (·, y) : X → R is convex for all y ∈ Y , and F (x, ·) : Y → R
is concave for all x ∈ X. The following theorem, known as Saddle-Point Theorem,
guarantees the existence of the saddle points (see, e.g., [Roc70]).

Theorem 3.1.2 (Saddle-Point Theorem). Suppose that F : X×Y → R is a continuous
convex-concave function, where X and Y are closed convex sets. Then a saddle point
for F exists.
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A 2-player zero-sum game is an important class of games, in which the gain of
one player is exactly the loss of other player. Now, let us consider a 2-player zero-
sum game with payoff function F (·, ·) where one player, the minimizer, choosing his
strategy from a convex domain X, while the other player, the maximizer, choosing his
strategy from a convex domain Y . For a pair of strategies x ∈ X and y ∈ Y , F (x, y)
denotes the corresponding payoff, which is the amount that the minimizer pays to the
maximizer. We note that sets X and Y are called the strategy sets. If both strategy
sets are finite, then the game is called finite and hence the payoff function can be
represented as a matrix, let say A ∈ Rm×n, in which each entry corresponds to the
payoff of a pair of strategies. In this setting the minimizer, row player, picks a row,
say i ∈ [m], and the maximizer, column player, picks a column, say j ∈ [n]. Then
the minimizer pays amount A(i, j) to the maximizer. We refer to elements of X and
Y as pure strategies. In a more general setting, selecting the pure strategies can be
randomized, which means each player pick his own strategy according to a probability
distribution over his pure strategy set, called mixed strategy. In a matrix game with
payoff matrix A ∈ Rm×n, if the row and column players select mixed strategies x and
y, respectively, which are probability distributions over rows and columns, then the
expected payoff is computed as xTAy, where xT denotes the transpose of vector x.

Definition 3.1.3. An equilibrium point, say (x∗, y∗), is a pair of strategies in which
no player increases his utility, by changing his strategy assuming the opponent does
not change his strategy.

Clearly, every saddle point for F corresponds to a equilibrium point for the game.
Let us assume that (x∗, y∗) is a saddle point. Then the value of the game is defined
as v∗ = F (x∗, y∗). Now, in what follows we define the optimal strategies.

Definition 3.1.4. Suppose that v∗ be the value a 2-player zero-sum game with payoff
function F : X × Y → R. Then x∗ ∈ X is an optimal strategy for minimizer if and
only if

F (x∗, y) 6 v∗, for every y ∈ Y .

Also y∗ ∈ Y is an optimal strategy for the maximizer if and only if

F (x, y∗) > v∗, for every x ∈ X.

When both players apply the optimal strategies, then the minimizer pays v∗ to maxi-
mizer. When an approximate solution suffices or at least one of the sets X or Y is
open, the appropriate notion is that of ε-optimal strategies.We have that x∗ ∈ X is an
ε-optimal strategy for the minimizer if and only if

F (x∗, y) 6 v∗ + ε, for every y ∈ Y .

Also y∗ ∈ Y is an ε-optimal strategy for the maximizer if and only if

F (x, y∗) > v∗ − ε, for every x ∈ X.

The following famous theorem due to Von Neumann states the existence of a saddle
point in matrix games.
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Theorem 3.1.5 (Min-Max Theorem). Let A be a given m× n matrix over real num-
bers. Then there is a pair of mixed strategies (x∗, y∗) forming a saddle point:

min
x∈X

max
y∈Y

xTAy = max
y∈Y

min
x∈X

xTAy = x∗TAy∗.

3.1.1. Technical Assumptions

In this subsection we present some general conditions for function F and sets X ⊂ Rm
and Y ⊂ Rn. Throughout, we assume that setsX and Y are specified by a membership
oracle, that is an algorithm which for a given x ∈ Rm (respectively, y ∈ Rn) determines,
in polynomial time in m (respectively, n), whether or not x ∈ X (respectively, y ∈ Y ).

We define the width parameter of our problem ρ as

ρ = max
x∈X,y∈Y

|F (x, y)|.

Let Bk(x0, r) denote the k-dimensional ball for radius r centered at x0 ∈ Rk:

Bk(x0, r) = {x ∈ Rk : ‖x− x0‖2 6 r}.

We now state two technical assumptions regarding the function F and sets X and Y .

Assumption A1. There exist ξ0 ∈ X, η0 ∈ Y , and strictly positive numbers rX ,
RX , rY , and RY such that

Bm(ξ0, rX) ⊆ X ⊆ Bm(0, RX)

Bn(η0, rY ) ⊆ Y ⊆ Bn(0, RY ).

In particular, since the sets contain the respective balls, they are full-dimensional in
their respective spaces. With regard to this assumption, we define parameter R as
follows

R = max{RX , RY ,
1

rX
,

1

rY
}.

Assumption A2. Width parameter ρ corresponding to F is bounded by 1.
Assumption (A1) is standard for algorithms that deal with convex sets defined

by membership oracles (see, e.g., [GLS93]), and will be required by the sampling
algorithms. Assumption (A2) can be made without loss of generality, since the original
game can be converted to an equivalent one satisfying (A2) by scaling the function
F by 1

ρ . However, in order to get an ε-approximation saddle point, we also need
to replace ε by ε

ρ . We note that such dependence on the width is unavoidable in
most known algorithms that obtain ε-approximate solutions and whose running time
is proportional to poly(1

ε ) (see e.g. [AHK06, PST91]). In Theorem 3.3.1 we show
that the running time of our algorithm increases by factor ρ2. We assume that ε is a
positive constant less than 1. In case the payoff function is bilinear, then we can prove
the following upper bound for ρ.
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Proposition 3.1.6. If F (x, y) = xTAy, where A is a given m × n matrix and xT

denotes the transpose of vector x, then

ρ 6
√
m · n ·RX ·RY ·max

i,j
|aij |.

Proof. Let Ai denote the i-th row of matrix A. By applying Cauchy-Schwarz inequality
we have that

||Ay|| =

[
m∑
i=1

(Aiy)2

]1/2

6

[
m∑
i=1

||Ai||2 · ||y||2
]1/2

6
√
m · n · (max

i,j
|aij |)2 ·R2

Y .

Another application of Cauchy-Schwarz inequality gives that for every (x, y) ∈ X×Y ,

|xTAy| 6 ||xT || · ||Ay|| 6
√
m · n ·RX ·RY ·max

i,j
|aij |.

Therefore, ρ is bounded as above.

3.2. Relation to Previous Works

As we already mentioned, computing the ε-approximation saddle point is a quite
general task and hence there are a large number of works that consider the problem.
We devote this section to explain some of them which are mostly related and compare
them with our result.
Fictitious Play. Fictitious play refers to an earliest learning rule, originally pro-
posed by Brown [Bro51], for computing the optimal strategies of a matrix game. In
this method each player updates his strategy by applying the best response, given the
opponent’s current strategy. More precisely, the minimizer and the maximizer initial-
ize, respectively, x(0) = 0 and y(0) = 0, and for t = 1, 2, . . . , update x(t) and y(t)
by

x(t+ 1) =
t

t+ 1
x(t) +

1

t+ 1
ei(t), where i(t) = argmini∈[m]ei

TAy(t), (3.3)

y(t+ 1) =
t

t+ 1
y(t) +

1

t+ 1
ej(t), where j(t) = argmaxj∈[n] x(t)TAej , (3.4)

where ej ∈ Rn (ei ∈ Rm) denotes the unit vector whose j-th (i-th) coordinate is 1.
Robinson [Rob51] showed the convergence of fictitious play to the optimal strategies,
that is,

x∗ = lim
t→∞

x(t),

y∗ = lim
t→∞

y(t).
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Shapiro [Sha58] derived a bound of (2m+n/ε)
m+n−2 on the number of rounds needed

for convergence of fictitious play to an ε-optimal strategies (or ε-approximation saddle
point). Very recently, Daskalakis and Pan [DP14] obtained an exponential lower bound
for fictitious play. One might notice that in the original matrix game, the players pick
their own strategies, known as mixed strategies, from simplices X and Y , that are,

X = {x ∈ Rm |
∑
i

xi = 1, x > 0}

and
Y = {y ∈ Rn |

∑
j

yj = 1, y > 0}.

In a more general setting, many authors consider matrix games where the strategy
set for each player is a polytope (or more generally, a polyhedron), which is known
as polyhedral games (e.g., see [Was03]). Even though, each polyhedral game can be
reduced to a matrix game by using the vertex representation of each polytope (see e.g.
[Sch86]), this transformation may be (and is typically) not algorithmically efficient
since the number of vertices may be exponential in the number of facets by which
each polytope is given. In a more recent paper, Hofbauer and Sorin [HS06] showed
the convergence of the fictitious play for 2-player zero-sum games in which the payoff
function is convex-concave and each set X (or Y ) is compact convex set. Regardless of
the convergence of the fictitious play, let us write it for every 2-player zero-sum games
with payoff F (x, y) : X × Y → R as follows,

x(t+ 1) =
t

t+ 1
x(t) +

1

t+ 1
ξ(t), where ξ(t) = argminξ∈XF (ξ, y(t)), (3.5)

y(t+ 1) =
t

t+ 1
y(t) +

1

t+ 1
η(t), where η(t) = argmaxη∈Y F (x(t), η), (3.6)

where ξ(t) and η(t) denote the best responses of minimizer and the maximizer, respec-
tively.

Randomized Fictitious Play. In [GK95], Grigoriadis and Khachiyan introduced
a randomized variant of fictitious play for matrix games. Their algorithm replaces
the minimum and maximum selections (3.3)-(3.4) by a smoothed version, in which,
at each time step t, the minimizing player selects a strategy i ∈ [m] with probability
proportional to exp

{
− ε

2eiAy(t)
}
. Similarly, the maximizing player chooses strategy

j ∈ [n] with probability proportional to exp
{
ε
2x(t)Aej

}
. Grigoriadis and Khachiyan

proved that, if A ∈ [−1, 1]m×n, then this algorithm converges, with high probability,
to an ε-saddle point in O( log(m+n)

ε2
) iterations. Each iteration takes O(n+m) time to

select strategies i and j, for the players.

The Multiplicative Weights Update Method. In a similar line of work, Freund
and Schapire [FS99] used a method, originally developed by Littlestone and Warmuth
[LW94], to give a procedure for computing ε-approximation saddle points for matrix
games. Their procedure can be thought of as a derandomization of the randomized
fictitious play described above. A number of similar algorithms have also been devel-
oped for approximately solving special optimization problems, such as general linear
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programming [PST91], multicommodity flow problems [GK98], packing and covering
linear programming [PST91, GK98, GK04, KY07, You01], some classes of convex pro-
gramming [Kha04], and semidefinite programming [AHK05, AK07]. Arora, Hazan
and Kale [AHK06] gave a meta algorithm that puts many of these results under one
umbrella. In particular, they consider the following scenario: given a set X of deci-
sions, a finite set Y of outputs, and a payoff matrix M ∈ RX×Y such that M(x, y)
is the penalty that would be paid if decision x ∈ X was made and output y ∈ Y
was the result, the objective is to develop a decision making strategy that tends to
minimize the total payoff over many rounds of such decision making. Suppose that
an oracle for finding maxy∈Y

∑
i∈[m] λifi(y) exists, where f1, . . . , fm are real-valued

convex functions from convex set Y and for any non-negative vector λ ∈ Rm we have∑m
i=1 λi = 1. Then, Arora et al. [AHK06, Kal07] show how to apply this framework

and approximately compute the objective

max
y∈Y

min
i∈[m]

fi(y).

There are two reasons why this method cannot be (directly) used to solve our
problem (3.2). First, the number of decisions m is infinite in our case, and second, we
do not assume to have access to an oracle of the type described above; we assume only a
(weakest possible) membership oracle on Y . Our algorithm extends the multiplicative
update method to the computation of ε-approximation saddle points.

Hazan’s Work. In his Ph.D. Thesis [Haz06, Chapters 4 and 5], Hazan gave an
algorithm, based on multiplicative weights updates method, for approximating the
minimum of a convex function within an absolute error of ε. This algorithm can be
written in the same form as our algorithm (see Subsection 3.3.1), except that it chooses
respectively the points ξ(t) ∈ X and η(t) ∈ Y , at each time step t = 1, . . . , T , as the
(approximate) centroids of the corresponding sets with respect to densities

pξ(t) = exp

{
t−1∑
τ=1

log(e− F (ξ, η(τ)))

}
and

qη(t) = exp

{
t−1∑
τ=1

log(e+ F (ξ(τ), η))

}
,

where each of them is a log-concave distribution, and outputs (
∑T

t=1 x(t)/T,
∑T

t=1 y(t)/T )
at the end. However, no claim was given regarding the running time or even the con-
vergence for such an extension, and in fact, the proof technique used in [Haz06, The-
orem 4.14] does not seem to extend to this case since the function log(e− F (ξ, η(τ)))
(respectively, log(e + F (ξ(τ), η))) is not concave in η(τ) (respectively, not convex in
ξ(τ)).

Optimization via Random Sampling. Our algorithm makes use of known algo-
rithms for sampling from a given log-concave distribution over a convex set X ⊆ Rm.
First note that we can write (3.1) as the convex minimization problem

inf
x∈X

F (x),
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where F (x) = supy∈Y F (x, y) is a convex function. Thus, it is worth comparing the
bounds we obtain (see next section Theorem 3.3.1) with the bounds that one could
obtain by applying the random sampling techniques for convex optimization. Several
algorithms for convex optimization based on sampling have been recently proposed. In
what follows we briefly mention some of them. It is easy to see that any minimization
problem is reducible in polytime to checking whether for a given v, the corresponding
set Kv is empty or not, where Kv is defined as

Kv = {x ∈ X : F (x) 6 v}.

If an algorithm is able to check set Kv, for every v, then binary search over all possible
values of v and finding a nonemptyKv with minimum v solves the problem. It is readily
checked that if F is a convex function, then Kv, for every v, is a convex set. Bertsimas
and Vempala [BV04] proposed an algorithm based on random sampling of points from
a convex body to minimize F over X, assuming a membership oracle exists. For a
given Kv, their algorithm outputs for a given v, either Kv is empty or a point that
belongs Kv. They also showed that running time is bounded by O∗((m5T+m7) logR),
where T is the time required by a single oracle call. Later on, Kalai and Vempala
[KV06] applied a method known as simulated annealing to design an algorithm for
minimizing a linear function over an arbitrary convex set which is specified only by
a membership oracle. They showed an upper bound of O∗(m4.5T logR), which is an
improvement over the previous one. In fact, their algorithm samples points from a
convex set according to a family of Boltzman-Gibbs distributions. Recall that we define
= F (x) = supy∈Y F (x, y). So, if one wants to apply the aforementioned technique to
approximate the saddle point, then each membership call involves another application
of these techniques (to check if supy∈Y F (x, y) 6 v). Therefore, the running time
of the algorithm is bounded by O∗(n4.5(m5T + m7) logO(1)R), which is significantly
greater than the bound in our result.

Ellipsoid Method. A popular method for solving convex optimization problems is
the Ellipsoid method. Under Assumption (A1), the Ellipsoid method can be used to
minimize a linear function over a convex set X ⊆ Rm, which is given by a membership
oracle, in time O(m10T logR+m12 logR) (see [GLS93] and Table 1 in [BV04]). By a
similar argument as the one given above, in the special case when F (x, y) is linear in y,
the method takes a total running time of O∗((n10(m10T+m12)+n12) logO(1)R) to find
a saddle point, which is significantly greater than the bound stated in Theorem 3.3.1.

3.3. Main Results

In this section we formally state our main theorem and approximation algorithm. A
main ingredient of our algorithm is a sampling algorithm from a log-concave density
f(·) over a convex set X ⊆ Rm. The currently best known result achieving this is due
to Lovász and Vempala (see, e.g., [LV07, Theorem 2.1]). In this work, the authors
introduced a random walk on X called ball walk that proceeds in rounds. Let us fix a
positive number r > 0 and let x ∈ X be the current position of the walk. Then it picks
y ∈ Bm(x, r) uniformly at random and moves to y with probability min(1, f(x)/f(y))

and stays at x with remaining probability. They showed that after O∗(m
5

ε4
) rounds,
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Algorithm 5. Randomized fictitious play

Require: Two convex bounded sets X,Y and a function F (x, y) such that F (·, y) :
X → R is convex for all y ∈ Y and F (x, ·) : Y → R is concave for all x ∈ X,
satisfying assumptions (A1) and (A2)

Ensure: A pair of ε-optimal strategies
1: t := 0; choose x(0) ∈ X; y(0) ∈ Y , arbitrarily
2: while t 6 T do
3: Pick ξ ∈ X and η ∈ Y , independently, from X and Y with densities pξ(t)

‖p(t)‖1 and
qη(t)
‖q(t)‖1 , respectively

4: x(t+ 1) := t
t+1x(t) + 1

t+1ξ; y(t+ 1) := t
t+1y(t) + 1

t+1η; t := t+ 1;
5: end while
6: return (x(t), y(t))

the walk distribution over X converges to f within a total variation distance of ε with
high probability.

Recall that, for every two probability distributions ν and τ on F , the total variation
distance between ν and τ is defined as follows

dTV (ν, τ) = sup
A⊆F

(ν(A)− τ(A)).

Note that, we apply random sampling as a black-box for each iteration indepen-
dently; it might be possible to improve the running time if we utilize the fact that the
distributions are slightly modified from an iteration to the next.

Theorem 3.3.1 (Main Theorem). Assume X and Y satisfy assumption (A1). Then
there is a randomized algorithm that finds a pair of ε-optimal strategies in an expected
number of O

(
ρ2(n+m)

ε2
log R

ε

)
iterations, each computing two samples from log-concave

distributions. In particular, the algorithm requires O∗
(
ρ2(n+m)6

ε2
logR

)
oracle calls,

where O∗(·) suppresses polylogarithmic factors that depend on n, m and ε.

In order to prove the theorem, we present Algorithm 5 and show that the algorithm
outputs an ε-approximation saddle point. We also derive an upper bound for its
running time as stated in the theorem. For a complete analysis and correctness see
Section 3.4.

3.3.1. The Algorithm

In this subsection, we present Algorithm 5 that is an adaptation of the algorithms in
[GK95] and [FS99]. It proceeds in steps t = 0, 1, . . ., updating the pair of accumulative
strategies x(t) and y(t). Given the current pair (x(t), y(t)), define

pξ(t) = e−
εtF (ξ,y(t))

2 for ξ ∈ X, (3.7)

qη(t) = e
εtF (x(t),η)

2 for η ∈ Y , (3.8)
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and let

‖p(t)‖1 =

∫
ξ∈X

pξ(t)dξ and ‖q(t)‖1 =

∫
η∈Y

qη(t)dη

be the respective normalization factors. The parameter T will be specified later (see
Lemma 3.4.5).

3.4. The Analysis of Algorithm 5

In this section we show that the algorithm outputs an ε-approximation saddle point
and derive an upper bound for its running time. The analysis is composed of three
parts, which we briefly explain here. For a complete proof see the following respective
subsections.

I. Bounding the Potential Increase. Following [GK95], we use potential func-
tion

Φ(t) = ‖p(t)‖1‖q(t)‖1 =

∫
ξ∈X,η∈Y

e
ε
2
t(F (x(t),η)−F (ξ,y(t)))dξdη, (3.9)

to bound the number of iterations required by the algorithm to reach an ε-
approximation saddle point. This is a generalization of the argument in [GK95]
(and [KY07]): we show that the potential function increases, on the average,
only by a factor of eO(ε2), implying that after t iterations the potential is at
most eO(ε2)t factor of the initial potential. The analysis would end, if we could
argue that after t iterations the function under integral is also bounded by eO(ε2)t

and hence after t iterations an ε-approximation algorithm is achieved. In case X
and Y are simplices and the potential is a sum over all vertices of the simplices
[GK95], then the upper bound for the potential function is sufficient to bound
the summands. However, we know that if a definite integral of a non-negative
function over a given region Q is bounded by some τ , then it does not imply
that the function is also bounded by τ , at any point in Q. So, we still need to
argue that the function cannot largely deviate from the τ . Basically, we solve
this problem in the next part.

II. Bounding the Number of Iterations. In this part of the analysis, we over-
come the aforementioned difficulty by showing that, due to concavity of the
exponent of the function under the integral in (3.9), the change in the function
around a given point cannot be too large. Thus, the value at a given point can-
not be large unless there is a sufficiently large fraction of the volume of the sets
X and Y over which the integral is also too large.

III. Approximate Distributions. Finally, we show that the same bound on the
running time holds when the sampling distributions in line 3 of the algorithm are
replaced by sufficiently close approximate distributions. We then show that the
algorithm converges to a ε-optimal strategies after a certain number of rounds.
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3.4.1. Bounding the Potential Increase

In this subsection, we establish an upper bound for the potential function Φ(t), which
was defined in (3.9). In the next lemma, we estimate the expected increase of Φ(t)
after execution of each round of the algorithm and then, applying law of iterated
expectations, we show that

Φ(t) =

∫
ξ∈X,η∈Y

e
ε
2
t(F (x(t),η)−F (ξ,y(t)))dξdη 6 2e

ε2

3
tΦ(0).

Lemma 3.4.1. For t = 0, 1, 2, . . . ,

E[Φ(t+ 1)] 6 E[Φ(t)]

(
1 +

ε

6

2
)2

.

Proof. Conditional on the values of x(t) and y(t), we have

‖p(t+ 1)‖1 =

∫
ξ∈X

e−
ε(t+1)F (ξ,y(t+1))

2 dξ

=

∫
ξ∈X

e−
ε(t+1)F (ξ, t

t+1 y(t)+ 1
t+1 η)

2 dξ

6
∫
ξ∈X

e−
εtF (ξ,y(t))

2 e−
εF (ξ,η)

2 dξ

=

∫
ξ∈X

pξ(t)e
− εF (ξ,η)

2 dξ

6
∫
ξ∈X

pξ(t)

[
1 +

ε2

6
− ε

2
F (ξ, η)

]
dξ

= ‖p(t)‖1

(
1 +

ε2

6
− ε

2

∫
ξ∈X pξ(t)F (ξ, η)dξ

‖p(t)‖1

)
, (3.10)

where it follows from assumption (A2), concavity of F (ξ, ·) : Y → R and the inequality
eδ 6 1+δ+ 2

3δ
2, which is valid for all δ ∈ [−1

2 ,
1
2 ]. Taking the expectation with respect

to η (with density proportional to qη(t)), we get

Eq[‖p(t+ 1)‖1] 6 ‖p(t)‖1

[
1 +

ε2

6
− ε

2

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

]
. (3.11)

Similarly, by taking the expectation with respect to ξ (with density proportional to
pξ(t)), we can derive

Ep[‖q(t+ 1)‖1] 6 ‖q(t)‖1

[
1 +

ε2

6
+
ε

2

∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1

]
. (3.12)
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Now, using independence of ξ and η, we have

E[Φ(t+ 1)|x(t), y(t)] 6 Φ(t)

[(
1 +

ε2

6

)2

+
ε

2

(
1 +

ε2

6

)(∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
−
∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

)

−ε
2

4

∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
.

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1

]
.

By interchanging the order of integration, we get that the second part of the sum on
the right-hand side is zero, and third part is non-positive. Hence

E[Φ(t+ 1)|x(t), y(t)] 6 Φ(t)

(
1 +

ε2

6

)2

. (3.13)

The lemma follows by taking the expectation of (3.13) with respect to x(t) and y(t).

Corollary 3.4.2. With probability at least 1
2 , after t iterations

Φ(t) 6 2e
ε2

3
tΦ(0). (3.14)

Proof. By applying Lemma 3.4.1 we have E[Φ(t + 1)] 6 E[Φ(t)]
(
1 + ε

6
2
)2
. Using the

law of iterated expectations, we have

E[Φ(t)] 6 Φ(0) ·
(

1 +
ε

6

2
)2t

6 Φ(0) · e
ε2

3
t,

where the last inequality follows from 1 + δ 6 eδ, for every δ > 0. Now, applying
Markov’s inequality we conclude that

Pr[Φ(t) > 2e
ε2

3
tΦ(0)] 6 E[Φ(t)]/2e

ε2

3
tΦ(0) 6 1/2.

3.4.2. Bounding the Number of Iterations

In this subsection we show that after desired number of iterations, say T , the algorithm
outputs an ε-optimal strategies. For convenience, define Z = X × Y , and concave
function gt : Z → R for every z = (ξ, η) ∈ Z as

gt(ξ, η) :=
ε

2
t (F (x(t), η)− F (ξ, y(t))) .

Note that, by our assumptions, Z is a full-dimensional and bounded convex set in RN ,
where N = n+m. Moreover, we have that

Φ(0) =

∫
ξ∈X,η∈Y

1dξdη = vol(X) · vol(Y ),
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x

Z Z++

Z+

z+ z⇤

z⇤ z+ x

Figure 3.1. The drawing on the left illustrates the notation used in the proof
of Lemma 3.4.3. We assume for the sake of a contradiction that there is a point
x ∈ Z \ Z++. Observe that Z++ is a scaled version of Z+. The drawing on the
right illustrates the contradiction. A function that drops by α/2 from z∗ to z+ and
by at most 2εt from z∗ to x cannot be concave.

By assumption (A2), we have that for all z ∈ Z

|gt(z)| = |
ε

2
t (F (x(t), η)− F (ξ, y(t))) | 6 εt/2(|F (x(t), η)|+ |F (ξ, y(t))|) 6 εt. (3.15)

In the following lemma, we provide a sufficient condition for the convergence of
the algorithm to an ε-approximate saddle point.

Lemma 3.4.3. Suppose that (3.14) holds and there exists α such that

0 < α < 4εt, (3.16)

e
1
2
α
( α

4εt

)N
vol(Z) > 1. (3.17)

Then we have that, for every z ∈ Z,

egt(z) 6 2e
ε2

3
t+αΦ(0). (3.18)

Proof. Toward a contradiction assume that, there is z∗ ∈ Z with

gt(z
∗) >

ε2

3
t+ α+ log(2Φ(0)).

Let λ∗ = α/(4εt) < 1,

Z+ = {z ∈ Z|gt(z) > gt(z
∗)− α/2}, and Z++ = {z∗ +

1

λ∗
(z − z∗)|z ∈ Z+}.
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To have a clear picture of the sets, defined here, see Figure 3.1. Concavity of gt
implies convexity of Z+. Thus, for every z ∈ Z+ and every λ′, 0 6 λ′ 6 1/λ∗, we have
λ∗λ′z + (1− λ∗λ′)z∗ ∈ Z+, and hence

z∗ +
1

λ∗
(λ∗λ′z + (1− λ∗λ′)z∗ − z∗) = z∗ + λ′(z − z∗) ∈ Z++.

Thus, for every z ∈ Z+, the entire ray {z∗ + λ′(z − z∗) : 0 6 λ′ 6 1/λ∗} belongs to
Z++. In particular, Z+ ⊆ Z++. We next show Z ⊆ Z++. Toward a contradiction
assume that x ∈ Z \ Z++ (and hence x ∈ Z \ Z+). Let us define

λ+ = sup{λ | z∗ + λ(x− z∗) ∈ Z+} and z+ = z∗ + λ+(x− z∗).

By continuity of gt, z+ ∈ Z+ and gt(z∗)−α/2 = gt(z
+). By definition of z+, we have

x− z∗ = 1
λ+ (z+ − z∗) and hence

1

λ+
>

1

λ∗
. (3.19)

But z+ = λ+x+ (1− λ+)z∗ and hence

gt(z
∗)− α/2 = gt(z

+) = gt(λ
+x+ (1− λ+)z∗) > λ+gt(x) + (1− λ+)gt(z

∗).

Thus, we have
α

2
6 λ+(gt(z

∗)− gt(x)) 6 λ+(|gt(z∗)|+ |gt(x)|) 6 2εtλ+,

where the last inequality comes from (3.15) because z∗, x ∈ Z. Therefore, we have

λ+ >
α

4εt
= λ∗,

which contradicts (3.19). We have now established Z ⊆ Z++. By definition, we have
Z++ = 1

λ∗Z
+ + (1− 1

λ∗ )z
∗. Since the volume of a body is invariant under translation,

we have

vol(Z) 6 vol(Z++) = vol

(
1

λ∗
Z+

)
=

(
1

λ∗

)N
vol(Z+)

and further

Φ(t) =

∫
z∈Z

egt(z)dz

>
∫
z∈Z+

egt(z)dz

> 2Φ(0)e
ε2

3
t+ 1

2
α vol(Z+)

> 2Φ(0)e
ε2

3
t+ 1

2
α
( α

4εt

)N
vol(Z)

> 2Φ(0)e
ε2

3
t,

which is a contradiction to (3.14). We therefore conclude that for every z ∈ Z,

egt(z) 6 2e
ε2

3
t+αΦ(0).
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We can now derive an upper bound for the number of iterations needed to converge
to ε-optimal strategies..

Lemma 3.4.4. Assume that there exists α satisfying (3.16), (3.17). If we choose t so
that

t >
6

ε2
(α+ max{0, log(2 vol(Z))}), (3.20)

then (x(t), y(t)) is an ε-optimal pair and (3.16) holds.

Proof. By (3.18) we have that for all z ∈ Z,

gt(z) 6
ε2

3
t+ α+ log(2Φ(0)) =

ε2

3
t+ α+ log(2 vol(Z)).

Or equivalently,

ε

2
t(F (x(t), η)− F (ξ, y(t))) 6

ε2

3
t+ α+ log(2 vol(Z)) for all ξ ∈ X and η ∈ Y.

Dividing the both sides by εt/2 gives

F (x(t), η) 6 F (ξ, y(t)) +
2ε

3
+

2

εt
(α+ log(2 vol(Z)),

Now, applying the assumption about t in the lemma (i.e., (3.20)) implies that

F (x(t), η) 6 F (ξ, y(t)) + ε for all ξ ∈ X and η ∈ Y.

Finally, (3.16) holds since 4εt > 24α/ε > α.

In the following lemma, we show there exist α and t satisfying the assumptions in
Lemma 3.4.3.

Lemma 3.4.5. For every ε ∈ (0, 1), there exist α and t = O
(
N
ε2

log R
ε

)
satisfying

(3.16), (3.17) and (3.20).

Proof. To show the lemma, we consider two cases:

Case 1. vol(Z) 6 1
2 . Let us set t = 6α/ε2 and take the logarithm from both sides of

inequality (3.17), then we get

α

2
+N log

( α

4εt

)
+ log(vol(Z)) > 0.

Now, if we chose α
2 = N log(25

ε )− log(vol(Z))) , then the α and t would satisfy
the inequality (3.17) . Hence, we have that

t = 6α/ε2 = O

(
N

ε2
log

1

ε
+

1

ε2
log

1

vol(Z)

)
= O

(
N

ε2
log

R

ε

)
,

where the last inequality follows since 1/ vol Z 6 RN .
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Case 2. vol(Z) > 1
2 . Then we have

e
α
2

( α

4εt

)N
vol(Z) >

1

2
e
α
2

( α

4εt

)N
,

In order to satisfy inequality (3.17), it is sufficient to find α and t satisfying

1

2
e
α
2

( α

4εt

)N
> 1.

To satisfy (3.20), let us simply choose t = 6α/ε2 + (6/ε2) log(2 vol(Z)) and
demand that

1

2
e
α
2

( α

4εt

)N
=

1

2
e
α
2

(
α

24α
ε + 24

ε log(2 vol(Z))

)N
> 1,

or equivalently

2

(
24

ε

)N (
1 +

log(2 vol(Z))

α

)N
< e

α
2 .

Thus, it is enough to select

α = max

{
4(log 2 +N log(

24

ε
)), 2

√
N log(2 vol(Z))

}
,

which satisfies

2

(
24

ε

)N
6 e

α
4 and

(
1 +

log(2 vol(Z))

α

)N
< e

log(2 vol(Z))
α

N 6 e
α
4 .

It follows that

t = max

{
24

ε2
(log 2 +N log(

24

ε
)),

12

ε2

√
N log(2 vol(Z))

}
+

6

ε2
log(2 vol(Z)).

Since vol(Z) 6 RN , we have that t = O
(
N
ε2

log R
ε

)
As we see in both cases (3.16) holds by the preceding lemma.

Corollary 3.4.6. Assume X and Y satisfy assumptions (A1) and (A2). Then Algo-
rithm 5, when run with T satisfying the bound in Lemma 3.4.5, computes a pair of
ε-approximation saddle point in expected O(n+m

ε2
log R

ε ) iterations.

3.4.3. Using Approximate Distributions

We now consider the (realistic) situation when we can only sample approximately
from the convex sets. In this case we assume the existence of approximate sampling
routines that, upon the call in step 3 of the algorithm, return vectors ξ ∈ X, and
(independently) η ∈ Y , with densities p̂ξ(t) and q̂η(t), such that

sup
X′⊆X

∣∣∣∣ p̂X′(t)p̂X(t)
− pX′(t)

pX(t)

∣∣∣∣ 6 δ and sup
Y ′⊆Y

∣∣∣∣ q̂Y ′(t)q̂Y (t)
− qY ′(t)

qY (t)

∣∣∣∣ 6 δ, (3.21)
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where
p̂X′(t) =

∫
ξ∈X′

p̂ξdξ.

Similarly, define pX′(t), q̂Y ′(t), qY ′(t), and δ is a given desired accuracy. We next prove
an approximate version of Lemma 3.4.1.

Lemma 3.4.7. Suppose that we use approximate sampling routines with δ = ε/4 in
step 3 of Algorithm 5. Then, for t = 0, 1, 2, . . . , we have

E[Φ(t+ 1)] 6 E[Φ(t)](1 +
43

36
ε2).

Proof. The argument up to Equation (3.10) remains the same. Taking the expectation
with respect to η (with density proportional to q̂η(t)), we get

Eq̂[‖p(t+ 1)‖1] 6 ‖p(t)‖1

[
1 +

ε2

6
− ε

2

∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

]
. (3.22)

Similarly,

Ep̂[‖q(t+ 1)‖1] 6 ‖q(t)‖1

[
1 +

ε2

6
+
ε

2

∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p̂(t)‖1‖q(t)‖1

]
. (3.23)

Thus, by independence of ξ and η, we have

E[Φ(t+ 1)|x(t), y(t)] 6 Φ(t)

[(
1 +

ε2

6

)2

+
ε

2

(
1 +

ε2

6

)(∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

)

− ε2

4

∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p̂(t)‖1‖q(t)‖1
.

∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

]
.

We will make use of the following proposition.

Proposition 3.4.8. If we set δ = ε/4 in (3.21), then∣∣∣∣∣
∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

|q̂(t)‖1‖p(t)‖1

∣∣∣∣∣ 6 ε. (3.24)

Proof. Since∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
=

∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1
,

we can bound the L.H.S. of (3.24) by∣∣∣∣∣
∫
ξ∈X pξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

‖p(t)‖1‖q(t)‖1
−
∫
ξ∈X p̂ξ(t)

∫
η∈Y qη(t)F (ξ, η)dηdξ

|p̂(t)|‖q(t)‖1

∣∣∣∣∣+
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∣∣∣∣∣
∫
η∈Y qη(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q(t)‖1‖p(t)‖1
−
∫
η∈Y q̂η(t)

∫
ξ∈X pξ(t)F (ξ, η)dξdη

‖q̂(t)‖1‖p(t)‖1

∣∣∣∣∣ . (3.25)

Thus it is enough to show that each term in (3.25) is at most ε2 . Since the two terms
are similar, we only consider the first term. Define X ′ = {ξ ∈ X :

pξ(t)
pX(t) > p̂ξ(t)

p̂X(t)} and
X ′′ = X \X ′.

1

‖q(t)‖1

∣∣∣∣∫
ξ∈X

∫
η∈Y

qη(t)F (ξ, η)

(
pξ(t)

‖p(t)‖1
−
p̂ξ(t)

|p̂(t)|

)
dηdξ

∣∣∣∣
6

1

qY (t)

∫
ξ∈X

∫
η∈Y

qη(t)|F (ξ, η)|
∣∣∣∣ pξ(t)pX(t)

−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dηdξ
6

1

qY (t)

∫
ξ∈X

∫
η∈Y

qη(t)

∣∣∣∣ pξ(t)pX(t)
−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dηdξ (by (A2))

=

∫
ξ∈X

∣∣∣∣ pξ(t)pX(t)
−
p̂ξ(t)

p̂X(t)

∣∣∣∣ dξ
=

∫
ξ∈X′

(
pξ(t)

pX(t)
−
p̂ξ(t)

p̂X(t)

)
dξ +

∫
ξ∈X′′

(
p̂ξ(t)

p̂X(t)
−
pξ(t)

pX(t)

)
dξ

=

(
pX′(t)

pX(t)
− p̂X′(t)

p̂X(t)

)
+

(
p̂X′′(t)

p̂X(t)
− pX′′(t)

pX(t)

)
6
ε

2
(by(3.21)).

Proposition 3.4.8 implies that

E[Φ(t+ 1)|x(t), y(t)] 6 Φ(t)

[(
1 +

ε2

6

)2

+
ε2

2

(
1 +

ε2

6

)
+
ε4

4

]
6 Φ(t)

(
1 +

43

36
ε2

)
.

The rest of the proof is as in Lemma 3.4.1.

Proof of Theorem 3.3.1. Combining the currently known bound on the mixing time
for sampling (see [LV04, LV06, LV07] and also Section 3.2) with the bounds on the
number of iterations from Corollary 3.4.6 gives Theorem 3.3.1.

3.5. Applications in Combinatorial Optimization

In this section we give some examples for which the width parameter ρ is small. For
such examples with ρ 6 1, we see that our algorithm is superior to the previous known
algorithms.

3.5.1. Mixed Popular Matchings

Let S, T be two families (say, of combinatorial objects), and A ∈ [−1, 1]S×T be a given
matrix. We assume that these families have exponential size in some input parameter
and hence, the matrix is given by an oracle that specifies for each S ∈ S and T ∈ T the
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value of A(S, T ). The objective is to find a saddle point for the matrix game defined
by A and mixed strategy sets, which are defined as,

∆S = {p ∈ RS |
∑
S∈S

pS = 1, p > 0}

and
∆T = {q ∈ RT |

∑
T∈T

qT = 1, q > 0}.

In general, the optimal strategies might have exponential support (i.e., an expo-
nential number of non-zero entries). However, if the families arise from combinatorial
objects in a natural way, then the supports of optimal strategies may be polynomi-
ally bounded. More precisely, let E and F be two sets of sizes m and n respectively,
such that each element S ∈ S (respectively, T ∈ T ), is characterized by a vector
x(S) ∈ {0, 1}m indexed by the elements of E (respectively, y(T ) ∈ {0, 1}n indexed by
the elements of F ). Le X denote the convex hull of set {x(S) : S ∈ S} and similarly
Y denotes the convex hull of set {x(T ) : T ∈ T }. Let us assume that X and Y have
explicit linear descriptions, and furthermore that there exists an m×n matrix A such
that A(S, T ) = x(S)TAy(T ), for all S ∈ S and T ∈ T . Then it follows from Von
Neumann’s saddle point theorem [Dan63] (which is a special case of Theorem (3.1.2))
that

min
p∈∆S

max
q∈∆T

pTAq = min
x∈X

max
y∈Y

xTAy. (3.26)

Indeed,

min
p∈∆S

max
q∈∆T

pTAq = min
p∈∆S

max
q∈∆T

∑
S∈S,T∈T

pSqTA(S, T )

= min
p∈∆S

max
q∈∆T

∑
S∈S,T∈T

pSqTx(S)TAy(T )

= min
p∈∆S

max
q∈∆T

∑
S∈S

pSx(S)TA
∑
T∈T

qT y(T )

= min
p∈∆S

max
y∈Y

∑
S∈S

pSx(S)TAy

= max
y∈Y

min
p∈∆S

∑
S∈S

pSx(S)TAy

= max
y∈Y

min
x∈X

xTAy = min
x∈X

max
y∈Y

xTAy,

see, e.g., [KMN09]. Thus the original matrix game corresponds to a problem of the
form (3.1). To have a more clear picture of above framework, let us consider the
following problem, which was studied in [KMN09] under the name of mixed popular
matchings.

Let G = (U∪V,E) be a bipartite graph, and r : E ⊂ U × V → Z be a rank function
that captures preferences of any vertex of U over the vertices in V that means for every
(u, v1), (u, v2) ∈ E, r(u, v1) < r(u, v2) if and only if u prefers v1 to v2. A U -matching
M : U → V is an injective mapping such that {(u,M(u)) : u ∈ U} ⊆ E. Let

S = T = {{(u,M(u)) : u ∈ U} : M is a U -matching of G} ⊆ 2E .
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Given S, T ∈ S, define the quantity φ(S, T ) as follows,

φ(S, T ) = |{u ∈ U : r(u, S(u)) < r(u, T (u))}|/|U |,

that is the fraction of the vertices of U that “prefers” S to T , and define A(S, T ) =
φ(S, T ) − φ(T, S). It is well-known (see e.g. [GLS93]) that the convex hull of U -
matchings has the linear description

X = Y = {x ∈ RE+ :
∑

(u,v)∈E

xu,v = 1 ∀u ∈ U,
∑

(u,v)∈E

xu,v 6 1 ∀v ∈ V }.

Furthermore, if we define A ∈ RE×E to be the matrix with entries

a(u,v),(u′,v′) =


1
|U | if u = u′ and r(u, v) < r(u′, v′),

− 1
|U | if u = u′ and r(u, v) > r(u′, v′),

0 otherwise,

then for any S, T ∈ S, we can writeA(S, T ) = x(S)TAy(T ), where x(S), y(T ) ∈ {0, 1}E
are the characteristic vectors of S and T , respectively.

A matching S is said popular if φ(S, T ) > φ(T, S) for every matching T ∈ S and a
mixed matching is simply a probability distributions over matchings in graph G. The
function φ that compares two matchings generalizes in a natural manner to mixed
matchings by taking expectation. A mixed matching p is popular if φ(p, q) > φ(q, p)
for all mixed matchings q. In [KMN09] they show that the given graph has a popular
mixed matching if and only if

min
p∈∆S

max
q∈∆S

pTAq 6 0,

where p and q are two mixed matching and ∆S is a set of probability distributions
over a set of matchings in graph G. Note that in the above example, the problem can
be written as a linear program of polynomially bounded size [KMN09]. However, this
is not the case when the known linear descriptions of X and Y are not polynomially
bounded, e.g., when in the above example G is a general nonbipartite graph. In this
case finding a saddle-point may require the use of the Ellipsoid method, the sampling
techniques of [BV04, KV06], or the use of our algorithm.

3.5.2. Linear Relaxation for Submodular Set Cover

Let us consider set-function f : 2[n] → [0, 1], which is defined power set of [n]. We say
f is a submodular function, if for every S, T ⊆ [n], we have that

f(S ∪ T ) + f(S ∩ T ) 6 f(S) + f(T ).

Also we say f is monotone, if for every S ⊆ T ⊆ [n], we have that f(S) 6 f(T ). Let
us assume that f is a monotone submodular function and S1, . . . , Sn ⊆ E are given
subsets of a finite set E. With respect to sets Si, 1 6 i 6 n, and E we define polytope
P as follows,

P = {x ∈ [0, 1]n :
∑
i:Si3e

xi > 1 for all e ∈ E},
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For every X ⊆ [n], let e(X) ∈ {0, 1}n denote an n-dimensional vector whose i-th
coordinate is 1 if i ∈ X and zero otherwise. Submodular set covering problem is
defined as minimizing f(X) subject to the constraint that the characteristic vector
e(X) belongs to a polytope P ⊆ Rn. In what follows, we show how the problem can
reduced to computing a saddle point for a corresponding function whit ρ 6 1..

We define polymatroid Pf with respect to function f , as

Pf = {y ∈ Rn+ : e(X)T y 6 f(X) for all X ⊆ [n]}.

It is easy to see that that
f(X) = max

y∈Pf
e(X)T y.

Thus we arrive at the following saddle point computation which provides a lower bound
on the optimum submodular set cover,

min
x∈P

max
y∈Pf

xT y.
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A
Multiplicative Weights Update

Algorithms

The Multiplicative Weights Update Method (MWUM) is a general framework that has
been widely applied in machine learning, optimization, and game theory. The method
is based on an iterative and simple idea and is usually explained as a solution to a
general problem, called stock market prediction. In this problem, there is a decision
maker who wants to predict the stock market every day and n experts who announce
their predictions at the beginning of each day. The decision maker’s goal is to follow
the prediction of an expert while minimizing the cost incurred by the chosen prediction.
MWUM is a learning process that initially sets an equal weight for each expert and
then, according to the value of each prediction, updates the weights at the end of the
day. For example, if an expert gives a correct prediction, then his weight gets updated
by a multiplicative factor (1 + ε), or similarly, by a multiplicative factor (1 − ε) for
making a wrong prediction, where 0 < ε < 1 is a given parameter to the algorithm.
Based on these weights, at the beginning of the next day, the decision maker follows
the prediction of experts with higher weights. Intuitively, the method should perform
well. For instance, consider a situation where there is a best expert with few mistakes.
Then, in a long run, his weight mostly increases, and it is more likely that the decision
maker follows him. In this chapter, we survey and review recent algorithms that are
based on MWUW, which can also be found in [Kha04, Kal07]. In the last section, we
also show that there exists an efficient algorithm for convex fractional packing. For the
sake of completeness, we also present the correctness proofs for most of the algorithms.

Outline. In Sections A.1 and A.2, we explain algorithms for some variations of the
stock market prediction problem. In Section A.3, we consider the feasibility check
problem, which is a basic problem in optimization and show how to apply the MWUM
for this problem. In Section A.4, we will see how MWUM is applied to get fast and
efficient algorithm for the mixed packing and covering problem, which is a generaliza-
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tion of packing and covering linear programming. In Subsections A.4.3, we apply the
algorithm for the mixed problem to convex fractional packing problem and present an
efficient algorithm for it. Throughout this chapter, we denote the inner product of
two vectors a and b by 〈a, b〉.

A.1. The Weighted Majority Algorithm

In this section, we briefly discuss the weighted majority algorithm and the results
concerning it. Consider a variant of the stock market prediction in which the prediction
has the binary value, say Yes/No, and the quality of the algorithm is measured by the
number of mistakes that are made over time. The weighted majority algorithm assigns
equal weights wi = 1 to each expert i ∈ {1, . . . , n}. Then, at the end of each day, the
algorithm updates the weight of each expert who predicts wrongly by a factor of (1−ε)
and the decision maker follows the prediction with higher total weight. Formally, the
algorithm proceeds as follows:

Algorithm 6. Weighted majority algorithm
Initialization: Fix an ε 6 1

2 . For each expert i, associate the weight w1
i = 1.

For t = 1, 2, . . . , T :
1. Make the prediction that is the weighted majority of the experts’ predictions based
on the weights wt1, . . . , wtn. That is, predict Yes or No depending on which prediction
has a higher total weight of experts advising it (breaking ties arbitrarily).
2. For every expert i who predicts incorrectly, decrease his weight for the next round
by multiplying it by a factor of (1− ε) :

wt+1
i = (1− ε)wti .

The following theorem derives an upper bound for mistakes mT that are made by
the algorithm after T rounds.

Theorem A.1.1. [Kal07, Chapter 2 ] After T steps, let mT
i denote the number of

mistakes of expert i, and let mT be the number of mistakes that Algorithm 6 has made.
Then, we have the following bound for every i:

mT 6
2 log n

ε
+ 2(1 + ε)mT

i .

In particular, this holds for i, which is the best expert, i.e., having the least mT
i .

The proof of the theorem is based on a potential function in t, which is defined as

φ(t) =
n∑
i=1

wti .

It is clear that φ(1) = n, and if the algorithm makes a mistake on the (T + 1)-st day,
then at least half of the total weight decreases by a factor of (1− ε), and we have

φ(T + 1) 6 φ(T )/2 + φ(T )(1− ε)/2 = φ(T )(1− ε/2).
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Hence, by an induction argument we have

φ(T + 1) 6 n(1− ε/2)m
T
.

On the other hand, we have that for every expert i ∈ {1, . . . , n}, wTi = (1 − ε)mTi 6
φ(T + 1). We therefore have the following inequality proving the theorem.

(1− ε)mTi 6 n(1− ε/2)m
T
.

A.2. The Multiplicative Weights Update Algorithm

In this section, we consider a more general model for the stock market prediction. We
assume that the experts predict a real number in range [−1, 1] and also the prediction
of expert i at the beginning of day t ∈ {1, . . . , T} causes cost mt

i in range [−1, 1],
which is specified by the environment at the end of the day. Since each expert predicts
a unique number which might be translated to an action, we cannot follow a weighted
majority algorithm and we have to select exactly one expert and follow his advise.
As before, the goal is to design an algorithm to help the decision maker to minimize
his expenses. Here, we present a randomized algorithm which is similar to a weighted
majority algorithm with two differences: First, we follow the advise of one expert that
is selected according to a probability distribution over the experts. Note that, the
probability destiny corresponding to each expert is proportional to his weight. Second,
since our algorithm is randomized the quantity we are dealing with is the expected cost
of the decision maker. Suppose that P t denotes the probability distribution over the
experts for t-th day and let mt ∈ [−1, 1]n be a vector whose i-th component indicating
the cost caused by the i-th expert. Then the expected cost incurred by the decision
maker in the t-th day, denoted by Ct, is

E[Ct] = 〈mt, P t〉.

In the following we present the algorithm and a theorem that establishes an upper
bound for the total expected cost.

Algorithm 7. Multiplicative Weights Algorithm
Initialization: Fix an ε 6 1

2 . For each expert i, associate the weight wti := 1.
For t = 1, 2, . . . , T :
1. Choose expert i with probability proportional to his weight wti , that is , distribution
P t = {wt1/φ(t), . . . , wtn/φ(t)} where φ(t) =

∑
iw

t
i .

2. Observe the costs of the experts mt.
3. Penalize the costly experts by updating their weights as follows: for every expert i,

wt+1
i :=

{
wti(1− ε)m

t
i if mt

i > 0

wti(1 + ε)−m
t
i if mt

i < 0.
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Theorem A.2.1. [Kal07, Chapter 2] In the given setup, the Multiplicative Weights
algorithm guarantees that after T rounds, for any expert i, we have

T∑
t=1

〈mt, P t〉 6
T∑
t=1

mt
i + ε

T∑
t=1

|mt
i|+

log n

ε
.

Proof. Let us first mention some facts, which follow immediately from the convexity
of the exponential function:

(1− ε)x 6 (1− εx) if x ∈ [0, 1],

(1 + ε)−x 6 (1− εx) if x ∈ [−1, 0].

Let us define the potential function φ(t) =
∑

iw
t
i . Since m

t
i ∈ [−1, 1], using the above

facts we have

φ(t+ 1) =
∑
i

wt+1
i =

∑
i:mti>0

wti(1− ε)m
t
i +

∑
i:mti<0

wti(1 + ε)−m
t
i

6
∑
i

wti(1− εmt
i) = φ(t)− εφ(t)

∑
i

mt
iP

t
i

= φ(t)(1− ε〈mt, P t〉) 6 φ(t)e−ε〈m
t,P t〉,

where, we used the fact that P ti =
wti
φ(t) . Thus, by induction, after T rounds we have

φ(T + 1) 6 φ(1)e−ε
∑T
t=1〈mt,P t〉 = n · e−ε

∑T
t=1〈mt,P t〉

Furthermore, for every expert i,

φ(T + 1) > wT+1
i = (1− ε)

∑T
t=2,mt

i
>0
mti · (1 + ε)

−
∑T
t=2,mt

i
60
mti
.

Now, by taking logarithms and applying the facts that log(1 − ε) > −(ε + ε2),
log(1 + ε) > ε− ε2, we get the desired inequality.

A.3. The Approximation Algorithm for Feasibility Check

In this section, we apply MWUM for a fundamental problem in optimization that is
the feasibility check of a given convex set; by either finding a feasible point in the set
or reporting that the set is empty. Let us consider convex set Q ⊆ Rn which is defined
as

Q := {x ∈ P ⊂ Rn : Ax > b}, (A.1)

where A is an m × n matrix, b ∈ Rm and P is a convex set in Rn. Usually, set P
is considered as a set of "easy" constraints, for example non-negativity. In order to
approximately solve the feasibility check problem, we slightly relax the constraints by
allowing an additive small error δ > 0 for each constraint, that is, point x ∈ Rn is
approximately feasible if and only if for all i,

x ∈ P and Aix > bi − δ,
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where Ai is the i-th row of A. Our goal is to design an algorithm that either outputs
an approximately feasible point in Q with small error or shows that Q is infeasible.
Let us assume that an oracle exists so that for a given a probability vector p on the
m constraints, it either finds an x satisfying the following constraint

x ∈ P and 〈pT , Ax〉 > 〈pT , b〉, (A.2)

or outputs there is no such x. It is reasonable to expect such an optimization procedure
to exist since we only need to check the feasibility of one constraint rather than m. It
is clear that if x ∈ Q, then for every probability distribution p we have pTAx > pT b.
So if we can find a probability distribution p so that there is no x satisfying (A.2),
then we conclude that Q is an empty set. In what follows we define an oracle with
some certain properties which is useful in design of our algorithm.

Definition A.3.1. [Kal07, Chapter 2] An (l, ρ)-bounded oracle, for parameters 0 6
l 6 ρ, is an algorithm which given a probability vector p over the constraints, solves the
feasibility problem (A.2). Furthermore, there is a fixed subset I ⊆ [m] of constraints
such that whenever the oracle manages to find a point x ∈ P satisfying (A.2), the
following holds:

∀i ∈ I : Aix− bi ∈ [−l, ρ]

∀i /∈ I : Aix− bi ∈ [−ρ, l]

The value ρ is called the width of the problem.

Now, we adjust Multiplicative Weights Update Algorithm 7 for this problem and
show the following theorem.

Theorem A.3.2. [Kal07, Chapter 2] Let δ > 0 be a given error parameter. Suppose
there exists an (l, ρ)-bounded oracle for the feasibility problem (A.2). Assume that
l > δ

2 . Then there is an algorithm which either solves the problem up to an additive

error of δ, or correctly concludes that the system is infeasible, making only O
(
lρ logm
δ2

)
calls to the oracle.

Proof. The condition l > δ
2 is only technical, and if it is not met we can just redefine

l to be δ
2 . To prove the theorem, we adopt Algorithm 7. Let us assume that each

expert represents one of the m constraints and events correspond to vectors in P. The
loss of the expert corresponding to i-th constraint for event x is (Aix − bi)/ρ, which
is a number lying in the range [−1, 1]. In each round t, given a distribution over the
experts (i.e., the constraints) pt, we run the oracle with pt. If the oracle declares that
there is no x ∈ Q such that 〈ptT , Ax〉 > 〈ptT , b〉, then we stop, because now pt proves
that (A.1) is infeasible. So let us assume that this does not happen, i.e., in each round
t, the oracle manages to find a solution xt such 〈ptT , Ax〉 > 〈ptT , b〉. Recall that the
the cost vector was specified to be mt := (Axt−b)/ρ, so we conclude that the expected
cost in each round is non-negative and is computed as

〈mt, pt〉 =
1

ρ
〈Axt − b, pt〉 =

1

ρ
(pt

T
Axt − ptT b) > 0.
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Let us fix an arbitrary i ∈ I. Then Theorem A.2.1 tells us that after T rounds,

0 6 〈mt, pt〉 6
T∑
t=1

(Aix
t − bi)/ρ+ ε

T∑
t=1

|Aixt − bi|/ρ+
logm

ε

= (1 + ε)
T∑
t=1

(Aix
t − bi)/ρ+ 2ε

∑
<0

|Aixt − bi|/ρ+
logm

ε

6 (1 + ε)
T∑
t=1

(Aix
t − bi)/ρ+

2εl

ρ
T +

logm

ε

Here, the subscript <0 refers to the rounds in which Aixt− bi < 0. The last inequality
follows because if Aixt− bi < 0, then |Aixt− bi| 6 l. Dividing by T , multiplying by ρ,
and letting x̄ = 1

T

∑T
t=1 x

t (note that x̄ ∈ Q since Q is a convex set), we get that

0 6 (1 + ε)(Aix̄− bi) + 2εl +
ρ logm

εT

Now, if we choose ε = δ
4l (note that ε 6 1

2 since l > δ
2), and T = d8lρ logm

δ2 e, we get
that

0 6 (1 + ε)[Aix̄− bi] + δ → Aix̄ > bi − δ.

Reasoning similarly for i /∈ I, we get the same inequality. Putting both together,
we conclude that x̄ satisfies the feasibility problem A.1 up to an additive δ factor, as
desired.

A.3.1. Covering Linear Programming

In this subsection, we show how MWUM can be applied for solving covering linear
programming is a basic optimization problem that is usually formulated as follows:

min cTx
s.t Ax > b

x > 0,

where entries in matrix A, b and c are non-negative. It is not hard to see that by adding
the constraint cTx > b′, for some real number b′ > 0 to the set of constraints, we can
reduce the covering problem to a feasibility check problem. Note that by performing
binary search over the possible values of b′ we can find the optimal b′. Then finding a
solution to the covering problem corresponds to the feasibility check of the following
set:

Q := {x ∈ P ⊂ Rn : cTx > b′ and Ax > b},

where P denote the non-negativity constraints. By appropriate scaling of the inequal-
ities, we assume that for every i, bi = 1. Since each entry of A is non-negative, for
every x ∈ P we have Ax > 0 and hence Aix − bi > −1. Let us assume that there is
a (1, ρ)-bounded oracle for this problem. Now, applying Theorem A.3.2, we get the
following theorem:
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Theorem A.3.3. [Kal07, Chapter 2] Suppose there exists a (1, ρ)−bounded oracle for
the program Ax > b with x ∈ P. Given an error parameter δ > 0, there is an algorithm
which computes a δ-approximate solution to the program, or correctly concludes that
it is infeasible, using O(ρ logm/δ2) calls to the oracle.

Since reducing our covering problem to the corresponding feasibility check problem
requires a binary search, we have to repeat Algorithm 7 as many as times the binary
search needs.

A.4. The Width-Independent Algorithm for Optimization
Problems

In this section, we present a width-independent algorithm for several class of opti-
mization problems which appeared in Khandekar’s Thesis [Kha04]. Before we show
the results, we need to have some notations and definitions:

Definition A.4.1. [Kha04, Chapter 5] (Mixed Problem). Given a non-empty convex
set Q ⊆ Rn, non-negative continuous convex functions fi : Q → R+ for 1 6 i 6 m,
and non-negative continuous concave functions gi : Q → R+ for 1 6 i 6 k, a mixed
problem seeks either to find an x ∈ Q such that

max
16i6m

fi(x) 6 min
16j6k

gj(x),

or to prove that no such x ∈ Q exists.

Note that, this problem is called mixed as it contains both a packing component
maxi fi(x) and a covering component minj gj(x). For a non-zero vector v > 0, the
vector v denotes v after normalization, that is , v = v/

∑
i vi. In order to solve the

mixed problem, we assume that there is an oracle to solve the following problem.

Definition A.4.2. [Kha04, Chapter 5] (Oracle). Given y ∈ Rm+ and z ∈ Rk+, the
oracle either finds an x ∈ Q such that

〈y, f(x)〉 6 〈z, g(x)〉, (A.3)

or proves that no x ∈ Q such exists.

A linear version of the mixed problem was first considered by Young [You01] but
Khandekar [Kha04] generalized the result to arbitrary convex/concave functions over
convex sets.

Outline. In Subsection A.4.1, we explain a basic problem, so-called online prediction,
and prove that there exists an algorithm that solves the problem. In Subsection A.4.2,
based on the result concerning the Online Prediction problem we present an algorithm
for the mixed problem which is independent of the width parameter. In Subsection
A.4.3, applying the general framework for solving the mixed problem, we present an
efficient algorithm for convex packing problem.
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A.4.1. Online Prediction Problem

In the online prediction problem, there is an agent who has m different strategies
to choose from. The agent is involved in a prediction that goes over many rounds.
In round r, the agent decides a probability distribution P r = (P r1 , · · · , P rm) over the
strategies. In round r, each strategy earns a profit Pri and incurs a loss Lri that
is determined by the environment. The income made by the i-th strategy is then
Iri = Pri − Lri . The income earned by the agent in round r is the weighted sum

〈P r, Ir〉 =
∑
i

P ri Iri =
∑
i

P ri (Pri − Lri ).

We also assume that income Ii, for every 1 6 i 6 m, lies in range [−1, 1]. The goal
of the agent is to maximize her cumulative income relative to the income of the best
strategy. Let N denote the total number of rounds. The agent chooses a distribution
P r in round r based on the knowledge of the vectors Ps,Ls in all previous rounds
1 6 s < r. The agent’s goal is to earn a cumulative income that is as close to the best
strategy as possible. Let us define

P =

N∑
r=1

m∑
i=1

P ri Pri and L =

N∑
r=1

m∑
i=1

P ri Lri ,

to be the cumulative profit and loss made by the agent in N rounds, respectively. Let
I = P − L denote the net cumulative income of the agent and Ii =

∑N
r=1(Pri − Lri )

be the cumulative income of the i-th strategy in N rounds. We have the following
theorem.

Theorem A.4.3. [Kha04, Chapter 2] Given any ε ∈ (0, 1), there exists a deterministic
algorithm for choosing the distributions such that

max
i∈[m]

Ii 6 (eεP − e−εL) +
logm

ε

Proof. Let xri =
∑r−1

s=1 Isi and define distribution P ri in each round r as follows:

P ri = eεx
r
i /(eεx

r
1 + eεx

r
2 + · · ·+ eεx

r
m).

Clearly, for every r we have P ri > 0 and
∑m

i=1 P
r
i = 1, so this is a well-defined

probability distribution. Using inequality ez − 1 6 zez, assumption −1 6 Iri 6 1 and
substituting Iri = Pri − Lri , we have

eεx
r+1
i − eεxri = eε

∑r
s=1 Isi − eε

∑r−1
s=1 Isi = eε

∑r−1
s=1 Isi (eεI

r
i − 1)

6 eεx
r
i · ε · Iri · eεI

r
i = ε · (Pri − Lri )eεI

r
i · eεxri

= ε(Pri eεI
r
i − Lri eεI

r
i )eεx

r
i

6 ε(eεPri − Lri e−ε)eεx
r
i .

This implies that

(eεPri − e−εLri )eεx
r
i >

eεx
r+1
i − eεxri
ε

(A.4)
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Therefore, by substituting distribution P ri and using Inequality (A.4), we get

eεP − e−εL =
N∑
r=1

(eε
m∑
i=1

P ri Pri − e−ε
m∑
i=1

P ri Lri )

=

N∑
r=1

∑m
i=1(eεPri − e−εLri ) · eεx

r
i

eεx
r
1 + eεx

r
2 + · · ·+ eεxrm

>
N∑
r=1

m∑
i=1

eεx
r+1
i − eεxri

ε(eεx
r
1 + eεx

r
2 + · · ·+ eεxrm)

.

We also have

N∑
r=1

m∑
i=1

eεx
r+1
i − eεxri

ε(eεx
r
1 + eεx

r
2 + · · ·+ eεxrm)

=
1

ε

N∑
r=1

(∑m
i=1 e

εxr+1
i∑m

i=1 e
εxri
−
∑m

i=1 e
εxri∑m

i=1 e
εxri

)

=
1

ε

N∑
r=1

(∑m
i=1 e

εxr+1
i∑m

i=1 e
εxri
− 1

)

>
1

ε

N∑
r=1

log

∑m
i=1 e

εxr+1
i∑m

i=1 e
εxri

=
1

ε
log

∑m
i=1 e

εxN+1
i∑m

i=1 e
εx1
i

,

where the last inequality follows from inequality z − 1 > log z and telescoping sum.
Finally we get

eεP − e−εL >
1

ε
log

∑m
i=1 e

εxN+1
i

m
=

1

ε
log

∑m
i=1 e

εIi

m

=
1

ε
log(

m∑
i=1

eεIi)− logm

ε
>

1

ε
log max

i∈[m]
eεIi − logm

ε

=
1

ε
log emaxi∈[m] εIi − logm

ε
= max

i∈[m]
Ii −

logm

ε

Corollary A.4.4. [Kha04, Chapter 2] If Lri = 0 for all i ∈ [m], r ∈ [N ]

max
i∈[m]

Pi 6 eεP +
logm

ε

Proof. Follows directly from Theorem A.4.3, if we set Ii = Pi and L = 0.

Corollary A.4.5. [Kha04, Chapter 2] If Pri = 0 for all i ∈ [m], r ∈ [N ]

min
i∈[m]

Li > e−εL − logm

ε

Proof. Follows directly from Theorem A.4.3, if we set Ii = −Li and P = 0.
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A.4.2. A Width-Independent Algorithm for Mixed Problem

In this subsection, we mainly focus on the mixed problem and present an algorithm
for it. We also show the following theorem deriving an upper bound for the number
of iterations and the error.

Algorithm 8. A width independent algorithm for mixed problem.
Algorithm MIXED(width independent)
Input: Convex set Q ⊆ Rn, functions f : Q → Rm+ , g : Q → Rk+, and w ∈ (0, 1)
Output: infeasible or x̃ ∈ Q

1. Initialize

2. r := 0 {initialize the round number}

Repeat

3. r := r + 1 {round r begins}

4. Find xr ∈ Q such that 〈y, f(xr)〉 6 〈z, g(xr)〉. {oracle call}
If there is no such xr, then output infeasible

5. wr := 1/max{maxi∈[m] fi(xr),maxj:zj>e−εΓ gj(xr)} {pick xr to an extent wr}

6. Update (wr, y, z, xr)

7. Until Stop-condition is True {round r ends}

8. Output x̃ =
∑r
s=1 wsxs∑r
s=1 ws

Initializing Subroutine:

Set ε =
w

3
For i ∈ [m] do yi := 1

For j ∈ [k] do zj := 1 initializing the dual variables

Γ := 2ε−2(logm+ e2ε log k)

Update (w, y, z, x) Subroutine:

For i ∈ [m] do yri := yi.e
εwfi(x)

For j ∈ [k] do

If zj > e−εΓ, then zj := zj · e−εwgj(x) dual variable updated
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Stop-Condition Subroutine:

True, if max
i∈[m]

r∑
s=1

wsfi(xs) > Γ stop if some fi is packed enough

True, if min
j∈[k]

r∑
s=1

wsgj(xs) > Γ stop if all gj is covered enough

False, otherwise

Theorem A.4.6. [Kha04, Chapter 5] There exist an algorithm for the mixed problem
that given an error parameter w ∈ (0, 1) either computes an x ∈ Q such that

max fi(x)i∈[m] 6 ew min
j∈[k]

gj(x),

or proves that there is no x such that fi(x) 6 gj(x) for all i and j. The algorithm
makes O((m + k)w−2 log(m + k)) calls to the oracle (A.3) and takes additional time
that is needed to compute f(x) and g(x) for some x ∈ Q between successive oracle
calls.

Proof. We prove that Algorithm 8 satisfies the claims in the statement of the theorem.
Consider the following instance of online prediction problem. Suppose there is an agent
with m strategies corresponding to functions f1, . . . , fm and has total N rounds. Let
in round r, the i-th strategy earns a profit of wrfi(xr) and incurs a loss of zero,
Lri = 0. Assume the agent chooses a distribution {yr} in round r which is exactly
like distribution P ri in Theorem A.4.3, yri = e

∑r−1
s=1 Isi = e

∑r−1
s=1 εwsfi(xs). Therefore, by

Corollary A.4.4 we have,

max
i∈[m]

Pi 6 eεP +
logm

ε
.

Hence,

max
i∈[m]

N∑
r=1

wrfi(xr) 6 eε
N∑
r=1

m∑
i=1

yr
i
.wrfi(xr) +

logm

ε

= eε
N∑
r=1

wr〈yr, f(xr)〉+
logm

ε
. (A.5)

Let us consider another instance of online prediction problem. There is an agent who
has k strategies corresponding functions g1, g2, . . . , gk and has total N round. The
j-th strategy in round r incurs profit of zero and loss of wrgj(xr) if zrj > e−εΓ and
zero otherwise. Agent chooses a distribution {zr} in round r like distribution P ri in
Theorem A.4.3, where

zrj = e
∑r−1
s=1 Isj = e−

∑r−1
s=1 εwsgj(xs).
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By applying Corollary A.4.5 we have

min
j∈[k]

N∑
r=1

wrgj(xr) > e−ε
N∑
r=1

〈zr, wrg(xr)〉 −
log k

ε

= e−ε
N∑
r=1

wr〈zr, g(xr)〉 −
log k

ε
. (A.6)

Since in each round r, we choose xr from Oracle A.3, we have 〈yr, f(xr)〉 6 〈zr, g(xr)〉
and also,

N∑
r=1

wr〈yr, f(xr)〉 6
N∑
r=1

wr〈zr, g(xr)〉. (A.7)

By Inequalities (A.5), (A.6) and (A.7) we have that

max
i

N∑
r=1

wrfi(xr) 6 eε
N∑
r=1

wr〈yr, f(xr)〉+
logm

ε

6 eε
N∑
r=1

wr〈zr, g(xr)〉+
logm

ε

6 e2ε min
j

N∑
r=1

wrgj(xr) +

(
logm+ e2ε log k

ε

)

= e2ε min
j

N∑
r=1

wrgj(xr) +
εΓ

2
. (A.8)

Based on Stop-Condition, we may consider two cases:

1. maxi
∑N

r=1wr · fi(xr) > Γ

2. minj
∑N

r=1wr · gj(xr) > Γ

In the first case, by using inequality 1− ε/2 > e−ε, for every ε 6 1/2, we have

max
i

N∑
r=1

wrfi(xr)−
εΓ

2
> max

i

N∑
r=1

wrfi(xr)−
ε

2
max
i

N∑
r=1

wrfi(xr)

= (1− ε/2) max
i

N∑
r=1

wrfi(xr)

> e−ε max
i

N∑
r=1

wrfi(xr). (A.9)
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In the second case, by using the inequality 1 + ε 6 eε, we have

e2ε min
j

N∑
r=1

wrgj(xr) +
εΓ

2
6 e2ε min

j

N∑
r=1

wrgj(xr) +
ε

2
min
j

N∑
r=1

wrgj(xr)

6 (1 + ε)e2ε min
j

N∑
r=1

wrgj(xr)

6 e3ε min
j

N∑
r=1

wrgj(xr). (A.10)

For both cases, by Inequalities (A.8), (A.9) and (A.10) we get

max
i

N∑
r=1

wrfi(xr) 6 e3ε min
j

N∑
r=1

wrgj(xr). (A.11)

Let x̃ :=
∑N
r=1 wrxr∑N
r=1 wr

and since Q is convex, we have x̃ ∈ Q. Therefore, by Inequality
(A.11), the convexity of all fi and the concavity of all gj we have

max
i
fi(x̃) = max

i
fi

(∑N
r=1wrxr∑N
r=1wr

)

6 max
i

∑N
r=1wrfi(xr)∑N

r=1wr
6 e3εminj

∑N
r=1wrgj(xr)∑
wr

6 e3ε min
j
gj

(∑N
r=1wrxr∑N
r=1wr

)
= e3ε min

j
gj(x̃). (A.12)

So output x̃ satisfies the statement of in Theorem A.4.6. The proof of the running time
proceeds as follows: For each round r, let us define the following set and functions:
A := {j ∈ [k]|

∑r
s=1wsgj(xs) < Γ}, which denotes the set of functions gj that are

not yet covered to an extent Γ, Fi =
∑r

s=1wsfi(xs) and Gj =
∑r

s=1wsgj(xs). Note
that the values of Fi and Gj never decrease as the algorithm progresses. Now let us
carefully consider the way we have defined the weight wr in line (5) of Algorithm 8
and the way we update the dual variables in Update subroutine (see at the end of
this subsection). If j ∈ A, we have Gj < Γ. Therefore, the current value of zj is
e−εGj > e−εΓ and it affects wr = 1/max{maxi fi(xr),maxzj>e−εΓ gj(xr)}. Therefore,
in any round r we have, either A decreases in size by at least one, or at least one of∑m

i=1 Fi and
∑

j∈AGj increases by at least one. We exit the repeat loop as soon as
either maxi Fi > Γ or A becomes empty (see Stop-Condition subroutine at the end of
this subsection). Therefore, the maximum value that any Fi can take is Γ+1. We have
added 1 to Γ, because each Fi increases in steps of at most 1. Thus the maximum value
that

∑m
i=1 Fi can take ism(Γ+1). Now, as soon as Gj > Γ, the index j is removed from

A. Thus for any j, the value of Gj can rise at most up to Γ+1 while j ∈ A. Therefore,
the total number of rounds is at most (m+ k)(Γ + 1) = O((m+ k)w−2 log(m+ k)) .
Since the number of oracle calls is exactly equal to the number of rounds and w = ε/3,
the proof is complete.
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A.4.3. Convex Fractional Packing Problem

In this subsection we first define convex packing problem and then by applying The-
orem A.4.6 we show our result.

Definition A.4.7 (Convex Fractional Packing Problem). A convex fractional packing
problem is defined as follows:

max cTx

s.t hi(x) 6 bi i ∈ [m] (A.13)
x > 0

where hi, 1 6 i 6 m is a convex function and c, b > 0 are vectors with non-negative
entries. We also assume that for every i, hi(0) = 0.

Theorem A.4.8. Suppose that w ∈ (0, 1) is a given error parameter. Then, there
is an algorithm that computes an x > 0, which is a feasible solution to the convex
fractional packing problem and satisfies

cTx > e−2w · µ∗

where µ∗ is the optimum value of convex packing problem. The algorithm makes
O(τmw−2 logm) calls to the oracle, where m is the number constraints and τ is the
time required for binary search over the all possible values taken by cTx.

Proof. We first reduce convex fractional packing problem to a feasibility problem by
adding one more constraint, that is, cTx > µ, where µ is a constant given by binary
search.The feasibility problem is defined as follows:

hi(x) 6 bi i ∈ [m] (A.14)

cTx > µ (A.15)
x > 0

Now, let us set fi(x) := hi(x)/bi for every 1 6 i 6 m, fm+1(x) = 1, g1(x) = 1 and
g2(x) = cTx/µ. Clearly, we have that fi’s are convex and gi’s are concave. For a given
error parameter w ∈ [0, 1], consider the following mixed problem,

max
i∈[m+1]

fi(x) 6 min
j∈[2]

gj(x),

By Theorem A.4.6, we know that Algorithm 8 either finds an x that satisfies

max
i∈[m+1]

fi(x) 6 ew min
j∈[2]

gj(x), (A.16)

or says that there is no x satisfying

max
i∈[m+1]

fi(x) 6 min
j∈[2]

gj(x).

In the following we show that Algorithm 8 solves our feasibility problem as well. So,
we may consider two cases:
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Case 1. The algorithm outputs an x satisfying A.16. Let us define x̄ := x/ew. There-
fore, by convexity of hi’s and the assumption hi(0) = 0, we have that for every
1 6 i 6 m,

hi(x̄) = hi(x/e
w) 6 hi(x)/ew = bifi(x)/ew 6 bi,

where the last inequality follows from fi(x) 6 ew for every i. Therefore, x̄
satisfies A.14. On the other hand, we have that

cTx/µ > min
j
gj(x) > e−w ·max

i
fi(x) > e−w · 1 = e−w.

So we get

cT x̄ =
cTx

ew
> e−2wµ.

Case 2. Algorithm 8 outputs there is no x satisfying the mixed problem. In this case
we show that there is no x that satisfies constraints A.14 and A.15. Towards a
contradiction, assume there exists an x such that hi(x) 6 bi for every i, i ∈ [m],
and cTx 6 µ, therefore we have that

hi(x)/bi 6 1 6
cTx

µ
,

which is a contradiction.

The runtime analysis exactly follows from Theorem A.4.6 except from an additional
factor τ coming for binary search.
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