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Foreword
I first met Ralf four years ago on stage at the magnificent “Le Majestic”
congress center in Chamonix, France. This was in April 2011, and we
switched connections at the podium as Ralf completed his talk on Whole-
Function Vectorization at CGO 2011 and I was about to start my talk. Four
years later, it is a pleasure to write this foreword to Ralf’s PhD thesis on
this subject, which significantly extends and builds upon his earlier works.
Ralf’s works have already attracted attention and inspired research and
development in both academia and industry, and this thesis will undoubtedly
serve as a major reference for developers and researches involved in the field.

Ralf’s original Automatic Packetization Master’s thesis from July 2009
has inspired early OpenCL tools such as the Intel OpenCL SDK Vectorizer
presented by Nadav Rotem at LLVM’s November 2011 Developer’s Meet-
ing. Ralf Karrenberg and Sebastian Hack’s CC 2012 paper on Improving
Performance of OpenCL on CPUs further extended their CGO 2011 paper.
Recently, Hee-Seok Kim et al. from UIUC refer to the aforementioned papers
in their CGO 2015 paper on Locality-centric thread scheduling for bulk-
synchronous programming models on CPU architectures, which effectively
maximizes the vectorization factors for kernel functions where possible and
profitable. In addition, Yunsup Lee et al. from UC Berkeley and NVIDIA
also refer to the aforementioned papers in their recent Micro-47 paper on
Exploring the Design Space of SPMD Divergence Management on Data-
Parallel Architectures, which compares software and hardware techniques
for supporting divergence on GPU architectures. These recent publications
exemplify the contributions Whole-Function Vectorization already has in
spurring additional research and development, and will surely continue to
have, harnessing new potentials of future SIMD architectures.

Among the new vectorization challenges and opportunities presented in
this thesis, the use of Whole-Function Vectorization to handle explicit and
partially vectorizable loops, as explained in Section 8.4, are particularly
noteworthy. It effectively complements the classical approach of distributing
loops to isolate their vectorizable parts. Such opportunities are expected
to become applicable to more general-purpose language extensions such as
OpenMP starting from its recent 4.0 release. This is in addition to the
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data-parallel and shading languages such as OpenCL which it originally
targets effectively, as Sections 8.2 and 8.3 demonstrate. Another direction
forward aims to leverage the techniques of this thesis within the standard
C language, as we argue in our upcoming PLC 2015 paper on Streamlining
Whole Function Vectorization in C using Higher Order Vector Semantics.

Heuristics and possibly machine-learning techniques are among the sug-
gested future work directions listed in Chapter 10, striving to navigate
the tradeoffs involved in linearization and specialization transformations
efficiently. Indeed, the innovative foundations of Rewire Target Analysis
and Partial CFG Linearization laid clearly in Chapters 5 and 6 pose new
interesting optimization challenges potentially involving code duplication.
Moving forward, extending the scope of vectorization analyses and transfor-
mations across control flow and inter-procedural boundaries as presented in
this thesis, will most likely continue to have direct impact on compilation
tools and programming environments.

Finally, it is worth noting the deliberate and constructive use of state-
of-the-art open source software in demonstrating and disseminating the
techniques of Whole-Function Vectorization. Namely, using the LLVM
Compiler Infrastructure with its SSA vector intermediate representation, as
presented at LLVM’s April 2012 Developer’s Meeting. Doing so provides a
valuable and practical implementation that complements this research thesis.
It also facilitates artifact evaluation, something which the Compiler Design
Lab at Saarland University has excelled at, and is yet to become standard
practice in our community.

Haifa, Israel Ayal Zaks
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Abstract
Applications that require the same computation to be performed on huge
amounts of data play an important role in today’s computing landscape:
Particle simulations, stock option price estimation, and video decoding are
some examples for such data-parallel programs. Languages like OpenCL and
CUDA facilitate their development. They allow to write a scalar function
that is executed on different input values in parallel by a runtime system.
To unleash the full parallel potential of modern processors, the compiler and
runtime system of these languages then have to make use of all available
cores as well as SIMD instructions: These allow to efficiently execute a single
operation on multiple input values at once per core.

This thesis presents Whole-Function Vectorization (WFV), an approach
that allows a compiler to automatically exploit SIMD instructions in data-
parallel settings. Without WFV, one processor core executes a single instance
of a data-parallel function. WFV transforms the function to execute multiple
instances at once using SIMD instructions.

For simple, straight-line code, the transformation is easily applied and
delivers drastically improved performance. However, problems such as
particle simulations or shading in computer graphics exhibit more complex
code. We show that in such scenarios, a näıve WFV approach will often not
improve performance or even slow down execution. The focus of this thesis
is to present an advanced WFV algorithm that includes a variety of analyses
and code generation techniques that help to improve the generated code.

An implementation of WFV has been evaluated in different settings: First,
in a stand-alone OpenCL runtime system. Second, in a compiler for domain-
specific languages used in real-time ray tracing. Third, in a compiler that
performs classic loop vectorization upon request by the user. In all scenarios,
WFV improves performance compared to state-of-the-art approaches. The
performance of the OpenCL implementation is on par with the proprietary
Intel driver, and faster than any other available CPU driver.





Kurzfassung
Anwendungen wie Partikelsimulationen oder die Optionspreisbewertung an
Aktienmärkten, die gleiche Berechnungen auf eine Vielzahl von Daten an-
wenden, sind ein wichtiger Aspekt der heutigen Informatik. Um das Erstellen
solcher Anwendungen zu vereinfachen wurden datenparallele Programmier-
sprachen wie OpenCL und CUDA entwickelt. Diese ermöglichen es, ein
skalares Programm zu schreiben, das von einem Laufzeitsystem parallel
für verschiedene Eingabewerte ausgeführt wird. Um das vollständige Po-
tenzial heutiger Prozessoren auszunutzen, müssen der Übersetzer und das
Laufzeitsystem sowohl alle verfügbaren Kerne als auch SIMD Befehle verwen-
den: Letztere führen dieselbe Operation effizient für mehrere Eingabewerte
gleichzeitig aus.

Die vorliegende Arbeit beschreibt Whole-Function Vectorization (WFV),
einen Ansatz, der es dem Übersetzer erlaubt, in einem datenparallelen Kon-
text automatisch SIMD Instruktionen zu verwenden. Ohne WFV wertet jeder
Prozessorkern eine einzelne Instanz einer Funktion aus. WFV transformiert
die Funktion so, dass sie mit Hilfe von SIMD Befehlen mehrere Instanzen auf
einmal auswertet. Diese Transformation ist für einfachen, verzweigungsfreien
Programmcode leicht durchzuführen und bringt drastische Laufzeitverbesse-
rungen. Probleme wie Partikelsimulationen jedoch verwenden komplexeren
Code. Häufig verbessert dann ein naiver WFV Ansatz die Laufzeit nicht oder
verschlechtert sie sogar. Die vorliegende Arbeit beschreibt einen Algorithmus
für WFV, der neue Analysen und Techniken zur Codeerzeugung verwendet,
die die Performanz des Programms verbessern.

WFV wurde in unterschiedlichen Anwendungsgebieten evaluiert: Erstens
in einem OpenCL Laufzeitsystem. Zweitens in einem Übersetzer für domänen-
spezifische Sprachen für Echtzeit-Ray-Tracing. Drittens in einem Übersetzer,
der klassische Schleifenvektorisierung durchführt. In allen drei Szenarien
zeigt die Auswertung Verbesserungen der Laufzeit bei Verwendung von
WFV im Vergleich mit dem neuesten Stand der Technik. Das OpenCL
Laufzeitsystem steht auf einer Stufe mit dem äquivalenten Produkt von Intel
und ist effizienter als jeder andere CPU-basierte Ansatz.





Contents

Foreword V

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Foundations & Terminology 11
2.1 Basic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Control Flow Graph (CFG) . . . . . . . . . . . . . . . . . . . 11
2.3 Dominance and Postdominance . . . . . . . . . . . . . . . . . 12
2.4 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Static Single Assignment (SSA) Form . . . . . . . . . . . . . 14

2.5.1 LCSSA Form (LCSSA) . . . . . . . . . . . . . . . . . 15
2.6 Control Dependence . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Live Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Register Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9.1 Intermediate Representation (IR) . . . . . . . . . . . . 17
2.9.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.3 Important Instructions . . . . . . . . . . . . . . . . . . 18

2.10 Single Instruction, Multiple Data (SIMD) . . . . . . . . . . . 21

3 Overview 23
3.1 Whole-Function Vectorization (WFV) . . . . . . . . . . . . . 23
3.2 Algorithmic Challenges . . . . . . . . . . . . . . . . . . . . . 24
3.3 Performance Issues of Vectorization . . . . . . . . . . . . . . . 25

4 Related Work 31
4.1 Classic Loop Vectorization . . . . . . . . . . . . . . . . . . . . 31
4.2 Superword Level Parallelism (SLP) . . . . . . . . . . . . . . . 32
4.3 Outer Loop Vectorization (OLV) . . . . . . . . . . . . . . . . 32
4.4 Auto-Vectorizing Languages . . . . . . . . . . . . . . . . . . . 33

4.4.1 OpenCL and CUDA . . . . . . . . . . . . . . . . . . . 34



XIV Contents

4.5 SIMD Property Analyses . . . . . . . . . . . . . . . . . . . . 35
4.6 Dynamic Variants . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 SIMD Property Analyses 39
5.1 Program Representation . . . . . . . . . . . . . . . . . . . . . 40
5.2 SIMD Properties . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Uniform & Varying Values . . . . . . . . . . . . . . . . 41
5.2.2 Consecutivity & Alignment . . . . . . . . . . . . . . . 42
5.2.3 Sequential & Non-Vectorizable Operations . . . . . . . 43
5.2.4 All-Instances-Active Operations . . . . . . . . . . . . . 43
5.2.5 Divergent Loops . . . . . . . . . . . . . . . . . . . . . 44
5.2.6 Divergence-Causing Blocks & Rewire Targets . . . . . 44

5.3 Analysis Framework . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Lifting to Vector Semantics . . . . . . . . . . . . . . . 47
5.5 Collecting Semantics . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Vectorization Analysis . . . . . . . . . . . . . . . . . . . . . . 49

5.6.1 Tracked Information . . . . . . . . . . . . . . . . . . . 49
5.6.2 Initial State . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6.3 Instance Identifier . . . . . . . . . . . . . . . . . . . . 53
5.6.4 Constants . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.5 Phi Functions . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.6 Memory Operations . . . . . . . . . . . . . . . . . . . 57
5.6.7 Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.8 Cast Operations . . . . . . . . . . . . . . . . . . . . . 61
5.6.9 Arithmetic and Other Instructions . . . . . . . . . . . 62
5.6.10 Branch Operation . . . . . . . . . . . . . . . . . . . . 65
5.6.11 Update Function for All-Active Program Points . . . . 65
5.6.12 Update Function for Divergent Loops . . . . . . . . . 66

5.7 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7.1 Local Consistency . . . . . . . . . . . . . . . . . . . . 67

5.8 Improving Precision with an SMT Solver . . . . . . . . . . . . 72
5.8.1 Expression Trees of Address Computations . . . . . . 72
5.8.2 Translation to Presburger Arithmetic . . . . . . . . . 73
5.8.3 From SMT Solving Results to Code . . . . . . . . . . 76

5.9 Rewire Target Analysis . . . . . . . . . . . . . . . . . . . . . 78
5.9.1 Running Example . . . . . . . . . . . . . . . . . . . . 79
5.9.2 Loop Criteria . . . . . . . . . . . . . . . . . . . . . . . 80
5.9.3 Formal Definition . . . . . . . . . . . . . . . . . . . . . 81



Contents XV

5.9.4 Application in Partial CFG Linearization . . . . . . . 82

6 Whole-Function Vectorization 85
6.1 Mask Generation . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Loop Masks . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.2 Running Example . . . . . . . . . . . . . . . . . . . . 92
6.1.3 Alternative for Exits Leaving Multiple Loops . . . . . 93

6.2 Select Generation . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 Loop Blending . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Blending of Optional Loop Exit Results . . . . . . . . 98
6.2.3 Running Example . . . . . . . . . . . . . . . . . . . . 100

6.3 Partial CFG Linearization . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Running Example . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Clusters of Divergence-Causing Blocks . . . . . . . . . 106
6.3.3 Rewire Target Block Scheduling . . . . . . . . . . . . 107
6.3.4 Computation of New Outgoing Edges . . . . . . . . . 111
6.3.5 Linearization . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.6 Repairing SSA Form . . . . . . . . . . . . . . . . . . . 120
6.3.7 Branch Fusion . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Instruction Vectorization . . . . . . . . . . . . . . . . . . . . . 121
6.4.1 Broadcasting of Uniform Values . . . . . . . . . . . . . 121
6.4.2 Consecutive Value Optimization . . . . . . . . . . . . 122
6.4.3 Merging of Sequential Results . . . . . . . . . . . . . . 122
6.4.4 Duplication of Non-Vectorizable Operations . . . . . . 123
6.4.5 Pumped Vectorization . . . . . . . . . . . . . . . . . . 124

6.5 Extension for Irreducible Control Flow . . . . . . . . . . . . . 124

7 Dynamic Code Variants 127
7.1 Uniform Values and Control Flow . . . . . . . . . . . . . . . . 128
7.2 Consecutive Memory Access Operations . . . . . . . . . . . . 130
7.3 Switching to Scalar Code . . . . . . . . . . . . . . . . . . . . 131
7.4 WFV-SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5 Instance Reorganization . . . . . . . . . . . . . . . . . . . . . 134
7.6 Skipping All-Inactive Paths . . . . . . . . . . . . . . . . . . . 138

8 Evaluation 141
8.1 Benchmark Setup and Reproducibility . . . . . . . . . . . . . 141
8.2 WFVOpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2.1 WFV Integration . . . . . . . . . . . . . . . . . . . . . 143
8.2.2 Runtime Callbacks . . . . . . . . . . . . . . . . . . . . 143



XVI Contents

8.2.3 Continuation-Based Barrier Synchronization . . . . . . 145
8.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . 147
8.2.5 SMT-Based Memory Access Optimization . . . . . . . 154

8.3 AnySL: Efficient and Portable Shading for Ray Tracing . . . 156
8.3.1 WFV Integration . . . . . . . . . . . . . . . . . . . . . 157
8.3.2 Experimental Evaluation . . . . . . . . . . . . . . . . 158

8.4 Noise: On-Demand Loop Vectorization . . . . . . . . . . . . . 160
8.4.1 WFV Integration . . . . . . . . . . . . . . . . . . . . . 162
8.4.2 Loops with Loop-Carried Dependencies . . . . . . . . 163
8.4.3 Experimental Evaluation . . . . . . . . . . . . . . . . 166

9 Conclusion 171

10 Outlook 173



1 Introduction
Data-parallel applications play an important role in today’s computing land-
scape, especially in the High-Performance Computing (HPC) area. Particle
simulations, stock option prediction, medical imaging, or video encoding and
decoding are just a few problems that can be formulated in a data-parallel
way: They each require to do similar computations for large amounts of
input data, with no or only limited dependencies between the computations
of different inputs.

Due to the amount of data that needs to be processed, the performance
of the application code is critical. To reach maximum performance, the
available data-parallelism needs to be exploited. The best possible results
can always be achieved by manually tuning an application to a specific target
architecture. However, this usually comes at the cost of development time,
error-freedom, maintainability, and portability.

To balance these aspects without sacrificing too much performance, do-
main-specific languages (DSLs) are used. Well-known examples are shading
languages like RenderMan in computer graphics or data-parallel languages
like OpenCL and CUDA. In particular, the latter two aim to provide porta-
bility alongside an easy-to-use programming model by abstracting from the
concrete hardware: The user writes a scalar function, a so-called kernel, and
the runtime system executes it many times with different input data. The
choice of how to best execute these instances of the function on a given ma-
chine is left to the runtime system and compiler. The data-parallel semantics
explicitly allow to run instances in parallel, with only few restrictions to
allow for synchronization when required. Listing 1.1 shows an example for a
kernel that computes an image of the Mandelbrot set. 1

To exploit the full parallel potential of modern processors, a runtime
system has to use both multi-threading and vector instructions: instructions
that allow to execute an operation on multiple sets of input values at once.
Because of this property, they are also called SIMD instructions, for “Single
Instruction, Multiple Data.” Such an operation requires the same amount of
time as its scalar counterpart would require for a single set of input values.

1Implementation from the ATI Stream SDK (now AMD APP SDK) version 2.1.
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Listing 1.1 Kernel function for a Mandelbrot application (OpenCL). The
loop exit conditions were moved to the body to show the connection with the
control flow graph of Figure 1.1. Letters in comments denote basic blocks of
this graph.

__kernel void
Mandelbrot(__global int* image ,

const float scale ,
const uint maxIter ,
const int width)

{
/* a */
int tid = get_global_id (0);

int i = tid%width;
int j = tid/width;

float x0 = ((i*scale) - ((scale /2)* width ))/ width;
float y0 = ((j*scale) - ((scale /2)* width ))/ width;

float x = x0;
float y = y0;

float x2 = x*x;
float y2 = y*y;

float scaleSq = scale * scale;

uint iter =0;
for (;;)
{

/* b */
if (iter >= maxIter)
{

/* e */
break;

}
/* c */
if (x2+y2 > scaleSq)
{

/* f */
break;

}
/* d */
y = 2 * x * y + y0;
x = x2 - y2 + x0;
x2 = x*x;
y2 = y*y;
++iter;

}
/* g */
image[tid] = 255* iter/maxIter;

}
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The number of inputs that can be processed in parallel is described by the
SIMD width S. The value for S is derived from the number of single-precision
(32 bit) floating point values that can be stored in one vector register of
the specific SIMD instruction set. We say that such a SIMD register has S
SIMD lanes. S is currently 4, 8, or 16 for most CPUs and 32 or 64 for GPUs.
For example, Intel’s SSE instruction set provides vector registers of 16 bytes,
yielding a SIMD width of 4. For applications that use only single-precision
operations, exploiting SIMD instructions can provide a speed up factor of up
to S. This huge performance potential has traditionally been used mostly
in manual vectorization of compact, performance-critical parts of code and
automatic loop vectorization of simple loops.

This thesis presents Whole-Function Vectorization (WFV), a compiler-
based, automatic approach to exploit SIMD instructions in data-parallel
settings. Without WFV, one processor core would execute a single instance
of a data-parallel function, relying solely on multi-threading to exploit inter-
core parallelism. WFV transforms the function to execute a SIMD group of
W instances at once. W is the vectorization factor, and is usually a multiple
of the SIMD width S. The values of each of the W instances are kept in one
SIMD lane. This way, each processor core executes W instances, exploiting
the intra-core parallelism provided by SIMD instruction sets in addition to
multi-threading. If W is larger than S, or if a value is larger than 32 bit,
multiple SIMD registers are required for the grouped instances.

To illustrate how the algorithm operates, consider the example in Fig-
ure 1.1. The control flow graph (CFG) on the left represents the Mandelbrot
kernel shown in Listing 1.1. It is applied to four different inputs in parallel.
This results in four different execution traces as shown in the table on the
right. For example, instance 1 executes the blocks a b c d b c d b e g
while instance 3 executes the blocks a b c f g.

Divergent control flow makes SIMD execution more complicated: In-
stances 1, 2, and 4 iterate the loop again while instance 3 leaves it directly
at block b. Also, instances 1 and 4 leave the loop from block b, whereas
the other two instances take the exit at block c. Hence, the instances also
execute different blocks after they left the loop. SIMD execution of all
instances grouped together is not possible because the loop is either left or
iterated again. The usual solution is that the SIMD program iterates loops
as long as any of the instances that entered would, executes both exit blocks,
and compensates for the unwanted effects: Instance 3 ignores all iterations
of the loop, instance 2 ignores the last iteration, instances 1 and 4 ignore the
computations of block f, and so on. This is called predicated execution [Park
& Schlansker 1991].



4 1 Introduction

a

b

e c

f d

g

Instance Trace
1 a b c d b c d b e f g
2 a b c d b c d b e f g
3 a b c d b c d b e f g
4 a b c d b c d b e f g

Figure 1.1: The control flow graph of the Mandelbrot kernel from Listing 1.1
and four execution traces. A greyed out block denotes that the corresponding
instance is inactive if all instances are executed together in SIMD fashion.

In practice, this behavior is implemented in different ways. GPUs perform
predicated execution implicitly in hardware: Each instance of the data-
parallel program is mapped to a scalar core in a multi-core processor. Groups
of W instances are executed together, i.e., the entire group executes one
instruction before the control jumps to the next one. This so-called lock step
execution is a key aspect of data-parallel execution in general: Compared to
sequential or fully concurrent execution of the program, it improves memory
access and cache behavior and is more energy efficient due to requiring only
one instruction dispatch for the entire group. A central control unit stalls a
processor on code regions where its instance is inactive.

The Whole-Function Vectorization algorithm is designed to map data-
parallel languages onto processors that require explicit vectorization via
SIMD instructions. To use SIMD instructions in the presence of divergent
control flow as shown above, the code has to be transformed to allow for
predicated execution. This is achieved by replacing all control flow by data
flow [Allen et al. 1983]. The information which instances are active or
inactive in which part of the code is obtained through predicates (also called
masks). These hold one bit of information for each instance. If the bit is
set during execution of some code, the corresponding instance is active and
results are valid. If the bit is not set, all results for this instance have to
be discarded and side effects prevented.2 For code without loops, this is
commonly called if conversion. For example, consider the function f in
Listing 1.2 and its version without control flow f df. The function select

2Note that in the setting of data-parallel execution, elapsed time is not considered a
side effect.
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Listing 1.2 A scalar function with control flow (f). The same function
with control flow replaced by data flow and optimized predication (f df). A
vector implementation of the latter using SSE intrinsics (f sse).

float f(float a, float b) {
float r;
if (a > b) r = a + 1;
else r = a - 1;
return r;

}

float f_df(float a, float b) {
bool mask = a > b;
float s = a + 1;
float t = a - 1;
float r = select(mask , s, t);
return r;

}

__m128 f_sse(__m128 a, __m128 b) {
__m128 m = _mm_cmpgt_ps(a, b);
__m128 s = _mm_add_ps(a, _mm_one );
__m128 t = _mm_sub_ps(a, _mm_one );
__m128 r = _mm_blendv_ps(mask , s, t);
return r;

}

chooses, dependent on the mask value, either s or t. We also call the select
a blend operation, since in the vector program it blends two vectors to
form a new one. The function f sse in Listing 1.2 shows how a C/C++
programmer would implement a vectorized variant of the same code using
intrinsics for Intel’s SSE instruction set.

Operations that may have side effects deserve additional attention during
vectorization: The SIMD function is required to produce the same side effects
as W applications of the scalar function. However, the order of occurrence
of these side effects may be different: WFV preserves the order of side
effects per operation, but not between operations. This means that the side
effect of instruction a for instance 0 will be observed before the side effect
of a for instance 1. However, due to lock step execution, the side effects
of instruction a of all instances will be observed before the side effects of
any subsequent instruction. An implication of this is that race conditions
may appear between different instances of the same function. Data-parallel
languages such as OpenCL and CUDA explicitly allow such behavior to
enable the compiler to be more aggressive. If desired, synchronization
thus has to be enforced on a higher level of abstraction (more on this in
Section 8.2).

There exist several approaches that convert control flow into data flow to
perform vectorization (Chapter 4 discusses related work in further detail).
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Those approaches typically originate from the parallel computing community
where parallelization is performed early in the compilation process; often
already at the source level. Because this has two major disadvantages, we
argue that vectorization should be performed late in the compilation process:
1. By transforming control flow to data flow too early, all analyses and

optimizations in the compiler that make use of control flow information
are rendered useless. These analyses (for example conditional constant
propagation or loop invariant code motion) would need to be rewritten
to be able to analyze the predicated vector code.

2. Modern compiler infrastructures use virtual instruction sets as a code
exchange format (for example LLVM bitcode [Lattner & Adve 2004] or
Nvidia’s PTX3) to decouple front ends from code generators. Those
representations commonly use control flow graphs of instructions to
represent the code. Performing control-flow to data-flow conversion
already in the front end destroys the portability of the generated code for
two reasons: First, the transformation would need to be undone to use
the code for architectures that do not require control-flow to data-flow
conversion such as GPUs. Second, even if the target architecture requires
control-flow conversion, the front end would need to address architectural
parameters like the SIMD width and details about the implementation of
predicated execution.

Whole-Function Vectorization performs control-flow to data-flow conver-
sion on code represented in modern intermediate representations such as
LLVM bitcode. More specifically, WFV is a program transformation on
control flow graphs in Static Single Assignment (SSA) form.

Coming back to Figure 1.1, one can observe that SIMD execution requires
overhead to maintain correct behavior of the data-parallel program. As long
as any instance is active, the loop has to keep iterating, and all inactive
instances do nothing. We say that such a loop is divergent because not all
instances leave at the same time and/or over the same exit.4 In this example
with W = 4, only 33 out of 44 block executions do work that contributes
to the final results of the instances. Compared to the sequential execution,
this still translates to a significant performance improvement: Assume, for
simplicity, that execution of each block takes equally long. Then, the SIMD
code is 3 times faster, since it exhibits a cost of 11 instead of 33.

3docs.nvidia.com/cuda/parallel-thread-execution
4Note that a divergent loop in the SIMD context refers to a loop in which different

instances may choose different exits and/or iteration counts, not a loop that never
terminates.

docs.nvidia.com/cuda/parallel-thread-execution
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However, it is possible to improve this situation. For diverging loops,
the reduced efficiency due to inactive instances cannot be avoided unless
some mechanism reorders the instances that are grouped together (discussed
further in Section 4.6 and Chapter 7). Nonetheless, looking at the loop
exit conditions of the Mandelbrot kernel, we can see that if iter reaches
a threshold, the loop will be left in block b. This threshold is the same
for all instances, so we know that if this exit is taken, it is taken by all
instances that are still active. For the traces in Figure 1.1, this does not
make a difference, since there are instances that leave over both edges, so
both blocks have to be executed. However, if the loop is left from the other
exit in block c, block e does not have to be executed. This is because no
instance can have left from block b, otherwise all instances would have left
there. In Chapter 8, we show that this has indeed a noticeable impact on
performance.

In general, such cases occur if the condition of a branch only depends on
values which are the same for all grouped instances. We call such a value
uniform, whereas a value that holds different values for different instances is
varying. One way to exploit this is to inject code into the vector program
that tests dynamically whether all instances evaluate a condition to the same
value [Shin 2007]. If so, the corresponding code part can be bypassed by a
branch, trading a reduction of the amount of executed code for the overhead
of the dynamic test. Unfortunately, this does not solve all problems related
to divergent control flow, as is detailed in Chapter 5. Also, the dynamic test
introduces additional overhead, so a carefully crafted heuristic is required
for this approach to work well.

This thesis introduces the notion of divergence-causing blocks and rewire
target blocks that capture the behavior of control flow in a SIMD context. We
further present a static analysis that determines the rewire targets of each
divergence-causing block in a CFG, and an improved, partial control-flow
to data-flow conversion algorithm that makes use of this information. The
presented approach is an overapproximation, i.e., it cannot cover as many
cases as a dynamic approach because some occurrences of non-diverging
control flow can be caused by input data. However, since the algorithm only
uses static information, it never impacts performance negatively in contrast
to the dynamic test.
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1.1 Contributions
In summary, this thesis makes the following contributions:

• We present Whole-Function Vectorization (WFV), a transformation of
control flow graphs in SSA form for processors with SIMD instructions.
Existing vectorization approaches are tied to the source language and
often also to the target platform. A CFG in SSA form is an intermediate
representation that abstracts from source language and target machine.
Thus, WFV improves portability and maintainability.

• WFV generates predicated code for arbitrary control flow on architectures
without hardware support for predicated execution by carefully placing
select operations. This includes nested loops, loops with multiple exits,
and exits leaving multiple loops. Therefore, WFV allows to vectorize a
larger class of applications than state-of-the-art approaches, which are
usually restricted to structured or non-cyclic control flow.

• We present a static analysis that identifies certain constraints on the values
of variables in different parallel instances: This Vectorization Analysis
determines which values are the same for all parallel instances, which
values require sequential execution (e.g. due to side effects), which program
points are always executed by all instances, which loops may have instances
leaving in different iterations or over different exits, and classify memory
access patterns.

• We introduce an extension to this analysis that improves the precision
of the determined memory access patterns. The extension formulates
the problem whether a memory operation accesses consecutive memory
locations as a set of equations in Presburger Arithmetic. An SMT solver
is used to solve the equations.

• We present a static analysis that identifies certain constraints on the
behavior of control flow in a SIMD context: This Rewire Target Analysis
determines which parts of the control flow graph must never be skipped
to ensure correct results during SIMD execution. Implicitly, this describes
parts of the CFG which can be left untouched.

• The results of the Rewire Target Analysis are leveraged by a novel, partial
control-flow to data-flow conversion algorithm. This algorithm keeps
regions of the control flow graph intact in which instances never diverge.
Existing approaches either linearize the entire CFG, or at most employ
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simple optimizations such as retaining diamond-shaped if statements if
the branch condition is uniform. Our approach is able to determine on a
per-edge basis which parts of the CFG do not have to be linearized, even
for unstructured control flow. For example, it can retain uniform exits of
divergent loops and parts of nested and overlapping regions. This reduces
the amount of code that has to be executed by every call to the generated
function.

• We present a set of extensions to WFV that exploit dynamic properties of
a function. This is achieved using dynamic tests and separate, optimized
code paths where the tested property is used to generate better code.

• We implemented WFV using the LLVM compiler infrastructure and
evaluated it in three practically relevant scenarios. First, we integrated it
into a compiler for the RenderMan shading language, a computer graphics
DSL that is widely used for visual effects in the movie industry, and
performed experiments with a real-time ray tracer. Second, we developed
a prototypical OpenCL runtime system that uses WFV to execute multiple
work items at once per core. The implementation also includes a novel,
software-based scheme for barrier synchronization. Third, we implemented
a classic loop vectorization phase on top of WFV. We evaluated it in a
compiler that allows the user to define which optimizations to run on
what parts of the code. The loop vectorization employs a novel method
for handling arbitrary loop-carried dependencies, which includes schemes
commonly called reductions. We show an average speedup of 3.8 for the ray
tracer, speedups between 0.8 and 3.8 for different OpenCL applications,
and speedups of 1.2 and 1.45 for applications tuned with the custom
compiler on a machine with S = 4.
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1.2 Publications
The analyses and transformations presented in this thesis build on the
following publications:

• Whole-Function Vectorization
Ralf Karrenberg and Sebastian Hack
In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 141–150, Washington, DC,
USA, 2011. IEEE Computer Society.
[Karrenberg & Hack 2011]

• Improving Performance of OpenCL on CPUs
Ralf Karrenberg and Sebastian Hack
In Proceedings of the 21st International Conference on Compiler Con-
struction, pages 1–20, Berlin, Heidelberg, 2012. Springer-Verlag.
[Karrenberg & Hack 2012]

• Presburger Arithmetic in Memory Access Optimization for
Data-Parallel Languages
Ralf Karrenberg, Marek Košta, and Thomas Sturm
In Frontiers of Combining Systems, Volume 8152 of Lecture Notes in
Computer Science, pages 56–70, Berlin, Heidelberg, 2013. Springer-Verlag.
[Karrenberg et al. 2013]

• AnySL: Efficient and Portable Shading for Ray Tracing
Ralf Karrenberg, Dmitri Rubinstein, Philipp Slusallek, and Sebastian
Hack
In Proceedings of the Conference on High Performance Graphics, pages
97–105, Aire-la-Ville, Switzerland, 2010. Eurographics Association.
[Karrenberg et al. 2010]



2 Foundations & Terminology
This thesis builds on a few key developments in the field of compiler construc-
tion that we briefly introduce in this chapter. More detailed explanations
are given, for example, by Aho et al. [2006] and Kennedy & Allen [2002].

2.1 Basic Block
A basic block consists of a list of instructions that have to be executed in
order. This implies that any operation that can influence which instruction
is executed next, i.e., any branch instruction, may only occur at the end of
a block.

2.2 Control Flow Graph (CFG)
A CFG is a directed, possibly cyclic graph with a dedicated entry node. It
represents the structure of a function by expressing instructions or basic
blocks as nodes and their successor relations as edges. We consider CFGs
with basic blocks as nodes. If the function code at one point allows multiple
different code paths to be executed next, the corresponding block in the
CFG has multiple outgoing edges. This is the case for explicit control
flow constructs like if statements or loops, but can also occur in other
circumstances, e.g. for operations that can throw an exception. If previously
disjoint paths merge again, the corresponding block has multiple incoming
edges, e.g. behind a source-level if statement. Figure 2.1 shows the CFG
that corresponds to the Mandelbrot example in the introduction.

Critical Edges. An edge of a CFG is said to be critical if its source block
has multiple outgoing edges and its target block has multiple incoming edges.
For example, the edge a→ c in Figure 2.2 is critical. Such edges are usually
not desired, and can be easily removed by splitting the edge and placing an
additional block at the split point. All algorithms presented in this thesis
can handle critical edges. The Partial CFG Linearization phase (Section 6.3)
in some cases performs implicit breaking of critical edges.
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a

b

e c

f d

g

Figure 2.1: The CFG that corresponds to the Mandelbrot function in List-
ing 1.1. Special loop blocks according to Section 2.4: Block a is the entry block
and at the same time the preheader of the loop that consists of blocks b, c,
and d. Block b is the header of this loop, d is a loop latch. The blocks b and c
are loop exiting blocks, e and f the corresponding exit blocks. Block g is the
final block that holds a return statement.

2.3 Dominance and Postdominance
A basic block a dominates another block b if a is part of every possible
path from the entry block of the function to b [Lowry & Medlock 1969].
In particular, the entry block of a function dominates all reachable blocks.
Also, according to the definition in Section 2.4, a header of a loop dominates
all blocks in the loop. A basic block a strictly dominates a block b if a
dominates b and a and b are distinct blocks. A basic block a is the unique
immediate dominator of a block b if a strictly dominates b and does not
strictly dominate any other strict dominator of b.

The immediate dominance relation of basic blocks induces a tree structure,
the dominator tree. The dominance frontier of a block a is the set of nodes B
of which a predecessor of each block in B is dominated by a but each block
in B is not strictly dominated by a. The iterated dominance frontier of
blocks a1, . . . , an is the limit of the increasing sequence of sets of nodes D,
where D is initialized with the dominance frontiers of a1, . . . , an, and each
iteration step increases the set with the dominance frontiers of all nodes
of D [Cytron et al. 1991].

A basic block b postdominates another block a if b is part of every possible
path from b to the function exit block.1 As an example, if there is exactly

1If the function has multiple exit blocks and/or non-terminating loops, we assume a
virtual, unique exit block that all these blocks jump to instead of returning.
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one edge in a loop that jumps back to the header, the source block of that
edge is a postdominator of all blocks in the loop (see Section 2.4). The
terms strict postdomination, immediate postdominator, postdominator tree,
postdominance frontier, and iterated postdominance frontier are defined
analogously.

Various algorithmic approaches exist to efficiently compute dominance,
dominance frontiers, and dominator trees [Cytron et al. 1991, Lengauer &
Tarjan 1979, Ramalingam 2002].

Note that these definitions are straightforward to extend from basic blocks
to SSA values: If two values are defined in the same basic block, the upper
one in the list of instructions strictly dominates the lower one. Otherwise,
the dominator relation of their parent blocks is the dominator relation of
the values.

2.4 Loops
A loop is a strongly connected component of blocks in a CFG. The blocks
that are enclosed in such a region are called the body of the loop. In addition,
we use the following definitions [Ramalingam 2002]:

• A header is a block of a loop that is not dominated by any other block of
the loop.

• A preheader is a block outside the loop that has an unconditional branch
to a loop header.

• A back edge is an edge that goes from a block of a loop to a loop header.
• A latch is a block of a loop that has a back edge as one of its outgoing

edges.
• An exiting block of a loop is a block inside the loop that has an outgoing

edge to a block that is outside the loop.
• An exit block of a loop is a block outside the loop that has an incoming

edge from a block that is inside the loop.

Note that, by definition, an exiting block has to end with a conditional
branch, since otherwise it would not be part of the loop itself. Figure 2.1
exemplifies these terms at the example of the Mandelbrot CFG.

If not mentioned otherwise, we consider only reducible loops, which are
the vast majority of loops found in real-world programs. In a reducible loop,
the header dominates (Section 2.3) its source, the latch [Hecht & Ullman
1972]. This implies that a reducible loop may not have more than one header,
i.e., it is a loop with a single entry. The single header then also dominates
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all blocks of the loop. Note that, if required, irreducible control flow can
be transformed into reducible control flow using node splitting [Janssen &
Corporaal 1997]. However, this can result in an exponential blowup of the
code size [Carter et al. 2003].

In addition, we consider all loops to be simplified, i.e., they have exactly
one preheader and one latch, and all exits have a unique successor block
that has no other incoming edges. This does not impose any restrictions on
the source code. This simplified definition allows to determine a tree-shaped
hierarchy of nested loops for every CFG:2 A loop Ln is nested in another
loop Lp if the header of Ln is part of the loop body of Lp. In such a case,
we call Lp the outer loop or parent loop, and Ln the inner loop or child loop.
We also say that Ln is at a nesting level that is one level deeper than Lp.
Multiple loops may be nested in one loop, but a loop may not be nested in
multiple loops. Note that this definition allows exit edges to leave multiple
loops at once, going up multiple nesting levels. However, an entry edge may
not enter a loop of a nesting level deeper than the one below its own nesting
level.

2.5 Static Single Assignment (SSA) Form
Static Single Assignment form [Alpern et al. 1988], short SSA form, is
a program representation in which each variable has exactly one static
definition. To transform a given program into SSA form, an SSA variable is
created for each definition of a variable. Figure 2.2 shows an example for
the transformation of a normal CFG into a CFG in SSA form. To represent
situations where multiple definitions of the same original variable can reach a
use, so-called φ-functions have to be inserted at dominance frontiers [Cytron
et al. 1991]. A φ-function has an incoming value for every incoming edge.
The operation returns the value that corresponds to the edge over which
its basic block was entered. This is required to ensure that the original
relations between definitions and uses are preserved while maintaining the
SSA property that every use has exactly one definition.

2Note that this definition requires the detection of nested SCCs, which can be achieved
by ignoring back edges.
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x ← · · ·
y ← · · ·a

x ← · · ·b

· · · ← x+ yc

x1 ← · · ·
y1 ← · · ·a

x2 ← · · ·b

x3 ← φ(x1, x2)
· · · ← x3 + y1

c

Figure 2.2: A CFG and its SSA counterpart

2.5.1 LCSSA Form (LCSSA)
We consider all CFGs to be in LCSSA form, an extension to SSA form that
was first introduced by Zdenek Dvorak3 in the GCC compiler.4 LCSSA
guarantees that for a value that is defined in a loop, every use that is
outside the loop is a φ-function in the corresponding loop exit block. This
simplifies handling of loop result values during the different phases of the
WFV algorithm.

2.6 Control Dependence
A statement y is said to be control dependent on another statement x if (1)
there exists a nontrivial path from x to y such that every statement z 6= x in
the path is postdominated by y, and (2) x is not postdominated by y [Kennedy
& Allen 2002].

This definition implies that there can be no control dependencies within a
basic block. Thus, it makes sense to talk about control dependence relations
of basic blocks. For example, in Figure 2.1, blocks e and c are control
dependent on b, and blocks b, f , and d are control dependent on c. Note that
blocks can have multiple control dependencies, e.g. in nested conditionals.

2.7 Live Values
The classic definition of a live variable in a non-SSA context is the follow-
ing [Kennedy & Allen 2002]: A variable x is said to be live at a given point s

3http://gcc.gnu.org/ml/gcc-patches/2004-03/msg02212.html
4gcc.gnu.org

http://gcc.gnu.org/ml/gcc-patches/2004-03/msg02212.html
gcc.gnu.org
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in a program if there is a control flow path from s to a use of x that contains
no definition of x prior to the use. Most importantly, this includes program
points where the variable is not yet defined. In our context, we are only
interested in the live values that are already defined at program point s:
An SSA value v is said to be live at a given point s if there is a control
flow path from v to s and there is a control flow path from s to a use of v
that contains no definition of v. For example, in the CFG on the right of
Figure 2.2, y1 is live in block b.

2.8 Register Pressure
Every processor has a fixed set of registers where values are stored. For
convenience, programming languages usually abstract from this by providing
an unlimited set of registers to the user. The compiler then has to determine
how to best map the used registers to those available in hardware. This is
called register allocation.

Register pressure describes the number of registers that are required for a
given program. If there are not enough registers, values have to be spilled,
i.e., stored to memory, and reloaded later when they are used again. This
has implications for the performance of the program: register access is much
faster than accessing memory. Thus, it is desirable for a compiler to optimize
the usage of registers and minimize the number of spill and reload operations
and their impact on performance. Especially in a GPU environment, register
pressure is a critical variable: Since the available registers are shared between
threads, the number of registers used by a function determines how many
threads can execute it in parallel.

In consequence, if a code transformation increases register pressure, this
may result in decreased performance even if the resulting code itself is more
efficient. As will be discussed in Section 3.3, this is an important issue for
SIMD vectorization.

2.9 LLVM
The compiler infrastructure LLVM [Lattner & Adve 2004] forms the basis
for our implementation of the Whole-Function Vectorization algorithm.
Amongst other tools and libraries, the framework includes:

• a language and target independent, typed, intermediate representation in
the form of a control flow graph in SSA form,
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• a front end (Clang) for the C language family (C/C++/ObjC),5
• various back ends, e.g. for x86, ARM, or PTX, and
• a just-in-time compiler.

Our implementation works entirely on LLVM’s intermediate representation
(IR), which allows to use it independently of the source-language and the
target-architecture.

2.9.1 Intermediate Representation (IR)
Throughout the next chapters, we show examples in the human-readable
representation of the LLVM IR, which we briefly describe in the following.

The LLVM IR is a typed, low-level, assembler-like language. There are
neither advanced language features like overloading or inheritance nor control
flow statements such as if-then-else statements or explicit loops. Instead,
the control flow of a function is represented by a CFG whose edges are induced
by low-level instructions such as conditional or unconditional branches. The
nodes of the CFG are basic blocks with lists of instructions. Each instruction
corresponds to exactly one operation and usually also represents an SSA
value. The only exception to this are values with return type void, such as
branch, call, and store operations. Every other value has a name that
starts with “%” which is referenced everywhere that value is used. A typical
instruction looks like this:
%r = fadd <4 x float> %a, %b

The example shows the LLVM IR equivalent for the SSE2 vector addition
intrinsic ADDPS (_mm_add_ps(__m128 a, __m128 b) in C/C++). The left-hand
side of the expression is the name of the value. On the right hand side, the
operation identifier is followed by its operands, each with its type preceding
the name. If types are equal, they can be omitted for all operands after the
first.

The following code defines a function foo with return type float and
argument types int and float:
define float @foo(int %a, float %b) {
entry:

%x = fsub float %b, 1.000000e+01
ret float %x

}

The label entry marks the only basic block which is followed by the instruc-
tions of that block.

5clang.llvm.org

clang.llvm.org
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2.9.2 Data Types
The LLVM IR supports a large set of different data types. Table 2.1 shows
examples for the most important types and their typical C/C++ counter-
parts.

Table 2.1 Examples for the most important LLVM data types and their
C/C++ counterparts. Note that this list only shows typical C/C++ types,
since types like int are machine dependent.

LLVM Type C/C++ Type Explanation

i1 bool truth value (true (1) or false (0))
i8 char single character
i32 int 32bit integer value
i64 long 64bit integer value
float float 32bit floating-point value
type* type * pointer to type type
i8* void * void pointer
<4 x float> m128 vector of 4 32bit floating-point values
<4 x i32> m128i vector of 4 32bit integer values
<8 x float> m256 vector of 8 32bit floating-point values
<8 x i32> m256i vector of 8 32bit integer values
<4 x i1> ( m128) mask vector
{ types } struct { types } structure of types types
[ N × type ] type t [ N ] array of size N of type type

2.9.3 Important Instructions
Most instructions of the IR are standard instructions that can be found
in most assembly languages and need not be described in detail. However,
there are a few that require additional explanations:

• Phi
The phi instruction is the equivalent to the φ-function described in Sec-
tion 2.5. It chooses a value depending on which predecessor block was
executed:
%r = phi float [ %a, %blockA ], [ %b, %blockB ]

The value of r is set to a if the previously executed block was blockA or
to b if the previously executed block was blockB.
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• Select
The select instruction returns either its second or third operand depend-
ing on the evaluation of its condition:
%r = select i1 %c, float %a, float %b

The value of r is set to a if condition c is true and to b otherwise. If
the select statement has operands of vector type, a new vector is created
by a blend operation that merges the two input vectors on the basis of
a per-element evaluation of the condition vector (see Section 6.2). The
terms “select” and “blend” are thus used interchangeably for the same
operation.

• GetElementPointer (GEP)
The GetElementPointer instruction returns a pointer to a member of a
possibly nested data structure. It receives the data structure and a list
of indices as inputs. The indices denote the position of the requested
member on each nesting level of the structure. In the following example,
the GEP instruction (%r) creates a pointer to the float element of the
struct of type struct.B that is nested in the struct %A and stores 3.14 to
that location:
%struct.A = type { i8*, i32 , %struct.B }
%struct.B = type { i64 , float , i32 }
...
%r = getelementptr %struct.A* %A, i32 0, i32 2, i32 1
store float 0x40091EB860000000 , float* %r, align 4

The first index is required to step through the pointer, the second index
references the third element of the struct (which is the nested struct) and
the third index references the second element of that nested struct. It is
important to note that a GEP only performs an address calculation and
does not access memory itself.

• InsertElement / ExtractElement
The InsertElement and ExtractElement instructions are required if
single elements of a vector have to be accessed:
%p2 = insertelement <4 x float> %p, float %elem , i32 1
%res = extractelement <4 x float > %p2, i32 1

The first instruction inserts the float value elem at position 1 into vector
p, yielding a new vector SSA value. The second instruction extracts the
same float from that vector p2, yielding a scalar value again.
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• Comparison Operations
The ICmp and FCmp instructions allow to compare values of the same
integer or floating point types and return a truth value. If the values are
of vector type, the result of the comparison is stored component-wise as a
vector of truth values <W x i1>.

• “All-false” Vector Comparison
In vector programs, one often needs to take a branch if all elements of a
mask vector (e.g. <4 x i1>) are false. Since that requires a single truth
value to base the decision upon, one cannot employ a vector comparison
operation, which returns a vector of truth values. As of LLVM 3.3,
the most efficient solution to this is the following IR pattern: Given a
vector condition of type <W x i1>, sign extend it to <W x i32>, bitcast
to i(W*32), and compare to zero. For example, when targeting SSE with
a target SIMD width of 4, the following IR is recognized by the x86 back
end:
%ext = sext <4 x i1> %cond to <4 x i32>
%bc = bitcast <4 x i32> %ext to i128
%test = icmp ne, i128 %bc , 0
br i1 %test , %blockA , %blockB

The resulting assembly is an efficient PTEST followed by a conditional
jump.

In addition, we define two special instructions that do not actually exist in
LLVM IR, but help us keep code in listings more compact:

• Merge
The merge instruction creates a new vector from a set of input values:
%v = merge float %a, %b, %c, %d

This is equivalent to the following IR:
%v0 = insertelement <4 x float> undef , float %a, i32 0
%v1 = insertelement <4 x float> %v0, float %b, i32 1
%v2 = insertelement <4 x float> %v1, float %c, i32 2
%v = insertelement <4 x float > %v2, float %d, i32 3

• Broadcast
The broadcast instruction creates a new vector of the given type where
each element is a copy of the single operand:
%v = broadcast float %a to <4 x float >
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This is equivalent to a special case of merge:
%v = merge float %a, %a, %a, %a

Note that the broadcast in LLVM IR can also be done with an insert-
element operation followed by a shufflevector instead:
%av = insertelement <4 x float> undef , float %a, i32 0
%v = shufflevector <4 x float > %av, <4 x float> undef ,

<4 x i32> zeroinitializer

2.10 Single Instruction, Multiple Data (SIMD)
Single Instruction, Multiple Data (SIMD) describes an execution model that
executes a single operation on vectors of input values, yielding a result vector,
whereas traditional operations only receive single, scalar values and produce
a scalar result. Most of today’s CPUs—even processors of mobile devices such
as smartphones—have special SIMD instruction sets. Common examples for
such instruction sets are, in order of consumer market appearance at the
time of writing:
• Intel MMX (64 bit registers, since 1996)
• AMD 3DNow! (128 bit registers, since 1998)
• Intel Streaming SIMD Extensions (SSE, 128 bit, since 1999)
• Freescale/IBM/Apple AltiVec (also VMX, 128 bit, since 1999)
• ARM NEON (128 bit, since 2005)
• Intel Advanced Vector Extensions (AVX, 256 bit, since 2011)
• Intel Larrabee New Instructions (LRBni, 512 bit, since 2013).
• Intel AVX-512 (512 bit, expected 2015).
These instruction sets operate on SIMD registers that are two to sixteen times
larger than a standard, single-precision value of 32 bit. However, the vector
instructions only require approximately the same time for execution as their
scalar counterparts. Thus, if used efficiently, they can increase performance
of an application significantly. In addition, they are more energy efficient
since only one instruction fetch and decode has to be performed.

We use the following terms to refer to properties of SIMD instructions and
vectorization: The SIMD width S of an architecture is the number of 32 bit
values that can be stored in a single SIMD register. Such an architecture thus
has S SIMD lanes, where the i-th lane refers to the element at position i of
the vector. Data-parallel vectorization is achieved by executing an instance
of the program in a single SIMD lane and combining S instances into a
SIMD group that is executed together.





3 Overview
In this chapter, we present an overview of the basic Whole-Function Vec-
torization algorithm, the challenges faced when vectorizing real-world code,
and the most important performance implications of the transformation. In
Chapter 5, we give a detailed description of the analyses involved, followed
by the actual presentation of the WFV algorithm in Chapter 6.

3.1 Whole-Function Vectorization (WFV)
The algorithm transforms a given function f into its SIMD equivalent fW
that performs W executions of f in parallel. It consists of five main phases:

1. An analysis phase determines a variety of properties of the function under
data-parallel semantics (Chapter 5). For example, it has to be determined
which instructions cannot be vectorized and thus have to be replaced by
multiple scalar operations instead of a vectorial one. Also, the subsequent
phases can produce much more efficient code if operations could be proven
to always produce the same result for all grouped instances or whether a
memory operation accesses consecutive locations.

2. Masks are computed for every edge of the control flow graph (Section 6.1).
They store information about the flow of control in the function.

3. Select instructions that discard results of inactive instances are introduced
where necessary (Section 6.2). These operations blend together values
from disjoint paths that were executed by different instances.

4. Those parts of the control flow graph where the grouped instances may
take different paths are linearized (Section 6.3). This means that, in such
regions, all branches except for loop back edges are removed and code of
originally disjoint paths is merged into one path.

5. Now that control flow has been transformed to data flow, every instruction
is replaced by its vector counterpart or is split intoW sequential operations
(Section 6.4).
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3.2 Algorithmic Challenges
The WFV algorithm is designed to vectorize code for a large class of lan-
guage features. This includes arbitrary control flow, nested data structures,
operations with side effects, and operations without vector equivalent. In
general, the algorithm is able to transform any function, but possibly with
significant overhead.

Arbitrary Control Flow. The control-flow to data-flow conversion that
will be presented in the following sections can convert any kind of control
flow, including loops with multiple exits, nested loops, and exits that leave
multiple nesting levels. Section 6.5 also presents an extension for irreducible
control flow. Vectorization of arbitrary control flow requires to generate
mask code that tracks which instances are active at any point of the function.
Furthermore, we do not want to discard results of inactive instances after
each operation, since that would introduce far too much overhead. Placing
only as many blend operations as required, however, is a non-trivial task
in the presence of complex loop structures. To our knowledge, WFV is the
only vectorization approach that can vectorize arbitrary control flow.

Partial Linearization of Control Flow. The Partial CFG Linearization
phase is able to retain some of the original structure of the CFG using
static information. This includes the preservation of arbitrarily shaped,
nested regions for which the instances that are executed in SIMD fashion
do not diverge into different paths of the CFG. Also, some loop exits can
be retained even if instances may diverge inside the loop and leave it over
different exit edges and in different iterations. To our knowledge, WFV
is the only vectorization approach that can do partial CFG linearization
without hard-coded pattern matching.

Operations with Side Effects. The WFV algorithm handles any kind of
side effect by duplicating the scalar operation W times and guarding each
operation by conditional execution (see Section 6.4.4).1 This guard tests
the mask value of the corresponding instance and only allows execution
of the operation if the instance is active. This way, for a given operation,
the vectorized function also preserves the order of occuring side effects as

1By duplication we do not refer to creating W exact duplicates but to creating W scalar
instructions that operate on those elements of their input values that correspond to
their instance. We also call this splitting.
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compared to sequential execution. However, note that this does not hold for
multiple operations with side effects within a function: Because execution
happens in lock step, the vectorized function executes the first operation
with all active instances before executing the second operation with all active
instances. During sequential execution of the instances, on the other hand,
each instance would execute both operations before the next instance would
execute both. This exemplifies how WFV relies on data-parallel language
semantics that specify that instances are considered independent and thus
allow such a change of observable behavior.

Operations without Vector Equivalent. The algorithm can also handle
operations without vector equivalent. For example, an operation may return
a value whose return type is not vectorizable, or the operation itself does
not have a vector equivalent. Similar to operations with side effects, the
vectorized function uses W duplicates of the scalar operation. In general,
however, no guards have to be introduced for these operations, since there
is no effect observable from the outside. Thus, values of inactive instances
will be discarded by later select operations just like vector elements.

3.3 Performance Issues of Vectorization
There are a number of issues that can potentially reduce the performance of
the vector code.

Overhead of Mask and Select Operations. If the target architecture does
not support predicated execution (such as most of today’s SIMD instruction
sets including SSE, AVX, and NEON), overhead has to be introduced in
the form of instructions that compute and update masks and blend vectors
together. The mask and select generation phases of WFV are designed to
minimize the number of mask and blend operations that are introduced (see
Sections 6.1 and 6.2).

Critical Path Extension. Full linearization of control flow by definition
results in longer critical paths: Instead of taking either the then or the else
branch of an if statement, both paths are executed, thus increasing the
amount of executed code. As described in the introduction, this results in
inactive instances that do not contribute to the final result. In the worst
case, some code may be executed without any active instance, i.e., all its
results will be thrown away. As Figure 3.1 shows, this inefficiency becomes
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Figure 3.1: Pathological example for how linearization increases the amount of
executed code. Percentages on edges represent execution frequencies, numbers
next to blocks represent the cost of the block. Assuming 100 executions, the
vectorized CFG on the right at W = 4 would yield a slowdown of 2× compared
to a scalar execution of the CFG on the left ((100/4)∗11 = 275 vs. 96∗1+4∗10 =
136). If the branch can be retained, the vector variant is improved by a factor of
8.1 ((96/4) ∗ 1 + (4/4) ∗ 10 = 34, 4× faster than scalar).

even more problematic in cases where one of the two paths is much more
expensive than the other but only rarely executed. If the linearized paths are
in a loop the negative impact on performance is amplified even more. The
Partial CFG Linearization phase of WFV reduces this problem by statically
retaining parts of the control flow graph (see Section 6.3).

Register Pressure Increase. Linearization of control flow may also increase
register pressure. Consider the example CFGs in Figure 3.2, where the
variables that are live from block a to b are disjoint from those live from a
to c. The vectorized code on the right has a higher register pressure than the
sequential variant on the left. This is because all values that are live on edge
a→ c are now live throughout b, increasing its register pressure. Likewise,
all values that are live on edge b→ d are now live throughout c, increasing
the register pressure in this block as well. The increased register pressure in
turn can lead to additional spilling, which can severely impact performance.
By preventing linearization of parts of the control flow graph, WFV does
not increase register pressure to the same extent in the first place.

Uniform Operations. Often, instructions will use values that are the same
for different instances. For example, a constant function argument is always
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Figure 3.2: Linearization can increase register pressure. Numbers on edges
represent live values on that edge, numbers next to blocks represent the maxi-
mum number of values live at any point in that block. Live value sets of a → b
and a → c are disjoint. The register pressure of block b increases from 3 to 5,
the pressure of c increases from 5 to 8.

the same for all instances. Such a uniform value has to be broadcast into
vector form as soon as it is used as the input of a vector operation. This
means that a vector is created that has a copy of the value at every position.
It is generally desirable to do this as late as possible: Listing 3.1 shows a
case where broadcasting constants eagerly results in slower code due to more
broadcast and extractelement operations. Note that the eager broadcast
code still exploits the fact that the call to purefn is uniform and does
not produce side effects: only the first element of the vector is extracted,
and only one call is issued. A more conservative approach would have to
create W calls and merge the results.

In general, it can be beneficial to have more operations use the processor’s
scalar unit which otherwise is largely inactive due to most code using the
vector unit. Thus, an intermixing of scalar and vector operations can result
in better performance even if there would be no additional instructions
introduced by early broadcasting. The Vectorization Analysis (Section 5.6)
determines which values can be kept scalar. This implicitly defines the
program points where broadcast operations have to be placed.

It should be noted that if a single value is reused often, broadcasting
values eagerly requires less operations. Listing 3.2 shows an example for this.
However, the code that results from late broadcasting does not introduce
significant overhead in comparison. Also, the code is transparent to later
optimization phases, which may decide to broadcast earlier and use vector
instructions. This is not possible when broadcasting eagerly, since that has
more influence on the rest of the code (see Listing 3.1).
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Listing 3.1 Late broadcasting may require less operations. The function
purefn is assumed to not produce any side effects, otherwise it would be
split in both cases.

; scalar code . a0/a1/a2 are uniform , v is varying
%x = fadd float %a0, %a1
%y = call float @purefn(float %x, float %a2)
%z = fsub float %y, %v

; vector code ( eager broadcast )
%v0 = broadcast float %a0 to <4 x float>
%v1 = broadcast float %a1 to <4 x float>
%v2 = broadcast float %a2 to <4 x float>
%vx = fadd <4 x float > %v0, %v1
%vx0 = extractelement <4 x float> %vx, i32 0
%vy0 = call float @purefn(float %vx0 , %a2)
%vy = broadcast float %vy0 to <4 x float>
%vz = fsub <4 x float > %vy, %v

; vector code ( late broadcast )
%x = fadd float %a0, %a1
%y = call float @purefn(float %x, float %a2)
%vy = broadcast float %y to <4 x float>
%z = fsub <4 x float> %vy, %v

Non-Divergent Control Flow. If a uniform value is used as the condition of
a control-flow statement, all instances will always go into the same direction—
control flow does not diverge. In such cases, the increased amount of executed
code and increased register pressure as described above can be prevented.
In Sections 5.9 and 6.3, we describe in detail how to exploit this using static
techniques. In addition, Section 7.6 shows dynamic optimizations applicable
to code that is expected to have uniform branching behavior.

Random Memory Access Operations. Vector load and store instructions
that may operate on a vector of non-consecutive addresses have to be executed
as scalar, sequential operations, unless the instruction set supports so-called
gather and scatter operations. Most of today’s instruction sets such as
SSE, AVX, or NEON only allow vector loads from and vector stores to
consecutive addresses. The Vectorization Analysis (Section 5) is often able
to statically prove that a memory operation always accesses consecutive
locations. This allows later phases to emit more efficient vector memory
operations. Unfortunately, there are memory address calculations that
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Listing 3.2 Late broadcasting may require more operations.

; scalar code . a is uniform , v is varying
%x = fadd float %a, %a
%y = fmul float %a, %a
%s = fsub float %x, %v
%t = fsub float %y, %v

; vector code ( eager broadcast )
%va = broadcast float %a to <4 x float>
%vx = fadd <4 x float > %va, %va
%vy = fmul <4 x float > %va, %va
%vs = fsub <4 x float > %vx, %v
%vt = fsub <4 x float > %vy, %v

; vector code ( late broadcast )
%x = fadd float %a, %a
%y = fmul float %a, %a
%vx = broadcast float %x to <4 x float>
%vy = broadcast float %y to <4 x float>
%s = fsub <4 x float> %vx, %v
%t = fsub <4 x float> %vy, %v

cannot be analyzed statically, e.g. if they involve dynamic input values.
Sections 5.8 and 7.2 describe techniques that can improve the situation even
in such cases.

Operations with Side Effects & Nested Data Structures. Operations
with side effects introduce additional overhead due to being executed as
guarded, sequential, scalar operations. To prevent execution of the operation
for inactive instances, a guard is required for every instance: a test of the
corresponding mask element, followed by a conditional branch that jumps
to the operation or skips it.

The following problem occurs if such an operation has an operand that is
a nested data structure: If this data structure is not uniform, we have to
generate code that extracts the sequential values from that data structure
and creates values of the corresponding scalar data structure for each of the
sequential operations. If the operation is allowed to modify the value, we
have to introduce additional write-back operations afterwards. Listing 3.3
shows an example for this.



30 3 Overview

Listing 3.3 Structures of data passed to unknown functions yield significant
overhead due to creation of temporary scalar structures. The code exemplifies
what operations are necessary to produce valid code if such a call appears
in the function to be vectorized.
; scalar source code
define void @foo({ i32 }* %scalarStrPtr) {

call void @bar({ i32 }* %scalarStrPtr)
ret void

}

; " vectorized " code
define void @foo_W ({ <4 x i32> }* %vectorStrPtr) {

; allocate memory for scalar struct
%scalarStrPtr0 = alloca { i32 }, align 4

; write content of lane 0 of vector struct to scalar struct
%ex0 = load { <4 x i32> }* %vectorStrPtr , align 16
%ex1 = extractvalue { <4 x i32> } %ex0 , 0
%ex2 = extractelement <4 x i32> %ex1 , i32 0
%scalarStr0 = insertvalue { i32 } undef , i32 %ex2 , 0
store { i32 } %scalarStr0 , { i32 }* %scalarStrPtr0 , align 4

; call scalar function with temporary struct
call void @bar({ i32 }* %scalarStrPtr0)

; write back scalar struct to vector struct lane 0
%25 = load { i32 }* %scalarStrPtr0 , align 4
%26 = load { <4 x i32> }* %vectorStrPtr , align 16
%27 = extractvalue { i32 } %25, 0
%28 = extractvalue { <4 x i32> } %26, 0
%29 = insertelement <4 x i32> %28, i32 %27, i32 0
%30 = insertvalue { <4 x i32> } %26, <4 x i32> %29, 0

; repeat W -1 times for lanes (1, ... , W -1)
ret void

}



4 Related Work
In this chapter, we discuss other work that is related to this thesis. We give
an overview of the different kinds of approaches for vectorization and an
overview of languages that offer automatic vectorization. Furthermore, we
summarize work on static and dynamic analyses for SIMD execution and
work on dynamic code variants for data-parallel programs.

4.1 Classic Loop Vectorization
Generating code for parallel hardware architectures is being studied since
the emergence of vector computers and array processors. Various research
programs were aimed at parallelizing scientific (Fortran) programs. Espe-
cially the analysis and automatic transformation of loop nests has been
studied thoroughly [Allen & Kennedy 1987, Darte et al. 2000]. Allen et al.
[1983] pioneered control-flow to data-flow conversion to help the dependence
analyses to cope with more complex control structures. In our setting, we
do not have to perform dependence analysis or find any parallelism; it is
implicit in the programming model we consider. We use control-flow to
data-flow conversion as a technique to implement data-parallel programs on
SIMD processors. Furthermore, Allen et al. perform their transformation
on the abstract syntax tree (AST) level. In this thesis, however, we consider
control-flow to data-flow conversion on arbitrary control flow graphs in
SSA form. In addition, our approach allows to retain certain control flow
structures such that not all code is always executed after conversion.

In general, the control-flow conversion of Allen et al. is very similar to our
Mask Generation phase, but it only targets vector machines that support
predicated execution [Park & Schlansker 1991]. Predicated execution is a
hardware feature that performs implicit blending of results of operations.
For machines without predication, we are the first to show how masking of
arbitrary control flow can be implemented using blend operations.

Another strain of work bases on uncovering explicit instruction-level
parallelism (ILP) for automatic vectorization: Inner loops are unrolled several
times such that multiple instances of the same instruction are generated.
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These can be combined to vector instructions (“unroll-and-jam”). While
this has first been introduced for classic vector machines, several authors
also discuss this approach for SIMD instruction sets [Cheong & Lam 1997,
Krall & Lelait 2000, Nuzman & Henderson 2006, Sreraman & Govindarajan
2000]. Since those techniques only consider inner loops, they only vectorize
acyclic code regions. Also, target loops are often restricted, e.g. to static
iteration counts, specific data-dependency schemes, or straight-line code in
the loop body.

4.2 Superword Level Parallelism (SLP)
Superword Level Parallelism (SLP) [Larsen & Amarasinghe 2000] describes
the occurrence of independent isomorphic statements, i.e., statements per-
forming the same operations in the same order, inside a basic block, indepen-
dent of loops. Such statements can be combined to SIMD instructions similar
to instructions unrolled inside loops. Shin et al. [2005] extended the approach
to also work in the presence of control flow by using predicates. Barik et al.
[2010] introduced a similar approach based on dynamic programming. They
exploit shuffle and horizontal vector operations and algebraic reassociation
to uncover more potential for vectorization. Unfortunately, this technique
introduces overhead for the packing and unpacking of vectors that makes
the approach unusable for smaller fractions of code. Also, it is restricted to
code-regions without loops. Subgraph Level Parallelism [Park et al. 2012] is
another variant of SLP that minimizes packing and unpacking overhead.

4.3 Outer Loop Vectorization (OLV)
Our approach can be seen as a generalization of outer loop vectorization
(OLV) [Ngo 1994, Nuzman & Zaks 2008, Scarborough & Kolsky 1986, Wolfe
1995]. In OLV, outer loops are unrolled to improve vectorization, e.g. due to
longer trip counts of outer loops or better memory access schemes. However,
OLV does not allow for divergent control flow inside the outer loop in contrast
to our algorithm.

Thread merging [Yang et al. 2012] or thread coarsening [Magni et al.
2013], is a code transformation technique for data-parallel languages that is
similar to WFV, but is aimed at GPUs. Although it does not perform any
vectorization, thread merging is similar to OLV: It describes a technique
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where all code of a kernel function that depends on the instance identifier is
duplicated to do more work per GPU thread. This can be seen as unrolling
the implicit loop in which the kernel is executed.

4.4 Auto-Vectorizing Languages
On the language side, there are many different data-parallel languages and
language extensions that automatically compile to parallel and/or vector
code. Examples include NESL [Blelloch et al. 1993], CGiS [Fritz et al. 2004],
MacroSS [Hormati et al. 2010], ArBB [Newburn et al. 2011], Cilk+1, or
Vc [Kretz & Lindenstruth 2012]. Modern, GPGPU-oriented languages like
CUDA2 or OpenCL3 execute code in SIMT (Single Instruction, Multiple
Threads) fashion. On a GPU, a thread roughly corresponds to an element in
a vector register. As detailed below, some CPU implementations of CUDA
and OpenCL employ techniques similar to WFV. VecImp [Leißa et al. 2012],
Sierra [Leißa et al. 2014] and ispc [Pharr & Mark 2012] are languages that
employ automatic SIMD vectorization specifically targeted at CPUs with
SIMD instruction sets. Lately, the #pragma simd extension [Tian et al. 2012]
is becoming more widespread in CPU compilers: it forces loop vectorization
and can also vectorize functions. These vectorization approaches generally
work in a similar fashion as WFV: they produce SIMD code from scalar
source code in a data-parallel way.

For simple cases, all these languages will produce code similar to Whole-
Function Vectorization. However, there are distinct differences in our ap-
proach: In contrast to WFV, no approach can handle arbitrarily diverging
control flow, and no approach employs partial CFG linearization except in
trivial cases. They also do not include analyses to determine static properties
of the code that go as far as the analyses presented here. Sierra and ispc
take a conceptually different approach here: they rely on the programmer to
write the desired code, e.g. by offering a “non-divergent” if statement and
uniform and varying keywords. Sierra, in addition, allows to break out of
a vector context if desired, which is not possible in OpenCL or CUDA. PTX,
the low-level instruction set architecture of Nvidia GPUs, includes a special,
uniform branch instruction to allow a programmer or compiler to optimize
control flow behavior. The #pragma simd extension also supports a modifier
called linear, which is similar to our consecutive mark (Chapter 5). It

1cilk.com
2developer.nvidia.com/cuda
3khronos.org/opencl

cilk.com
developer.nvidia.com/cuda
khronos.org/opencl


34 4 Related Work

helps the compiler to identify and optimize memory operations that access
consecutive memory locations. However, it has to be used manually by the
programmer.

WFV is entirely based on control flow graphs in SSA form, whereas to
our knowledge all other approaches operate on the level of the AST. The
reason for this is that performing this kind of vectorization on an abstract
syntax tree in the front end is less complex than on arbitrary control flow
of low-level code such as LLVM bitcode. However, this approach loses
optimization potential: classic compiler optimizations do not work well on
vectorized code. The fact that control flow is no longer explicit disturbs
many compiler optimizations such as common-subexpression elimination.
Hence, it is better to first apply optimizations on the scalar code and then
perform vectorization.

RTSL [Parker et al. 2007] is a domain-specific language (DSL) in computer
graphics. It allows the user to write shaders, i.e., functions that describe
visual properties of materials, in scalar code that is automatically transformed
to vector code usable by packet ray tracing systems. RTSL vectorizes code
on the syntax level and generates C code that is forwarded to a standard
compiler.

Our model of computation is inspired by the GPGPU-style languages.
However, our pass comes so late in the compilation phase (immediately
before machine-dependent code generation tasks) that the source language’s
influence is negligible. We argue that all languages mentioned here can be
mapped to the language core presented in Section 5.1 and thus can profit
from our algorithm. In the evaluation in Chapter 8, we demonstrate this
for three languages: RenderMan, OpenCL, and a subset of C/C++ that is
suitable for loop vectorization.

4.4.1 OpenCL and CUDA
An increasing number of OpenCL drivers is being developed by different
software vendors for all kinds of platforms from GPUs to mobile devices. For
comparison purposes, the x86 CPU drivers by Intel4 and AMD5 are most
interesting. However, most details about the underlying implementation
are not disclosed. Both drivers have in common that they build on LLVM
and exploit all available cores with some multi-threading scheme. The Intel

4software.intel.com/en-us/vcsource/tools/opencl, OpenCL SDK XE 2013 R2
5developer.amd.com/sdks/AMDAPPSDK, version 2.8.1

software.intel.com/en-us/vcsource/tools/opencl
developer.amd.com/sdks/AMDAPPSDK
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driver also performs SIMD vectorization similar to our implementation6.
However, to our knowledge, it lacks analyses to retain uniform computations
and control flow, an important source of performance (see Chapter 8).

The Portland Group implemented an x86 CPU driver for CUDA which
also makes use of both multi-threading and SIMD vectorization.7 Again, no
details are publicly available. MCUDA [Stratton et al. 2008] and Ocelot [Di-
amos et al. 2010] are other x86 CPU implementations of CUDA that do
not use WFV. MCUDA first introduced a “thread loop”-based synchro-
nization scheme that is similar to the barrier synchronization described in
Section 8.2. This approach uses loop fission of the thread loop to remove
barriers, which results in similar code as our approach if no barriers are inside
loops. In that scenario however, MCUDA generates additional, artificial
synchronization points at the loop header and before the back branch. This
can impose significant overhead due to additional loading and storing of
live variables. Jääskeläinen et al. [2010] implemented POCL, a standalone
OpenCL driver that generates customized code for FPGAs and also uses
this synchronization scheme. In contrast to our driver, they rely on the
FPGA design to use the instruction-level parallelism exposed by duplicating
the kernel code W times instead of performing explicit SIMD vectoriza-
tion. We compare the performance of POCL to our driver in Chapter 8.
Additional OpenCL implementations that do not make use of SIMD vec-
torization are TwinPeaks [Gummaraju et al. 2010] and Clover8 as part of
GalliumCompute9.

4.5 SIMD Property Analyses
Implementations of data-parallel languages often include an analysis that
marks program points as uniform or varying, similar to a subset of our
Vectorization Analysis (Section 5.6). Examples include the invariant analysis
of CGiS [Fritz et al. 2004] and the variance analysis by Stratton et al. [2010].
The divergence analysis presented by Coutinho et al. [2011] and Sampaio
et al. [2013] also classifies values as uniform or varying. In addition to
our approach, they can also analyze affine constraints, yielding more precise
results in some situations. Since the divergence analysis also marks branches

6We have no information about the AMD driver but suspect that no Whole-Function
Vectorization is used due to the inferior performance.

7pgroup.com/resources/cuda-x86.htm, PGI CUDA-x86
8people.freedesktop.org/˜{}steckdenis/clover
9http://dri.freedesktop.org/wiki/GalliumCompute/

pgroup.com/resources/cuda-x86.htm
people.freedesktop.org/~{}steckdenis/clover
http://dri.freedesktop.org/wiki/GalliumCompute/
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as uniform or varying, Coutinho et al. employ an optimization that replaces
PTX branch instructions by the uniform equivalent bra.uni. This covers
a trivial subset of what our Rewire Target Analysis (Section 5.9) and Partial
CFG Linearization (Section 6.3) do: As we show in Section 6.3, the approach
does not produce correct results for unstructured control flow. Lee et al.
[2013] introduced a scalarizing compiler for GPU kernels that identifies
code regions where no threads are inactive. Their convergence analysis
employs Stratton’s variance analysis and yields similar results to the part
of our analysis that marks program points that are always executed by all
instances (Section 5.6.11). This is used to modify the program to use only
one instruction or register per warp instead of per thread, similar to what
the scalarization phase of Fritz et al. [2004] does in CGiS.

To our knowledge, our work is the first to classify instructions that have
to be executed sequentially or guarded, the first to determine consecutive
memory access operations, and the first to determine necessary blocks for
partial CFG linearization.

The SMT-based improvement for our analysis shares some similarities with
techniques developed for verification and performance analysis of GPU code.
Various approaches exist that analyze memory access patterns for GPUs.
However, none of the static approaches can handle integer division, modulo
by constants, or non-constant inputs. CuMAPz [Kim & Shrivastava 2011]
and the official CUDA Visual Profiler perform dynamic analyses of memory
access patterns and report non-coalesced operations to the programmer.
Yang et al. [2010] implemented a static compiler optimization to improve
non-coalesced accesses using shared memory. Li & Gopalakrishnan [2010]
proposed an SMT-based approach for verification of GPU kernels. This
was extended by Lv et al. [2011] to also profile coalescing. Tripakis et al.
[2010] use an SMT solver to prove non-interference of SPMD programs.
GPUVerify [Betts et al. 2012] is a tool that uses Z3 to prove OpenCL and
CUDA kernels to be free from race-conditions and barrier divergence. None of
these SMT-based techniques is concerned with automatic code optimization
but only with verification.

4.6 Dynamic Variants
The dynamic approach of Shin [2007] employs “branches-on-superword-con-
dition-code” (BOSCC) to exploit non-diverging control flow. This technique
reintroduces control flow into vectorized code to exploit situations where
the predicates (masks) for certain parts of the code are entirely true or
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false at runtime. While this prevents unnecessary execution of code, it
suffers from some overhead for the dynamic test and does not solve the
problem of increased register pressure as described in Section 3.3 without
code duplication: the code still has to account for situations where the
predicate is not entirely true or false, unless a completely disjoint path
is introduced where all code is duplicated. Our analysis can do better
by providing the necessary information statically, which allows to retain
the original control flow. However, it is possible to benefit from both our
optimizations and BOSCCs.

The compiler of RTSL [Parker et al. 2007] includes a similar technique that
automatically introduces multiple code paths for a conditional branch where
instances may diverge: one for the general case of a mixed mask, one for the
“all-false” case, one for the “all-true” case. Timnat et al. [2014] describe a
more generic variant of the same technique. In addition to the separate paths
for entirely true or false masks they can also switch between the paths. For
example, when a loop starts iterating with all instances active, it executes
a code path that does not blend values or track masks. When the first
divergence occurs, i.e., some but not all instances leave the loop, execution
continues on a different code path that does include blend operations. These
techniques are summarized in Section 7.6.

Manual implementations of dynamic variants for specific applications exist,
e.g. for a ray tracer for the Intel MIC architecture by Benthin et al. [2012].
They trace packets of rays in a SIMD fashion, but switch to scalar execution
once the rays diverge. With an appropriate heuristic, this could be achieved
automatically with a dynamic variant as described in Section 7.3.

The Instance Reorganization variant described in Section 7.5 shares some
similarities with approaches like dynamic warp formation [Fung et al. 2007],
branch and data herding [Sartori & Kumar 2012], and SIMD lane permu-
tation [Rhu & Erez 2013]. A variety of manual implementations of similar
schemes exist in ray tracing, where rays are reordered for packet tracing [Ben-
thin et al. 2012, Boulos et al. 2008, Moon et al. 2010, Wald 2011]. However,
all of these approaches are concerned about upfront reordering of instances
that execute together in a SIMD group. This way, branching and data access
behavior can be improved without modifying the code. In contrast, Instance
Reorganization is performed within a fixed group of instances and relies on
code transformation.
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4.7 Summary
Whole-Function Vectorization is a generic vectorization approach that focuses
on control-flow to data-flow conversion and instruction vectorization. It
can be used in a variety of scenarios such as loop vectorization, outer loop
vectorization, and in the back ends of data-parallel languages. In contrast to
most other approaches, WFV works on the control flow graph rather than
on source or syntax tree level. This allows to aggressively optimize the code
before vectorization. The state-of-the art in vectorization is usually limited
to straight-line code or structured control flow, and complete linearization
of the control flow structure is performed except in trivial cases. WFV
on the other hand can handle arbitrary control flow, and can retain some
structure of the CFG. The analyses introduced in this thesis describe a more
complete picture of the behavior of SIMD execution than previous divergence
or variance analyses. The WFV-based OpenCL driver employs some of the
most advanced code generation and vectorization techniques that have been
developed. The prototype offers, together with the Intel driver, the currently
best performance of any commonly used OpenCL CPU driver.



5 SIMD Property Analyses
In this chapter, we describe the heart of the WFV algorithm: a set of analyses
that determine properties of a function for a SIMD execution model.

The analyses presented in this chapter determine a variety of properties
for the instructions, basic blocks, and loops of a scalar source function.
The properties related to values are listed in Table 5.1, those related to
blocks and loops in Table 5.2. They describe the behavior of the function in
data-parallel execution.

In general, the SIMD properties are dynamic because they describe val-
ues that may depend on input arguments. The Vectorization Analysis
(Section 5.6) describes a safe, static approximation of them.

Many of the analysis results are interdependent. For example, values
may be non-uniform because of divergent control flow, and control flow
may diverge because of non-uniform values (see Section 5.2). Thus, the
Vectorization Analysis consists of several parts that interact.

The analysis results are used throughout all phases of vectorization and
in many cases allow to generate more efficient code.

Table 5.1 Instruction properties derived by our analyses. Note that var-
ying is defined for presentation purposes only: it subsumes consecutive
and unknown.

Property Symbol Description

uniform u result is the same for all instances
varying v result is not provably uniform
consecutive c result consists of consecutive values
unknown k result values follow no usable pattern

aligned a result value is aligned to multiple of S
nonvectorizable n result type has no vector counterpart

sequential s execute W times sequentially
guarded g execute sequentially for active instances only
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Table 5.2 List of block and loop properties derived by our analyses.
Property Description

by all block is always executed by all instances
div causing block is a divergence-causing block
blendv block is join point of instances that diverged at block v
rewirev block is a rewire target of a div causing block v

divergent loop that instances may leave at different points (time & space)

5.1 Program Representation
We consider the scalar function f to be given in a typed, low-level repre-
sentation. A function is represented as a control flow graph of instructions.
Furthermore, we require that f is in SSA form, i.e., every variable has a
single static assignment and every use of a variable is dominated by its
definition. A prominent example of such a program representation is LLVM
bitcode [Lattner & Adve 2004] which we also use in our evaluation (Chap-
ter 8). We will restrict ourselves to a subset of a language that contains only
the relevant elements for this thesis. Figure 5.1 shows its types and instruc-
tions. Other instructions, such as arithmetic and comparison operators are
straightforward and omitted for the sake of brevity.

This program representation reflects today’s consensus of instruction
set architectures well. alloca allocates local memory and returns the
corresponding address as a pointer of the requested type. The gep instruction
(“get element pointer”) performs address arithmetic. load (store) takes
a base address and reads (writes) the elements of the vector consecutively
from (to) this address. The bool type is special in that we do not allow
creating pointers of it. This is because the purpose of boolean values is solely
to encode control flow behavior.

The function tid returns the instance identifier of the running instance
(see above). A phi represents the usual φ-function from SSA. An lcssaphi
represents the φ-function with only one entry that is found in loop exit
blocks of functions in LCSSA form. The operation arg(i) accesses the i-th
argument to f . We assume that all pointer arguments to f are aligned to
the SIMD register size.

Function calls are represented by call instructions that receive a function
identifier and a set of parameters. Branches are represented by branch
instructions which take a boolean condition and return one of their target
program point identifiers.
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Types
σ = unit | τ
τ = β |π
β = bool
π = ν |π∗
ν = int | float
γ = program point id
δ = function id

Instructions
val : τ
tid : unit→ int
arg : int→ τ
phi : (τ, γ)× (τ, γ)→ τ

lcssaphi : (τ, γ)→ τ
alloca : int→ π∗

gep : π∗ × int→ π∗
load : π∗ → π

store : π∗ × π → unit
call : δ × (τ × · · · × τ)→ σ

branch : β × γ × γ → γ

Figure 5.1: Program representation: types and instructions.

5.2 SIMD Properties
We now define the SIMD properties relevant for our analyses and discuss
their meaning. The following definitions describe dynamic properties, i.e.,
they may depend on values that are not known statically. Our analyses
derive conservative approximations of them.

5.2.1 Uniform & Varying Values
Definition 1 (Uniformity) An operation is uniform iff it does not pro-
duce any side effects and a single, scalar operation is sufficient to produce
all values required for all instances of the executing SIMD group. Otherwise,
it is varying.

In general, this is a dynamic property that may depend on input values.
The Vectorization Analysis (Section 5.6) computes a safe, static underap-
proximation of uniformity.

The uniform property also depends on control flow: If the condition that
controls a conditional branch is varying, control flow may diverge, and
the program points where control flow joins again are join points (blend).
φ-functions at such join points and LCSSA φ-functions at exit points of
divergent loops become varying: Consider a φ-function with constants
as incoming values on all edges. If that φ-function resides at a join point,
i.e., it is blend, the φ is not uniform but varying. This is because not all
instances enter the φ’s program point from the same predecessor in every
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execution, so the result has to be a vector of possibly different constants for
each instance.

However, if we can prove that the φ is not blend, then the φ is uniform,
too. Similar behavior can be observed for LCSSA φ-functions at exit points
of divergent loops and for operations with side effects at points that are
not provably always executed by all instances (by all).

The varying property is a general property that states that a program
point is not uniform, i.e., it holds different values for different instances.
Properties like consecutive, unknown, or guarded describe a varying pro-
gram point in more detail.

If the Rewire Target Analysis (Section 5.9) is disabled, all conditional
branches and non-void return statements are conservatively marked varying.
This effectively means that all values that depend on any control flow will
be considered varying as well.

5.2.2 Consecutivity & Alignment
Definition 2 (Consecutivity) An operation is consecutive iff its results
for a SIMD group of instances are natural numbers where each number is by
one larger than the number of its predecessor instance, except for the first
instance of the group.

It is common for vector elements to hold consecutive values. Assume we
have a base address and know that the values of the offsets are consecutive
for consecutive instance identifiers. Putting the offsets in a vector yields
〈 n, n + 1, . . . , n + W − 1 〉. Using such an offset vector in a gep gives a
vector of consecutive addresses. Thus, optimized vector load and store
instructions that only operate on consecutive addresses can be used.

Definition 3 (Aligned) An operation is aligned iff its results for a SIMD
group of instances are natural numbers and the result of the first instance is
a multiple of the SIMD width S.

Current SIMD hardware usually provides more efficient vector memory
operations to access memory locations that are aligned. Thus, it is also
important to know whether an offset vector starts exactly at the SIMD
alignment boundary. If, for example, a load accesses the array element next
to the instance identifier, the vectorized variant would access 〈 id+ 1, id+
2, . . . , id+W . Without further optimizations, this non-aligned operation
would require two vector loads and a shuffle operation. In the context of
classic loop vectorization, options how to best compute unaligned memory
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operations have been studied extensively [Eichenberger et al. 2004, Fireman
et al. 2007, Shahbahrami et al. 2006].

5.2.3 Sequential & Non-Vectorizable Operations
There are values and operations that must not or cannot be vectorized.
These are executed as W sequential, scalar operations, potentially guarded
by conditionals.

Definition 4 (Non-Vectorizable Operation) An operation is non-vec-
torizable iff its return type or the type of at least one of its operands has
no vector equivalent.

For example, a call that returns a void pointer is nonvectorizable since
there is no vector of pointers in our program representation. More impor-
tantly, however, a nonvectorizable value forces operations that use it to
be executed sequentially:

Definition 5 (Sequential Operation) An operation is sequential iff it
has no vector equivalent or if it is nonvectorizable and not uniform.

This is mostly relevant for operations with nonvectorizable return type or
at least one nonvectorizable operand. It also applies to all those operations
that do not have a vector counterpart, for example some SIMD instructions
sets do not support a load from non-consecutive memory locations.

Definition 6 (Guarded Operation) An operation is guarded iff it may
have side effects and is not executed by all instances.

Unknown calls have to be expected to produce side effects and thus require
guarded execution. Similarly, store operations must never be executed for
inactive instances.

5.2.4 All-Instances-Active Operations
Many sources of overhead in vectorized programs are caused by conservative
code generation because instances may diverge. If it can be proven that all
instances are active whenever an operation is executed, more efficient code
can be generated.

Definition 7 (All-Active Program Point) A program point is by all
iff it is not executed by a SIMD group which has an inactive instance.
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For example, operations that may have side effects have to be executed
sequentially and guarded if some instances may be inactive. This is because
the side effect must not occur for inactive instances. If the operation is
by all, it will always be executed by all instances, and no guards are
required.

5.2.5 Divergent Loops
Definition 8 (Loop Divergence) A loop is divergent iff any two in-
stances of a SIMD group leave the loop over different exit edges and/or in
different iterations.

It is important to note that this definition of the term “divergence” differs
from the usual one that describes a loop that never terminates. A divergent
loop in the SIMD context can be left at different points in time (iterations)
or space (exit blocks) by different instances. Because of this, the loop has to
keep track of which instances are active, which left at which exit, and which
values they produced. This involves overhead for the required mask and
blend operations. However, if the loop is not divergent, i.e., it is always
left by all instances that entered it at once and at the same exit, then no
additional tracking of the instances is required.

5.2.6 Divergence-Causing Blocks & Rewire Targets
The div causing and rewire properties are used to describe the divergence
behavior of control flow. Program points marked div causing or rewire
correspond to exits and entries of basic blocks, so we simply refer to the
properties as block properties:

Definition 9 (Divergence-Causing Block) A block b is div causing
iff not all instances that entered b execute the same successor block.

A block that ends with a varying branch may cause control flow of different
instances to diverge, i.e., to execute different program points after the branch.
Paths that start at such a block are subject to control-flow to data-flow
conversion. The blocks that define how the CFG has to be transformed for
this conversion are defined as follows:
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Definition 10 (Rewire Target) A block b is a rewire target of a div -
causing block d iff it is entered by at least one instance that executed d and
either
1. it is a successor block of d, or
2. it is an end block of a disjoint path due to d.

End blocks of disjoint paths may be either join points, loop exits, or loop
latches. Consider an edge x → b, where b is a rewire target of block d,
and x 6= d. This edge marks the end of a disjoint path p1 that started at
a successor of d. If this edge is reached, this indicates that d was executed
earlier and that some instances went into another disjoint path p2. So,
before b is entered, execution continues with p2. The start block of p2 is
another rewire target of d. Section 5.9 will discuss this in more detail and
give explanatory examples.

5.3 Analysis Framework
In the following, we give a definition of a framework to describe and derive
SIMD properties of a program. The framework is built on the ideas of abstract
interpretation [Cousot & Cousot 1976; 1977; 1979] and closely follows the
notation and definitions of Grund [2012]:

First, an Operational Semantics (OS) (Section 5.4) is defined for the
program representation introduced in Section 5.1. It describes the exact
behavior of a program when being executed as transformations between
program states. The effects of each operation of the program are described
by a transformation rule that modifies the input state.

Second, OS implicitly defines a Collecting Semantics (CS). It abstracts
from the OS by combining states to a set of states, which allows to reason
about the effects of an operation for all possible input states, e.g. all possible
input values of a function.

Third, an Abstract Semantics (AS) (Section 5.6) is defined. It abstracts
from the CS by reasoning about abstract properties rather than sets of
concrete values. This allows its transformation rules to be implemented as a
static program analysis that can be executed at compile time.

To ensure soundness of the abstraction, we sketch a proof for the local con-
sistency of CS and AS (Section 5.7). This is done by defining a concretization
function γ that maps from AS to CS.
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5.4 Operational Semantics
We use the notation of Seidl et al. [2010] to define an Operational Semantics
(OS) for the program representation from Section 5.1. Let d = (ρ, µ,@,#)
be a state of the execution at a given node, where ρ : Vars → τ is a mapping
of variables to values, µ : π∗ → π is a mapping of memory locations to
values, @ : γ → bool stores for each program point whether it is active or
not, and # : int is an instance identifier. The notation ρ⊕ {x 7→ y} stands
for

λv.

{
y if x = v

ρ(v) otherwise,

i.e., the value of x in ρ is updated to y.
The evaluation functions (also called the transformer of OS) are defined in

Figure 5.2. For the sake of brevity, we only show the effects on the updated
elements of state d per rule.

We assume a non-standard execution model: predicated execution. Re-
gardless of the flow of control, every operation in the program is executed in
topological order. However, the state is only updated if the value @(x) of
the program point x is true, otherwise the operation has no effect: @(x) is
the predicate of x. The value of @ is true for the entry program point, and
initially false for all other program points. A branch at program point x
updates the mapping of its successor program points: The value @(s1) for
the true successor s1 is set to the result of a disjunction of the current
value @(s1) and a conjunction of @(x) and the condition. The value @(s2)
for the false successor s2 of a conditional branch is set to the result of a
disjunction of the current value @(s2) and a conjunction of @(x) and the
negated condition. The disjunctions merge the predicates of all incoming
edges at control flow join points. The only exception to this are loop headers,
for which @ must not be updated with a disjunction since that would reacti-
vate instances that left the loop already. Thus, @ is updated by selecting the
value from the preheader in the first iteration and the value from the latch
in all subsequent iterations, similar to a φ-function. This scheme ensures
that all the control flow is encoded in @.

Note that # is never written, which reflects the fact that the instance
identifier is an implicit value of every instance that can only be queried, not
changed.
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Jx← cK(d) = ρ⊕ {x 7→ c}

Jx← vK(d) = ρ⊕ {x 7→ ρ(v)}
Jx← tidK(d) = ρ⊕ {x 7→ #}

Jx← arg(i)K(d) = ρ⊕ {x 7→ ρ(arg(i))}

Jx← phi((v1, b1), (v2, b2))K(d) = ρ⊕
{
x 7→

{
ρ(v1) if @(b1) = true
ρ(v2) if @(b2) = true

}
Jx← lcssaphi(v, b)K(d) = ρ⊕ {x 7→ v}

Jx← alloca(n)K(d) = ρ⊕ {x 7→ newptr(µ, c)}
Jx← load(a)K(d) = ρ⊕ {x 7→ µ(ρ(a))}

Jx← store(a, v)K(d) = µ⊕ {ρ(a) 7→ ρ(v)}
Jx← call(g, v1, . . . , vn)K(d) = ρ⊕ {x 7→ g(ρ(v1), . . . , ρ(vn))} ,

µ⊕ {Mg(µ, ρ(v1), . . . , ρ(vn))}
Jx← ω(v1, v2)K(d) = ρ⊕ {x 7→ ω(ρ(v1), ρ(v2))}

Jx← branch(v, b1, b2)K(d) = @⊕ {b1 7→ @(b1) ∨@(x) ∧ v, b2 7→ @(b2) ∨@(x) ∧ ¬v}

Figure 5.2: Evaluation functions for the Operational Semantics. ω is an arith-
metic or comparison operator, newptr returns a new memory location in µ,
and Mg describes the memory effects of an execution of function g. A function
has no effect if the program point’s mapping in @ (its predicate) is false. An
unconditional branch b implicitly updates the predicate of its successor s with
its own predicate: @(s) ∨@(b).

5.4.1 Lifting to Vector Semantics
Finally, in order to reason about SIMD programs, we lift OS to operate on
vectors instead of scalar values. This is straightforward: # is a vector of
instance identifiers now, and every function is evaluated separately for each
of these SIMD instances. Instances that are inactive, i.e., their value in @ at
the current program point is false, are not updated. Note that this lifting
means that phi can blend two incoming vectors if some values in @ are true
for either predecessor program point.

In order for this to work, loops iterate until the predicate that describes
which instances stay in the loop is entirely false. This means that loops
iterate as long as any of the instances needs to iterate. Execution then
continues with the loop exit program points, again in topological order.
Their predicates are correct since they have been continually updated while
iterating the loop.

To ensure valid SIMD semantics, the predicated execution model employs
postdominator reconvergence, also known as stack-based reconvergence [Fung
& Aamodt 2011]. This scheme aligns all traces of states of the instances, i.e.,
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the latest reconvergence point of all instances that diverged at a conditional
branch is the postdominator of that branch. This will allow us to reason
about universal properties of the states in the Collecting Semantics of OS.

5.5 Collecting Semantics
OS implicitly defines a Collecting Semantics (CS) which combines all possible
states of a program point to a set of states. This means it operates on a set
of states D which contains all states d of the program at a given program
point. The sets ρ, µ, @, and # are lifted to sets of sets. This collection of
sets of states allows us to reason about universal properties of the states.
Most importantly, the alignment of traces that is ensured by postdominator
reconvergence prevents cases where we would derive properties from values
that belong to different loop iterations.
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5.6 Vectorization Analysis
We now define an Abstract Semantics (AS) that abstracts from the Collection
Semantics by reasoning over SIMD properties instead of concrete values. In
the following, the transfer functions

J·K] : (Vars → (D× B× A× L))→ (Vars → (D× B× A× L))

of AS (the abstract transformer) are defined. They can be computed effi-
ciently by a data-flow analysis we refer to as Vectorization Analysis. The
functions DAbs, B, A, and L contain the analysis information. They map
variables to elements of the lattices D, B, A, and L (see Figures 5.3 and 5.4).

Note that, since we consider SSA-form programs, the terms variables and
values both refer to program points. A program point also has a concrete
operation associated. The presented analyses use join (not meet) lattices and
employ the common perspective that instructions reside on edges instead of
nodes. Program points thus sit between the instructions (see Figure 5.5).
This scheme has the advantage that the join and the update of the flow facts
are cleanly separated.

As in the Operational Semantics, the notation DAbs ⊕ {x 7→ y} stands for

λv.

{
y if x = v

DAbs(v) otherwise,

i.e., the value of x in DAbs is updated to y.
The order of properties of DAbs is visualized by the Hasse diagram in

Figure 5.3. It describes the precision relation of the properties. An element
that is lower in the diagram is more precise than an element further up.
This relation is expressed by the operators v and w: The notation a v b
describes the fact that a is at least as precise as b, a w b means that a is at
most as precise as b.

5.6.1 Tracked Information
Our analysis tracks the following information for each program point (see
Tables 5.1 and 5.2 and the lattices in Figures 5.3 and 5.4): Is the value the
same for all instances that are executed together in a SIMD group (uniform),
and is it a multiple of the SIMD width (uniform/aligned) or does it have a
type that is not vectorizable (uniform/nonvectorizable)? Such a uniform
variable can be kept scalar and broadcast into a vector when needed, or used
multiple times in sequential operations if it is nonvectorizable.
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Otherwise, a value may hold different values for different instances (var-
ying). If possible, these values are merged into a vector in the SIMD
function. We track whether a varying value contains consecutive values for
consecutive instances (consecutive) and whether it is aligned to the SIMD
width (consecutive/aligned). The latter allows to use faster, aligned
memory instructions. The former still avoids sequential, scalar execution but
needs unaligned memory accesses. If nothing can be said about the shape of
a varying value, its analysis value is set to unknown or, if it has a type that
cannot be vectorized, nonvectorizable.

ng

kg ns

cg ks

cag cs k nu

cas c

ca u

ua

Legend
Acronym Property

n nonvectorizable
g guarded
s sequential
k unknown
c consecutive
a aligned
u uniform

Concrete Value Examples
Element Shape of Vector Example
k 〈 n0, n1, . . . , nW−1 〉 〈 9, 2, 7, 1 〉
c 〈 n, n+ 1, . . . , n+W − 1 〉 〈 3, 4, 5, 6 〉
ca 〈 m,m+ 1, . . . ,m+W − 1 〉 〈 0, 1, 2, 3 〉
u 〈 m+ c,m+ c, . . . ,m+ c 〉 〈 7, 7, 7, 7 〉
ua 〈 m,m, . . . ,m 〉 〈 4, 4, 4, 4 〉
nu type not vectorizable void*,void*,void*,void*

n ∈ int, float, m = n ·W

Figure 5.3: Hasse diagram of the lattice D, legend, and value examples. The
lattice is lifted to a function space whose elements map variables to elements
of D. Note that our notation uses the join, not meet style, i.e., > (ng) is least
informative. The properties map to those listed in Table 5.1.
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⊥

>

by all

divergent

⊥

Figure 5.4: Hasse diagrams of the lattices B, A, and L. The properties map to
those listed in Table 5.2.

ta b

J K]

a b

Ja t bK]

Figure 5.5: Left: Analysis setup with separated join and update of flow facts.
Right: Classic setup with mixed join/update.

Furthermore, we track the information whether a program point is se-
quential, and whether it is guarded. A sequential operation cannot be
executed as a vector operation, but has to be split into W sequential opera-
tions. If the program point is guarded, it also requires conditional execution.
This means that each sequential operation is guarded by an if statement
that evaluates to true only if the mask element of the corresponding instance
is set.

Finally, control-flow related information is tracked: Is the program point
always executed without inactive instances (by all)? Is it a join point of
diverged instances of some program point v (blendv)? Does it have to
be executed if some program point v was executed (rewirev) or can it be
skipped under certain circumstances (optional)? Finally, we track whether
a program point is part of a loop that some instances may leave at different
exits or at different points in time (divergent).

5.6.2 Initial State
The initial information passed to the analysis is twofold: the signatures of
the scalar source function f and the vectorized target declaration of fW on
one hand, user-defined marks on the other. All other program points are
initialized with the bottom element of the lattice, ua (uniform/aligned).
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Function Arguments

Jx← arg(i)K](DAbs, B,A, L) =

(DAbs ⊕


x 7→



ua if type(f,i) = type(fW ,i) ∧ type(f,i) is pointer
u if type(f,i) = type(fW ,i)
nu if type(f,i) = type(fW ,i) ∧

type(f,i) not vectorizable
ca if type(fW ,i) = vectW(type(f,i)) ∧

type(f,i) is pointer
k if type(fW ,i) = vectW(type(f,i))


,

B,A, L)

The argument and return types of the signatures are tested for equality.
Those arguments for which the types match are uniform, meaning they

will have the same value for all instances that are executed together in the
SIMD function. If the argument is a pointer, it is also aligned, since we
assume all pointer arguments to be aligned to the SIMD register size. If the
argument has a type that is not vectorizable, it is nonvectorizable/uni-
form. This is the case for void pointer types, for example.

All other arguments may have different values for each instance, hence
they are considered varying. To be more precise, varying arguments are
either unknown or consecutive/aligned: Normal values are marked as un-
known to reflect that no information about the different values of the different
instances is available. Pointers are consecutive and aligned, again because
we assume that all pointers supplied to the function are aligned.

Note that the algorithm requires the argument types to either match
exactly, or the SIMD type has to be a “struct of array” version of the scalar
type. For example, a vectorized struct type is not a vector of structs with
scalar elements but a struct of vectorized elements. Table 5.3 shows the type
vectorization rules that apply.

User-Defined Marks

Jx← user markK](DAbs, B,A, L) = (DAbs, B,A, L)⊕ {x 7→ user mark}

It is possible to add SIMD semantics to arbitrary program points to force
certain behavior. Most commonly, this is used to add information about
other functions that are called to allow for more efficient code generation.
For example, the WFV implementation includes optimized vector variants
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Table 5.3 “Struct-of-array” type vectorization rules of the most important
types (LLVM notation), applied by the function vectW, where W is the
chosen vectorization factor. Note that we do not allow vectors of pointers,
and thus do not allow vectorization of the void-pointer type i8*.
Scalar Type Vector Type

vectW(i1) <W x i1>
vectW(i8) <W x i8>
vectW(i32) <W x i32>
vectW(i64) <W x i64>
vectW(float) <W x float>
vectW(type*) <W x type>*
vectW(i8*) N/A
vectW([ N × type ]) [ N × vectW(type) ]
vectW({ type0, type1, . . . }) { vectW(type0), vectW(type1), . . . }

for library functions like sin, cos, exp, etc., that efficiently compute the
corresponding function for multiple input values at once. Via user-defined
marks, the algorithm is made aware that a scalar call to one of these functions
can be vectorized by replacing it with a call to the corresponding vector
variant.

These user-defined marks are always obeyed by the analyses. In case a mark
is inconsistent with other results of the analysis, a concrete implementation
has to return a compilation error. For example, if the analysis marks a value
varying that is used by an operation that the user marked as uniform, code
generation would not be possible.

5.6.3 Instance Identifier
Jx← tidK](DAbs, B,A, L) = (DAbs ⊕ {x 7→ ca} , B,A, L)

As defined in Section 5.1, the function tid returns the instance identifier of
the running instance. By definition, this value is consecutive and aligned
because we consider instances to always be grouped together in order of
their instance identifiers. Thus, the identifiers of a group of W instances
start with a value that is divisible by W , and each subsequent identifier is
incremented by one.

As an example, languages like OpenCL or CUDA that have specific code
constructs to query the instance identifier. For example, in OpenCL, the
function get global id corresponds to tid.
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5.6.4 Constants
Jx← cK](DAbs, B,A, L) =

(DAbs ⊕

x 7→
ua if c = mS, m ∈ N

nu if type(c) not vectorizable
u otherwise

 , B,A, L)

Constants are uniform by definition. In addition, if a constant is divisible
by the SIMD width S, it is uniform/aligned. If the constant is of a type
that is not vectorizable, it is nonvectorizable/uniform.

5.6.5 Phi Functions
Jx← phi((v1, b1), (v2, b2))K](DAbs, B,A, L) =

(DAbs ⊕

x 7→

DAbs(v1) tphi DAbs(v2) if x /∈ B
k if x ∈ B ∧DAbs(v1) v kg

∧DAbs(v2) v kg
ns otherwise

 ,

∀d ∈ DAbs.(d is branch ∧ d w ca) =⇒

B ⊕
{
x 7→

{
blendd if disjointPaths(d,x)
B(x) otherwise

}
,

A, L)

The properties of a φ-function depend both on the incoming values and the
incoming control flow paths. If instances diverged at a varying branch d,
they may join again at the program point of this φ-function. In such a case,
control-flow to data-flow conversion is required: It is not sufficient to select
one of the values of the incoming paths, they have to be blended. Thus, such
a join point has to be marked blendd, and the map B has to be updated.

Definition 11 (Join Point) Let b be a program point with multiple incom-
ing edges p1 → b, . . . , pn → b. Let d be another, varying program point with
outgoing edges d→ s1, . . . , d→ sn. b is blendd iff there exist two disjoint
paths sa →∗ px and sb →∗ py with x 6= y.

Informally, this describes the fact that in a given SIMD execution, b can be
reached by some instances from both edges that leave d. Hence, b is subject
to control-flow to data-flow conversion. Figure 5.6 illustrates the disjoint
path criterion.
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d

b

v

Figure 5.6: Illustration of the blend criterion (Definition 11). Note that, for b
to be blendd, b is neither required to post-dominate d, nor is d required to
dominate b.

The property is determined with the function disjointPaths, which is
defined as follows:

disjointPaths(d, x) = ∃s1, s2 ∈ succ(d).disjointPaths(s1,s2,x),

where succ(d) is the set of successor program points of d. The question
whether there are disjoint paths from two definitions s1, s2 to a program
point x is the same that is asked during construction of SSA form. Its answer
is given easiest by testing whether x is in the iterated dominance frontier
of the two start blocks. During SSA construction, these join points are the
locations where φ-functions have to be placed.

If the program point of the φ-function is blend, it cannot be uniform. If
its type is vectorizable, it is unknown, otherwise it is nonvectorizable.

If the program point is not blend, no diverged control flow can join
again at this point. This means that the φ-function does not have to be
transformed into a blend operation. The operator tphi that determines the
mark of the φ-function in this case is defined as follows (symmetric values
are omitted):

tphi =

DAbs(v1), DAbs(v2) ua u nu ca c k n
ua ua u nu k k k ns
u u nu k k k ns
nu nu ns ns ns ns
ca ca c k ns
c c k ns
k k ns
n ns
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Figure 5.7: The CFG of the Mandelbrot kernel from the introduction. Unifor-
mity of exit conditions is shown with a lowercase letter below the block. The
block g is a blendc block because instances may diverge at the varying branch
in c and join again in g. The corresponding disjoint paths are c → f → g and
c→ d→ b→ e→ g.

Note that the φ-function can still be varying, e.g. if the incoming value
from either path is consecutive or unknown. In such a case, although it
returns either of the incoming values and does not have to be replaced by
a blend operation, it can’t be uniform either. In a case where only one
incoming value is uniform, the transfer function has to be conservative and
mark the φ-function at least consecutive, sacrificing some precision.

Along with the blend mark, the program points that caused the mark are
also stored. We denote this by referring to blendd if the branch at program
point d caused the blend mark. This information is used by the Rewire
Target Analysis (Section 5.9). This property can later be used to determine
paths that have to be linearized (Section 6.3).

Example. Figure 5.7 shows the CFG of the Mandelbrot kernel from the
introduction with annotated uniformity of the branches. The CFG contains
a loop with two exits, of which the one in block c is controlled by a vary-
ing branch. Instances of a SIMD group may diverge at this branch, and
the instances that remain in the loop may at some point leave it over
the other exit in b. The instances join again in block g. This makes it
necessary to blend the results of the different instances together at this
point, so corresponding φ-functions in g have to be transformed to blend
operations during vectorization. Thus, the program points that correspond
to φ-functions in block g have to be marked as blend. We say that g is a
blend block.
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LCSSA Phis

Jx← lcssaphi(v, b)K](DAbs, B,A, L) =

(DAbs ⊕


x 7→



ns if x ∈ L ∧DAbs(v) w nu
ns if x /∈ L ∧DAbs(v) w ns
k if x /∈ L ∧ kg w DAbs(v) w k
c if x /∈ L ∧ cg w DAbs(v) w c
ca if x /∈ L ∧ cag w DAbs(v) w ca
k otherwise,


, B,A, L)

The consecutive, aligned, and unknown properties of an LCSSA phi are
transferred from the incoming value if no loop that is left over the corre-
sponding edge is divergent. This does not count for the sequential and
guarded properties, since they only describe the program point of the incom-
ing value and do not require the phi itself to also be sequential or guarded.
If one of the loops that is left is divergent, then the phi is nonvectoriza-
ble/sequential if the incoming value is nonvectorizable, and unknown
otherwise. This is because values that are live across exits of divergent
loops may be different for different instances, so to be conservative they
must not be uniform.

5.6.6 Memory Operations
While SIMD instruction sets provide memory operations that operate on
vectors, a scalar load or store cannot blindly be replaced by a vector load
or store, and an alloca cannot simply be changed to allocate W times
as much memory. This has two reasons: First, store operations produce
side effects that must not occur for inactive instances. Second, the pointer
operands of the instructions may not point to adjacent memory locations, but
vector memory instructions typically only allow to operate on consecutive
addresses.

Alloca

Jx← alloca(n)K](DAbs, B,A, L) =

(DAbs ⊕

{
x 7→

⊔
alloca

{DAbs(u)|u ∈ uses(x)}

}
, B,A, L)
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The operator talloca is defined as follows:

talloca =

DAbs(u1), DAbs(u2) u nu n s g
u ua nu ns cas cas
nu nu ns ns ns
n ns ns ns
s cas cas
g cas

else ca

Alloca operations only have to be vectorized if any use is not uniform. The
operation is always aligned since the memory is allocated locally. If the
type is not vectorizable, the alloca is nonvectorizable, and sequential
or uniform. If the type of the alloca is a compound type that contains a
nested pointer, and it has at least one sequential use, it has to be sequen-
tial.1 This is required to correctly handle nested pointers. Consider the
following scalar code, where the function some fn initializes the pointer in
the given structure:
%struct.A = type { i32* }
...
%A = alloca %struct.A
call @some_fn (% struct.A* %A)
...

If the call does not have a vector equivalent, it has to be executed sequentially
(assume it does not have side effects so we don’t need guards). If the
alloca is not split into W scalar operations, temporary structs of the scalar
type %struct.A need to be allocated for the call (similar to Listing 3.3
in Section 3.3). This is because the call is executed sequentially and thus
requires scalar arguments. After the calls, the temporaries have to be written
back to the actual struct (%A). However, for the nested pointer this is not
possible, since the two calls may return two different pointers. Thus, we
have to prevent this writeback operation by splitting the alloca, i.e., it
has to be marked sequential. Note that this is often the better choice for
performance reasons as well because no temporary structs with extract and
write back operations are required (recall the example from Listing 3.3).
This, however, depends on how many other uses of the alloca are not
sequential because these require the vectorized struct as input.

1For the sake of a more concise presentation, the given definition of talloca is more
conservative in that it ignores the type of the alloca.



5.6 Vectorization Analysis 59

Load

Jx← load(a)K](DAbs, B,A, L) =

(DAbs ⊕

x 7→


u if DAbs(a) v nu
k if cg w DAbs(a) w ca ∧ x ∈ A
ks if DAbs(a) w k
ns if DAbs(a) w ns

 , B,A, L)

A load instruction can be replaced by a vector load if its address operand
is consecutive/aligned. If it is not aligned, a slightly less efficient,
unaligned vector load can be used. If the address operand is unknown,
the load is a so-called gather operation: It may load from non-contiguous
memory locations and thus has to be executed sequentially.

If the load is not by all, there are two options: First, the load of each
instance can be executed sequentially and guarded. Second, the load can
be performed for all instances regardless of whether they are active or not.
Since the value is blended when the instances join again, the loaded value
is discarded anyway. In some cases, this way of blindly executing all W
values may be more efficient than executing W branch statements followed
by the loads. However, this option may not always be safe: it loads from
an address that belongs to an inactive instance, so it may not point to valid
data. This may be explicitly allowed by the source languages semantics, for
instance.

The result of the load is never consecutive, since we do not reason about
contents of memory. A straightforward way to improve precision would be
to employ alias analysis to track properties of values in memory.

Store

Jx← store(a, v)K](DAbs, B,A, L) =

(DAbs ⊕


x 7→



u if DAbs(a) v nu ∧DAbs(v) v nu
k if x ∈ A ∧ cg w DAbs(a) w ca ∧DAbs(v) v kg
ks if x ∈ A ∧DAbs(a) w k ∧DAbs(v) v kg
kg if x /∈ A ∧DAbs(a) w k ∧DAbs(v) v kg
ns otherwise, if x ∈ A
ng otherwise, if x /∈ A


,

B,A, L)

A vector store can be used if the address operand is consecutive and
the program point is by all. If the address is not aligned, an unaligned
memory access has to be used. This is slower than the aligned variant, but
still avoids sequential, scalar execution.
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If the address operand is unknown, the store conservatively has to be
expected to be a so-called scatter operation: It may write to non-contiguous
memory locations and thus the store operation of each instance has to
be executed separately. If the store is not by all or its address or value
operand are not vectorizable, it also has to be executed sequentially. Also, if
it is not by all, it has to be guarded by conditionals.

Finally, a uniform address operand of a store effectively describes a race
condition: All instances write to the same memory location. However, if the
stored value is also uniform, the same value is written to the same address
multiple times, so the effect may not be visible.

5.6.7 Calls

Jx← call(g, v1, . . . , vn)K](DAbs, B,A, L) =

(DAbs ⊕



x 7→



u if g ∈ Fpure ∧ ∀v.DAbs(v) v nu ∧ g ∈ Rv
nu if g ∈ Fpure ∧ ∀v.DAbs(v) v nu ∧ g /∈ Rv
k if g ∈ Fmapped ∧ ∃v.DAbs(v) w ca ∧ @v.DAbs(v) w ns
ks if (x ∈ A ∨ f ∈ Fpure) ∧ g ∈ Rv ∧

((∃v.DAbs(v) w ca ∧ g /∈ Fmapped) ∨ (∃v.DAbs(v) w ns))
ns if (x ∈ A ∨ f ∈ Fpure) ∧ g /∈ Rv ∧

((∃v.DAbs(v) w ca ∧ g /∈ Fmapped) ∨ (∃v.DAbs(v) w ns))
kg if (x /∈ A ∧ f /∈ Fpure) ∧ g ∈ Rv ∧

((∃v.DAbs(v) w ca ∧ g /∈ Fmapped) ∨ (∃v.DAbs(v) w ns))
ng if (x /∈ A ∧ f /∈ Fpure) ∧ g /∈ Rv ∧

((∃v.DAbs(v) w ca ∧ g /∈ Fmapped) ∨ (∃v.DAbs(v) w ns))



,

B,A, L)

Here, g ∈ Rv means that the return type of function g is vectorizable. If
g ∈ Fpure, g is a pure function.2 If g ∈ Fmapped, there exists a mapping
of g to a vector implementation. Note that the existence of such a mapping
implies that the function has a vectorizable return type.

There are three kinds of function calls that do not have to be executed
sequentially. First, pure functions with only uniform operands are uniform.
Second, “known” functions such as sin, sqrt, or ceil are mapped directly
to specialized vector implementations for the target architecture if available.
They are never marked sequential or guarded since they do not produce
side effects. Third, if the callee’s code is available, WFV can be applied
recursively. The resulting vectorized function receives an optional mask

2Pure functions are guaranteed not to produce side effects and always evaluate to the
same result when called with the same parameters.
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argument if the call is in a block that is not by all. Finally, the user can
specify custom mappings, e.g. if a hand-optimized vector implementation of
a function exists. Examples are calls to get global id in OpenCL or calls
to traceRay in RenderMan.

The target function of this mapping can also specify a mask argument.
Without mask argument, user-defined mappings are ignored if the parent
block of the call is not by all, yielding a guarded mark. This behavior was
omitted from the transfer function to not complicate it further.

Note that vectorization of recursive function calls is possible via specifica-
tion of a custom mapping.

5.6.8 Cast Operations
Jx← castop(v)K](DAbs, B,A, L) =

(DAbs ⊕



x 7→



u if type(x) vectorizable ∧DAbs(v) v nu
nu if type(x) not vectorizable ∧DAbs(v) v nu
ns if type(x) not vectorizable ∧DAbs(v) w ca
ks if type(x) vectorizable ∧DAbs(v) w ns
k if type(x) vectorizable ∧ (k w DAbs(v) v kg∨

type(x) is pointer∧
elemtysize(x) 6= elemtysize(v))

c if c w DAbs(v) v cg ∧ (type(x) ∈ {int, float} ∨
type(x) is pointer∧
elemtysize(x) = elemtysize(v))

ca if ca w DAbs(v) v cag ∧ (type(x) ∈ {int, float} ∨
type(x) is pointer∧
elemtysize(x) = elemtysize(v))



,

B,A, L)

The function type(x) returns the target type and elemtysize(v) returns
the size of the type of the value that the pointer v points to.

Precise information of the shape of the source operand (such as consecu-
tive) can only be transferred to the program point of the cast if the target
type is either int or float. Otherwise, the mark of the program point
depends on whether the target type is nonvectorizable, and whether the
source operand is uniform. For example, if the source operand is nonvec-
torizable, the cast has to be sequential since it cannot be represented
by a vector operation.

Casting a value from one pointer type to another can change the access
pattern if the pointer is used by a load. For example, if casting a consecu-
tive/aligned pointer of type i32* to i16*, the access becomes strided.
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As another example, if casting from type i32* to i64*, the access may
become unaligned, depending on the original alignment. For simplicity
reasons, we therefore resort to unknown for cases where the size of the target
element type does not match the size of the source type.

5.6.9 Arithmetic and Other Instructions
All of the operators below by definition have vectorizable types, so cases
with nu, ns, and ng are omitted. For the sake of simplicity, we skip function
values with k arguments. They all yield k.

Additive operator ω ∈ {add, gep}

Jx← ω(v1, v2)K]DAbs = DAbs ⊕

x 7→
DAbs(v1), DAbs(v2) ua u ca c

ua ua u ca c
u u c c
ca k k
c k

else k


Subtraction

Jx← sub(v1, v2)K]DAbs=DAbs ⊕

x 7→
DAbs(v1), DAbs(v2) ua u ca c

ua ua u k k
u u u k k
ca ca c ua u
c c c u u

else k


Multiplication

Jx← mul(v1, v2)K]DAbs = DAbs ⊕

{
x 7→

DAbs(v1), DAbs(v2) ua u
ua ua ua
u u

else k

}

Other arithmetic and comparison operators:

Jx← op(v1, v2)K]DAbs = DAbs ⊕

{
x 7→

DAbs(v1), DAbs(v2) ua u
ua u u
u u

else k

}
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Other operations without side effects:

Jx← op(v1, . . . , vn)K]DAbs = DAbs ⊕
{
x 7→

{
u if ∀v.DAbs(v) v nu
k otherwise

}

Integer Division and Modulo

For integer division and modulo, there are two special cases when the second
operand is a constant: Integer division of a consecutive/aligned value by
a multiple of W produces a uniform value. For example,

〈 12, 13, 14, 15 〉 div 〈 8, 8, 8, 8 〉 = 〈 1, 1, 1, 1 〉.

The result of a consecutive/aligned value modulo a multiple of W pro-
duces a consecutive/aligned value again. For example,

〈 12, 13, 14, 15 〉mod 〈 8, 8, 8, 8 〉 = 〈 4, 5, 6, 7 〉.

Neutral Elements

Operations which include their neutral elements as one operand (such as 1 for
multiplication or 0 for additive operations) have not been denoted explicitly.
If any operand is the neutral element of the operation, the operation receives
the mark of the other operand (without sequential or guarded properties,
similar to ω).

Inverted Consecutive Values

Subtraction of a consecutive value from a uniform value produces an
inverted consecutive value. This information could still be beneficial
during analysis and code generation: If such an operation is followed by a
subtraction with another inverted consecutive value, this again produces
a uniform value. During code generation, a load from an inverted consec-
utive value can be implemented with a shuffle and vector load, which is
much more efficient than sequential operations. For presentation reasons,
we resort to unknown here. However, the corresponding modification of the
lattices and transfer functions is straightforward.
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Strided Values

For addition, multiplication, and pointer cast operations, it may make sense
to define a strided value. This is because multiplication of a consecutive
value with a uniform value produces a vector with constant stride. For
example,

〈 5, 6, 7, 8 〉 × 〈 2, 2, 2, 2 〉 = 〈 10, 12, 14, 16 〉.

Similarily, an addition of two consecutive values produces constant stride
values. For example,

〈 5, 6, 7, 8 〉+ 〈 3, 4, 5, 6 〉 = 〈 8, 10, 12, 14 〉.

Again, this would improve precision of the analysis: For multiplication, a
division of the result by the same uniform value produces a consecutive
value again. For addition, a subtraction of any consecutive value from
the result or a division by the constant 2 produces a consecutive value
again. If deemed beneficial, the corresponding modification of the lattices
and transfer functions is straightforward.

Note that strided can be exploited during code generation [Nuzman et al.
2006], but this requires tracking the stride interval: For an interval of 2, two
vector loads and a shuffle operation can be used instead of sequential,
scalar loads. A more involved technique could scan for multiple subsequent
strided load or store operations that together access all elements in a
certain range. This can be exploited by vector loads and shuffles as well
and is much more efficient than a series of sequential operations.

Optimization of Pack/Unpack Operations

There is an optimization problem to solve in cases where multiple subsequent
operations require packing and unpacking of values: It might be more
profitable to execute some operations sequentially although they are not
sequential, guarded, or nonvectorizable. This is because the cost for
packing operands and unpacking results can be higher than the gain due
to the vector instruction. This is subject to a heuristic, e.g. as presented
by Kim & Han [2012]. The algorithm would then treat some program points
as sequential that do not necessarily require to be executed sequentially.
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5.6.10 Branch Operation

Jx← branch(v, b1, b2)K](DAbs, B,A, L) =

(DAbs ⊕
{
x 7→

{
u if DAbs(v) v nu
k otherwise

}
, B,A, L)

By definition, the type of the branch condition is vectorizable, and a branch
has no side effects, so it is never nonvectorizable, sequential, or guard-
ed. Since a branch returns a block identifier rather than a value, it cannot
be consecutive or aligned, either. Thus, the branch is uniform if its
condition is uniform, and unknown (equivalent to ¬uniform and varying)
otherwise.

5.6.11 Update Function for All-Active Program Points
The functions use the set A which captures information about by all nodes:
nodes that are always executed with all instances active, e.g. at the entry
point of the function. Definition 7 is a dynamic property that may depend on
input values. The following definition describes a safe underapproximation
of by all program points which can be statically proven:

Definition 12 (Static All-Active Program Point) If the function has
an initial mask parameter, no program point is by all. Otherwise, the
function entry point e by definition is by all. Let b be a program point that
is control dependent on a set of program points C. b is by all iff all blocks
in C are by all and end with a uniform branch.

If, on a path that starts at a by all program point, instances diverge at
varying program point v, but the postdominator of v is reached on all paths
to b, b is not control-dependent on v, and thus may still be by all. This
is because all paths that have diverged at v always reconverge before b is
reached. Notice that this definition implicitly prevents that any program
point inside a divergent loop is marked by all.

To determine whether a program point is by all, every program point
holds an additional transfer function that may add the corresponding node
to A. Let b be a program point, and let e be the program point of the
function entry node. The update function for A at node b is

A′ = A ∪

{
b if ∀c ∈ controlDeps(b).c ∈ A ∧DAbs(c) v nu
∅ otherwise,
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where controlDeps returns the set of program points that b is control
dependent on. Initially, the set A is empty if there is a mask parameter.
Otherwise, it contains the entry point.

5.6.12 Update Function for Divergent Loops
The functions use the set L which captures information about nodes that
are part of the body of a divergent loop: Again, Definition 8 is a dynamic
property that may depend on input values. The following definition describes
an overapproximation of loop divergence which can be statically proven:

Definition 13 (Static Loop Divergence) Let l be a loop, and let v be a
varying program point inside the body of l. The loop l is divergent if v is
not strictly postdominated by another program point that belongs to l.

Intuitively, Definition 13 describes that a loop is divergent if there is an
“escaping path” from a varying branch to a loop exit. Over this path, some
instances may leave the loop at one exit, while others that diverged at this
branch may go to a different one or keep iterating. For example, the program
points in the loop of the Mandelbrot kernel (Figure 5.7) are divergent
because of the varying branch in block c. At this branch, some instances
may leave the loop while others continue iterating.

To determine whether a program point is divergent, the program point
that corresponds to the loop entry holds an additional transfer function that
may add the nodes of the loop body to L.

Let ` be the set of all program points within the body of a loop. The
update function for L at the node that corresponds to the loop entry point
is

L′ = L ∪

`
if ∃v ∈ `.v is branch ∧DAbs(v) w ca∧

@b ∈ `.b 6= v ∧ b ∈ postdom(v)
∅ otherwise.

Initially, the set L is empty. We chose this definition to be coherent with the
rest of this section. For practical reasons, a concrete implementation would
store the divergent property for loop objects instead of program points.
The query then first determines whether a program point is part of a loop,
and then tests whether that loop is divergent.

If the Rewire Target Analysis is disabled, all loops are conservatively
marked divergent.
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Figure 5.8: Visualization of the local consistency property of the abstract
transformer J K] with the concretization function γ : DAbs → D. The trans-
former J KC of CS applies the transformer of OS to every state d ∈ D.

5.7 Soundness
We show the soundness of the abstraction by sketching a proof of the local
consistency of the Abstract Semantics AS with respect to the Operational
Semantics OS. To this end, we define the concretization function γ : DAbs →
D that maps states of AS to states of the implicitly defined Collecting
Semantics of OS. To define γ, we first introduce a set of properties similar
to the SIMD properties of AS:

uni(d, x) = ∀xi ∈ ρ(x).xi = xi0
aligned(d, x) = ρ0(x) %S = 0
consec(d, x) = ∀ij ∈ #.j 6= 0 =⇒ ρij (x) = ρij−1 (x) + 1
unknown(d, x) = (¬uni(d, x) ∧ ¬consec(d, x)) ∨ (uni(d, x) ∧ consec(d, x))

vtype(x) = operation x has vectorizable result type
novec(x) = operation x has no vector equivalent

se(x) = operation x may have side effects
nvop(x) = ∃y ∈ operands(x).¬vtype(y)

Note that these properties are defined on the vector semantics of OS, i.e.,
each value in ρ is a vector. Accesses to values of an individual instance i are
denoted as ρi(x) or xi.

5.7.1 Local Consistency
The concretization function γ : DAbs → D maps from the Abstract Semantics
to the Collecting Semantics:

γ(DAbs) =
⋃

x∈DAbs

γ(DAbs, x),
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γ(DAbs, x) =

{d|uni(d, x) ∧ aligned(d, xi0 )} if DAbs(x) = ua
{d|uni(d, x) ∧ ¬aligned(d, xi0 )} if DAbs(x) = u
{d|consec(d, x) ∧ aligned(d, xi0 )} if DAbs(x) = ca
{d|consec(d, x) ∧ aligned(d, xi0 ) ∧ (novec(x) ∨ nvop(x)} if DAbs(x) = cas
{d|consec(d, x) ∧ aligned(d, xi0 ) ∧ se(x)} if DAbs(x) = cag
{d|consec(d, x) ∧ ¬aligned(d, xi0 )} if DAbs(x) = c
{d|consec(d, x) ∧ ¬aligned(d, xi0 ) ∧ (novec(x) ∨ nvop(x))} if DAbs(x) = cs
{d|consec(d, x) ∧ ¬aligned(d, xi0 ) ∧ se(x)} if DAbs(x) = cg
{d|unknown(d, x)} if DAbs(x) = k
{d|unknown(d, x) ∧ (novec(x) ∨ nvop(x))} if DAbs(x) = ks
{d|unknown(d, x) ∧ se(x)} if DAbs(x) = kg
{d|¬vtype(x) ∧ uni(d, x)} if DAbs(x) = nu
{d|¬vtype(x) ∧ ¬uni(d, x)} if DAbs(x) = ns
{d|¬vtype(x) ∧ ¬uni(d, x) ∧ se(x)} if DAbs(x) = ng

Figure 5.9: The concretization function γ : DAbs → D. Additional clauses
vtype(x), ¬se(x), and ¬novec(x) are omitted in all rules that do not have the
corresponding negated clause.

where γ(DAbs, x) is defined as shown in Figure 5.9: The sets µ and @ are
not tracked in the Abstract Semantics, and # is never updated since it is
only required to refer to the elements of different instances of the SIMD
group.

The Abstract Semantics is sound if γ is locally consistent, i.e., if it exhibits
the property

J KC ◦ γ 6 γ ◦ J K].

where “6” relates the precision of two abstraction states and J KC is the
transformer of CS that is implicitly defined as the application of the trans-
former of OS to every state d ∈ D. This means that for every operation
f(x), the concretization from AS to CS via γ yields a result that is at most
as precise as the direct application of f(x) in CS. Figure 5.8 depicts the
consistency property.

In the following, we take a detailed look at the local consistency of three
operations: x← tid, x← phi((v1, b1), (v2, b2)), and x← store(a, v).

Analogous manual inspection of the other rules shows that γ and the
transformation rules shown in Sections 5.5 and 5.6 are indeed locally con-
sistent. Hence, the information carried by the Abstract Semantics can be
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computed using fixed-point algorithms. Note that not all rules of the ab-
stract transformer are monotone since sequential and guarded properties
can be stripped in some rules. This reflects the fact that these properties
only describe the program point without influencing its uses. Thus, the
convergence of the analysis is not affected.

Note that γ ignores blend, by all, and divergent information. Instead,
every possible configuration of these is taken into account when testing local
consistency.

Instance Identifier

First, direct application of the abstract transformer (Section 5.6.3) to the
initial state DAbs

Jx← tidK](DAbs, B,A, L) = (DAbs ⊕ {x 7→ ca} , B,A, L),

yields an update of x in DAbs to ca. Concretization of this state with
γ(DAbs, x) produces a set of states D1 which only contains states in which x
is bound to consecutive/aligned values:

{d|consec(d, x) ∧ aligned(d, xi0 )} .

On the other hand, concretization of the initial state DAbs with γ(DAbs, x)
produces a set of states D2. Application of the (vector-lifted) transformer

Jx← tidK(d) = ρ⊕ {x 7→ {#0, . . . ,#W−1}}

to every state d = (ρ, µ,@,#) of D2 produces a set of states D3 in which x is
bound to the values of the corresponding set of instance identifier vectors #.
These values are by definition consecutive and aligned.

To summarize, the sets D1 include all those sets in which x is bound to
consecutive/aligned values. Since this includes all possible consecutive
and aligned values in addition to those represented by the sets # ∈ D3,
the concretized state is at most equally precise as the state obtained by first
applying the abstract transformer. Thus, the consistency property holds.



70 5 SIMD Property Analyses

Phi Functions
First, direct application of the abstract transformer (Section 5.6.5) to the
initial state DAbs

Jx← phi((v1, b1), (v2, b2))K](DAbs, B,A, L) =

(DAbs ⊕

x 7→

DAbs(v1) tphi DAbs(v2) if x /∈ B
k if x ∈ B ∧DAbs(v1) v kg

∧DAbs(v2) v kg
ns otherwise

 ,

∀d ∈ DAbs.(d is branch ∧ d w ca) =⇒

B ⊕
{
x 7→

{
blendd if disjointPaths(d,x)
B(x) otherwise

}
,

A, L)

yields an update of DAbs and B. Since the update of B does not have any
direct effect on the concretization, we can ignore how it is updated. The
following cases have to be distinguished to investigate the effects of the phi
operation:

• x is blend and either v1 or v2 is nu or less precise.
• x is blend and v1 and v2 are more precise than nu.
• x is not blend.

In the first case, x in DAbs is updated to ns by the abstract transformer.
Concretization with γ(DAbs, x) yields a set of states D1 which includes all
states in which x is bound to a nonvectorizable/sequential value.

On the other hand, concretization of the initial state DAbs with γ(DAbs, x)
produces a set of states D2. Application of the (vector-lifted) transformer
Jx← phi((v1, b1), (v2, b2))K(d) =

ρ⊕
{
x 7→

{
ρ0(v1) if @0(b1) = true
ρ0(v2) if @0(b2) = true , . . . ,

ρW−1(v1) if @W−1(b1) = true
ρW−1(v2) if @W−1(b2) = true

}}
to every state d ∈ D2 produces a set of states D3 in which x is bound to
vectors for which the element at index i is selected from either v1 or v2
depending on the state of @i of the corresponding instance. This means the
values in the sets can satisfy any property because only one of v1, v2 must be
nu or less precise, and none of its values may be selected. The values of D1
cannot be less precise than ns, since ng requires the operation to have side
effects, which is never the case for a phi. Thus, the consistency property
holds.



5.7 Soundness 71

The second case is similar, with x being updated to k by the abstract
transformer, and yielding a set of states D1 in which x is bound to an
unknown value after concretization. Since the application of the transformer
of OS to every state can again yield arbitrary properties as precise as or
more precise than k, the consistency property holds as above.

In the third case, the abstract value of x after application of the abstract
transformer can be any except for ng, depending on the values of v1 and v2.
Because the result of the transfer function tphi is at most as precise as the
least precise operand, D3 can never be more precise than the sets obtained
by application of the transformer of OS before concretization. The result
of this transformer can be as precise as the most precise operand and is at
least as precise as the least precise operand. Thus, the consistency property
holds for this case as well.

Store Operations
First, direct application of the abstract transformer (Section 5.6.6) to the
initial state DAbs

Jx← store(a, v)K](DAbs, B,A, L) =

(DAbs ⊕


x 7→



u if DAbs(a) v nu ∧DAbs(v) v nu
k if x ∈ A ∧ cg w DAbs(a) w ca ∧DAbs(v) v kg
ks if x ∈ A ∧DAbs(a) w k ∧DAbs(v) v kg
kg if x /∈ A ∧DAbs(a) w k ∧DAbs(v) v kg
ns otherwise, if x ∈ A
ng otherwise, if x /∈ A


, B,A, L)

yields an update of x in DAbs. However, x in this particular case is not an
abstraction of actual values because the store does not return anything. It is
an abstraction that describes properties of the operation only. Concretization
with γ(DAbs, x) yields a set of states D1 with values of x corresponding to
its abstract value. However, because we do not track the state of values in
memory in DAbs, and because x is never used by any operation, the result
of the concretization has no influence on the rest of the analysis.

On the other hand, concretization of the initial state DAbs with γ(DAbs, x)
produces a set of states D2. Application of the (vector-lifted) transformer
Jx← store(a, v)K(d) =

µ0 ⊕ {ρ0(a) 7→ ρ0(v)} , . . . , µW−1 ⊕ {ρW−1(a) 7→ ρW−1(v)}

to every state d ∈ D2 produces a set of states D3 in which for every µi ∈ d,
the address ρi(a) is updated to ρi(v) for every active instance. This state D3
is more precise than D1 which always produces an empty set for µ. Thus,
the consistency property holds.
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5.8 Improving Precision with an SMT Solver
The transfer functions presented in the previous section allow to classify a
large class of memory address computations to result in consecutive values.
However, the expression tree that corresponds to address computations
may consist of arbitrary code. This will, in general, lead to undecidable
problems, but is hard already for seemingly simple cases with only a few
lines of code. For instance, if the address depends on input values. The
analysis conservatively has to mark such addresses as unknown because of
missing static information. This section describes how the precision of the
analysis can be improved using an SMT solver [Karrenberg et al. 2013].3
We generalize the classes for which consecutivity can be proven to linear
arithmetic transformations, in particular including integer division and
modulo by constants. The approach can—to a certain degree—also handle
non-constant inputs. The key idea is to convert the central question “Do
consecutive work items access consecutive memory addresses or not?” to a
finite set of satisfiability problems in Presburger Arithmetic [Presburger 1929].
These problems can be solved with an off-the-shelf SMT solver. There is a
variety of decision procedures and complexity results available for Presburger
Arithmetic [Weispfenning 1990; and the references given there]. Our input
considered here is limited to the existential fragment, for which SMT solvers,
in spite of their possible incompleteness, are an interesting choice. For our
practical computations we chose Z3 [De Moura & Bjørner 2008], which has
the advantage to directly accept modk and divk in the input.

5.8.1 Expression Trees of Address Computations
Consider the two OpenCL kernels in Listing 5.1. The kernel on the right-
hand side, FastWalshTransform, is taken from the AMD APP SDK v2.8
(see our evaluation in Chapter 8). In this code, the array accesses depend on
the value tid obtained from calls to get global id. It is easy to see that
the simple kernel always accesses contiguous memory locations due to the
direct use of tid. In contrast, the access pattern of FastWalshTransform
is not obvious, since the memory locations are given by a more complex
expression tree. Experimentally, one would observe that, depending on step,
there is a considerable number of accesses that actually are consecutive.
However, without additional optimization, the memory operations considered
here would be executed sequentially. Listing 5.2 shows two vectorized
versions of the FastWalshTransform kernel: one that would be produced

3This section presents joint work with Marek Košta and Thomas Sturm.
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Listing 5.1 OpenCL kernels with simple (left) and complex (right) memory
address computations: tid, pair, and match. The function get global id
returns the work item identifier, which allows each work item to access
different array positions.

__kernel void
simple(float* in,

float* out)
{

int tid = get_global_id ();
out[tid] = in[tid];

}

__kernel void
FastWalshTransform(float* arr ,

int step)
{

int tid = get_global_id ();
int group = tid % step;
int pair = 2*step*(tid/step)

+ group;
int match = pair + step;
float T1 = arr[pair];
float T2 = arr[match ];
arr[pair] = T1 + T2;
arr[match] = T1 - T2;

}

by conservative vectorization, and one with an optimization equivalent to
what is achievable with our improved analysis.

To improve this situation, our compiler translates the expression tree that
yields the memory address to a term that depends on tid and a possible
input parameter. For example, the address of the second load operation
of the FastWalshTransform kernel in Listing 5.1 is given by arr[match],
where the term obtained for match is

2*step * (tid / step) + (tid % step) + step. (5.1)

Notice that step is an input value that is constant for all work items during
one execution of the kernel.

5.8.2 Translation to Presburger Arithmetic
We are now going to switch to a more mathematical notation: The variable
t is going to denote the tid and a is going to denote the input. For integer
division and modulo, we introduce unary functions divk and modk for
k ∈ Z \ {0}, which emphasizes the fact that the divisors and moduli are
limited to numbers. For our example term (5.1), we obtain

e(t, a) = 2a · diva(t) + moda(t) + a. (5.2)
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Listing 5.2 Result of WFV manually applied at source level to the
FastWalshTransform kernel of Listing 5.1 (W = 2). Left: Conservative
WFV requires sequential execution. Right: WFV with our approach proves
consecutivity of the memory addresses for certain values of step, which
allows to generate a variant with more efficient code.

__kernel void
FastWalshTransform(float* a,

int step)
{

int tid = get_global_id ();
if (tid % 2 != 0) return;
int2 tiV = (int2 )(tid ,tid +1);
int2 s = (int2 )(step ,step);
int2 g = tiV % s;
int2 p = 2*s*(tiV/s)+g;
int2 m = p + s;
float2 T = (float2 )(a[p.x],

a[p.y]);
float2 V = (float2 )(a[m.x],

a[m.y]);
float2 X = T + V;
float2 Y = T - V;
a[p.x] = X.x;
a[p.y] = X.y;
a[m.x] = Y.x;
a[m.y] = Y.y;

}

__kernel void
FastWalshTransform(float* a,

int step)
{

if (step <=0 || step %2!=0) {
// Omitted code :
// Execute original kernel .
return;

}
int tid = get_global_id ();
if (tid % 2 != 0) return;
int g = tid % step;
int p = 2*step*(tid/step)+g;
int m = p + step;
float2 T = *(( float2 *)(a+p));
float2 V = *(( float2 *)(a+m));
*(( float2 *)(a+p)) = T + V;
*(( float2 *)(a+m)) = T - V;

}

At this point, let us give the precise definitions of modk and divk:

x = k · divk(x) + modk(x), where |modk(x)| < |k|. (5.3)

It is well-known that this definition does not uniquely specify divk(x) and
modk(x). SMT-LIB Version 2 resolves this issue by making the convention
that modk(x) ≥ 0.4 As long as both k and x are non-negative, common
programming languages agree with this convention. However, when negative
numbers are involved, OpenCL follows the C99 standard, which in contrast to
SMT-LIB requires that sign(modk(x)) = sign(x). In our setting, we observe
that the arguments of modk generally are positive expressions involving the
tid such that both conventions happen to coincide.

Let us analyze a single memory access with respect to the following
consecutivity question: “Do W consecutive work items access consecutive

4smtlib.cs.uiowa.edu/theories/Ints.smt2

smtlib.cs.uiowa.edu/theories/Ints.smt2
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memory addresses when doing this memory access or not?” Using the
corresponding term e(t, a), the following equation holds if and only if the
work items t and t+ 1 access consecutive memory locations for input a:

e(t, a) + 1 = e(t+ 1, a).

The following conjunction generalizes this equation to W consecutive work
items t, . . . , t+W − 1:

W−2∧
i=0

e(t+ i, a) + 1 = e(t+ i+ 1, a).

Recall from the previous section that these groups of W work items naturally
start at 0 so that only conjunctions are relevant where t is divisible by W .
The following Presburger formula formally adds this constraint:

ϕ(W,a) = ∀t
(
t ≥ 0 ∧ t ≡W 0 −→

W−2∧
i=0

e(t+ i, a) + 1 = e(t+ i+ 1, a)
)
.

For given W ∈ N and α, β ∈ Z with α ≤ β−1, the answer to our consecutivity
question for W and a ∈ {α, . . . , β − 1} is given by the set

AW,α,β = { a ∈ Z | Z |= ϕ(W,a) ∧ α ≤ a < β }.

We essentially compute AW,α,β by at most (W − 1)(β − α − 1) many
applications of an SMT solver to the W − 1 disjuncts of ¬ϕ(W,a) for
a ∈ {α, . . . , β − 1}, where

¬ϕ(W,a) =
W−2∨
i=0
∃t
(
t ≥ 0 ∧ t ≡W 0 ∧ e(t+ i, a) + 1 6= e(t+ i+ 1, a)

)
.

Notice that, when obtaining “sat” for some i ∈ {0, . . . ,W −2}, the remaining
problems of the disjunction need not be computed.

Our answer AW,α,β consists of those a for which the SMT solver yields
“unsat.” Note that besides “sat” or “unsat,” the solver can also yield “un-
known,” which we treat like “sat.” This underapproximation does not affect
the correctness of our approach. We only miss optimization opportunities
when generating code later on. The same holds for possible timeouts when
imposing reasonable time limits on the single solver calls. Later in Sec-
tion 5.8.3, we are going to discuss how compact representations for AW,α,β
can be obtained.
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Table 5.4 FastWalshTransform: Running times of Z3 applied to ¬ϕ(W,a)
for e(t, a) as in (5.2). In all three cases, α = 1 and β = 216 so that
a ∈ {1, . . . , 216 − 1} with a time limit of one minute per call.

W Sat Unsat Unknown Timeouts CPU Time

4 16,383 49,152 0 0 4 min
8 8,191 57,344 0 0 5 min

16 4,095 61,128 0 312 334 min

Table 5.5 BitonicSort: Running times of Z3 applied to ¬ϕ(W,a) for e(t, a)
as in (5.4). In all three cases, α = 0 and β = 63 so that a ∈ {0, . . . , 62} with
a time limit of one minute per call.

W Sat Unsat Unknown Timeouts CPU Time

4 61 2 0 0 0.7 s
8 60 3 0 0 1.5 s

16 59 4 0 0 3.7 s

Table 5.4 shows running times and results for the application of Z3 version
4.3.1 [De Moura & Bjørner 2008] to the consecutivity question for our
FastWalshTransform kernel.5 Alternatives to Z3 include CVC4 [Barrett
et al. 2011] and MathSAT5 [Cimatti et al. 2013]. These SMT solvers, however,
do not directly support divk and modk, which makes them less interesting for
our application here. The numbers shown already include a novel technique
called modulo elimination [Karrenberg et al. 2013] that improved running
times of Z3.

For another kernel taken from the AMD APP SDK, BitonicSort, the
interesting address computation expression is

e(t, a) = 2a+1 · div2a(t) + mod2a(t) + 2a. (5.4)

The input parameter a occurs exclusively as an exponent. This restricts the
reasonable range of values to consider to {0, . . . , 62} on a 64 bit architecture.
Table 5.5 shows the relevant running times.

5.8.3 From SMT Solving Results to Code
Recall from Section 5.8.2 that the answer obtained there to our consecutivity
question “Do W consecutive work items access consecutive memory addresses

5All our SMT computations have been performed on a 2.4 GHz Intel Xeon E5-4640
running Debian Linux 64 bit.
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Table 5.6 Output from the SMT solving step for all our problem sets. We
have X ⊆ { a ∈ Z | 1 ≤ a < 216 ∧ a ≡16 0 } with |X| = 312, i.e., timeouts
occur only for input a with a ≡16 0.
Problem Set W α β AW,α,β

FastWalshTransform 4 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡4 0 }
FastWalshTransform 8 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡8 0 }
FastWalshTransform 16 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡16 0 } \X
BitonicSort 4 0 63 {0, . . . , 62} \ {0, 1}
BitonicSort 8 0 63 {0, . . . , 62} \ {0, 1, 2}
BitonicSort 16 0 63 {0, . . . , 62} \ {0, 1, 2, 3}

when doing this memory access or not?” is the set AW,α,β of inputs a ∈
{α, . . . , β−1} for which the answer is affirmative. The respective sets AW,α,β
for all our problem sets are collected in Table 5.6.

Our goal is now to produce during code generation a case distinction
such that for input contained in AW,α,β , more efficient code including vector
memory operations will be executed. The right-hand side of Listing 5.2
shows the automatically generated code for the FastWalshTransform kernel
for W = 2 without imposing bounds α and β. For readability reasons, we
use OpenCL notation instead of the LLVM IR, which we actually use at
that stage of compilation. The corresponding condition

step <= 0 || step % 2 != 0 (5.5)

in the first if statement describes the complement of the set AW,α,β obtained
from our SMT solving step.

Due to our independent runs of the SMT solver for all possible choices of
a, the sets AW,α,β are obtained explicitly as lists of elements. From these,
we have to generate implicit descriptions like (5.5). One approach for this is
to represent the characteristic functions of the sets AW,α,β as bit strings and
to use incremental finite automata minimization to obtain minimal regular
expressions. These are finally transformed into quantifier-free Presburger
conditions. Alternatively, one could apply automatic synthesis techniques as
suggested by Gulwani et al. [2011]. At present, this step is not automated
yet.
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Figure 5.10: Illustration of the four possibilities for blocks to be rewire tar-
gets (Definition 15) of a div causing block d (Definition 14).

5.9 Rewire Target Analysis
The goal of the Rewire Target Analysis is to determine program points that
must not be skipped during SIMD execution. Thereby, we lay the foundation
for the Partial CFG Linearization algorithm (Section 6.3).

Definitions 9 and 10 imply that, for different groups of instances, the set
of div causing blocks and their rewire targets may be different. This in
turn means that the disjoint paths that have to be executed may also differ
from group to group. This non-static property can only be fully exploited
by dynamic variants. Such a variant can make it possible to skip blocks or
entire paths at runtime (see Chapter 7). However, it is possible to statically
derive a conservative overapproximation for the set of div causing blocks
and the corresponding rewire targets. The following definitions can be used
by a partial CFG linearization algorithm:
Definition 14 (Static Divergence-Causing Block) A block is a div -
causing block if it ends with a varying branch.

Definition 15 (Static Rewire Target) A block b is a rewire target of
a div causing block d (and thus marked rewired) iff any of the following
criteria is met:
1. b has an incoming edge from d and is no loop header, or
2. b is blendd, or
3. b is a latch of a divergent loop which includes d, or
4. b is an exit block of a loop l with loop latch e. d is also part of l and has n

successor blocks s1, . . . , sn. There exist at least two disjoint paths sx →∗ b
and sy →∗ e, where neither path includes the back edge of l or a back
edge of an outer loop.
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Figure 5.11: The blocks f and d of the Mandelbrot kernel are rewire targets
of c because of criterion 1. f also fulfills criterion 4, d also fullfills criterion 3.
g is blendc and thus rewirec due to criterion 2. e is not a rewire target be-
cause there are no disjoint paths from c to e and the latch d.

Figure 5.10 illustrates these conditions, Figures 5.11, 5.12, and 5.13 show a
variety of examples (rewire target blocks are shaded).

5.9.1 Running Example
Consider again the Mandelbrot kernel shown in Figure 5.11. The blocks f
and d are rewire targets of c due to criterion 1. They are direct successors
of c, which has a varying branch and thus is a div causing block. This
means that none of these blocks must be skipped after c has been executed
at least once. Block g is a blendc block, which means it is a rewire target
of c due to criterion 2: if c was executed, g has to be executed as well. Since
d is the latch of a divergent loop, it is rewirec due to criterion 3 (although
this has no effect in this case). Criterion 4 is fulfilled for block f : There
are disjoint paths from c to the latch d and to the exit f . This means that
whenever all instances have left the loop, f has to be executed, since some
instances may have left the loop over that exit in earlier iterations. This
is especially important if the uniform exit b → e is taken. The criterion
implies that execution must not continue with g but with f instead.

In the left CFG of Figure 5.12, only block b is div causing. Blocks d
and e are rewireb because they are direct successors of b. Blocks g and i
are rewireb because they are join points of disjoint paths starting at b (they
are blendb).
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5.9.2 Loop Criteria
The third and fourth conditions are required because loops behave differently
in terms of control flow divergence.

Criterion 3 models behavior of disjoint paths inside divergent loops. The
latch e of a loop l by definition is executed in every iteration by all instances
that are still active in l. Because of that, e is a rewire target of every
div causing block d inside l whose postdominator is outside of l.

Criterion 4 is necessary because even loops of which all exit conditions are
uniform can exhibit divergent behavior: If there are div causing blocks
inside the loop, this means that even if a uniform exit is taken, there may
still be instances in different parts of the loop. This leads to situations
where instances are “waiting” in different exit blocks for the loop to finish
iterating. These exit blocks are both end and start points of disjoint paths of
div causing blocks inside the loop. When the loop finally stops iterating,
the paths that start at these rewire exit blocks all have to be executed one
after the other.

Figure 5.13 shows some more involved examples including loops. In the
first graph, criterion 4 is exemplified in the inner loop: Although the exit
condition in block k is uniform, the exit block n is a rewire target of i,
indicating that some instances may leave the loop at a different exit or
in different iterations. This is because some instances that diverge at the
varying branch in i can take the exit to n while others may reach the loop
latch (over the disjoint path i → l → o) and continue iterating. If, for
example, these instances that remain in the loop then take the exit h→ j,
execution has to continue in block n instead of jumping to m or q. Otherwise,
that block would be skipped, and the instances that left over the exit k → n
could produce wrong results.

In the second graph, block e is a div causing block, i is one of its rewire
targets, and the edge d→ i leaves both loops. If the exit edge is taken, the
inner loop has no more active instances because they must all have arrived
at that exit. However, there may still be instances active in the outer loop
that diverged earlier. Thus, after block i, execution has to continue with a
block in the outer loop, not with one outside. Notice that i is only a rewire
target in terms of the outer loop.
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Figure 5.12: Example CFGs showing our analysis results. Uniformity of exit
conditions is shown with a lowercase letter below the block, rewire target
blocks are shaded. Our analysis determines that significant parts of these CFGs
are optional (no rewire targets) and therefore do not have to be linearized (see
Figure 6.7).

5.9.3 Formal Definition
The rewire property of a program point is described by the simple lattice
O (for optionality):

rewire

optional

For a program point b, the update function of the rewire property o

o′ = JW K](o), J·K] : O→ O

is defined as follows, which reflects Definition 15:

o′ =



rewired if b 6= hL ∧ ∃d ∈ preds(b).d is branch ∧DAbs(d) w ca
rewired if b ∈ blendd
rewired if b = `L ∧ d ∈ L
rewired if b ∈ EL ∧ disjointPaths(d, b, `L)
optional otherwise,

where preds(b) is the set of predecessor program points of b, EL is the
set of program points behind the exits of a loop L, hL is the program
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point at the loop’s header, and `L is the program point at the loop’s latch.
Furthermore, the mapping DAbs is provided by the Vectorization Analysis.
It is used to determine whether a predecessor is a varying branch. The
information whether two paths are disjoint (non-cyclic and cyclic) is given
by a function disjointPaths similar to the one in Section 5.6.5. Notice
that in this case, however, the iterated dominance frontier cannot be used
to answer the question whether the paths are disjoint. This is because the
paths do not have the same program point as their target.

Since the rewire property is a property of a basic block entry point, we
often simply refer to rewire blocks instead of program points. Loop exit
blocks that are rewire targets because of criterion 4 will be referred to as
rewire loop exit blocks or just rewire exits.

5.9.4 Application in Partial CFG Linearization
The Partial CFG Linearization phase transforms the CFG in such a way that
all disjoint paths that are executed by some instances are always executed
(Section 6.3). These paths are described by means of div causing blocks
and rewire targets. Implicitly, this means that optional blocks—blocks
that are no rewire targets—do not always have to be executed: Edges that
target such blocks can be retained, and the CFG still exhibits some of the
original structure.

A conservative, complete linearization of the CFG thus can be forced
by assuming that every conditional branch is varying: Each block with
multiple outgoing edges then is a div causing block, which in turn makes
each of their successor blocks and each block with multiple incoming edges
a rewire target. CFG linearization then has no choice but to linearize the
entire CFG.

Note that this does not only affect linearization, but also the precision
of the Vectorization Analysis: Since all branches are considered varying,
every φ-function also has to be considered varying, which may result in less
efficient code.
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Figure 5.13: Complex examples with nested loops, loops with multiple exits,
and exits that leave multiple loops at once. In the second graph, i is rewiree
because criterion 4 is fulfilled for the outer loop (disjoint paths e → g → h →
c → d → i and e → f → j → l), albeit not for the inner. Partial linearizations
for these examples are shown in Figure 6.14.





6 Whole-Function Vectorization
In this chapter, we present the main transformation phases of the Whole-
Function Vectorization algorithm: Mask Generation, Select Generation,
Partial CFG Linearization, and Instruction Vectorization.

6.1 Mask Generation
As already mentioned, control flow may diverge because a condition might
be true for some scalar instances and false for others. Consequently, all
code has to be executed. The explicit transfer of control is modeled by
masks on control flow edges. A mask is a vector of truth values of size W . If
the mask of a CFG edge a→ b is set to true at position i, this means that
the i-th instance of the code took the branch from a to b. Thus, the mask
denotes which elements in a vector contain valid data on the corresponding
control flow edge.

Algorithm 1: Pseudo-code for the main mask generation function.
Input: A CFG in SSA form.
Output: Mask information for every basic block and loop exit.
begin

foreach B ∈ return blocks do
createMasks(B);

end
foreach L ∈ loops do

createLoopExitMasks(L);
end

end

Algorithm 1 shows how masks are generated. The presented pseudo-code
generates a graph where each node represents a mask. Code generation boils
down to a straightforward depth-first traversal of the graph.
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Function createMasks(Block B)
begin

if B already has masks then
return;

end
if B is loop header then

createMasks(preheader);
else

foreach P ∈ predecessors do
createMasks(P);

end
end
createEntryMask(B);
createExitMasks(B);
if B is loop header then

createMasks(latch);
if loop is divergent then

Mask latchMask ← ExitMasks[latch→header];
EntryMasks[B].blocks.push(latch);
EntryMasks[B].values.push(latchMask);

end
end

end

The edge masks implicitly define entry masks on blocks (Function cre-
ateEntryMask): The entry mask of a block that is no loop header is either
true for by all blocks or the disjunction of the masks of all incoming edges.
The mask of a loop header is a φ-function with incoming values from the
loop’s preheader and latch for divergent loops. Otherwise, the mask is
always the one coming from the preheader. This is because as long as the
loop iterates, all instances that were active upon entry of the loop remain
active.

The masks of the control flow edges that leave a block are given by the
block entry mask and a potential conditional (Function createExitMasks).
Note that this does not apply to edges to rewire loop exit blocks, which
are discussed in the next paragraph. If a block exits with an unconditional
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ma ← · · ·
...

x1 ← · · ·
cond← · · ·
ma→b ← ma ∧ ¬cond
ma→c ← ma ∧ cond

br cond, c, b

a

mb ← ma→b
x2 ← · · ·

...
mb→c ← mb

b

mc ← ma→c ∨mb→c
x3 ← phi(x1, x2)
· · · ← x3

c

falsetrue

Figure 6.1: Edge and block entry masks. ma, mb, and mc are the entry masks
of the corresponding blocks a, b, and c. ma→b, ma→c, and mb→c are the block
exit masks connected to the edges a→ b, a→ c, and b→ c.

branch, the mask of its single exit-edge is equal to the entry mask. If the
block ends with a varying conditional branch, the exit mask of the “true
edge” of the block is the conjunction of its entry mask and the branch
condition. The exit mask of the “false edge” is the conjunction of the entry
mask and the negated branch condition. For the “true edge” of a uniform,
conditional branch condition, a select returns the entry mask of the block
if the condition is met, otherwise it returns false. For the corresponding
“false edge,” an inverse select is used. This scheme extends naturally to
blocks with more than two outgoing edges, e.g. due to a switch statement:
The comparison of each case value to the switch value is the condition of
that edge. Figure 6.1 shows an example with three basic blocks a, b, and c
with corresponding block entry masks (ma, . . . ) and edge masks (ma→b, . . . ).

The analyses presented in Chapter 5 enable various optimizations here.
First, if our analysis found out that a block is always executed by all instances
(by all), the mask is set to true. Second, at the end of regions with a single
entry and exit block, the mask can be reset to the one of the entry block.
However, there is a trade-off involved: The mask has to be kept alive for
the entire region, which can result in inferior performance to recomputing
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Function createEntryMask(Block B)
begin

if B is entry block then
if function has mask argument then

EntryMasks[B] ← Mask(VALUE, mask argument);
else

EntryMasks[B] ← Mask(VALUE, true);
end
return;

end
if B is by all then

EntryMasks[B] ← Mask(VALUE, true);
return;

end
if has unique predecessor P then

EntryMasks[B] ← ExitMasks[P→B];
return;

end
if B is header of loop with preheader P then

Mask loopEntryMask ← ExitMasks[P→B];
if loop is divergent then

EntryMasks[B] ← Mask(PHI);
EntryMasks[B].blocks.push(P);
EntryMasks[B].values.push(loopEntryMask);

else
EntryMasks[B] ← ExitMasks[P→B];

end
return;

end
if B is blend then

Mask entryMask ← Mask(OR);
foreach P ∈ predecessors do

entryMask.push(ExitMasks[P→B]);
end
EntryMasks[B] ← entryMask;

else
Mask entryMask ← Mask(PHI);
foreach P ∈ predecessors do

Mask predMask ← ExitMasks[P→B];
entryMask.blocks.push(P);
entryMask.values.push(predMask);

end
EntryMasks[B] ← entryMask;

end
end
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Function createExitMasks(Block B)
begin

if no successors then
return;

end
if has unique successor S then

ExitMasks[B→S] ← EntryMasks[B];
return;

end
foreach S ∈ successors do

// C is the condition of edge B→S,
// e.g. Mask(NEG, C) for false edge of cond. branch.

if exit condition C is uniform then
ExitMasks[B→S] ← Mask(SELECT);
ExitMasks[B→S].cond ← C;
ExitMasks[B→S].trueVal ← EntryMasks[B];
ExitMasks[B→S].falseVal ← Mask(VALUE, false);

else
ExitMasks[B→S] ← Mask(AND);
ExitMasks[B→S].push(EntryMasks[B]);
ExitMasks[B→S].push(Mask(VALUE, C));

end
end

end

the mask with a disjunction. Third, optional blocks always use the mask
of their only predecessor or a phi with the incoming masks if the block has
multiple incoming edges. This is because all instances that were active in
the executed predecessor will also be active in the optional block (and none
from a different direction, or the block would have been marked rewire).
Otherwise, disjunctions would be generated, introducing some performance
overhead compared to the original, scalar function. Also, the incoming mask
of a block with a uniform branch and only optional successor blocks is
used for both outgoing edges. Without the Rewire Target Analysis, the mask
would have to be updated with the comparison result first. This implies that
on paths with only optional blocks, all edges have the same mask as the
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first block, without requiring mask update operations. In the rightmost CFG
of Figure 5.12, blocks c and d can both use the entry mask of block b instead
of performing conjunction-operations with the (negated) branch condition
in b, and block f can use the same mask instead of the disjunction of both
incoming masks.

6.1.1 Loop Masks
Each divergent loop has to maintain a mask that is true for all instances
that are still active in the loop. The loop can only be exited when this
mask is false for all instances. While the loop is still iterating, results of
inactive instances must not be altered. Therefore, a special φ-function—the
loop mask phi—is generated in the loop header (mb in Figure 6.2). Its first
incoming value is the mask of the incoming edge from the preheader, the
second value is the mask of the loop back edge.

Also, to ensure correct execution after the loop is finished, a divergent
loop with multiple rewire exit blocks needs to persist the information which
instance left the loop over which edge. This is achieved by introducing
loop exit masks that are maintained by the following instructions (Function
createLoopExitMasks): a mask update operation (mup) and the loop exit
mask phi, which is a φ-function in the loop header (mexit). The update
operation is the disjunction of the loop exit mask phi of the current loop
and the accumulated mask of the next inner loop that is left via this exit,
if there is one. Otherwise, the second operand is simply the exit condition
of the exit edge. The loop exit mask phi has one incoming value from the
preheader and one from the latch. The value coming from the latch is the
result of the update operation. The value coming from the preheader is an
empty mask (all elements set to false). Note that it is not necessary to
persist the complete exit mask of an exit that leaves multiple loops in any
other loop than the outermost one that is left. The inner loops only require
information about which instances left in their current iteration.

After mask generation, each rewire loop exit mask thus has one update
operation per loop that is left and one loop exit mask phi in the header of
each loop that is left.

Note that, again, the analyses presented in Chapter 5 allow us to generate
more efficient code: If an exit block is optional, we omit its loop exit mask
because it is equal to the active mask. If the entire loop is not divergent,
the loop mask and all loop exit masks can be omitted. This is because in
such a loop, all instances that enter the loop will exit together through the
same exit.



6.1 Mask Generation 91

Function createLoopExitMasks(Loop L)
begin

if L is divergent then
foreach E ∈ rewire exit blocks of L do

ExitMaskPhis[E][L] ← Mask(PHI);
end

end
foreach N ∈ nested loops of L do

createLoopExitMasks(N);
end
if L is not divergent then

return;
end
Block P ← preheader of L;
foreach X → E ∈ rewire exit edges of L do

Mask exitMaskPhi ← ExitMaskPhis[E][L];
exitMaskPhi.blocks.push(P);
exitMaskPhi.values.push(Mask(VALUE, false));
Mask maskUpdate ← Mask(OR, exitMaskPhi);
if exit leaves multiple loops and L is not innermost loop left by
this exit then

N ← next nested loop of exit;
maskUpdate.push(ExitMaskUpdates[E][N]);

else
maskUpdate.push(ExitMasks[X→E]);

end
ExitMaskUpdates[E][L] ← maskUpdate;
if L is top level loop of exit then

ExitMasks[X→E] ← maskUpdate;
end
exitMaskPhi.blocks.push(latch);
exitMaskPhi.values.push(maskUpdate);

end
createCombinedLoopExitMask(L);

end
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Function createCombinedLoopExitMask(Loop L)
begin

Mask combinedMask ← Mask(OR);
foreach E ∈ rewire exit blocks of L do

combinedMask.push(ExitMaskUpdates[E][L][1]);
end
CombinedExitMasks[L] ← combinedMask;

end

Combined Loop Exit Masks. Finally, to reduce the number of instructions
required to persist loop results, a combined loop exit mask may be used during
select generation (see Section 6.2). This mask combines all information
about instances that left the loop in the current iteration. In case of a
loop that contains more nested loops, the current iteration of the parent
includes all iterations of all nested loops. Thus, the combined loop exit
mask is a disjunction of all accumulated loop exit masks of exits from
nested loops and the exit masks of exits from the current loop. Function
createCombinedLoopExitMask shows this in pseudo code.

6.1.2 Running Example
Figure 6.2 shows the masks generated for the Mandelbrot kernel. The di-
vergent loop has one uniform exit (b→ e) and one varying exit (c→ f).
The uniform exit does not require a dedicated exit mask, but the varying
one does. It is maintained by the φ-function mexit in the loop header b and
updated by the disjunction mup in c. Since mexit is initialized with false,
the disjunction accumulates those instances that have left the loop in each
iteration, given by mc→f . The mask in block f is exactly this accumulated
exit mask. The mask in e is simply the active mask if the exit is taken.
This is because the exit condition is uniform and the block is an optional
exit: if the exit is taken, it is taken by all instances that are still active. In
block g, the masks from both sides are merged by a disjunction. In this case,
since the block is by all, it is equal to true. The combined loop exit mask
mcomb has no uses before Select Generation (Section 6.2). It consists of a
disjunction of the exit masks of the loop exits in the current iteration (mb→e
and mc→f ).
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ma ← true
...

ma→b ← ma

br b

a

mb ← phi(ma→b,md→b)
mexit ← phi(false,mup)

...
condb ← iter ≥ maxIter
mb→c ← mb ∧ ¬condb
mb→e ← mb ∧ condb

br condb, e, c

b

mc ← mb→c
...

condc ← x2 + y2 > scaleSq
mc→d ← mc ∧ ¬condc
mc→f ← mc ∧ condc
mup ← mexit ∨mc→f

br condc, f, d

c

md ← mc→d
mcomb ← mb→e ∨mc→f

...
md→b ← md

br b

d

me ← mb→e
...

me→g ← me

br g

e

mf ← mup

...
mf→g ← mf

br g

f

mg ← me→g ∨mf→g
...

g

true false

true false

Figure 6.2: Mask generation for the Mandelbrot kernel. mexit is the accumu-
lated exit mask of edge c → f . mup is the update operation of that exit mask.
mcomb is the combined exit mask.

6.1.3 Alternative for Exits Leaving Multiple Loops
Our approach of maintaining loop exit masks aims at reducing the number of
instructions required to persist loop results. However, there is an alternative
that results in better code in some situations:
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It is possible to do only a single update in the innermost loop instead of
an update in every nested loop. This requires to use the loop exit mask phi
of the current loop as input value coming from the preheader for the next
nested mask phi. Basically, this means that the mask of a rewire loop exit is
persisted across all loops. However, since our Select Generation approach also
requires the information which instance left in the current iteration of each
loop, this would require an additional phi per nested loop that is left (one for
the instances that left during the current iteration, one for the instances that
left at any iteration). If Select Generation introduces one blend operation
per result per exit instead of one per result, however, the current iteration’s
mask would not be required. So, the choice during Mask Generation is
to either use more update operations or persist more values across loop
iterations. On a higher level, though, there is a choice between different
algorithmic approaches to how results in loops are persisted, and that may
influence the decision. For the approach described in this thesis, since the
combined exit mask is used, generating more update operations instead of
persisting more values is the natural choice to keep register pressure low.
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6.2 Select Generation
Linearization of control flow is only possible if results of inactive instances are
discarded. This is achieved by inserting blend operations at control flow join
points and loop latches. The corresponding code is shown in Algorithm 2.

Algorithm 2: Pseudo-code for the main select generation function.
Input: A CFG in SSA form.
Output: A modified CFG that includes blend operations at control

flow join points and loop latches.
begin

for B ∈ blend blocks do
foreach P ∈ phis of block do

generateSelectFromPhi(P, B);
end

end
foreach L ∈ loops do

generateLoopExitSelects(L);
end

end

First, the values that have to be blended in blend blocks are given by
the φ-functions, which are replaced by select instructions. Function
generateSelectFromPhi shows how φ-functions with n incoming values are
transformed into series of n− 1 connected select instructions:
; before :
%s = phi [ %val0 , %bb0 ], [ %val1 , %bb1 ], [ %val2 , %bb2 ]
... = %s

; after :
%s0 = select i1 %m0, %val0 , %val1 ; %m0 = mask from % bb0
%s1 = select i1 %m1, %val2 , %s0 ; %m1 = mask from % bb2
... = %s1

The analyses from Chapter 5 help us to reduce the overhead of the
generated code: If a block with multiple incoming edges is not blend, its
φ-functions are not transformed into selects. Blending in such a case is not
necessary because only one of the incoming paths may have been executed.
For example, in the leftmost CFG of Figure 5.12, the φ’s in block h remain
untouched.
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Function generateSelectFromPhi(Phi P, Block B)
begin

S ← P.values[0];
for i = 1→ P.values.size()− 1 do

Value V ← P.values[i];
Block P ← P.blocks[i];
Mask M ← ExitMasks[P→B];
S ← Select(M, V, S) in B;

end
replace all uses of P with S;
delete P;

end

6.2.1 Loop Blending
Additionally, each loop requires result vectors in order to conserve the loop
live values of instances that leave the loop early. Functions generateLoopEx-
itSelects and generateLoopExitInsts show how loop exit selects are created.

Recall that loop live values are the incoming values of LCSSA phis in
loop exit blocks. For each loop live value, a result vector that is maintained
by two instructions—a φ-function and an update operation—is introduced
per nested loop that is left over the corresponding exit. This vector is only
updated whenever an instance has left the loop in the current iteration of
the loop. Note that the loop live value of an exit that leaves multiple loops
is defined in an inner loop. For each outer loop that is left, this means that
all iterations of all inner loops have to be taken into account, since they
correspond to the current iteration of the outer loop.

The update of each result vector is performed in the latch of the loop
with the combined loop exit mask. This allows to only insert one select
instruction for each loop live value per loop, regardless of the number of
loop exits. As discussed in Section 6.1.3, there is an alternative: Instead of
blending once per value, values could be blended once per value per rewire
loop exit. However, this is only beneficial if there are rewire loop exits
“above” optional ones. We will exemplify and discuss this in more detail in
Section 6.3.5.

The result update operation is a select which uses the combined loop
exit mask as the condition, and the result phi as the false value. This way,
the result vector is updated with a new value only if one or more instances
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Function generateLoopExitSelects(Loop L)
begin

if L is divergent then
foreach V ∈ LiveValues[L] do

LoopResultPhis[L][V] ← Phi() in header;
end

end
foreach N ∈ nested loops of L do

generateLoopExitSelects(N);
end
if L is divergent then

foreach V ∈ LiveValues[L] do
generateLoopExitInsts(V, L);

end
foreach V ∈ LiveValues[L] do

updateOptionalLCSSAPhis (V, L);
end

end
end

left the loop in the current iteration. If the mask is true for an instance,
the blended value is either the live value or the update operation of the next
child loop that is also left over this exit, if any exists. This means that the
live value is used if the current loop is the innermost loop that is left, or if
all deeper nested loops are not divergent.

The result-φ-function is placed in the header and has two incoming values.
The incoming value from the loop preheader is undefined for the outermost
loop that is left over this exit. This is because there is no result until the
loop has iterated at least once. For nested loops, the incoming value is the
parent loop’s result-φ-function. The incoming value from the loop latch is
the result update operation.

The usage of result vectors enables us to vectorize all kinds of loops. This
especially includes control flow with multiple nesting levels, multiple exits
and edges exiting multiple loops. Figure 6.3 shows an example of mask and
select operations in a loop.
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Function generateLoopExitInsts(LiveValue V, Loop L)
begin

Mask M ← CombinedExitMask[L];
Loop X ← parent loop of L;
Phi P ← LoopResultPhis[L][V];
Select S ← Select(M, V, P) in latch;
LoopResultUpdates[L][V] ← S;
P.blocks.push(preheader);
if L is outermost divergent or !LoopResultUpdates[X][V] then

P.values.push(undef);
else

P.values.push(LoopResultPhis[X][V]);
end
P.blocks.push(latch);
P.values.push(S);
if V is defined in deeper nested divergent loop N then

S.trueVal ← LoopResultUpdates[N][V];
end
replace uses of V in parent loop of L with S;
if L is outermost divergent then

replace uses of V that are in no loop with S;
end

end

If the Vectorization Analysis determines that a loop is not divergent, we
do not need to blend any results because all instances will iterate equally
often and use the same exit.

6.2.2 Blending of Optional Loop Exit Results
As described in Section 5.9, one of the goals of WFV is to retain parts of
the CFG by linearizing only the necessary parts defined by rewire target
blocks. This also affects loop exits: If all exit blocks were considered rewire
targets, the code of all exits would always be executed. If a loop exit has an
optional target, this means that even if the instances can diverge in the
loop, if this exit is taken, it is taken for all remaining instances. This in
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ma ← · · ·
x1 ← · · ·

...
ma→b ← ma

a

x2 ← phi(x1, x3)
mb ← phi(ma→b,mb→b)

mexit ← phi(false,mup)
rx ← phi(undef, r′x)

...
x3 ← · · ·

condb ← · · ·
mb→b ← mb ∧ condb
mb→c ← mb ∧ ¬condb
mup ← mexit ∨mb→c
r′x ← select(mb→c, x3, rx)

br condb, b, c

b

r ← lcssaphi(r′x)
mc ← mup
· · · ← r

c

Figure 6.3: Mask and select generation for a loop. In general, each exit is
assigned a mask update operation mup and a φ-function mexit . The exit mask
is updated by setting elements of instances to true that leave the loop in the
current iteration. The φ-function holds the current exit mask. Note that, after
this pass, the mask of the edge b → c is mexit instead of mb→c. The select
r′x in the latch and the φ-function rx form the result vector of loop live value
x. Each time an instance leaves the loop, the corresponding element of x is
blended into the result vector.

turn allows to exit the loop immediately without an additional “all-false”
mask test and without executing the remaining blocks of the loop. Also,
there is no need to blend loop results: All results from previous iterations
have been persisted, and in the current iteration no divergence happened.
Thus, all current values are valid for the active instances, and can be passed
directly to the corresponding LCSSA phis of this exit. The corresponding
pseudo code is shown in Function updateOptionalLCSSAPhis.
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Function updateOptionalLCSSAPhis(LiveValue V, Loop L)
begin

foreach (X → E) ∈ optional exit edges of L do
foreach phi ∈ E do

if phi.values[X] == LoopResultUpdates[L][V] then
lcssaPhi ← phi;

end
end
if lcssaPhi then

replace all uses of lcssaPhi with V;
end

end
end

6.2.3 Running Example
Figure 6.4 again shows the Mandelbrot kernel, now with blend operations.
Correct results are achieved with the use of the result vector rit that stores
the result of iter of each instance that leaves the loop over the edge c→ f
while others keep iterating. The vector is initialized with undef since there
is no result before the first iteration. It is updated in each iteration in the
loop latch d by the select operation rup that uses the combined loop exit
mask. If the mask is false for an instance, the old result is retained. If it is
true for an instance, the corresponding element of the vector is set to the
current value of iter’. Note that this means that the update operation sets
the value of each instance at most once.

The LCSSA φ-functions in e and f forward the results that correspond to
their exits: In f , this is the accumulated result vector. In e, it is the value
of iter itself. This is because the exit block e is optional, so all values
that leave over this exit leave in the same iteration. This requires no explicit
result vector. Finally, the values are blended together to form the final result
vector in block g. Note that this select can use either incoming mask me

or mf , only the blended values have to be supplied to the true or false
operands of the operation accordingly.
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ma ← true
...

ma→b ← ma
br b

a

mb ← phi(ma→b,md→b)
mexit ← phi(false,mup)

rit ← phi(undef, rup)
iter ← phi(0, iter′)

...
condb ← iter ≥ maxit
mb→c ← mb ∧ ¬condb
mb→e ← mb ∧ condb

br condb, e, c

b

mc ← mb→c
...

condc ← x2 + y2 > scaleSq
mc→d ← mc ∧ ¬condc
mc→f ← mc ∧ condc
mup ← mexit ∨mc→f

br condc, f, d

c

md ← mc→d
mcomb ← mb→e ∨mc→f

rup ← select(mcomb, iter, rit)
iter′ ← iter + 1

md→b ← md
br b

d

re ← lcssaphi(iter)
me ← mb→e

...
me→g ← me

br g

e

rf ← lcssaphi(rup)
mf ← mup

...
mf→g ← mf

br g

f

mg ← me→g ∨mf→g
r ← select(me, re, rf )

...

g

true false

true

false

Figure 6.4: Select generation for the Mandelbrot kernel. rit is the accumulated
result vector. rup is the corresponding update operation. r is the final result,
blended together from the two values incoming from both exits. Note that this
is invalid code until linearized (see Figure 6.8).
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ma ←
...

x1 ← · · ·
cond← · · ·
ma→b ← ma ∧ ¬cond
ma→c ← ma ∧ cond
mb ← ma→b
x2 ← · · ·

...
mb→c ← mb

mc ← ma→c ∨mb→c
x3 ← select(ma→c, x1, x2)
· · · ← x3

Figure 6.5: The linearized control flow of Figure 6.1 with value blending.

6.3 Partial CFG Linearization
After all mask and select operations are inserted, all control flow except
for loop back edges is encoded by data flow. To create a valid CFG for
vector code, conditional branches that may result in divergence have to be
removed. However, the transformation has to guarantee that, if a block
that previously ended with such a varying branch is executed, all outgoing
paths are executed as well. To this end, the basic blocks have to be put into
a sequence that preserves the execution order of the original CFG G: If a
block a is executed before b in every possible execution of G, then a has to
be scheduled before b in the linearized CFG G′. This can be easily achieved
by a topological sort of the CFG.

The näıve way of linearizing a CFG is to consider all blocks to be rewire
blocks and linearize the entire graph: If the CFG splits up into separate
paths, one path is chosen to be executed entirely before the other. This
can be seen in Figure 6.5, which shows the linearized version of the CFG in
Figure 6.1. There, both outgoing edges of a are rewired to b. If there was
a block on the other path, the outgoing edge of b would be rewired to it.
The result is a CFG that only has conditional branches remaining at loop
exits and unconditional branches at loop entries. All other branches can be
removed.

However, as discussed in Section 3.3, such a complete linearization is not
desirable, since it may introduce a lot of overhead. Instead, we introduce an
algorithm that retains all uniform branches. Suppose the conditional branch
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Figure 6.6: CFG linearization example. In the original CFG (a), e is optional
because it cannot be reached over disjoint paths from a varying branch. The
mandatory SIMD path (Section 6.3.3) that is used is shown in (b). The partial
linearization (d) is invalid because it must not be possible to skip b and d. The
graph (e) shows a valid, partial linearization, which improves performance over
the näıve approach (c).

in Function 6.1 is uniform, i.e., all active instances will always execute the
same path. This means that the structure does not have to be linearized as
in Figure 6.5 but can be left intact. The barrier elimination optimization
by Coutinho et al. [2011] covers such simple cases. However, simply retaining
uniform branches produces invalid code if the CFG exhibits unstructured
control flow. In fact, other parts of the CFG have to be modified to account
for retained branches, as Figure 6.6 shows: If the uniform branch from
block c to e is taken, SIMD execution after e must not continue at f , but
at b (or d, if b was executed before c). This is because although all instances
that arrived at c continued at e, there may have been instances that diverged
at block a already. These may now be active in b (or d), so this block
must not be skipped. If the uniform branch is retained without additional
changes, the resulting CFG in Figure 6.6(d) is invalid: blocks b and d are
skipped whenever e is executed. Rewiring the edge e→ f to e→ b as shown
in Figure 6.6(e) yields a correct partial linearization.

The resulting function is more efficient than the fully linearized graph
shown in Figure 6.6(c). This is because less code is executed in all cases
where no instance is active in e, at no additional cost.
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Figure 6.7: Partial linearizations of the CFGs shown in Figure 5.12.

Instead of retaining all edges that leave uniform branches, Partial CFG
Linearization retains edges that target optional blocks. This is a subtle
difference: Targets of uniform branches are usually optional blocks, unless
the edge is critical, in which case the target block has an additional incoming
edge which makes it a blend block.

Figure 6.7 shows linearizations of the examples of Figure 5.12. In the
leftmost CFG, the blocks d, e, g, and i are rewire targets of the div caus-
ing block b. Because there are no disjoint paths from b to h in the original
CFG, h is no rewire target. In the middle CFG, the inner loop, although
being nested in a loop with varying exit, does not require any mask updates
or blending because all active instances always leave the loop together. The
rightmost CFG shows a case where it is allowed to retain the uniform loop
exit branch in c: there are only uniform branches inside the loop, so either
all or no active instance will leave the loop at this exit. However, g must not
be skipped because of instances that might have left the loop earlier. This
makes it necessary to rewire the edge e→ h to e→ g.

The Partial CFG Linearization shown in Algorithm 3 can handle arbitrary
CFG structures. To this end, it exploits the information given by the Rewire
Target Analysis (Section 5.9). The algorithm consists of five steps:

1. create clusters of div causing blocks (Section 6.3.2).
2. determine the mandatory SIMD path of each cluster (Section 6.3.3).
3. determine how to modify the outgoing edges of each block (Section 6.3.4).
4. create new, partially linearized CFG (Section 6.3.5).
5. repair SSA form if any edges were modified (Section 6.3.6).



6.3 Partial CFG Linearization 105

Algorithm 3: Pseudo-code for the main CFG linearization function.
Input: A CFG in SSA form with mask and selects.
Input: div causing blocks, rewire targets.
Output: A partially linearized CFG in SSA form.
begin

createClusters(div causing blocks);
determineRewireSchedule(clusters);
determineNewEdges(function);
regToMem(function);
linearize(function);
memToReg(function);

end

The main challenge with a partial linearization approach is that the
resulting graph must not allow to skip a block that one of the grouped
instances has to execute. These blocks form mandatory SIMD paths below
each branch that may cause control flow to diverge. A partial linearization
is achieved by scheduling these blocks into a linear sequence. Whenever a
“side path” is executed due to a retained, uniform branch, execution has to
continue with the next block in the sequence after the side path has been
finished. In the example in Figure 6.6(e), the rewired edge forces exactly
this behavior. Rewiring of edges ensures that all code that must be executed
is always executed. In addition, when rewiring edges, care must be taken
not to create paths where the execution of a block suddenly depends on
conditional branches that were previously unrelated.

6.3.1 Running Example
The partially linearized Mandelbrot kernel is shown in Figure 6.8. Concrete
operations are omitted to focus on the CFG linearization. The exit condition
in d is an “all-false” comparison operation now, while the exit condition
in b is left untouched. The optional exit b → e is retained: If the exit
condition evaluates to true, all instances that are still active leave the loop
at once. However, since there may have been others that left over the former
exit c → f , block f still has to be executed. This can only be avoided by
using a dynamic variant (see Chapter 7). Full CFG linearization would have
to move block e down below d, either before or after f . This means that in
situations where the exit condition in e is never met, the partially linearized
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Figure 6.8: Partially linearized Mandelbrot kernel. The optional exit b→ e is
retained: If the iteration threshold is crossed, it is crossed by all active instances.
However, the edge e→ g is rewired to e→ f to account for instances that may
have left the loop in earlier iterations.

graph executes less code. This is the case for all instances that compute
values that belong to the Mandelbrot set, since the first exit corresponds to
reaching the iteration threshold.

Notice that the rewire exit now leaves from block d. This is because we
blend all results in the loop latch instead of blending before every exit. If
the original loop had multiple rewire exits, there would still be only one
exit in the linearized version.

6.3.2 Clusters of Divergence-Causing Blocks
The first step of linearization is to determine which div causing blocks
form clusters.

Definition 16 (Cluster) A cluster is the transitive closure of div caus-
ing blocks that can be reached from each other within a larger single-entry,
single-exit (SESE) region of the CFG.

Clusters describe disjoint regions of a CFG: Each block b of a cluster C
is either reachable from another block of C, or another block of C can be
reached from b. Out of a set of clusters in a SESE region, only one can
be entered by a group of instances, while no instance will be active in the
others. The examples in Figures 6.9 and 6.10 show cases of disjoint clusters.
Each cluster only consists of a single block that ends with a varying branch.
Due to the uniform branch in a in both CFGs, only one of the clusters
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Figure 6.9: A CFG with two disjoint clusters and a partial linearization.

is executed by any group of instances. The restriction to SESE regions
is necessary to keep clusters local: Consider a modification of the CFG
in Figure 6.9 with an additional, diamond-shaped region starting with a
div causing block and ending at block a. Without the restriction to SESE
regions, this CFG would have only a single cluster instead of three separate
ones since all div causing blocks could be reached from the first one. This
could result in missed opportunities to retain control flow because a single
mandatory SIMD path (see below) has to be created.

The pseudo code in Function createClusters shows how to determine
which blocks belong to the same cluster.

6.3.3 Rewire Target Block Scheduling
Each cluster of blocks has a mandatory SIMD path:

Definition 17 (Mandatory SIMD Path) A mandatory SIMD path of
a cluster C is a list of the rewire targets of the blocks of C that is sorted
topologically by control flow dependencies.

A valid schedule of the rewire targets of a cluster can be determined by a
simple top-down, depth-first traversal of the CFG as shown in Function
determineRewireSchedule. During traversal, if a block is encountered that
is a rewire target of the cluster, it is appended to an ordered list. This
list forms the mandatory SIMD path, a schedule of rewire targets: it
is a topological order of these blocks with respect to their control flow
dependencies. Thereby, it defines in what order the disjoint paths of the
cluster are executed.
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Function createClusters(List[Block] DivCausingBlocks)
begin

changed ← true;
while changed do

changed ← false;
foreach BB0 ∈ DivCausingBlocks do

Cluster C0 ← ClusterMap[BB0];
foreach BB1 ∈ DivCausingBlocks do

if BB0 = BB1 then
continue;

end
Cluster C1 ← ClusterMap[BB1];
if C0 = C1 then

continue;
end
if BB1 is postdominator of C0 then

continue;
end
if BB1 is not reachable from BB0 then

continue;
end
C0 ← merge(C1, C0);
foreach (BB,C) ∈ ClusterMap do

if C = C1 then
ClusterMap[BB] ← C0;

end
end
delete C1;
changed ← true;
break;

end
if changed then

break;
end

end
end

end
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Function determineRewireSchedule(Cluster C)
begin

Stack[Block] WorkList;
WorkList.push(function entry block);
while !WorkList.empty() do

B ← WorkList.pop();
if B is rewire target of C and no loop header then

C.rewireList.push(B);
end
if B is postdominator of C then

continue;
end
if B is header of loop L then

foreach X → E ∈ exit edges of L do
if L is not innermost loop left by this exit then

continue;
end
workList.push(E);

end
end
foreach S ∈ successors of B do

if B → S is loop exit or loop back edge then
continue;

end
if S has unseen non-latch predecessor then

continue;
end
workList.push(S);

end
end

end
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Figure 6.10: From left to right: Original CFG with two disjoint clusters {b}
and {c} with overlapping mandatory SIMD paths, linearization with merged
clusters, linearization with prioritized blocks d and g. The mandatory SIMD
paths are b → d → e → i → j and c → f → g → i for the middle CFG, the
rightmost linearization requires g to be in front of f in the second path.

Note that the order of the depth-first traversal has a direct influence
on the quality of the linearized CFG: The decision whether to schedule
paths that start at a varying branch in one or another order influences
how edges have to be rewired. Figure 6.10 is a good example for this: In
the rightmost graph, the mandatory SIMD path of the cluster of block b is
d → e → i → j, and the path of the cluster of c is g → f → i → j. This
results in a linearization where d is never executed when the edge a→ c is
taken, and g is never executed when a → b is taken. However, achieving
this particular partial linearization induces constraints upon the topological
order of the mandatory SIMD paths: Block g has to be scheduled before f ,
and d before e, i.e., they have to be prioritized. Otherwise, either block
would be moved below h, and thus be always executed. The resulting graph
would still be more efficient than the fully linearized one, but not optimal.
We leave the question how to best prioritize paths for future work and focus
on an algorithm that produces valid partial linearizations for any topological
order.
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The decision how to schedule paths may also influence register pressure,
which we discuss in more detail in Chapter 10. In the presented approach,
the decision which path to execute first is made simply by the order in which
successors are traversed. Employing some explicit heuristic instead is likely
to improve the generated code. Such a heuristic can e.g. take into account
the code size or register pressure of the different paths, or otherwise quantify
the impact of the resulting CFG layout.

6.3.4 Computation of New Outgoing Edges
Next, the algorithm determines which edges of the CFG can be left untouched,
which ones have to be rewired to other targets, which ones have to be removed,
and where new edges are required. The corresponding pseudo-code is shown
in Functions determineNewEdges and getNewOutgoingEdges.

All edges that target optional blocks are left untouched. Loop exit edges
of divergent loops that do not target optional blocks are removed.1 A
new exit edge is created at the latch of each divergent loop: The target is
the first rewire exit block for which the loop is the innermost that is left. If
no such exit block exists, the target is the loop latch of the next outer loop.

Other edges that target rewire blocks are rewired as follows: Consider
an edge of the original CFG that goes from a block b to a successor s. First,
the div causing blocks of b are queried and the corresponding clusters are
collected. For each disjoint cluster, a new target of the edge is determined.
The target is the first block r of the cluster’s mandatory SIMD path for
which the following holds: r is in the same loop as s, b cannot be reached
from r, and b cannot be reached from any block that comes after r in the
mandatory SIMD path. This ensures that the edge is rewired to the next
rewire target that has not yet been targeted from within the current cluster.

In addition, all clusters that do not correspond to div causing blocks
of b but from which the current block can be reached also require a rewire
target: the original successor s. While these clusters do not require the edge
to be rewired to one of their rewire targets, they are still disjoint clusters
and as such may require a different path to be executed. These paths did
not change from the original graph, so the original successor is chosen.

This may result in edges that require multiple new targets, one for each
disjoint cluster from which the block is reachable. An example for this can
be seen in Figure 6.11, which we discuss in the next section.

1The restriction to divergent loops is important: There may be cases where a non-di-
vergent inner loop is left via an exit to the latch of a divergent outer loop (which is
not optional). This exit edge must not be removed.
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Function determineNewEdges(Block B)
begin

foreach S ∈ successors of B do
if S is optional then

NewTargets[B → S].push(S);
else

if B → S is exit of loop L then
if L is not divergent then

NewTargets[B → S].push(S);
end

else
getNewOutgoingEdges(B, S);

end
end

end
if B is latch of divergent loop L then

X ← first innermost, rewire exit of L;
if !X then

X ← latch of parent loop of L;
end
NewTargets[B → ].push(X);

end
end

6.3.5 Linearization
Linearization is performed by creating the edges as determined by the
Function determineNewEdges. The pseudo-code for the linearization is
shown in Function linearize. Each edge b→ s of the function is visited. If
the edge has no new targets associated, it is removed. Otherwise, a new
block x is created, and the edge is rewired to target that block (b→ x). In
the new block, a cluster-dependent branch in the form of a switch statement
is created:

Definition 18 (Cluster-Dependent Branch) A branch is a cluster-de-
pendent branch if its target depends only upon which disjoint cluster of the
enclosing SESE region was executed on the path to the branch.



6.3 Partial CFG Linearization 113

Function getNewOutgoingEdges(Block B, Block S)
begin

Set[Cluster] Clusters;
foreach X ∈ DivCausingBlocks[S] do

Cluster C ← ClusterMap[X];
Clusters.insert(C);

end
foreach C ∈ Clusters do

findNext ← true;
foreach R ∈ C.rewireList do

if !findNext then
if B is reachable from R then

findNext ← true;
end
continue;

end
if B is not reachable from R and R is in same loop as S
then

T ← R;
findNext ← false;

end
end
NewTargets[B → S].push(T);
NewTargetDivCausingBlocks[B → S][T] ← C.entry;

end
foreach C ∈ ClusterMap do

if C /∈ Clusters and S is reachable from C.entry then
NewTargets[B → S].push(S);
NewTargetDivCausingBlocks[B → S][S] ← C.entry;

end
end

end
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Function linearize(Function F)
begin

foreach B ∈ F do
foreach S ∈ successors do

if NewTargets[B → S].empty() then
remove edge B→S;
continue;

end
X ← new Block;
rewire edge B → S to B → X;
foreach T ∈ NewTargets[B→ S] do

P ← NewTargetDivCausingBlocks[B → S][T];
create edge X → T under condition P;

end
end
if B is latch of divergent loop L then

remove outgoing edges;
X ← NewTargets[B → ];
cond ← ExitMasks[B → header];
create edges (cond ? B → header : B → X);
mask ← CombinedExitMask[L];
ExitMasks[B → X] ← mask;

end
end

end

The switch receives a case for each new target of the edge, i.e., one case per
disjoint cluster from which the edge can be reached. To determine which
case belongs to which cluster, an identifier value is defined in the entry block
of each cluster. This value is tested by the switch, and the appropriate
target is chosen to execute next. Finally, each latch of a divergent loop
receives a new, “all-false” exit edge.

The two rightmost graphs in Figure 6.11 show two different possibilities
for linearization with cluster-dependent branches.2 If the edge a→ b was

2Note that, in this particular example, it is possible to create a similar schedule by
removing edges to optional blocks. For more complex examples it is not possible
anymore to retain as much structure of the CFG without retaining these edges.
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Figure 6.11: From left to right: Original CFG with two disjoint clusters whose
mandatory SIMD paths overlap, linearization with merged clusters, partial lin-
earization with cluster-dependent branch in i, partial linearization with cluster-
dependent branches in i and h. Edge annotations denote that the edge is only
taken if the corresponding block was executed before. The mandatory SIMD
paths are b→ e→ d→ j and c→ g → f → j.

taken, the conditional branch in i jumps to d. If the edge a→ c was taken,
the conditional branch in i jumps to f in the third graph, and to j in the
last graph. Furthermore, the conditional branch in h in the rightmost graph
jumps to g if coming from c, and to j if coming from b. Although this graph
looks like it contains an irreducible loop with two headers, no block will be
executed more than once due to the branch conditions.

Notice again that the chosen schedule of the rewire targets influences
code quality: In the second graph from the right in Figure 6.11, the rewire
schedule of block b is e→ d→ j, and the schedule of block c is g → f → j.
This results in a linearization where only i has a cluster-dependent branch.
In the rightmost graph, however, block f is scheduled before g in the cluster
of c (f → g → j), while the schedule of the cluster of b remains as before.
Because of the mutual dependencies of i and h, these schedules now force
two cluster-dependent branches.

A CFG simplification phase is required to clean up the resulting graph:
The algorithm may introduce unnecessary blocks, duplicate edges that target
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the same block, and edges that can never be executed. Blocks that were
introduced on non-critical edges can always be removed. Also, the switch
statements can be replaced by unconditional or conditional branches unless
there were more than two disjoint clusters. The partially linearized graph
on the right of Figure 6.12 is already cleaned up for space reasons.

6.3.5.1 Discussion

Figure 6.10 has two mandatory SIMD paths that overlap, one for each cluster.
In such a case, there are multiple options for linearization: The näıve way is
to merge the two clusters, define their common dominator as the entry, and
create a single mandatory SIMD path instead of two. A possible result for
this is the second graph of Figure 6.10. The third graph shows the result
of our more involved, partial linearization that retains edges that target
optional blocks. It is obvious that this approach yields more efficient code.

The next observation is that retaining edges to optional blocks is not
possible with only rewiring of edges, as Figure 6.11 shows. In this example,
both h and i are optional because they are no join points of disjoint paths
from varying branches. This indicates that there are disjoint clusters whose
mandatory SIMD paths somehow overlap. Indeed, all disjoint paths only
merge again in block j. This imposes a challenge for partial linearization
if edges to optional blocks should be retained: When executing block c,
both f and g have to be executed. When executing block b, both d and e
have to be executed. This means that no matter which blocks are chosen
to be scheduled first, the edges h → j and i → j each have two different
rewire targets where to continue execution.

This cannot be solved by clever scheduling or rewiring of edges. However,
the fact that these different rewire targets belong to mandatory SIMD paths
of different clusters allows to still retain disjoint paths. This is achieved with
the help of cluster-dependent branches, which choose their target depending
on the executed cluster. Effectively, this leads to disjoint paths that use the
same blocks. Another option to implement this is to duplicate those blocks
that are common to both paths.

6.3.5.2 Removing Loop Exit Edges

All rewire loop exit edges of a loop are replaced by a single exit in the
loop latch. This is required because, as discussed in Section 6.1.3, we only
blend loop live values once in the loop latch instead of before every exit.
For short-running loops with a lot of code between different exits and high
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Figure 6.12: Left: Complex CFG that requires either code duplication or
cluster-dependent branches when linearizing partially. Right: Partial lineariza-
tion using cluster-dependent branches (edge annotations denote that the edge
is only taken if the corresponding block was executed before). Blocks without
letter were introduced for edges with multiple rewire targets. If critical edges
are broken before vectorization, the introduction of additional blocks is not
necessary. The cyclic regions are no loops, each path is executed at most once.
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Figure 6.13: Left: Example of a loop with an optional exit that cannot be
exploited with our approach (see Section 6.1.3). Middle: Blending in the loop
latch forces complete linearization. Right: If blend operations are inserted
before every exit instead, it is possible to retain the uniform exit in block c.

divergence of instances, it may be a better solution to retain more exits and
introduce “all-false” tests at each one.

A second shortcoming of the approach described here is that we sacrifice
optimization of one specific case: Consider the loop in Figure 6.13. It has
an “upper” rewire exit and a “lower” optional one. If we would retain
the optional exit and replace the rewire exit by an exit in the latch, it
could happen that result vectors are not updated correctly. This is the
case if some instances leave over the rewire exit, and all others leave in
the same iteration over the optional exit. Since we only introduce blend
operations in the latch, the necessary blending for the instances that left
over the rewire exit would not have been executed when the optional exit
is taken. This could be solved by introducing additional blend operations
before each rewire exit from which an optional exit can be reached in the
same iteration. This would introduce additional overhead for the blending,
but make it possible to retain the optional exit. Otherwise, an optional
exit has to be considered rewire if, in one iteration of a loop, it can be
executed after some instances left the loop over another exit. The latter
is the choice that was made for the approach presented here. Figure 6.14
shows additional examples for partial linearization in presence of complex
loops.
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Figure 6.14: Partial linearizations for the examples from Figure 5.13. Partially
shaded blocks are optional blocks that have to be treated like rewire blocks
(see Section 6.1.3).
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6.3.6 Repairing SSA Form
After edges were removed or rewired, SSA form may be broken and has to
be repaired. This may involve significant amounts of rewrites of SSA values
and introductions of φ-functions. Under these circumstances, an approach
that first demotes all SSA values to memory before linearization, and then
promotes memory back to registers again is less error prone and can reuse
existing code for SSA construction.

There is only one obstacle to overcome: During demotion of a φ-function,
it can happen that the store operations introduced for the incoming values
are introduced on the same path because of rewired edges. This is because
even if optional blocks were excluded from the mandatory SIMD path, their
outgoing edges may have been rewired. This may result in paths overlapping
that were disjoint before. A straightforward demotion algorithm thus does
not work because the “later” store would overwrite the effect of the “earlier”
one, and during register promotion, only one value would be kept. What has
to be done is similar to the Select Generation phase—a blend operation has
to be introduced at the position of the “later” store to merge the values.
After this, a standard promotion algorithm can be used.

6.3.7 Branch Fusion
Branch fusion [Coutinho et al. 2011] (also block unification if-conversion
[Rotem & Ben-Asher 2012]) is a technique that attempts to improve the
code that is generated when a simple conditional structure is linearized.
In many cases, the code of the then and else path will behave similarly,
e.g. only loading a value from different addresses. The CFG linearization
phase as presented simply schedules one path behind the other. However,
in some cases it is possible to create more efficient code by merging the
paths. This is the case if two paths that form a diamond-shape in the CFG
contain a similar set of operations. Branch fusion pairs instructions with
the same opcode from either path, and connects their operands with blend
instructions. This way, only one of the two instructions is required. This
improves performance if the removed instruction is more expensive than the
blend operations, or if values can be reused without additional blending.
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6.4 Instruction Vectorization
After linearization, the scalar source function is finally transformed into
vector code. Vectorizing a single instruction in most cases is simply a
one-to-one translation of the scalar instruction to its SIMD counterpart.
This is true for most varying operations. Instructions marked uniform can
remain scalar. In case of φ-functions and selects, they may return either
scalar values if marked uniform, or vectors if marked varying. Instructions
marked sequential or guarded remain scalar but are duplicated into W
scalar instructions as detailed in Section 6.4.4.

6.4.1 Broadcasting of Uniform Values
The Vectorization Analysis allows us to leave uniform operations scalar. The
benefit of using uniform computations is straightforward: Register pressure
is taken from the vector units and scalar computations can be executed in
parallel to the vector computations.

If a varying instruction uses a uniform value, it expects a vector. To
produce a vector, the value is broadcast before the use. This means that a
new vector value is created in which each element is the same as the uniform
value (see Section 3.3).

The Mandelbrot application shows a use case where multiple parts of our
algorithm play together. Consider the main loop from Listing 1.1:
uint iter =0;
for (; (x2+y2 <= scaleSq) && (iter <maxIter ); ++iter)
{

y = 2 * x * y + y0;
x = x2 - y2 + x0;
x2 = x*x;
y2 = y*y;

}
image[tid] = 255* iter/maxIter;

The main loop is divergent, since it has an exit condition that depends on
the coordinates x2 and y2, which are different for each instance, and thus
varying. This means that each instance may iterate the loop a different
number of times. In consequence, the use of iter behind the loop has to be
varying, since the returned iteration count of different instances may differ.

A näıve approach would simply consider all uses of iter as varying
and vectorize them. Introducing result vectors for the loop live values as
described in Section 6.2 allows the following: The result vector of iter is
updated after every iteration of the loop. The update is performed by a
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broadcast of the scalar iter, followed by a blend operation. This allows
to perform all computations that only depend on uniform values in scalar
registers within the same loop iteration. Only uses outside the loop require
the result vector.

In the Mandelbrot example, this means that the increment of iter and
the comparison iter < maxIter can remain scalar and maxIter does not
require a broadcast. This seemingly small difference can have a big impact,
since the optimized operations are inside a frequently executed loop. One
required vector register less or more in this critical part of the code can
affect performance significantly.

6.4.2 Consecutive Value Optimization
Operations that produce a consecutive value can be left scalar as long as
their operands do not require them to be vectorized as well. If the usage of
a value expects it to be a vector, the value is broadcast and added to the
vector < 0, 1, . . . ,W − 1 >:
; scalar code :
%idx = call i32 @get_global_id(i32 0) ; consecutive / aligned
%a = add i32 %idx , 4 ; consecutive / aligned
%b = add i32 %a, %v ; varying

; vector code :
%idx = call i32 @get_global_id(i32 0)
%a = add i32 %idx , 4
%av = broadcast i32 %a to <4 x i32>
%b = add <4 x i32> %av, %v

Again, this allows to use the scalar unit a little more and occupy less vector
registers.

6.4.3 Merging of Sequential Results
An instruction that is sequential or guarded may still yield a vector value
as its result. This reflects the fact that even if the operation may require
scalar, sequential execution, the result type allows to combine the scalar
results to a vector. Such a merge or pack operation happens when a user of
this value expects a vector. If merging was not possible, the Vectorization
Analysis would have marked the operation nonvectorizable and the user
would be sequential.

It is also worth mentioning that the result of a sequential or guarded
operation can be used in different ways. For example, one use could be
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another sequential instruction, for which the scalar results are used directly.
Another use could be varying, for which the results are merged first.

6.4.4 Duplication of Non-Vectorizable Operations
Operations with side effects such as store operations and function calls
have to be duplicated W times. None of these scalar operations is allowed
to be executed unless the corresponding mask element is true.

In general, all instructions that are marked as sequential or guarded
by the Vectorization Analysis have to be executed W times sequentially in
scalar mode. To this end, the corresponding scalar instruction is duplicated
W times. Operands marked uniform are forwarded to each new instruction.
Operands marked varying are extracted to produce a scalar operand for
each instance. Operands marked nonvectorizable are scalar already, they
are mapped to the scalar instruction that corresponds to their instance.

In case of function calls with pointer arguments we also have to generate
code that writes back possible changes. Recall Listing 3.3 from Section 3.3.
It demonstrated that this extracting and merging may involve significant
amounts of memory operations that reduce the overall benefit of vectoriza-
tion.

Additionally, for guarded instructions, we have to guard each scalar
execution by an if construct that skips the instruction if the mask of that
instance is false. Note that guarded marks are influenced by the by all
mark (Sections 5.6.6 and 5.6.7): If a block is by all and thus proven to be
always executed by all instances, none of its instructions will be guarded,
only sequential. This way, we prevent generation of expensive guards since
all instances will execute all instructions of the block anyway.

In case of a guarded store, there is another possibility to improve the
generated code by employing a load-blend-store sequence. These vector
operations are faster than guards with scalar stores as described above.
However, this is not possible if the resulting code is executed in a con-
current environment, which is usually the case for data-parallel languages
on machines with multiple processors. This is because a race condition is
introduced: The store operation is executed for all instances, even though
some may be inactive. Assume the memory location pointed to by one of
these instances is concurrently written to. If this happens between the load
and the store, the memory location is reset to the old content and the effect
of the concurrent write is lost. Thus, this optimization can only be applied
if the semantics of the source language explicitly allow it, or if there is no
concurrency.
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Note that it may make sense to still introduce guards for sequential
operations if the operation is expensive. This has to be decided by a heuristic,
weighing the cost of the operation against the overhead of the guards and
the average number of inactive instances at that program point.

Another way to avoid the inefficiencies of guarded memory operations
is to use hardware support for gather and scatter operations if available.
Currently, only LRBni supports both constructs (which will be inherited by
AVX-512), while AVX2 only has a gather instruction. Unfortunately, current
implementations of these instruction sets only use microcodes instead of
specialized circuitry, reducing the purpose of gather and scatter to simplified
code generation without much performance improvement.

6.4.5 Pumped Vectorization
For certain applications it makes sense to vectorize with a factor W larger
than the natural SIMD width S. This pumped vectorization results in values
that require V = W/S SIMD registers. Also, each vector operation has to
be implemented by multiple operations. This technique improves locality at
the expense of more registers being used. Generating machine code from
a representation that uses larger vectors (“vector type legalization”) has
been studied by Asher & Rotem [2008]. Since this can be done by the
back end, pumped vectorization is straightforward by using a larger value
for W . Special attention has to be paid to calls to functions for which only a
mapping for W = S exists: The arguments of the call have to be extracted
and merged into arguments of the smaller vector size S, similar to Listing 3.3
in Section 3.3.

6.5 Extension for Irreducible Control Flow
If the CFG of a function is irreducible (e.g. if there is a loop that has
more than one header), the commonly used technique for many program
analysis algorithms is to apply node splitting [Janssen & Corporaal 1997] to
transform the CFG into reducible code before the analysis. However, this
can result in an exponential blowup of the code size [Carter et al. 2003].
Although irreducible CFGs are rare [Stanier & Watson 2012], this can still
be a problem for a specific application.

Our algorithm is able to deal with irreducible control flow without code
duplication: During CFG linearization, one of the headers of an irreducible
loop has to be chosen to be the primary header. This results in only the
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mask of the incoming edge of this header to be updated in every iteration.
Entry masks from the other headers remain untouched: If a join point with
one of these headers is executed during a later iteration, the incoming mask
might falsely “reactivate” an instance that already left the loop.

In order to handle irreducible control flow directly, we have to ensure that
these masks are joined with the loop mask in the first iteration only. This
is achieved by performing the blend operations at those join points with
a modified mask: In the first iteration, the new active mask is given by a
disjunction of the current active mask with the incoming mask from the
other header. In all subsequent iterations, it is given by a disjunction with
false, which means the current loop mask is not modified.
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During or after vectorization of a function, additional optimizations that
exploit dynamic properties of the function can be applied. Such an optimiza-
tion duplicates an existing code path, improves the new code by assuming
certain properties, and guards the new path by a runtime check that ensures
that the assumed properties hold. We call such a guarded path a dynamic
variant.

Obviously, introducing such a variant does not always make sense. Several
factors influence the effects on performance: First, the dynamic check
introduces overhead. Second, the improved code is more efficient than
the original code that only used conservative static analyses. Third, the
tested property may not always be valid, so the improved code is not always
executed. Finally, parameters like the code size and instruction cache may
also play a role, depending on the variant. Thus, each optimization presented
in this chapter is subject to a heuristic that determines whether it is beneficial
for a given code region to apply the transformation.

The properties that can be exploited all go back to the results of our
analyses (Chapter 5). In general, each of the value properties such as uni-
form, consecutive, or aligned (see Table 5.1) can be tested at runtime.
Since most of our analyses influence each other, the validation of a single
value property can have a big impact on the quality of the generated code.
For example, a value that conservatively has to be expected to be varying
during static analysis could be proven to be uniform at runtime. If this
value is the condition of a branch, less blocks are rewire targets and a smaller
part of the CFG has to be linearized, which results in less executed code,
and less mask and blend operations are required. The proven fact that
control flow in this region does not diverge may in turn result in φ-functions
to be uniform, which again may influence properties of other instructions.

In many cases, a heuristic will have a hard time to figure out the probability
of a dynamic property to hold. So far, there have been no studies that
attempted to classify under which circumstances a value is likely to be
uniform, consecutive, or any other SIMD-execution-related property. An
approach based on machine-learning techniques would offer a good starting
point for such work, and also for heuristics.
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Another possibility could be to provide compiler hints in the form of
code annotations. This would allow the programmer to explicitly encode
information, e.g. that a value is “often” uniform, hinting that a dynamic
variant would be beneficial.

The following sections describe a variety of different dynamic variants
ranging from enabling more efficient memory operations to complex trans-
formations that modify the entire vectorization scheme of a region. For the
most part, the presented variants have yet to be evaluated thoroughly.

7.1 Uniform Values and Control Flow
Definition 1 in Chapter 5 describes that the result of an instruction is uni-
form if it produces the same result for all instances of the executing SIMD
group. The Vectorization Analysis can only prove a static subset of this
property.

Consider the scalar code in Listing 7.1. The value x is loaded from the
array at runtime. Without additional information, the Vectorization Analysis
has to expect x to be different for each instance and thus varying. Because
of this, the condition of the if statement is also varying, which forces
control-flow to data-flow conversion, as shown in the vectorized function
kernelfn4.

Function kernelfn4v shows the code with an introduced variant. The
question whether x is uniform at runtime is answered by a comparison of
all vector elements. If this holds, the condition of the if statement is also
uniform, and the control flow can be retained. The code that is generated
closely resembles the original code, up to the point where the scalar value
of x0 is broadcast into a vector again.

Obvious choices for locations to introduce such a variant are varying
values that have a big impact on the properties of other instructions and
blocks. Because the test whether a value is uniform or not is fairly cheap,
it is easy to find places where the variant is likely to improve performance.
However, the problematic part for a heuristic is to estimate the probability
of the value to be varying. For example, the input array in Listing 7.1
could never have 4 times the same value in consecutive elements. Then,
the variant would result in a slowdown due to the added overhead of the
dynamic test. Thus, it may often be a better idea to directly test conditions
for uniformity instead of values. This is described in Section 7.6.
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Listing 7.1 Example of a variant that exploits dynamic uniformity of
value x. kernelfn is the original, scalar code. kernelfn4 is a vectorized
version. kernelfn4v is vectorized and employs a variant if x is uniform.

__kernel void
kernelfn(float* array ,

int c)
{

int tid = get_global_id (0);
float x = array[tid];
if (x > c)

x += 1.f;
else

x += 2.f;
array[tid] = x;

}

__kernel void
kernelfn4(float* array ,

int c)
{

int tid = get_global_id (0);
if (tid % 4 != 0) return;
float4 x4 =

*(( float4 *)( array+tid ));
int4 c4 = (int4 )(c);
bool4 cond = x4 > c4;
float4 x1 = x4 + 1.f;
float4 x2 = x4 + 2.f;
x4 = blend(cond , x1, x2);
*(( float4 *)( array+tid)) = x4;

}

__kernel void
kernelfn4v(float* tArray ,

int c)
{

int tid = get_global_id ();
if (tid % 4 != 0) return;
float4 x4 =

*(( float4 *)( array+tid ));
if (x4[0]==x4[1]== x4[2]==x4[3])
{

float x0 = x4[0];
if (x0 > c)

x0 += 1.f;
else

x0 += 2.f;
x4 = (float4 )(x0);

}
else
{

int4 c4 = (int4 )(c);
bool4 cond = x4 > c4;
float4 x1 = x4 + 1.f;
float4 x2 = x4 + 2.f;
x4 = blend(cond , x1, x2);

}
*(( float4 *)( array+tid)) = x4;

}
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Listing 7.2 Left: Conservative WFV requires sequential execution of the
store. Right: The dynamic variant executes a more efficient vector store
if the memory indices are consecutive.

__kernel void
kernelfn4(int* array ,

int c)
{

int tid = get_global_id ();
if (tid % 4 != 0) return;
int4 tid4 = (int4 )(tid);
tid4 += (int4 )(0,1,2,3);
int4 c4 = (int4 )(c);
int4 p = (tid4/c4)+( tid4%c4);
array[p[0]] = p[0];
array[p[1]] = p[1];
array[p[2]] = p[2];
array[p[3]] = p[3];

}

__kernel void
kernelfn4v(int* array ,

int c)
{

int tid = get_global_id ();
if (tid % 4 != 0) return;
int4 tid4 = (int4 )(tid);
tid4 += (int4 )(0,1,2,3);
int4 c4 = (int4 )(c);
int4 p = (tid4/c4)+( tid4%c4);
int4 px = p - <0,1,2,3>;
if (px [0]==...== px[3]) {

*(( float4 *)( array+p[0]))=p;
} else {

array[p[0]] = p[0];
array[p[1]] = p[1];
array[p[2]] = p[2];
array[p[3]] = p[3];

}
}

7.2 Consecutive Memory Access Operations
The Vectorization Analysis attempts to prove that the address of a memory
operation is uniform or consecutive. While an unknown load or store
requires W sequential operations, a uniform load or store only requires
a single, scalar operation. A consecutive load or store can use a vector
operation to access W elements at once.

Consider the example in Listing 7.2. The code on the left shows a
conservatively vectorized kernel. It has to use sequential store operations
because the analysis cannot prove p to be consecutive. The code on the
right employs a dynamic variant: First, p is tested for consecutivity by
substracting the vector < 0, 1, 2, 3 > and comparing all elements for equality.
If that holds, a single vector store is executed. Otherwise, the original code
with W sequential operations is executed.

Note that in some cases, the SMT-based extension of the Vectorization
Analysis (Section 5.8) is able to produce the same or even more precise
variants based on the value of c. Consider the FastWalshTransform kernel
in Listing 5.2 in Section 5.8 for an example.
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It is also important to note that a vector store is only possible if the
mask is entirely true, so we either need a block that is marked by all or
an additional dynamic test whether all instances are active (a movemask
followed by a cmp).

7.3 Switching to Scalar Code
If the function in question has complex code that is frequently executed with
only one active instance, it may be beneficial to switch back to sequential ex-
ecution for that part. Ray tracing of scenes whose performance is dominated
by incoherent, secondary rays is a good example for this: SIMD bundles of
rays will often not hit the same surface anymore after the first bounce.

The dynamic variant first determines the index of the single active instance.
On the optimized code path, all required values for that instance are extracted
into scalar registers. The rest of that path consists of the scalar code of
the original kernel before vectorization. Finally, at the end of the path, the
results are packed back into the corresponding vectors. Listing 7.3 shows
some exemplary OpenCL code.

Of course, this transformation is only beneficial if the vectorized code
suffers from more overhead (e.g. due to control-flow to data-flow conver-
sion) than the extraction/insertion that is required to execute the scalar
code. However, additionally, the scalar code may hold the potential to use
an orthogonal vectorization approach such as Superword-Level Parallelism
(SLP) [Larsen & Amarasinghe 2000] (Section 4.2). Benthin et al. [2012]
presented a manual approach of switching to sequential execution in the
context of ray tracing. This work shows that there is potential for the
dynamic application of this variant.

We were able to improve performance of an ambient occlusion ray tracing
application similar to AOBench by a few percent when switching to sequential
intersection code if only one ray of the SIMD group is active. However, this
was only successful when rendering scenes with high divergence, e.g. due to
large amounts of small objects. In other scenarios such as the simple scene
rendered by AOBench, the overhead for the test outweighs the benefits of
the sequential code because it is not executed often enough.

7.4 WFV-SLP
This variant generation technique can be seen as an extension of the pre-
viously described switching to sequential execution. The variant can be
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Listing 7.3 The dynamic variant checks whether there is only one instance
active. If this is the case, values are extracted, and scalar code is executed.

__kernel void
kernelfn4v(float* array ,

float c)
{

int tid = get_global_id ();
if (tid % 4 != 0) return;
float4 x = *(( float4 *)( array+tid ));
float4 c4 = (float4 )(c);
float4 r = 0;
do {

bool4 m = x < c4;
int n = m[0]+m[1]+m[2]+m[3];
if (n==1) {

int idx = m[0]?0:m[1]?1:m[2]?2:3;
float xi = x[idx];
// Execute original , scalar code .
// ...
r[idx] = expr(xi);

} else {
// Execute vectorized code .
// ...
r2 = expr(x);
r = m ? r2 : r;

}
} while (any(m));
*(( float4 *)( array+tid)) = r;

}

executed if only a subset of the SIMD group is active. The code transfor-
mation for the optimized code path merges independent, isomorphic vector
operations into a single vector operation. This is similar to what Superword-
Level Parallelism (SLP) [Larsen & Amarasinghe 2000] (Section 4.2) does
for scalar code. Intuitively, this can be seen as switching the “vectorization
direction:” Where normal WFV vectorizes horizontally (each operation
works on combined inputs), SLP vectorizes vertically (different operations
with different inputs are combined).

Since the original code is already vector code, combining values is more
complicated than when transforming scalar code to SLP code. This is
because the values of active instances first have to be extracted from their
original vectors and then combined to a new one. This means that this
variant possibly involves significant amounts of overhead due to the data
reorganization.
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Listing 7.4 The dynamic variant checks whether there are two out of eight
instances active. If this is the case, values are extracted, and the variant
code that employs a mixture of WFV and SLP is executed.

__kernel void
kernelfn8v(float* xA,

float* yA,
float* zA,
float c)

{
int tid = get_global_id ();
if (tid % 8 != 0) return;
float8 x = *(( float8 *)(xA+tid ));
float8 y = *(( float8 *)(yA+tid ));
float8 z = *(( float8 *)(zA+tid ));
float8 c8 = (float8 )(c);
float8 a,b,c = ...;
float8 r = 0;
do {

bool8 m = x < c8;
int n = m[0]+...+m[7];
if (n==2) {

int idx0=-1, idx1=-1;
for (int i=0; i<8; ++i) {

if (m[i]==0) continue;
if (idx0 ==-1) idx0 = i;
else idx1 = i;

}
float8 m = (float8 )(x[idx0], x[idx1], y[idx0], y[idx1],

z[idx0], z[idx1], 0, 0);
float8 n = (float8 )(a[idx0], a[idx1], b[idx0], b[idx1],

c[idx0], c[idx1], 0, 0);
float8 oS = m - n;
float8 oA = m + n;
float8 o = oS * oA;
r[idx0] = o[0] + o[2] + o[4];
r[idx1] = o[1] + o[3] + o[5];

} else {
float8 oxS = x - a;
float8 oyS = y - b;
float8 ozS = z - c;
float8 oxA = x + a;
float8 oyA = y + b;
float8 ozA = z + c;
float8 ox = oxS * oxA;
float8 oy = oyS * oyA;
float8 oz = ozS * ozA;
r2 = ox + oy + oz;
r = m ? r2 : r;

}
} while (any(m));

*(( float8 *)( array+tid)) = r;
}
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Consider the example in Listing 7.4, which shows a WFV-SLP variant for
two out of eight active instances (W = 8). Inside the while loop, there are
two code paths. The else path is the original vector code that computes
products of sums and differences. The results of 3 of these operations that
are independent are added up and stored in variable r. This is very efficient
if all or most instances are active. However, if only few are active, a lot of
computations are wasted because their results are discarded by the blend
(the ternary operator).

The variant shown in the then part improves on this. It is only executed
if two instances are active. First, the indices idx0 and idx1 of the active
instances are determined. Then, the input values of the three independent
additions and subtractions are combined into two vectors (m,n) instead of
six (x, y, z, a, b, c) as in the original vector code. Because these input values
do not depend on each other, it is safe to use a single vector addition and
subtraction instead of 3 operations of either type. Finally, scalar additions
are required per active instance instead of the vector additions used in the
original code. However, the variant code does not require an additional
blend operation. This is because each result is inserted directly into the
result vector at the appropriate index.

Again, we were able to improve performance by a few percent in an ambient
occlusion ray tracer with this variant. And, again, as when switching
to sequential execution, the variant is only successful if there is enough
divergence to work with.

7.5 Instance Reorganization
This variant is only relevant for pumped vectorization (Section 6.4.5) with
W = V · S. Executing more instances in the same function than the number
of available SIMD lanes offers an additional optimization opportunity used
by Instance Reorganization: Instead of executing a single instruction or block
V times sequentially, a larger code region is executed V times sequentially,
but the instances are reorganized. The example in Figure 7.1 depicts the
difference in the CFG layout. The reorganization aims at improving coherence
of the executed code, either in terms of control flow behavior or in terms
of memory access patterns. This trades back some of the gained locality of
pumped execution against improved control-flow or memory-access behavior.

Consider the following example, where Instance Reorganization is used to
improve control flow coherence. Figure 7.1 shows the CFGs that correspond
to the different stages described next.



7.5 Instance Reorganization 135

a

b c

d

a
b
c
d

a0
a1
a2

b0
b1
b2

c0
c1
c2

d0
d1
d2

ra

a0

b0 c0

d0

a1

b1 c1

d1

a2
b2
c2
d2

re

Figure 7.1: Visualization of the CFG transformation for Instance Reorganiza-
tion. From left to right: scalar CFG, vectorized CFG, triple pumped, vectorized
CFG (W = V · S, V = 3), triple pumped, vectorized CFG with Instance Reorga-
nization. Instance Reorganization allows to execute V − 1 times the vector code
with the non-linearized control flow. Only a single execution has to account for
diverging control flow. Blocks ra and re denote reorganization code.

float x = ...
if (x > 0.f)

x += 1.f;
else

x += 2.f;
... = x;

For the W instances that arrive at the if statement, w1 < W instances
execute the then part, and w2 = W − w1 instances execute the else part.
Assume W = 24 and S = 8, then V is 3. Normal WFV would yield the
following code:
float24 x = ...
bool24 m = x > (float24 )(0.f);
float24 xt = x + (float24 )(1.f);
float24 xe = x + (float24 )(2.f);
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x = m ? xe : xt;
array[tid] = x;

Broken down to vectors that can be mapped to the machine, this becomes:
float8 x[3]; x[0]=...; x[1]=...; x[2]=...;
bool8 m[0] = x[0] > (float8 )(0.f);
bool8 m[1] = x[1] > (float8 )(0.f);
bool8 m[2] = x[2] > (float8 )(0.f);
float8 xt[0] = x[0] + (float8 )(1.f);
float8 xt[1] = x[1] + (float8 )(1.f);
float8 xt[2] = x[2] + (float8 )(1.f);
float8 xe[0] = x[0] + (float8 )(2.f);
float8 xe[1] = x[1] + (float8 )(2.f);
float8 xe[2] = x[2] + (float8 )(2.f);
x[0] = m[0] ? xt[0] : xe[0];
x[1] = m[1] ? xt[1] : xe[1];
x[2] = m[2] ? xt[2] : xe[2];
...=x[0]; ...=x[1]; ...=x[2];

Instance Reorganization exploits the fact that there are only two possible
decisions where to go for each instance. Using Instance Reorganization to
improve control flow coherence, the code shown in Listing 7.5 is generated
instead. The code makes use of the fact that if the W instances diverge into
two sets, they can be reorganized such that there is at most one subset of S
instances that do not agree on the direction. This allows, after reorganization,
to execute V −1 times the code with uniform control flow, and only once the
linearized code which accounts for diverged instances. This can be achieved
either with code duplication or with a loop with a switch statement that
determines which path to execute with which reorganized group.

On the flipside, as can be seen easily in Listing 7.5, reorganization may
impose significant cost if many values are live at the point of reorganization.
Note that the example was chosen for illustration only, and that code with
Instance Reorganization may in many cases be less efficient than the code
obtained by standard WFV or pumped WFV. Also, the reorganization is
only valid for a single varying branch. Only the corresponding control flow
of this branch can be retained in the V − 1 coherent executions, each nested
varying branch requires linearization again. Thus, this variant is more of a
candidate for activation upon explicit request by the programmer instead of
a fully automated technique guided by heuristics.
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Listing 7.5 Example for Instance Reorganization for vectorization factor 24
and native SIMD width 8.

float8 x[3]; x [0]=...; x [1]=...; x [2]=...;
bool8 m[3];
bool8 m[0] = x[0] > ( float8 )(0.f);
bool8 m[1] = x[1] > ( float8 )(0.f);
bool8 m[2] = x[2] > ( float8 )(0.f);
// Reorganize .
float8 xR [3];
int idx = 0;
// Scan "true" instances .
for (int i=0; i <24; ++i) {

if (m[i/8][i%8]) xR[idx /8][ idx ++] = x[i/8][i%8];
}
int mixedIdx = idx /8; // index of mixed group
bool8 mM; // mask of mixed group
for (int i=0; i <8; ++i) {

mM[i] = i < idx %8;
}
// Scan "false" instances .
for (int i=0; i <24; ++i) {

if (!m[i/8][i%8]) xR[idx /8][ idx ++] = x[i/8][i%8];
}
int uniIdx [2]; // Indices of non -mixed groups
for (int i=0, j=0; i <4; ++i) {

if (i == mixedIdx ) continue ;
uniIdx [j++] = i;

}
// Execute code with uniform control flow twice.
if (xR[ uniIdx [0]][0] > 0.f)

xR[ uniIdx [0]] += ( float8 )(1.f);
else

xR[ uniIdx [0]] += ( float8 )(2.f);
if (xR[ uniIdx [1]][0] > 0.f)

xR[ uniIdx [1]] += ( float8 )(1.f);
else

xR[ uniIdx [1]] += ( float8 )(2.f);
// Execute code with varying control flow once.
float8 xtM = xR[ mixedIdx ] + ( float24 )(1.f);
float8 xeM = xR[ mixedIdx ] + ( float24 )(2.f);
xR[ mixedIdx ] = mM ? xtM : xeM;
// Transform back to original order.
idx = 0;
for (int i=0; i <24; ++i) {

if (m[i/8][i%8]) x[i/8][i%8] = xR[idx /8][ idx ++];
}
for (int i=0; i <24; ++i) {

if (!m[i/8][i%8]) x[i/8][i%8] = xR[idx /8][ idx ++];
}
...=x[0]; ...=x[1]; ...=x[2];
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Figure 7.2: Visualization of different variants that allow to skip code regions
where no instance is active. First: Original CFG. Second: Normal WFV. Third:
Dynamic checks allow to skip either the then or the else path. Fourth: The
same dynamic checks invoke execution of disjoint code paths.

7.6 Skipping All-Inactive Paths
For linearized regions, an optimization similar to branch-on-superword-
condition-codes (BOSCC) [Shin 2007] can be applied. Such a technique
reintroduces branches after linearization to skip a basic block or an entire
control flow path if the mask of the corresponding entry edge is entirely
false at runtime. This way, it trades some performance for the runtime
check for a larger gain every time the block can be skipped.

The original BOSCC-algorithm operates independently after SLP vector-
ization. Identification of predicated regions relies on subsequent instructions
being guarded by the same predicate. In the setting of WFV, predicates are
stored on a per-block basis. In addition, it is easy to maintain information
about structured control flow even across the CFG linearization phase. For
this variant, only the start and end block of the path have to be stored.
After linearization, an edge is introduced that goes directly from the start to
the end. If there is a disjoint neighboring path, as in case of an if statement,
an additional edge can be introduced.

Figure 7.2 shows an example of an if statement that allows to skip a
code region that includes a loop. The left CFG shows the original layout.
The second CFG shows the layout after WFV. The third CFG shows two
edges that allow to skip either the then or the else path. Note that this
variant, although it allows to skip code, still may suffer from increased
register pressure: The code still has to account for the cases where both
paths are executed. Thus, all values live-in at the start of the second path
occupy registers while the first path is executed, and all values live-out at the
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end of the first path occupy registers while the second path is executed. The
last CFG in Figure 7.2 shows a variant as described by Timnat et al. [2014]
that also improves register pressure by duplicating code. Not depicted is the
variation of Timnat et al. that allows to switch from one path to another,
e.g. when a loop changes its behavior from non-divergent to divergent
after the first instance dropped out.

A heuristic that controls where to apply the rightmost variant of Figure 7.2
could e.g. depend on the complexity or size of a path or the difference to a
neighboring path.

Note that usage of this approach in some ways does not make it possible
anymore to exploit branch fusion (Section 6.3.7). This is because branch
fusion merges two disjoint paths into one optimized one. However, if code is
duplicated such that there is a disjoint path for mixed masks, both techniques
can be combined. For example, in the graph on the right of Figure 7.2, the
middle path could be subject to merging both paths instead of executing
them one after the other.1

1Note, however, that branch fusion is not applicable to this particular example since
one path includes a loop.





8 Evaluation
In this chapter, we present a thorough evaluation of our Whole-Function
Vectorization implementation in various scenarios: First, in WFVOpenCL, a
prototypical OpenCL CPU driver that was implemented to showcase the
benefits of WFV for a data-parallel language [Karrenberg & Hack 2012].
Second, in AnySL, a shading system aimed at highly efficient code without
loss of portability and flexibility [Karrenberg et al. 2010]. Third, in Noise, a
compiler that allows the user to specify which optimizations should be run
on what parts of the code. In addition, we quantify the impact of the key
techniques that exploit the results of the analyses described in Chapter 5.

8.1 Benchmark Setup and Reproducibility
In order to get realistic, unbiased results, every measurement was done
“cold,” i.e., there were no warm-up phases for specific applications as far as
possible without restarting the entire machine. Every result presented in this
chapter is the median execution time of at least 200 individual executions.
In addition, we denote the minimum and maximum execution times that
were measured as error bars in our graphs. All of this ensures that the
reported results are as reproducible as possible by an arbitrary execution
of the application in a normal environment [Touati et al. 2010]. When
computing average speedups to compare different configurations or drivers,
we use the geometric mean instead of the arithmetic mean to correctly weigh
speedups and slowdowns [Fleming & Wallace 1986].

8.2 WFVOpenCL
We integrated WFV into the code generation pipeline of an OpenCL CPU
driver [Karrenberg & Hack 2012]. We use the driver to compare different
WFV configurations to each other. In addition, a comparison to the most
important mainstream OpenCL CPU drivers is made: the proprietary imple-
mentations by Intel and AMD, and the open source implementation POCL.1

1pocl.sourceforge.net, version 0.8

pocl.sourceforge.net
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Our driver is on par with the latest Intel driver and clearly outperforms the
AMD and POCL implementations.

Although we focus on OpenCL, the presented techniques are also applicable
to similar languages like CUDA. A data-parallel program is written in a
scalar style. It is then executed in n instances or work items on a computing
device.2 To a certain extent, the order of execution among all instances of
the program is unspecified to allow for parallel or sequential execution as
well as a mixture of both. Every instance is identified with a thread identifier
tid. Usually, the data-parallel program uses the tid to index data. Hence,
every instance can process a different data item. In OpenCL, the tid is
queried by calling the function get global id.

Instances are combined into work groups (also called blocks) that are
important for synchronization. A kernel can use a barrier statement to
enforce that no instance of a work group continues executing any code
beyond the barrier before all instances have reached the barrier. There is
no restriction for the behavior of instances in different work groups. GPUs
have dedicated hardware support to implement barrier synchronization. On
CPUs, barriers need to be implemented in software. Scalar implementations
use the support of the runtime system and the operating system (e.g. Clover)
which boils down to saving and restoring the complete state of the program
for each instance. More sophisticated techniques use loop fission on the
abstract syntax tree to decompose the kernel into separate pieces that are
executed in a way such that all barriers are respected [Stratton et al. 2008].
However, this technique potentially introduces more synchronization points
than needed. Section 8.2.3 describes an approach that generalizes the latter
approach to work on control flow graphs (instead of abstract syntax trees)
while not increasing the number of synchronization points.

In the following sections, we describe code-generation techniques to im-
prove the efficiency of an OpenCL driver. Most importantly, we evaluate
the impact of WFV. The compilation scheme of our driver looks like this:

1. Optimize scalar code as much as possible
2. Perform WFV (Section 8.2.1)
3. Implement barrier synchronization in software (Section 8.2.3)
4. Create loops for work group instances (Section 8.2.2)
5. Remove API callbacks such as get global id (Section 8.2.2)
6. Create wrapper for driver interface (omitted for brevity)

2Instances in the OpenCL/CUDA context are sometimes called threads, however this is
not to be confused with an operating system thread.
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The interface wrapper allows the driver to call the kernel with a static
signature that receives only a pointer to a structure with all parameters.
Pseudo-code for the responsible driver method clEnqueueNDRangeKernel
and the modified kernel is shown in Listing 8.1 (before inlining and the
callback optimizations described in Section 8.2.2).

8.2.1 WFV Integration
Enabling WFV in OpenCL can be summarized as follows: Vectorization is
based upon changing the callback functions get global id to return not
a single tid but a vector of W tids whose instances are executed by the
vectorized kernel.3 The driver combines consecutive instances to exploit the
fact that in most cases, consecutive instances will access consecutive memory.
Thus, the Vectorization Analysis is initialized with all occurrences of tid
to be consecutive and aligned. From there on, the kernel is vectorized as
per the results of the Vectorization Analysis, converting control flow to data
flow and vectorizing or duplicating values and operations as necessary.

8.2.2 Runtime Callbacks
OpenCL allows the user to organize instances in multiple dimensions (each
instance is identified by an n-tuple of identifiers for n dimensions). Given
a kernel and a global number of instances N0 × · · · × Nn organized in an
n-dimensional grid with work groups of size G0 × · · · × Gn, the driver is
responsible for calling the kernel N0×· · ·×Nn times and for making sure that
calls to get global id etc. return the appropriate identifiers of the requested
dimension. The most natural iteration scheme for this employs nested “outer”
loops that iterate the number of work groups of each dimension (N0/G0, . . . ,
Nn/Gn) and nested “inner” loops that iterate the size of each work group
(G0, . . . , Gn). Consider Listing 8.1 for some pseudo-code of the iteration
scheme for two dimensions.

If the application uses more than one dimension for its input data, the
driver has to choose one SIMD dimension for vectorization. This means
that only queries for instance identifiers of this dimension will return a
vector, queries for other dimensions return a single identifier. Because it
is the natural choice for the kernels we have analyzed so far, our driver
currently always uses the first dimension. However, it would be easy to
implement a heuristic that chooses the best dimension, e.g. by comparing

3There is also get local id, which is handled analogously.
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Listing 8.1 Pseudo-code implementation of clEnqueueNDRangeKernel and
the kernel wrapper before inlining and optimization (2D case, W = 4).
The outer loops iterate the number of work groups, which can easily be
parallelized across multiple threads. The inner loops iterate all instances of
a work group (step size 4 for the SIMD dimension 0).

cl_int
clEnqueueNDRangeKernel(Kernel kernelWrapper , TA arg_struct ,

int* globalSizes , int* localSizes)
{

int iter_0 = globalSizes [0] / localSizes [0];
int iter_1 = globalSizes [1] / localSizes [1];
for (int i=0; i<iter_0; ++i) {

for (int j=0; j<iter_1; ++j) {
int groupIDs [2] = { i, j };
kernelWrapper(arg_struct , groupIDs ,

globalSizes , localSizes );
}

}
}

void
kernelWrapper(TA arg_struct , int* groupIDs ,

int* globalSizes , int* localSizes)
{

T0 param0 = arg_struct.p0;
...
TN paramN = arg_struct.pN;
int base0 = groupIDs [0] * localSizes [0];
int base1 = groupIDs [1] * localSizes [1];
__m128i base0V = <base0 , base0 , base0 , base0 >;
for (int i=0; i<localSizes [1]; ++i) {

int lid1 = i;
int tid1 = base1 + lid1;
for (int j=0; j<localSizes [0]; j+=4) {

__m128i lid0 = <j, j+1, j+2, j+3>;
__m128i tid0 = base0V + lid0;
simdKernel(param0 , ..., paramN ,

lid0 , lid1 , tid0 , tid1 ,
groupIDs , globalSizes ,
localSizes );

}
}

}
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the number of memory operations that can be vectorized in either case,
leveraging information from the Vectorization Analysis. The inner loop that
iterates over the dimension chosen for vectorization is incremented by W in
each iteration as depicted in Listing 8.1.

We automatically generate a wrapper around the original kernel. This
wrapper includes the inner loops while only the outer loops are implemented
directly in the driver (to allow multi-threading, e.g. via OpenMP). This
enables removal of all overhead of the callback functions: All these calls
query information that is either statically fixed (e.g. get global size,
which returns the total number of instances) or only depends on the state of
the inner loop’s iteration (e.g. for one dimension, get global id is the work
group size multiplied with the work group identifier plus the local identifier
of the instance within its work group). The static values are supplied as
arguments to the wrapper, the others are computed directly in the inner loops.
After the original kernel has been inlined into the wrapper, we can remove
all overhead of callbacks to the driver by replacing each call by a direct
access to the corresponding value. Generation of the inner loops “behind”
the driver-kernel barrier also exposes additional optimization potential of the
kernel code together with the surrounding loops and the callback values. For
example, loop-invariant code motion moves computations that only depend
on work group identifiers out of the innermost loop. This would not be
possible if those loops were implemented statically in the driver instead of
generated at compile time of the kernel.

8.2.3 Continuation-Based Barrier Synchronization
OpenCL provides the barrier statement to implement barrier synchroniza-
tion of all instances in a work group. A barrier enforces all instances of
a work group to reach it before they can continue executing instructions
behind the barrier. This means that the current context of an instance
needs to be saved when it reaches the barrier, and restored when it contin-
ues execution. Instead of relying on costly interaction with the operating
system, the following code transformation can be used to implement barrier
synchronization directly in the kernel.

Let the set {b1, . . . , bm} be the set of all barriers in the kernel. The
following, recursive scheme is applied: From the start node of the CFG,
start a depth-first search (DFS) which does not traverse barriers. All nodes
reached by this DFS are by construction barrier free. The search furthermore
returns a set of barriers B = {bi1 , . . . , bim} which it hit. At each hit barrier,
the live variables are determined and code is generated to store them into a
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Figure 8.1: Example CFG of a kernel which requires synchronization (the
barriers are indicated by the bars crossing the blocks), the CFG after splitting
blocks with barriers, and the resulting set of new functions {F1, . . . , F4}.

structure. For every instance in the group, such a structure is allocated by
the driver. In front of each barrier, a return with the identifier of the hit
barrier is placed and the block is split at that location. Now, all traversed
blocks are extracted into a separate function, and the instructions bi1 , . . . , bim
are taken as start points for the next m different functions. For each of
these functions, we apply the same scheme until there are no more functions
containing barriers. Figure 8.1 gives an example for this transformation.

Finally, we generate a wrapper that chooses the generated function to be
executed next by testing the last returned barrier identifier (see Listing 8.2).
The resulting code can be seen as a state machine: Each state corresponds
to a part of the original kernel that is executed by each instance of the
group. Each transition corresponds to crossing a barrier in the original
kernel. If multiple barriers were reachable from another one, the state that
corresponds to this code region has multiple outgoing transition edges. A
transition is triggered only after all instances of the work group have reached
the corresponding program point.

Note that the semantics of OpenCL require all instances to hit the same
barrier, otherwise the program’s behavior is undefined. Hence, if not all
instances return the same barrier identifier, the kernel is in a bad state
anyways. In such a case, we opt to use the identifier returned by the last
executed instance.
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Listing 8.2 Pseudo code for the kernel of Figure 8.1 after implementation
of barriers and before inlining and optimization (1D, computations of tid
etc. are omitted). The value of liveValSize is the maximum size required
for any continuation, data is the storage space for the live variables of all
instances.

void
newKernel(T0 param0 , ..., TN paramN , int localSize , ...) {

void* data[localSize/W] = alloc(( localSize/W)* liveValSize );
int next = BARRIER_BEGIN;
while (true) {

switch (next) {
case BARRIER_BEGIN:

for (int i=0; i<localSize; i+=W)
next = F1(param0 ,...,paramN ,tid ,...,& data[i/W]);

break;
case B2:

for (int i=0; i<localSize; i+=W)
next = F2(tid , ..., &data[i/W]);

break;
...
case B4:

for (int i=0; i<localSize; i+=W)
next = F4(tid , ..., &data[i/W]);

break;
case BARRIER_END: return;

} } }

8.2.4 Experimental Evaluation
Our OpenCL driver is based on the LLVM compiler framework [Lattner
& Adve 2004]. We use the front end of the AMD APP SDK (version 2.1)
to produce LLVM IR. We did not attempt to implement the full OpenCL
1.2 API rather than a sufficiently complete fraction to run a variety of
benchmarks. In some cases (denoted “Scalar”), we modified the benchmarks
to only use scalar values instead of the OpenCL built-in vectors to allow for
automatic vectorization. All experiments were conducted on an Intel Xeon
E5520 at 2.26 GHz with 16 GB of RAM running Ubuntu Linux 13.04 64 bit.
The vector instruction set is Intel’s SSE 4.2, yielding a SIMD width of four
32 bit values. The machine ran in 64 bit mode, thus 16 vector registers were
available.

We report kernel execution times of our driver in different configurations
and compare kernel execution time and total wall clock time to the latest
Intel, AMD, and POCL CPU drivers.
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Figure 8.2: Performance comparison of total runtime, which includes every-
thing including OpenCL API calls, optimization, WFV, and code generation.
Values are median execution times of 200 individual runs without warm-up
phase, minimum and maximum execution times are shown with error bars.

8.2.4.1 Benchmark Applications

The benchmark applications are selected from the AMD APP SDK4, the
Parboil benchmark suite [Stratton et al. 2012], and AOBench5. To cover a
diverse set of real-world problems ranging from sorting algorithms over stock
option estimation to physics simulations and computer graphics, we chose
the following applications: AOBench (1K×1K pixels), BitonicSort (1M
elements), BlackScholesScalar (16K elements), DCT (8K×8K elements),
DwtHaar1D (30K elements), FastWalshTransform (50M elements), Floyd-
Warshall (1K elements), Histogram (16K×16K elements), Mandelbrot-
Scalar (8K×8K pixels), MersenneTwisterScalar (32K elements), NBody-
Scalar (8K elements). The Parboil benchmarks lbm, mri-q, and spmv
were set to use the default inputs. Barrier synchronization is used in
the applications BinomialOptionScalar, DCT, DwtHaar1D, Histogram, and
NBodyScalar.

4developer.amd.com/sdks/AMDAPPSDK, version 2.8.1
5code.google.com/p/aobench

developer.amd.com/sdks/AMDAPPSDK
code.google.com/p/aobench
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Figure 8.3: Kernel performance comparison of our WFV-based OpenCL driver,
the proprietary Intel and AMD drivers, and the POCL driver. Values are me-
dian execution times of 200 individual runs without warm-up phase, minimum
and maximum execution times are shown with error bars.

8.2.4.2 Comparison with other CPU Drivers

For a fair comparison to other available drivers we implemented a näıve,
unoptimized multi-threading scheme that uses OpenMP. Figure 8.2 shows
application performance of the entire driver, including calls to the OpenCL
API, optimization, WFV, and code generation for the kernel. It is important
to say that the WFVOpenCL driver does not implement the full OpenCL
API, and thus is likely to benefit from reduced overhead when compared
to the other drivers. Thus, we now focus on the kernel execution time to
discuss the effects of WFV and the different analyses.

Figure 8.3 and Table 8.1 show that our custom driver significantly outper-
forms the AMD and POCL drivers in almost all scenarios (geometric mean
speedups of 1.87 and 6.0). The picture is different when comparing to the
state-of-the-art Intel driver, which is on par with our implementation—each
driver is faster than the other for 7 out of 14 benchmarks, the geometric
mean of the speedups favors our implementation with an average of 1.03.

It is important to note that in spite of including a WFV implementation,
the Intel driver refuses to vectorize the kernels of the AOBench, BitonicSort,



150 8 Evaluation

Table 8.1 Median kernel execution times (in milliseconds) of WFVOpenCL
(vectorized and multi-threaded) compared to the Intel, AMD, and POCL
drivers. “Speedup” compares our driver to the Intel driver. Note that the
Intel driver does not vectorize kernels marked with an asterisk. These are the
numbers for our driver in scalar mode: AOBench 2,123 (0.36×), BitonicSort
166 (1.04×), FastWalshTransform 1,628 (1.06×), spmv 65 (4.42×).
Application WFV Intel AMD POCL Speedup

AOBench* 1,350 773 1,047 2,886 0.58×
BitonicSort* 149 173 634 1,592 1.16×
BlackScholesScalar 173 134 538 1,857 0.77×
DCT 653 794 1,200 3,304 1.22×
DwtHaar1D 6 1 2 2,891 0.17×
FastWalshTransform* 1,927 1,726 2,014 3,042 0.90×
FloydWarshall 636 651 3,082 2,364 1.02×
Histogram 762 712 782 2,643 0.93×
lbm 2,062 2,084 2,093 2,082 1.01×
MandelbrotScalar 724 1,170 5,059 2,361 1.62×
MersenneTwisterScalar 719 648 1,483 3,062 0.90×
mri-q 108 351 279 385 3.25×
NBodyScalar 60 57 252 1,737 0.95×
spmv* 75 287 89 334 3.83×

Average WFV Speedup - 1.03× 1.87× 6.0× 1.03×

FastWalshTransform, and spmv benchmarks. This means that Intel’s heuris-
tics deem the code to not benefit from vectorization, although this is not
true for AOBench and BitonicSort.

8.2.4.3 Impact of Analyses & Code Generation

To assess the impact of our analyses and code generation techniques, we
compare the OpenCL driver in different configurations that enable or disable
certain analyses and optimizations of WFV. If all analyses are disabled,
all properties are set to the least informative values of their corresponding
lattices. This effectively results in W -fold splitting of each statement without
usage of vectors or vector operations. Since this is not very meaningful
for a vectorization algorithm, the default mechanism when all analyses are
disabled (naı̈ve) is to initialize all program points with unknown. This
means that no optimizations that are based upon uniform values have any
effect, but only those operations that have to are split and/or guarded.
Summarized, these are the tested configurations:

• The scalar configuration does not perform WFV.
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Figure 8.4: Kernel performance comparison of different configurations of the
WFV implementation. Values are median execution times of 200 individual runs
without warm-up phase, minimum and maximum execution times are shown
with error bars.

• The naı̈ve configuration initializes all values with unknown. This disables
all optimizations that exploit uniform values and consecutive memory
access operations. Also, control flow is fully linearized since the Rewire
Target Analysis is disabled.

• The uniform configuration initializes all values with uniform/aligned,
but everything that would be marked consecutive is automatically lifted
to unknown. This enables usage of uniform values.

• The uniform+consecutive (u+c) configuration employs uniform, con-
secutive, and aligned, i.e., it optimizes memory access operations.

• The all configuration finally enables all analyses, i.e., it now also employs
the Rewire Target Analysis to retain structure of the CFG.

Figure 8.4 shows an overview of the performance of the different WFV
configurations. The concrete numbers can be obtained from Table 8.2.

The overall observation is that performance improves with the addition
of analyses and optimizations. In the following paragraphs, we assess the
impact of gradually enabling more parts of our analyses. We chose to use
an accumulative scheme since the analyses build on top of each other. For
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Table 8.2 Median kernel execution times (in milliseconds) of our OpenCL
driver in different configurations for different applications (W = 4). u+c
stands for uniform+consecutive. The column “Speedup” shows the effect
of our optimizations, comparing all to naı̈ve. The average speedup denotes
the geometric mean of the speedups compared to the next left configuration
(e.g. all vs. u+c).
Application scalar naı̈ve uniform u+c all Speedup

AOBench 2,123 1,344 1,352 1,358 1,350 1.00×
BitonicSort 166 156 149 149 149 1.05×
BlackScholesScalar 570 177 175 175 173 1.02×
DCT 866 2,351 1,178 960 653 3.60×
DwtHaar1D 9 23 7 7 6 3.83×
FastWalshTransform 1,628 1,933 1,926 1,927 1,927 1.00×
FloydWarshall 530 1,475 1,382 635 636 2.32×
Histogram 840 1,159 1,057 905 762 1.52×
lbm 2,076 2,062 2,062 2,060 2,062 1.00×
MandelbrotScalar 1,046 774 739 735 724 1.07×
MersenneTwisterScalar 1,449 1,618 1,094 1,082 719 2.25×
mri-q 90 159 126 125 108 1.47×
NBodyScalar 229 107 63 65 60 1.78×
spmv 65 87 77 78 75 1.16×

Average Speedup - 0.86× 1.28× 1.09× 1.11× 1.53×

example, it does not make sense to classify consecutive memory operations
without determining which values are uniform.

Näıve Vectorization. The first observation is that even näıve vectorization
can yield significant speedups. For example, BlackScholesScalar improves
by a factor of 3.22, and NBodyScalar by a factor of 2.14. These are bench-
marks that are dominated by arithmetic operations with only few different
control flow paths. This makes them perfect targets for WFV.

However, as the geometric mean of the speedups of 0.86 shows, näıve
vectorization is more often inferior to scalar execution than it improves the
performance. This is the case for 8 out of the 14 benchmarks chosen, for
example for the DCT, DwtHaar1D, and Histogram applications. The reason
for these slowdowns is that the vector code generated without any additional
information has to be too conservative: All memory operations have to be
executed sequentially, all operations which may have side effects have to be
guarded by if statements, all control flow is linearized, and so on. This
highlights the importance of additional analyses and optimizations.
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Uniform Operations. Retaining uniform values proves to be effective in
basically all of the cases with an average speedup factor of 1.28 compared to
näıve vectorization. For some benchmarks like DwtHaar1D, DCT, or NBody,
the impact of classifying operations as uniform instead of varying has a
huge impact. Their kernels exhibit large amounts of operations that can
remain scalar, reducing the pressure on the vector unit. A big part of the
improvement for DwtHaar1D is that there are calls to sqrt with a uniform
argument. If this call is not marked uniform, as in näıve vectorization, it is
lifted to unknown/guarded, and thus has to be executed sequentially and
guarded by conditionals.

Optimized Memory Access Operations. Exploiting consecutive proper-
ties by using vector memory operations yields an additional average speedup
factor of 1.09. This is especially effective for DCT and FloydWarshall. After
exploiting uniform values, their kernels are dominated by memory access
operations. Consider the FloydWarshall kernel: After common subexpres-
sion elimination, it only consists of 2 multiplications, 3 additions, 3 loads,
and 2 stores. The Vectorization Analysis determines that the loads access
consecutive addresses, so a single vector instruction can be used per load
instead of W sequential loads followed by a merge operation. The store op-
erations depend on control flow, so they still must be guarded, i.e., executed
sequentially with each statement guarded by a conditional.

Retaining Uniform Control Flow. Finally, our last configuration, all,
employs the Rewire Target Analysis. This enables the CFG linearization
phase to retain parts of the control flow graph where it could be proven that
the instances cannot diverge. This results in less code being executed, less
register pressure, and less overhead for mask and blend operations. This
also enables further optimization by allowing the Vectorization Analysis to
be more precise. In Histogram, for example, there is a store operation inside
a loop. Conservatively, it has to be executed sequentially and guarded to
account for possibly diverging control flow. However, the loop is proven not
to diverge, and furthermore to always be executed by all instances. This
allows us to issue a vector store during instruction vectorization.

The effect of the Rewire Target Analysis can be best observed for DCT,
Histogram, and MersenneTwister. These benchmarks profit most from the
control-flow related improvements, with speedup factors of 1.47, 1.19, and
1.50. As expected, there is no effect on benchmarks that do not have any
non-divergent control flow, such as BitonicSort, FastWalshTransform, or
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FloydWarshall. The average speedup compared to the uniform+consec-
utive configuration is 1.11. The average speedup compared to the naı̈ve
configuration is 1.53. The final speedup achieved over scalar execution is on
average 1.36 for these benchmarks.

8.2.4.4 Applications Not Suited for WFV

Despite our efforts, there are still benchmarks where our static analyses
cannot infer enough information to generate code that is more efficient than
the original, scalar code. For example, FastWalshTransform is dominated
by memory access operations. Although they access consecutive addresses
in most cases, this is not always the case. Thus, WFV conservatively has
to insert sequential operations, and stores in addition have to be guarded.
This is a perfect example for approaches that exploit dynamic properties
(see Section 8.2.5).

On the other hand, there are also applications that are generally not well
suited for vectorization for current CPU architectures. For example, this is
the case for the FloydWarshall kernel: While 2 of the 3 load operations can
be vectorized, and the third can remain uniform, the store operations depend
on control flow. The control flow in turn depends on the loaded values, so
the branching behavior is input-dependent. This forces to issue guarded
store operations, which result in overhead that outweighs the improved
loads and arithmetic operations. It may again be beneficial to use dynamic
variants to determine whether the control flow actually does diverge, but
since the property entirely depends on the input, this is a hard task to do
for a compiler without domain-specific knowledge or additional user input
(e.g. annotations).

8.2.5 SMT-Based Memory Access Optimization
We evaluate the effect of our improved code generation for memory accesses
for the applications that contain the kernels we discussed in Section 5.8:
FastWalshTransform and BitonicSort. To this end, we employ our SMT-
based approach to generate machine code.

In each kernel there are actually several memory operations, which happen
to lead to the same satisfiability problems ¬ϕ(w, a). It is worth noting
that for the majority of kernels that we found in the AMD APP SDK, the
memory address computations are so simple that the relevant equations are
decided already via term simplification, i.e., without any non-trivial SMT
solving. Nevertheless, our SMT-based technique is to our knowledge the
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Table 8.3 Median of kernel execution times (in milliseconds) of 1000 execu-
tions with the SMT-optimized configuration of our OpenCL driver compared
to the previously best configuration (all) and scalar execution (scalar).
The Speedup column shows the effect of our SMT-based memory access
optimization, comparing all+smt to all. The input sizes were set to 1M
elements for both applications.

Application scalar all all+smt Speedup

FastWalshTransform 303 309 299 1.03×
BitonicSort 166 149 71 2.1×

first one that enables the compiler to generate better code in less simple
cases such as FastWalshTransform and BitonicSort. Hence, if maximum
performance of a kernel with complex memory operations is desired, our
approach is the only currently available option.

In Table 8.3, we report kernel execution times of our SMT-enhanced driver
in different configurations.6 The results clearly demonstrate the applicability
of our approach. For FastWalshTransform, this is the first time that we
were able to beat the scalar implementation with the WFV-based one. It
turns out, however, that the optimized code can be executed in only one out
of W cases, which limits the speedup to 3 percent. The situation is different
for BitonicSort. Here, the optimized code is executed in the majority of
cases, which results in an immense speedup factor of 2.1.

As mentioned before, it is remarkable to note that the Intel driver refuses
to vectorize either of the two kernels. The reasons are probably that their
heuristics consider the memory operations to dominate the runtime and that
they cannot be assumed consecutive.

6These experiments were conducted on a Core 2 Quad at 2.8 GHz with 8 GB of RAM
running Ubuntu Linux 64 bit. The vector instruction set is Intel’s SSE 4.2, yielding
a SIMD width of four 32 bit values.



156 8 Evaluation

Figure 8.5: Scenes rendered with the ray tracers RTfact (first three) and
Manta (rightmost). The surface shaders are written in RenderMan or scalar
C++. The AnySL system loads, specializes, optimizes, and vectorizes the
shaders and seamlessly integrates them into the renderer at runtime.

8.3 AnySL: Efficient and Portable Shading for
Ray Tracing

In computer graphics, shading plays an important role: Graphics engines
use programs called shaders to provide flexibility for certain aspects of the
rendering process, such as the appearance of surfaces, the emission of light
sources, or the displacement of geometry.

Often, shaders are the most performance-critical parts of a graphics engine.
This is because they are called in the innermost loop of the renderer and
have to simulate complex physical reflectance properties. At the same time,
in professional environments such as special effects in the movie industry,
game development, or photo-realistic rendering for product advertisement,
shaders have to be written by artists rather than programmers. Therefore,
so-called shading languages have been developed: domain-specific languages
that facilitate the task of describing physical properties of a surface at a
specific point, abstracting away from the underlying implementation. Popular
examples for these languages are RenderMan [Apodaca & Mantle 1990],
HLSL [Peeper & Mitchell 2003], or GLSL [Rost et al. 2004]. Another shading
language that also employs automatic vectorization, albeit on the abstract
syntax tree level, is RTSL [Parker et al. 2007].

AnySL [Karrenberg et al. 2010] is a shading system that aims at providing
a flexible and portable, yet efficient way of shading and is easily integrated
into an existing renderer. For this evaluation, we focus on the efficiency,
for which WFV plays the major part: Shading languages use a sequential
code model, in which a shader is written to evaluate a single point of a
surface. Yet, the code is executed for every visible point of that surface
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independently.7 This data-parallel execution can be exploited by evaluating
multiple surface points in parallel with multi-threading and WFV. Figure 8.5
shows example images generated with AnySL.

8.3.1 WFV Integration
AnySL loads the scalar shader at runtime, compiles it to LLVM bitcode,
specializes it to the shading system, and optimizes it. Then, WFV is used to
produce a shader that evaluates multiple surface points at once. The whole
procedure is efficient and allows for recompilation at runtime. For example,
shader parameters can be modified at runtime, which invokes an immediate
recompilation to get the best possible code.

Instead of shading each individual point immediately, the shading system
collects information about W points before calling the vectorized shader.
Thus, there is no tid as in OpenCL or CUDA, but vectorization is triggered
by passing vectors of input values instead of scalar values. For example,
the scalar shader receives scalar values for the coordinates of the surface
point, the viewing direction, texture coordinates, and other parameters.
The vectorized shader on the other hand directly receives W coordinates at
once, which means the analysis will mark the corresponding input parameter
varying. This still allows the use of uniform values. For example, in a ray
tracer with a pinhole camera, all primary rays always have the same origin.

Function calls play a major role in shaders. For example, RenderMan
uses a direct shading model, where the shader itself does all computations
required to produce a final color value. In the case of ray tracing, this
may include shooting additional rays with the function traceRay, e.g. for
transparency effects or to determine whether light sources are obstructed.
Shooting additional rays however is the task of the ray tracing engine, so
the shader issues a recursive call to the renderer. In the vectorized context,
this function call will often occur for many of the active instances that
execute the shader. In the case of SIMD-based ray tracers such as RTfact or
Manta, vectorized functions to trace multiple rays at once already exist in
the renderer. Thus, WFV has to be made aware of the available mapping
of the scalar traceRay function to its vector implementation. Also, if the
call is inside some potentially diverging control flow statements, the vector
implementation can provide a mask parameter. WFV automatically passes
the active mask of that block and thus treats calls to traceRay as varying
instead of sequential or guarded.

7Note that this is not generally true: There are shaders that can query information from
neighboring surface points.
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8.3.2 Experimental Evaluation
To evaluate AnySL with WFV, we integrated it into the real-time ray
tracers RTfact [Georgiev & Slusallek 2008] and Manta [Bigler et al. 2006]
and adapted shading language front ends for RenderMan and C++. We
evaluated the performance of a diverse set of procedural shaders. AnySL
achieves an average rendering speedup factor of 3.8 in RTfact thanks to the
usage of WFV when compared to sequential shading.

8.3.2.1 Setup

All experiments were conducted on a Core 2 Quad (Q9550) with a SIMD
width of 4 (SSE4.1) at a clock rate of 2.8GHz and 4GB of memory running
Ubuntu Linux 9.10. The resolution was set to 512x512 pixels.

To improve the performance of complex procedural shaders that use
a noise function [Perlin 1985; 2002], we implemented a variant of noise
optimized for vectorization. The original noise function uses complicated
branching patterns and repeated indexing into a permutation table, which
requires splitting and reassembling of packets due to the lack of a scattered
load instruction in SSE. Our optimized variant is entirely branch-free and
generates the pseudo-random numbers on the fly instead of using a table,
resulting in similar performance gains for shaders with noise components
as for those without. This variant is similar to how the noise function is
implemented on GPUs [Olano 2005]. Note that our noise function is written
in scalar code and automatically vectorized together with the rest of the
shader.

8.3.2.2 RTfact

We compare the rendering performance of automatically vectorized shaders
to scalar shading where packets are split and the scalar shader is executed
sequentially. This is really the only option for non-trivial shaders if automatic
vectorization is not available. Because of the complexity of writing vectorized
shaders by hand, we can only compare to a few simple, manually vectorized
shaders. Note that these hand-written shaders are directly integrated into
the rendering system, and thus allow for more efficient invocation compared
to shaders that are dynamically compiled. Also, these shaders cannot be
modified at runtime.

The vectorized versions of the shaders outperform their scalar counterparts
by an average factor of 3.8 (see Table 8.4). Notice that we even achieve super
linear speedups of factors up to 5.0. This has two sources: First, RTfact
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Table 8.4 Performance of RTfact (in frames per second) for different Ren-
derMan shaders in scenes with one shader on a (triangulated) sphere and
two point light sources. Due to the difficulties of writing packet shaders by
hand, we can only compare with two hand-optimized shaders, which show a
performance difference of less than 10%.

Shader Manual Scalar WFV Speedup

Brick - 8.8 31.4 3.6x
Checker 34.5 8.8 31.8 3.6x
Glass - 0.9 4.5 5.0x
Granite - 7.2 24.6 3.4x
Venus - 7.6 25.7 3.4x
Parquet - 4.3 18.6 4.3x
Phong 35.5 14.1 32.5 2.3x
Screen - 4.6 22.7 4.9x
Starball - 4.5 20.0 4.4x
Wood - 4.4 19.1 4.3x

Average - 6.5 23.1 3.8x

is based entirely on SIMD values. This means that when executing scalar
shaders, the packets that hold the parameters for multiple rays first have to
be extracted, and results have to be packed to vectors again. This overhead
does not occur when using vectorized shaders. Second, cache coherence
improves when shading multiple points at a time, especially for shaders with
a lot of code.

8.3.2.3 Manta

Manta, although also being a packet ray tracer, internally differs largely from
RTfact: The internal algorithms of RTfact are entirely based upon SIMD
primitives and operations on those, whereas Manta only employs vectors
and vector operations in certain parts of its algorithms and requires careful
tuning by hand. This is especially visible for calls from the shader back
to the rendering engine (such as illuminance()). These calls are highly
performance-critical and are required to operate seamlessly on SIMD data
types to expose the full potential of the vectorized shaders.

In combination with our limited knowledge of Manta, these issues do not
make the renderer a choice as ideal for our automatically vectorized shaders
as RTfact. Despite these drawbacks, Manta still reaches an average speedup
of 1.6 with peaks up to 2.5 for some shaders in our experiments.
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8.4 Noise: On-Demand Loop Vectorization
When code has to be tuned to achieve maximum performance, automatic
optimization strategies such as “-O2” often do not produce the code that
the programmer has in mind. This is especially true when it comes to
automatically vectorizing loops. There are various reasons for this:

• Static analysis results may be too imprecise to ensure the correctness of
the transformation.

• Some cost functions simply tell the compiler to not carry out the transfor-
mation.

• An optimization chosen by the compiler can, under certain circumstances,
turn out to be detrimental.

• The compiler sometimes chooses a suboptimal order of optimizations,
known as the phase ordering problem [Touati & Barthou 2006].

Therefore, programmers often try to outsmart the compiler by manually
“optimizing” the code. This costs time, is error prone, and makes the code
illegible and unmaintainable. Even worse, it does not scale with the number
of target architectures because every one might need different optimizations.
Hence, many variants of the same piece of code have to be maintained.

Noise is a language extension that allows a programmer to create custom
optimization strategies and apply them to specified code segments.8 This
enables fine-grained control over the optimizations applied by the compiler
to conveniently tune code without actually rewriting it. With Noise, the
programmer can easily choose optimizations and their order without in-
terfering with the standard optimizations being applied to the remaining
program. In particular, it is possible to annotate loops that are known to
be vectorizable. This is especially important for legacy code in the High-
Performance Computing (HPC) environment but is also relevant in other
performance-sensitive fields such as computer graphics.

Consider the example in Listing 8.3. Assume that the loop should be
transformed as shown in Listing 8.4: fuse the loops, inline the function call,
perform loop-invariant code motion, vectorize the loop and unroll it. It
is safe to assume that off-the-shelf compilers such as Clang, GCC, or ICC
fail to produce exactly the desired code. On the other hand, our Noise-
enabled branch of the Clang compiler allows the programmer to achieve
the desired result without rewriting the code manually. In fact, evaluating

8Noise is joint work with Roland Leißa, Marcel Köster, and Sebastian Hack for the
ECOUSS project (ecouss.dfki.de).

ecouss.dfki.de
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Listing 8.3 Noise applied to a code region. Optimizations applied in order:
Loop fusion, inlining of bar, loop-invariant code motion, loop vectorization,
unrolling, standard optimizations for cleanup.

float bar(float x) { return x + 42.f; }

void foo(float x, float* in, float* out , int N) {
NOISE("loop -fusion inline(bar) licm "

"vectorize (8) unroll (4) -O2")
{

for (int i=0; i<N; ++i) {
float lic = x * bar(x);
out[i] = in[i] + lic;

}
for (int i=0; i<N; ++i) {

out[i] *= x;
}

}
}

Listing 8.4 C++-Code showcasing the desired result of Listing 8.3. Noise
produces equivalent assembly or LLVM IR.

void foo(float x, float* in, float* out , int N) {
float lic = x * (x + 42.f);
__m256 licV = _mm_set1_ps256(lic);
__m256 xV = _mm_set1_ps256(x);
int i = 0;
if (N >= 32)
{

for ( ; i<N; i+=32) {
__m256* inV = (__m256 *)(in+i);
__m256* outV = (__m256 *)( out+i);
outV [0] = _mm_mul_ps256(

_mm_add_ps256(inV[0], licV), xV);
outV [1] = _mm_mul_ps256(

_mm_add_ps256(inV[1], licV), xV);
outV [2] = _mm_mul_ps256(

_mm_add_ps256(inV[2], licV), xV);
outV [3] = _mm_mul_ps256(

_mm_add_ps256(inV[3], licV), xV);
}

}
for ( ; i<N; ++i) {

out[i] = (in[i] + lic) * x;
}

}
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the performance and adjusting the optimizations that are applied is now
possible without touching any of the actual code.

Other compilers offer features like #pragma ivdep, #pragma simd, or
#pragma parallel. Our loop vectorization approach is basically the same
as using #pragma simd, e.g. in OpenMP [Klemm et al. 2012], which forces
loop vectorization by disabling alias and dependency analyses etc. However,
these #pragmas are restricted to the loop vectorization available in the
corresponding compiler, which are currently more limited than WFV, e.g. in
their support of nested control flow, non-vectorizable operations, or function
calls. Also, these approaches require explicit identification of reductions in
the #pragma, i.e., the user has to annotate each reduction variable and the
kind of reduction. This is not required when using Noise, which recognizes
loop-carried dependencies, a more general class of reductions, automatically
(Section 8.4.2).

Several compilers also offer #pragma optimize as a means to control the
optimization level on a per-function basis. To our knowledge there are no
implementations that allow to use it within a function body. Also, there is
no fine-grained control over the optimizations or the order of optimizations
applied. In contrast, Noise allows to annotate compound statements and
loops as well, and provides the option to specify exactly which phases should
be run.

We implemented Noise for C/C++ using attributes within the Clang front
end for LLVM. In addition to exposing LLVM’s internal optimization phases,
Noise also provides special built-in transformations. This includes explicit
inlining and loop unrolling as well as other custom loop transformations—in
particular data-parallel loop vectorization using WFV.

8.4.1 WFV Integration
In addition to the LLVM-internal phases bb-vectorize, slp-vectorize,
and loop-vectorize, Noise provides wfv-vectorize. This loop optimiza-
tion can be used to vectorize data-parallel loops. It basically is a wrapper
around WFV that performs loop-specific analyses and transformations before
vectorizing the loop body. The wrapper employs similar analyses as LLVM’s
loop vectorizer to determine whether the loop is vectorizable, e.g. there has
to be a loop induction variable which can be vectorized. It also introduces
additional loops if the iteration count is not a multiple of the requested
vectorization width or unknown. Loop-carried dependencies with certain
restrictions that allow the loop to still be vectorized by classic loop vector-
ization approaches are called reductions. In contrast to previous approaches,
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wfv-vectorize cannot only handle reductions, but arbitrary loop-carried
dependencies (see Section 8.4.2).

Another advantage of our approach is that, to our knowledge, WFV is
currently more advanced than available loop vectorizers when it comes to the
actual vectorization of the loop body. For instance, it can handle arbitrary
control flow including loops with multiple exits, operations with side effects,
or operations without vector equivalent.

8.4.2 Loops with Loop-Carried Dependencies
Definition 19 (Loop-Carried Dependency (LCD)) A loop-carried de-
pendency is a strongly connected component of a set of operations in a loop,
i.e., the dependencies between the operations form a cycle.

This means that the result of an operation o in iteration i is used in the next
iteration i+ 1 to compute the next result of o. Consider the simple example
on the left of Listing 8.5: The variable r is updated in every iteration of the
loop, referencing its own value from the last iteration in the “+ =”-operation.
In SSA, this code is represented by cyclic def-use chains with a φ-function in
the header of the loop. For more intuitive presentation, we resort to non-SSA
examples here, although the presented transformation directly works on the
SSA CFG.

LCDs are problematic when it comes to loop vectorization or loop par-
allelization in general: The prerequisite that each iteration is independent
does no longer hold. However, there is a common optimization that targets
a subset of LCDs, which are called reductions:

Definition 20 (Reduction) A reduction is a loop-carried dependency with
the following properties:

• the involved operations all use the same operator,
• the operator is associative and commutative,
• there is no use of a value of the LCD inside the loop that does not belong

to the LCD itself, and
• there is exactly one use of a value of the LCD that is outside the loop.

Reduction operators that are usually recognized by compilers are add, mul,
min, and max. If their type is float, compiler flags like fast-math or
associative-math are required to allow their optimization. Current compil-
ers only allow vectorization of a loop if all LCDs are reductions. If an LCD is
a reduction, the loop including the reduction operations can be vectorized if
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Listing 8.5 Left: A vectorizable loop with a reduction: a loop-carried
dependence that can be vectorized using fix-up code. Right: All common
compilers are capable of producing similar, vectorized code (W = 4).

float foo(float x)
{

float arr [32];
// initialize array
// ...
float r = x;
for (int i=0;i <32;++i)
{

// vectorizable code
// ...
r += arr[i];
// vectorizable code
// ...

}
// code that uses r
// ...

}

float foo(float x)
{

float arr [32];
// initialize array
// ...
float4 rv = <x, 0, 0, 0>;
for (int i=0;i<32;i+=4)
{

// vectorized code
// ...
float4 l = load_vec(arr+i);
rv = add_vec(rv, l);
// vectorized code
// ...

}
float r = horizontal_add(rv);
// scalar code that uses r
// ...

}

some fix-up code is introduced before and after the loop. Consider the code
on the right of Listing 8.5 that employs a vectorized loop: The reduction
variable is now a vector where one element is initialized with the initial value
of the old reduction variable, and the other elements are initialized with the
neutral element of the operation. The modified reduction operation updates
each element of the vector individually. Behind the loop, the elements of the
vector are combined with the same operation “horizontally.” In the example,
the elements of the vector are summed up. This scheme is valid because the
reduction operations are associative and commutative.

It is easy to see that reductions are only a small subset of LCDs. Existing
vectorizing compilers basically use hard-coded sets of patterns to identify
reductions. These loop vectorization implementations are aimed at loops
for which the operations of the reduction are important for the overall
performance of the loop. However, applications may have loops with costly
loop bodies where only a cheap LCD occurs. If the loop is not vectorized
because that LCD is not a reduction, all performance potential due to
vectorization of the rest of the body is lost. This is the case for example for
the main loop in the molecular dynamics code evaluated in Section 8.4.3.
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Listing 8.6 Left: A vectorizable loop with a non-vectorizable, loop-carried
dependence (LCD). The LCD’s strongly connected component contains
different update operations, some of which are non-associative and non-
commutative, intermediate results are used, and some operations depend on
control flow. No current compiler can vectorize this loop. Right: Vectorized
loop with unrolled LCD (W = 2). The unrolled LCD itself does not
necessarily improve performance, but it enabled vectorization of the rest of
the loop body (omitted code at A, B, and C).

float bar(float x) { /* ... */ }

float foo(float x,
float* in ,
float* out)

{
float r = x;
for (int i=0; i<32; ++i)
{

// vectorizable code (A)
// ...
r += in[i];
out[i] = r;
// vectorizable code (B)
// ...
if (r<in[i]) r=bar(r);
// vectorizable code (C)
// ...
... = r;

}
return r;

}

float foo2(float x,
float* in ,
float* out)

{
float r = x;
float2 rv;
for (int i=0; i<32; i+=2)
{

// vectorized code (A)
// ...
r += in[i];
rv[0] = r;
out[i] = r;
if (r<in[i]) r=bar(r);
r += in[i+1];
out[i+1] = r;
rv[1] = r;
if (r<in[i+1]) r=bar(r);
// vectorized code (B)
// ...
// vectorized code (C)
// ...
... = rv;

}
return r;

}

8.4.2.1 Vectorization of Loops with Arbitrary LCDs

The wfv-vectorize phase of Noise includes a transformation that allows
to vectorize loops with arbitrary loop-carried dependencies. It works as
follows: First, LCDs that are no reductions are separated from the rest of
the loop body. This is achieved by extracting the code that corresponds
to one LCD into a new function. It is necessary to separate the code since
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the reduction code has semantics that cannot be represented in WFV: It
must not be vectorized because that would violate the cyclic dependencies.
Second, the LCD is duplicated W times, where each duplicated region’s
inputs are connected to the previous region’s output and function arguments.
The inputs of the first region correspond to the arguments of the function,
the output of the last region to the returned value. The call to the function
has to be placed in such a way that all dependencies are obeyed: It has to be
placed behind the definition of the last external input that is required for the
LCD, but before the first external use. The function call’s properties are set
explicitly to prevent the Vectorization Analysis to mark it as sequential
and guarded. Finally, the code is vectorized by WFV, and all LCD functions
are inlined again. Listing 8.6 shows an example for vectorization of a loop
with such a non-trivial LCD.

It is important to note that, although the LCDs can be of arbitrary shape,
their dependencies may in some cases prevent vectorization. This is because
our approach has to place the call to the function into which the LCD is
extracted at some point where two constraints are met: First, all operands of
any of the LCD’s operations must be available. Second, all uses of the result
of the current iteration or any intermediate results of the LCD’s operations
must be reachable, i.e., the call must not be placed below a use. These
constraints may sometimes not be met by any location in the function body,
which makes vectorization impossible.

8.4.3 Experimental Evaluation
A prototypical implementation of Noise with wfv-vectorize was evaluated
on several benchmarks.9 The machine used was an Intel Core i5-2500
with 4 cores running at 3.30GHz. For each benchmark, multiple variants
were measured: First, the original code, compiled with Clang. Second, the
manually optimized code, compiled with Clang. Third, the original code with
Noise annotations that correspond to the manual transformations, compiled
with our Noise-enabled Clang.

Figure 8.6 shows the performance of different versions of a matrix multi-
plication application with different loop orders. It can be observed that the
manually unrolled code on this machine is usually a bit faster than using
Noise. However, this comes at the expense of code that is much harder to
maintain. With noise, only a single line has to be changed to modify which

9The CG Solver and matrix multiplication were developed at HLRS Stuttgart and eval-
uated by Yevgeniya Kovalenko. The imd code was developed by Cray, the manually
vectorized variant was implemented by Mathias Pütz.
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Figure 8.6: Performance effects of Noise unroll and wfv applied to a matrix
multiplication function.10

loop should be unrolled how often. The histogram also shows the effect of
using wfv-vectorize instead of unroll. For all loop orders, WFV clearly
beats the unrolled versions.

The second application, CG Solver, is a conjugate gradient method for
sparse matrices in ellpack-r format [Vázquez et al. 2011]. We applied the
following optimizations both manually and with Noise: function inlining,
loop unrolling, loop fusion, loop-invariant code motion, wfv-vectorization.
The results are presented in Table 8.5. The manually tuned version runs
approximately 11% faster than the original version compiled with “-O2.”
The Noise version reaches the same speedup without requiring to modify
the actual code.

The CG Solver benchmark was also tested with different compilers: icpc
13.0, g++ 4.7.1, clang++ 3.4. None produced similarly efficient code for the
most time consuming part of the code, a loop with a sparse matrix-vector
multiplication which uses indirect addressing. As Table 8.6 shows, GCC
produced the fastest code for the original implementation, followed by Clang
and the Intel compiler (icpc). The manually improved code runs fastest when
compiled with Clang, and slowest when compiled with the Intel compiler.

10Graph courtesy of Yevgeniya Kovalenko, HLRS Stuttgart.
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Table 8.5 Execution times (in seconds) of two complex HPC applications.
The column “Speedup” shows the effect of our Noise-based optimization,
comparing Clang+Noise to Clang. Note that the manually optimized CG
Solver does not include vectorization. Performance of Clang+Noise without
wfv-vectorize matches the performance of Manual.

Application Clang Manual Clang+Noise Speedup

imd 60.1 39.7 41.5 1.45×
CG Solver 60.7 54.6 50.5 1.20×

Table 8.6 Execution times (in seconds) of the CG Solver application. The
Speedup column shows the effect of our Noise-based optimization, comparing
Clang+Noise to the other compilers at -O2.

Compiler -O2 Manual Clang+Noise Speedup

Clang 3.4 60.7 54.6 50.5 1.20×
GCC 4.7.1 59.4 55.8 - 1.18×
Intel 13.0 63.8 59.8 - 1.26×

The Noise-improved variant outperforms the manually optimized variant
compiled by g++ by 18% and icpc by 26%.

Notice that Clang+Noise includes wfv-vectorize for the loop with indi-
rect addressing, while the manually optimized code was not vectorized due to
the transformation proving too time-consuming. Without wfv-vectorize,
the performance of Clang+Noise exactly matches the performance of the
manually optimized code compiled with Clang.

The third application is imd, a complex molecular dynamics simulation.
Table 8.5 shows a 1.45× speedup that is achieved by manual optimization.
The main loop of the application was vectorized manually with significant
help of domain knowledge: It is impossible for a compiler to determine
that the loop can be vectorized because of multiple indirections in memory
access operations that depend on input. Noise with wfv-vectorize allows
to annotate a loop regardless of conservative analysis properties.

Additionally, the main loop exhibits a non-trivial, loop-carried dependency:
The value that is updated is loaded from memory and may be a different
one in each iteration. This makes it impossible to consider the LCD as
a reduction because it is not possible to generate appropriate fix-up code.
Indeed, classic approaches that only recognize reductions are unable to
vectorize the loop because of this LCD. Since wfv-vectorize is able to
handle arbitrary LCDs, Noise with WFV successfully vectorizes the loop.



8.4 Noise: On-Demand Loop Vectorization 169

However, this comes at a price: Because of the costly code generated to
handle the complex LCD, the performance of the vectorized code does not
improve over the original, scalar code.

The performance increase of the manually vectorized code is due to another
optimization that requires domain knowledge: The update of the described
LCD is a decrement in the then part of a varying if statement. This
significantly complicates the code required to correctly handle the LCD,
since the conditional has to be duplicated W times, the corresponding values
of the condition have to be extracted, etc. However, the if statement
can be safely removed: its only effect is to prevent the decrement in cases
where the other value would be zero. In the original, scalar code, this
increases the number of calculations in the loop body, which results in
slightly decreased performance. In the vectorized code, however, control
flow has to be linearized anyway. Thus, the removal of control flow does not
influence performance negatively and only results in code that is easier to
vectorize. In addition, since the branch is varying, its removal also improves
the precision of the SIMD property analyses, which in turn results in even
more efficient code.

The final performance is denoted in Table 8.5: The code generated by
Noise performs similarly to the manually optimized variant. However, it
is achieved by adding only a single line to the loop and removing an if
statement. This is in sharp contrast to the significant effort of manually
transforming the entire loop to vector code.





9 Conclusion
This thesis presented analyses and algorithms for automatic SIMD vector-
ization of control flow graphs in static single assignment form. The topic
is motivated by the need for compiler techniques that exploit all available
parallelism offered by today’s hardware. Besides employing all available
cores, SIMD instruction sets that are ubiquitous in current architectures also
have to be used. The presented algorithm for Whole-Function Vectorization
(WFV) is especially well suited for application to data-parallel applications
such as particle simulations, stock option prediction, or medical imaging.

WFV performs SIMD vectorization of a function in the form of an arbitrary
control flow graph in SSA form. The algorithm is based on a novel, partial
control-flow to data-flow conversion and efficiently places blend operations
for architectures without hardware support for predicated execution.

We furthermore presented a data-flow analysis that determines properties
of instructions in the context of SIMD execution. An additional analysis
captures behavior of control flow in a SIMD execution. The WFV algorithm
leverages the results of these analyses to generate more efficient code than
previous approaches.

A variety of case studies showcased the applicability of the system: First,
an OpenCL CPU driver based on WFV is on par with the performance
of the fastest available driver of Intel, and beats all other available CPU
implementations. The optimizations based on the SIMD property analyses
sum up to an average speedup of 1.53 compared to näıve vectorization.
Second, a real-time ray tracer showed an almost linear average speedup of
3.8 on SSE due to WFV as compared to scalar execution. Finally, WFV was
used to implement a loop vectorization transformation in a compiler that
allows to specify which optimization phases to run on which code regions.
It enabled vectorization of code that static analyses cannot prove safe for
vectorization. At the same time, the produced code is as efficient as manually
tuned code.





10 Outlook
The topics discussed throughout this thesis open up a plethora of possible
directions for future work.

The CFG linearization phase has certain degrees of freedom in the chosen
schedule: Consider the diamond-shaped CFG in Figure 10.1. The left CFG
corresponds to the original, scalar code. The numbers on the edges represent
the values that are live on that edge. Numbers next to blocks represent the
maximum number of values that are live at any point in that block. The
graph in the middle shows one way of linearizing, the graph on the right
another one. Scheduling c first yields a maximum number of live values of 6
in block b and 9 in block c. Scheduling b first yields a maximum number of
live values of 5 in block b and 8 in block c. Obviously, the second linearization
makes more sense since it reduces the maximum number of values that are
live in both blocks. Optimizing the block schedule in such a simple case is
trivial. An open question is how to do this optimally in the general case
of the Partial CFG Linearization algorithm shown in Section 6.3. This has
two reasons: First, more complicated graph structures make the problem
more complex, with sometimes more than two possible choices for block
schedules. Second, the scheduling order of graphs with optional blocks has
some constraints that have to be taken into account. These stem from the
fact that the partially linearized graph has to obey the mandatory SIMD
paths as detailed in Section 6.3.3. In addition, there are often multiple
possibilities to obey the mandatory SIMD paths, and they may result in
different CFG layouts. Further research is required to quantify the influence
of these decisions and come up with heuristics to base the decision upon.

The dynamic variants presented in Chapter 7 also demand further in-
vestigation. Most importantly, the development of suitable heuristics is
a mandatory next step for each of the presented approaches to work in
real-world scenarios. In this context, approaches based on machine-learning
should provide a good starting point since there are many parameters to
balance, such as the cost for dynamic checks, the cost of a code region, and
the probability of execution.

Especially for the complex variants like WFV-SLP and Instance Reorder-
ing, the question is open whether they can be useful in a general setting. It
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Figure 10.1: Linearization choices can influence register pressure. Numbers on
edges represent live values on that edge, numbers next to blocks represent the
maximum number of values live at any point in that block.

may be the case that the necessary data reorganization is just too costly for
average applications. If this is the case, such transformations should remain
an option for special purposes. As such, it would make sense to make them
available via annotations that allow the user to guide variant generation
explicitly. This could prove generally useful as a feature for compilers of
data-parallel languages.

The application of WFV in a GPU context is also worth looking into. Many
of the techniques presented in this thesis can be seen as software simulations
of GPU hardware features. For example, GPUs have a mechanism called
coalescing that automatically identifies memory access operations where all
addresses are in a certain range and issues a single access operation. For
this, the addresses do not even have to be consecutive. However, hardware
development on the GPU side also explores different directions: Recent
models from AMD also offer an explicit SIMD instructions set in addition
to the massive multi-threading for which GPUs are known. WFV seems to
be the ideal fit for architectures like this.

On the other hand, the development of CPUs is focusing more and more
on features that are important for data-parallel languages. For example, the
SIMD register size offered by Intel CPUs is still increasing, reaching 512
bit for commodity hardware with the introduction of AVX-512. Also, the
instruction sets gain native support for scatter and gather operations, which
greatly simplifies code generation. However, the static analyses presented
in Chapter 5 are still required. This is because memory operations that
access aligned, consecutive addresses are likely to remain more efficient
than complex scatter/gather instructions. Another important aspect is
the support of predicated execution by providing dedicated mask registers.
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Although this is a very useful feature for data-parallel applications, it is also
expensive. The AVX-512 instruction set architecture includes eight dedicated
mask registers. Still, it remains to be seen whether future architectures will
exhibit mask registers by default. If so, the mask generation phase of WFV
does not have to generate explicit mask operations, mask phis, etc. anymore.

Another option is to use the scalar unit to store masks. This would
decrease the pressure on the vector registers and use the scalar unit for mask
operations. In general, this is already possible on SSE/AVX architectures,
but due to a lack of dedicated instructions it involves significant overhead:
A mask is “created” in a vector register, since vector comparison operations
write to a vector register. The bits that correspond to one lane are set to 1
to represent true and to 0 to represent false. Moving a mask from a vector
register to a scalar register is a simple movemask operation. This results in
the first W bits of the scalar register being set to 1 if the vector element was
non-zero, or 0 otherwise. However, the inverse operation currently does not
exist for any of the common instruction sets, so either a lookup-table or an
inefficient sequence of bit operations and move instructions has to be used.

Additional aspects of hardware support could be to provide means to
test properties more easily, to choose different paths more easily, or to
do data layout transformation more efficiently. For example, employing
a special branch instruction which tests a mask and transfers control to
different successors if the mask is either entirely true, entirely false, only
has one active instance, or a mixture, would make variant generation more
efficient. Data layout transformations from “array-of-struct” to “struct-of-
array’ layouts would certainly be useful, as well as facilities to reorganize
instances as described in Section 7.5.

On the theoretical side, complex algorithms such as the Partial CFG Lin-
earization in Section 6.3 require a better foundation. A complete semantics
for SIMD execution is required to prove the correctness of such algorithms.
The Operational Semantics presented in Section 5.4 may provide a valuable
starting point for this.
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