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Abstract

The creation of virtual content from visual data is a tedious task which requires a high
amount of skill and expertise. Although the majority of consumers is in possession of
multiple imaging devices that would enable them to perform this task in principle, the
processing techniques and tools are still intended for the use by trained experts. As
more and more capable hardware becomes available, there is a growing need among
consumers and professionals alike for new flexible and reliable tools that reduce the
amount of time and effort required to create high-quality content.

This thesis describes advances of the state of the art in three areas of computer vision:
camera motion estimation, probabilistic 3D reconstruction, and template fitting.
First, a new camera model geared towards stereoscopic input data is introduced,

which is subsequently developed into a generalized framework for constrained camera
motion estimation. A probabilistic reconstruction method for 3D line segments is then
described, which takes global connectivity constraints into account. Finally, a new
framework for symmetry-aware template fitting is presented, which allows the creation
of high-quality models from low-quality input 3D scans.
Evaluations with a broad range of challenging synthetic and real-world data sets

demonstrate that the new constrained camera motion estimation methods provide
improved accuracy and flexibility, and that the new constrained 3D reconstruction
methods improve the current state of the art.
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Kurzfassung

Die Erzeugung virtueller Inhalte aus visuellem Datenmaterial ist langwierig und erfor-
dert viel Geschick und Sachkenntnis. Obwohl der Großteil der Konsumenten mehrere
Bildgebungsgeräte besitzt, die es ihm im Prinzip erlauben würden, dies durchzuführen,
sind die Techniken und Werkzeuge noch immer für den Einsatz durch ausgebildete
Fachleute gedacht. Da immer leistungsfähigere Hardware zur Verfügung steht, gibt es
sowohl bei Konsumenten als auch bei Fachleuten eine wachsende Nachfrage nach neuen
flexiblen und verlässlichen Werkzeugen, die die Erzeugung von qualitativ hochwertigen
Inhalten vereinfachen.

In der vorliegenden Arbeit werden Erweiterungen des Stands der Technik in den fol-
genden drei Bereichen der Bildverarbeitung beschrieben: Kamerabewegungsschätzung,
wahrscheinlichkeitstheoretische 3D-Rekonstruktion und Template-Fitting.

Zuerst wird ein neues Kameramodell vorgestellt, das für die Verarbeitung von stereo-
skopischen Eingabedaten ausgelegt ist. Dieses Modell wird in der Folge in eine genera-
lisierte Methode zur Kamerabewegungsschätzung unter Nebenbedingungen erweitert.
Anschließend wird ein wahrscheinlichkeitstheoretisches Verfahren zur Rekonstruktion
von 3D-Liniensegmenten beschrieben, das globale Verbindungen als Nebenbedingungen
berücksichtigt. Schließlich wird eine neue Methode zum Fitting eines Template-Modells
präsentiert, bei der die Berücksichtigung der Symmetriestruktur des Templates die Er-
zeugung von Modellen hoher Qualität aus 3D-Eingabedaten niedriger Qualität erlaubt.
Evaluierungen mit einem breiten Spektrum an anspruchsvollen synthetischen und

realen Datensätzen zeigen, dass die neuen Methoden zur Kamerabewegungsschätzung
unter Nebenbedingungen höhere Genauigkeit und mehr Flexibilität ermöglichen, und
dass die neuen Methoden zur 3D-Rekonstruktion unter Nebenbedingungen den Stand
der Technik erweitern.
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CHAPTER 1

Introduction

Camera motion estimation and 3D reconstruction has been a topic of continuing interest
for computer vision and related fields. Its applications today are numerous, ranging
from visual effects and augmented reality over video stabilization to camera motion
style transfer or 3D scanning. Visual effects relying on computer generated imagery
form an integral part of movie post-production today. The 3D reconstruction work,
which is essential to augment the real footage with virtual objects and characters, is
performed by trained and experienced professionals.
But it is not only the professionals and semi-professionals nowadays that are in the

focus of the industry. In the wake of modern consumer devices, computer vision has
quite literally entered the living room, and the industry strives to make professional
tools available to the masses. With the introduction of the Kinect ®, for instance, Mi-
crosoft® has created a hands-free input device for console gaming that transforms into
a hand-held 3D scanner simply by plugging it into a PC with capable graphics hard-
ware. Moreover, cell phones – and therefore cameras – are inexpensive and ubiquitous
nowadays. Factoring in other sources, DSLRs and camcorders, the amount of image
and video data created daily is immense.
The industry has started to put equipment considered professional just a couple

of years ago into the hands of the consumer. But even with the right equipment,
content creation, especially for high-quality content, still is a tedious, time-consuming
process. The consumer usually has neither the time nor the expertise of a trained,
paid professional. When transitioning towards the consumer market, the tools and
algorithms employed are thus required to become more reliable, and they have to

1



Chapter 1 Introduction

facilitate complicated processes for the use by inexperienced users. The goal is to
achieve a high degree of automation, which significantly enlarges the potential user
base.
To achieve the goal of creating reliable, user-friendly tools with a high degree of

automation, flexible and generalized algorithms are an important component. When
using such algorithms, less effort may have to be put into software maintenance and
extension, potentially rendering the complicated and expensive process of software
development more tractable and rewarding.

This thesis takes a look at several aspects of the camera motion estimation and 3D
reconstruction problem. Man-made environments and objects offer a high degree of
regularity and structural features, such as planar regions, straight line segments, and
specific symmetry relations, which are powerful constraints not recognized by traditional
methods. Using constrained estimation and optimization techniques, contributions
are made in traditional camera motion estimation, probabilistic 3D reconstruction,
and geometry processing. All these contributions are geared towards creating more
accurate, reliable, generalized, and easily applicable algorithms, which may facilitate
the transition of traditional tools into more consumer-oriented settings.

1.1 Structure and Overview

Visual orientation is not a difficult task for humans and animals. Relying on vision
alone, the average human being is able to quickly assess situations, identify dangers,
and generally traverse its environment safely at high speed. From a computer vision
perspective, this is a tremendous feat. Robot and autonomous vehicle navigation would
greatly benefit from visual capabilities on par with their biological counterparts, as
well as many other areas of computer vision.

Chapter 2 – Structure from Motion Camera motion estimation and 3D reconstruc-
tion aims to provide various areas of application in computer vision with localization
abilities akin to those of the human visual system. The relevant techniques are com-
monly subsumed under the term structure from motion, a basic introduction to which
is given in Chapter 2.

After the introductory chapter, this thesis is divided into two parts. The first part
focuses on constrained camera motion estimation. Camera motion estimation denotes
joint estimation of camera position and orientation as well as the structure of the
scene. The second part focuses on constrained 3D reconstruction, without conjoint
optimization of the camera motion.

2



1.1 Structure and Overview

Part I – Constrained Camera Motion Estimation

Camera motion estimation yields information about the motion path of a virtual camera
with respect to a representation of the real scene, based on the respective input data. The
topic of the first part of this thesis is constrained camera motion estimation. Additional
constraints arising from stereoscopic image sequences or specific configurations of the
reconstructed scene representation are applied in the reconstruction process to achieve
higher reconstruction quality and accuracy.

Chapter 3 – Bundle Adjustment for Stereoscopic 3D Stereoscopic image sequences
have a long history in computer vision, primarily in autonomous vehicle and robot
navigation. The resurgence of stereoscopic 3D technology in the movie industry has
renewed the interest in this type of input data for camera motion estimation and 3D
reconstruction. In contrast to the task mentioned before, where real-time performance is
often a requirement, 3D reconstruction in movie post-production has less restrictions on
computation time. Owing to the fact that the traditional tools and pipelines have largely
been optimized for monocular data material, new algorithms have to be developed
to process and exploit the inherent properties of stereoscopic input data. The most
fundamental aspect of those properties is that the cameras in a stereo setup for the
generation of stereoscopic 3D footage undergo only dependent motion. Traditional
tools are often able to process stereoscopic data by treating it as monocular, but the
specific input data characteristics are ignored.
Chapter 3 describes a new camera model for bundle adjustment which is suitable

for stereoscopic input data. Stereo setups are explicitly modeled via a base frame
and offset transformations, thus respecting the fact that both cameras may not move
independent from one another. By reducing the number of spurious degrees of freedom,
higher reconstruction quality is achieved.

Chapter 4 – A Generalized Framework for Constrained Bundle Adjustment Con-
straints have been used to make 3D reconstructions more accurate and reliable for
quite some time. Especially for man-made environments, common observations are
that reconstructed points are lying in the same plane, or that the walls of a building
usually meet at a right angle. There are almost as many areas of application as there are
different approaches to enforce the observed constraints, and to be efficiently applicable
to several of these different applications, a framework has to allow the simultaneous
application of camera and scene constraints with ease and flexibility.

Based on the general stereo camera model introduced in Chapter 3, this chapter de-
velops a generalized framework for constrained bundle adjustment based on hierarchies
of Euclidean transformations. This paradigm fulfills the requirements of being easy to
apply and flexible enough to model many constraints, such as collinearity, coplanarity,
parallelism, and angular relations. Stereo and multi-camera setups may be modeled
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Chapter 1 Introduction

easily. As will be shown Chapter 4, the hierarchies of Euclidean transformations also
provide native support for rigidly moving objects.

Part II – Constrained 3D Reconstruction
The second part of this thesis focuses on constrained 3D reconstruction, with the
position and orientation of the camera being either known or no longer required for
further processing.

Chapter 5 – Global Connectivity Constraints for 3D Line Segment Reconstruction
Straight lines are a predominant feature of man-made objects and environments. Given
their prevalence, they are often used for 3D reconstruction. In contrast to point features,
which are easy to detect and match, line features are more difficult to handle. The
spatial extent of a line is not easily inferred from its image projection, and occlusions
may lead to spurious detections and complicate the matching process across images,
even if cues about the image geometry are available. In addition, reasoning about the
connectivity in a set of disjoint 3D line segments is a complicated matter.

In Chapter 5, a new, probabilistic formulation of the common 3D line reconstruction
problem is introduced. It enables joint estimation of line depth and connectivity, as
well as line grouping and outlier elimination across frames.

Chapter 6 – Symmetry-aware Template Deformation and Fitting Dense object
reconstructions based on structure from motion or other optical reconstruction proce-
dures, such as active 3D scanning, are one possibility to obtain a digital 3D model of
a target object. The other possible courses of action are to create the model by hand,
or to search for a pre-existing model on the internet.

For the manual creation of a model, the limiting factors are time and expertise. 3D
modeling software is usually easy to procure, but the average consumer is inept at
using it. Significant amounts of time are required in order to learn the 3D modeling
process in addition to the time a professional would need to create the model. The
manual creation of a 3D model is not a viable option in many cases.
Using a structure-from-motion-based approach or a 3D scanner to create the dense

model entails its own host of problems. The reconstructions contain noise, outliers,
and holes in the reconstructed models, and even professional scanning equipment
encounters difficulties with certain (reflective) object surfaces. Again, performing the
reconstruction procedures and operating the scanning equipment requires a certain
level of expertise, especially if some sort of post-processing has to be performed.
Considering the required effort, using a pre-existing model is usually the most eco-

nomic decision. The internet is littered with 3D models of every level of quality and
complexity for any conceivable topic. Whole collections of models are available for
purchase. Given the high amount of different models per object class contained in
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comprehensive shape libraries and similar resources, it is probable that the average
user will be able to locate a model similar to the object he/she is trying to create a
model of. These pre-existing models may be modified by hand to better approximate
the target object, but this approach has the potential to be equally time consuming
as modeling from scratch.

The approach presented in Chapter 6 combines the usage of a pre-existing template
model with a scan of the actual object to automatically deform the template in a way
that makes it closely resemble the scan. In combination with a structural analysis of
the template, this enables custom models with high quality to be created in an easy
and convenient way.

Chapter 7 – Conclusion A closing discussion and outlook concludes this thesis.

1.2 Contributions
In this thesis, the following contributions are made:

• A flexible model for stereoscopic camera setups for optimization in bundle ad-
justment is developed. The model is able to accommodate many different stereo
configurations with different characteristics and provides improved reconstruction
speed and accuracy (Chapter 3, published as Kurz et al. [89]).

• A generalized framework for constrained bundle adjustment based on hierarchies
of Euclidean transformations is proposed, based on the aforementioned model for
stereoscopic camera setups. This framework provides an elegant and intuitive way
to handle many camera and scene constraints and moving objects (Chapter 4).

• A probabilistic formulation for the 3D reconstruction of straight lines from mul-
tiple images is introduced. The formulation includes the depth configuration of
the individual line segments and also models connectivity. In addition, it permits
line grouping and outlier elimination. Line segment depth and connectivity are
optimized conjointly (Chapter 5, published as Jain et al. [76]).

• A constrained template deformation and fitting approach is presented. This
approach allows the deformation of a template model to fit a given target scan
while preserving the detected symmetry structure of the template. As a result,
high-quality custom models that closely fit the desired target geometry may be
obtained with ease (Chapter 6, published as Kurz et al. [90]).
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CHAPTER 2

Structure from Motion

Structure from motion (SfM) is a computer vision approach for 3D reconstruction from
multiple images. It is based on the establishment of 2D feature point correspondences
between the images, which allow the triangulation of their common 3D object point.

This chapter provides an introductory overview based on the seminal book Multiple
View Geometry by Hartley and Zisserman [62] and the work of Thormählen [147].

2.1 Introduction and Outline

SfM, which is also commonly referred to as structure and motion (SaM), is a triangula-
tion-based approach for 3D reconstruction from visual data, e. g., image sequences. It
has its roots in photogrammetry, and has received considerable attention in computer
vision and related fields over the past decades.

Summary of the Approach The SfM pipeline consists of several steps. First, cor-
respondences are established: 2D feature points are detected in an image and then
either tracked to subsequent images (in case of an image sequence) or matched to
the other images. The next step is the elimination of outlier feature point tracks or
matches using geometric constraints between two or more images. This is followed
by the computation of initial values for the camera parameters (position, orientation,
and intrinsic parameters like the focal length) and the 3D object points. The initial
values for the camera parameters and 3D object points are subsequently optimized by a
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Chapter 2 Structure from Motion

Figure 2.1: Three images of a real image sequence consistently augmented with virtual
objects. The virtual camera path and scene geometry corresponding to
the real image sequence were reconstructed with SfM. This information
was then used to place three virtual boxes in the virtual scene. Finally,
renderings of the virtual scene were generated and composited with the
real images. Due to the accurate estimation of the camera position and
orientation, the virtual objects are consistently positioned on the real table.

maximum-likelihood estimation, which is called bundle adjustment. This optimization
procedure is a vital part of SfM. The algorithm is typically applied in an incremental
fashion, starting from a reconstruction of only two images, which is then extended
image by image.

Areas of Application The areas of application of SfM include camera motion recovery
in cinematography, where it is called match moving or camera solving, and augmented
reality. The goal in these applications is to determine the unknown motion path of the
camera from the visual input data. This information is then used to accurately create a
virtual camera at the correct position for each image to allow the augmentation of the
input data by consistently placed and correctly scaled virtual objects (see Figure 2.1
for an example). The movie industry has numerous predominantly commercial tools
at its disposal to accomplish this task, such as PFTrack™, SynthEyes™, or 3DEqual-
izer™, just to name a few. The process for offline video-based augmented reality is
basically SfM, as described by Gibson et al. [55]. For online (i. e., real-time) video-based
augmented reality, the computational complexity of SfM is still a challenge.
SfM is also closely related to Visual Simultaneous Location and Mapping (Visual

SLAM). SLAM is employed by autonomous robots and vehicles to determine their
position in the environment by incrementally creating a map thereof. The term visual
SLAM was coined by Karlsson et al. [81], who describe the inclusion of camera data
into the SLAM process. Real time constraints usually require the location and mapping
tasks to be performed concurrently. There is a tight connection between SfM and the
(in comparison to the location process) more time consuming mapping process.

Another area of application of SfM is object reconstruction, geared towards creating
a virtual representation of an object or environment. The models created may then
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be used in a variety of ways. Additional steps have to be taken, as traditional SfM
yields only sparse, point-based reconstructions, which are not directly suited for such
applications. Approaches in this area are also referred to as multi-view stereo. The
work by Goesele et al. [57], which describes dense reconstruction from community photo
collections based on region-growing, is well known. Furukawa and Ponce [49] have
introduced a patch-based dense SfM approach that allows the recovery of high-quality
models, which is now widely used.

Outline The following sections first introduce the scene model and the camera model
used in SfM (Section 2.2 and Section 2.3, respectively). Section 2.4 then describes how
an initial reconstruction can be obtained from two images, and Section 2.5 shows how
this initial reconstruction can be extended to comprise additional images. Section 2.6
discusses auto-calibration, the process of upgrading 3D reconstructions from a projective
to a metric frame. The chapter is concluded by a discussion of bundle adjustment in
Section 2.7.

2.2 The Scene Model

SfM is based on the relations between the 3D structure of a scene and the 2D image
of this scene created on the image plane of a camera. A convenient representation to
model the scene is based on 2D and 3D points. Other representations such as lines
(see Bartoli and Sturm [11]) are possible, but points will be the sole representation
considered in this chapter.
The input data to SfM consists of a set of J images Ij , j = 1, . . . , J . The method

of acquisition of the images Ij is inconsequential for the scene model. During the
reconstruction process, a number of 2D feature points xj,k is established. The first
index j denotes the image the feature point has been detected in. The second index k
relates the feature points across images – it establishes correspondences. For an image
sequence, the index k identifies the feature track a feature point belongs to. In any way,
the index k = 1, . . . ,K attributes a 3D object point Xk from the set of K object points
to every feature point. This scene model is illustrated in Figure 2.2. To give an example,
a 2D feature point x4,2 represents the detected 2D position of 3D object point X2 in
image I4. Note that in a typical SfM setting usually only a small subset of all object
points is visible in every image. In addition, the object points only describe a sparse
representation of the scene. This is a consequence of the formulation based on feature
points: for traditional SfM settings, feature points typically cannot be established
densely with any reliability, which leaves only a sparse distribution over the images.

Rigidity SfM usually makes an implicit assumption about the rigidity of the scene,
since the correspondences established for the image points relate all corresponding
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xj,k

Image Ij−1

Image Ij

Image Ij+1

3D Object Point

xj−1,k

2D Feature Point Xk

xj+1,k

Figure 2.2: The basic principle of SfM is the relation between the corresponding 2D fea-
ture points xj,k of images Ij and the reconstructed 3D object points Xk.

2D points to a single 3D point. Image points corresponding to moving and deforming
objects are eliminated in the process. SfM can be extended to handle independent
rigid moving objects (see the work by Fitzgibbon and Zisserman [44], for example).
The research to address non-rigid objects in SfM has recently culminated in the work
by Garg et al. [53], who have introduced a variational formulation for the dense recon-
struction of non-rigid objects from video. Although scene rigidity is assumed for the
remainder of this thesis, the topic will be revisited in Chapter 4.

2.3 The Pinhole Camera Model

The pinhole camera model describes the projection of points in 3D space onto the 2D
image plane of an imaging device. Imaging devices will simply be denoted as cameras
henceforth. Assuming the camera center to coincide with the origin and the camera
pointing in negative Z-direction, projection of a 3D point (X,Y, Z)> to a 2D point
(x, y)> on the canonical image plane (Z = 1) is achieved by perspective division,
division by the Z-coordinate:

x = X

Z
and y = Y

Z
. (2.1)

This process is depicted in Figure 2.3, left. Using these relations, the image on the
image plane is inverted, as it would be with a real pinhole camera. It is common practice
to counter this inconvenience by the introduction of a virtual image plane. To project
to the virtual image plane at Z = −1 and produce an upright image, it is sufficient to
divide by −Z instead of Z. This is also illustrated in Figure 2.3.
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Y
Z

Z = 1

Z

Image Plane

Y

C

x

x
Plane

Virtual Image

Y
−Z

Z = −1
Principal Point

C

Virtual Image
Plane

X

Y

y

Principal Axis
−Z

Principal Point

X

x

x

X

Figure 2.3: The projection of a 3D point X onto the canonical image plane (located at
Z = 1) and onto the virtual image plane (located at Z = −1) yields a 2D
point x in each case. The image produced on the canonical image plane is
inverted, and the one produced on the virtual image plane is upright. The
center of projection, which coincides with the origin, is denoted as C.

Linear Mapping The projection of the pinhole camera may be expressed as a linear
mapping: xy

1

 '
 1 0

1 0
−1 0



X
Y
Z
1

 , (2.2)

where ' denotes equality up to scale and the 2D and 3D points are represented in
homogeneous coordinates.

The Finite Projective Camera To accurately approximate real cameras with this
model, additional parameters have to be taken into account. Substituting x = (x, y, 1)>
and X = (X,Y, Z, 1)>, the full expression for the finite projective camera is

x ' K [ I |0 ] T−1X , (2.3)

with x ∈ P2 and X ∈ P3 being instances of the 2D feature points and 3D object points
introduced in Section 2.2, represented in homogeneous coordinates in projective space.
The projection now takes into account the intrinsic camera parameters (like the focal
length) via the 3× 3 camera calibration matrix K and the extrinsic camera parameters
(position and orientation) via the 4×4 transformation matrix T. These parameters will
be discussed in Section 2.3.1 and Section 2.3.2 respectively. The matrix [I|0] composed
of the 3×3 identity matrix I and a null vector 0 ensures the proper matrix dimensions.
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The Camera Matrix Equation (2.3) suggests that one may replace the individual
matrices by a single matrix P:

P = K [ I |0 ] T−1 . (2.4)

The homogeneous 3×4 camera matrix P has 11 degrees of freedom, as it is only defined
up to an arbitrary scale. To represent a finite camera, it has to fulfill the constraint
that its left hand 3 × 3 submatrix has to be non-singular; otherwise it represents a
camera at infinity. If the camera matrix may take the latter form, it represents a general
projective camera. In either case, projection is simply given by

x ' PX . (2.5)

Distortion Lens distortion is another important aspect to consider in the camera
model. It will be treated in Section 2.3.3.

2.3.1 The Intrinsic Camera Parameters

The transfer of the image from the canonical image plane to the desired virtual one
is governed by the intrinsic camera parameters focal length (f), skew (s), pixel as-
pect ratio (η), and principal point offset (ox, oy). Together these parameters form the
calibration matrix K:

K =

 f s ox
ηf oy

−1

 . (2.6)

The value −1 in the last row accounts for the projection onto the virtual image plane
at Z = −1 (as described at the beginning of Section 2.3).

The Focal Length Parameter f The focal length parameter f encodes the distance
between the camera center and the image plane. As such it functions as a scaling factor
for the transfer of the projected image positions from the image plane at unit distance
(where they end up after perspective division) to the desired one.

The Skew Parameter s The skew parameter s models a skewing of the camera coordi-
nate system, i. e., that the x- and y-axes of the coordinate system are not perpendicular
to each other. For a digital camera, this would require the image sensor to be manu-
factured this way. In practice, the default assumption of s = 0 should therefore hold,
the exception being an image taken from an image (see Hartley and Zisserman [62]).
Neither modification nor optimization of this parameter should be considered in a
general setting. The skew parameter is proportional to the focal length f , and therefore
is not meaningful by itself.
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The Pixel Aspect Ratio Parameter η The pixel aspect ratio (PAR) parameter η
accounts for differences in the pixel pitch1 in x- and y-direction. For square pixels,
the default PAR value is η = 1. The differences in the pixel pitch may be the result
of actual non-square pixels in the image sensors of the capturing hardware, but it is
also possible that the format for data storage specifies a certain PAR. For example,
many camcorders would record high-definition video in HDV™ format, which specifies
a resolution of 1440× 1080 with a PAR of 1.3 (η = 0.75). This may occur even if the
sensor is able to record material at a higher resolution in order to reduce the storage
space required.
If the PAR of the input data is known, the material can be scaled in a way that

makes the effective PAR equal to 1. This provides more control than having to deal
with parameters fx = f and fy = ηf , where the latter implicitly contains the PAR.
The introduction of η has several advantages, though: It also allows the use of a single
focal length parameter. Furthermore, the input data does not need to be scaled if η is
set correctly, thus avoiding artifacts resulting from interpolation. And finally, if there
is no information on the PAR available or if the available information is suspected to
be inaccurate, the separation of f and η allows greater control over the optimization
procedure by making η invariant even for potentially varying f (for varying f , not
making η invariant introduces a spurious degree of freedom per calibration matrix).

The Principal Point Offset ox, oy The components ox and oy of the principal point
offset account for inaccuracies in the placement of the image sensor. They model a
translation of the sensor in the image plane and describe the deviation of the actual
point of intersection of the image plane with the optical axis (the principal point) as
opposed to the idealized assumption that the optical axis intersects the image plane
dead center, which is hard to achieve in practice.

2.3.2 The Extrinsic Camera Parameters

The extrinsic orientation of the camera – its position and viewing direction – can be
represented by a 3× 3 rotation matrix R that represents the viewing direction of the
camera and a 3-dimensional vector t that represents the position of the camera – the
camera’s center of projection C.

The matrix R and the vector t can be combined into a proper rigid transformation T:

T =
[

R t
0> 1

]
. (2.7)

In this form, the transformation matrix T describes a transformation from a local
coordinate system to the world coordinate system. To reflect the nature of the camera

1The pixel pitch is the distance between the centers of adjacent pixels (see Fauber [41]).
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Image without distortion Barrel distortion

Pincushion distortion Decentering distortion

Figure 2.4: Illustration of the effect of distortion. The black border superimposed onto
the distorted images indicates the shape of the original image for reference.
Barrel and pincushion distortion are both types of radial distortion.

(which is to project points from the world coordinate system to the local, canonical
camera coordinate system), one has to use the inverse of T, as has already been indicated
in Equation (2.3):

T−1 =
[

R> −R>t
0> 1

]
. (2.8)

2.3.3 Distortion

The pinhole camera model is an idealized abstraction of the real imaging hardware.
Although conformity to the idealized model is desirable in most cases, manufacturers
encounter many challenges in practice. Constraints on quality typically arise from size,
weight, and not least cost, and render the production of perfect imaging hardware all but
infeasible. The pinhole camera model is therefore usually extended by a distortion model
to compensate some of the manufacturing imprecision in the lens and its placement.
Commonly modeled types of distortion are radial distortion (barrel and pincushion
distortion) and decentering distortion. Figure 2.4 illustrates the effect these types of
distortion have on the projected image.

Lens distortion has already been a major concern back in the 1950s (a good summary
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is given by Brown [27]), and many distortion models in use today are still based on the
same theoretical foundations. The distortion model to calculate the distorted position
(xd, yd)> of a point (x, y)> on the image plane proposed then has a radial and a
tangential component:

xd = x+ δx + ∆x and yd = y + δy + ∆y , (2.9)

with radial distortion terms δx and δy and decentering distortion terms ∆x and ∆y.
The above formulation lets the center point of distortion coincide with the principal

point. Brown [26] argues that this is a practical and effective compromise for imaging
systems with comparatively short focal length.

Radial Distortion As summarized by Brown [27], the radial distortion δr of a perfectly
centered lens can be expressed as an odd powered series of the form

δr = k0r
3 + k1r

5 + k2r
7 + · · · , with r =

√
(x2 + y2) (2.10)

for coordinates x and y expressed in a coordinate system that has the principal point
as origin. The observation that the x- and y-components of the distortion can be
expressed as

δx = x

r
δr and δy = y

r
δr (2.11)

has given rise to the still widely used formulation

xd = x(1 + k0r
2 + k1r

4 + k2r
6 + · · · ) and (2.12)

yd = y(1 + k0r
2 + k1r

4 + k2r
6 + · · · ) . (2.13)

The effect of two common types of radial distortion, barrel distortion and pincushion
distortion, is illustrated in Figure 2.4. Barrel distortion generally has negative values
for the parameter series, while pincushion distortion has positive ones; mixed series of
values are also possible, though.

Decentering Distortion The effects of decentering in the lens placement are tangential
distortion and asymmetric radial distortion (illustrated in Figure 2.4), summarized as
decentering distortion by Brown [26]. The decentering distortion ∆ is characterized as

∆x =
[
2p0xy + p1

(
r2 + 2x2

)] (
1 + p2r

2 + p3r
4 + · · ·

)
and (2.14)

∆y =
[
2p1xy + p0

(
r2 + 2y2

)] (
1 + p2r

2 + p3r
4 + · · ·

)
. (2.15)
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Distortion Model The distortion model considered in this thesis is that of the pop-
ular open source computer vision library OpenCV [23], which is a modified version
of the model by Brown [26] given in Equation (2.9). All the higher order decentering
distortion parameters (p2 and onwards) are assumed to be zero, and the symmetric
radial distortion is extended by a rational term apparently inspired by the work of
Claus and Fitzgibbon [36] to better model wide-angle lenses:

xd = x
1 + k0r

2 + k1r
4 + k2r

6

1 + k3r2 + k4r4 + k5r6 + 2p0xy + p1
(
r2 + 2x2

)
(2.16)

yd = y
1 + k0r

2 + k1r
4 + k2r

6

1 + k3r2 + k4r4 + k5r6 + 2p1xy + p0
(
r2 + 2y2

)
. (2.17)

Application The effect of distortion can be applied with matrix expressions by using a
lifting of the point coordinates, which would be consistent with the projection process of
Section 2.3. This is beyond practicality for the higher-order distortion models described
in the previous section, however. Distortion is therefore expressed by a mapping d:

d : P2 7→ P2 , xd = d(xu) , (2.18)

where the undistorted point in the image plane is given as xu = (x, y, 1)>, and the
distorted point as xd = (xd, yd, 1)>. Equation (2.3) is then reformulated as

x ' K d
(
[ I |0 ] T−1X

)
. (2.19)

A drawback of this formulation is that requires perspective division to be performed
before distortion is applied. If the 3D points are to be projected onto the virtual image
plane at Z = −1, this has to be taken into account, and accordingly the lower right
value of the calibration matrix K should contain the value 1 instead of −1 in this case.

2.4 Initialization

This section describes how an initial 3D reconstruction may be obtained from two
images. The initial reconstruction consists of estimates for the camera matrices related
to the images and estimates for the common 3D object points, and serves as a base for
the extension to multiple images, as discussed in Section 2.5.

First, 2D feature points are detected and matched or tracked to generate correspon-
dences, followed by outlier elimination. The fundamental matrix created as a by-product
during outlier elimination then allows camera and structure recovery, followed by a
maximum-likelihood-estimation, the bundle adjustment.
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Key Frame Selection The approach described in this section assumes that the camera
positions used to capture the two images are separated by an adequate translational
offset. This is a requirement for the structure recovery, the triangulation of 3D object
points, to work. To select suitable images (key frames) for reconstruction, an information
criterion, such as the geometric robust information criterion (GRIC) by Torr [149], may
be used.

2.4.1 Correspondences

Correspondences are of fundamental importance in SfM. A correspondence establishes
a relation between specific points of two or more images: it signifies that the respective
image positions are observations of the same 3D points of the scene. Correspondences
may thus be used to triangulate 3D points from the observed image points, which
is the very basis of SfM. This is only true if the scene is static, of course. If an
object in the scene has moved between frames, the established correspondences may
be correct, but since they are not observations of the same 3D points in space (as the
observed object has moved), they cannot be processed by traditional SfM. In this case,
the correspondences in questions are outliers and have to be treated accordingly, as
discussed in Section 2.4.2. The notation x ↔ x′ will be used to denote a 2D feature
point correspondence between two images I and I ′ in this context.

Finding corresponding image locations is commonly subsumed under the term corre-
spondence problem. The problem may be solved automatically, semi-automatically, or
completely manually. The latter two cases are more common in the industry, as they
are potentially very accurate (which may be paramount) but also very time consuming.
Methods for the automatic creation of correspondences can generally be divided

into one of two categories: feature point tracking and feature point matching. Feature
points for matching or tracking may be detected by a variety of methods, such as the
popular Harris corner detector by Harris and Stephens [61] and variants thereof, or
features from accelerated segment test (FAST) by Rosten and Drummond [126], which
has recently gained considerable traction.

Feature Point Tracking Feature point tracking describes methods for the creation of
correspondences that rely on the displacements of corresponding points in the image
plane to be small for pairs of subsequent images. It is therefore the method of choice
when the change in camera position and orientation between exposures is small, as is
the case for video data and certain image sequences in very controlled settings.

The traditional method for feature point tracking in SfM (aside from a window-based
search using normalized cross correlation or similar) is KLT tracking, based on the
publications by Lucas and Kanade [96] and Shi and Tomasi [135]. KLT is a gradient-
based optimization approach that computes the motion-introduced displacement of a
feature point starting from the position in the previous image as initial estimate.
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The formulations and methods of KLT are similar to optical flow, although classical
optical flow does not create consistent feature point tracks over longer sequences –
while the result is typically dense in contrast to KLT. This has been addressed by
Sand and Teller [131] with the introduction of Particle Video (PV) and by Brox and
Malik [28] with Large Displacement Optical Flow (LDOF), among others. The method
by Rubinstein et al. [127] (which requires PV or LDOF as preprocessing) appears to
yield the best tracking results so far. However, much like PV, it is not suitable for online
processing, and therefore has areas of application different from KLT and LDOF.

Although LDOF is superior to KLT in terms of track density and accuracy, KLT is
still a common and popular choice for feature point tracking. This may be attributed
to the fact that, in addition to being conceptionally simpler, KLT has a potential
processing rate in excess of 200 frames per second and is therefore at least two orders
of magnitude faster in a GPGPU setting for image material of comparable resolution
(the implementations in question being the one by Zach et al. [166] for GPU KLT and
the one by Sundaram et al. [141] for GPU LDOF).

LDOF and similar algorithms in optical flow may be seen as combination approaches
between feature point tracking and matching, as they make use of feature point match-
ing to obtain longer trajectories.

Feature Point Matching In contrast to feature point tracking, feature point matching
does not rely on small displacements in the feature positions in the input data. Instead
it matches detected features across images by the application of a feature descriptor.

Since its introduction in 1999, scale-invariant feature transform (SIFT) by Lowe [95]
was (and often still is) considered to be state-of-the-art in feature point matching.
SIFT features are invariant to rotation and scale, desirable properties for matching
input data with strong variation. Many contestants have been inspired by SIFT, such
as the vastly more efficient speeded up robust features (SURF) by Bay et al. [12], cen-
ter surround extrema (CenSurE) by Agrawal et al. [1], or lately KAZE2 features by
Alcantarilla et al. [4].

Binary descriptors, a new type of feature point descriptors introduced only recently,
offer significant advantages in terms of processing time, while still being able to pro-
vide matching performance similar to SIFT in many cases (for a performance eval-
uation, see the work by Heinly et al. [66]). The first binary descriptor, binary robust
independent elementary features (BRIEF), was introduced by Calonder et al. [29], fol-
lowed by several other works that show descriptors with different sampling patterns,
sampling pairs, and improved matching characteristics: oriented FAST and rotated
BRIEF (ORB) by Rublee et al. [128] (rotation invariant), binary robust invariant scal-
able keypoints (BRISK) by Leutenegger et al. [91] (rotation and scale invariant), and
fast retina keypoint (FREAK) by Alahi et al. [3] (rotation and scale invariant).

2KAZE is not an abbreviation, but rather Japanese for wind.
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2.4.2 Outlier Elimination
The set of correspondences created by feature point tracking or feature point matching
typically contains a certain number of outliers. Feature points may be poorly located
due to motion blur, drift over time, or just be plainly mismatched. But even if the
tracking or matching is flawless, feature points may be considered as outliers if they
violate any of the assumptions the model for scene description is based on. For rigid
SfM, feature points that correspond to an object in motion relative to the static scene
have to be considered as outliers.

Robust Estimation Outlier elimination requires the use of robust estimation tech-
niques that are able to cope with these very outliers in the input data. To provide a
reliable estimate, the random sample consensus (RANSAC) family of algorithms is a
popular choice. The m-estimator sample consensus (MSAC) algorithm by Torr and
Zisserman [150], a straightforward extension of the original algorithm by Fischler and
Bolles [42], has improved performance at no additional implementation complexity or
computational cost. It iteratively optimizes the cost function

R =
∑
i

ρ
(
e2
i

)
, with ρ

(
e2
)

=
{
e2 if e2 < τ2

τ2 if e2 ≥ τ2 , (2.20)

where ei is a per-datum error function and τ a threshold value that decides whether a
datum is an outlier or not.

During each iteration, the algorithm proceeds by first selecting a number of β random
samples from the input data. The model parameters are then estimated from the
selected samples and the error function ei is evaluated for each datum, which allows
the computation of R. If the value of R is lower than any previously calculated cost,
the current model is considered as the best solution so far.

The number of iterations is crucial, as the algorithm is non-deterministic: The higher
the number of iterations, the higher the probability of a reasonable result, i. e., a result
calculated from inlier samples only. If m is the desired probability of obtaining a
reasonable result, the corresponding number of iterations required q is given by

q = log(1−m)
log(1− nβ) , (2.21)

where n is the probability that any selected data point is an inlier. The probability n
is replaced by a very conservative estimate in practice, but it can be updated on the
fly as soon as a model is found whose set of inliers comprises more data points than
previously assumed as probable by the choice of n.
The number of random samples β selected per iteration has a major influence on

the number of iterations required to get a reasonable result with a certain probability,
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Image I Image I ′

Epipolar line

Epipole

with unknown position
3D object pointX?

X?
X
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x′
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Figure 2.5: Illustration of the epipolar geometry relating a pair of images I and I ′.
The fundamental matrix F transforms a 2D point x onto the epipolar
line l′e′ , which is the image projection of the line of sight from the center of
projection C through x, on which the 3D point X is located. The epipole e′
is the projection of C into the image plane and forms the intersection of
all epipolar lines.

as indicated by Equation (2.21). If possible, it is desirable to choose β as the minimum
number of samples required for the estimation of the model in order to reduce the
number of iterations required.

Fundamental Matrix Outlier Elimination The fundamental matrix F is an algebraic
representation of the epipolar geometry of two images. An illustration of the epipolar
geometry is provided in Figure 2.5. The fundamental matrix F describes the transfer
of a point x in image I to the corresponding epipolar line l′e′ = Fx in image I ′. For
a point correspondence x ↔ x′ between the two images, there is the corresponding
relation le = F>x′, which allows the fundamental matrix to be characterized by the
equation

x′>Fx = 0 (2.22)

for any point correspondence x↔ x′. By stacking expressions of the form(
x′x, x′y, x′, y′x, y′y, y′, x, y, 1

)
f = 0, (2.23)

where f is the 9-vector created from the entries of F in row-major order, a system
of linear equations Af = 0 can be created. At least β = 7 point correspondences are
required to determine the fundamental matrix up to scale. It may be recovered from
the right null-space of A using singular value decomposition (SVD) in combination with
the requirement that F has rank 2, i. e., det F = 0.
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The per-datum error function ei for robust estimation is given as

ei = d
(
x′i, Fxi

)2 + d
(
xi, F>x′i

)2
, (2.24)

where d(x, le) is the distance of x to the epipolar line le.
Distortion is considered to be negligible in the above formulation. If significant

distortion is present in the input data, it may affect the estimation and eliminate many
valid correspondences. In such a case, more elaborate methods, such as presented by
Claus and Fitzgibbon [36], should be used.

2.4.3 Camera And Structure Recovery
Camera Matrices The previous section has introduced the fundamental matrix F
as a tool for outlier elimination. Once the robust estimation is completed, the best
estimate of F, which has been created as a by-product in the estimation process, can
be used to create initial camera matrices P and P′:

P = [ I |0 ] and P′ =
[ [

e′
]
× F

∣∣∣ e′ ] , (2.25)

where e′ is the epipole in the second image (see Figure 2.5) and [·]× denotes the skew-
symmetric matrix for the expression of the cross product in matrix form. The epipole e′,
the point of intersection of all epipolar lines l′e′ , can be computed from e′>F = 0.

Triangulation Once camera matrices P and P′ have been determined for two images,
initial 3D object points may be triangulated. This is accomplished by creating an
equation of the form AX = 0 from the relations x = PX and x′ = P′X. From the linearly
independent entries of the cross product expressions x × (PX) = 0 and x′ × (P′X) = 0,
A can be created as

A =


xP3> −P1>

yP3> −P2>

x′P′3> −P′1>
y′P′3> −P′2>

 , (2.26)

where Pi> and P′i> are the rows of the camera matrices P and P′. The 3D object point
X is then given by the unit singular vector corresponding to the smallest singular value
of A, which can determined by SVD.

2.4.4 Maximum-Likelihood Estimation
The last step to perform for the initial reconstruction is a maximum-likelihood estima-
tion to minimize the reprojection error. The appropriate formulation is

arg min
P,P′,X

K∑
k=1

d(xk, PXk)2 + d
(
x′k, P′Xk

)2
. (2.27)
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The optimization procedure – bundle adjustment – will be described in detail in
Section 2.7.

2.5 Extension

The previous section has sketched an approach that yields an initial 3D reconstruction
from two images: Correspondences between suitable images are found, outlier corre-
spondences are eliminated and the fundamental matrix is obtained, camera matrices
are calculated from this fundamental matrix, and finally 3D points are triangulated,
followed by a bundle adjustment.

This initial reconstruction for two images is a basic building block for a system that
handles image sequences of arbitrary length (or image collections of arbitrary size). In
principle, there are two possible ways to proceed with the reconstruction: hierarchically
or incrementally.

2.5.1 Hierarchical Reconstruction

A hierarchical reconstruction relies on the (recursive) partition of the input data until
overlapping subsets of the desired size for initial reconstruction are obtained. The
partition may either be carried out until further partition is impossible (see Fitzgibbon
and Zisserman [43] and Lhuillier and Quan [92], for example), or only as required (see
Nistér [114] and Gibson et al. [55], for instance). The individual initial reconstructions
are merged pairwise, and a bundle adjustment is performed, followed by the next merge,
until the reconstruction comprises all images. If the sequence is not fully partitioned,
the reconstruction for the intermediate images can be obtained using the incremental
reconstruction approach described in the next paragraph.
Hierarchical reconstruction requires all data to be present when the reconstruction

is started, which makes it unsuitable for online processing.

2.5.2 Incremental Reconstruction

An incremental reconstruction extends an initial reconstruction by adding images one
after another. First, correspondences are established as described in Section 2.4.1. The
next step is again outlier elimination, but since 3D object points are already available, a
camera matrix-based approach may be used instead of the fundamental matrix outlier
elimination of Section 2.4.2. In this case, the outlier elimination directly yields the
initial camera matrix for the newly added image. Triangulation proceeds as before,
complementing the set of 3D object points using any new correspondences, provided
there is enough baseline for reliable estimation. The last step is again a maximum-
likelihood estimation, bundle adjustment. It is usually prudent to first optimize the
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newly created camera matrix and object points, before optimizing all estimates obtained
so far.
A drawback of the incremental reconstruction is that the computational burden of

the bundle adjustment increases with each added image.

Projection Matrix Outlier Elimination In Section 2.4.2, the fundamental matrix is
used for outlier elimination, since no 3D objects are available at that stage. When a
pre-existing reconstruction is extended, however, one may directly use the 2D-to-3D
relations x↔ X to estimate a camera matrix for the new image and eliminate outlier
correspondences in the process.
Two linearly independent equations can be derived from Equation (2.5) for each

correspondence x↔ X:

[
0> −X> yX>
X> 0> −xX>

]P1

P2

P3

 = 0 , (2.28)

with Pi> begin the i-th row of P. Stacking equations from β = 6 correspondences
yields a linear system Ap = 0, where the vectors Pi are concatenated into p. Strictly
speaking, only 51

2 correspondences are necessary, as the camera matrix P has only 11
degrees of freedoms, since it is only defined up to scale.
The per-datum error function ei for the camera matrix estimation is given by

ei = d(xi, PXi)2 . (2.29)

As for outlier elimination based on the fundamental matrix in Section 2.4.2, this
formulation does not include lens distortion, which may be an issue if distortion is not
negligible.

Bundle Adjustment The cost function of Equation (2.27) can be extended to incor-
porate an arbitrary number of images:

arg min
P,X

J∑
j=1

K∑
k=1

d(xj,k , PkXj)2 (2.30)

Optimization of this cost function is discussed in Section 2.7.

2.6 Auto-Calibration
The formulations provided so far only permit a projective reconstruction. The structure
of the scene is usually distorted, as angular relations between lines are not respected
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during the reconstruction process: angles are not invariant under projective trans-
formations. Projective reconstructions are not directly suited for reconstruction and
augmentation tasks; instead a metric reconstruction – a reconstruction in Euclidean
space – is required. Metric reconstructions may easily be acquired by calibrating the
camera offline with the help of a calibration pattern or object.
Auto-calibration refers to the process of upgrading a projective reconstruction to a

metric one without the use of calibration patterns or objects, which greatly increases
the flexibility of the reconstruction approach. This is achieved by the calculation of
a rectifying homography or upgrading transformation H to transform a projective
reconstruction {Pj ,Xk} to a metric reconstruction

{
PjH, H−1Xk

}
.

There are different approaches available for auto-calibration, most notable the ap-
proach by Maybank and Faugeras [100] based on the Kruppa equations, and methods
based on the absolute dual quadric, introduced by Triggs [151]. The former approach
requires only the fundamental matrix F between a pair of images to be known, but
the equations are difficult to solve and lead to ambiguities, and the approach does
not generalize well to more than two views. The remainder of this section therefore
sketches the practical auto-calibration approach by Pollefeys et al. [124] based on the
absolute dual quadric.

Absolute Dual Quadric The absolute dual quadric (ADQ) Q∗∞ is a degenerate dual
quadric that encodes both the absolute conic and the plane it is located on, the plane at
infinity. It may be represented by a homogeneous 4× 4 matrix of rank 3. Its projection
is given by

ω∗ = PQ∗∞P> , (2.31)

which means that it projects to the dual image of the absolute conic:

ω∗ = KK> . (2.32)

The above equations in conjunction allow the transfer of constraints on ω∗ to constraints
on Q∗∞ using the projective camera matrices P. A thorough discussion of this topic
including further information and a comprehensive description of the terminology is
given by Hartley and Zisserman [62].
To obtain the rectifying homography H, Pollefeys et al. [124] suggest to proceed by

first normalizing the camera matrices as follows:

PN = K−1
N P ,with KN =

w + h 0 w
2

w + h h
2
1

 , (2.33)

with w and h being the width and height of the corresponding image, and the subscript
N denoting normalization. This normalization tries to ensure that the principal point
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is close to the origin and the focal length is approximately unity. Due to the normal-
izations, they are able to express ω∗ in terms of approximate values and reasonable
standard deviations:

ω∗ =

f2 + s2 + o2
x sηf + oxoy ox

sηf + oxoy η2f2 + o2
y oy

ox oy 1

 ≈
1± 9.01 0± 0.01 0± 0.1

0± 0.01 1± 9.01 0± 0.1
0± 0.1 0± 0.1 1

 . (2.34)

The uncertainties are taken into account when constructing the constraint equations:

ω∗12 = 0 ⇒ 1
0.01

(
P1>

N Q∗∞P2
N

)
= 0 (2.35)

ω∗13 = 0 ⇒ 1
0.1

(
P1>

N Q∗∞P3
N

)
= 0 (2.36)

ω∗23 = 0 ⇒ 1
0.1

(
P2>

N Q∗∞P3
N

)
= 0 (2.37)

ω∗11 = ω∗22 ⇒ 1
0.2

(
P1>

N Q∗∞P1
N −P2>

N Q∗∞P2
N

)
= 0 (2.38)

ω∗11 = ω∗33 ⇒ 1
9.01

(
P1>

N Q∗∞P1
N −P3>

N Q∗∞P3
N

)
= 0 (2.39)

ω∗22 = ω∗33 ⇒ 1
9.01

(
P2>

N Q∗∞P2
N −P3>

N Q∗∞P3
N

)
= 0 , (2.40)

with Pi>
N being the i-th row of the normalized camera matrix PN . A system of linear

equations of the form Aq = 0 can be constructed from the above equations, where q
contains the 10 unique entries of the symmetric 4× 4 matrix Q∗∞. The system of linear
equations can be solved by SVD. The canonical form of the ADQ Q∗∞ in Euclidean
space is

Ĩ =
[

I3×3 0
0> 0

]
, (2.41)

which allows the expression of the ADQ in a projective coordinate frame as

Q∗∞ = HĨH> , (2.42)

with H being a homography in projective space. Thus the upgrading transformation H
may be obtained by performing an SVD of Q∗∞. The smallest singular value of Q∗∞ has
to be forced to zero in order to enforce the rank-3 constraint.

2.7 Bundle Adjustment
Bundle adjustment is a maximum-likelihood estimation approach used in most SfM
scenarios to ensure that the model parameters are accurate and reliable. It aims
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Figure 2.6: SfM-based 3D reconstruction before (left) and after (right) bundle adjust-
ment immediately after auto-calibration has been performed. After the
optimization, there are no signs of projective distortion (outward expansion
of the scene parts far from the camera positions) remaining in the cloud of
3D object points. The individual positions of the camera path are indicated
by the small colored coordinate systems.

to minimize the error metric of a given parametric model and the corresponding
measurement. This error metric is typically the reprojection error of the reconstructed
3D object points X, which are projected to the image plane of the virtual camera,
with respect to the detected 2D feature points x, such as given in Equation (2.27)
and Equation (2.30). During optimization, the error is evenly distributed over all
measurements by conjointly optimizing all the parameters involved. Figure 2.6 depicts
a 3D reconstruction produced by SfM (after auto-calibration) before and after bundle
adjustment in metric space.

Reprojection Error The total reprojection error that bundle adjustment aims to
minimize has already been given for projective space in Equation (2.30). After auto-
calibration (Section 2.6) has been performed, this formulation is no longer adequate.
Instead, the cost function has to respect the projection of Equation (2.3), or rather
Equation (2.19) if distortion is present. In metric space, the total reprojection error is
thus

arg min
K,d,T,X

J∑
j=1

K∑
k=1

d
(
xj,k , Kj dj

(
[I|0] T−1

j Xk

))2
. (2.43)

Note that the use of the Euclidean distance d(·) implies that all observed 2D feature
points have the same uncertainty (additive uniform Gaussian noise). This is a classical
assumption, but it may be invalid for certain types of feature points. Scale invariant
feature points, for example, typically have different accuracy in the x- and the y-
coordinate, as shown by Zeisl et al. [167]. If such feature points are used, this has to be
taken into account accordingly.
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2.7 Bundle Adjustment

Least-Squares Formulation Equation (2.30) and Equation (2.43) have introduced the
reprojection errors, the least-squares cost functions optimized by bundle adjustment.
This section introduces a simplified, abstract formulation of these cost functions to
facilitate the following discussions. To this end, let ε be the residual vector of some
functional relation v = h(p):

ε(p) = h(p)− v , (2.44)

with v being the measurement vector and p being the parameter vector. The abstract
least-squares cost function is then

g(p) = ε(p)> ε(p)
2 . (2.45)

The factor 2 in the denominator simplifies the following equations.

2.7.1 Algorithms
There are several algorithms available to solve least-squares optimization problems,
some of which are presented in this section. When selecting one of these methods, there
is generally a tradeoff between convergence behavior and computational burden or
additional requirements. Newton’s method, for example, converges rapidly but requires
the evaluation of second derivatives, while gradient descent converges slowly but is
easier to compute. More details are given by Nocedal and Wright [116] and Hartley
and Zisserman [62].

Newton Newton’s method in optimization is based on Taylor series expansion. For the
least-squares cost function given in Equation (2.45), it casts the optimization problem
as

∇2g(pi) δN
i = −∇g(pi) . (2.46)

Starting from an initial guess p0, which has to be reasonable close to the final minimum,
the update vector δN

i is used to refine the parameter vector in an iterative fashion:

pi+1 = pi + δN
i . (2.47)

Gauss-Newton The Gauss-Newton method is similar to Newton’s method, but uses
the approximation ∇2gi ≈ J>i Ji for the Hessian matrix ∇2g, the matrix of second-
order partial derivatives of g with respect to p. The matrix J is the Jacobian matrix,
the matrix of all first-order partial derivatives of g with respect to p. Using this
approximations in the standard Newton equations from Equation (2.46) yields the
following system:

J>i JiδGN
i = −J>i εi . (2.48)
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The relation ∇g(pi) = J>i εi is used to simplify the notation. The Gauss-Newton
method thus avoids the evaluation of the Hessian matrix while still showing the same
rapid convergence behavior as Newton’s method close to the solution.

Gradient Descent The gradient of the cost function defines the direction of the cost
function’s most rapid decrease, and may therefore be used for iterative minimization.
This minimization scheme is known as gradient descent. The length of the step νi may
be obtained through a line search; the formulation for the optimization then being

νiδ
GD
i = −J>i εi . (2.49)

Gradient descent has slow convergence and therefore is not a good minimization strategy
by itself.

Levenberg-Marquardt The Levenberg-Marquardt method combines the Gauss-New-
ton method and gradient descent. Its optimization scheme is given by(

J>i Ji + κiI
)
δi = −J>i εi . (2.50)

The parameter κ controls the influence of gradient descent on the whole iteration. It is
usually initialized to a small value and then varied depending on whether the iteration
was successful or not: if the current update does not lead to a decrease in the cost
function, i. e., the iteration failed, κ is increased to give more emphasis to the gradient
descent component.

2.7.2 The Sparse Levenberg-Marquardt Algorithm

Typical bundle adjustment problems may contain thousands of sets of extrinsic and
intrinsic camera parameters, and hundreds of thousands of 3D object points. The
time complexity of the Levenberg-Marquardt algorithm is cubic in general, which
precludes arbitrary increases in the problem size. To alleviate this limitation on the
performance, implementations of bundle adjustment usually exploit the sparse structure
of the underlying problem: While the camera parameters depend on the parameters
of the 3D object points they all observe, the 3D object points do not influence one
another. The problem may thus be partitioned into a distinct block structure that, when
exploited appropriately, dramatically reduces the required computation time. A sample
illustration of this block structure for a toy example is provided in Figure 2.7. For
further information, consult the work by Triggs et al. [153] or Hartley and Zisserman [62].

Block Structure The parameter vector p is partitioned according to the structure
of the problem into sub-vectors p = (a>,b>)>, where a comprises the extrinsic and
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Block structure of the Jacobian J

J> Block structure of J>J

Figure 2.7: Block structure of the Jacobian matrix J (top right) and of J> and J>J
(bottom left and right) for a toy example consisting of three images (with
shared intrinsic parameters) and four reconstructed 3D object points. The
first point is only visible in the first two images, the second point in all
images, and the last two points only in the last two images. Blue blocks
denote values corresponding to the extrinsic camera parameters, gray to the
intrinsic camera parameters, and yellow to the 3D object point parameters.
The blue and gray blocks together form the matrices A and U = A>A,
respectively. The green blocks of J>J correspond to the matrix W.
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intrinsic camera parameters, and b the parameters of the 3D object points. Based on
that, it is possible to partition the Jacobian

J =
[
∂h(p)
∂p

]
into submatrices A =

[
∂h(p)
∂a

]
and B =

[
∂h(p)
∂b

]
. (2.51)

The block structure of the Jacobian is thus defined as J = [A|B], which gives rise to the
following block structure for Equation (2.50):[

A>A + λI A>B
B>A B>B + λI

](
δa
δb

)
=
(
−A>ε
−B>ε

)
. (2.52)

For convenience and simplicity, substitutions are made:[
U∗ W
W> V∗

](
δa
δb

)
=
(
−εA
−εB

)
, (2.53)

with the asterisk in U∗ and V∗ indicating the augmentation of the main diagonal.

Schur Complement To avoid solving the system of Equation (2.53) as a whole, it is
partitioned into two smaller systems by the application of the Schur complement. To
this end, Equation (2.53) is left-multiplied by the matrix[

I −WV∗−1

0 I

]
, (2.54)

with I and 0 being the identity matrix and null matrix of appropriate size. The upper
row of the reformulated system is independent of δb:[

U∗ − WV∗−1W> 0
W> V∗

](
δa
δb

)
=
(
−εA + WV∗−1εB

−εB

)
. (2.55)

Solution The first part of the solution, δa, can be obtained by solving the system of
linear equations (

U∗ − WV∗−1W>
)
δa = −εA + WV∗−1εB , (2.56)

which is usually done by Cholesky decomposition, as the matrix obeys the requirement
of being positive definite. The second part of the solution, δb, may be calculated from

δb = V∗−1
(
−εB + W>δa

)
. (2.57)

Both Equation (2.56) and Equation (2.57) contain the matrix inverse V∗−1. While V∗

is typically much larger in size than U∗, it is a block diagonal matrix. Its inverse is
composed of the inverses of all the individual 3× 3 blocks, obtaining which has only
negligible impact on the overall computation time, and may be parallelized on top of
that.
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Constrained Camera Motion Estimation
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CHAPTER 3

Bundle Adjustment for Stereoscopic 3D

Stereoscopic 3D has recently made a reappearance in the movie industry, requiring the
adaption of the traditional processing pipeline to stereoscopic input data. A stereoscopic
camera model for bundle adjustment is developed in this chapter, which is applicable
to a wide range of camera configurations and provides the efficiency of traditional
methods and improved accuracy. This chapter is based on work by Kurz et al. [89].

3.1 Introduction and Outline
Computer generated special effects are ubiquitous in movies today. The extent to
which computer generated imagery (CGI) is used ranges from small, almost insignificant
objects to major parts of the movie, including actors and sets. The previous chapter
has introduced SfM as a means to recover the parameters of the real camera and the
sparse scene structure. These parameters are then used to create a virtual scene and
place a virtual camera, allowing to composite the virtual objects with the real image
sequences. Accurate and Reliable camera motion estimation is thus crucial in movie
post-processing, as it is essential for the special effects to appear convincing.
Over the past couple of years, 3D films have made a reappearance, this time using

modern stereoscopic 3D (S3D) technology. A consequence of that has been the creation
of an unprecedented amount of high-resolution stereo image data. This new type of
input data demands changes to the traditional processing pipelines, which are best
equipped to deal with monocular input material.
Stereo image sequences have been used in computer vision over the past decades,
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but their predominant area of application has been robot and autonomous vehicle
navigation and motion estimation. As a consequence, the employed stereo processing
pipelines have to obey restrictive real-time requirements. In addition, the algorithms
are only allowed to accumulate and process a limited amount of data.
In contrast to that, post-processing for movie productions is still done off-line. The

amount of data involved precludes real-time processing, and since execution time is
only a minor issue, computationally expensive algorithms may be used – algorithms,
which are not yet updated to efficiently process stereo material.

This chapter describes an approach for reliable and accurate camera motion estima-
tion for stereo sequences. An extended camera model for stereo cameras is presented.
The model offers great flexibility in terms of its parameters and therefore can be
employed for a variety of different cameras, ranging from entry-level consumer 3D
camcorders using a 3D conversion lens with a static camera geometry to professional
cameras used in movie productions. Furthermore, it is shown how the additional con-
straints introduced by the camera model can be incorporated into the sparse bundle
adjustment framework of the previous chapter.

The approach is validated on a variety of data sets, from fully synthetic experiments
to challenging real-world image sequences.

Outline The remainder of this chapter is organized as follows: Related work will
be reviewed in the next section, followed by the introduction of the updated stereo
scene model for SfM in Section 3.3. Section 3.4 introduces the new camera model
for stereoscopic bundle adjustment, and the incorporation into bundle adjustment is
described in Section 3.5. Results are shown in Section 3.6, followed by a discussion in
Section 3.7.

3.2 Related Work

SfM Multi-camera systems in SfM usually assume a static and calibrated camera
setup on a moving platform, such as the systems by Stewenius and Åström [139] or
Kim et al. [82]. Another method is averaging the parameters of the independent recon-
structions, demonstrated by Frahm et al. [46]. Di et al. [40] introduce the constraints
arising from stereo geometry into bundle adjustment by simply adding soft constraints;
the sparse structure of the problem is not addressed. Chandraker et al. [31] demon-
strate an efficient stereo SfM framework using line features, but bundle adjustment
is not used. Hirschmüller et al. [68] show a new system for correspondence generation
and outlier elimination from stereoscopic image sequences, but the other stages of
the reconstruction pipeline, in particular bundle adjustment, are not affected by these
changes.
The research towards processing data of multiple independently moving cameras
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by Hasler et al. [64] or that towards the reconstruction of entire community photo
collections by Goesele et al. [57] can be considered orthogonal to the work presented
here.

Auto-calibration Zhang et al. [170] have explicitly modeled the problem of auto-cal-
ibration for an uncalibrated stereo rig with unknown motion for two pairs of stereo
images. Brooks et al. [24] even consider varying vergence angles. The focus of these
papers lies on providing a one-time calibration of these two stereo pairs instead of the
optimization over a complete image sequence, however.

Stereo Navigation, Ego-motion Estimation, Visual Odometry Methods in robot or
autonomous vehicle navigation and motion estimation that use stereo rigs, such as
the systems described by Matthies et al. [99], Weng et al. [160] , Molton et al. [111], or
Saeedi et al. [130], assume the rigs to be calibrated. Runtime constraints often require
the problem of motion estimation to be reduced to estimating the parameters of
an inter-frame motion model given two distinct sets of 3D points, and then feeding
the results to a Kalman filter to achieve robustness. Olson et al. [117] use optimized
feature selection and tracking, especially multi-frame tracking, to achieve robustness
for tracking features over longer sequences.

Nistér et al. [115] and Sünderhauf et al.[142] assume calibrated stereo rigs for bundle
adjustment in visual odometry, thus not optimizing the intrinsic camera parameters.
A reduced order bundle adjustment is used by Dange et al. [39], where 3D object points
are only parametrized by their depth in one image, thereby reducing the computational
load of the system.

Mandelbaum et al. [97] present a correlation-based approach to ego-motion and scene
structure estimation from stereo sequences, in which the transformation between left
and right frames is assumed to be constant.

Uncalibrated Stereo Approaches for obtaining the epipolar geometry from uncali-
brated stereo rigs have been presented by Zhang and Xu [169], Akhloufi et al. [2], Hart-
ley et al. [63], Yin and Xie [165], and Ko et al. [85], among others, but these methods only
consider a single pair of images without further optimization. Simond and Rives [137]
determine the motion of an uncalibrated stereo rig under the assumption that a road
plane is present and easy to identify in the images.

Uncalibrated, static stereo cameras are used in systems for visual servoing, such as the
ones by Hodges and Richards [69], Shimizu and Sato [136], and Park and Chung [119],
or for man-machine interaction, as shown by Cipolla et al. [35], but these systems do
not perform explicit 3D reconstructions.
An approach for quasi-Euclidean epipolar rectification introduced by Fusiello and

Irsara [50] has recently been adapted to work on uncalibrated stereo sequences by

35



Chapter 3 Bundle Adjustment for Stereoscopic 3D

Bleyer and Gelautz [16] and Cheng et al. [34], but no 3D reconstruction is performed.

Optical Flow, 3D Scene Flow Min et al. [106] and Huguet et al. [74] show systems
for optical flow estimation from calibrated stereo setups, and how stereo constraints
from setups consisting of an arbitrary number of cameras can be used is demonstrated
by Zhang and Kambhamettu [168]. In these setups, the cameras are assumed to be
calibrated. Vedula et al. [156] are able to recover the non-rigid scene motion, but again by
using calibrated cameras. Optical flow estimation does not include maximum-likelihood
estimation of the camera motion and scene structure over the whole image sequence.
Trinh and McAllester [154] adapt optical flow for ego-motion estimation, but their

model only considers camera motion along the Z-axis.

Commercial Products Several commercial products feature tools for stereoscopic
tracking and for stereoscopic camera solving (PFTrack™, SynthEyes™, or 3DEqual-
izer™, for example), but the corresponding algorithms have not been published.

3.3 Stereoscopic Scene Model
In contrast to the traditional formulation of Section 2.2, the input data for stereoscopic
sequences consists of J stereo frames comprising two images each. At the same frame
rate, a stereoscopic setup thus produces twice the amount of data per time unit. For
convenience, the individual images of the stereo frame are denoted as Ij,L for the image
of the left camera, and Ij,R for the image of the right camera. There are now also
two separate camera matrices Pj,L and Pj,R for each stereo frame, and auto-calibration
yields separate sets of intrinsic camera parameters Tj,L, Kj,L and Tj,R, Kj,R. The set of
2D feature points is also distinctive for each camera, giving rise to points xj,k,L and
xj,k,R. The setup is illustrated in Figure 3.1.

Bundle Adjustment Cost Functions Introducing x ∈ {L,R}, the updated cost func-
tions for bundle adjustment are

arg min
P,X

J∑
j=1

K∑
k=1

∑
x

d(xj,k,x , Pj,xXk)2 (3.1)

for the projective case (as given by Equation (2.30)), and

arg min
K,T,X

J∑
j=1

K∑
k=1

∑
x

d
(
xj,k,x , Kj,xT−1

j,xXk

)2
(3.2)

for the metric case (as given by Equation (2.43)). Distortion is omitted from these
formulations for the sake of simplicity.
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frame j − 1 frame j + 1
StereoStereo

Xk

xj,k,L
xj+1,k,R

xj+1,k,L

xj−1,k,L

xj,k,R

xj−1,k,R

Ij−1,R

Ij,L
Ij,R

Ij+1,L

Ij+1,R

Stereo frame j

Ij−1,L

Figure 3.1: Each stereo frame consists of a left camera image Ik, L and a right cam-
era image Ik,R. In contrast to monocular SfM, there are now two sets of
corresponding 2D feature points xj,k,L and xj,k,R for the set of 3D object
points Xj .

3.4 Stereoscopic Camera Model

This section describes the camera model for stereo bundle adjustment for the metric case.
The projective formulation of SfM and bundle adjustment that has also been updated
in the previous section, is of limited use for stereoscopic input data. The representation
of the geometric constraints between the left and the right camera is not possible in the
projective framework, because transformations in the local camera coordinate system
including rotations and translations cannot be parametrized independently from the
projective camera matrix. It is thus proposed to enforce the constraints introduced by
the metric stereo camera model after an update from projective to metric space has
been performed by auto-calibration, as described in Section 2.6.
Considering a standard stereo camera setup, the first observation is that the two

cameras of the stereo system undergo only dependent motion – if the left camera
translates to the right, the right camera will inherently have to follow that same
translation. This dependency can be exploited to improve over the conventional bundle
adjustment algorithm: Instead of treating the left and the right camera as separate
entities, they are considered as elements of the same camera system. A change of
parameters introduced by the left camera will therefore influence the whole system,
and consequently the parameters of the right camera, and vice versa.

Furthermore, the total number of parameters representing the stereo camera system
over the whole stereo sequence has to be reduced to benefit from the stereo camera
model. For a consumer stereo setup, available for example as a 3D conversion lens
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Base frame origin

orientation RR
Right camera

Right camera

Left camera
orientation RL

position tR

Figure 3.2: The novel camera model for bundle adjustment. The camera geometry of
every stereo frame is given by a base frame (dashed lines), whose origin is
aligned with the center of the left camera. The orientation RL of the left
camera is encoded independent from the orientation of the base frame, al-
lowing the position of the right camera to be specified by a single parameter
vector tR (red arrow) for the whole sequence.

mounted onto a camcorder, the relative position offset of the two camera centers
(representing the baseline between the cameras) and the relative rotation between the
cameras can be assumed to be unknown but static, which significantly reduces the
number of degrees of freedom of the system over the whole sequence.
Recalling Equation (2.3) and Equation (2.4), where the camera matrix is described

by a calibration matrix K and a transformation matrix T, this can be rewritten appro-
priately for the left and write camera to yield the stereo camera model:

Pj,L = KL
[

R>L
∣∣∣0 ] T−1

j , (3.3)

Pj,R = KR
[

R>R
∣∣∣−R>RtR

]
T−1
j , (3.4)

where subscripts L and R denote parameters that are exclusive to the left and right
camera respectively. The absence of the index j from the components of the actual
stereo configuration in this case reflects that the stereo configuration is assumed to
be moving but static. The setup is illustrated in Figure 3.2. This new stereo camera
model leads to a bundle adjustment formulation different from the naïve one provided
in Equation (3.2).

Unlike consumer stereo recording equipment, which usually precludes changes to the
setup by the user, professional recording hardware allows changes to the setup, such as
the variation of the point of convergence of the two cameras, during data acquisition.
For such a setup, estimating a static frame of rotation between the cameras would not
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yield acceptable results.
Assuming the relative position offset of the two camera centers to be unknown but

constant is a constraint that is always enforced, because the baseline between the
cameras is usually not changed. As a matter of principle, there is some freedom in the
choice of the stereo system base position. Here, it is chosen to coincide with the center
of the left camera.

The rotation matrix of the left camera RL could be omitted for a static stereo setup.
However, if the point of camera convergence changes in a dynamic setup, it is necessary
to encode the orientation of the left camera separately from the orientation of the
stereo system. This is due to the fact that a rotation of the left camera would otherwise
inherently lead to a rotation of the coordinate frame in which the relative translation
of the right camera takes place (see Fig. 3.2).

Depending on the actual acquisition system in operation, parameters can be chosen
to be estimated for every frame, for a subset of frames, or for the whole sequence.
Furthermore, the intrinsic camera parameters can of course be treated as shared between
the two cameras, if this was the case at the time of recording.

3.5 Bundle Adjustment

The block structure that is exploited by the sparse Levenberg-Marquardt algorithm
for bundle adjustment has already been discussed in Section 2.7.2. In this section, it
is shown how the block structure can be modified to accommodate the stereo camera
model.
First, it is demonstrated how the structure of the bundle adjustment problem can

be modified for the estimation of joined intrinsic camera parameters, as this is needed
as a basis for the joint estimation of parameters in the stereo camera model.

Joined Intrinsic Camera Parameters Joint estimation of parameters requires split-
ting the component a of the parameter vector p into subvectors a0 and a1. The
structure of the Jacobian corresponding to this case is illustrated in Figure 3.3, upper
left. Supposing that an image sequence was recorded by moving the camera around,
but leaving all camera settings unchanged. It may thus be assumed that the intrinsic
camera parameters do not change over the course of the sequence. In this case, the
subvector a0 may represent the extrinsic camera parameters, with one set of parameters
for every image in the sequence, and the subvector a1 the intrinsic camera parameters,
with one set of parameters total. This may expressed by using the following block
structure for U:

U =
[

A>0 A0 A>0 A1
A>1 A0 A>1 A1

]
. (3.5)
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Conventional J Stereoscopic J

Conventional J>J Stereoscopic J>J

Figure 3.3: Block structure of the Jacobian matrix J (top) and the matrix J>J (bot-
tom) for Conventional bundle adjustment (left) and Stereoscopic bundle
adjustment assuming a static stereo setup (right) for a toy example con-
sisting of four images and three reconstructed 3D object points. The points
are assumed to be visible in all images. The individual block matrices
are set apart by different coloring: dark blue for the extrinsic camera pa-
rameters (Conventional) and base frame parameters (Stereoscopic), gray
for the shared intrinsic camera parameters, light blue for the left camera
orientation, salmon for the right camera position, orange for the right cam-
era orientation, and yellow for the 3D object point parameters. Note the
differences in the structure of the Jacobian between the two variants.
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Model parameters # of parameters # of vector elements designation

Base frame t, R 6 J a0
Left orientation RL 1-3 J , 1 (Joined) a2
Right position tR 3 1 a3
Right orientation RR 1-3 J , 1 (Joined), 0 (Shared) a4
Left intrinsics KL 5 J , 1 (Joined) a1
Right intrinsics KR 5 J , 1 (Joined), 0 (Shared) a1
3D object points X 3 K b

Table 3.1: Stereo model parameters with their typical parameter count, the number of
elements in the associated vector, and the designation of the corresponding
vector. Example: For a sequence of J = 10 images, a0 contains 10 elements
with 6 parameters each, i.e., 60 entries in total. Joined indicates that the
parameters are constant and are jointly estimated over the whole sequence.
Shared indicates that the respective parameters of the right camera are
estimated in combination with the corresponding parameters of the left
camera, so that there are no separate entries for these parameters in the
matrix J>J.

A>0 A0 is a block-diagonal matrix, as was the case before, but the intrinsic camera
parameters are collected into A>0 A1 and A>1 A1, a dense vector of blocks and a single
block. This structure is further illustrated in Figure 3.3, lower left.

Stereo Camera Model For the stereo camera model, the partition of a is substantially
modified:

a =
(

a>0 , a>1 , a>2 , a>3 , a>4
)>

. (3.6)

The designation of the corresponding subvectors for all parameters of the camera model
is summarized in Table 3.1, along with a listing of the number of parameters and the
number of the respective vector entries. The structure of the Jacobian matrix for this
case is illustrated in Figure 3.3, upper right. Most parameters can either be assumed to
be variable for each frame or joined (i.e., estimated conjointly) over the whole sequence.
The intrinsic parameters can also be shared for both cameras.

For the sake of simplicity, a static stereo setup with joined and shared intrinsic
parameters will be assumed henceforth, resulting in two single rotation matrices RL
and RR over the whole sequence, and a single calibration matrix K. This would be the
case in a stereo setup with a fixed convergence point, e.g., a camcorder with a 3D
conversion lens.
In principle, it would also be possible to restrict RL and RR in a way that makes

them depend on the vergence angle only. Dependent on the degrees of freedom for the
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convergence point, this results in 1 or 2 degrees of freedom for the rotation matrices
RL and RR (as indicated in Table 3.1).
Following the partition of the vector p above, the component A of the Jacobian

matrix J has the block structure A = [ A0 A1 A2 A3 A4 ], where Ai = ∂h(p)/∂ai. The
resulting block structure for the U matrix is given by

U =


A>0 A0 A>0 A1 A>0 A2 A>0 A3 A>0 A4
A>1 A0 A>1 A1 A>1 A2 A>1 A3 A>1 A4
A>2 A0 A>2 A1 A>2 A2 0 0
A>3 A0 A>3 A1 0 A>3 A3 A>3 A4
A>4 A0 A>4 A1 0 A>4 A3 A>4 A4

 , (3.7)

with 0 being null matrices of the appropriate sizes introduced by the independence of
the parametrization of the left camera from the parametrization of the right camera,
excluding the base frame and intrinsic parameters. This structure is further illustrated
in Figure 3.3, lower right. The size of the individual blocks may be derived from
Table 3.1. The layout of block A>i Aj corresponds to that of the combination of ai in
vertical and aj in horizontal direction.

When comparing the structure of the matrix J>J taken from the stereo bundle
adjustment and from a conventional bundle adjustment (see Figure 3.3, bottom row),
it becomes evident that the only block affected by the changes is the top left block,
corresponding to the matrix U (and, consequently, the matrix W).
These changes do affect the sparsity of the equation system to solve, but for an

increasing number of stereo frames only insignificantly so. Note that the Schur com-
plement trick has yet to be performed for the depicted matrices – the sparse structure
depends on point visibility, and if the majority of points is visible in most frames, the
matrix in question may not be sparse at all. A significant effect is brought about by
the reduction of overall block size, on the other hand, especially if the stereo setup may
be assumed to be static, which leads to improved computational performance.

3.6 Results
In this section, the evaluation of the stereo bundle adjustment with purely synthetic
data, rendered sequences and real-world sequences is presented.
For the synthetic and rendered experiments, the results are evaluated using three

different algorithms for bundle adjustment: a conventional bundle adjustment (denoted
as Unconstrained), a conventional bundle adjustment with joined focal length over the
sequence (denoted as Joined), and the novel stereo bundle adjustment (denoted as
Stereo). The focal length is treated as unknown but constant for Joined and Stereo,
and it is therefore estimated conjointly for the whole input image sequence, whereas it
may vary between frames for Unconstrained.
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. . .

Object points

Circular camera path

2
3

Stereo frames
1

54

Figure 3.4: The setup used in the synthetic experiments for the generation of the
ground-truth camera and 3D object point parameters. Stereo frames are
generated while the camera performs a circular motion around a set of
object points arranged on the surface of a cube.

Preprocessing For the rendered and real-world experiments, the stereoscopic image
sequences are first processed by traditional SfM, where the images of the left and right
camera are interleaved. The small displacements between the left and right camera
image are well suited for KLT tracking in this fashion. After projective reconstruc-
tion, auto-calibration is performed, and initial parameters for Joined and Stereo are
determined. Then the three different bundle adjustments are executed.

Synthetic Experiments The setup for the synthetic experiments is sketched in Fig. 3.4.
It consists of a virtual stereo configuration composed of two cameras. The cameras
execute a circular motion around a set of 296 3D object points arranged in a regular
grid on the surface of a cube. The cube has an edge length of 100mm, the radius of
the camera path is 300mm, and the opening angle of the cameras is 30 degrees.
A total of 40 stereo pairs is generated per trial, providing 80 images per sequence.

All the ground-truth measurements for the 2D feature points contained in these images
are calculated from the known ground-truth camera and 3D object point parame-
ters. In a last step before the reconstruction process, Gaussian noise with a standard
deviation σsyn is applied to the measurements.
The value of σsyn is varied, and for each value a total of 1000 trials is performed

for Unconstrained, Joined and Stereo. A different random disturbance is introduced in
the measurements each trial. For each reconstruction, a similarity transformation is
estimated to register it to the ground-truth data, and then the average absolute position
and orientation error is calculated. Stereo can be expected to yield better reconstruction
accuracy for noisy data, as the additional constraints reduce the influence of the noise on
the parameter estimation. This is evident in the results in Figure 3.5, left column. The
root-mean-square error (RMSE) in the estimated focal length is significantly reduced for
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Figure 3.5: Synthetic experiments: Average translation, rotation, and focal length
error observed for a given Gaussian error σsyn of the 2D feature points over
1000 trials. For the results in the right column, 20 percent of the feature
points were additionally disturbed by a large offset. The setup sketched
in Figure 3.4 was used for the generation of the ground-truth parameters.
The additional constraints of the camera model allow Stereo to outperform
both other methods.
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Figure 3.6: Rendered experiments: Two example stereo frames from the image
sequence augmented with the wireframe model of the virtual scene placed
using the estimated camera parameters from Stereo. The overlay fits the
true scene geometry almost perfectly.

Joined and Stereo, and Stereo shows a significant improvement over the other methods
in terms of translation and rotation RMSE in addition.
Furthermore, to simulate outliers, another test series was conducted. In this series,

20 percent of the measurements were disturbed by an offset of up to 12 pixel in addition
to the Gaussian noise. Since not all outliers can be removed in the outlier elimination
step (Section 2.4.2), the results obtained in this setting are different from the ones
shown before. Despite that, Stereo should again perform better than the other methods
in the presence of noise and outliers. This is indeed the case, as is shown in Figure 3.5,
right column. Stereo outperforms both competitors again in terms of translation and
rotation RMSE again, while it is on par with Joined in terms of focal length RMSE.

Rendered Experiments A virtual scene was rendered to obtain an image sequence
with known ground-truth parameters. Figure 3.6 shows two sample stereo frames from
this sequence (with a wireframe overlay using the camera parameters estimated by
Stereo). The findings from the synthetic tests should carry over this experiment to a
certain extent, and as can be seen from the RMSE values in Table 3.2, this is the case:
Stereo provides the best results (the wireframe fits the true scene geometry almost
perfectly in Figure 3.6), though the advantage over Unconstrained is less pronounced
than in the synthetic experiments.

Real-world Experiments The evaluation of Stereo is concluded by the application of
the algorithm to real-world image sequences.
The first image sequence was captured with a Panasonic® HDC-SDT750 consumer

camcorder with a 3D conversion lens. It depicts some pieces of garden furniture. Fig-
ure 3.7, left, shows three sample stereo frames from this sequence. The estimated
camera parameters have been used to place a cuboid on the surface of the table in
the virtual scene, which has then been rendered on top of the image material. As can
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RMSE Unconstrained Joined Stereo

Translation 1.7274mm 0.6459mm 0.5964mm
Rotation 0.0112 deg 0.0026 deg 0.0024 deg
Focal length 1.3609mm 0.0975mm 0.0600mm

Average time 719ms 860ms 733ms

Table 3.2: Rendered experiments: Average translation, rotation, and focal length
error, and average time per iteration for Unconstrained, Joined, and Stereo.
Stereo has the lowest error for all three measures. The difference in processing
time between Joined and Stereo gets more pronounced as more frames are
added, as Stereo has to estimate less parameters per additional frame.

be seen by this overlay geometry, the stereo bundle adjustment was able to obtain
excellent results for the camera parameters.

The second real-world image sequence depicts a scene at a train station from Grand
Canyon Adventure 3D (courtesy of MacGillivray Freeman Films). Professional equip-
ment was used to record this sequence. As described before, the result of the reconstruc-
tion has been used to overlay the image sequence with virtual geometry to demonstrate
the quality of the estimated parameters, which can be seen in Figure 3.7, right.

3.7 Discussion

The novel stereo camera model for use in bundle adjustment presented in this chapter
has the generality to accommodate a wide range of the stereo cameras used today,
and can be incorporated efficiently into the conventional sparse bundle adjustment
algorithms. The conducted tests show that the use of the new stereoscopic camera
model significantly increases the accuracy of the estimation in presence of noise and
outliers. The reduction in the number of parameters used to describe the model enables
significant reductions in the computation time required.

Limitations The formulation presented assumes fixed translations between the centers
of the left and right camera. This assumption is required in order not to overparametrize
the problem in respect to the conventional formulation. This could prove problematic
for camera configurations where this assumption is violated.

Future Work For future work, it would be interesting to further investigate the
implications of stereoscopic input data for the traditional processing pipeline. Though
the creation of correspondences works satisfactory with the employed image interleaving
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Figure 3.7: Real-world experiments: The frames on the left depict garden furniture
and were recorded using a consumer HD camcorder with a 3D conversion
lens. The frames on the right depict a scene at a train station and were
recorded using professional equipment. Both sequences were augmented by
a cuboid to demonstrate the quality of the estimated camera parameters.

scheme, a dedicated stereo detection and outlier elimination algorithm may further
improve the results.
Future work might also include the investigation of the effects of different types of

parametrizations on the quality of the results. To this end, extensive tests with differ-
ent stereo cameras and different parametrizations have to be conducted. Alternative
parametrizations could for example be based on a single vergence angle only.
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CHAPTER 4

A Generalized Framework
for Constrained Bundle Adjustment

This chapter introduces hierarchies of Euclidean transformations as a means for con-
strained bundle adjustment. The Euclidean transformations provide a framework able
to handle many types of camera and scene constraints simultaneously in an intuitive
and flexible way. It can be seen as a generalization of the stereoscopic camera model
for bundle adjustment described in the previous chapter.

4.1 Introduction

In the previous chapter, a stereoscopic camera model for bundle adjustment has been
introduced. This specialized model serves to reduce the number of parameters of
the overall estimation process while still representing the real camera geometry, thus
reducing overparametrization and providing enhanced reconstruction precision.
Overparametrization may not only be encountered in the description of the camera

geometry, but also in the description of the scene. Reconstructed points may be collinear,
coplanar, or share angular relations, for example. A result of overparameterization may
be an unsatisfactory reconstruction in spite of a low reprojection error.

The constraints arising from the stereoscopic camera model of the previous chapter
were introduced into bundle adjustment via additional rotational and translational
components, or more generally: transformations. Using this approach as inspiration,
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this chapter will seek to improve on the stereo camera model to provide an elegant
and intuitive framework for constraints in bundle adjustment based on hierarchies
of Euclidean transformations. Hierarchies of Euclidean transformations can be used
to represent dependencies between constraints, and allow efficient incorporation into
existing bundle adjustment procedures.

The space of constraints addressed is coplanarity, collinearity, angular relations, dis-
tances, and parallelism, which can be conveniently expressed in terms of hierarchies of
Euclidean transformations and therefore handled in a common mathematical frame-
work.

Previous methods for constrained bundle adjustment, which will be reviewed in the
next section, lack the ability to model constraints on the scene structure and on the
camera geometry simultaneously, and are typically not able to describe all constraints
in a consistent, homogenous way.
The novel approach for constrained bundle adjustment is flexible and applicable in

many different scenarios, including stereo camera and moving object modeling.
As this approach makes explicit use of the properties of Euclidean space, for the

remainder of this chapter it will be assumed that a perspective reconstruction and
metric upgrade of the input data has been performed, as described in Chapter 2.

Outline This chapter continues with a review of related work in the next section, before
methods for constrained bundle adjustment are reviewed in Section 4.3. Section 4.4
describes the new approach for constrained bundle adjustment based on hierarchies of
Euclidean transformations, and Section 4.5 provides an example of how this approach
might be used in order to construct a constrained parallelepiped. Section 4.6 presents
application examples. This chapter is concluded by a discussion in Section 4.8.

4.2 Related Work
Lagrange Multipliers The method of Lagrange multipliers is commonly used to solve
many constrained numerical optimization problems in mathematics. Triggs et al. [153]
discuss the application of the Lagrange multiplier method to bundle adjustment in
general. The matter is also described by McLauchlan et al. [102] in detail. They em-
ploy recursive partitioning in a variable state dimension filter formulation of SfM for
efficiency. Meidow et al. [103] show how the method of Lagrange multipliers can be ap-
plied to fundamental matrix estimation and the constrained estimation of homogenous
entities in general.

Weighting Schemes McGlone [101] and Hrabáček and van den Heuvel [71] present
systems for bundle adjustment that introduce geometric constraints as additional
pseudo-observations. Szeliski and Torr [143] include weighted coplanarity constraints in
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the object point optimization stage of an interleaved bundle adjustment scheme. The
last approach in particular may lead to worse convergence behavior.

Reparametrization Förstner [45] has presented an approach involving minimal rep-
resentations in projective space. Smith et al. [138] and Bartoli and Sturm [10] have
shown how coplanarity constraints can be introduced into SfM, and Cornou et al. [38]
present a system that can handle many types of constraints for user-selected points.
An interactive system with constrained optimization of data containing orthonormal
sets of lines and planes was presented by Robertson and Cipolla [125]. Fua [47] has
presented a system for the optimization of parametrized head models using bundle
adjustment. Geometric constraints are introduced into camera calibration by modeling
parallelepipeds by Wilczkowiak et al. [161]. Bondyfalat and Bougnoux [20] investigate
the application of Euclidean constraints during auto-calibration using a geometric
reasoning system, resulting in high computational cost.

Moving Objects Multibody SfM, where the scene is composed of several indepen-
dently moving, rigid objects, has been investigated by Fitzgibbon and Zisserman [44]
and Ozden et al. [118], among others. Usually only image sequences from monocular
cameras are considered, and a different set of extrinsic parameters is estimated for each
moving object for each frame.

Different Camera Representations Holmes et al. [70] have presented a relative for-
mulation for bundle adjustment, in which all subsequent frames are specified relative
to the previous ones. The stereoscopic camera model for bundle adjustment presented
in Chapter 3 may be attributed to this category. These approaches lack the ability to
handle constraints on the cameras and the scene model simultaneously.

Transformation Hierarchies Transformation hierarchies have already proven to be
an effective means of scene description in 3D modeling packages and 3D modeling
from image applications, such as the work presented by Gibson et al. [56] and van den
Hengel et al. [155].

4.3 Constrained Bundle Adjustment

Constraints in bundle adjustment are to date handled in three different ways: weighting
schemes, the method of Lagrange multipliers, and reparametrizations. This section will
briefly review the method of Lagrange multipliers and reparametrization, before the
reparametrization approach in the context of Euclidean transformations is elaborated
on in Section 4.4.
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Weighting schemes, which try to enforce the constraints through the use of weighted
residuals, are often considered to be slow and inexact (see Triggs [152]), and are therefore
not elaborated on here.

4.3.1 The Method of Lagrange Multipliers

The Method of Lagrange multipliers is an important tool for constrained optimization.
Equality constraints are directly included in the optimization formulation by forming
a Lagrange function by introducing Lagrange multipliers λ. The Lagrange function is
then optimized. Further details are given by Nocedal and Wright [116].
Assume that the observation has been made that certain 3D object points of a

3D reconstruction are coplanar in the real world. To enforce this constraint in the 3D
reconstruction using the method of Lagrange multipliers, the mathematical formulation
of the plane has to be included in the objective function. A plane can be expressed
using its unit normal vector (Nx, Ny, Nz)> and its distance to the origin d, which form
a 4-dimensional vector g = (Nx, Ny, Nz,−d)>. The distance of an arbitrary 3D point
X expressed in homogenous coordinates from the plane is then given by the expression
g>X, which evaluates to zero if the point is lying in the plane. To enforce this constraint
during optimization, the method of Lagrange multipliers augments Equation (2.43) to
create the Lagrange function

arg min
K,T,X,g,λ

J∑
j=1

K∑
k=1

d
(
xj,k , KkT−1

k Xj

)2
+
∑
k∈K

λk · g>Xk , (4.1)

where K is the set of points that are coplanar, and λ are the Lagrange multipliers.
Note that every point is required to have its own multiplier, i. e., for every constraint
introduced an additional parameter has to be added to the optimization procedure.
Distortion is omitted from the formulation throughout this chapter for the sake of
simplicity.

Optimization of this updated cost function ensures that the refined estimation results
respect the given constraint. A detailed description of the sparse structure of this
optimization problem and an overview of how to minimize the corresponding cost
function is given by McLauchlan et al. [102].

4.3.2 Reparametrization

Again, consider some of the reconstructed 3D object points to be coplanar. Given that
a point in 3D space has three degrees of freedom (DOF), it is immediately obvious that
the scene model is overparametrized, as soon as only a few points are coplanar. As a
plane has three DOF (two for an angular representation of the normal, and one for the
distance from the origin), overparametrization occurs as soon as more than three points
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are constrained. Reparametrization seeks to reduce the inherent overparametrization
by expressing the scene structure in a way that has a lower, more appropriate number
of DOF. The cost function in this case could be expressed as

arg min
K,T,X,X̄,g

J∑
j=1

∑
k/∈K

d
(
xj,k , KjT−1

j Xk

)2
+

J∑
j=1

∑
k∈K

d
(
xj,k , KjT−1

j f
(
g , X̄k

))2
, (4.2)

where f(g, X̄k) is a function that appropriately constructs the 3D position X of a point
from its position X̄ on the plane and the plane parameters g. The position X̄ on the
plane has only two DOF. Since the points are directly parametrized on the plane,
the constraints are always exactly fulfilled. Note that although a plane in 3D may be
uniquely specified by three parameters, a consistent convention for the orientation of
the plane has to be adopted and taken into account for the function f.

4.4 Reparametrization using Euclidean Transformations
This section introduces the generalized reparametrization approach based on hierarchies
of Euclidean transformations that allows the problem of constrained bundle adjustment
to be tackled with ease and flexibility.

Euclidean Transformations Recalling Section 2.3.2, a Euclidean transformation may
be represented by a 4 × 4 matrix T composed of a rotational component, the 3 × 3
rotation matrix R, and a translational component, the 3-vector t:

T =
[

R t
0> 1

]
. (4.3)

Left-multiplication to a point X applies rotation and translation in this order. In the
process, the point is transformed from the local coordinate system to the superordi-
nate coordinate system – which can either be the local coordinate system of another
transformation, or the global coordinate system (world space).
Consider again the example of several coplanar points in the scene. In the previous

section, a function f was required to convert the 2D plane coordinates of the point with
the plane parameters to 3D space. Instead of specifying this function, the corresponding
plane may also be described in terms of a Euclidean transformation T. Each 3D object
point X is replaced by its counterpart X̄ = (X̄, Ȳ , 0, 1)>, which has only two DOF.
The relation X = TX̄ then transfers points from the local coordinate system, i.e., the
plane, to the global coordinate system. The cost function can then be given as

arg min
P,X,X̄,T

J∑
j=1

∑
k/∈K

d(xj,k, PjXk)2 +
J∑
j=1

∑
k∈K

d
(
xj,k, PjTX̄k

)2
. (4.4)
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Representation A plane in 3D space is completely defined by 3 parameters, 2 for
the direction of the plane normal in polar coordinates and 1 for the distance to the
origin. Representing a plane by a Euclidean transformation with 3 rotational and 3
translational degrees of freedom leads to a redundant parametrization. As a conse-
quence of the redundancy, the Jacobian matrix of the system is rank deficient. For this
application this is not a problem in practice: The Levenberg-Marquardt algorithm has
a regularizing component and is therefore suited for the solution of such optimization
problems. This topic is further discussed in Section 4.7.

Hierarchy Euclidean transformations can be applied in a sequential fashion, in order
to establish – and optimize – a hierarchical description of the scene. An example for the
creation of a transformation hierarchy can be found in Section 4.5. In fact, a hierarchy
of Euclidean transformations has to be used whenever a desired constraint cannot be
expressed through a single transformation. Collinearity and coplanarity usually do not
require more than one transformation, while perpendicularity and parallelism do – as
does the formulation of constraint interdependencies. The transformation hierarchy
enforces that the structure of the constraint interdependency network is a tree – albeit
one that branches out to two sides. The root of this tree is located in world space, and
the leaves are represented through the 3D object points on one side, and the cameras on
the other. This ensures that there is a unique path from the corresponding 3D object
point to the associated camera for every 2D feature point, which is a requirement for
this method to work.
Taking into account the camera matrix decomposition of Equation (2.4), the cost

function of Equation (2.30) can be rewritten in a more general form as

arg min
P̃,X̄

J∑
j=1

K∑
k=1

d
(
xj, k , P̃j, k X̄k

)2
, P̃j, k = K [ I |0 ]

∏
h←Hj

T−1
h

∏
i←Ik

Ti , (4.5)

with Ij and Hk specifying sequences of Euclidean transformations Ti that transform the
corresponding point from its local coordinate system to world space, and transforma-
tions T−1

h from world space to the local coordinate system of the corresponding camera,
respectively. The left arrow ← denotes the selection of the individual transformations
in an ordered fashion.

Constraint Types Euclidean transformations can be used to emulate a wide variety
of different constraints. As has already been shown, the full transformation can be used
as a coplanarity constraint by simply reducing the DOF count per 3D object point
by one and setting the appropriate coordinate to zero. Collinearity requires only two
parameters for rotation and one parameter per 3D object point.
Orthogonality and double orthogonality can be handled similar to coplanarity by

simply placing the corresponding points in the appropriate planes of the local coordinate
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Collinearity Coplanarity Orthogonality Parallelism

Figure 4.1: Examples for different constraints using Euclidean transformations. The
origin and orientation of the coordinate systems associated with the respec-
tive transformation is shown, along with the space, in which the constrained
points are allowed to move (cyan).

system. For example, two coplanar set of points that are orthogonal to one another
could be modeled by moving one set of points to the XY -plane and the other to the XZ-
plane of the local coordinate system. Double orthogonality would then consequently
use the remaining Y Z-plane as well.
Parallelism and arbitrary angular relationships have only one free parameter, but

require a sequence of two transformations. For two sets of coplanar points that are
parallel to each other, parallelism is modeled by first creating a coplanarity constraint
for one set of points. Assuming that the constrained points are located in the XY -plane
of the local coordinate system, a second transformation is created, which introduces
an offset along the Z-axis as only DOF. The second set of points is then described in
the local XY -plane of the second transformation, effectively permitting the two set of
points to move closer together or farther apart, provided that the planes they describe
stay parallel to each other (see Figure 4.1, far right).

For constraints which require a sequence of two transformations, such as parallelism,
the actual constraint is defined in the local coordinate system of its parent.1 A visu-
alization of sample constraints can be found in Figure 4.1. Table 4.1 lists common
constraints and the number of transformations required, including the respective num-
ber of DOF.

Moving Objects In a monocular SfM setting, moving objects are represented by
estimating an additional set of extrinsic camera parameters per independently moving
object. This setup may readily be extended to comprise multiple cameras, but modeling
a moving object with one set of extrinsic parameters per camera per frame does not

1One could use only one transformation, but in that case the local coordinate system, relative to
which the constraint is defined, would be the world coordinate system.
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Degrees of freedom
Constraint type Transformations Rotation Translation
Coplanarity 1 3 3
Collinearity 1 2 3
Orthogonality 1 3 3
Double orthogonality 1 3 3

Parallelism 2 3+0 3+1
Angular relation 2 3+1 3+0

Table 4.1: Common constraints that can be expressed by Euclidean transformations.
For constraints that require two transformations, the number given for the
degrees of freedom is the degrees of freedom for the first transformation plus
the number of degrees of freedom for the second transformation.

take into consideration that the position and orientation should be the same in all
camera images for a given point in time.
Using hierarchies of Euclidean transformations, the position and orientation of a

moving object may be specified consistently by a single transformation for each point
in time.

Initialization Currently, there is no completely general solution to automatically ini-
tialize the constrained bundle adjustment. The initial, unconstrained point cloud is
instead transformed to one that respects the desired constraints by using a number
of helper functions. On the one hand, these helper functions obtain the transforma-
tions associated with specific geometric primitives, such as lines or planes, given a
set of 3D object points. On the other hand, they are also responsible for creating the
constraint interdependencies, e. g., orthogonality or parallelism structures, in order to
ensure that the desired number of DOF is respected. The order in which the helper
functions are applied is problem-specific and depends on the desired structure of the
transformation hierarchy.

Inaccuracies in the initialization are usually mitigated by the optimization process, so
that the only requirement for the initialization is that it lies within reasonable bounds
of the specified geometry.

4.4.1 Integration

In Chapter 3, partitions of the parameter vector p have been discussed for bundle
adjustment with joined intrinsic parameters and for bundle adjustment with a stereo
camera model. In the latter case, components a2, a3, and a4 have been introduced to
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accommodate the parameters of the camera model. It may be observed, however, that
these parameters obey the same overall structure as the extrinsic camera parameters
a0, albeit with two notable differences: First, the individual components do not need
full Euclidean transformations for their description. And second, the parameters are
not independent. To combine all these subvectors into a0, one has to be prepared to
increase the size of the matrix U, accept entries for off-diagonal blocks, and to eliminate
rows and columns not participating in the optimization before Cholesky decomposition.
One may thus treat hierarchies of Euclidean transformations in bundle adjustment

by using a parameter vector

p =
(
a>0 ,a>1 ,b>

)>
, (4.6)

with a0 being the parameters of all Euclidean transformations, a1 being all intrinsic
camera parameters. The matrix J>J may hence be given as

J>J =

 A>0
A>1
B>

 [ A0 A1 B
]

=

 A>0 A0 A>0 A1 A>0 B
A>1 A0 A>1 A1 A>1 B
B>A0 B>A1 B>B

 =

 U00 U01 W0
U>01 U11 W1
W>0 W>1 V

 (4.7)

In the presence of distortion, one may introduce an additional element a2 compris-
ing all distortion parameters into p. This introduces additional blocks in the overall
structure, but the overall process remains unaffected.
The requirements outlined above are a concession made to complexity and perfor-

mance: If all Euclidean transformations are handled the same, regardless of their actual
number of degrees of freedom, the description and implementation becomes easier, and
the uniformity may be exploited to gain performance increases.

Block Structure For traditional bundle adjustment, the matrix U, which corresponds
to the matrix U00 here, was block diagonal (the blocks being of size 6 × 6 for the
number of degrees of freedom of a Euclidean transformation). As mentioned above,
this only holds if all Euclidean transformations are independent (implicating that they
only describe extrinsic camera parameters and not some sort of constraint). If a more
complex camera model or scene constraints are introduced, additional off-diagonal
blocks will be created, depending on the structure of the problem. An illustration of
this is shown in Figure 4.2.

The structure of the matrix V is largely unaffected. If 3D object points are constrained,
however, the appropriate rows and columns have to be eliminated before inversion.
The block structure of all other matrices depends on the particular scene, ranging

from small, dense matrices in case of joined intrinsic parameters for image sequences
to large sparse matrices for high variety of intrinsic parameters in the input data.
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Euclidean J>J Lagrange J>J

Figure 4.2: Structure of the matrix J>J for Euclidean and Lagrange given a toy example
with three cameras and four 3D object points that are constrained to be
coplanar. The corresponding block structure for unconstrained optimization
can be found in Figure 2.7. Blue blocks denote values corresponding to
the extrinsic camera parameters, gray to the (shared) intrinsic camera
parameters, and yellow to the 3D object point parameters. Red blocks arise
from the respective type of constraints. For Euclidean, the 3D object points
only have two parameters, whereas the problem size is actually increased
for Lagrange.

Implementation To accommodate the updated camera matrices from Equation (4.5),
which contain a sequence of camera and point transformations instead of only a single
transformation for the unconstrained case, the size of the matrix U00 is simply increased.
For each Euclidean transformation, an additional row and column of blocks is added.
The matrices U01 and W0 are treated in the same way.

Although there are essentially 6 parameters added for each Euclidean transforma-
tion, not all constraints require as many (see Table 4.1). However, to simplify the
implementation, all Euclidean transformations are assumed to require the full range of
parameters. To accommodate this situation, the partial derivatives of translation and
rotation parameters that are not part of the constraint description are set to 0. Further-
more, the corresponding rows are eliminated after the construction of U00 − W>0 V−1W0,
before Cholesky factorization. In addition to being easier to implement, this strategy
has the benefit of allowing more opportunities for optimization to modern compilers,
since all matrices in the individual blocks are of the same, known size.
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Consequences Adding the constraints to U00 does not come without consequences.
Since there are dependencies between a single constraint and multiple cameras, and
between the constraints themselves, off-diagonal entries are created (see Figure 4.2).
But the sparse structure of U00 breaks down in any case during the application of the
Schur complement trick for the solution of the overall system. For applications relying
on dense matrix factorization routines, the impact may be entirely negligible; when
sparse factorization routines are used, the impact on the performance may depend
on the actual structure of the problem examined. Regardless, this only holds if the
number of constraints is small in comparison to the number of cameras. If the number
of constraints is large, the increase in computation time may be significant. In such a
case, it may be beneficial to reorder the constraints in a way that allows the block-wise
inversion of U00, much like it is done with V.

Derivative Calculation The calculation of the derivatives with respect to a single
constraint (or rather, Euclidean transformation) can be implemented in a generic way.
To this end, for a given sequence of transformations, all transformations preceding the
current one are collapsed to a single 3 × 4 matrix, while the effect of all subsequent
transformations is collapsed to a single point. The calculation is then done in an
iterative fashion over all transformations associated with the current camera and 3D
object point. An example for this is provided in the next section.

4.4.2 Example
Assume a point X to require the following sequence of transformations:

x = K [ I |0 ] T−1
1 T2 T3 X . (4.8)

In this case, T1 most likely represents the position and orientation of the camera,
while T2 and T3 describe some sort of scene constraints. As an example, assume that
the goal is to calculate the partial derivatives with respect to T3. For these partial
derivatives, all other transformations and parameters can be treated as constant, but
still have to be taken into account. As a consequence, the left hand side can be collapsed
to a single 3× 4 matrix P̃3:

P̃3 = K [ I |0 ] T−1
1 T2 . (4.9)

Substitution of this into Equation (4.8) yields

x = P̃3 T3 X . (4.10)

For the partial derivatives with respect to T2, the left hand side can again be collapsed
to a single camera matrix P̃2:

P̃2 = K [ I |0 ] T−1
1 . (4.11)
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By further observing that left-multiplication of X with a 4× 4 matrix yields again a
point, but in a different coordinate system,

X2 = T3X (4.12)

is introduced. This yields
x = P̃2 T2 X2 . (4.13)

Finally, P̃1 = K [ I |0 ] and X1 = T2 T3X may be evaluated to obtain

x = P̃1 T−1
1 X1 . (4.14)

Generalization Note that equations (4.10), (4.13), and (4.14) all are similar, except
for the use of the inverse transformation in the last equation. The partial derivatives
with respect to an Euclidean transformation T may therefore simply be calculated by
taking into account the equation

x = P̃ T X (4.15)

for arbitrary 3× 4 matrices P̃ and vectors X, or, for inverse transformations T−1,

x = P̃ T−1 X . (4.16)

4.5 Construction of a Parallelepiped
In this section, several possibilities for the construction of a hierarchy of Euclidean
transformations to model a parallelepiped are discussed. Depending on the desired
number of DOF, there a different approaches.

The cloud of 3D object points is assumed to be split into distinctive sets to represent
the individual faces of the parallelepiped: Xa for the front face, Xb for the top face,
and so forth.

No Shape Restrictions If the faces of the parallelepiped have arbitrary angular rela-
tions, the description through Euclidean transformations may be complex. In addition,
it is not unique, as there are usually several ways to arrive at the same solution.

One could start by obtaining the transformation that specifies the frontal face of the
parallelepiped, Ta, from the set of 3D object points Xa. The translational component is
given by the mean of the point cloud. The rotational component of this transformation
can be estimated by performing an SVD on the matrix composed of the mean adjusted
points and using the right singular vectors as rotation axes. By applying T−1

a to Xa and
setting the appropriate coordinate to zero, the 3D object points in the local coordinate
system X̄a = (X̄, Ȳ , 0, 1)> are obtained. The corresponding 3D object points in world
space are obtained through the relation TaX̄a.
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For the 3D object points of the top face, again a Euclidean transformation Tb can be
obtained. Since the constraints to be imposed are not independent, the transformation
is specified as Tb = T−1

a Tb and arrive at TaTbX̄b for points in world space. Similarly, the
3D object points in world space of the left side face could be given with TaTcX̄c. The
transformations Tb and Tc given here do not have 6 DOF. Translations are covered
by Ta, which leaves only rotations with respect to the front face to be captured by
these transformations. Consequently, a single rotational DOF is sufficient. Similarly,
the side face on the right is parallel to the one on the left, and thus these points can
be expressed by inserting a transformation Td with a single, translational DOF into
the hierarchy. The transformation sequence is then given by TaTcTd.

During the construction of the transformation hierarchy, the spatial arrangement of
the transformations is of great importance. Starting with Ta, which describes the frontal
face of the cube, if the origin of the subspace specified through this transformation
coincides with a top corner, the top and a side face can each be specified by a single
subordinate transformation, i. e., Tb, and Tc or Td, with the appropriate angle as only
DOF. Euler angles as rotation parametrization are a convenient choice in this case, since
individual components of the rotation can be constrained rather easily. The other face
can either be included through offset transformations with a single, translational DOF,
or through more complex relations, depending on the actual shape of the parallelepiped.

Perpendicular Faces – Cuboid A description as complex as the one from the previous
section will most likely not be necessary in practice. If the faces of the parallelepiped
are perpendicular (i. e., the shape of the object in question is a cuboid), already a single
transformation can be used to describe up to three faces. The points of three faces
can be given as (0, Ȳ , Z̄, 1)>, (X̄, 0, Z̄, 1)>, and (X̄, Ȳ , 0, 1)> in the local coordinate
system. A second transformation with three translational DOF can be used to describe
the other three faces. In this case, there is no need for any rotational components in
the second transformation.

Known Size If the size of the cuboid is known and does not need to be optimized,
the model of the previous paragraph may be simplified even further. The second trans-
formation, which was initially required to represent the unknown parameters, can be
omitted. The points on the respective planes are given by (Sx, Ȳ , Z̄, 1)>, (X̄, Sy, Z̄, 1)>,
and (X̄, Ȳ , Sz, 1)>, where the components S specify the size of the cuboid.

4.6 Application examples

This section contains three selected application examples and the corresponding results.
A summary of these examples is given in Table 4.2. For each application example,
a separate table summarizes the results, such as the RMSE after optimization, the
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Example Resolution Images Trs. Cams 2D FP 3D OP Constrained

Simple 1920× 1080 705 706 1 1302526 15553 3731
Complex 720× 576 140 150 1 52012 995 995
Stereo 960× 540 400 202 2 172427 3356 0 (3356)

Table 4.2: Summary of the data of the image sequences used in the application exam-
ples. Trs. is the number of Euclidean transformations used in the constrained
optimization procedure to model the camera geometry and and scene struc-
ture, 2D FP is the total number of 2D feature points, 3D OP is the total
number of 3D object points, and Constrained is the number of 3D object
points that were subjected to constraints. The Stereo application example
applies constraints to the camera geometry that affect all points, but not to
the scene description.

number of iterations until convergence, and the average duration per iteration for the
Unconstrained optimization, and the corresponding constrained optimizations (Euclidean
and Lagrange, if applicable). Shared camera intrinsics over the whole sequence were
enforced. All timings are given for a single-threaded implementation running on an
Intel Core 2 Quad CPU at 2.83GHz.

Simple Scene Structure The first sequence consisted of 353 images of a storefront
walk-by. A flat wall is prominently featured in the sequence. To evaluate the recon-
struction accuracy, all images except the last one were appended to the sequence again
in reverse order before processing. The extended sequence consisting of 705 images
was then processed using the standard reconstruction pipeline; the images constituting
the return path of the camera did not receive special treatment. For the constrained
reconstructions, all 3D object points corresponding to 2D feature points detected on
the flat wall had constraints placed on them to make them lie on the same plane. The
constraint assignment was performed manually. Figure 4.3 shows a sample frame from
the image sequence and details of the reconstruction for unconstrained and constrained
optimization. It is clearly visible that the coplanarity constraint is respected by the
constrained optimization. Constrained optimization was performed with the method of
Lagrange multipliers (denoted as Lagrange) and with the new approach using Euclidean
transformations (denoted as Euclidean). As the results of Lagrange and Euclidean are
visually indistinguishable only the result for Euclidean is given in the figure.

The extension of the sequence allows the evaluation of the accuracy of the result,
as the camera positions for the first half of the sequence should be the same as the
positions observed in the identical return path. The evaluation of the error between
matching camera position pairs between the first and second half of the sequence
showed an improvement in the reconstruction accuracy when constraints were used,

62



4.6 Application examples

Sample image Unconstrained Euclidean

Figure 4.3: Simple scene structure: A Sample image from the input sequence and
detail images of the reconstruction for Unconstrained and Euclidean. The
result for Lagrange is visually indistinguishable from Euclidean and therefore
omitted.

Method RMSE [pel] Iterations Avg. duration [s] Position RMSE [%]

Unconstrained 1.20 88 54.99 0.20
Lagrange 1.26 90 87.12 0.14
Euclidean 1.26 90 56.78 0.14

Table 4.3: Simple scene structure: Summary of the reconstruction RMSE, the num-
ber of iterations, and the average time per iteration. The column Position
RMSE additionally contains the average deviation of matching camera posi-
tions between the original camera path and the identical return path. The
error is given relative to the length of the respective path, since the scaling
factor of the scene is unknown. While the RMSE is slightly increased for
the results of the constrained methods, the lower position RMSE indicates
that the reconstructions are more accurate.

as can be seen in Table 4.3. As the scale of the scene was not known, the error was
measured relative to the overall length of the reconstructed camera paths

Complex Scene Structure In the second sequence, several geometric shapes are ar-
ranged on graph paper, providing ground-truth data for the reconstructed scene. The
shapes in these scene were constrained by breaking them down into three planes each.
The front plane was used as a base transformation for the whole object, leaving the
side and top planes as offset transformations. A third object required an additional
plane to model points on a plane parallel to the front plane. Feature points not used in
the modeling process were eliminated. This constraint configuration is denoted as Eu-
clidean I. For the second optimization, denoted as Euclidean II, the transformations were
restricted to orthogonal angular relations, keeping them closer to the true structure
of the scene. The results for both experiments are shown in Table 4.4 and Figure 4.4.
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Unconstrained Euclidean I Euclidean II Overlay

Figure 4.4: Complex scene structure: Orthographic detail images of the reconstruc-
tion with a ground-truth overlay in pink for Unconstrained and the con-
strained cases (Euclidean I and Euclidean II), and an image from the input
sequence with an Overlay of the ground-truth model in pink, which has
been placed with the estimated parameters of Euclidean II.

Method RMSE [pel] Iterations Avg. duration [ms]

Unconstrained 0.60 48 870
Euclidean I 0.79 35 1110
Euclidean II 0.79 35 1112

Table 4.4: Complex scene structure: Summary of the reconstruction RMSE, the
number of iterations, and the average time per iteration. Due to the addi-
tional constraints, the RMSE is slightly increased for Euclidean I and II.

Constrained optimization yields a reconstruction with reduced reconstruction error, as
can be evaluated by comparison with the ground-truth overlay.

Stereo Camera Setup The specialized stereoscopic camera model of Chapter 3 can
be expressed naturally in the generalized framework presented in this chapter. This
provides an example were the camera setup is constrained, as opposed to constraints
on the structure of the scene in the previous applications.
For a static stereo setup with negligible distortion, the stereo camera model (Equa-

tion (3.3) and Equation (3.4)) may be modeled as

Pi,L = KL [ I |0 ] T−1
L T−1

i (4.17)
Pi,R = KR [ I |0 ] T−1

R T−1
i , (4.18)

where the transformation matrices TL and TR contain the additional parameters of
the left and right camera with respect to the stereo base frame Ti, as described in
Section 3.4.
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4.7 Limitations
Increased Matrix Size Conceptually, the proposed method leads to an increase in size
of the block containing the transformation derivatives associated with the matrix U in
the block structure. When compared to traditional SfM, the increase in computational
cost for the introduction of a single transformation to model a constraint is equivalent
to adding another set of extrinsic camera parameters (e. g., another image added to the
sequence). For systems that involve many constraints, the additional cost in terms of
execution time may become prohibitive. This is especially true for applications that use
a dense matrix factorization approach; for sparse factorization approaches the impact
on the performance may be significantly less severe.
If there is a certain structure to the underlying constraints, this structure may be

exploited to completely negate the negative effects of the additional transformations
on the computation time. When modeling a moving object, for example, there is no
dependency between the different constraints, as they just signify temporal instances
of the position and orientation of the object, which are completely unrelated for the
purpose of optimization. For more complicated constraint interdependency structures,
the inherent structures of the optimization problem may also be exploited, but the
analysis may become vastly more complex.

Rank Deficiency/Gauge Freedom As mentioned before, the parametrization of cer-
tain constraints using Euclidean transformations incurs an overparametrization. For
example, a plane in 3D space can be expressed by only 3 parameters, 2 for an angular
representation of the normal and 1 for the distance to the origin. The full Euclidean
transformation has 6 degrees of freedom – 3 for rotation and 3 for translation. As a
consequence of this formulation, it is possible to modify the relative 2D position of
constrained points in the plane represented by a Euclidean transformation and the
translational parameters of the same transformation in a way that does not affect to
actual 3D structure of the scene (e. g., all points are moved along the positive X-axis,
but the origin of the local coordinate frame is translated the same distance along the
negative X-axis). This is equivalent to gauge freedom, the possibility to arbitrarily
choose an intrinsic coordinate frame.

The result of this overparametrization is a rank defect in the Jacobian matrix, which
leads to singular normal equations. However, for the results presented in this chapter,
no negative effect could be observed. This is due to the fact that the optimization
procedure used for the solution of the normal equations (which lead to a singular matrix
due to the rank deficiency in the Jacobian) is the Levenberg-Marquardt algorithm,
which is intrinsically able to handle overparametrized problems. Levenberg-Marquardt
is in fact still predominant in many areas of application of SfM, and thus these effects
should not lead to any issues or preclude the usage of this framework in many cases.
The overparametrization could be reduced by identifying and constraining special
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points for the particular constraints, e. g., a point located in the origin of the local
coordinate system (thus having no degrees of freedom) and a point specifying the orien-
tation of the local X-axis (thus having one degree of freedom), which would eliminate
the redundant degrees of freedom of the overall system. The further investigation of
this topic is left for future work.

4.8 Discussion

A new framework for constrained bundle adjustment has been presented in this chapter.
The framework, which is based on hierarchies of Euclidean transformations, provides
a flexible and intuitive tool for scene modeling, which can be included into existing
bundle adjustment procedures with a minimum of effort, compared to alternative
approaches. Furthermore, the unique properties of the Euclidean transformations com-
bined with the arrangement in a hierarchy allow for an elegant handling of constraint
interdependencies.

Euclidean transformations can intrinsically handle many important constraints used
to date – such as coplanarity, collinearity, angular relations, distances, and parallelism –
in a homogeneous manner by constraining specific elements of their rotation and
translation components. Special cases like orthogonality and double orthogonality
can be represented by a single transformation. In addition, constraints on the scene
structure are fully compatible with constraints on the camera geometry.

The proposed method has been compared to the method of Lagrange multipliers, and
was found to be comparable, both in terms of accuracy and convergence behavior. In
contrast to the method of Lagrange multipliers, however, the new framework effectively
reduces the number of parameters in the system, instead of introducing new ones.
Another advantage of the approach is uniformity. A 3D object point has at most three
parameters, while the method of Lagrange multipliers adds a parameter for every
constraint that is attached to a point. The Euclidean transformations themselves also
have at most six parameters, in contrast to an unspecified number of parameters,
which arises from the constraint itself and the Lagrange multipliers added for all other
constraints that influence it. From a software development perspective, this implicates
that Euclidean transformations can be integrated with less effort and require little
maintenance overhead.
In terms of computation time, it has been shown that it is possible to achieve

performance comparable to that of an unconstrained implementation in many cases.
This is an improvement over the method of Lagrange multipliers, which usually affects
performance.
The convergence behavior of the proposed approach is roughly similar to the cor-

responding unconstrained optimization, given that the initialization is of sufficient
quality. In cases where this cannot be ensured, caution has to be exerted. The same
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is true for cases where the user-defined scene model does not correctly represent the
true scene structure. There is a certain tolerance concerning the wrongful assignment
of feature points to constraints, but even if the assignment is correct, outliers in the
reconstruction can have negative effects on the result. In some cases, the outliers may
cause the whole optimization procedure to break down.
In summary, the presented approach is very versatile and well-suited for the shown

application examples.

Future Work The main avenue for future work will be an extensive investigation of the
effect of the rank deficiency of the Jacobian matrix on the optimization procedure as well
as the investigation of possible different parametrizations for Euclidean transformations
to counter these deficiencies on a conceptual level. Different rotation parametrizations
and their effects will also be subject of these evaluations.

Research into automatic parameter partitioning methods, similar to the procedures
employed by McLauchlan et al. [102], will also be subject of future work, in order
to counter the negative effects of a larger number of transformations on the overall
computation time. It is also left to future work to investigate the effect of the different
constraint interdependencies on the application of sparse solvers.
Other interesting topics for future research would be an in-depth review of the

uncertainty propagation and convergence behavior of the hierarchies of constrained
Euclidean transformations in bundle adjustment, the automatic or semi-automatic
detection of camera and scene constraints, and an investigation of how more general
constraints could be included efficiently in the proposed framework.
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Part II

Constrained 3D Reconstruction
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CHAPTER 5

Global Connectivity Constraints
for 3D Line Segment Reconstruction

This chapter describes a novel approach for the probabilistic reconstruction of 3D
line segments from images. The approach does not employ explicit line matching
across views, but instead performs independent reconstructions while enforcing global
topological constraints between neighboring 3D line segments, which are then merged.
During the merging process of the partial reconstructions, outliers may be identified
and eliminated easily. The proposed method, which is well-suited for the automatic 3D
reconstruction of man-made environments, is more robust to image noise and partial
occlusions than previous methods relying on explicit line matching across views. This
chapter is based on work by Jain et al. [76].

5.1 Introduction and Outline

In many areas, the need for virtual 3D models is ever increasing. The applications are
numerous, ranging from movie productions to games and other virtual environments.
Creating these 3D models is a complicated and tedious process, however, and a high level
of skill and expertise is required from the creator. A different approach is 3D scanning,
but the equipment is usually expensive and cumbersome. Hence both approaches lack
accessibility.

A viable alternative to manual modeling or 3D scanning is automatic 3D reconstruc-
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tion from images. SfM, which has been introduced in Chapter 2, is traditionally used to
obtain an initial reconstruction of the scene, which may then be processed further with
different methods in order to reconstruct 3D models from images. There have been
several methods proposed in the literature that estimate detailed 3D models based
on the sparse point cloud produced by SfM, such as the work by Gibson et al. [56] or
Vogiatzis et al. [157], for example.

3D Line Segment Reconstruction One instance of such an approach relying on prior
information obtained through SfM is the reconstruction of 3D line segments from
images, which is considered in this chapter. Straight line segments are ubiquitous in
man-made environments, indoors and outdoors, and also common in man-made objects.
Reconstructions based on 3D line segments are thus well-suited for this kind of setting,
including the reconstruction of building exteriors and the creation of urban 3D models.
The reconstructed lines may then again serve as a basis for planar reconstruction,
as described by Scholze et al.[133], for example. Planar areas are established by first
creating a reconstruction of 3D line segments, and then sweeping 3D space to find the
best fitting plane.
Traditional formulations for 3D line reconstruction, which will be reviewed in the

next section, do not take into account the global topology of the line segments, and
hence operate only locally. The matching process for line segments across images is thus
complicated by spurious or missing detections due to image noise or partial occlusions.
These shortcomings are addressed by the approach presented in this chapter.

Summary of the Approach After the detection of line segments in the input images,
the unknown depth parameters of the 3D line segment end points are expressed as
random variables. The discrete probability distribution on the different states (i. e.,
depth values) of the line segment end points are determined using a sweeping-based
approach. Line connectivity information between neighboring line segments is then
obtained based on the depth values of their respective end points: if the end points in
question share the same depth, the line segments are assumed to be connected. This
leads to a joint probability distribution of the depth values of the end points of all 3D
line segments, in which they are conditioned with the line connectivity information. The
joint distribution can be factorized as a graphical model, and loopy belief propagation
can be used on the corresponding factor graph to obtain the depth values for all segment
end points that maximize the joint probability. These depth values yield the globally
optimal reconstruction of the 3D line segments.
This process is repeated for all input images, each time yielding a subset of all

3D line segments that comprise the scene. The resulting partial reconstructions are
merged, which permits to perform outlier elimination based on the redundancy across
the different images.
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Contributions In summary, this chapter introduces a probabilistic estimation algo-
rithm for 3D line segments that takes the global topology of line connections into
account. The additional constraints for the 3D reconstruction make the algorithm per-
form better than local approaches, which will be demonstrated in the evaluation. The
3D line segment estimation algorithm uses a sweeping-based approach that does not
require explicit line correspondences across views for line segment localization. Solving
the correspondence problem for line segment matching, which may be complicated due
to image noise and partial occlusions, is thus not required. Finally, an algorithm for
line grouping and merging is presented, which allows the combination of the partial
reconstructions obtained for the different input images into a global reconstruction.
Outlier elimination can easily be performed during this process.

Outline This chapter is organized as follows. After the review of related work in the
next section, the mathematical description of the 3D line segment reconstruction prob-
lem is given in Section 5.3. An overview over the new probabilistic formulation of the
problem can be found in Section 5.4, followed by a structured and detailed description
of the individual steps. Section 5.5 covers the evaluation of the algorithm. The chapter
is concluded by a description of the limitations of the approach in Section 5.6 and a
discussion in Section 5.7.

5.2 Related Work
Research concerning the reconstruction of straight 3D line segments from images can
broadly be divided into two categories: epipolar matching and line-based SfM. For
epipolar matching, the search space for the matching problem is reduced by exploiting
the known epipolar geometry between images. Line-based SfM on the other hand is
geared towards the estimation of camera and 3D line segment parameters from known
(user-specified) line correspondences.

Epipolar Matching The epipolar beam – the line-equivalent to the epipolar geometry
for 2D feature points discussed in Section 2.4.2 – is extensively used to perform line
matching across images. Although the epipolar geometry is given, line matching across
views is still a difficult task due to the weaker geometric constraints in comparison to
point matching.
Baillard et al. [9] use the epipolar beam to establish correspondences between lines

in different views by evaluating the normalized cross-correlation scores of line patches.
Reconstruction of the 3D line segments is then straightforward by performing the
intersection of the half-planes defined by the lines of sight through the end points of
the 2D line segments. Moons et al.[113] also use the epipolar geometry to restrict the
line matching process to small regions. As their method is geared towards aerial footage,
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they are able to take flight path information into account for the 3D reconstruction
of the line segments. They report difficulties for longer lines that must be matched to
more than one shorter line segment in different views. The method by Woo et al.[162]
is based on stereo matching, which provides a disparity map for two images. Through
the known disparity, the search space for matching candidates is greatly reduced. Heuel
and Förstner [67] describe a system that employs geometric reasoning to match line
segments through the use of geometric constraints in a probabilistic framework. The
method, which takes uncertainty due to measurement noise into account, again starts
from constraints arising from the epipolar geometry.

Line-based SfM Similar to Chapter 2, SfM based on line features relies on the pro-
jection of the 3D line segments into the images, where it allows the evaluation of
a distance-based cost function with the corresponding 2D line segments. The line
correspondences these approaches require to work are to date established manually.
The approach by Taylor et al.[144] uses a hybrid optimization to achieve a globally

optimal reconstruction of the 3D line segments and camera parameters for given 2D
line segment correspondences. Similar SfM formulations have also been presented
by Bartoli and Sturm [11] and Schindler et al.[132], for example. The latter method
additionally takes vanishing point information into account, in order to reduce the
number of parameters in the optimization procedure. Finally, Martinec et al.[98] use a
linear factorization-based approach for the reconstruction.

5.3 Problem Statement
The scene model for the constrained reconstruction of 3D line segments is similar to
the one already presented in Section 2.2. The input data again consists of J images Ij ,
with j = 1, . . . , J , of a scene. The goal is to estimate the configuration of the 3D line
segments corresponding to the 2D line segments detected in these images.

Scene Model The set of all K 3D line segments Lk comprised in the description of
the real world scene is denoted as L:

L = {L1,L2, . . . ,LK} . (5.1)

Each individual 3D line segment Lk is described by its start and end points Xs
k and

Xe
k. These points are equivalent to the 3D object points X introduced in Section 2.3:

X ∈ P3 , X = (X,Y, Z, 1)> . (5.2)

The set of 3D line segments visible in image Ij is denoted by Lj ⊆ L. Corresponding
to the set Lj , there is a set of 2D line segments Ej :

Ej = {lj,1, lj,2, . . . , lj,K} , (5.3)
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Image Ij+1

xsj,k

xej,k

Xe
k

Xs
k

2D line segment lj+1,k
Image Ij−1

Image Ij

Object

3D line segment Lk

Figure 5.1: 3D line segments Lk are represented by their start point Xs
k and end

point Xe
k. Their projection into image Ij yields a 2D line segment lj,k with

start point xsj,k and end point xej,k.

consisting of 2D line segments lj,k. Each individual 2D line segment lj,k is described
by its start and end points xsj,k and xej,k. These points are equivalent to the 2D feature
points x ∈ P2 introduced in Section 2.3. The scene model is illustrated in Figure 5.1.

Projective Mapping If provided with a camera matrix Pj for each image Ij , the
mapping

Lj 7→ Ej : lj,k = Pj(Lk) ∀ Lk ∈ Lj , lj,k ∈ Ej (5.4)
from the 3D line segments to the corresponding 2D line segments in the images is given
by the back-projection of the start and end points of the 3D line segments,

xsj,k ' PjXs
k and xej,k ' PjXe

k , (5.5)

in accordance with Equation (2.3). Note that the effect of distortion is considered to
be negligible in this chapter, with distortion thus being omitted from the formulation
for simplicity. The back-projected 2D points xsj,k and xej,k in Equation (5.5) are not
expected to be visible in all views due to occlusions or back-projection outside the
image area; they are considered to be virtual points.

Objective The reconstruction approach described in this chapter aims to estimate
the set of 3D line segments

L =
J⋃
j=1
Lj (5.6)

by leveraging the information represented by sets of detected 2D line segments Ej and
the corresponding camera matrices Pj .
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True 3D line segment
Line of sight

Possible 3D line segments

Image
xe

xs

Xs

Xe

−Z

Y

X

Figure 5.2: The lines of sight through the start and end points {xsj ,xej} of the de-
tected 2D line segment restrict the possible positions for the start and end
points {Xs

j ,Xe
j} of the corresponding 3D line segment.

Preprocessing The formulation of the problem given above requires a set of detected
2D line segments Ej and a camera matrix Pj for every image Ij to be determined in a
preprocessing step. The sets of 2D line segments Ej are established by using a straight
line detector based on image gradients obtained with the edge detector proposed by
Canny [30]. The camera matrices Pj corresponding to the images Ij can be obtained
by traditional SfM, as described in Chapter 2.

5.4 Probabilistic Reconstruction of 3D Line Segments

The start and end points xs and xe of a single detected 2D line segment l restrict the
spatial position of the corresponding 3D line segment L: the start and end points of L,
Xs and Xe, have to lie on the line of sight through the corresponding 2D point. This
is illustrated in Figure 5.2. It is thus possible to parametrize the 3D points Xs and Xe,
which have only one degree of freedom, by their Z-coordinates, Zs and Ze. For a given
Z-coordinate, the corresponding X- and Y -coordinates in the local camera coordinate
system can be calculated with the help of the 2D positions xs or xe in the image plane.

Probability Distribution By interpreting Zs and Ze as discrete random variables,
a probability distribution p(L) over the space of possible orientations for a 3D line
segment L can be defined:

p(L) = p(Zs, Ze) . (5.7)
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Section 5.4.1 describes how this probability distribution may be obtained. The optimal
position for the 3D line segment is given by

arg max
Zs,Ze

p(Zs, Ze) . (5.8)

Connectivity The previous paragraphs have modeled the probability distribution of
the position of a single 3D line segment. This model will now be extended to cover
multiple lines and their connections. Let A be the set containing the connections
between all 3D line segments Lk. This set then describes the global 3D line segment
topology of the scene. Connections between 3D line segments Lp = {Xs

p,Xe
p} and Lq =

{Xs
q,Xe

q} are expressed by an equivalence relation for the connected points. This
equivalence relation is indicated by A via

A =
{
αa,bp,q = 1 if Xa

p = Xb
q with a, b ∈ {s, e}

αa,bp,q = 0 else
. (5.9)

The size of A is given by 4A(A−1), with A being the total number of 3D line segments
in the scene, as start points can be connected to end points and vice versa. The set Aj
is the set of line segment connections corresponding to the topology of Lj for image Ij .
How the initial sets Aj can be obtained is described in Section 5.4.2.

Joint Probability Distribution Given a set of 3D line segments Lj and the correspond-
ing set of connections Aj for an image Ij , the joint probability distribution is given by
p(Lj |Aj). The globally best position of all 3D line segments Lj is given by the states
at which the random variables Zsk and Zek lead to a maximum in the joint probability
distribution while taking the global line connectivity information into account:

arg max
Lk

p(Lj |Aj) . (5.10)

Solution Finding a solution to the optimization problem of Equation (5.10) directly
is NP-hard1, but the initial line connectivity information Aj can be used to factorize
the joint probability distribution p(Lj |Aj) using a graphical model. The max-product
for the distribution on the graph can then be found by loopy belief propagation, thus
optimizing Equation (5.10). After the best positions for the 3D line segments have
been found based on the initial connectivity information, the line connectivity may be
refined, followed again by the estimation of the best line positions. Line connectivity
refinement and line position estimation is alternated until convergence. This process
will be elaborated on in Section 5.4.3.

1Exact and approximate probabilistic inference and related problems have been shown to be NP-hard
on general graphs. More information can be found in the survey by Guo and Hsu [58], for example.
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Extension To extend the above procedure to multiple images Ij , an individual recon-
struction of the visible subset of 3D line segments Lj ⊆ L is first performed for each
image. The grouping and merging strategy for the creation of the conjoined set L given
by Equation (5.6) will be discussed in Section 5.4.4. This section will also describe how
lines from more than one image may be used to remove outliers.

5.4.1 Line Sweeping
This subsection covers the definition and calculation of the probability distribution p(L)
used in Equation (5.8), based on work by Collins [37].
The definition of the probability distribution p(L) is based on the assumption that

the cumulative gradient overlap of the back-projection of a 3D line segment L in
an image is proportional to its probability of taking a certain position in 3D space.
To calculate the probability p(L), all possible positions of a 3D line segment L are
evaluated by varying the Z-coordinates Zs and Ze of the start and end points of the
line segment. The coordinates are given in the local camera coordinate system of the
image Ij where the corresponding 2D line segment was detected. Each possible 3D line
segment is back-projected into the other images Ij′ , with j′ 6= j, using Equation (5.5).
Restrictions on the spatial proximity and camera orientation are enforced to prevent
occlusions: if the camera positions for Ij and Ij′ are too far apart, or if the angle
difference between the corresponding principal axes is above 45 degrees, the image Ij′
is excluded from the probability calculation.

Cumulative Gradient Overlap Evaluation The back-projection of the 3D line segment
into image Ij′ yields 2D start and end points xsj′ and xej′ . The enclosed 2D line segment
is divided into Ml equidistant points ym, m = 1, . . . ,Ml. For every point ym created,
a set Ym of My measurement points perpendicular to the 2D line segment is evaluated
on both sides. This configuration is illustrated in Figure 5.3.
Taking all these measurements into account, the probability of the 3D line seg-

ment L (Zs, Ze) can be evaluated as

p(L) ∝
∑
j′

Ml∑
m=1

∑
ȳ∈Ym

∥∥∇Ij′ (ȳ)
∥∥ e−γ‖ȳ−ym‖

2

‖My‖2 , (5.11)

where ∇Ij′ (ȳ) is the gradient image corresponding to image Ij′ evaluated at position ȳ,
and γ is a scaling factor. The probability values are evaluated for all depth values Zs
and Ze in order to get the whole distribution p(L). In practice, the Z-values are
restricted to lie in a problem-specific range based on the initial 3D reconstruction, in
order to reduce the computation time.

The probability distribution, which is calculated for all lines in Lj for all relevant base
image Ij , is sufficient to determine the optimal 3D line segments with Equation (5.8).
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Gradient image

Back-projected 2D line segment l

xs

xe

Figure 5.3: Evaluation of the cumulative gradient overlap. The small green dots in
direction perpendicular to the back-projected line segment l represent mea-
surement points where the gradient image is evaluated in order to calculate
the overall score.

5.4.2 Connectivity Initialization
This subsection describes how an initial set Aj of 3D line connections for the factor-
ization of the joint probability in Equation (5.10) can be obtained.
To determine Aj , pairwise connections between the 2D line segments are evaluated.

This evaluation is only performed for pairs of line segments that have a start or end
point of one segment located within a circular region of a start or end point of the
other segment, as illustrated in Figure 5.4, a).

Evaluation The evaluation of a pair of 2D line segments {Lp,Lq} consists of the
calculation of the unconnected cost Up,q and the connected cost Cp,q. The unconnected
cost

Up,q =
(

arg min
Lp,Lq

− log (p(Lp) · p(Lq))
)

(5.12)

assumes that the line segments Lp and Lq are statistically independent, and the prob-
ability distribution is determined separately for each segment using Equation (5.11).
For the connected cost

Cp,q =
(

arg min
L̄p,L̄q

− log
(
p
(
L̄p
)
· p
(
L̄q
)) )

−B (5.13)

the notation L̄ indicates that the probability distribution of the two 3D line segments
is evaluated while the Z-coordinates of the connected start or end points are identical.
The scalar B is a user-defined bonus term that encourages line connections. This
term is required because the unconnected cost would always be at most as high as
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Figure 5.4: Optimization process overview: a) Line segment start and end points are
used to create connection candidates based on their proximity. b) Pairwise
evaluation of the connected cost Cp,q and the unconnected cost Up,q yields
the initial line segment connections. c) Factor graph for loopy belief propaga-
tion obtained from the initial line connectivity information. d) Calculation
of the additional cost of the global connections per line segment. e) If the
largest additional cost is larger than a threshold value, the corresponding
connection is erased. Steps c) to e) are repeated until convergence.
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the connected cost if B was omitted. If Cp,q < Up, q, the line segments are connected
by setting αp,q = 1 in the set Aj . If not, the initial value αp,q = 0 is not modified.
In Figure 5.4, b), a possible connected topology is shown for the example given in
Figure 5.4, a).

5.4.3 Belief Propagation and Connectivity Update

The initial line connectivity information Aj can be used to create a factor graph for
loopy belief propagation (an illustration can be found in Figure 5.4, c). The variables of
the factor graph are the unknown Z-coordinates of the 3D line segment start and end
points. Each factor vertex is connected to two of those variables to create a connection.
Taking this into account, the joint probability from Equation (5.10) may be expressed
as

p(Lj |Aj) =
∏
k

p
(
L̄k
)

, (5.14)

with L̄k being again the 3D line segments with connected start and end points (where
appropriate). This means that if start or end points of the line segments are connected,
they have to be represented by the same random variable. The probability distribu-
tions p(L) are calculated as described in Equation (5.11). The optimization problem
that has to be solved is thus

arg max
Lk

∏
k

p
(
L̄k
)

. (5.15)

The optimal positions for the 3D line segments given the prescribed global connectivity
can be obtained using loopy belief propagation on the factor graph.

Belief Propagation and Factor Graphs Belief Propagation described by Pearl [122]
is a message-passing algorithm for the efficient propagation of the impact of new ev-
idence through Bayesian networks (Pearl [123]). It may be considered as an instance
of the sum-product algorithm working on a factor graph, as summarized by Kschis-
chang et al. [88]. They also discuss relevant modifications necessary for the application
of the algorithm to Equation (5.15), the problem at hand: The sum-product algorithm,
which is initially geared towards calculating the a posteriori probabilities of the nodes,
can be reformulated into a max-product algorithm to yield the configuration with the
largest a posteriori probability: summarily speaking, summation during belief update
calculation is replaced by the max operator. In addition, they also describe methods for
coping with loops in the factor graph, thus permitting the calculation of an approximate
solution by loopy belief propagation.

Both the seminal book by Pearl [123] and the paper by Kschischang et al. [88] contain
more detailed descriptions and further information about these topics.
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Connectivity Update After belief propagation, the additional cost ∆Ck introduced by
the line connectivity is evaluated for every 3D line segment Lk that has any connections
to other segments:

∆Ck = − log
(
p
(
L̂k
))
−
(

arg min
Lk

− log (p(Lk))
)

, (5.16)

where L̂k are the optimal global 3D line segments obtained by belief propagation. The
subtrahend in the above subtraction is the cost for the hypothetical case that the
3D line segment is unconnected, as given in Equation (5.8). If the highest additional
cost ∆Ck is above a user-defined threshold τ , the corresponding connection is erased.
Belief propagation is then performed again with the updated factor graph, and the
whole procedure is repeated until all ∆Ck are smaller than τ . The positions of the 3D
line segments Lj and the connectivity Aj are thus optimized conjointly.

5.4.4 Line Grouping and Outlier Elimination

The above process is repeated independently for all images Ij , resulting in independent
sets Lj of 3D line segments. This subsection describes a procedure to group correspond-
ing 3D line segments across images, based on their spatial proximity. Groups of 3D
line segments are then merged and replaced by a single 3D line segment, as required
by Equation (5.6).

Line Segment Grouping A cylindrical region is defined around each 3D line segment,
with the normal of the cross section of the cylinder being orientated in the direction
of the line segment. The cylinder is extended in height by 10 percent at the top and
bottom past the line segment start and end points, along the direction of the 3D line
segment. If both the start and end point of a 3D line segment from another base image
are contained in this cylinder, it is grouped together with the one that serves as basis
for the cylinder. See Figure 5.5 for an illustration of the grouping procedure.

Line Segment Merging Once all groups have been established, each group is merged
into a single 3D line segment. To this end, a new 3D line segment is generated along the
principal component direction of the grouped line segments. The principal component
direction is obtained as eigenvector corresponding to the largest eigenvalue of the
scatter matrix of all start and end points of the grouped line segments. The length of
the newly created segment is defined by the maximum extent of the projection of all
group points onto the principal component direction, thereby creating a new start and
end point at the maximal and minimal value.
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Encircling cylinder

3D line segments from
different base images

Outlier

Figure 5.5: For grouping, encircling cylinders are created for every 3D line segment.
If 3D line segments from other images are fully contained in a cylinder,
the respective segments are grouped together. All 3D line segments in a
group are later merged and replaced by a single 3D line segment. 3D line
segments not contained in any group are considered to be outliers.

Point Recalculation The established connections between the 3D line segments may
be disturbed by the grouping process. To re-enforce the connections, updated start
and end point positions X̂p

k and X̂q
k are estimated by optimizing the cost function

arg min
X̂s
k,X̂

e
k

∑
A
αa,bp,q

(∥∥∥X̂a
p −Xb

q

∥∥∥2
+
∥∥∥X̂a

p −Xa
p

∥∥∥2
)

, (5.17)

where αa,bp,q = 1 capture all connections remaining in the set A.

Outliers All 3D line segments that are not contained in any group are considered to
be outliers. These outliers are removed from the final reconstruction.

5.5 Results
In this section, the approach for probabilistic 3D line segment reconstruction with
global connectivity constraints presented in this chapter is evaluated. There are 3
data sets presented: a synthetic data set, a data set captured in a lab environment
including a laser scan for ground-truth evaluation, and a data set captured outside
with a consumer DSLR camera. The reconstruction results for the unconstrained 3D
reconstruction are denoted as Unconstrained, while the results for 3D reconstruction
with global line connectivity are denoted as Constrained.

In the generation of these results, the software library implemented by Mooij [112]
has been used to perform loopy belief propagation.
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Constrained Textured Wireframe

Figure 5.6: Timber-frame house (rendered scene): Sample images from the data set
(top row), results for Constrained, and the corresponding view rendered in
Textured and Wireframe mode (bottom row). The line reconstruction is
color-coded: blue indicates a low error, red a high error, and black an error
larger than 0.5m with respect to the ground-truth model.

Synthetic Experiments For the synthetic experiments, an image sequence consisting
of 240 images with a resolution of 1280× 960 pixels was generated from a virtual 3D
model of a timber-frame house. Sample images from this sequence can be found in
Figure 5.6, top row. Table 5.1 shows a comparison of the RMSE values of Unconstrained
and Constrained with respect to the ground-truth 3D model. The table lists RMSE
values for different cut-off thresholds. Line segments that exhibit error values above
this threshold are considered as outliers and the values are not included in the RMSE
calculation. Constrained consistently leads to lower RMSE values and thus yields a
result of higher accuracy. The result for Constrained is also shown in Figure 5.6, bottom
left, where the error values are color-coded. The large majority of the line segments
have a very small reconstruction error.
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RMSE [m]
Unconstrained Constrained Threshold [m] Improvement [%]

0.3361 0.1970 none 41.1
0.2019 0.1810 3.5 10.3
0.1918 0.1736 2.5 9.4
0.1470 0.1262 1.5 14.1
0.0964 0.0807 0.5 16.2

Table 5.1: Timber-frame house (rendered scene): RMSE values for Unconstrained
and Constrained with respect to a ground-truth 3D scan. The RMSE is given
for different error cut-off thresholds. Constrained yields significantly better
error values in all cases.

Outlier elimination, as described in Section 5.4.4, is performed for both Unconstrained
and Constrained before RMSE calculation, in order to make Unconstrained more com-
petitive. A comparison between the results before and after line grouping and outlier
elimination is shown in Figure 5.7.

Lab Experiment: Toy Blocks The second data set was recorded with an HDV cam-
corder in a lab environment and consists of 84 images at a resolution of 1440×1080 pixels.
It depicts red and yellow toy blocks on a planar black-and-white checkerboard. The
edge length of the checkerboard squares is 50mm. To create data for ground-truth
evaluation, a reconstruction of the scene was also performed with a commercial laser
scanner. SfM was used to create the camera matrices, and the laser scan data was
aligned using feature points provided by the checkerboard. Sample images from the
input data as well as reconstruction results for Unconstrained, Constrained, and the laser
scan are shown in Figure 5.8. The RMSE values are listed in Table 5.2. Constrained
again significantly outperforms Unconstrained in terms of RMSE and provides excellent
reconstruction results, which can also be assessed visually in Figure 5.8. For the low-
est error cut-off threshold (5mm), the improvement is only 3.3%, but this particular
comparison may already be affected by the measurement error of the laser scanner.

Real-world Experiment: Houses The third 3D line reconstruction was performed for
a set of 20 photos of semi-detached houses taken with a consumer DSLR camera in an
outdoor low-light situation. Due to this, the images exhibit a high degree of pixel noise.
Sample images along with the resulting 3D line segment reconstruction with global
connectivity constraints are depicted in Figure 5.9. As can be seen, the reconstruction
result is excellent and includes many fine details, such as the tiles of the rightmost
house.
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Figure 5.7: Timber-frame house (rendered scene): Comparison of a 3D line recon-
struction before (left) and after line grouping and outlier elimination (right).
Lines corresponding to the back-facing part of the scene are excluded from
both visualizations to promote clarity.

Unconstrained Constrained Laser scan

Figure 5.8: Toy Blocks (lab scene): Sample images from the data set (top row), and
results for Unconstrained, Constrained, and the Laser scan used for ground-
truth evaluation (bottom row). The line reconstructions are color-coded:
blue indicates a low error, red a high error, and black an error larger than
5mm with respect to the laser scan. Constrained has a very low error overall.
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Figure 5.9: Houses (real-world scene): Sample images from the data set (top row)
and the resulting 3D line segment reconstruction with global connectivity
constraints (middle and bottom row). The reconstruction includes many
fine details, such as the tiles on the rightmost house.
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RMSE [mm]
Unconstrained Constrained Threshold [mm] Improvement [%]

10.66 9.65 none 9.4
8.87 6.29 75.0 29.1
7.41 4.30 50.0 42.0
5.48 3.83 25.0 30.1
2.36 2.28 5.0 3.3

Table 5.2: Toy Blocks (lab scene): RMSE values for Unconstrained and Constrained
with respect to the ground-truth 3D scan. The RMSE is given for different
error cut-off thresholds. Constrained yields better error values in all cases.
For the lowest threshold value, the result may already be influenced by the
measurement error of the 3D scanner.

5.6 Limitations
Computation Time The sweeping-based approach of Section 5.4.1 is computationally
more expensive than explicit 2D line matching, as all possible Z-coordinates have to be
evaluated. For the examples presented in this chapter, the highest computation time
was in the order of 8 to 10 hours. For an even higher number of images, time in excess
of that given may be required for computation.

Sweeping Range Another limitation of the sweeping-based approach is that the range
in which the Z-coordinates are evaluated is limited in order to reduce the computation
time. This implies that 3D line segments that are really located outside this range
(typically farther away from the camera than anticipated) cannot be reconstructed
correctly.

3D Line Segment Merging During the grouping and merging step of the individual
sets of 3D line segments, distinct 3D line segments that lie in close proximity to one
another may erroneously be merged together although they should be kept separate.

5.7 Discussion
In this chapter, a novel approach for probabilistic 3D line segment reconstruction
from image sequences has been presented. Straight 2D line segments are extracted
for all input images, followed by the estimation of an initial reconstruction per image.
Based on this initial reconstruction, connections between neighboring 3D line segments
are established automatically, which sets this method apart from existing approaches.
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Optimization by loopy belief propagation and updates of the connectivity information
are then iterated until convergence. The final reconstruction is obtained by grouping
and merging the 3D line segments from the individual views, which is also used to
perform outlier elimination.
The additional geometric connectivity constraints significantly improve the recon-

struction, which has been demonstrated by the evaluation with ground-truth data. The
RMSE can by reduced by approximately 20 percent.

Explicit 2D line matching is not needed due to the use of a sweeping-based approach.
It is thus possible to reconstruct lines in situations where matching-based approaches
would fail, e. g., because the corresponding line segment is not detected in neighboring
views due to noise or partial occlusions.

An automatic approach for the merging of partial reconstructions has also been
presented in this chapter. 3D line segments are grouped together based on their spatial
proximity and then merged and replaced by a single segment. Line segments that are not
contained in any group are considered as outliers and removed from the reconstruction.
As shown in the results, almost all outliers are eliminated by this approach.

Future Work In the future, additional geometric constraints are a topic for investiga-
tion. Such constraints could be the perpendicularity of 3D line segments, for example,
which is often present in man-made environments. The reconstruction could also serve
as a starting point for closed surface reconstruction algorithms. Another interesting
topic would be the inclusion of the camera position and orientation into the probabilistic
formulation of the reconstruction problem.
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CHAPTER 6

Symmetry-aware
Template Deformation and Fitting

This chapter describes a new method for dense 3D reconstruction from low-quality scan-
ning data. The reconstruction of a specific object is performed with the aid of a coarse
template model, which is deformed by an iterative closest points (ICP) framework
with thin-plate-spline regularization. During deformation, the characteristic high-level
features of the template are preserved for different variants of the same type of ob-
ject in order to obtain more plausible reconstructions than previous variants of ICP.
The high-level invariants in consideration are the partial symmetry structures of the
template models under Euclidean transformations. This chapter is based on work by
Kurz et al. [90].

6.1 Introduction and Outline

Nowadays, the creation of virtual content is among the most important aspects in
many areas, be it for movie productions, computer games, or other applications, such
as virtual museums. Although numerous techniques exist that permit the representation
and rendering of increasingly complex scenes, the challenge lies in the fact that the
creation of the input data for these techniques – 3D models and similar – is still a
tedious task. Further, the creation of high-quality content is a form of art and requires
appropriate levels of skill and expertise. These issues with modern content creation
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have already been identified as a motivation for the development of new algorithms
and techniques at several points in this thesis.
Concerning the creation of 3D models of real objects, three approaches can be

distinguished in principle: the manual creation of the 3D models, the use of 3D scanning
hardware, and the use of pre-existing models.

Manual Modeling The traditional and still most common approach to the creation of
virtual objects is modeling from scratch. There are many software packages available
to aid in this task, and a lot of research is focused on making the editing process
more efficient (see the survey by Mitra et al. [110]). This is achieved by analyzing the
object during modeling and detecting properties consistent with a certain structure
model. Ideally, this structure model captures the common properties of a larger class
of similar shapes, and thus facilitates interactive editing by automatically maintaining
these properties.

3D Scanning The alternative to manual modeling is the use of 3D scanning hardware
or some other sort of visual 3D reconstruction approach. However, this is only a viable
approach if the sought virtual model is very similar to a physical object available – and
the actual real object is suited for scanning. Another drawback of this method is that
it is subject to the issues commonly associated with all optical acquisition methods:
noise, occlusions, and structured outliers – there may also be problems caused by the
inaccurate registration of partial scans. This is especially true for inexpensive consumer
equipment, such as the Microsoft Kinect. As a consequence, there may be a significant
amount of manual modeling required before the scanned model can be used for its
intended purpose. Aside from cleaning up the reconstruction, many applications require
a certain mesh quality and thus necessitate a complete manual re-tessellation.

Pre-existing Models Ready-to-use 3D models are widely available on the internet.
There exist numerous websites that will host user-created models, and some services,
such as Trimble® 3D Warehouse (formerly Google 3D Warehouse™), even provide
facilities for the users to directly create content. Shape libraries containing a selection of
professional-grade 3D models, such as The Archive by Digimation®, are also available
for purchase. It is reasonable to assume that a model at least similar to the object
to be scanned can be found, although it may be necessary to further edit the model,
depending on the requirements of the application. If the model is of poor quality or
not suitably close to the target object, the amount of work required for the editing
process may come close to or even exceed that of modeling from scratch.

Shape libraries typically contain many different models per object class, but it is
unlikely that they contain the exact same model the user is trying to obtain. Especially
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for non-trivial classes, such as furniture and household items, the shape space is high
dimensional and has many degrees of freedom – exhaustive coverage would require
more instances per object class than even a very comprehensive shape library could
reasonably provide. This is a consequence of differences in shape geometry, though.
Finding a model with the exact same geometry is very unlikely. Finding a model
with similar structure, on the other hand, is much more probable. For many classes of
objects, man-made shapes in particular, the object geometry exhibits certain high-level
structural invariants pertaining to related functionality. As mentioned above, this has
already been exploited in the context of manual editing.

Summary of the Approach The basic observation is thus that there usually exist
broad similarities in structure across many instances of objects from a particular class.
Based on this observation, a new method for constrained deformation is introduced
in this chapter. The method leverages additional structure information to counter
common problems encountered during 3D scanning. To this end, a pre-existing, user-
selected template model is analyzed and then fitted to scanned data with minimal user
interaction. The fitting process is governed by the detected structure priors, which
allows the new method to fill acquisition holes and suppress noise and outliers. In
addition, the user does not have to rely on the unstructured point cloud or mesh
produced by the scanning equipment: the template fitting approach enables the use of
a handcrafted, high-quality 3D meshes without manual re-tessellation.

Overview On a conceptual level, the new method represents an instance of structure-
aware shape deformation. The structural invariants it is based on are the partial
extrinsic Euclidean symmetries of the template shape. These include continuous and
discrete symmetries and are automatically detected by leveraging previous work. Once
the symmetry analysis has been performed, the template model is deformed iteratively
to fit the scanned data using a smooth free-form deformation approach. The sym-
metry structure is maintained during this process, which ensures that the structural
relations between parts of the geometry (represented through rigid transformations)
are still intact after deformation. To this end, a standard variational thin-plate-spline
regularizer is combined with an additional quadratic energy that encourages symmetry
preservation. This quadratic energy formulation is co-rotated according to the latent
rigid transformation variables.

Contributions The proposed method makes two important conceptually novel con-
tributions: First, it is only based on the very basic assumption that the algebraic
structure of the partial Euclidean symmetries of a 3D shape should be preserved. In
the formulation, this is implemented by deformation governed by pairwise symmetry
transformations. Second, the technique uses symmetry-aware deformation for template
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fitting to noisy scanner data. This permits high-quality 3D meshes to be created from
low-quality 3D scans.

Evaluation For evaluation, a Microsoft Kinect in combination with the Kinect Fusion
framework presented by Izadi et al. [75] is used to acquire 3D scans of different objects.
The scan quality varies from low-quality partial scans to high-quality full scans. After
the acquisition, template models are fitted to the scanned data. The model complexity
of the template ranges from very simple to complex. For comparison, the fitting is
performed with the proposed method as well as with previous base-line methods,
such as deformable ICP and other structure-aware deformation models. In summary,
the reconstruction results are more plausible, in particular for partial scans in the
presence of noise and missing data. The method thus constitutes a valuable tool for the
incorporation of knowledge about the template model’s structure into the corresponding
3D scan.

Outline This chapter is organized as follows. After a review of related work in the next
section, Section 6.3 gives an overview over the new method. The deformation model
is then described in Section 6.4, before a discussion of symmetry and the symmetry
detection pipeline in Section 6.5 concludes the introduction of the theoretical founda-
tions. Design choices and implementation strategies are elaborated on in Section 6.6,
followed by the presentation of results in Section 6.7. The parameters used are given
in Section 6.8. After a review of the limitations of the new approach in Section 6.9,
the chapter is concluded by a discussion in Section 6.10.

6.2 Related Work
In this section, previous work concerning structure models and algorithms for preserving
these structures under shape alteration is reviewed. The focus is thereby placed on
deformation models, database-driven approaches, and template fitting.

Deformation Models Computer graphics has recently seen several methods relying
on explicitly constructed basis functions with suitable smoothness properties in or-
der to compute plausible deformations for given shapes, e. g.,mean value coordinates
by Ju et al. [79], harmonic coordinates by Joshi et al. [78], green coordinates by Lip-
man et al. [94], or variational harmonic maps by Ben-Chen et al. [13]. Smooth shape
deformation may also be accomplished by variational elasticity formulations, such as
proposed by Terzopoulos et al. [145] more than two decades ago (a survey of recent
advances in that area is given by Botsch and Sorkine [22]).
The particular deformation model used in this chapter is a standard variational

thin-plate-spline model, based on the smoothness error given by Allen et al. [5] and
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the bending energy formulation in terms of second order partial derivatives by Brown
and Rusinkiewicz [25]. This formulation, which aims at general smooth deformations, is
subsequently extended to preserve algebraic symmetry structures during deformation.

Structure-aware Deformation A structure-aware shape deformation approach similar
in spirit to the seminal seam carving approach for image resizing and retargeting by
Avidan and Shamir [8] has been presented by Kraevoy et al. [87]. Slippage and curvature
analysis of the geometric object to be resized is performed to obtain a vulnerability map
with respect to stretch in the direction of the three coordinate axis. Consequently, the
non-homogeneous resizing operation is then restricted to be axis-aligned. This method
has recently been generalized by Bokeloh et al. [18, 19] to incorporate translational
symmetry invariants for pattern-aware resizing. Topological changes – insertion and
removal of repeating elements – are handled, but the method only supports translational
resizing. The use of only translational symmetries is complemented by the approach
described in this chapter, as general Euclidean symmetries including rotations and
reflections are supported. On the other hand, topological changes are not possible – the
novel approach is restricted to the domain of continuous, homeomorphic deformations.
However, this allows the formulation in terms of a simple co-rotated least-squares
problem; the pattern-aware resizing requires complex discrete optimization.

The image resizing method proposed by Huang et al. [73] and the iWires system for
mesh editing by Gal et al. [52] also try to preserve a more general set of structural
invariants. This is achieved by an analysis that yields global properties like symmetries,
parallelism, or vanishing points (for the image resizing approach). Although the ap-
proach presented in this chapter is strongly inspired by this previous work, it is solely
based on symmetry assumptions. As a consequence, the resulting simple, variational
framework can be used for template registration, which is not possible with iWires.
While symmetry is covered more completely, other geometric relations, such as paral-
lelism or specific angular relationships, are only represented implicitly for symmetric
shapes by the symmetry constraints derived during shape analysis.
Concerning smart deformation tools, Chen and Meng [33] have recently presented

an approach for anisotropic resizing, which is based on the application of synthesized
geometric textures extracted from the original shape. In addition, Xu et al. [164] have
introduced a method that performs joint detection on the input model to create a
joint-aware deformation framework.

Symmetry-based mesh editing techniques rely on symmetry relations for the creation
of modification rules: Wang et al. [159] seek to establish the symmetry hierarchy of a
model; modification of the hierarchy or parameters therein then yields an edited version
of the original model. A similar approach based on symmetry analysis is chosen by
Zheng et al. [171], who establish a set of component-wise controllers that allow the
modification of the original shape.
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While all of the previous methods for structure-aware deformation cited above have
been applied to user-guided shape deformation, the regularization of deformable shape
matching is a novel contribution of the method presented in this chapter.

Editing by Part-based Assembly The analysis of a given example model is used to
deduce a set of rules for the part-based assembly of modified or resized models without
deformation in the methods described by Merrell [104] and Bokeloh et al. [17]. The
assembly may be carried out fully-automatic or with user guidance.

The system introduced by Funkhouser et al. [48] allows a user to compose models by
system-assisted cutting and recombining parts from models in a database. Jain et al. [77]
proposed a database-driven model decomposition approach that allows blending of sev-
eral shapes by part-based recombination. Chaudhuri et al. [32] and Kalogerakis et al. [80]
have presented a probabilistic model for component-based shape synthesis that allows
user editing and database amplification – the further population of the database with
models synthesized from models it already contains. Their approach analyzes the re-
lationships between shape components and takes geometric, semantic, and functional
relationships between parts into account.
Part-based model synthesis is very different from the continuous deformation ap-

proach utilized in this chapter, which currently leaves part-based reconstruction out
of scope.

Structure-aware Template Fitting Deformed template meshes may be used to re-
move artifacts or holes from range scans or similar input data if the template can be
fitted appropriately. Kraevoy and Sheffer [86] describe an approach that calculates a
mapping of the incomplete input scan to a given template model and then performs
mesh completion. A similar, ICP-based system is described by Pauly et al. [120]: de-
formed variants of models obtained from a database are leveraged for user-assisted scan
completion. The methods of Allen et al. [5] and Brown and Rusinkiewicz [25], which
have already been discussed above, also have a similar concept; further instances of this
approach – the combination of an ICP-formulation with a suitable deformation model –
have been presented by Hähnel et al. [60], Wand et al. [158], and Amberg et al. [6].
The template fitting approach for human faces to photographs by Blanz et al. [15],

as well as the methods for template fitting to human body scans by Anguelov et al. [7]
and Hasler et al. [65] consider only a single class of objects. As a consequence, they are
able to exploit model-specific parametric shape spaces, which are low dimensional, to
address the overparametrization issues and shortcomings of the smoothness constraints
to preserve global structures often exhibited by general deformable ICP approaches.

Xu et al. [163] show how the approach developed by Zheng et al. [171] can be used to fit
template models to photographs. The system described by Shen et al. [134] allows low-
quality scans to be quickly converted into high-quality 3D models by part assembly. In
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contrast to the approach presented in this chapter, which allows non-rigid deformation,
the model is constructed of individual rigid parts.

Symmetry-based Reconstruction Thrun and Wegbreit [148] have proposed a symme-
try-based approach for scan completion for range scans. Partial scans are analyzed to
determine the symmetry structures observed in the scanned object, which then allows
surfaces occluded during the scan to be synthesized using the available data based on
the symmetry information. The approach is fully automatic, but it does not provide
facilities for structure-aware editing as described above due to the lack of a template.

Scan Processing An approach to acquire indoor environments from single-view scans
using primitive-based 3D models from a separate learning stage has been demonstrated
by Kim et al. [83]. In follow-up work [84] they introduce a shape descriptor for user
guidance in interactive scanning. These approaches are orthogonal to the algorithm
presented in this chapter and could serve in a pre-processing stage, in order to extract
suitable input from large-scale data and to select template models automatically.

Surface Reconstruction GlobFit by Li et al. [93] augments a local RANSAC-based
primitive detection approach for surface reconstruction by enforcing global relations
between the primitives. The method presented in this chapter is not limited to models
consisting of basic primitives.

6.3 Overview
Input Data The method described in this chapter requires the user to provide a
template model, denoted as S ⊂ R3. For simplicity, this template model is assumed to
take the form of a triangle mesh (of arbitrary topology). However, the generalization
of the algorithm to other input representations is straightforward. The user is further
required to provide a target shape D ⊂ R3, which may commonly be obtained by using
a 3D scanner, an SfM-based technique for dense 3D reconstruction, or similar. The
target shape is assumed to take the form of an unstructured cloud of 3D points:

D = {d1, . . . ,dn} , (6.1)

with the data points d being vectors in R3. Note that the mathematical formulations
in this chapter are no longer based on projective space.

Objective The approach described in this chapter aims to estimate an optimal defor-
mation of the 3D surface S subject to a number of external deformation constraints.
In this context, optimal means that the high-level structural properties of S shall be
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kept intact during deformation. The external deformation constraints may either be
manually defined or derived from a set of target data points D. To model the high-level
structure, the discrete and continuous symmetries of the template model S are used.

Symmetry In the context of this thesis, symmetry is defined with respect to a group
of admissible transformations G. This group G consists of homeomorphisms – i. e.,
bijective, in both ways continuous mappings – T : R3 → R3. In this chapter, the group
of admissible transformations is restricted to the group of Euclidean transformations:
G = E(3). It thus comprises translations, rotations, and reflections.

Constrained Deformation Using the provided definition of symmetry, the objective
as stated above may be refined. The goal is to deform a template model S to obtain
an output model f(S) while keeping the algebraic symmetry structure of the template
model S intact. This does not prevent f(S) from accommodating very different geome-
tries. It does, however, require the symmetries To of S and their mutual relations to
be preserved. For example, if two sub-meshes P,Q ⊆ S are symmetric, so should be
the respective sub-meshes of the output model, f(P) and f(Q). Again, this does not
mean that sub-meshes of the output model are bound to the original geometry. They
may have very different geometry, and even the transformation Tf relating them is
allowed to differ from To. An example for relations between symmetries are symmetric
parts aligned on a regular grid. Both these types of constraints, direct correspondences
and relations, are illustrated in Figure 6.1. To summarize, the term algebraic sym-
metry structure indicates that only the fact that geometry is related by a Euclidean
transformation is preserved, but not the concrete mapping itself.

6.4 Deformation Model

The basis of the new method is a smooth free-form deformation model described in the
following sections. The description of the representation (Section 6.4.1), the external
deformation constraints (Section 6.4.2), and the thin-plate-spline deformation model
(Section 6.4.3) is provided for the sake of completeness; the model is not novel and
could be substituted with most variational deformation models in the literature. The
new additional symmetry constraints will then be described in Section 6.4.4.

6.4.1 Representation

The surface S is embedded into a bounding volume V ⊂ R3, S ⊂ V to compute the
deformation independent from the representation of S. This way, arbitrary types of
input geometry and topology can be easily be handled in a homogeneous way. The
surface is deformed by a deformation field f : V → R3 acting on the bounding volume.
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Figure 6.1: Two types of symmetry constraints. The basic constraint (left) assures
that sub-meshes deemed symmetric are identical up to a transformation Tf.
The relation constraint (right) allows the modeling of regular patterns by
sharing a latent transformation Tf.

The deformation field is represented by a number of nodes u1, . . . ,uk ⊂ R3 with
associated radial basis functions b centered around them:

f(z) =
K∑
i=1

ũi b(‖z− ui‖) , (6.2)

with ũi ∈ R3 being the displaced positions of the nodes ui. This approach of using
a subspace method for discretization is based on the work of Huang et al. [72] and
Sumner et al. [140].

Radial Basis Functions Uniform cubic tensor-product B-splines are used as radial
basis functions. They provide second order smoothness with minimal support. Exper-
iments with radial basis functions created from Wendland functions have also been
performed. The results were visually identical, but the computational cost was consid-
erably higher in comparison to the B-spline basis functions due to the required increase
of overlap.

Discretization A regular grid with user-specified spacing εgrid is used to discretize
the template S. First, nodes ui are placed at the corners of all grid cells occupied
by S. Additional grid points are then added around the initial points so that every
surface point is overlapped by four B-spline functions in X-, Y -, and Z-direction. This
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is necessary to obtain a valid B-spline basis and guarantees that the basis functions
and their derivatives are well defined on S.

Variational Formulation Following a standard variational approach, the deformation
field f is estimated by setting up an energy function E(f):

E = ωcEc + Ed + ωrEr + ωsEs . (6.3)

An optimal f minimizes this function. Each term in this formulation models a different
aspect: external deformation constraints are described by Ec and Ed (handle constraints
and ICP-like constraints, respectively), the thin-plate-spline regularizer that encourages
smoothness by Er, and similarity preservation of symmetric parts and similarity of
transformations in regular structures by Es. Each term is weighted by a parameter (ωc,
ωr, and ωs) to control its influence relative to the ICP-like constraints Ed. In addition
to the unknown displaced node positions ũi, minimization will later be performed over
latent variables1 that model the transformations.

6.4.2 External Deformation Constraints

Handle Constraints The first energy term Ec accounts for manual user constraints,
which are created by using the standard handle model described by Bendels et al. [14]
and Botsch and Kobbelt [21]. This model imposes a series of position constraints Ci =
(si, ci) by specifying a one-to-one mapping between an initial point s on S and a target
point c:

Ec(f, C) =
∑
Ci∈C
‖f(si)− ci‖2 . (6.4)

ICP-like Constraints The data term Ed of Equation (6.3) ensures that the defor-
mation field f is formed in a way that makes S match the target surface D. This is
achieved by formulating a series of ICP-like constraints between S and D, as described
by Hähnel et al. [60] and Wand et al. [158]:

Ed(f,D) =
∑

di∈D
wi 〈f(sj)− di, ni〉2 , (6.5)

with w being a weighting factor that penalizes outliers, s a sample point on S, and n
the normals corresponding to the points d. The closest point index j is selected in a
way that makes sj the point in S closest to di.

1Latent means that the value of the variable is implicitly derived from the context.
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6.4.3 Thin-plate-spline Deformation Model

The regularizer term Er of Equation (6.3) governs the structure of the deformation field
where it is underconstrained. To this end, a standard formulation of a thin-plate-spline
deformation model is used (see Allen et al. [5] and Brown and Rusinkiewicz [25]), which
discourages bending in S:

Er(f) =
∫
V
‖Hf(z)‖2F dz , (6.6)

with Hf(z) the Hessian matrix of the deformation field f at position z, and ‖·‖F the
Frobenius norm. This energy term encourages smoothness by penalizing second order
derivatives.

6.4.4 Preserving Symmetries

The constraint that preserves the shape of symmetric parts of the template S models
that two pieces P,Q ⊆ S are symmetric according to a transformation from G:

Es
(
f,Tf

∣∣ P ∼ To(P) ,To
)

=
∫
P
‖Tf(f(z))− f(To(z))‖2 dz . (6.7)

In this energy term, only the original transformation To that maps a fixed piece P ⊆ S
to To(P) ⊆ S in the original model is known. The deformation f and the transfor-
mation Tf that maps f(P) to f(To(P)) in the deformed model are unknown. The
transformation Tf is a latent variable – it is only implicitly computed in order to
optimize for best symmetry preservation and minimal deformation.

An illustration of this setup is given by the commutative diagram in Figure 6.1, left.
The deformation function f must commute with any symmetry transformation T in the
symmetric regions of S in order to preserve the original symmetries To: the prescribed
symmetry has to be provided by the deformation field f.

For the preservation of the algebraic symmetry structure alone, the original symmetry
transformation To may be replaced by a new, yet-to-be-determined corresponding
transformation Tf when it is moved out of the argument of f(·). For the example
given in Figure 6.1, left, paths Tf ◦ f and f ◦ To must thus lead to identical results.
Equation (6.7) penalizes violations of the commutative behavior in a least-squares
sense by a transfinite integral constraint over the symmetric domain P ⊆ S.
If the deformation was restricted to preserve the original symmetry transforma-

tions To, i. e., it would have to maintain all original symmetry properties, such as
absolute rotation axes and reflection planes in space, relative displacements and ro-
tations, its ability to accommodate the external deformation constraints would be
severely limited.
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Application The symmetry constraints are used to handle both simple pairwise sym-
metries and complex patterns. For simple pairwise symmetries, Equation (6.7) is applied
as-is to enforce a similar shape. For complex patterns, shared transformation vari-
ables Tn are used. This models a group of transformations being generated by a small
set of generators (see Figure 6.1, right). For example, for N shapes Pn, n = 1, . . . , N
originally aligned on a regular grid, the same transformation Tf would be used to
constrain f(Pn), n = 1, . . . , N − 1 to f(Pn+1). A detailed description of the detection
of symmetry groups is given in Section 6.5.1.

Solving the System Equation (6.7) is a quadratic energy under the assumptions that
all transformations are known. This permits the linear expressions for the gradient with
respect to the displaced node positions ũi simply to be added to the previously obtained
linear system – the linear system is co-rotated with the latent transformations. The
solution to the overall system is obtained by applying the conjugate gradient method
(see Nocedal and Wright [116]).

An iterative approach is used if the transformations Tf are unknown. The linear
system is first solved after performing the initialization as Tf = To and shape matching
between f(P) and f(Q) with the initial deformed template then yields a new estimate
for the transformation To. With the correspondences thus being known through f, a
least-squares optimal affine map may be fitted to them and back-projected to E(3)
by a polar decomposition of the linear part. The same principle may be applied for
multiple components Pi corresponding under the same, unknown transformation Tf

by computing the least-squares fit to the difference vectors between all pairs {i, i+ 1}
instead of a single pair.

6.5 Symmetry Detection

The symmetry constraint energy terms Es given in Equation (6.7) are the numerical tool
for the expression of both pairwise symmetries between symmetric regions of an object
and of relations between individual constraints. The latter is accomplished by using
shared latent transformation variables among the Es terms. In this section, a pipeline
for the analysis of the symmetry structure of the template model S is discussed, which
is needed in order to use this tool by generating appropriate symmetry constraints.

6.5.1 Symmetry Structuring

The relevant concepts for the analysis of the symmetry structure, which is formulated
in terms of symmetry groups (see Mitra et al.[109]), are introduced in this section.
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Figure 6.2: Left: A cube as an example of a symmetry group. It is symmetric under
rotations by 90 degree (indicated by the red arrows) and mirroring across
the main axes (indicated by the blue arrows). The 48 possible configura-
tions form the full octahedral symmetry group (see Miller [105]). Right:
Symmetric subsets of a grid of symmetric pieces are mapped to each other
by multiple transformations.

Symmetry The set of symmetries extracted from the template model S with respect
to a symmetry transformation T ∈ G is denoted as

ξ (T) = {z ∈ S | T(z) ∈ S} . (6.8)

The symmetric parts are identified by intersecting the object with a transformed version
of itself: ξ(T) = S ∩T (S). Only results with a large enough area of ξ(T) are considered
in order to avoid spurious matches.

Symmetry Groups For a fixed piece of geometry P ⊆ S and a set of transforma-
tions T ⊆ G that map P back to S, the geometry created by the application of these
transformations to P is denoted as

PT =
⋃
T∈T

T(P) . (6.9)

The 3D object PT forms a symmetry group if T is closed under multiplication (i. e.,
any product of elements of T is again element of T ). This means that PT is globally
symmetric under the group action of any T ∈ T . The cube shown in Figure 6.2, left, is
symmetric under 90 degree rotations and mirroring along all axes, and thus constitutes
an example for such a symmetry group.

Full symmetry groups are rarely observed, and a finite translational symmetry group
does not even exist (see Figure 6.2, right, for a depiction of excerpts from a symme-
try group). To detect the symmetry groups nevertheless, the approach described by
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Bokeloh et al. [18] is used: if at least three repetitions of a particular transformation
are found, the corresponding observed symmetry group T is interpreted as a subset of
a larger, non-observed proper symmetry group T ′.

Euclidean Symmetry Groups Euclidean symmetry is well studied. For the Euclidean
group E(3) there is even a full classification of all subgroups available (see Hahn [59]).
Broadly, discrete and continuous groups can be distinguished. The discrete groups
comprise countable sets of transformations generated by up to three rotations and/or
translations with additional involutions (reflections or rotations by 180 degrees). The
generators of the continuous groups may include instantaneous motions (see Gelfand
and Guibas [54]).
Computation of all pairwise transformations within S implicitly yields the symme-

try groups, as each element of the group contributes to each of the transformations.
The explicit computation of all symmetry groups is useful nevertheless, as this addi-
tional information may be exploited to only enforce symmetry under the action of
the generators of the particular symmetry group using Equation (6.7). The generators
are sufficient to preserve the whole symmetry group because of the area overlaps: all
additional pairwise transformations are constrained implicitly. To be more precise, the
same transformation variable implicitly represents all transformations that generate
the same group. This has already been discussed in Section 6.3 and Figure 6.1, right.
In the figure, only the mapping of the left three elements to the right three elements
is constrained under a single pair of transformations To,Tf for the source and target
domain. Furthermore, this avoids weighting issues for the least-squares constraints
resulting from the symmetry transformations. If complex group structures were not
factored into their minimal set of generators, the large amount of resulting pairwise con-
straints would introduce a bias towards those constraints in contrast to simple, pairwise
symmetries. For example, a large grid or a rotational symmetry of high order would
receive a disproportionately higher weight than a single reflective symmetry. In addi-
tion, the omission of the additional pairwise constraints during processing also reduces
the computation time required for the creation of the system matrix considerably.

6.5.2 Symmetry Detection

The method previously described by Bokeloh et al. [18], which permits the detection of
discrete translational and reflective symmetries, constitutes the basis for the symmetry
detection algorithm used in this framework. It is extended to also output rotational
symmetry groups, which does not make the detection algorithm more challenging on a
conceptual level. The detection process is based on edge matching in the triangle mesh,
which yields potential generators. These generators are then merged into one-parameter
groups, and subsequently into more complex structures.
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For the detection of continuous symmetries, the slippage-analysis approach by
Gelfand and Guibas [54] is used. The translational slippage properties – collinear-
ity of the mesh edges and coplanarity of the mesh faces – are computed directly on
the triangle mesh by comparing normals. The computation of the rotational slippage
properties is omitted, as it is unreliable and susceptible to difficult thresholding prob-
lems. Detection of the rotational symmetries is thus left to the discrete method. This
approach has two important limitations. First, the non-flat edges of the triangulation
have to be consistent with the rotational symmetry. This requirement precludes the
processing of 3D scanning data as templates by this approach. Second, only cylindrical
symmetries will be detected for spheres, consistent meshing assumed.
Symmetry detection is not a contribution of this thesis. There are many different

strategies available, such as the methods described by Mitra et al. [108], Gal and Cohen-
Or [51], Pauly et al. [121], or Bokeloh et al. [19], which could be applied to this task as
well. The system created by Tevs et al.[146] was used to detect the symmetry structure
of the template models for the results presented in this chapter.

Post-processing The symmetry detection results are not absolutely reliable, and thus
certain measures have to be taken in order to avoid spurious matches. The first measure
is to delete groups which form subsets of other detected groups in mostly overlapping
mesh regions. The second measure is to discard regions of symmetry with an area
below 0.025 area units for a scene scaled to a unit bounding box.
A further issue are ghosting artifacts – areas where discrete symmetries bleed into

continuous ones. These are prevented by discarding candidate areas for discrete sym-
metries that are not enclosed in sharp boundaries. The boundaries are computed by
region growing starting from the discrete feature the detection was triggered by. To
give an example, a pair of chairs on a ground plane would result in the chairs being
detected as symmetric, without including the plane. However, the plane would still be
detected as a continuous symmetry. Sample results for symmetry detection for several
data sets can be found in Figure 6.3.

6.6 Implementation
The creation of a symmetry-aware deformable ICP algorithm requires the combination
of the variational model of Section 6.4 with symmetry information as described in the
previous section. This section describes relevant implementation details.

ICP-like Constraints Iterative deformable ICP requires a current estimate of the
deformed template to be maintained. A rough manual alignment (scaling included) is
used to initialize the process. To create the ICP-like constraints, the closest surface
point in the current deformed template shape is computed for each data point. Then, a
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Dihedral Dihedral Reflective

Reflective Reflective Reflective

Reflective Dihedral Reflective Rotational

Figure 6.3: Symmetry detection results for the DSLR camera (first and second row),
office chair (third row, left), and small fan (third row, right) template meshes.
Only the points comprised by the respective symmetry are rendered over the
gray model backdrop. The reflection planes of the reflective symmetries are
depicted in red. The rotational symmetries are depicted by the rotation axis
in blue and a small arrow indicating the rotation. For dihedral symmetries,
the reflection planes are also shown in blue.

106



6.6 Implementation

least-squares point-to-plane attraction constraint is created using Equation (6.5). The
20 nearest neighbors of a surface point are used to estimate the corresponding plane
with a PCA-based fit. These constraints originating from the data points of the target
shape are denoted as forward constraints. Optionally, backward constraints may be
included in the estimation. For the backward constraints, the role of template model
and target shape for the generation of the ICP-like constraints is reversed. Backward
constraints should only be used if the target shape is almost complete. If significant
portions of the target shape are missing, the algorithm may try to fit the whole template
model to the partial structure, which produces highly undesired results. In such cases,
backward constraints should therefore not be used.

Pruning for Robustness To make the algorithm more stable, implausible correspon-
dences are pruned during the generation of the ICP-like constraints: First, constraints
whose distance ‖f(s)− d‖ is above the τdth percentile of all distances are removed. This
parameter has to be supplied by the user in accordance with the amount of outliers
expected to be contained in the data. Second, a threshold τnf is used to determine
whether a constraint is located in the near field to avoid oscillation. Constraints located
in the near field (i. e., with a distance below τnf) are not removed, even if their distance
lies above the τdth percentile. The implementation of the ICP-like constraints is kept
rather basic, as it is not the focus of this work. Rusinkiewicz and Levoy [129] have
presented more sophisticated correspondence filtering methods.

Basis Functions There are two types of basis functions used during the generation
of the results. Initially, the iterations use linear basis functions, as this greatly reduces
the computation time. To improve the quality of the final result, a final update with
smooth B-spline basis functions is performed. In contrast to the linear basis functions,
which require 23 = 8 matrix entries per constraint, the B-spline basis functions have
a support of four intervals, and thus require 43 = 64 matrix entries per constraint.
This significantly increases the computational cost, as may be verified in Table 6.2.
Experiments with Wendland functions have also been performed, but their use has
been discontinued: they do not provide any improvements in quality over the B-spline
basis functions, but are again substantially more costly to compute.

Constraint Sampling The resolution of the discretization grid is typically much lower
than the average sampling space of the embedded surfaces. Because of that, the point-
based calculation and application of the constraints leads to heavy oversampling. To
reduce the overall computation time, all constraints are sampled using a sampling
factor εsampling chosen below the Nyquist-limit of the discretization grid. Choosing the
sampling factor to be εsampling = 0.25εgrid has worked well in practice.
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Coplanarity Constraints (Continuous Symmetry) Based on the sets of adjacent pla-
nar triangle faces in the template model S, the corresponding sets of points si ∈ S are
constrained to lie on a plane. A plane is fitted to each set of points and the points are
then projected to this surface along the normal direction. To enforce the coplanarity
constraints, a sum-of-squares energy similar to Equation (6.5) is formulated for each
point and its projection and included in the estimation.

Collinearity Constraints (Continuous Symmetry) The feature lines, which are lists of
continuous collinear edges in the template model, are subdivided into directed segments.
This is achieved by extracting consecutive constraint points at grid cell intersections.
The direction vectors of the individual segments are then enforced to be identical
during the computation of the optimal solution.

6.7 Results
To obtain example target surfaces D, scans of everyday objects were created with a
Microsoft Kinect and Kinect Fusion. These scans are denoted as Target in the result
figures. Parts not related to the original object, like the floor or the background, were
removed from the scanned data. This was done to simplify subsequent processing, as
the ICP implementation is not in the focus of this work.

For each scanned object a similar 3D model was searched in the shape libraries The
Archive by Digimation (DSLR camera, TV set, bowl) and in Google 3D Warehouse
(all other models except where noted otherwise). The symmetry detection algorithm
of Section 6.5 was applied to each model after it had been scaled to unit length. A
manual coarse rigid alignment with scaling was then performed as next step. This
initial alignment is the starting point for the application of the new algorithm and
several other variants of the ICP algorithm, which are used for comparison.
The individual variants of the ICP algorithm applied are Rigid ICP, Affine ICP,

Deformable ICP (with thin-plate spline regularization, Equation (6.6)), and the new
deformable ICP with additional Symmetry constraints. In order for the results to be
comparable, the same implementation was used in each case: Deformable is obtained
by switching off the symmetry constraints, and Affine in addition uses a very large
weight ωr such that only affine mappings are obtained. The processing is performed
by running 100 ICP iterations with linear basis functions to guarantee convergence,
and then an additional single iteration with the smooth basis functions in the case
of Deformable and Symmetry. A state-of-the art ICP implementation as described by
Mitra et al. [107] was used for Rigid.

Symmetry-aware Fitting The results from the new approach and the base-line meth-
ods are illustrated for comparison in figures 6.4–6.18. The figures show that the sym-
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metry constraints are particularly helpful to infer the shape of a man-made object in
regions of missing data.

Figures 6.4, 6.5, and 6.6 show examples for the inter- and extrapolation in regions of
missing and corrupted data using the detected symmetry information. In Figure 6.4,
rows 1 and 2, for example, the scanned data is missing the complete backside of the
cooking pot. Unlike Deformable, the results for Symmetry do not show distortions in
these regions. The same is visible in Figure 6.4, row 3, which shows a low-quality scan of
a pan made of reflective metal, which proved hard to acquire. Implausible deformations
are prevented by maintaining the symmetry structure extracted from the template
shape.

The result of Symmetry for the cone-shaped cup in Figure 6.6 is distorted by erroneous
ICP correspondences, which is a limitation of this approach. In this case, the symmetry
structure of the handle, which could have prevented the implausible deformation, could
not be determined correctly. The only symmetry detected for the handle was a reflection
corresponding to the cross section.
The results for the camera data set are shown in Figure 6.7. For Symmetry, the

rotational symmetry of the lens is preserved by rotational symmetry constraints while
the continuous symmetry constraints keep the case of the camera in a rectangular
shape. This is a considerable improvement over Deformable which exhibits numerous
distortions and local deformations. The parameters have to be chosen carefully, though:
The weights for the continuous symmetry constraints had to be increased by a factor of
10 for this example. A comparison to the result obtained using the default parameters
is included in the figure. Generally, the need to choose parameters is a limitation of
the least-squares formulation of the problem.

Traditional Deformable ICP Deformable, which is not guided by the additional sym-
metry constraints in regions of missing data or poor, corrupted scanning results, is more
susceptible to distortions and local deformations. This can be observed in Figure 6.4,
rows 1 and 2, for example. The approach may be able to compensate small irregularities
(see Figure 6.5, rows 2 and 4). However, the preservation of the symmetry structure
leads to more plausible results in addition to providing a close match for the input
data. This is illustrated in Figure 6.8, where overlays of the results of the different ICP
variants over the scanned data are shown.

Rigid ICP The scaled template is also registered with the data using standard rigid
ICP as a sanity check. If the shape of the template is very similar to that of the scanned
object, even with this method reasonable results can be produced (e. g., Figure 6.4,
rows 1 and 2, and Figure 6.5, row 4). However, if the available template is too different,
a good alignment can often not be achieved (e. g., Figure 6.9). A complex example is
shown in Figure 6.7: The template is quite different from the input data, but still a
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Target Rigid Affine Deformable Symmetry

Figure 6.4: Results of different ICP variants. From top to bottom: Cooking pot (single-
view, front); the same pot (single-view, back); frying pan (single-view);
rounded cup (single-view); chair (full scan); the same chair (single-view).
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Target Rigid Affine Deformable Symmetry

Figure 6.5: Results of different ICP variants. From top to bottom: Armchair (full scan);
office chair (full scan); the same office chair (single-view); oval table (full
scan); bar table (single-view).
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Target Rigid Affine Deformable Symmetry

Figure 6.6: Single-view scan of a cone-shaped cup. Symmetry is much closer to Target.
Only the handle of the cup shows some distortions. This is because the
symmetry structure could not be detected properly.

Final result Decreased weight

Target Rigid Affine Deformable Symmetry

Figure 6.7: Scan of a DSLR camera. There are significant differences in proportion
between the actual object and the template model. The rotational symmetry
of the lens is preserved by Symmetry. The final result was obtained by
increasing the weight of the continuous symmetry constraints. The top
right shows the intermediate step with decreased weights.
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Rigid Affine Deformable Symmetry

Figure 6.8: Overlays of the deformed models and the corresponding target shapes. From
top to bottom: cone-shaped cup; rounded cup, office chair (single-view). In
complex cases where no tight template is available, only the deformable
ICP variants can match the data closely. Symmetry is able to preserve the
structure better, as has already been shown in previous figures.
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Target Rigid Affine Deformable Symmetry

Figure 6.9: Scan of an LCD monitor; the template is a CRT TV. For this example,
the coplanarity constraints had to be disabled, as the ICP algorithm was
otherwise prevented from gradually establishing correspondences in the
area that was not initially touched by the target surface, which prevented
most of the deformation.

plausible model is reconstructed. In this case, the original, rigidly aligned model is not
a good fit for the target data, especially in terms of lens diameter and length.

Additional Base-line Tests For further comparison, results are generated for ICP
with affine mappings.2 As can be seen in Figure 6.4, rows 1 and 2, for example, this
works well for certain combinations of scan and template. In general, though, affine
mappings lack the flexibility of general deformations, and the scan can thus often
not be matched well. On the other hand, the risk of encountering artifacts increases
nevertheless: Figure 6.4, row 3, Figure 6.5, row 2, or Figure 6.11, bottom, for example,
show results where the shearing in particular has led to heavy distortions.

Previous Structure-aware Deformation Previous work by Bokeloh et al. [18] is also
consulted for comparison, although this method originally does not perform scan regis-
tration. The deformation model may be recreated in the new framework by only using
continuous translational constraints, i. e., collinearity and coplanarity. Discrete regular
grids (with at least three instances in each direction) could also have been handled by
their method, but there are no discrete grids in any of the examples presented in this
chapter. The comparison in Figure 6.10 shows that using only the continuous transla-
tional symmetry constraints yields inferior results. It is well visible that the reduced
model only maintains straight lines and planes, whereas the full model proposed in
this chapter also preserves the rotational symmetries. The new model also captures
the relations between straight lines and planes by establishing global reflective and
rotational relations, which is visible in the body of the camera and the blades of the
fan.

2An affine mapping permits rotation, translation, shear, and scaling.
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Continuous Full Continuous Full

Figure 6.10: Comparison between the method proposed by Bokeloh et al. [18, 19], de-
noted as Continuous, which uses only continuous symmetry constraints,
and the deformable ICP with all symmetry constraints, denoted as Full.
The full set of symmetry constraints governs the deformation on a more
global scale and provides better results. The continuous symmetry con-
straints enforce planar surfaces and straight edges only in localized parts
without higher-level consistency.

In the follow-up paper [19], the same structure model is extended by hard constraints
in order to reduce residual bending. This precludes the use of the rotational symmetries
supported by the framework presented in this chapter, as the linearity of the group
actions is crucial for this to work.

Discrete Symmetries Only The continuous symmetry constraints are useful in many
applications, but there are cases where these additional constraints are not desired. In
Figure 6.11, for example, results are presented for the hourglass and bowl data sets,
both depicting objects that exhibit rotational symmetries only. For the generation of
the results, the continuous symmetries have been disabled. The continuous symmetry
constraints try to prevent the deformation field from adapting straight edges and planar
surfaces to small local deformations in the scanned data. For the hourglass, the cylinder
that was used as a template model is just an approximation of a real cylinder. The
side consists of many planar surfaces that create coplanarity constraints, and the edges
that connect them create collinearity constraints. If enforced, these constraints prevent
the cylinder from adapting the typical hourglass shape. The situation with the bowl is
similar, although there are less planar surfaces. The cylinder used as template mesh for
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Target Rigid Affine Deformable Symmetry

Figure 6.11: Scan of an hourglass (top) and of a bowl (bottom). Due to the nature
of the scanned objects (curved surfaces are predominant in the scans),
continuous symmetry constraints were not enforced. For the hourglass, for
example, the continuous symmetries detected in the mantle of the cylinder
would prevent the deformation to the hourglass shape. Symmetry provides
excellent results; Deformable exhibits distortions.

the hourglass was modeled in a professional 3D modeling suite. For the bowl, backward
ICP constraints from the template shape to the scanned data were used in addition
to the normal forward ICP constraints. While this is often detrimental, particularly
if the scan has lots of missing data, in this case it prevented the whole scanned data
from being fitted by only a part of the template.

Quantitative Evaluation A quantitative evaluation of the chair data sets (Figure 6.4,
rows 5 and 6) with ground-truth data is shown in Figure 6.12. The result and the high-
quality ground-truth reference scan can be seen in Figure 6.13. In addition, Table 6.1
provides RMSE values. The RMSE values are calculated as

eRMSE(S,D) =
√

1∑
i χi

∑
i

χi ‖sj − di‖2 , (6.10)

with di ∈ D and sj ∈ S. As in Equation (6.5), the closest point index j is selected in
a way that makes sj the point in S closest to di. The weighting factors χi are chosen
as the combined area of all triangles comprising the respective vertex di. The values
given in the table were obtained by averaging the RMSE from the deformed template
mesh to the reference scan and from the reference scan to the deformed template mesh.
The deformable ICP variants fit the data more closely. Symmetry exhibits slightly
higher error values than Deformable, especially at the borders of the mesh. This is the
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Rigid Affine Deformable Symmetry

Figure 6.12: Error visualization of the chair data sets (Figure 6.4, rows 5 and 6). The
upper and lower row use different scans, as shown in Figure 6.13 (Full
and Single). For visualization, the error values are normalized per data
set (i. e., row) and range from the lowest error observed (blue) to the
highest error observed (red). Symmetry exhibits higher error values due
to the additional constraints. For the single-view scan (bottom row), the
advantage of the additional constraints can be seen: Deformable shows a
higher error in the rear right leg due to missing data. The scan that served
as reference can be found in Figure 6.13, right. The corresponding RMSE
values are summarized in Table 6.1.
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Full Single Reference

Figure 6.13: Depiction of the scans used to generate the results for the chair data sets
(left and middle) and the scan used to generate the error visualizations
shown in Figure 6.12 (right).

RMSE
Object Rigid Affine Deformable Symmetry

Chair, full 0.0296 0.0339 0.0239 0.0246
Chair, single 0.0307 0.0292 0.0246 0.0234

Table 6.1: RMSE values corresponding to the error visualizations shown in Figure 6.12.
The deformable ICP variants exhibit lower errors; Symmetry is more con-
strained and therefore produces a slightly higher error in general. For the
single-view scan of the chair, however, the error in Deformable is higher
due to missing data that leaves one of the chair’s legs unconstrained. This
is consistent with the expectations. If data is missing, the symmetry con-
straints allow a better prediction of the shape in those areas. If all the data
is available, the data cannot be accommodated to the extent that Deformable
does.
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Final result Decreased weight

Default Fixed Tf Default Fixed Tf

Figure 6.14: Comparison between the results for the camera data set (Figure 6.7)
and the results without updates to the symmetry transformations Tf.
When the transformations are not updated, the scanned data cannot
be accommodated well. To further illustrate the effect, the second row
visualizes the error with respect to the scanned data. The scan is missing
the whole bottom side of the camera and parts of the bottom of the lens,
which can be seen in the visualization as high error values in the bottom
part of the lens.

expected result, as all the additional symmetry constraints influence the result of the
optimization procedure, thus preventing Symmetry from fitting the data as closely as
Deformable. The RMSE is also slightly increased in this case. For the single-view scan,
Symmetry achieves a better RMSE value than Deformable. Again, this is consistent with
the expectations. A lot of data of the rear right of the chair is missing, and Deformable
is unconstrained in these areas. Symmetry makes a better prediction of the object shape
in this case, which leads to the lower RMSE value.

Update of the Symmetry Transformations Figure 6.14 examines the effect of the
update of the symmetry transformations Tf on the final result for the camera data
set (Figure 6.7). To this end, the results were recreated without updating the initial
transformations. As expected, the lacking update has a serious impact on the algo-
rithm’s capabilities to accommodate the scanned model. This result is consistent with
the discussion in in Section 6.4.4.

User Guidance Deformable ICP often requires user guidance in addition to a rigid
initialization. Again, symmetry constrains reduce the required effort. In Figure 6.15,
an example is shown where this is demonstrated. In this example, the scan of a fan is
registered to a manually-created template shape. The size of the rotor is not correctly
matched in the initial results (see Figure 6.15, bottom). This is a result of the small sides
of the blades providing insufficient point-to-plane constraints to successfully match
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Target Rigid Affine Deformable Symmetry

Deformable w/ handles Symmetry w/ handles

Figure 6.15: Scan of a small fan. For the deformable ICP variants, three handles have
been used to shorten the blades of the fan and make the hub less pro-
nounced in the final result. For Symmetry this is sufficient to get a good
result due to the propagation of the deformation by the symmetry con-
straints. ForDeformable, only the topmost blade is shortened. Comparisons
with and without handles are on the bottom. To avoid distortions intro-
duced by the handle constraints, the weights of the symmetry constraints
have been increased tenfold.
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the data. To fix the problem for Symmetry, three handle constraints are sufficient –
two at the topmost blade to achieve a downward displacement, and one at the hub to
fix the extrusion of the hub. The weight of the symmetry constraints ωs is increased
tenfold to avoid distortions due to the point-wise handles. To achieve the same result
with Deformable alone, many more, consistently placed handles would be required.
A comparison for the fan data set with and without the placed handle constraints
is shown in Figure 6.15, bottom. As can be seen, the deactivation of the symmetry
constraints leads to worse results. Symmetry-aware deformation in combination with
handle constraints can be used to edit and fine-tune the results with greatly reduced
effort.

Timings The results presented in this chapter were generated using a single-threaded
C++ implementation running on an Intel Core i7-840QM processor at 1.87GHz with
8GiB RAM. For Deformable and Symmetry, the average computation time is summa-
rized in Table 6.2. The computational cost is dominated by the construction of the
system matrix. This is more costly for the symmetry constraints than for the other
constraints, because the symmetry constraints are integrated over large, overlapping
areas. For the same reason, the chosen basis functions also critically influence the
computation time. The linear basis functions have small support with two overlapping
functions. The smooth basis functions on the other hand have larger support with
four overlapping functions for the B-splines and a value of seven overlapping functions
chosen for the Wendland functions, which significantly increases the computational
burden. During implementation, there was no emphasis placed on the optimization of
the numeric algorithms. The performance can thus still be improved significantly over
the values given here.

6.8 Parameters

The parameters given in this section apply to all results shown in this chapter if not
noted otherwise.

Deformation Model The grid spacing is uniformly set to εgrid = 0.1, as all template
models are scaled to unit length during pre-processing. The weight of the symmetry
constraints is set to ωs = 3, and the weight of the regularizer to ωr = 1. A weight ωc =
100 is chosen for the handle constraints. To emulate the behavior of affine ICP, the
regularizer weight is set to ωr = 10,000 during the generation of Affine.
During empiric evaluation, it was found that setting the weight of the symmetry

constraints ωs to a value at least three times as high as the weight of the ICP-like
constraints, which have an implicit weight of 1, is sufficient. With this value, the
constraints were then respected during the optimization procedure for all examples
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Linear basis functions Smooth basis functions
Object Deformable Symmetry Deformable Symmetry

Bar table 0.48 s 2.51 s 0.65min 19.87min
Cooking pot 1.18 s 22.86 s 1.97min 195.23min
Cone-shaped cup 0.85 s 7.52 s 4.96min 31.30min
Rounded cup 0.99 s 7.70 s 5.24min 84.14min
Frying pan 1.50 s 6.11 s 1.40min 53.01min
Chair, full 0.46 s 2.19 s 1.96min 24.92min
Chair, single 0.35 s 2.49 s 0.86min 24.66min
Oval table 1.17 s 9.06 s 2.26min 69.47min
Armchair 2.74 s 14.82 s 4.68min 99.19min
Armchair, simple 1.19 s 3.44 s 2.82min 26.07min
Square table 1.48 s 12.53 s 2.76min 126.70min
Stepladder 2.51 s 4.93 s 1.03min 46.03min
Office chair, full 0.68 s 2.15 s 1.62min 15.05min
Office chair, single 0.65 s 1.94 s 1.28min 14.16min

Hourglass 1.59 s 7.94 s 0.63min 6.84min
Bowl 1.15 s 3.02 s 0.73min 2.28min
Fan 0.40 s 1.96 s 0.17min 1.54min
Camera 0.93 s 4.56 s 0.53min 3.51min
TV 1.55 s 3.20 s 0.59min 2.11min

Table 6.2: Average computation time per iterations for Deformable and Symmetry. The
timings in the upper part of the table are for results generated using Wend-
land basis functions, the timings in the lower part for results generated
using the cubic B-spline basis functions. While there is no visual difference
in the results between Wendland and cubic B-spline basis functions, the
computation times using the latter are much shorter due to reduced overlap.
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given in this chapter – the one exception being the camera data set (Figure 6.7). In this
case, the weight of the continuous symmetry constraints was not high enough to prevent
the body of the camera from distorting, as was favored by the ICP-like constraints. For
the generation of the final result, the weight of the continuous symmetry constraints
was therefore increased to a value of ωs = 30.

The weight of the symmetry constraints ωs can be seen as the strength of a bias
towards a symmetric solution. If a lower value is chosen, the bias is gradually removed
and the results become more similar to those of traditional deformable ICP.

For the fan data set (Figure 6.15), handle constraints have been placed manually in
addition to the ICP-like constraints. As the weight of the handle constraints ωc = 100
is significantly higher than that of the other constraints, the fan blade on which the
constraint was placed exhibits local deformations. The weight of the symmetry con-
straints was increased to ωs = 30 to counteract this. As a result, the local deformations
are reduced to being negligible, but consequently the handle constraints are no longer
perfectly fulfilled.

Symmetry Detection For checking collinearity and coplanarity, a uniform angle
threshold of 1 degree is used. The distance threshold for checking feature and ge-
ometry compatibility is set to 4 min(εgrid, µ), with µ being the length of the shortest
feature line. For symmetry selection, a cutoff-threshold expressed as a percentage of the
supporting points is set. This parameter is model-specific and derived by examination
of the result of symmetry detection, but it is typically below 50 percent. If a detected
symmetry does not have the required number of supporting points, it is discarded. The
planes that the coplanarity constraints are derived from are required to cover at least
1 percent of the total surface area of the template model.

ICP-Like Constraints The percentile threshold for the generation of the ICP-like
constraints is set to τd = 80. As already mentioned, the template models are scaled to
unit length during pre-processing, which allows the near field threshold to be uniformly
set to τnf = 0.05.

6.9 Limitations
Fixed Structure The symmetries are applied as detected in the template model. This
is an important limitation, as it creates bias if the symmetry structure of the template
model differs from that of the target shape. Manual intervention may be used to remove
this bias: The continuous symmetries were deactivated for the bowl and hourglass data
sets shown in Figure 6.11 in order to use the overly simple templates.

There are also issues with particular configurations of symmetry constraints if multi-
ple symmetries comprise the same parts of the template mesh. For example, a reflective
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Target Rigid Affine Deformable Symmetry

Figure 6.16: Full scan of a stepladder (top) and of the armchair from Figure 6.5 with a
different template model (bottom). The Symmetry results are very close to
the template model and consequently not a good fit for the target shapes.
This is due to spurious symmetries in the template models: in combination
with the continuous symmetry constraints, deformation is prevented.

symmetry might extend into a part that also has a rotational symmetry. Such configu-
ration can prevent the template model from deforming by locking parts of the model
in place. This is prominent in the stepladder and armchair data sets in Figure 6.16. To
a lesser extent it is also visible in the office chair and oval table data sets (Figure 6.5,
rows 2 and 4). Further illustration of this is provided in Figure 6.17. In this figure,
a comparison of the results of Symmetry for different sets of symmetry constraints
is shown. If only the most dominant symmetry (a global reflection) is enforced, the
template is deformed to match the target almost perfectly. The ability to deform is sub-
sequently suppressed by adding more constraints, until the application of all symmetry
constraints detected leaves the template almost without deformation.

This problem could be solved by selectively breaking the constraints detected in the
template model.

Local Convergence The symmetry constraints may prevent the local ICP from con-
verging to a stable set of correspondences. Figure 6.18 shows results for the scan of a
square desk, where this effect has occurred for Symmetry. The horizontal component of
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6.9 Limitations

All Default Dominant

Figure 6.17: Overlays of Symmetry over the corresponding target shape (top) and the
template model (bottom). The overlays are shown for different sets of
symmetry constraints: For Dominant, only the most significant symmetry
(a global reflective symmetry in this case) is kept. The deformed model
largely deviates from the original model, but is almost a perfect match
for the target shape. Default represents the set of symmetry constraints
retained during normal processing. The additional symmetries compared
to Dominant start to restrict the deformation, preventing the frame of
the chair to be represented faithfully. All shows the result for all detected
symmetry constraints enforced. There is almost no deformation due to
interlocking constraints; only the bottom of the frame is able to extend
upward.
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Chapter 6 Symmetry-aware Template Deformation and Fitting

Target Rigid Affine Deformable Symmetry

Affine Symmetry

Figure 6.18: Partial scan of a square table. The elongation of the table in the Symmetry
result is caused by the failure of the ICP algorithm to find a stable set
of correspondences due to the constraints on the deformation field. Affine
completely diverges for the same reason. For the results in the bottom
row, a single handle constraint has been attached to a table leg manually.

the ICP constraints is countered by the symmetry constraints. At the same time, the
vertical component of the ICP constraints makes the deformed table extend downwards.
Different correspondences are then chosen in every subsequent step, which increases
the effect with each iteration. Affine is also affected by this problem (see the result
for the bar table in Figure 6.5). This behavior can largely eliminated by manually
placing a single handle constraint. Deformable is not affected by these issues, because
the influence of the regularizer on the ICP-like constraints is not as strong. This issue
may also manifest in another form: The coplanarity constraints almost completely
prevented the initial correspondences from updating for the TV data set (Figure 6.9).
As a result, the algorithm converges with too little deformation.

To summarize, the new algorithm is a locally convergent shape matching technique
that requires good initialization and possibly user guidance. It should be considered
as a refined (deformable) ICP algorithm, and not as a fully-automatic shape matching
system.

6.10 Discussion

In this chapter, a constrained optimization framework for symmetry-aware template
mesh deformation has been presented. The method allows a user-provided 3D model
to be fitted to low-quality scanning data, even if there is a high level of noise or only
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partial data available. During the ICP-based deformation and fitting procedure, the
symmetry structure of the template geometry is preserved in a least-squares sense.

Reconstructions based on a number of low-quality Kinect Fusion scans with suitably
chosen template models haven been shown for validation. The proposed method yields
more plausible results in comparison to previous methods, yet the scanned geometry
is closely respected in the reconstruction, even for templates quite different from the
actual scanned object.

Future Work There are several very interesting avenues for future research. For
example, it would be convenient to automatically select suitable subsets of symmetry
constraints by analyzing both the template model and the scanned input data. Analysis
of the latter is more complicated due to potentially high noise levels, distortions, and
incomplete data. The symmetry axes and planes obtained during analysis might also
enable a fully-automatic alignment of the template mesh and the scanned data for
significantly different geometries.
Another goal for the future is to create a version of the framework that is suitable

for real-time user interaction. This is currently prevented by the computational cost of
the construction and evaluation of the symmetry constraints. A reformulation of the
numeric computations for higher speed and possibly a suitable general-purpose comput-
ing on graphics processing units (GPGPU) implementation may lead to a performance
at interactive frame rates.
The automatic selection of a suitable template mesh from a database would be

another interesting direction for future work, as the user would then no longer be
required to manually select a suitable template model. This could potentially be done
by combining the guided real-time scanning approach presented by Kim et al. [84] with
a conjoint symmetry analysis.

Of interest would also be the investigation of methods to overcome the limitations of
the fixed template, which include fixed topology. To this end, a coarse initial template
combined with implicit function fitting might enable topology-varying deformation
with simultaneous preservation of the symmetry structure of the template.

In the future, there will most likely be an increasing demand for more general struc-
ture models which go beyond rigid symmetry. The incorporation of weakly supervised
machine learning in the process of establishing correspondences and consequently the
deduction of more general groups of admissible mappings may help to address this
difficult challenge.
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CHAPTER 7

Conclusion

In this thesis, contributions have been made to the areas of constrained camera motion
estimation and constrained 3D reconstruction.

Constrained camera motion estimation has been the focus of Part I. The work
presented in this part is directly aimed to improve the accuracy and robustness of
structure from motion by joint estimation of camera position and orientation and the
3D structure of the scene.

In Chapter 3 – Bundle Adjustment for Stereoscopic 3D (Kurz et al. [89]), a novel
stereoscopic camera model for bundle adjustment has been presented. This camera
model is able to reduce the number of spurious degrees of freedom for stereoscopic
image sequences in comparison to traditional bundle adjustment. It is geared to ac-
commodate a variety of different camera setups, from consumer to professional, and
provides improved reconstruction accuracy. In addition, the computation time required
for bundle adjustment is reduced.
In Chapter 4 – A Generalized Framework for Constrained Bundle Adjustment, the

stereoscopic camera model presented in Chapter 3 was developed into a generalized
framework for constrained bundle adjustment. Hierarchies of Euclidean transformations
were introduced as a convenient and flexible tool to model important types of constraints
– collinearity, coplanarity, parallelism, and angular relations – in a homogeneous fashion.
The framework is able to handle constraints on the scene structure and the camera
geometry simultaneously, and is able to represent moving objects in a multibody SfM
setting. It is thus very flexible while still being comparatively easy to implement.
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Chapter 7 Conclusion

The focus of Part II has been on constrained 3D reconstruction. Estimation and
optimization of the camera position and orientation is not in the scope of these algo-
rithms.

In Chapter 5 – Global Connectivity Constraints for 3D Line Segment Reconstruction
(Jain et al. [76]), a probabilistic formulation of a 3D line reconstruction problem has been
presented. The formulation takes the global connectivity information of the individual
3D line segments into account and yields excellent results. By using a novel technique
for line segment grouping and outlier elimination, the individual reconstructions for
each frame are merged without requiring brittle and error-prone line segment matching
methods.

In Chapter 6 – Symmetry-aware Template Deformation and Fitting (Kurz et al. [90]),
a framework for symmetry-guided mesh deformation has been presented. The technique
relies on the user to provide a suitable template mesh and 3D scan of a target object,
and then produces a deformed version of the template mesh that closely matches
the desired target shape. The deformation procedure is guided by the automatically
analyzed symmetry structure of the template model, which is preserved when the
output is generated. This has the benefit of yielding plausible, high-quality results
for the resulting model in contrast to the scan data, which typically exhibits noise,
outliers, and missing data due to partial occlusions. Compared to previous work in
this area, the novel framework provides substantial improvement in areas of missing
data. In addition, it greatly facilitates user interaction, as user input is automatically
propagated by the symmetry constraints to affect symmetric parts in a uniform way.
The amount of user interaction required to achieve many common tasks is thereby
significantly reduced.

All the work presented seeks to further the ease and flexibility with which the
presented parameter estimation problems can be solved. By giving more plausible and
accurate results, these methods may serve to make the algorithms employed today
more robust and reliable in the future, and to make this technology available to a
larger user base, and ultimately the consumer market.

An interesting topic for future research are different parametrizations for Euclidean
transformations. This would benefit both the stereoscopic camera model presented in
Chapter 3 and the generalized framework for constrained bundle adjustment described
in Chapter 4 by potentially providing even greater flexibility. Aside from the repre-
sentation of the constraints, it would also be interesting to research methods for the
automatic extraction of the constraints. This would greatly reduce the amount of user
interaction required to build the constraint structures. To achieve this, it might be pos-
sible to employ a probabilistic formulation similar to that presented in the context of
3D line segment reconstruction in Chapter 5. This approach could also help to identify
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and eliminate outlier object points in the constraints, regardless if user-generated or
not. In any case, a thorough examination of the constraint interdependency structures
will be necessary, both for a better understanding of the influence between constraints
and to exploit the structures for faster optimization.

In conjunction with augmenting the proposed SfM methods with a probabilistic for-
mulation, the method for the probabilistic reconstruction of 3D line segments described
in Chapter 5 itself could be extended to include the camera parameters in addition to
further constraints on the scene structure. This approach could yield better results if
the initial camera parameters obtained by SfM, which the reconstruction intrinsically
has to rely on, were inaccurate.
A probabilistic formulation could possibly also help to make the symmetry-aware

deformation approach of Chapter 6 more versatile if it could be leveraged to selectively
break symmetries not supported by the scanned object. As a whole, the analysis of the
symmetry structure of both the template model and the scanned objects is without
doubt one of the more important areas of future research. A better understanding in
this area could permit the automatic selection of template models from a database
based on the observations made in the scan, possibly in real-time. The models could
then be edited on the fly, even before the scanning process is complete, which would
allow greater control over the process and present opportunities to guide the user in
order to obtain the best possible result.

The advances in the areas this thesis has contributed to might lead to the creation
of an all-encompassing canonical framework for constrained camera motion estimation
and 3D reconstruction. Through the combination of high-level structural analysis and
probabilistic reasoning, a better understanding about the structure of the observed ob-
jects and environments might be obtained, including the fully-automatic identification
of arbitrary objects by exploiting database knowledge. In a first step, this knowledge
could then be leveraged to reliably detect outliers, resolve ambiguities, and generate
constraints for the constrained camera motion estimation procedure. Thus enhanced,
the camera motion estimates would allow the structural and probabilistic analysis
to be refined in turn. A completely integrated formulation developed in subsequent
steps might finally allow computer vision applications to match or possibly exceed the
performance of the human visual system in general settings.
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