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Abstract 
 
Over the last decade, advances in genome sequencing have substantially increased the 
amount of genomic DNA sequences available. While these rich resources have improved 
our understanding of genome function, research of the epigenome as a transient but 
heritable memory system of the cell has only profited from this development indirectly. 
Although epigenetic information in the form of DNA methylation is not directly encoded 
in the genomic nucleotide sequence, it increases the mutation rate of cytosine-guanine 
dinucleotides by the CpG decay effect, and thus leaves epigenetic footprints in the DNA. 
This thesis proposes four approaches to facilitate this information for research. For 
largely uncharacterized genomes, CgiHunter presents an exhaustive algorithm for an 
unbiased DNA sequence-based annotation of CpG islands as regions that are protected 
from CpG decay. For species with well characterized point mutation frequencies, 
EqiScore identifies regions that evolve under distinct DNA methylation levels. 
Furthermore, the derived equilibrium distributions for methylated and unmethylated 
genome regions predict the evolutionary robustness of transcription factor binding site 
motifs against the CpG decay effect. The AluJudge annotation and underlying L-score 
provide a method to identify putative active copies of CpG-rich transposable elements 
within genomes. Additionally, epigenetic footprints in these sequences are applied to 
predict the germline epigenome of their loci. Moreover, AluJudge provides support for 
the targeted removal of epigenetically silenced repeat copies from CpG island 
annotations, which are subjected to a methylation-induced erosion process. Finally, the 
FFK approach enables the prediction of the germline methylome for homologous genome 
loci. 
 
In a number of case studies on the human genome, I demonstrate how this evolutionary 

epigenomics toolkit can be applied to enhance the epigenomic characterization of the 
large quantity of currently sequenced vertebrate genomes. Furthermore, these studies 
show how to improve the identification of novel epigenetic functional genome regions in 
already well characterized species. Finally, the toolkit opens new avenues for computer-
based research of the evolution of genome-wide DNA methylation. 
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Kurzfassung 
 
In den letzten Jahrzehnten haben Fortschritte in der Genom-Sequenzierung zu einem 
substanziellen Zuwachs an verfügbaren DNS-Sequenzen geführt. Während diese 
Ressourcen zu einem verbesserten Verständnis der Funktionsweise von Genomen 
führten, konnte die Erforschung des Epigenoms als veränderlichem und doch 
vererbbarem zellulärem Informationsspeicher nur indirekt von dieser Entwicklung 
profitieren. Obwohl epigenetische Information nicht direkt in Form von genomischen 
Nukleotid-Sequenzen kodiert wird, sind beide Systeme derart miteinander verflochten, 
dass gemeinsame evolutionäre Abhängigkeiten einen epigenetischen Fußabdruck in der 
genomischen DNS erzeugen. 
In dieser Arbeit werden vier Ansätze vorgestellt, um diese bisher weitgehend 
unerforschte Informationsquelle zu erschließen. Gleichsam einem Werkzeugkasten für 
Probleme der Evolutionären Epigenomik, bieten sie für eine Vielzahl verschiedener 
Szenarien eine Auswahl von einsetzbaren Methoden an. 
Für weitgehend uncharakterisierte Genome ermöglicht CgiHunter, als kombinatorisch 
präziser Algorithmus, die auf der DNS-Sequenz basierende Identifikation von CpG 
Inseln, welche als Zentren von epigenetischer Regulation in Wirbeltier-Genomen bekannt 
sind.  
Für Spezies in denen bereits Modelle der Punktmutationshäufigkeit existieren, können 
Dinukleotid-Gleichgewichtsverteilungen eingesetzt werden. Sie bieten über den 
EqiScore-Ansatz die Möglichkeit, Genomregionen zu identifizieren, die unter einem 
erhöhten DNS methylierungs Nieveau evolvieren. Des Weiteren ermöglichen sie eine 
Vorhersage der evolutionären Robustheit von Transkriptionsfaktor-Bindestellen 
gegenüber dieser epigenetischen Einflüsse. 
Komplementär dazu bietet die AluJudge Annotation und der ihr zugrundeliegende L-

Score für Genome mit CpG-reichen transponierenden Elementen einen Weg, unter ihnen 
potentiell aktive Kopien zu identifizieren. Darüber hinaus können diese Sequenzen als 
positions-spezifische Sonden des Keimbahn-Epigenoms eingesetzt werden. Auch 
unterstützt der L-Score die gezielte Entfernung von jenen mehrheitlich epigenetisch 
inaktiven Regionen aus CpG-Insel-Annotationen, welche einem methylierungs-
induziertem Erosions-Prozess unterworfen sind. Zuletzt wird der FFK-Algorithmus, als 
ein phylogenetischer Ansatz beschrieben, der für nahe verwandte Spezies, wie jene des 
Primaten-Stammbaums, eine Vorhersage des Keimbahnmethyloms für beliebige 
Genomregionen ermöglicht. 
In einer Reihe von Fallstudien an Hand des menschlichen Genoms, demonstriere ich im 
Anschluss, die Funktionalität dieser bioinformatischen Werkzeuge. Zum Einen 
ermöglichen sie die Identifizierung von neuen epigenetisch kontrollierten Regionen im 
menschlichen Genom. Zum Anderen dienen sie als Beispiel für die epigenomische in-

silico Charakterisierung der Vielzahl von bald verfügbaren Vertebraten-Genomen. 
Zuletzt wird das Potential dieser neuen Ansätze für die computerbasierte Erforschung der 
evolutionären Entwicklung von genomeweiter DNS-Methylierung thematisiert. 
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Introduction 

 
The release of the human genome at the dawn of the millennium was coupled with the 
hope that it would elucidate the complex processes in living cells. The goal of the next 
phase of the Human Genome Project was described as “finding all the functional parts of 
the genome sequence and using this information to improve the health of individuals and 
society”(Collins, Green et al. 2003). 
 
However, the genomes of mammalian cells are highly complex and much harder to 
understand than assumed from pilot studies on smaller systems. This complexity is partly 
explained by the fact that genomic sequences are interpreted differently based on the 
information that is not directly encoded in the DNA. Such information is referred to as 
epigenetic information and it explains, for instance, why cells from different human 
tissues (e.g., skin, muscles or liver) share identical genomes, but have very distinct 
phenotypes and functions.  
 
Understanding these complex processes is especially important when they fail. For 
instance, the causes of complex diseases like cancer, mental disorders or 
immunodeficiency comprise disrupted DNA repair (Turnbull and Rahman 2008), 
unconstrained cell growth and proliferation (Jones and Thompson 2009), the failing 
failure of immune system pathways (Visser, Eichten et al. 2006)  and a rearrangement of 
metabolism (Warburg 1956; Freitag 2006; Linehan, Srinivasan et al. 2010). A growing 
body of evidence indicates that epigenetic events play a major role in the induction of 
these diseases (Schanen 2006). This may imply that without an improved understanding 
of genome and epigenome function, the etiology of many diseases will remain elusive. In 
order to achieve systematic progress, identification of all the functional parts of the 
genome sequence involved in epigenetic signaling is critical. Based on such a catalogue, 
signals in functional genome regions can be discriminated from noise in non-functional 
genome regions and the relevance of an individual epigenetic signal for a disease can be 
evaluated.  
 
This thesis contributes a number of algorithmic, statistical and molecular biological ideas 
that assist in the identification of those functional parts of the genome sequence that are 
most relevant for epigenetic signaling. All these approaches facilitate the special role of 
the dinucleotide CpG as an interface between the genome, the epigenome and the 
interdependencies in their joint evolution. First, this basic concept of the thesis will be 
explained in a nutshell. In order to take the interdisciplinary nature of this subject into 
consideration, this summary is intentionally written in a way that does not require 
advanced understanding of computer science, mathematics, molecular biology or 
biochemistry. This was done in order to make it understandable for high school students. 
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A metaphor for epigenome function and evolution 

 
A key feature of cellular life is reproduction. In its essence, this is a process of copying 
information and applying the reality as data storage. To achieve this, every living cell 
processes information. This includes external information about its environment (e.g., to 
guide the uptake of nutrition) and internal information on how to react to external signals, 
how to regulate the metabolism, and how to calibrate and execute the replication process. 
Every non-random decision of a cell or complex organism to achieve reproduction is 
encoded by its biomolecules. They represent the information and cellular program that 
processes them, and are structured in a tightly interwoven multilayer information system 
that comprises layers such as the genome, epigenome, transcriptome, proteome, and 
metabolome. Understanding the nature of each layer of this information system is 
essential to understanding cell function and generating a hypothesis that can be tested by 
the scientific method.  
 
For instance, a newspaper is an appealing analogy for the genome of unicellular 
organisms. This newspaper is full of articles that contain construction blueprints and each 
article has a headline that encodes to whom the article is of interest. Thus, multiple 
readers with different interests can browse the document simultaneously and find the 
required information efficiently. In the genome, this function is fulfilled by genes and 
their gene promoters. For single cell organisms, like the prokaryotic bacterium 
Escherichia coli, this metaphor is indeed very helpful. The lac-operon, for instance, is a 
complex of three genes, which encode the blueprints of proteins that are essential for 
digestion of the sugar lactose. Thinking in terms of its information content, the lac operon 
is like an article that describes how the cell can survive on a lactose diet.  As long as no 
lactose is available, a repressor protein blocks the promoter of the operon, like someone 
who is intentionally hiding the headline of a newspaper article. Upon lactose binding, 
these repressors release the promoter and the information of the genes becomes 
accessible. 
 
For multicellular organisms, the newspaper metaphor is an oversimplification. Here, the 
developmental stage of an organism, the type of tissue a cell belongs to, the part of the 
body in which it is located and a number of other conditions influence the decision of 
whether a gene should be accessible or not. The human body contains more than a trillion 
different cells that share the same genome, but which have very different functions and 
information demands. Therefore, our current understanding of the genome is more like 
that of a highly organized library made out of DNA. Its information content comprises 
construction blueprints, administrative regulations, stretches that stabilize the structure 
and a substantial amount of outdated or experimental material. This library is localized at 
the core of an industrial complex called the cell. Within the library, a myriad of 
autonomously acting agents are moving between the ‘bookshelves’, sometimes taking 
notes in the form of RNA transcripts. Only very few of these notes ever leave the library 
to go to the cell’s workshops where they act as blueprints for new biomolecules. Many 
other notes are for internal use only and describe what should or should not be 
transcribed and exported next. From time to time, incomplete or outdated notes are 
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produced, which are actively destroyed before they can become effective. For humans, all 
the information in this library is present in two slightly deviating editions of about 3 
billion letters each. One of the editions was derived maternally and the other paternally. 
Considering that 500 letters constitute one page and 500 pages an entire volume, this 
makes 24,000 books worth of information. Unlike what we would expect from a human 
library, the genome is not organized into such compact books, but 46 large volumes 
called chromosomes. At the same time, no equivalent to a central index or catalogue has 
yet been discovered. 
 
Instead, the information is organized similar to the newspaper example described above 
with a few very prominent headlines at the start of each article, i.e., gene. The keywords 
in these headlines attract the readers (transcription factors). Furthermore, a single reader 
is not sufficient to initiate the transcription of information from the genome. Instead, a 
very heterogeneous team is required. Some team members are specialized in directing 
readers to headlines that they would otherwise not be interested in. Other members ensure 
that there is always enough writing material available or that the information is easily 
accessible for the actual scribe. The transcription procedure only starts when the 
complete teams are assembled. The importance of the different information varies 
according to the phases in the life of a cell. Thus, the number of experts that attract or 
repel others from certain headlines changes accordingly. Ultimately, this regulates the 
amount of each type of biomolecule that is produced at a certain phase. 
 
Up to this point, our description of how cells and genomes interact in unicellular 
organisms is still in line with the newspaper metaphor. However, in multicultural 
organisms another layer of complexity is added because the same library is used in cells 
that have very different tasks. For instance, skin, liver and neuronal cells share the same 
genome, but differ dramatically in shape and function. 
In order to prevent the wrong information from being transcribed, two additional 
strategies have evolved. First, whole compartments of the library containing temporarily 
irrelevant information are made less accessible. This way, fewer agents enter these areas 
and the likelihood of complete teams being assembled is reduced. Thus, the waste of 
working time and materials is prevented. Furthermore, the production of potentially 
harmful blueprints, which are only of use in other cell types, is limited. Second, particular 
parts of the genome are marked by methylation tags that basically state: “Do not start to 
transcribe here.” Only a small part of the genome remains free of these epigenetic tags, 
thus adding a further mechanism to the system for focusing on specific information. 
When two new cells are produced from one parent cell, the whole library is duplicated in 
a process called replication. The epigenetic marks are maintained during this process, 
thus conserving the cell type-specific information. Thus, genes which are never relevant 
for a liver cell only have to be deactivated once by DNA methylation during a process 
called differentiation and then stay repressed. 
 
This library also contains a substantial amount of information that has no apparent 
function. Some of it is present in the form of blueprints that have been erroneously 
duplicated. Others were smuggled into the library from the outside, e.g., by viruses. If 
these are integrated into areas that are not transcribed, they are not very harmful to the 
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cell and thus faithfully copied during each library replication cycle. Sometimes errors 
occur during replication and storage, which results in a mutation of the information. 
Some of these mutations have systematic causes. For instance, the epigenetic methylation 
tag that prevents transcription frequently induces a particular type of mutation. Although 
repair mechanisms have been developed for many other sources of errors, this mutation is 
not repaired efficiently. Hence, it accumulates over time in areas that are intensively 
tagged by DNA methylation, thus providing information about the epigenetic history of 
this genome region. 
This particular mutation effect is called CpG decay and will be evaluated in-depth in the 
thesis to gain a better understanding of the genome and epigenome as well as their 
evolutionary history. 
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Outline 

 
In chapter 1, key concepts from genomics, epigenomics and evolution are introduced. 
Chapters 2 to 5 discuss four computational approaches that integrate these three domains. 
All four approaches are directly or indirectly associated with the CpG decay effect. In 
chapter 2, the enrichment of CpG dinucleotides in epigenetically active regions, so-called 
CpG islands, is analyzed empirically. To this end, a novel algorithm for the identification 
of CpG islands is developed and compared to existing approaches. In chapter 3, this 
analysis is extended to a quantitative level by explicitly modeling the evolutionary forces 
that cause this enrichment, i.e., the CpG decay effect. In chapter 4, this analysis approach 
is adapted to address the special case of transposable elements, while chapter 5 extends 
the approach to integrate the information from several species into a joint analysis. All 
the chapters have the common theme of facilitating the CpG decay effect over an 
evolutionary timescale to gain insight into the genome and epigenome function. Chapter 
6 closes the thesis with concluding remarks and the outlook for further development of 
the evolutionary field of epigenomics. 
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Chapter 1 – An introduction to evolutionary epigenomics 
 
A central assumption of this thesis is that an improved understanding of genome 
evolution also leads to an improved understanding of the complex evolutionary interplay 
between the genome and epigenome. After a brief introduction of the well understood 
basic genome structure and relevant terminology, this chapter presents an overview of 
epigenetic genome regulation in order to link the library metaphor presented in the 
introduction to the scientific facts. 
Next, a few essential evolutionary concepts are discussed. This is followed by approaches 
which utilize this knowledge for deciphering the genome function. The chapter closes by 
describing the initial research that links genome evolution with epigenetic genome 
regulation as well as an outline of how this thesis extends this work. 
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1.1 Basic Genome Function 

 
The term genome comprises all the hereditary information of a cell. In most organisms, 
this information is encoded by deoxyribonucleic acid (DNA) molecules. These are 
assembled from two strands of four essential building blocks called nucleotides: 
adenosine (A), cytosine (C), guanine (G) and thymine (T). Along the strands, nucleotides 
are covalently linked by phosphate molecules. Across these strands, the bonds are 
mediated by two hydroxyl bridges between A and T (A/T) and three such bonds between 
C and G (C/G), respectively. This binding pattern results in the characteristic double 
helix shape of the DNA molecule, such that one strand encodes the reverse 
complementary sequence of the other. In some viruses and as temporary information 
carrier ribonucleic acid (RNA) fulfill a similar function. RNA differs from DNA mainly 
by the substitution of T by the biochemically very similar uracil (U), and the replacement 
of deoxyribose by ribose as the sugar component of the nucleotide. 
In order to discriminate nucleotide base pairs (bp) across strands from dinucleotide pairs 
along one strand, the former are denoted by C/G and the latter by CpG, where p 
symbolizes the phosphate bond linking two individual nucleotides to form a dinucleotide. 
Thus, CpG/CpG denotes a double-stranded dinucleotide. Applying this four letter 
alphabet, macromolecules consisting of millions of bps have evolved in many species. 
These are condensed into compact and highly structured complexes called chromosomes, 
which are replicated for each cell division by separating both DNA strands and 
facilitating the complementary base pair principle to synthesize two new double helices 
in a supervised energy consuming process. In this way, each daughter cell can receive a 
complete copy of the genome during cell division (Alberts 2002). 
 
To understand how information is encoded in the genomic sequences of these DNA 
molecules, we can return to the newspaper analogy from the introduction. Each 
nucleotide is a part of a long text, but to the observer it is unclear which nucleotides form 
words or sentences. Parts of the text form functional units and are referred to as genes. 
Teams of molecules called protein complexes produce copies of the DNA in the form of 
RNA transcripts, which are rapidly degraded within cells. At the start of each gene, there 
is an administrative area known as promoter, which contains one or more ‘headlines’ 
where the protein complexes assemble before they start to transcribe the gene. These 
‘headlines’ are referred to as transcription factor binding sites (TFBS) and are cis-

regulatory elements, while the transcription factors (TF) that bind them are called trans-

regulatory elements. TFBSs are located in close proximity to the transcription start sites 
(TSS) and only attract specific TFs. The promoters can be co-regulated by more distant 
cis-regulatory elements called enhancers and repressors that either support or hinder the 
assembly of the protein complexes that initiate the transcription. Furthermore, some 
TFBSs contain CpGs that can be modified by a process called DNA methylation, which 
results in an altered affinity of the TFs for this site. 
Additionally, the accessibility of bigger text blocks can be temporarily or permanently 
restricted or encouraged, such that accessibility for proteins is altered. This process is 
mediated by covalent modifications of the proteins called histones, which organize the 
DNA structure.  
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Furthermore, the TF concentration changes over time. Each phase in the cell cycle has its 
own composition. All these influences vary the probability that a complete transcription 
complex is assembled at a particular promoter and ultimately, the frequency at which the 
associated gene is transcribed. Thus, gene regulation is a stochastic process. 
 
Finally, the produced RNA transcripts are exported to other parts of the cell, where they 
directly regulate cell function (e.g., by regulating the transcription of other genes) or are 
applied as construction blueprints for new proteins. While the ‘text’ itself and thus the 
sequence of all DNA is called the genome, the epigenome as the sum of all epigenetic 
modifications mainly describes how access to the DNA is regulated to increase or 
decrease the chances of initiating transcription of a particular gene. 
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1.2 Epigenetics 

 
Derived from the Latin word epi, which means above or on top of, epigenetics describes 
all the information that is memorized for more than one cell generation without altering 
the DNA sequence. A more specific definition refers to epigenetics as “the study of 
mitotically and/or meiotically heritable changes in gene function that cannot be explained 
by changes in DNA sequence” (Russo et al. 1996). Interestingly enough, the term’s 
definition itself is the subject of an evolutionary process. It was originally coined by 
Waddington to describe the connection of genetics, the science of heredity, and 
epigenesis, the process that produces complex organisms from a single cell by 
differentiation and organ formation (Allis, Jenuwein et al. 2007). 
 
Since the definition of epigenetics is broad, it covers numerous mechanisms. This thesis 
will focus on two of the major epigenetic systems, i.e., DNA methylation and covalent 
modifications of histone protein complexes. Both unfold their function mainly by 
regulating the accessibility of DNA for soluble factors, such as proteins. 
 

1.2.1 DNA methylation 

 
The four DNA building blocks adenosine (A), cytosine (C), guanine (G) and thymine (T) 
introduced above fall into two classes, in which each of the pyrimidine-based nucleotides 
(C and T) is paired with the corresponding purin-based nucleotide (G and A). While the 
A/T pairing is mediated by two hydrogen bonds, the C/G pairing is mediated by three, 
thus it is the stronger pairing. The length of such double-stranded DNA (dsDNA) is 
measured by the number of nucleotide base pairs (bp) and reaches up to a few thousand, 
i.e., kilo base pairs (kbp) in single cell organisms and up to several million i.e., mega base 
pairs (Mbp) per molecule for complex organisms.  
 
Multiple modifications of the standard nucleotides have been discovered (Low et al. 
2001; Guo et al. 2011; Wossidlo, Nakamura et al. 2011); the arguably most important one 
in vertebrate genomes is the addition of a methyl group to the 5' carbon atom of C that 
leads to the formation of 5'-methylcytosine (5mC). In principle, this change only affects 
the DNA strand to which it is applied, thus the information would be lost for the 
complementary DNA strand after genome replication. In many invertebrates and 
vertebrates, 5mC is mainly found in a CpG context (Bird 1980). In dsDNA, this 
dinucleotide forms a palindrome, which is either found in an unmethylated (CpG/CpG) or 
methylated (5mCpG/5mCpG) form, but rarely hemimethylated (5mCpG/CpG). This 
phenomenon is caused by special enzymes that copy the methylation information after 
DNA replication from the original to the newly synthesized DNA strand, which enables 
the formation of an epigenetic memory (Bird 2002). 
 
 
 



 10

CpG methylation is so widespread in mammalian DNA that 5mC is considered the fifth 
base of the genome (Novik et al. 2002). Recent measurements estimate the genome-wide 
CpG methylation level in some human tissues to be about 70–80% (Lister et al. 2009; 
Laurent et al. 2010). Thus, the human genome is subjected to global CpG methylation. 
These methylation marks represent information that is written, maintained, read and  
erased by specific enzymes and proteins (Bird 2002). Since these processes are relevant 
to an understanding of the dynamics of DNA methylation marks, they are explained in 
more detail in the following section. 
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1.2.2 Enzymes related to DNA methylation 

 
Earlier, DNA methylation was compared to a text markup that makes headlines attractive 
to some readers and unattractive to others. In this analogy, a ‘headline’ is equivalent to a 
particular nucleotide sequence that specifies the affinity with which a certain protein can 
bind to the DNA, e.g., within a promoter region. This binding affinity greatly influences 
the frequency and duration of protein recruitment, which consequently modulates the 
secondary effects that the protein induces at this genome locus. Ultimately, it influences 
whether transcription is initiated or inhibited. Naturally, such a ‘headline’ can only be 
affected by CpG methylation if its sequence contains a CpG. 
 
Maintaining and setting methylation marks 

 
DNA methylation at CpGs is mediated by a set of enzymes called DNA 

methytransferases (DNMTs). The protein DNMT1 is also called a maintenance DNMT 
because it preferentially binds hemimethylated CpGs and methylates the remaining 
cytosine on the unmethylated strand (Bestor and Ingram 1983). In the cell cycle, the 
protein is highly expressed shortly after the onset of replication; furthermore, it is also 
associated to the replication machinery (Caiafa and Zampieri 2005). This ensures that the 
methylation marks are copied to the newly synthesized DNA strand with high fidelity.  
De novo methylation of unmethylated CpGs is performed by the enzymes DNMT3a and 
DNMT3b (Okano et al. 1999). These are predominantly active during early 
embryogenesis and cell differentiation. It has been observed that loss of their activity 
during mouse development is lethal (Reik et al. 2001), thus proving their essentiality for 
survival.  
 
Erasing methylation marks 

 
In the early development of mouse embryos, two waves of epigenetic reprogramming 
occur. During these phases, most of the inherited methylation marks are erased. This 
results in the establishment of totipotent embryonic stem cells (ES) (Morgan et al. 2005). 
 
It has not yet been clarified whether this is a consequence of DNMT suppression or 
actively performed by unknown factors (Chahwan et al. 2010). The observation that four 
transcription factors are sufficient to reset the methylation marks of somatic cells to 
‘deprogram’ differentiated cells into pluripotent stem cells (Takahashi and Yamanaka 
2006) supports the second hypothesis. Several mechanisms have been discussed which 
would allow an active demethylation process, including an oxidative cascade, such as via 
5-hydroxyl-C and 5-carboxyl-C, enzymatic removal of the methyl group, direct base 
excision repair of 5mC and deamination of 5mC to T followed by a base excision repair 
of the induced T/G mismatch (Wu and Zhang 2010). The last mechanism is actually of 
greater relevance for this thesis and may play a direct role in the context of genome 
evolution. It will be revisited in subsection 1.2.3 on CpG decay. 
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Reading methylation marks 

 
The epigenetic information stored in the form of methylated CpGs is read in various 
ways. Methylated CpGs in cis-regulatory elements can either attract or repel the binding 
of trans-factors. These trans-factors can have an activating or repressive influence on 
gene transcription. 
Proteins that contain a methyl-CpG-binding domain (MBD), for instance, preferentially 
bind methylated CpGs. Subsequent to binding, they recruit additional factors and often 
unfold a repressive function, as in the case of the polycomb group proteins (Schwartz and 
Pirrotta 2007). In contrast, proteins that exclusively bind to unmethylated cis-regulatory 
elements often promote gene transcription, e.g., as has been reported for the transcription 
factor Sp1 (Macleod et al. 1994) and the transcription factor Egr1 (Whang et al. 1998). A 
special case is the insulator protein CTCF (Bird 2002), which has a high affinity for 
unmethylated DNA. At the same time, however, it has a repressive function for some 
genes while promoting the transcription of others. CTCF plays a major role in genomic 
imprinting (Reik and Walter 2001).  
In vitro experiments have revealed that mouse cells without DNMT1 show increased 
expression for 10% and reduced expression for 1–2% of their genes (Jackson-Grusby et 
al. 2001). Therefore, DNA methylation in mammals is primarily associated with the 
mediation of repressive signals. 
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1.2.3 CpG decay 

 
The term CpG decay describes the increased mutation rate of cytosine in a CpG context. 
In many larger vertebrate genomes, CpGs appear at a much lower frequency than 
expected from the G and C content (CpG suppression). For instance, in the human 
genome about 1% of all dinucleotides are CpGs, while a frequency of about 6% is 
expected if all dinucleotides were to appear at the same frequency. CpG is the only 
dinucleotide that shows such a divergence from the expectation (compare Table 3.1). A 
number of computational studies have estimated that C in CpG context has an increased 
mutation rate of 10–50% (Arndt et al. 2003; Lunter and Hein 2004; Siepel and Haussler 
2004; Hobolth 2008; Peifer et al. 2008). 
 
This is mainly attributable to DNA methylation. The modified nucleotide 5mC is 
biochemically less stable than C. It is prone to spontaneous hydrolytic deamination into 
T. This temperature-dependent process is twice as fast for 5mC than for C, which is 
deaminated into the nucleotide uracil (U) (Shen, Rideout III et al. 1994). Furthermore, the 
repair of T/G mismatches is less accurate than the resubstitution of U by C (Holliday and 
Grigg 1993). While U is not present in a regular DNA sequence and thus easily 
recognized as the mutated nucleotide, the T/G mismatch is ambiguous and can be 
repaired in both directions, or simply transmitted to the next cell generation. 
Furthermore, the active demethylation during embryogenesis potentially involves 
targeted deamination of 5mC followed by repair of the induced T/G mismatch as 
discussed above. The fidelity of this process is uncharacterized, thus opening the 
possibility that incomplete active demethylation leads to a substitution of C by T. This 
implies that in each generation, every actively demethylated CpG is exposed to such an 
additional mutational burden at least once. Only consistently methylated or unmethylated 
CpG sites are protected from it.  
The term CpG decay comprises spontaneous deamination as well as the potential risk of 
error-prone active demethylation.  
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1.2.4 Evolutionary origins of DNA methylation 

 
The evolutionary history of DNA methylation is an excellent example of a molecular 
biological mechanism which – once it was developed – acquired a variety of different 
functions. In prokaryotes, such as the bacteria Escherichia coli, DNA methylation 
primarily has a defensive function. By hosting proteins that methylate particular DNA 
sequences and produce restriction enzymes that cut unmethylated instances of these 
sequence patterns, bacteria gained the ability to recognize and destroy foreign DNA 
(Kobayashi, Nobusato et al. 1999). Thus, the combination of matching restriction and 
methylation enzymes formed an intracellular immune system against parasitic genome 
sequences. The ability to cut DNA of competitors or protect the own DNA against their 
attacks, provided an evolutionary advantage. Similar to an arms race, various types of 
restriction-methylation (i.e. RM gene complexes) evolved. These complexes target 
different sequence patterns and methylate nucleotides at different positions or are 
offensively directed to cut DNA at the methylation patterns of other RM gene complexes. 
This created the great variety of methylation sensitive restriction enzymes, which became 
an essential tool for modern molecular biology. Among the proteins that performed the 
DNA methylation were the precursors of 5mC targeted DNMTs that mediate DNA 
methylation in mammalian genomes. According to a comparative study, the last common 
ancestor of mammals, plants and fungi already possessed genes homolog to DNMT1 and 
DNMT3 (Zemach, McDaniel et al. 2010). 
In model organisms from these subgroups of the taxon Eukarya, the defensive role of 
DNA methylation has shifted, as it is primarily suppressing genomic elements called 
transposons (Goll and Bestor 2005). These ‘jumping genes’ represent mobile DNA 
sequences that can change their location in the genome either by a ‘cut-and-paste’ or 
‘copy-and-paste’ mechanism, depending on the particular subtype. More than 45% of the 
human genome consists of transposable elements (Goll and Bestor 2005). For most of 
these transposon copies, a direct contribution to cell function has not yet been 
characterized, may be very indirect or does not exist. Transposons are transcriptionally 
inactivated and immobilized by DNA methylation (Kato, Miura et al. 2003; Bourc'his 
and Bestor 2004). Additionally, the CpG decay effect contributes to an accelerated 
substitution of the contained CpGs. Thus, it initiates long-term inactivation by  distorting 
the DNA sequence (Goll and Bestor 2005). 
 
Early evidence of the regulation of regular genes can be found in some bacteria. In these 
prokaryotes, DNA methylation of adenine at the palindromic GATC pattern acquired a 
gene regulatory function (Casadesus and Low 2006). Whether these systems are 
predecessors of mammalian methylation mediated gene regulation or a case of 
convergent evolution remains to be clarified. 
 
A central difference between DNA methylation in prokaryotes and eukaryotes is the 
frequency of the methylation sites. Methylated recognition sites of restriction enzymes 
and the regulatory GATC motif are more complex patterns than CpG, and thus appear at 
least two orders of magnitude less frequent in genomic sequence. A transition from the 
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longer patterns to the shorter ones thus induces the spread of a relative localized 
modification to a genome-wide phenomenon. 
Global 5mC methylation of CpG sites is present in all large genome eukaryotes, but only 
in a few with small genomes (Goll and Bestor, 2005). This indicates a co-evolution with 
the increase of genome length. For instance,. Dipteran insects (e.g. flies) – but not 
Hymenopteran insects (i.e. the honey bee) – lack most of the DNMTs required to 
maintain the full regulatory potential of DNA methylation. Therefore, global DNA 
methylation may not predate the divergence of these insect species (Goll and Bestor 
2005). As mentioned above, plants also possess homologs of these proteins; however, the 
best characterized model organism A. thaliana shows cytosine methylation in an arbitrary 
sequence context. Moreover, methylation is constrained to repetitive sequences, the 
coding sequence of highly transcribed genes and to less then 5% of its expressed gene 
promoters (Henderson and Jacobsen 2007). Until a counterexample is found, it is 
assumed that cytosine methylation is not a global phenomenon in plants. It is unlikely 
that global DNA methylation evolved early in the eukaryotic phylogeny and was then lost 
in all the organisms studied except for vertebrates. This places the most likely origin of 
global DNA methylation somewhere between the honey bee, which still has the required 
set of enzymes but shows no evidence of global DNA methylation (Zeng and Yi 2010), 
and the common ancestor of vertebrates. 
 
Further evidence is provided by a comparative study of the CpG content in gene 
promoters. It showed that CpGs were notably absent from promoters in the bacterial 
genomes examined, slowly increased their concentration upstream of the TSS in the 
worm C. elegans and the fruit fly D. melanogaster and reached a broad peak in the 
mosquito A. gambiae. In zebrafish and humans, the CpG dense region also finally 
expanded downstream of the TSS (Khuu et al. 2007). This coincides with the 
independence of gene regulation from DNA methylation in the worm as well as the fly 
model organisms and the global presence of DNA methylation in zebrafish and humans. 
These novel CpG-rich promoter types are also called CpG islands, which are tightly 
linked to the regulation of transcription by DNA methylation and introduced in detail in 
the following section. 
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1.2.5 CpG islands 

 
CpGs as targets of DNA methylation are not evenly distributed along mammalian 
genomes. In general, they are exceptionally rare. More specifically, CpGs are 
underrepresented by around five to sixfold compared to the frequency that is expected 
from the observed single nucleotide frequencies (Antequera 2003).  
 
An exception to this rule are short regions which show an elevated GC content and a CpG 
frequency that equals the frequency of GpCs (Bird 1980). These regions are usually 
referred to as CpG islands (CGIs) (Gardiner-Garden and Frommer 1987), however, the 
terms CpG-rich islands (Bird 1986) and Hpl tiny fragments are also used. The term Hpl 
refers to the restriction enzyme applied for CGI discovery, which only cuts the 
unmethylated version of its CpG-containing target motif, and consequently fragments 
unmethylated CGIs into very small DNA segments (Bird and Taggart 1980). More 
recently, the term CpG clusters was also proposed (Hackenberg, Previti et al. 2006) to 
describe regions with high CpG density. The most prominent feature of CGIs is the 
absence of DNA methylation in most germline tissues, although they contain an 
exceptionally high concentration of potential targets for methylation. During 
differentiation, some CGIs become methylated in a tissue-specific manner (Bird 2002). 
Furthermore, they co-locate with origins of replication, i.e., with those regions that are 
replicated first during DNA replication (Antequera and Bird 1999). This may contribute 
to their low methylation level because the concentration of DNMT1 is very low during 
early replication. The absence of this enzyme may support the maintenance of the 
unmethylated state (Caiafa and Zampieri 2005). The unmethylated state is primarily 
maintained by methylation-determining regions (MDR), which correspond to cis-
regulatory elements that function as binding sites for proteins (Lienert, Wirbelauer et al. 
2011). 
 
CGIs often occur upstream of genes and overlap with their TSSs. Approximately 60% of 
all promoters in human and mouse fall into this class of CGI promoters (Antequera, 
2003). The methylation levels of CpG-rich promoters are reported to be anti-correlated 
with the expression of the associated genes, while no correlation can be observed for 
CpG-poor promoters. Furthermore, promoters with an intermediate CpG level can fall 
into each of these two classes (Weber, Hellmann et al. 2007). How CGIs influence the 
function of the respective promoters is not fully characterized. The next section briefly 
introduces the key hypothesis. 
 
 

CpG islands as promoters 

 
The promoter region of human and mouse promoter CGIs is located between the 5' start 
of the CGI and the gene’s TSS (Cuadrado, Sacristán et al. 2001). CGIs function in a 
strand-unspecific manner. Thus, a single CGI can activate genes on both strands if the 
two TSSs are located accordingly (Adachi and Lieber 2002; Carninci, Sandelin et al. 
2006).  
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A variety of transcription factors bind to CGIs (Stapleton, Somma et al. 1993; Tommasi 
and Pfeifer 1997). For example, Sp1 is a ubiquitous transcription factor with a GC-rich 
binding motif (GC box), which binds to many CGIs. Its presence is a signal to keep the 
region unmethylated, and thus functions as an MDR (Macleod. Charlton et al. 1994; 
Lienert, Wirbelauer et al. 2011). Interestingly, the protein is not necessarily involved in 
the expression of the associated gene in all tissues (Marin, Karis et al. 1997) and does not 
influence the expression of many other genes to whose promoters it binds (Saffer, 
Jackson et al. 1991). This can be explained by the presence of multiple Sp1 binding sites 
per promoter (Macleod, Charlton et al. 1994) and other cis-regulatory sequences. The 
observation that a CGI promoter harbors multiple TSSs  (Aimée and Bird 2011) supports 
the assumption that it hosts several independent transcription initiating modules. 
Although the interplay between CGIs and TSSs is not yet fully understood, this 
association is strong enough for CGI discovery to be applied in the identification of novel 
genes (Bird 1987). It was recently demonstrated that although this approach has been 
used for more than two decades, improvements in this area can still lead to the 
identification of a substantial number of new functional elements, even for genomes that 
are investigated in depth, such as those of human and mouse (Illingworth, Kerr et al. 
2008; Illingworth, Gruenewald-Schneider et al. 2010). In particular, the prediction of 
gene promoters for functional transcripts that do not encode proteins but regulate the 
transcription of other genes – so-called micro RNAs – can be improved by considering 
CpG dinucleotide distribution (Bhattacharyya, Feuerbach et al. 2012). 
 
 
Origin of CpG islands 

 
The CpG decay effect accounts for the substantial influence that global DNA methylation 
has had on the genome-wide distribution of CpGs. Therefore, the spread of DNA 
methylation from a phenomenon that was localized to restriction sites and transposable 
elements to a genome-wide modification is reflected by a loss of CpGs in the affected 
genomes (Khuu, Sandor et al. 2007; Yi and Goodisman 2009).  
 
Initial CpG-rich but methylation-free genome regions were observed in vertebrate 
genomes (Bird 1980). These regions were assumed to be unmethylated in the germline to 
retain their high CpG frequency (Bird 1980). Since then, several statistical approaches 
have quantified the impact of DNA methylation on genome evolution (Sved and Bird 
1990; Arndt, Burge et al. 2003; Lunter and Hein 2004; Siepel and Haussler 2004; 
Hobolth 2008; Peifer, Karro et al. 2008) leading to the conclusion that the decay of 
CpG/CpG into TpG/CpA dinucleotides occurs at a rate that is 10 to 50 times higher than 
other single nucleotide substitution processes. This provides a plausible explanation for 
the strong CpG depletion in mammalian genomes. 
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CpG decay is the only point substitution process outside of the proteincoding region that 
significantly depends on neighboring nucleotides. The signal produced is strong enough 
to render the distribution of CpGs indicative of the presence and degree of global DNA 
methylation in a vertebrate genome (Jabbari, Cacciò et al. 1997; Glass, Thompson et al. 
2007). Thus, CpG decay translates local epigenetic differences in the germline 
methylation level by methylation-mediated C to T transitions into genomic differences of 
CpG density. Following this line of evidence, CpG depletion in the bulk genome is a 
consequence of global DNA methylation, whereas CGIs reflect the ancient unbiased 
nucleotide distribution to some extent. 
 
To understand why DNA methylation has spread from a locus-specific modification to 
the genome-wide default state, it is instructive to correlate this modification with the 
genome size of the inspected species. In larger vertebrate genomes, CpG methylation is 
also abundantly present in non-coding regions and repetitive elements (Bird 2002). In 
these cases the common function is an inhibition of transcription at unfavorable positions. 
It is possible that the demand for tighter regulation is higher for genomes with large non-
coding and putatively neutrally evolving domains that are rich in transposable elements. 
Thus, global DNA methylation may be one of the mechanisms that enabled vertebrates to 
increase their genome size without losing too many resources for the production of 
useless or harmful RNA transcripts. It implemented control over spurious transcription 
initiation and the spreading of transposable elements (Liu and Schmid 1993; Belancio, 
Roy-Engel et al. 2010). Furthermore, it enabled the deactivation of parasitic elements 
such as retroviral DNA (Kato, Ahmed et al. 1996). 
As discussed above, in the unmethylated state CpG-rich gene promoters seem to attract 
ubiquitously expressed transcription factors such as Sp1 via low-complexity but CpG-rich 
DNA motifs. These motifs are present at multiple positions per promoter (Aimée and 
Bird 2011). In certain promoters, an unmethylated germline state protects these motifs 
from CpG decay whereas they are under increased pressure in the remaining genome. 
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1.2.6 Histones and their modifications 

 
Genomic DNA molecules in the eukaryotic nucleus are highly organized to optimally use 
the limited space. In eukaryotic cells, the basic unit of organization is the nucleosome. 
This macromolecular structure consists of a protein octamer of two times four core 
histone proteins (H2A, H2B, H3 and H4), around which 146 bp of DNA is wrapped 
(Luger, Mader et al. 1997). With a distance of up to 80 bp until the next nucleosome 
begins, the diploid human genome is organized into approximately 30 million 
nucleosomes, each covering an average of 200 bp of DNA (Alberts 2002). Each histone 
has an N-terminal tail that extends well beyond the nucleosome boundaries, which makes 
it accessible for soluble factors such as enzymes. These tails are covalently modified in 
different ways, where each modification amounts to an individual epigenetic signal. 
These signals attract or repel specific proteins (Luger and Richmond 1998). Acetylation 
(ac) and mono-, di- or tri-methylation events (me1, me2 and me3) that are targeted to the 
amino acid lysine (K) at different positions of these tails are of special interest. They are 
either markers for compressing the DNA into dense, inaccessible heterochromatin, or 
unfolding it into open and putative actively transcribed euchromatin (Rice and Allis 
2001). 
 
Interplay of CGIs, DNA methylation and histone modifications 

 
DNA methylation and histone modifications partially depend on each other. For instance, 
histone deacetylases (HDACs), which are able to remove the activation signaling acetyl 
groups from histone tails, are found in protein complexes that also contain the MBD 
domain. Thus, these complexes have an elevated affinity for methylated DNA. 
Consequently, CpG methylation marks can attract enzymes that initiate the remodeling of 
the local chromatin structure. Furthermore, unmethylated as well as methylated DNA is 
bent sharply to form a complex with the histone octamer. This is energetically 
unfavorable for homopolymers that are either very rich in GC or AT (Rice and Allis 
2001). This contributes to a nucleosome-free state of active CGI promoters (Caiafa and 
Zampieri 2005), which explains why these genome regions are hypersensitive for 
proteins that preferentially cut DNA, which is not bound to nucleosomes (Gross 1988). 
Additionally, specific histone modifications, such as H3K4me2 and H3K4me3, are 
strongly correlated with the absence of DNA methylation, and are assumed to repel 
DNMTs in concert with other factors (Edwards et al. 2010). 
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1.2.7 Computational epigenetics and epigenetic footprints in the DNA 

 
Epigenetic marks like histone modifications or DNA methylation are not independent of 
the genome sequence. The sequence-based identification of CGIs is arguably one of the 
first approaches to investigate this connection (Gardiner-Garden and Frommer 1987). A 
more sophisticated class of computational approaches focus on a fine-grained 
identification of epigenetic footprints in the DNA. For instance, several studies searched 
for DNA sequence features that differentiate between two types of CpG-rich regions. The 
first are regions that are prone to de novo methylation during development or are 
methylated per default in all measured tissues and the second are putatively functional 
CGIs that are unmethylated in most somatic tissues (Feltus, Lee et al. 2003; Bock, 
Paulsen et al. 2006; Das, Dimitrova et al. 2006; Feltus, Lee et al. 2006; Bock, Walter et 
al. 2007; Straussman 2009). These approaches apply machine learning methods to 
identify features of the DNA sequence that best correlate with the epigenetic state of the 
respective genome regions. While most of these approaches aim at the identification of 
predictive correlations, a closer examination of the discovered features can enhance our 
understanding of the exact mechanisms that mediate the interplay between genome and 
epigenome via the CGI function.  
The most recent approaches go a step further by taking evolutionary aspects into account. 
For instance, the conservation of CpGs is applied for the identification of CGIs (Cohen, 
Kenigsberg et al. 2011). Moreover, the estimations of the intensity of deamination were 
used for a comparative analysis of CGIs in human and mouse. This study found similar 
deamination rates in CpG island promoters, while increased deamination rates are 
estimated for the remaining mouse CGIs (Hutter, Paulsen et al. 2009). 
Improvements in the characterization of epigenetic footprints in the DNA can 
complement the results obtained from molecular biological experiments. 
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1.2.8 Summary 

 
The epigenome is an information system that complements the genome. In multicellular 
organisms, it primarily encodes the relevance of different parts of the genome for the 
particular cell type. Ultimately, this enables a fine-tuning of gene transcription from the 
repression of individual binding sites to the silencing of large parts of one X chromosome 
in female mammalian cells. 
DNA methylation as one of the most prominent epigenetic modifications has undergone a 
remarkable evolutionary process from a rudimentary DNA-based immune system in 
bacteria to a genome-wide regulatory mechanism and repressor of unfavorable 
transcription. It has had a deep impact on the evolution of vertebrate genomes via the 
CpG decay effect. In order to elaborate on the evolutionary interaction of genome and 
epigenome later on, the next section introduces the basic concept of this field. 
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1.3 Genome Evolution 

 
Charles Darwin postulated two concepts as the main driving forces of evolution, namely 
variation (mutation) and natural selection. While he described these forces mainly on the 
macroscopic phenotypic level, he also remarked: “Under nature, the slightest differences 
of structure or constitution may well turn the nicely balanced scale in the struggle of life, 
and so be preserved” (Darwin 1864, p. 80). This thesis investigates how the influence of 
these forces is reflected on the microscopic genetic level, i.e., on the genomic DNA 
sequence itself.  
Mutations that lead to the exchange of single DNA nucleotides are called point mutations 
or base substitutions. The frequency of these mutations differs according to their 
biochemical properties. For instance replacement of the pyrimidine T by the pyrimidine 
C is more likely than a mutation into the purin A. The previously discussed CpG decay 
effect is another special case that increases the substitution rate. Averaged over larger 
genome regions, the probability of observing particular types of point mutations is 
described by base substitution models. The impact of a point mutation on the fitness of a 
species influences the direction and strength of the force of natural selection on it. 
Thus, these substitution models summarize the convolution of mutational and selective 
forces. To prepare the ground for a substitution model that incorporates CpG decay, I will 
briefly introduce the biological background of point mutations and some of the 
limitations of such substitution models before we encounter them again in mathematical 
detail in chapter 3. 
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1.3.1 Substitution models 

 
Substitution models basically postulate that genomic point mutations of one particular 
type of nucleotide into another are a stochastic process with fixed rate. The differences 
between these rates define how fast these substitutions occur relative to each other. Such 
a model, for instance, may state that transitions (pyrimidine-pyrimidine and purin-purin 
exchanges) appear at a frequency that is five time higher than transversions (pyrimidine-
purin exchanges). Within the framework of such a model, time is defined relatively, i.e., 
the model can state how many substitutions of type A can be expected during a time span 
in which one particular substitution of type B is observed. This approach has proved to be 
very valuable for various applications, e.g., for the reconstruction of the evolutionary tree 
of life (Delsuc, Brinkmann et al., 2005). 
For the methods proposed below, it is of importance that not all mutations in 
multicellular organisms are passed on to the next generation. In mammals, the germline 
cells are separated from the remaining somatic cells. In the germline cycle, they comprise 
a sequence of tissues, which include embryonic stem cells, pluripotent stem cells, 
primordial germ cells, and ovarian and sperm germ cells in humans. The genome 
traverses this germline cycle once each generation in order to be passed on to the next 
individual. Only the DNA changes that occur in these germline cells can be potentially 
transmitted to the next generation (Johnson, Richardson et al. 2011). Thus, point 
mutations that are triggered by DNA methylation via the CpG decay effect can only 
affect CpG sites that are methylated in at least one germline tissue.  
 

 
Figure 1.1: Differential methylation in the germline cycle 
 

Differentiation and epigenetic reprogramming induce a dynamic germline methylome. 

Only CpGs that are methylated within one germline tissue can be affected by the CpG 

decay effect. 
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Some factors that influence mutation rates in the germline are species specific. Therefore, 
“it is well established that rates of substitution naturally vary across species and lineages” 
(Li and Drummond 2011). For instance, the presence of molecular-biological 
mechanisms for DNA repair can directly correct a number of mutations. Nutrition and 
metabolism influences the concentration of intracellular oxygen radicals, which in turn 
have an impact on the mutation rate (Britten 1986). Finally, biological factors, like the 
number of inherently error-prone genome replications per generation and the physical 
time that has elapsed until the genome is passed on to the offspring contribute additional 
variance to the species-specific mutation rates (Britten 1986). Hence, some of the 
methods introduced in the thesis are specific for the human genome. Their application to 
the genomes of other species requires a recalibration. 
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1.3.2 Selection 

 
Once a point mutation is introduced into the genome, three general types of selective 
pressure may influence its fate:  
 

(1) Mutations that have no influence on the fitness of the individual are called 
neutrally evolving. They are not subject to selective pressure. 

(2) If a mutation has a negative impact on the individual’s fitness, it is subjected to a 
negative or purifying selection because the corresponding sequence will probably 
be eliminated from the population over time.  

(3) Mutations that improve the individual’s fitness are positively selected and can 
eventually outperform the original state. If a mutation establishes itself as the 
only version of this genome region in the population, it has reached fixation. 

 
The proportions of the pure point mutation frequencies to each other are best reflected in 
neutrally evolving sequences. 
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1.3.3 Comparative Genomics 

 
A key problem in understanding complex genomes is that they are a mixture of 
functional, potentially functional and nonfunctional parts. To illustrate this, it is 
instructive to return to the library example. Some books in the library contain the 
blueprints of products that are of vital importance, for instance, a plan for a protein that 
can convert starch into sugar. Other books may contain blueprints of products and 
functions that used to be important or have been outsourced to simians. Parts of such 
books may potentially be reused in the future or rewritten to fulfill a novel but related 
purpose. 
However, there are also books that accumulate so many random changes that they are 
beyond repair. Since no one has an overview of the whole library, they are not actively 
removed. Also, the budget of the library is large enough to even replicate such useless 
books for the opening of a new branch. From time to time, some of these useless books 
are degraded beyond recognition. Nevertheless, the library is still crowded with other 
books of this type. Without a cellular mechanism that has a holistic insight into cell 
function or extensive selective pressure on saving even a few additional nucleotides, it is 
unlikely that such a scenario can be prevented. 
 
In other words, it is very likely that every part of a mammalian genome is either 
functional or a copy of a once functional region with uncertain potential for being 
beneficial in the future. One approach to deciphering genome function is the attempt to 
identify those parts that show clear signals of decay or at least rapid changes. 
 
A key method for achieving this is by comparing the genomes of related species. In 
general, it is expected that the “common features of two organisms will often be encoded 
within DNA regions that are conserved between the species” (Hardison 2003), while 
nonfunctional features are subject to neutral evolution. This conservation is not only 
reflected by pure sequence identity, but also by retaining a sufficient affinity for proteins 
that bind the functionally conserved DNA (Schmidt, Wilson et al. 2010). In order to 
understand how such conserved DNA is identified, the alignment and DNA motif are 
essential concepts. The following two paragraphs introduce them in more detail. 
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Alignments 

 
The most common technique for describing the relationship of DNA sequences at 
different loci that originate from a common ancestral sequence is a sequence alignment. 
The DNA sequences are represented as text strings over the nucleotide 
alphabet },,,{ TGCAA =Σ . “A (global) alignment of two strings S1 and S2 is obtained by 

first inserting chosen spaces (or dashes), either into or at the ends of S1 and S2, and then 
placing the two resulting strings one above the other so that every character or space in 
either string is opposite a unique character or a unique space in the other string.” 
(Gusfield, 1999, p. 216) This mapping can be interpreted as the evolution of a common 
ancestral sequence into the two observed sequences, which allow the deletion, insertion 
or substitution of single sequence letters. Hence, such a pairwise alignment represents a 
hypothetical evolutionary history for two loci and the degree of conservation can be 
estimated based on the number of documented changes. 
Alignments are generated by different algorithms and heuristics with individual trade-off 
balances between runtime and accuracy for pairwise (Needleman and Wunsch 1970; 
Smith and Waterman 1981; Lipman and Pearson 1985; Altschul, Gish et al. 1990; 
Schwartz, Kent et al. 2003), multiple (Thompson, Higgins et al. 1994; Notredame, 
Higgins et al. 2000) and genome-wide multiple alignments (Blanchette, Kent et al. 2004; 
Paten, Herrero et al. 2008).  
For highly conserved genome regions such as protein coding sequences, the alignments 
can even be computed for distantly related species. In contrast, regulatory sequences are 
less well conserved (Farré 2007). Consequently, related sequences (i.e., homolog 
regulatory sequences) such as promoter sequences are harder to identify by alignment 
(Margulies, Chen et al. 2006; Margulies and Birney 2008). However, in order to identify 
the conserved regulatory elements, methods such as phylogenetic footprinting techniques 
concentrate on “regions which undergo significantly less changes than others” (Miller, 
Makova et al. 2004). Therefore, these approaches interpret alignments on a quantitative 
level. Most of them operate under the assumption that the most parsimonious version of 
the evolutionary history of a locus is the correct one and should be reflected by the 
alignment. This decreases the runtime of the algorithms and heuristics, but introduces an 
undetermined bias into the calculation (Hein, Wiuf et al. 2000). Alternatively, statistical 
alignments take all of the possible evolutionary histories into account. Thus, they 
compute the joint likelihood of the observed sequences being linked to a common 
ancestral locus via a series of mutation events.  If necessary, the alignments from these 
alternative histories that most contributed to the total likelihood can be highlighted (Hein, 
Wiuf et al. 2000). 
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DNA motifs 

 
While alignments mainly capture similarities in the DNA sequence, DNA motifs are a 
more flexible format for describing functional DNA elements. They are identified either 
by top-down or bottom-up approaches (Hannenhalli 2008). 
In the first case, a library of sequences representing the binding affinity of a given DNA-
binding protein is assembled by isolating the DNA molecules bound by the protein of 
interest (Elnitski, Jin et al. 2006). These sequences are then aligned and the information 
obtained is compressed into a representation based on the nucleotide frequencies at each 
position of the binding site (D’Haeseleer, 2006). The resulting motif can then be applied 
for localization of the yet unknown protein binding sites in the genome.  
In the bottom-up approach, sets of conserved regions are analyzed for recurrent motifs in 
one or several genomes (Smith, Sumazin et al. 2005).  
In contrast to epigenetic modifications, these cis-regulatory elements are ‘hard-coded’ in 
the DNA sequence and thus present in all cell types as well as during all developmental 
stages of the organism. 
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1.4 Comparative epigenomics 

 
As the name implies, comparative epigenomics combines approaches from epigenomics 
and comparative genomics. This interdisciplinary approach is required because many 
epigenetic modifications receive their identity via the genome sequence to which they are 
attached. For instance, a histone complex with an H3K4me3 modification carries little 
information in itself, but indicates an active promoter region at the genome region that it 
binds to. 
 
In a pilot study, I demonstrated that pure sequence conservation across mammal genomes 
is a poor indicator for absence of methylation, but that a conservation of GC and CpG 
content improves these predictions (Feuerbach, 2007). Very recently, a broader study of 
conserved epigenetic modifications of pluripotent stem cells from human, mouse and pig 
were correlated to the conservation of the underlying DNA sequence. This study 
confirmed that the conservation of epigenetic modifications is not correlated to sequence 
conservation (Xiao, Xie et al. 2012). Hence, a specific methodology has to be developed 
to extend comparative genomics methods to comparative epigenomic methods. 
 
A further advantage of comparative epigenomics is that the genome is representative for 
a whole species and encompasses its full genetic information, while an individual 
epigenome, such as the methylome of a particular cell type, is a limited representation. 
To this end, classical comparative genomic approaches can be applied to gain insight into 
the epigenetic regulation system of a species. The comparative genomic studies of 
methyltransferase gene conservation discussed above exemplify this statement. For 
instance, the sequence-based search for genes that encode trans-regulatory elements, 
which are involved in epigenetic regulation such as DNMTs (Zemach, McDaniel et al. 
2010), provided insight into the conservation of particular signaling pathways across the 
plant and animal kingdom.  
 
Another class of studies measured the genome-wide distribution of CpG dinucleotides or 
their concentration around promoters in different species in order to gain insight into 
changes in the regulation by and the abundance of DNA methylation (Jabbari, Cacciò et 
al. 1997; Jiang, Han et al. 2007; Khuu, Sandor et al. 2007; Irizarry, Wu et al. 2009; 
Lechner, Marz et al. 2013). 
 
Up to now, most of these approaches have been rather descriptive and disregard explicit 
models of genome evolution. 
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1.5 Synthesis – Evolutionary epigenomics 

 
The first chapter of this thesis introduced the separately studied fields of epigenetics and 
genome evolution. Comparative epigenomics represents an approach for a combined 
interpretation. Based on this, I will move on to a more explicit integration of these 
concepts. With the onset of global DNA methylation, the CpG decay effect left a 
footprint in the genome where selective pressure did not counteract this process (Figure 
1.2). Thus, CpG decay plays a central role in evolutionary epigenomics as an interface 
between genome, epigenome and evolution. This thesis pursues four approaches for using 
the information of the epigenetic footprints left in the DNA to improve our understanding 
of genome function and evolution.  
 

 
 
Figure 1.2: Establishment of epigenetic footprints in the DNA 
This schematic drawing illustrates how the onset of global DNA methylation (red) in the 

largely unmethylated (green) ancestral genome leads to a characteristic reduction of 

CpG content. Selective pressure, unmethylated islands and the spread of CpG-rich 

elements (blue) such as Alu repeats were the major counteracting forces. 
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Chapter 2 

 
CpG-containing functional genome elements, such as CGIs, are assumed to be 
unmethylated in the germline in order to be protected from CpG decay. Without having 
access to the DNA methylation data, the annotation of CpG-rich regions produces maps 
of putative epigenetically regulated and functional genome regions (Figure 1.3). Thus, in 
chapter 2 of this thesis, I revisit the available approaches and discuss the mathematical 
and computational problems that limit their utility. This is followed by a solution to these 
problems in the form of the CgiHunter algorithm. Subsequently, the added value of 
CgiHunter is validated.  
 

 
 

Figure 1.3: DNA sequence-based annotation of CpG islands 
Without knowing the DNA methylation state, DNA sequence features can be applied to 

identify CpG islands. The choice of CGI definition, annotation algorithm and annotation 

parameters determines the size of the annotated regions and whether or not CpG-rich 

transposable elements are avoided or annotated. 
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Chapter 3 

 
Mutation rates in neutrally evolving DNA can be used to determine the dynamics and the 
equilibrium distribution of nucleotides and dinucleotides reached in methylated and 
unmethylated genome regions (Figure 1.4). Depending on their CpG and nucleotide 
content, functional elements such as transcription factor binding sites are subjected to 
different amounts of mutational pressure from CpG decay. Thus, the degree to which 
they profit from colocalization with the unmethylated genome regions varies. Explicit 
models of methylation-constraint genome evolution can quantify this pressure (chapter 
3). 
 

 
 

Figure 1.4: CpG frequency reaches different equilibrium distributions in 

methylated and unmethylated genome regions 
In neutrally evolving DNA, the mutation rates determine the dynamic equilibrium around 

which every nucleotide and dinucleotide fluctuates. The rate at which equilibrium is 

reached depends on the nucleotide distribution of the ancestral DNA sequence. 
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Chapter 4 

 

CGI identification approaches are counteracted by CpG-rich transposable elements 
which, in evolutionary terms, are too young to be eroded by CpG decay to the CpG 
content level of the genomic background. Furthermore, some of these elements are 
suspected to have acquired novel functions, e.g., as an alternative promoter. A targeted 
approach to sort out the protected from the eroding transposon copies can help to solve 
this problem (Figure 1.5). 
 
 
 

 
 
Figure 1.5: Prediction of transposon methylation level 
(a) The numerous instances of a repeat/transposon family are applied to reconstruct the 

sequence of their last common ancestor, i.e., the sequence of the ancestral repeat. (b) By 

using mathematical models of sequence evolution for methylated (QM) and unmethylated 

(QU) DNA, the most likely germline methylation state of a single repeat instance can be 

predicted.
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Chapter 5 

 

Germline methylation levels have a great influence on the CpG content of a particular 
genome locus (Figure 1.6). By considering several genomes in parallel, these footprints 
can be applied to reconstruct the evolutionary history of the local germline methylome. In 
chapter 5, an algorithm is developed and gradually refined to perform such predictions. 
To this end, simulation studies are applied to characterize the properties of the method in 
detail. Finally, the algorithm is validated on the methylome data of human and 
chimpanzee germline tissue. 
 

 
 
Figure 1.6: Epigenetic footprints in the DNA of homologous genome regions 
This figure shows two versions of how the DNA sequence of a last common ancestor 

evolved into four descendants. In the upper panel, the ancestral sequence was fully 

methylated, whereas in the lower panel it was fully unmethylated. The number of mutated 

CpGs is strongly influenced by the methylation state of the DNA sequence. 
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Chapter 6 

 
Finally, in chapter 6 a brief review of the methods introduced in this paper is given and 
discussed in the context of the annotation of novel vertebrate genomes. Furthermore, a 
summary is provided of the scientific insight gained from studying the evolution of 
genomes under the influence of DNA methylation. The concluding discussion of this 
thesis is based on these analyses. 
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Chapter 2 - Identification of CpG islands  
 
DNA methylation marks are nearly exclusively detectable at Cs in CpG context, in the 
genomes of most mammalian tissues. Hereby, each CpG represents the epigenetic 
equivalent to the concept of a bit from information theory. Its information content is 
stably maintained, if it takes the states methylated or unmethylated.  By default, most 
CpGs are methylated in the human genome, while the minority of unmethylated CpGs is 
primarily found in dense clusters called CpG islands (CGIs). 
Molecular biological studies have revealed the correlation of CpG density with tissue-
specific lack of methylation, activating histone modifications and transcriptional activity. 
More specifically, 40-60% of all human gene promoters overlap with CGIs. Thus, CGIs 
are implied as carrier of biological function especially in context of gene regulation. An 
accurate annotation of CGIs in the human, as well as in any other mammalian or higher 
vertebrate genome, is of great interest for the identification of genes and other genomic 
elements regulated by DNA methylation. Furthermore, such annotations enable a 
comparative analysis of CGI evolution. 
 
Additionally, the human genome contains numerous regions of high CpG density that 
show none of the other characteristic indicators of biological function. On the level of the 
DNA sequence, the dividing line between CGIs and non-CGI regions in general is not 
clearly defined as well as the exact boundaries of individual CGIs. This complicates a 
systematic analysis. A large initiative is currently sequences 10,000 genomes of different 
vertebrate species (10K-Genomes-Scientists 2009). For a systematic characterization of 
this large resource a sound definition of a CGI and a reliable algorithm, which annotate 
these CGIs in genomic sequences, is required. This basis then enables a comparative 
analysis of CGI evolution. Especially, to decide if the function and mode of operation of 
homologous regulatory genome regions is conserved, these algorithms have to guarantee 
that no valid CGI is missed. To determine the best software for this project, the 
benchmark, as a comparison of different approaches on a common gold standard dataset, 
is the method of choice in computer science. 



 37

The CpG island annotation problem in a nutshell 

 
To identify CpG islands by means of computational DNA sequence analysis, three 
elements are required: A definition of a functional CpG island, a sequence-based 
definition of a CpG island, which translate the functional definition into criteria that can 
be evaluated by a computer program, and an algorithm that identifies these sequence-
based CGIs in genomic sequence. 
 
As depicted in Figure 1.2, genome regions that are stably protected from CpG decay in 
the germline of globally methylated genomes form CGIs. These regions are of interest, as 
they frequently collocate with transcription start sites (TSS), cis-regulatory elements and 
maintain marks of active chromatin, such as the absence of methylation in somatic tissue 
and histone modification that are associated with transcriptional and regulatory activity. 
Such regions are biological functional CpG islands. In contrast, recently transposed CpG-
rich elements that undergo rapid CpG decay or regions that are slightly enriched in CpG 
dinucleotide content without showing additional evidence for biologic function are just 
CpG-rich regions. A good CGI annotation preferentially annotated genome regions that 
are highly enriched in functional marks. The CGI annotation problem comprises the 
generation of such annotations, the demonstration of their quality and the selection of a 
good tradeoff between sensitivity and specificity for functional marks. 
 
To solve this problem, sequence-based CpG island definitions follow three main 
strategies: First, CGIs are defined as regions with elevate GC content, an elevated ration 
of observed CpGs over the statistically expected number of CpGs and a minimal length 
(classic CGI definition). Second, CGIs are defined as regions of elevated CpG density if 
compared to the genomic background. Third, CGIs are defined via hidden markov 
models (HMM). These HMMs are calibrated by inferred transition probabilities from one 
nucleotide to the following nucleotide along the genome sequence i.e. the dinucleotide 
frequencies. Alternatively, the GC and CpG content of small genome regions are applied 
to define the states of the markov chain. There is no general agreement on a definition, 
the correct choice of the definition’s parameter or an algorithm for the generation of CGI 
annotations. 
 
During my work on the CGI annotation problem, I identified two mathematical pitfalls in 
the classic CGI definition. Solving them directly is computational expensive. Therefore, 
in cooperation with Christoph Bock the CgiHunter algorithm was developed. In the 
following, I describe this algorithm and validate its theoretical advantages compared with 
a heuristic that does not address both pitfalls of the classic CGI definition. Then, a 
comparison of CGI annotations generated by programs of all three strategies is conducted 
on a gold standard dataset showing that the theoretical advantages translate into an 
improved annotation quality. This chapter concludes with the discussion of the CpG 

Mountain annotation, which integrates several CpG island annotations by their 
specificity for unmethylated regions into a heatmap annotation of CpG island strength, 
thus presenting a solution for the CGI annotation problem. 
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2.1 Computational approaches for CpG island identification 

 
Throughout this thesis I use the term functional CGI definition to describe an abstract 
biological concept. In contrast, the term sequence-based CGI definition is used to 
describe a set of DNA sequence-based rules that define regions in the genome, which 
have the potential to be instances of this concept. Where this distinction is neglected in 
the literature, procedural CGI definitions are applied that mix sequenced-based CGI 

definitions with the algorithms that are applied for the CGI annotation, and define the 
outcome of this procedure as functional CGIs. 
In the following, the history of the CpG island term is introduced in more detail and a 
number of prominent CGI annotation procedures and definitions are discussed to 
illustrate the problems that arise from this procedure. 
 

2.1.1 Classical CGI definition and sliding-window based algorithms 

 
The term “CpG island” was actually coined in a study (Gardiner-Garden and Frommer 
1987) that undertook the first systematic attempt to DNA sequence-based identification 
of regions that were formally known as HTF islands (Bird and Taggart 1980), CpG-rich 
islands (Bird 1986) or methylation free islands. Hereby, the term HTF stands for Hpa-
tiny fraction and refers to the restriction enzymes HpaI and HpaII. These only cut 
unmethylated CpGs, and thus, enabled the observation of CGIs by a characteristic 
outcome of DNA restriction experiments with this enzyme.   
To identify these regions by a computational approach, Gardiner-Garden and Frommer 
computed the GC content and the O/ECpG (the number of CpGs observed in a region 
divided by the number of CpGs expected from its C and G content) in a 100 bp long 
window, which was moved along the DNA sequence with a step width of 1 bp. Regions 
were only reported if they exceeded thresholds of 50% for CG content and 0.6 for O/ECpG 
over a length of at least 200 bp. Others have later used the same sequence-based CGI 

definition, but applied different thresholds. To discriminate this choice of parameters it is 
referenced as GGF definition with ta=50%, tb=0.6, tc=200 bp (compare Box 1). The 
general approach to use these three sequence characteristics to annotate CGIs is called 
classic CpG island definition. In their publication the authors emphasized the ad-hoc 
character of the exact threshold choices as a working definition. 
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Box 1 – The classical CGI definition 
 
Given a DNA sequence n

TGCAR },,,{=  of length n, with Ri being the nucleotide at 

position i, we define a region 
ijR  with nji ≤<≤0  and length  j – i as a subsequence of R 

such that iR  is the first nucleotide from the left that is contained in the region and jR is 

the first nucleotide from the right that is not contained in the region. We call a set of three 
constraints a classic CpG island definition if they have the following form: 
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=  (observed vs. expected CpG frequency criterion), 

)(: cij tijl ≥−=   (minimal length criterion). 

 
 
The variables

ijC# , 
ijG#  and 

ijCpG#  refer to the numbers of cytosines, guanines and CpG 

dinucleotides, respectively, that are contained in
ijR . For regions with no CpGs, oij is set 

to False, and thus, exception for which the denominator becomes zero cause no problems. 
Individual classic CpG island definition are either referenced by the choices for the three 
thresholds ta, tb and tc, or by introduced abbreviation, such as GGF or TJ. 

ijR is called a CGI according to such a definition if the Boolean variables gij, oij and lij are 

evaluated as True. 
 
This computational approach was later modified in various ways, for instance by 
adapting the length of the moving window to fit the minimal length criterion tc (Matsuo, 
Clay et al. 1993). As indicated in Figure 2.1, this change results not simply in a reduced 
runtime of the algorithm, but has a deeper impact on the results of the annotation 
procedure. In the actual publication the effect on the consistency of the algorithm was not 
investigated.  
 
A second modification of Matsuo and colleagues was the raising of tc to 500 bp to avoid 
the annotation of CpG-rich ALU repeats. This was a reaction to the observation that 
approximately two thirds of the CGIs derived by the GGF definition overlapped with 
these CpG-rich repetitive elements. This exemplifies the problems that arise from mixing 
the functional and sequenced-based CGI definition. Instead of explicitly formulating the 
expectations a CGI should fulfill, the parameters of the annotation procedure are altered 
until the resulting annotation is less offending to some implicit expectations.  
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Later a more complex algorithm was proposed (Takai and Jones 2002). It applies a three 
step strategy consisting of a seed steep, an extend steep and a pruning step. In the seed 
step a sliding window that takes the size of the minimal length threshold tc is moved 
along the DNA sequence until ta and tb are satisfied. In the extend step the seed window 
is extended in both directions by windows of size tc until either the GC content drops 
below ta or the O/ECpG drops below tb. In the pruning step the window is then pruned in 1 
bp steps until all constraints are again satisfied. The thereby identified region is reported 
as CGI. 
 
The resulting CpG Island Searcher software was tested with eight different parameter 
sets for the underlying classical CGI definitions. These were then evaluated with respect 
to their overlap with the first exons/5’UTRs of genes, other exons, ALU repeats and 
regions without any of these annotations. Thus, implicitly CGIs were functionally defined 
as CpG rich regions that show great overlap with 5’UTRs of genes, but lesser overlap 
with intragenic, repetitive or ‘unknown’ region. The study conclude that the strictest 
definition tested (TJ definition: ta=55%, tb=0.65, tc=500 bp) shows the best performance 
(Takai and Jones 2002). Thus, rather than being applied as a tool the CGI definition itself 
became a research topic.  
 
The applied objective function is a very rudimental functional CGI definition. Therefore, 
this approach was a considerable advancement over previous approaches and the updated 
definition was readily accepted by the scientific community.  
Still it had two major flaws. First, all three selected threshold were the most stringent 
criteria tested in their respective category. Thus, it is possible that better parameter sets 
can be found.  
Second, the algorithm overlooks in the seed step a substantial number of regions that 
meet all three constraints (compare Figure 2.1). If the distance between two CpG rich 
genome regions is just a few bp longer then the search window, the extend step is never 
evoked. This problem can not simply be solved by applying a larger search window, as at 
other locations this greater length dilutes the GC content or O/ECpG to a point were tb or tc 
are violated. I call this problem the Single-sliding-window bias. Box 2 introduces it in 
more detail. In section 2.3.1 the resulting deficits in CGI annotations are quantified in 
context of the human genome. As a consequence of this bias, a CGI definition that is 
applied with a single-sliding-window algorithm such as the CpG Island Searcher appears 
stricter than it is, as only a fraction of the regions that meet the criteria are reported.  
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Box 2: Single-sliding-window bias 
 
If only a single window is moved along the DNA sequence, valid CGIs can be 
overlooked. 
Given the sequence CGATC and the thresholds ta=55%, tb=0.6 and tc=4. The properties 
of the three subsequences that meet tc are given below. 
 

Sequence GC content O/ECpG Length CGI 
CGAT 50% 4.0 4 No 
GATC 50% 0.0 4 No 

CGATC 60% 2.0 5 Yes 
TCGATC 50% 3.0 6 No 
CGATCA 50% 3.0 6 No 

TCGATCA 42.9% 3.5 7 No 
 
Table 2.1: Example of Single-sliding-window bias 
Only a sliding-window of length 5 can identify a CGI with ta=55%, tb=0.6 and tc=4 in the 

sequence TCGATCA. 

 
Although no window of length tc reaches the required GC content, the sequence contains 
a valid CGI. If we extend the example to the sequence TCGATCA, we can observe that 
also longer windows fail to detect the valid CGI. 
But 5 is not a perfect choice for the window size. For instance, the sequence 
ACGAAACCA contains no subsequence of length 5 with more the 40% CG content but a 
valid CGI of length 7 (shown in italic). In section 2.3.1 a benchmark is performed to 
estimate how severely this bias impacts CGI annotations in the human genome. 
 
 
 
A step towards solving the Single-sliding-window bias was made by the design of a 
nearly exhaustive search heuristic for CGIs (Hsieh, Chen et al. 2009). The authors 
explicitly identified another drawback of the general sliding-window method namely that 
multiple genome regions can overlap, satisfying all three constraints, but their union does 
not (ambiguity problem, compare Box 3 and Figure 2.1). Hence, the classical CGI 

definition is ambiguous and only heuristic elements in previously proposed algorithms 
lead to unambiguous annotations. Still the approach by Hsieh and colleagues cannot 
guarantee to identify every sequence that fulfills a given classical CGI definition. 
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Box 3 : Ambiguity problem 
 
On the one hand, this problem is caused by the multiplicative influence of #C and #G on 
the O/ECpG, while their relationship in the GC content is linear. This difference becomes 
relevant whenever the distribution of C and G is unbalanced within a region. 
 
 
 
 
 
 
 
 
Table 2.2: Unbalanced C and G distribution leads to ambiguous annotations 
 
Thus, C-rich and G-rich DNA sequence can be located close to each other in such a way 
that they harbor partly overlapping regions that satisfy a given classical CGI definition. 
Therefore, it is unclear which candidate CGI is to be reported, although the example 
above demonstrated that the resulting offset can be large. 
 
On the other hand, the GC-content threshold also leads to ambiguity, as visualized in 
Figure 2.1. Here, three equivalent annotations are possible for one CGI. 
 

 
 

Figure 2.1: Ambiguity problem of overlapping CGIs 

Length #C #G #CpG GC content O/ECpG 
200 1 100 1 50.25 % 2 
200 100 1 1 50.25 % 2 
200 50 51 1 50.25 % 0.078 
400 101 101 2 50.25% 0.078 
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2.1.2 Approaches based on CpG-density  

 
Half a decade after the publication of the CpG Island Searcher, its core concept, the 
sliding-window approach, was pointed out as the source of its unreliability. Under the 
assumption that CpG density is the DNA sequence property that correlates with absence 
of methylation, and thus, with biological function, the group around Hackenberg removed 
the layer of subjectivity introduced by this algorithmic technique and directly searched 
for CpG clusters. Their method measures the distance between all neighboring CpGs in a 
given sequence, estimates a characteristic threshold value from the distribution of these 
distances and subsequently constructs clusters of CpG dinucleotides, which lie closer to 
each other than this threshold (Hackenberg, Previti et al. 2006). In consequence, also very 
short segments are annotated. The method has the advantage of being efficient and more 
readily adjustable to the genomes of new species, but in direct comparison the TJ 

definition in combination with the CpG Island Searcher software produces annotations 
that more closely resembled those of unmethylated gene promoters (Han and Zhao 2009). 
A refined method that is based on the cumulative mutual information (CMI) of distances 
between CpG dinucleotides was later proposed by Su and colleagues under the name 
CpG MI (Su, Zhang et al. 2009). In addition to the density of the CpGs that is used by the 
CpG cluster algorithm, this method exploits more subtle information, which pertains to 
the exact spacing of the dinucleotides. Therefore, a number of additional parameters have 
to be chosen or learned from test data. As the method was compared with other 
approaches on the data from which these parameters were obtained, it remains to be 
clarified how this method perform in an unbiased benchmark. 
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2.1.3 Annotations based on Hidden Markov models  

 
Hidden markov models (HMM) were another class of statistical models with great 
promises of improving CGI annotation (Durbin, Eddy et al. 1998). The transition 
probabilities from one nucleotide to the next in CGI and non-CGI regions yield an 
elegant eight state HMM. By inferring these transition probabilities from training 
sequences, the approach was expected to automatically produce a meaningful CGI 
definition. Unfortunately, this assumption was too simplistic, as the base composition of 
the genome also varies independently from the CpG island property. Thus, the number of 
hidden states is much larger. In consequence, this model never gained particular 
relevance for genome research (Wu, Caffo et al. 2010). 
The authors that formulated this critique, furthermore proposed an alternative approach. 
Therefore, the scale of the HMM was changed from states in the range of single 
nucleotides to small genome regions (8-32 bp length) that are characterized by their G-, 
C- and CpG-content (Wu, Caffo et al. 2010). To avoid over-representation of repetitive 
elements, these were masked in the genome sequence. The authors demonstrated that the 
resulting model can be effectively fitted to genomes of different species (Irizarry, Wu et 
al. 2009) and reported an improved annotation of differentially methylated regions 
(DMRs) for an independently published human in-house dataset (Irizarry, Ladd-Acosta et 
al. 2009). I will refer to this approach as the complex HMM. 
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2.1.4 Critical summary 

 
Three major problems prevent a generally accepted procedure for a CGI annotation based 
on the three classic constraints: (i) the lack of a functional CGI definition, (ii) the lack of 
an algorithm that guarantees the identification of all genome regions that meet a given 
classical CGI definition and (iii) the lack of a common gold standard for a comparative 
benchmark of all approaches. 
 
Due to issue (i) and (iii) it is not possible to proof the quality of an individual annotation 
tool. While, for instance, the CpG cluster captures all CpG rich elements in a genome, 
CpG Island Searcher shows a better performance in annotating gene promoters, and yet 
another program may outperform the alternatives in annotating unmethylated sequence. 
Even if a program is selected, its annotations can greatly vary according to the parameters 
chosen for the annotation. 
Problem (ii) is more readily addressable, as the ability of programs to identify genome 
regions that meet a certain sequence-based CGI definition can be estimated by 
mathematical proofs (compare 2.2.1) and with empirical studies (compare 2.3.1). 
Ultimately, such methodically considerations are of minor interest if a program displays 
outstanding performance on a biological gold standard dataset. Only recently such dataset 
became available including genome-wide DNA methylation maps, catalogues of marks 
of open chromatin structure and hotspots of transcription initiation. Thus, for the first 
time a genome-wide benchmark is made possible. 
 
To address problem (i), I propose to define a biological functional CGI (BF-CGI) as 
genome region with three properties: 
 
(a) A BF-CGI is protected against CpG decay in the germline (evolutionary property) 
 
The evolutionary property accounts for the fact that CGIs withstand the depletion of 
CpGs in the genome. In addition to the absence of methylation in the germline, strong 
selective pressure and biased gene conversion (Duret and Arndt 2008) are mechanisms 
that enable a region to meet criterion (a). In contrast, an ALU repeat with high CpG 
content that shows signs of rapid CpG decay (Feuerbach, Lyngsø et al. 2011) does not 
satisfy (a). 
 
(b) A BF-CGI is unmethylated and associated with histone modifications that are marks 
for transcriptionally active chromatin in at least one tissue (epigenetic property). 
 
The epigenetic property requires a BF-CGI to carry marks of active chromatin. A CpG-
rich exon, for instance, may withstand CpG decay, but is probably methylated in all 
tissues. Thus, such an exon does not meet (b).  
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(c)  The removal of a BF-CGI significantly changes the expression of at least one gene in 
at least one tissue (regulatory property). 
 
The regulatory property excludes elements that autonomously maintain an unmethylated 
state, but are unable to influence transcription. In the benchmark below, the proximity to 
RNA polymerase binding sites is applied as an approximation for this functional aspect. 
Experimentally removing a CGI and measuring a significant change in the expression of 
at least one transcript in comparison to an unaltered control, would proof this feature.  
 
Applying this definition, the quality of a sequence-based CGI definition is assessed in 
terms of its ability to predict regions that overlap loci with properties (a)-(c), while 
omitting region that do not show any of these properties. Finally, the quality of a CGI 
annotation software is evaluated by its ability to identify all regions that fulfill a given 
sequence-based CGI definition. 
 
An empirical conducted comparison of five sequence-based CGI annotation programs 
came to the conclusion that no approach showed a clear advantage over the traditional 
sliding window-based annotation technique of the classical CGI definition  (Hutter, 
Paulsen et al. 2009). Also on the theoretical level the classical CGI definition appears to 
be superior to the other methods for purely sequence-based CGI annotation approaches.  
 
Unlike the simple HMM, CpG cluster and CpG MI the classical CGI definition considers 
the influence of varying GC content on the probability of observing CpGs by chance. 
Furthermore, it uses fewer free parameters than, for instance, the complex HMM and CpG 

MI. Moreover, these parameters can be more readily interpreted. 
The drawbacks of the classical CGI definition are the Ambiguity problem described 
above and the Single-sliding-window bias. Both introduce a yet uncharacterized amount 
of bias and variance into the produced CGI annotations, i.e. small changes in the 
sequence can lead to complete skipping or significantly shifting the position of a CGI. 
This property biases comparative studies. 
 
Hence, a sliding-window-based algorithm that solves the Ambiguity problem and the 
Single-sliding-window bias is desirable. Furthermore, the parameters for this algorithm 
have to be selected in such a way that the produced sequence-based CGI annotations 
have a high specificity for the three criteria of a BF-CGI. 
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2.2 The CgiHunter algorithm 

 
 
The considerations at the end of the previous section lead to the conclusion that a reliable 
method for the identification of CGIs that meet a classical CGI definition, is a promising 
strategy for improving CGI annotations.  
 
Therefore, the three problems named at the end of the last section have to be solved: 
 
P1 – Single-sliding-window bias: a DNA sequence of length m that satisfies all three 
constraints of a classical CGI definition not necessarily contains for each window length 
l, with mltc <≤ a subsequence that meets these criteria as well. 

 
P2 – Ambiguity problem: two DNA sequences that overlap can individually meet all three 
constraints of the classical CGI definition, while the sequence that spans both sequences 
does not. 
 
P3 – Optimal choice of thresholds: the optimal choices for ta, tb and tc are unknown and 
may vary with respect to the interpretation of a functional CGI definition and the genome 
of interest. 
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2.2.1 A solution for the single-sliding-window bias 

 
A direct solution of the single-sliding-window bias is a brute force approach, ehich 
individually investigates all subsequences of a genomic DNA sequence for their 
compliance with ta, tb and tc. A sequence of length n contains n(n+1)/2 subsequences. For 
mammalian chromosomes, which reach a lengths in the order of 108 bp, such an approach 
is rather inefficient. 
Therefore, we derived a divide-and-conquer algorithm that identify those subsequences 
that violate at least one of the three constrains. In consequence, the long DNA sequence 
is iteratively subdivided in a number of shorter, non-overlapping fragments until a brute-

force approach becomes feasible. We call this the filter step of the CgiHunter algorithm. 
Its conceptual development was performed in close cooperation with Christoph Bock and 
a preliminary version has been reported before (Bock 2008). 
 
The central idea is derived from the observation that upper and lower bounds on the C, G 
and GC content of a genome sequence are often sufficient to demine that it is not a CGI. 
Let Rij’, Rij and Rij”, with i < j’ <j <j”, be three genome regions that we call the red, the 
blue and the green window respectively.  
 

 

 
Figure 2.2: Illustration of CgiHunter filter interval 
To deduce if any blue sequence between i and j with j’<j<j” is not a CGI it is in most 

cases sufficient to determine the sequence composition of the red and the green combing 

windows. Thus, many genome regions can be excluded from a computation intensive 

analysis with all window sizes by the filter step.   
 
Instead of evaluating for any blue window Rij if it is a CGI, we assess the G, C and CpG 
content of the shorter red (Rij’) and longer green (Rij’’) windows (see Figure 2.2). It is 
obvious that all blue windows have the same or a lower nucleotide/dinucleotide count 
than the green window and the same or a higher nucleotide/dinucleotide counts than the 
red window. The GC content and observed vs. expected CpG frequency criterion are 
modified such a way that only values from the red and the green windows are used. At 
the same time it is guaranteed that the obtained values are always greater then the exact 
values.    
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Substituting these terms into gij and oij leads to the filter conditions: 
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If already one of these terms is smaller than the respective threshold ta or tb, i.e. "' jijg or 

"' jijo  are evaluated as False, all blue windows are bound to fail ta and tb as well and thus 

are excluded from the analysis. 
The effort to determine the C, G and CpG content in the red and green window is 
proportional to their length and thus linear in contrast to the quadratic number of 
operations required to determine these values for all blue windows. Consecutively, the 
sequence position i+1 on is analyzed. Thus, the two bases that enter and leave the red and 
green window have to be determined. Once the content of both windows is assessed, the 
computational cost for shifting them by one base pair is independent of the window 
lengths, i.e. constant. For a genome sequence of length n, the window has to be shifted at 
most n times, and thus the complexity of this operation is O (n). 
 
The efficiency of the analysis is increased by applying an array of windows. This array 
starts from size tc, where the next bigger window is cw times the size of the current 
window. The largest window has the size n. We call this array of windows a comb and cw 
the combwidth (Figure 2.3). This parallel procedure enables each of the inner windows of 
the comb to once providing the lower bound values (red window) and once the upper 
bound values (green window). Thus, the efficiency of the algorithm is approximately 
doubled. The number of windows in the comb is proportional to logcw(n). Thus, the 
overall complexity of the filter step is )log( nnO ⋅ . 

 
Figure 2.3: Schema of the comb data structure 
The comb is constructed by combining several filter intervals. The smallest window in the 

comb has the length tc. The window lengths grow with factor cw. The largest window has 

length n. For each comb window the C, G and GC content is stored during the combing 

procedure. 
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The choice of the combwidth cw 

 
The efficiency of the filter step, i.e. the number of regions that are excluded over the 
number of regions that do not meet the three constrains, scales with cw. If cw is selected 
such a way that the comb contains all values between tc and n, the filter conditions 
become the classical CGI constraints. Runtime becomes maximal and every retained 
region is a sequence-based CGI according to the applied definition. An increase of cw 
enables to increase the number of windows that are simultaneously analyzed, but as the 
upper bound for the approximated value is rising soon the conditions are always true. In 
consequence, the choice of cw is a tradeoff between the runtime of the algorithm and the 
number of non-CGI regions that are excluded from the analysis (Figure 2.4).  
Figure 2.5 illustrates how filtering divides the genome in subsequences, by excluding the 
possibility that the regions in-between are members of any CGI. 
As the execution of the filter algorithm scales with )log( nnO ⋅  it is beneficial to first 

segment the genome with a large cw in smaller segments and than repeat the filtering 
with a smaller cw on each of these segments. 
Hereby, the original DNA sequence is fragmented into smaller segments, thus resulting in 
a considerable reduction of n and creating a divide-and-conquer scenario (Figure 2.5). To 
enumerate all CGIs in such a segment, all possible window sizes between tc and n have to 
be applied for combing. For the human chromosome 22, for instance, an initial filtering 
with cw=1.2 already reduces the remaining sequence from ~50 Mbp to ~14 Mbp that are 
distributed over many individual segments. A subsequent filtering of these with cw=1.05 
takes 16 minutes. Thus, the combined runtime of 1.7 h is more than a threefold reduction 
compared to the 5.5 h CPU time for the analysis of the full chromosome with cw=1.05. 
The computation was performed on a desktop computer with a 3 GHz Duo Core 
processor and 4 GB main memory. 
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Figure 2.4: Tradeoff between runtime and efficiency of CgiHunter filter step 

The filter step was applied with different values of cw for the CpG-poor chromosome 21 

(46.9 Mbp) and the CpG-rich chromosome 22 (49.7 Mbp). Both solid lines show the 

decrease of the total length of those sequence segments that remain after filtering with 

decreasing values of cw. The dashed lines show the increase of runtime. 

 
 
Subsequently, the output of filter is analyzed by a brute force approach in which all 
candidate CGIs are reported. This solves P1. 
 
 
 

 
 
Figure 2.5: Successive filter steps implement a divide-and-conquer strategy 
The genomic DNA sequence on top is filtered with combing intervals, which are subject 

to a larger cw. The resulting sequence segments in the middle are considerably smaller 

and can be processed independently by a computationally more expensive, but filter step 

smaller combwidth cw. 
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Filter algorithm and correctness proof 

 

The function filter takes two arguments: The string sequence contains the DNA sequence 
in which CGIs should be annotated, and the numeric variable cw defines relative width of 
the comb intervals. For instance tc=500 and cw=1.1 define the sequence 500, 550, 605, 
666…, n. 
 

 
 

Algorithm 2.1: Pseudocode of filter step of CgiHunter 

 
Lemma 1: The function filter never overlooks a valid CGI 
Proof: Let Rij be a valid CpG island with i being its start index and j its end index. It 
follows from the definition of a CGI that nijtc ≤−≤  and that ctni −≤≤0 . Hence it 

follows from line 3 that a value },..,0{ mp ∈  exists such that ]1[][ +≤−≤ pcijpc . 

Because Rij is a CGI it follows that the filtering conditions ok(k+c[p])(k+c[p+1]) and 
gk(k+c[p])(k+c[p+1]) hold for k=i. Therefore, the region Ri(i+c[p+1]) is stored during the call of 
the filter function and Rij is contained in this region. In consequence, Rij is covered by the 
returned list of regions. q.e.d. 
 
The filter function has two loops. The outer loop is running for approximately n 
iterations. Given the exponential increase of comb-window lengths defined by cw, the 
inner loop runs for log(n) iterations. The total runtime of filter is bounded by O(n log(n)). 

 
After the genome sequence is subdivided in sufficiently small fragments the algorithm 
can be evoked with a comb that contains all values between tc and n. This directly returns 
the CGI Shadow as the union of all valid CGIs. 
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2.2.2 A solution to the ambiguity problem 

 
In the last subsection I described an algorithm that reported all regions in a DNA 
sequence that meet a given classical CGI definition. As these frequently overlap with 
each other the question remains which region should be reported. A simple computation 
shows that it is not feasible to report every candidate region. For instance a 1000 bp long 
region that consists of CpG rich repeats would easily results in about a million 
candidates, as nearly every of its subsequences meets all constraints. 
 
Reporting the CGI Shadow instead of individual CGIs solves this problem. This is a valid 
solution, as all nucleotide positions covered by a CGI Shadow belong to at least one valid 
CGI. If the applied sequence-based CGI definition is the best available representation of a 
functional CGI definition, reporting not the entire CGI Shadow would actually discard 
valid regions. If in contrast selected parameters of the sequence-based CGI definition 
itself are suboptimal, it is advisable to select better parameters rather than applying 
complicated post-processing steps. Therefore, the CGI Shadow solves P2. 
 
Previously, it has been proposed to store every identified CGI separately and then 
applying a scoring function to select the optimal CGI for representing a cluster of 
overlapping CGIs (Bock 2008). As the total number of CGIs is only bounded by n2 and 
already reaches for frequently occurring CpG-rich regions of length 10 kbp the order of 
108, this is an I/O intensive step. Additionally, it requires the choice of a scoring function 
with low complexity, but good performance. Until now no according scoring function has 
been identified.  
In contrast, the here proposed approach has the advantage that overlapping CGIs are 
directly merged into CGI Shadows. As there are at most n/(tc+1) separate CGI Shadows 
per DNA sequence, for which only start and end position have to be memorized, this 
information can reside in the computer main memory during computation. Furthermore, 
the three classical constraints remain the only free parameters that influence the results of 
the annotation.  
To make the results of the CGI Shadow approach more transparent, a proof track is 
generated that separately annotates the longest leading and tailing CGIs within each CGI 

shadow.  
 
Box 4: Generalization of Filter approach 
 
Sliding window approaches are applied to solve different problems in genome research. 
Often the size of the search window is a free parameter that influences the results by a 
Single-sliding-window bias. In specific cases, the hierarchical filter approach of 
CgiHunter is general interest to eliminate this parameter. The algorithm exploits that 
nucleotide and dinucleotide counts only grow monotonously when the analyzed sequence 
is elongated. Wherever decision functions are assembled from atomic elements that are 
based on such nucleotide counts, they have the potential to be reformulated  such that that 
a comb can be constructed.  
 



 54

2.2.3 An optimal choice of thresholds 

 
The aim of this subsection is to find a solution for P3. To this end, values for ta, tb and tc 
have to be selected that, when applied in combination with CgiHunter, annotate regions, 
which comply with the three properties of the BF-CGI definition. 
By annotating genome regions that have a higher O/ECpG than the remaining genome, 
regions are enriched that are protected from CpG decay (a). For a set of parameters, the 
correlation with absence of DNA methylation and marks of open chromatin (b), is 
determined by comparison with according experimental data. Finally, the influence of a 
CGI on gene transcription (c) can be inferred indirectly from the co-localization with 
RNA-Polymerase occupancy sites. 
 
By benchmarking a number of CGI annotations against an objective function, the strategy 
of Takei and Jones is adopted and extended by using a larger set of CGI annotations and 
applying a wider range of gold standard data as objective function. The details of this 
benchmark are described in the section 2.3.2. 
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2.3 A benchmark for genome-wide CpG island annotations 

 
 
In this section, first CgiHunter is compared with a single-sliding-window-based approach 
for CGI annotation. Then, based on biological gold standard data an exhaustive 
benchmark is applied to characterize different sequenced-based CGI definition derived by 
CgiHunter and other state-of-the-art annotation programs. 
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2.3.1 Methodical improvements of sliding-window-based CGI 
annotation algorithms 

 
The CgiHunter algorithm was implemented, including a XML-based management system 
for the administration of the parallelized computation and a graphical user interface. As a 
benchmark, annotations for the TJ and GGF criteria based CGI definition were computed 
for the human genome (hg18) and the mouse genome (mm9). While for the annotation of 
the TJ definition a custom desktop computer with 1 GB hard disk space was sufficient, 
the GGF definition was applied on 20 nodes computer cluster. 
 
 

Annotation type Human genome Mouse genome 
Shadow annotation TJ 32.9 h 17.2 h 
Shadow annotation GGF 536.2 h 284.1 h 

 

Table 2.3: Runtime performance of CgiHunter 
For both annotation types and CGI definitions the runtime in CPU hours over all parallel 

processes is summed. 

 
A runtime analysis showed that for the stricter TJ definition the annotation was generated 
in less then two days for the human as well as the mouse genome. The runtime of the 
GGF definition-based annotation was considerably higher (Table 2.3). A detailed study 
of the annotations produced for the human chromosome 21 showed that the GGF 
annotation covered 3.56 Mbp, which corresponds roughly 10 % of the chromosomes 
known genome sequence. This 10 times more than expected from functional studies. This 
indicates that for an exhaustive annotation based on the classical CGI constrains, the 
annotation parameters of the GGF definition are too lenient for whole genome 
annotations. A direct comparison with the CpG Island Searcher software demonstrates 
the influence of the Ambiguity problem and the Single-sliding-window bias on the 
annotation length (Table 2.4). 
 
 

Definition and software #Islands Length 
GGF CpG Island Searcher 5086 1,804,392 bp 
GGF CGI Shadow 4845 3,565,341 bp 
TJ CpG Island Searcher 447 480,566 bp 
TJ CGI Shadow 464 1,046,554 bp 

 
Table 2.4: CGI annotations of human chromosome 21 
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To estimate the methodical improvement of the CgiHunter’s CGI Shadow annotation 
over the single-sliding-window approach as implemented in CpG Island Searcher, I 
designed a self-consistency benchmark. An algorithm for CGI annotation is called self-
consistent, if a lowering of one or several of the applied thresholds only leads to the 
annotation of novel genome regions, either by extending existing CGIs or adding new 
ones. This behavior is mathematically expected from the classical CGI definition, i.e. a 
non-heuristic algorithm produces a nested set of annotations (self-consistency). The 
deviation from this self-consistency indicates the inherent bias of a method. 
 
For the benchmark, I annotated human chromosome 21 and 22 with three classical CGI 

definitions. These only differed in the minimal length threshold (tc=200, 500 and 1000 
respectively), while GC content (ta = 50%) and O/ECpG (tb = 0.6) were fixed. Hence, all 
CGIs in the tc= 1000 annotation fulfill the constraints of the tc=500 annotation and both 
of them also fulfill the constraints in the tc=200 annotation. For CgiHunter’s CGI Shadow 

annotation this property holds and no bias was observed. Hence, CgiHunter is self-

consistent. For CpG Island Searcher, the ~1.8 Mb long tc=200 annotation misses at least 
16.35 % of valid CGI regions according to its own stricter annotations. Of these, 73 kbp 
and 86 kbp are exclusively annotated by the tc=500 and tc=1000 annotations respectively, 
on top of 135 kbp that are annotated by both.  
16.35 % is only a lower bound for the heuristics bias, as additional annotations with 
different tc thresholds identify further missed regions. This observation confirmed the 
combined impact of the Ambiguity problem and the Single-sliding-window bias on 
practically applied CGI annotations. 
 
Next, I compared the algorithms performance on the whole genomes of human and 
mouse, applying the GGF and TJ classical CGI definitions (Table 2.5). Therefore, I 
counted the total number of CGIs in one annotation that do not overlap with any CGI in 
the other annotation. 4% and 16% of individual CGIs are missed completely by the CpG 

Island Searcher, while the CgiHunter missed no CGI identified by the other program. 
Thereby I conclude that the CgiHunter algorithm is on the algorithmically level a 
significant improvement over the single-sliding-window-based method CpG Island 

Searcher. 
 
 
 

Genome CGI definition Missed CGIs (abs.) Missed CGIs (rel.) 
Human GGF 33,754 10 % 
Human TJ 2,190 6 % 
Mouse GGF 28,283 16 % 
Mouse TJ 868 4 % 

 

Table 2.5: Absolute and relative number of CGIs missed by CpG Island Searcher 
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Impact on comparative studies 

 
To assess if the observed bias influences the practical use of CpG island annotation in 
genome research, I performed a comparative study on promoter CGIs in human and 
mouse following a previously proposed workflow (Jiang, Han et al. 2007). The research 
question was: How many orthologous genes switched their promoter type from CGI 
promoter to non-CGI promoter?  
 
Therefore, I generated two CGI annotations based on the TJ definition (ta=55%, tb=0.65, 
tc=500 bp). The single-sliding-window approach was again represented by CpG Island 

Searcher. Each gene out of the 2918 considered orthologous pairs that had a CGI 
overlapping with a 2 kbp upstream to 500 bp downstream region around its transcription 
start site (TSS) was labeled to have a CGI promoter.  
 
According to the single-sliding-window-based approach, 313 human genes lost their 
promoter CGI at the orthologous mouse loci, but the CGI Shadow annotation only detect 
290 losses (7.3 % less). In the opposite case, mouse genes that lost their promoter CGI in 
human, the differences are 156 to 136 (12.8 % less).  
Assuming that a selected sequence-based CGI definition is the best available 
representation of the abstract CGI concept, an unbiased approach clearly improves the 
systematic study of the posed research question. 
 
Considering that similar studies may be performed in future on datasets of hundreds of 
vertebrate genomes underlines the importance of a robust annotation algorithm, such as 
CgiHunter. 
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2.3.2 Biological performance benchmark for CGI annotation software 

 
While the last section demonstrated that CgiHunter is a considerable algorithmically 
improvement within the class of sliding-window-based CGI annotations, in this section a 
broader selection of annotation software for CpG-rich genome regions is evaluated with 
respect to their correlation with biological features. 
This benchmark is based on gene annotations, genome-wide methylation data, chromatin 
immunoprecipitation sequencing (ChIP-seq) experiments on polymerase binding events 
and histone modifications.  
To determine the influence of all three thresholds on the annotation performance, I 
generated 100 CGI Shadow annotations from all combinations defined by a parameter 
grid with ta 70%} 65%, 60%, 55%, {50%,   ∈ , tb 0.8} 0.75, 0.7, 0.65, {0.6,   ∈  and 

tc 800} 700, 600, {500,   ∈ . 

As follows from our functional CGI definition, an annotation is better the fewer 
methylated sites overlap with it, the more activating chromatin marks are observed and 
the higher the measured level of occupancy with RNA polymerase II is. 
 
 
Annotation of unmethylated genome regions 

 
It is expected that BF-CGIs are preferentially co-located with unmethylated DNA. Two 
methylome datasets obtained by genome-wide bisulfite conversion experiments were 
applied (Laurent, Wong et al. 2010). The data was derived from a neonatal fibroblast cell 
line (Fibro) and the human embryonic stem cell line H1 (H1). The average methylation 
level for each annotation was compared the total annotation length (Figure 2.6a).  This 
analysis strongly indicates that CgiHunter yields consistently a better trade-off between 
annotation length and a low average methylation level. 
 
 
Identification of promoter CGIs 

 
Another application of CGI annotations is their ability to mark the 5’ end of genes, and 
thus they support gene identification even in well researched genomes (Illingworth, 
Gruenewald-Schneider et al. 2010). Therefore, it is beneficial if many CGIs overlap with 
gene TSSs, while the total number of CGIs remains small, thereby maintaining a small 
number of false positives. Figure 2.6b shows that the relationship of the number of CGIs 
per annotation to the number of CGIs overlapping with known protein-coding genes is 
partitioned into two trends. For low CGI numbers, a decreasing strictness of the 
annotation leads to a constant increase of discovered genes, were as a rule of thumb of 
each 2 additional CGIs one overlaps a new 5’UTR. Around eleven thousand discovered 
genes, or 25 k CGIs, this ascend reaches a plateau, where presumably most CGI-promoter 
genes are annotated. All non-CgiHunter annotations in the benchmark start beyond this 
point, and thus contain more CGIs than necessary for the purpose of gene finding. 
Furthermore, with few exceptions, the CgiHunter annotations identify more TSSs, while 
requiring a smaller number of annotated regions. 
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Figure 2.6: Correlation of CGI annotations with genomic and epigenomic features 
In the four diagrams, the CGI annotations’ total length, respectively, absolute number of 

annotated regions is compared to (a) their average methylation level in fibroblast cells, 

(b) the absolute overlap with 5’UTRs of protein coding genes, (c) the overlap with RNA 

Polymerase II binding peaks and (d) the presence of H3K4me3 peaks  in any tissue . The 

100 CGI Shadow annotations generated by CgiHunter are shown in blue. The individual 

annotations generated by other programs are displayed by colored circles: the CpG 

island track of the UCSC Genome Browser (yellow), the standard CpG Cluster 

annotation (red), the TJ (light green) and GGF annotations (light blue) computed by the 

CpG island searcher, the CpG MI annotation (violet) and the hidden markov model 

approach by Wu et al. (orange). 
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Co-localization with polymerase binding sites and histone modifications 

 
Epigenetically active CGIs are assumed to be co-located with sites of active transcription 
and histone modifications that correlate with open chromatin states. Applying ChIP-seq 
measurements to test the distribution of these modifications around the CGI annotations 
(Figure 2.6c and 2.6d) confirms that CgiHunter annotations show without exception 
higher enrichment of these marks than the non-CgiHunter annotations. 
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2.3.3 Discussion 

 
CgiHunter is a methodical and practical improvement in comparison to other existing 
CGI annotation software. The algorithm is sufficiently fast, self-consistent, misses no 
base pair that belongs to a valid sequence-based CGI and annotates no base pair that dose 
not. The results of the biological benchmark show that it outperforms all other 
annotations tools. 
This benchmark also demonstrated that of the four tested characteristics, only the overlap 
with promoter regions clearly indicate a set of thresholds. Remarkably, a number of quite 
different parameter choices yield very similar results. For instance, (ta=65, tb=0.7, tc=800) 
and (ta=65, tb=0.75, tc=500) only differ by 110 kbp in total length (Table 2.6 and 
Appendix A). 
 
Considering that CGIs also overlap other functional elements than promoters of protein 
coding genes, it is not sufficient to select an optimal set of thresholds only based on this 
characteristic. Moreover, Table 2.6 and Figure 2.6 also indicate that characteristics such 
as average DNA methylation vary considerable for annotations of equal total length. 
Therefore no clear hierarchy between the three thresholds can be established. 
 
GC content ta O/ECpG tb Min. Length tc Total length Avg. methylation 
65 % 0.7 800 bp 28.75 Mbp 13.3 % 
65 % 0.75 500 bp 28.64 Mbp 14.6 % 
60 % 0.8 800 bp 28.38 Mbp 11.7 % 
65 % 0.75 600 bp 27.41 Mbp 13.0 % 
Table 2.6: Examples for CGI Shadow annotations with good tradeoff between 

promoter overlap and total length 
 
 
For the characteristics of open chromatin, transcription initiation and absence of 
methylation the correlation of annotation size to signal enrichment is more gradual. For 
instance whole genome methylation levels rise smoothly from very strict annotations to 
very lenient ones as shown in the surface plot of Figure 2.7.  
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Figure 2.7: Average methylation level drops continuously with increasing strictness 
For a whole-genome methylome datasets the average methylation level of CGIs is plotted 

against the applied CGI definitions of 100 CGI Shadow annotations.  
 
The term CpG island is associated with the idea that a waterline separates two domains. 
The CpG-rich unmethylated, euchromatic and actively transcribed genome regions are 
located above this imaginary waterline, while the CpG-poor methylated genome regions 
are located below. The benchmark with 100 CGI Shadow annotations that was performed 
in this section found no clear evidence for such a separation. A possible explanation for 
this is that CGIs of different strength and different degree of methylation exist. 
Furthermore, the genome region around the core CGI, which is refereed to as the CGI 
shore, shows an enrichment of functional marks above the genomic background, but 
below those of the core. A second major conclusion is therefore that the binary nature of 
the CpG island metaphor is misleading, i.e. a more gradual classification is closer to the 
biological truth (Figure 2.8). 

 
Figure 2.8: CGI characteristic is not binary but continues 
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2.4 Beyond the binary CGI concept 

 
In the last section the limited usefulness of the binary CpG island metaphor was 
discussed. As alternative to the old island metaphor, I propose a more gradual analogy in 
which CpG rich genome regions are treated like mountain tops of different height. As 
height correlates with absence of methylation, open chromatin and active transcription, 
the valleys between the peaks and the flatland that represents most of the genome are 
inactive and methylated. As depicted in Figure 2.8, the height of the tops can be probed 
by different CGI annotations to produce the equivalent of a topographical map.  To 
generate an annotation that represents this metaphor, the 100 CGI Shadow annotations 
are integrated into the CGI Mountain annotation. As each of these annotations is 
characterized by three parameters it is not possible to directly establish an order. More 
specifically, it is not clear if an annotation with ta=60% and tb=0.7 is stricter than an 
annotation with ta=65% and tb=0.65. 
 
If available, epigenome data can be applied to establish such a hierarchy. To this end, to 
each of the CGI Shadow annotations a strictness value that represents the strength of its 
CGI characteristics is attributed. The stricter an annotation is the more it is concentrated 
on genome regions with enriched marks for activation, and thus applied to establish a 
hierarchy between the different CGI annotations. 
To demonstrate the utility of this approach, I applied the median methylation level in 
fibroblast (Fibro) for all CGIs as representative of an annotation’s strictness. This value 
was rounded to full percent and all annotations with equal strictness were merged. Then 
the resulting annotations were merged in a procedure that retains for each base pair the 
highest strictness score of all annotations that overlap with it (Figure 2.9). Finally, the 
score was encoded by a color code that ranged from highest strictness in dark green to 
lowest strictness in dark blue. Thus, the CGI Mountain annotation is a heatmap 
representation of a combination of GC content and O/ECpG i.e. of CGI strength. The 
annotation was made available for the research community at http://cgihunter.bioinf.mpi-

inf.mpg.de/. 
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Figure 2.9: Schematic drawing of CpG Mountain annotation 
The figure illustrates the construction of CpG Mountain annotation from individual CGI 

shadow annotations. The colors indicate the strictness of each annotation wherey dark 

green indicates the highest value. By retaining the highest strictness score in the 

integrated CGM track, the CpG-rich cores of extended CGIs are highlighted, while also 

the regions with only slight CpG enrichment are distinguished from the genomic 

background. 

 
 
Next, I tested if the tissue-specific methylation data that was applied to rank the CGI 

Shadow annotations, generalizes well to the methylome of other tissues. To this end, the 
CGI Mountain track was intersected with methylation data from a human embryonic stem 
cell line (hESC). The series of box-and-whisker diagrams in Figure 2.10 visualize the 
achieved correlation of 0.52. Although terminally differentiated fibroblasts and totipotent 
embryonic stem cells represent different poles in the differentiation spectrum, the 
annotation well generalizes in this case.  
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Figure 2.10: CpG Mountain levels correlate with hESC methylation level 
For each strictness level of the CpG Mountain annotation a box-and-whisker diagram 

visualizes the methylation level of all associated regions in the human embryonic stem 

cell line hESC. Hereby, the bold line denotes the mean methylation, the ends of the 

colored bars the first, respectively, third quartile, and the end points of the dashed lines 

the maximal and minimal values. The chosen colors the colors for each strictness level 

correspond to the according color in genome browser track. 

 
 
Sequence-based CpG Mountain annotation 

 
For genomes for which no methylome or comparable epigenetic data is available, the 
total length of the annotations can be applied as proxy for the related strictness level. As 
visualized in Figure 2.6a, the thus introduced bias is limited by the good correlation 
between annotation length and methylation level in case of the human genome. To test 
this hypothesis, I generated a CGI Mountain annotation in which the strictness score was 
based on annotation length. Hereby, the choice of the total number of strictness levels 
critically influenced the correlation with the methylome data. Of the three tested 
parameters 100, 50 and 33 the latter produced results that were comparable to those 
derived by the methylation-based strictness order (Appendix B). 
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2.4.1 CpG island shores and CGIs of intermediate strength 

 
The CpG Mountain annotation captures the continuous nature of the CGI characteristic. 
Previously computational epigenetic study already introduced the idea of CGI strength as 
byproduct of the statistical classifier that were applied to differentiate methylated from 
unmethylated CGIs (Bock, Walter et al. 2007). This concept of CGI strength represents 
an alternative to a binary classification, but also raises the questions if it is a biologically 
justified. Regarding CpG decay as strong contributor to CGI formation, there are three 
factors that influence the formation of CGIs with intermediate CpG content:  
 
First, these CGIs of intermediate strength are in a transient state (formation or erosion), in 
which they constantly lose or gain CpGs over a longer timescale.  
 
Second, CGIs fluctuate around an individual equilibrium of the CpG distribution that is 
distinct from that of the stronger CGIs. Differential methylation within the germline cycle 
is one explanation for such a diverging equilibrium (Figure 1.1). Another explaination is 
that DNA methylation is a stochastic process with variable mean and variance for CGIs 
of different strength. Furthermore, the distance to the center of the CGI may influence the 
probability that methylation takes place. These difference then translate into altered 
mutation frequencies. 
 
Third, there may be a variable degree of selective pressure for or against functional CpG 
containing motifs, thus raising or decreasing the CpG density in particular regions over 
time independently from the germline methylation state.  
 
A recent study indeed found evidence that CGIs can be classified into distinct groups by 
the rate with which they gain, lose and conserve individual CpG dinucleotides (Cohen, 
Kenigsberg et al. 2011). This supports the first factor as it shows that CGIs are dynamic 
entities that grow or shrink, and get as well strengthened or weakened in their CGI 
characteristics by evolutionary forces. 
 
The same study presents evidence against the third hypothesis by observing that 
individual CpGs in primate promoter CGIs are only under weak selective pressure 
(Cohen, Kenigsberg et al. 2011). 
 
The hypothesis of differential methylation within the germline cycle, is in line with the 
observation that CpG island shores show high variability in their methylation levels 
between tissues (Molaro, Hodges et al. 2011) and within cancer (Irizarry, Ladd-Acosta et 
al. 2009). 
 
To gain a better understanding of this question weak CGIs are compared with the shores 
or edges of strong CGIs to investigate if both show comparable characteristics. To this 
end I applied the EpiExplorer tool developed by Konstantin Halachev and Hannah Bast 
(Halachev, Bast et al. 2012). 
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The neighborhood plots produced by this software were applied to measure the 
prevalence with which epigenetic marks are observed in the neighborhood of CGI 

Shadow annotations of different strictness. As displayed in Figure 2.11, the enrichment 
of these epigenetic regulation marks correlates in the direct local neighborhood with the 
strictness of the CGI annotation. For the stricter annotations, the enrichment levels drop 
between 1 kbp and 3 kbp to the maximal value of the lenient annotations, before it 
approaches the genomic average. This observation indicates that on average enrichment 
of epigenetic modifications in the neighborhood of strong CGIs is similar to the average 
enrichment in weaker CGIs.  
 

 
Figure 2.11: Histone modification and polymerase binding close to CGIs 

For four CGI Shadow annotations with varying strictness the presence of RNA 

polymerase II binding events (Pol2b) (a) and H3K4me3 (b) and H3K27me3 (c) histone 

modification peaks relative to their location are displayed. For all three datasets the 

presence of the modification has a higher local correlation with the stricter annotations, 

although the effect strength varies between differences of 10% and 80%. 
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2.5 Discussion 

 
This chapter discussed the limitations of previous establish software for DNA sequence-
based CGI annotations. For clarification of the annotation approaches objective function, 
the concept of a biological functional CpG island was introduced. To enable the 
annotation of these BF-CGIs the CgiHunter algorithm was proposed. Then, the 
theoretical as well as practical advantages of the algorithm were demonstrated in a 
comprehensive benchmark. Furthermore, the methodical search for a precise CGI 
definition showed that the binary concept of the CpG island itself is questionable. 
Therefore, the CpG Mountain annotation was designed, as a more continuously concept 
for the annotation of CpG-rich genome regions. For the human genome a version of it 
was constructed, to optimally reflect methylome data from human fibroblasts. This 
correlation generalizes well to methylome data from embryonic stem cells.  
Finding a smooth correlation of CpG island characteristic with several markers of open 
chromatin raises the question on how CGIs of intermediate strength are formed and 
maintained. To explore the three factors that may contribute to this process in more 
detail, the next chapter analysis the dynamics with which genome regions converge 
towards individual dinucleotide equilibrium distributions according to the rate of CpG 

decay they are exposed to.   
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Chapter 3 - The influence of DNA methylation on DNA 
sequence composition - A quantitative model of 
methylation-constrained genome evolution 

 
Searching for CGIs with sequence-based CGI definitions, as conducted in the last 
chapter, is an empirical approach to identify putative targets of epigenetic regulation. The 
exact choice of the applied thresholds has no intrinsic justification. In this chapter, the 
evolutionary forces, which lead to the creation CGIs, are quantified directly. To this end, 
I construct a mathematical model of genome evolution that is aware of the CpG decay 
process. This model is then applied to pursue three research questions:  
 
First, what is the long term impact of DNA methylation and the CpG decay effect on 
neutrally evolving genomes? More precisely, biochemical and molecular biological 
processes, such as spontaneous deamination and biased DNA repair, apply pressure on 
the DNA sequence composition. My means of a simulation, I characterize the different 
equilibria these processes approach in methylated and unmethylated DNA. 
 
Second, CpG-rich cis-regulatory elements in unmethylated CGIs benefit from the 
protection against CpG decay by absence of methylation. What can be learned from 
quantifying this benefit? 
 
Third, has this quantitative model the potential to substitute the empirical CGI 
annotations or the CpG Mountatin annotation? 
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3.1 Mathematical models of genome evolution 

 
For studying the influence of methylation-mediated CpG decay on the genome 
composition, substitution processes, which contribute either to the degradation or 
formation of CpGs, have to be considered as well. For instance, a C to G transversion, for 
instance, can either create novel CpGs in case of CpC/GpG to CpG/CpG substitutions or 
degrade them in the reverse process CpG/CpG to CpC/GpG. To this end, a mathematical 
model of genome evolution is required to capture the balance between CpG degradation 
and CpG creation.  
  
To construct a model of genome evolution that comprises the influence of DNA 
methylation a brief overview of the available methods is of assistance, as point 
substitutions in genome sequences can be described at different degrees of detail. For 
instance, the Jukes-Cantor model postulates that every nucleotide has equal probability to 
be replaced by any other (Jukes and Cantor 1969). The slightly more detailed Kimura-2-
parameter model assumes individual rates for transitions (pyrimidine to pyrimidine and 
purin to purin substitutions) and transversions (pyrimidine to purin and vice versa 
substitutions) (Kimura 1980). A detailed strand-specific model requires 12 parameters to 
represent all possible substitutions. 
A strand-unspecific model requires only six parameters, as a substitution on one strand is 
always accompanied by a mirror-substitution on the other strand, i.e. an A to G 
substitution is a T to C substitutions on the complementary strand a. In case of neutral 
evolution, substitutions appear with equal likelihood on either of the two strands, such 
that the respective rates for the mirror-events can be expected to be equal (Lobry and 
Lobry 1999). Such a model comprises four transversion rates and two transition rates. In 
some species the transversion rates are rather similar and can be represented by an 
average transversion rate to reduce the number of parameters from six to three (Arndt, 
Burge et al. 2002; Peifer, Karro et al. 2008). 
Additionally, the influence of neighboring nucleotides on the point substitution rate of an 
individual nucleotide can be considered. This adds one free parameter to the model for 
each presumed interaction. In the human genome, CpG decay, as substitution of CpG to 
TpG and its mirror-substitution CpG to CpA, is the only significant neighbor-dependent 
substitution processes in neutrally evolving DNA (Arndt, Burge et al. 2003; Lunter and 
Hein 2004; Siepel and Haussler 2004; Hobolth 2008; Peifer, Karro et al. 2008). Including 
this process as well, leads to a four substitution rate model comprising the average 
transversion rate r1-r4 = rtr, two transitions - A/T to G/C r5 and G/C to T/A r6 - and the 
CpG decay r7. As the rates are relative to each other the fourth rate is defined by the 
remaining three, and thus, the model has three degrees of freedom. 
For the human and the mouse genome estimations for these three parameters were 
derived previously (Peifer, Karro et al. 2008). To this end alignments of 38 DNA repeat 
families were applied, facilitating that their ancestral sequences can be well reconstructed 
from their numerous copies in present genomes (Jurka 1994) . Moreover, the majority of 
all repeats evolves free of selective pressure, thus reducing the bias in the rate estimates. 
To simplify the interpretation of the model, the rates are scaled such that one unit of time 
corresponds to the interval in which for a single nucleotide one transversion of each type 
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is expected. As each nucleotide can undergo two different transversions, one unit is 
equivalent to two transversions per site. This results for the human in r5/rtr = 3.02, r6/rtr = 
5.08 and r7/rtr = 48.3, and indicates the dominance of the CpG decay rate over the other 
substitution processes.  
 
In the remaining chapter, I examine the hypothesis that methylated genome regions 
evolve under the influence of all four substitution processes, while unmethylated genome 
regions are only affected by the context independent processes, and thus, are immune 
against CpG decay. 
Formally, these models are described as the stochastic processes fM and fU. These take a 
genome region R and an age t as input and map them to an accordingly mutated region Rt. 
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3.2 Simulated evolution 

 
A direct approach to characterize the difference between methylated and unmethylated 
genome evolution is the simulation. Thereby, I implemented a simulation engine for the 
stochastic processes fM and fU.  
The resulting software iterates recursively over two steps. Based on a given DNA 
sequence and the corresponding substitution rates, it computes the waiting time until the 
next substitution event. Then, the exact nature of the substitution is determined and the 
DNA sequence is updated. The process starts at t=0 and terminates when a given time 
limit tl is reached. 
 
The waiting time tw for an individual substitution is described by an exponential decay 
process with the respective rate. The joint waiting time for multiple substitution processes 
is derived from an exponential decay process with the summed rate of all individual 
processes ((Karlin and Taylor 1975) p.133). To this end, the software counts the number 
of nucleotides and CpG dinucleotides in the sequence, multiplies them with the 
respective rates and sums the products to yield the joint substitution rate rj .Then, tw is 
drawn from an exponential distribution with mean 1−

jr . 

Next, t is advanced to t + tw. If the termination condition t > tl is reached, the simulated 
mutation occurred after the observed time interval. Hence, the current DNA sequence is 
reported without an additional change. 
Otherwise, the interval [0,1] is segmented into regions that represent the possible 
substitution events by the size of their respective contributions to rj. Then, by drawing a 
uniformly distributed random number, the nucleotide that is to be substituted is 
determined and replaced. Finally, rj is updated according to the changes in the nucleotide 
and dinucleotide distribution to prepare the next cycle. The simulation engine was 
implemented in the scripting language Python Version 2.4. 
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3.3 Equilibrium distributions of neutrally evolving genomes 

 
Evolutionary processes acting on DNA sequences in which the point substitution rates are 
unequally distributed, can lead to unbalanced distribution of the nucleotides, 
dinucleotides and oligo-nucleotides. In the human genome, some of these patterns are 
rather transient (in methylated DNA for instance the CpG dinucleotides), while others are 
relatively stable (for instance the thymine and the adenosine nucleotides). 
Over longer time spans the stable states will be enriched and the transient states will be 
depleted, but because transitions between all patterns are possible, none will be 
indefinitely lost (Sved and Bird 1990). Moreover, in larger DNA sequences a dynamic 
equilibrium is approached. 
The simulation engine described in the previous subsection is an appropriate tool to asses 
whether such equilibria are formed under the methylated or the unmethylated model, how 
fast they are reached and also to quantify their difference. 
 
In formal terms following computation is made: Let g be a function that derives the 

dinucleotide distribution Gt from Rt. Here I approximate the limit )),((lim: tRfgG t ∞→
∞ =  

that is expected to be similar for sequences of infinite length ( ∞→n ).  
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3.3.1 Numerical derivation of sequence equilibrium distribution 

 
To approximate the equilibrium distributions, I applied the previously described 
simulation engine 100 times to artificial DNA sequences with uniform base distribution 
of length 10 kbp. Applying r5/rtr = 3.02, r6/rtr = 5.08 and r7/rtr = 48.3 (100% methylated 
equilibrium), the simulations were performed for both models for 100 time units, i.e. until 
each site underwent on average 200 transversions. As it is unclear if the CpG decay rate 
that was derived from the alignments of transposable elements generalizes to the whole 
genome, the equilibrium for r7/rtr = 24.15 was additionally computed (50% methylated 
equilibrium). For comparison, I determined the nucleotide and dinucleotide distribution 
within the human genome (assembly hg18) by counting their frequency in the genome 
sequence. The results are summarized in Table 3.1. The frequency of CpGs at the 100% 
methylated equilibrium (0.55 %) is about half of the frequency observed in the whole 
genome (0.99 %) and those of the methylated equilibrium 50% (0.98 %).  This either 
indicates that the human genome is not in equilibrium or that indeed the rate estimates 
derived from the repetitive sequences are elevated compared to the remaining genome. 
For the analysis in this chapter, a conservative estimation of the CpG decay rate appears 
more reasonable, as it gives a lower bound on the differences between methylated and 
unmethylated genome regions. Therefore, I apply the 50% methylated equilibrium 
determined by  r7/rtr = 24.15 for the subsequent analysis. 
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Dinucleotide 

and 

Nucleotide 

Unmethylated 

equilibrium 

 

50% 

methylated 

equilibrium 

 

 

100% 

methylated 

equilibrium 

 

 

Human 

Genome 

(hg18) 

 
AA 9.05 % 9.97 % 10.06 % 9.77 % 
AC 5.98 % 5.70 % 5.63 % 5.03 % 
AG 5.99 % 6.26 % 6.29 % 6.99 % 
AT 9.06 % 10.51 % 10.77 % 7.72 % 
CA 5.99 % 6.97 % 7.13 % 7.25 % 
CC 3.96 % 3.35 % 3.27 % 5.21 % 
CG 3.96 %   0.98 % 0.55 % 0.99 % 
CT 5.99 % 6.26 % 6.28 % 7.00 % 
GA 5.99 % 5.43 % 5.32 % 5.93 % 
GC 3.96 % 3.08 % 2.98 % 4.27 % 
GG 3.97 % 3.36 % 3.3 % 5.22 % 
GT 5.99 % 5.69 % 5.65 % 5.05 % 
TA 9.05 % 10.09 % 10.24 % 6.56 % 
TC 5.99 % 5.43 % 5.35 % 5.94 % 
TG 5.99 % 6.95 % 7.11 % 7.27 % 
TT 9.07 % 9.96 % 10.06 % 9.80 % 
A 30.08 % 32.35 % 32.75 % 29.52 % 
C 19.94 % 17.58 % 17.24 % 20.45 % 
G 19.88 % 17.54 % 17.25 % 20.47 % 
T 30.10 % 32.53 % 32.76 % 29.56 % 
 
Table 3.1: Dinucleotide and nucleotide frequencies at different epigenetic equilibria 
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For the applied methylated equilibrium and the unmethylated equilibrium the standard 
deviation over all runs lay below 2·10-4 for all dinucleotides. This indicates that indeed 
the sequence distribution fluctuates around a dynamic equilibrium (Table 3.2). 
CpGs show the largest differences between the methylated and the unmethylated 
equilibrium. In absolute percentage CpGs appear 2.98% more often in unmethylated than 
in methylated genome regions. On closer examination it can be observed that the 
dinucleotide ApT, with an underrepresentation of 1.46%, alone is already half as 
informative as CpG. Aggregation over the four dinucleotides CpA, TpG, ApT and TpA 
leads to a joint frequency difference of 4.43%. These results indicate that in genomes, 
which reached their equilibrium state, the search for islands with decreased frequency of 
these four dinucleotides potentially detect signatures of methylation-free genome 
evolution more efficiently then CpG centered approaches.  
 
Dinuc. Unmeth. Unmeth. std. Meth.  Meth. std. Difference 
AA 9.053253 +- 0.001352   9.970225 +- 0.006837 -0.916972 
AC 5.982184 +- 0.010744   5.698340 +- 0.007465  0.283843 
AG 5.986750 +- 0.002798   6.263422 +- 0.001555 -0.276672 
AT 9.056424 +- 0.010879 10.519951 +- 0.009351 -1.463527 
CA 5.987135 +- 0.003461   6.967452 +- 0.003334 -0.980316 
CC 3.959960 +- 0.005844   3.354588 +- 0.000418  0.605373 
CG 3.957400 +- 0.005954   0.982524 +- 0.002780  2.974876 
CT 5.994753 +- 0.014380   6.259831 +- 0.003250 -0.265078 
GA 5.985175 +- 0.008126   5.428309 +- 0.001141  0.556865 
GC 3.963677 +- 0.011462   3.078965 +- 0.009246  0.884712 
GG 3.974045 +- 0.004760   3.355838 +- 0.001723  0.618206 
GT 5.988586 +- 0.016849   5.691327 +- 0.001297  0.297258 
TA 9.052783 +- 0.007606 10.085932 +- 0.017771 -1.033150 
TC 5.993492 +- 0.005108   5.432881 +- 0.007571  0.560611 
TG 5.993697 +- 0.000406   6.952575 +- 0.005070 -0.958878 
TT 9.070688 +- 0.004074   9.957840 +- 0.010636 -0.887151 
 
Table 3.2: Equilibrium frequencies of dinucleotides under unmethylated and 

methylated constraints 
This table shows for each dinucleotide the computed mean relative frequency at the 

equilibrium and the corresponding standard deviation. Furthermore, the difference 

between both equilibria is displayed. The data is averaged over the 100 simulation runs.  

 
The CpG frequency approaches its equilibrium very rapidly (Figure 1.4). After 0.3 
expected transversion per site the distance to the equilibrium is below one per mille. 
Moreover, the spread between the unmethylated and the methylated evolution is growing 
fast. This indicates that after the onset of global DNA methylation the epigenetic 
footprints of germline methylation manifested rapidly. Furthermore, this implies a strong 
pressure on functional DNA sequences that contain CpGs. 
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3.4 Evaluating substitution pressure on sequence motifs 

 
The equilibrium distributions, derived in the previous section, represent the two 
endpoints towards which DNA sequence evolves in methylated and unmethylated 
genome regions. Within the model there are three explanations for sequences that diverge 
from the equilibria defined by their germline methylation state.  These sequences either 
occur rarely, are under selective pressure, or have changed their methylation state 
recently and not yet converged to the new equilibrium. The explanation that a certain 
sequence has not yet converged to an equilibrium will be discussed in detail in chapter 4 
and 5. The balance between the first and the second explanation will be examined in 
detail in this section.  
More specifically, the likelihood that a certain sequence appears under both equilibria by 
chance is computed. This also quantifies the selective pressure that is required to 
maintain it under each methylation state. If the likelihoods are unbalanced, a preference 
for one of the two states can be inferred. Furthermore, if it occurs more frequently than 
expected in one of the two methylation states, it is subjected to selective pressure.  
 
To conduct this estimation and number of likelihood model are required. These are then 
calibrated with the equilibrium distributions computed in the last section. Then they are 
applied in three different scenarios: to evaluate the occurrences of simple DNA 
sequences, of collections of DNA sequences, and of binding motifs of transcription 
factors.  
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3.4.1 Likelihood of DNA sequences 

 
A dinucleotide inherently contains information on the spatial relationship of single 
nucleotides i.e. in case of ApT the information that A is followed by T. Thus, in case of a 
dinucleotide frequency distributions D, with DXY denoting the frequency of XpY, this 
spatial information can be easily transformed into a transition matrix PD. The transition 
probability from X to Y is computed by: 
 

∑
Σ∈

=
Ai

XiXY

D

YX DDP /, , 

whereby AΣ  denotes the nucleotide alphabet. P
D defines a first-order Markov chain, 

which can directly be applied to computing sequence likelihoods. 
 
 
Simple DNA sequences – k-mers 

 
A DNA sequence (or oligo-nucleotide) is a string of length n over the alphabet AΣ , which 

is indexed like the genome region R in section 2.2.1, i.e. Ri denotes the i-th nucleotide in 

the genome region. The probability of Pr(R|D,S) is computed by ∏
−

=

+⋅
1

0
1,0

n

i

D

RiRiR PS , where 

the prior probability of the first nucleotide 0RS  is given by the nucleotide distribution S. 
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Collections of DNA sequences - cis-regulatory sequences 

 
By appropriate experiments samples of DNA sequences that are bound by specific 
transcription factors can be determined. In this way the binding properties of transcription 
factors (TFs) are characterized by a selection of cis-regulatory sequences [R1,…,Rm] and 
their corresponding relative observation frequencies [fO

1, … ,fO
m]. 

To quantify if a particular evolutionary pressure favors their formation and maintenance, 
each of these sequences is treated as a simple DNA sequence and the derived 
probabilities are aggregated as weighted sum over the observation frequencies: 
 

∑
=

=
m

i

mm
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1
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The derived likelihoods are small and depend on the lengths of the binding sequences. To 
enable the interpretation of these values, I compare them between different methylation 
constraints. For the dinucleotide distributions U (unmethylated) and M (methylated), with 
nucleotide priors SU and SM, respectively, I define the likelihood ratio of TF as: 
 

),|Pr(

),|Pr(
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M

U

SMTF

SUTF
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This odds ratio is larger than 1 if the corresponding cis-regulatory sequences occur more 
frequently in sequences that evolve unconstrained by DNA methylation, i.e. in 
unmethylated genome regions. 
 
Position-specific scoring matrix  

 
Transcription factor binding sites or similar sequence patterns are often not directly 
described by individual sequences, but in summarized form. In this approach, the relative 
nucleotide frequency at each position of the sequence is counted to compute a position-
specific scoring matrix (PSSM) that encodes a sequence motif. Such PSSMs or position 
weight matrices (PWMs) are an established notation and reviewed in (Hannenhalli 2008). 
It is noteworthy, that by summarizing the exact binding sequences, information is lost. 
For instance, if R1=AC, with fO

1=0.5, and R2=GT with fO
2=0.5, the respective PSSM E℘  

takes the form visualized in Table 3.3. 
 

E℘  Position 1 Position 2 

A 0.5 0 
C 0 0.5 
G 0.5 0 
T 0 0.5 

 

Table 3.3: PSSM representation loses information on dinucleotide content 
Although in the original sequences only two types of dinucleotides are observed, the 

corresponding profile can generate four different dinucleotides with equal probability. 
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Also, information on interdependencies of more distant positions, the so-called phase 
information, is lost (Stormo 2000; Bulyk, Johnson et al. 2002). Many TFBS are only 
reported in PSSM format. This has the advantage that they can be visualized as Sequence 
Logos, which represents the information content of each position (Schneider and 
Stephens 1990). Furthermore, they can be efficiently applied to in silico screening of 
genome databases via profile alignments (Vlieghe, Sandelin et al. 2006). Although, 
PSSMs are less informative for the analysis of context-dependent substitution processes 
than collections of cis-regulatory sequences, they were evaluated where no access to the 
primary experimental data was obtainable. 
 
To determine the consequences for the research question, the likelihood of a PSSM under 
different evolutionary background models is computed and compared to the model based 
on the full sequence information. To this end, a variant of the forward algorithm is 
applied(Durbin, Eddy et al. 1998), to enable the analysis of these PSSMs with regard to 
methylation-induced evolutionary pressure. 
The matrix Z, which contains the intermediate results of this dynamic programming 
approach, has the same size as the PSSM ℘. The entries in the first column are initialized 

as : 
 

∑
Σ∈

℘=
AX

D

YXX PYDYZ ,)1,(),|1,( ππ , with AX Σ∈ . 

 
The remaining matrix is computed recursively by:  
 

∑
Σ∈

−℘=
AX

D

YXPDiXZiYDiYZ ,),|1,(),(),|,( ππ . 

 
The sum over the last column of Z then yields the likelihood of the motif under the given 
constrains ),|Pr( πD℘ . Again, a score based on an odds ratio enables the interpretation of 

these likelihoods:  
 

),|Pr(

),|Pr(
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M

U
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U
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π

π

℘

℘
=℘ . 
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3.4.2 Evaluating selective pressure on DNA composition  

 
Molecular biological studies and computational epigenetic approaches discovered several 
DNA sequence patterns that are either enriched in methylation-resistant or methylation-
prone genome loci. This association can have different reasons. First, these patterns are 
functionally involved in maintaining the methylated or unmethylated state of a region 
(active association). Second, these patterns are a consequence of the presence or absence 
of the CpG decay effect (passive association). Third, the patterns are co-located with 
functional elements that are preferentially methylated or unmethylated (indirect 

association). Fourth, the function of these patterns is regulated by DNA methylation 
(regulatory association). 
 
For instance, a binding site for a protein complex that actively recruits a DNA 
methyltransferase is an example for an active association. Without this binding-site the 
methylation state of the locus would change. 
The CpG dinucleotide itself is an example for a passive association as are all oligo-
nucleotide patterns with a high O/ECpG. They are depleted over time from methylated 
genome regions via CpG decay, but are protected from this effect in unmethylated 
domains. 
Binding sites of general transcription factors are enriched in functional promoters, which 
in turn often co-localize with CGIs. Thus, they are candidates for indirect association to 
the unmethylated state of these promoters.  
Binding sites of tissue- or developmental stage-specific proteins or elements that are 
regulated by imprinting are activated (CTCF-binding sites) or deactivated (STAT binding 
sites) by DNA methylation. Therefore, they have to be located in genome regions that can 
be methylated and unmethylated depending on the epigenetic state of the cell. 
Furthermore, these sites have to be protected from CpG decay in the germline. Such sites 
are examples for regulatory association. 

 
Estimating to which degree each of these association types are causal for an observed 
correlation of, for instance, a binding motif ℘to a methylation state, is not trivial. 

I approach this problem by comparing the likelihood of ℘in DNA sequences that obey 

the equilibrium distributions M or U. The resulting odds-ratio indicates if a pattern is 
favored under a certain methylation regime or has to resist additional mutational pressure 
to stay conserved. This quantifies the amount of passive association for the particular 
motif. Furthermore, I study the distribution of binding motifs within and outside of CGIs 
to infer if they are enriched or depleted in CGIs. Motifs that are neutral with respect to 
the methylation state, but are anyway enriched in CGIs are candidates for indirect 

association. 
 
In the following subsections, the location of TFs with respect to CGIs is assessed. Then 
the passive association of their PSSMs is quantified by the above introduced technique. 
Subsequently, the introduced methodology is applied for a novel interpretation of several 
previously performed studies. 
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3.4.3 CpG decay induced pressure on TFBS 

 
First, the location of transcription factor binding sites (TFBS) that are conserved in the 
human, mouse and rat genome is analyzed (‘TFBS Conserved’ track of the UCSC 
Genome Browser based on Transfac Matrix Database version 7.0). Following the 
comparative genomics assumption that conservation correlates to function, this approach 
enables us to focus on putative functional TFBSs. The applied genome annotation reports 
all motifs that exceed the background probability of observing the reported motif by 2.33 
standard deviations. This is equivalent to a significance level of 0.01. Hereby, our null 
hypothesis on the distribution of conserved TFBSs in the human genome is a uniform 
distribution. The frequency with which these TFBS sites overlap with CGIs, characterizes 
their empirical distribution within the human genome. For each type of TFBS the ratio of 
instances that overlap the CGI Mountain annotation (compare chapter 2) over the total 
number of observed TFBS (CGI fraction) indicates the prevalence of the underlying 
motif in CGIs. The full CGI Mountain annotation covers 156 Mbp, i.e. 5 % of the human 
genome. Any significant divergence of the CGI fraction from this value leads to the 
rejection of the null hypothesis. Significance is tested by a Chi-Square test through 
comparison of the observed and expected counts of TFBS in the CGI fraction.  Moreover, 
the ration CGI fraction over 0.05 is an indicative value for the strength of this divergence 
(CGI Overrepresentation). Finally, the mean CGI Mountain strictness level for the TFBS 
in the CGI fraction yields insights into the preferred location of TFBS within the CGIs. A 
high mean correlates to locations at the cores of CGIs, while a low mean documents 
locations towards the edges i.e. shores of the CGIs. Table 3.4 shows the 20 TFBS with 
the highest CGI Overrepresentation. A full overview of all 246 TFBS can be found in 
Appendix C. 
 

 
Table 3.4: Top-20 TFBS overrepresented in CGIs 

TFBS ID In CGIs All TFBS 
CGI 
fraction 

Mean CGM 
strict. 

CGI  
Overrep. p-value 

SP1_Q6 837 941 88.95 91.70 17.79 0.00E-99 
SP1_01 683 769 88.82 91.24 17.764 0.00E-99 
AP2_Q6 623 709 87.87 92.01 17.574 0.00E-99 
NFY_01 97 128 75.78 90.02 15.156 0.00E-99 
PAX4_01 441 608 72.53 91.24 14.506 0.00E-99 
PAX5_01 406 576 70.49 91.06 14.098 0.00E-99 
CETS1P54_01 238 339 70.21 89.37 14.042 0.00E-99 
EGR3_01 999 1509 66.2 90.65 13.24 0.00E-99 
NRF2_01 455 717 63.46 89.72 12.692 0.00E-99 
ELK1_02 386 617 62.56 90.02 12.512 0.00E-99 
USF_C 191 306 62.42 90.05 12.484 0.00E-99 
E2F_03 149 240 62.08 90.28 12.416 0.00E-99 
MAZR_01 526 859 61.23 89.92 12.246 0.00E-99 
E2F_02 538 895 60.11 89.02 12.022 0.00E-99 
NMYC_01 702 1196 58.7 89.36 11.74 0.00E-99 
EGR1_01 953 1693 56.29 90.48 11.258 0.00E-99 
PAX5_02 352 645 54.57 90.42 10.914 0.00E-99 
GATA2_01 76 145 52.41 89.21 10.482 0.00E-99 
NGFIC_01 990 1986 49.85 89.93 9.97 0.00E-99 
CREB_02 219 442 49.55 89.57 9.91 0.00E-99 
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The majority of the conserved TFBS deviate significantly from a uniform distribution. 
More specific, for 201 of 246 TFs the Chi-Square test detects a p-value below the 
conservative threshold of 10-4. Only 31 TFBS are overrepresented in the non-CGI 

fraction, while 128 show an at least 2 fold overrepresentation in the CGI fraction. The 
mean CGI Mountain strictness correlates with the CGI Overrepresentation. This indicats 
that TFBS that are overrepresented in CGIs tend co-locate with the CpG-dense CGI cores 
rather then the less CpG dense CGI shores. The strongest CGI Overrepresentation of 
17.8 can be detected for the two motifs of the TF Sp1. 
 
To infer in how far the CpG decay effect can explain this overrepresentation, the above 
introduced methods are applied. Starting with Sp1 as a showcase, the analysis is 
expanded to all TFBS in the JASPAR database (Vlieghe, Sandelin et al. 2006), and then 
to motifs that have been selected for their ability to discriminate between methylated and 
unmethylated genome regions. 
 
 
Sp1 as showcase 

 
Sp1 was discovered as the first representative of a family of Sp1-like transcription factors, 
which contains eight additional members (Zhong and Meng 2005).The Sp1 transcription 
factor was implied early as mediator of CGI function (Macleod, Charlton et al. 1994), as 
it binds the GC-box element (GGGGCGGGG) and is present in many CGIs. I tested in 
how far the protection from CpG decay contributes to this overrepresentation. 
The JASPAR database reports 35 cis-regulatory sequences for Sp1. The log2-odds scores 
for these sequences varies between -0.28 and 6.29 with an average of 2.75. Thus, Sp1 
binding sites appear on average with a 6.7 fold higher likelihood (2.75 log-likelihood) in 
unmethylated sequences. 
 
An analysis of the PSSM reported in JASPAR only predicts an overrepresentation of 1.54, 
respectively a log2-odds score of 0.62. Although the results show a similar trend, this 
indicates that the loss of information by converting the explicit sequences into PSSM 
form is substantial. Especially the CpGs that are present in many Sp1 cis-regulatory 
sequences are only weakly represented by the PSSM. On basis of the direct computation, 
I conclude that Sp1 binding sites are either strongly favored by an unmethylated neutral 
substitution process or were adapted by evolution for unmethylated genome regions. 
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PSSM based analysis of the JASPAR TFBS database 
 
Being aware of the potential bias, the biding sites of many TFs are only available in form 
of PSSMs. To obtain a broad overview of the spectrum of odds ratios, )(℘L  was 

computed for 549 PSSMs of TFBSs, obtained from the vertebrate-core set of the 
JASPAR database (Table 3.5 and Appendix D). Odds-Ratios ranged from 67.6 for 
DAL81 (Figure 3.1) to 0.5 for Pou5f1 (Figure 3.2). 186 PSSMs showed higher likelihood 
over the unmethylated background model U. Of these 93 showed at least a two-fold 
higher preference for formation by chance in unmethylated DNA. No PSSM displayed 
such a strong preference for methylated DNA. 
 

 
Figure 3.1: Sequence logo DAL81 
 

 
Figure 3.2: Sequence logo Pou5f1 
 
This indicates that no TFBS is overrepresented in methylated DNA by chance beyond a 
2:1 ratio, while numerous TFBS exist, which exceed this ratio in favor of unmethylated 
genome regions. This observation is explained by a mathematical argument. The absence 
of CpGs in binding motifs only slightly increases the preference for M, while the 
presence of CpGs introduces a strong preference for U (asymmetric preference). In other 
words, motif that is highly specific for U can be easily constructed by including many 
high probability CpG sites. In contrast, it is not possible to construct a motif that strongly 
favors methylated genome regions over unmethylated ones.  
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Rank TFBS Name Odds-Ratio Log Odds 

1 DAL81 67.59394 6.078822 

2 RSC30 24.19466 4.596617 

3 PDR3 17.12353 4.097909 

4 RSC3 14.12888 3.820575 

5 IME1 13.82657 3.789372 

6 RDS1 10.41102 3.380039 

7 SWI4 8.482207 3.08444 

8 MBP1::SWI6 7.578759 2.921962 

9 MIZF 7.335728 2.87494 

10 UGA3 6.71728 2.747877 

11 STP1 6.605268 2.723617 

12 LEU3 6.503181 2.701146 

13 YLL054C 6.424421 2.683566 

14 STP2 5.754297 2.52464 

15 PDR1 5.477768 2.453588 

16 SUT1 5.361134 2.422538 

17 E2F1 5.333781 2.415158 

18 MBP1 5.22171 2.384522 

19 NHP10 4.881334 2.287276 

20 GAL4 4.745383 2.246525 

21 UME6 4.665303 2.221971 

22 CHA4 4.633145 2.211992 

23 TEA1 4.578067 2.194738 

24 PUT3 4.526733 2.17847 

25 CAT8 4.398683 2.137072 

26 SNT2 4.36613 2.126355 

27 RDS2 4.319054 2.110715 

28 YER184C 4.219052 2.076919 

29 SIP4 4.215525 2.075712 

30 YJL103C 4.199741 2.0703 

31 HAL9 4.156235 2.055277 

32 YBR239C 4.147621 2.052284 

33 TBS1 4.071869 2.025691 

34 RDR1 4.06493 2.023231 

35 ASG1 4.056344 2.02018 

36 CEP3 4.004818 2.001737 

37 XBP1 3.959635 1.985368 

38 STB4 3.94848 1.981298 

39 YLR278C 3.910654 1.96741 

40 PDR8 3.900859 1.963792 

 
Table 3.5: Top-40 PSSM motifs ranked by odds ratio  
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Summary 

 
Conserved transcription factor binding sites (TFBSs) show a higher prevalence for CGIs 
than for the remaining genome. A similar tendency is predicted by the likelihood ratios 
computed for the position-specific scoring matrices (PSSMs) of the TFs, which in general 
favor sequences closer to the unmethylated equilibrium. The ranked lists produced from 
both comparisons are resources for judging the association type of an individual TF to 
CpG-rich sequences. A high rank in the likelihood list indicates a strong passive 

association. A high rank in the conserved TFBS list despite a low rank in the likelihood 
list indicates an active or indirect association. In the next sections these resources are 
used for the interpretation of computational epigenetics study results. 
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3.4.4 Correlation of tetranucleotides to CGI methylation state 
 
Two consecutive studies assessed the overrepresentation of 4-meres (tetranucleotides) in 
unmethylated CGIs in comparison to methylated CGIs. Both studies were descriptive and 
primarily focused on identifying a predictive correlation between different properties of 
CpG rich genome regions and their methylation state. Applying our knowledge of the 
influence of DNA methylation on genome evolution now enables a more refined 
evaluation of the results.  
 
The pilot study was performed on a previously published dataset of 706 CGIs with 
known methylation state in lymphocytes (Bock, Paulsen et al. 2006). The follow-up study 
applied a larger methylation dataset from brain tissue and facilitated three different 
sequence-based CGI definitions (Bock, Walter et al. 2007). Based on these definitions, 
the authors applied the CpG Island Searcher software to produce three different 
sequence-based CGI annotations. The TJU annotation followed the TJ criteria, whereas 
the GGF’ and GGM followed each the GGF criteria. Hereby,  the GGF’ was filtered by 
removing all CGIs that contained less than 200 bp non-repetitive sequence and the GGM 
was computed on a repeat masked genome (compare section 2.1.1). This approach 
resulted in 37531, 94450 and 10600 CGIs. In both studies a non-parametric Wilcoxon 
Rank-sum test determined those tetranucleotides, i.e.  4-meres that showed a significant 
overrepresentation in either methylated or unmethylated CGIs. The obtained p-values 
were then corrected for multiple testing. Table 3.6 displays the p-values of all four 
cohorts with the likelihood ratio obtained from the DNA word model.  
 
All detected patterns showed an overrepresentation in unmethylated genome regions. 
This is in line with the asymmetric preference observed in the previous subsection. The 
tetranucleotide CGCC was reported in all four cohorts as being significantly 
overrepresented. Surprisingly enough the enrichment of the pattern CCGC was less 
pronounced in the GFF’ and TJU sets, while its overrepresentation in GGM and the Pilot 
set was highly significant. As the likelihood ratios of both patterns are equal, this 
indicates a bias in the data, which is most likely related to the different ways repetitive 
sequences are treated.  
Potentially, one of both tetranucleotides is very abundant in CpG-rich repetitive 
sequences.  An inspection of the consensus sequence of the ALU repeats (Appendix F) 
verifies this assumption. The pattern CGCC and its reverse complement GGCG is 
contained 8 times in the consensus sequence, while CCGC/GCGG is only contained 2 
times. ALU repeats are often associated to methylated CGIs thus counterbalancing the 
natural enrichment of CCGC in unmethylated CGIs. In the repeat masked GGM set, this 
balancing effect is neutralized. 
 
The palindromic pattern CGCG is expected to be 16.9 enriched in unmethylated CGIs. 
Surprisingly, only the Pilot cohort and the GGM set detect a significant correlation. An 
inspection of the ALU consensus sequence shows four occurrences of the pattern of 
which two overlap with each other. This again indicates a bias in the data. 
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The pattern CCCC and CTCC are not overrepresented in ALU repeats. CCCC shows 
small but significant correlation with the unmethylated state in the GGM, TJU and Pilot 

cohorts. This follows the slightly increased likelihood ratio. Therefore, this pattern may 
be explained by passive association. The association of CTCC from the pilot study is not 
confirmed in any of the other cohorts and most probably was an artifact of the small 
sample size. 
The best candidate for an active or indirect association is the tetranucleotide AAAG. 
Although it is expected to be underrepresented in unmethylated CGIs, it is significantly 
enriched in all cohorts, but especially in TJU and Pilot. The benchmark performed in the 
chapter 2, assists us in evaluating this observation. The TJU is equivalent to the CIS TJ 
annotation, thus represents CGIs that show good overlap with promoters and is relative 
compact. Hence, the high significance reached in the TJU set, indicates a relationship to 
promoter function and transcription initiation, thus arguing for an indirect association. 
 
Pattern Pilot TJU GGF’ GGM U/M ratio 
CCGC 3.7×10

-7 
1.6×10

-5
 1.7×10

-3
 3.9×10

-6
 6.17 

CCCC 9.8×10
-7 1.1×10-3 9.9×10-2 6.1×10-3 1.64 

AAAG/CTTT 6.3×10-6 
8.5×10

-5
 1.7×10

-2
 1.6×10-3 0.8 

CGCC 3.6×10-5 5.1×10-3 3.2×10-2 8.0×10
-5

 6.17 
CTCC 1.0×10-4 - - - 1.25 
CGCG/CGCG 1.8×10-2 - - 1.1×10-3 21.36 
TATT - 2.4×10-3 - - 0.7 
GGAA - 2.8×10-3 2.1×10-2 - 1.19 
GAAA - 3.3×10-3 - - 0.92 
TCCT - 3.9×10-3 - - 1.25 
CAAA - 6.0×10-3 - - 0.72 
CCCG - 7.5×10-3 - - 5.66 
TTCT - 8.1×10-3 - - 0.96 
AAGG - 8.1×10-3 - - 1.03 
GTTC - 1.0×10-2 - - 1.06 
CGGA - 1.3×10-2 4.2×10-2 - 5.32 
GCCG - - - 1.9×10-3 6.17 
 

Table 3.6: Comparison of overrepresented 4-mers in different CGI annotations 
The table shows the 4-mers, which were significantly overrepresented two studies. For 

four different region sets these p-values are displayed, which are corrected with the 

Bonferroni method for multiple testing. The last column displays the likelihood ratio that 

these 4-mers reach under the unmethylated over the methylated background models. The 

two smallest p-values in each cohort are denoted in green. 
 
Overall the GGF’ observations appear to be a diluted version of the TJU and only the 
GGM displays diverging patterns. The observation that many of the significant 
tetranucleotide patterns are associated to ALU repeats, underline the necessity for a more 
explicit treatment of these sequences. I will return to this observation in chapter 4. 
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3.4.5 Correlation of Tetranucleotides to promoter regions 

 
In the second correlation study experimentally validated promoter sites and regions with 
open chromatin structure were applied as marker for CGI function, instead of the tissue 
specific methylation levels of the first correlation study  (Bock, Walter et al. 2007). The 
tetranucleotide CACA/TGTG was strongly enriched in transcriptionally inactive regions 
in two datasets, while the pattern CGCG was strongly enriched in regions that showed 
promoter activity (Table 3.7). This correlation perfectly reflects the expectations from the 
likelihood ratios. While the first pattern is a putative product of a double deamination 
event, the second pattern is a not deaminated double CpG. This general tendency was 
strongest for the GGF’ and GGM annotations where all tetranucluotides among the 30 
most significant features contained at least one CpG. In the TJU set five out of nine 
tetranucleotides contained a CpG.  
 

Pattern TJU GGF’ GGM U/M ratio 
CACA/TGTG - < 1.0×10

-55
 < 1.0×10

-55
 0.78 

CGCG/CGCG 1.1×10
-10

 8.7×10
-45

 6.3×10
-46

 21.36 
CGCC/GGCG - 1.2×10

-43
 3.0×10

-46
 6.17 

CCGC/GCGG - 1.1×10
-40

 1.6×10
-42

 6.17 
GCGC/GCGC - 7.3×10

-35
 5.2×10

-33
 6.73 

CCGG/CCGG - 2.7×10
-30

 2.6×10
-31

 5.66 
CCCG/CGGG - 1.4×10

-29
 1.1×10

-34
 5.66 

CGGC/GCCG - 1.9×10
-28

 9.1×10
-26

 6.17 
 
Table 3.7: Tetranuclotides that correlate with promoter function 
Negative correlation is highlighted in red italic and positive correlation in bold green 

writing. P-values are displayed for all features that ranked among the 30 most significant 

ones in the respective CGI annotation.  

 
To summarize this finding, the tetranucleotide composition of genome regions correlate 
far better with promoter function than with tissue specific methylation, with respect to the 
expectations from the equilibriums based evolutionary model. This indicates that 
promoters are unmethylated in the germline, while tissue-specific methylation in 
lymphocytes correlates less strictly to the germline methylation state. 
 
Moreover, this suggests that the observed nucleotide patterns are not actively associated 
with the tissue-specific methylation state. The observation that all these tetranucleotides 
are under strong mutational pressure in methylated sequences, indicate that they require 
protection from CpG decay in the germline. Whether this protection is mediated by a 
germline-specific lack of methylation or by strong selective pressure remains to be 
clarified. 
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3.4.6 Correlation of sequence motifs to DNA methylation and 
promoter activity 

 
A third study attempted to discriminate methylated from unmethylated genome regions 
by their DNA sequence. In contrast to the studies in the previous section, it focused on 
transcription factor binding sites from a database and the identification of novel motifs 
(Straussman 2009). The applied machine learning setup identified six motifs, which were 
enriched in unmethylated regions. This section applies the techniques described above, to 
build hypothesis for the explanation of the observed correlations. 
 
Two of the six motifs were previously known – Sp1-like and STAT1 binding sites -, and 
four were classified as novel. A closer examination of these novel motifs during the 
preparation of this analysis showed that three of these four novel motifs are fragments or 
degenerated versions of known TFBS. 
 
In the second step of the Straussman et al. study, different algorithms were applied to 
derive weights for each motif’s PSSM, and thus, a ranking of their importance for the 
prediction of the methylation state of arbitrary genome regions was established. Table 3.8 
reports for each motif these algorithm-specific weights (as approximation for a motif’s 
importance), the odds ratios derived by the equilibriums-based approach and the TFBS it 
represents. 
 
Motif names Algorithm 1 Algorithm 2+3 U/M odds ratio TFBS 
NGGGGGCGGGGYN 0.31 148.12 2.59 Sp1-like 
CANTTCCS 0.24 53.59 1.57 STAT1 
CGCGC 0.28 158.85 31.71 Frag. Egr1  
CCGCSCC 0.21 121.46 10.70 GC-Box  
CGCNNNCGC 0.27 150.35 41.50 Deg. Egr1 
CTAR 0.19 56.3 1.22 unknown 
 

Table 3.8: Predictive motifs are favored by methylation-free neutral evolution 
Those TFBS motifs marked as fragments (Frag.) or degenerated (Deg.) were not 

recognized as belonging to the respective transcription factor in the original study 

 
The odds ratios clearly indicate that all motifs are favored by neutral evolution in a 
methylation-free setting. Especially, the GC-Box and the Egr1-associated motifs are 
under strong mutational pressure in methylated DNA. 
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The PSSM of the Sp1-like element (NGGGGGCGGGGYN), which  the authors derived 
from the TRANSFAC database (Wingender, Dietze et al. 1996), slightly deviates from the 
Sp1 TFBS motif in the JASPAR database. According to all three algorithms it was ranked 
to be among the top-3 weighted features. Upon close examination, the reverse 
complement of the directly recovered motif CCGCSCC, where S represents C or G, is 
GG(C/G)GCGG and thus closely resembles the GC-box, which is the core element of 
Sp1 and Sp1-like TFBS. Interestingly enough, due to the reduced number of wild card 
nucleotides, this motif version is considerably stronger favored by the unmethylated 
background model than the general Sp1 motif. It represents a specialized sequence tag 
that is bound by multiple factors. Speaking in terms of the library metaphor, it is like a 
keyword that many different readers recognize.  
It is noteworthy that the already discussed 4-mer CCGC/GCGG is part of this second 
variant of this cis-regulatory sequence, while CGCC/GGCG can also be recovered if the 
wildcard S is chosen accordingly. Thus, Sp1 binding sites account for two of the 
recovered motifs, which indicate unmethylated genome regions, and contribute to the 
predictive power of two 4-mers discussed in the previous section. This is in line with 
previous reports and the expectations from the likelihood model. 
 
Both of the other motifs in the top-3 list (CGCGC and CGCNNNCGC) were 
substantially stronger favored by the unmethylated background model (31.71 and 41.5 
fold higher likelihoods). CGCGC does not correspond directly to a known binding motif, 
but is also conditionally contained in the GC-Box CCGCSCC. As reported in the last 
subsection the CGCG as well as the GCGC tetranucleotides strongly correlate with 
promoter activity. Apparently the 5-mer that joins both tetranucleotides is also predictive 
for the absence of methylation. 
 
A search in the JASPAR database revealed that the reverse complement of 
CGCNNNCGC (GCGNNNGCG) resembles a degenerated version of transcription factor 
Egr1 binding motif GCG(T/G)GGGCG (U/M odds ratio 3.7), and thus is called Egr1-like 
motif in the following. It is much stronger favored by the unmethylated equilibrium then 
the Egr1 motif in the JASPAR database and takes the second respectively the third rank 
among the motif weights in the Straussman et al. study. 
 

 
Figure 3.3: Sequence logo of Egr1 
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Egr1 is also known as Zif268, NGFI-A, TIS8, Krox-24 and ZENK and involved in 
mammalian brain development (Knapska and Kaczmarek 2004). Furthermore, it directly 
regulates multiple tumor suppressor genes including TGFβ1, PTEN, p53 and fibronectin 
(Baron et al., 2008). It takes rank 16 among the TFBS overrepresented in CGIs (compare 
Table 3.3). The promoters, and thus the binding sites for Egr1, are reported to be 
hypermethylated in certain cancer types (Whang, Wu et al. 1998). The direct prevention 
of Egr1 binding by DNA methylation detected in those studies indicates that the CpG 
sites in the motif play a role in the tissue-specific regulation of Egr1 binding (regulatory 

association). Furthermore, the equilibrium-based approach predicts that over longer time 
spans DNA methylation induces a high substitution pressure on the cis-regulatory 
sequence. This indicates that the motif benefits from co-location with unmethylated 
regions by improved conservation (passive association), rather than directly repelling de 

novo methylation (active association). 
 
Egr1 belongs to the zinc finger protein family. Each tri-nucleotide in the motif is 
recognized by a particular domain of the protein. In a targeted mutation experiment it was 
demonstrated that an altered form of the protein recognizes variants of the central 
trinucleotide (Wu, Yang et al. 1995). Furthermore, three other members of the EGR-
family Egr2 (rank 28 in Appendix D), Egr3 (rank 8 in Table 3.3) (Patwardhan, Gashler et 
al. 1991) and Egr4 (Zipfel, Decker et al. 1998) are known to have nearly identical protein 
structure and binding motifs. If these homologous factors have slightly different 
preferences for the central trinucleotide, this may explain that the reverse complement of 
the more unspecific motif GCGNNNGCG was discovered instead of GCG(T/G)GGGCG. 
 
The remaining motif with previously known function (CANTTCCS) is recognized by 
transcription factor STAT1, which plays an important role in inferon-mediated immune 
response and tumor suppression by regulating cell growth and apoptosis induction 
(Hartman et al., 2005). Furthermore, it is known that CpG methylation can prevent 
STAT1 binding (Chen, He et al. 2000). The corresponding motif is only slightly favored 
by neutral evolution under the unmethylated background model and not among the top-3 
weighted features for any of the algorithms, thus a regulatory association to regions that 
are unmethylated in the analyzed tissue is the most likely explanation for the predictive 
power of the motif. 
 
The final motif CTAR ranks least and second least among the weights. It benefits the 
least from the protection against CpG decay and no association to a binding protein could 
be established. The reason for its co-location with unmethylated genome regions remains 
elusive. 
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Summary 

 
Applying the equilibrium distributions of dinucleotides in methylated and unmethylated 
DNA proved to be supportive for the interpretation of DNA patterns that are associated 
with the absence of DNA methylation. Furthermore, the comparison of three studies 
showed that the Sp1 binding motif i.e. the GC-box in parts or in complete form is a 
recurring feature that distinguishes genome regions by their methylation state. The motif 
was encountered in different forms, which all preferentially occur in unmethylated DNA. 
Thus, our findings support previous claims that Sp1 is the strongest candidate for directly 
influencing the methylation state of a genome region. 
A second interesting binding motif is that of Egr1. It is under strong pressure from CpG 

decay and binding of its trans factor is influence by the methylation state of the DNA 
sequence. This makes Egr1-binding sites into passively associated markers of the 
germline methylation state that require protection from CpG decay to maintain the 
potential for a direct tissue-specific regulation by DNA methylation (regulatory 

association). 
Furthermore, within the study evidence accumulated that statistical learning methods are 
biased by the strong correlation of repetitive elements with DNA methylation, and thus 
instead of identifying epigenetic footprints in the DNA, and not surprisingly, partially 
derive their predictive power from identifying this latent variable. Moreover, tissue-
specific methylation levels showed a less pronounced correlation to DNA sequence 
features, than other markers of transcriptional activity and open chromatin structure. This 
may reflect differences between the somatic methylome and germline methylation levels. 
While the former are tissue-specific and cannot cause heritable changes in the DNA, the 
later provide protection for all CpGs that have a regulatory function in any tissue, and 
thus are required to preserve the regulatory potential of a genome region.  
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3.5 Searching unmethylated regions by equilibrium distribution 

 
The previous chapter focused on sequence-based CpG island annotations. They were 
primarily motivated by an observed correlation between CpG content and certain genome 
functions, such as the absence of DNA methylation and the initiation of transcription. 
Secondarily, they were explained by the spontaneous deamination mechanism and its 
methylation-mediated influence on point substitution rates, but did not directly apply this 
knowledge to select the parameters for the annotation procedures. In this section, the 
genome-shaping force of CpG decay is considered in an explicitly quantified form. 
Previously, the ratio of CpGCpATpG #2/)#(# ⋅+ was applied for a similar purpose 

(Hutter, Paulsen et al. 2009). The here discussed method can be interpreted as a 
systematic extension of this approach, which also facilitates the remaining dinucleotide 
frequencies. 
To this end, a distance measure is derived to determine if a genome region is closer to the 
methylated or the unmethylated equilibrium. This EqiScore is then applied to predict the 
methylation state of CpG islands. Finally, the EqiScore distribution in the human genome 
is characterized. 
 



 96

3.5.1 Definition of EqiScore 

 
To quantify similarity of the dinucleotide distribution G within an arbitrary genome 
region R to the dinucleotide distribution at the equilibrium (U unmethylated / M 
methylated equilibrium), both can be represented as vectors in a 16-dimensional 
Euclidean space. The similarity of such vectors is described by the angle between them, 
which is computed by the cosine similarity: 
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Hereby, the cosine of the angle between two vectors equals their dot product over the 
product of their lengths. Identical vectors have an angle of 0 degrees (cosine similarity of 
1). All vector components are dinucleotide frequencies from the interval [0,1], such that 
the greatest possible difference between two dinucleotide vectors is an angle of 90 
degrees (cosine similarity of 0). Thus, as long as G1 and G2 have at least one co-occurring 
dinucleotide,  0)cos( >ϖ  always holds. 

To translate these similarities into an informative score, the ratio between the cosines 
similarity of the dinucleotide distribution of the given region to the unmethylated 
equilibrium over its similarity to the methylated equilibrium is computed: 
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The term Normδ , as the ratio of |||| M  over |||| U , is constant for fixed equilibrium 

distributions. By multiplying with 100 and rounding to the next integer, an easily 
interpretable score is created. It is compatible with the integrated filter functions of 
Genome Browsers. Therefore, the EqiScore of a region is defined as:  
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3.5.2 Characterization of EqiScore annotations 

 
The predictive power of EqiScore depends on the amount of time a genome region was 
subjected to a constant condition in the germline. Figure 3.4 shows how different levels 
of GC content in the ancestral genome sequence influence the time interval in which 
genome regions under different epigenetic constraints have a similar EqiScore. 
This is of importance bearing in mind that the human lineage has not yet reached 
equilibrium (Sved and Bird 1990). Furthermore, occurring rearrangements and 
transposon activity can integrate genome sequences into domains with different 
methylation levels. 
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Figure 3.4: Relationship of EqiScore and region age 
 

Change of the EqiScore is shown in regions that evolved under stable methylation 

constraints. The diagram shows five different starting conditions ranging from sequence 

with 42% GC-content to uniformly distributed sequence with 50% GC-content. The 

trajectories are averaged over 100 simulated evolutions for each methylation constraint. 

Scores are computed including the scaling factor. 
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Formally speaking, an EqiScore analysis requires that M, U and the genomic dinucleotide 
frequencies at time point t, G 

t, are known, while the ancestral sequence R and the time 
interval t until R evolved into G 

t are unknown. Based on the EqiScore of G 
t, it is 

estimated whether it is more likely that methylated or unmethylated neutral evolution 
generated G 

t. A simulation study verified that such a classification performs best for 
∞→t  (Figure 3.4). At starting time the EqiScore is heavily influenced by the original 

sequence composition, but after a time equal to 4% transversions the score can well 
discriminate both classes 
 
Figure 3.5 shows the portion of the genome that has at least a certain EqiScore. It is 
remarkable how strongly large parts of the genome exceed the predicted equilibria of 
unmethylated DNA at an EqiScore of 102. This indicates that the genome is locally more 
skewed towards the unmethylated equilibrium than the uniformly distributed genome 
sequence applied in the simulation study. In other words, large parts of the genome are 
not yet at the equilibrium or under selective pressure. 
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Figure 3.5: Size of EqiScore based annotation 
The minimal EqiScore that qualifies a bin to be retained in the annotation is plotted 

against the total annotation length. 
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3.5.3 EqiScore as predictor of tissue-specific DNA methylation 

 
Next, the ability of EqiScore to predict the local methylation state in the human genome 
was evaluated. As an initial test, I benchmarked EqiScore against the CGIs dataset 
(Yamada, Watanabe et al. 2004) that was applied in the earlier discussed Pilot study on 
the prediction of CGI methylation states (Bock, Paulsen et al. 2006). The average 
EqiScore of the unmethylated CGIs was 110.4, while the methylated CGIs achieved 
108.2. These values are heavily influenced by the algorithm that was applied to annotate 
the CGIs, as it determines how far CGI is extended in both directions around its core. To 
asses the prediction performance independently from the CGI annotation procedure of the 
original study, I then moved windows of different sizes over the sequences and recorded 
the EqiScore for each position. Predictions were performed once based on the maximum 
and once based on the median of these values. The prediction performances of both 
approaches were assessed by computing the area under curve (AUC) of the respective 
receiver operating characteristic (ROC) curves (Table 3.9), using the ROCR package 
(Sing, Sander et al. 2005). All procedures produced an AUC above 70%. Windows of 
length 500 performed best with AUCs around 80% for the maximum as well as the 
median approach.  
 
 

Window size AUC – Max AUC - Median 
100 bp 74.3 % 71.4 % 
200 bp 70.8 % 75.0 % 
300 bp 73.2 % 77.9 % 
400 bp 80.0 % 79.9 % 
500 bp 80.2 % 80.9 % 
Full region 70.8 % 70.8 % 

 

Table 3.9: EqiScore as predictor of CGI methylation 
For different sizes of the sliding EqiScore window predictions were performed according 

to the maximal score (AUC-Max) or median score (AUC-Median) and the AUC of the 

resulting ROC curve reported. For the Full region only one value exists, thus maximal 

and median score are identical. 
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Figure 3.6 displays the ROC curve that compares the best and the worst performing 
procedures. It is noteworthy that the EqiScore computed on the full CGI is the worst 
predictor of methylation. This is most likely a consequence of the originally applied 
algorithm for the CGI annotation, which extended the region as much as its constraints 
allow, and thus diluted the signal that EqiScore detects. 
 

 
Figure 3.6: EqiScore as predictor of CGI methylation 

The median (green) and the maximum (blue) EqiScore computed by 500 bp long sliding 

windows on all CGIs outperforms the EqiScore computed on the complete CGI as 

predictor of methylation state. 
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3.5.4 EqiScore as predictor of local chromatin state 

 
Next, I computed genome-wide EqiScore annotations for bins with the size of size 50 bp 
(runtime: 2 h 8 min). As the EqiScore of a single nucleotide position is not very 
informative, the local sequence neighborhood is taken into account. Thus, the EqiScore 
of each bin was computed by considering the neighboring 200 bp (100 bp on each side).  
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Figure 3.7: The neighborhood of genome regions with high EqiScore is enriched 

with RNA Polymerase II binding sites 
 
I then tested if a correlation between EqiScore, Polymerase occupancy and histone 
modification can be observed. As illustrated in Figure 3.7 and Appendix F, RNA 
Polymerase II binding sites and histone modifications are observed more frequently in the 
local neighborhood of regions with higher EqiScore. This enrichment was measured for 
activating histone modifications as well as for repressive ones, indicating that higher 
EqiScore correlates not exclusively with marks of open chromatin, but with stronger 
epigenetic control across tissues in general. A high EqiScore predicts a region’s low 
methylation level in the germline. Possibly a considerable number of such regions are 
tightly epigenetically regulated during differentiation in somatic tissue, thus potentially 
also gaining heterochromatic features such as repressive histone marks and DNA 
methylation. 
 



 102 

Summary and discussion 

 
The EqiScore approach can be directly applied to translate knowledge on the methylated 
and unmethylated dinucleotide equilibrium distributions into an equivalent of a CGI 
annotation. The produced annotations correlate with CGI annotations, polymerase 
binding sites, activating and repressive chromatin marks. The method shows parallels to 
the HMM-based approach proposed by Wu et al., which was introduced in the last 
chapter. Both approaches use sequence features of small genome regions to quantify the 
contained epigenetic footprints in the DNA. Where EqiScore derives its parameters 
directly from the equilibrium distributions, the approach by Wu et al. infers them from 
the sequence data. The discrepancy between the empirically measured and the simulated 
EqiScore at equilibrium strongly indicates that large parts of the genome are not in 
equilibrium. Nonetheless, EqiScore predicts the somatic methylation state of CGIs in 
human lymphocytes with a remarkable accuracy. This indicates that the epigenetic 
footprints in the DNA alone can predict a substantial fraction of tissue-specific DNA 
methylation. The neighborhood plots furthermore show a quantitative relationship 
between the EqiScore and the enrichment of epigenetic marks. This leads to the 
conclusion that EqiScore as an equilibriums-based method is an effective approach to 
choose parameters for the annotation of epigenetic footprints in the DNA. 
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3.6 Discussion 

 
In this chapter nucleotide substitution rates in the human genome were applied to 
numerically approximate the equilibrium distributions of fully methylated and fully 
unmethylated DNA. These differ profoundly in their CpG, CpA and TpG content and all 
dinucleotides that exclusively contain A and T. 
These equilibrium distributions were then applied to reevaluate descriptive results on 
DNA patterns that were previously found to be enriched in unmethylated regions. This 
analysis confirms that CpG decay explains the predictive power of most tetranucleotides. 
During this process evidence accumulated that repetitive elements introduced bias into 
analysis of epigenetic footprints in the DNA by containing CpG-rich tetranucleoties at 
very different frequencies.  
Furthermore, within the previously reported DNA motifs a degenerated form of the CpG-
rich Egr1 binding site was identified, which is under high neutral mutation pressure 
outside of unmethylated regions, and thus strongly profits from the protection of 
promoters from DNA methylation. Furthermore, the Sp1-binding site and its functional 
core element the GC-box was recurrent in all three analyzed studies, although it was not 
always directly recognized. This supports that hypothesis that the GC-box, as recognition 
site of several transcription factors, is putatively the most relevant functional element in 
functional CGIs. It is under pressure from CpG decay, is implied in the active protection 
from DNA methylation and co-located with many CGI promoters. Hence, it shows 
evidence for active, passive and indirect association. 
Finally, I successfully tested the ability of the twin-equilibrium-based EqiScore to predict 
unmethylated CGIs and to annotate regions under active epigenetic regulation. As 
EqiScore is purely based on the differences in neutral substitution rate, it is 
complementary to CGI-based annotations that have empirically chosen parameters. 
 
In response to the detected bias by CpG-rich repetitive sequences, the next chapter 
introduces a framework to explicitly analyze repeat-specific epigenetic footprints in the 
DNA to discriminate methylated from unmethylated repetitive sequences. 
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Chapter 4 - Inferring methylation-induced evolutionary 
pressure by pairwise alignments of ancestral-
descendant sequences 
 
 
In the attempt to understand the influence of DNA methylation on genome evolution, any 
additional information potentially improves our reconstruction of the evolutionary 
process. In this chapter knowledge of the ancestral DNA sequence of an individual 
genome region is applied for this purpose. To this end, I introduce a statistical framework 
that compares which of two such methylation models provides the better interpretation of 
how a specific ancestral sequence evolved into its descendant. This work is an extension 
of previously reported results (Feuerbach, Lyngsø et al. 2011). 
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4.1 The statistical framework 

 
The framework is constructed from two components: An analytical model of CpG decay-
aware DNA nucleotide substitution and a Bayesian model of CpG conservation. 
 

4.1.1 Analytical model of CpG decay 

 
An analytical model of sequence evolution has certain advantages over the simulation 
approach. Instead of running many repetitions of an experiment to archive a robust 
characterization of the underlying process, the analytical form can be directly evaluated. 
Where each simulation represents one possible evolutionary path, the analytical model 
summarizes all possible evolutionary paths. 
 
To construct such a model, I integrate the substitution rates that underlie the methylated  
fM and unmethylated fU evolutionary processes into a finite-state continuous-time Markov 
chain model (properties reviewed in Appendix G).  
Therefore, the substitution rates are translated into the rate matrix Q. For any 
neighborhood-dependent substitution model Q is derived for oligo-nucleotides of 
arbitrary length nQ that is greater or equal to that of the largest neighborhood-effect 
included in the model. Here nQ=2 to account for the CpG decay process.  
Q is constructed by considering the rows as ancestral sequences that evolve into the 
descendant sequences denoted by the columns (Figure 4.1). If such a substitution can be 
explained by a single point mutation, the cell is set to the respective rate. From the 
definition of the finite-state continuous-time Markov chain follows that the probability of 
observing two substitution events at the same time is zero. In consequence, all cells that 
correspond to sequence pairs with more than one substitution are set to zero. Finally, the 
rate of conservation is set to the negative sum of all values in the corresponding row. 
 
The probability that oligo-nucleotide a is substituted by an oligo-nucleotide b after t units 
of time have passed is obtained by computing P(t) = e

Qt and selecting the corresponding 
cell Pa,b(t). Alternatively, P(t) can be approximated by a Taylor series:  
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tQtP  (Karlin and Taylor 1975). 

 
To test the influence of nQ on the computation, a software that construct Q for arbitrary 
nQ was implemented. 
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Figure 4.1: Construction schema for rate matrix Q with nQ = 2 
 

Consistent with Peifer et al. 2008 the transversion rates r1-r4 are summarized by the 

average transversion rate rtr. Furthermore the A/T to G/C and G/C to A/T transition rates 

are denoted by r5 and r6, while the cells that are affected by the CpG decay effect and the 

corresponding rate r7 are indicated by exclamation mark. The * symbolizes the negative 

value of the sum over the remaining row. 
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Propagation of context-dependencies 

 
In the general case, the Markov chain based on Q that comprises a neighborhood 
dependent substitution process can only produce analytically correct results if nQ equals 
the length of the analyzed DNA sequence. For larger sequences this becomes quickly 
infeasible, although some algebraic shortcuts exist (Lunter and Hein 2004). This 
phenomenon this caused by a border effect. Let nQ be large but the sequence under 
consideration is at least one nucleotide longer. For any oligo-nucleotide in Q that starts 
with a G it is unclear if a C precedes it. Therefore, it is unclear if the CpG decay process 
affects the substitution of G, and thus, the probability that the nucleotide is substituted 
into an A is modeled incorrectly. To capture both possibilities nQ has to be extended, but 
this introduces the same problem for the novel leading position. Although, the introduced 
error is small and rapidly decreases for growing nQ, it exists. 
An empirical test of our model for nQ =2 and nQ =4, indicated that actually for the four 
dinucleotides CpG, CpA, TpG and TpA, the model is exact for all 2≥Qn . This effect is 

caused by the limited impact of the CpG decay effect on CpG dinucleotides and by 
having a single shared transversion rate.  
In Appendix H I proof that under our model assumptions the probability of CpG, CpA, 
TpG and TpA be either conserved or mutate back into their original state after an 
arbitrary time span is independent from their neighborhood. This implies that a Q with 
nQ=2 is sufficient to predict the probability that a CpG is conserved at a specific locus. 
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4.1.2 A Bayesian model of CpG conservation 

 
Given the ancestral and the descendant DNA sequence are known for a specific loci 
(Figure 1.5b). First, the DNA sequence sa is aligned to its descendant sequence sd. If the 
time t that has passed while sa evolved into sd is unknown, the number of observed 
transversion events is counted in the thus produced pairwise alignment A. Bearing in 
mind that each nucleotide can underwent two different transversion events, the count of 
transversion events in the alignment divided by two approximates t. This approximation 
improves with growing sequence length and for t smaller than 1. To compute the 
likelihood of an evolutionary model ML considering the observed alignment A, I apply 
Bayes’ theorem: 
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Under the assumption that DNA is either fully methylated (MM) or fully unmethylated 
(MU) in the germline, the P(A) term is canceled, while the odds ratio is computed: 
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The term 
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MP
 describes the prior probability to observe germline methylation and is 

a free parameter of the model that is calibrated with empirical data. 
This leaves us with )|( MAP , which is approximated by the most informative difference 

between MU and MM, namely, the conservation of CpG dinucleotides. The probability p 
that an individual CpG in sa is still or again a CpG in sd after time t is described by 
PCpG,CpG(t) which can be computed by the model-specific rate matrices Q.  Furthermore, 
this process is independent from neighboring sites even over longer time scales. Thus, 
CpGs cannot influence each other’s back-mutation rate. In consequence, we have a 
number of independent Bernoulli experiments that follow a binomial distribution, with 
nCpG being the number of CpGs in sa and kCpG the number of retained CpGs in sd: 
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I finally define the L-score as the logarithm to the base 2 of L. The higher this value, the 
greater is the likelihood that the ancestral sequence was never methylated during its 
evolution into the descendant sequence. 
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4.2 Reconstruction of local germline methylation state from 
ancestor-descendent alignments of transposable elements 

 
The EqiScore method introduced in the previous chapter is able to compare a snapshot of 
an ongoing neutral evolutionary process with two possible endpoints. The longer this 
process went on, the closer it approaches one of these endpoints, and hence, the better 
EqiScore performs. Unfortunately, the unknown age and starting point of the process 
introduce a factor of uncertainty into this procedure. Here this problem is solved, by 
concentrating on a special case in which good approximations for both of these 
parameters are available. The ancestral sequence of transposable elements can be very 
accurately reconstructed from its numerous copies. The age of an individual copy can be 
inferred from the number of mutations it acquired in comparison to its ancestral 
sequence. 
I first characterize the proposed method in a simulation study, to asses its theoretical 
performance and limitations. In a small scale pilot study, it is then applied to the 
sequences of transposable elements in the human genome to asses in how far the 
produced predictions correlate with genomic and epigenomic features. Then, a genome-
wide annotation for all repeats of the ALU family is produced and its quality with respect 
to epigenetic annotations is assessed.  
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4.2.1 Simulation study 

 

This section was adapted from the original publication (Feuerbach, Lyngsø et al. 2011) 

 
For this analysis, I generated three libraries with each 100 sequences of length 10 kbp. 
The Uniform library contained uniformly distributed sequences, while the Methylated and 
Unmethylated libraries were derived from the Uniform library by simulated evolution 
under methylated or unmethylated constrains, respectively, until they reach 
approximately their equilibrium distributions. 
 
Next, in three individual runs sequences of length n = 200, 500 and 1000 bp were drawn 
from all three libraries and then separately evolved 10 times under both methylation 
regimes until a transversion distance of rtr=0.04 was reached. The likelihood ratios of 
both models were recorded in time steps of 0.001, resulting in 2000 time series per 
sequence library. A time series consist of 41 time points from rtr=0.0 until rtr=0.04. 
Subsequently, the evolutionary model was predicted from the signs of the likelihood 
ratios and compared to the true model. The objective of the classification was to correctly 
predict which sequence evolved under the unmethylated model.  
A true positive (TP) was defined as a correctly predicted unmethylated sequence. A true 
negative (TN) was defined as a correctly predicted methylated sequence. Hence, runs 
under the unmethylated model produced either true positive (TP) or false negative (FN) 
classifications, while runs under the methylated model produced either true negative (TN) 
or false positive (FP) results. These counts were used to compute the three performance 
measures:  

Sensitivity:  
FNTP

TP

+
, 

Specificity: 
FPTN

TN

+
,  

Accuracy:  
FNFPTNTP

TNTP

+++

+
. 

. 
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Figure 4.2: Prediction accuracy from simulated evolution of 500 bp sequences 

Ancestral sequences were drawn from different equilibrium distributions and 

performance is plotted over increasing divergence time. Each trajectory is computed over 

1000 runs under methylated and 1000 runs under the unmethylated model. 
 
The prediction accuracy is influenced by two factors. On the one hand by the average 
number of CpGs per genome region that is determined by its length and epigenetic 
history. The prediction accuracy is lowest for short regions that are close to the CpG-poor 
equilibrium distribution of methylated sequences, and highest in long CpG-rich 
uniformly generated sequences. On the other hand the prediction accuracy is influenced 
by the evolutionary distance between the ancestral and the descendant sequence. For very 
short distances the effect on the sequence is not strong enough for a good prediction. The 
accuracy grows with increasing distance and soon reaches a plateau. When the point is 
reached were nearly all CpGs are expected to be decayed the model begins to fail. Figure 
4.2 shows for sequences of length 500 bp the averaged prediction accuracy over the 
whole simulation period. It shows that he model becomes unstable around 4% 
transversions, which corresponds to 8 % transversion events per site, which leads to a 
sharp decline of the prediction accuracy. 
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Prediction accuracy on biological sequence 

 
Next, this stochastic experiment was repeats for a natural occurring sequence, namely the 
consensuses sequence of the AluSx transposon family. The high number of 23 CpG 
dinucleotides that are contained in this approximately 300 bp long sequence resulted in 
very accurate predictions in the age range of 1% to 4% transversion rate (Figure 4.3). 
Furthermore, I detected a bias towards unmethylated predictions that resulted in an 
increased sensitivity.  
 

 
Figure 4.3: Prediction accuracy from simulated evolution of AluSx consensus 

sequence 

The trajectory is computed over 1000 runs under methylated and 1000 runs under the 

unmethylated model. 
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Prediction accuracy under noisy substitution rates 

 
To assess how robust the model is with respect to noise in the data, I repeated the 
experiment and used a normally distributed error. Here, I varied each of the seven rates 

individually. The noisy mutation rates were computed as ),1( 2σNrr oldnew ⋅=  with the 

standard deviation σ  being a number smaller than one. Negative rates were not 
permitted. The evaluation was performed using the original rates. As expected, the 
introduced noise had a negative effect on the performance. Still, even for relatively strong 
perturbations with a standard deviation of 0.4, the model reaches an accuracy level of 
90% around one percent average transversion rate (Figure 4.4).  
 
 

 
Figure 4.4: Prediction performance from simulated evolution of AluSx consensus 

sequence with Gaussian noise on all substitution rates 
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Prediction accuracy under noisy methylation levels 

 
Furthermore, the model was tested for robustness against noisy methylation states. 
Assuming that fully methylated or fully unmethylated regions are an exception, I either 

reduced or increased the rate 7r . In case of methylated sequences |),1(|3.48 2
7 σNr ⋅=  

and for methylated sequences |),0(|3.48 2
7 σNr ⋅=  was applied to simulate moderately 

methylated or nearly fully unmethylated sequences. Variations of the epigenetic state up 
to 5 % are nearly undetectable. The model achieves for standard deviations up to 15 % 
from 1% average transversion on 90% accuracy and above. This implies that the model 
also provides good results, when the methylation state of regions in not binary, but 
follows a bimodal distribution (Figure 4.5).  
 

 
Figure 4.5: Prediction performance from simulated evolution of AluSx consensus 

sequence with Gaussian noise on methylation level 
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4.2.2 Validation in the human genome 

 

Pilot study on human AluSx repetitive elements 

 
The coordinates of 104,346 AluSx repeat copies that are longer than 200 bp 
(RepeatMasker V327 from UCSC genome browser) were obtained and aligned to their 
reconstructed ancestral sequence (taken from RepBase14.05.fasta at http://www.giri.org). 
Ancestral repeat sequences in RepBase are consensus sequences derived by majority vote 
on each position in the multiple alignments of all known members of a repeat subfamily. 
Special treatment is only given to TpG and CpA dinucleotides, which are adjusted to 
CpG in the consensus sequence, if observed in a 1:1 relation in an alignment (Jurka 1994; 
Jurka, Kapitonov et al. 2005). For each repeat instance, I counted the average number of 
observed transversions over all optimal pairwise alignments to estimate its individual age. 
The computational procedures were implemented in the python programming language 
version 2.4 (http://www.python.org/). For the pairwise alignments I applied the pairwise2 
function from the Biopython library (http://biopython.org).  The age of a repeat instance, 
as the time interval since the divergence from the ancestral sequence, was estimated 
individually for each sequence. Therefore, the number of transversions between the 
ancestral repeat and the repeat instance were counted. Then, the L-score was computed. 
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As reported in the original publication (Feuerbach, Lyngsø et al. 2011), higher L-scores 
correlated with closeness to CGIs and also with unmethylated regions taken from a 
published dataset (Illingworth, Kerr et al. 2008) (Figure 4.6).  
 

 
Figure 4.6: High scoring repeats are collocated with CpG islands and unmethylated 

regions 
The displayed ROC curve treats the L-scores as predictors of either CGIs from the 

stringent UCSC annotation or unmethylated regions from the Illingworth et al. dataset in 

the vicinity of the respective repeat. With a relaxation of the considered radius from 1 

kbp (1 KB) to 10 kbp (10 KB) the prediction performance drops rapidly. 
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The AluJudge Track and the correlation of L-score to epigenetic marks 

 
Following up the pilot study, I applied the above described procedure to compute L-

scores for all ALU elements in the RepBase14.05 release, which contained at least 10 
CpGs in their ancestral sequence (~1.2 million repeat instances). Based on the results of 
the simulation study, L-scores for repeat instances with transversion rates below 1% or 
above 4% were set to 0 with respect to the limited prediction accuracy beyond these 
boundaries (710,484 cases). The remaining elements were grouped into four categories: 
409,599 cases of strongly methylated (L-score < -5), 18,858 cases lightly methylated (-5 
< L-score <0), 12,089 cases lightly unmethylated (0 < L-score < 5), and 25,845 cases 
strongly unmethylated (5 < L-score) repeat instances (Figure 4.7). 
 

 
Figure 4.7: Histogram of AluJudge scores 

Histogram bars are colored according to the four L-score classes: strongly methylated in 

dark blue, lightly methylated in light blue, lightly unmethylated in light green, and 

strongly unmethylated in dark green. 
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Next, I analyzed the local neighborhood of the scored ALU repeats. To this end, I applied 
the EpiExplorer tool to generate neighborhood plots based on histone modification and 
polymerase occupancy data. 
 
As expected from the strand unspecific setup of the analysis, all results were symmetric 
with regard to upstream and downstream locations. 
For a number of histone modifications (H3K9ac, H3K27ac, H3K4me1, H3K4me2 and 
H3K4me3) and the RNA polymerase II occupancy measurements, I observed local 
correlation effects that were most pronounced in a radius of 3 kbp around the repeats 
(compare Figure 4.8 and Appendix I). The remaining histone modifications (H3K9me1, 
H3K27me3, H3K36me3, H4K20me1) show long ranging differences (up to 100 kbp) 
between groups (compare Appendix I). 
In all cases, effect sizes are limited to differences of 5 % to 15 %. Due to the higher 
number of observations already differences of 2 % are highly significant (point-wise chi-
square test with Yates correction yield p-values < 0.001). 
 
 

 
 

Figure 4.8: H3K4me3 in neighborhood of ALU repeats from different AluJudge 

classes 
H3K4me3 is an epigenetic marker of gene promoters. It is enriched in the direct 

neighborhood of transposons with high L-score and depleted in areas close to low 

scoring ALU instances. 
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Local effects 

 
For most histone modifications with local effects, the repeats with higher L-scores were 
correlated with higher modification enrichment, while lower scorning repeats were 
depleted in signal peaks (compare Figure 4.8). A remarkable exception from this rule was 
H3K4me1, for which depletion was observed for all repeats. This modification is a 
marker for enhancer elements (see Appendix I). While transposable elements have been 
discussed before as potential mechanism for the establishment of alternative promoters of 
existing gens or as promoters for novel non-coding DNA, this observation indicates that 
they do not play this role for enhancer elements. 
 
 

Long ranging effects 

 
The modifications H3K9me1, H3K27ac, H3K36me3 and H4K20me1 showed long 
ranging differences between groups. H3K36me3 is known for marking RNA polymerase 
II elongation areas. The three remaining modifications are markers of large active or 
inactive domains. Thus, these results indicate different probabilities for repeats of the 
different classes to be located in such domains. In all four cases lower L-scores correlated 
with enriched overlap with these modifications. 
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4.3 Discussion 

 
By comparing a reconstructed ancestral sequence with its descendants, a direct 
quantification of the impact of DNA methylation on genome evolution is enabled. 
The good performance of the method in the simulation study was validated by the 
collocation of high scoring repeats with CGIs, unmethylated regions, transcriptional 
activity and marks of epigenetic regulation through histone modifications. Not 
surprisingly, the observed correlations were imperfect, as only rough estimates of the 
repeat age were available, and additional confounding factors like regional differences in 
substitution frequency and potential selective pressure were not considered (Cohen, 
Kenigsberg et al. 2011). I conclude that the proposed method facilitate CpG-rich repeats 
as an information rich, sequence-based predictor of their local germline-epigenome 
neighborhood. Moreover, the correlation of high scoring repeat instance with histone-
modification that mark promoter activity suggests that the AluJudge annotation can 
support the identification of ALU repeats that acquired a novel function, for instance, as 
alternative promoter. 
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Chapter 5 – A phylogenetic approach for germline 
methylation reconstruction 
 
Often the ancestral sequence of a genome region is not available to enable a precise 
characterization of the influence of DNA methylation on the evolutionary process, but 
instead several descendent sequences are known. 
For instance, as consequence of segmental duplications multiple copies of the same 
region are present in form of paralogous loci within a single genome. Moreover, closely 
related species contain orthologous loci that originated from the same genome region in 
the last common ancestor. This source of information is used in numerous comparative 
genomic applications, and especially, for the purpose of phylogeny reconstruction. Here I 
adapt it to reconstruct the germline methylome, using the substitution model introduced 
in the previous chapter. 
 
To this end, a statistical model is introduced, which computes the likelihood that a given 
alignment of genome sequences evolved from any possible common ancestor sequence. 
Hereby, the evolutionary history of the sequences is represented by a phylogenetic tree. 
The model is sensitive to the methylation level the sequence was subjected to (compare 
Figure 1.6). By maximizing the likelihood of the model through slowly adapting the 
methylation level of individual branches in the phylogenetic tree, the true evolutionary 
history is approximated. 
 
Then, I characterize the performance of the model in a simulation study. In a first 
scenario, a setting in which orthologous sequences evolve under a stable methylation 
level is adopted. In a second scenario, the case of paralogous sequences that underwent 
rapid changes of the methylation state is characterized. 
 
This chapter concludes with a validation study in which the model was applied to 
promoter sequences in the primate lineage. The model performance was then assessed by 
methylome data for the male germline of human and chimpanzee. 
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5.1 Statistical framework 

 
 

 
 
 
Figure 5.1: Example Phylogeny 
 

The evolutionary history that connects the loci of the multiple alignment S to the last 

common ancestor is modeled by a phylogenic tree. Here, the first two columns of the 

alignment are assigned to the leaf nodes v1-v4. The branches define the topology of the 

tree. The branch 6 that connects node v6 and v7 is displayed in detail. The time interval 

that this branch represents is encoded by variable t, which is depicted in blue. The 

average methylation level of the genome region was subjected to during this time interval 

is displayed in green. It can take any value between 0, i.e. completely unmethylated, or 1, 

i.e. completely methylated. This section describes a statistical model that computes for 

any setting of the time intervals and methylation levels the likelihood that the observed 

sequences evolved from any common ancestor.  
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Let S be a set of m aligned DNA sequences of equal length n over the nucleotide 
alphabet },,,{ TGCAA =Σ , and },,,{ TGCA ππππ=Π their prior probabilities in the last 

common ancestor. Then, Si,j denotes the alignment columns from position i to j, with for 
instance i=1 and j=2 representing the first dinucleotide in the alignment. 
The true evolutionary history of the sequences in S is approximated by the rooted 
phylogenetic tree T(S,V,B). Here V denotes the set of tree nodes v1 to v2m-1, assigning the 
first m ids to the leaves, with leaf k containing the k-th row of the alignment denoted by 
Si,j,k. B denotes the set of branches in the tree. Each branch of the branches b1 to b2m-2 is a 
tuple of length four that contains the parent node Vp ∈ , the child node Vc ∈ , the branch 

length t > 0 and its methylation level ]1;0[∈λ , such that bz is represented by (pz,cz,tz,λz). 

The methylation level is attributed to the branches, rather than the nodes, as it affects the 
evolution along the branches. Therefore, its effect can only be detected over time 
intervals and not for time points. Figure 5.1 shows an overview of the applied notations. 
 
To model the evolution along the branches of the phylogeny, an adapted version of the 
substitution model introduced in chapter 4. The CpG decay rate r7 is multiplied by the 
methylation level λ to account for incomplete methylation. The resulting rate r7λ  is then 
applied like r7 to obtain an altered rate matrix Qλ, were λ=1 results in QM and λ=0 in QU. 
 
Approximations of the evolutionary history T are described by variations of branch 
lengths or methylation levels in B. Thus, an approximated phylogenetic tree is denoted by 
Tx(S,V,Bx) with 0=x  being the starting configuration and ix = being the i-th iteration in 
the approximation. The likelihood of S under Tx and Q is denoted by L(S|Tx,Q), whereby 
sequence k in S corresponds to the leaf with node id k. 
 
To compute L(S|Tx,Q), I adapted Felsensteins “pruning” algorithm (Felsenstein 1981) 
based on its representation in (Siepel and Haussler 2004). The basic idea of this approach 
is to compute, for a given substitution model and tree topology, the summed likelihood of 
all possible evolutionary explanations on the how the sequences in S evolved from a 
common ancestor. The algorithm makes use of dynamic programming to solve this task 
efficiently. 
 
For a leaf vk the likelihood to represent a certain dinucleotide x is exactly 1 for Si,j,k.=x, 
and 0 for the remaining sequences of length j-i+1. 
In case of binary phylogenetic trees, the likelihood that an inner node p was dinucleotide 
x, is recursively computed from the likelihoods that it evolved into any possible sequence 
state of the two child nodes c1 and c2: 
 

)],(),|22([)],(),|11([),|( 222,2111,1 ccyxy xccyxy xx tPQTycLtPQTycLQTxpL λλ ∑∑ =⋅===

. 
By adding additional child nodes to the equation, it can be generalized for non-binary 
trees. For an individual column in S the likelihood of the whole tree is inferred from the 
root node by summing all partial dinucleotide likelihoods weighted by their prior 
probabilities. To obtain a total likelihood for S, the product of the dinucleotide column 
likelihoods is computed. In the following this algorithm is referred to as FF-algorithm. 
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The influence of the CpG decay effect on the aggregation of the total likelihood 

 
During the likelihood computation, we reencounter the problem that the context 
dependent CpG decay rate propagates dependencies along the sequences in methylated 
DNA (compare chapter 4). I considered three strategies on how to encounter the problem: 
 

1) Compute the rate matrix for the full sequence length 
2) Compute the likelihood for each of the n-1 dinucleotide positions 
3) Compute the likelihood for those alignment columns with high information 

content, namely columns that contain CpGs, TpGs or CpAs. 
 
For long alignments, i.e. large n, strategy 1) increases the size of rate matrix Q, such that 
numerical stability of accurately computing P by a Taylor series is not guaranteed an 
computation becomes infeasible. For small n the information content of the observable 
sequences is relative low. Therefore, this strategy is of very limited applicability. Strategy 
2) can be applied straightforwardly, although the obtained likelihoods for the individual 
columns are not independent anymore, and the result is an approximation of the true 
likelihood. Strategy 3) reduces the computational effort of the algorithm and reduces the 
dependency-bias of the likelihood computation, but introduces a new bias towards CpGs 
and CpG decay positions into the approach. For the pilot studies below strategy 2) is 
tested for its applicability. Later strategies 2) and 3) are compared in more detail. 
 

 
 
Figure 5.2: Strategies to encounter propagation of neighborhood effect 
The first strategy applies rate matrices over the full length of the sequence alignment. 

The second strategy considers each dinucleotide independently and aggregates the 

resulting likelihood. The third strategy focuses on the positions that discriminates 

methylated and unmethylated sequences most efficiently. 
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Choosing a topology for the pilot study 

 
Sequence evolution was performed using the previously described simulation engine. To 
determine the potential of the approach, I exclusively applied star phylogenies, in which 
all descendants have the same distance to the last common ancestor and no further 
branching occurred. Although, such phylogenies are rarely encountered in biological 
settings, they eliminate the influence of the tree topology on the results of the pilot study 
(compare Figure 5.3). 
 

 
 

Figure 5.3: Phylogeny topologies 
Here three possible topologies for phylogenies with four observable species are 

displayed. In topology a) the last two speciation events occurred shortly before the time 

point at which the sequences were observed. In this short period the chance is small that 

a significant amount of substitutions occured. Thus, the information content of a) is very 

similar to that of a star topology with two branches. Topology b) is more complex, as the 

difference in the distances between the last common ancestor, the second speciation event 

and the observable sequence influence the performance of the predictions. Finally, the 

topology c) is a four branches star topology, in which each branch fully contributes to the 

prediction. 
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5.2 Classification of phylogenies with uniform methylation states 

 
This analysis is performed under the assumption that the germline methylation state of 
functional genome regions changes slowly over the course of evolution, implying that all 
branches in the phylogeny have the same methylation state. This is a reasonable 
assumption, as significant changes in the methylation state lead to epigenetic 
deregulation. In functional genome regions, like active promoters or enhancers, such 
changes are rarely advantageous to the individual and thus subjected to selective 
pressure. The following approach is most efficiently applied, if among related species 
orthologous functional elements share a comparable germline methylation level. The 
assay assesses how well the method can predict the true methylation state in this scenario 
depending on the distance to the last common ancestor and the number of observed loci. 
 
To this end, the prediction accuracy of the model is measured under the assumption that 
all observed sequences evolved either under fully methylated or fully unmethylated 

conditions (Figure 5.4). Therefore, U
T0 is defined as the tree topology for which all 

methylation levels λ are set to 0, and M
T0  as the tree topology for which all λ are set to 1. 

Then, the log-likelihood ratio of L(S|
U

T0 ,Q) over L(S|
M

T0 ,Q) is computed and S is 

classified according to the sign of the result.  
 

 
 

Figure 5.4: Phylogenies with uniform methylation states 
For all branches the methylation label λ was set either to 0 or 1. Simulations were 

performed for phylogenies that differed by the length of their branches (parameter t). 

 
The best performance of the model was reached for evolutionary distances that were 
comparable to those observed for the ancestral sequence approach in chapter 4. 
Furthermore, up to a count of three each additionally observed orthologous locus 
considerably improved the prediction performance (Figure 5.5).  
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Figure 5.5: Prediction accuracy correlates with number and length of loci 
 

Uniformly distributed sequences of length 200 bp and 500 bp are evolved according to a 

one branch, two branches or three branches star phylogeny. This simulation was 

performed 500 times under methylated and 500 times under unmethylated substitution 

constrains. The FF-algorithm is applied to predict the methylation state and the 

prediction accuracy is displayed. 

 
It is important to note that additional information in form of an extra locus improved the 
prediction accuracy stronger than an increased locus length. For example a prediction 
based on three loci of length 200 bp, which is equivalent to 600 bp of total sequence 
information, had a consistently higher accuracy than one based on two loci with length 
500 bp that together cover 1 kbp. This observation holds until sequences reach an age of 
2.7% average transversion rate. At this point the prediction accuracy drops for all 
simulation runs that were based on 200 bp long loci. For sequences of length 500 bp no 
significant drop was detected in the simulated time frame.  
The results of the one branch case need a separate discussion. The amount of information 
available in this special case is comparable to that applied in the EqiScore approach of 
chapter 3, with the difference that an estimate for the age parameter t is available. Hence, 
these classifications are implicitly performed based on closeness to the particular 
equilibrium distribution.  
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The initial simulation indicated that sequences with length 500 bp are sufficient for 
robust predictions. To validate this assumption, I extended the simulation to time 
intervals with 4.1 % average transversion rate and 5 branch phylogenies (Figure 5.6).  
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Figure 5.6: Prediction accuracy depends on nucleotide distribution and loci number 
Sequences with length 500 bp with nucleotide distribution according to the methylated 

and unmethylated sequence equilibrium are evolved according to star phylogenies with 

one to five branches. 
 
These results show that the locus length of 500 bp is sufficient. A lasting reduction in 
accuracy can be earliest detected beyond the 4 % time point. As explained before, the fact 
that each nucleotide can undergo two types of transversions, this accounts for 
approximately 8% observable transversions.  A local drop in accuracy of the two, three 
and four loci phylogenies roughly between 0.5% to 1.5% time units is observable. This 
effect was also observed in the first simulation. It is caused by a local loss of sensitivity, 
i.e. the ability to detect unmethylated branches, whereas specificity reaches its maximum 
in this range. This phenomenon will be discussed in more detail in section 5.3.2-5.3.4. 
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5.2.1 Summary 

 
The simulations for phylogenies with uniform methylation state show that the approach 
correctly predicts the methylation state within a certain time interval with high accuracy. 
The number of observable sequences m, as well as the length of these sequences n and 
the length of the branches t influence the prediction performance. While an increase of m 
has a greater impact then an increase of n, most parameters positively correlate with the 
performance. In contrast, the parameter t has an optimal range in which prediction 
performs best, as previously observed in chapter 4. 
It is noteworthy that this rage is strongly influenced by m and n. Hence, by increasing the 
length and number of sequences in the alignment, the time period in which the model 
produces reliable predictions is extended. 
 
Overall the model’s performance is excellent whenever sequences in three or more 
species are aligned.  
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5.3 Classification of phylogenies with mixed methylation states 

 
In some scenarios the assumption that all loci evolve under the same methylation regime 
is less realistic. Pseudogenes for example represent copies of functional genes that 
putatively lost or reduced their potential to contribute to cell function. In consequence, 
the selective pressure on their promoter is reduced, and thus, these evolve neutrally. 
Furthermore, the duplicated gene is relocated in the genome and possibly inserted into 
heterochromatic genome domains i.e. into a genomic environment that is unfavorable for 
maintaining an unmethylated state. For these regions changes in the methylation state can 
occur with a much higher probability than for orthologous functional elements. In 
contrast, other genes duplicated by retroposition maintained their transcriptional activity 
and evolved into bona fide genes (Vinckenbosch, Dupanloup et al. 2006). In these cases a 
better conservation of the epigenetic promoter regulation is expected. 
To address this scenario and discriminate the functional gene copies from the degenerated 
ones, different methylation labels are allowed for each individual branch of the 
phylogeny. Thus, a multiclass classification problem has to be solved. For binary 
methylation states i.e. λ=0 or λ=1, a phylogeny with x branches results in up to 2x possible 
configurations, of which the one with the highest likelihood is predicted to be the true 
one. 
 

 
Figure 5.7: Phylogenies with mixed methylation states 

 
In this approach sequences were generated as in the uniform methylation state approach, 

but predictions were performed on each possible permutation of the labels. The figure 

shows the 0110 permutation of a four branch star phylogeny, were the true permutation 

is either 0000 or 1111. 
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5.3.1 Strategies to determine the methylation state of the branches 

 
For the pilot study, I addressed the multiclass classification problem by an exhaustive 
reconstruction that enumerates all possible label permutations and computes the 
corresponding likelihoods. Then, the different permutations were ranked according to 
their likelihoods. Next, the rank of the true permutation is determined and the Hamming 
distance of the methylation levels of the top ranking topology to the true topology is 
computed. The performance of the method was then characterized in different setups. As 
this approach is only feasible for a limited number of sequences and discrete methylation 
levels, I considered further methods. To this end, I adapted standard text book approaches 
(Hastie, Tibshirani et al. 2001). 
 
In the Monte Carlo reconstruction approach the methylation labels of all branches are 
initialized with either a specific methylation level (all methylated, all unmethylated) or 
randomly. In each iteration, a randomly selected branch label is switched, i.e. a 
methylated branch is altered to unmethylatated and vice versa. If this increases the overall 
likelihood (L(S|Ti+1,Q) > L(S|Ti,Q)) of the evolutionary history the change is accepted, 
otherwise the original configuration is restored (L(S|Ti+1,Q) < L(S|Ti,Q) -> L(S|Ti+1,Q) := 

L(S|Ti,Q)). This procedure is iterated until convergence of the likelihood. 
 
A more refined version is the Monte Carlo approach with simulated annealing, which 
allows to escape local minima. Hereby, also changes that decrease the likelihood are 
accepted if the ratio L(S|Ti,Q)/L(S|Ti+1,Q) is smaller than an annealing threshold A∆ . The 

annealing threshold is lowered after each iteration until it reaches 1. Then, the strategy 
basically is switched to the standard Monte Carlo approach.  
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5.3.2 Model performance 

 
In the simulation study of the previous sections, simulation results were true or false, thus 
the accuracy of the prediction was easily determined. To adapt the performance 
evaluation for the exhaustive classifier, the number of disagreeing methylation labels per 
phylogeny is counted. This is basically the Hamming distance of the true methylation 
label permutation and the predicted methylation label permutation. This value is then 
aggregated over 100 repetitions of the simulation into a score and divided by the highest 
possible score (m times 100). Again, I applied star topologies and analyze the influence 
of the number of branches on the prediction performance (Figure 5.8). For a 
comprehensive assessment only the extreme cases are simulated in which all branches are 
methylated or unmethylated, while the model explores all permutations. 
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Figure 5.8: Performance of mixed methylation level prediction 

For sequences of 1 kbp length drawn from three different sequence distributions (panel 

A-C) the prediction performance on phylogenies with star topology and two to four 

branches is displayed. Prediction performance is measured by the number of mislabeled 

branches divided by the number of branches in the topology. Green lines show the 

average over 100 simulated evolutions under the unmethylated (permutation 0000) and 

red lines under the methylated (permutation 1111) models.  
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The results in Figure 5.8 show that the performance of the model depends strongly on the 
sequence composition of the original sequence. For uniformly distributed sequences 
(panel A) already for tree stumps (m = 2) most of the branches are correctly predicted in 
the age interval from 1% to 4% average transversion. For sequences drawn from the 
unmethylated equilibrium (panel B) the performance peaks for those 2 branch trees 
between 1.0% and 1.5% average transversion. It considerably improves for each added 
branch. For CpG-poor sequences from the methylated equilibrium (panel C) the 
performance is worst and only for the 3 and 4 branch models good results are achieved in 
a very narrow age window between 0.8% and 1% average transversion rate. 
It can also be observed that briefly after the simulated speciation, and thus at small 
average transversion rates, the model over predicts the unmethylated state in all scenarios 
(fade-in bias). With increasing age of the independent sequences this trend is inverted 
and all sequences are predicted to be methylated (fade-out bias). The onset of these 
trends depends on the original sequence composition and the number of branches in the 
phylogeny. Both parameters influence the window in which this bias is cancelled by the 
strength of the true signal. As these biases were already encountered in chapter 4 and in 
the uniform methylation setup, I will briefly discuss their putative causes. 
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5.3.3 Fade-in bias 

 
The explanation for the fade-in bias is most likely the discreet nature of the CpG decay 
event. On limited data (short sequences, few copies and low-CpG content) the required 
time interval until the number of expected CpG decays approaches 1 is relatively large. In 
consequence, in most simulation instances early on no CpG decay is observed. As our 
model is continuous, this supports the likelihood that a single branch or the whole 
phylogeny  is unmethylated. Concretely, if we expect to observe ~0.01 CpG decays under 
MU and ~0.2 events under MM, but actually observe 0 events, the unmethylated model 
will always be favored. By increasing the number of CpGs per branch, either through 
elongation of the sequence, increasing the CpG density, or by adding additional branches, 
the expected time until the first CpG decay is shortened (and thus also to the second, third 
or n-th event). 
 
Therefore, αt as the time point at which the number of expected CpG decay events equals 

1 can function as characteristic value to evaluate the lower bound at which distance 
between the species the model can produce reliable results for a particular phylogeny. It 
is determined by ))()((#1 αα tPtPCpGs TpGCpGCpACpG →→ +⋅= , where P is computed under 

MM. Hereby, #CpGs is the number of CpGs under evolution and usually unknown, but 
can be estimated from the observable sequences. 
 
This equation simplifies under the assumption of symmetry to 

))((#1 / αtPCpGs TpGCpACpG→⋅= , with )()(2)(2 / ααα tPtPtP TpGCpACpGTpGCpGCpACpG →→→ =⋅=⋅ . 

The value of αt  can be approximated by numerical approaches, and furthermore, the 

derivation of an analytical solution appears possible. 
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5.3.4 Fade-out bias 

 
The explanation for the fade-out bias lies in the limited number of CpG sites. During 
methylation-free evolution the MU model derives the major part of its additional 
likelihood mass from the number of CpG sites that did not undergo CpG decay. At a 
certain age most of the original CpG sites are affected in at least one branch by any 
disruptive mutation. Especially for 2 branch models this decreases the distance to the 
likelihood under the MM model. On the other hand, each conserved TpG and CpA 
position can also be explained by multiple CpG decay events, and thus, improves the 
likelihood of the MM model stronger than that of the MU model. This also applies to 
positions at which by chance TpG/CpA pairings are formed by random mutations at 
corresponding positions in the phylogeny. The probability that TpG/TpG, CpA/CpA or 
TpG/CpA pairs are formed after the sequences became largely independent from their 
common ancestor is larger than the probability that a CpG/CpG pair evolves. Hence, over 
long time spans MM will always dominate MU. This especially applies for genome regions 
that are naturally rich in TpGs and CpAs such as sequences close to the methylated 
equilibrium. An increase in the number of branches can counteract this trend for a while 
as the time span in which the common ancestor is reconstructed robustly is prolonged. 
These analytical considerations are well supported by the simulation results. 
 
Fortunately, in biological scenarios the question weather a locus as recently lost its 
unmethylated status is asked more frequently than the reverse case, such that the natural 
particular bad performance of the model in CpG-poor, but CpA/TpG-rich sequences has 
little practical relevance. 
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5.4 Comparison of uniform and mixed methylation labels 

 
 
The uniform methylation labels have the advantage that only two different tree 
configurations have to be tested. This can be done rather efficiently, but the assumption 
of stable methylation states is rather strong and biases the results if it is violated. The 
mixed methylation labels require the computation of likelihoods for a larger number of 
branch label permutations. This is feasible for small trees, but introduces a higher 
variance into the model. Both models show good results within a particular time interval 
of the distance to the last common ancestor that is defined by the number of species and 
CpGs in the ancestral sequence. 
 
Moreover, this time interval is influenced by two kinds of biases, the fade-in and the 
fade-out bias. Both biases are not a consequence of the model, but of the data. By 
increasing the amount of informative observations i.e. by including more CpGs into the 
alignment, either via longer sequence, sequence of higher CpG density or the addition of 
more sequences, theses biases is reduced. 
 

5.4.1 On the necessity of regularization of methylation level changes 

 
In this chapter two ways to model the methylation levels within the evolutionary history 
T were introduced. In the uniform model all branches have the same methylation state, 
and in the mixed model switching of the methylation state was possible at every branch.  
Both approaches represent extremes. In a biological scenario changes are possible, but 
rare. If we consider a phylogeny with many short branches, it would be unlikely to 
observe an alternating series of methylation labels along the branches, although this may 
be the explanation that maximizes the likelihood. The introduction of a regularization 
term ξ  can solve this problem. ξ  penalizes changes of the methylation level at internal 

nodes by reducing the likelihood based on the difference between the methylation label to 
the parent node and to the child node. Given a node v with a parental branch (p,v,tp,λp) 
and a child branch (v,c,tc,λc) the penalty factor φ is then computed as: 
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The likelihood computation for a parent child pair is updated by: 
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In this scenario the uniform approach is equivalent to a ξ  that is set to infinity, while in 

the mixed classification approach ξ  is set to zero. By scaling ξ  to an appropriate value 

between both extremes the theoretical advantages and drawbacks of both methods can be 
traded against each other. On the one hand, in the case of short locus length, the uniform 
classification is robust with respect to statistical outliers at individual leaves. On the other 
hand, it is heavily biased if the underlying assumption does not hold. 
In contrast, the mixed classification is able to identify changes of methylation levels 
during evolution, but increases variance of the prediction, as already small changes in one 
of the sequences may tip the scale for the label prediction of individual branches. 
An intermediate value for ξ  appears appropriate to balance bias against variance. For 

now this feature is not implemented into the algorithm, as the prior knowledge on the 
variability of methylation states is very limited.  
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5.5 The FFK-algorithm 

 
This study was conducted in cooperation with Sandra Koser, who improved the 

implementation of the algorithm, and conducted the computations under my supervision. 

 
For the proof-of-principle study of the last section the exhaustive approach proved to be 
sufficiently efficient to sample the full search space. For phylogenies with higher 
numbers of branches this soon becomes infeasible. Similarly, the exhaustive approach is 
hindering the extension of the model to a more continuous choice of λ.  
 
In both cases the Monte carlo-based strategies efficiently overcome the computational 
bottleneck. As both variants of the Monte carlo-based approach require the repeated 
execution of the FF-algorithm, it was optimized by Sandra Koser under my supervision in 
the framework of a master thesis (Koser 2012). The resulting FFK-algorithm optimized 
the likelihood computation by reducing the number of tree-traversals for strategy 2) from 
n-1 to 1. Furthermore, it implements both Monte carlo-based approaches. A detailed 
characterization of the FFK-algorithm confirmed that the results obtained from the pilot 
study on the FF-algorithm, generalizes to the extended version of the algorithm (Koser 
2012). In particular, the influence on alignment length, number of observed species and 
CpG content in the last common ancestor sequence on the time-interval of optimal 
performance was confirmed and characterized in detail. 
 
To validate the applicability of the FFK-algorithm on a biological dataset, I designed a 
study based on homologous promoter sequences of primates. This data was 
complemented by two publically available methylome datasets for the human and 
chimpanzee male germline represented my sperm tissue.  
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5.5.1 Generalization to continuous methylation levels 

 
For simplicity the FF-algorithm focused on binary methylation states, i.e. fully 
methylated or fully unmethylated DNA sequences. The FFK algorithm extended the 
approach to continuous methylation levels. Therefore, the rate matrix Qλ is introduced in 
which the CpG decay-describing rate is scaled by a tuning parameter λ (Hobolth 2008). 
For λ=1.0 we have Qλ=QM and for λ=0 the equality of Qλ=QU is established. The 
framework is defined such a way that the transition from the binary to the continuous 
case could be performed by minor adaptation of the software implementation. For 
reasons of computational efficiency, the interval of possible methylation values split into 
discrete values ranging from 0% to 100% in 10% steps.  
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5.5.2 Validation study design  

 
To demonstrate the applicability of the FFK-algorithm in a biological meaningful 
context, we derived a set of genes that is conserved between mouse and human(Iwama 
and Gojobori 2004), and has been applied before in context of a comparative 
epigenomics study (Jiang, Han et al. 2007; Feuerbach, Halachev et al. 2012). The gene 
coordinates for the human genome assembly hg18 were then derived via the BioMart 
resource (Kasprzyk 2011).  The coordinates were then mapped to the chimpanzee 
(panTro2), orangutan (panAbe2), rhesus macaque (rheMac2) and marmoset (calJac3) 
genomes via the liftover resource of the Galaxy tool (Giardine, Riemer et al. 2005; 
Blankenberg, Kuster et al. 2010). Finally, multiple DNA sequence alignments for the 
resulting set of 556 promoters, which are conserved across several primate species, were 
derived by ClustalW V2.0.12 applying the standard alignment parameters (Thompson, 
Higgins et al. 1994). Additionally, two previously published methylome dataset of the 
male germline of humans and chimpanzee were acquired (Molaro, Hodges et al. 2011). In 
contrast to the simulation study, these multiple alignments contained gaps. As input for 
the FFK algorithm, only alignment columns without gaps were considered in the 
computation (Figure 5.9). 
 

 
Figure 5.9: Treatment of gaps in the multiple alignment 
Only dinucleotide positions without gaps were included into the computation. 

 
In a first assay we applied the FFK algorithm to the multiple alignment of each promoter 
considering every gap-free dinucleotide column for the likelihood computation (strategy 
2). The methylation label of the branch to the human species was then compared with the 
average methylation level in human sperm. The resulting predictions for each promoter 
are reported in Appendix J. 
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5.5.3 Training of mutation rates 

 
To calibrate the applied mutation rates to primate promoters, the methylome data was 
used to compute the mean methylation level of each homolog promoter in human and 
chimpanzee. This value was applied to set fixed values of λ  in the human-chimpanzee 
phylogeny. Then, the pairwise alignments of all promoters were used to set the leaf 
nodes. Then, a variant of the FFK-algorithm was applied in which the likelihood 
computation was applied to assess 5r , 6r  and 7r  instead of the methylation levels. The 

rates for transversions were preset to one. The resulting rates for promoter sequences are: 
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, thus showing a slightly less pronounced CpG 

decay effect. 
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5.5.4 Results of validation study 

 

 
 
Figure 5.10: Methylation state of human promoters 
The number of promoters that fall into each of the five depicted ranges of methylation 

levels are displayed as histogram. 

 
 
The methylation levels of the promoters are largely bimodal (Figure 5.10). Therefore, we 
defined a divergence of 30% from the true methylation level as sufficient to correctly 
predict the methylation mode of a promoter. 
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Figure 5.11 Difference between predicted and measured promoter methylation 
The difference between the predicted and measured promoter methylation level is 

displayed for the human promoters. The vertical lines mark where the absolute 

differenced is higher than 30 %. 

 
 
For 496 (89%) promoters the difference between predicted and observed value (∆m) was 
smaller than 30% (Figure 5.11).  Next, we tested if the CpG positions and the products of 
CpG decay (CpA and TpG) alone are sufficient for a reliable prediction i.e. we tested 
strategy 3). Therefore, we computed the predictions once on the full sequence and once 
only on positions that contained in a least one of the sequences a CpG, TpG or CpA. Both 
predictions yield similar results, although the runtime of the second approach was 
significantly reduced (Table 5.1). 
 
 

Alignment length (bp) Runtime (min) 

 All positions CpG, TpG and CpA 
1000 22.2 3.9 
2000 42.6 7.7 
3000 60.7 13.1 
5000 79.0 22.8 

 
Table 5.1: Runtime of FFK for all position vs. CpG, TpG and CpA positions 
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5.6 Discussion 

 
The presented simulation results show that the footprint of CpG decay in the human 
genome is strong enough to enable a local reconstruction of the germline methylome. 
Furthermore, the influence of parameters such as the length of the homologous locus, the 
initial sequence composition, the number of observable descendant sequences and the 
distance to the last common ancestor on the prediction quality was quantified.  
 
The first of two major findings is that the number of observable descendant sequences 
has a higher priority than the locus length for an improvement of the classification. This 
indicates that the method can be well applied for the study of short sequences such as 
gene promoters (1-2 kbp length), if enough homologous regions are considered, while the 
method is inadequate for more extended areas that underwent a single segmental 
duplication event or are only observed in two species. 
 
The second major finding is the limited performance of the approach for regions that 
were close to the methylated equilibrium in the last common ancestor. Here I identified a 
systematic bias in favor of predicting all descendants as being methylated. Hence, I 
propose to apply the method primarily to decide if a CpG-rich ancestral sequence gained 
DNA methylation in the germline or maintained an unmethylated state. 
 
Finally, the model performance strongly depends on the evolutionary distances between 
the considered genomes. The range in which optimal predictions are possible is constraint 
by the fade-in and the fade-out bias. Both are influenced by the number of CpGs in the 
ancestral sequence and the number of sequences in the alignment. Before the model is 
applied in a specific scenario, the tools introduced in this chapter can be applied to 
estimate the reliability of the produced predictions. 
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Chapter 6 - Conclusions and perspectives 
 
Evolution as a concept is one of the corner stones of modern science. In this thesis I 
traced its influence onto the interdependent development of genomes and epigenomes 
over long time spans. To this end, I developed an array of DNA sequence-based methods 
and characterized their applicability. Methods that directly proved to be of practical 
relevance were then applied to improve the annotation of the human genome. 
Specifically, the CGI Mountain annotation and the AluJudge track were generated. 
Moreover, for a number of additional approaches such as the EqiScore or the FFK-
algorithm proof-of-principle and validation studies were performed. Furthermore, steps 
for their further development were described. 
Additionally, the developed tools were applied to derive general insights into the 
influence of DNA methylation on the evolution of regulatory sequences.  
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6.1 A toolbox for evolutionary epigenomics 

 
On a qualitative level, the CpG dinucleotide was previously known to be one of the 
interfaces at which the evolutionary interplay of genome and epigenome most 
prominently manifests. Four of the here proposed novel methodologies, namely 
CgiHunter, EqiScore, the L-score based AluJudge annotation and the FFK-algorithm are 
systematic approaches to characterize this interaction on a quantitative level. The 
presented simulation studies demonstrated the theoretical advantages of all methods. 
Furthermore, their validation on independent epigenetic datasets demonstrated their 
practical applicability. The here assembled evolutionary epigenomics toolkit is highly 
complementary.  
 
We may consider the scenario of a novel whole-genome sequence for a largely 
uncharacterized vertebrate species. For CgiHunter this genomic sequence as input is 
sufficient. By using a parameter grid, a number of CGI Shadow annotations can be 
produced and either analyzed individually or in the merged form of a CGI Mountain 
annotation. Like a topographic map, this will yield a number of insights into the spatial 
distribution of CpG-rich regions, their length and the density of their cores. 
 
If an empirical choice of the parameter grid is to be circumvented additional information 
in form of nucleotide substitution models can be applied.  Already from estimations of 
four substitution rates, EqiScore infers its remaining model parameters by numerical 
simulation and apply these dinucleotide equilibrium distributions to identity regions with 
well conserved DNA methylation levels. Especially, for genome regions, which stably 
evolved under a particular methylation level, this method is very effective. 
 
CgiHunter and EqiScore both implicitly assume equal age for all input sequences and are 
thus biased in case of younger genome elements such as the primate-specific CpG-rich 
transposable elements from the ALU family. AluJudge and its statistical model corrects 
for this source of bias, by quantifying the intensity of the CpG decay effect each repeat 
instance is subjected to. Thus, the germline methylation state of each repeat instance is 
inferred. 
 
Finally, the genome-wide applicable FFK-algorithm combines the advantages of 
EqiScore and L-Score for cases in which multiple sequence alignments for species of 
fitting evolutionary distances are available. It is most effective to decide if genome 
regions recently became methylated in the germline, and thus complements the timescale 
at which the equilibrium-based EqiScore is effective. 
 
The here presented results from the benchmarks and simulation studies are, likewise a 
calibration curve, a valuable resource to select the appropriate method from this toolbox 
to answer a specific research questions. 
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6.2 CpG islands buffer selective pressure on CpG-rich binding-
sites 

 
Another insight of this thesis is that selective pressure on the DNA is not exclusively 
directed on specific nucleotide sequences or binding-motifs. It has been proposed earlier 
that two subtypes of TFBS exist: ‘highly selected sites that rarely occur by chance and 
auxiliary sites that are available by convenience’(Wasserman and Sandelin 2004). The 
authors furthermore argue that TFs such as Sp1 are associated to the second subtype. The 
equilibrium-based analysis in chapter 3 showed that protecting specifically the 
dinucleotide CpG in small fraction of the genome from methylation-mediated decay has a 
strong influence on the likelihood that such TFBS are formed and maintained.  
 
The development of this mechanism appears very beneficial as otherwise the genome is 
encountered with two unfavorable extremes. Its cis-regulatory sequences may be very 
complex, i.e. relative long and very specific in the nucleotide composition. This results in 
a small likelihood for their random formation, but is requiring a strong selective pressure 
against the smallest change in these sequences. Furthermore, a TFBS that is specific 
enough for a small genome may be too unspecific for a large genome. Thus, with 
increasing genome size the DNA binding domains of TFs would be subjected to strong 
pressure to co-evolve. 
Alternatively, low complexity motifs are easier to conserve, but in the vast mammalian 
genomes they can frequently form by random mutations at unfavorable positions. The 
suppression of these low complexity motifs requires strong selective pressure, or else 
result in uncontrolled transcription, which wastes resources, may lead to deregulation of 
gene expression and reduces the concentration of free transcription factors.  
 
Genome-wide DNA methylation presents a third option. It enabled the formation of 
protected methylation-free pockets in which low-complexity CpG containing motifs such 
as the GC-box are maintained with high probability. These motifs are frequent enough 
that several are detectable within each CGI. This leads to the characteristic multiple TSS 
sites per CGI promoter, provides a sufficient robustness against random mutations and 
presents a potential mechanism for calibrating the exact transcription level via mutation 
and selection of individual binding sites.  
Outside of these pockets these CpG-rich motifs are disabled immediately by DNA 
methylation and, speaking in evolutionary time scales, rapidly erode via CpG decay. This 
mechanism is functionally similar to the suppression of transposable elements by DNA 
methylation, which takes also placed in species without genome-wide DNA methylation. 
 
In consequence, the neutral mutation rate is calibrated by the local DNA methylation 
level, and selective pressure is imposed to conserve a beneficial methylation distribution 
in the germline i.e. the formation and maintenance of unmethylated pockets that result in 
CGI formation, rather then exclusively acting on individual cis-regulatory sequences. 
This conclusion is supported by recent comparative studies on primate CGI promoters 
that found no evidence for selective pressure on individual CpGs (Cohen, Kenigsberg et 
al. 2011). 
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With the unbiased bottom-up approach CgiHunter as well as the evolutionary motivated 
top-down attempt EqiScore, this thesis improved the annotation of such regions with 
elevated CpG content, and demonstrated that the intensity, with which they withstand 
CpG decay, correlates with their regulatory activity in terms of histone marks and 
transcription initialization via polymerase occupancy (compare chapter 2 and 3).  
A key problem of the field is that such observed correlations make no statement about the 
direction of the causality. More precise, two possible scenarios are possible. First, certain 
regulatory sequences contain more CpG dinucleotides because they were preferentially 
located in unmethylated domains. Second, the maintenance of unmethylated domains 
during the spread of DNA methylation to a genome-wide phenomenon was necessary to 
protect specific regulatory sequences from CpG decay. 
 
Complementarily, TFs that bind CpG-poor motifs such as the TATA-box exist and have 
been available as building blocks for the evolutionary processes during the creation of 
higher-vertebrate and mammalian genomes.  But in those species that gained genome-
wide DNA methylation, promoter regions gained CpG dinucleotides instead of relying 
stronger on CpG-less elements (Khuu, Sandor et al. 2007). Moreover, the tetranucleotides 
that predict promoter function of CGIs by co-location with RNA polymerase binding 
sites were rich in CpGs (compare chapter 3). This indicates that CpG decay is not an 
inherent problem, but a feature of the genetic-epigenetic-evolutionary system. 
 
CpG decay fosters the concentration of functional, CpG-rich, low-complexity motifs at 
specific locations that remain unmethylated in the germline. In the remaining genome, 
global DNA methylation actively suppresses the formation of sites that promote 
transcription at random positions. With the equilibriums based method developed in this 
thesis, we have now the ability to quantify this effect. For instance for the binding 
motives of Sp1 and Egr1 it accounts for a 6-fold and 42-fold overrepresentation in 
unmethylated regions. 
In a 3 billion nucleotide long genome this already reduces the number of randomly form 
sites significantly. If nonetheless a useless or harmful cis-regulatory site is formed or 
inserted by transposition, it is neutralized by DNA methylation as the binding affinity of 
many trans-factor, such as TFs, is reduced by this covalent modification. Conveniently 
enough this system also leads to an accelerated erosion of such a transposed site. For the 
repeats of the ALU family the AluJudge annotation confirms previous reports that this 
process affects the majority of the repeat copies. 
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6.3 The special role of CpG island edges and weak CpG islands 

 
The study of regions with intermediate CpG content indicates that these areas also 
display intermediate enrichment of epigenetic signals. These regions are a mixture of 
weaker CGIs and the edges of strong CGIs. According to our understanding of the CpG 

decay effect this implies that they are less frequently methylated than the remaining 
genome, but more frequently than strong CGIs. As they are still epigenetically active and 
partially unmethylated, a too recent transposition to detect footprints of CpG decay, can 
not explain these observations. Furthermore, selective pressure on individual sequence 
motifs that counter acts the CpG decay effect could not be detected (Cohen, Kenigsberg 
et al. 2011). This leaves difference in the temporal distribution of the methylation level as 
a possible explanation.  
 
Three concepts are plausible. First, the methylation of an individual CpG has a stochastic 
component with a high probability of methylation outside of CGIs which gradually 
reduces towards the core of strong CGIs. With probabilities in-between the extremes of 
full methylation and complete absence of methylation the chance of CpG decay is also 
moderate. 
Second, recent evolutionary changes in the size of the CpG islands may have triggered 
the gain or loss of CpGs at their edges (Matsuo, Clay et al. 1993). 
Third, the degree of methylation differs among the tissues of the germline (Figure 1.1). 
Thus, not only the time of elevated probability to undergo spontaneous deamination is 
variable, but also the error-prone reprogramming of methylation marks occur with 
varying site-specific frequencies. The difference between methylation levels in sperm and 
somatic tissue indicates that such a scenario realistic (Molaro, Hodges et al. 2011). 
Apparently, unmethylated domains are much larger at this point in the male germline 
than in somatic tissue. Therefore, similar changes between the different cell types of the 
germline cycle and especially between the female and male ‘dialects’ of the associated 
epigenetic reprogramming are likely. 
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6.4 Perspectives 

 
Evolutionary epigenomics research will be fueled through the rapid gain of vertebrate 
genome sequences (10K-Genomes-Scientists 2009). Without the direct requirement of 
additional epigenomic experiments, novel genomes can be analyzed for the distribution 
of regions that are protected from CpG decay in the germline. 
The next step to continue along this avenue is the application of the here presented 
toolbox for the characterization of other mammalian species, for which high quality DNA 
sequences are already available. This endeavor promises insights into the adaptation of 
the epigenetic regulation of these relative closely related organisms to the different 
environmental niches. 
In parallel these methods can be used to improve the discovery of epigenetically 
regulated loci outside of CGI promoter regions. The non-coding areas of the human 
genome are devoid of clear landmarks that separate functional from non-functional 
domains. The here presented tools can assist in characterizing these areas, by annotating 
loci that were protected from CpG decay.  
Such identification of functional genome regions is of high practical relevance for 
medical research. This information is crucial for the prioritization research on of 
differentially methylated or mutated regions in the genomes of diseased cells for in-depth 
analysis. 
For instance, a number of complex human diseases that are associated to yet unknown 
heritable risk factors such undiscovered elements may play a key role. The prioritization 
of candidates by the conservation of their methylation-free germline state may contribute 
to focusing on the most relevant loci among the high number of potential targets. 
 
The methods themselves do not represent endpoints. Beside the optimization of runtime, 
usability and interpretability of the results, they can be integrated more tightly with other 
comparative genomics approaches such as motif discovery or the annotation of 
transposable elements. Most importantly, the interaction between genome sequence, 
histone-complexes and DNA methylation ought to be addressed directly. 
 
Finally, insights into the fascinating patterns of genomic and epigenomic co-evolution are 
a value in itself. The intriguing question is how small genomes of the complexity of a 
newspaper have evolved into the huge autonomously organized library that we call the 
human genome?  The steeping stones this thesis provides may support others on the long 
road to a deep understanding of this subject. 
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Appendix A – Methylation level of human CGI Shadow 
annotations 
 
CGI Shadow annotations produced by CgiHunter: 
 
CG-content Obs/Exp ratio min length TotalLength avgLength TotalCgis avgMethylation 

50 60 500 153797775 2067 74387 0.62499

50 65 500 116922512 2041 57264 0.57396

50 70 500 89328911 1978 45154 0.513163

50 75 500 67090293 1905 35206 0.434378

50 80 500 49509208 1769 27983 0.3579

55 60 500 100900488 2330 43292 0.500802

55 65 500 81681369 2268 36008 0.440318

55 70 500 65910468 2206 29867 0.368785

55 75 500 52353904 2097 24965 0.290839

55 80 500 40494819 1918 21108 0.224823

60 60 500 66369000 2212 29997 0.370497

60 65 500 56461756 2143 26337 0.315517

60 70 500 47847656 2077 23034 0.253055

60 75 500 39931087 1973 20233 0.193458

60 80 500 32434081 1799 18027 0.15616

65 60 500 41772466 1796 23248 0.290875

65 65 500 37229012 1761 21132 0.245257

65 70 500 32878666 1735 18944 0.19244

65 75 500 28640844 1681 17030 0.146253

65 80 500 24211802 1579 15324 0.121733

70 60 500 22396563 1384 16173 0.219159

70 65 500 20578643 1401 14682 0.162798

70 70 500 19185288 1412 13584 0.124488

70 75 500 17736893 1393 12729 0.102266

70 80 500 15804734 1347 11728 0.088633

50 60 600 140501506 2584 54359 0.56929

50 65 600 106878638 2536 42139 0.502579

50 70 600 81049765 2486 32597 0.416546

50 75 600 60953157 2362 25798 0.325893

50 80 600 44961328 2150 20904 0.250999

55 60 600 95762438 2714 35279 0.444471

55 65 600 77653721 2610 29752 0.380466

55 70 600 62732768 2513 24956 0.302679

55 75 600 49896106 2352 21206 0.232293

55 80 600 38465378 2127 18078 0.179778

60 60 600 63827719 2444 26108 0.328315

60 65 600 54404630 2343 23212 0.274575

60 70 600 46084710 2264 20354 0.210936

60 75 600 38498347 2124 18125 0.165173

60 80 600 31028633 1938 16008 0.137227

65 60 600 40148681 1929 20805 0.269753

65 65 600 35771695 1887 18949 0.223993
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65 70 600 31483751 1871 16827 0.166601

65 75 600 27407336 1804 15190 0.129718

65 80 600 22985233 1698 13531 0.109075

70 60 600 20969650 1500 13974 0.198929

70 65 600 19267992 1522 12653 0.140548

70 70 600 18044433 1525 11830 0.107523

70 75 600 16679614 1501 11109 0.092345

70 80 600 14763097 1455 10140 0.082056

50 60 700 131790162 3049 43218 0.518553

50 65 700 100330506 2976 33709 0.439659

50 70 700 76486901 2871 26640 0.347551

50 75 700 57836154 2658 21757 0.267411

50 80 700 42629544 2376 17939 0.204758

55 60 700 91697275 3071 29855 0.392426

55 65 700 74295554 2936 25301 0.320886

55 70 700 60123255 2798 21482 0.24558

55 75 700 47998145 2556 18775 0.194542

55 80 700 36886949 2283 16156 0.157106

60 60 700 61993688 2606 23786 0.305121

60 65 700 52734850 2498 21109 0.248507

60 70 700 44631824 2407 18535 0.187536

60 75 700 37169748 2254 16485 0.149746

60 80 700 29695305 2065 14380 0.125283

65 60 700 38559540 2053 18774 0.255076

65 65 700 34227502 2017 16963 0.204236

65 70 700 30137097 1996 15093 0.14817

65 75 700 26183438 1920 13636 0.119549

65 80 700 21778930 1813 12009 0.101533

70 60 700 19527005 1619 12060 0.180909

70 65 700 18018037 1637 11003 0.125905

70 70 700 16941361 1631 10381 0.1002

70 75 700 15648278 1603 9759 0.088181

70 80 700 13770416 1555 8852 0.078058

50 60 800 125326958 3479 36019 0.470946

50 65 800 95524449 3375 28302 0.382499

50 70 800 73226185 3188 22964 0.294514

50 75 800 55506915 2895 19168 0.225277

50 80 800 40770286 2557 15943 0.176487

55 60 800 88790024 3338 26594 0.355986

55 65 800 71977562 3169 22710 0.283502

55 70 800 58391681 2980 19588 0.216861

55 75 800 46492353 2708 17164 0.174696

55 80 800 35425395 2421 14627 0.142858

60 60 800 60287274 2747 21944 0.286281

60 65 800 51099127 2642 19335 0.224611

60 70 800 43260459 2537 17050 0.169783

60 75 800 35928435 2369 15164 0.13931

60 80 800 28377680 2185 12983 0.117172

65 60 800 36899183 2179 16927 0.240111

65 65 800 32596039 2155 15125 0.182152
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65 70 800 28755933 2122 13547 0.133283

65 75 800 24927163 2034 12253 0.111371

65 80 800 20588779 1922 10710 0.095532

70 60 800 18182268 1728 10520 0.16734

70 65 800 16829000 1744 9649 0.115097

70 70 800 15845029 1733 9140 0.09362

70 75 800 14586825 1702 8566 0.082511

70 80 800 12744108 1655 7697 0.073781
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Appendix B – CpG Mountain annotations computed by 
region length 
 
CpG Mountain annotations generated with Cgi Shadow annotation length as 
approximation of CpG island strength. 
 

 
Figure: CGM annotation with 100 Strictness levels based on Cgi Shadow total 

length 
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Figure: CGM annotation with 50 Strictness levels based on Cgi Shadow total length 

 

 
 

Figure: CGM annotation with 33 Strictness levels based on Cgi Shadow total length 
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Appendix C – Overlap of conserved TFBS with CGIs 
 
The table shows for each TFBS the number of predicted sites in comparison to the 
number of sites that overlap the CGI Mountain annotation. The CGM annotation covers 
5% of the genome. Thus, dividing that ratio of CGM to all sites by 0.05 yields the relative 
overrepresentation of the TFBS in CGIs. Furthermore, for the fraction of sites that are 
located in CGIs the mean CGI Mountain score is reported. 
 

TFBS In CGIs 
All 

TFBS 
CGI 

fraction 

Mean 
CGM 
strict. 

CGI 
Overrep. p-value 

SP1_Q6 837 941 88.95 91.70 17.79 0.00E+00 

SP1_01 683 769 88.82 91.24 17.764 0.00E+00 

AP2_Q6 623 709 87.87 92.01 17.574 0.00E+00 

NFY_01 97 128 75.78 90.02 15.156 0.00E+00 

PAX4_01 441 608 72.53 91.24 14.506 0.00E+00 

PAX5_01 406 576 70.49 91.06 14.098 0.00E+00 

CETS1P54_01 238 339 70.21 89.37 14.042 0.00E+00 

EGR3_01 999 1509 66.2 90.65 13.24 0.00E+00 

NRF2_01 455 717 63.46 89.72 12.692 0.00E+00 

ELK1_02 386 617 62.56 90.02 12.512 0.00E+00 

USF_C 191 306 62.42 90.05 12.484 0.00E+00 

E2F_03 149 240 62.08 90.28 12.416 0.00E+00 

MAZR_01 526 859 61.23 89.92 12.246 0.00E+00 

E2F_02 538 895 60.11 89.02 12.022 0.00E+00 

NMYC_01 702 1196 58.7 89.36 11.74 0.00E+00 

EGR1_01 953 1693 56.29 90.48 11.258 0.00E+00 

PAX5_02 352 645 54.57 90.42 10.914 0.00E+00 

GATA2_01 76 145 52.41 89.21 10.482 0.00E+00 

NGFIC_01 990 1986 49.85 89.93 9.97 0.00E+00 

CREB_02 219 442 49.55 89.57 9.91 0.00E+00 

AHRARNT_01 558 1144 48.78 89.10 9.756 0.00E+00 

MYCMAX_03 839 1731 48.47 89.30 9.694 0.00E+00 

ATF_01 736 1537 47.89 89.03 9.578 0.00E+00 

CREBP1_Q2 685 1433 47.8 89.26 9.56 0.00E+00 

USF_Q6 434 924 46.97 88.97 9.394 0.00E+00 

AHRARNT_02 627 1355 46.27 89.77 9.254 0.00E+00 

ARNT_01 486 1061 45.81 88.68 9.162 0.00E+00 

EGR2_01 768 1766 43.49 89.32 8.698 0.00E+00 

SPZ1_01 366 843 43.42 88.57 8.684 0.00E+00 

AHR_01 413 958 43.11 88.35 8.622 0.00E+00 

MAX_01 288 686 41.98 90.00 8.396 0.00E+00 

MZF1_02 998 2398 41.62 87.93 8.324 0.00E+00 

CREB_01 434 1060 40.94 88.36 8.188 0.00E+00 

TAXCREB_01 470 1165 40.34 89.20 8.068 0.00E+00 

PAX4_03 714 1774 40.25 87.82 8.05 0.00E+00 

CREBP1CJUN_01 499 1255 39.76 88.62 7.952 0.00E+00 

AP4_Q5 9 23 39.13 83.67 7.826 5.90E-14 
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LMO2COM_01 179 483 37.06 87.44 7.412 0.00E+00 

ARNT_02 487 1407 34.61 88.17 6.922 0.00E+00 

GATA1_01 102 297 34.34 88.21 6.868 0.00E+00 

CREB_Q4 41 122 33.61 87.88 6.722 1.25E-47 

MYCMAX_01 407 1218 33.42 88.25 6.684 0.00E+00 

NFKAPPAB50_01 112 343 32.65 89.27 6.53 0.00E+00 

CMYB_01 501 1564 32.03 87.81 6.406 0.00E+00 

RREB1_01 843 2662 31.67 87.28 6.334 0.00E+00 

TAXCREB_02 481 1567 30.7 87.88 6.14 0.00E+00 

E47_01 319 1057 30.18 85.89 6.036 0.00E+00 

NFY_Q6 237 793 29.89 87.03 5.978 0.00E+00 

E2F_01 414 1408 29.4 87.73 5.88 0.00E+00 

USF_01 185 647 28.59 87.22 5.718 6.54E-167 

P300_01 461 1715 26.88 86.70 5.376 0.00E+00 

STAT1_01 281 1073 26.19 88.50 5.238 0.00E+00 

ELK1_01 336 1299 25.87 86.12 5.174 0.00E+00 

CREB_Q2 67 260 25.77 85.40 5.154 2.77E-53 

SREBP1_01 545 2127 25.62 87.90 5.124 0.00E+00 

ATF6_01 293 1213 24.15 86.01 4.83 0.00E+00 

OLF1_01 443 1858 23.84 86.79 4.768 0.00E+00 

XBP1_01 440 1868 23.55 86.03 4.71 0.00E+00 

HEN1_02 246 1082 22.74 87.30 4.548 0.00E+00 

MYOD_01 378 1679 22.51 86.01 4.502 0.00E+00 

NRSF_01 429 1913 22.43 85.36 4.486 0.00E+00 

YY1_02 326 1501 21.72 87.34 4.344 0.00E+00 

AREB6_03 438 2055 21.31 87.06 4.262 0.00E+00 

CP2_01 299 1430 20.91 84.82 4.182 0.00E+00 

AP4_01 276 1341 20.58 86.92 4.116 0.00E+00 

PAX2_01 378 1865 20.27 87.33 4.054 0.00E+00 

P53_01 479 2425 19.75 87.12 3.95 0.00E+00 

PAX3_01 441 2294 19.22 86.86 3.844 0.00E+00 

HMX1_01 429 2278 18.83 85.55 3.766 0.00E+00 

PAX2_02 37 197 18.78 85.11 3.756 6.97E-19 

MYOGNF1_01 251 1341 18.72 86.15 3.744 0.00E+00 

CREL_01 508 2741 18.53 85.61 3.706 0.00E+00 

MYCMAX_02 313 1702 18.39 85.13 3.678 0.00E+00 

MIF1_01 434 2376 18.27 86.26 3.654 0.00E+00 

HEN1_01 281 1540 18.25 87.17 3.65 0.00E+00 

HOX13_01 277 1531 18.09 85.38 3.618 0.00E+00 

NFKAPPAB_01 432 2529 17.08 85.94 3.416 0.00E+00 

ZID_01 292 1745 16.73 85.43 3.346 0.00E+00 

NFKB_Q6 61 377 16.18 85.95 3.236 2.27E-23 

ROAZ_01 465 2885 16.12 85.16 3.224 0.00E+00 

SREBP1_02 510 3171 16.08 83.98 3.216 0.00E+00 

NFKB_C 452 2812 16.07 85.17 3.214 0.00E+00 

PAX4_04 305 1929 15.81 82.60 3.162 0.00E+00 

YY1_01 311 2005 15.51 84.22 3.102 0.00E+00 

ZIC2_01 277 1811 15.3 85.19 3.06 6.98E-90 

ZIC1_01 298 2012 14.81 84.12 2.962 1.14E-90 

HNF4_01_B 113 782 14.45 82.23 2.89 7.75E-34 
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ZIC3_01 309 2168 14.25 83.61 2.85 5.66E-87 

HTF_01 428 3076 13.91 82.80 2.782 0.00E+00 

COMP1_01 267 1937 13.78 84.39 2.756 2.11E-70 

NFKAPPAB65_01 187 1359 13.76 86.08 2.752 1.13E-49 

AP1FJ_Q2 111 807 13.75 86.16 2.75 3.68E-30 

STAT3_01 305 2285 13.35 84.72 2.67 6.96E-75 

NFY_C 150 1130 13.27 82.60 2.654 2.67E-37 

AREB6_02 151 1157 13.05 84.30 2.61 3.28E-36 

GATA3_01 129 989 13.04 83.27 2.608 3.83E-31 

RFX1_01 485 3789 12.8 84.44 2.56 0.00E+00 

RFX1_02 710 5613 12.65 82.82 2.53 0.00E+00 

AP1_Q6 9 72 12.5 82.67 2.5 3.50E-03 

NF1_Q6 181 1450 12.48 81.44 2.496 4.65E-39 

ER_Q6 458 3685 12.43 84.45 2.486 4.15E-95 

AREB6_01 322 2622 12.28 84.83 2.456 1.34E-65 

CDPCR1_01 402 3311 12.14 82.45 2.428 2.70E-79 

MEIS1_01 353 2913 12.12 81.67 2.424 1.52E-69 

PPARG_03 410 3466 11.83 82.18 2.366 5.46E-76 

HNF4_01 160 1353 11.83 82.95 2.366 1.05E-30 

EN1_01 104 883 11.78 82.73 2.356 2.43E-20 

BACH2_01 543 4835 11.23 82.55 2.246 6.26E-88 

IK2_01 62 563 11.01 83.45 2.202 5.92E-11 

IK1_01 378 3469 10.9 83.47 2.18 3.63E-57 

STAT5A_02 418 3840 10.89 82.31 2.178 7.43E-63 

TATA_01 470 4335 10.84 82.01 2.168 1.04E-69 

NCX_01 381 3527 10.8 82.56 2.16 2.61E-56 

COUP_01 596 5523 10.79 81.04 2.158 8.43E-87 

GATA1_03 369 3452 10.69 83.26 2.138 4.28E-53 

SRF_Q6 304 2849 10.67 82.50 2.134 7.58E-44 

SEF1_C 336 3164 10.62 82.52 2.124 1.15E-47 

CREBP1_01 483 4550 10.62 81.84 2.124 1.18E-67 

MYB_Q6 256 2416 10.6 81.32 2.12 1.62E-36 

LUN1_01 419 3965 10.57 81.95 2.114 3.23E-58 

NFE2_01 525 4968 10.57 82.48 2.114 1.75E-72 

AP1_01 634 6026 10.52 81.95 2.104 4.31E-86 

ARP1_01 400 3823 10.46 82.98 2.092 3.56E-54 

CHOP_01 424 4053 10.46 82.98 2.092 2.71E-57 

IRF2_01 631 6090 10.36 82.40 2.072 3.94E-82 

ISRE_01 586 5721 10.24 82.70 2.048 5.59E-74 

IK3_01 409 4048 10.1 82.28 2.02 3.33E-50 

IRF7_01 518 5179 10 81.99 2 2.80E-61 

E47_02 145 1455 9.97 82.59 1.994 3.60E-18 

LYF1_01 229 2311 9.91 81.13 1.982 2.53E-27 

SRF_C 252 2566 9.82 82.80 1.964 3.87E-29 

CEBP_C 411 4189 9.81 81.09 1.962 2.59E-46 

IRF1_01 682 6959 9.8 81.87 1.96 2.14E-75 

LMO2COM_02 527 5556 9.49 80.66 1.898 4.14E-53 

HSF2_01 234 2468 9.48 82.24 1.896 1.70E-24 

CEBPB_02 447 4770 9.37 82.61 1.874 1.24E-43 

GFI1_01 578 6204 9.32 81.85 1.864 7.27E-55 
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HOXA3_01 392 4231 9.26 81.11 1.852 4.09E-37 

STAT_01 392 4266 9.19 82.92 1.838 3.80E-36 

TST1_01 592 6488 9.12 81.26 1.824 1.82E-52 

PPARG_01 710 7814 9.09 81.98 1.818 1.08E-61 

PPARA_01 465 5164 9 82.03 1.8 8.30E-40 

AP2REP_01 547 6091 8.98 80.63 1.796 4.24E-46 

FAC1_01 493 5510 8.95 81.47 1.79 3.33E-41 

FOXO4_01 269 3006 8.95 80.37 1.79 2.97E-23 

HSF1_01 248 2782 8.91 80.46 1.782 2.71E-21 

TCF11_01 72 815 8.83 83.08 1.766 5.10E-07 

AP4_Q6 140 1595 8.78 81.66 1.756 4.45E-12 

HLF_01 621 7240 8.58 81.75 1.716 2.50E-44 

SOX9_B1 507 6001 8.45 82.07 1.69 1.53E-34 

AREB6_04 114 1360 8.38 81.71 1.676 1.05E-08 

GATA1_02 285 3463 8.23 79.69 1.646 2.76E-18 

CDPCR3HD_01 255 3101 8.22 80.31 1.644 1.79E-16 

CEBPB_01 340 4144 8.2 81.21 1.64 2.92E-21 

BACH1_01 705 8622 8.18 80.01 1.636 9.79E-42 

AP1_C 132 1616 8.17 78.33 1.634 5.10E-09 

MSX1_01 475 5959 7.97 80.24 1.594 6.73E-26 

HAND1E47_01 298 3774 7.9 79.14 1.58 3.26E-16 

FREAC2_01 787 9980 7.89 81.27 1.578 6.08E-40 

FOXO1_02 774 9846 7.86 80.67 1.572 8.71E-39 

GR_Q6 247 3172 7.79 81.34 1.558 5.94E-13 

CEBP_01 186 2407 7.73 80.47 1.546 8.27E-10 

PPARG_02 312 4041 7.72 80.53 1.544 2.09E-15 

E4BP4_01 777 10253 7.58 79.71 1.516 4.60E-33 

FOXO4_02 687 9146 7.51 81.36 1.502 3.05E-28 

CEBP_Q2 281 3774 7.45 79.74 1.49 5.44E-12 

TCF11MAFG_01 459 6167 7.44 79.73 1.488 1.34E-18 

TGIF_01 469 6312 7.43 80.20 1.486 8.06E-19 
TAL1ALPHAE47_0
1 328 4430 7.4 80.38 1.48 2.11E-13 

AP1_Q2 9 123 7.32 69.78 1.464 2.38E-01 

SRY_02 453 6285 7.21 81.43 1.442 9.72E-16 

TAL1BETAE47_01 189 2626 7.2 81.43 1.44 2.39E-07 

BRACH_01 539 7551 7.14 79.71 1.428 1.53E-17 

CDPCR3_01 411 5769 7.12 79.71 1.424 1.33E-13 

GATA1_04 233 3283 7.1 80.67 1.42 3.52E-08 

FOXO1_01 16 226 7.08 84.88 1.416 1.51E-01 

GRE_C 223 3169 7.04 80.40 1.408 1.43E-07 

P53_02 109 1555 7.01 78.67 1.402 2.77E-04 

FREAC3_01 817 11874 6.88 79.38 1.376 5.33E-21 

MRF2_01 355 5167 6.87 79.81 1.374 6.86E-10 

PAX6_01 506 7404 6.83 79.59 1.366 4.44E-13 

FOXO3_01 685 10077 6.8 80.14 1.36 1.23E-16 

AP1_Q4 15 223 6.73 78.07 1.346 2.37E-01 

SOX5_01 545 8141 6.69 80.59 1.338 2.30E-12 

USF_02 5 75 6.67 74.80 1.334 5.08E-01 

NFAT_Q6 182 2727 6.67 78.23 1.334 6.05E-05 

GATA_C 492 7389 6.66 77.48 1.332 6.09E-11 



 170 

RORA1_01 606 9119 6.65 79.76 1.33 5.61E-13 

HFH3_01 444 6811 6.52 78.74 1.304 8.85E-09 

CEBPA_01 242 3827 6.32 79.60 1.264 1.72E-04 

FREAC4_01 677 10747 6.3 79.55 1.26 6.37E-10 

MEF2_01 783 12444 6.29 78.68 1.258 3.74E-11 

TAL1BETAITF2_01 426 6863 6.21 80.48 1.242 4.46E-06 

SRF_01 362 5878 6.16 79.41 1.232 4.59E-05 

RORA2_01 651 10690 6.09 79.52 1.218 2.34E-07 

OCT1_03 268 4401 6.09 77.59 1.218 9.12E-04 

STAT5A_01 175 2891 6.05 77.77 1.21 9.36E-03 

MEF2_02 437 7256 6.02 77.79 1.204 6.42E-05 

CHX10_01 895 14949 5.99 78.11 1.198 3.07E-08 

OCT_C 708 11876 5.96 79.71 1.192 1.52E-06 

RSRFC4_01 945 15901 5.94 77.56 1.188 4.87E-08 

MEIS1AHOXA9_01 576 9767 5.9 77.33 1.18 4.71E-05 

TATA_C 531 9043 5.87 77.86 1.174 1.42E-04 

HNF1_01 481 8391 5.73 79.82 1.146 2.08E-03 

NKX25_01 426 7440 5.73 79.31 1.146 4.07E-03 

GATA1_05 416 7558 5.5 78.69 1.1 4.43E-02 

PAX4_02 527 9584 5.5 77.74 1.1 2.51E-02 

S8_01 711 13375 5.32 77.37 1.064 9.37E-02 

FOXD3_01 441 8351 5.28 77.92 1.056 2.39E-01 

OCT1_Q6 154 2938 5.24 78.15 1.048 5.48E-01 

STAT5B_01 204 3900 5.23 77.87 1.046 5.08E-01 

CDP_01 446 8602 5.18 79.51 1.036 4.32E-01 

HNF3B_01 617 12096 5.1 77.92 1.02 6.11E-01 

HNF1_C 509 10088 5.05 78.22 1.01 8.34E-01 

FOXJ2_01 600 11956 5.02 77.86 1.004 9.26E-01 

EVI1_02 229 4607 4.97 77.12 0.994 9.27E-01 

MEF2_03 365 7360 4.96 75.89 0.992 8.73E-01 

BRN2_01 476 9771 4.87 77.21 0.974 5.60E-01 

HFH1_01 574 11803 4.86 77.93 0.972 4.95E-01 

NKX25_02 559 11665 4.79 77.36 0.958 3.03E-01 

OCT1_06 378 7906 4.78 75.55 0.956 3.72E-01 

EVI1_06 360 7613 4.73 76.62 0.946 2.78E-01 

NKX22_01 456 9733 4.69 76.82 0.938 1.54E-01 

PBX1_01 194 4181 4.64 79.55 0.928 2.86E-01 

EVI1_03 258 5602 4.61 79.38 0.922 1.75E-01 

PBX1_02 532 11572 4.6 78.40 0.92 4.69E-02 

OCT1_05 98 2155 4.55 78.93 0.91 3.35E-01 

POU3F2_02 697 15759 4.42 77.23 0.884 8.87E-04 

NKX61_01 548 12435 4.41 78.14 0.882 2.41E-03 

OCT1_02 447 10155 4.4 76.69 0.88 5.67E-03 

EVI1_04 348 7951 4.38 77.03 0.876 1.08E-02 

CDC5_01 572 13069 4.38 76.90 0.876 1.08E-03 

CART1_01 694 15877 4.37 78.01 0.874 2.77E-04 

FREAC7_01 479 11075 4.33 77.26 0.866 1.12E-03 

OCT1_01 252 5820 4.33 76.69 0.866 1.90E-02 

MEF2_04 463 10751 4.31 76.46 0.862 9.70E-04 

EVI1_01 426 10147 4.2 77.06 0.84 2.11E-04 
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POU6F1_01 560 13489 4.15 76.89 0.83 6.14E-06 

OCT1_07 539 13158 4.1 77.80 0.82 1.97E-06 

OCT1_04 345 8439 4.09 76.56 0.818 1.21E-04 

LHX3_01 468 11982 3.91 76.31 0.782 3.90E-08 

CDP_02 525 13440 3.91 76.55 0.782 5.96E-09 

POU3F2_01 601 16211 3.71 76.38 0.742 4.30E-14 

EVI1_05 181 4874 3.71 76.67 0.742 3.78E-05 

NKX3A_01 372 10468 3.55 76.74 0.71 1.12E-11 

FOXJ2_02 484 14006 3.46 76.44 0.692 5.03E-17 
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Appendix D - Overrepresentation of TFBS in 
unmethylated genome sequence 
 
TFBS motifs are taken from the non redundant version of the JASPAR vertebrate core 
database. For the PSSM of each motif the odds ratio and the log odds ratio are reported. 
The list is sorted descending by the strength of overrepresentation in sequences that obey 
the unmethylated equilibrium distribution. 
 
 

Rank TFBS Name 
Odds-
Ratio 

Log 
Odds 

1 DAL81 67.59394 6.078822 

2 RSC30 24.19466 4.596617 

3 PDR3 17.12353 4.097909 

4 RSC3 14.12888 3.820575 

5 IME1 13.82657 3.789372 

6 RDS1 10.41102 3.380039 

7 SWI4 8.482207 3.08444 

8 MBP1::SWI6 7.578759 2.921962 

9 MIZF 7.335728 2.87494 

10 UGA3 6.71728 2.747877 

11 STP1 6.605268 2.723617 

12 LEU3 6.503181 2.701146 

13 YLL054C 6.424421 2.683566 

14 STP2 5.754297 2.52464 

15 PDR1 5.477768 2.453588 

16 SUT1 5.361134 2.422538 

17 E2F1 5.333781 2.415158 

18 MBP1 5.22171 2.384522 

19 NHP10 4.881334 2.287276 

20 GAL4 4.745383 2.246525 

21 UME6 4.665303 2.221971 

22 CHA4 4.633145 2.211992 

23 TEA1 4.578067 2.194738 

24 PUT3 4.526733 2.17847 

25 CAT8 4.398683 2.137072 

26 SNT2 4.36613 2.126355 

27 RDS2 4.319054 2.110715 

28 YER184C 4.219052 2.076919 

29 SIP4 4.215525 2.075712 

30 YJL103C 4.199741 2.0703 

31 HAL9 4.156235 2.055277 

32 YBR239C 4.147621 2.052284 

33 TBS1 4.071869 2.025691 

34 RDR1 4.06493 2.023231 

35 ASG1 4.056344 2.02018 

36 CEP3 4.004818 2.001737 
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37 XBP1 3.959635 1.985368 

38 STB4 3.94848 1.981298 

39 YLR278C 3.910654 1.96741 

40 PDR8 3.900859 1.963792 

41 OAF1 3.8895 1.959585 

42 ELK4 3.848583 1.944327 

43 Deaf1 3.847955 1.944092 

44 YNR063W 3.843349 1.942364 

45 STB5 3.825168 1.935523 

46 DAL82 3.823474 1.934884 

47 STP3 3.820866 1.933899 

48 STP4 3.809575 1.92963 

49 FHL1 3.774212 1.916176 

50 Hkb 3.748139 1.906175 

51 bZIP911 3.741861 1.903756 

52 ECM22 3.707702 1.890525 

53 YKL222C 3.704265 1.889187 

54 HAP1 3.69831 1.886866 

55 Egr1 3.695222 1.885661 

56 YDR520C 3.623047 1.857203 

57 Brk 3.536054 1.82214 

58 HIF1A::ARNT 3.53456 1.82153 

59 GSM1 3.37006 1.752774 

60 ARO80 3.346785 1.742776 

61 UPC2 3.344767 1.741906 

62 GABPA 3.327055 1.734246 

63 HAC1 3.222956 1.688385 

64 SUT2 3.21087 1.682964 

65 ABF1 3.199971 1.678059 

66 Btd 3.170028 1.664496 

67 Arnt 3.13557 1.648728 

68 CBF1 3.131628 1.646913 

69 bZIP910 3.121059 1.642035 

70 YAP3 3.109702 1.636776 

71 IXR1 3.04807 1.607896 

72 YDR026C 2.970045 1.570485 

73 Abi4 2.943993 1.557774 

74 YRM1 2.929688 1.550747 

75 H 2.9095 1.540771 

76 YRR1 2.855842 1.513916 

77 Arnt::Ahr 2.764196 1.46686 

78 Mycn 2.633639 1.397058 

79 YPR196W 2.624127 1.391837 

80 CST6 2.438098 1.285756 

81 LYS14 2.416138 1.272703 

82 TYE7 2.350596 1.233027 

83 EmBP-1 2.331017 1.22096 

84 RPN4 2.328342 1.219303 

85 TOD6 2.306597 1.205766 

86 Myc 2.277505 1.187454 
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87 MAX 2.231237 1.157844 

88 DOT6 2.218969 1.14989 

89 RGT1 2.202312 1.139019 

90 RTG3 2.193796 1.133429 

91 MYC::MAX 2.056461 1.040163 

92 USF1 2.015267 1.010971 

93 Zfx 2.008058 1.005801 

94 PHO4 1.906954 0.93127 

95 ELK1 1.901499 0.927137 

96 OPI1 1.89748 0.924085 

97 SKO1 1.857292 0.893201 

98 Opa 1.801429 0.849142 

99 TFAP2A 1.793237 0.842566 

100 Eip74EF 1.792597 0.842051 

101 CREB1 1.725464 0.786985 

102 ASH1 1.678963 0.747571 

103 Run::Bgb 1.666133 0.736504 

104 TP53 1.663463 0.734189 

105 Pax5 1.660415 0.731544 

106 Che-1 1.636427 0.710549 

107 MIG2 1.631432 0.706139 

108 TGA1A 1.619272 0.695346 

109 SKN7 1.601776 0.679672 

110 YAP1 1.58366 0.663263 

111 MIG3 1.570622 0.651336 

112 dl_1 1.566872 0.647888 

113 IRF2 1.544383 0.627031 

114 SP1 1.542081 0.624879 

115 MET31 1.541623 0.62445 

116 Gamyb 1.527936 0.611584 

117 MIG1 1.507739 0.592386 

118 Usp 1.504089 0.58889 

119 NFKB1 1.489428 0.574758 

120 NHLH1 1.488007 0.573382 

121 DAL80 1.487193 0.572592 

122 PLAG1 1.461019 0.546975 

123 REB1 1.453522 0.539553 

124 ZMS1 1.448373 0.534433 

125 Gt 1.444209 0.53028 

126 RELA 1.38685 0.471812 

127 Myb 1.364474 0.448345 

128 REL 1.336639 0.41861 

129 CRZ1 1.329676 0.411075 

130 Pax6 1.318112 0.398473 

131 NF-kappaB 1.31739 0.397682 

132 YPR015C 1.305493 0.384594 

133 EWSR1-FLI1 1.305427 0.384522 

134 YGR067C 1.281075 0.357355 

135 EDS1 1.277652 0.353495 

136 lin-14 1.27562 0.351199 
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137 BAS1 1.25974 0.333126 

138 Klf4 1.257551 0.330617 

139 YML081W 1.237606 0.307553 

140 ARG80 1.236828 0.306645 

141 Mafb 1.228359 0.296732 

142 id1 1.2149 0.280837 

143 ETS1 1.196565 0.258899 

144 dl_2 1.189497 0.250351 

145 MSN2 1.188369 0.248983 

146 IRF1 1.187641 0.248098 

147 AFT2 1.165851 0.221384 

148 MZF1_1-4 1.157279 0.210737 

149 Su(H) 1.141307 0.190687 

150 YPR022C 1.141052 0.190365 

151 Macho-1 1.14083 0.190084 

152 Trl 1.13526 0.183022 

153 YPR013C 1.132286 0.179238 

154 SPIB 1.123779 0.168358 

155 RIM101 1.11833 0.161346 

156 CTCF 1.117496 0.16027 

157 ADR1 1.107553 0.147376 

158 MSN4 1.104662 0.143605 

159 Kr 1.103068 0.141521 

160 YAP6 1.098523 0.135565 

161 HMG-1 1.082991 0.115022 

162 GAT1 1.082448 0.114298 

163 THI2 1.082207 0.113976 

164 RGM1 1.081687 0.113284 

165 RXRA::VDR 1.077706 0.107964 

166 HLF 1.071744 0.09996 

167 MZF1_5-13 1.065885 0.092052 

168 HAP5 1.062988 0.088125 

169 GZF3 1.060588 0.084865 

170 mab-3 1.05847 0.08198 

171 GCR2 1.044876 0.063332 

172 MET32 1.043414 0.061312 

173 Tcfcp2l 1.037517 0.053134 

174 Ar 1.037327 0.052871 

175 Oc 1.026213 0.037331 

176 Pax2 1.025912 0.036907 

177 ARR10 1.025577 0.036436 

178 Spz1 1.024094 0.034348 

179 Myb,Ph3 1.02281 0.032538 

180 INSM1 1.019388 0.027704 

181 EBF1 1.008873 0.012744 

182 GATA2 1.007664 0.011014 

183 FEV 1.007177 0.010317 

184 GCR1 1.007019 0.010091 

185 Zfp423 1.003631 0.005229 

186 Stat3 1.00052 0.00075 
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187 Dof3 0.999948 -7.5E-05 

188 BRCA1 0.99944 -0.00081 

189 Ovo 0.997185 -0.00407 

190 Prd 0.997185 -0.00407 

191 MCM1 0.99706 -0.00425 

192 Bcd 0.989191 -0.01568 

193 ACE2 0.987584 -0.01802 

194 ELF5 0.985656 -0.02084 

195 STAT1 0.984537 -0.02248 

196 Ptx1 0.982087 -0.02608 

197 FOXC1 0.981429 -0.02704 

198 NFYA 0.978348 -0.03158 

199 RFX1 0.978094 -0.03196 

200 Ct 0.977359 -0.03304 

201 Gsc 0.977321 -0.0331 

202 RPH1 0.977237 -0.03322 

203 GLN3 0.970655 -0.04297 

204 ZNF354C 0.967976 -0.04696 

205 YER130C 0.967462 -0.04772 

206 SRD1 0.967144 -0.0482 

207 STE12 0.965965 -0.04996 

208 MNB1A 0.960696 -0.05785 

209 TBP 0.960309 -0.05843 

210 ECM23 0.959158 -0.06016 

211 REI1 0.958428 -0.06126 

212 GIS1 0.957122 -0.06323 

213 RME1 0.956455 -0.06423 

214 SPI1 0.955369 -0.06587 

215 PBF 0.951112 -0.07231 

216 Dof2 0.943387 -0.08408 

217 RXR::RAR_DR5 0.940224 -0.08892 

218 GAT3 0.940046 -0.0892 

219 NR3C1 0.935855 -0.09564 

220 TBF1 0.935832 -0.09568 

221 NRG1 0.933248 -0.09967 

222 REST 0.927506 -0.10857 

223 ESR1 0.926872 -0.10956 

224 MAC1 0.926008 -0.1109 

225 HNF4A 0.921543 -0.11788 

226 NDT80 0.919688 -0.12078 

227 GATA3 0.916015 -0.12656 

228 ABF2 0.915085 -0.12802 

229 ZEB1 0.906649 -0.14138 

230 TEAD1 0.906557 -0.14153 

231 Z 0.904816 -0.1443 

232 CIN5 0.904459 -0.14487 

233 NFIC 0.902247 -0.14841 

234 GAT4 0.90206 -0.14871 

235 FOXF2 0.901814 -0.1491 

236 Hb 0.901181 -0.15011 
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237 Sd 0.895248 -0.15964 

238 B-H1 0.893907 -0.1618 

239 AFT1 0.883846 -0.17813 

240 TEC1 0.881578 -0.18184 

241 NR4A2 0.881162 -0.18252 

242 Twi 0.878793 -0.18641 

243 Esrrb 0.877395 -0.1887 

244 AZF1 0.873484 -0.19515 

245 AG 0.872391 -0.19695 

246 SPT23 0.871138 -0.19903 

247 HAP2 0.870815 -0.19956 

248 PHD1 0.866314 -0.20704 

249 En1 0.864821 -0.20953 

250 HAP4 0.864524 -0.21002 

251 NFATC2 0.863911 -0.21105 

252 PPARG::RXRA 0.861203 -0.21558 

253 NFE2L1::MafG 0.860913 -0.21606 

254 YY1 0.858569 -0.22 

255 HMG-I/Y 0.855898 -0.22449 

256 Nr2e3 0.853114 -0.22919 

257 Tal1::Gata1 0.852445 -0.23032 

258 HOXA5 0.851923 -0.23121 

259 Six4 0.85152 -0.23189 

260 Ddit3::Cebpa 0.850783 -0.23314 

261 Hand1::Tcfe2a 0.84668 -0.24011 

262 HSF1 0.842337 -0.24753 

263 MOT3 0.840792 -0.25018 

264 ARG81 0.840732 -0.25028 

265 Nkx3-2 0.840611 -0.25049 

266 SWI5 0.839811 -0.25186 

267 Optix 0.834396 -0.2612 

268 USV1 0.834175 -0.26158 

269 Gata1 0.833243 -0.26319 

270 Odd 0.831845 -0.26561 

271 CEBPA 0.829446 -0.26978 

272 Lag1 0.828811 -0.27089 

273 Gfi 0.820878 -0.28476 

274 CUP2 0.820316 -0.28575 

275 SPT2 0.819234 -0.28765 

276 CAD1 0.818074 -0.2897 

277 ttx-3::ceh-10 0.818043 -0.28975 

278 FKH2 0.816373 -0.2927 

279 ZAP1 0.816319 -0.2928 

280 Ceh-22 0.815917 -0.29351 

281 Exd 0.815754 -0.29379 

282 Ttk 0.813183 -0.29835 

283 Lbe 0.811773 -0.30085 

284 Pdx1 0.81122 -0.30184 

285 FOXD1 0.807919 -0.30772 

286 Bsh 0.806283 -0.31064 
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287 Prrx2 0.805953 -0.31123 

288 Pax4 0.804479 -0.31387 

289 HAP3 0.803722 -0.31523 

290 exex 0.803363 -0.31588 

291 exex 0.803363 -0.31588 

292 So 0.801989 -0.31835 

293 NFIL3 0.801929 -0.31845 

294 Pan 0.798816 -0.32406 

295 Lbl 0.797571 -0.32632 

296 TLX1::NFIC 0.795705 -0.3297 

297 ESR2 0.795481 -0.3301 

298 SRF 0.793959 -0.33286 

299 C15 0.793783 -0.33318 

300 MET28 0.793099 -0.33443 

301 Hth 0.792099 -0.33625 

302 Sna 0.791549 -0.33725 

303 Vsx2 0.789858 -0.34034 

304 Tll 0.788682 -0.34248 

305 Dll 0.788399 -0.343 

306 SOX10 0.787032 -0.34551 

307 Dr 0.786887 -0.34577 

308 znf143 0.78312 -0.35269 

309 Hmx 0.781982 -0.35479 

310 CG11085 0.781099 -0.35642 

311 Nobox 0.779845 -0.35874 

312 OdsH 0.779406 -0.35955 

313 OdsH 0.779406 -0.35955 

314 PPARG 0.779173 -0.35998 

315 Nkx2-5 0.778513 -0.36121 

316 SFL1 0.778004 -0.36215 

317 MGA1 0.777967 -0.36222 

318 Bap 0.777478 -0.36313 

319 HMRA2 0.775859 -0.36613 

320 RORA_1 0.775637 -0.36655 

321 RAP1 0.775131 -0.36749 

322 Ara 0.774531 -0.36861 

323 Ro 0.774263 -0.3691 

324 caup 0.774212 -0.3692 

325 Slbo 0.774032 -0.36953 

326 AP1 0.772817 -0.3718 

327 Eve 0.772096 -0.37315 

328 FZF1 0.771968 -0.37339 

329 ARID3A 0.771288 -0.37466 

330 Hltf 0.771272 -0.37469 

331 PEND 0.769366 -0.37826 

332 br_Z2 0.768769 -0.37938 

333 NR2F1 0.768729 -0.37945 

334 CG9876 0.767968 -0.38088 

335 unpg 0.767372 -0.382 

336 Zen2 0.76732 -0.3821 
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337 TOS8 0.767155 -0.38241 

338 CG7056 0.767111 -0.38249 

339 br_Z3 0.766466 -0.38371 

340 Mirr 0.765766 -0.38502 

341 Vvl 0.765375 -0.38576 

342 Pph13 0.764999 -0.38647 

343 Ind 0.764898 -0.38666 

344 E5 0.763649 -0.38902 

345 Tin 0.763419 -0.38945 

346 Abd-B 0.763131 -0.39 

347 Kni 0.762726 -0.39076 

348 SOX9 0.762714 -0.39079 

349 NKX3-1 0.762674 -0.39086 

350 Otp 0.762663 -0.39088 

351 RUNX1 0.761971 -0.39219 

352 PHO2 0.761901 -0.39233 

353 repo 0.761351 -0.39337 

354 Vsx1 0.760108 -0.39572 

355 Lim3 0.759088 -0.39766 

356 YOX1 0.756856 -0.40191 

357 Unc-4 0.75665 -0.4023 

358 En 0.75656 -0.40247 

359 CG11294 0.756403 -0.40277 

360 Al 0.756349 -0.40288 

361 Slou 0.755834 -0.40386 

362 B-H2 0.755829 -0.40387 

363 Lim1 0.755637 -0.40423 

364 Ap 0.755395 -0.4047 

365 PHDP 0.755173 -0.40512 

366 Rx 0.754463 -0.40648 

367 Abd-A 0.754254 -0.40688 

368 CG32532 0.754188 -0.407 

369 NK7,1 0.75418 -0.40702 

370 CG13424 0.754033 -0.4073 

371 ems 0.753489 -0.40834 

372 Awh 0.753093 -0.4091 

373 CG18599 0.752838 -0.40959 

374 Hbn 0.75187 -0.41145 

375 CG34031 0.751191 -0.41275 

376 Btn 0.750557 -0.41397 

377 CG32105 0.750016 -0.41501 

378 HGTX 0.749937 -0.41516 

379 Lab 0.749861 -0.41531 

380 H2,0 0.748483 -0.41796 

381 CG15696 0.748377 -0.41816 

382 Oct 0.748362 -0.41819 

383 Tup 0.748112 -0.41867 

384 Inv 0.747983 -0.41892 

385 Dfd 0.747457 -0.41994 

386 HCM1 0.747239 -0.42036 
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387 Zen 0.747119 -0.42059 

388 AGL3 0.746098 -0.42256 

389 Vis 0.745854 -0.42304 

390 Pb 0.745665 -0.4234 

391 INO2 0.74548 -0.42376 

392 YAP5 0.745354 -0.424 

393 Cad 0.74513 -0.42444 

394 Myf 0.744634 -0.4254 

395 NR1H2::RXRA 0.74363 -0.42734 

396 Ftz 0.743116 -0.42834 

397 Ubx 0.741362 -0.43175 

398 YHP1 0.740487 -0.43345 

399 Antp 0.739659 -0.43507 

400 FOXL1 0.739088 -0.43618 

401 Scr 0.738591 -0.43715 

402 SIG1 0.738442 -0.43744 

403 CG42234 0.737426 -0.43943 

404 SOK2 0.734336 -0.44549 

405 Vnd 0.734184 -0.44579 

406 FOXO3 0.733467 -0.4472 

407 ROX1 0.732667 -0.44877 

408 RREB1 0.73109 -0.45188 

409 achi 0.730567 -0.45291 

410 CG4328 0.730247 -0.45354 

411 MET4 0.729513 -0.45499 

412 SFP1 0.727421 -0.45914 

413 HNF1A 0.727287 -0.4594 

414 SUM1 0.726758 -0.46045 

415 ARR1 0.724973 -0.464 

416 slp1 0.724276 -0.46539 

417 YAP7 0.723321 -0.46729 

418 onecut 0.722886 -0.46816 

419 T 0.722109 -0.46971 

420 Sox17 0.721179 -0.47157 

421 ATHB-5 0.719688 -0.47456 

422 NFE2L2 0.719591 -0.47475 

423 MEF2A 0.717025 -0.4799 

424 Sox5 0.716026 -0.48192 

425 SRY 0.712366 -0.48931 

426 HNF1B 0.710516 -0.49306 

427 br_Z4 0.710085 -0.49394 

428 HAT5 0.703822 -0.50672 

429 Evi1 0.70012 -0.51433 

430 CUP9 0.690815 -0.53363 

431 INO4 0.688644 -0.53817 

432 Foxd3 0.688115 -0.53928 

433 D 0.6856 -0.54456 

434 RORA_2 0.685247 -0.5453 

435 RLM1 0.68332 -0.54937 

436 Lhx3 0.68327 -0.54947 
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437 CG11617 0.683107 -0.54982 

438 MATA1 0.683069 -0.5499 

439 TAL1::TCF3 0.682308 -0.55151 

440 STB3 0.680075 -0.55623 

441 squamosa 0.676005 -0.56489 

442 br_Z1 0.666923 -0.58441 

443 Cf2_II 0.659881 -0.59972 

444 GCN4 0.654738 -0.61101 

445 Fkh 0.653439 -0.61388 

446 SMP1 0.647859 -0.62625 

447 MATALPHA2 0.646171 -0.63001 

448 FOXI1 0.644423 -0.63392 

449 FOXA1 0.63746 -0.64959 

450 FKH1 0.63578 -0.6534 

451 Foxa2 0.628975 -0.66893 

452 Foxq1 0.627 -0.67346 

453 Sox2 0.617805 -0.69478 

454 PBX1 0.612739 -0.70666 

455 Nub 0.610197 -0.71265 

456 TBP 0.609175 -0.71507 

457 NHP6B 0.569872 -0.81129 

458 NHP6A 0.538871 -0.89199 

459 Pou5f1 0.532767 -0.90842 
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Appendix E – ALU consensus sequence 
 
ALU consensus sequence (RepBase 14.05): 
 
ggccgggcgcggtggctcacgcctgtaatcccagcactttgggaggccgaggcgggagg

attgcttgagcccaggagttcgagaccagcctgggcaacatagcgagaccccgtctcta

caaaaaatacaaaaattagccgggcgtggtggcgcgcgcctgtagtcccagctactcgg

gaggctgaggcaggaggatcgcttgagcccaggagttcgaggctgcagtgagctatgat

cgcgccactgcactccagcctgggcgacagagcgagaccctgtctcaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaa 
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Appendix F – Epigenetic neighborhood of genome 
regions with high EqiScore 
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Appendix G - Finite State Continuous Time Markov 
Chains 
 
Markov chains 

 
A number of stochastic problems in genome research can be approached by modeling 
them as markov chains. This conceptual tool is very versatile and can be applied in a 
variety of subtypes, which have been discussed in depth before (Karlin&Taylor;1975). 
 
The Finite State Continuous Time Markov Chains subtype is central for many models of 
DNA evolution, and therefore, the most important properties will be summarized below 
following p150-152 in (Karlin&Taylor;1975). 
 
Considering a finite state space S with labels 0 to N the continuous time Markov chain Xt 
(t > 0) is described by the transition probability matrix P with N+1 rows and columns. 
This transition probabilities are stationary. Thus, Pij(t) denotes the probability that Xt+s=j 
if Xs=i . In matrix notation we have P(t+s)=P(t)P(s) for t,s >0.  
This implies that evolution is a stable stochastic process. 
 
Under this assumption P(t) is continuous and can be described by its infinitesimal matrix 
Q that satisfies the differential equation P’(t) = P(t)Q= QP(t). Under the condition that 
P(0) equals the identity matrix I, a system of ordinary differential equations can be 
applied to compute P(t) by eQt. 
 
In other words, if we consider that state changes can not appear instantaneously, but at 
least take an infinitesimal small amount of time, the matrix Q fully describes P(t). 
 

Finally, from the properties of the model follows that ii

N

ijj

ij qq −=∑
≠= ,0

. Thus, from the rates 

that describe the state changes, we can compute the rate that describes the conservation of 
the state. It is worthwhile to note that the relative difference between the elements in Q 
characterize P(t) and that the scaling of their absolute values only impacts the unit in 
which t is measures. 
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Appendix H – Jonit probability of backmutation and 
conservation of CpG, TpG, CpA and TpA are independent 
from neighboring nucleotides 
 
Substitution models: We call the substitution model described in the main text Q2-
model, as its rate matrix pertains to dinucleotides. Its most important features are that (i) 
all transversion rates are expected to be equal and (ii) the only neighborhood-dependent 
process is the CpG decay effect (CpG -> TpG/CpA). 
 
Central model property: The probability that a CpG is still (or again) a CpG after time t 
> 0 has passed is independent from genomic neighborhood of the dinucleotide. 
 
 
Proof: 
 
1) The CpG dinucleotide is not influenced by its neighborhood, i.e. for XCGY, with X 
and Y being any of the four nucleotides A,C,G,T, neither X nor Y can be selected in a 
way to form a CpG that overlaps with the central CpG. 
 
2) By only applying transitions XCGY can be mutated into XTGY, XCAY and XTAY. 
These four patterns form a transition group.  For none of these X or Y can be selected 
such a way that a novel CG is formed, which overlaps with the central dinucleotide. 
Hence, within a context-independent transition group, the probability of conserving or 
reestablishing the original state of the central dinucleotide is independent from the 
context (context-independant transition group). 
 
3) There are three additional transition groups. The first group is reached by a 
transversion in the first position: XAGY, XGGY, XAAY and XGAY. The second group 
is reached by a transversion in the second position: XCCY, XTCY, XCTY and XTTY. 
The third group is reached by transversions in both positions: XACY, XGCY, XATY and 
XGTY. 
Within these transition groups only those positions that underwent a transversion (first 
nucleotide in first group 2, second nucleotide in second group and both nucleotides in the 
third group) , can be influenced by a neighboring nucleotide. Therefore, these three 
groups are context-dependant transition groups. Furthermore, the two central positions 
cannot influence each other, as no group member contains a central CpG. To return, to 
the original transition group, the nucleotide that can be influence by a neighbor, has to 
undergo a transversion. The probability of this event is independent from the transition 
state of this nucleotide (C to A transversion has equal probability as T to A transversion 
etc.). Hence, the probability to leave and return to a context-independant transition group 
is independent of the neighboring nucleotides and always equals an even number of 
transversions. 
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Neighter conservation 1) nor any chain of transitions 2) and transversions 3) enable a 
neighboring nucleotide to influence the probability that a CG is a CG after an arbitrary 
time interval q.e.d. 
 
Corollary: 
 
The probability that a CpA, TpG or TpA  is still (or again) a CpA, TpG or TpA, 
respectively, after time t > 0 has passed is independent from genomic neighborhood of 
the dinucleotide. 
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Appendix I – Epigenetic neighborhood of L-scored ALU 
repeats 
 
Overlap of RNA polymerase II binding sites and histone modifications with AluJudge 
predictions. Diagrams were generated from the output of the neighborhood analysis of 
the EpiExplorer tools (compare section 2.4.1).  
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Appendix J – Predicted and measured methylation of 
human promoters 
 
This table contains the database of Figure 5.11. Additionally the coordinates and the 
names of the associated genes of the promoters are given. 
 

Gene Chrom From To Strand Predicted Measured Difference 

A2M chr12 9,159,092 9,162,092 - 50.00% 61.10% -11.10% 

ABCC4 chr13 94,750,688 94,753,688 - 10.00% 2.79% 7.21% 

ABHD3 chr18 17,537,764 17,540,764 - 20.00% 4.16% 15.84% 

ACACB chr12 108,036,783 108,039,783 + 100.00% 81.98% 18.02% 

ACTR10 chr14 57,734,551 57,737,551 + 0.00% 4.04% -4.04% 

ACVR1B chr12 50,629,718 50,632,718 + 0.00% 5.30% -5.30% 

AICDA chr12 8,655,734 8,658,734 - 100.00% 88.19% 11.81% 

AKAP3 chr12 4,627,474 4,630,474 - 0.00% 3.69% -3.69% 

ALAS2 chrX 55,073,222 55,076,222 - 100.00% 86.96% 13.04% 

ALS2 chr2 202,353,157 202,356,157 - 20.00% 3.44% 16.56% 

AMMECR1 chrX 109,569,117 109,572,117 - 0.00% 87.66% -87.66% 

AMOT chrX 111,969,699 111,972,699 - 0.00% 1.29% -1.29% 

ANAPC5 chr12 120,321,082 120,324,082 - 10.00% 3.01% 6.99% 

ANKRD5 chr20 9,961,689 9,964,689 + 50.00% 8.42% 41.58% 

ANKRD9 chr14 102,044,889 102,047,889 - 10.00% 6.08% 3.92% 

AP4S1 chr14 30,562,063 30,565,063 + 20.00% 3.14% 16.86% 

APOBEC2 chr6 41,127,021 41,130,021 + 90.00% 89.15% 0.85% 

APOD chr3 196,791,365 196,794,365 - 100.00% 81.97% 18.03% 

AQP2 chr12 48,628,791 48,631,791 + 30.00% 89.85% -59.85% 

ARF6 chr14 49,427,560 49,430,560 + 0.00% 2.21% -2.21% 

ARHGAP5 chr14 31,613,071 31,616,071 + 0.00% 6.36% -6.36% 

ARPC2 chr2 218,788,062 218,791,062 + 10.00% 4.67% 5.33% 

ARVCF chr22 18,383,331 18,386,331 - 10.00% 5.87% 4.13% 

ASB1 chr2 238,998,122 239,001,122 + 10.00% 3.34% 6.66% 

ASB13 chr10 5,747,774 5,750,774 - 0.00% 6.04% -6.04% 

ASB8 chr12 46,860,263 46,863,263 - 60.00% 32.39% 27.61% 

ASB9 chrX 15,197,510 15,200,510 - 50.00% 50.65% -0.65% 

ASPH chr8 62,788,753 62,791,753 - 0.00% 3.48% -3.48% 

ATP2A2 chr12 109,200,944 109,203,944 + 0.00% 6.89% -6.89% 

ATP5G2 chr12 52,356,459 52,359,459 - 0.00% 3.36% -3.36% 

ATP6V0D2 chr8 87,066,668 87,069,668 + 30.00% 76.48% -46.48% 

ATP6V1H chr8 54,917,671 54,920,671 - 10.00% 6.20% 3.80% 

ATP7A chrX 77,050,850 77,053,850 + 0.00% 6.77% -6.77% 

ATP8B4 chr15 48,261,306 48,264,306 - 0.00% 11.48% -11.48% 

B3GAT2 chr6 71,722,462 71,725,462 - 10.00% 2.33% 7.67% 

BACH2 chr6 91,062,348 91,065,348 - 0.00% 2.24% -2.24% 

BAI3 chr6 69,399,980 69,402,980 + 0.00% 2.08% -2.08% 

BARD1 chr2 215,381,673 215,384,673 - 10.00% 1.72% 8.28% 

BATF chr14 75,056,521 75,059,521 + 0.00% 86.98% -86.98% 

BCOR chrX 39,920,526 39,923,526 - 0.00% 9.77% -9.77% 

BGN chrX 152,411,591 152,414,591 + 40.00% 82.10% -42.10% 
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BICD2 chr9 94,565,915 94,568,915 - 0.00% 3.49% -3.49% 

BMP2 chr20 6,694,311 6,697,311 + 0.00% 1.93% -1.93% 

BMPR2 chr2 202,947,904 202,950,904 + 0.00% 1.16% -1.16% 

BMX chrX 15,390,290 15,393,290 + 10.00% 86.18% -76.18% 

BRCA2 chr13 31,785,611 31,788,611 + 10.00% 5.02% 4.98% 

BRF2 chr8 37,825,617 37,828,617 - 30.00% 6.72% 23.28% 

BRP44L chr6 166,715,476 166,718,476 - 0.00% 2.05% -2.05% 

BRS3 chrX 135,395,712 135,398,712 + 100.00% 87.75% 12.25% 

BTBD3 chr20 11,817,371 11,820,371 + 0.00% 3.82% -3.82% 

BTK chrX 100,526,839 100,529,839 - 30.00% 80.18% -50.18% 

CABP1 chr12 119,560,738 119,563,738 + 0.00% 9.75% -9.75% 

CACNA1C chr12 1,948,213 1,951,213 + 80.00% 88.99% -8.99% 

CACNG3 chr16 24,172,375 24,175,375 + 10.00% 14.23% -4.23% 

CAPN6 chrX 110,399,407 110,402,407 - 30.00% 56.82% -26.82% 

CAPZA2 chr7 116,236,360 116,239,360 + 100.00% 86.20% 13.80% 

CARD10 chr22 36,244,495 36,247,495 - 10.00% 11.71% -1.71% 

CASP8 chr2 201,804,411 201,807,411 + 70.00% 14.39% 55.61% 

CBLL1 chr7 107,169,378 107,172,378 + 10.00% 2.29% 7.71% 

CBLN2 chr18 68,361,754 68,364,754 - 0.00% 5.57% -5.57% 

CCR6 chr6 167,443,285 167,446,285 + 90.00% 90.48% -0.48% 

CD28 chr2 204,277,443 204,280,443 + 90.00% 84.28% 5.72% 

CD2AP chr6 47,551,484 47,554,484 + 10.00% 2.19% 7.81% 

CD33 chr19 56,418,132 56,421,132 + 70.00% 85.01% -15.01% 

CD9 chr12 6,177,142 6,180,142 + 10.00% 12.50% -2.50% 

CDC5L chr6 44,461,240 44,464,240 + 20.00% 5.12% 14.88% 

CDH17 chr8 95,297,707 95,300,707 - 40.00% 35.31% 4.69% 

CDH20 chr18 57,149,968 57,152,968 + 20.00% 4.31% 15.69% 

CDH7 chr18 61,566,468 61,569,468 + 10.00% 3.80% 6.20% 

CDK8 chr13 25,724,276 25,727,276 + 30.00% 2.40% 27.60% 

CDKL1 chr14 49,951,929 49,954,929 - 100.00% 87.12% 12.88% 

CDKN3 chr14 53,931,317 53,934,317 + 0.00% 4.14% -4.14% 

CDX1 chr5 149,524,552 149,527,552 + 0.00% 11.41% -11.41% 

CECR6 chr22 15,981,257 15,984,257 - 0.00% 4.33% -4.33% 

CFL2 chr14 34,252,780 34,255,780 - 0.00% 4.36% -4.36% 

CFTR chr7 116,891,074 116,894,074 + 50.00% 84.21% -34.21% 

CGA chr6 87,860,543 87,863,543 - 70.00% 78.42% -8.42% 

CHGA chr14 92,457,178 92,460,178 + 20.00% 5.33% 14.67% 

CHGB chr20 5,838,076 5,841,076 + 0.00% 5.38% -5.38% 

CHM chrX 85,188,222 85,191,222 - 0.00% 3.47% -3.47% 

CHRDL1 chrX 109,924,942 109,927,942 - 10.00% 7.45% 2.55% 

CHST8 chr19 38,802,701 38,805,701 + 10.00% 4.77% 5.23% 

CIT chr12 118,798,478 118,801,478 - 10.00% 12.11% -2.11% 

CITED1 chrX 71,442,762 71,445,762 - 0.00% 1.35% -1.35% 

CKS2 chr9 91,113,933 91,116,933 + 10.00% 3.31% 6.69% 

CLCN5 chrX 49,571,965 49,574,965 + 0.00% 7.26% -7.26% 

CLDN1 chr3 191,521,958 191,524,958 - 0.00% 14.68% -14.68% 

CLDN2 chrX 106,028,050 106,031,050 + 100.00% 86.55% 13.45% 

CLDN5 chr22 17,894,068 17,897,068 - 40.00% 82.07% -42.07% 

CLIC5 chr6 46,155,091 46,158,091 - 100.00% 91.64% 8.36% 

CLTB chr5 175,775,176 175,778,176 - 0.00% 8.78% -8.78% 
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CMKLR1 chr12 107,256,248 107,259,248 - 20.00% 41.78% -21.78% 

CNGA3 chr2 98,327,050 98,330,050 + 10.00% 8.09% 1.91% 

CNGB3 chr8 87,824,019 87,827,019 - 100.00% 86.15% 13.85% 

CNR1 chr6 88,931,797 88,934,797 - 0.00% 1.46% -1.46% 

COL19A1 chr6 70,631,184 70,634,184 + 0.00% 2.90% -2.90% 

COL2A1 chr12 46,683,536 46,686,536 - 0.00% 2.93% -2.93% 

COL3A1 chr2 189,545,291 189,548,291 + 0.00% 26.00% -26.00% 

COL4A4 chr2 227,736,073 227,739,073 - 0.00% 2.61% -2.61% 

COL5A2 chr2 189,751,850 189,754,850 - 50.00% 26.11% 23.89% 

COL9A1 chr6 71,068,507 71,071,507 - 50.00% 81.59% -31.59% 

CPNE3 chr8 87,564,175 87,567,175 + 100.00% 89.84% 10.16% 

CPNE5 chr6 36,914,756 36,917,756 - 0.00% 3.69% -3.69% 

CREM chr10 35,453,725 35,456,725 + 30.00% 5.49% 24.51% 

CRISP2 chr6 49,788,258 49,791,258 - 0.00% 15.88% -15.88% 

CRYBA2 chr2 219,565,387 219,568,387 - 0.00% 7.69% -7.69% 

CSMD1 chr8 4,838,902 4,841,902 - 0.00% 2.54% -2.54% 

CSNK1A1 chr5 148,910,200 148,913,200 - 10.00% 4.67% 5.33% 

CSTF2 chrX 99,960,040 99,963,040 + 10.00% 3.96% 6.04% 

CSTL1 chr20 23,366,322 23,369,322 + 100.00% 88.96% 11.04% 

CTSG chr14 24,114,306 24,117,306 - 50.00% 61.93% -11.93% 

CUBN chr10 17,210,836 17,213,836 - 70.00% 30.58% 39.42% 

CUL2 chr10 35,418,576 35,421,576 - 0.00% 15.33% -15.33% 

CXCL14 chr5 134,941,868 134,944,868 - 10.00% 9.28% 0.72% 

CXCR3 chrX 70,754,092 70,757,092 - 80.00% 58.18% 21.82% 

CYP20A1 chr2 203,809,908 203,812,908 + 0.00% 2.87% -2.87% 

CYP27A1 chr2 219,352,716 219,355,716 + 20.00% 9.95% 10.05% 

CYP2S1 chr19 46,388,955 46,391,955 + 30.00% 12.52% 17.48% 

DAAM1 chr14 58,723,117 58,726,117 + 0.00% 1.58% -1.58% 

DACH2 chrX 85,288,111 85,291,111 + 10.00% 5.71% 4.29% 

DACT1 chr14 58,168,438 58,171,438 + 100.00% 62.08% 37.92% 

DAPK1 chr9 89,299,963 89,302,963 + 0.00% 8.71% -8.71% 

DCT chr13 93,928,937 93,931,937 - 60.00% 82.35% -22.35% 

DCX chrX 110,541,259 110,544,259 - 100.00% 66.08% 33.92% 

DDX3X chrX 41,075,595 41,078,595 + 0.00% 1.74% -1.74% 

DEFB1 chr8 6,721,954 6,724,954 - 90.00% 85.01% 4.99% 

DES chr2 219,989,343 219,992,343 + 10.00% 10.39% -0.39% 

DHRS4 chr14 23,490,635 23,493,635 + 30.00% 10.71% 19.29% 

DICER1 chr14 94,693,100 94,696,100 - 0.00% 7.37% -7.37% 

DIO2 chr14 79,922,853 79,925,853 - 100.00% 84.25% 15.75% 

DLL1 chr6 170,440,486 170,443,486 - 0.00% 1.15% -1.15% 

DMBT1 chr10 124,308,171 124,311,171 + 80.00% 80.41% -0.41% 

DNAJB7 chr22 39,587,076 39,590,076 - 30.00% 84.16% -54.16% 

DNAJC1 chr10 22,331,704 22,334,704 - 30.00% 6.20% 23.80% 

DNPEP chr2 220,293,637 220,296,637 - 80.00% 59.76% 20.24% 

DPF3 chr14 72,429,562 72,432,562 - 0.00% 3.75% -3.75% 

DPYSL3 chr5 146,868,812 146,871,812 - 20.00% 12.26% 7.74% 

DSC1 chr18 26,995,817 26,998,817 - 70.00% 76.42% -6.42% 

DSC2 chr18 26,935,376 26,938,376 - 0.00% 6.57% -6.57% 

DSTN chr20 17,496,508 17,499,508 + 10.00% 2.62% 7.38% 

DTNA chr18 30,325,252 30,328,252 + 10.00% 2.61% 7.39% 
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DUSP4 chr8 29,263,104 29,266,104 - 0.00% 1.17% -1.17% 

DUSP9 chrX 152,559,140 152,562,140 + 10.00% 10.34% -0.34% 

EGFL6 chrX 13,495,645 13,498,645 + 0.00% 9.49% -9.49% 

EGR1 chr5 137,827,068 137,830,068 + 0.00% 1.17% -1.17% 

EML1 chr14 99,271,783 99,274,783 + 40.00% 82.86% -42.86% 

EMP2 chr16 10,581,056 10,584,056 - 20.00% 4.93% 15.07% 

ENPP5 chr6 46,245,667 46,248,667 - 0.00% 7.44% -7.44% 

EPC1 chr10 32,706,732 32,709,732 - 10.00% 20.71% -10.71% 

ERBB4 chr2 213,110,810 213,113,810 - 0.00% 2.17% -2.17% 

ERN2 chr16 23,631,322 23,634,322 - 20.00% 23.57% -3.57% 

ESRRB chr14 75,844,710 75,847,710 + 20.00% 49.76% -29.76% 

EYA1 chr8 72,436,021 72,439,021 - 20.00% 5.55% 14.45% 

FABP4 chr8 82,557,053 82,560,053 - 100.00% 85.09% 14.91% 

FABP5 chr8 82,353,153 82,356,153 + 0.00% 3.23% -3.23% 

FBLN5 chr14 91,483,084 91,486,084 - 10.00% 13.67% -3.67% 

FBN1 chr15 46,724,338 46,727,338 - 0.00% 2.59% -2.59% 

FBXO25 chr8 344,428 347,428 + 20.00% 4.68% 15.32% 

FGD2 chr6 37,079,400 37,082,400 + 40.00% 87.18% -47.18% 

FGF1 chr5 142,056,801 142,059,801 - 50.00% 75.68% -25.68% 

FGF13 chrX 138,131,605 138,134,605 - 20.00% 87.88% -67.88% 

FGF23 chr12 4,358,155 4,361,155 - 40.00% 83.08% -43.08% 

FGF7 chr15 47,500,585 47,503,585 + 100.00% 63.68% 36.32% 

FGF9 chr13 21,141,522 21,144,522 + 0.00% 1.41% -1.41% 

FHL1 chrX 135,055,225 135,058,225 + 10.00% 2.91% 7.09% 

FHL5 chr6 97,115,145 97,118,145 + 40.00% 85.41% -45.41% 

FKBP11 chr12 47,605,524 47,608,524 - 50.00% 49.00% 1.00% 

FKBP5 chr6 35,803,338 35,806,338 - 10.00% 15.38% -5.38% 

FLT1 chr13 27,966,265 27,969,265 - 0.00% 2.10% -2.10% 

FN1 chr2 216,008,140 216,011,140 - 0.00% 2.62% -2.62% 

FNTB chr14 64,521,191 64,524,191 + 10.00% 8.60% 1.40% 

FOS chr14 74,813,230 74,816,230 + 0.00% 1.13% -1.13% 

FOXA1 chr14 37,137,996 37,140,996 - 10.00% 4.75% 5.25% 

FOXA2 chr20 22,513,093 22,516,093 - 10.00% 1.74% 8.26% 

FOXN4 chr12 108,230,408 108,233,408 - 0.00% 1.96% -1.96% 

FOXP2 chr7 113,511,618 113,514,618 + 0.00% 1.26% -1.26% 

FOXP3 chrX 49,007,232 49,010,232 - 50.00% 89.27% -39.27% 

FOXP4 chr6 41,620,142 41,623,142 + 10.00% 2.66% 7.34% 

FZD5 chr2 208,341,532 208,344,532 - 0.00% 1.83% -1.83% 

FZD7 chr2 202,605,555 202,608,555 + 0.00% 1.43% -1.43% 

GABRA3 chrX 151,369,993 151,372,993 - 10.00% 29.46% -19.46% 

GABRQ chrX 151,555,293 151,558,293 + 0.00% 5.83% -5.83% 

GADD45G chr9 91,407,748 91,410,748 + 0.00% 1.13% -1.13% 

GALC chr14 87,528,762 87,531,762 - 0.00% 3.51% -3.51% 

GALR1 chr18 73,089,493 73,092,493 + 0.00% 1.72% -1.72% 

GAS1 chr9 88,750,924 88,753,924 - 0.00% 1.29% -1.29% 

GATM chr15 43,480,708 43,483,708 - 0.00% 1.07% -1.07% 

GBX2 chr2 236,740,751 236,743,751 - 0.00% 1.20% -1.20% 

GEM chr8 95,342,754 95,345,754 - 30.00% 14.39% 15.61% 

GEMIN7 chr19 50,272,370 50,275,370 + 0.00% 21.05% -21.05% 

GJA10 chr6 90,658,909 90,661,909 + 40.00% 83.44% -43.44% 
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GLO1 chr6 38,777,895 38,780,895 - 0.00% 11.07% -11.07% 

GLP1R chr6 39,122,552 39,125,552 + 20.00% 11.88% 8.12% 

GLRA2 chrX 14,455,341 14,458,341 + 20.00% 21.15% -1.15% 

GLS chr2 191,451,798 191,454,798 + 10.00% 1.67% 8.33% 

GNPDA1 chr5 141,371,790 141,374,790 - 10.00% 12.27% -2.27% 

GNPNAT1 chr14 52,327,136 52,330,136 - 10.00% 5.21% 4.79% 

GOLGA1 chr9 126,749,113 126,752,113 - 100.00% 87.63% 12.37% 

GOLGA5 chr14 92,328,329 92,331,329 + 10.00% 8.49% 1.51% 

GPHN chr14 66,041,878 66,044,878 + 20.00% 8.83% 11.17% 

GPM6B chrX 13,865,678 13,868,678 - 0.00% 2.93% -2.93% 

GPR1 chr2 206,790,016 206,793,016 - 0.00% 75.66% -75.66% 

GPR119 chrX 129,346,192 129,349,192 - 30.00% 86.89% -56.89% 

GPR12 chr13 26,231,922 26,234,922 - 20.00% 6.56% 13.44% 

GPR18 chr13 98,710,999 98,713,999 - 100.00% 87.56% 12.44% 

GPR26 chr10 125,413,861 125,416,861 + 0.00% 5.78% -5.78% 

GPR63 chr6 97,391,074 97,394,074 - 10.00% 4.04% 5.96% 

GPR64 chrX 19,049,676 19,052,676 - 0.00% 4.11% -4.11% 

GPR85 chr7 112,514,069 112,517,069 - 40.00% 17.47% 22.53% 

GRIA3 chrX 122,143,687 122,146,687 + 20.00% 4.69% 15.31% 

GRPR chrX 16,049,600 16,052,600 + 0.00% 65.68% -65.68% 

GSC chr14 94,305,315 94,308,315 - 0.00% 1.46% -1.46% 

GTF2A1 chr14 80,756,474 80,759,474 - 0.00% 2.53% -2.53% 

GTF3A chr13 26,894,681 26,897,681 + 20.00% 8.50% 11.50% 

GTF3C1 chr16 27,467,752 27,470,752 - 20.00% 7.51% 12.49% 

GTPBP4 chr10 1,022,338 1,025,338 + 10.00% 4.28% 5.72% 

GUCY2F chrX 108,610,957 108,613,957 - 40.00% 83.16% -43.16% 

H2AFY chr5 134,762,503 134,765,503 - 0.00% 3.11% -3.11% 

HAO1 chr20 7,868,121 7,871,121 - 80.00% 90.77% -10.77% 

HBP1 chr7 106,594,642 106,597,642 + 10.00% 1.32% 8.68% 

HCCS chrX 11,037,342 11,040,342 + 20.00% 8.07% 11.93% 

HDC chr15 48,344,551 48,347,551 - 60.00% 81.46% -21.46% 

HDLBP chr2 241,904,149 241,907,149 - 30.00% 6.34% 23.66% 

HEY1 chr8 80,841,653 80,844,653 - 0.00% 1.79% -1.79% 

HIF1A chr14 61,229,984 61,232,984 + 0.00% 2.59% -2.59% 

HMGB1 chr13 30,088,734 30,091,734 - 0.00% 1.35% -1.35% 

HMGB3 chrX 149,897,640 149,900,640 + 100.00% 82.61% 17.39% 

HNF4G chr8 76,480,704 76,483,704 + 10.00% 1.76% 8.24% 

HOXC13 chr12 52,616,802 52,619,802 + 0.00% 1.56% -1.56% 

HRASLS chr3 194,439,608 194,442,608 + 10.00% 3.77% 6.23% 

HS6ST2 chrX 131,922,093 131,925,093 - 100.00% 88.44% 11.56% 

HTR2B chr2 231,697,076 231,700,076 - 80.00% 87.58% -7.58% 

HTR2C chrX 113,722,807 113,725,807 + 0.00% 1.14% -1.14% 

HTR4 chr5 148,035,991 148,038,991 - 100.00% 49.33% 50.67% 

ICOS chr2 204,507,716 204,510,716 + 70.00% 87.11% -17.11% 

IDH1 chr2 208,838,043 208,841,043 - 10.00% 3.14% 6.86% 

IFRD1 chr7 111,848,259 111,851,259 + 100.00% 78.98% 21.02% 

IGBP1 chrX 69,268,024 69,271,024 + 10.00% 7.64% 2.36% 

IGSF1 chrX 130,360,358 130,363,358 - 100.00% 64.70% 35.30% 

IL1R1 chr2 102,045,436 102,048,436 + 60.00% 85.36% -25.36% 

IL1RAP chr3 191,712,534 191,715,534 + 10.00% 4.63% 5.37% 
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IL1RN chr2 113,579,262 113,582,262 + 100.00% 86.27% 13.73% 

IL21R chr16 27,319,187 27,322,187 + 50.00% 85.72% -35.72% 

IL7 chr8 79,879,313 79,882,313 - 20.00% 5.27% 14.73% 

IL9 chr5 135,258,415 135,261,415 - 100.00% 77.07% 22.93% 

INPP1 chr2 190,914,441 190,917,441 + 10.00% 8.36% 1.64% 

IRS1 chr2 227,371,719 227,374,719 - 0.00% 1.12% -1.12% 

ITGAV chr2 187,161,035 187,164,035 + 0.00% 4.80% -4.80% 

ITM2A chrX 78,508,820 78,511,820 - 0.00% 14.67% -14.67% 

ITPR3 chr6 33,694,500 33,697,500 + 10.00% 4.98% 5.02% 

JAG1 chr20 10,601,608 10,604,608 - 0.00% 1.52% -1.52% 

KCNA1 chr12 4,887,334 4,890,334 + 0.00% 1.94% -1.94% 

KCNA6 chr12 4,786,603 4,789,603 + 0.00% 6.14% -6.14% 

KCNE1L chrX 108,754,049 108,757,049 - 10.00% 10.63% -0.63% 

KCNE4 chr2 223,622,776 223,625,776 + 40.00% 31.62% 8.38% 

KLF7 chr2 207,739,236 207,742,236 - 0.00% 2.26% -2.26% 

KLHDC2 chr14 49,302,076 49,305,076 + 10.00% 5.19% 4.81% 

KLK4 chr19 56,104,806 56,107,806 - 40.00% 34.35% 5.65% 

KTN1 chr14 55,093,543 55,096,543 + 100.00% 85.82% 14.18% 

LAMA3 chr18 19,521,560 19,524,560 + 0.00% 4.83% -4.83% 

LANCL1 chr2 211,049,621 211,052,621 - 50.00% 26.43% 23.57% 

LECT2 chr5 135,317,622 135,320,622 - 100.00% 58.20% 41.80% 

LIPG chr18 45,340,425 45,343,425 + 0.00% 3.81% -3.81% 

LMAN1 chr18 55,176,483 55,179,483 - 20.00% 3.93% 16.07% 

LRRC15 chr3 195,570,761 195,573,761 - 70.00% 84.57% -14.57% 

LTA chr6 31,645,810 31,648,810 + 50.00% 88.51% -38.51% 

LTBP2 chr14 74,148,059 74,151,059 - 20.00% 5.60% 14.40% 

LYN chr8 56,952,926 56,955,926 + 10.00% 2.39% 7.61% 

M6PR chr12 8,992,818 8,995,818 - 10.00% 2.55% 7.45% 

MAB21L1 chr13 34,947,832 34,950,832 - 0.00% 2.68% -2.68% 

MAG chr19 40,472,868 40,475,868 + 90.00% 86.95% 3.05% 

MAGEB2 chrX 30,141,598 30,144,598 + 40.00% 19.82% 20.18% 

MAL chr2 95,053,149 95,056,149 + 10.00% 6.41% 3.59% 

MALT1 chr18 54,487,598 54,490,598 + 0.00% 3.07% -3.07% 

MAP3K10 chr19 45,387,491 45,390,491 + 0.00% 3.93% -3.93% 

MAP3K12 chr12 52,179,114 52,182,114 - 0.00% 1.11% -1.11% 

MAP3K7 chr6 91,352,507 91,355,507 - 0.00% 1.27% -1.27% 

MAP3K9 chr14 70,344,976 70,347,976 - 0.00% 2.06% -2.06% 

MAPK4 chr18 46,338,482 46,341,482 + 10.00% 3.08% 6.92% 

MAPRE2 chr18 30,808,890 30,811,890 + 0.00% 5.34% -5.34% 

MAS1 chr6 160,245,964 160,248,964 + 100.00% 86.14% 13.86% 

MASP1 chr3 188,491,504 188,494,504 - 100.00% 85.51% 14.49% 

MATR3 chr5 138,635,340 138,638,340 + 0.00% 6.92% -6.92% 

MAX chr14 64,638,166 64,641,166 - 0.00% 3.28% -3.28% 

MBP chr18 72,973,627 72,976,627 - 30.00% 16.72% 13.28% 

MBTPS2 chrX 21,765,675 21,768,675 + 40.00% 8.85% 31.15% 

MC4R chr18 56,189,981 56,192,981 - 0.00% 38.77% -38.77% 

ME2 chr18 46,657,417 46,660,417 + 0.00% 1.48% -1.48% 

MED6 chr14 70,136,137 70,139,137 - 30.00% 5.57% 24.43% 

MEP1B chr18 28,021,985 28,024,985 + 100.00% 83.34% 16.66% 

MET chr7 116,097,484 116,100,484 + 10.00% 2.53% 7.47% 
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MIPOL1 chr14 36,734,869 36,737,869 + 10.00% 2.62% 7.38% 

MKI67 chr10 129,813,639 129,816,639 - 0.00% 5.39% -5.39% 

MKKS chr20 10,361,870 10,364,870 - 0.00% 1.12% -1.12% 

MKRN3 chr15 21,359,547 21,362,547 + 10.00% 15.26% -5.26% 

MLPH chr2 238,056,810 238,059,810 + 100.00% 75.79% 24.21% 

MMP16 chr8 89,408,370 89,411,370 - 0.00% 2.28% -2.28% 

MNAT1 chr14 60,269,213 60,272,213 + 10.00% 12.28% -2.28% 

MOCS1 chr6 40,009,268 40,012,268 - 0.00% 5.91% -5.91% 

MORF4L2 chrX 102,828,742 102,831,742 - 20.00% 10.89% 9.11% 

MOS chr8 57,188,095 57,191,095 - 10.00% 12.33% -2.33% 

MRPL44 chr2 224,528,365 224,531,365 + 0.00% 5.46% -5.46% 

MRPS10 chr6 42,292,581 42,295,581 - 30.00% 24.76% 5.24% 

MRPS9 chr2 105,018,873 105,021,873 + 20.00% 12.73% 7.27% 

MSC chr8 72,918,257 72,921,257 - 10.00% 2.92% 7.08% 

MTCH1 chr6 37,061,052 37,064,052 - 0.00% 3.62% -3.62% 

MTM1 chrX 149,485,727 149,488,727 + 0.00% 7.03% -7.03% 

MTMR6 chr13 24,759,147 24,762,147 - 20.00% 11.64% 8.36% 

MYADM chr19 59,059,289 59,062,289 + 10.00% 25.38% -15.38% 

MYH7 chr14 22,973,767 22,976,767 - 50.00% 88.74% -38.74% 

MYL2 chr12 109,841,909 109,844,909 - 50.00% 81.62% -31.62% 

MYO1B chr2 191,816,156 191,819,156 + 0.00% 4.73% -4.73% 

MYO5B chr18 45,974,449 45,977,449 - 10.00% 3.26% 6.74% 

NAB1 chr2 191,217,717 191,220,717 + 0.00% 32.38% -32.38% 

NCF4 chr22 35,584,976 35,587,976 + 100.00% 82.68% 17.32% 

NCOA4 chr10 51,233,114 51,236,114 + 0.00% 9.74% -9.74% 

NDFIP1 chr5 141,466,254 141,469,254 + 0.00% 7.56% -7.56% 

NDN chr15 21,482,543 21,485,543 - 0.00% 11.64% -11.64% 

NEU2 chr2 233,603,626 233,606,626 + 100.00% 83.11% 16.89% 

NEUROG1 chr5 134,898,538 134,901,538 - 0.00% 7.03% -7.03% 

NFKBIA chr14 34,942,706 34,945,706 - 0.00% 1.60% -1.60% 

NID2 chr14 51,605,295 51,608,295 - 10.00% 6.63% 3.37% 

NIN chr14 50,366,589 50,369,589 - 0.00% 2.57% -2.57% 

NOL4 chr18 30,056,513 30,059,513 - 0.00% 1.33% -1.33% 

NOS1 chr12 116,373,358 116,376,358 - 100.00% 86.01% 13.99% 

NOTCH4 chr6 32,298,822 32,301,822 - 100.00% 85.67% 14.33% 

NOVA1 chr14 26,135,800 26,138,800 - 0.00% 2.17% -2.17% 

NPC1 chr18 19,419,449 19,422,449 - 0.00% 2.66% -2.66% 

NPPC chr2 232,498,357 232,501,357 - 0.00% 3.06% -3.06% 

NR2C2 chr3 14,962,095 14,965,095 + 0.00% 5.03% -5.03% 

NRG1 chr8 31,614,444 31,617,444 + 0.00% 6.76% -6.76% 

NRL chr14 23,653,063 23,656,063 - 10.00% 5.11% 4.89% 

NRXN3 chr14 77,776,487 77,779,487 + 40.00% 87.42% -47.42% 

NTF3 chr12 5,409,539 5,412,539 + 0.00% 1.24% -1.24% 

NUDT14 chr14 104,717,705 104,720,705 - 0.00% 22.11% -22.11% 

NUPL1 chr13 24,771,662 24,774,662 + 20.00% 6.75% 13.25% 

NXT1 chr20 23,277,373 23,280,373 + 0.00% 2.83% -2.83% 

NYX chrX 41,189,631 41,192,631 + 50.00% 83.07% -33.07% 

OAT chr10 126,096,535 126,099,535 - 20.00% 4.70% 15.30% 

OGN chr9 94,205,799 94,208,799 - 10.00% 89.92% -79.92% 

OGT chrX 70,667,658 70,670,658 + 20.00% 2.30% 17.70% 
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OMD chr9 94,225,564 94,228,564 - 100.00% 73.54% 26.46% 

ONECUT2 chr18 53,251,915 53,254,915 + 10.00% 2.11% 7.89% 

OPRK1 chr8 54,325,810 54,328,810 - 0.00% 2.70% -2.70% 

OTX2 chr14 56,345,950 56,348,950 - 0.00% 1.36% -1.36% 

P2RX7 chr12 120,053,005 120,056,005 + 90.00% 83.32% 6.68% 

P2RY10 chrX 78,085,485 78,088,485 + 100.00% 68.79% 31.21% 

PABPC5 chrX 90,574,250 90,577,250 + 0.00% 8.33% -8.33% 

PAK3 chrX 110,072,169 110,075,169 + 10.00% 8.24% 1.76% 

PAK4 chr19 44,306,260 44,309,260 + 20.00% 9.32% 10.68% 

PARVB chr22 42,724,424 42,727,424 + 90.00% 63.74% 26.26% 

PAX8 chr2 113,751,997 113,754,997 - 0.00% 13.84% -13.84% 

PAX9 chr14 36,194,524 36,197,524 + 0.00% 2.12% -2.12% 

PCCA chr13 99,537,270 99,540,270 + 10.00% 6.33% 3.67% 

PCDH12 chr5 141,328,488 141,331,488 - 20.00% 6.40% 13.60% 

PCDHB1 chr5 140,409,163 140,412,163 + 10.00% 5.39% 4.61% 

PCDHB2 chr5 140,452,411 140,455,411 + 20.00% 16.09% 3.91% 

PCDHB5 chr5 140,492,984 140,495,984 + 0.00% 10.70% -10.70% 

PCDHB6 chr5 140,507,867 140,510,867 + 10.00% 14.67% -4.67% 

PDE6A chr5 149,303,549 149,306,549 - 100.00% 88.87% 11.13% 

PDE7A chr8 66,916,111 66,919,111 - 0.00% 2.29% -2.29% 

PDGFB chr22 37,969,702 37,972,702 - 20.00% 10.68% 9.32% 

PDGFRB chr5 149,514,616 149,517,616 - 50.00% 84.36% -34.36% 

PGF chr14 74,491,240 74,494,240 - 0.00% 20.11% -20.11% 

PGRMC1 chrX 118,252,244 118,255,244 + 0.00% 4.28% -4.28% 

PI15 chr8 75,897,327 75,900,327 + 20.00% 73.99% -53.99% 

PIGA chrX 15,262,597 15,265,597 - 0.00% 3.69% -3.69% 

PIK3CG chr7 106,290,959 106,293,959 + 100.00% 69.74% 30.26% 

PITPNB chr22 26,645,122 26,648,122 - 10.00% 9.41% 0.59% 

PKHD1 chr6 52,059,382 52,062,382 - 90.00% 86.63% 3.37% 

PKIA chr8 79,588,929 79,591,929 + 30.00% 3.17% 26.83% 

PLA2G7 chr6 46,810,389 46,813,389 - 20.00% 7.37% 12.63% 

PLAG1 chr8 57,285,437 57,288,437 - 0.00% 1.41% -1.41% 

PLAT chr8 42,183,399 42,186,399 - 80.00% 86.01% -6.01% 

PLCB1 chr20 8,058,824 8,061,824 + 10.00% 4.85% 5.15% 

PLCB4 chr20 8,995,410 8,998,410 + 0.00% 2.93% -2.93% 

PLCD4 chr2 219,178,732 219,181,732 + 70.00% 75.38% -5.38% 

PLDN chr15 43,664,709 43,667,709 + 0.00% 4.76% -4.76% 

PLEK2 chr14 66,947,670 66,950,670 - 10.00% 10.52% -0.52% 

PLG chr6 161,041,260 161,044,260 + 100.00% 57.61% 42.39% 

PLS3 chrX 114,699,757 114,702,757 + 10.00% 7.24% 2.76% 

PLXDC2 chr10 20,143,174 20,146,174 + 0.00% 1.55% -1.55% 

PMAIP1 chr18 55,716,160 55,719,160 + 0.00% 2.67% -2.67% 

POU4F3 chr5 145,696,780 145,699,780 + 0.00% 1.23% -1.23% 

PPP1CC chr12 109,664,127 109,667,127 - 0.00% 3.47% -3.47% 

PPP1R2 chr3 196,750,498 196,753,498 - 10.00% 4.08% 5.92% 

PPP2R5E chr14 63,078,845 63,081,845 - 10.00% 2.34% 7.66% 

PRDM13 chr6 100,159,327 100,162,327 + 20.00% 2.92% 17.08% 

PRKAB1 chr12 118,587,941 118,590,941 + 40.00% 4.24% 35.76% 

PROM2 chr2 95,301,928 95,304,928 + 70.00% 83.77% -13.77% 

PRPF39 chr14 44,621,052 44,624,052 + 50.00% 16.60% 33.40% 
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PRPS2 chrX 12,717,395 12,720,395 + 0.00% 3.73% -3.73% 

PRX chr19 45,610,113 45,613,113 - 60.00% 77.96% -17.96% 

PSMA3 chr14 57,779,302 57,782,302 + 10.00% 1.82% 8.18% 

PSMC6 chr14 52,241,640 52,244,640 + 10.00% 11.98% -1.98% 

PTER chr10 16,516,970 16,519,970 + 10.00% 5.78% 4.22% 

PTGDR chr14 51,802,181 51,805,181 + 0.00% 3.23% -3.23% 

PTGER2 chr14 51,848,773 51,851,773 + 0.00% 2.60% -2.60% 

PTGIR chr19 51,819,194 51,822,194 - 50.00% 71.93% -21.93% 

PTOV1 chr19 55,043,950 55,046,950 + 0.00% 3.73% -3.73% 

PTPN21 chr14 88,089,830 88,092,830 - 0.00% 6.03% -6.03% 

PURA chr5 139,465,546 139,468,546 + 10.00% 2.69% 7.31% 

PYGB chr20 25,174,705 25,177,705 + 0.00% 2.34% -2.34% 

RAB27B chr18 50,644,706 50,647,706 + 40.00% 13.58% 26.42% 

RAD52 chr12 969,617 972,617 - 0.00% 1.19% -1.19% 

RASAL1 chr12 112,057,427 112,060,427 - 50.00% 20.83% 29.17% 

RAX chr18 55,091,298 55,094,298 - 10.00% 8.08% 1.92% 

RBX1 chr22 39,675,297 39,678,297 + 10.00% 4.54% 5.46% 

RET chr10 42,890,481 42,893,481 + 0.00% 6.61% -6.61% 

RFC4 chr3 188,006,541 188,009,541 - 40.00% 7.68% 32.32% 

RFC5 chr12 116,933,776 116,936,776 + 100.00% 87.19% 12.81% 

RHAG chr6 49,711,511 49,714,511 - 90.00% 86.75% 3.25% 

RIMS1 chr6 72,651,127 72,654,127 + 0.00% 3.00% -3.00% 

RIPK3 chr14 23,878,091 23,881,091 - 0.00% 10.95% -10.95% 

RNF14 chr5 141,316,077 141,319,077 + 20.00% 86.74% -66.74% 

RNF26 chr11 118,708,447 118,711,447 + 0.00% 17.39% -17.39% 

RNF34 chr12 120,320,227 120,323,227 + 10.00% 3.51% 6.49% 

ROR2 chr9 93,751,265 93,754,265 - 20.00% 2.14% 17.86% 

RPL21 chr13 26,721,446 26,724,446 + 0.00% 10.30% -10.30% 

RPS14 chr5 149,808,512 149,811,512 - 10.00% 6.73% 3.27% 

RPS16 chr19 44,617,458 44,620,458 - 10.00% 13.32% -3.32% 

RPS5 chr19 63,588,448 63,591,448 + 20.00% 3.81% 16.19% 

RPS6KA3 chrX 20,194,444 20,197,444 - 0.00% 1.86% -1.86% 

RRS1 chr8 67,501,817 67,504,817 + 0.00% 3.39% -3.39% 

RTN1 chr14 59,406,437 59,409,437 - 0.00% 1.81% -1.81% 

RTN4R chr22 18,649,769 18,652,769 - 100.00% 89.22% 10.78% 

SAG chr2 233,879,048 233,882,048 + 90.00% 84.98% 5.02% 

SAV1 chr14 50,203,806 50,206,806 - 0.00% 2.41% -2.41% 

SCG2 chr2 224,174,465 224,177,465 - 20.00% 25.41% -5.41% 

SCGN chr6 25,758,443 25,761,443 + 50.00% 12.73% 37.27% 

SCNN1G chr16 23,099,537 23,102,537 + 10.00% 4.72% 5.28% 

SDC2 chr8 97,572,755 97,575,755 + 0.00% 5.65% -5.65% 

SDCBP chr8 59,626,037 59,629,037 + 20.00% 3.60% 16.40% 

SDPR chr2 192,419,226 192,422,226 - 30.00% 23.20% 6.80% 

SEMA6B chr19 4,508,507 4,511,507 - 30.00% 33.75% -3.75% 

SERPINA10 chr14 93,828,361 93,831,361 - 100.00% 82.42% 17.58% 

SERPINA5 chr14 94,095,532 94,098,532 + 80.00% 87.51% -7.51% 

SERPINA6 chr14 93,858,484 93,861,484 - 100.00% 65.07% 34.93% 

SERPINB2 chr18 59,687,906 59,690,906 + 100.00% 80.76% 19.24% 

SERPINB7 chr18 59,569,149 59,572,149 + 100.00% 90.03% 9.97% 

SERPINB8 chr18 59,786,139 59,789,139 + 100.00% 15.23% 84.77% 
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SETBP1 chr18 40,512,136 40,515,136 + 0.00% 1.50% -1.50% 

SFRP1 chr8 41,285,173 41,288,173 - 10.00% 4.16% 5.84% 

SGCG chr13 22,651,091 22,654,091 + 0.00% 91.29% -91.29% 

SH2D1A chrX 123,305,875 123,308,875 + 40.00% 29.83% 10.17% 

SHC3 chr9 90,982,502 90,985,502 - 0.00% 1.47% -1.47% 

SIX1 chr14 60,193,730 60,196,730 - 10.00% 7.16% 2.84% 

SIX6 chr14 60,043,422 60,046,422 + 0.00% 1.33% -1.33% 

SLC10A2 chr13 102,516,197 102,519,197 - 80.00% 85.73% -5.73% 

SLC11A2 chr12 49,707,616 49,710,616 - 50.00% 48.87% 1.13% 

SLC12A6 chr15 32,416,553 32,419,553 - 0.00% 4.87% -4.87% 

SLC20A2 chr8 42,515,226 42,518,226 - 10.00% 2.20% 7.80% 

SLC22A3 chr6 160,687,290 160,690,290 + 0.00% 2.76% -2.76% 

SLC24A4 chr14 91,856,678 91,859,678 + 0.00% 9.18% -9.18% 

SLC25A14 chrX 129,299,555 129,302,555 + 0.00% 3.55% -3.55% 

SLC25A5 chrX 118,484,391 118,487,391 + 10.00% 4.42% 5.58% 

SLC26A2 chr5 149,318,493 149,321,493 + 10.00% 5.53% 4.47% 

SLC26A3 chr7 107,229,906 107,232,906 - 100.00% 85.61% 14.39% 

SLC26A4 chr7 107,086,316 107,089,316 + 10.00% 5.96% 4.04% 

SLC27A2 chr15 48,259,685 48,262,685 + 0.00% 5.68% -5.68% 

SLC28A2 chr15 43,329,720 43,332,720 + 20.00% 25.06% -5.06% 

SLC29A1 chr6 44,293,220 44,296,220 + 20.00% 18.24% 1.76% 

SLC5A7 chr2 107,967,411 107,970,411 + 20.00% 8.16% 11.84% 

SLC6A14 chrX 115,479,818 115,482,818 + 10.00% 55.91% -45.91% 

SLC6A6 chr3 14,417,080 14,420,080 + 10.00% 13.24% -3.24% 

SLC7A13 chr8 87,401,491 87,404,491 - 100.00% 83.85% 16.15% 

SLC7A8 chr14 22,721,723 22,724,723 - 0.00% 10.95% -10.95% 

SLC8A3 chr14 69,724,540 69,727,540 - 10.00% 2.67% 7.33% 

SLITRK4 chrX 142,550,262 142,553,262 - 10.00% 5.70% 4.30% 

SMAP1 chr6 71,432,200 71,435,200 + 20.00% 6.42% 13.58% 

SMARCAL1 chr2 216,983,382 216,986,382 + 40.00% 13.90% 26.10% 

SMOC1 chr14 69,388,601 69,391,601 + 90.00% 85.48% 4.52% 

SMOC2 chr6 168,582,680 168,585,680 + 20.00% 5.83% 14.17% 

SMPX chrX 21,685,202 21,688,202 - 0.00% 81.82% -81.82% 

SNAI2 chr8 49,995,852 49,998,852 - 10.00% 2.86% 7.14% 

SNAP25 chr20 10,145,478 10,148,478 + 0.00% 1.16% -1.16% 

SNRPB2 chr20 16,656,606 16,659,606 + 20.00% 6.67% 13.33% 

SNTG1 chr8 50,982,902 50,985,902 + 10.00% 6.10% 3.90% 

SOX17 chr8 55,531,048 55,534,048 + 0.00% 3.81% -3.81% 

SPAG6 chr10 22,672,405 22,675,405 + 0.00% 2.36% -2.36% 

SPATS1 chr6 44,416,375 44,419,375 + 40.00% 17.72% 22.28% 

SPATS2 chr12 48,044,634 48,047,634 + 0.00% 4.20% -4.20% 

SPDEF chr6 34,631,088 34,634,088 - 70.00% 84.99% -14.99% 

SPG20 chr13 35,841,317 35,844,317 - 40.00% 91.93% -51.93% 

SPRY4 chr5 141,685,204 141,688,204 - 10.00% 9.56% 0.44% 

SPTLC2 chr14 77,151,869 77,154,869 - 10.00% 6.64% 3.36% 

SQRDL chr15 43,712,293 43,715,293 + 20.00% 10.98% 9.02% 

SRPK1 chr6 35,996,097 35,999,097 - 20.00% 9.73% 10.27% 

SST chr3 188,869,881 188,872,881 - 20.00% 15.12% 4.88% 

SSTR1 chr14 37,744,955 37,747,955 + 10.00% 10.07% -0.07% 

SSTR3 chr22 35,937,308 35,940,308 - 50.00% 87.80% -37.80% 
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SSTR4 chr20 22,962,057 22,965,057 + 30.00% 8.88% 21.12% 

ST18 chr8 53,535,072 53,538,072 - 50.00% 85.90% -35.90% 

STAG2 chrX 122,919,743 122,922,743 + 0.00% 1.90% -1.90% 

STAM chr10 17,724,130 17,727,130 + 10.00% 4.30% 5.70% 

STARD7 chr2 96,237,290 96,240,290 - 10.00% 6.65% 3.35% 

STK17B chr2 196,748,472 196,751,472 - 70.00% 83.32% -13.32% 

STK38 chr6 36,622,225 36,625,225 - 0.00% 13.99% -13.99% 

STMN2 chr8 80,683,604 80,686,604 + 30.00% 9.29% 20.71% 

STXBP6 chr14 24,588,343 24,591,343 - 0.00% 2.97% -2.97% 

SULF1 chr8 70,539,413 70,542,413 + 40.00% 28.47% 11.53% 

SUV39H2 chr10 14,958,825 14,961,825 + 0.00% 1.49% -1.49% 

SYNPO chr5 149,958,835 149,961,835 + 30.00% 88.04% -58.04% 

SYT4 chr18 39,110,613 39,113,613 - 0.00% 11.20% -11.20% 

SYTL4 chrX 99,872,766 99,875,766 - 0.00% 13.65% -13.65% 

TAF7L chrX 100,433,715 100,436,715 - 30.00% 14.66% 15.34% 

TBC1D8 chr2 101,234,760 101,237,760 - 10.00% 2.43% 7.57% 

TBX1 chr22 18,122,226 18,125,226 + 10.00% 5.75% 4.25% 

TBX22 chrX 79,154,911 79,157,911 + 20.00% 55.02% -35.02% 

TBX3 chr12 113,605,352 113,608,352 - 0.00% 1.13% -1.13% 

TCERG1 chr5 145,805,067 145,808,067 + 0.00% 7.51% -7.51% 

TCOF1 chr5 149,715,395 149,718,395 + 0.00% 9.02% -9.02% 

TCP11 chr6 35,223,365 35,226,365 - 10.00% 45.71% -35.71% 

TEP1 chr14 19,950,428 19,953,428 - 0.00% 18.74% -18.74% 

TERF1 chr8 74,081,653 74,084,653 + 10.00% 2.83% 7.17% 

TFIP11 chr22 25,237,471 25,240,471 - 10.00% 9.67% 0.33% 

TGFBI chr5 135,390,483 135,393,483 + 30.00% 13.55% 16.45% 

THAP1 chr8 42,816,625 42,819,625 - 0.00% 6.75% -6.75% 

TJP1 chr15 28,047,360 28,050,360 - 20.00% 4.69% 15.31% 

TLR8 chrX 12,832,660 12,835,660 + 80.00% 86.56% -6.56% 

TMEFF2 chr2 192,767,680 192,770,680 - 0.00% 1.22% -1.22% 

TMSB4X chrX 12,901,148 12,904,148 + 0.00% 4.88% -4.88% 

TNFAIP2 chr14 102,657,532 102,660,532 + 0.00% 10.02% -10.02% 

TNFRSF11A chr18 58,141,500 58,144,500 + 0.00% 1.86% -1.86% 

TNFRSF19 chr13 23,040,509 23,043,509 + 100.00% 83.90% 16.10% 

TNFRSF21 chr6 47,384,600 47,387,600 - 0.00% 2.78% -2.78% 

TNP1 chr2 217,432,032 217,435,032 - 100.00% 88.25% 11.75% 

TPST2 chr22 25,321,681 25,324,681 - 100.00% 86.00% 14.00% 

TREM1 chr6 41,361,435 41,364,435 - 30.00% 86.15% -56.15% 

TRIM39 chr6 30,400,235 30,403,235 + 0.00% 2.34% -2.34% 

TRPC4 chr13 37,341,562 37,344,562 - 20.00% 3.66% 16.34% 

TRPC5 chrX 111,211,660 111,214,660 - 10.00% 3.47% 6.53% 

TRPM8 chr2 234,488,782 234,491,782 + 100.00% 88.83% 11.17% 

TTPA chr8 64,160,166 64,163,166 - 0.00% 9.95% -9.95% 

TUBGCP3 chr13 112,289,482 112,292,482 - 10.00% 6.61% 3.39% 

UBE2A chrX 118,590,529 118,593,529 + 0.00% 4.29% -4.29% 

UBE2J1 chr6 90,118,286 90,121,286 - 20.00% 4.44% 15.56% 

UBE3A chr15 23,234,221 23,237,221 - 0.00% 4.87% -4.87% 

UBL3 chr13 29,321,821 29,324,821 - 0.00% 5.23% -5.23% 

UBQLN2 chrX 56,604,751 56,607,751 + 0.00% 4.09% -4.09% 

UNC5D chr8 35,210,517 35,213,517 + 0.00% 1.65% -1.65% 
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USP26 chrX 132,057,803 132,060,803 - 40.00% 25.98% 14.02% 

UXT chrX 47,402,504 47,405,504 - 30.00% 14.22% 15.78% 

VDR chr12 46,622,098 46,625,098 - 40.00% 29.19% 10.81% 

VPS4B chr18 59,239,673 59,242,673 - 0.00% 5.81% -5.81% 

VRK1 chr14 96,331,394 96,334,394 + 0.00% 9.91% -9.91% 

VSX1 chr20 25,009,996 25,012,996 - 20.00% 1.35% 18.65% 

WASF3 chr13 26,027,840 26,030,840 + 0.00% 3.34% -3.34% 

WDFY1 chr2 224,517,348 224,520,348 - 0.00% 9.96% -9.96% 

WHSC1L1 chr8 38,357,947 38,360,947 - 0.00% 2.41% -2.41% 

WNT2 chr7 116,749,579 116,752,579 - 0.00% 1.15% -1.15% 

XPNPEP2 chrX 128,698,631 128,701,631 + 90.00% 76.27% 13.73% 

XRN2 chr20 21,229,942 21,232,942 + 30.00% 4.53% 25.47% 

ZDHHC4 chr7 6,581,590 6,584,590 + 0.00% 23.65% -23.65% 

ZFP36L1 chr14 68,331,943 68,334,943 - 10.00% 13.59% -3.59% 

ZP2 chr16 21,129,369 21,132,369 - 100.00% 88.29% 11.71% 

 


